

Turbo Tutor
A Self-Study Guide to Turbo Pascal

Copyright @1984, 1986
All Rights Reserved

Borland International, Inc.
4585 Scotts Valley Drive
Scotts Valley, CA 95066

USA

Table of Contents
Introduction ... xiii
About this Book .. xiii
What We'll Teach You .. xv

PART I TURBO PASCAL FOR THE ABSOLUTE NOVICE 1

Chapter 1 Getting Started with Turbo Pascal 3
Using the Disk with this Ma.nual. " " " , , , ,.". " , , , , , , " ", "'" ... , 4

TUTOR.PAS and the .EX Files .. 4
Main Menu .. 4
Subprograms .. 4
Modifying the Examples .. 5
Files on the Disk .. 5

Chapter 2 Computers: Myth Versus Reality 7
Beyond the Misconceptions .. 8

Computers are Fast .. 8
Computers are Stupid .. 8
Computers are Literal ... 8

Chapter 3 Computer Basics ... 11
Computer Hardware .. 11

Central Processing Unit .. 12
Memory .. 12
Mass Storage ... 12
Input Devices .. 13
Output Devices .. 13

Digital Data .. 13
Computer Software .. 14

Operating Systems .. 15
Application Software ... 16

Characters .. 16
Review .. 19

Chapter 4 A Brief History of Programming 21
In the Beginning .. 21
A Programming Shorthand ... 22
High-Level Languages ... 23
Programming Languages and Microcomputers 24
And Finally.· .. Pascal .. 24
Interpreters and Compilers ... 25
The Turbo Pascal Advantage ... 26

Chapter 5 Getting Ready to Use Turbo Pascal 29
Backing Up Your Original Turbo Disk 30

Making Backups: MS-DOS and IBM PC-DOS 30
Getting Ready to Work ... 31

Making a Turbo System Disk .. 31
Installing Turbo Pascal ... 31

Using TINST with Non-IBM PC Systems 33
Using TINST on the IBM PC and Compatible Systems 35
Additional Files ... 35

Another Backup .. 36
Using a Single Drive System ... 37
U sing a Hard Disk ... 37

Chapter 6 Using Turbo Pascal ... 39
Starting Turbo Pascal. ... 40

Main Menu Overview .. 41
Choosing a File Name .. 41

Using The Editor .. 42
Writing the Program .. 44

Typing the Program .. 44
Compiling and Running the Program 45
Saving Your Source Program .. 45
Saving Your Compiled Program 46
Finishing Up ... 47

Review .. 48

PART II A PROGRAMMER'S GUIDE TO TURBO PASCAL 51

Chapter 7 The Basics of Pascal ... 53
Some Pascal Terms .. 53
Data Types ... 54

Predefined Data Types ... 54
User-Defined Data Types .. 55

Identifiers ... 55
Exercises .. 58

Reserved Words .. 59

ii Turbo Tutor Owner's Handbook

Constants .. 59
Constant Definitions .. 60

Variables .. 61
Variable Declarations ... 61

Operators ... 62
Expressions ... 63

The Order of Operations in Expressions 64
Exercises .. 65

Statements .. 66
Comments .. 66
A Program Example .. 67

The Program Heading .. 69
The Declaration Part ... 69
The Statement Part ... 69

Exercises .. 72
Review .. 73

Chapter 8 Program Structure 75
The Program Heading ... 75
The Declaration Part .. 76

Formatting Your Declarations ... 77
The Statement Part : 79

Formatting Your Statements ... 79
Statement Types ... 80

Comments: The Rest of the Story .. 81
Review .. 84

Chapter 9 Predefined Data Types 87
Integers .. 87

Integer Operators ... 88
Integers and Arithmetic Overflow 89

Exercises .. 89
Byte ... 90
Real .. 90

Real Operators .. 91
Exponential Notation ... 91

Boolean ... 93
Char ... 94
Strings ... 96

String Constants ... 97
Putting Control Characters in a String 97
Declaring String Variables ... 97

Review .. 99

Table of Contents iii

Chapter 10 Defined Scalar Types 101
Enumerated Scalar Types .. 102

Ordinal Values ... 103
Standard Functions for Scalar Types 104
Cyclical Enumerated Types-Avoiding Range Errors 106

Exercises ... 106
Range-Checking .. 106

Undefined Values in Enumerated Types 107
Sub ranges .. 108

Subranges as Anonymous Types 109
Input and Output .. 110
Memory Usage .. 110
Review ... 110

Chapter 11 Control Structures ... 111
Conditional Execution: The If Statement 111

Compound Statements and the If Statement 112
Boolean Expressions ... 113
Boolean Operators ... 114

Exercises ... 115
Repetitive Tasks ... 116

Iteration ... 116
The While Statement .. 117
The Repeat ... Until Statement .. 118
The For Statement ... 119

Simulating a Step Size Larger Than 1 121
Endless Loops ... 122

The Case Statement .. 123
The Constant List .. 125

Review ... 125

Chapter 12 Procedures and FUDctioDs 127
Subprograms ... 127
Scope ... 130

Exercises ... 133
The Lifetime of Local Variables ... 135
Parameters ... 135
Functions ... 138
Recursive Subprograms .. 141
Forward Declarations .. 142
Scope and Recursion .. 143
The Exit Procedure ... 144
Review ... 146

iv Turbo Tutor Owner's Handbook

Chapter 13 Arrays .. 147
Array Assignments .. 151
Range-Checking and Arrays ... 152
Initializing an Array .. 152
Representing an Array in Memory 153
Packed Arrays ... 154
R.eview ... 155

Chapter 14 Strings ... 157
String Types. '" ., ... 157
String Operators, Functions, and Procedures 158

String Assignments ... 159
The Length Function ' 159
The Concat Function and the + Operator 160
The Copy Function .. 161
The Pos Function ... 161
The Delete and Insert Procedures 162
Miscellaneous Character Functions 164

Representing Strings in Memory: Strings as Arrays 164
String Comparisons ... 166
Numeric Conversions ... 167
Strings as Parameters ... 169
Review ... 170

Chapter 15 Records .. 173
The With Statement .. 176
Variant Records ... 179
Free Unions: Omitting the Tag Field 182
Review ... 183

Chapter 16 Sets ... 185
Building a Set: The Set Constructor 186
Defining a Set Type .. 186
Set Operations .. " ... 188

Set Membership: The In Operator 188
Set Equality and Inequality ... 188
Set Union, Intersection, and Difference ; 189
Set Inclusion Operators .. 189
Set Disjunction ... 189

Review " ... 190

Chapter 17 Pointers and Dynamic Allocation 191
Pointers .. 192
Dynamic Allocation: The New Procedure 193
Dereferencing Pointers " 194
The Nil Pointer ... 194

Table oj Contents v

Linked Lists .. 195
The Heap .. 199
The Max A vail Function .. 199
Deallocation of Dynamic Variables: Memory Management 200

l)ispose .. 200
Mark and Release .. 202

Review ... 203

Chapter 18 Files 205
Turbo's Pascal 110 Procedures .. 205

Read and Readln ... 206
Write and Writeln ... 206
Write Parameters .. 207
Get and Put ... 210

File Types .. 210
Reading and Writing Text Files ... 211

The Assign Procedure ... 213
Reset and Rewrite ... 214
The Append Procedure .. 214
Read and Readln with Text Files 214
Eof, Eoln, SeekEof, and SeekEoln 215
The Close Procedure .. 215

Random Access Files .. 216
Creating a Random Access File 216
Properties of Random Access Files 219
The Seek Procedure .. 220
The FilePos and LongFilePos Functions 221
The FileSize and LongFileSize Functions 221
The Truncate Procedure .. 221

Other Built-in File Procedures and Functions 221
For MS-DOS and PC-DOS Only:

Directory Management Procedures 222
Talking to Your Computer's Peripherals: Device 110 223

Logical Devices ... 223
Standard Files , 224
Advanced Keyboard Handling:

KeyPressed and the Standard File Kbd 224
Untyped Files .. 225

Declaring Untyped Files ... 226
Using Untyped Files ... 226
MS-DOS/PC-DOS Only: Specifying a Block Size 227

110 Error Handling ... 227
Review ... 230

vi Turbo Tutor Owner's Handbook

Chapter 19 A Sample Program .. 231
Turbo Typist .. 231
Step 1: The Program Body ... 233
Step 2: File I/O .. 233
Step 3: The Main Control Loop ... 233
Anima tion .. 234
Dare to Experiment .. 237
Review ... 237

PART III ADVANCED TOPICS IN TURBO PASCAL 239

Chapter 20 Stacks, Queues, Deques, and Lists 241
Linked Lists .. 241

Single vs. Double Links .. 241
Starting a Linked List ... 242

Circular Linked Lists .. 243
Insertion ... 244
Deletion ... 245

Stacks ... 245
Queues ... 247
Deques ... 249
Lists ... 250
Review ... 251

Chapter 21 Trees, Graphs, and Other Linked Structures 253
Introduction to Trees ... 253
Binary Trees .. , 254

Searching Binary Trees .. 254
Inserting into Binary Trees ... 255
Traversing Binary Trees .. 256
Deleting Nodes and Subtrees ... 257
Non-Binary Trees .. 258

Graphs .. 259
Sparse Arrays .. 260

Mixed Sparse Arrays .. 262
When to Use Sparse Arrays ... 263

Review ... 263

Chapter 22 Sorting and Searching 265
Sorting ... 265

Insertion Sort ... 265
Shellsort ... 267
Quicksort ... 268

Searching ... 270
Sequential Search .. 270
Binary Search ... 271

Table oj Contents vii

Hashing ; 272
External Search .. 273

Review .. 274

Chapter 23 Writing Large Programs 275
A Program's Memory Requirements 275
Too Much Data ... 276
Too Much Code ~ 277
Too Much Text ... 278
The Stack .. 278
The Heap .. 280
Solutions ... 280
Include Files ... ' 280
Modular Programming ... 281
Libraries .. 282
Using Overlays to Save Code Space 282

Menu Program Example 1: Overlays 285
Location of Overlay Files ... 286
Overlay Restrictions ... 286

Chaining ... 287
Executing Files .. 289

Menu Program Example 2: Chain and Execute 290
Overlay vs. Chain/Execute .. 291
Review ... 292

Chapter 24 Typed Constants . .. 293
Defining a Typed Constant .. 294
Array Constants : ... 295
Record Constants ... 296
Set Constants .. 296
Special Properties of Typed Constants 297

Mutability ... 297
Lifetime ... 297
Scope .. 297

Typed Constants as Static Variables 298
Typed Constants as Initialized Variables 299
Manipulating Components of Constants 299
Saving Constant Space ... 300
Passing Constants as Var Parameters 301
How Typed Constants are Stored in Memory 301
A Final Caveat: Typed Constants and Execution from Memory 302
Review ... 302

viii Turbo Tutor Owner's Handbook

Chapter 25 The Goto Statement 303
Syntax of the Goto Statement ... 303
How to Use the Goto Statement-And Why Not to 304
Review ... 306

Chapter 26 Absolute Variables and Untyped Parameters 307
Absolute Variables .. 307
Untyped Parameters .. 309

Using Untyped Parameters ... 310
Review ... 312

Chapter 27 Computer Numbering Systems
and Boolean Operations on Integers ~ 313

Integers as Bits and Bytes:
How Integers are Represented in Memory " " 313
place Value ... 313

The Special Relationship Between Binary and Hex 317
Two's Complement Notation: Representing Negative Numbers 317
How Byte Values are Stored in Memory 318
Boolean Operations on Integers and Bytes 319
The Shifting Operators: Shl and Shr 320
Review ... 321

Chapter 28 Using 8088/8086 Assembly Language
with Turbo Pascal ' 323

External Subprograms .. 323
Accessing Parameters from External Subprograms 325
Allocating Local Variable Space .. 327
Allocating Static Storage ... 327
Libraries (PC-DOS/MS-DOS Only) 328
The Inline Statement ... 330

Syntax and Semantics of the Inline Statement 330
Speeding Up Turbo Programs with Inline Statements 332

Interrupt Handling ... 332
Review ... 334

PART IV APPENDICES .. . 335

Appendix A Syntax Diagrams for Turbo Pascal 337

Appendix B Exercise Solutions 351
Chapter 7 .. 351

Answers to Sample Program Questions 351
Chapter 9 .. 352

First Set ... 352
Second Set .. 352

Table of Contents ix

Third Set .. 352
Chapter 10 ... 352
Chapter 27 ... 353

First Set ... 353
Second Set .. 353

Appendix C Summary of Standard Procedures
and Functions 355

Input/Output Procedures and Functions 355
Arithmetic Functions ... 356
File Handling Routines ... 356
Heap Control Procedures and Functions 357
Miscellaneous Procedures and Functions " 357
Scalar Functions ... 358
Directory-Related Procedures and Functions (PC/MS-DOS) 358
Screen-Related Procedures and Functions 359
String Procedures and Functions .. 359
Transfer Functions .. 359
IBM PC Procedures and Functions " 360

Basic Graphics, Windows, and Sound 360
Extended Graphics ... 361
Turtlegraphics .. 361

Appendix D Using Turbo Pascal
with Other Borland Products 363

SideKick ... 363
The Notepad .. 363
Reminders ... 363
Documentation ... 364
Include Files .. 364
Interruptions ... 365
The Calculator ... 365
The ASCII Table ... 365

SuperKey ... 365
Using the Predefined Macros in TURBO.MAC 366
Fast Entry to Turbo , , '" 366
Turbo Pascal Templates ... 366
Saving Your Work ... 367
Other Macros ... 367
Other SuperKey Functions .. 367

Turbo Lightning ... 368

Appendix E Programming Style 369
Consistency: A Matter of Style " 369
Indentation , .. 369
Spelling ... 370

x Turbo Tutor Owner's Handbook

Parameters ... 371
Structures .. 372
Constants ... 374
Comments ... 374
Summing it Up .. 375

Appendix F Using Turbo Pascal with
CP IM-80 and CP IM-86 Systems ... '.< •••••••••••••••••••••••••••••• 377

Making Backups ... 377
Installation and BDOS Errors ... 378
Compiling to Disk .. 379
The Execute Option .. 380

Appendix G Common Questions and
Answers About Turbo Pascal 381

General " " ... 381
16-bit Machines Only (including IBM PC) 385
IBM PC Only ... 386
CP IM-80 Machines Only .. 389

Appendix H Glossary ... 391

List of Tables
3-1 Switch Usage ... 13
3-2 Partial ASCII Character Set '" 18
6-1 Turbo Pascal Editor ... 49
7-1 Pascal Reserved Words ... 59
9-1 Complete ASCII Table .. 95
14-1 String Procedures and Functions 159
18-1 Write Parameters and Output 208

Table of Contents xi

•

xii Turbo Tutor Owner's Handbook

Introduction
Congratulations on joining the ranks of the over 500,000 owners and
users of Turbo Pascal! You probably bought this book to learn to use
Turbo Pascal, or to overcome a problem you're trying to solve with
Turbo Pascal. Well, that's exactly what this book is for, and we don't
think you'll be disappointed.

Only after you begin writing Turbo Pascal programs will you have an
appreciation for the particulars of the language. For this reason, it's
important that you use this book as a tutorial, and actually try entering
and running the progratllS that we show and explain.

About this Book ...

If you're a novice computer user or programmer, you'll want to begin
with Part I, "Turbo Pascal for the Absolute Novice." This part of the
book will give you basic information about computers and program
ming, as well as a simple example of a Pascal program.

If you're a more experienced programmer, you may Want to skim
through Part I and go right to Part II, "A Programmer's Guide to Turbo
Pascal." This section provides you with the basic elements of Pascal
programming, taking you step-by-step through the different aspects of
Pascal in general, and Turbo Pascal in particular.

Initially, you may want to write only simple programs. However, when
you learn what you can do, you will probably want to learn more
complicated things. For this reason, we've included Part III, "Advanced
Topics in Turbo Pascal." This part of the book gives a brief introduction
to such topics as nonlinear data structures, linked lists, stacks, typed
constants, writing large programs, and more. Each of these topics could
fill an entire book, so our explanation is really just an introduction.

xiii

Appendices A through H provide information about using other Borland
products with Turbo Pascal, a glossary of programming terms, a
complete set of syntax diagrams showing how each component of Turbo
Pascal is used, the standard procedures and functions of Turbo Pascal,
common questions and answers about Turbo Pascal, general guidelines
for programming style, basic Turbo Pascal operations for CP /M-80/86
users, and a solution guide to the exercises provided throughout the
book.

This tutorial comes complete with a disk filled with programs to run,
and a ready-made library of routines to copy into your own programs.
The routines are both timesaving and educational, especially if you tailor
them to your needs.

This book is not intended to repla~e the Turbo Pascal Reference Manual.
Rather, its goal is to help you grasp basic Pascal principles; the reference
manual can then be used to give exact definitions of the Turbo Pascal
implementation.

This book assumes that you have version 3.0 (or later) of Turbo Pascal. If
you have an earlier version, you'll find a few differences, but they are
not really significant until you get into advanced programming. (If you
are that knowledgeable, you may want to consider buying an upgrade so
that you can take advantage of Turbo Pascal's latest features and
functions.)

For the sake of clarity, various typefaces have been used in this manual.
The body of this manual is set in a normal typeface; an alternate typeface
is used in program examples; italics are used to emphasize certain
concepts and first-mentioned terms; and boldface type is used to mark
reserved words in the main text as well as in programming examples.

We also refer to several different products in this manual; the following
is a list of them and their respective companies:
• SideKick, SuperKey, and Turbo Pascal are registered trademarks and

Turbo Lightning is a trademark of Borland International, Inc.
• IBM is a registered trademark ofInternational Business Machines, Inc.
• Xenix and MS-DOS are registered trademarks of Microsoft Corp.
• WordStar is a registered trademark of MicroPro International, Inc.
• Kaypro is a registered trademark of Kaypro Corp.
• DEC is a trademark of Digital Equipment Corp.
• 8088 is copyrighted by Intel Corp.
• Z80 is a registered trademark of Zilog Inc.
• Zenith Data Systems is a registered trademark of Zenith Corp.

xiv Turbo Tutor Owner's Handbook

What We'll Teach You

Before we teach you how to program in Pascal, we'11 give you a little
background on computers and computer programming. We'll also en
courage you to develop some habits that will keep your programs simple
and unconfused, no matter how complex the problem you are trying to
solve.

Next, we'll look at each part of a Pascal program and explain its
function. We'll also look at different kinds of numbers and what they are
used for. We'll teach you about a logical algebra called Boolean.

From time to time we will refer to the Turbo Pascal Reference Manual that
comes with your Turbo Pascal disk. While the reference manual may
seem a bit confusing to you at this time, it will prove to be a real treasure
chest of information once you know more about Pascal.

Besides this tutorial and the Turbo Pascal Reference Manual, there are a few
other things you'll need. First, you'll need a computer. The best way to
learn Pascal is to actually do the things we tell you to do as you go
through the tutorial. You'll also need a supply of blank disks (unless your
computer has a hard disk). In addition, you'll need your Turbo Pascal
program disk and the Turbo Tutor disk (the one that came with this
book).

Once you've obtained all of these items, find a comfortable and quiet
place with a large work area so that you can spread out your work and
keep everything handy.

Finally, it will be helpful if you have a printer connected to your
computer. You see, although Turbo Pascal will find most of your
syntactical errors for you-mistakes where you leave out a punctuation
mark or misspell a variable name-it won't find all errors. Every now
and then, you will find yourself stumped by a logical bug-something in
your program that won't let it work the way you think it should. A
printed copy of your program can be of great value at times like these, so
you can see and compare different parts of your program at the same
time, or so you can compare a new version with an older version.

We sincerely hope you enjoy exploring Turbo Pascal. Good luck and
have fun!

Introduction xv

p A R T I

Turbo Pascal
for the Absolute Novice

SECTION ART BY GEORGE BUCK

2 Turbo Tutor Owner's Handbook

I Getting Started with
Turbo Pascal

Welcome! You are about to begin an exciting and rewarding learning
experience. This book will teach you how to write computer programs
in Pascal, a very powerful and flexible programming language. To be
specific, you'll be learning how to program in Turbo Pascal, which is
Borland International's name for its version of Pascal.

There is no easy way to learn a "foreign" language-the best way is to
use it. The rewards will be well worth the effort; when you finish (and
practice what you've learned), you'll be able to program.in one of the
best-selling languages in the history of computers. Moreover, you'll
gain control over your computer, making it do what you want, in just
the way that you want.

We don't know how much you know about computers, but we'll
assume that you're like most people when they get their first com
puter-a bit overwhelmed and perhaps intimidated by all the fancy
words that describe how to use your computer. If it's any consolation,
computers are much easier to use now than they were a few years ago,
and this trend will continue. Early "personal" computers consisted of
many individual components that were not really intended to work
together, and were poorly documented to boot. They were generally
usable only by dedicated hobbyists and computer professionals. Today,
you can (and probably did) buy an integrated computer system with all
of its components, and perhaps several programs, ready to plug in and
use.

If you don't know much about your computer, your most important
information resource may be the dealer who sold it to you. If you don't
have a dealer who can help you, a friend who already knows how to
use computers can be a lot of help. And if you don't know anyone with
a personal computer (or even if you do), a users' group can be
invaluable. (Users' groups usually focus on a particular computer
system or software program.) You can fmd out about users' groups by

3

looking through computer magazines and other trade publications, or
by asking a computer dealer.

Having contacts such as these may prove indispensable in a time of
need. One missing piece of information can prevent you from doing
anything with your computer. It could take hours or days to find that
piece of information in a manual or book (if you can find it at all),
whereas someone who's been through it before could possibly fill in
these gaps for you in a matter of minutes.

With that said, we'll continue with the assumption that you know how
to do certain basic functions with your computer: how to turn it on
and off, how to "boot" the computer (load its operating system so that
you can run other programs), copy files and entire disks, and other
basic operations. And now we'll tell you something about the disk and
its flies.

USING THE DISK WITH THIS MANUAL

TUTOR.PAS and the .EX Files
In addition to the examples described throughout this manual, we have
provided an online tutorial that describes and demonstrates important
Pascal and microcomputer topics. The main program, TUTOR.PAS,
uses several separate subprograms also contained on your disk (in . EX
flies). You can use TUTOR to look at the source code for each
procedure, run the procedure, and then take a quiz on the program
ming topic demonstrated.

Main Menu

When you load TUTOR.COM (or compile and run TUTOR.PAS),
the screen will clear and split into two windows .. A menu of procedures
will be displayed in the lower window. Each procedure listed on the
menu demonstrates one or more Turbo Pascal features. To select an
example or to see the quiz questions associated with each topic, follow
the menu instructions listed on the function bar at the bottom of your
screen.

Subprograms

After you select one of the examples on the main menu, the lower
window will clear and TUTOR will load the procedure's source code
from disk (therefore, when running TUTOR, all .EX flies must be
present on the logged drive). You can scroll through the source code in
the lower window, run the procedure in the upper window, or take a
quiz on the selected topic using the keystrokes displayed on the func
tion bar at the bottom of your screen.

4 Turbo Tutor Owner's Handbook

Modifying the Examples

Once you have· studied an example using the TUTOR "shell," you
may wish to make changes to the example in order to master its
material. Assuming the example we are studying is called ARRA Y1.
EX, here is an easy way to modify and test the code:

• Copy ARRAY1.EX to ARRAY1.PAS rather than modifying the
. EX flie itself (this way the source code displayed when running
TUTOR.COM will not contain your modifications). Load the
compiler, then press f]) and specify ARRA Y1. PAS as your work
flie. Press CU to enter the editor and @Ei)])]) to move to the end of
the file, then follow the instructions contained in the comment at the
end of the flie. (It will instruct you to move a few lines of text.)
Make sure there is no MAIN file specified on the Turbo main menu
(press !]l and IB at the main menu to de-select a MAIN file).
Compile and run the short program by exiting the editor ~)
and pressing I]l (for Run).

Note: Always use a backup copy of the Tutor disk and put the
distribution copy in a safe place. This way if you modify the. EX files,
you can easily restore them from your original disk.

Files on the Disk

A complete list of the flies included with Turbo Pascal Tutor is con
tained in the READ. ME flie on your distribution disk. Here is a brief
description of the disk:

README.COM Run this program to view the READ.ME file and
learn about last-minute changes to Tutor and
information about obtaining technical support.

TUTOR. PAS To use this tutorial program, load the Turbo Pas
cal compiler and specify TUTOR as your MAIN
flie. Compile TUTOR by typing the sequence
OCQC. When the compilation is complete, quit
Turbo and type TUTOR to run the tutorial pro
gram .

. EX files Contains sample procedures that demonstrate Pas
cal topics. These procedures are included with the
TUTOR.PAS program and can be compiled and
run by following the instructions outlined in the
previous paragraph. You can also compile each
. EX file separately by following the instructions at
the end of each flie.

Getting Started with Turbo Pascal 5

· PAS files contain several larger Turbo Pascal programs:

• MANUAL.PAS contains the source code for all complete examples
printed in the Turbo Tutor manual. Run README.COM to look
for a list of the examples in MANUAL. PAS and information on
how to run them.

• TYPIST. PAS is a typing game that uses many Pascal structures and
data structures (sets, arrays, records, strings, enumerated scalar
types, booleans, and so on).

• FILEMGR.PAS is a disk-file manager that demonstrates many
DOS utilities (DIR, COPY, RENAME, CHDIR, TYPE, and so
forth).

• ANIMALS. PAS uses binary trees and "artificial intelligence" to play
a guessing game.

• LISTT. PAS lists your Turbo Pascal programs. It comes with several
.LPT files, which contain printer codes for specific printer brands
and models.

• .INC and .LIB files are include modules for several of the .PAS
programs.

Don't forget to refer to the READ.ME file on your distribution disk
for the latest information about Turbo Tutor's programs and files.

That's about it for introductions. Now let's begin our tutorial by
briefly mentioning some things about computers in general: the myths
surrounding them, their capabilities, and their limitations.

6 Turbo Tutor Owner's Handbook

2 Computers:
Myth versus Reality

Turbo Pascal is a complete and powerful programming language that
can be used to write almost any kind of program you might want to
use, including databases, text editors, games, and a host of other
applications. But, for now, let's begin by exploring some of the most
common myths about computers.

There are a lot of misconceotions about what comouters are and what
they can do. In fact, there a;e so many misconcepti~ns, we're going to
devote this entire chapter to dissolving myths and presenting some
important points. We'll look at some basic properties of computers and
programming languages.

If you've just bought your computer, or if you're thinking about
buying one, you may have some unrealistic expectations. Many people
form their ideas about computers based on what they've seen in
science-fiction movies or read in science-fiction books. Many of these
otherwise harmless presentations give computers powers beyond those
of mere machines-such as true intelligence and human emotions.
We've seen at least one movie about a computer that learns about life
by watching television, composes and performs songs, and even falls
in love!
It sure would be nice if computers could do all of this. Then there
would be no need for you to read this book to learn how to make your
computer do things. You'd be able to point it at whatever you were
doing and it would learn the task instantly and perfectly. But for the
time being, you'll have to be satisfied with programming your com
puter by using the keyboard and a programming language like Turbo
Pascal.

7

BEYOND THE MISCONCEPTIONS

What are computers really like, then? Well, beyond all of the miscon
ceptions lie three basic properties shared by all modern computers:

• Computers are fast.

• Computers are stupid.

• Computers are literal.

Computers Are Fast
Computers are much faster than human beings at doing certain simple,
repetitive tasks, like counting or adding numbers together. For
instance, if you were to write a simple program (perhaps in Turbo
Pascal) that told an IBM PC® to count from ° to 10,000 by 1s, it could
finish the job in about 0.26 seconds. Knowing this, you could easily
imagine it counting to 100,000 or even 100 million in just a few
seconds. (For comparison purposes, if you were to count a number
every second, it would take you about three hours to reach 10,000.)

Computers Are Stupid
Computers are stupid-that is, they have no "common sense" or
intuition. They cannot do anything without being told first.

Every single action a computer takes is based on an instruction given to
it. Thus, a computer-the actual, physical hardware-is useless without
sufficient software (that is, without the necessary commands to make it
do useful work). If you were to turn on your computer hardware,
and it had no software installed, it would do absolutely nothing. It
wouldn't even know how to display characters on the screen or accept
characters from the keyboard. This is why all modern computers come
with some software built into their electronic circuits-enough to run
BASIC, or to read other programs (such as the operating system) from
a disk.

Once you have completed this tutorial, you will be able to give your
computer instructions to perform new tasks-you will be creating
your own software.

Computers Are Uteral
Computers take every instruction they are given literally. They do
exactly what they are told-no more, no less. This means that if there
are mistakes in your instructions, the computer will do its best to do
exactly what you told it to do. For example, if you were to write a
program that told the computer to count from ° to 10,000 by zeros, it

8 Turbo Tutor Owner's Handbook

would count "0 ... o ... 0 ... " very quickly (and, potentially, forever)
until you somehow stopped it. A human being would quickly see that
counting by zeroes accomplishes nothing, and would give up; the
computer has no such wisdom.

The paradox here is that computers are simultaneously more and less
powerful than we generally believe. There are some tasks that com
puters do very well, in times too short for us to perceive. Because of
that, we often fall into the trap of thinking that a computer can do
anything very well and/or very fast.

The bottom line is that computers aren't magic. They don't do every
thing well, and there may be some things you're hoping to make your
computer do that it won't be able to. Remember, though, that there are
some things that computers do very well indeed, tasks that are useful
and/or entertaining. Most of all, you may discover (as many of us
have) that there is a certain fascination in making that mass of wire and
silicon do just what you want it to. Be forewarned, though: Program
ming can be psychologically addictive, and you may find yourself
spending countless hours hunched over your keyboard, adding just one
more feature or removing one last bug.

Well, enough about computer nlyths and facts. Just keep ill mind that
you must tell your computer exactly what you want it to do, and when
and how you want it to do it: Fortunately for all of us, this process is
now much simpler than it used to be--as you shall see in the next
chapter.

Computers: Myth versus Reality 9

10 Turbo Tutor Owner's Handbook

3 Computer Basics
"THINGS ARE ALWAYS AT THEIR BEST IN THEIR BEGINNING."

-Blaise Pascal, Lettres Provinciales, No.4

Now that we have exposed some of the more common misconceptions
about computers, we will teach you some basic computer concepts
what they are, how their components interact, and so forth. It is by no
means the final word on computer operation; rather, it is meant to be a
brief, concise, up-to-date discussion on the modern microcomputer. In
this chapter, we'll cover the following concepts:

• Computer hardware

• Digital data

• Computer software

• Characters

So let's get started-we have much to learn.

COMPUTER HARDWARE

Hardware refers to the equipment comprising a computer system. For
the purpose of this discussion, we'll assume that your computer is one
of those capable of running Turbo Pascal. This type of computer
would consist of the following hardware:

• Central Processing Unit (or CPU)

• Memory (Random-Access Memory (RAM) and Read-Only Mem-
ory (ROM))

• Mass storage device(s) (floppy disk drive or hard disk drive)

• Input devices (keyboard)

• Output devices (display screen, printer)

Your computer may have more components, but this is a typical
minimum configuration for effective programming.

11

Central Processing Unit
The CPU is the "brain" of the computer. It's really not very smart-it
is capable of executing very simple instructions. It can do such things as
get a number stored in a memory location, get another number, add
the two numbers, and put the result in yet another memory location.
The type of CPU determines the types of programs your computer
will run. Some popular CPUs are the Z80® (which is usually used in
computers running the CP/M® operating system) and the 8088© (used
in the IBM PC to run PC-DOS or MS-DOS). We'll talk more about
operating systems in a moment.

Memory
Read/write, random-access memory (RAM) stores programs and data
while the computer is turned on. This type of memory is changeable
and very fast. It is called random-access memory because the computer
can read or write any part of it at any time (rather than having to access
things in a particular order).

Another type of memory in your computer is called read-only memory
(or ROM). ROM is used to store the instructions (programs) the
manufacturer built into the computer; these are not alterable. For
example, the IBM PC has BASIC stored in ROM so that you need not
insert a disk to write BASIC programs (although you would need a
disk or a cassette recorder to store your own program permanently).

Mass Storage
Computers have certain limitations; for example, they have a limited
amount of RAM. The RAM in any computer can hold only a certain
number of programs and a certain amount of data, not all the pro
grams and data you would want to have available. Another limitation
is that, in most cases, turning off the power to the computer will cause
everything stored in RAM to be erased.

The solution to both of these limitations is called mass storage. Also
referred to as secondary storage (to differentiate from memory), these
peripheral devices can store large volumes of data. Mass storage on a
micro is available in the form of a disk drive-something your computer
must have to store programs and data. Thus, you can have many floppy
disks (software medium), each containing different programs and data
files.

Your computer may even have two floppy disk drives, or it may have a
hard disk drive in addition to a floppy disk drive. Multiple disk drives
let you have more programs and data available at any given moment,
and a hard disk drive gives you access to huge amounts of data and will
load and store that data many times faster than a floppy disk drive. For

12 Turbo Tutor Owner's Handbook

this book's purposes, we will refer to mass storage as a disk drive
unless it is important to distinguish between a floppy disk and a
hard disk.

Input Devices
Your primary input device is your keyboard. You can also have other
input devices, such as a mouse, a digitizing tablet, a modem, or a touch
screen. The distinguishing characteristic of an input device is that it
sends data to the computer.

Output Devices
Your primary output device is probably your display screen. When you
type, the characters usually appear on the screen; however, they don't
go directly to the screen-first they go to the CPU, where they are
evaluated and then sent to the screen.

You may have other output devices in your computer system, for
example, a printer or a modem. The main feature of an output device is
that it receives data from the computer.

DIGITAL DATA

To oversimplify a very complex piece of equipment, think of your
computer as a huge number of switches. Each switch has only two
positions, on and off. When a switch is on, it lets electricity flow
through a wire to another part of the computer, and when it's off, no
electricity can flow from that switch~ Let's call the on state of the switch
a "1" and the off state a "0."

A single switch can control (or represent) only a single bit of informa
tion. But by arranging two switches side by side, four different things
can be controlled or represented, as shown in Table 3-1.

Table 3-1
Switch I Switch 2 # Represented

OFF OFF 0
ON OFF

OFF ON 2
ON ON 3

By using eight switches arranged next to one another, you can control
or represent 256 different things. Each switch you add doubles the
number of possible states. This system of representing items by either a

Computer Basics 13

o or a 1 is called the binary (or base 2) system. The system of numbers
you're most familiar with is the decimal (base 10) system.

Now let's look at how the computer's memory stores instructions and
data. For the moment, think of RAM as a group of switches arranged
in a matrix of8 columns of switches by 65,536 rows of switches. Each
of the 65,536 rows can store an 8-bit code representing a number, a
character, or an instruction that the CPU will understand. (The CPU is
"told" what operation to perform via a coded instruction from mem
ory.)

As it turns out, 8 bits is a handy number for computers to work with,
and so a group of 8 bits has been given a special name: a byte. The
memory we just described (8 bits by 65,536 bits) is said to be a 65,536-
byte memory. And since computer engineers often use the abbrevia
tion kilo to mean 1,024, a 65, 536-byte memory is often referred to as 64
kilobytes, or simply a 64K memory. If your computer contains 512
Kbytes of RAM, it has the equivalent of 8 columns of switches by
524,288 rows of switches.

The actual "switches" are microscopic electronic circuits capable of
controlling the flow of electricity. They are contained in integrated
circuits (also called chips) that are installed in your computer.

The CPU retrieves instructions stored in RAM by requesting the
contents of a particular address in memory. The address defines the
intersection of a row and a column. The binary (is and Os) code
contained in memory passes over wires (or printed circuits) to the
CPU. CPU instructions are codes that instruct the CPU to move data
from one location to another, add, subtract, multiply, and divide data,
and perform other very basic operations on data. This binary code is
called machine language. (Some people like to write programs in
machine language and then enter their instructions by entering the
actual 1 s and Os required by each instruction and data element.)

If the instruction retrieved by the CPU happens to require data, the
instruction tells the CPU to go to a particular memory address and get
that data. If the instruction creates new data (say, by adding two
numbers), it will instruct the CPU to place the new data in an empty
(or unneeded) memory location.

COMPUTER SOFTWARE

So far, we've been trying to restrict our discussion to computer hard
ware. This is quite difficult, however, because software is so closely
related to hardware. One without the other is useless. Computer soflware
refers to instructions that the computer can read to make it perform
some function. Software that is encoded in ROMs is sometimes
referred to as firmware-sort of a compromise between hardware and

14 Turbo Tutor Owner's Handbook

software. In fact, some of the messages displayed by an IBM PC when
you turn on the power are the result of quite complex firmware. So,
our original comment is tru~without some type of software, your
computer will do absolutely notl?ng.

I? general, computer software can be divided into two broad catego
nes:

• Operating systems

• Application software

Operating Systems
As a computer user (or a programmer, for that matter), you don't want
to have to tell the computer how to accept characters from the key
board, display characters on the screen, send characters to the printer in
the correct format, write a byte of data to the disk, read a byte of data
from the disk, and so forth. Indeed, if you had to tell the computer
how to do all of these things, you'd never get around to the original
problem you set out to solve.

Such menial and routine tasks are instead handled by an operating
system. The operating system is the program that displays a prompt
and allows you to type on your keyboard. The operating system
knows that when you type a program name, you want to load that
program into memory from a disk drive and begin executing the
program. The operating system also knows how to do routine tasks
such as copy disks, erase files, rename files, display a list of files, and
perhaps keep track of the date and time.

The primary purpose of the operating system, therefore, is to perform
some of the most basic functions you would expect your computer to
do, in response to commands that you (or a program) issue. This frees
you to concentrate on what needs to get done, rather than the nitty
gritty details of day-to-day operations.

Another vitally important function of an operating system is to hide
the differences between different types of hardware from you and the
software you run. For instance, the CP/M operating system runs on
hundreds of computers of all brands, shapes, and sizes. Each of these
computers may have its own unique combination of terminals,
printers, mass storage devices, and other hardware. Yet, if you know
the command to show a file on the screen (which, incidentally, is
TYPE, followed by the name of the file), you can walk up to any
CP/M system and make it show you a file. Similarly, Turbo Pascal
will run on nearly all of these machines (though you may have to
"install" it first), because the way that a program asks CP/M to
perform a task (such as reading a file) is the same on all CP/M systems.

Computer Basics 15

The operating system you run on your computer is largely determined
by the type of CPU in your computer. For example, if your computer
has a Z80 CPU, you will most likely use the CP/M operating system.
(This is just about your only choice.) On the other hand, if you have an
IBM PC (which has an 8088 CPU), you can run PC-DOS or
MS-DOS, CP/M-86, Concurrent DOS, XENIX, and several others.
You may also choose a particular operating system because of the
application programs you'd like to run, or your preference for a certain
command style.

Application Software

Application software generally consists of specific task-oriented pro
grams. Some of these programs may come with your computer, while
still others are available for purchase. Application software may also be
written by you, your friends, or your company to solve a particular
problem. Examples of application software are word processors,
spreadsheets, database managers, Borland's SideKick, and communi
cations software.

Assemblers, compilers, and interpreters are special kinds of application
software used to translate programs written in a computer language,
such as Pascal or BASIC, into a form your computer can run. Virtually
all modern application software is created using one of these tools
(including Turbo Pascal, which was written using an assembler). We
will talk more about computer languages, assemblers, interpreters, and
compilers in the next chapter.

CHARACTERS

When you type on your keyboard, or when your program displays
information on your screen or printer, the computer is sending binary
codes (1s and Os) to input/output devices. Circuits inside keyboards or
other input devices convert meaningful characters into codes, and
circuits inside output devices (such as display screens) convert codes
into meaningful characters.

Characters are the letters, numbers, punctuation marks, symbols, and in
some cases, graphics components displayed by your computer's screen
and depicted on its keyboard. The computer's definition of a character
also includes many "invisible," or nonprinting, characters that are used
as signals to the computer hardware rather than to display or 'print
things.

The printing characters are those that appear on your keyboard. They
include the upper- and lower-case letters of the alphabet (A through Z

16 Turbo Tutor Owner's Handbook

and a through z), the digits 0 through 9, and the punctuation symbols
(,.I?()#&, and so forth). And, believe it or not, spaces (the characters
you get when you press the space bar) are considered to be characters,
since you can display and print a space.

Some computers have an extended character set, which is often specific
to a particular manufacturer. Extended character sets may have
graphics-type symbols that can be used to construct boxes, charts, and
other simple graphic images, or they may have foreign-language char
acter sets. You'll need to refer to your computer or terminal's docu
mentation to learn what, if any, extended characters it has, and the
methods by which you can use them.

Nonprinting characters (those characters that don't display anything on
the screen) are also called control characters, performing a particular
function when they are entered from, or written to, the terminal.
Control characters can be entered from the keyboard by holding down
[]ill) and pressing a letter of the alphabet. For example, you can issue a
I]illJ]l by holding down the []ill) key and pressing 1]).
Many control characters have their own keys. For example, the fEl
key actually issues a I]![J]l character, and the C§J key actually issues a
~. character. The effect of issuing a control character depends on
the program your computer is running. For example, when running
WordStar®, pressing I]illJ]l deletes the character the cursor is on.

Thus, your computer has printing characters (alphabet, digits, sym
bols, space, and perhaps graphics characters) and nonprinting charac
ters (control characters), but does not store characters directly in its
memory or on its disk; instead, it stores codes that represent the charac
ters.

Now it would be a real mess if all computer manufacturers used their
own codes for representing characters. But fortunately, most computer
manufacturers follow a standard established by the Electronic Indus
tries Association (EIA), called the American Standard Code for Infor
mation Interchange (or ASCII for short). (IBM mainframes use
another code called EBCDIC.) The ASCII character set is nothing
more than a unique numeric code for 128 frequently used characters.
When you type a character on your keyboard, the keyboard sends an
ASCII code to your computer. When a program displays a character on
your screen, the program is sending an ASCII code to circuits that
convert ASCII codes into images of characters. And when a program
prints a character on your printer, it does so by sending an ASCII code
over the wires to your printer.

So, now you know what people are talking about when they refer to
ASCII characters. Table 3-2 shows the printing characters of the ASCII
character set. In Chapter 9, we'll show the character set together with
codes in decimal and hexadecimal.

Computer Basics 17

Note that there is a fixed relationship between the upper- and lower-
case letters of the alphabet. Each lower-case letter's code is exactly 32
greater than its upper-case equivalent. This means, for example, that
you can convert characters entered from lower case to upper case by
simply subtracting 32 from their ASCII code (or vice versa, by adding
32). This is all you really need to know about characters to get started.
We'll talk more about the complete ASCII character set and its uses
later in this tutorial.

Table 3-2 Partial ASCII Character Set
Code Character Code Character Code Character

32 (space) 64 @ 96
33 ! 65 A 97 a
34 66 B 98 b
35 # 67 C 99 c
36 $ 68 0 100 d
37 % 69 E 101 e
38 & 70 F 102
39 71 G 103 g
40 72 H 104 h
41 73 I 105
42 * 74 J 106 j
43 + 75 K 107 k
44 76 L 108 I
45 77 M 109 m
46 78 N 110 n
47 79 0 III 0

48 0 80 P 112 P
49 I 81 Q 113 q
50 2 82 R 114
51 3 83 S 115
52 4 84 T 116
53 5 85 U 117 u

54 6 86 V 118 v
55 7 87 W 119 w

56 8 88 X 120 x

57 9 89 y 121 Y
58 90 Z 122 z
59 91 [123 {
60 92 \ 124 I
61 93] 125 }
62 94 A 126
63 95 127 del

18 Turbo Tutor Owner's Handbook

We'll talk more about the complete ASCII character set and its uses
later in this tutorial.

REVIEW

This chapter briefly discussed the basics of modern microcomputers. A
modern microcomputer consists of a central processing unit (CPU),
random-access memory (RAM), read-only memory (ROM), a mass
storage device (disk drive), and a keyboard and screen. An operating
system provides you with some basic operations and allows you to run
application programs. When you tell your computer to do things, you
do so by sending it characters in the form of ASCII codes. Your display
and printer also work by receiving ASCII codes and converting them
into characters.

This should be enough information to get you started. We are now
ready for a discussion of programming languages in general, and Pascal
in particular.

Computer Basics 19

20 Turbo Tutor Owner's Handbook

4 A Brief History of
Programming

While an understanding of the history of computer programming isn't
a prerequisite for using Turbo Pascal, we think you'll find this informa
tion both interesting and informative. It will also give you an apprecia
tion of just how far computer technology has come in a very short
time. However, if you'd like to get started with Pascal programming
right away, skip ahead to Chapter 5.

IN THE BEGINNING ...

In the early days of computers, there was nothing resembling a modern
programming language. Programs were created by connecting wires
inside the computers. Then someone had the marvelous idea of install
ing switches in place of the wires. (Many computers still have switches
that can be used for entering small programs, but the· majority of
modern computers use other methods.)

To program by flipping switches, you had to convert everything to a
number. (Since the switches had only two positions--on and off--each
switch could represent only one of two digits, a 1 or a o. We referred to
this in Chapter 3 as a binary, or base 2, system.) You would enter one
instruction by flipping up to 64 switches (representing one number or
code), press another switch to enter the instruction, then repeat this
process to enter another instruction. A series of lights corresponding to
each switch indicated the contents of each instruction entered. In many
cases, the result of running a program was simply a display of lights
that had to be converted into a meaningful number. And the program
mer was in big trouble if one of those light bulbs burned out!

Let's say you wanted to make the computer do one simple task:
calculate the result of2 + 2. You would have to convert these numbers
to binary (0000000000000010 + 0000000000000010), enter the num
bers, then enter the binary code to add the contents of the two memory

21

locations holding those numbers (perhaps a code such as
00011000110100(1). You would then press the Run button, the lights
would blink, and you would have your answer displayed in a row of
lights. The correct answer would be 0000000000000100, ~hich is the
binary representation of the decimal number "4." If instead you got the
answer "1," you probably inadvertently set a switch that told the
computer to divide rather than add. You can imagine the complications
of dealing with negative numbers and fractions.

A PROGRAMMING SHORTHAND

The practice of entering instructions as binary numbers (also called
machine language) was far too tedious, time-consuming, and error
prone to allow productive work. Frustrated programmers soon
devised ways to make the computers themselves perform this chore,
and began using a shorthand-an English-like method of representing
instructions. This shorthand was called assembly language.
Using assembly language, the programmer could enter a line such as
"MOVE (1),(2)" (which might move the contents of memory location
2 to memory location 1), and the computer would do the "dirty work"
of converting the programmer's shorthand into machine codes. The
program that performed the conversion was called an assembler.
Assemblers are still widely used today. To program in assembly lan
guage, you need an assembler designed specifically for the CPU in
your computer (Z80, 8088, and so on), and a good understanding of
both advanced programming techniques and the computer hardware
you are using. It'also helps to have an inexhaustible supply of patience
and a knack for detailed planning and organization. Assembly language
programming is not for everyone, but many people prefer to program
in it above all other languages-even though it is sometimes much
easier to perform the same task using Pascal. (See Chapter 28, "Using
8088/8086 Assembly Language with Turbo Pascal.")
Assembly language allows the programmer to create the smallest,
fastest programs possible for a given machine (which is why Turbo
Pascal is written in assembly language). However, both the assembler
and its assembly language programs can only be used with one particu
lar CPU type. It is possible to spend months (and many thousands of
dollars) writing an assembly language program for a particular com
puter, but to use it on another type of computer one would have to
learn another assembly language and then spend a lot of time convert
ing the original program to a new one for the other machine. This is

22 Turbo Tutor Owner's Handbook

one reason why "high-level" programming languages, such as Pascal, .
were invented.
So, for the vast majority of us, the best way to write application
software is to use a language like Turbo Pascal.

HIGH-LEVEL LANGUAGES

A high-level programming language is a programming language in which
a single line of text may do the work of many lines of assembly
language, saving the programmer much of the tedium of assembly
language programming (another reason why high-level languages
were developed). A high-level language also eliminates the need for the
programmer to know many of the technical details of the machine on
which the program will run. Most high-level languages "look" the
same to the programmer, regardless of what computer is being used.

In theory, if you had two very different computers and had the same
programming language available for each (the programs that allow the
machines to understand the language are machine-specific), you could
write a program in the language and it would run on both computers.
This is called portability, and is a very important consideration, espe
cially when much effort goes into the writing of a single program.
When the United States Department of Defense (DOD) decided that it
wanted to run its programs on many kinds of machines, it began to
look for a portable programming language. The language they chose
was the "Common Business Oriented Language," or COBOL for
short. By using COBOL they found that the same program could be
run on different computers without modifications. (They have since
switched to using Ada.)
However, the ability to run the same program on two computers
even if the two computers have the same language-is not universal.
Certainly, if you have a computer that has color, graphics, and sound
capabilities, and another computer that has none of these, you wouldn't
expect a program that used the features of the first machine to run
properly on the second. For this reason, most languages have a set of
standard instructions that will run on any computer. When features are
added to a language to take advantage of a particular computer's special
features, they are called extensions. If you wish to make a program truly
portable, you must avoid using extensions.
COBOL was the first of many high-level languages developed. When
scientists learned that computers could be helpful in their calculations,
they invented a language specifically designed to help them process
scientific formulas. They called it, appropriately enough, FORmula

A Brief History of Programming 23

TRANslator (or FORTRAN). Still widely used today, much of FOR
TRAN's popularity is due to the fact that IBM adopted it as the
"official" language for its mainframe computers.

Other languages, with such unusual names as ALGOL, APL, SNO
BOL, and LISP, also appeared on the scene. Each of these languages
has special features that make it useful for a particular kind of work
PROLOG, for example, is widely used in artificial intelligence (AI)
research, and APL is well-suited to some types of scientific and statisti
cal work.

PROGRAMMING LANGUAGES
AND MICROCOMPUTERS

When microcomputers came along in the early 1970s, they had very
little memory and ran much slower than their larger "siblings." While it
was possible to use FORTRAN and COBOL on them, these lan
guages stretched the microcomputer's resources to its limit (while also
being too complex for the average microcomputer user to learn).

A simpler language was needed, and the language that most micro
computer manufacturers chose was called BASIC (an acronym for
"Beginner's All-purpose Symbolic Instruction Code"). Originally
developed at Dartmouth University with funds from General Electric
Corp., BASIC is relatively easy to learn, and is an excellent choice for
solving simple problems.

However, BASIC is quickly outgrown as your programming needs
become more sophisticated. It is not a convenient language to use when
writing a large, complex program, or when many programmers are
working on the same program at once. It is difficult to divide a BASIC
program into many small parts and construct each part separately. And
because BASIC discourages this "divide-and-conquer" approach to
programming, many teachers of computer science believe that BASIC
promotes bad programming habits. Pascal, as we shall see, began as
one educator's answer to this problem.

AND FINALLY ... PASCAL

Pascal is one of the newer programming languages. It was developed
by a distinguished computer scientist named Niklaus Wirth in Zurich,
Switzerland, in 1970-1971. Wirth based some of Pascal's concepts on
other computer languages he helped develop, PLI1 and ALGOL. He
also designed Pascal to teach his students how to program a computer
effectively.

Experience has shown that good programming starts with defining the
problem, breaking it down into small parts, and then writing com-

24 Turbo Tutor Owner's Handbook

mands that tell the computer how to solve each of these smaller
problems, one at a time. Pascal is a "structured" language, which
means that it is conducive to writing programs in small pieces by
following predefined steps. (COBOL was the first structured lan
guage.) Certain parts must be placed in certain locations within a
program and must follow certain rules. You'll learn all about struc
tured programming in later chapters.

Structured languages were once quite awkward, but have become
more and more human- and problem-oriented. It may not be apparent
initially, but as you learn to read Pascal programs, you'll fmd that the
statements read very much like English sentences. The result is that the
definition of the problem, the smaller parts that comprise it, and the
ways in which the smaller problems are solved, are all very easy to see.

INTERPRETERS AND COMPILERS

Regardless of what computer language you are using, the computer
(which "thinks" only in terms ofls and Os) has to translate the English
like words, which people understand, into machine language, which
the computer's CPU understands. The programs that perform this
translation can be divided into two broad categories: interpreters and
compilers. .

What is the difference between an interpreter and a compiler? Both
convert a high-level language to one the computer will understand
the difference has to do mostly with when that conversion takes place.

Turbo Pascal and most other high-level languages are compiled. Most
versions of BASIC, however, are interpreted. The difference is in how
your programs are executed by your computer.

An interpreter is a program that "translates" your instructions during
execution. You run the interpreter program every time you want to
execute your application program. The interpreter program then reads
each line of your program, one at a time, and performs the necessary
functions.

A compiler, unlike an interpreter, translates your entire program, from
beginning to end, into machine language before the program begins to
run. Once the translation process is finished, the compiler is no longer
needed; the application program can run on its own, usually directly
from the computer's operating system prompt. Because the translation
is not being done while your program is being run, a compiled
program almost always runs faster than one which must be inter
preted.

Which of these two approaches is best for a given problem? The
answer depends on your point of view. Large programs written with

A Brief History of Programming 25

interpreters tend to require less memory than an equivalent compiled
program, but often execute as much as 10 to 50 times slower. Pro
grams compiled with a powerful, efficient compiler can approach the
size and speed of assembly language; however, because the program
must be recompiled each time a change is made, the speed with which
you can test your program, find errors, fix those errors, and retest the
program is greatly reduced.

An interpreted language, such as BASIC, is most efficient if you are in
the process of testing and modifying your program. There is no need
to wait for the program to recompile-at any time, you can type RUN
and try your program out.

Turbo Pascal is as convenient to use as an interpreted language, unlike
most "traditional" compilers. With traditional compilers, you must
write your application program using a stand-alone text editor, then
start up the compiler and give it the name of the file you want to
compile. And once you've done that, you can go have lunch, since
most compilers take several minutes to compile a moderately complex
program. Then, when you return to link and execute your program,
you may find mistakes (commonly referred to as bugs). If so, you'll
have to restart your editor, reload the original program, and try to
figure out what went wrong (known as debugging). Then, you must
recompile the program and test it again. You will usually have to repeat
this editing compilation testing process many times to fmally produce a
program that works the way you want it to.

THE TURBO PASCAL ADVANTAGE
Turbo Pascal is a compiler, but unlike most compilers, it doesn't
require you to endure the long, grueling cycle just described. First, you
can perform all of the functions necessary to write a program without
leaving the Turbo environment. When you start Turbo, a menu
appears on your screen, and all of the necessary program development
functions can be summoned by typing a single key. Second, Turbo has
a built-in editor (with user-definable commands so you don't have to
learn a new editor). Third, the Turbo compiler is fast. This means that
you can compile most programs in a matter of seconds instead of
minutes. Fourth, once compiled, you can run your program to test it
without leaving the Turbo environment. And finally, when errors are
found, Turbo automatically re-enters the editor and points to the line of
the program that it "thinks" contains the error.

The editing/compilation/testing process is so fast in Turbo Pascal that
it offers the advantages of both an interpreter and a compiler.

26 Turbo Tutor Owner's Handbook

Turbo Pascal is the state of the art in powerful, easy-to-use program
ming environments. In the next chapter, you will learn how to prepare
your computer for Turbo Pascal.

A BritifHistory ojProgramming 27

28 Turbo Tutor Owner's Handbook

5 Getting Ready to Use
Turbo Pascal

Before you can use Turbo Pascal, there are a few things you must do:
write-protect your disks, copy your disks to make backups and work
ing copies. This chapter explains how to do all of these things, and also
covers how to use Turbo Pascal on single floppy disk and hard disk
systems.

First, and foremost, we strongly recommend that you write~protect your
original disks before beginning to copy, to guard against accidental erasure.
The write-protect procedure you use will depend on the size of your
disk--on 8-inch disks, you remove an adhesive tab from a notch
to write protect; on 5-1/ 4-inch disks, you place a tab over a notch; on
3-112-inch disks you slide open the tab. After you have write-protected
your disks, make a backup copy of your original Turbo Pascal disk.
Next make a working copy of Turbo Pascal that is configured specifically
for your needs. And finally, make a backup copy of your working
copy, so that if something goes wrong with your working copy you
can easily make a new one.

To begin, we'll assume you know a little something about your
computer and its operating system (CP/M, MS-DOS, or whatever).
Here is what we figure you already know:

• How to turn your computer on and off.

• How to "boot" your computer (that is, bring up your operating
system).

• How to perform a few simple commands (DIR, COPY [or PIP for
CP/M], FORMAT, and so forth).

• How to format a blank disk.

• How to make a "system" disk (one that will start your computer).

• How to copy fues from one disk to another.

• How to delete fues on a disk.

29

• How to use a hard disk if you have one (to create directories, user
areas, volumes, or whatever is necessary to separate certain files
from others on your system disk).

You don't need to know much more than that to start using Turbo
Pascal. If you're not sure you know how to do these things, or if you're
not that familiar with your system, take a day or two to play around
with it. Get to know it. Read your manuals. Best of all, have someone
who does know these things take the time to teach you the basics.
You'll find it a lot easier to learn Turbo Pascal if you're not nervous
about, or scared by, your computer.

Now, let's get started.

BACKING UP YOUR ORIGINAL TURBO DISK

The first thing you absolutely must do (if you have not done so already)
is to make backup copies of your original Turbo Pascal disk and Turbo
Tutor disk. Disks are easily damaged by many things: coffee, sneezes,
dust, smoke, folding or bending, magnetic fields, and heat-not to
mention program bugs and accidental erasure due to typing errors.
Despite our best intentions, most of us will, at one time or another, fall
prey to one of these disk-destroying perils. The following instructions
will help you make these vital backup copies. (CP/M-80/86 users
should refer to Appendix F, "Using Turbo Pascal with CP/M-80 and
CP/M-86," for additional system-specific operations.)

Making Backups: MS-DOS and IBM PC-DOS

If your computer is running PC-DOS or MS-DOS, you can use the
DISKCOPY program (normally found on your DOS disk) to back up
your originals onto two new disks. After using the appropriate write
protect procedure for your disk, put the original in drive A: and'the
blank disk in drive B:, then type the command:
DISKCOPY A: B: ~

Note that this command assumes you have two disk drives, named A:
and B:, and asks DOS to copy all the information from one to the
other. If you don't actually have two disk drives, don't worry-DOS is
usually smart enough to know this, and will ask you to swap the
original disk and the copy until all of the information has been trans
ferred. Remember that when DOS asks for the "disk for Drive A:," it
is referring to the original. Likewise, the "disk for Drive B:" refers to
the new copy. Also, if your new disk is not formatted, DISKCOPY
will automatically format it to the same specifications as the original
disk. If the new disk is already formatted, DISKCOPY will skip this
step.

30 Turbo Tutor Owner's Handbook

If you have problems using the DISKCOPY utility, or can't fmd it on
any of your disks, you can use the FORMAT command to format a
disk and the COpy command to copy all of the files from the original
to the backup disk. To do this, type the commands:
FORMAT B: lEI
COpy A:*.* B: IV lEI
Again, if you have only one disk drive, the computer will usually ask
you to swap disks to complete the copy. (In case you were wondering,
the "IV" at the end of the previous command causes DOS to reread
what it has just written, to make sure that the copy came out okay.) If
you are not sure how to make a copy on your system, we recommend
that you consult your manual, your computer dealer, or your "resource
person" for help. Once you have created your backup copies of the
Turbo Pascal and Turbo Tutor disks, we suggest that you place your
originals in a safe place, to be used for emergencies only. You will use
your backup copies of these disks to create your working disks and to
work through this tutorial.

GETTING READY TO WORK

The next set of steps will result in making a system (bootable) disk
with Turbo Pascal on it, installing Turbo Pascal on your system, and
perhaps erasing files that you don't need so that you have maximum
space for your programs. (If you have a hard disk, you will want to
skip the information about formatting and making a system disk, and
instead read the section "Using a Hard Disk.")

Making a Turbo System Disk

If you are using a system with one or two disk drives, the first thing
you want to do is make a bootable copy of your Turbo Pascal backup
disk. A bootable disk is one that has a copy of your operating system
on it, so that it will "boot" the computer when you turn it on. This is
much more convenient than having to insert your operating system
disk to start the computer, then switching disks to use Turbo Pascal.
Follow these steps to create your working disk:

1. Create a system (bootable) disk; depending on your operating
system, this can be a one- or two-step process. If you're using PC
DOS or MS-DOS, the command to do this is
FORMAT A: /S fEl
This will format a disk and place the operating system on it.

2. Copy all the fues on your Turbo Pascal backup disk (the Turbo
Pascal disk, not the Turbo Tutor disk) to the new system disk.

Getting Ready to Use Turbo Pascal 31

You may not need all the files on the disk, but for now, it's easier
to copy them all. .

3. Check to make sure the disk boots properly.

4. Now put your Turbo Pascal backup disk away for future use. You
will probably want to use it to make new copies of files you delete
from your working disk (to make space for your own programs),
or to make a new working disk.

Installing Turbo Pascal
Now that you have a system disk with Turbo Pascal on it, you are
ready to install Turbo Pascal. By this we mean set up Turbo Pascal for
your particular computer hardware so that it can work as efficiently as
possible with your terminal or keyboard and display.

Turbo Pascal is designed to run on many different systems. Some of
the files you copied to your working disk-TINST.COM, TINST.
MSG, and (on some versions) TINST.DTA-can help you install your
version of Turbo Pascal. Once you're done, you can delete these files,
since you won't need them anymore (unless you change your hardware
configuratIon) .

If you're using an IBM PC or compatible (such as the Compaq®),
chances are you can run Turbo Pascal without doing any installation at
all. On the other hand, if you're running under CP/M, then you'll
almost certainly have to run the installation program to tell Turbo
Pascal how to display things on the screen.

Another reason you might want to run TINST is to change the editing
commands used by Turbo PascaL The built-in editor uses commands
similar to those found in WordS tar, a popular word-processing pro
gram. Chapter 6 covers the editor commands in detail; however, if you
want to change any (or all) of the editing commands, TINSTwill help
you. We've given you this option so that you can customize the editor
commands to be the same as commands in other programs you
frequently use.

One last reason to use TINST: If you're using PC-DOS or
MS-DOS version 2.0 or later, and especially if you're using a hard
disk, you can defme a path name for TURBO.MSG, the error message
file. Let's say you've stored both TURBO. COM and TURBO.MSG
in the directory C:\UTIL\PASCAL, and you're currently logged
into the directory A:\SOURCE\PASCAL. If you run Turbo
Pascal (using the command C:\UTIL\PASCAL\TURBO), Turbo
will think that the error message file (TURBO. MSG) is in
A:\SOURCE\PASCAL (the currently logged drive and directory).
However, if you've previously used TINST to defme the "Msg Path"

32 Turbo Tutor Owner's Handbook

as C:\UTIL\PASCAL\TURBO.MSG, then there's no problem. (If
you don't understand any of this, you probably don't use directories
and don't need to worry about this.)

Using TINST With Non-IBM PC Systems
To install Turbo Pascal on a CP/M, CP/M-86, or generic MS-DOS
system, insert your Turbo Pascal work disk into a drive (you don't
need to do this if you have a hard disk), make that drive the default
drive, log the drive in (CP/M and CP/M-86 systems only; see Appen
dix F), and type:
TINST IE)

to start the Turbo Pascal installation program. You will see a menu that
looks like this:

Turbo Pascal Installation Menu.
Choose installation item from the following:
[Slcreen installation [Clommand installation [Qluit

Enter S, C, or Q: _

While you may eventually want to perform the Command installation
fllfictiofi (which changes the keys used to control the Turbo editor), for
the moment you will only want to use the Screen installation function.
Press W to invoke this option.
TINST will respond by giving you a list of terminals and personal
computers to choose from. It should look something like this:
Choose one of the following terminals:
L) ADDS 20/25/30 17) Qume
2) ADDS ~o/bo 1B) RC-B55
3) ADDS Viewpoint-1A 19) Soroc 12o/Apple CP/M
~) ADM 3A 20) Soroc new models
5) Ampex DBo 21) SSM-UB3
b) ANSI 22) Tandberg TDV 2215
7) Hazeltine 1500 23) Teleray series 10
8) Hazeltine Esprit 2~) Teletex Looo
9) Kaypro with hilite 25) Televideo 912/920
Lo)Kaypro, no hilite 26) Texas Instruments
L1)Lear-Siegler ADM 20 27) Visual 200
L2)Lear-Siegler ADM 31 2B) Wyse WY-100/200/300
L3)Liberty 29) Zenith
L~)Morrow MDT-2o 30) None of the above
L5)Osborne 1 31) Delete a definition
Lb)Otrona Attache

If you see the name of your computer or terminal on this list, your job
is simple: type the number corresponding to your computer/terminal,
then press I~J
If you don't see the name of your terminal on this list, you must either
find out which of the terminals listed is most similar to your terminal

Getting Ready to Use Turbo Pascal 33

or computer, or give TINST precise information about the special
characters needed to control your particular screen.

Since it's much, much easier to find a terminal similar to yours on the
list than to type in the required information, you may want to try the
former approach first. Here are some guidelines to help:

• Frequently, the documentation that comes with a terminal will say
that the terminal emulates another terminal (which may be on the
list). If so, you can use the menu selection for the terminal your
system emulates.

• If your terminal is a DEC™ (Digital Equipment Corp.) VT-I00, or
emulates one, you can use the ANSI menu item. This item will also
work on terminals described as "ANSI-compatible."
If your terminal is a DEC VT -52, or emulates one, use the Zenith
menu selection. (The Zenith Data Systems® terminals use an
enhanced version of the VT-52 command set.)

• If you see an item on the list that is not your terminal but is made by
the same manufacturer, chances are the control characters will be the
same. For instance, the DEC Rainbow computers use the same
control characters as the DEC VT-l00 terminal (the ANSI menu
selection). Try this menu selection and see if it works.

If all else fails, it is probably best to consult your local computer "guru"
for help. He or she may have to create a new item on the menu by
selecting "None of the above" and entering the codes specific to your
system, or she may be able to get information on which of the existing
selections will work.

Appendix L, entitled "Installation," in the Turbo Pascal Reference Manual
gives a complete description of how to respond to the questions asked
by the "None of the above" selection. The "delete a definition" selec
tion on the menu is used to remove an undesired terminal definition
from TINST's file of terminal information. Since it never hurts to keep
extra definitions around, you will rarely (if ever) need to use this
option.

Once you have set the correct terminal type, the rest is easy. TINST
will ask one more question:
Hardware dependent information
Operating frequency of your microprocessor in MHz (for
delays): L;
Change to: _

Most CP/M-80 systems run at 4 MHz, so you can just press ~ to
answer this question (indicating no change). If you have an especially
old system, or if you have a high-speed system that uses the Z80B or
Z80H microprocessor, you may need to specify a higher or lower
number. CP/M-86 and MS-DOS systems run at various speeds. Refer

34 Turbo Tutor Owner's Handbook

to the documentation that came with your computer if you are not sure
(usually a section labeled "Specifications" will list the speed). (Note: It
is not fatal, or even much of a problem, if this number is not specified
correctly. It is used only to time delays in your programs.)

Now press !]J to exit TINST,'and you can begin to use Turbo.

Using TINST on the IBM PC and Compatible Systems
On the IBM PC and compatible systems, there is usually no reason to
use TINST (at least at first), since Turbo is already configured to work
on this system. However, you may want to use it if

• Your computer has a graphics display board that is not subject to
"snow." By using TINST, you may be able to improve your screen's
performance (by telling Turbo Pascal that it can write to the screen
without causing "snow").

• You want to change the editor commands. Since the Turbo editor
uses the IBM PC's arrow and movement keys, it's unlikely that you
will need to do this right away.

• You want to change the path Turbo uses to locate the file TURBO.
MSG. This is generally useful oIlly on hard disk systems \~!here
TURBO.MSG may reside in a different directory than the text of
your program.

The procedures for doing each of these things are described in the Turbo
Pascal Reference Manual (Appendix L, entitled "Installation").

Once you have installed Turbo, and are satisfied that it is working
correctly (if you can follow the instructions in the next chapter, it is
working correctly), feel free to delete all TINST files (TINST. *). This
will free up space on your working disk. You can go back to your copy
of the master disk if you need to use TINST again.

Additional Files
There are a number of other files that may also be on your working
disk. You can keep them or delete them as you please. Here's a brieflist
of them, with an explanation of what they do.

TURBO.MSG. This file contains the compiler error messages. If you
delete this file, any error found during compilation will be identified
only by a number. You must then look up the specific error in the
Turbo Pascal Reference Manual (Appendix E, entitled "Compiler Error
Messages"). We recommend you keep this file on your working disk
until you absolutely must use the disk space for something more
important.

TURBO.OVR. You'll see this file only if you're running under the
CP/M-80 operating system. This file lets you execute programs from

Getting Ready to Use Turbo Pascal 35

within the Turbo Pascal menu system. If you delete this file, you'll
have to exit to your operating system prompt to run programs. We
recommend you keep this file unless disk space is a problem.
GRAPH.P and GRAPH.BIN. These files only appear in Turbo
Pascal version 3.0 or later for the IBM PC. They have the declarations
and object code for special graphics routines. Again, if you have
enough disk space, keep them .

. PAS files. Your disk will contain several Turbo Pascal sample pro
grams. Some versions have more sample programs than others. At the
very least, you will have the CALC files, which provide a complete
source for a small spreadsheet program. These are good files to look at
and play with. You might also want to print them for later study. You
can delete them when you choose without affecting Turbo Pascal's
operation.

READ.ME. This file has any updates, errata, notes, and so forth, that
didn't get into the manual. This is another good file to print, after
which you'll probably want to delete it.

Other files. There might be additional files on your disk. Some of
these files are necessary for system operation (such as COMMAND.
COM on an MS-DOS system disk). If there are other files you don't
feel you'll need, you can go ahead and delete them. If it turns out that
you need them, you can retrieve them from one of the copies you
made.

ANOTHER BACKUP
What? Another backup? Yes, you need to make one more copy, and
there's a good reason for it. So far, you have made a working system
disk with Turbo Pascal and other assorted files on it. You've done any
necessary installation, and you're all set to go to work. If your working
disk gets destroyed, you'll have to reinstall Turbo Pascal by going
through TINST again, once more deleting unnecessary files. On the
other hand, if you take a moment now to make a copy of your
working disk, you'll be able to restore it in a matter of minutes.

So, take another blank disk and make an identical copy of your
working system disk using DISKCOPY for MS-DOS. When you're
done copying, save that copy along with your original Turbo Pascal
master disk.

Now you should have a master Turbo Pascal disk and a master Turbo
Tutor disk filed away. You should also have a copy of the Turbo Pascal
master disk and a copy of your Turbo Pascal work disk filed along with
the first two. And you should now also have a ready-to-use, working,
bootable copy of the Turbo Pascal disk and a copy of the Turbo
Tutor disk.

36 Turbo Tutor Owner's Handbook

USING A SINGLE DRIVE SYSTEM

Unlike almost any other high-level language compiler, Turbo Pascal
can run very well on a computer with a single disk drive (such as a very
basic model of the IBM PC or some of the Morrow Designs systems).
The only file you absolutely must have on your single working disk is
TURBO. COM, which is less than 40K in size. Assuming the disk
drive holds 360 Kbytes and the operating system takes up about 40
Kbytes, then you have around 280 Kbytes for all your source and
object (compiled) files, as well as for any of the auxiliary files men
tioned earlier. As you go through this book, you can copy the . PAS
ftles associated with the current chapter from the Turbo Tutor disk to
your working system disk, then erase the file when you no longer
need it.

USING A HARD DISK
If your computer has a hard disk, free space is probably not a concern
for you. If you are using CP/M, you will probably want to copy both
the Turbo Pascal and the Turbo Tutor disks directly into user area 0 on
the hard disk.

If you are using MS-DOS, you can create one subdirectory with all the
Turbo Pascal files in it, and another subdirectory with all the Turbo
Tutor files in it. Then use TINST to set the Msg Path to the Turbo
Pascal subdirectory. (You may also want to use the MS-DOS PATH
command to make your computer look in the right directory when
ever you type Turbo. See your DOS Reference Manual for information
about creating subdirectories and using the PATH command.)

Well, you've done it! You're now ready to start using Turbo Pascal and
the Turbo Tutor examples. Next, you'll learn how to start Turbo; use
the editor to create, look at, and modify programs; arid use the menu
selections to compile and run a program.

Getting Ready to Use Turbo Pascal 37

38 Turbo Tutor Owner's Handbook

6 Using Turbo Pascal
You should now have your original Turbo disks safely fIled away and
have your working copies ready to use. Now the excitement begins!
You might want to get a sheet of paper and a pen or pencil so you can
take notes as you go.
In this chapter, you will sit down at the computer and go through all
the steps required to write, compile, and run a simple program. Are
you ready? Okay, let's get started.

STARTING TURBO PASCAL

The fIrst step is to get the Turbo Pascal main menu on your screen. All
you have to do is follow these easy steps:

1. Take your Turbo Pascal disk (the working copy you made in the
previous chapter) and put it into your disk drive. (If you have
more than one disk drive, put it in the one designated "A:" by your
computer; if you have a hard disk, skip this step entirely.)

2. Turn on the power (or, if it's already on, reboot your computer by
whatever means you would normally use).

3. Wait for the operating system prompt. It will look like one of the
following:
A:
A>_
All>
A\>
A\:
c: \)_
(or some other letter, if you have a hard disk)

Your prompt may look somewhat different, depending on your
computer and how it has been set up. The important things to
look for are a letter indicating which is the logged disk drive and a
cursor (an underline or a box, either solid or blinking) indicating
that you can now type commands.

39

4. Type:
turbo

and press ~. The ~ key may be marked Return on your
keyboard, or it may look like this: ~ or I][). (If you have a hard
disk, switch to the correct volume, directory, or user area before
typing turbo. For example, if you have an IBM PC with Turbo
Pascal in a directory named TP, type CD\TP and press ~, then
type turbo and press ~.)
In a moment, the following will appear on your screen:
TURBO Pascal system Version 3.01A
PC-DOS
Copyright (C) 1983,8~,85 BORLAND Inc.

Default display mode

Include error messages (YIN)? _

Your display may look a little different if you have a CP/M version
of Turbo Pascal, but the important information will still be there.
(See Appendix F, "Using Turbo Pascal with CP/M-80 and CP/M-
86 Systems.")

5. Notice that Turbo is asking you if you want to include error
messages. If you answer no, you will get an error code number
when an error in your program is found, which means you will
have to look it up in the Turbo Pascal Reference Manual. Since you
are just starting out, we suggest that you answer yes. To do so,
press l1)' This will tell Turbo Pascal to display error messages that
are self-explanatory.

40

After you answer this question, the Turbo Pascal Main Menu will
appear on your screen. It will look like this (this is a PC/MS-DOS
screen):
Logged drive: A
Active directory: \
Work file:
Main file:

Edit Compile Run Save

Dir Quit compiler Options

Text: 0 bytes
Free: 6202~ bytes

>

Again, the exact appearance of this screen depends on which type
of computer you are using to run Turbo Pascal (see Appendix F
for CP/M-specific information).

Turbo Tutor Owner's Handbook

Main Menu Overview

The main menu provides you with commands and information. Com
mand names have their first letter capitalized and highlighted. To select
a command, press the appropriate (capitalized) letter. Information that
will be displayed includes the name of the currently logged disk drive,
the active directory (in MS-DOS versions), the name of the work fue,
the name of the main file (if used), the number of bytes of text in your
defined work file, and the number of bytes of memory available in the
computer for the text editor. We'll cover each of these things as we
need them.

Rather than go into how to use each command in detail (the Turbo
Pascal Reference Manual does that), we're going to teach you how to use
some of the commands by having you enter, compile, and run a
program. To do these things, you'll need to know how to use the
following main menu selections:

• Work file

• Edit

• Run

Let's begin.

Choosing a File Name

You must first name the fue you are going to work with. There are two
ways to specify a work-fue name. We'll use one easy way, and then tell
you an even easier method. Do these steps now:

1. Press f]) to select Work file from the selections on the main menu.
The screen will display: .

Work file name:

2. Type the name that you want to give your first program. For this
exercise, type the name:

first

After you type the name and press IE} the screen will display: .
Loading A:\FIRST.PAS
New file

)

Now, let's pause for a moment and examine a couple of things. First,
notice that Turbo Pascal automatically added the fue name extension
.PAS onto the end of the file name you entered. This extension identi-

Using Turbo Pascal 41

fies Turbo Pascal source programs on your disk. (You could have
entered your own extension and it would have been used instead, but
there is generally no reason to do this.)

Second, notice the words "New file" that appear on the screen. This
means that Turbo Pascal did not find a file by the name of FIRST. PAS
on the currently logged disk (and directory), so it is creating a new fue
by that name. If it did fmd a file by that name, it would load it and then
wait for you to press []J (for Edit) before displaying it on your screen.

Finally, notice that the main menu has not changed. One thing you
need to know is that the main menu is not updated every time you
type a command. In fact, if you continue to enter commands, the
menu will scroll off the top of the screen, and you won't be able to see
it. Fortunately, there is a simple way to bring back the main menu and/
or to update it with new information. The way to do this is to press
~. Do this now, and watch what happens.

Also note that when the menu is redisplayed, your work-file name is
placed in its proper place next to the Work file command. So remem
ber, whenever you think the main menu should be on the screen and it
isn't, or whenever the main menu does not contain the information
you think it should, press ~.

Now that you have specified a fue name and redisplayed the main
menu, let's talk about an easier way to specify a fue name. The easier
way is to select Edit when no work-file name is specified. Turbo Pascal
is smart enough to know that there is no fue specified and asks you to
enter a file name. You can try that the next time you run Turbo.

USING THE EDITOR

You could write Turbo Pascal programs using any ASCII-type text
editor, but there's really no reason to leave the Turbo environment to
work on your programs. The editor that comes with Turbo Pascal is
ideal for writing Pascal programs, and using it will make your work
sessions much less tedious.

Now that you've specified a work-file name, you are ready to enter the
editor. To do this, press []J. Since this is a new file, the screen will be
clear except for the following:
Line 1 Col 1 Insert Indent C:FIRST.PAS

(If you had supplied the name of an existing fue, pressing []J would
have brought up the first few lines of that fue on your screen.) This
screen is where you will spend many, many hours exercising your
creativity and expertise. Think of it as an artist's canvas-your cre
ations are limited only by your skill, your knowledge, and your
imagination. The line at the top of the screen is a status line. It tells you

42 Turbo Tutor Owner's Handbook

some important things about what you are doing. The first two entries
tell you the position of the cursor in your file. The word "Insert" tells
you that you're in insert mode (which means what you type will push
existing text to the right), and the word "Indent" tells you that indent
mode is on (more about this later). The last entry on the status line
shows the name of the file you are editing. The remainder of the screen
is blank, and this is where your program will go.

Before you actually start typing your program, let's spend a little time
learning how to move around the screen. First, press the [EJ key about
ten times. This will put several blank lines in your file. Notice how the
cursor moves down as the status line continually displays your current
position.

Now, how do you go back to line"'i? There are several ways, but the
first one we're going to use works on all com@illlrs with any version of
Turbo Pascal. To move up, hold down the Ctrl key and press the CU
key. Each time you press !I), the cursor will move up one line.

To move down again (this time without inserting new lines), press
[]li!)]J (pressing []li!)]J means to hold down the []li!l key and the W
key simultaneously; we'll represent all control commands in this man
ner from now on). Each time you press /ID!l, the cursor moves
down one line. However, once you reach the spot where you stopped
pressing [EJ, the cursor will no longer move down. This is because the
[]li!)]J command does not insert lines-it only moves among the
existing lines in the file.

Next, let's try moving the cursor to the right. To do this, press 1]li!J]l.
Each time you press 1]li!J]l, the cursor moves one space (or one
character) to the right.

After you've moved to the right a few spaces, try moving to the left.
To do this, press !IDD until you reach the left margin. Each time you
press ~ the cursor moves one space (or one character) to the left.

None of these cursor movements will erase text on your screen. They
serve only to move the cursor.
You may think that it will be difficult to remember these cursor
movement commands, but take a look at the following diagram:

E
S D

X

This diagram shows the approximate location of the keys with respect
to one another. Notice that they form a diamond shape, with each
point corresponding to the direction the cursor will move when used in
conjunction with the @ill) key: I]li!JIl moves up, (]![I!) moves down,
!IDD moves left, and I]li!J]l moves right. Borland chose this com
mand structure because WordS tar by MicroPro, the most popular
word-processing program today, uses these same keys for cursor

Using Turbo Pascal 43

movement. If you are one of the many people who use WordStar
regularly, Borland's command structure should be second nature
to you.

WordStar developed this cursor-movement structure because at its
(WordStar's) inception, the only thing keyboards had in common was
the control key. Now that many keyboards have special keys, Word
Star (and Turbo Pascal) can use these as well. If you have an IBM PC,
try using the arrow keys on the right side of the keyboard to move the
cursor around. You'll see that they perform the same control-key
combinations indicated previously (use the keys that are most comfort
able for you).

When you're done experimenting with moving around the screen,
move the cursor back to the top, to Line 1, Column 1. You can do this
by moving one space at a time, or by using the QUICK command:
(£![J])]). For those of you who are interested, there is a complete list
of editor commands at the end of this chapter. Now, you're ready to
start typing.

WRITING THE PROGRAM

This section is not really about learning how to write programs, rather,
it explains how to enter and run a program. Therefore, we don't
expect you to completely understand what we are doing here. Concen
trate instead on the methods; we will show you exactly what to type.

Typing the Program
Begin by typing the following program exactly as it is shown (punctu
ation is very important, but spacing is not). If you make a mistake, use
the cursor movement commands, and/or the backspace and delete keys
to make changes. If you get really confused, you can erase the entire
line the cursor is on by pressing !]li!)I). Now, type the following
program, substituting your name for the blank line:
progral MyName;

begin
ClrScr;
Writeln('Hello world, my name is _________________ ')

end.

This is a complete Turbo Pascal program. In a moment you'll compile
and run it, but first let's take a look at what it does.

The first line of the program starts with the word program and
identifies the program by name; this line ends with a semicolon. The
next line starts with the word begin, which signals the beginning of

44 Turbo Tutor Owner's Handbook

the program. Next, ClrScr clears the screen when the program runs;
this line also ends with a semicolon. Then, the Writeln command
displays on the screen the text enclosed in parentheses and single
quotation marks. Finally, the word end. (with the period) signals the
end of the program. (Chapter 11 and Appendix E discuss more about
programming style and structure.)

Compiling and Running the Program
At this time, you should have your program typed and displayed on
your screen. To compile and run the program, you must return to the
main menp. To return to the main menu, press I]lii)!)]), then 1El.
Now the main menu will appear on your screen again. Notice that the
display of text and free space has changed slightly.

There is a Compile selection on the main menu, but we'll use a
shortcut. Instead of selecting Compile, select Run by pressing!]). Do
this now, and keep a close eye on the screen.

You'll see some messages flash briefly on the screen, and then your
program will begin running. This is what has happened:

1. Turbo Pascal looked at your program and re:l 11zed it wasn't com
piled.

2. Turbo Pascal then compiled your program because it cannot run
an uncompiled program (it is not an interpreter).

3. Turbo Pascal then executed your program as soon as it finished
compiling it.

4. Turbo Pascal returned you to its prompt (»), awaiting further
instructions.

If you did your job correctly, you will see the screen clear and your
message appear at the top. If you have made a mistake that Turbo
Pascal can find, it will display an error message and return you to· the
editor to make corrections. After correcting the file and pressing
I]lii)!)]) to exit, you can then press []J to compile and run the
program again.

Saving Your Source Program
Your source program (the text version of your program that you just
entered) exists only in your computer's memory. If you turn off the
power, reset your computer, or exit from Turbo Pascal, your work will
be lost. To save the source program, select the Save option from the
main menu by pressing 1]).
When you select Save, Turbo creates a disk file containing your pro
gram text. You can save your file whether or not the main menu is on

Using Turbo Pascal 45

your screen, as long as the Turbo prompt (») is there. If you feel more'
comfortable seeing the main menu before performing an operation,
press IE) before you select Save.

After you save the fIle, it remains in memory as well. You can continue
making changes to it as you wish, but if you do, remember that you
must save it again to avoid losing your changes.

Saving Your Compiled Program
After you select Run, Turbo compiles your program into your com
puter's memory and runs it. The compiled program is only in memory
and will be lost when you turn off the power. This is really not a
problem since you've saved your source program and can load, com
pile, and run it again in a matter of seconds. However, that's not
convenient. It would be better if you could save your compiled,
executable program and run it directly without using Turbo Pascal.

Well, you can! To do this, make sure the main menu is on your screen,
and then select compiler Options (note that the letter that selects this
command is 0, not C). (Those of you with CP/M machines should
refer to Appendix F for more information.) When you select compiler
Options, the following will appear on your screen:
compile->Memory

Com-file
cBn-file

command line Parameters:

Find run-time error Quit

>
While this may look complicated, there are really only two selections
you should be concerned with right now. They are the Memory
selection and the Com-fue selection. To create an executable program
on your disk (as opposed to compiling into memory), you must select
Com-fIle by pressing 1Il. When you do, the screen will change slightly
to display additional information, as follows:

8emory
compile->Com-file

cBn-file
minimum cOde segment size: 0000 (max OD28 paragraphs)
minimum Data segment size: 0000 (max OFDC paragraphs)
mInimum free dynamic memory: O~OO paragraphs
mAximum free dynamic memory: Aooo paragraphs

Find run-time error Quit

46 Turbo Tutor Owner's Handbook

Again, this may seem confusing right now, but all you're concerned
with is the selection to quit. Do this now by pressing 1]]. After you
press []J, the main menu will return.

You have compiled your program in memory; here's how to compile it
to a disk. Select Compile from the main menu by pressing ([}-do this
now. Your screen should now look something like this:
Logged drive: A
Active directory: \

Work file: A:\FIRST.PAS
Main file:

Edit Compile Run Save

Dir Quit compiler Options

Text: 111 bytes
Free: b1g13 bytes

)

Compiling--) A:\FIRST.COM
6 lines

Code: 0007 paragraphs
free
Data: 0002 paragraphs
free
Stack/Heap: 0L;00 paragraphs

Aooo paragraphs

)

112

32

(1b3M
(b553bo

bytes) I oD21 paragraphs

bytes) I oPDA paragraphs

bytes) (minimum)
bytes) (maximum)

Again, this display has more information than most of you need. The
important thing is that the job is done. You now have a file on your
disk called FIRST.COM. You can now exit from Turbo Pascal and run
this program just like any other program you buy.

Finishing Up
You have started Turbo Pascal, selected the editor, typed in a program,
compiled and run the program from memory, saved the source code,
and compiled to a .COM flie. You've learned a lot, but there's one
more thing you need to know: how to quit Turbo Pascal.

When you're ready to quit, select Quit from the menu by pressing []J.
Normally, you'll be returned immediately to your operating system
prompt. However, if you've forgotten to save your source flie, the
following message will appear before you exit:
Workfile FIRST.PAS not saved. Save (Y/N)? _

Using Turbo Pascal 47

You can choose either to save the file or abandon it. After answering
this question, the operating system prompt will appear.

REVIEW

There are many more selections, options, and commands available in
Turbo Pascal for your use, but you can get by with what you've
learned in this chapter for quite some time. With the information
presented you should be able to do the following:

• Start Turbo Pascal from your bootable work disk or hard disk.

• Specify the name of a work file.

• Enter the editor and type in a program.

• Move the cursor to various parts of the screen to edit your program.

• Exit from the editor and return to the main menu.

• Compile your program into memory and run it.

• Save your source program on disk.

• Compile your program into a .COM flie on disk.

• Exit from Turbo Pascal and return to your operating system
prompt.

You've jumped the highest hurdle-you've actually used Turbo Pascal
to write your first program. Now all you need to do is to learn how to
design and implement your own Turbo Pascal programs. And that's
the subject of the rest of this book.

Table 6-1 lists all of the editor commands we referred to earlier in the
chapter.

Refer to Appendix L in the Turbo Pascal Reference Manual for instruc
tions about how to customize editor commands to suit your needs. We
recommend that you set up the editor to work the same as the
spreadsheet or word processing program you use most often. If you
have function keys available, you may want to install the editor to take
advantage of these.

48 Turbo Tutor Owner's Handbook

Table 6-1 Turbo Pascal Editor
Cursor Movements

I Character left []![[ll
2 Alternative @li!)]l
3 Character right !]![J]J
4 Word left []li!)]]
5 Word right @![ill
6 Line up I]lii)I)
7 Line down []illlI)
8 Scroll up ~
9 Scroll down []li!ill
10 Page up f]![J]l

" Page down !]li!J]J
12 To left on line @li!)]]]l
13 To right on line CSEiJ])]l
14 To top of page @I)])]J
15 To bottom of page @I)])1J
16 To top of file @ill)])]J
17 To end of file @li!lD]]
18 To beginning of block @li!)])]l
19 To end of block f]li[)]]]l
20 To last cursor position @1lill)

Insert and Delete

21 Insert mode on/off I]ill)]l or ~
22 Insert line ~
23 Delete line @[ill
24 Delete to end of line !]ill)]l!)
25 Delete right word !]![ill
26 Delete character under cursor []![J]l
27 Delete left character ~
28 Alternative

Block Commands

29 Mark block begin f]li[ill])
30 Mark block end @!JIJ!l
31 Mark single word @li!illI)
32 Hide/display block @ill)])]]
33 Copy block @!)])]J
34 Move block @)]lll
35 Delete block ~
36 Read block from disk []ill)!)])
37 Write block to disk ~

Using Turbo Pascal 49

Table 6-1 Turbo Pascal Editor, Continued
Miscellaneous Editing Commands

38 End edit @ill)])]]
39 Tab []l[JIl
40 Auto tab on/off @ill)])])
41 Restore line !]ill)]lil
42 Find (£ill)])Il
43 Find & replace @ill)]J.II
44 Repeat last find []![ill
45 Control character prefix []ill)!)

50 Turbo Tutor Owner's Handbook

p A R T II

A Programmer's Guide
to Turbo Pascal

51

52 Turbo Tutor Owner's Handbook

7 The Basics of Pascal
In the first part of this book you learned how to enter, compile, and run
a simple Turbo Pascal program to display some words on your screen.
We taught you how to write a program (by copying it from a book),
but we've yet to teach you how to design your own.

So before we move on, let's make sure you've acquired some necessary
skills. You should be able to do the following:

• Start up your Turbo Pascal work disk.

• Load or create a work file.

• Enter and modify a program using the editor.

If you're still not comfortable using Turbo Pascal to perform these
operations, go back to Chapter 6 for a quick review.

SOME PASCAL TERMS

Now you're ready to learn some of the basic concepts of the Pascal
language. We'll begin by defining a few key Pascal terms, and the ideas
behind them:

• Data type

• Identifier

• Reserved word

• Constant

• Variable

• Operator

• Expression

• Statement

• Comment

• Program Heading

53

• Declaration Part

• Statement Part

DATA TYPES

When you want Turbo Pascal to perform an operation (store, recall,
manipulate, display) on a piece of data, you must tell Turbo Pascal
what type of data it is. By specifying data types (which you'll learn
how to do later), you can indicate to Turbo Pascal what kind(s) of
operations it can perform on that data.

To illustrate, suppose that your data consists of the two numbers 3 and
4. Because 3 and 4 are numbers (in this case, integers), it makes sense
for Turbo Pascal to be able to add them and return the sum 7.

Now suppose your data items consist of Tuesday and March. Clearly,
it doesn't make much sense to add these two pieces of data together,
and, in fact, Turbo Pascal will not let you do so. However, it is possible
to perform a different operation on these items (for instance, finding
the first Tuesday in March). If you invent such an operation-and
explain to Turbo Pascal exactly how to go about doing it-Turbo will
gladly perform it on any two data items of the proper types.

Predefined Data Types

What types of data can Turbo Pascal manipulate? The answer is almost
any type-provided Turbo Pascal has some basic information about
that particular type of data, such as the possible values of data items of
that type, how big each item will be when it is stored in memory, and
what operations can be performed on that data.

There are some types of data that are used in almost every computer
program, and these would be hard to . define if you had to write an
explicit definition. (For instance, could you imagine trying to "explain"
to the computer what a number is? Or listing all of its possible values?)
For this reason, Turbo Pascal provides you with a number of predefined
data types:

54

Type

integer

byte

real

char

boolean

Examples

3,0, -17382
3,0,255
3.1415926, 0.00, -6.67E-22
'A', '$','0'

TRUE, FALSE

Turbo Tutor Owner's Handbook

We'll discuss the details of these data types and how to use them in later
chapters. But for the moment, here's a synopsis of their properties.

An integer is a "counting," or whole number, that is, a number without
a fraction. Integers can be negative. The numbers 5, -20, 0, and
-32355 are all integers, but 3.5 is not (because it contains a fraction).
Integers have a limited range of values. In Turbo Pascal (for the IBM
PC, MS-DOS, and CP/M), numbers of type integer are not allowed
to be bigger than 32767 or smaller than -32768.
A byte, like an integer, is also a "counting" number. Unlike an integer,
however, a byte cannot be negative, and can only have a value from °
to 255.

A real is a number that can (but doesn't have to) contain a fraction, like
1.5, -0.33335, or 24E15. (The E means that the number is interpreted
to be in scientific notation; that is, it is to be read as 24 X 1015.) Data
objects of type real usually have a much broader range of values than
those of type integer.

A char is exactly what it sounds like: an ASCII character. It is useful for
handling any kind of textual information.

A boolean is a data item that can have only two values: TRUE and
FALSE. It is useful when your program needs to remember whether
something is true or not.

User-Defined Data Types

Besides having predefined data types, Turbo Pascal lets you define your
own. For instance, we might defme the days of the week to Turbo
Pascal as:
type

day = (Sunday, Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday);

Turbo would then recognize all of the days listed as being of the new
type day. Turbo Pascal allows you considerable flexibility in creating
and manipulating your own data types. We'll cover the hows and
whys of user-defined data types later in this tutorial.

IDENTIFIERS
Another term vital to your understanding of Pascal is identifier. An
identifier is, very simply, a name for something-a piece of data, a
piece of your program, a place in your program, or a data type. When
you write a program, you name its parts by declaring identifiers to
represent them.

The Basics of Pascal 55

In Turbo Pascal, some identifiers are declared for you without requir
ing any action on your part. For instance, the names of the predefined
data types mentioned previously are predeclared identifiers.

An identifier must begin with a letter (numbers and punctuation
characters won't do). This first letter may be followed by any combi
nation ofletters and digits, but may not contain spaces! An identifier may
be as short as a single character or as long as 127 characters.

In standard Pascal, only letters and digits are allowed in an identifier.
Turbo Pascal, however, allows you to use one special character: the
underscore (_). An underscore may be used anywhere a letter would
normally be used, and is handy for representing spaces (which are not
allowed).

When Turbo Pascal reads your program, it ignores the case of the
letters within an identifier; therefore, the following identifiers all refer
to the same value:
STARTING LOCATION
Starting location
starting location
StartingLocation

Although all of these identifiers are equivalent, we feel the last one is
easier to read than the others. Thus, this is the way you'll see identifiers
depicted in this manual and other Borland books. Note that the
following identifier is not equivalent to any of the previous ones:
Starting_Location

Adding an underscore is the same as adding another character-it
completely changes the meaning of the identifier. Here are some exam
ples of legal identifiers:
TURBO
square
persons_counted
BirthDate
DayOfTheWeek
AVeryLongIdentifierIndeed
The_2nd_Extremely_Long_Yet_Legal_And_Acceptable_Identifier

And here are some illegal identifiers:

3rd_Root
Two Words
Two&Two

Starts with a digit instead of a letter
Contains a space
Contains an illegal character (&)

To illustrate how the parts of the Pascal programming language can be
used, we'll borrow a technique that has been used in many program
ming textbooks. Called syntax. diagrams, this method illustrates the
syntax, or grammar, of a language.

As an example, let's look at the syntax diagram for an identifier shown
in Figure 7-1.

56 Turbo Tutor Owner's Handbook

identifier,
type identifier,
constant identifier,
procedure identifier,
function identifier,
variable identifier,
field identifier

Figure 7-1 Syntax Diagram of Identifier

Like all syntax diagrams, this one defines the language elements (parts
of speech, if you will) named at the upper left-hand corner of the
diagram. In this case, the diagram shows the syntax of many (in fact,
all) different kinds of identifiers in the Pascal language.
How do you read a syntax diagram? Well, you start at the arrow at the
upper left-hand corner of the diagram, and follow the arrows through
any boxes, ovals, or circles until you reach an arrow that leaves the
diagram at the right. As you pass through each box, oval, or circle,
whatever is specified inside them must also appear (in order) in the
program element you are checking. If not, you must back up and try
another path. If you are able to make it through the syntax diagram
without breaking any of these rules, then the syntax of the program
element is correct.

The boxes, ovals, and circles used within a syntax diagram have
distinct meanings. A box contains a word that represents an object
defined in another syntax diagram. An oval or a circle contains a
symbol or a word that must be typed exactly as it is shown.

For example, in the top left-hand corner of Figure 7-1 is a box with the
word "letter" in it. This means that the first thing that must exist in an
identifier is a letter (we went over this a few paragraphs back). Follow
ing the arrow from the first box, you can either exit to the right (in
which case your identifier would consist of a single letter) or you can
follow the path down to one of two boxes (one contains the word
"letter," the other contains the word "digit"). After leaving either of
these boxes, you can follow the arrow up and exit, or you can go
through the "loop" again, adding either another letter or another digit
each time through.

Since each of the words in this diagram are enclosed in boxes, each of
the words is defined by another syntax diagram. Figure 7-2 shows the
syntax diagram for letter.

The Basics of Pascal 57

fetter

Figure 7-2 Syntax Diagram of Letter

Starting at the top left-hand corner of Figure 7-2, you are presented
with a number of alternate paths, each to a single letter of the alphabet.
Since each letter is in a circle, that letter must be entered exactly as
shown. Finally, if you trace a path from any letter, you will find that
the only path is one that exits the diagram. This means that each time
you see the word "letter" in any syntax diagram, only one letter may
be used.

The syntax diagram of digit is shown in Figure 7-3.

digit

Figure 7-3 Syntax Diagram of Digit

You can read this diagram exactly as you did the letter diagram. Each
pass through the diagram results in only one digit being selected.

Exercises For practice, try using the preceding syntax diagrams to
check the syntax of the following "identifiers." Can you make it
through the whole diagram with any of them? (The answers to these
exercises can be found in Appendix B.)
Hen3ry
Turbo Pascal

5th_Amendment
Three+Four
Good Work

Syntax diagrams are overkill when it comes to explaining identifiers,
letters, and digits. But now that you know how to read them, these
diagrams will prove quite valuable when we get to more complex
constructs. We'll provide plenty of examples as well as syntax diagrams
for each part of the Pascal language covered. And if you need to fmd
the syntax of any part of the Turbo Pascal language quickly, you can
refer to the complete set of diagrams in Appendix A.

58 Turbo Tutor Owner's Handbook

RESERVED WORDS

When you begin writing programs, you will see that identifiers are
used virtually everywhere. You will create your own identifiers for
almost every data type, data object, and piece of code that you use.
Aside from the syntax requirements we just covered, there are almost
no limitations on the names you can give identifiers. There are, how
ever, a few combinations of letters that cannot be used as identifiers
because Pascal uses them as reserved words.

Reserved words (listed in Table 7-1) are words that have special mean
ings when used in your programs. They cannot be used for any other
purpose (except in comments-we'll talk more about them later on).
For example, you can't declare a variable named program, or name a
program begin. You can use reserved words only in the way Pascal
decrees.

To help you remember which are the reserved words as you look at
sample programs, they are shown in boldface type throughout this
and other Borland manuals. (Note, however, that reserved words do
not appear bold when you type them into a program.)

and

array
begin

case

const

div

do

downto

else

end

Table 7-1 Pascal Reserved Words

Standard Pascal Reserved Words

for mod procedure
function nil program
goto not record

if of repeat

file in or set

forward label packed then

Additional Turbo Pascal Reserved Words

absolute

external

inline

overlay

shl

shr

string

xor

CONSTANTS

to

type

until

var

while

with

A constant is a piece of data (a number, perhaps, or some text) that
remains the same while you're running your program, or even
between runs. For instance, suppose you want to calculate a percentage
based on a fraction, as follows:

100 * Numerator / Denominator

where * represents multiplication and / represents division. In this
example, the number 100 is a con,stant (in fact, the number 100 is
implicit in the very idea of a percentage). We therefore type it in as an
explicit constant in the program.

The Basics of Pascal 59

Constants are not limited to numbers, as shown in the first sample
program at the end of Part 1. When we write
Writeln('Hello world, my name is Joe')

the string of characters 'Hello world, my name is Joe' is a constant;
more specifically, it is a string constant. The standard Pascal language
allows you to use constants of types integer, real, char, and boolean,
plus string constants.

Figure 7-4 sho;'s the syntax diagram for a constant. Beginning in the
upper left-hand corner (at the word "constant"), you can choose one of
three possible paths: to a box, circle, or oval. If you take the upper
path, you may select an optional sign (" +" or "-"), then either a
constant identifier or an unsigned number (each of which is explained
in another syntax diagram). Pursuing the lower path requires a string (a
piece of text consisting of zero or more characters surrounded by single
quotes). You can take either of these paths, but not both, when making
a constant.

constant identifier

constant

unsigned number

Figure 7-4 Syntax Diagram of Constant

Constant Definitions
To show how a constant definition might be useful, consider the
following problem. Suppose a programmer had to write a program to
compute compound interest on a bank account. Since bankers fre
quently use the constant "e" (which has the value 2.718281828) when
doing calculations, the programmer would probably have to type this
long number several times. The repetitiveness of such a task creates
room for error-one that could cost the bank money. To avoid this
problem, the programmer could declare e as an identifer to represent
the constant:
const

e = 2.718281828;

This would replace the ponderous string of digits with a single charac
ter! After this definition, every mention of the identifier e would be
equivalent to typing in the long real number. Constants are defined in a
part of your program called a constant definition part. The syntax of this
part of a program is shown in Figure 7-5 and Figure 7-6.

60 Turbo Tutor Owner's Handbook

constant --.
definition

simple constant definition

part typed constant definition

Figure 7-5 Syntax Diagram of Constant Definition Part

simple constant definition -.1 identifier ~ constant ~

Figure 7-6 Syntax Diagram of Simple Constant Definition

Again, to practice your use of syntax diagrams, you may want to trace
through the previous diagrams (as well as those in the back of the
book) to verify that the deftnition of e really has the correct syntax.

Since this is only a brief introduction, the details of typed constants, and
how to defmethem, will be given in future chapters, along with all of
the rules for declaring constant identifters.

VARIABLES

In almost any program, you'll need to use pieces of data whose values
change during program execution. These data items are called variables.
A variable is a place in your computer's memory where this data is
kept.

All variables have names. Like all the other names that you declare
when you write a program in Turbo Pascal, the name of a variable is an
identifier, and should conform to the syntax for an identifter as shown
previously. When you tell Turbo Pascal that you intend to use a
variable in your program, you must give the compiler the variable's
name and its data type. This is called a variable declaration, and causes
Turbo Pascal to set aside a place in memory for the variable and to
remember its name.

Variable Declarations
Variable declarations are made in a part of your program called (not
surprisingly) the variable declaration part. Here are some examples of
variable declarations:

The Basics· of Pascal 61

var
FirstInteger : Integer;
SecondInteger, ThirdInteger Integer;
ASCII_Character : Char;
RealNumber : Real;

The preceding declarations define three variables of type integer, plus
one each of types char and real. Note that variables of the same type
can be grouped into the same declaration, separated by commas.
(Secondlnteger and Thirdlnteger are declared this way.) The syntax of this
part of a program is shown in Figure 7-7.

variable
declaration
part

Figure 7-7 Syntax Diagram of Variable Declaration Part

As before, this syntax diagram hints at an advanced feature (absolute
variables) that we are not ready to explain in detail just yet. For the
moment, ignore the branch of the syntax diagram containing this
reserved word.

OPERATORS

An operator is a special character, a group of special characters, or a
reserved word that Turbo Pascal uses to indicate that an operation
(arithmetic, for instance) is to be performed on one or more pieces of
data. Some operators, like +, will already be familiar to you from
arithmetic or algebra. Others, like * (for multiplication), represent
familiar operations that have been adapted to the limited character set
of a computer keyboard. (Most computers, like typewriters, do not
have a multiplication symbol to represent multiplication.) And still
others, like div or mod, are unique to the Pascal language.

Here are the operators you can use in Turbo Pascal:

not
* / div mod shl shr and

U nary minus operator
Negation operator
Multiplication operators
Addition operators + - or lor

= () (=)= ()

in

62

Relational (comparing) operators
Set membership operator

Turbo Tutor Owner's Handbook

The unary minus operator, which is the - sign that immediately precedes
a number, does the same thing it does in familiar arithmetic: it changes
a value sign. Thus, if the variable A has the value 5, writing -A would
yield the value - 5.

The not operator takes a boolean value (TRUE or FALSE) and inverts
it. Thus, not TRUE is the same as FALSE, and not FALSE is the same
as TRUE.

The * and / operators indicate multiplication and division, respectively.
The div operator represents a special kind of division operation, in
which the remainder is thrown away; mod (short for modulo) divides
two integers and simply returns the remainder.

The shl and shr operators are special low-level operations that shift the
bits of a byte or integer. We'll describe exactly how they work in later
chapters. .

The + and - operators are the same operations you've seen in familiar'
arithmetic, and produce the sum or difference of two numbers.

The and and or operators work on pairs of boolean values. The value
TRUE is produced by and if both of its operands are TRUE; or if
either of its operands are TRUE. These two operators can also be used
to do bit math on bytes and integers.

The relational operators (=, <, >, < =, > =, < » compare numbers
and return boolean values based on the results. They should all be
familiar except for < >, which is the way the inventor of Pascal chose
to represent the not-equal sign (f.) on a computer.

Finally, the in operator determines whether or not an object is in a set.
We'll discuss sets and how to use them shortly.

EXPRESSIONS

You've probably seen expressions before, perhaps in science and math
classes where they were called formulas (or, if you want to be classical,
formulae). Formulas that calculate such things as the circumference of a
circle or the velocity of a falling object with respect to time are just
expressions. In fact, FORTRAN (one of the earliest programming
languages) stands for FORmula TRANslator.

In Pascal, expressions are combinations of identifiers, constants, and/or
operators that describe how to produce a new piece of data from one or
more existing ones. When an expression is evaluated, the calculations
within it are carried out. The result is a single value.

Like all data used in a Turbo Pascal program, the result of an expres
sion has a data type. This type mayor may not be the same as that of
the constants or variables within it. For instance, an expression such as

The Basics of Pascal 63

first_integer + second_integer + third_integer

which adds the contents of three integer-type variables, is said to be an
integer expression. However, the expression
first_integer < second_integer

which compares two integers, yields a boolean value (TRUE or
FALSE) that indicates whether or not the firsLinteger is less than the
seconcLinteger.

The Order of Operations in Expressions
If you've taken a course in algebra, you probably remember the Order
of Operations-which means the order in which you perform opera
tions in an expression. In this section, we will demonstrate why this
ordering is necessary, and how Pascal handles expressions in which
order makes a difference.

Suppose you asked the computer to evaluate the expression 3 + 4 * 2
(remember that * denotes multiplication). How would the computer
calculate the result? The following shows two possible ways:

3 4
+4 * 2

7 8
*2 +3

14 11

The example on the left adds 3 to 4, totaling 7, then multiplies the total
by 2 to get 14. The example on the right first multiplies 4 by 2 to get 8,
then adds 3 to get 11. Which answer is correct? Well, a long time ago,
mathematicians ran into this same dilemma, and set up a series of rules
to determine how to evaluate expressions in an unambiguous way.
Pascal follows these rules, and added a few more for its own unique
operations.

The first rule to remember is that Pascal will always perform multipli
cation and division operations before addition and subtraction opera
tions, unless the addition or subtraction operation is encased in
parentheses, thereby causing the multiplication or division operation to
follow. By applying this rule, we can see that the expression in the
previous example will evaluate to 11, not 14. However, if we were to

64 Turbo Tutor Owner's Handbook

add parentheses to the previous expression to make (3 + 4) * 2, the
addition would be performed first and then the multiplication.

The second rule you should know is that operations of the same kind
(multiplication/division, addition/subtraction) are performed from left
to right. Thus, the expression 10 / 5 * 2 would be evaluated as shown:

10 5
/ 5 and not * 2
"2 10
* 2 /10

4 1

If you wanted the second answer, you would indicate that by writing
the expression as 10/ (5 * 2). In this case, the parentheses indicate that
the multiplication should occur first.

The third rule is that unary operations (that is, operations that operate
on only one object) are performed before any of the others. For
instance, in the expression -5 + 10, the unary minus before the
number 5 applies ollly to the 5, not to the whole expression 5 + 10.
The result of the expression is therefore 5, not -15!

Parentheses can be used to override the order of operations for unary
operators, as well. The expression - (5 + 10) evaluates to -15, as you
might expect.

Pascal extends the rules we just described to apply to the relational and
set membership operations as well. The relational operations are per
formed after the addition operations, and the set membership opera
tion follows. The complete table of operators given earlier was, in fact,
intentionally laid out in order of precedence-that is, with the opera
tions that are done first above those that are done afterward.

Exercises Evaluate each of the following expressions according to
the Order of Operations used in Pascal.

1. 4*6/2+3

2. (4 * 6) / 2 + 3
3. 4 * (6/2 + 3)
4. (4 * (6 / 2) + 3)

5. 4 * ((6/2) + 3)

6. (4 * 6) / (2 + 3)
Now, check your answers by inserting them into the following short
program and running it. The program is shown as ready to run the
first example.

The Basics of Pascal 65

progral calculate;
begin

Writeln(~ * b / 2 + 3);
end.

STATEMENTS

A statement is a part of a program that tells the computer to perform an
action. In the sample program in Chapter 6, the statement
Writeln('Hello, world, my name is Joe')

tells the computer to display a string on the screen. When statements
occur in succession, they must be separated from one another by a
semicolon (;). Here are some more examples of statements:
Value1 := Value2 + Value3;

Radius .= ~0.25;

if Value!) 100 then
Writeln('Value1 is greater than 100');

The first statement given is an assignment statement. It is called this
because it evaluates the expression Value2 + Value3, and assigns the
result of the addition operation to the variable Valuel (that is, it puts the
result in the place in memory reserved for Value1). Valuel retains this
result as its variable unless it is specifically changed by the program.
The second statement is also an assignment statement. Here, the
constant value 40.25 is assigned to the variable Radius. The last state
ment is called an if statement. This kind of statement instructs the
computer to perform a certain action only if a particular condition is
met; in this case, if Valuel is greater than 100. Note that this statement
actually contains another statement (the Writeln statement). This is a
common occurrence in Pascal, and we'll say more about it later.

COMMENTS
Last, but not least, there is the Pascal construct that causes the com
puter to do absolutely nothing at all: the comment. A Pascal comment is
a string of characters starting with the character" {" and ending with the
character "}". The space within the braces can contain any kind of text
at all (except, of course, more braces), and everything within the braces
will be completely ignored by the compiler. (Chapter 8 details another
method of commenting.)
{ This is an example of a comment. Turbo Pascal will ignore
this text. }

66 Turbo Tutor Owner's Handbook

At this point, you might well ask, "If comments are useless to the
compiler, and it completely ignores them anyway, then why are they
part of the language at all?" The answer is that comments are very
useful to the reader who is trying to understand, change, and/or fix a
program. Now, Pascal is designed to make programs more readable
than many other languages; however, it is still possible to come back to
your own code only a month after writing it, and discover that you no
longer understand how it works!

In such situations, comments can save the day because they allow you
to attach notes to anything and everything within your program. As
you read through the following example, note the liberal use of com
ments to make the program easier to understand.

A PROGRAMMING EXAMPLE

Now, let's say you want to write a simple Pascal program to accept
two numbers typed on the keyboard, add them together, and display
the result. First, let's look at a complete program for doing this task,
then let's discuss each part of the program. Before you read the
discussion of the program, look at the program sample carefully and
try to understand what it does and how it works. Here is the program:
progral Simple; { This is the Program Heading.}
{

A simple Pascal program to display the sum of two numbers.
DATE: 17 June 1986
AUTHOR: put your name here
}

{ This is the beginning of the
Declaration Part of the program,
where our identifiers are declared.

const
YourName = 'Friend';
{ This is a string constant used in the greeting message.

Change to contain your name if you'd like.}
var

A,B,C : Integer;

This is the beginning of the Statement
Part of the program. It contains
statements--the parts of a Pascal
program that tell the computer what to do.

begin { Main body of program Simple }

Start by greeting the user. As in our very first
program, we use a Writeln ("Write Line") statement
to write a line to the terminal. }

Writeln('Hello, " YourName, '.');

The Basics of Pascal 67

Note that the Writeln statement can take a LIST
of things to write on a line, as well as just
one thing. In the statement above, we wrote
three things: the constant string 'Hello, "
the value of the constant identifier
YourName (another string), and a period
(a character constant). }

We now write a string to the terminal asking
the user for an integer. A message like this one,
which requests a response of some kind, is often
called a "prompt." }

Writeln('Please type an integer, followed by a return.');

Readln(A);
{ Wait for the user to type a number,

then place that number in the variable
A. "Readln," which is read as
"Read Line," tells the computer to
wait for the carriage return key to
be pressed before assuming that the number is complete.

Repeat the two steps above for a second number:}

Writeln('Now please type another integer, followed "
'by a carriage return.');

Prompt for another number }

Readln(B) ;
{ Read the number and place it in the variable B.

C := A + B; { Add A and B and place the result
in the variable C. }

Writeln('The sum of the two integers is: " C);

Write a line containing a message and the value of
the variable C. }

Putting an identifier (here, C) in the list of
things that a Writeln statement is to write
causes its VALUE to be written, rather than its
name. If we wanted to just print the letter C, we
would enclose it in single quotes as we did with
the period in the first Writeln statement. }

end. { of program Simple }

The first thing you should notice about this program is that it is divided
into three sections, each starting with a reserved word (program,
const, and begin). We will now discuss the functions of each of these
parts of the program.

68 Turbo Tutor Owner's Handbook

The Program Heading
The first line (the one with the reserved word program) gives the
program's name and indicates that the lines of code that follow com
prise a program. This program is named "Simple." (The importance of
program headings is discussed in detail in Chapter 8.)
pragral Simple; { This is the ·Program Heading. }

The Declaration Part
Next is the declaration part, where identifiers are declared. As mentioned
previously, an identifier is a name you give to something (a constant, a
variable, a place in your code, or a piece of your code). The declaration
part must occur after the program header, but before the rest of the
program. In this program, we define the constant YourName and declare
the variables A, B, and C.

A constant defmition consists of two pieces of information: the name of
the constant and its value. These are separated by an equal sign (=), and
the defmition is followed by a semicolon (;). A group of one or more
constant declarations is preceded by the reserved word const.

VIe dedared the constant YourlVame as folloV1S:

canst
YourName = 'Friend';
{ This is a string constant used in

the greeting message. Change to
contain your name if you'd like. }

A variable declaration also consists of two pieces of information: the
name of the variable and its type. These two pieces of information are
separated from one another by a colon, and each declaration statement
must end with a semicolon. To let the compiler know that a group of
one or more variable declarations is coming, we use the reserved word
yare

var
A,B,C : Integer; { Variables }

The variables in our program are A, B, and C, and they are all of the
type integer. Thus, the only things that can be "contained" by the
variables A, B, and C are integers (positive and negative numbers
without fractional parts).

The Statement Part
The remainder of the program is enclosed by the reserved words begin
and end. This part of the program consists of statements, and is
therefore called the statement part. The computer starts with the first
statement in the statement part and continues to perform (or execute)
the statements, in order, until it reaches the final end.

The Basics of Pascal 69

begin { Main body of program Simple }

(Statements go here)

end. { of program Simple

Each pair of statements in the statement part is separated by a semico
lon. Since the last statement is not followed by another statement, no
semicolon is needed. Also, note that there is a period after the final end
in the program. This is required to let the compiler know that the
program is finished.

The first statement in the sample program is a Writeln statement:
{ Start by greeting the user. As in our very first

program, we use a Writeln (nWrite Linen) statement
to write a line to the terminal. }

Writeln('Hello, " YourName, '.');

Note that the Writeln statement can take a LIST of
things to write on a line, as well as just one
thing. In the statement above, we wrote three things:
the constant string 'Hello, " the value of the
constant identifier YourName (another string), and
a period (a character constant). }

As we mentioned in the previous comment, the Writeln statemept takes
a list of variables, constants, or expressions and writes their value(s) to
the screen. (We didn't show it in our program, but it is also possible to
have a Writeln statement without a list of things to write. The state
ment Writeln; will simply write an empty line to the terminal.)

Our sample program will then prompt (that is, ask) for an integer value
to place in the variable A.
{ We now write a string to the terminal

asking the user for an integer. A message
like this one, which request~ a response
of some kind, is often called a "prompt."

Writeln('Please type an integer, followed by a carriage "
'return.');

Readln(A);
{ Wait for the user to type a number, then place that

number in the variable A. "Readln", which is read
as "Read Line," tells the computer to wait for the
carriage return key to be pressed (starting a new line)
before assuming that the number is complete. }

The Readln statement does the work of getting the integer we asked for
from the user's keyboard. Like Writeln, Readln can take a list of values
to get from the terminal, or can be used with no list at all. The
statement

70 Turbo Tutor Owner's Handbook

Readln;

just waits for the user to press 1El. Our program then does a second
Writeln and a second Readln to get another number and adds the first
number to the second:
{ Repeat the two steps above for a second number:}
{ Prompt for another number}

Writeln('Now please type another integer, followed by a "
'carriage return.');

Readln(B); { Read the number and place it
in the variable B. }

C := A + B; { Add A and B and place the result
in the variable C. }

The last statement of the preceding group is an assignment statement.
This one, C : = A + B, evaluates the expression A + B by adding the
values contained in the variables A and B together. It then places the
result of this operation in the variable C.

It helps to think of the assignment operator, : =, as an arrow pointing
to the left, indicating the flow of information from the expression on
the right-hand side to the variable on the left-hand side. When a
program is read aloud, the assigrunent operator is usually read as "gets."
The previous statement would be read as "C gets A plus B."

Now our sample program writes the value we saved in the variable C.
To do this, we simply put C in the list of things to write:
{ Write a line containing a message and the value of the

variable C. }

Writeln('The sum of the two integers is: I C)

Putting an identifier (here, C) in the list of things that
a Writeln statement is to write causes the VALUE of C to
be written, rather than its name. If we wanted to just
write the letter C, we would enclose it in single quotes
as we did with the period in the first Writeln statement.

Finally, the program reaches the final end and stops.

. Note that throughout the sample program, everything has been
arranged in an orderly fashion, along with copious comments. Since
the compiler does not care at all about spacing between words (unless,
of course, the spaces are within a quoted string of characters), we have
spaced and aligned everything to make it easy for anyone to under
stand.

We can't emphasize enough the importance of clear and concise com
ments in a program. They can add much value to your code, especially
if others will be reading and/or modifying it. Keep in mind that
although comments take space in your uncompiled (source) program,

The Basics of Pascal 71

they never increase the size of the compiled program. Thus, the
performance of your software will never suffer due to too many
comments!

We've covered a lot of ground in this chapter. So, before you move on,
please take the time to perform the following exercises. They are
designed to reinforce what you have learned so far, and prepare you for
the material in chapters to come.

Exercises

1. Review the previous sample program. How many identifiers can
you find? (Hint: The names of data types, like integer, are identi
fiers). How many constants? How many statements?

2. Use Turbo Pascal to load and run this program in its original
form. Change the value of the constant YourName so that the
computer writes your name when the program is run.

3. Modify the sample program so that it prints not only the sum of
the two numbers (A + B), but the difference (A - B) as well. Add
a new variable, D, to the program to hold the difference.

4. Modify the program to return the following values:

a. Twice the difference between A and B

b. A minus twice B

c. Five times A, minus the quantity three times B

d. The product of A and B

e. A modulo B (Watch out if you enter a value of 0 for B!)

Check your programs by accumulating results for several values of
A and B.

5. Try typing a number with digits to the right of the decimal point
when asked for one by the program. What happens? Can you
explain why?

6. Now, change the variables in the program so that they are all of
the type real. Repeat Exercise 5 with this new program. Can you
explain the results? (The compiler will complain if you try Exercise
4e with the variables A and B as real numbers; the mod operator,
by defmition, only works on integers.)

72 Turbo Tutor Owner's Handbook

REVIEW

Each of the topics presented in this chapter deserves (and will get) more
explanation. Our objective here has been to define some of the basic
concepts of Pascal, and you now should have at least a basic under
standing of the terms data type, identifier, reserved word, operator,
constant, variable, expression, statement, and comment. If you feel
comfortable using these terms, then you are ready to go on to the
next chapter.

The Basics of Pascal 73

74 Turbo Tutor Owner's Handbook

8 Program Structure
In Chapter 7, we took a brief look at the most important Pascal terms
and concepts, and showed them at work in a simple program. In this
chapter, we will examine the rules governing the structure of a Pascal
program. .
Let's quickly review what we have already learned about program
structure. A Pascal program consists of three distinct parts: (1) the
program heading, (2) the declaration part, and (3) the statement part.
(Figure 8-1 shows the syntax of a program.)

program ~ program heading ~ block f--O--
Figure 8-1 Syntax Diagram of Program

The program heading names the program and, for some compilers,
gives information about what files the program will use.

The declaration part consists of declarations that give Pascal informa
tion about the pieces of data and code that fit together to make the
program work. It is possible to have a Pascal program without a
declaration part (program MyName in Part I, for example), but such a
program is usually not very useful.
Finally, there is the statement part, which consists of one or more
program statements that tell Pascal how to do the actual work, such as
adding numbers, printing items on the screen, and deciding what to do
next. The statements are enclosed between the reserved words begin
and end, followed by a period indicating the end of the program.

THE PROGRAM HEADING

In standard Pascal, your program must begin with a program declara
tion that consists of the following in this order: (1) the reserved word
program, (2) the name you want to give to your program (which can
be any legal identifier), (3) a list of identifiers naming the files that the

75

program will use (if any), and (4) a semicolon. The syntax diagram for
the program heading is shown in Figure 8-2.

program
heading

Figure 8-2 Syntax Diagram of Program Heading

In Turbo Pascal, unlike most compilers, the program heading is
optional. Turbo Pascal is smart enough to figure out what files you will
use from the text of your program, and doesn't need to know the name
of your program in order to compile and run it.

However, since the Turbo editor always puts you at the beginning of
the file when you start it up, a program heading is good for immediate
program identification. If you have forgotten what the program in a
particular disk fue does, the heading can save you much time and
exploration. Using a program heading also makes your programs
more portable. We recommend you use one in every program you
write (as we do), along with a meaningful program name.

Here are some sample program headings:
program BudgetAnalysis;
program Rutabaga (input, output);
program With_A_Very_Long_Name_Indeed (file1,file2);

THE DECLARATION PART

The declaration part consists of declarations, or definitions, of all labels,
constants, types, variables, procedures, and functions that you will be
defining in your program. (Procedures and functions are pieces of your
program that are invoked by name.) Each declaration lists one or more
identifiers and then gives information about the meaning(s) of these
identifiers. (When declaring a label-a number or identifier used to
mark a place in your program-you simply list the numbers and/or
identifiers that will be used as labels.)

In Pascal, the declaration part is divided into five different subparts:

• Label declaration part

• Constant definition part

• Type definition part

76 Turbo Tutor Owner's Handbook

• Variable declaration part

• Procedure and function declaration part

S~andard Pascal requires that each of these subparts occur only once (if
at all), and in the exact order listed. Turbo Pascal, however, is not as
rigid about the order in which these things are declared, as long as
they're declared before they are used. With Turbo, you can make any
kind of declaration, any number of times, and in any order in the
declaration part. This is shown by the syntax diagram of Turbo's
declaration part (Figure 8-3).

declaration part -..---r-.t label declaration part

variable definition part

procedure declaration

~ function declaration l-..J

Figure 8-3 Syntax Diagram of Declaration Part

Since Pascal has no idea what an identifier means until you· tell it, you
must declare all of the identifiers you will use in your program (except,
of course, the "standard" identifiers, like Readln and Writeln, which are
already part of Turbo Pascal). This includes all labels, constants, types,
variables, and procedures and functions that you create as you build
your program. If you use an identifier that has not been declared,
Turbo (like all Pascal compilers) will simply give an error message and
refuse to compile or run your program.
This rule of identifier declaration is so fundamental to all Pascal pro
grams that we need to call special attention to it. Memorize this rule
well: All identifiers must be declared before they are used.

Formatting Your Declarations
As long as you remember to declare all of your identifiers, Pascal will
allow you considerable freedom in the way you format the declara
tions. In this section we will present some sample variable declarations
to illustrate this flexibility; as you read them, bear in mind that the
same principles apply to constant and type declarations as well.
As you may recall, a group of variable declarations (a variable declara
tion part) is preceded by the reserved word var. Each declaration

Program Structure 77

consists of one or more names (identifiers) for variables, a colon, a type
for the variable(s), and, finally, a semicolon. The result looks like this:

vat
A,B,C : integer;

This example defines three variables of type integer: A, B, and C. The
reserved word var can be followed by several variable declarations
without needing to be repeated. Thus, if you want to' make the
program more readable by declaring A, B, and C on separate lines, you
can write
vat

A: integer;
B: integer;
C: integer;

without repeating the var.

As mentioned in Chapter 7, there are five predefined data types in
Turbo Pascal: integer (positive and negative whole numbers and zero),
byte (positive integers from 0 to 255-the range can be represented by
one byte of data), real (also known as floating point-positive and
negative numbers with fractional parts and optional exponents), char
(one ASCII character enclosed in single quotes, and boolean (TRUE
and FALSE). Here are some variable declarations for these different
data types:
vat

Alive,Breathing boolean;
Age,Height,Weight integer;
Score byte;
Ratio,Percentage real;
First,Middle,Last char;

Pascal is what is known as a "free format" language--it doesn't care
how the text of your program is broken into lines (unlike BASIC,
FORTRAN, and some other languages). As long as the syntax of the
declarations agree with the diagram in Figure 8-3, Pascal allows quite a
lot of flexibility in how you arrange your declarations. If, for some
reason, you want to arrange your declarations in a long, narrow
column, you could rewrite the previous example as:

var

78

Alive,
Breathing
: boolean;
Age,
Height,
Weight
: integer;
Score
: byte;
Ratio,
Percentage
: real;

Turbo Tutor Owner's Handbook

First,
Middle,
Last
: char;

And here's yet another variation:
var

Alive : boolean; Breathing: boolean; Age : integer;
Height: integer; Weight: integer; Ratio: real;
Percentage : real; First: char; Middle: char; Last: char;

Note, however, that when we show declarations in this tutorial, we
will use the format that we think is the easiest to read and understand.

THE STATEMENT PART
The statement part of a Pascal program consists of the reserved word
begin, followed by any number of statements, followed by the
reserved word end (see Figure 8-4). The statement part of a program is
followed by a period (.) to indicate the program is finished. Execution
always starts with the first statement after begin, and proceeds sequen
tially to the last statement before end (unless a statement directs the
program flow elsewhere than to the next sequential statement). The
period after the last end must be the last thing that appears in a Pascal
program (with the exception of a comment).

statement
part

" can also be defined as

I compound statement

Figure 8-4 Syntax Diagram of Statement Part

Formatting Your Statements
Neither spaces nor line breaks affect the meaning of the program,
unless, of course, they occur in the middle of a string. For this reason,
we could have written our first program (MyName) like this:
progral MyName;
begin ClrScr;
Writeln('Hello, world, my name is _______________ ') end.

Pascal also doesn't care about upper- and lower-case or line indenta
tion. You have the freedom to format your programs in a variety of
ways. The examples shown in this book (except, of course, for the
previous one) are written in what we think is a readable, easy-to-use

Program Structure 79

format that can be understood by anyone knowledgeable in Pascal.
(For more discussion about programming style, see Appendix E.)

Statement Types

A large portion of this tutorial will be devoted to discussing the
different kinds of statements available to you in Turbo Pascal. Let's
look at the syntax diagram of a statement (shown in Figure 8-5) to get
an overview of what's to come.

statement-r----------+-r--r-I~

if statement

repeat statement

while statement

for statement

case statement

with statement

goto statement

inline statement

Figure 8-5 Syntax Diagram of Statement

You have already been introduced to the first kind of statement in the
diagram, the assignment statement. The assignment statement causes
expressions to be evaluated, and assigns values to variables.

A procedure call causes the named program part of the call to be run.
Note that the Readln and Writeln statements in the previous examples
are procedure calls.

Readln and Writeln are procedures that are predefmed by Turbo Pascal.
We'll talk more about procedures, and how to define your own, in
chapters to come.

A compound statement is a number of statements grouped together
between the reserved words begin and end. If you think this sounds
similar to the statement part of a program, you're absolutely right-the
statement part is an example of a compound statement. Compound
statements have other uses, which we will discuss shortly. The if and
case statements make decisions about what the computer will do next.

80 Turbo Tutor Owner's Handbook

The repeat, while, and for statements all cause the computer to repeat
certain actions until a particular condition is met. We'll say more about
them in Chapter 11, "Control Structures."

The with statement helps the programmer by allowing variable names
to be shortened. We'll cover this in Chapter 15, "Records."

The goto statement tells the computer to jump to a particular place in
the program (indicated by a label) and start working. Unlike less
structured languages like FORTRAN and BASIC, Pascal never pre
sents a situation where goto statements must be used; we recommend
avoiding them altogether. For the sake of completeness, however,
we've included a brief explanation of the goto statement in Part III.

If you have already programmed in BASIC, it is especially important
to kick the "goto habit." First, learn to use Pascal's structured tech
niques for controlling a program. Once you have mastered these
methods, then you can resort to gotos, if you must.

The inline statement is an advanced programmer's tool that allows
machine language instructions to be placed directly within the text of a
Turbo Pascal program. We recommend this feature for experts only;
for more information, refer to Chapter 28 of this manual or the Turbo
Pascal Reference lvfanual.
Finally, the null statement is represented by the arrow that completely
bypasses all of the other statements in the previous syntax diagram
(Figure 8-5). In some places where the Pascal language requires a
statement, we may want to tell the computer to "do nothing at all."
The null statement provides us with a way to convey that message to
the compiler.

The path shown in gray in Figure 8-5 shows the format of a label-the
target of a goto statement. As previously mentioned, we recommend
avoiding goto statements entirely; this is shown simply for your
information.

COMMENTS: THE REST OF THE STORY

An important part of any program is the documentation-text that
explains what the program does and why. Documentation can exist at
many levels, including help screens, online instructions, user manuals,
and comments.

Comments are used to tell the reader of the program the uses of
identifiers, the actions of the program, the situation that will occur
when a certain condition is met, the date the program was written, the
name of the author, and anything else that might be useful in under
standing the program. Comments require a small amount of additional
work, but are invaluable in debugging, maintaining, and enhancing

Program Structure 81

your software. You should always take into consideration the possibil
ity of someone other than yourself modifying the text (sourcecode) of
your program. And while it is completely possible to write a program
without comments, it is a bad practice to do so. Think about how hard
it would be to cook a gourmet meal from a recipe that listed all the
ingredients but gave no instructions on how they were to be combined.

As mentioned in Chapter 7, comments are ignored by the compiler,
which means they have no affect whatsoever on your compiled pro
gram (they do not increase its size or affect its execution speed). The
only computer-related effect they have is to increase the size of the
source code (not the compiler output) of your program slightly, and
this is well worth the benefit of being able to better understand the
code, as well as to modify it later.
Pascal comments begin with a left brace ({) and end with a right brace
(}). These symbols are known as comment delimiters. A comment can
start and end almost anywhere, and occupy as many lines as needed.
However, you must be careful of nested comments-comments embed
ded within comments.

Let's say you've written the following section of a program:

Write in (date); {Write the date}
old_a := a; {Save the old value of a}
Readln (a); {Read a new value for a}

Now, suppose you want to temporarily remove the last two state
ments shown (that is, you don't want to delete them from the pro
gram, but you don't want them to be performed during this run). This
is known as "commenting out" a section of code. At first glance, it
appears that you could simply put comment symbols before and after
the statements you want to comment out, as follows:

Writeln (date); {Write the date}
{

old_a := a; {Save the old value of a}
Readln (a); {Read a new value for a}

Unfortunately, if you use this approach, it will have a quite different
effect than you might have intended. Pascal will recognize the first
comment ({Write the date}) with no problem, and will understand that

82 Turbo Tutor Owner's Handbook

the next left brace (at the beginning of the second line) is the beginning
of another. However, when the compiler encounters the right brace at
the end of the third line, it will think that the comment is over. Thus,
the statement Readln(a) will be compiled into the program, even
though we didn't want that to happen. In this particular case, the
compiler will find the extra right brace in the last line of the example,
and will signal that something is wrong with an error message. Some
times, however, it is possible for this sort of error to go undetected,
causing many debugging headaches.

One solution to this problem is to delete some of the comment
symbols within the section that is commented out. But that would be
more trouble (and probably cause more errors) than removing the
entire section of code. Fortunately, there is a better way.

Earlier, we told you that Pascal comments begin with a left brace, ({)
and end with a right brace (}), but there's also an alternate pair of
comment symbols: a left parenthesis and an asterisk (*) to begin a
comment, and an asterisk and a right parenthesis (*») to end a com
ment. Turbo Pascal allows you to place one kind of comment within
the other.

Well, maybe "allo'N" isn't quite the right word; the situation is a natural
result of the way comments work. If you begin a comment with a left
brace ({), everything will be ignored, including the set of parentheses
and asterisks (* and *»), until the right brace (}) appears. The reverse is
also true: When a comment begins with a left parentheses and an
asterisk (*), everything up to the next asterisk and right brace (*») will
be ignored, including a set of braces ({}).

So, the solution to the problem of nested comments is to always use
one set of comment delimiters for descriptive comments and the other
set of comment delimiters for commenting out sections of code. In this
manual, we'll use braces as comment delimiters for ordinary text
comments. If the situation requires that sections of code be commented
out, we will use the parenthesis-asterisk comment delimiters for that
purpose. Now, let's rewrite our latest example by using both sets of
comment delimiters:

Writeln (date); {Write the date}
(*
old_a := a; {Save the old value of a}
Readln (a); {Read a new value for a}
*)

Program Structure 83

The program will run just fine now, except that the sections of code
between the (* and the *) will be ignored by the compiler. You may
want to use this technique for testing various parts of programs, to
isolate problems, or to prove that a section of your program does what
you intended.

As we said, you can insert comments almost anywhere. The excep
tions to this rule are that you cannot insert a comment into the middle
of an identifier or a reserved word, or inside a string. In the first case,
the compiler will think that the reserved word or identifier ends where
the comment begins; in the second, it will think that the whole
comment was part of the string. The statement
Writeln('Hello, world, my name is {not} Joe.');

produces the output
Hello, world, my name is {not} Joe.

REVIEW

The structure of a Pascal program follows this form:
program Name ({optional file identifiers});
label
{ label declarations here }

const
{ constant declarations here }

type
{ type declarations here }

var
{ variable declarations }

{ subprograms (procedures and functions) declared here}
begin
{ main body of program }
end.

Turbo Pascal is more flexible than standard Pascal in that label, const,
type, var, and subprogram declarations can be placed in any order and
can occur more than once.

84 Turbo Tutor Owner's Handbook

Pascal is a free-format language. It allows declarations and statements
to be formatted in many ways, subject to certain simple constraints.
Pascal provides a rich variety of statements from which to choose.
Comments are most often used for two reasons: to document pro
grams and to prevent certain sections of code from being run during
testing. The two sets of comment delimiters ({ and } and (* and *))
allow the programmer a limited ability to nest comments used for
these purposes within one another. Comments can be used anywhere,
except in the middle of a string, a reserved word, or an identifier.

Now you're ready to tackle the predefmed data types of Pascal in
Chapter 9.

Program Structure 85

86 Turbo Tutor Owner's Handbook

9 Predefined Data Types
Every data object that appears in a Pascal program has a data type.
There are two kinds of data types: simple types, which are used for data
that is always manipulated as a whole, and structured types, which are
used for data consisting of smaller pieces that can be manipulated
individually.

In this chapter, we will explore Turbo Pascal's predefined data types-the
ones that you will probably use most often. All of Turbo's predefmed
types are simple types; these include integer, byte, real, boolean, and
char. We'll explain each type and give examples of how it is used.

In addition, we'll cover the group of structured types called string types,
which allow you to manipulate groups of characters easily. String
types are not a part of standard Pascal, but are one of Turbo's most
useful extensions.

When you declare a constant, the data type of the constant is implicit in
the constant declaration, and must be one of the predefmed types.
(Typed constants, which we will discuss in Part III, allow you to defme a
constant of any type.) When you declare a variable, you are required to
explicitly state the type in the declaration. Remember our rule: All
identifiers must be declared before they are used.

INTEGERS

Integers are counting numbers, negative and positive, including zero.
The number 12 is an integer, as are 456 and -12000. On the other
hand, 1.234, 2.0, and -0.54234312 are not integers (they have decimal
points). You will use integers when your data is strictly numeric and
does not contain fractions. Figure 9-1 shows the syntax diagram for an
unsigned integer (an integer constant without a possible + or - sign).

87

Figure 9-1 Syntax Diagram of Unsigned Integer

Note that in Turbo Pascal you have the option of specifying an integer
constant in hexadecimal (base 16) notation as well as ordinary decimal
(base 10) notation. A Turbo hexadecimal constant consists of a series of
hex digits (0 through 9, or a letter a through f) preceded by a dollar
sign ($).

In Turbo Pascal, an integer occupies 2 bytes of computer memory.
Because there are only so many unique values that can be expressed by
16 bits, objects of type integer in Turbo Pascal are limited to the
numbers in the range of - 32768 through 32767. Keep in mind that
each data object you declare as an integer will occupy 2 bytes no matter
what (for example, the integer 0 occupies 2 bytes as does the integer
20000). Pascal has a predefmed constant called MaxInt that always
holds the maximum possible value of an integer. In Turbo Pascal,
MaxInt has the value 32767. In some situations, you may want to test a
data object with a greater range of values (such as a real) to see if it can
be expressed as an integer. To do this, test the number to see if it falls
between MaxInt and - MaxInt-1.

Integer Operators
When you do calculations with integers, you can use the operations
that you might expect to work on any kind of number: +, -, *, and /.
(The / operator actually does division on real numbers, but will work
on integers because it converts both its operands to type real before it
divides. The result of the / operator is always of type real.) If a value
with a fractional part is assigned to an integer variable, the fraction is
removed (truncated) and the integer assumes the value of the non
fractional part of the number.

The relational (or comparing) operators may also be used with integers.
These include >, <, >=, <=, =, and <> (not equal to).

In addition to the preceding operations, Turbo Pascal has two special
operations that can be applied only to integers: div and mod.
The div operator performs an operation known as integer division on
two integers. Integer division works much like ordinary division, but
the operands must both be integers and the result is always an integer

88 Turbo Tutor Owner's Handbook

(any fractional part is dropped during the division). Use of the div
operator is preferable to that of the / operator when the operands and
the results are integers, since the div operation performs approxi
mately ten times faster on most machines.

The mod or modulo operator divides its two operands (again using
integer division) and returns the remainder. This operation is useful for
"clock arithmetic." (As you already know, the hours on a clock go up
to 12, then start at 1 again, so the next hour is the current hour plus 1,
mod 12.) The mod operator also helps determine if a number is an
exact multiple of another (if A is a multiple of B, then A mod B
is zero).

Some other operators, such as and, or, xor, shl, and shr, also work on
integers in Turbo Pascal. These are advanced features, however, and
we will defer discussing them until later in the book.

Integers and Arithmetic Overflow

As we have already mentioned, integers in Turbo Pascal are limited to a
very specific range of values. What happens, you may ask, if the result
of an integer operation falls outside this range?

Arithmetic overflow is what happens when you calculate a value that is
too big or small to fit and store in an integer that falls in the range
-32768 to 32767. You can unintentionally introduce errors into your
program if such an overflow occurs in the middle of a calculation.

For example, suppose your program tried to evaluate the expression
1000 * 100 div 50. This expression does not produce the answer you
might expect-200~because of arithmetic overflow. Turbo Pascal
will attempt to multiply 1000 by 100, and since the result is too big to
fit in an integer variable, you'll get the intermediate result of -31072.
(This is the number corresponding to the lower 16 bits of the number
l00,OOO--the rest of the number is lost because it doesn't fit.) This will
then be divided by 50, producing an answer of -621.44. Since we're
working with integers, the decimal fraction will be dropped, and the
fmal result will be - 621. This is hardly the correct answer!

Turbo Pascal expects you to be cautious when calculating with inte
gers, and does not report an error when an arithmetic overflow hap
pens. You must therefore take precautions to avoid this problem. In the
previous example, writing the expression as
1000 * (100 div 50)

would have prevented arithmetic overflow from occurring.

Exercises Which of the following are valid constants of type integer?
If not, why not?

Predefined Data Types 89

1. 40000

2. -10,000

3. $b
4. Maxint

5. -32768

6. $A21B

7. 2.0

8. 0

BYTE

The data type byte includes all integer values that can be represented by
8 bits of computer memory. A limited set of a given type is called a
subrange. Therefore, byte is a subrange of type integer. Data of type
byte must be in the range of 0 through 255.

Byte values can be used in place of integer values and vice versa, but
note that because of their limited range, it is even easier to generate an
arithmetic overflow. Any value outside the allowable range for a byte
data type will be represented as the lower 8 bits of the integer value.
For example, if an arithmetic operation produces the result 256, and the
result is assigned to a byte, the value of the byte becomes O.

To explain, look at the individual bits of the integer result:
25b = 00000001 00000000
Decimal Most Significant Least Significant
Number Byte Byte

Despite this limitation, byte values are handy for numbers that will
never have values outside the range 0 to 255. They also save space in
memory, since they occupy half the amount of space required to store
an integer.

Integers and bytes are fme for working with numbers without frac
tions, but there may be times when you want to divide, say, 11 by 4
and get a total of 2.75 instead of 2. There may also be times when you
need to find the answer to 5234 * 21342. To do these things, you need
to use the data type real.

REAL·

A real constant, like all numeric constants, must begin with at least one
digit. To be recognized as a real constant as opposed to an integer
constant, it must then contain either a decimal point followed by one or
more digits, an exponent, or both. Thus, 10.0 and 10.0000 are real

90 Turbo Tutor Owner's Handbook

constants, while 10 is an integer constant. In Turbo Pascal, if the
exponent is present, the digits following the decimal point may be
omitted. The syntax diagram in Figure 9-2 shows an unsigned real.

unsigned
real ---1-'

Figure 9-2 Syntax Diagram of Unsigned Real

Real Operators

When you do calculations with reals, you can use the basic four
arithmetic operations: +, -, *, and /. It is important to note that if any
of these operations is done on one value of type integer and another of
type real, the result will be of the type real.

The relational operators may also be applied to values of type real.
Again, if operands of types integer or byte are mixed with real num
bers in such an expression, they are converted to type real before the
operation is performed.

Exponential Notation

What is an exponent, and what is its purpose in representing a real
number? Since real numbers must encompass very large and very small
values, Pascal allows us to use exponential, or scientific, notation to
represent them. For instance, the number
13~/000/000/000/000

may be represented as:
1.3~ * 10**M

And, since it is hard to show multiplication symbols and superscripts
on many computer screens, we replace the "* 10" part of the number
with the letter E to represent "exponent." Now, our number is repre
sented as:
1.3~EM

Exponential notation is also used to represent very small numbers. For
example, the number:
0.0000023M3

can be represented in exponential notation as:
2.3M3 * 10**-6

Predefined Data Types 91

and you can represent this same number in Pascal as
2.3:J,t;3E-ob

The number to the left of the E in the first example (1.34) is called the
mantissa, and the number to the right of it is called the characteristic. To
convert a number from exponential notation to ordinary notation,
move the decimal point in the mantissa the number of places to the
right indicated by the characteristic, and fill in any gap with zeroes. (If
the characteristic is negative, you move the decimal point to the left.)
To convert a number to exponential notation, move the decimal point
until it is just to the right of the left-most nonzero digit in the number.
The characteristic then becomes the number of digits you move the
decimal point (negative if you move it to the right, positive if you
move it to the left).
The range of real numbers in Turbo Pascal is lE-38 through lE38.
The mantissa can have up to 11 digits. Of course, it takes more space to
store this information than it does to store an integer, but there are
many times when no other type will do.

The following are examples of real numbers:
]'ES
3.M]'SCJ2b
3St;b.3
0.003t;
32.Et;
S.b7CJE2]'
]'.32t;E 2
2]'3t;3.o
0.0
0.],

The following are examples of invalid representations of real numbers:

-.]'23t;23
S.b23]'Et;2
25.
E:J,t;

No digit on the left of the decimal

Exponent too large

No digit on the right of the decimal
No mantissa

The following are incorrect representations of real constants that will
not cause compiler errors, but which may also not do what you expect:

o
SbSL;3S23]']'3:J,2.3

Interpreted as an integer constant
More than II digits in mantissa

If you write a number that you intend to be a real constant without a
decimal point or exponent, Turbo Pascal will not complain as long as
the constant is smaller than the maximum integer. Instead, the com
piler will interpret the number as an integer constant. Since Turbo

92 Turbo Tutor Owner's Handbook

Pascal automatically converts integers to real numbers when necessary,
this will never cause your code to execute incorrectly; however, the
conversion will slow down the execution of the program slightly.

If you write a constant of type real that has more than 11 digits in the
mantissa, Turbo will (once again) not complain. However, since the
accuracy with which Turbo Pascal can represent such numbers is
limited to 11 digits, the right-most digits (after the 11th) will be treated
as zeroes. (If a calculation with reals produces a number too large or
too small for Turbo to handle, the program will halt with an error
message.)

Exercises Convert each of the following numbers to a legal Pascal
constant in exponential notation.

1. 20000
2. -.000025
3. +42.77
4. -530000.5
Convert each of the following constants from exponential notation to
standard notation.
1. 1.5E-l0

2. -5.545454E12
3.2EO
Type in the following program and run it. Why does Turbo Pascal
print the value it does? What happened to the least-significant (right
most) digits?
progral truncate;

canst a = 123~5b7890123~5.0;
begin

Writeln(a);
end.

BOOLEAN

Objects of the type boolean are limited to only two values: TRUE and
FALSE. This type is named in honor of the 19th-century mathemati
cian George Boole, who developed the rules that govern the operation
of digital computers.

Boolean values are useful in recording whether certain conditions are
true or not-especially when the computer must later decide what to
do next. You may recall that the results of all of the relational operators
are of type boolean-we'll show you how to use them to make
decisions in Chapter 11, "Control Structures."

Predefined Data Types 93

CHAR
The data type char includes the set of ASCII characters. Actually, a
variable of type char can have 256 values, including the 128 characters
in the standard ASCII set. The remaining 128 values depend on the
type of computer you are using. On some computers, these high
values are used to provide graphic characters for drawing boxes, lines,
and tables. Other computers use these high values for alternate charac
ter sets. Some computers don't use them at all. Table 9-1 lists the
complete ASCII character set.

As you may recall, the ASCII character set includes both printing and
nonprinting characters. You represent printing characters by enclosing
them in single quote marks, as follows:
'a' '$' , , 'J'

Notice that a space is a printing character and is represented as a space
enclosed in single quotes, just like any printing character. Nonprinting
characters are another matter, as are the characters subsequent to value
126 (those characters for which there is no key on your keyboard).
Turbo Pascal provides special ways to represent these characters. Let's
look at control characters first.

Control characters have ASCII values between 0 and 31. For example,
the ASCII value of7 represents Ctrl-G. However, you can't enclose a
Ctrl-G in single quote marks because a Ctrl-G does not display any
thing on the screen.

So, how do you represent a control character? One way is to use the
notation A(char), where A is the "caret" character (usually the shifted CD
key) and (char) is the corresponding printing character. You can deter
mine the printing character that corresponds to a control character by
looking at the third set of columns in Table 9-1. The table is set up so
that a printing character in column 3 corresponds to a control character
in column 1. For whatever purpose you may need this information, the
printing character has a decimal value of 64 more than the correspond
ing control character.

That takes care of codes 0 through 31, but what about characters with
ASCII codes 127 through 255? Turbo Pascal handles these characters by
letting you use the notation #(val), where # is the pound sign charac
ter (usually a shifted CD) and (val) is a number between 0 and 255. In
fact, you can represent any ASCII character using this method. Here
are some examples of representing characters using the #(val) method:
NUL #0
Ctrl G (BEL) #7
ESC #27
blank #32
the digit 0 #L;B

94 Turbo Tutor Owner's Handbook

Table 9-1 Complete ASCII Table

D H Ch Ctrl Mem D H Ch D H Ch D H Ch D H Ch D H Ch D H Ch D H Ch

00 00 @ NUL 32 20 SP 64 40 @ 90 00 128 80 C; 100 AO a 192 co L 224 EO ex

01 01 <:;> A SOH 33 21 ! 65 41 A 97 61 a 129 81 U 161 AI 1 193 CI -.L 225 EI P
02 02 • B STX 34 22 66 42 B 98 62 b 130 82 e 162 A2 6 194 C2 ""T 226 E2 r
03 03 • C ETX 35 23 Ii 67 43 C 99 63 c 131 83 " a 163 A3 U 195 C3 r- 227 E3 1T

04 04 • D EOT 36 24 $ 68 44 D 100 64 d 132 84 a 164 A4 ii 196 C4 - 228 E4 l:

05 05 ... E ENQ 37 25 % 69 45 E 101 65 e 133 85 it 165 AS N 197 C5 + 229 E5 U

06 06 • F ACK 38 26 & 70 46 F 102 66 f 134 86 a 166 A6 ~ 198 C6 F 230 E6 .({

07 07 · a BEL 39 27 71 47 a 103 67 g 135 87 ~ 167 A7 Q 199 C7 If- 231 E7 T

08 08 II H BS 40 28 (n 48 H 104 68 h 136 88 e 168 A8 (, 200 C8 I!:: 232 E8 Q

09 09 0 I HT 41 29) 73 49 I 105 69 i 137 89 e 169 A9 r 201 C9 rr= 233 E9 e
100A .. J LF 42 2A * 74 4A J 106 6A j 138 8A e 170 AA -, 202 CA -.JL 234 EA n
\I OB (j K VT 43 2B + 75 4B K 107 6B k 139 8B 'i 171 AB ~ 203 CB ,r 235 EB 0
12 OC 9 L FF 44 2C 76 4C L 108 6C I 140 8C " In AC !4 204 CC If: 236 EC 00 1

13 OD) M CR 45 2D -- 77 4D M 109 6D m 141 8D 1 173 AD i 205 CD - 237 ED 41

14 OE ~ N SO 46 2E 78 4E N 110 6E n 142 8E A 174 AE « 'W6 eTL 238 EE E ,r
15 OF -¢- '0 SI ' 47 2F I 79 4F 0 III 6F 0 143 8F A 175 AF » 207 CF ---L 239 EF n
16 10 ::>- 'P

1.1 " 48 30 0 80 50 P ! !2 70 P 144 90 E !76 BO ... 208 no J.L 240 FO -...

17 II ... Q DCI 49 31 I 81 51 Q 113 71 q 145 91 ae 177 BI llt. 209 DI -, 241 FI ±
18 12 t R DC2 50 32 2 82 52 R 114 n r 146 92 JE 178 B2 ill 210 D2 II 242 F2 ;:::
19 13 !! S DC3 51 33 3 83 53 S 115 73 s 93 " 179 I 211 03 F3 .:::; 147 0 B3 lL 243

20 14 , T OC4 52 34 4 84 54 T 116 74 t 148 94 0 180 B4 -j 212 04 b 244 F4 r
21 IS § U NAK 53 35 5 85 55 U 117 75 u 149 95 (, 181 B5 =9 213 05 F 245 F5 J

22 16 0 V SYN 54 36 6 86 56 V 118 76 v 150 96 U 182 B6 --11 214 06 rr 246 F6

23 171- 'W ETB 55 37 7 87 57 W 119 77 w IS I 97 U 183 B7 11 215 07 + 247 F7 :::::

24 18 t 'X CAN 56 38 8 88 58 X 120 78 x 152 98 Y 184 B8 =, 216 08 =+= 248 F8 0

25 19 I 'Y EM 57 39 9 89 59 Y 121 79 Y 153 99 0 185 B9 =11 217 09 ..J 249 F9 .
26 IA - Z SUB 58 3A 90 SA Z 122 7A z 154 9A 0 186 BA II 218 OA r 250 FA .
27 IB - [ESC 59 3B 91 SB I 123 7B { ISS 9B C 187 BB =;J 219 OB • 251 FB ..r

28 IC L \ FS 60 3C < 92 5C \ 124 7C
I
I 156 9C £ 188 BC dl 220 DC • 252 FC n

29 1D I as 61 30 = 93 50 I 125 7D I 157 90 ¥ 189 BO .JI 221 00 I 253 FO 2

30 IE · /\ RS 62 3E > 94 5E 1\ 126 7E ~ 158 9E ft 190 BE ::::J 222 DE I 254 FE •
31 IF y US 63 3F ? 95 5F 127 7F !:;, 159 9F f 191 BF 223 OF • 255 FF -- -- "I

Predefined Data Types 95

the letter A #65
DEL #127
ASCII 237 #237

Many of us are most comfortable working with decimal numbers~
especially when we~re doing arithrr.etic. However~ if you are an experi
enced programmer~ you are probably quite familiar with the hexadeci
mal system. As mentioned previously~ this numbering system has 16
digits instead of the usual 10: 0 through 9 plus A through F (which
represent the numbers 10 through 15). Thus in hexadecimal the num
ber 15 (decimal) is written as $OF~ while the number 16 is written as $10
(a 1 in the 16~s place and a 0 in the 1 ~s place). The dollar sign indicates
the number is in hexadecimal (or~ as programmers call it~ "hex"). You
can use the notation #$(val)~ where (val) is the hexadecimal code for
the desired ASCII value. Here is the list of previous characters shown
with their hexadecimal values:
NUL #$0
Ctrl G (BEL) #$07
ESC #$1B
blank #$20
the digit 0 #$30
the letter A #$~1
DEL #$7F
ASCII 237 #$ED

You now have at your disposal two ways of representing printing
characters~ two ways of representing control characters~ and one way
to represent the high value ASCII characters. Each character occupies 1
byte of memory.

STRINGS
As we mentioned before~ strings are really not a predefmed data type.
They are~ rather~ a group of structured types that you can specify using a
special shorthand. Unlike the data types integer~ real~ boolean~ and
char~ string types weren~t included in Wirth~s original definition of
standard. Pascal. Because of this~ many Pascal implementations have
their own definitions of strings. Turbo Pascal has one such implemen
tation. Strings are important enough to be the subject of an entire
chapter (Chapter 14)~ but you need to learn a few things about them
now to be able to follow the examples in the next few chapters.
Briefly~ a string is a sequence of characters with a specific starting
point~ stopping point~ and length. For example~ ~Enter first value: ~ ~ is a
string. The single quotes (') show where it starts and stops; it contains
the characters E~ n~ t~ e~ r~ and so on. Its length-the number of
characters between ·the single quotes-is 20~ including two spaces at
the end.

96 Turbo Tutor Owner's Handbook

String Constants
A string constant consists simply of a group of characters, enclosed in
single quotes, and/or a group of special symbols that represent control
characters. Figure 9-3 displays the syntax diagram for a string constant.

string _......--,.---I~
constant

Figure 9-3 Syntax Diagram of String Constant

The following are examples of legal string constants:

'a'
'Hello, how"s it going?'
'WallawallawallawallawallaFAGROON!' , ,

Note that in the second of these examples, we have used two single
quotes immediately following one another to represent a single quote
within the string. When this string is printed, the result is:
Hello, how's it going?

Any number of single quotes can be placed within a string in this way.
(Of course, the beginning and ending single quotes still have their usual
meaning.)

The last of these constants demonstrates the one case where two
consecutive single quotes do not print as a single quote: the null string.
The null string is a string of zero length, and does not show anything
when written.

Putting Control Characters in a String
Turbo Pascal provides special facilities to let you place control charac
ters within a string. Let's say you want to signal the end of a long
processing job and prompt the user for additional input. To alert the
user, you want to make the computer beep three times as it displays a
message on the screen.

On most computers, the way to produce a beep is to print the control
character "G (Ctrl-G, or ASCII code 7). Since this is not a normal
printing character, how do you tell Turbo Pascal to put it in the string?

In Turbo, you can put a control character in a string by specifying it in
one of two ways: by number, or by the ASCII character that you
would press along with the control key to generate it.

Predefined Data Types 97

The general form for a control character in a Turbo Pascal string
constant is shown in Figure 9-4.

control character --,-...,

unsigned integer

Figure 9-4 Syntax Diagram of Control Character

To represent Ctrl-G, you can use either the symbols AG or #7, as
shown in the following:
const

alert = 'Please wake Up!!!'AGAGAG' I need more data! !!';

or

const
alert = 'Please wake up!!!'#7#7#7' I need more data! !!'

Note that we use a closing quote to indicate the end of the first group
of ordinary characters, and another one to begin the second. (Had we
not done this, Turbo would have printed our AG or #7 symbols
verbatim.) As long as there are no intervening spaces, Turbo Pascal
considers this combination to be a single string.

In addition to placing control characters in strings, you can make a
string of only control characters. To do this, you must list all control
characters with no intervening spaces, like this:
const

allcontrol = #27 AU#20;

This string of control characters has a length of three characters.

Declaring String Variables
You can declare a variable of a string type as you would declare any
other variable: identifier, colon, and type. In this case, the type will be a
string type. The syntax diagram in Figure 9-5 shows how to specify a
string type.

string type ---.(string ~ constant

Figure 9-5 Syntax Diagram of String Type

The unsigned integer in the string type definition is a value from 1 to
255 (a string can be up to 255 characters in length), giving the maxi-

98 Turbo Tutor Owner's Handbook

mum number of characters a string of that type can hold. When you
declare a variable of type string[n], where n represents an integer,
Turbo Pascal will set aside n + 1 byte of memory to hold the largest
possible string: n bytes to hold the string, and 1 byte to hold the current
size of the string.

Here is an example of an actual string declaration:
CornpanyName : string[~O];

In this case, 41 bytes are set aside for CompanyName. If you then
execute the statement
CornpanyName := 'Borland';

the current length of Company Name is 7, even though the maximum
length is still 40. If you think of the string being stored as a series of
characters in successive bytes of memory, then the first byte would
contain the current length of 7, the second byte would contain the
character B, the third byte 0, and so forth. The unused characters (if
any) at the end of the string can contain anything at all; Turbo Pascal
will not use them.

REViEW

In this chapter, we introduced you to Turbo Pascal's predefined data
types (integer, byte, real, boolean, and char). We also gave you a quick
introduction to strings, which are really a group of structured types.

To summarize, an integer is a positive or negative whole number,
including zero. Integers require 2 bytes of memory each, and can be in
the range of - 32768 through 32767.

A byte is a subrange of type integer, and is equivalent to the least
significant 8 bits of an integer value. Byte values must be in the range
of 0 through 255, and occupy 1 byte of memory each.

Real values consist of a mantissa and an optional positive or negative
exponent. The mantissa may have up to 11 significant digits. The
maximum and minimum values for reals are 1E-38 through 1E38.

Logical values of TRUE and FALSE are best handled by the data type
boolean. A boolean value occupies 1 byte of memory.

An object of type char is one of 256 ASCII characters, including both
printing and nonprinting characters. The printing characters are repre
sented by enclosing them in quotes, while the nonprinting characters
are represented by decimal or hexadecimal ASCII values preceded by a
pound sign (#). In addition, control characters can be represented by a
caret (1\) followed by the corresponding printing character. Objects of
type char occupy 1 byte of memory each.

Predefined Data Types 99

Finally, the string data types can have a length of 1 to 255 characters
and are declared with a maximum length. A string occupies 1 more
byte in memory than its maximum length.
Now that you have a fundamental understanding of predefmed data
types, you are ready to expand your knowledge with defmed scalar
types in the next chapter.

100 Turbo Tutor Owner's Handbook

10 Defined Scalar Types
You now know about the predefined types of Pascal: integer, byte,
boolean, real and char; we have also introduced the notion of string
types. In this chapter, we will explain the concept of a scalar type, and
show you how to create one for use in your program.

A scalar type is a type in which all possible values can be said to be in
order-from the first to the last-with no gaps. Some of the predefmed
types are scalar types; in particular, integer, byte, boolean, and char.
Real is not considered to be a scalar type, because adding 1 to a real
does not always produce the next real number. (In fact, adding 1 to a
large real, such as 1. OE37, has no effect. The digit of the number that
would need to be changed is more than 11 digits below the left-most
digit of the number, and Turbo only remembers the 11 most-significant
digits of a real). Similarly, string types are not scalar types. After all, it
would be hard to decide how to find the "next" string after any given
string.

In real life, there are many types of objects that have a limited range of
values and a defmite order. A day of the week, for example, can range
from Sunday to Saturday, and the days come one after the other in a
fIXed sequence. Pascal lets you tell the compiler about such types and
how to manipulate data of those types.

A defined scalar type is a data type with a user-defined range of values
and a user-defined order. The range of values is defined by the number
of elements you declare, and the order is defmed by the order in which
the elements are declared. Properly used, these types can improve the
readability of your programs, save space in memory, and allow range
checking to be performed to. catch errors in your program. We'll
discuss two kinds of defined scalar types: enumerated scalar and subranges.

101

ENUMERATED SCALAR TYPES

Good programming style means being considerate of other program
mers who may have to read and understand your code. For example, if
you want to use a variable to hold a day of the week in your program,
you could declare a variable DayOjWeek of type integer, and then use
numbers for the days. But which should be the first day of the week,
Sunday or Monday? And, should the fIrst day of the week be repre
sented by a 0 or a 1? If another programmer tries to modify your
program, that person will have to determine what number stands for
which day.

The way to address these potential problems is not to declare DayOj
~ek to be of type integer. Instead, you can declare a type specifically
for the purpose of holding a day of the week, and enumerate, or list, the
values it can have:
progral Day_Of_Week_Example;
type

Days = (Monday,Tuesday,Wednesday,Thursday,
Friday,Saturday,Sunday);

var
DayOfWeek : Days;

begin
DayOfWeek := Thursday;

if DayOfWeek = Saturday then
Writeln('It"s Saturday. Why are you at work?');

end.

Now there is absolutely no confusion over which days are represented
by which numbers; they are represented by their actual names. This
way, any Pascal programmer who looks at your program will know
that the value Thursday is assigned to the variable DayOjWeek.
As you can see from the example, to declare a scalar type you must first
give an identifier for the type, then list, in order, identifiers for all of the
values the type can have. You can declare scalar types for just about any
set of values, including those with no inherent order. However, if order
is important, you must declare your list of values from the first to the
last.

In a Pascal program, you defme user.,..defined types in the declaration
part, in the section called the type definition part. The syntax of this part
of the program is shown in Figure 10-1.

102 Turbo Tutor Owner's Handbook

type definitlonpart ~ identifier ~

Figure 10-1 Syntax Diagram of Type Definition Part

Each type definition names the type to be defmed, then tells the
compiler the details of the type. An enumerated scalar type is a simple
type (see Figure 10-2). The unshaded part of this diagram shows the
syntax for the specification of an enumerated scalar type.

simple type -~.

Figure 10-2 Syntax Diagram of Simple Type

It is important to remember that when you list the values of an
enumerated type, you are in fact declaring the names of those values as
identifiers. It is therefore not legal to declare:
type

Days = (Monday,Tuesday,Wednesday,Thursday,
Friday,Saturday,Sunday);

DaysOff = (Saturday,Sunday);

because to do so would be to declare Saturday and Sunday twice. In
Pascal, each identifier must have one, and only one, type.

Ordinal Values

All enumerated scalar types (and, indeed, all scalar types) are inherently
ordered. In other words, there is a lowest value, a highest value, and a
number of distinct values in between. In the data type Days in the
previous example, Monday is the lowest value and Sunday is the
highest value. Tuesday through Saturday are the values between the
lowest and highest values. The lowest value is considered to have an

Defined Scalar Types 103

ordinal value of 0, while the highest value has an ordinal value equal to
the total number of values defined, minus 1 (because we started
counting at 0). For example, here are the ordinal values of the type
Days:
Element Ordinal Value

Monday 0
Tuesday 1
Wednesday 2
Thursday 3
Friday L;
Saturday 5
Sunday b

Standard Functions for Scalar Types

To simplify the use of enumerated types, and scalar types in general,
the Pascal language provides certain functions or operations that let you
manipulate objects of these types. In particular, these functions help
you to fmd:·

• The value that comes before a value of the type (its predecessor).

• The value that comes after a value of the type (its successor).

• The position of a value in the list of values in the type defmition.

Here's a scenario that will help explain why this information might be
useful. Imagine that in your program you have defined the type Days
and two variables of that type, DayOjWeek and NextDay:

type
Days = (Monday,Tuesday,Wednesday,Thursday,

Friday,Saturday,Sunday);
var

DayOfWeek, NextDay : Days;

..
Now suppose that somewhere in your program you want to set
NextDayequal to the day following DayOjWeek. How do you do it?
Well, . one thing you cannot do is attempt to add 1 to the value of
DayOjWeek. The statement
NextDay := DayOfWeek + 1;

will cause the compiler to give you the error message "Type Mismatch
Error" -and rightly so. The operation of addition is not defmed for
objects of the type Days. Yet, we know intuitively that we want an
operation that somehow adds one to a day of the week, finding its

104 Turbo Tutor Owner's Handbook

successor in the list of weekdays. Pascal comes to the rescue by
providing exactly this operation in the form of the Suee (for successor)
function. Using this function, we can write
NextDay := Succ(DayOfWeek);

and achieve the desired effect. If DayOjWeek has the value Tuesday,
NextDay is assigned the value Wednesday; ifit's Monday, NextDay will
become Tuesday, and so on. A fonction is an operation that takes one or
more values (called parameters, or sometimes arguments) and uses them
to produce a new value. (The sine function, for instance, takes an angle
and returns a number that is related to that angle.) In the previous
example, we made the function Suee work on the parameter DayO}
Week to produce (or return) a new value, which was the next value in
the type Days. The new value was then assigned to the variable
NextDay.
The Sua function is one of three predefined "standard" functions that
manipulate objects of scalar types; the other two are Pred and Ord.

As you might have already guessed, the Pred function does exactly the
reverse of what the Suee function does: it returns the predecessor of the
value given to it as a parameter. The Ord function returns the ordinal
value of its parameter.

Here are some examples of the results of using these functions. Given
that at a particular instant DayOjWeek = Wednesday, then:
pred(DayOfWeek)
Succ(DayOfWeek)
Pred(Pred(DayOfWeek))
SUcc(Succ(DayOfWeek))
Pred(Succ(DayOfWeek))
Succ(Pred(DayOfWeek))
Ord(DayOfWeek)
Ord,Pred(DayOfWeek))
Ord(Succ(DayOfWeek))

Tuesday
Thursday
Monday

= Friday
= Wednesday
= Wednesday

2
],

3

Note that Ord returns a value greater than or equal to 0 for all scalar
types except integer. This is because all scalar types (except integer)
start with an ordinal value of O. For values of type integer, Ord returns
the actual integer value, so there really is no reason to use Ord with
integer types (or byte types, for that matter). After all, you can look at
the integer and see its ordinal value! In the earlier examples, we also
demonstrated that it is perfectly legal to nest functions-that is, to apply
a function to the result of another. The expression Pred(Pred(DayO}
Week)) is a convenient way to get the day two days before DayOjWeek.

Defined Scalar Types 105

Cyclical Enumerated Types-Avoiding Range Errors
One thing to watch out for when using Succ and Pred is the problem of
searching for a nonexisting successor or predecessor of an existing
value. For instance, suppose the variable DayOjWeek in the previous
example had the value Sunday, and you tried to assign
NextDay := Succ(DayOfWeek);

What would happen? Well, Turbo Pascal has no way of knowing that
the days of the week run in a cycl~that is, that the "successor" of the
last value of the type is the first value of the type. So instead, it tries to
assign to NextDay a value with the ordinal value 7 (one more than the
ordinal value of Sunday, which is 6).

The result of this assignment depends on the conditions present when
you compiled your program. If you tell the compiler to range-check
(explained in the next section), it will realize that there is no "successor"
for Sunday, and will stop the program and display an error message. If
the compiler is not range-checking (which is the default), it will not
catch the error, and your program will behave erratically.

Neither of these is a desirable condition. To achieve the correct result,
use an if statement to handle the special case:
if DayOfWeek = Sunday then

NextDay Monday
else

NextDay := Succ(DayOfWeek);

While we haven't described the if statement in detail yet, the preceding
one is very close to what actually needs to be done. If DayOjWeek has
the value Sunday, then we want to explicitly set NextDay to the value
Monday; otherwise, the Succ function will provide the correct value.

Exercises Rewrite the previous code fragment to set the variable
Yesterday to the day before DayOjWeek. How do you handle Sun
day?(Solutions are in Appendix B.)

Of course, the same situation can arise even if the enumerated type in
question is not cyclical-though it is less likely. If you defined the type
Rank = (Peon, Manager, SeniorManager, VicePresident,

President, Chairperson);

and tried to find the next rank after Chairperson, the same type of error
could occur. You must construct your program so that this does not
happen.

Range-Checking
While defined scalar types are designed to help you restrict the values of
your variables to fall within certain predetermined limits, Turbo Pascal
does not enforce those limits unless it is specifically told to do so. For

106 Turbo Tutor Owner's Handbook

instance, the previous example, in which we attempted to take the
successor of the last value of an enumerated type, would not cause an
error message in Turbo Pascal unless the feature called range-checking
was enabled.

Range-checking is turned on by a special kind of comment called a
compiler directive. A compiler directive consists of a comment in which
the first character is a dollar sign ($) and the remaining characters fit the
pattern(s) of one or more legal directives.
The compiler directive that turns on range-checking is {$R +}. We
recommend that you put this directive before the program heading of
every program you write; it will almost certainly save you many hours
of frustrated debugging. Only if your program must run at maximum
speed, or if it is about to overflow memory, should you omit this
directive or use the directive {$R-} to turn range-checking off.

Note that your programs will compile and run faster with range
checking off. However, since turning range-checking off may hide
bugs, we recommend it only for well-tested programs that are being
published as finished products.

Undefined Values in Enumerated Types

Sometimes, when working with defined scalar types, it is useful to
consider what will happen if no value is provided for a variable,. or if
your program must have a "none of the above" choice for a value. For
example, there may be times when you need to begin a program with
your variables set to a known value, but one that is not normally
associated with your type. (Putting your variables into a known state
before doing anything else is known as initializing.)
A good way to do this is to add an extra value to your type to reflect
this "undefmed" state. For instance, in the first example in this chapter,
we could have written
program Day_Of_Week_Example;
type

Days = (Noday,Monday,Tuesday,Wednesday,
Thursday,Friday,Saturday,Sunday);

var
DayOfWeek : Days;

begin
DayOfWeek Noday;

end.

Now when the program begins, DayOjWeek has a known value:
Noday. If later in the program you want to test whether or not you

Defined Scalar Types 107

have assigned a value to DayOjWeek, you can test to see whether
DayOjWeek still equals No day.

SUBRANGES

Another important kind of scalar type is called a subrange. A subrange is
a group of consecutive values that is part of another scalar type. They
are useful when you want to limit the possible number of values a
variable can have to a subset of the original type.

A subrange is specified by the minimum and maximum values to be
allowed in the subrange, separated by two periods (..). In the following
example, we define an enumerated scalar type and two of its subranges:
type

Days = (Noday,Monday,Tuesday,Wednesday,
Thursday,Friday,Saturday,Sunday);

Workdays = Monday .. Friday;
Weekend = Saturday .. Sunday;

The type from which the subrange is derived is called the base type of
that subrange. Therefore, Workdays is a subrange of Days and Days is
the base type of Workdays and Weekend. An important consideration
when declaring subranges is that the minimum value (the one specified
first in the declaration) must not have a greater ordinal value than the
maximum value (the one specified last in the declaration).
Here are more examples of subranges:
type

Compass Range = 0 .. 359; {Subrange of the base type integer}
ValidEntry = 'A' .. 'F'; {Subrange of the base type char}
Monthlylncome = 10000 .. 30000;
Hours = 0 .. 23; {Subrange of integer (or byte)}
Minutes = 0 .. 59; { }
{Here is a defined scalar type ... }
MusicType = (Notype,Classical,Jazz,Folk,RhythmBlues,Rock,

HardRock,AcidRock,HeavyMetal);

{ ... and here is a subrange of that type.}
MusicILike = Classical .. Rock;
{Subrange of the base type Musictype}

Subranges can be used to design menus (or any other human interface
element of your program) in which the only valid entries are a sub
range of an existing type.

Subranges are often used in defining other elements of Pascal, such as
arrays and records; however, . these uses will be covered later.

108 Turbo Tutor Owner's Handbook

Subranges as Anonymous Types
So far we've defined subranges in type declarations, implying that to
use a subrange type you must defme it, then declare variables with it.
However, there is an easier way-you can specify a subrange directly in
the variable declaration.

For instance, after you have defined
Days = (Noday,Monday,Tuesday,Wednesday,Thursday,Friday,

Saturday,Sunday);

you can declare
var

Workday: Monday .. Friday;
{This is a specification of a subrange type that
has no name.}

rather than
type

WorkingDay = Monday .. Friday;
var

Workday : Workingday;

The ability to specify subranges in this way saves you from inventing a
name for every subrange you want to use. Because the subrange type is
never named, it is called an anonymous type.

Enumerated types can be defined anonymously as well, though it is not
recommended. It is legal to declare
var

Day1 : (Mon,Tue,Wed,Thu,Fri,Sat,Sun);

Note, however, that the identifiers Mon through Sun are now defined
as part of the anonymous type, and may not be used for anything else.
For this reason, you may not declare:
var

Day1 : (Mon,Tue,Wed,Thu,Fri,Sat,Sun);
Day2 : (Mon,Tue,Wed,Thu,Fri,Sat,Sun);

If you attempt to compile this, you will get a error when the compiler
gets to the second declaration since the second anonymous, but dis
tinct, type uses the same identifiers as the fir~t. Instead, you should
write
var

Day1,Day2 : (Mon,Tue,Wed,Thu,Fri,Sat,Sun);

Two other restrictions also apply to anonymous enumerated types: (1)
You cannot coerce variables to an anonymous scalar type (that is,
convert them from other types to an anonymous type), because the
name of the type is required to perform the operation; (2) You cannot
pass such variables as typed parameters to a subroutine or procedure,
since there is no data type to use in the declaration of the formal

Defined Scalar Types 109

parameter. These restrictions will be more important to you later,
when you begin writing code using these advanced features.

INPUT AND OUTPUT

It would be convenient if you could read and write objects of enumer
ated scalar types directly, but Pascal won't allow it. For example, if you
wanted to display the current value of DayOjWeek, it would be nice if
you could write
Writeln('Today is ',DayOfWeek);

But this statement will produce an error when you compile your
program. The same is true for a statement such as:
Readln(DayOfWeek);

To overcome this limitation of Pascal, you need to explicitly tell the
compiler to write, or look for, specific strings. In Chapters 11 and 13,
respectively, we'll show you how to use the case statement and arrays
to accomplish this.

MEMORY USAGE

One of the advantages of defined scalar types is efficient use of mem
ory. A variable of a defined scalar type that has less than 256 possible
values uses only 1 byte of memory (since it always has a positive
ordinal value and 256 different elements can be represented by a byte).
Furthermore, if you defme a subrange of the type integer that has a
minimum value greater than or equal to 0 and a maximum value less
than or equal to 255, only 1 byte of storage is required for a variable of
that type.

REVIEW

Defined scalar types are data types that you defme; they include enu
merated types and subranges of existing scalar types. Defined scalar
types can tremendously aid program development, documentation,
and maintenance, especially if you apply your knowledge of them
carefully and logically.

Now that you're clear on the use of types, we can move on to the next
level of complexity, the use of control structures in Pascal.

110 Turbo Tutor Owner's Handbook

II Control Structures
So far, in almost every sample program we've shown, the statements
have been executed sequentially, from the first begin to the last end.
While this sort of execution is straightforward and easy to understand,
it doesn't lend itself to repetitive tasks, or to making decisions and
acting on them.

To allow a program to do these things, the Pascal language provides
control structures-special statements that divert the flow of control from
its usual sequence. In Pascal, these structures fall into four categories:
conditional (the if statement), iterative (the for, while, and repeat ...
until statements), case (the case statement), and goto (the goto state
ment). We will cover all but goto in this chapter; see Chapter 25 in
Part III for more detail on this statement type.

CONDITIONAL EXECUTION:
THE IF STATEMENT

In earlier chapters, we touched briefly on the notion of an if statement,
a statement that tells the computer to do something only if a certain
condition is satisfied. We will now explain this construct in detail.

Chapter 10 showed this simple example of the if statement:
if DayOfWeek = Saturday then

Writeln('It"s Saturday. Why are you at work?');

Here we tell the computer: "Compare the value of the variable DayOf
Week to the constant Saturday. If they are equal, then perform the
enclosed Writeln statement; otherwise, do nothing." This is an example
of the simplest form of the if statement: the reserved word if, followed
by a boolean expression (that is, one that yields the value TRUE or
FALSE), the reserved word then, and fmally a statement. Note that
the semicolon at the very end of this example marks the end of the if
statement, not of the enclosed Writeln statement. Therefore, if the if
statement were not followed by another statement, the semicolon
could be omitted.

111

Another form of the if statement allows the computer to choose
between two possible actions. In another example from the last chap
ter, we wrote
if DayOfWeek = Sunday then

NextDay Monday
else

NextDay := Succ(DayOfWeek);

Here, the format of the statement is similar, but we have added the
reserved word else and another statement--one to be done if the
boolean expression DayOjWeek = Sunday does not yield the value
TRUE. Since the if statement doesn't end after the enclosed (or
nested) statement NextDay : = Monday, and there can be only one nested
statement, there is no semicolon there. This is an important part of the
format of the if statement. A semicolon that occurs immediately before
an else will cause the compiler to generate an error message, because it
will cause the compiler to "think" that the if statement is over. The
syntax diagram for the if statement is depicted in Figure 11-1.

if statement

Figure 11-1 Syntax Diagram of If Statement

Compound Statements and the if Statement
As we mentioned earlier (and as you can see from Figure 11-1), the if
statement allows only one statement in the if clause, and only one in
the optional else clause. If this seem-s overly restrictive, we agree--in
most cases, you would probably like to have the computer decide to do
more than one thing if a certain condition is met.

The "brute force" way to do this might be to write a separate if
statement for each and every statement you want to execute condition
ally. However, this would make your program quite cluttered. It
would also cause the program to test a condition repeatedly, when it
really needs to be tested only once.

Fortunately, there is a better way. In Pascal, one can group a series of
. statements together in such a way that the if statement "sees" the group

as one large statement; this is called a compound statement. It is con
structed by enclosing a series of statements between the reserved words
begin and end, creating a sort of "program within a program." The

112 Turbo Tutor Owner's Handbook

syntax of a compound statement is in fact exactly the same as that of
the statement part of a program, as shown in Figure 11-2.

compound statement ---I""

Figure 11-2 Syntax Diagram of Compound Statement

Thus, if we wanted to expand our first example to do more than one
thing when it discovers that our user is working on Saturday, we could
write:
if DayOfWeek = Saturday then
begin

{The compound statement begins here ... }
Writeln('It"s Saturday. Why are you at work?');
Writeln('Why not go home and watch some TV instead?')
{ ... and ends here.}

end;

Furthermore, if we wanted to put more than one statement into the
else clause, we could do that as well:
if DayOfWeek = Saturday then

Writeln('It"s Saturday. Why are you at work?')
else
begin

{This compound statement is in the "else" clause.
Writeln('It isn"t Saturday.');
Writeln('Quit messing around and get to work!');

end;

You'll also fmd compound statements useful when working with the
while and for statements (covered later in this chapter).

Boolean Expressions
The expression DayOjWeek = Saturday, as used in the previous exam
ple, falls into the class known as boolean expressions because it yields a
value of the type boolean. Objects of type boolean may have only the
values TRUE and FALSE, and are used to make decisions.

One of the most common boolean expressions contains a relational
operator (an operator that compares two numbers or other objects).
For example, suppose the integer variables Score and Maximum have the
values 10 and 0, respectively. Here are some boolean expressions that
apply relational operators to these variables and the results that
they yield:

Control Structures 113

Score> Maximum --> TRUE (is greater than)
Score Maximum --> FALSE (is equal to)
Score < Maximum --> FALSE (is less than)
Score >= Maximum --> TRUE (is greater than or equal to)
Score <= Maximum --> FALSE (is less than or equal to)
Score <> Maximum --> TRUE (is not equal to)

The relational operators don't just apply to numbers, however. All of
the relations shown can be applied to objects of any scalar type, even
enumerated types (since enumerated types have a defmite ordering).
Thus, it is legal to write
if DayOfWeek > Friday then

Writeln('It"s the weekend!');

Relational operators are not the only operators that yield results of type
boolean. The not operator, for example, "inverts" its boolean operand:
not FALSE yields TRUE, and not TRUE yields FALSE. A boolean
expression can, of course, also contain one or more variables of type
boolean, and a boolean variable can be assigned the result of a boolean
expression. For instance, if we declare
var

NewMaximum : boolean;

then we can write the assignment statement
NewMaximum := Score> Maximum;

and use the variable New Maximum to remember the result of the
comparison.

Combining this with our earlier example, we can create a series of
statements that determines if the player of a game has set a new high
score, then prints an appropriate message.
NewMaximum := (Score> Maximum);
{NewMaximum is TRUE if new high score}
if NewMaximum then
begin {Compound statement to record

score and congratulate the winner}
Maximum := Score;
Writeln('Congratulations!');
Writeln('Your new high score is " Maximum)

end
else
begin {Compound statement to print consolation message}

Writeln('Your score was " Score);
Writeln('Nice try!')

end;

Boolean Operators
You can create more complex expressions using boolean operators
and, or, and xor. The and operator returns the value TRUE if (and
only if) both of its operands are TRUE; thus,

114 Turbo Tutor Owner's Handbook

FALSE and FALSE --) FALSE
FALSE and TRUE --) FALSE
TRUE and FALSE --) FALSE
TRUE and TRUE --) TRUE

Sometimes, it is convenient to show the results that a boolean operator
returns in a truth table. This table shows the result of the operation for
all possible combinations of values of the operands, much like a
multiplication table shows the results for some of the operands of the
multiplication operation. The truth table for the and operation looks
like this:

and F T

F F F

T F T

You read a truth table exactly as you would a multiplication table: Find
the values of the operands on the edges of the chart, then fmd where the
row and column of the two operands intersect. The value in that box is
the result of the operation. (F, of course, stands for F}. ... LSE, and T for
TRUE.)

Exercises For practice, try reading the results listed for the and
operator in the previous truth table. Do they agree with the results
shown earlier?

The or operator, as you might have already guessed, returns the value
TRUE if either or both of its operands are TRUE. Its truth table looks
like this:

or F T

F F T

T T T

Finally, the xor, or exclusive or, operator returns the value TRUE if
one, but not both, of its operands has the value TRUE. The truth table
for the xor operation takes this form:

xor F T

F F T

T T F

Control Structures 115

Using these operators, you can create such expressions as
(Score> Maximum) or (Score> 30000)

TRUE if either Score is greater than Maximum, or Score is greater than
30000.
(Score> 10000) and (Score (= 20000)

TRUE if Score is both greater than 10000 and less than or equal to
20000.

or
not (NewMaximum or (Maximum = 0))

TRUE if neither New Maximum nor the expression Maximum = 0 is
TRUE.

If we assume that Score, Maximum, and New Maximum have the values
10, 0, and TRUE, then the first expression yields the value TRUE,
while the other two yield FALSE. Note the copious use of parentheses
in these examples. Since Turbo Pascal allows some of the boolean
operations to apply to integer as well as boolean values (a feature we'll
discuss in the advanced part of this tutorial), it is very important to
enclose your boolean expressions in parentheses to be sure they do
what you intend them to.

REPETITIVE TASKS

Iteration

Conditional execution, as provided by the if statement, lets your
programs make decisions; still, at this point, each statement in your
program can execute, at most, only once. In Part I, we said that one of
the things computers do best is perform tedious, repetitive tasks
without tiring. We are now ready to describe the Pascal constructs that
unlock this power.

The Pascal language provides you with three ways of telling the
computer to repeat a series of statements until some condition is met.
Using the while, repeat ... until, and for statements, you will be able
to tell your computer to "Do this 10 times," or "Do this until the task is
completed." This kind of repetitive process is known as iteration, and
the section of code that performs this activity is often called a loop.

This is a good time to warn you: Be careful when using repetitive
statements. It's easy to start a loop that never reaches its ending
condition. Read the section entitled "Endless Loops" before beginning
your experiments.

116 Turbo Tutor Owner's Handbook

The While Statement

The first kind of iterative statement we'll learn about is the while
statement. The while statement tells the computer to repeat a nested
statement (which, of course, can be a compound statement), as long as
a certain condition holds true.

Here's a simple program that while not particularly useful (useful
programs are generally complex) is an apt demonstration of how the
while statement works:
program WaitForkey;
{ Program to wait for a key to be struck on the keyboard }
{$R+,C-}
{ Range-checking on; Ctrl-C breaks off}
begin

Write('Waiting for a keystroke');
{ Announce that we're waiting }

while not KeyPressed do
{ Write dots continuously until a key is hit. }
Write('.'); { KeyPressed is a Turbo Pascal function}

end.

{ that returns TRUE only after a key has
been struck.}

We suggest that you type this program jnto Tbrbo Pasca]~ then watch
it run. Notice how quickly the dots appear on the screen! The while
statement is a very fast way of repeating one or more statements many
times.

Note that the first line in the program contains the {$R +} compiler
directive and a {$C-} directive as well. The {$C-} directive tells Turbo
whether to allow your program to be interrupted when a user presses
I]li!)]J (or CCtriJ!!filll on some systems). If the C directive is not
specified, Turbo will make your program interruptable. Here we've
turned C off because a side effect of {$C+} (the default) is that an
occasional keystroke is "lost" in a tight, fast loop like the sample
program. The syntax of the while statement is shown in Figure 11-3.

while statement --.~expression ~statement l--+
Figure 11-3 Syntax Diagram of While Statement

The while statement consists of the reserved word while, followed by
an expression (which must be of type boolean), the reserved word do,
and then a statement to be repeated. When the while loop is encoun
tered during execution of the program, the boolean expression is
evaluated. If the expression yields the value FALSE, the nested state
ment inside the while statement is never executed at all; if the expres
sion returns TRUE, the nested statement is executed. The expression is

Control Structures 117

then evaluated again, and the process of test-execute-test-execute con
tinues until the expression returns the value FALSE.

The Repeat ... Untii Statement
Like the while statement, the repeat ... until statement causes a pro
cess to repeat until a condition is satisfied. However, its syntax and its
effects are very different.

The syntax of the repeat ... until statement is shown in 11-4.

repeat statement

Figure 11-4 Syntax Diagram of Repeat Statement

Unlike either the if or the while statement, the repeat ... until state
ment can enclose as many other statements as desired-separated by
semicolons if there is more than one. Thus, there is no need to use a
compound statement to make the repeat ... until statement execute
more than one statement on each iteration.

The repeat ... until statement also differs from the while statement in
that the statements within the loop are always executed at least once.
The boolean expression that occurs after the until, at the end of the
loop, is evaluated afier the enclosed statements are executed. If the
expression yields the value FALSE, the loop is repeated; otherwise,
execution continues with the next sequential statement.

The following program illustrates the use of the repeat ... until state
ment. It plays a game in which it asks the user to guess a number from
1 to 10. The player is always asked to guess at least once, but the game
only continues until the user gets the number right. It is therefore a
problem for which a repeat ... until loop is an ideal solution.
program GuessingGame;
{$R+ }
{ Turn range-checking on }
const

Answer = 3; { For the purposes of this demonstration,
let's make the required answer 3 always.

var
Guess : integer;

begin
Writeln('In this program, you will guess an integer "

'from 1 to 10.');
repeat

Writeln('You have not guessed the number yet.');
Write('Type an integer from 1 to 10 as your guess: ');
Readln(Guess);

until Guess = Answer;
end.

118 Turbo Tutor Owner's Handbook

The For Statement
So far, we've discussed two kinds of iterative statements: one that says,
"Do this while the following condition is TRUE" and one that says,
"Repeat this until the following condition is TRUE." We now come to
the third type of looping statement in Pascal--one that corresponds to
the idea "Do this n times."

The for statement in Pascal accomplishes this task by allowing you to
make a variable of a scalar type into a counter (or, in more formal terms,
a control variable), which keeps track of how many times you have
passed through a loop. You tell Pascal the value at which the counter
will be started, and what the final value will be-the computer does
the rest.

The syntax of the for statement is depicted in Figure 11-5.

for statement

Figure 11-5 Syntax Diagram of For Statement

When the for statement is first encountered in a program, the variable
is assigned the value of the first expression. If the ordinal value of the
variable is less than or equal to that of the second expression, then the
statement is executed. The variable is then assigned the value of its
successor (if to is used) or its predecessor (if downto is used). This
process continues until the ordinal value of the variable is greater than
that of the second expression. (If the ordinal value of the first expres
sion is greater than that of the second expression, then the statement is
never executed.)

Here's a simple example. If the variable Index is declared to be of type
integer, then the loop

for Index := 1 to 10 do
Writeln('n ',Index,' n*n ',Index * Index);

will write out the integers from 1 to 10 in "increasing order, each
followed by its square. If we were to write the same loop like this:

Control Structures 119

for Index := 10 downto 1 do
Writeln('n = ',Index,' n*n " Index * Index);

then the same values would be printed, but in decreasing order, from
10 down to 1.

Note that there is no rule that says you must use your control variable
as anything other than a counter. In the statement
for Index := 1 to 10 do

Writeln('Hello! ');

we merely tell the computer to write the string 'Hello!' 10 times, and
never write out, or use, the value of the variable Index within the loop.

There is one important point to remember about for loops that catches
many novice programmers unawares. The value of the control variable
is undefined after the for statement has finished executing; that is, it
can have any value at all. This feature, which is part of the standard
Pascal language, allows Turbo to write faster machine code under some
circumstances. Because this is not what you expect, it is important to
remember to never assume the control variable of a for statement has
any specific value after the loop has completed.

If you are familiar with other programming languages, such as
BASIC, you may be wondering how you can specify a "step" value for
the for statement. (By step value we mean a value other than 1 by
which the control variable is to be incremented or decremented after
each iteration.) The answer, in Pascal, is that you can't. You must
create loops that increment or decrement a counter by more than 1
using the while or repeat ... until constructs. However, in return for
this inconvenience, Pascal gives you the ability to use a variable of any
scalar type such as the control variable, including char, byte, boolean, or
any enumerated or subrange type you define. Given appropriate defini
tions and declarations, the following loops are all valid:
for Ch := 'A' to 'Z' do

Writeln;

for Flag := TRUE downto FALSE do
Writeln;

for Day := Mon to Fri do
{Assuming you have previously defined the type }
Writeln;

Now you can see why there is no step capability. It wouldn't make
sense to write a statement like
for Month := January to December step 2 do

Writeln;

120 Turbo Tutor Owner's Handbook

since 2 is not of the same data type as January or December, and can't
be "added" to them. Similarly, the statement
for Month := January to December step February do

Writeln;

implies that you can somehow add February to' another month, which
of course is not so. For this reason, there is no step capability in the for
statement.

As with the if and while statements, a compound statement can be
used with the for statement to make more than one thing happen each
time through the loop.
for Index := 20 to 30 do
begin

{ First statement here

{ Last statement here }
end;

Simulating a Step Size Larger than I
The for statement is actually a notational convenience; it is possible to
simulate any for statement with a while statement. The statement

for A := B to C do
Writeln('Hello!');

can be simulated exactly by the statements

A : = B;
while A (= C do
begin

Writeln('Hello!');
A := Succ(A);

end;
except, of course, that A is defmed upon exiting from the while. From
this, we see how to create a loop with a step size greater than 1. If the
variables A, B, and C are of any scalar type, we can write
A : = B;
while A (= C do
begin

Writeln('Hello!');
A := Succ(Succ(Succ(A)));

end;
and the ordinal value of A will be increased by 3 on each iteration. In
such cases, however, it is important to watch for overfl.ow-the~e may
not be a legitimate value of that scalar type with an ordinal value 3
greater than that of A. Again, we advise you to turn range-checking on
in all your programs to prevent this kind of mishap from going
undetected. If the control variable of your loop is of type integer, or a
subrange thereof, you will be able to use the addition operation (instead

Control Structures 121

of the Succ function) to create large step sizes even more easily. Assum
ing, now, that A, B, and C are of type integer, we could write
A : = B;
while A (= C do
begin

Writeln('Hello!');
A : = A + 50;

end;

giving a step size of 50.

Endless Loops

One of the problems that you will doubtless encounter in your pro
gramming career is that of an endless loop-a loop that for some reason
or another never finishes executing. Occasionally, such a loop may
occur due to bad data, or you may even have a reason for program
ming one intentionally. Most often, however, an endless loop will
appear in your program when you least expect it. In the following
program, which was intended to list all the numbers from 1 to 20
evenly divisible by 3, an error in the placement of a statement caused an
endless loop. Can you find the bug before going on to the next
paragraph?
{$C-}
program Whoops;
var

i : Integer;
begin

i : = 1;
repeat

if (i mod 3) = 0 then
{ If this is true, then i is evenly divisible by 3 }
begin

Writeln(i); {Write i out}
i := Succ(i); {Increment i by 1}

end
until i = 20 or KeyPressed; {we'll also quit if a key

is pressed }
end.

The problem with this program is that i is only incremented if it is
divisible by 3, and not otherwise. Thus, the program will consider the
number 1 again and again, and never move on to test the number 2 for
divisibility. To stop the program, you'll have to shut down the system
and reboot, losing everything you've done. Thus, it is good practice to
save your program text before running it, to prevent your losing
valuable time and text in case of a reboot.

To solve this program's problem, place the statement i := Succ(i) after
. the if statement and before the until, so that i is incremented on every
pass through the loop.

122 Turbo Tutor Owner's Handbook

THE CASE STATEMENT

In many of your programs, you will want the computer to perform
one of a list of actions, depending upon the current value of a variable.
For example, you might want to display a menu, accept the user's
choice, and then perform the action that was chosen. We already have
the capability to do this with the if statement. The following program
fragment accepts a one-character command from the user, and does
something appropriate:

Write('Enter your choice: U)p, D)own, L)eft, R)ight:');
Readln(Ch) { Ch is of type Char}
if (Ch = 'U') or (Ch = 'u') then

y := Y + 1
else if (Ch = 'D') or (Ch 'd') then

Y := Y - 1
else if (Ch = 'L') or (Ch '1') then

X := X - 1
else if (Ch = 'R') or (Ch 'r') then

X := X + 1;
else Writeln(AG'Invalid command!');

Note that we have nested a number of if statements, one inside the
other; each time a condition is not satisfied, we try the next until we
find the appropriate action or give up.

However, the if .. then .. else chain can get a little tiresome (and difficult
to follow) if there are a lot of different conditions to check. So, Pascal
helps to reduce the complexity by including an additional flow-of
control structure: the case statement.

In the case statement, you provide Pascal with an expression called a
case selector (which must be of a scalar type), followed by a list of values
and actions (constants). When the program runs, the action associated
with the current value of the variable is performed.

Using the case statement, we could express the intent of the previous
example much more clearly, like so:

Write('Enter your choice: U)p, D)own, L)eft, R)ight:');
Readln(Ch); { Ch is of type Char }

case Ch of
'U';'u' Y Y + 1 ; {Do this if Ch is 'u' or 'u' }
'D','d' Y Y 1 ; {Do this if Ch is 'D' or 'd'}
'L','l' : X X 1 ; {Do this if Ch is 'L' or 'l'}
'R','r' : X X + 1· , {Do this if Ch is 'R' or 'r'}

else
Writeln(AG'Invalid command!');
{Do this if Ch is none of the above}

end;

Control Structures 123

The syntax of the case statement in Turbo Pascal is shown in Figure
11-6.

case statement

Figure 11-6 Syntax Diagram of Case Statement

Figure 11-7 shows the syntax diagram of a constant list.

constant list rlconstant ~constant I ,

Figure 11-7 Syntax Diagram of Constant List

When the case statement is executed, the computer inspects the lists of
constant values preceding each action. If the value of the expression is
present in one of these lists, the specified action is taken. Each action
must be expressed as a single statement, with compound statements
allowed if more than one statement needs to be executed. The end of
the case statement is marked by the reserved word end.

What if the expression has a value other than those listed in the case
statement? Under the original definition of the Pascal language, the
result is "undefined," that is, the outcome is uncertain. Turbo Pascal,
however, extends this definition in a logical way.

In Turbo Pascal, you can specify the "default" action (that is, an action
to be taken if no match is found) in the else clause of the case
statement. In an earlier example, we used the else clause to make a
noise and write an error message. Unlike the if statement, there must
be a semicolon before the else. There may also be as many statements
between the else and the case's final end statement as desired.'

124 Turbo Tutor Owner's Handbook

If a case statement does not have an else clause (and none of the
specified case conditions apply), Turbo Pascal skips all of the actions
listed in the case statement and continues with the statement following
the case.

The Constant Ust
In the case statement, the list of constants for each possible action can
be specified in a number of ways: as individual values, as a subrange, or
as a combination of the two. A subrange is specified exactly as it is in
the defmition of a subrange type: the lower bound (that is, the one with
the smallest ordinal value in the subrange), followed by two periods
and the upper bound (the one with the largest ordinal value in the
subrange).

Using subranges can make the specification of a case much easier. The
following case statements are completely equivalent:
case Age of {Age is of type Byte or Integer}

0, 1, 2, 3, ~, 5, 6, 7, 8, 9,
10, 11, 12, 13, M, 15, 16, 17:
Writeln{'You are not old enough to vote yet.');

else
Writeln{'You are old enough to vote. who will you',

, vote for?');
end; {case}

or
case Age of { Age is type Byte or Integer }

0 .. 17: Writeln{'You are not old enough to vote yet.')
else

Writeln{'You are old enough to vote. '~
'Who will you vote for?');

end; {case}

To mix subranges with individual i~~ms in the constant list, you need
only separate them with commas. The following is perfectly legal:
case Age of

0, 1, 2 .. 5, 6, 7, 8, 9,
10 .. 17:
Writeln{'You are not old enough to vote yet.');

else
Write{'You are old enough to vote. "

'Who will you vote for?');
end; {case}

REVIEW

In this chapter, we introduced you to Turbo Pascal's control struc
tures-the statements that enable a Turbo Pascal program to make
decisions and perform repetitive actions. We also discussed boolean

Control Structures 125

expressions and operations in some detail, and showed how the com
pound statement can be used to make one statement out of many.

Now that you know how to control the order in which your pro
gram's statements execute, you are ready to learn how to divide your
code into logical groups to make your program more readable and save
unnecessary typing. The mechanisms to do this, procedures and func
tions, are the subject of our next chapter.

126 Turbo Tutor Owner's Handbook

12 Procedures and
Functions

In previous chapters, you've seen procedures and functions (known
collectively as subprograms) used in some of the sample programs.
You've been given a general idea of how they're used, and you're
probably anxious to learn more. (Appendix C provides a complete list
of standard Pascal procedures and functions.)

This chapter will teach you more. First, we'll describe the general
concept of a subprogram, and then show you how (and where) to place
them in your main program. We'll then cover the idea of scope, which
determines what the identifiers used in a subprogram mean, and from
where a subprogram may be called. We'll end with a discussion on
parameters-the data objects you tell a subprogram to work on-and
give you a taste of what you can do with them.

SUBPROGRAMS

You've learned that a Pascal program must have a program heading, a
declaration part, and a statement part. You've also learned that each
statement in the statement part is normally executed in order-from
beginning to end-unless a conditional (if) or iterative statement (for,
repeat ... until, or while) alters the flow of control.

The iterative statements that we've learned about are perfect for repeat
ing a statement, or group of statements. However, what do you do if
you want to repeat a group of statements in several distinct places in
your program, rather than only within the same loop?

Here's a simple example of a situation where a subprogram might
come in handy. The following sequence of statements asks the user for
a number, then checks the number to see if it is in range. If the number
is in range, it is assigned to the variable New Number.

127

Writeln('Please enter an integer from "
'Minimum, , to " Maximum,': ');

Readln(Temporary);
{Temporary is of type integer, or a subrange thereof}
while (Temporary (Minimum) or (Temporary) Maximum) do
begin

Writeln('The integer you have entered is out of range.');
Writeln('Please try again: ');
Readln(Temporary);

end;
New Number := Temporary;
{NewNumber is of type integer, or a subrange thereof}

Now, suppose there are several places in your program where you
want to perform this same function-widely separated by tens or even
hundreds of lines. You could copy all of the statements given here,
exactly as shown, into each place; however, this would increase the size
of both your source and executable ft.les. Also, if you wanted to make a
change; you might need to ft.nd and alter every occurrence. Fortu
nately, the Pascal language provides a solution. Instead of copying the
group of statements, you can give it a name, and cause the entire group
to be executed by merely mentioning that name. Such a group of
statements is called a subprogram.
The simplest kind of subprogral!l in Pascal is called a procedure. To
create a procedure, you declare its name as an identift.er (as you declare
all identift.ers), and present the compiler with the code that is to go by
that name. The syntax of a procedure declaration is shown in Figure 12-1.

~G)~-------------••
Figure 12-1 Syntax Diagram of Procedure Declaration

Each procedure declaration contains the reserved word procedure,
followed by the identift.er that is to be the name of that procedure.
Then, there appears an optional list of parameters (described more fully
later), a semicolon, a procedure body, and a closing semicolon.

A procedure body is usually just a block-the exact same sequence of
declaration part and statement part that comes after the heading of a
program. This sequence reinforces the idea that procedures-and sub
programs in general-are really small programs within a larger pro
gram. The syntax of the body is shown in Figure 12-2.

128 Turbo Tutor Owner's Handbook

body

external declaration

Figure 12-2 Syntax Diagram of Body

Where do you put subprograms in your program? In standard Pascal,
you place them in the declaration part, after all other declarations and
before the opening begin of your program. (Turbo Pascal, as you may
remember, is more flexible, and lets you place them anywhere in the
declaration part.) A subprogram can declare its own constants and
variables, just like the main program. Can you declare a subprogram
within a subprogram? Yes, you can, just like you would in a regular
program. And you can declare subprograms within that subprogram,
and so on, ad infinitum (well, not quite; all compilers have their limits).

Now, let's rewrite our earlier sequence of statements as a procedure
and show how we might build a small program around them.
program Sample;
const

Ten = 10;
var

NewNumber, Index : integer;

procedure GetNumber;
{ Get a number from the user and store }
{ it in the global variable NewNumber }
canst

Minimum 0;
Maximum = 25;

type
Response = Minimum .. Maximum;
{ A type for a legal response

var
Temporary : Response;
{ A temporary place for the user's integer }

begin {Statement Part of procedure GetNumber
Writeln('Please enter an integer from "

Minimum, ' to " Maximum, ': ');
Readln(Temporary);
while (Temporary (Minimum) or (Temporary) Maximum) do
begin

Writeln('The integer you have entered is not'
'between 0 and 25, ');

Writeln('inclusive. Please try again.');
Readln(Temporary);

end;

Procedures and Functions 129

NewNumber := Temporary;
end; { procedure GetNumber

begin { Statement Part of program Sample }
GetNumber;

for Index := 1 to Ten do
begin

GetNumber;

end;

GetNumber;
case NewNumber of

0: Writeln('You have selected option 0');

25: Wri teln ('This is option 25: ');
end;

end. { of progra~ Sample}

In this example, const, type, and var declarations have been deliber
ately included in the subprogram to demonstrate that the subprogram
can indeed have these parts.
Besides avoiding code duplication, subprograms help to make a pro
gram easier to understand. Procedure names that specify a particular
action to be taken can clarify a program, whereby the main actions of a
program are shown in the statement part and the details of those
actions are "hidden" in the functions and procedures. Changes and
improvements that are made to subprograms can instantly have an
effect on many other parts of the code-without any additional rewrit
ing. Also, when many people are at work on a program, each pro
grammer can write one or more subprograms, then allow them to be
combined into the finished product. This modular approach allows
each author to perfect his or her part of the program without having to
directly modify the work of others.

SCOPE

Since it is possible to define and declare types, constants, and variables
in the declaration part of a procedure, you may well ask: "What
happens if an identifier is declared in the main program, and then
another with the same name is declared in the subprogram? Or, what if
two subprograms declare identifiers with the same names?"

130 Turbo Tutor Owner's Handbook

Well, your first guess might be that the compiler would indicate an
error, since each identifier can only refer to one thing if the program is
to be unambiguous. However, if this were true, then the modular
approach to programming would be difficult. Each programmer
would have to know all of the names that every other programmer
used, and combining their work might cause unexpected conflicts.

To avoid this problem, the concept of scope was developed. The Pascal
scope rules specify, in a rigorous way, what object any identifier refers
to at a given time. We'll cover the first two scope rules right now, and
the third when we get to the section on recursion later in this chapter.

Scope Rule # 1: Each identifier has meaning only within the block in
which it is declared, and only after the point in that block at which it is
declared.
Thus, in the previous example, the variable Temporary only has mean
ing within the procedure GetNumber, and even then only after its
declaration. By the same rule, the declarations
const

Minimum 0;
Maximum 25;

and

type
Response = Minimum .. Maximum;
{A type for a legal response}

could not have occurred in the reverse order. If they had, the constants
Minimum and Maximum would not have been defmed when the type
Response was defined using them, and the compiler would have indi
cated an error.

Another consequence of the first scope rule is that the procedure
GetNumber can refer to, and in fact assign a value to, variables that
were declared before GetNumber in the declaration part of the program
Sample. Thus, the statement
NewNumber := Temporary;
does what one would expect, and assigns the value of Temporary to the
variable New Number, which was declared in the main program. An
identifier like New Number, which is declared at a higher level and is
accessible within GetNumber, is said to be global to the procedure
GetNumber. The converse, however, is not true. In the main program,
we could not write the statement
Temporary := NewNumber;

because the variable Temporary is not defined outside of GetNumber.
Temporary is said to be local to GetNumber, and is not visible outside of
that block.

Procedures and Functions 131

Scope Rule #2: If a global identifier is redefined within a block, then the
innermost (most deeply nested) defmition takes precedence from the
point of declaration until the end of the block.

What does this mean? The following "skeleton" program will help to
illustrate.
program A;
const { These are the IIgl obal ll identifiers of program A.}

J = 1; {They are visible everywhere within the program,}
K = 2; {unless hidden by local symbols with the same name.}

var
R, S : integer;

procedure B;
const

L = K; { L is defined to be 2 (NOT 3!) }
K = 3; { K is now defined locally to be 3, IIhidingll

the K defined in A }
begin { Statement Part of procedure B }

{ Within the Statement Part of procedure B, the
following identifiers are visible:

identifier I defined in

B, J, R, S I A
K, LIB

The local constant L derives its value from the
GLOBAL constant K, not the local one, since the
global identifier was not yet IIhiddenll when L was
defined. Note that there is no identifier A
visible. Turbo Pascal, unlike most other
compilers, ignores the program heading entirely,
including the program name. }

end; { procedure B }

var
T, U: integer; These identifiers are not visible

within procedure B! }

procedure C;
var

V : integer;

procedure D; { local to procedure C }
var

R, T : integer; { These declarations IIhidell the
Rand T declared in A }

begin { Statement Part of procedure D }
{ Within the Statement Part of procedure D, the

following identifiers are visible:

132

identifier I defined in

B, C, J, K, S, U
D, V
R, T

+ ----------
A
C
D

Turbo Tutor Owner's Handbook

end;

var

Note that the constant K is seen as having the value 2
here, since the local K (with a value of 3) defined
in B is visible only there. }

B : integer; { This declaration "hides" procedure B
within the Statement Part of procedure
C. However, procedure B is still callable
from procedure D, and this integer is
not visible to D. }

begin { Statement Part of procedure C }
Within the Statement Part of procedure C, the
following identifiers are visible:

identifier : defined in
-------------------- +

C, J, K, R, S, T, U
B, D, V

A
C

end; { procedure C }

begin { program A }
{ Within the Statement Part of program A, the

following identifiers are visible:
identifier : defined in

B, C, J, K, R, S, T, U : A
}

end. program A }

In each procedure within this program (and also within the statement
part of the main program), we've listed which identifiers are visible and
which objects they refer to.

To fully understand how this information is derived, it helps to "pre
tend" that you are the compiler, scanning the program from top to
bottom. Each time you encounter a definition that overrides a previous
one, you make a note of the new definition, and use it until the current
block is exited. When you exit a block, all the identifiers declared
locally within that block become undefined, and all the identifiers that
were temporarily "hidden" by definitions in that block become visible
once more.

Exercises Consider the following program. At each of the points
marked {1}, {2}, and {3}, list the identifiers that are accessible and the
procedure (or program) where they were defined. For the constant
identifiers, also list their values; for the variables and types, list their
base types (that is, the predefined type from which their types are
derived).
program ScopeTest;
type

A integer;
B = real;

Procedures and Functions 133

const
J
K

var

5· ,
M;

Q A;
R B;

procedure First;
type

B = A;
var

R : B;
const

K = J;
J = K;

begin { procedure First }
{:L}

end; { procedure First

procedure Second;
var

First : A;
const

L = K;
{ 2 }
K = 3;

type
A = B;

procedure Third;
var

First: A;
begin { procedure Third }
end; { procedure Third}

begin { procedure Second }
end; { procedure Second}

var
S : A;

begin { program ScopeTest }
{3}

end. { program ScopeTest }

N ow consider the following program. Will it compile without
errors? What will it write when run? Why? Test your answer
using Turbo Pascal.
program Scope2;
var

A : integer;

procedure SetA;
var

A : integer;

134 Turbo Tutor Owner's Handbook

begin { Statement Part of procedure SetA }
A : = 1;

end; { procedure SetA}

begin { Statement Part of program Scope2 }
A : = 3;
SetA;
Writeln(A)

end. { program Scope2 }

THE LIFETIME OF LOCAL VARIABLES

Unlike the global variables that are declared in the declaration part of
the main program, the local variables of a subprogram are created
(assigned places in memory) each time the subprogram is entered, and
destroyed each time control returns to the calling program or subpro
gram. Thus, the lifetime of a local variable-that is, the time during
which it will be able to retain its assigned value-is said to be limited to
the current invocation of the subprogram. What does this mean? Well,
suppose you have a procedure A that declares the local variable X in its
declaration part. Now suppose you call A and cause it to set X to the
value 3. When you call A again, can you assume that X will still be 3?
No! And, if you do, you may be inviting disaster, since X may have
any value the next time you make a call. Thus, the rule of thumb is that
all local variables should be considered undefined upon entrance to a
subprogram.

PARAMETERS

In our first example of a procedure (procedure GetNumber), each call to
the procedure causes a number input by the user to be assigned to the
global variable NewNumber. Since the variable NewNumberis overwrit
ten each time GetNumber is called, it will most likely be necessary to
save the value of New Number in some other variable immediately after
the call, like this:

GetNumber;
MenuChoice .= NewNumber;

While this is a perfectly valid way of getting a number, it has two
potential problems. First, you must always remember to perform the

Procedures and Functions 135

assignment; if you don't, the value the user entered will be lost.
Second, the variable New Number must be declared globally and must
not be used for anything else! If the procedure GetNumber is called
within a procedure that defines its own variable New Number, then it
will be impossible to retrieve the result.

Earlier we mentioned that one of the purposes of using subprograms is
to avoid this sort of unexpected naming conflict when many program
mers are working on parts of the same program. Local variables solve
this problem for data objects that are used entirely within the subpro
gram. Parameters handle the problem of naming data that is passed to
and from the subprogram.

You have already seen and used parameters when you have called the
built-in procedures Readln and Writeln. In the statement
Readln(A);

the variable A is passed as a parameter to the procedure Readln, which
in turn gets data from the keyboard or a file and places that data in the
variable. In the statement
Writeln('Hello, world, my name is Joe.');

the constant string 'Hello, world, my name is Joe' is passed as a
parameter to the Writeln procedure. To show how to declare proce
dures with parameters, let's rewrite our GetNumber procedure to return
a number in a parameter, rather than in a global variable:
procedure GetNumber(var NewNumber : integer);

{ Get a number from the user and return
it in the variable parameter NewNumber. }

const
Minimum 0;
Maximum = 25;

type
Response = Minimum .. Maximum;
{ A type for a legal response

var
Temporary : Response;
{ A temporary place for the user's integer }

begin {Statement Part of procedure GetNumber
Writeln('Please enter an integer from "

Minimum, , to " Maximum, ': ');
Readln(Temporary);
while (Temporary (Minimum) or (Temporary) Maximum) do
begin

Writeln('The integer you have entered is not'
'between 0 and 25,');

Writeln(/inclusive. Please try again.');
Readln(Temporary);

end;
NewNumber := Temporary;

end; { procedure GetNumber }

136 Turbo Tutor Owner's Handbook

Note that the only change made to this procedure (other than to the
introductory comment) was in the very first line, where we changed
the procedure heading to read
procedure GetNumber(var NewNumber : integer);

What does this accomplish? First, it tells the compiler that when the
procedure is called, it can expect to find the name of a data object of
type integer in parentheses following the procedure name. Second, it
says that inside the procedure that data object will be referred to by the
name New Number, regardless of what it might have been named in the
part of the program calling the procedure. Finally, the var preceding
the name New Number indicates that a variable (rather than an expres
sion or a constant) must be passed for that parameter, and that the
procedure will have the ability to alter the value of that variable. It is
important to note that NewNumber is not a variable itself; rather, it is an
identifier that represents another variable whose identity is decided by
the procedure call (and can change from call to call). Such an object is
called a formal, or dummy, parameter. If we were to call our new
procedure GetNumber as follows:
GetNumber(A);

tllen the procedure will act exactly as if the variable A were present
everywhere New Number was mentioned. In this situation, A is said to
be the actual parameter of the procedure. If we were then to make
the call
GetNumber(B);

the actual parameter would be B, and any assignments made to
the formal parameter New Number would actually be made to the
variable B.

A procedure can also have formal parameters that are not declared
using the reserved word var. If this is the case, two things change.
First, any expression can be passed as the actual parameter, rather than
only as a variable. Second, any changes (such as assignments) that are
made to the formal parameter in the subprogram do not affect the value
of the actual parameter. (After all, it does not make sense to assign a
value to an expression.) Instead, they are made to a copy of the value of
the expression, which is created when the procedure is entered.

Such parameters are called value parameters, and the "one-way" infor
mation flow they provide is useful for two reasons. First of all, they
allow the values of constants and expressions, as well as variables, to
serve as input to a subprogram. Without them, statements such as
Writeln('Hello, world, my name is Joe.');

would be impossible to write without assigning the string to a variable.
The second use of value parameters is as a precautionary measure.
Because a subprogram works on a copy of a value parameter, rather

Procedures and Functions 137

than on the value parameter itself, it will never make unwanted modifi
cations to that parameter. Be forewarned, however, that one of the
most common mistakes made by beginning programmers is to do the
reverse: forget to declare as a var parameter a parameter that should be
changed by a subprogram. If this happens, the compiler will not
complain, but it will appear as if the subprogram is not working
properly. Figure 12-3 shows the syntax of a formal parameter list-the
part of a subprogram declaration where you specify the names and
types of the subprogram's formal parameters.

formal
parameter
list

Figure 12-3 Syntax Diagram of Formal Parameter List

A subprogram can have almost any number of parameters, subject
only to the limitations of the particular compiler, and those parameters
can be of almost any type.

One more brief point about parameters. Because formal parameters are
considered to be declared as identifiers within the block of their proce
dures, they can "hide" identifiers declared at a higher level of the
program just as other local identifiers can. For the same reason, a
locally declared constant, type, or variable may not have the same
identifier as a formal parameter.

FUNCTIONS

As we've seen, a procedure can change the values of variable (var)
parameters passed to it. The calling program (or subprogram) can then
continue to use the modified parameters for whatever purpose it
wants. However, it often happens that the programmer wants only a
single value back from the subprogram, and it is inconvenient (and
messy) to set aside a variable just to hold that value.

Suppose, for example, that you were to write a procedure to find the
square root of an integer (approximated to the next lowest integer):
procedure ISqrt(Value : integer; var Root: integer);
var

OddSeq,Square : integer;
begin { procedure ISqrt }

Odd Seq -1;
Square := 0;

138 Turbo Tutor Owner's Handbook

repeat
OddSeq := OddSeq + 2;
Square := Square + Odd Seq

until Value (Square;
Root := Succ(OddSeq div 2);
if Value (= Square-Root then

Root := Pred(Root)
end; { procedure ISqrt }

This procedure would take Value, find its square root, and set Root to
that value. The calling program might use it as follows:

repeat
Write('Enter value: '); Readln(Square);
ISqrt(Square, Root);
Writeln('The square root is I, Root)

until Square = 0;

In the previous example, the variable Root is only used to carry the
value of the square root from the call to ISqrt to the Writeln statement.
If there are many variables like this in a program, it can become clumsy
to keep track of them all-and most of them will not be in use most of
the time (a poor use of memory space). We mentioned functions earlier
(in Chapter 10, "Defined Scalar Types"), and as you may recall, a
function is used in an expression in place of the value that it produces,
with the value becoming part of the expression when it is evaluated.
When you declare a function, you create a heading similar to that of a
procedure, except that you specify the type of the returned value. (This
is necessary so that Turbo Pascal knows how to "fit" the returned value
into the expression properly.)

The syntax of a function declaration is shown in Figure 12-4.

Figure 12-4 Syntax Diagram of Function Declaration

As we just mentioned, the only difference between a function declara
tion and a procedure declaration is that in the function declaration a
type is required.

Here is an example of a function that is equivalent to the square root
procedure shown earlier. Note that there is no parameter to hold the
root-the name of the function itself is used to represent the value.
function ISqrt(Value integer): integer;
var

OddSeq,Square,Root integer;

Procedures and Functions 139

begin { Statement Part of function ISqrt }

. { same code as before

ISqrt := Root { The value is returned by assigning to the
function name as if it were a variable }

end; { function ISqrt }

The function can now be used in a program like this:
repeat

Write(/Enter value: '); Readln(Square);
Writeln(/The square root is I,ISqrt(Square))

until Square = 0;

Now, the main program (or any subprogram that wants to use this
subprogram) does not need to declare a variable to hold the square
root. This means a simpler program, with less room for errors and
naming conflicts.

A function can be used anywhere that a constant or an expression of
the same data type could be used. Suppose you wanted to find the
fourth root of a given integer value. You could rewrite the program
this way:
repeat

Write(/Enter value: '); Readln(FourthPower);
Writeln(/The fourth root is ',ISqrt(ISqrt(FourthPower)))

until FourthPower = 0;

When writing a function, take care to ensure that you have set the
function identifier to some value before exiting. As shown previously,
you do this by assigning some value to the function name, as if it were
a variable. Actually, you can assign a value to the function identifier
many times; however, if you do, the last value you assign before the
function terminates will be the value returned.

While you may always make assignments to the function identifier,
you may not retrieve the value you assigned to that identifier by
including it in an expression. Why? Because the compiler will interpret
that use of the function name as another call to the function. This is
why we made the identifier Root a local variable, rather than eliminat
ing it entirely from our function in the previous example. Had we tried
to use the identifier ISqrt to hold the intermediate values of the root as it
was being computed, we would have had no way of getting them
back.
Since an attempt to get the value of the function identifier within a
function is construed by the compiler as another call to the same
function, it follows that functions (and procedures as well) can call
themselves. Subprograms that do this are called recursive subprograms,
and are discussed in detail in the next section.

140 Turbo Tutor Owner's Handbook

RECURSIVE SUBPROGRAMS

Sometimes, the easiest way to describe a task is to describe it in terms
of a subprogram that calls itself to get a job done. This is called a
recursive subprogram. For instance, there is a function in mathematics
called the factorial function, which gives the product of all the positive
integers up to, and including, that integer. For instance, 5 factorial
(written as 5!) is 5 x 4 x 3 x 2 x 1, and 8 factorial is 8 x 7 x 6 X 5 X 4
x3x2x1.
How can we write a function to compute the factorial of a number?
Well, we could write a loop to accomplish that job, counting from a
given number down to 1 and multiplying at each step. However, a
very simple and clever way to do the calculation is to notice that for
any integer n greater than 1, n! (n factorial) is equal to (n - i)! X n.
Thus, we can describe the factorial function in terms of itself, as
follows:
function Factorial(N : Byte) : Real;
begin { function Factorial }

if N (= 1 then
Factorial := 1 { If N (= 1, no recursion occurs. }

else
Factorial := N I Factorial(N - 1)
{ Here is the statement that causes the recursion!

end;

When this function is called, it looks to see if the value of the parameter
N is less than or equal to 1. (Because 256! is much too large to hold
even in a variable of type real, we've restricted the parameter to the
type byte. This way, we also need not worry about negative numbers.)
If N is 1 or 0, there is no multiplying to be done, since 1! = 1 (and,
incidentally, O! is considered to be 1 as well). Otherwise, we set the
function identifier Factorial equal to N times the Factorial of N - 1.

Note well the different uses and meanings of the function identifier on
the left- and right-hand sides of the assignment operator. On the left,
the identifier is used without a list of parameters, and represents a place
where the result of the function is to be stored. On the right, the same
identifier is used with a list of parameters to represent the result of a call
to that function. The calls will "nest" more and more deeply until
Factorial is called with the value 1; at that point, the series of calls will
unwind, doing the necessary multiplication at each step.

Since a procedure can call other procedures (including itself), proce
dures can be recursive subprograms as well. It is also possible to build
more complex recursive structures where one procedure or function
calls a second, which calls the first, which calls the second, and so on.

Recursive subprograms often make a calculation very simple to pro
gram. But beware, like loops (another repetitive process), it is possible
for such structures to get out of control and run forever. It is possible

Procedures and Functions 141

for the calls to nest indefinitely, or until the machine no longer has the
memory available to keep track of them. (As we mentioned before,
space for local variables is allocated each time a subprogram is called.
Thus, each call can potentially use up a large block of memory, and the
available space can be exhausted very quickly.)

So always use recursive subprograms with care, and make sure that
there is a statement that will not cause more recursion (like the previous
statement Factorial: = 1) in every recursive subprogram.

FORWARD DECLARATIONS

Occasionally, the rule that all identifiers must be declared before they
are used can keep you from making your program do what you want.
For instance, as we mentioned earlier, you may want to write a
subprogram that calls another, which in turn calls the first, and so on.
The problem with writing such a structure, however, is which subpro
gram do you declare first? No matter which one you choose, the other
subprogram will not have been defined yet, and therefore you will not
be able to call it. Here is a simple program illustrating the problem.
program Example;
var

Alpha : integer;

procedure Test1(var A : integer);
begin { procedure Test1 }

A := A-1;
if A > 0 then

Test2(A);
Writeln(A) ;

end; { procedure Test1 }

procedure Test2(var A : integer);
begin { procedure Test2 }

A := A div 2;
if A > 0 then

TesU(A) ;
Writeln(A) ;

end; { procedure Test2

begin { Statement Part of program Example }
Alpha := 15;
TesU(Alpha)

end. { program Example

As you can see, Test1 calls Test2 and Test2 calls Test1. As it stands, this
program won't compile; you'll get an "Unknown identifier" error
when it finds the reference to Test2 within Test 1. If you swapped Test1
and Test2, you'd get a similar error within Test2.

142 Turbo Tutor Owner's Handbook

The solution to this problem is to tell the compiler, before it gets to the
procedure Test1, that the procedure Test2 will be declared later. This is
done with a forward declaration, as shown in the following example:
progral Example;
var

Alpha : integer;
procedure Test2{var A integer); forward;

procedure TestL{var A integer);
begin { procedure TestL }

end; { procedure TestL }

procedure Test2 {(var A : integer)};
{ We've commented out the parameter list;

it was supplied earlier. }
begin { procedure Test2 }

end; { procedure Test2

begin { Statement Part of program Example }
Alpha := L5;
TesU{Alpha)

end. { program Example }

The forward declaration of Test2 contains only the procedure or
function heading (the information necessary for the compiler to check
any calls to it for a correct name and parameter list) and the reserved
word forward. The actual body of Test2 occurs after Test1. Now Test1
can call Test2 (because of the forward declaration) and Test2 can call
Test1 (since the latter precedes the former).

Note that when Test2 is fmally declared, its parameter list is omitted
(though we recommend showing it in a comment as a reminder of
what the parameters and their types are). The parameter list may not be
repeated; Turbo Pascal already "knows" what the parameter list is, and
does not need the redundant (and possibly inconsistent) information.

SCOPE AND RECURSION
The subject of recursion brings us to the final scope rule of Pascal. As
you will remember, Scope Rule #2 stated that if an identifier is
declared in an outer block and then again in an inner block, the inner
declaration will take precedence until the end of the inner block. This is
true regardless of which subprograms call which others; it is the
position of the variables in the text of the program at compile time that
decides which symbol refers to which object.

Procedures and Functions 143

The problem of scope becomes more complex, however, when recur
sion is involved. For instance, suppose we wrote the following nested
procedures, and then called the function A with the parameter 5. What
would be written? And what would the function A return?
function A(G : integer): integer;
var

X : integer;

procedure B;
begin .

Writeln(X) ;
end;

begin
if G) 1 then X := A(G-1)
else

X : = 0;
B;
A : = G;

end;

To help in understanding the answer to this question, we need to
explain the third (and last) scope rule of Pascal.

Scope Rule #3: When procedures are invoked recursively, a reference to
a global variable always refers to the instance of the variable in the most
recent invocation of the procedure in which that variable is defined.

This rule applies to the previous procedure B, when it references the
variable X defined in function A. So when B is invoked and executes
the statement Writeln(X}, the X that is written is the one that exists in
the storage area allocated by the most recent call of the procedure A.
The correct answer to our question then is that A(5) would return the
value 5, and would write the numbers 0, 1, 2, 3, and 4.

THE EXIT PROCEDURE

Sometimes when you are writing a Turbo Pascal procedure or func
tion, you will reach a point in the middle of the body of the subpro
gram at which the subprogram may be ready to return immediately
without executing the rest of the subprogram. In standard Pascal, there
is no way to accomplish such an exit, and you must structure the
subprogram (using if statements, perhaps) so that all statements from
then on to the end of the subprogram can be skipped.

In Turbo Pascal, there is a special feature that allows a quick return
from any point in a procedure or function. It takes the form of a
procedure call to a predefined procedure called (appropriately
enough) Exit.

Here's a sample program demonstrating the usefulness of Exit. Sup
pose you want to write a routine that accepts numbers from the

144 Turbo Tutor Owner's Handbook

keyboard, one at a time, then returns the total. A function to do this
might look like so:
function RunningTotal Real;
var

Subtotal, NewNumber Real;
begin

Subtotal := 0.0;
repeat

Write ('Enter a number to be added to the total: ');
Readln (NewNumber);
if NewNumber (> -1.0 then

{ Only add if number is not -1 }
Subtotal := Subtotal + NewNumber;

until NewNumber = -1.0;
{ Exit the loop if number is -1 }
RunningTotal := Subtotal;

end;

Note that in this example the function returns when the user enters a
special value: -1. Such a value, used as a signal to the program to do
something, is known as a sentinel. Here, the sentinel value -1 indicates
that there are no more numbers to be entered.

Now, while the previous subprogram will certainly do the job we need
it to do, it is not as efficient as it could be. in particular, we test twice to
see if the variable New Number has the value -1: once to determine
whether to add it to the running total, and once to see if we should exit
the subprogram.

The second test wouldn't be necessary if we could put a statement in
the repeat ... until loop that says, "If New Number is -1, return the total
immediately without doing anything else!"

Here is how to use the Exit procedure to accomplish this:
function RunningTotal Real;
var

Subtotal, NewNumber Real;
begin

Subtotal := 0.0;
repeat

Write ('Enter a number to be added to the total: ');
Readln (NewNumber);
if NewNumber = -1.0 then
begin

RunningTotal := Subtotal;
{ Set the function result and exit }
Exit; { right here! }

end
until False; { Since we exit the loop from the middle,

we'll never want the "until" to be
satisfied }

end;

This technique becomes even more useful when the point from which
you want to exit is deeply nested in structured statements, such as ifs,

Procedures and Functions 145

whiles, and fors. It is also likely to make your program more readable,
since the reader will be able to recognize immediately where the exit
occurs and what value is returned. If the Exit procedure is called from
the body of your main program, it causes the program to stop running
immediately. Exit should be used in this manner with care-the pro
gram must remember to perform cleanup operations, such as closing
fues, before halting.

REVIEW

In this chapter, we introduced the two types of subprograms in Pascal:
procedures and functions. We described the format of procedure and
function declarations, and explained Pascal's rules about the scope and
lifetime of identifiers declared within subprograms. We touched on the
topic of recursion, and explained how to declare forward subprograms
and how to determine the scope of identifiers during recursion. Finally,
we presented the predefmed procedure Exit, which causes an immedi
ate exit from a subprogram or main program. In the next chapter, we'll
cover the concept of arrays and how to use them.

146 Turbo Tutor Owner's Handbook

13 Arrays
Previously, we taught you about the five predefmed data types
integer, byte, real, boolean, and char-as well as declared scalar types.
A variable of one of these types can hold only one value at a time. For
example, if you define:
var

Index : integer;

Index will have only one specific value at any moment. However, there
are situations where you'd like to have a single identifier represent a list
of values, such as a list of numbers or characters. That's where arrays
come in. Suppose, for example, you want to write a program to
balance your checkbook. Well, one thing your program will need is a
list of all your checks and their respective amounts. To reserve space for
this information, you could declare a variable for each check:
var

Check:1
Check2
Check3
Check£;

Real;
Real;
Real;
Real;

Amount of check :1
Amount of check 2
Amount of check 3
Amount of check ~

Of course, this could quickly become tedious if you write a lot of
checks. Also, it would be difficult to write a loop to go through all the
checks and do something with each-say, add them to a running total.
You could not write the following:
for Check := Check:1 to Check25 do

Total := Total + Check;

because, first of all, all of the variables you have declared are of the type
real, and only scalars can be used as the indices in a Pascal for
statement. Second, and more importantly, we really want to step
through the locations where the amounts of the checks were stored,
which is not what this statement would do. Even if this loop would
compile, it would only increment the variable Check from the amount
of the first check (Check1) to the amount of the last (Check25), rather
than looking at the amount of each check and adding it to the total. The

147

result would bear no resemblance to the correct answer. How, then, do
we accomplish the simple task we've described? The answer, as you've
probably guessed, is to store the list of amounts in an array.
An array is a list of variables of identical type, each one of which can be
referred to by telling the compiler the name of the list and its position in
the list. Suppose, for instance, that you were to declare
var

Check: array[1 .. 101 of Real;

This tells the compiler that the identifier Check refers to a list of 10
variables of the type real, each with a number (called its index) from 1
to 10.

Each item of an array is referred to by the name of the array (Check),
followed by its index enclosed in square brackets ([]). Thus, the array
Check contains the variables Check[1], Check[2], Check[3], Check[4],
Check[5], Check[6], Check[7], Check[8], Check[9], and Check[10]. You
can use any of these variables anywhere you would use any real
variable. Furthermore-and this is what gives arrays their true
power-the index value does not have to be a constant. In fact, it can
be any expression that yields an integer in the range 1..10. For example,
if the variable Index is of the type integer, the statement
for Index := 1 to 10 do

Check[Indexl := 0.0;

would set each variable to O. Now can you see how to solve the
problem of adding up the amounts of all the checks? Since we can now
refer to each check by its index, we can write
Total := 0.0; { Remember to set the total to 0 before we

start. }
for Index := 1 to 10 do

Total := Total + Check[Indexl;

The diagram in Figure 13-1 shows the syntax of an array type.

array type ----I~

Figure 13-1 Syntax Diagram of Array Type

It's important to note that specifying an array type requires you to tell
the compiler about two other types: the array's index type and the type
of each of the items of the array, the base type.

148 Turbo Tutor Owner's Handbook

The index type, which appears between the square brackets, must be a
simple type; that is, it cannot consist of more than one data object (like
an array). Moreover, the index type must be a scalar type.
Most often, you will want to use a subrange type as the index type of
an array, as we did. However, sometimes you may decide that another
type is appropriate. For example, if you are writing a program to
encrypt a secret message using a cipher, you might want an array that
holds the code for each possible object of the type char. In which case
you could declare the array
var

Cipher: array[charl of char;·

filling each location of the array with the replacement character for the
corresponding index character. Then, to encode a character, you could
write:
MsgChar := Cipher[MsgCharl;

and each character in the secret message would be replaced by the code
for that character. There are other limits to the index type of an array.
One of them is that the type cannot have so many possible values that
the array is too big for Turbo Pascal to handle. The declaration
var

BigArray : array[integerl of char;

would cause a memory overflow error. Why? Because it would try to
reserve enough room for 65536 characters--one for each possible value
of the type integer. In Turbo Pascal, no single data object or variable
can be over 65535 bytes in length. And, especially in a CP/M machine,
such an object can easily overflow available memory. Thus, it is best to
declare arrays with an index type of as small a subrange as possible.
The definition
var

NotSoBigArray : array[bytel of char;

compiles just fine, since byte, as you will recall, is the subrange of the
type integer that goes from 0 to 255. Often, you will want to use a
declared scalar type as an index type for an array type like this:
type

Days = (Sun,Mon,Tues,Wed,Thur,Fri,Sat);

var
Regular array[Mon .. Fril of integer;
Overtime array[Daysl of integer;
Present array[Daysl of boolean;

The array Regular has a subrange of the type Days as its index type,
while the arrays Overtime and Present have the entire type Days as their
index type. The array Regular consists of 5 integers. If a variable of the
type integer takes up 2 bytes, and a variable of the type boolean takes

Arrays 149

up 1 byte, can you tell the total amount of memory (in bytes) taken up
by each array?

The base type of any array can be almost any data type at all-as long
as the total size of the array does not exceed 65535 bytes. In fact, you
can declare arrays that contain other structured types, including other
arrays. Arrays of arrays (usually called multidimensional arrays) are useful
for describing groups of objects that need to be located· using two
indices, such as a cell in a spreadsheet (which is located by its row and
column) or a point on a piece of graph paper (located by its X and Y
coordinates) .

Suppose, for a moment, you are writing a computer program to playa
game of checkers. One thing the computer would need to do is keep
track of what piece was on each square of the board. One way to
represent the board might be like this:
type

Square = (Empty, Red, Black, RedKing, BlackKing);
{Type for a square}

var
CheckerBoard: array[1 .. 81 {outer array}

of array[1 .. 81 {inner array} of Square;

How would you access each square of the board under these condi
tions? In Pascal, the way to do this is to give the index of the outer array,
followed by the index of the inner array. Thus, if we let each of the inner
arrays be a column (or File) of the board, we could locate a square in
the third column from one player's left, and in the fourth row (or
Rank) from the same side of the board (see Figure 13-2).

8
7

R 6
a 5
n 4
k 3

2
1

~
1 234 5 6 7 8

File

Square [3][4]

Figure 13-2 Accessing Game Board

Because it can get inconvenient to write all of those square brackets,
and since we don't always need to point out explicitly that a two
dimensional array is an array of arrays, Pascal provides a more conve
nient notation to express both array types and array indices. Instead of

150 Turbo Tutor Owner's Handbook

writing Square[3][4], Pascal lets us write Square[3,4] as well. Similarly,
when specifying the array type for the checkerboard, we can write
type

Square = (Empty, Red, Black, RedKing, BlackKing);
{Type for a square}

var
CheckerBoard: array[l .. 8, 1 .. 8] of Square;

which is equivalent to what's shown in Figure 13-2.

In some programs, you may wish to use arrays with a dimension of 3
or more (for instance, if you are playing three-dimensional checkers, or
if you need to specify the location of a point in space). There is no
theoretical limit to the number of dimensions that an array can have,
although some compilers impose practical limits. Turbo Pascal will
allow an array to have as many dimensions as you specify, until the
capacity of memory is exceeded.

ARRAY ASSIGNMENTS

In standard Pascal, you can only perform assignment operations on the
Ll1dividual objects within an array~ not on a whole array. Thus, if we
declare
var

A, B: array[l .. 10,1 .. 10] of integer;

and we want to transfer all the elements of A into B, we would have to
write the double loop:
{Assume I and J are of type integer}
for I := 1 to 10 do

for J := 1 to 10 do
B[I,J] := A[I,J];

This loop will transfer each element of A into B, one at a time. Can
you see how it works? While this complex statement gets the job done,
we really just want to tell the compiler to take everything from A and
move it to B. Turbo Pascal, therefore, allows you to assign whole
arrays to other arrays of the same type. With Turbo, you can write:
B : = A;

and the whole job is done. Turbo Pascal also lets you work with arrays
that are nested within other arrays. Thus, if you wanted to transfer just
one row of array A to a row of array B, you could write
A[8] := B[8];

What does this mean? Remember that the declaration
var

A, B: array[l .. 10,1 .. tO] of integer;

is convenient shorthand for

Arrays 151

var
A, B: array[l .. 101 of array[l .. 101 of integer;

so that B[8] means, in this case, "the eighth 10-element array of B."
These special features of Turbo Pascal make working with arrays a lot
eaSIer.

RANGE-CHECKING AND ARRAYS
One of the most common errors that novice (and even advanced)
programmers make when using arrays is to try to access an array
element that does not exist. For instance, if you declare
var

Check: array[l .. 101 of real;

and then write the statement
for i := 1 to 11 do

Writeln(Check[il);

What will happen? As you would expect, the first 10 numbers in the
array Check would be written to the terminal. But what would be
written when the computer tried to find Check[11] the last time
through the loop? The answer depends on whether or not range
checking is enabled. If range-checking is off, Turbo Pascal will look in
memory where it thinks Check[11] ought to be-immediately after
Check[10]. It will then assume whatever is there to be a real number,
and write that number to the console. Of course, this place in memory
could be part of another variable, or even part of a program, so the
number would be meaningless.

To keep Turbo Pascal from ignoring this error, and possibly com
pounding it by using such a value in further calculations, turn range
checking on. Use the compiler directive {$R + } to turn range-checking
on. (Chapter 10 covers this in more detail.)

We can't emphasize enough how important it is to make sure that array
indices (as well as variables of subrange and enumerated types) do
not go out of range without your knowledge. Again, we advise you to
turn range-checking on in every program you write.

INITIALIZING AN ARRAY
Before vou use an arrav vou must initialize it, that is, set all of its
element~ equal to some ;et'ofvalues. (Remember that before a variable
is assigned a value it can have any value at all.) If all the values are the
same, the process is simple. For example, suppose you want to set all
elements in the array A (defined earlier) to 0, so that you can later set
those desired to other values. One way to do this would be:

152 Turbo Tutor Owner's Handbook

for X := 1 to 10 do
for Y := 1 to 10 do

!CX,Y] := 0;

This takes a while to do and uses up a bit of space for code and
variables. Turbo Pascal, however, provides you with a faster way: the
predefined procedure FillChar. A call to FillChar looks like this:
FillChar(Dest,Length,Data);

where Dest is the variable (of any type) to be filled, Length is the
number of bytes to initialize, and Data is the value to which to set each
byte (to be expressed either as a character or as a byte value). We know
what we want to fill-A-and we know what we want to fill it with
the integer 0, which is represented as 2 bytes of zeroes. Thus, we use A
for Dest, and 0 for the data byte.
Now we just need the length in bytes. You can obtain this value by
using the built-in function SizeO! The function SizeO! takes as its
parameter either a variable or a data type, and returns the size· of that
variable (or of a variable of that type) in bytes. So to initialize A, we
could write:
FillChar(A,SizeOf(A),O);

This statem.ent will set all bits and bytes in A to o. The combination of
FillChar and SizeO! is the fastest way to initialize an array variable in
Turbo Pascal. Be warned, however, that this will not always w9rk
when you wish to initialize all the elements of an array to a value other
than o. If you tried to set all of the elements of A to 1 by using the
statement
FillChar(A,SizeOf(A),1);

you would discover that each element of A had the value 257, not 1.
This is because A is an array of integers, and an integer with both of its
bytes set to 1 equals 257. Thus, it is important to be careful when using
FillChar to initialize arrays (and other structures) whose components
are larger than 1 byte.

REPRESENTING AN ARRAY IN MEMORY

The elements of an array are stored in a specific order. If the array is
one-dimensional-that is, if it has only one index-then the elements
are stored in ascending order. For example, the array Check (defined as
array[1 .. 10] of real) stores its elements in the order Check[lj, Check[2j,
and so on, as you might expect. But what about multidimensional
arrays? The array CheckerBoard is defined as
var

CheckerBoard: array [1 .. 8, 1 .. 8] of Square;

Arrays 153

So, the question is, are the elements in CheckerBoard stored as Checker
Board[1,1 j, CheckerBoard[2,1 j, CheckerBoard[3,1 j, and so forth, or are
they stored as CheckerBoard[1,1 j, CheckerBoard[1,2j, CheckerBoard[1,3j,
and so on? The definition of Pascal itself hints at the answer to this
question. Remember that the previous definition is just shorthand for
var

CheckerBoard: array[1 .. B] of array[1 .. B] of Square;

Thus, the first index ofCheckerBoard[3,4j (which can also be written as
CheckerBoard[3j[4]) does not select a square. Rather, it selects a column
of the board, which is an array[1..8] of Square. The second index
selects a square within that array, and those elements are stored sequen
tially, just as in Check. CheckerBoard[1,1 j says to pick the first element
of the first array; CheckerBoard[1,2j, the second element of the first
array, and so on. Thus, the squares are stored in the order
CheckerBoard[1, 1]
CheckerBoard[1, 2]
CheckerBoard[1, 3]

CheckerBoard[2, 1]
CheckerBoard[2, 2]

CheckerBoard[B, 7]
CheckerBoard[B, B]

Remember that the index furthest to the right-the last index
changes the fastest, regardless of the number of dimensions in the
array. Thus, the array

var
BigOne : array[O .. 3,O .. ~,O .. 5,O .. 2] of byte;

is stored as
BigOne[O,O,O,O]
BigOne[O,O,O,1]
BigOne[O,O,O,2]
BigOne[O,O,1,O]
BigOne[O,O,1,1]

BigOne[3,~,5,1]
BigOne[3,~,5,2]

PACKED ARRAYS

The discussion on storage space brings up another issue. Standard
Pascal defines two kinds of arrays: regular arrays and packed arrays. It
also provides two procedures, Pack and Unpack, to convert between the
two types. This feature was useful when Pascal was implemented on
certain large computers, where arrays could be stored in two different
ways. Packed arrays were slower to access, but took up less storage
space. For unpacked arrays, the reverse was true.

154 Turbo Tutor Owner's Handbook

In Turbo Pascal, arrays are always stored as described in the preceding
section. For compatibility reasons, Turbo Pascal allows the reserved
word packed to be used as shown in the syntax diagram, but ignores
it. The procedures Pack and Unpack aren't defmed.

REVIEW

In this chapter, we have learned how to declare and access arrays-a
structured type that consists of a list of variables of any type. We also
showed you how to work with multidimensional arrays and how to
initialize arrays. We also described how arrays are stored in memory.

That's all on arrays for now, though you'll see them used heavily
throughout the rest of this book.

Chapter 14 will discuss in detail Turbo Pascal's string types and how to
use them.

Arrays 155

156 Turbo Tutor Owner's Handbook

14 Strings
When Niklaus Wirth designed the Pascal language, he did so on a very
large computer (known as a "mainframe") that accepted programs and
data in the form of punched cards and magnetic tapes. On these
systems, programs were submitted as "batch jobs"; the program and
input data went in, the system worked on them, and the output data
came out. Users could not communicate with the system while the
program was running.

In time, this situation began to change. "Timesharing" systems, in
wpich a computer served many users at once, became common. CRT
terminals became available to more users. Minicomputers became
popular, and users began to insist on interactive programs-programs
that communicated with the user while being run. Many of these
programs performed such functions as word processing, unlike the
older systems that worked mostly with numbers.

Unfortunately, because it originated in the world of number-crunching
machines, the standard Pascal language was not given facilities for
working with strings (groups of ASCII characters). In standard Pascal,
strings could only be stored in fixed-length arrays of characters, and no
special operations for reading, writing, or processing them were pro
vided. This made the design of programs to handle text (as opposed to
numbers) difficult. Turbo Pascal, like many modern extensions of the
Pascal language, has solved this problem by adding special features for
handling strings, which make writing text-oriented programs simple
and quick.

STRING TYPES

A string is a list of ASCII characters (that is, data objects of the type
char); Turbo Pascal keeps track of both their contents and length.
Using Turbo Pascal's built-in operators and subprograms, you can
copy parts of the string, add to it, take away from it, combine it with
other strings, write it out, or read it in.

157

In Turbo Pascal, you create a string variable by declaring it to be of a
string type. To specify a string type, you tell the compiler the maxi
mum length that a string of that type can be (so it can reserve enough
memory). The syntax of a string type is shown in Figure 14-1.

string type ----c string ~ constant

Figure 14-1 Syntax Diagram of String Type

The constant in the specification of the string type must be in the range
1..255, giving you a choice of 255 possible string types. Here is a
sample declaration of a string type:
const

MaxstringSize = 255;
type

Bigstring : str1ng[MaxstringSizel;
Littlestring : str1ng[151;

and here are some examples of string variable declarations:
var

MyName : str1ng[801;
Token : Littlestring;
MyBigString : Bigstring;

The constant used in the specification of a string type sets the maxi
mum number of characters each string can hold. The variable My Name
could hold up to 80 characters; Token could only hold up to 15
characters. Thus the statement
Token := 'this is too long a string for Token';

would only store the first 15 characters (,this is too Ion') into Token.
The last variable, MyBigString, has the maximum length possible for a
string in Turbo Pascal: 255 characters.

STRING OPERATORS, FUNCTIONS, AND
PROCEDURES

Turbo Pascal's string extensions include more thanjust the string data
types. Turbo also provides you with a rich assortment of operators,
procedures, and functions to work on strings (see Table 14-1).

158 Turbo Tutor Owner's Handbook

Table 14-1 String Procedures and Functions

Procedures/Functions Definition

Concat(5tl, 5t2 {, 5t3, ... ,5tn}) Returns string composed of 5tl through
5tn concatenated together; the plus sign
(+) can also be used.

Copy(5t, Position, Len) Returns string composed of 5t[Position] ..
5t[Position + Len - I].

Delete(St, Position, Num) Deletes Num characters from 5t starting
at 5t[Position].

Insert(50urce, Destination, Position)

Length(St)
Pos(Pattern,Target)

Str{Value, 5t)

Val(St, Value, Index)

String Assignments

Inserts Source into Destination starting at
Destination[Position].
Returns current length of 5t.
Returns position (index) of Pattern within
Target.
Converts Value (integer or real) into a
string and stores it in 5t.
Converts 5t into Value (integer or real)
and sets Index to the position of any
error occurring (0 means no error or
5t = ").

The most common operator you are likely to use with strings in Turbo
Pascal is the assignment operator. Assignments to string variables work as
they do with any other type of variable, with one difference: If the
destination string is too small to hold all the characters in the value
assigned to it, those characters are dropped or truncated. For instance,
if the string variable Fruit is of the type string[S], then the assignment
statement
Fruit := 'Watermelon';

would cause Fruit to get the value 'Water.'

The Length Function
One of the most frequently used functions that Turbo provides for
working with strings is Length, which returns the current length of a
string. (This is not to be confused with the maximum possible length
of that string.) If St is a string variable, then the expression
Length(St)

gives the number of characters in St. The following is a program that
demonstrates how this function works.
prograa LengthTest;
type

Strings 159

SmallStr = string[1S1;
var

Test : SmallStr;
procedure ShowLength(St : SmaIIStr);

{ Write out a string and its length
begin

WriteLn('The length of III,St,"1 is ',Length(St))
end; {procedure ShowLength }

begin
Test := 'hello, there';
ShowLength(Test);
Test := 'hi';
ShowLength(Test);
Test := "; {This is a null string--it has a length of D.}
ShowLength(Test)

end. {program LengthTest }

In this program, we define a procedure, Show Length, which accepts a
string as its parameter. It then writes out the string, followed by its
length. When this program is run, it will produce the output:
The length of "hello, there" is 12
The length of "hi" is 2
The length of "" is D

The Concat Function and the + Operator
Another useful string function is called Concat. As the name might
suggest, Concat is used to concatenate, or combine, strings to make o,ne
large string. If Stt· is a string variable with the value 10e,' then the
expression
Concat('Hello, world, my name is " St1, ' .')

yields the string 'Hello, world, my name is Joe.'. The general syntax of
the Concat function is
Concat(St1, St2 {, St3, ... ,Stn})

where Stt, St2, and so on, are all variables of any string type.

Like some other built-in procedures, such. as Writeln, Concat can take
any number of parameters (indicated by the curly brackets). Unlike
Writeln, however, it must have at least two parameters. Beyond this, its
only restriction is that the total length of all the concatenated strings
must be less than 255. If not, the program will halt at that statement
and write out an error message. (This sort of error, which occurs when
the program is run rather than compiled, is called a runtime error.)

Besides explicitly calling the function Concat, Turbo Pascal also lets you
concatenate strings using the plus sign (+) as an operator. The expn:s
Slon

'Hello, world, my name is ' + St1 + '.'

is exactly equivalent to the expression shown earlier using Concat.

160 Turbo Tutor Owner's Handbook

The Copy Function

The next string function that you may find useful is called Copy, which
allows you to make a copy of any part of a string (that is, a substring).
It takes as parameters the string, the number of the first character at
which to begin copying, and the number of characters to copy. The
expression
Copy('This string has no characters', 20, to);

returns the value' characters' (which, incidentally, does have characters
after all). The syntax of the Copy function is
Copy(Source, Position, Len)

where Source is a string and Position and Len are integers.

There are a few restrictions on the parameters passed to Copy. First of
all, the second parameter, which indicates the position at which to start
copying from the string, must be in the range 1. .255 or a runtime error
will occur. Secondly, if you try to use Copy to copy beyond the end of
a string, only the characters within the string will be returned. If the
starting position is already beyond the end of the string, then Copy will
return a null string, a string with a length of 0 containing no characters
at all.

The Pos Function

Another powerful Turbo Pascal string function is the Pos function.
This function looks for the first occurrence of one string inside another
string, and tells you where it begins. Pos takes the string to search for as
its first parameter, and the string to search in as its second parameter. If
the string is found, Pos returns an integer giving the location in the
string where the matching string begins; otherwise, Pos returns a value
ofO.

Suppose, for example, you wanted to see if the word "to" occurred in
the string variable St1, which happened to contain the string, 'To be or
not to be.' You could use the Pos function to look for the word and also
to see where it occurred, by writing
Stt := 'To be or not to be';
Location := POS('to', Stt);

The variable type Location (assumed to be of type int~ger) would get
the value 13. (Note: Case is significant, so the "To" at the beginning of
St1 will not be matched.) Youcould then use this information to make
changes to the string. If the target string is not found, Pos returns the
value o. The syntax of the Pos function is
Pos(Pattern, Target)

where Pattern and Target are strings.

Strings 161

The Delete and Insert Procedures
There are two things you may want to do with strings: delete charac
ters from them, or insert characters into them. The Delete procedure
lets you remove a section of a string; like Copy, it requires the string,
the starting position, and the number of characters to delete.

For example, suppose you fmd the location of the word "to" in a string,
and want to remove it and the blank following it from the string. You
could do this by writing the statement
Delete (St1, Location, 3);

which removes 3 characters from St1, starting at the character indicated
by Location. Alternatively, you could perform the entire operation in
one step by writing
Delete (St1, Pos('to', St1), 3);

omitting the use of the variable Location entirely. In either case, the
variable St1 would have the value 'To be or not be.' The syntax of the
Delete procedure is
Delete(St, Position~ Num)

where St is a string and Position and Num are integers.

If Position is beyond the last character of the string, no characters are
removed; if it is not a value from 1 to 255, a runtime error occurs. If an
attempt is made to delete past· the end of the string, only characters in
the string are removed.
Combined with Pos and Copy, Delete can be used to separate a string
into words. The following is a procedure that will get the first word
from a line of text, where a "word" (for our purposes) is like any
substring starting with a non-space character and followed by a space.
procedure GetWord(var Line, Word: BigStr);

{ Get the next word from the string Line }
const

Space = , ';
var

Len : integer;
begin

while Pos(Space,Line) = 1 do
Delete(Line,l,l);

Len := Pos(Space,Line) - 1;
if Len = 0 then begin

Word Line;

remove leading blanks

look for blank
no blanks left

{ get word might be null string if none left
Line := " { now make line the null string

end
else begin { get

Word := Copy(Line,l,Len);
Delete(Line,l,Len + 1)

end
end; {procedure GetWord }

word and delete from line
{ get all but blank

{ delete word plus blank

162 Turbo Tutor Owner's Handbook

The next procedure, Insert, is the reverse of the Copy/Delete operation:
It takes one string and stuffs it inside another. The first parameter of
Insert is the string to insert, the second is the string into which it's to be
inserted, and the last is the location where the insertion will occur. For
example, if you want to put the "to" back in the string St1, you
could write
Insert(St1, Location, 'to ');

The syntax of the Insert procedure is
Insert(Source, Destination, Position)

where Source and Destination are strings and Position is an integer.

If Position is outside the range 1..255, a runtime error occurs. If the
result is longer than the maximum length of Destination, the extra
characters at the end will be truncated. Finally, if an attempt is made to
insert a string at a position after the end of Destination (that is, Position
is greater than Length(Destination)), then Source is concatenated onto
the end of Destination.

Insert and Delete together can be used to substitute one substring for
another. Suppose you were writing a program that takes a form letter
and inserts the appropriate names, dates, and so on. Within the form
letter, these strings might be represented by tokens (groups of symbols
that show you where to put the information). For example, the saluta
tion might look like this:
Dear <title> <last name>:

where we've represented the information to be added using tokens of
the form (...). The following procedure, then, might be used for
replacement purposes:
procedure Replace(var Line: BigStr; Token,Sub : TokStr);

{ Look for Token in Line and replace with Sub }
var

Index,Len : integer;
begin

repeat
Index := Pos(Token,Line);
if Index > 0 then begin

Delete(Line,Index,Length(Token));
Insert(Sub,Line,Index)

end
until Index = 0

end; {procedure Replace}

The statements
Line := 'And so, <title> <last>, the entire <last> family';
Replace(Line,'<title>','Dr.');
Replace(Line,'<last>','Lewis');
Writeln(Line);

would produce

Strings 163

And so, Dr. Lewis, the entire Lewis family

This should give you a clue as to how "personalized" junk: mail
is generated.

Miscellaneous Character Functions

There are two other functions that are often useful when working with
strings: the Chr and UpCase functions.
The Chr function takes a number of the type byte or integer and
returns an ASCII character (a data object of type char) that corresponds
to that ASCII code. For instance, if you wanted to see all of the
characters in the ASCII code on your screen (or at least those that will
print out), you could use the following program:
program PrintASCII;
{Print the characters for all the ASCII codes, 0 to 255.}
var i :integer;
begin

for i := 0 to 255 do
Writeln(i, ' --> " Chr(i));

end.

The Chr function has only one restriction: Its parameter must be
between 0 and 255. If it is not, no runtime error will occur, but the
parameter modulo 255 (that is, the lower byte of the parameter) will be
used. The UpCase function takes a parameter of type char and, ifit is a
lower-case letter, converts it to its upper-case equivalent. Here are
some examples of calls to the Upcase function and what they return:
UpCase ('a')
UpCase ('A')
UpCase ('? ')
UpCase ('x')

-->
-->
-->
-->

'A'
'A'
'?'
'X'

Note that if the parameter is not in the range a .. z, it is returned
unchanged.

REPRESENTING STRINGS IN MEMORY: STRINGS
AS ARRAYS

The data type string[n] can be thought of as an array[O .. n] of char.
You can reference individual characters in a string variable using the
same notation you would for an array; for instance, the first character
of Token is Token[1J, the second is Token[2J, and so on. The first
location of the array-the one with an ~dex of O-contains the current
length of the string. If you execute the statement
Token := 'this string';

164 Turbo Tutor Owner's Handbook

then Token[OJ contains a character with the ASCII value 11, since there
are 11 characters in 'this string.' However, you could not do something
like this:
program MisMatch;
var

Token: string(1S1;
Len : integer;

begin
Token := 'this string';
Len := Token(Ol; { The compiler will indicate

an error here.}
Writeln('The length of Token is ',Len)

end.

because Token[OJ is of type char, and you can't assign a character to an
integer. You could, however, substitute the statement
Len := Ord(Token(Ol);

which would return the ordinal (numeric) value of Token[OJ, which
happens to be 11. Of course, the Length function is designed to do this
for you, so there is usually no need to use this technique.

Using the array notation, you can access· any individual character of a
string. As mentioned previously, each element of a string is a variable
of type char, and you can treat it as such. For example, you might want
a procedure to convert all letters in a string to upper case ('A' .. 'Z'):

type
Maxstring = string(2SS1;

procedure UpperCase(var Str Maxstring);
var

Index : integer;
begin

for Index := 1 to Length(Str(Ol) do
Str(Indexl := UpCase(Str(Indexl)

end; { procedure UpperCase}

One caveat is in order: Unless you know what you're doing, you
should avoid messing with any elements beyond the current length of
the string. Turbo Pascal won't give you any sort of error, but you need
to be aware that you've just changed a portion of the string that won't
print unless you change the length as well. For example, the sequence
Token := 'Hello';
Token (b 1 : = '!';
WriteLn(Token);

will produce the output "Hello" rather than "Hello!", because Token[OJ
will still contain a length of 5. If you add the statement Token[OJ :=
Chr(6); before the Writeln command, you'll write out the complete
string. Usually, though, this sort of "string surgery" is not necessary.
Similarly, be careful when using the standard procedure FillChar on
strings. In the following example
FillChar(Token, Sizeof(Token), 32);

Strings 165

the string variable Token is filled with spaces and the length byte is set
to 32. The best way to initialize a string is with a null assignment, for
example:
Token := ";
This statement simply sets the length byte of Token to O. If you need to
fill a string with spaces, your FillChar statement should look like this:
FillChar(Token, Sizeof(Token), 32);
Token[O] := Char(Pred(Sizeof(Token)));

STRING COMPARISONS

Just like numbers, strings can be compared to each other. In Turbo
Pascal, you use the same operators to compare strings that you use to
work on any other type of data object: =, <, >, <=, >=, and <>.
How does the test for equality work? First, the lengths of the two
strings are compared. If they're different, then the strings are not equal.
If they're the same, then the characters in the two strings are compared,
starting with the first one and continuing until two characters are
different or all characters have been compared. If no characters are
different, the strings are equal.

Similar comparisons may occur if you want to see if a string is "greater
than" or "less than" another. For example, let's suppose you're sorting a
list of names into alphabetical order. At some point, you'll compare
two strings to find out which one comes before (is less than) the other.
The statement
if Strl) Str2 then ...

will take some action if, and only if, Str2 comes before Std. The test is
done exactly as if you were sorting the strings by hand: The first
characters are compared, then the second, and so forth. The test is
completed when either

• One of the strings has a character that is different from the corre
sponding character in the other string; in this case, the string that has
the character with the smaller ASCII code comes first.

• The end of one of the strings is reached before a difference is found;
in this case, the shorter string comes first.

• The strings are exactly the same; in thi~ case, either string can be said
to come first.

When doing string comparisons, it is important to remember that all
characters (spaces, symbols, and control characters as well) are included
in the comparison according to their positions in the ASCII code.

166 Turbo Tutor Owner's Handbook

Because all upper-case letters come before lower-case letters in ASCII,
capitalization is important. (You may find the procedure UpCase help
ful to make sure that the capital letters in a name like "MacGregor"
don't cause unexpected results.)

NUMERIC CONVERSIONS
Turbo Pascal provides two procedures for converting numbers to
strings and vice versa: Str and Val. These two procedures work much
like read and write; however, instead of reading from the keyboard or
writing to the screen, these procedures move information from. one
data object to another.

Str converts a number into a string, formatting it as if it were going to
write it on the screen. The number can be either integer or real, and
you can specify the number of columns that the string will take up.
(You can do this with Write as well, which you'll learn shortly.)

The syntax of a call to Str is
str(Value, St);

St must be a variable of any stritlg type, and Value :must be a vVrite
parameter of type integer or real.

A Write parameter is an expression that is followed by special format
ting commands to control how the value is converted into a string. The
complete set of rules for specifying Write parameters is included in
Chapter 14 of the Turbo Pascal Reference Manual; we'll briefly discuss
how they work for integers and real numbers here.

If Value is just an expression that yields a value of the type integer, then
St gets the decimal representation of that integer. If St is too small to
hold the string containing this representation, the right-most part of the
number is truncated.

However, if Value is an integer expression followed by a colon and
another integer expression, then the second integer expression gives the
number of columns in which to represent the number. The number is
"right-justified," which means the right-most digit is always in the last
column of the string. If the number of columns is too small to hold the
converted integer, Turbo Pascal places the· whole integer in the string
anyway (room permitting).

In case this is confusing, here are some examples to help clear things
up. Suppose the integer I is equal to 14916, and we have a string S with
a maximum length of 12. Here are some sample calls to Str and
their results:

Strings 167

Call Value of S Length of S

Str(I, S); "MCJ1b" 5
Str(I:12,S); II MCJ1b" 12
Str(I: 7,S); II M91b" 7
Str(I: 5,S); IMCJ1b" 5
Str(I: 3,S); IMCJ1b" 5
Str(I:15,S); II 11;" 12

If the last result seems surprising, remember that Turbo Pascal per
forms the conversion first, and then attempts to assign the result to the
string. If there is not enough room, the right-most characters of the
result are truncated, leaving the string shown.

For expressions of type real, one can specify either 1 or 2 integers,
separated by colons, to tell Turbo Pascal how to convert the number to
a string. If no formatting information is present, Turbo Pascal writes
the number out in exponential format, using 18 columns. If a single
integer is present, then exponential format is still used, but the integer
tells Turbo Pascal how many columns to use for the output string.
(If the number given is less than 8, Turbo Pascal will use 7 or 8
columns anyway.)

Most of us, however, like to read real numbers in an ordinary decimal
format, with digits separated by a decimal point. To get this format,
place 2 integers, separated by colons, after the real parameter of Sty.
The first integer will be used as the length of the output string, and the
second will specify how many digits below the decimal point are
shown.

Here are some calls to Sty with a real parameter, along with the
resulting strings. Let X (a real) = 4.281953E3, and let S be of the type
string[18].

Call Value of S Length of S

Str(X, S); II 1;.281CJ530000E+03" 18
Str(X:11;, S); 11;.281CJ5300E+03" M
Str(X:12:3,S); II 1;281.'153" 12
Str(X:12:0,S); II 1;282" 12
Str(X:10:7,S); "1;281.'1530000" 12
Str(X:12:5,S); II 1;281.'15300" 12
Str(X: 5:1;,S); "1;281.'1530" 'I

In general, note that the string length is set equal to the field width (the
first number specified). If the width is too small (such as X:l0:7, X:5:4,
or 1:3), it is increased to fit the number. If the field is wider than is
necessary, then the number is right-justified; that is, bla!Lks are put in
front of the number to fill out the remaining space. In the case of real
numbers, rounding off is done when needed.

The second procedure, Val, converts from a string to a number (again,
either real or integer). The string itself must contain only a number and
no characters other than +, -, ., and E in the appropriate places. And,

168 Turbo Tutor Owner's Handbook

of course, the number in the string must be of the same type as the
variable to which Val is converting it. Since there are so many chances
for error, Val has a third parameter, a result value, which tells you
whether or not there are any problems. If the result is greater than 0,
then this last parameter indicates the character of the string at which it
ran into problems. If the result is 0, then either there were no problems
during the conversion, or the string is completely empty. In any case, if
there is a problem, the numeric variable that is to be the destination of
the conversion operation is unchanged. Here are a few examples:
Val(S, I, Result);

Contents of S I Result

IM91b" M91b 0
II 3211 <unchanged> 1 {space}
1111 <unchanged> 0 {error, but no chars}

Val(S, X, Result);

Contents of S X Result

1IL;2B1.953" L;2B1.953 0
II 332.3" 332.3 0
II 332.3" <unchanged> 7 {space}
"L;,2B1 11 <unchanged> 2 {comma}
1111 <unchanged> 0 {error, but no chars}

A word of caution for those of you using 8-bit (CP/M) systems: Do
not use Str or Val within a function that is itself called within a Read,
Readln, Write, or Writeln statement. Strange and undesirable things will
happen as a result. Instead, call the function beforehand, assigning its
value to a variable, then use that variable in the input or output
statement. (Those of you with 16-bit machines (CP/M-86, MS-DOS)
needn't worry about any of this.)

STRINGS AS PARAMETERS

You've probably noticed in these examples that whenever we've passed
a string to a procedure or function, we've given that parameter a
named type, like BigStr or TokStr, rather than string[255] or the like.
For example, we used
procedure GetWord(var Line, Word BigStr);

instead of
procedure GetWord(var Line, Word: string[2551);

In Turbo Pascal, you cannot directly declare a parameter as a string of
an anonymous string type. Instead, you must declare a named data
type that is equivalent to a string of some length, then use that data
type in the parameter declaration, like this:

Strings 169

program ParseText;
type

BigStr = strlng[2551;
procedure Parse(var Line, Word BigStr);
begin
end; { procedure Parse }

When strings are passed as parameters to procedures, it is usually
a good idea to pass them as var parameters, rather than as value param
eters (parameters declared without the reserved word var). As we
mentioned in Chapter 12, parameters that are passed by value are
copied when the subprogram is called-requiring more time and
space than var parameters. However, when a string is passed as a
var parameter, the Turbo Pascal compiler imposes a restriction that
may at first seem like an inconvenience: It requires that the formal and
actual parameters have the same maximum length. Thus, if you try to
call the procedure Parse from the previous example, with a string
whose maximum length is 80, Turbo Pascal will indicate a "type
mismatch" error.

The reason for this restriction is to prevent you from placing more
characters into the parameter than it can hold, possibly writing over
other important memory locations in the process. However, if you are
careful (and especially if you are not going to change the parameter but
are making it a var parameter to save time and space), you can disable
this kind of error checking. The compiler directive {$V-} turns it off,
and the directive {$V +} turns it back on.

With this directive disabled, Turbo Pascal will no longer check to see if
the string lengths match. Like most "disable" options, you should use
this with caution. If you aren't careful when passing strings with
different maximum lengths to the same procedure, you can get some
bizarre errors. We recommend that if you do disable checking of string
parameters, turn the check off for each specific call, and then turn it
right back on again:
{$V-} { turn off string checking
Parse(TLine,Tword);
{$V+} { turn on string checking

This way you will turn it off only where you actually need to.

REVIEW

In this chapter, we have learned about Turbo Pascal's string types, and
how to use them to manipulate strings of characters. We've shown the
syntax of a string type declaration, and discussed such operations
as string comparison, string assignment, and Turbo Pascal's built-in
string procedures and functions. We ended with a discussion of Turbo's

170 Turbo Tutor Owner's Handbook

string conversion routines and some of the finer points of using
string parameters.

In the next chapter, we'll discuss records, another structured type that
can combine data of many different types into one unit.

Strings 171

172 Turbo Tutor Owner's Handbook

15 Records
We've told you about arrays and strings, both of which allow you to
create collections of objects of the same type. But what if you want a
collection of objects of different types, such that, like an array, the entire
collection can be referred to by a name? For this purpose, Pascal offers
another kind of structured type: records.
Let's return for a moment to our checkbook example from Chapter 12,
to see how records might be useful. Originally, we declared an array of
real numbers to hold the check amounts:
var

Check: array[1 .. 101 of real;

Now suppose that, along with the amount of each check, we wanted
to store the date it was written and to whom it was written. How
could we do this? One way might be to declare many arrays, each
using the check number as an index, to hold each piece of information
about a check. The arrays might look something like this:
type

CheckNumType
MonthType

DayType
YearType
PayeeType

var

1 .. 1000;
(January, February, March, April, May, June,
July, August, September, October, November,
December) ;

1 .. 31;
1980 .. 2000;
strlng[~oJ;

CheckAmt array[CheckNumTypel of real;
CheckMonth array[CheckNumTypel of MonthType;
CheckDay array[CheckNumTypel of DayType;
CheckYear array[CheckNumTypel of YearType;
CheckPayee array[CheckNumTypeJ of PayeeType;

This technique works, and is often used in languages like FORTRAN,
where there is no other alternative. However, these data structures
don't really accomplish grouping all of the information about a single
check together as a unit. Instead, the information on each check is
spread among many arrays, and must be "pieced together" when a
complete set of information about the check is desired. For instance; to

173

make a working copy of the information for one check, say, check N,
you might have to write the statements
CheckCopyAmt CheckAmt[Nl;
CheckCopyMonth CheckMonth[Nl;
CheckCopyDay := CheckDay[Nl;
CheckCopyYear CheckYear[Nl;

instead of being able to write something like
CheckCopy := Check[Nl;

and transferring all of the information with a single assignment state
ment. Record structures solve this problem by allowing you to create a
data object that consists of smaller objects of different types bundled
together. These smaller objects, called fields, can be accessed individu
ally, or the entire record can be referred to by name.

We'll now demonstrate how to create a record type for the checkbook
example. We want each variable of this type to contain all information
related to a single check: amount, date, and to whom it was written.
Here's how the record type might be declared:
type

Check = record
{ The reserved word IIrecord ll identifies' a record type }

Amt real; { Each field of the record
Month MonthType; has a name and a type}
Day DayType;
Year YearType;
Payee PayeeType;

end; {The reserved word lIend ll marks the end of the record}

What does this definition mean? It defines a type called Check, which is
a record type. Each object of the type Check consists of a group of
smaller data objects (fields), each with a name and a type. The field
Amt, which holds the check amount, is of type real. The next field,
Month, contains an object of the type Month Type, which holds the
month the check was written, and so on.

Now, suppose you have a variable called MyCheck, which you have
declared to be of the type Check. How do you access the individual
objects within MyCheck? You do this by writing the name of the record
variable (MyCheck), followed by a period, followed by the name of the
field. Thus, you can refer to the amount of MyCheck by writing
MyCheck.Amt

Here is a program fragment that shows how you might declare the
variable MyCheck and fill its fields with values.

174 Turbo Tutor Owner's Handbook

var
MyCheck Check;

begin
MyCheck.Amt tOo.oo;
MyCheck.Month February;
MyCheck.Day to;
MyCheck.Year tq8b;
MyCheck.Payee 'Philippe Kahn' ;

As we suggested previously, however, one of the powerful features of
records is that they can be copied all at once by a single assignment
statement. If My Check and YourCheck are both variables of type Check,
then the statement
YourCheck := MyCheck;

will copy all of the fields from MyCheck into YourCheck.
What kinds of data objects can you use as the fields of a record? Almost
anything, subject, of course, to the restriction that no Turbo Pascal data
structure can be larger than 65535 bytes. Arrays, strings, scalars, and
even other records may be the fields of a record.

If a record contains another record, you can access the subrecord and its
fields exactly the way you access the arrays contained within a multidi
mensional array. Suppose you declared a record type like this:
type

Transaction = record
Purpose str1ng[801;
Payment : Check;

end;
The record type Transaction contains two fields: a string of 80 charac
ters, whose field name ~ Purpose, and a record of the type Check, whose
field name is Payment. If Sale were a variable of type Transaction, then
you could refer to the Payment field of Sale as Sale . Payment, and to the
Amt field of Sale. Payment as Sale.Payment.Amt. You can also use record
types as the components of other structured types; in particular, you
can have an array of records. With this knowledge, we can rewrite the
data structures for our checkbook-balancing program as

type
CheckNumType
MonthType

t .. tooo;
(January, February, March, April, May,
June, July, August, September, October,
November, December);

DayType
YearType

PayeeType
Check

Amt

t .. 3t;
tQ8o .. 2ooo;

str1ng[t;01;
record

real;

Records 175

Month
Day
Year
Payee

end;

var
CheckBook

MonthType;
DayType;
YearType;
PayeeType;

: array[CheckNumTypeJ of Check;

which is exactly what we wanted in the first place.

To work with an individual field of a check within the array Check
Book, we could write statements of the form
for N := 1 to NumChecks do {Total the amounts of the checks}

Total := Total + CheckBook[NJ.Amt;

Figure 15-1 and Figure 15-2 depict the formal syntax diagrams for a
record type declaration.

record type --..crecord H field list ~

Figure 15-1 Syntax Diagram of Record Type

field list --'---I~~I fixed part ~ variant part

Figure 15-2 Syntax Diagram of Field list

(For the moment, disregard the box labeled "variant part"; we'll cover
this feature later in the chapter.)

THE WITH STATEMENT

Previously, we showed you how to access each field of a record
individually in order to assign values to those fields. You had to type in
the name of the record variable, plus the name of the field, for every
assignment:
MyCheck.Amt := lOO.DO;
MyCheck.Month := February;
MyCheck.Day 10;

This can get rather tedious, especially if many fields are to be assigned.
For this reason, Pascal provides you with a shortcut that eliminates
typing the name of the record variable repeatedly: the with statement.

Using the with statement, you can tell the compiler the name of the
record variable you are using and then refer to its fields using the field
names. The following is an example of a with statement that performs
the same assignments as the previous statements:

176 Turbo Tutor Owner's Handbook

with MyCheck do
begin

Amt := 100.00;
Month := February;
Day := 10;

end;

{ Assigns to MyCheck.Amt
Assigns to MyCheck.Month
{ Assigns to MyCheck.Day

The syntax diagram of the with statement is shown in Figure 15-3.

with statement

Figure 15-3 Syntax Diagram of With Statement

While it isn't good practice to do it, Pascal allows you to have field
identifiers that are the same as the names of variables, types, constants,
procedures, and so on. Thus, when using the with statement, remem
ber you are creating a special scope in which the field names will take
precedence over, and perhaps "hide," other identifiers. In the previous
example, if you had had a variable called Month, it would not have been
accessible within the with statement.

With statements can also be nested; for instance, it is legal to do
the following:
var

Sale: Transaction; { as defined in the earlier example}

begin

with Sale do
with Payment do
begin

Amt := 100.00;
Month := February;
Day 10;

end;

{ Assigns to Sale.Payment.Amt
Assigns to Sale.Payment.Month
{ Assigns to Sale.Payment.Day

. Of course, the variables specified in the nested with statements need
not have any relationship to each other at all. For example, we
can write:
var

FirstRecord : record { An "anonymous" record type
Fieldl, Field2 integer; {If fields are of the same

Field3
end;

type, we can declare them together
: real;

Records 177

SecondRecord
FieldL;
FieldS

end;

record Another "anonymous" record type }
real;
integer;

begin

with FirstRecord do
with SecondRecord do
begin

end;

Within this compound statement, the fields of
both records (Field1 ... FieldS) can be accessed
by their field names }

However, if with statements are nested, and two of the with variables
have fields of the same name, the most-deeply nested with takes
precedence. If we modify the previous example so that some of the field
names are the same, we can see what happens:
var

FirstRecord : record
Field1, Field2 integer;
Field3 : real;

end;

SecondRecord
Field1
Field2

end;

record
real;
integer;

begin

with FirstRecord do
with SecondRecord do
begin

Within this compound statement, the identifiers
Field1 and Field2 refer to SecondRecord.Field1
and SecondRecord.Field2, respectively. Field3
still refers to FirstRecord.Field3, since there
is no overlap. The "hidden" fields of FirstRecord
can still be accessed by their full names:
FirstRecord.Field1 and and FirstRecord.Field2 .}

end;

The Pascal language allows one more "trick" to make with statements
more convenient to use. Instead of nesting with statements, you may
specify a list of variables in a single with statement to accomplish the
same thing. The statement
with FirstRecord, SecondRecord do

is precisely equivalent to
with FirstRecord do

with SecondRecord do

178 Turbo Tutor Owner's Handbook

There's one more point to remember when working with the with
statement: When the with variable is an element of an array, do not
change the value of the index inside the with statement. The code
shown in the following example demonstrates what not to do:

var
CheckBook array[CheckNumTypel of Check;
I : integer;

begin

I : = 1;
with CheckBook[Il do
begin

I := 5; { Depending on the compiler, this mayor may not
change what location the fields of the "with"
variable refer to. The Pascal language does
not define what will happen in this case. }

end;

While we haven't discussed pointer variables yet, it's important to note
that the same restriction applies when the with variable is pointed to
by a pointer: The pointer may not be changed. In general, the rule is
don't do anything that might change the identity of the with variable.

VARIANT RECORDS

Occasionally you may run into a situation where the same record, or
part of a record, may need to store differen~ kinds of data. For instance,
suppose you are creating a record type to keep track of sales transac
tions in a store. There is some information that you will want to track
under all conditions and in the same manner: the amount of the
purchase, how it was paid for, and the date and time of the transaction.
However, the way you record other information may vary. For
instance, if the person paid by credit card, you'd want to record the
kind of credit card, the credit card number, and the expiration date.
And if the person paid by check, you'd want the check number, the
amount of the check (in case the customer got cash back from the
transaction), and the customer's driver's license number.

One way to design such a record type is to allocate a separate field for
every possible piece of information, leaving the unused fields empty.
The record type definition might look something like this:
type

MonthType

DayType

(January, February, March, April, May,
June, July, August, September, October,
November, December);

1 .. 31;

Records 179

YearType
PaymentType
Card Type

1980 .. 2000;
(Cash, Check, CreditCard);
(Amex, Visa, MC);

Purchase record
Amount real;
Month MonthType;
Day DayType;
Year YearType;
Hour o .. 23;
Minute 0 .. 59;
MethodOfPayment: PaymentType;
CheckNumber: integer; These fields used for

check purchases only }
CheckAmt: real;
LicenseNumber: string[2oJ;
Card : CardType; { These fields used for

ExpMonth: MonthType;
ExpYear: YearType;

card purchases only }

end; {record Purchase

While this sort of definition will do the job adequately, it can waste
large amounts of storage space. No matter what kind of purchase is
made, some of the fields are guaranteed to be left empty.

To help economize on storage space, Pascal provides a feature called
a variant record, which allows mutually exclusive fields (fields that will
never be used at the same time) to share the same storage space
within the record. The result can be a dramatic reduction in
memory consumption.

Here is how to define a variant part for the previous record, allowing
the mutually exclusive fields for check and credit card information to
overlap. Note that the variant part of a record must corne after all
normally existing fields (the fixed part).
Purchase = record

Amount : real;

Minute: 0 .. 59;
case MethodOfPayment : PaymentType of

{ Beginning of variant part }
Check : (CheckNumber: integer; { First variant

CheckAmt: real;
LicenseNumber: string[2oJ);

CreditCard: Card : CardType; { Second variant
ExpMonth: MonthType;
ExpYear: YearType);

end; {record Purchase}

The variant part of a record begins with the reserved word case,
followed by the name and type of a special field of the record, called the
tag field. Here the tag field is MethodOjPayment. This field, besides
carrying information about the purchase, serves another purpose: By

180 Turbo Tutor Owner's Handbook

looking at MethodOjPayment, your program can decide what informa
tion it expects to find in the rest of the record.

Following the defmition of the tag field comes the reserved word of,
followed by one or more lists of field definitions. Each of these lists,
called a variant, describes how the remaining space in the record will be
used for a different value of the tag field.

If the value of MethodOjPayment is Check, then the rest of the space in
the record will hold the fields CheckNumber (the number of the check),
CheckAmount (the amount of the check), and LicenseNumber (the driver
license number of the issuer of the check). On the other hand, if
MethodOjPayment has the value CreditCard, then the same space is used
to hold the fields Card (the kind of credit card used), ExpMonth (the
expiration month of the card), and Exp Year (the expiration year of the
card). What happens, you may ask, if MethodOjPayment has the value
Cash? The answer is that there are no additional fields in the record, and
the remaining space contains no useful information.

The syntax of this optional part of a record definition, the variant part,
is shown in Figure 15-4.

type identifier

Figure 15-4 Syntax Diagram of Variant Part

As you can see in the diagram, the same variant might be used for
more than one value of the tag field. To illustrate this, suppose that we
added the value TCheck (for traveler's check) to the type PaymentType,
and we wanted the same information for this form of payment as we
did for a check. We could redefme things as follows:
type

PaymentType = (Cash, Check, CreditCard);

Purchase = record
Amount: real;

Minute: 0 .. 59;
case MethodOfPayment : PaymentType of

Check, TCheck : (CheckNumber: integer;

Records 181

CheckAmt: real;
LicenseNumber: string[20]);

CreditCard : (Card : CardType;
ExpMonth: MonthType;
ExpYear: YearType);

end; {record Purchase}

When using variant records, it is important to keep track of which
variant you are using at any given moment. Despite the fact that Pascal
lets you define different field names and types for different values of the
tag field, it does not check to make sure you are using the right ones.
Careless use of variant records can lead to scrambled data and disas
trous results. Usually, your program will have a case statement to
handle the different variants of a record. There are many possibilities;
this is just one technique that's worth including.

case ThisPurchase.MethodOfPayment of
{ ThisPurchase is of type Purchase

Cash: begin

end;
Check, TCheck:

begin

CheckAmt

end;
CreditCard:

begin

... etc.

Card ... etc.

end;

FREE UNIONS: OMITTING THE TAG FIELD

The computer science term for a variant record that includes a tag field
is a discriminated union, which is a combination, or union, of field
definitions that are discriminated from one another by the value of the
tag field. Pascal also allows you to use another kind of variant record,
or union, called a jee union.

In the syntax diagram for a variant part (Figure 15-4), you may have
noticed a path that we did not mention earlier: There is an arrow that
goes around the identifier (and the subsequent colon) for the tag field.
As you might guess, this means that it is possible to define a variant
part with no tag field, though a type must still be given.

182 Turbo Tutor Owner's Handbook

A free union is a variant record with no tag field. Usually, it is used in
one of two cases: (1) when the correct set of fields to be used can be
determined some other way than from a tag field, or (2) when the
programmer intentionally wants to represent two different types at the
same location in memory.

The latter is a sophisticated programming technique that is not to be
used by the unwary. We'll show you a little about how this might be
useful in the advanced section of this tutorial.

REVIEW

In this chapter, we introduced a group of structured types, called
records, that can be used to hold collections of variables of other types.
Records consist of fields that hold these variables, with each field
having a distinct name and type.

The with statement can be used to make referring to the fields of
records easier. Variant records can save storage space by using the space
in a record variable to hold more than one data object (depending on
the value of a tag field).

Free unions, or variant records without tag fields, can be used when
there is no need for a tag field, or for when there is a need for some
advanced programming techniques.

In the next chapter, we'll discuss one more kind of structured type: the
set type.

Records 183

184 Turbo Tutor Owner's Handbook

16 Sets
You may remember the concept of sets from your early math classes; if
you do, you're ahead of the game, because sets in Pascal are very
similar. In Pascal, a set is a collection of zero or more objects of the
same scalar type (called the base type), which has some properties that
make it an especially efficient way to store information.
There may be times when you want to check to see if a value of a scalar
type (integer, byte, char, boolean, and so on) belongs to a set of values
of that type. For example, suppose you had a program in which you
needed to test whether Ch, a variable of type char, contained a vowel or
not. Without the use of sets, how would you accomplish that? You
could write out a long if statement:
if (Ch = 'a') or (Ch = 'e') or (Ch = 'i') or (Ch = '0')

or (Ch 'u') or (Ch 'y') or (Ch 'A') or (Ch 'E')
or (Ch = 'I') or (Ch = 'a') or (Ch = 'U') or (Ch = 'Y')

then

Unfortunately, the statement structure of this test is somewhat hard to
read. Also, the characters you're testing for are fixed, and are not easy
to change without rewriting the statements.

Fortunately, the Pascal set affords you a better way to describe to the
compiler the list of allowable characters. To rewrite the previous test
using a set, we could create a set that contained all the vowels in the
alphabet by listing them between square brackets. Then, we could use
the Pascal set operator, in, to see if Ch was there. With sets (and with a
little help from the UpCase function), the test would look like this:
if Up Case (Ch) in ['A', 'E', 'I', '0', 'U', 'Y'] then •..

which is much easier to read and understand. This set is a set of objects
of the type char, but a set can be defmed to hold objects of any scalar
data type. There is one restriction, though: The base type of the set (the
type of objects contained within it) must not have more than 256
possible values. Thus, you could defme a set of objects of the type byte,
which has exactly the maximum number of possible values, or a set
of objects of the subrange type 75 .. 98. But you could not defme a

185

set of objects of the type integer, because there would be 65,536
possible values!

Pascal sets are proper sets; that is, no object can be contained in such a set
more than once. Thus, a Pascal set can have at most 256 members. To
remember whether or not an object is in a set, Pascal sets or clears a
single bit in memory. Thus, a set of the maximum size is only 32 (256/
8) bytes long-a very efficient use of storage.

BUILDING A SET: THE SET CONSTRUCTOR

A set constructor consists of a list of expressions of the same scalar type,
separated by commas and enclosed by square brackets ([and]). If there
are many elements, and some of them have consecutive ordinal values,
you can use the same notation used for subranges (that is, two expres
sions separated by two periods C .. ')). Here are some examples of set
constructors:
[]

[1,3,5,7,9]
['A' .. 'Z']
[Mon,Wed .. Fri]

{ empty set contains nothing
{ set of byte
{ set of char

[Jan .. Aug,Oct .. Dec]
{ set of Days
set of Months

It's important to remember that the objects within a set constructor
need not be constants. They can, in fact, be any kind of expression
whose result is of the base type of the set. This feature (which is
unknown even to some experienced users of Pascal) can make the use
of sets especially convenient. For instance, suppose A is a variable of
the type char. To construct a set that consists of all the characters from
the character stored in A to the letter 'w', you could write the set
constructor
[A •• 'w']

Of course, if there are no characters between A and 'w' (that is, A is
past 'w' in the ASCII character set), the result is the empty set.

DEFINING A SET TYPE

To define an object of a set type, use the reserved words "set of,"
followed by the name of the base type, or you can also supply an
anonymous type--usually a subrange--as the base type. Here are some
examples of set types:
type

CharSet = set of char;
{ Set of objects of the type char }

MonthDays = set of 1 .. 31;
{ Set of objects of the

(anonymous) subrange type "1 .. 31"

186 Turbo Tutor Owner's Handbook

DayType = (Sun, Mon, Tue, Wed, Thur, Fri, Sat);
Days = set of DayType;

{ Set of objects of DayType
WorkWeek = set of Mon .. Fri;

{ Set of objects of the
(anonymous) subrange type IMon .. Fri".

Colors = set of (Red, Green, Blue);
{ Set of objects of the (anonymous) defined

scalar type (Red, Green, Blue) }

The syntax diagram in Figure 16-1 shows precisely how to specify a set
type.

set type

Figure 16-1 Syntax Diagram of Set Type

Here's a simple example that shows one very good use for sets: It
makes sure that a character input from the user is a legal command for
a program.
program charTest;
{$V-} { to avoid any problems passing strings }
type

CharSet set of char;
Prompt string[80);

var
Cmd

procedure
char;

Getchar(var Ch : char; Msg : Prompt;
OKSet : CharSet);
{ Write a message, then get a character

from the user. Ignore any character that
is not in the set OKSet. }

begin
Write(Msg);
repeat

Read(Kbd,Ch);

Ch := UpCase(Ch)
until Ch in OKSet;
WriteLn(Ch)

end; {procedure GetChar

begin {Statement Part of
repeat
Getchar(Cmd,'CharTest>

['5','C','Q');
case Cmd of

read the character from the
keyboard, but do not echo it }

{ force Ch to be uppercase

program charTest }

S)peak, C)ount, Q)uit: , ,

'5' Writeln('Woof!
'c' : Writeln('l, 2,

end

Woof!');
3, 4, 5, 6, 7, 8, 9, 10')

until Cmd ='Q'
end. {program charTest

Sets 187

A procedure like the previous GetChar prompts the user with a mes
sage, then lets him or her type in a single character. It converts the
character to upper case, then checks to see if it's a valid command. If
not, it waits until a valid character is entered. The in operator is used to
see if the character is in the set of legal characters. The in operator is
one of a large selection of operations available for use on Pascal sets, as
you will see in the next section.

SET OPERATIONS

The Pascal language provides operators to form the union, intersec
tion, and set difference of any two sets. Also available are the member
ship operator, in; the subset operators, <= and >=; and the equality
operators, = and < > .

Set Membership: The In Operator

In the sample program we used the operator in to determine whether a
character was part of a set of characters. The expression
Object in SetOfObjects

returns the boolean value TRUE if and only if Object is of the base type
of SetOjObjects and Object is a member of SetOjObjects. Note that Object
can also be represented by an expression as long as it is of the proper
type.

Set Equality and Inequality

The equality and inequality operators, = and < >, do precisely what
you might expect when used on sets: They return the value TRUE
whether the two sets that they operate on have exactly the same
members (for =) or not (for <». In either case, it is not required that
the sets have exactly the same base type, as long as the base types are
compatible. For instance, suppose we executed the following program
fragment. What would the output be?
program EqualityTest;
var

Set1 set of char;
Set2 : set of 'a' .. 'x';

begin
Set2 := ['a', 'b', 'g' .. 'w'];
Set:L := Set2;
Writeln(Set1 = Set2);

end.

If you guessed TRUE, you are correct. Since all of the elements of Set1
and Set2 are the same, they are considered to be equal.

188 Turbo Tutor Owner's Handbook

Set Union, Intersection, and Difference
The set union operator (+) returns a set that contains any member that
is in either of its operands. The set intersection operator (*) returns the
elements that are common to both of its set operands. And the set
difference operator (-) returns the elements that are in its first operand,
but not in its second.

Here are some examples that illustrate the use of these operators. Given
the sets A, B, and C, all of the type set of char, suppose that

A ['A' .. 'Z']
B ['A', 'C', 'E', 'G']
C ['A' .. 'D', 'Z']

then

A * B
A * C
B * C
B - A
A - C
B - C

['A','C','E','G']
['A' .. 'D','Z']
['A','C']
[]

['E' .. 'Y']
['E','G']

Set Inclusion Operators

A + B ['A' .. 'Z']
A + C ['A' .. 'Z']
B + C ['A' .. 'D', 'E', 'G', 'Z']
A B ['B','D','F','H' .• 'Z']
C A []

C B ['B','D','Z']

The operators < = and > = have special meanings when used with
sets. The >= operator returns the boolean value TRUE when its
second operand is a proper subset of the first; that is, when all the
elements of the second operand are included in the first. Similarly, the
< = operator returns TRUE if and only if the first operand is a proper
subset of the second. Thus, given A, B, and C from the previous
example
A (= B B =) A is False
A (= C , C =) A is False
B (= C , C =) B is False

Set Disjunction

B (= A , A =) B
C (= A , A =) B
C (= B , B =) C

is
is
is

True
True
False

Finally, the condition of set disjunction, in which two sets have no
members in common, can be tested by evaluating the truth of the
expression
A * B = []
that is, if the set of elements in common between the two sets is the
empty set, then they are disjoint.

Sets 189

REVIEW

In this chapter, we explained the concept of a Pascal set: how· it is
constructed, how it is defmed, and the operations that can be per
formed on it.

In the next chapter, we'll begin our discussion of pointers-the facility
that allows your program to create new data objects while it
is running.

190 Turbo Tutor Owner's Handbook

17 Pointers and Dynamic
Allocation

Up to this point, whenever you have created a data structure such as an
array, you have had to determine the size of such a structure in
advance. For instance, in the checkbook example, we reserved space for
an array of records, each holding the information about a single check:
type

CheckNumType
MonthType

DayType
PayeeType
Check = record

Amt real;

1 .• 1000;
(January, February, March, April, May,
June, July, August, September, October,
November, December);

1 .. 31;
strlng[L;O] ;

Month MonthType;
Day DayType;
Year YearType;
Payee PayeeType;

end;

var
CheckBook : array [CheckNumTypeJ of Check;

In this case, there are as many records in our array as there are elements
in the index type CheckNum Type.

The problems that can arise when an approach like this is used are
threefold. First, the program may be called upon to balance a very
large checkbook, in which case the 1000 records we allocated might not
be enough. Second, the number of checks written might be very small,
in which case a vast amount of space would be wasted (here, 50 bytes
of memory per unused record). And finally, there is the problem of
exceeding the memory capacity of the machine you are using. If each of
these records takes up 50 bytes of memory, and the array is 1000 checks
long, then the array will take up 50K of space. This is more than what
will be available on a CP/M system, and comes close to the size limit
for a data object on even a large MS-DOS system.

191

How, then, do we solve the problem of allocating enough, but not too
much, space in memory for our data? And how can we "change our
minds" about how much memory we need while the program is
running? Pascal's pointer and dynamic memory allocation features provide
answers to these questions.

POINTERS
So far, every Pascal data object we've created has had a name or an
identifier (possibly accompanied by array indices and/or field names)
that can be used to access it. However, if we are going to create brand
new data objects while the program is running, then we have a
problem. Since we don't know in advance what objects we are going to
create, or how many, how can we give the compiler names for them?
(Remember, the compiler, which keeps track of the names of objects,
has finished its job and may no longer even be in memory by the time
the program runs.)

While the Pascal language is very powerful, one thing it can't do is go
back in time and tell the compiler what to name these objects. In fact,
the objects that we are going to create will not have their own names at
all. How, then, can we manipulate data objects if we don't know their
names? The answer is that we will "point" to them, and by doing so
show the program where they are in memory. For this purpose, we are
going to define a new kind of variable, a pointer.

A pointer is a variable used to record the address in memory where a
dynamically created data object (one created while the program is
running) is stored. When the program creates a new data object, it
fmds an unused place in memory to put that object. It then gives you a
pointer that points to the location in memory that it chose. Besides
holding a memory address, each pointer has a type associated with it (a
type of object it can point to). This way, when you use the pointer to
refer to an object, Pascal knows what kind of object it is as well as
where it is.

Suppose, for instance, you wanted to be able to create new data objects
of the type integer while your program is running. To do this, you'd
need at least one pointer variable to keep track of them. So, you might
declare a pointer variable as follows:
var

IntPointer : Ainteger;

The notation ""integer" is called a pointer type, and is read as "pointer to
integer." When we declare IntPointer of the type "integer, we are saying
that IntPointer is a pointer, and that it may only point to objects of the
type integer. Another way of saying this is that IntPointer is bound to
the type integer. You can create a pointer type that points to any type

192 Turbo Tutor Owner's Handbook

of data object at all, and define as many pointers of that type as you
like. For instance, here's how we'd define a pointer type to point to a
record of the type Check, and also create a few pointers of that type:
type

CheckPointerType = ACheck;
{ A type of pOinter which is to be used

to point to objects of the type Check
var

{ Three pOinter variables, each of which can point
to an object of type Check }

CheckPointer1 : CheckPointerType;
CheckPointer2 : CheckPointerType;
CheckPointer3 : CheckPointerType;

The syntax used to specify a pointer type is very simple (see the syntax
diagram in Figure 17-1).

pointer type --~~@----I type identifier

Figure 17-1 Syntax Diagram of Pointer Type

DYNAMIC ALLOCATION:
THE NEW PROCEDURE
Now that you understand what a pointer is, let's look at how to use
them to create and manipulate data objects. To create a new data
object, Pascal provides a built-in routine that does the work for us: the
procedure New.

In the first example, we'll use the pointer variable IntPointer (defined
earlier) to create a new object of the type integer. We can do this by
making a call to the procedure New:
New(IntPointer);

This call causes a new variable of the type integer to be created in an
unused portion of the computer's memory. The pointer variable
IntPointer is then changed so that it points to the new variable.

What would happen if we made the call New(IntPointer) a second time?
Well, Pascal would oblige us by reserving space for yet another variable
of the type integer, and change IntPointer to point to that object. So
what happens to the first integer allocated? Does it go away? The
answer is no, its place in memory is reserved just as before. However,
the second call to New destroyed the old value of IntPointer, which was
the only record of that variable's location. The variable is still there, but
we have both literally and figuratively "lost its address."

Pointers and Dynamic Allocation 193

For this reason, it is important to keep a pointer to each dynamically
allocated variable that you create. We'll show how to "destroy" such a
variable and free the space it occupies for other purposes later in this
chapter.

DEREFERENCING POINTERS

After you have created a variable using a pointer, how do you access it?
As we've mentioned, the way to do this is to use the pointer variable to
"point" to a location in memory. The process of finding the object to
which a pointer variable points is called dereferencing the pointer; this is
signified in Pascal by the caret symbol (A).
For instance, to refer to the variable pointed to by IntPointer, we use the
notation IntPointerA • The following program fragment sets IntPointerA

to 6, then prints it out:

IntPointerA := 6;
Writeln(IntPointerA

);

A dereferenced pointer can be used anywhere you can use an object of
the type that it points to, and the dereferencing symbol can be followed
by indices (for array types), field selectors (for record types), or both.
For instance, if we wanted to write out the amount of the check
pointed to by CheckPointer1, we could write
Writeln(CheckPointer1 A .Amt);

Similarly, if we wanted to write out the fifth letter of the name of the
payee of the same check, we could write
Write(CheckPointer1 A .Payee[Sl);

Pointers, like all variables, can be assigned the value of other variables
of the same type. The assignment statement
CheckPointer2 := CheckPointer1;

does what you would expect it to do: It assigns the value of Check
Pointed to CheckPointer2, so that both pointers will point to the same
data object. Of course, to try to assign the value of a pointer that points
to one type to a pointer that points to another type is illegal. The
statement
IntPointer := CheckPointer1;

will cause an error when you try to compile it.

THE NIL POINTER

When you dereference a pointer, make certain that the pointer contains
the legitimate address of a variable in memory. Like all variables in

194 Turbo Tutor Owner's Handbook

Pascal, a pointer variable that has not been assigned a value (either by
the New procedure or by assigning it a value from another pointer) can
have any value at all. This means that dereferencing an undefmed
pointer can be particularly destructive. Changing the memory location
pointed to by such a pointer can alter any part of memory at all,
including the operating system, your program, or any data. One
incorrect pointer reference can instantly crash your entire system.

For this reason, Pascal has provided a special value to which you can set
a pointer. This value is represented by the reserved word nil, which in
essence means that the specified pointer does not point to any valid
object.

Whenever you use pointers, it is a good idea to set them to nil if you
know they do not currently point to valid data. It is also good practice
to test pointers to see if they are equal to nil before using them.

The value nil can be assigned to any variable of a pointer type. You can
test to see whether a pointer is equal to nil or not by using a compari
son of the form
IntPointer nil

or
IntPointer () nil

Equality and inequality, by the way, are the only relational operators
that may be used on pointers.

LINKED LISTS

Now we're ready to show you how to solve the problem of maintain
ing a list of any number of checks. The last piece needed to solve the
puzzle is a data structure you can build from dynamically allocated
records and pointers: the linked list.
To illustrate how useful linked lists can be, let's show two more
approaches to the checkbook problem. First, we'll show a better
solution that uses arrays of pointers, and then we'll show the linked
list approach.

One way to store checkbook information might be to use an array of
pointers, one for each check. Then, as needed, we could create new
variables to hold the check information itself To do this, we'd declare:
type

CheckNumType
MonthType

DayType
YearType
PayeeType

1 .. 1000;
(January, February, March, April, May,
June, July, August, September, October,
November, December);

1 .. 31;
1980 .. 2000;
strlng[L;01;

Pointers and Dynamic Allocation 195

Check =
Amt
Month
Day
Year
Payee

end;

record
real;
MonthType;
DayType;
YearType;
PayeeType;

CheckPointer = ACheck;

var
CheckBook: array[CheckNumTypeJ of CheckPointer;
{ Now an array of pointers. }

The array CheckBook, which used to be an array of records of the type
Check, is now an array of pointers, variables of the type CheckPointer.
How does this save us space? As you may recall, a record of the type
Check consumes about 50 bytes of memory. However, a pointer in
Turbo Pascal consumes 4 bytes of memory on a 16-bit system, and
only 2 bytes of memory on an 8-bit system. Thus, we have allocated a
much smaller amount of space initially (by a factor of 25 or 12.5,
depending on the system), and can allocate the rest only if it's needed.

To keep track of the checks in the book using this data structure, you
would probably want to initialize all of the elements .of the CheckBook
array to nil. In Turbo Pascal, the value nil is represented by a pointer
whose bytes are all zero, so we can use the array-initializing trick we
mentioned in Chapter 13, and write
FillChar(CheckBook, SizeOf(CheckBook) , 0);

which will set all of the pointers in the array to nil.
From that point on, we perform the New procedure on each element of
the array CheckBook that we need to store information on. Then, if we
need to access the information for check number I, we can perform an
operation like this:
if CheckBook[IJ = nil then

Writeln('No information on this check!')
else

Writeln('The amount of check #',I,' is "
'CheckBook[IJA.Amt');

Again, before using it, we double-check that the pointer we are about
to dereference is not nil. In doing this, we may be able to save a little
more memory with a simple convention: A nil pointer can stand for an
outstanding check. Thus, we need not consume space for checks for
which we are not storing any information.

While this method is much better than allocating a record for every
check we might (or might not) want to track, it could still waste space
if some of the pointers in the array CheckBook were not used. Also, if
the number of checks turn out to be larger than the number of pointers

196 Turbo Tutor Owner's Handbook

in CheckBook, we'd once again face the problem of running out of
room in the array. What we'd really like to do is dynamically allocate
not only the records, but the pointers to them as well, so that no space
will go unused.

To do this, we can string the Check records together in a linked list, a
list of records in which each record contains a pointer to the next record
on the list. Thus, each time we allocate a new record, we allocate a new
pointer as well, so that there is always a pointer available to point to the
next object added.

To clarify, let's look at the declaration for a new kind of record of the
type Check, one which includes a pointer that can point to the next
check on the list.
type
CheckPointer = ACheck; This definition is allowed to

precede the definition of the
type Check. }

Check = record
CheckNumber
Amt
Month
Day
Year
Payee
NextCheck

end;

CheckNumType;
real;
MonthType;
DayType;
YearType;
PayeeType;
CheckPointer;
This new field can point to another record
of the type Check. }

In this example, we show the only exception to the rule that all Pascal
identifiers must be declared before they are used. We declare the pointer
type CheckPointer before we declare the type it is bound to (namely
Check), so that we can use it as the type of a field in Check itself Since
all pointers are the same regardless of what they point to, Pascal will
know, without knowing all about Check, how a pointer to this type
should be handled. However, if the type Check were to remain unde
fined, Pascal would flag the defmition as an error.

Having defined the type CheckPointer, we can place a field of this type in
the record type Check. Now, we can define a variable of the type
CheckPointer to point to the first record of the list. We'll want to set it to
nil to begin with, as well, so that the program can easily tell that there
are no items on the list.
var

CheckBook : CheckPointer;

begin

CheckBook nil;

Pointers and Dynamic Allocation 197

Until we need to store the information of the first check, this is all the
storage space needed. When it comes time to create a record for the first
check, we can use the statement
New(CheckBook);

to create the first record. We'll also want to set the NextCheck field of
the new record to nil, to indicate that there is no next check on the list.

As we need to reserve storage for each new check, we can make the
NextCheck pointer of the previous check on the list point to the new
check, and set the NextCheck pointer of the new last check to nil. As the
list grows, it will look like this:
CheckBook--> (Check Info) 1

NextCheck 1--> (Check Info) 1
NextCheck 1--> nil

Using this method, there is no wasted space and, again, checks for
which no information is stored need not have memory allocated for
them. In the preceding record definition, we added\another field to the
record Check to contain the number of the check, so that we would not
have to allocate records (or nodes, as they are sometimes called) for
unused checks.

To find a check with a particular number on the list, we can scan the
list from beginning to end. This process of reading through a linked list
is called traversing the list. The following shows a function that will take
a check number and a pointer to a list of checks, returning a pointer to
the check with that number:
function FindCheck (Num: CheckNumType;

FirstCheck : CheckPointer) : CheckPointer;

Given Num, the number of a check, and FirstCheck, a pOinter
to the first of a linked list of checks, return a pOinter
to the first check found on that list with the given
number. If no check with that number is found, return nil.}

begin {FindCheck}
FindCheck := nil; Start by assuming failure.
while FirstCheck (> nil do {Stop if end of list

if FirstCheckA.CheckNum = Num then
Check found? }

begin
FindCheck := FirstCheck;
Exit

end
else

If so, set the function }
result and exit from the }
routine right away }

FirstCheck := FirstCheckA.NextCheck;
{ Number doesn't match; point to next check, if any.

Note that since FirstCheck is not a var parameter, we
only change our local copy. }

end; FindCheck}

198 Turbo Tutor Owner's Handbook

In this function, we playa number of "tricks" to save storage and make
the code as efficient as possible. First, we make use of the fact that
FirstCheck is not passed as a var parameter, and use it as the "moving"
pointer to scan the list. (If FirstCheck were a var parameter, we couldn't
change it without losing the main program's only pointer to the list.)
We also use the special built-in procedure, Exit, to exit from the middle
of the function. If we did not use Exit, we would have to either traverse
the rest of the list unnecessarily, or force the loop to terminate by
setting FirstCheck to nil. The use of Exit here is simpler and more
efficient than the previously described techniques.

THE HEAP

The New procedure finds a place in memory for any dynamically
allocated variable you choose to create. For instance, if we use the New
procedure on the pointer CheckPointer1 (as defined earlier), we would
allocate 50 bytes for the new variable and return the address of that
variable in CheckPointer.
Where do these 50 bytes come from? When a Turbo Pascal program
runs, it reserves a large chunk of memory that remains after space has
been set aside for all of your code and your non-dynamic variables.
This area is called the heap. If you're using a CP/M system (which has,
at most, 64K of memory), have loaded Turbo Pascal, and are running a
large program, then the heap may be very small, possibly as small as
1K (enough to hold about 50 check records). On the other hand, if
you're using a 16-bit system (PC-DOS, MS-DOS, CP/M-86, and so
forth) with lots of RAM, then the heap can be very big. How big? A
program running under PC-DOS version 2.0 on a 512K IBM PC
system has over 430K of memory in the heap, or enough space for
about 8,800 check records.

How is the heap used? When your program starts running, a special
predefined variable called ReapPtr points to the first location in the
heap, sometimes called the "bottom" of the heap. When you call
New (IntPointer) , IntPointer gets the value of ReapPtr, and ReapPtr is
increased by the size of the data structure that IntPointer will point to.
The process continues, as necessary, until all of the space is allocated or
there is no further need for dynamically allocated variables.

THE MAXAVAIL FUNCTION

How can you make sure that there is enough room on the heap to
allocate a variable? You can discover the size of the largest free block of
space on the heap via the predefined function MaxAvail. In 8-bit
systems, MaxAvail returns the number of bytes left on the heap; in 16-
bit systems, it returns the number of paragraphs (l6-byte chunks).

Pointers and Dynamic Allocation 199

On both kinds of systems, it is possible to have a number of free bytes
(or paragraphs) larger than 32767. Since this is the largest value that can
fit in an integer, Turbo Pascal provides a special way of returning a
larger result from this function. If the result of MaxAvail is greater than
32767, the values will continue upward from the value -32768
(-32768, -32767, -32766, and so on). You can find the true number
of bytes or paragraphs free by testing to see if the result is negative; if it
is, assign it to a varible of type real and add 65536. O. The resulting real
will contain. the correct number. Here is a simple program to do the
conversion:
program WriteFree;
{ Write the amount of available heap space. The result is

given in bytes for a CP/M system, and in paragraphs
(blocks of 16 bytes) for a 1b-bit system. }

var
TrueFree : real;

begin
TrueFree := MaxAvail; { convert to real value}
if TrueFree < 0.0 then

TrueFree := TrueFree + 65536.0;
Writeln('Space available: ',TrueFree:7:o)

end.

DEALLOCATION OF DYNAMIC VARIABLES:
MEMORY MANAGEMENT

Once the procedure New creates a dynamically allocated variable, the
storage space allocated for it remains reserved until the program termi
nates, or until it is explicitly freed. There are two ways to free space on
the heap: using the standard Pascal procedure Dispose, or the Turbo
procedures Mark and Release.

Dispose
The Dispose procedure provides a simple, programmer-friendly form
of memory management. When a dynamically allocated variable is no
longer needed, you pass Pascal a pointer to it using the procedure
Dispose. The memory allocated to this variable will then be freed up so
that it can be used for other purposes. For instance, to free the memory
allocated for an integer object pointed to by the variable IntPointer, you
would write
Dispose(IntPointer);

However-and this is an important point-the value of the pointer
variable IntPointer does not change after a call to Dispose. Thus, until it
is assigned another legitimate value (or the va]ue nil), IntPointer points
to a location in memory that is no longer reserved.

200 Turbo· Tutor Owner's Handbook

Such a pointer is called a dangling pointer. Dangling pointers can be
every bit as dangerous as uninitialized pointers-they can destroy data,
Turbo Pascal's internal data structures, or both. Worse yet, if you
attempt to Dispose an unitialized or dangling pointer, you will almost
certainly cause your computer to crash. For this reason, never attempt
to dereference a dangling pointer.

What happens to the heap when you use Dispose on a dynamically
allocated variable? In Turbo Pascal, a list is kept of all areas of the heap
available for re-use. When you free a block of memory, Turbo Pascal
attempts to put it back to work as soon as New is called again. If the
block is big enough to hold the next variable created with New, then
the space (or as much of it as is needed) is allocated to that variable.
Here is a code fragment, along with some pictures of the heap, that
shows how Dispose frees memory.
{ ~(--HeapPtr

{

Before the first variable is
allocated, the heap is one
continuous block of free
space. The heap pOinter pOints
to the bottom of the heap L:J
New(Varl); {Allocate space for Varl}

Varl now occupies space at the
bottom of the heap. The rest
of the heap is still free. The
heap pOinter pOints to the
location after Varl.

r---_ <--Varl
Varl

..... ----t <--Heapptr
(free)

}

New(Var2); {Allocate space for Var2 and Var3}
New(Var3) ;

r---_ <--Varl
Varl

Var2 and Var3 occupy more <--Var2
space at the bottom of the Var2
heap, directly adjacent to <--Var3
Varl. The heap pointer Var3
pOints to the location <--HeapPtr
after Var3. (free)

Dispose(Var2);
<--Varl

Varl and Var3 still occupy Varl
the same areas of the heap. <~-Var2 (dangling)
Var2's former space is now (free)
free. The next variable allo- <--Var3
cated will go in this free Var3
block only if there is room. <--HeapPtr
If Var2's space can be reused, (free)
the heap pOinter does not need
to advance after the allocation.

Pointers and Dynamic Allocation 201

Mark and Release
When Dispose is used to free space on the heap, it is possible to create a
situation in which many small chunks of unused memory are left in the
middle, chunks that are not big enough for some things the program
might want to allocate. This phenomenon is called .fragmentation and
can sometimes cause memory to be wasted. For this reason, Turbo
Pascal provides another method of managing space on the heap, one
that guarantees that all of the free space is in one big block at the top.
This method uses the two procedures Mark and Release.
The procedure Mark takes a pointer variable as its parameter, and
records in that variable the current location of the top of the heap. A
program that uses Mark and Release will call Mark before allocating a
group of objects on the heap, saving the value that is returned. Later,
the program can call Release using the same pointer variable, causing all
of the heap space allocated since the call to Mark to be freed. Because
space is always freed from the top of the heap back to a certain point,
no fragmentation is possible.

For the sake of comparison, let's show how the earlier example would
work using Mark and Release.
{

{

Before the first variable is
allocated, the heap is one
continuous block of free space.
The heap pointer points to the
bottom of the heap.

(free) EJ
<--Heapptr

New(Var1); {Allocate space for Var1}

Var1 now occupies space at the
bottom of the heap. The rest
of the heap is still free.
The heap pointer pOints to the
location after Var1.

---....... <--Var1
Var1

1---........ <--HeapPtr
(free)

}

Mark(Here);{Mark the current location of Heapptr}
New(Var2); {Allocate space for Var2 and Var3}
New(Var3);

Var2 and Var3 occupy more space
at the bottom of the heap,
directly adjacent to Var1.
The heap pointer points to
the location after Var3.

ffi1j
<--var1

Var1
<--Var2, Here

Var2
<--Var3

Var3
<--HeapPtr

(free)

202 Turbo Tutor Owner's Handbook

Release(Here); {Release(Var2) would give same result}
{ <--Var1

Var1 still occupies the same
area of memory. The space allo
cated to both Var2 and Var3 is
now free, and the heap pointer
is moved back to its location
before Var2 is allocated.

Var1
t-----I <--HeapPtr, Here,

Var2 (dangling)
<--Var3 (dangling)

(free)

At this point, a brief warning is in order. Because Dispose and Mark/
Release represent such different approaches to memory management,
both techniques should not be used in the same program. Using them
together may produce unpredictable results. For most programs, the
New and Dispose procedures are sufficient to fulfill your memory
management needs.

REVIEW

In this chapter, we introduced pointers, variables that hold the
addresses of other variables. We explained the notion of a pointer type,
a type that is bound to the type of object it points to. We also explained
the use of the New procedure to allocate anonymous variables that are
referenced using pointers. We then showed how to create a linked list,
and discussed the two different schemes for reclaiming and re-using
memory: Dispose and Mark/Release.
In the next chapter, we'll discuss how to handle Turbo Pascal files and
operating system devices like terminals and printers.

Pointers and Dynamic Allocation 203

204 Turbo Tutor Owner's Handbook

18 Files
By this point you should be able to write programs that create any
number of different types of data structures and manipulate them. But
what happens when the program ends? All your data structures will
quietly vanish, and the information they hold will be lost.

But suppose you want to save that data until the next time you run the
program. And suppose you also want to know how to make the
computer write to a particular place on the screen or the printer, or
input different kinds of data from the keyboard.

Files are the key. A file is a collection of data structures, all of the same
type, that can be written to or read from the peripheral devices attached
to your computer. And so, in this chapter, we'll discuss in detail how
Turbo Pascal uses files to communicate.

TURBO PASCAL'S 1/0 PROCEDURES

In virtually all of our programming examples, we have used the built
in procedures Read, Write, Readln, and Writeln to exchange information
with the computer's screen and keyboard. In fact, these four proce
dures are used by Turbo Pascal to exchange information with any
device attached to your· computer, including a disk drive, the screen, a
printer, or even a modem. This communication process is often called
110, short for Input/Output.

To Turbo Pascal each of these devices appears as a flie, a data structure
that represents one of these devices (or a part of one) within your
program.

So far, however, you have been able to use Read, Write, Readln, and
Writeln without knowing anything at all about files. This is because
Pascal has arranged it so that when these procedures are called and you

205

don't explicitly tell them what file to read or write, they automatically
use two standard files: Input (the keyboard) for Read and Readln, and
Output (the screen) for Write and Writeln.
Before we get into a discussion of how to open other kinds of files, let's
first discuss the properties of these built-in procedures.

Read and Readln

The Read and Readln procedures read one or more data objects from a
file. Their syntax is as follows:
Read({FileVariable,} {Vart, Var2 ... VarN});
Readln({FileVariable,} {Vart, Var2 ... VarN});

The parameter File Variable, which is optional (optional parameters are
shown in curly brackets), specifies the file that the procedure is to work
with. If no file is specified, the procedure acts as if the standard file
variable Input had been used, with the keyboard as the source of input.
The procedure Read reads data and returns it immediately, while Readln
waits for the end of a line. When reading data from the terminal,
however, both of these procedures wait for the end of the line. (If Read
didn't wait for the end of the line, it would have no way of knowing
when you were finished.) When reading from other places, like the disk
or one of Turbo's special devices, Read doesn't wait for the end of
the line.

Both Read and Readln can be called without any parameters at all, in
which case the parentheses must be omitted. When this happens,
Turbo simply waits for a carriage return to be input at the terminal. If
Read is called with a file variable but no other parameters, it skips over
the next object in that file and, if the file is a text file, returns to the
same line. If Readln is called in the same fashion, it skips to the next line
in the file.

Write and Writeln

The Write and Writeln procedures write one or more data objects to a
file. Their syntax is as follows:
Write({FileVariable,} {, Vart, Var2 ... VarN});·
Writeln({FileVariable,} {, vart, Var2 ... VarN});

The optional parameter File Variable again specifies the file the proce
dure is to work with. If no file is specified, the procedure acts as if
the standard flle variable Output had been used, and the output goes to
the screen. The Write procedure writes the objects listed to the file.
Writeln does the same, but follows the information written with a
carriage return.

206 Turbo Tutor Owner's Handbook

When Write is called with no parameters, or with only a file variable as
a parameter, nothing happens. However, when Writeln is called with
no parameters, a new line is started on the screen. When Writeln is
called with only a file variable as a parameter, a new line is started in
that file (that is, a carriage return and line feed are output to that flie).
As with Read and Readln, when a procedure is called without parame
ters, the parentheses must be omitted.

Write Parameters
We introduced write parameters, and some examples of them, near the
end of Chapter 14. Write parameters are a special kind of parameter
used by the Write and Writeln procedures (and also by the Str proce
dure) to specify what a value will look like when it is output to the
screen or a text flie (or, in the case of Str, when a number is converted
to a string). In general, a write parameter consists of a value of the type
char, a string type, the type boolean, the type integer, or the type real,
followed by one or more colons and integer-valued expressions. The
integer expressions give the procedure information on how many
columns to use to format the parameter when it is printed and, in the
case of real numbers, the number of digits that are to appear below the
decimal point.

Table 18-1 (on page 208) provides a complete list of the different kinds
of Write parameters and what is output for each.

In the following examples, we'll show how field widths and right
justification work. First, we'll write an integer using three different
field widths: one a bit too small, one about right, and one too large.
When the field width is too small to contain the entire number, the
whole number is written anyway. When the field width is greater than
the number of spaces needed to write the number, the number is right
justified (the number is flush against the right-hand side of the field)
and blanks are added to the left. Thus, the statements
Int := 16L;21;
WriteLn{'This field is too narrow ',Int:3);
WriteLn{'This field is just right ',Int:6);
WriteLn{'This field is too wide ',Int:1S);

would produce
This field is too narrow 16L;21
This field is just right 16L;21
This field is too wide

Files

16L;21

207

Table 18-1

Parameter

Ch (char)
Ch:n (char:integer)

St (string)
Stn (string:integer)

B (boolean)

B:n (boolean:integer)

I (integer)
I:n (integer:integer)

R (real)

R:n (real:integer)

208

Write Parameters and Output

Function

The character Ch is output.
The character Ch is output, right-adjusted
in a field n characters wide (that is, Ch
is preceded by n - I blanks.)
The string St is output.
The string St is output, right-adjusted in a
field n characters wide (that is, St is
preceded by n - Length(St) blanks.)
The word TRUE or the word FALSE is
output, depending on the value of B.
(Note that this is the only enumerated
scalar type for which Write and Write In
produce a string automatically.)
The word TRUE or the word FALSE is
output, depending on the value of B. The
word is right-adjusted in a field n
characters wide.
The decimal representation of I is output.
The decimal representation of I is output,
right-adjusted in a field n characters wide.
If n characters are not large enough to
hold the decimal representation, the
additional digits are written anyway.
R is output in exponential notation, in a
field 18 characters wide. The format is:

S#.##########E*##

where:
_ is a space,
5 is a minus sign or a space,
is a digit, and
* is a plus or minus sign.
R is output in exponential notation. If n
is greater than or equal to 18, then the
R format is used, right-justified in a field
n characters wide. If n is between 8 and
18, digits below the decimal point are
omitted to make the number fit into a
field n characters wide. If n is 8 or less,
then R is printed with a minimum of
one character below the decimal point.
regardless of the value of n.

Turbo Tutor Owner's Handbook

Table 18-1 Write Parameters and Output. Continued

Parameter Function

R:n:m (real:integer:integer) R is output in fixed-point decimal notation
(that is. as digits separated by a decimal
point). right-adjusted in a field n
characters wide. The m digits are output
after the decimal point. If m is O. no
digits below the decimal point are output,
and the decimal point itself is omitted.
The number is rounded correctly for the
number of digits output. If m is greater
than 24. it is ignored.

The following code demonstrates Turbo's special extension for boolean
values, allowing them to be written as the strings TRUE and FALSE.
The statements
Flag1 := True; Flag2 := False;
Writeln('Flag1: ',Flag1:5,' Flag2: ' ,Flag2:5);

produce the output
Flag1: TRUE Flag2: FALSE

(Note, however, that you cannot read in TRUE and FALSE as boolean
values. Instead, you have to read them in as strings and convert them
appropriately.)

Finally, here's a program that shows the different ways a real number
can be formatted.
program ForrnatDerno;
begin

WriteLn(Pi); The predefined constant
WriteLn(Pi:8); Pi = 3.1~15926535
WriteLn(-Pi:8);
WriteLn(Pi:12);
WriteLn(Pi:16);
WriteLn(Pi:20);
WriteLn(Pi:8:D);
WriteLn(Pi:8:4);
WriteLn(Pi:12:10)

end.

When run, this program will write
3.1415926535E+OO

3. ME+OO
3.1E+OO

3.141593E+DO
3.1~15926535E+OO

3.1415926535E+OO
3

3.1416
3.1415926535

Files 209

Get and Put
In Standard Pascal, the two procedures Get and Put are also used to
perform operations on files. Because Turbo Pascal's methods of per
forming I/O differ from those used on the mainframes where Pascal
was developed, these procedures are not available in Turbo.

FILE TYPES

Files, like all other data objects in a Pascal program, have types; and fue
types are a special class of types designed to represent ftles. File types,
like arrays, consist of elements of a single type. For instance, if you had
a fue on disk that consisted of a series of characters, you could refer to it
in your program as follows:
var

MyDisk~ile : file of char;

and then use Turbo's built-in procedures to associate this variable
within your program with a file on the disk. Files are unlike arrays in
that their size is not specified in the type definition. However, like
arrays, files can have as their component type, or record type, any Pascal
type at all. There is only one exception: The component type of a fue
type may not be another file type. Here are some examples of file-type
definitions:
type

CheckFile = file of Check;
{ File of objects of the type Check }

SetFile = file of set of char;
{ File of objects of the anonymous type "set of char"

ScreenFile = file of array[1 .. 25) of string[80);
{ File in which each record consists of 25 strings of

max length 80 (possibly used to hold copies of a
CRT screen) }

Because text flies, or flies of characters, are commonly used, Pascal
provides a predefmed identifier, Text, for the type file of char. (In
CP/M-80 and CP/M-86 Turbo Pascal, Text and file of char actually
mean two different things; for details on file formats, see the Turbo
Pascal Reference Manual. In all cases, however, the file type Text is
compatible with text fues written by the operating system and non
Turbo programs.) The syntax of a file type is similar to that of an array
type or a set type (see Figure 18-1).

210

file type -----I.,~~ type T
Figure 18-1 Syntax Diagram of File Type

Turbo Tutor Owner's Handbook

READING AND WRITING TEXT FILES

A text file is a file that consists of ASCII characters, and is usually
designed to hold readable information. As just mentioned, Turbo
Pascal provides a predefined file type, Text, for this kind of file.

The characters within a text file are divided into lines, which are
sequences of consecutive characters of any length. The end of each line
is marked by the special ASCII characters for carriage return (AM or
ASCII code 13) and a line feed (AL, or ASCII code 10). Traditionally,
the end of a text file has been marked by a AZ character (ASCII 26),
and many older programs (such as word processors) still require it.
However, newer versions of MS-DOS programs keep track of a file's
size and do not need a AZ as an end-of-file character. Despite this, if
you are creating or modifying text files that will be used by other
programs, you should probably place a A Z at the end of the text file:
{open the file}
Write(Textfile, AZ); {place a AZ at file's end}
Close(Textfile); {all done}

(Note that Turbo will handle text files correctly whether a AZ is present
or not.)

When you perform operations on text files, however, you don't need
to remember all of these special characters, because Turbo Pascal
recognizes and handles them for you. You can read or write text files
using the four procedures already mentioned: Read, Write, Readln, and
Writeln. There are also other special functions in Turbo Pascal to handle
text files.

Here's a sample program that writes a few lines of text .to a text file,
then reads it back. In this example, we'll introduce Turbo's built-in
subprograms that assign a name to a file, "open" it (prepare it for use
by the program), return information on it, and "close" it (tell Turbo
and the operating system that we are finished using it).
program FileTest;
var

MyFile : Text; {The text file we'll use}
Line : string[2551;

{ A string to hold a line we read from the file
LineCounter : integer; {A counter for the lines we read
I : integer; {A counter for writing numbers to the file

begin { program FileTest }

Assign(MyFile, 'MYFILE.TXT');

A file .!riable t
A Pascal string giving the name of a file on the disk

The Assign procedure associates a file variable inside
your program with a file on the disk in the outside
world. The names can be completely different; the name of

Files 211

the disk file, however, must be legal for the
operating system you are using. }

Rewrite(MYfile);

A file variable

The Rewrite procedure "opens" a file that you intend to
write to. If there was already a fIe on the disk having
the name given in the Assign statement, it is destroyed.

Writeln(MyFile, 'Hello, World!');
{ Write some text to the file }

Writeln(MyFile, 'This is my first file!');
for I := 1 to 10 do {Write some integers to the file}

Writeln(MyFile, i:2);
Writeln(MyFile, '-- End of file --');
{ Write one more line of text }

{Reset(Myr1e);

A file variable

The Reset procedure "opens" a file that you intend to
read from. Note that Since the name associated with
MyFile is still the same, we don't need to call Assign
again. If the file was already open, Reset closes it
and reopens it for reading. }

LineCounter := 0; { We'll count the lines and display a
line number with each one. }

while not Eof(MyFile) do
{ The built-in function Eof returns True
{ if the end of a file has been reached.

begin
LineCounter := LineCounter + 1; {Count the next line
Readln(MyFile, Line); {Read it into the variable Line
Writeln('Line " LineCounter:2, '--) " Line);
{ Write it to the screen }

end;

Close(MyFile) ; { t

212

A file variable

The Close procedure "closes" a file after you have fin
ished using it. When you close a text file you have just
written, Close will put a AZ (end-of-file mark) on the
end of the file. You must always close your files after

Turbo Tutor Owner's Handbook

using them, or other programs may not be able to read or
write them. }

end.

The Assign Procedure
The Assign procedure "connects" a file variable inside your program
with a file on the disk outside your program. Assign must be called with
a file variable before the file variable is used, unless it is one of Turbo's
predefined files (which we will list shortly). The first parameter of
Assign is the file variable, the second is a string giving the file name:
Assign(FileVariable, St);

The exact format of the file name St depends on your operating
system. In CP/M and CP/M-86, the file name is an optional disk drive
letter (followed by a colon if present), a name with up to 8 characters,
an optional period, and an optional extension (up to 3 more characters):

disk drive letter and colon
I
A:MYFILE.TXT yy

filename extension

Usually, the extension gives information on what kind of data is in the
flie. Here, the extension . TXT hints that there is probably text in the
file. Case is ignored in file names.

Here are some more examples of acceptable file names:

THISFILE
thx1138
Simple. pas
simple.exe
STARS.dat

If a file name has no drive letter preceding it, Turbo Pascal will look for
it (or create it) on the current drive (the operating system prompt often
tells you which drive that is; if the prompt is X), then X is the logged
drive). You can explicitly state which drive the file is on by appending
the drive name in front of the file name, like so:
a:THISFILE
B:thx:L:L3B
c:STARS.dat

In PC-DOS and MS-DOS, file names have the same format, but may
have a directory path in them as well; a file name without one is looked
for on the current directory of the drive specified (or the current drive). A
directory path gives information about the directory in which the file is
located. The following is how an MS-DOS file name with a directory
path looks:

Files 213

disk drive letter and colon
I
C:\TURBO\TUTOR\MYFILE.TXT I, Iyy

directory path filename extension

Here are more examples of ftle names with directory paths.
a:\mydata\THISFILE
\films\lucas\thx1138
C:\ASTRO\GAMES\TREK\STARS.dat

(See your operating system manual to ftnd out the rules regarding
speciftcation of ftle names.)

Reset and Rewrite
After you have used Assign to associate a ftle name with a ftle variable,
you can use the procedures Reset and Rewrite to open the ftle (prepare it
for reading or writing, respectively). When accessing a text ftle, you
may only do one or the other (read or write) each time the ftle is
opened; with other types of ftles, you may do both. In this case, you
would want to use Reset to open an existing ftle and Rewrite to create a
new one or overwrite an existing ftle.
Reset(FileVariable);
Rewrite(FileVariable);

If the ftle variable passed to Reset or Rewrite refers to a currently open
file, the file is closed and then the Reset or Rewrite operation is per
formed. If Rewrite is called on an existing file, that ftle is erased and
replaced with the new information you write.

The Append Procedure
In MS-DOS and PC-DOS, a text ftle can be opened strictly for
appending by making the call
Append(FileVariable);

This call replaces the Reset and Seek calls; thus, the ftle need not be open
at the time of the call. Once it is made, the only allowed operation
(until the file is closed or Reset or Rewrite is called) is appending new
components to the ftle.

Read and Readln with Text Files
It is convenient to think of ftles as having an associated file pointer, an
imaginary pointer that points to the next object in a ftle. When a ftle is
ftrst written, that pointer always points just past the end of the data in
the file. When the file is being read, it points to the next object to be
read (if any).

214 Turbo Tutor Owner's Handbook

When Read is called with a text file and a variable as its arguments, it
reads the next object (if any) on the current line of the file into the
variable, and advances the file pointer past that object. However, when
the data on that line is exhausted, Read does not advance the file pointer
to the next line. Attempting to use Read at the end of a line in a text file
has no effect at all; you must call the procedure Readln to advance to the
next line (if it exists).
The procedure Readln moves the file pointer to the next line immedi
ately after it reads the information it requires from the current line; any
other information on the line is ignored.

Eof, Eoln, SeekEof, and SeekEoln
The EoJ and Eoln functions are used to fmd out whether the program
has read up to the end of a file, or up to the end of a line. Both return
boolean values.
Eof{FileVariable);
Eoln{TextFileVariable);
SeekEof{TextFileVariable);
SeekEoln(TextFileVariable);

The EoJfunction works on all kinds of files, including text files, and is
TRUE when the file pointer is at the end of the file. Eoln, which
indicates whether the file pointer is at the end of a line in a text file, has
no meaning for non-text files. When EoJis TRUE for a text file, Eoln is
also TRUE for that file.

SeekEoJ and SeekEoln have the same syntax as EoJ and Eoln, but only
have meaning for text files. When used on text files, they skip over
spaces and tabs before they test for the end of the file or line. These
functions are useful when you don't know the number of objects on a
line or in a file. By calling these functions, you can avoid getting the
Read procedure "stuck" at the end of a line or a file and find out whether
there is another object available or not. You can then call Readln or
finish processing the file, if necessary.
All of these procedures can be called without parameters; if so, the file
variable is taken to be the standard file Input. However, before using
these functions on standard Input, you should specify a {$B-} compiler
directive to disable Turbo's buffering of Input.

The Close Procedure
The Close procedure tells the operating system that you are finished
using a file. Whenever you are done with a file, especially if you are
writing to it, it is vitally important to call Close. Failing to do so may
cause the operating system to prevent other programs or other users
from accessing your file. Worse yet, in the case of a file you are creating
or extending, the operating system may not make a record of the new

Files 215

size of the file. (In PC-DOS or MS-DOS, such an action can leave the
recorded file size at 0.) The moral: Always close your files when you
reach a point in your program where you might exit.

RANDOM ACCESS FILES

So far, we've discussed text files and the flie type Text; however, there
is an infinite variety of file types you can use to store your data.

In text flies, all data is stored in an easily readable form. Numbers are
represented as ASCII digits, boolean values are represented as TRUE
and FALSE, and strings are represented as strings. However, translat
ing every non-character value to and from ASCII text takes time,
which may not be time well spent if only a program (rather than a
user) needs to read the flie.

Text files have another restriction: Because the lines of a text flie are of
varying length, the only way to find the next line is to read through the
previous one to the end. Thus, text files are inherently sequential-the
objects in the file must be read and written in order.

However, other types of files consist of objects of a fixed length (like
arrays). In these flies, the objects (or records) do not have to be read in
sequence; the position of any object in the file can be calculated by
multiplying the size of an object by the number of objects that come
before it. Because records within it can be accessed in any order, this
kind of flie is called a random access flie.

In a random access file, data is stored exactly as it appears in the
computer's memory; no translation is necessary. This saves processing
time both when the flieis written and when it is read; it also (usually)
saves space.

Creating a Random Access File

Here's an example of how to use a random access file in a program.
Suppose, once again, that you are writing a program to maintain your
checkbook, and you want it to handle any number of checks (more
than your computer's RAM could keep track of at one time). To store
the data, you could use a random access file in which each record
contains the data for a check, so that the number of checks you could
record would be limited only by the size of your disk. To do this, you'd
first define the record type for a check, then create· a file with that type
as its component type:
type

CheckNumType
MonthType

216

1 .. 10000;
(January, February, March, April, May,
June, July, August, September, October,
November, December);

Turbo Tutor Owner's Handbook

DayType
YearType
PayeeType

= :L .. 3:L;
:LQaO .. 2000;
string[L;Ol;

Check = record

end;

CheckNum : CheckNumType;
Amt : real;
Month MonthType;
Day DayType;
Year YearType;
Payee PayeeType;

file of Check; { Keep check info in a file }
var

CheckFile
ThisCheck Check; { A variable to hold a record read

from the file }

Starting with these definitions and declarations, you could then write a
routine to get the checkbook information from the user and write it
into a file. Here's a procedure that would do the job:
procedure MakeCheckFile;
var

CheckNumber : CheckNumType;
MonthNumber : :L .. :L2;

begin
{ Associate a name with the file }

Assign(CheckFile, 'CHKBOOK.DAT');
Rewrite(CheckFile); { Open it as a new file
CheckNumber := :L; { Start with check I:L }
with ThisCheck do
repeat {Start our input loop here }

Writeln('Enter information for check I',
CheckNumber, ': ');

Write('Amount « 0 to exit): '); {Get amount of check
Readln(Amt);
if Amt < 0 t~en {User is done if amt is negative }
begin

Close(CheckFile);
Exit;

end;
Write('Month (:L-:L2): ');

Always close the file!!! }
This is one way to exit from
the procedure }

{Get month by number, then convert}
Readln(MonthNumber); ,
Month := MonthType(MonthNumber - :L);
{ When the name of a scalar type is used as if it were

a function, and applied to a value of another scalar
type, the result is a value of the first type with
the same ordinal value. Here, we convert
:L --) January (ordinal value 0), 2 --) February, etc.
This conversion process is called "type conversion." }

Write('Day (:L-3:L): ');
Readln(Day);
Write('Year (:LQaO-2000): ');
Readln(Year);

Files 217

Write('Payee (~O characters max): ');

Buflen := ~O;
{ Buflen is a predeclared variable in Turbo Pascal that

determines the maximum number of characters that will
be accepted from the user the next time information is
input from the terminal. It is reset to the default of
127 after every read. By using BufLen, we make sure
that the user cannot type more characters than we can
handle! }

Readln(Payee);
Write(CheckFile, ThisCheck);
{ Got all the information, write it out }
CheckNumber := Succ(CheckNumber);

until False;
{ We'll always exit from the middle of the loop

end;

The preceding example points out a number of "tricks of the trade" in
programming routines involving files and 110 in general. We'll go
through these one at a time, so that you may use them in your own
programs. First of all, we used an "endless" loop (that is, a repeat ...
until FALSE statement), with an Exit statement in the middle to exit
the procedure. This structure is useful in 110 routines (and in other
types of routines as well) because it ensures that there is only one exit
point from the routine (which, in turn, lets us make sure that the file is
closed before exiting) and it prevents us from having to use a more
awkward structure (such as an if statement, plus another test in the
until at the bottom of the loop).

Another useful trick is the specification of the write parameter Num:O
to write out the value of the integer Num to the screen. This takes
advantage of the fact that whenever the field length specified for an
integer is too small, the whole integer is written with no space on
either side. Thus, we can fit the number cleanly into the rest of the
prompt, regardless of its size.

The next technique we used is called type conversion, which is a special
extension of Turbo Pascal that makes inputting defined scalar types
simple. In the statements
Readln(MonthNumber);
Month := MonthType(MonthNumber - 1);

we read in the month as a number from 1 to 12, but want to convert it
to the type Month Ganuary .. December). We could have used a long
case statement to do this:
case MonthNumber of

1: Month January;
2: Month := February;

but entering such a statement every time you wanted to input a defined
scalar type could become tedious. Instead, Turbo Pascal takes advan-

218 Turbo Tutor Owner's Handbook

tage of the fact that all values of scalar types are represented the same
way internally: as a number (lor 2 bytes long) containing the ordinal
value. Turbo Pascal therefore lets you convert from one scalar type to
the other by simply allowing the same value to be of a different type,
and temporarily suspending type-checking. We indicate the type that
we want the value to have by using the name of that type as if it were
the name of a function; in this case, MonthType(MonthNumber - 1).
This converts the number Month Type - 1 to the object of the type
Month Type with the same ordinal value, giving us the result we need.

More often, of course, objects of defined scalar types won't lend
themselves to being represented by a number to the user. In this case, a
menu is helpful so that the user can type in a number, even though that
number has no intrinsic relationship with the object he or she picked.
For instance, if you wanted a value of the defined scalar type
type

Color = (Black, White, Red, Orange, Yellow, Green, Blue,
Indigo, Violet);

you could display a menu:
Select a color:

0) Black 3) Orange 6) Blue
1) White ~) Yellow 7) Indigo
2) Red 5) Green 8) Violet

and use type coercion to change the number into a value of the type
Color.
Finally, the last trick we used was to set the predefined variable Bufien
to limit the number of characters the user could type when entering
data. In the statements
Buflen := ~O;
Readln(Payee);

we limited the user to typing in a string of no more than 40 characters
to avoid truncation when the string was assigned to the variable Payee.
Setting Bufien tells Turbo to limit the number of characters typed for
one Read or Readln statement only; immediately after that statement,
the limit returns to 127 (the default). '

Properties of Random Access Files
As we demonstrated in the previous example, many of the same
operations that apply to text files also apply to random access files. For
instance, the procedures Assign, Reset, Rewrite, and Close work exactly
the same on random access files, as does the function Eof The proce
dures Readln and Writeln, of course, have no meaning when applied
to random access files, since there is no concept of a "line." Also, Read
and Write should only be used with one or more values of the compo
nent type.

Files 219

When a random access file is opened, the file pointer is positioned at the
beginning of the file, just as it is in a text file. If successive reads or
writes are performed on the file, the .file is accessed sequentially (the
flie pointer advances to the next record after each operation). Unlike
text flies, however, random access flies allow either read or write
operations to be performed at any time. Furthermore, by using the
Seek procedure, it is possible to read or write the components of the file
in any order.

The Seek Procedure
The Seek procedure allows you to position the flie pointer at the
beginning of any record in a random access file, so that the next read or
write operation is performed on that record.
Seek(FileVariable, RecordNumber);

The first record of a flie is considered to be record 0, and the last is the
size of the flie, in records, minus 1. Thus, if we use the procedure
MakeCheckFile to create a file of checks, we could get the information
on check CheckNumber by writing
Seek(CheckFile, CheckNumber - 1);
Read(CheckFile, ThisCheck);

(In this example, we assume that there is one record for every check
number, and that the variables are all defmed and the file is open).
A random access flie can be made larger by writing new records at the
end of the file, with the flie pointer pointing just past the end of the last
component. To position the file pointer at this location, you can read
through the file until the Eo! function returns TRUE for that file.
Better yet, you can use Turbo's predeclared function FileSize
(described in more detail later) with the Seek procedure to move the file
pointer directly to the end. FileSize returns a value of type integer
giving the number of components in a file; therefore, to append new
records to the end of the file, you can perform the call
Seek(FileVariable, FileSize(FileVariable));

and then write the new information.
In MS-DOS and PC-DOS, it is possible to have a flie with more than
32767 components. Thus, the Seek procedure, which takes an integer
record number, will not suffice to access every component of the flie.
Therefore, Turbo Pascal provides an additional procedure, LongSeek,
to deal with this situation.
LongSeek(FileVariable, RecordNumber);

The LongSeek procedure functions the same as Seek, except that it takes
a real parameter for the record number. This allows access to any
record of an MS-DOS flie.

220 Turbo Tutor Owner's Handbook

The FilePos and LongFilePos Functions
The FilePos function, which works only on random access files, returns
the number of the component at which the fue pointer is currently
positioned, as a value of the type integer. The first component, or
record, of a file is considered to have the number O. The file must be
open at the time of the call.
FilePos(FileVariable);
LongFilePos(FileVariable);

The companion function LongFilePos, which is only provided in the
PC-DOS and MS-DOS versions of Turbo Pascal, is used when a fue
may contain more than 32767 records. LongFilePos returns the position
of the fue pointer as a real value.

The FileSize and LongFileSize Functions
FileSize and LongFileSize return the size of a file as a number of
components, not as a number of bytes. For this reason, they work only
on random access files. After a Rewrite(File Variable), FileSize(File Vari
able) will always return O. The fue must be open at the time of a call
to FileSize.
FileSize(FileVariable);
LongFileSize(FileVariable);

Like LongFilePos, LongFileSize returns a value of the type real so that
the larger file sizes of PC-DOS and MS-DOS can be accommodated.
LongFileSize is not defmed in other implementations of Turbo Pascal.

The Truncate Procedure
In MS-DOS and PC-DOS, the Truncate. procedure will truncate a
random access file at the current fue-pointer position; that is, compo
nents beyond the file pointer are cut away.
Truncate(FileVariable);

The Truncate procedure works only on random access fues that are
already open. After a call to Truncate, the file is left open, and the file
pointer is positioned at the new end of the fue.

OTHER BUILT-IN FILE PROCEDURES
AND FUNCTIONS

The following procedures and functions are provided by Turbo Pascal
to help your program manage and manipulate fues of different kinds.

Files 221

Erase. With the Erase procedure, you can erase flies from the disk by
calling
Erase(FileVariable);

The file variable must be associated with a flie name by a call to Assign,
but must not be open when Erase is called.

Rename. This procedure allows you to rename a file on the disk;
you can do so by calling
Rename(FileVariable, Str);

where Str is a string containing the new name. The name in Str must
be a legal file name for your operating system, and File Variable must
be associated with a file name by a call to Assign. The fue must not be
open when it is renamed.

Flush. In some cases (CP/M and CP/M-86 random access files, MS
DOS and PC-DOS text fues), Turbo Pascal waits until it has a large
chunk of information to write to a file (or until the file is closed) before
it actually performs a requested write operation. At times, however,
you will want to make sure that all the information has actually been
written to the file by calling
Flush(FileVariable);

Refer to the Turbo Pascal Reference Manual for information on the effects
of this procedure on different fue types and operating systems.

FOR MS-DOS AND PC-DOS ONLY:
DIRECTORY MANAGEMENT PROCEDURES

The following procedures are provided by Turbo Pascal to manipulate
directories in PC-DOS and MS-DOS. With them, you can change or
fmd out the default directory, or create' and destroy directories.

ChDir. The ChDir procedure operates the same way as the ChDir or
CD (Change Directory) command in MS-DOS/PC-DOS. The call
ChDir(St);

changes the current directory to the name given in the string St,
provided that it is a legal directory name. The logged drive is also
changed if St specifies a drive name.

MkDir/RmDir. The MkDir and RmDir procedures perform the
same functions as the MkDirlMD (Make Directory) and RmDir/RD
(Remove Directory) commands in MS-DOS/PC-DOS:
MkDir(st) ;
RmDir(St) ;

222 Turbo Tutor Owner's Handbook

The string parameter contains the name of a directory to create or
destroy. Note that DOS will not permit directories with flIes in them
to be removed.

GetDir. The GetDir procedure is used to determine the currently
logged drive and/or the currently active directory on that drive. In the
call
GetDir(Drive,St);

the parameter Drive must be set to an integer value indicating a disk
drive, where 0 represents the currently logged drive, 1 represents drive
A, and so forth. GetDir returns the drive name, followed by the active
directory in St.

TALKING TO YOUR COMPUTER'S
PERIPHERALS: DEVICE 1/0

When you use disk flIes, you are communicating with one of your
computer's peripherals, the disk drive. In this section, we'll explore in
depth how you can exchange information with the other peripheral
devices attached to your computer: the keyboard, the screen, a printer,
or a serial port.

Logical Devices
In Turbo Pascal, you are provided with a number of logical devices,
special flle names that are used to talk to the peripherals of your
computer. To use them, use the Assign procedure exactly as if you were
opening a flle, and then perform input or output to them as appropri
ate. Note that since you can't erase a device, Reset and Rewrite perform
the same functions on a logical device, Close does nothing, and these
fues cannot, of course, be erased.

Here is a list of the logical devices Turbo Pascal recognizes:

CON: Console I/O (that is, read from the keyboard and write to the
screen). Echoes input, allows correction with backspace.
Expands tabs on output. Echoes CR as CR/LF for both input
and output.

KBD: Keyboard input with no echo or interpretation.

TRM: Console output with no interpretation.

LST: The printer. Can only be used for output. No interpretation.

AUX: Input and output device, usually an RS-232 port. Corresponds
to PUN: and RDR: in CP/M, and COM1: in MS-DOS or
PC-DOS.

Files 223

USR: User I/O device. Advanced programmers can write their own
I/O drivers for specific devices.

In practice, however, you will rarely (if ever) need to use these logical
devices directly. To save you having to create flie variables and use
Assign with these logical devices, Turbo Pascal also provides a set of
standard files, predefmed file variables that are already associated with
each of these devices.

Standard Files
Turbo Pascal's standard files allow you to treat each of the previously
defmed devices as a predefined text flie (which you don't need to
Assign, Reset, Rewrite, or Close). In fact, the use of any of these
procedures on a standard file is illegal. Here is a list of Turbo's standard
flies and the logical devices to which they correspond.

Input This is the primary input file used for all calls to Read and
Readln that do not specify a file (or that specify Input
explicitly). It is normally equivalent to the CON: device.

Output This is the primary output flie used for all calls to Write and
Writeln that do not specify a flie (or that specify Output
explicitly) .

Con The Console Device (CON:).

Trm The Terminal Device (TRM:).

Kbd The Keyboard Device (KBD:). This standard flie is most
often used to input single characters from the keyboard
without echoing them to the screen.

Lst The List Device (LST:).

Aux The Auxiliary Device (AUX:), sometimes used to control a
serial port.

Usr The User Device (USR:). This device can be used with
special code written to direct output anywhere. (See the
Turbo Pascal Reference Manual for details.)

Advanced Keyboard Handling:
KeyPressed and the Standard File Kbd
In certain applications (such as games), you may want the program to
conti me to run wrtile it. is waiting for user input. For instance, in a
Space Invaders game, you'll want the invaders to continue to advance
while the program tests to see if a key has been pressed.

So far, all the input methods we have described are of the blocking type;
that is, the program is "blocked" from doing any other tasks while it is

224 Turbo Tutor Owner's Handbook

waiting for the required input to come in. Thus, when you execute the
statement
Read(Kbd, Ch);

where Ch is assumed to be of the type char), all activity will cease until
the user types a character. How can you avoid this? Well, one way
might be to avoid making the call to Read until you know that there is a
character waiting to be read. Then, the character will be read in
immediately, with no waiting. For this reason, Turbo Pascal provides
the function Key Pressed.
The built-in boolean function KeyPressed returns TRUE only if there is
a character immediately waiting to be read from the keyboard. The
following routine, Check Command, is an example of how to use it.
CheckCommand might be called periodically from a game program to
see if a key has been pressed, and if so, act on it.
{$C-}
procedure CheckCommand;
var

Cmd : char;
begin

if KeyPressed then begin
Read(Kbd,Cmd);
Cmd := UpCase(Cmd);
case Cmd of

else

read key wlout echo }
force to uppercase }

handle commands }

Write(Chr(7)); beep at illegal cmd
end {case}

end {ifs}
end; {procedure CheckCommand }

UNTYPED FILES
So far, we've discussed two kinds of fIles: text fIles, which consist of
ASCII characters and give special meaning to some of those characters,
and random access fIles, which consist of many components of the
same type that can be accessed in any order.

There are, however, some situations in which neither fIle-handling
method is suited to the job at hand. In the CP/M and CP/M-86
versions of Turbo, some of the bytes in a random access fIle created by
Turbo have special meanings: The fIrst 2 bytes of the fIle contain
the number of records in the fIle and the second 2 bytes contain the
record length. Thus, fIles not created by Turbo cannot be opened as
random access fIles by the CP/M and CP/M-86 versions of Turbo
Pascal. (The PC-DOS and MS-DOS versions of Turbo Pascal do not
have this restriction; they can open any fIle as a random access fue).
Another problem arises where a fIle has records of many different

Files 225

lengths mixed together but is not a text file. (Remember, Pascal
random access files have fixed-length records).

An untyped file allows you to avoid all of these restrictions by working
with files as blocks of data that can be interpreted any way desired. In
CP/M and CP/M-86 versions of Turbo Pascal, these blocks are 128
bytes long; in MS-DOS and PC-DOS versions of Turbo, they may be
of any length up to 32 Kbytes, but are 128 bytes long unless a different
length is specified.

Declaring Untyped Files
To declare an untyped file variable, you use a declaration of the form
var

BigFile : file;

The absence of a component or record type indicates to Turbo Pascal
that this is an untyped file.

Using Untyped Files
The Assign, Reset, Reset, Rewrite, and Close procedures will work on an
untyped file the same way they work on random access files. The
difference, however, lies in the way these files are read and written.

Untyped files are always read or written one or more whole blocks at a
time. The two procedures used to do this are
BlockRead(FileVariable,Buffer,NumBlocks);
BlockWrite(FileVariable,Buffer,NumBlocks);

in which File Variable is an untyped file variable, Buffer is any variable of
any type, and NumBlocks is the number of blocks to be written from
(or read into) Buffer.

These routines do no checking whatsoever to make sure that Buffer is
large enough to contain the number of blocks of data written or read;
this is the responsibility of the programmer. If Buffer is too small, then
a BlockRead will copy the requested blocks to memory, overwriting
whatever code and/or variables follow Buffer. A BlockWrite is not
necessarily as disastrous in such a case, you merely copy extra bytes out
to the file. However, this may cause trouble later if your program
attempts to interpret the extra bytes as valid data.

The standard procedures Seek and LongSeek can be used with untyped
files to provide random access. For untyped files, these procedures act
as if each block were a record of the file. The standard function Eo! also
works on untyped files.

As with random access files, if you are opening an existing untyped file
to update it, you must use the Reset procedure. A call to Rewrite erases
any existing file and creates a new one.

226 Turbo Tutor Owner's Handbook

Untyped files are the fastest way to read and write disk files. One way
to maximize this speed is to tell BlockRead or Block Write to transfer
many blocks at once, perhaps an entire file, in one big gulp. To let you
know exactly how many blocks were transferred during such an
operation, Turbo allows you to call BlockRead and Block Write with an
additional parameter that supplies this information, as shown in
the following:
BlockRead(FileVariable,Buffer,NumBlocks,Result);
BlockWrite(FileVariable,Buffer,NumBlocks,Result);

The integer parameter Result, if present, is returned with the number
of blocks written or read.

MS-DOS/PC-DOS Only: Specifying a Block Size
In the PC-DOS and MS-DOS versions of Turbo Pascal, you can
specify the block size of an untyped file by using a special optional
parameter in the Reset or Rewrite procedure:
Reset(FileVariable, BlockSize);
Rewrite(FileVariable, BlockSize);

where BlockSize is an integer expression giving the block length to use.

1/0 ERROR HANDLING

Suppose while in your program you tried to call Reset on a nonexistem
file. What would happen? As soon as the program tried to open that
file for input, the program would stop running and an error message
would be written to the screen. While this is okay for small or
experimental programs, in a large program it can cause large amounts
of data stored in memory to be lost. For this reason, Turbo Pascal
provides you with the option of disabling these error messages and
handling the error condition within your program.
To turn off I/O error checking, you can insert the compiler directive
{$I-} into your program. This will disable I/O error checking (but not
other kinds of error checking) until you re-enable it using {$I + }. For
example, suppose your program asks the user for the name of a file to
read. There's always a chance that the user could mistype the file name,
or that the disk with that file might not be in the drive. To keep the
program from stopping immediately as a result of such an error, you
could write:

Files 227

UI-}
Write('Enter input file: ');
ReadLn(InFileNamef;
Assign(InFile,InFileName);
Reset(InFile) ;
{$I+ }

Of course, this alone doesn't solve the problem. The program won't
stop here, but it might when you attempt to read from the file. In any
case, it would be desirable to have your program detect the error and
take action at once.
To detect an error that occurs with I/O error-checking turned off,
Turbo Pascal provides the built-in integer function IOResult. When
IOResult is called, it returns a code that indicates the result of the last
1/ 0 operation. If the operation is successful, it returns the value 0;
otherwise, it returns a value indicating what the problem was. If we
were to rewrite the previous example using IOResult, we might come
up with something like this:
UI-}
repeat

repeat
Write('Enter input file: ');
ReadLn(InFileName);
Assign(InFile,InFileName);

until IOResult = 0;
Reset(InFile)

until IOresult = 0;
{$I+ }

Why are there two repeat ••• untilloops in this example? Because both
the Assign and Reset procedures can cause an I/O error, and we want to
repeat the process of prompting for the file name and attempting to
open it if any error occurs. It is also important to note that the function
IOResult only returns a nonzero code once for each error that occurs.
Successive calls to IOResult will return 0 until another error occurs.

Another caution is also in order when using {$I-}/{$I+} and IOResult. If
an error does occur, your program must call IOResult before attempt
ing additional I/O. If you continue to do I/O on a file when IOResult
has returned a nonzero result for that file, unpredictable results may
occur.

Here is a program fragment that includes some routines to check for
and report I/O errors. You may wish to use this code, or something
similar to it, in your own programs.
program MyProgram;

var
IOErr : boolean;

228 Turbo Tutor Owner's Handbook

type
Prompt = string[801;

procedure Error(Msg : Prompt);
{ Write error Msg out on line 2~ and wait for a key }
var

Ch : char;
begin

GoToXY(1,2~); ClrEol;
Write(AG,Msg, 'Hit any key to continue')
Read(Kbd,Ch)

end; {procedure Error}

procedure IOCheck;
{ Check for 1/0 error; print message if needed }

var
IOCode : integer;

begin
IOCode := IOResult;
IOErr := (IOCode (> 0);
if IOErr then begin

case IOCode of
$01 Error('File does not exist');
$02 Error('File not open for input');
$03 Error('File not open for output');
$O~ Error('File not open');
$10 Error('Error in numeric format');
$20 Error('Operation not allowed on logical device');
$21 Error('Not allowed in direct mode');
$22 Error('Assign to standard files not allowed');
$90 Error('Record length mismatch');
$91 Error('Seek beyond end of file');
$~9 Error('Unexpected end of file');
$FO Error('Disk write error');
$F1 Error('Directory is full');
$F2 Error('File size overflow');
$F3 Error('Too many open files');
$FF Error('Filedisappeared');

else
Error('Unknown I/O error: ') ;
Write(IOCode:3)

end {case}
end

end; {procedure IOCheck

The procedure IOCheck, which is designed to be called after any I/O
operation, does a number of useful things. First, it calls IOResult and
recognizes any error. Second, it sets the global flag IOErr, so that other
parts of the program will know whether or not there has been an error
and can act accordingly. Third, it prints out an error message on line
24, pausing until the user hits any key (hence Read(Kbd,Ch), which
will read a single character without echoing it back to the screen).
Finally, it uses the else clause of the case statement to handle any
undefmed I/O errors.

Files 229

The Turbo Pascal Reference Manual recommends that IOResult be con
sulted after all of the following procedure calls:

Append Close MkOir RmOir
Assign Erase Read Seek
BlockRead Execute Readln Write
BlockWrite Flush Rename Writeln
Chain GetOir Reset
ChOir LongSeek Rewrite

The {$I-} compiler directive, along with IOResult, can be used in many
places to develop "bulletproof' programs, programs that will not fail
when given improper or inconsistent input.

REVIEW

In this chapter, we introduced the concept of a file, a mechanism
through which a Pascal program can communicate with the outside
world. We discussed procedures, functions, and techniques for han
dling three different categories of files: text files, random access files,
and untyped files. We explained output formatting, and showed how
to use write parameters to control the way numbers, boolean variables,
and strings are output. Finally, we discussed I/O error checking and
how to handle I/O errors within a Turbo Pascal program.

Chapter 19 will provide a program example to tie together maqy of the
concepts discussed in the preceding chapters.

230 Turbo Tutor Owner's Handbook

19 A Sample Program
We've spent Part II of this manual filling your head with the fundamen
tals of Pascal programming. Since this is the last chapter of this section,
we'd like to use all of the previously discussed concepts to walk you
through a program that combines as many data structures and Pascal
statements as can be naturally (comfortably) crammed into 600 lines.

TURBO TYPIST

The Turbo Typist program is a typing game that will work on any
machine running Turbo Pascal 3.0. Typist will read a word (or phrase)
from a text file, display the word and then wait for the user to type it
correctly before retrieving the next word from the file. To make the
game more fun, we've added a primitive scoring system and-the
most difficult aspect of the program---some real-time animation. There
are three major components of our program:

• File II 0 to get words from a disk file

• Animation to draw and refresh the cartoon

• Real-time keyboard handling to get characters from the keyboard
while simultaneously updating the entire screen (drawing the car
toon, displaying the word to be typed, displaying the characters
typed so far by the user, and updating the scoring information).

If you're seated at your computer while reading this, try running the
program (TYPIST. PAS). If you're far from the nearest computer,
here's what the main screen looks like: .

231

00021

T U R BOT Y PIS T

"aardvark"

I TURBO TRUCKING I I
1"'\

---0--0-'

aardv

II ________________ 1 I

00 00 o

Word #

1
Mistakes

o
Crashes

o

The goal of the playing screen is to type the word "aardvark." The car
in the middle of the screen drives forward until it rear ends the truck or
until the target word is typed correctly. The car has logged 21 "miles"
this round, and the user has already typed the characters "aardv." When
the user thinks the target word ("aardvark") has been typed correctly,
s/he will press IE) and the score will be updated accordingly (either a
new word will display or the mistake count will be incremented).

In order to manage each of these tasks, Typist makes use of the follow
ing data structures and statements:

Data Structures/Types
Sets (of characters)
Strings
Arrays (of strings)
Records
Booleans (both functions and variables)
Enumerated scalars
Files (for reading text)

Pascal Features
Procedures/functions
case, if then else
Loops (for, while, repeat)
File I/O
Keyboard and video I/O
Typed constants

The source code for this program is on your Tutor disk in the file
named TYPIST. PAS. Rather than include the entire source code in this
chapter, we will introduce the overall structure of the program and
then focus on some specific areas.

232 Turbo Tutor Owner's Handbook

STEP I: THE PROGRAM BODY

The main body of the program allows the user to open text files and
play the game. Here is a step-by-step outline of its logic (often called
pseudocode) :

1. Assume that the data file is called TYPING.DTA unless a com
mand-line parameter has been specified.

2. Open the test file.

3. If the file is not empty, playa round; otherwise, display an error
message.

4. Repeat steps 2 through 4 for as long as the user wants to play.

STEP 2: FILE 1/0

The disk-file handling in Typist is quite straightforward. The task is
simply to open a text file and read and display each word until the word
list has been exhausted. The program can read words from any ASCII
file. Procedure InitProgram is used to paint the welcoming screen and
retrieve the name of the text file that contains the vocabulary. Once a
file is successfully opened, control is returned to the program body. A
boolean function, Get Word, retrieves the next word from the text file. It
returns a TRUE value if a word is retrieved; otherwise, it returns a
value of FALSE.

STEP 3: THE MAIN CONTROL LOOP

A procedure named PlayOneRound contains the most important con
trol structure of the program. Here is the pseudocode for
Play One Round:

1. Get a word from the text file and display it.

2. Erase the car, increment its x coordinate, and increment and
display the odometer.

3. If the car collides with the truck, then:

a. simulate a collision and back up the car to mile 1.

Otherwise:

a. display the car and read characters from the keyboard.

4. If the user presses lli5] or []li!)]J, exit the program.

5. If the user presses tEl, process the word.

A Sample Program 233

a. If the word typed matches the target word:

1) If more words remain in the fIle, then get the next word,
display it, update the scoring information, and back up
the car.

Otherwise, if the word typed does not match the target word:

1) update and display the score.

6. Repeat steps 2 through 5 until all the words have been retrieved,
displayed, and typed.

ANIMATION
What does real-time animation mean? In this case, Typist reads words
from a fue, displays them, updates the score, and so on, while simulta
neously reading characters typed on the keyboard and acting upon
them. In this sense, the program manages several processes concur
rently and each process flows in a realistic, believable manner.
To accomplish this, a few tricks are used.

• At several places in the main loop (in PlayOneRound) , a Go ToXY
statement is used to place the cursor near the characters the user has
already typed. In this way, the cursor is used to draw attention to the
user's goal-that of typing more characters. If the cursor were not
explicitly moved several times in the loop, the cursor would be left
haphazardly wherever the last screen write had occurred.

• The animation is minimal-14 characters are alternately drawn,
erased, then re-drawn, a little to the left or right. Running this
simple "animation" program will help you to understand the discus
sion that follows:

program SimpleCartoon;
{ Simple animation program. Run it a few times and

understand it. Then try making the object string longer.
Try incrementing the row as well as the column. Play
with the delay interval and try turning the Ctrl-C
compiler switch off: (*$C-*). You might even try
to convert this program to simulate a bouncing ball.

var
column : integer;
Object: strlng[101;

begin
ClrScr;
Object: = '0';

for column := 1 to 80 do
begin

{ loop variable
object being animated

start simple, try this
string next: % }

234 Turbo Tutor Owner's Handbook

GoToXY(column, 1); { current column, first row
Write(Object); { display the object
Delay(10); { pause to give your eye a sporting chance
GoToXY(column, 1);

{ place cursor back on top of object
Write(' ':Length(Object)); erase previous object

end; { for}
end.

• The string editing routine is unusual. Most string editing routines
exit when the user types a terminating character (for example, IE),
lli2:), I]E!JI)). Typist's GetString function, however, exits for two
other reasons as well: 1) the user has used up his/her quota of
keystrokes; 2) the allotted time for editing between "cartoon cycles"
has expired. The following pseudocode demonstrates a major
dilemma in real-time programming:

1: procedure GetString;
{ This routine is called to edit a string.

The routine terminates when the user types a
carriage return. }

begin
2: repeat
3: Read a character;
~: Process the character;

{ legal char? backspace? etc. }
5: until character=carriage return;

end; {GetString}

6: repeat
7: Move the car one nmilen forward;
B: GetString; { the string}
9: Process the string;

{ legal word? update score, etc. }
10: until no_more_words;

At first glance, the repeat loop on line 6 looks reasonable: The car will
advance one "mile" each time the loop is executed. However, several
problems remain unaddressed.

What if the user holds down one key and never presses IE) (the beast!).
Line 7 would move the car, and then the editing routine would be
called. While GetString is waiting for the tyrannical typist to press IE),
the car will be written up for parking in the red zone! Instead of driving
smoothly across the screen, the car will stay in the same place. And if
this crazy keyboardist holds down the [E) key, the car will zip across
the screen in one meaningless motion.

The solution here is to pass a parameter to GetString, instructing it to
return after a certain number of keystrokes have been typed--even if
the user doesn't press IE). Of course, pressing IE) will still cause
GetString to return to the main loop.
*1: procedure GetString(KeyQuota : integer);

{ This routine is called to edit a string. The routine

A Sample Program 235

terminates when the user types a carriage return or
when KeyQuota keystrokes have been typed.

}

begin
2: repeat
3: Read a character;

*3a: Decrement KeyQuota;
{subtract one from number remaining}

~: Process the character;
{legal char? backspace? etc.}

5: until (character = carriage return) or
*5a: (KeyQuota (= 0);

end; {GetString}

b: repeat
7: Move the car one "mile" forward;

*8: GetString(5 keystrokes); {edit the string,
allow 5 keystrokes

9: if user typed carriage return then
9a: process the string;

{legal word? update score, etc.}
10: until no_more_words;

We have modified five lines (each one is marked by an asterisk (*)) and
completely overhauled the program's animation. Now GetString
returns to the main loop every five characters or when IE) is pressed,
whichever comes first. Of course, we only want to check the string for
validity if IE} has been pressed. Either way, we can update our cartoon
often enough to please the eye.

Now we're getting somewhere. Except that the car will still go
nowhere if this obstinate operator refuses to press a single key! Think
about it. We display the car, then call GetString. GetString waits for a
carriage return or five characters from the keyboard. If they never
come, GetString never returns to the loop from whence it came.

The solution? Well, look at lines 6-10 of our original repeat loop. What
we really want is quite reasonable. We want GetString to always take
about the same amount of time, whether a carriage return was typed,
whether zero characters were typed, or whether a key was held down
the entire time. If "processing the string" also requires a fixed amount
of time each time it is called, then our car will run smoothly from one
side of the screen to the other.
!1: procedure GetString(KeyQuota, TimeQuota : integer);

{ This routine is called to edit a string. The
routine terminates when the user types a carriage
return, when Key Quota keystrokes have been typed,
or when TimeQuota milliseconds (or some other
unit) have elapsed.

}

begin
2: repeat
3: if a character is in the buffer:

!3a: read a character;

236 'Turbo Tutor Owner's Handbook

!3b: Decrement KeyQuota;
{subtract one from number remaining}

!3c: Decrement TimeQuota;
{subtract one from number remaining}

~: Process the character;
{legal char? backspace? etc.}

5: until (character = carriage return) or
*5a: (KeyQuota (= 0);
! 5b: (T imeQuota (= 0);

end; { GetString }

6: repeat
7: Move the car one "mile" forward;

!8: GetString(5 keystrokes, 100 milliseconds);
{edit the string}

9: if user typed carriage return then
9a: process the ~tring;

{legal word? update score, etc.}
10: until no_more_words;

The modified lines are marked with an exclamation mark (!). They do
a decent job of accomplishing our goal. If we add any other routines
anywhere in the main loop, we must carefully test and re-adjust our
keystroke and time quotas.

DARE TO EXPERIMENT

Be daring and modify a copy of the program (you will probably find
ways to optimize the code). If you can follow this discussion, you can
understand the source code.

If you had difficulty understanding this material, look at the source and
try getting through a few routines. Then, modify the simple cartoon
ing program we introduced earlier (program SimpleCartoon). Change
it so it lets you type characters while it is moving its object across the
screen; keep making the program more and more sophisticated. By
enhancing that simple example, you will soon encounter and solve the
same problems we addressed earlier.

REVIEW

The Turbo Typist demonstrates the use of many Pascal structures and
statements. Our discussion began with a description of the overall
program structure. Next, we did a best case/worst case analysis (the
slowest typist refused to touch a single key; the fastest simply held
down one key continuously), and then focused on some solutions to
some programming issues that were raised.
Now is the time to read the source code itsel£ The best way to master
this program is to read all of the procedure and function headings and

A Sample Program 237

try to comprehend the explanatory comments associated with each
one. Then step through procedure PlayOneRound line-by-line, ignoring
fme details like scoring and cursor placement. Once you understand the
major steps in the loop, fine-tune your focus a little and make another
pass; repeat this process until you're satisfied.

This concludes Part II of this tutorial. In the next section, we'll discuss
some advanced topics in Turbo Pascal programming, including com
plex data structures and more exotic features of the Turbo Pascal
programming environment.

238 Turbo Tutor Owner's Handbook

p A R T III

Advanced Topics
in Turbo Pascal

239

240 Turbo Tutor Owner's Handbook

20 Stacks, Queues,
Deques, and Lists

Chapter 17 covered the basics of pointers, dynamic allocation of vari
ables, and linked lists. But you still may not realize just how important
and powerful these concepts are. They provide 'you with the ability to
create a variable out of "thin air" and then link it to other such
variables, giving you a lot of freedom to do what you want.

LINKED LISTS

To talk about linked lists, we first must talk about nodes, the data
structures (usually records) that contain all the information to be stored
in a given location in the linked list and all the pointers necessary to
point to other nodes in the list. Let's say that the information to be
stored is a single integer. The simplest node definition you could
construct would be like this:
type

Nodeptr = ANode;
Node = record

Data Integer;
Next : NodePtr

end;

This example shows the one exception to the Pascal rule that all
identifiers must be defined before declaring the type it is bound to.
Here you can use the data type Node before it has been defined, so that
you can define NodePtr and use it within the definition of Node.

Single vs. Double Unks
Note that the preceding node definition has only one pointer in it
(Next), which points to the next node in the list. Imagine this list
looking like this: .

... -->Node-->Node-->Node--> ...

241

It is possible to use two pointers instead of one, with the extra pointer
linking back to the previous node in, the list, like so:
... <-->Node<-->Node<-->Node<--> ...

The Pascal definition would then change to something like this:

type
NodePtr = ANode;
Node = record

Data Integer;
Last,Next : NodePtr

end;

A list using nodes like this is known as a doubly linked list. A doubly
linked list is usually easier to work with because it allows you to freely
move back and forth; a singly linked list only allows you to move
forward.

There is, of course, a price for this capability: each node takes up more
memory. The additional size is most significant if the data section is
small, and if you're running on a 16-bit system (where each pointer is 4
bytes long). For example, the previous node definition would increase
in size from 6 bytes to 10, nearly doubling in size. However, if the data
section is fairly large, then the additional pointer represents a small
increase in size and a great increase in power and flexibility.

STARTING A LINKED LIST

Since all nodes in a linked list are created as needed, you have to make
some decisions about how to get the whole thing started, how to create
that first node. There are a number of approaches, but the easiest is to
use a Header node. A Header node is created at the start of a program;
its pointer(s) is either set to nil (which means it isn't pointing to
anything) or to itself (if you're using a circular linked list). The data
field(s) is not often used, at least not in the same way it's used in other
nodes in the list.

You usually declare the Header node as a pointer variable. At the start
of the program, you create the node and set the fields accordingly, as
shown here:
program LinkedLists;

type
NodePtr = ANode;
Node = record

Data Integer;
Next NodePtr

end;
var

Header : NodePtr;

begin {main body of program, LinkedList

242 Turbo Tutor Owner's Handbook

New(Header);
with HeaderA do begin

Data 0;
Next := nil

end;

end. {of program LinkedList }

This code assumes you have a singly linked list (linear or non-circular
list). If you have a circular list, things change a little.

Circular Linked Lists
A linear list has the Header node pointing to the first node, while the
last node points to nothing (a nil). Such a list looks like this:
Header-->Node-->Node--> ... -->Node-->Node-->[ni11

The problem with this type of linked list is that it can make search
loops messy. For instance, suppose you have a list (unsorted) of nodes
like the ones already defined, and you want to see if there's a node with
a given value in it. Your first impulse might be to write a loop like this
(assuming the value you're looking for is in Val):
TPtr := HeaderA.Next;
while (TPtr <> nil) and (TPtrA.Data <> Val) do

TPtr := TptrA.Next;

The problem, of course, is that if you hit the end of the list (TPtr =
nil), you'll get a runtime error when the program tries to evaluate the
expression TPtr" . Data <> Val. This problem can sneak up on you
again and again (such as when doing insertion and deletion with a
doubly linked list).

One solution is to use a circular linked list. Instead of having the last
node point to nil, you can point it to the Header node instead, as shown
in the following:
Header-->Node-->Node--> ... -->Node-->Node-->Header

When you create your Header node, you point it to itself:
New(Header);
with HeaderA do begin
• Data 0;

Next := Header
end;

Thus, your search loop will run without any difficulty:
TPtr := HeaderA.Next;
while (TPtr <> Header) and (TPtrA.Data <> Val) do

TPtr := TPtrA.Next;

If you were using a doubly linked list, then you would start the Header
with both its pointers pointing to itself (add the statement "Last : =
Header" to the previous code). As you add nodes, Header will point to
both the first and last nodes in the list.

Stacks, Queues, Deques, and Lists 243

Insertion

After setting up the Header, the first function you need to perform is
adding nodes to the list. This is called insertion-you add the node
between two other nodes, or between a node and the end of the list.

Before inserting, you must do two things. First, create the node to be
inserted (using the New command) and set all the data fields to their
appropriate values. We'll call the pointer to this node NPtr. For the
sample node already given, the program might look like this:
New(NPtr) ;
NPtrA.Data := NewValue; { whatever it happens to be }
NPtrA.Next := nil;

Note that setting NPtr" . Next equal to nil usually isn't necessary, but
it's not a bad idea to initialize all fields of a node. Second, find the node
in the list after which you wish to insert the new node. If the new node
belongs at the start of the list (or if it's the first node in the list), then it
will be inserted after the Header node. Typically, you start at the
Header and continue until you've found the node you're looking for.
We'll call this node TPtr.

The process of insertion itself is simple. Given NPtr and TPtr (as
defmed earlier), and assuming this is a singly linked list, do the
following:

• Set NPtr" . Next equal to TPtr" . Next. This ensures that NPtr and
TPtr are both pointing to the same node.

• Set TPtr" . Next equal to NPtr. This makes TPtr point to NPtr.

The final result is that TPtr points to NPtr, and NPtr points to the node
that TPtr used to point to. The Pascal code for this is simple:
NPtrA.Next := TPtrA.Next;
TPtrA.Next := NPtr;

For a doubly linked list, you must do a little more work since you have
twice as many pointers to change. Here's the code for a linear list:
NPtrA.Next := TptrA.Next;
NPtrA.Last := TPtr;
TptrA.Next := NPtr;
if NPtrA.Next (> nil

then NPtrA.NextA.Last:= NPtr;

First, note that both of NPtr's pointers have changed, pointing to the
nodes that now precede and follow it. TPtr is then changed to point to
NPtr. Finally, the node following NPtr (which you can reference as
NPtr" . Next") is changed to point back to NPtr. If the list is circular,
then you can drop the test for nil and always make the assignment to
NPtr" . Next" . Last.

244 Turbo Tutor Owner's Handbook

Deletion
The process of deletion is similar to insertion: First, you find the node
you want to delete and then make the preceding node point to the
following node. If you have a singly linked list, then you must
"remember" which node precedes the one you want to delete (other
wise, you'll have no way to get back to it). If NPtr points to the node to
be deleted and TPtr points to the preceding node, then the statement
TPtrA.Next := NptrA.Next;

removes NPtr from the list.

With a doubly linked list, you only need to know the node to be
deleted:
NPtrA.LastA.Next := NPtrA.Next;
if NPtrA.Next (> nil

then NPtrA.NextA.Last := NptrA.Last;

The first statement points the preceding node to the following one; the
second points the following node to the preceding one. As with
insertion, if you're using a circular list, you don't need to check for
NPtr" . Next <) nil.

Having changed the pointers, you must now decide what to do with
NPtr. If you're using the New/Dispose method, then the statement
Dispose(NPtr);

will reclaim the memory used by NPtr".
If you're using the Mark/Release method, then your best bet is to
maintain a second, separate linked list (Avam of nodes available for
"recycling." Then, when you need a new node, you can check the Avail
list first and re-use a node from there. If none are available, you can
create a new one using New. If you don't use the Avail method, you
run the risk of slowly using up all your memory (until, of course, you
call Release).

STACKS

A stack is a list of objects that follows certain rules about how you add
to or remove from it; you cannot simply insert or delete nodes any
where in the list. Instead, all nodes added to the list must be added at
the very front; likewise, all nodes taken from it must be taken from the
very front. If you think about this for a minute, you'll realize that any
node you remove will always be the one (of all those left in the list)
most recently added. Because of this, a stack is sometimes known as a
last-in-first-out (or LIFO) list. When you add to a stack, you're usually
said to be "pushing" a node onto it; when you remove from it, you're
"popping" a node.

Stacks, Queues, Deques, and Lists 245

Stacks can be handy in any situation where you need to remember
what you're doing (and what you've done), go perform some other
action (often the same action on a different set of data), then pick up
where you left off. Usually, you can just call procedures and functions
(sometimes recursively), and Pascal takes care of all that for you.
However, situations may arise where you need (or want) to handle that
explicitly, either to avoid recursion or to direct control over the stack.

The code to manipulate a stack is straightforward. The following code
implements a stack as a linear, singly linked list:

type
NodePtr = ANode;
Node = record

Data Integer;
Next : NodePtr

end;

var
StackPtr : NodePtr;
StackEmpty : Boolean;

procedure CreateStack;
begin

New(StackPtr);
with StackPtrA do
begin

Next := nil;
Data := 0;

end;
StackEmpty := True;

end; {of proc CreateS tack

Header for stack }
flag for empty stack

procedure Pop(var Val: Integer);
var

NPtr : NodePtr;
begin

if not StackEmpty then
begin

NPtr := StackPtrA.Next;
StackptrA.Next := NptrA.Next;
Val := NPtrA.Data
Dispose(NPtr);
StackEmpty := (StackPtrA.Next nil);

end;
end; {of proc Pop

procedure Push(Val
var

NPtr : NodePtr;

Integer) ;

begin
StackEmpty
New(NPtr);
NPtrA.Data
NPtrA.Next

False;

246

Val;
StackptrA.Next;

Turbo Tutor Owner's Handbook

StackPtrA.Next := NPtr;
end; {of proc Push}

procedure DeleteStack;
var

TVal : Integer;
begin

while not StackEmpty do
Pop(TVal);

Dispose(StackPtr);
end; {of proc DeleteStack

The routine CreateStack must be called before any other stack routines.
It creates the Header node (called StackPtr) and sets the StackEmpty flag
to TRUE. Push adds a value to the stack. Note that it just passes a
value; you don't have to worry about what the node data structure
looks like. Likewise, Pop just returns a value, hiding the node removal
and deletion from you. Finally, the routine DeleteStack disposes of all
the nodes in the stack, and then gets rid of StackPtr itself You then
must call CreateStack again before using the stack.

QUEUES

As we've just shown, a stack follows the LIFO principle. Sometimes,
though, you want to treat nodes on a first-come, first-served basis. In
programming, a queue is a list of nodes treated in the first-in-first-out
(FIFO) rp.anner: You always add a node to the end of the list, and you
always remove a node from the front of the list.

Like stacks, queues are simple to implement. However, since you have
to deal with both ends of the list, you'll probably find it easier to use a
circular, doubly linked list rather than a linear, singly linked one. You
should probably use a queue whenever things keep cropping up faster
than you can handle them, and you want to look at them in the exact
order they appeared. Here's an implementation:
type

NodePtr = ANode;
Node = record

Data : Integer;
Last,Next: Nodeptr

end;

var
Header
QueueEmpty

: NodePtr;
: Boolean;

procedure CreateQueue;
begin

New(Header);
with HeaderA do

Header for stack }
flag for empty stack

Stacks, Queues, Deques, and Lists 247

begin
Next
Last
Data

end;

Header;
Header;
D' ,

QueueEmpty := True;
end; {of proc CreateQueue

procedure GetValue(var Val: Integer);
var

NPtr : NodePtr;
begin

if not QueueEmpty then
begin

NPtr := HeaderA.Next;
HeaderA.Next := NPtrA.Next;
HeaderA.NextA.Last := Header;
Val := NPtrA.Data;
Dispose(NPtr);
QueueEmpty := (HeaderA.Next Header);

end
end; {of proc Pop }

procedure PutVal(Val Integer);
var

NPtr : NodePtr;
begin

QueueEmpty := False;
New(NPtr);
with NPtrA do
begin

Data Val;
Next := Header;
Last := HeaderA.Last;

end;
HeaderA.Next := NPtr;
NPtrA.LastA.Next := NPtr;

end; {of proc PutVal }

procedure DeleteQueue;
var

TVal : Integer;
begin

while not QueueEmpty do
GetVal(TVal);

DispoSe(Header);
end; {of proc DeleteQueue

The procedure CreateQueue must be called before any of the other
queue procedures. Put Val creates a new node and inserts it between the
Header and the end of the queue. Get Val gets the value from the node
at the start of the queue, removes that node, and then disposes of it.
And, of course, DeleteQueue cleans up the whole thing.

248 Turbo Tutor Owner's Handbook

DEQUES

Donald Knuth, in his classic work Fundamental Algorithms, talks about
yet another list type: a deque, or double-ended queue. While a queue
adds nodes on only one end and removes them only from the other, a
dequ~ lets you add and remove nodes from either end. Implementing a
deque is not much harder than implementing a queue. The only real
difference is that the Get Val and Put Val" routines now have to know
whether to use the front (Header" . Next) or the rear (Header". Last) of the
list. Also, you will almost certainly want to use a circular, doubly
linked list for a deque. Here's an implementation:
const

Front = True;
Rear = False;

type
Nodeptr = ANode;
Node = record

Data Integer;
Last,Next: NodePtr

endi

var
Header : NodePtr;
DequeEmpty : Boolean;

procedure CreateDeque;
begin

New(Header);
with HeaderA do
begin

Next := Header;
Last := Header;
Data := 0

end;
DequeEmpty := True;

end; {of proc CreateDeque

{ Header for stack
flag for empty stack

procedure InsertNode(var NPtr,TPtr NodePtr);
begin

NPtrA.Next := TPtrA.Next;
NPtrA.Last := TPtr;
TPtrA.Next := NPtr;
NPtrA.NextA.Last := NPtr;

end; {of proc InsertNode }

procedure RemoveNode(var NPtr,TPtr NodePtr);
var

TPtr : Nodeptr;
begin

NPtr := TPtr;
NPtrA.NextA.Last := NPtrA.Last;
NPtrA.LastA.Next := NptrA.Next;

end; {of proc RemoveNode }

Stacks, Queues, Deques, and Lists 249

procedure GetValue(var Val Integer; theFront Boolean);
var

NPtr : NodePtr;
begin

if not DequeEmpty then
begin

if theFront then RemoveNode(NPtr,HeaderA.Next)
else RemoveNode(NPtr,HeaderA.Last);
Val := NPtrA.Data;
Dispose(NPtr);
DequeEmpty = (HeaderA.Next = Header);

end;
end; of proc Pop }

procedure PutVal(Val : Integer; theFront Boolean);
var

NPtr : NodePtr;
begin

DequeEmpty := False;
New(NPtr) ;
NPtrA.Data := Val;
if theFront then InsertNode(NPtr,Header)
else InsertNode(NPtr,HeaderA.Last);

end; {of proc Putval }

procedure DeleteDeque;
var

TVal : Integer;
begin

while not DequeEmpty do
GetVal(TVal,Front);

Dispose(Header);
end; {of proc DeleteDeque

As you can see, we've gone on to general routines for InsertNode and
RemoveNode. These routines are then called by Get Val and Put Val, with
the boolean parameter theFront indicating whether to access the front or
end of the deque.

LISTS

In the linked list data structures we've looked at, we've given GetVal
and Put Val greater access to the list; but in every case, that access has
been at one end or the other. What if you want to insert or delete nodes
in the middle of the list?

You can do just that, and you can do it easily. With the creation of the
InsertNode and RemoveNode procedures, you can now get to any node
you want to by stepping through the list. Given a circular list, the code
to do that is as follows:

250 Turbo Tutor Owner's Handbook

TPtr := HeaderA.Next;
while (TPtr () Header) and ({ whatever condition }) do

TPtr := TptrA.Next;
if TPtr = Header then { node not found
else { node found }

The test (TPtr <> Header) keeps you looking until you've gone
through the loop; the test ({ whatever condition}) determines what you're
looking for. For example, if you were looking for a node with a
particular value (the Va~, then the while statement might look like this:
while (TPtr () Header) and (TPtrA.Data () theVal) do

TPtr := TPtrA.Next;

General lists have all kinds of uses. As shown in Chapter 17, they can
hold a list of data structures (such as records) in a more flexible form
than an array (although you can index into an array faster than you can
search through a list). Another good use is to create and maintain a
sorted list of items, especially if you don't know ahead of time how
many items you'll need to sort. With a linked list, you just Insert the
item in its proper place as you read it in.

REVIEW

In this chapter we have discussed linked lists in detail, elaborating on
how they can be used to build different data structures (both linear and
circular). Chapter 21 will look at linked lists and how to use them to
build non-linear structures.

If you're interested in learning more, here are two books to guide 'you.

• Horowitz, E., and Sahni, S. Fundamentals of Data Structures in Pascal.
Rockville: Computer Science Press, Inc., 1984.

• Knuth, D. E. Fundamental Algorithms. Vol. 1 of The Art of Computer
Programming. 2d ed. Reading: Addison-Wesley, 1975.

Stacks, Queues, Deques, and Lists 251

252 Turbo Tutor Owner's Handbook

21 Trees, Graphs,
and Other
Non-linear Structures

In Chapter 20, you learned more about linked lists and how to use
them to build different data structures such as stacks, queues, and
deques. All of these structures have one thing in common: The nodes
in them are strung together. Sometimes, though, you need a different
kind of structure, one that is not so linear.

Several such structures exist. The most common is the tree, which
allows a node to point to several other nodes. There's also the graph,
which allows rings and other intricate paths to form. Sparse arrays let
you implement large, multidimensional arrays without wasting lots of
space. Let's take a look at each of these non-linear structures.

INTRODUCTION TO TREES

A tree is like a linked list with branches. In a linked list, each node
points ahead to, at most, one more node (though it may point back to
the previous node as well). In a tree, each node can point ahead (or
"down") to more than one node.

The root of a tree is the first (or topmost) node. (Notice that this kind of
tree has the root at the "top" and the leaves at the "bottom.") A subtree
consists of a non-root node and all the nodes (if any) below it. A
terminal node (or leaf) is a node with no other nodes below it. A given
node has a parent (the node directly above it), unless it's the root. A
node may have siblings (other nodes pointed to by its parent) and
children (nodes directly below it that it points to). A tree can now be
defmed as a root with zero or more subtrees; a forest is a set of zero or
more unconnected trees.

253

Trees are useful to relate data in a hierarchical fashion, that is, in order
of grade or class. Each leaf in a tree then represents a small component
of the whole.

Another common use for trees is in the area of artificial intelligence
(AI), where a complex goal or task can be broken down into small,
performable subgoals or subtasks. Game-playing programs often use
game trees to "look ahead" for good (or bad) moves. The root repre
sents the current board position. Possible moves by one side generate
new board states, or children to the root. Moves by the other side
produce the next generation of children (grandchildren to the root), and
so on.

These uses are beyond the scope of this book, but the following
sections take a look at some simpler uses of trees.

BINARY TREES

The most commonly used tree is known as a binary tree; it is one in
which each node has no more than two subtrees attached to it. Usually,
these subtrees are labeled as left and right. You could use the following
node definition for a binary tree:
type

NodePtr = ANode;
Node = record

Data Integer;
Left,Right NodePtr

end;

Note that we're using a minimum of pointers. Each node points only
to its children (the nodes directly below it), with a value of nil
indicating an unused link. A leaf, then, is a node whose left and
right pointers are both nil. For this example, we'll assume the tree is
sorted; that is, values are added according to certain rules. In this case,
we'll assume that lower values are stored to the left and higher values to
the right.

The program ANIMAL. PAS on your disk uses a binary tree to
organize data about the animal kingdom. It prompts you to think of
an animal and tries to "guess" it using its binary tree of animal data. Ifit
does not know your animal, it will give up and let you "teach" it a
new animal.

Searching Binary Trees

To add or remove any value from the tree, we must first see if the value
is in the tree. The following boolean function (based on the algorithm
described in How to Solve it by Computer; see the end of this chapter)

254 Turbo Tutor Owner's Handbook

looks for a given value in the tree. Iffound, the function returns TRUE
and passes back both the node containing the value as well as its parent;
otherwise, it returns FALSE.
function FoundInTree(var TPtr,Parent NodePtr;

var
Found : Boolean;

begin
TPtr := Root;
Parent := nil;
Found := False;

Val Integer) Boolean;

while (TPtr (> nil) and not Found do
with TPtr A do begin

if Data = Val
then Found := True

else
begin

Parent := TPtr;
if Data > Val

then TPtr := Left
else TPtr := Right;

end;
end;
FoundInTree := Found;

end; { of func FoundInTree

This function works its way down the tree until it either finds the given
value or runs into a nil pointer. There are two reasons why both the
node itself and its parent are passed back. First, if you want to add a
node, then you'll automatically have the parent node to add it to.
Second, if you want to delete a node, then you also have the parent
node to patch things back up.

Inserting Into Binary Trees
To have a tree to search, you must first build it, add values to it, and
place them in the proper locations. For starters, you need a pointer,
Root, of type NodePtr, which is initialized to nil. When you add your
first value, nil is checked for (see the following routine) and Root is
given the value. From then on, each value goes either to the left or
right, depending upon whether it's less than or greater than Root's
data.

To add a new value, you must check to see if it's already in the tree
(using the function FoundlnTree). If it's present in the tree then you
needn't do anything; otherwise, you have the parent node to add it to,
and you need only decide whether it goes to the left or the right. This
routine does it all:
procedure AddToTree(Val : Integer);
var

TPtr,Parent,NPtr
Done

NodePtr;
: Boolean;

Trees, Graphs, and Other Non-linear Structures 255

begin
if not FoundInTree(TPtr,parent,Val) then
begin

if GetNode(NPtr) then
begin

NPtrA.Data := Val;
if Root = nil then

Root := NPtr
else

with ParentA do
if Data) Val then Left := NPtr
else Right := NPtr;

end;
end;

end; { of proe AddToTree }

Note: The boolean function GetNode creates the node, checking for
sufficient memory and initializing the different record fields. If there
isn't enough memory, it returns FALSE, preventing the node from
being created and added.

Traversing Binary Trees

There's only one way to move through a linked list: straight ahead.
There are at least three ways to traverse a binary tree: preorder, inorder,
and postorder.
Preorder prints out the data of the current node before printing out that
of either subtree. Inorder prints the current node between the left and
right subtrees. Postorder writes out the current node after both sub
trees. All are recursive, described in terms of visiting a root and its
subtrees. Visiting a node means handling it in some way (for example,
printing a value or comparing it to another value), since you will often
pass (and ignore) nodes on your way to visit other ones.

The following set of routines traverse the binary tree you've created,
writing out the values in the appropriate order. As you can see, it's
easiest to define the traversal recursively. (The only difference between
the three traversal methods is the point at which the data of the current
node is written out.) Given the previous insertion routine, the proce
dure InOrder will print out the values in the tree in numerical order as
shown here:
procedure WriteData(Data : Integer; var Row,Col : Byte);
begin

GoToXY(Col,Row);
Wrlte{Data:9};
Row := Row + 1;

end; { of proe WriteData

procedure PreOrder(Node : NodePtr; var Row,Col Byte);
begin

if Node () nil then

256 Turbo Tutor Owner's Handbook

with Node" do
begin

WriteData(Data,Row,Col);
PreOrder(Left,Row,Col);
PreOrder(Right,Row,Col);

end;
end ; { of proc PreOrder

procedure InOrder(Node NodePtr; var Row,Col Byte);
begin

if Node () nil then
with Node" do
begin

InOrder(Left,Row,Col);
WriteData(Data,Row,Col);
InOrder(Right,Row,Col);

end
end; {of proc InOrder }

procedure PostOrder(Node NodePtr; var Row,Col Byte);
begin

if Node () nil then
with Node" do
begin

PostOrder(Left,Row,Col);
PostOrder(Right,Row,Col);
WriteData(Data,Row,Col);

end;
end; {of proc PostOrder}

Deleting Nodes And Subtrees
The easiest deletion to do on a binary tree is to remove an entire
subtree. You can disconnect it by setting the appropriate pointer (Left
or Right) on its parent to nil. However, you must also track down and
dispose of all nodes in the subtree to recover the memory used by
them. This simple procedure does just that:
procedure PruneTree(var TPtr : NodePtr);
begin
if TPtr () nil then

with TPtr" do
begin

PruneTree(Left);
PruneTree(Right);
if (Left = nil) and (Right nil) then
begin

Dispose(TPtr);
TPtr := nil;

end;
end;

end; {of proc PruneTree

If you wanted to remove, say, the entire left subtree of Root, you could
simply call Prune Tree (Root" . Left), which would dispose of all the nodes

Trees, Graphs, and Other Non-linear Structures 257

and set Root/\ . Left equal to nil. And if you wanted to remove the entire
tree, you'd just call PruneTree(Root}.
A far trickier matter is to remove a single node, especially if that node
has subtrees below it. Think for a moment, you have removed a single
node that frees up exactly one pointer (either Left or Right) on its
parent, but you might have two subtrees to graft back in somewhere.
Where do you put them? If there's only one subtree then there's no
problem, but two can make things messy.

There is a well-defined, if complex, solution. The basic rule is this: If
the node deleted is to the left of its parent, then its left subtree gets
grafted in its place; likewise, if the node is deleted to the right, its right
subtree is grafted in. The root of the ungrafted subtree is then added to
the grafted subtree, with its (the root's) subtree still hanging below.

Non-Binary Trees

Not all trees are binary; nothing says that a given node can have only
two children. There are applications with nodes of three or more,
allowing you to have fmer distinctions between subtrees. We will not
describe these applications here, but we will show you how you might
implement non-binary trees.

In implementing such a tree, your first problem is the node data
structure. If you allow exactly three (or four, or five) subtrees, you can
simply declare that many pointers. But what if you want a more
general tree structure? What if you don't know ahead of time the
maximum number of children a given node will have?

Believe it or not, you can implement a general tree using a binary tree
node. Let's redefme our earlier data structure like this:
type

Nodeptr = ANode;
Node = record

Data Integer;
Child,Sibling : NodePtr;

end;

As you can see, the node is identical in size and content; we've just
renamed Left and Right to be Child and Sibling. For a given node,
Child points to the first (left-most) child of that node, while Sibling
points to the first sibling to the right.

Since we no longer have a binary tree, our concept of order has
disappeared to a certain extent. A given node can have several subtrees
below it. How then do their relative positions correspond to the values
they contain? A number of approaches can be taken. Each child can
have some sort of cut-off value, or a range of values. The child itself
can hold that value (or values) so the tree becomes self-regulating.

258 Turbo Tutor Owner's Handbook

Manipulation of non-binary trees tends to be specific to a given
implementation; thus, we won't discuss the topic in any more detail.
However, the books list~ at the end of this chapter and Chapter 20
deal with non-binary trees in more depth.

GRAPHS

You may remember that our definition of a tree included the provision
that all subtrees of a given node were disjoint; that is, the nodes in one
subtree were not found in any other subtree. This guaranteed exactly
one path from the root to any given node. Cases could exist where two
different nodes contained the same information, but they were still
distinct nodes with different parents and in different subtrees.

What if we let a given node have parents? This seems like a small
change, but it can have dramatic effects. Imagine multiple paths from
one node to another, with one path better than another. Or imagine a
node as a parent to one of its own ancestors, forming a ring of nodes
that could be looped through indefmitely.

Such a data structure is generally called a graph. You can think of a
graph as a tree with fewer restrictions; or better yet, think of a tree as a
special, restricted graph. (Often, the distinction between the two is
blurred, and what one person might call a graph is accepted by
someone else as a tree.)· In any case, a graph is a set of nodes that point
to one another; different limitations may exist on how the nodes point.
If a pointer goes one way only-like a tree, where the parent points to
the child but not vice versa-then you have a directed graph. However, if
a given pointer links two nodes equally, that is, you can't tell which is
pointing to which, then you have an undirected graph. The link between
two nodes in a graph is called an edge. In some graphs, the edge may
have a value (or weight) assigned to it, in which case you have a weighted
graph.

Graphs are used much like trees, and are particularly common in
artificial intelligence (AI) where their greater flexibility is advantageous.
Directed, weighted graphs are particularly useful in goal decomposi
tion (breaking up a large, difficult goal into many small, easy goals).
Researchers in the physical sciences, such as biology and chemistry,
often use graphs to represent systems or molecules.

Again, it is beyond the scope of this book to treat graphs in any depth,
particularly since the subject is rather esoteric. If you're interested,
you might look at the book Fundamentals of Data Structures in Pascal
(referred to at the end of Chapter 20), which devotes an entire chapter
to the subject.

Tree~, Graphs, and Other Non-linear Structures 259

SPARSE ARRAYS

From time to time, you may need to work with large arrays that are
possibly multidimensional. If you're not clreful, you may quickly
exceed the available memory, even on 16-bit systems. Take, for exam
ple, the following array:
var

PicData : array[O .. 1023,O .. 1023J of Integer;

At first glance this may not seem like a large array. A little math,
however, will quickly show that you need 2 megabytes of RAM just to
hold it. If you try to compile a program with a declaration like this,
you'll get a memory overflow error on this statement.

Suppose, though, that you needed an array like this and you didn't
need it to hold too many values. (We'll talk later about how many
values are "too many.") Maybe you had a thousand or so non-zero
values to place in the array; the remaining values would all be zero.
Such an array is known as a sparse array, since the number of significant
values is small compared to the total number of storage locations. Is
there some way you could store only the non-zero values with their
coordinates?

There is indeed a way to implement a sparse array-by using a linked
data structure. Suppose you defmed the following node:
type

NodePtr = "Node;
Node = record

Val Integer;
X,Y Integer;
Next,Last : NodePtr;

end;

Now, for each non-zero entry in the array, we use the Node data
structure. The non-zero integer value is held in Val, the coordinates are
kept in X and Y, and Next and Last point to the adjacent nodes along
the X-axis. In the following example, each node has the value
(X,Y=Val):
-->(99,110=20S)<---->(99,37S=-10321)l---->(99,1001=32032)<--

The general idea is that nodes with the same X value form a doubly
linked list using the pointers Next and Last. Furthermore, the list is
sorted by the Y coordinate along the X axis; in other words, given two
nodes, A and B, if A A • Next = B, then A A • Y (= BA. Y. This makes
searches faster, since you may not need to search all nodes in a given list
to find the one you're looking for.

You could implement this using a singly linked list, but it makes
insertions and deletions a little more difficult. If you're tight on space,
or if you're going to build the array and. not change it, a single link
reduces space.

260 Turbo Tutor Owner's Handbook

So now you have several doubly linked lists, where each list represents
all values having the same X coordinate. How do you find a given list,
and how do you find a node within that list? One solution is to defme a
Header node for each list, and then link all the Header nodes together.
To do that, we'll need a few extra pointers (for the Header nodes only).
(The Header nodes don't need the Yand Val values, only the X.) Note
that everything must link together. Let's modify our definition of node
as follows:
Node = record

Next,Last
case Header

False (

True

end;

: NodePtr;
Boolean of
Val Integer;
X,Y ARange);
XVal Integer;
Up,Down NodePtr)

We've created a variant record. The field Header decides what type
of node this is. If Header = True, then the node has the fields XVal
(X coordinate for the axis), Up and Down (pointers to other Header
nodes). Using Up and Down, you can implement a doubly linked
circular list of Header nodes. Each Header then uses Next and Last to
form a doubly linked circular list of data nodes (Header = False).
Here is a routine containing the boolean function NodeFound, which
takes (X, Y) coordinates and returns a pointer to the corresponding
node (if it exists):
function NodeFound(TX,TY Integer;

var TPtr NodePtr) Boolean;
var

Found Boolean;
begin

TPtr := theHeadA.Up;
Found := False;
while (TPtrA.XVal (TX) and (TPtr (> theHead) do

TPtr := TPtrA.Up;
if TPtrA.XVal = TX then begin

TPtr := TptrA.Next;
while (TPtrA.Y (TY) and not TPtrA.Header do

TPtr := TPtrA.Next;
Found := (TPtrA.Y = TY);

end;
NodeFound := Found;

end; { of func NodeFound }

The global variable theHead is of type NodePtr, and is the master Header
node for the entire structure. This function first seeks to find a Header
node for the X coordinate desired. If it is found, it searches the list of
data nodes until the Y coordinate desired is found. In either case, the
search ends (fails) if a coordinate greater than the one sought is found,
or if the list circles back to the initial Header.

Trees, Graphs, and Other Non-linear Structures 261

Even when NodeFound returns FALSE, it produces valuable informa
tion. In such cases, TPtr points to the closest node. For example,
suppose you're looking for (259,321). It doesn't exist, but the nodes
(259,17) and (259,421) do. TPtr will return from NodeFound pointing to
(259,421), which means that if you want to add (259,321), you're at the
correct point for insertion. Even if there are no nodes with X coordi
nate 259, TPtr would still help: It would point to the Header node of
the list just above 259. So, once again, you are pointing to the appro
priate spot to insert a new Header node.

Mixed Sparse Arrays
There are many variations on sparse arrays, depending on how much
space you have and how fast the program must be. Suppose you need
the program to run faster and have memory to spare. You might keep
your original definition of Node and declare the following array:

var
Header : array[ARangel of NodePtr;

Thus, instead of a linked list of Headers, you would have a fixed array
of all 1024 Headers, one for each possible X coordinate. You would
initialize all elements in this array to be nil, then create linked lists as
needed. The function NodeFound would then look like this:

function NodeFound(TX,TY Integer;
var TPtr : NodePtr) : Boolean;

var
Done Boolean;

begin
TPtr := Header[TX1;
NodeFound := False;
if TPtr () nil then begin

Done := False;
repeat

if (TPtrA.Y)= TY) then Done := True
else TPtr := TptrA.Next

until Done or (TPtr = nil);
if Done

then NodeFound := (TPtrA.Y TY);
end;

end ; { of func NodeFound }

Note that the inner search loop has been changed. Our linked lists are
no longer circular, since the nodes can't point to the elements in the
array Header. This forces us to make the test TPtr". Y > = TY inside
the loop, sL.'1ce at the until statement there's a chance that TPtr = nil
(which makes the other comparison illegal). To use this routine, you
would have to do some benchmarks to see if the increase in speed is
worth the additional memory required.

262 Turbo Tutor Owner's Handbook

When to Use Sparse Arrays
The toughest question about sparse arrays is when to use them. If
you've got an array that is impossible to compile under Turbo Pascal
(like the one at the start of this chapter), then you have no choice. Well,
almost no choice. It is possible to emulate a very large array using
pointers and a few other tricks, provided you have sufficient memory
on the heap. And, if your array isn't sparse (ifit's not only very big but
has lots of values as well), then you're in real trouble and maybe you
should look for a larger computer to perform your data manipulation.

Here's the hard decision: What if you could implement a regular array,
but want to save memory? How can you tell if a linked-list implemen
tation will be smaller? The easiest way is to define your "normal" array,
and find out its size using the SizeOJfunction. Then define a node for
your linked list structure, and find out its size as well. Divide the
array's size by the node's size. This will tell you the point (in terms of
number of nodes) at which your linked list version is eating up more
memory than the normal array. In much the same manner, you can
divide the dynamic memory size (given at the end of a compilation) by
the size of a node and fmd the maximum number of nodes allowable.

You must also realize that pointers can eat up a lot of space, especially
on 16-bit machines where each pointer is 4 bytes long. So if your actual
data is small compared to the rest of the data structure, you may be
better off with a regular array. On the other hand, if the data is rather
large, such as a complete record or something similar, then the linked
list approach looks better and better, since the additional overhead for
pointers becomes less significant and the wasted space in a regular array
becomes very significant.

REVIEW

As a balance to Chapter 20, here we have examined linked lists using
non-linear structures such as graphs, trees, and arrays. Here are two
books (in addition to those mentioned in Chapter 20) that will provide
you with more detail about trees, graphs, and other linked structures.

• Dromey, R. G. How to Solve it by Computer. Englewood Cliffs:
Prentice-Hall International, 1982.

• Knuth, D. E. Searching and Sorting. Vol. 3 of The Art oj Computer
Programming. Reading: Addison-Wesley, 1973.

Trees, Graphs, and Other Non-linear Structures 263

264 Turbo Tutor Owner's Handbook

22 Sorting and Searching
The ultimate function of a program is to solve problems. It presents a
solution to you in the form of graphics, hardcopy, spreadsheets, hex
dumps, and so on. However, to arrive at and represent a solution in
any form, you usually must rely on sorting and searching techniques.
While it is possible to write an entire book on these topics, we'll only
review a few examples here.

SORTING

Sorting can be done on various levels. For instance, you can sort by
grouping similar items together (all two-story homes would comprise
a group). And, you can also sort and order a group of similar items by
predetermined ascending or descending values (all two-story houses
valued from $125,000 - $195,000, listed in ascending order). Let's look
at a few sorting methods, using a list of integers as the data to be
sorted.

Insertion Sort
In Part I, we presented a sample program to sort a list of integers.
Here's the routine from that program, using the insertion sort method:
procedure InsertSort(ListMax : Integer);
{ purpose: sort list using insertion algorithm }
var

Indx,Jndx,Val : Integer;
begin

for Indx := 2 to ListMax do begin
Val := List[Indx];
Jndx := Indx;
while List[Jndx - 1]) Val do begin

List[Jndx] := List[Jndx - 1];
Jndx := Jndx - 1

end;
List[Jndx] : = Val

end
end; {of proc InsertSort

265

This procedure assumes that List is declared as an array[1 .. ListMax] of
integer. An insertion sort takes each number in the list and moves it
toward the top of the list, shuffling the other numbers as it goes, until
all the numbers preceding it are of a lower value. Starting at the top of
the list, the sort works its way down the list, so that the upper portion
of the list is always sorted. For example, suppose that partway through
the sort the list looked like this:

-10 -2 1~ 19 55 69 0 -20 ~2 100

The next number we would look at would be 0, and that number
would keep moving left until it found a number less than itself (which
would be -2). Then, the list would look like this:
-10 -2 0 15 19 55 69 -20 ~2 100

The next number to be moved, -20, illustrates a special case in
insertion sorts. The number -20 is of the lowest value in the list of
numbers; you must know how to stop when you hit the top of the list
since you'll never encounter a lower value in the list itself

Three possible solutions present themselves. First, if you're working
with a list of N elements, then declare the array to have N + 1 elements
(O .. N) and store the lowest possible value in location 0. For example,
you might do the following:
const

ListMax = 10;
var

List: array[O .. ListMax] of integer;
begin

List[O] -Maxlnt - 1;

end.

The values you want sorted are stored in locations 1 through ListMax.
The location List[OJ acts as a stopper or sentinel; since it's the lowest
possible integer value, nothing can move beyond it.

In some cases, you will not be able to use this extra location. For
example, when sorting part of a list, there may not be a "free" location
there. You can then use the second approach: Before starting the sort,
fmd the lowest value in the list and move it to List[1J as the sentinel,
trading it with the present sentinel value. For example, if our original
list to be sorted looked like this:
-10 19 15 -2 69 55 0 -20 ~2 100

After the search and swap, the list would look like this:
-20 19 15 -2 69 55 0 -10 ~2 100

As you can see, the values -20 and -10 traded places. Now, all other
values in the list are greater than - 20, thus all values will stop moving
when they reach it (if not before).

266 Turbo Tutor Owner's Handbook

The third solution is to put a goto statement In the inner loop,
jumping out of the loop if Jndx gets down to 1.

Shellsort
The insertion sort, while an effective method, suffers from the large
number of compares and exchanges needed to move a number from its
starting position to its final one. A computer scientist named Donald
Shell suggested that since most numbers sorted are going to move a fair
amount anyway, it might be more efficient to compare and swap
numbers some distance from each other first, shrinking the distance
between numbers until you return to the ones in closest proximity to
each other. This method is known as shellsort, or sorting by diminish
ing increment.

Two issues immediately arise in considering shellsort. First is what sort
method to use, since shellsort only states to sort those numbers that are
some distance from each other, not how to sort them.

The second issue is deciding what incremental value to use. Shellsort
has proven hard to analyze; most studies of its effectiveness are based
on trial-and-error testing. The literature suggests at least three
approaches. Assuming a list of N integers, you might use one of the
following sets of diminishing increments:

• Start with Inc = N div 2; divide Inc by 2 each time.

• Start with Inc = (2**P) - 1, where P = Trunc(N log 2); decrement P
by 1 each time.

• Set Inc = 1, then continue to set Inc := 3 * Inc + 1 until Inc> N;
divide Inc by 3 at the start of each loop.

The following example of shellsort (adapted from Algorithms by Robert
Sedgewick; see the end of this chapter) uses the third method:
procedure ShellSort();
{ purpose: sort list using shell algorithm }

label
ExitLoop;

var
Indx,Jndx,Val,Inc integer;

begin
Inc := 1;
repeat

Inc := 3*Inc + 1
until Inc) ListMax;
repeat

Inc := Inc div 3;
for Indx := Inc+1 to ListMax do begin

Val := List[Indxl;
Jndx := Indx;
while List[Jndx-Incl) Val do begin

Sorting and Searching 267

List[Jndx) := List[Jndx - Inc);
Jndx := Jndx - Inc;
if Jndx (= Inc then goto ExitLoop

end;
ExitLoop:

List[Jndx) := Val
end

until Inc = 1
end; { of proc ShellSort

At the center of the program is the insertion sort routine (using the
goto solution) with one major change: The number 1 has been
replaced by the variable Inc. Because of the way Inc has been initialized,
it will equal 1 the last time through the loop and will do a regular
insertion sort. However, by that time the list will be mostly sorted;
very few numbers will have to be moved, and those that do won't
need to move far.

Quicksort
Shellsort is a simple, efficient sorting method, one that will satisfy most
casual needs. However, you may find yourself in a time-critical situa
tion where you need the list sorted as quickly as possible. In such cases,
your best bet is probably quicksort, an algorithm developed by
C.A.R. Hoare.

The basic idea of quicksort is a simple one. Using the list of integers
List[1 .. ListMax}, we'll first perform the following steps:

• Pick some number in List, which we'll call Val;

• Move all the numbers in List so that Val is in its correct location,
List[Indx}. This means that all the numbers in List[1 .. Indxl-1} are
less than Val (though not necessarily sorted), and that all the num
bers in List[Indx+ 1 .. ListMax} are greater than Val (also not necessar
ily sorted).

Now perform the same operation for each of the sublists,
List[1 .. Indx-1} and List[Indx+1 .. ListMax}. This continues until each
sublist is too small to sort.

The simplest implementation of quicksort is a recursive one. Adapting
again from Sedgewick, you have the following implementation:
function Partition(Left,Right : integer) : integer;
{ partition list into two sub lists }
var

Val,Indx,Jndx,Temp : integer;
begin

Val := List[Right);
Indx := Left - 1; Jndx := Right;
repeat

268

repeat Indx Indx + 1 until List[Indx))= Val;
repeat Jndx := Jndx - 1 until List[Jndx) (= Val;

Turbo Tutor Owner's Handbook

Temp := List[Indx];
List[Indx] := List[Jndx];
List[Jndx] := Temp

until Jndx (= Indx;
List[Jndx] : = List[Indx] ;
List[Indx] : = List[Right] ;
List[Right] := Temp;
Partition := Indx

end; { of func Partition}

procedure QUickSort(Left,Right : integer);
{ recursive implementation of Quicksort
var

Indx : integer;
begin { main body of proc QuickSort

if Left (= Right then begin
Indx := Partition(Left,Right);
QuickSort(Left,Indx - 1);
QuickSort(Indx + 1,Right)

end
end; {of proc QuickSort}

The procedure Partition uses the last value (List[RightJ) in the current
sublist as Val, the one to be moved to its correct location. It then starts
at both ends of the list and moves toward the center, swapping
numbers on the left greater than Val with those on the right less than
Val. Once it hits the center, it picks the last number greater than Val
(List[Indx]) and swaps it with Val (which is still sitting at List[Right)).
Val is now in its final location, and Indx becomes the new dividing
point. The procedure QuickSort calls Partition for the current list, then
calls itself for the left and right sublists that Indx divides.

However, you may not want to use a recursive approach in some
situations. Most notably, if the list is large, your recursion stack might
overflow, especially on 8-bit systems. You can avoid recursion by
implementing your own stack, either with an array or with a linked list
(as shown in Chapter 20).

Here's anon-recursive version of QuickSort, assuming you have a set of
stack routines (ClearStack, Push, Pop, StackEmpty):
procedure QuickSort;
{ non-recursive implementation of Quicksort }
var

Left,Right,Indx : integer;
Done : boolean;

begin
Left := 1; Right := ListMax;
ClearStack; Done:= False;
repeat

if Left (= Right then begin
Indx := Partition(Left,Right);
if (Indx - Left) > (Right - Indx) then begin

Push(Left); Push(Indx - 1);
Left := Indx + 1

Sorting and Searching 269

end
else begin

Push(Indx+1); Push(Right);
"Right := Indx - 1

end;
end
else if not StackEmpty then begin

Pop(Right); Pop(Left)
end
else Done := True

until Done
end; { of proc QuickSort

This version always pushes the larger sublist on the stack, looping back
to partition the smaller one first. This helps reduce the number of
values pushed onto the stack; the upper limit is about 19 ListMax (lg
means log base 2). If ListMax = 10, then the stack need only hold four
sets of values. Your best bet is probably to use an array-based stack,
since the overhead for a linked-list stack isn't worth it.

SEARCHING

As mentioned at the start of this chapter, searching techniques help you
determine the location (if any) of specific data, in order to retrieve,
modify, or verify its existence, or place more data nearby (as in
sorting). Usually, you're searching for a key, some part of the informa
tion that identifies the rest of it. In the simplest case, such as a list of
integers, the key is the information itsel£ In more complex settings,
such as a list of records, the key might be an ID number, a name, or
something even more complex. In every case, you know the key, and
you want to find its location. Let's look at a few methods of searching.

Sequential Search
Given a list of values (spch as integers), the most straightforward way
of finding a given v~lue (or key) is to start at the top of the list and
search it sequentially until the end of the list. With certain data struc
tures, such as linear linked lists, this may be your only option, since
you (usually) have no way of jumping into the middle of the list.
(Arrays provide more options, which we'll examine momentarily.)
Right now, let's assume we're looking for a given integer value in the
same integer array, List[1 .. ListMaxJ. Our routine might look like this:
function Found(Val : integer; var Indx : integer) : boolean;
var

Flag
begin

Flag
Indx

270

boolean;

False;
1 ;

Turbo Tutor Owner's Handbook

while not Flag and (Indx <= ListMax) do
if List[Indx] = Val

then Flag := True
else Indx := Indx + 1;

Found := Flag
end; { of func Found}

This function returns TRUE if Val is found in List and sets Indx to the
appropriate location; otherwise, it returns FALSE and Indx equals
ListMax + 1. If List has been sorted, then it can be made a bit more
efficient:
function Found(Val : integer; var Indx : integer) : boolean;
var

Done : boolean;
begin

Found := False;
Done := False;
Indx := 1;
while not Done and (Indx <= ListMax) do

if List(Indx] = Val then begin
Done := True;
Found := True

end
else if List(Indx]) Val then Done := True
else Indx := Indx + 1

end; { of func Found}

Now the search function knows to quit as soon as it encounters a
number greater than Val, since the rest of the list will then be greater
than Val, too. However, unless List is short, you're better off using a
binary search, the next technique we'll discuss.

Binary Search
Think. for a moment about looking for a given v~ue in a sorted list of
numbers. Instead of starting to the left and going through the list,
suppose you start in the middle. If by chance you find the value you
want, you're done. If the value is too large, then you know you'll have
to search· the left half; otherwise, you'll have to search the right half
Repeat this process on the appropriate half until you find the value or
run out of lists. You've just performed a binary search. Here's an
implementation:
function BFound(Val : integer; var Indx : integer) : boolean;
var

Left,Right : integer;
begin

Left := 1; Right := ListMax;
repeat

Indx := (Left+Right) shr 1; div 2 }
if Value < List(Indx]

then Right := Indx - 1

Sorting and Searching 271

else Left := Indx + 1
until (Value = List[Indxl) or (Left> Right);
BFound := (Left (= Right)

end; { of func BFound }

The nice thing about a binary search is that the most comparisons
you'll have to do is log2 of ListMax, while with a sequential search,
you'll average ListMax / 2 comparisons, and your worst case is
ListMax. If ListMax = MaxInt (32767), then here are the best, worse,
and average performances of sequential and binary searches:

Sequential
Binary

Best
I

Worst
32767

16

Average
16383

8

As you can see, there's quite a difference between the two methods.
However, if you will be changing the list a lot, keeping it sorted could
be quite time consuming, unless you're using a linked list (and if you're
using a linked list, you can't use the binary search method). However,
there is yet another technique that combines the two approaches:
hashing.

Hashing
You can easily maintain (add to and remove from) a sorted linked list,
but you must search it sequentially. You can easily search a sorted
array, but you must do much to maintain it. Hashing allows you to
combine both approaches. For example, suppose you have the follow
ing definitions:
const

HMax = 63;
type

NodePtr = ANode;
Node = record

Next NodePtr;
Data : integer

end;
var

HList : array[O .. HMaxl of NodePtr;

HList is an array of header nodes, each one possibly pointing to a linked
list. To add a value to the list, you must first use a hashing function to
choose among the header nodes. This function will take the data
subfield (on which we're sorting) and return some result in the range
O .. HMax. It will always return the same result for the same data value
(otherwise, you couldn't find the stored data). Also, it will try to
spread the hash values evenly over the range o .. HMax, so that most of
your values don't end up in only a few locations.

272 Turbo Tutor Owner's Handbook

Once you have the hash value, you can use it as an index into HList.
You now have a linked list to which you can add your value. This list
can be sorted or not, as you prefer. Finding a number involves the same
process: You must use the hash function to find the Header node in
HList, then search the linked list until you find the value or reach the
end.

If you think about it for a minute, you'll see how this is a compromise
between pure arrays and pure linked lists. If HMax = 0, then you've
got a simple linked list; if HMax = the number of values to be stored (and
you drop the hash function), then you've got a regular array. The value
of HMax determines just how much you're leaning toward one or the
other. A large HMax reduces collisions (when two or more values map
to the same index) and speeds up the search, while a small HMax
reduces the amount of memory initially allocated.

External Search

Sometimes, you may want to find data stored in a file. The file may be
too large to have in memory, so you pull in selected records as you
need them. However, each time you read a record from the file, it costs
you a certain amount of time. Your goal is to read as few records as
possible when searching for the one desired.

The worst case is to start at the beginning of the file and read each
record until you find the one you want. This method would be
necessary if you could only read files sequentially. Luckily, Turbo
Pascal does allow random access of files (via the Seek procedure), so if a
file is sorted, you can use a variation of the binary search to look for a
given record.

However, sorting a file is even messier than sorting an array, and you
still might have to read several records before finding the record (or
verifying that it isn't there). More efficient techniques are needed.

One simple approach is to maintain a separate list, an index table of keys
and record numbers for all the records in the file. Let's suppose that you
want to retrieve a given record based on a star's name (assuming you
have already established a table of star names). You might make the
following definition:
type

StarIndex = record
Name : NameStr;
Index : integer

end;

Sorting and Searching 273

You now have a data type for each entry in the index table, associating
a name with a record number. The question is, what data type do you
use for the table itself? The answer depends on how big the table will be
and if it will change in size a lot. Essentially, you have the choices we've
already presented: array, linked list, or hash table. You can even add
some twists, such as "faking" a dynamically sized array. And you'll
probably want to write the index table itself out to disk, to avoid
recreating it each time you read through the entire file of star records.
Given the choice of an index table, you can then use the searching and
sorting options to find the name, get the index, and read the appropri
ate record in from the file. Assuming that TabMax, StarRec, and
NameStr are defined:
var

ITable
ICount
SFile

array[l .. TabMax] of Starlndex;
o .. TabMax;
file of StarRec;

function RecFound(FName NameStr;
var Star StarRec) Boolean;

var
Tndx Integer;

begin
Tndx := 1; RecFound := False;
while (Tndx (= ICount) do with ITable[Tndx] do

if FName = Name then begin
RecFound := True;
Seek(SFile,Index);
Read(SFile,Star);
Tndx := ICount + 1

end
else Tndx := Tndx + 1

end; { of func RecFound }

This routine does not assume that the index table (ITable) is sorted. It
does a sequential search for the name. If it is found, it reads in the
appropriate record and returns TRUE; otherwise, it returns FALSE.

REVIEW

In this chapter, we have covered only a bit more than the rudiments of
sorting and searching. And after our discussion of the insertion sort
method, shellsort, and quicksort, then hashing, sequential, binary, and
external searching, you may thirst for more knowledge. Many books
deal with the topic; the following book, along with the ones mentioned
in previous chapters, will provide you with more detailed information.

• Sedgewick, R. Algorithms. Reading: Addison-Wesley, 1984.

274 Turbo Tutor Owner's Handbook

23 Writing Large
Programs

If you are like most programmers, the majority of programs that you
write will be smaller than about 30K. It is possible, however, to run
out of memory when trying to write a larger program. (This can also
happen when writing a small program on a computer that does not
have much main memory.) What kinds of programs use up a lot of
memory? And how do you handle them? In this chapter, we discuss
the memory structure of a Turbo Pascal program, the way the
compiler manages memory, and some ways to deal with "out of
memory" errors.

A PROGRAM'S MEMORY REQUIREMENTS

There are essentially two parts to every program that you create: code
and data. Once you have typed in your source code, you use the
compiler to translate your Pascal instructions into machine language
code and to reserve space in the data area for the variables that you
declare. Turbo Pascal allows you a maximum of 64K space for your
code, and another 64K space for your data.

Of course, unless your computer has more than 128K total memory,
you cannot run a program that will use the maximum amount of code
and data space; and if you have a CP/M-80 computer, both your code
and data must fit into 64K of memory.

There are four main ways to run out of memory when trying to write
Turbo Pascal programs:

1. Too much everything. The combination of your operating system,
the run-time library, the compiler/editor, and your program text
doesn't leave enough room to compile your program. First, try
making a .COM file (see Chapter 6). Next, try reducing the
amount of text Turbo has to keep in memory by using Include files

275

(explained later). If an error still occurs, your problem is number
2, 3, or 4.

2. Too much code. Your program source compiles to more than 64K of
code (runtime library included). (Refer to the discussions about
overlays and chaining that follow.)

3. Too much data. You have declared more than 64K worth of global
variables. You need to learn how to use the heap, or perhaps you
can make some of your variables local to the procedures that need
them (discussed later in this chapter).

4. Too much heap/stack use. The stack and heap are bumping into each
other. Check MaxAvail (see Chapter 17) .before allocating memory
on the heap, or perhaps some procedure/function is eating up
too much stack space (especially if you are using recursion).
Finally, reducing the amount of code will leave more room for the
heap and stack; refer to the discussions about overlays and chain
ing that follow.

Now we'll discuss each of these in a bit more detail.

TOO MUCH DATA

Let's pretend that the following program will not generate any code at
all (actually, it generates a very small program that loads and then
exits-a small amount of space is always reserved in the data area as
well):
program Example;
begin
end.

In addition, because we did not declare any variables, we'll also imag
ine that no space was reserved in the data area. On a 16-bit computer,
we would still have 64K memory available for our code, and another
64K available for our data. If we now declare a character variable
(characters use 1 byte), we would still have 64K for our code and 64K
minus 1 byte for our data:
program Example1;
var

ch : char;
begin
end.

The next example declares a 32K array and therefore leaves us another
32K for more variables:
program Example2;
var

a : array[O .. Maxlntl of char; {Maxlnt equals 32K - 1 }
begin
end.

276 Turbo Tutor Owner's Handbook

What would happen if we changed the array type to real? Real num
bers use 6 bytes, so we would be trying to reserve 192K (6 bytes * 32K)
of data area and the compiler would give us a MEMORY OVER
FLOW error. And we haven't even written any code!

TOO MUCH CODe

Now that we've succeeded in running out of data space, let's intention
ally run out of code space as well. Before we discuss the next example,
however, you need to know about the Turbo runtime library. Every
Turbo program that you write has access to many "built-in" features:
file-handling routines, routines to clear the screen, facilities to write
data to several devices, and so on. These routines are written and stored
in a 12K machine language library that is automatically placed at the
beginning of your programs. Since your entire program (library
included) is allocated a maximum of 64K, this leaves about 52K for
your Pascal code:
program Example3;
var

ch : char;
begin

ch := ch;
end.

The statement ch : = ch; uses about 8 bytes on an IBM PC. If you
compile this program to a .COM file, the size of the .COM file will be
about 12K (for the library) plus 8 bytes (for the statement ch := ch).
Now, let's try to use too much code so that we generate a compiler
error. Since we are trying to use up 52K bytes (64K minus 12K
library), we'll need to repeat our assignment statement more than
6,600 times in order to run out of memory.
program Example~;
var

ch : char;
begin

ch := ch;

ch
end.

ch;

Line 1

Line 7000

This program generates a MEMORY OVERFLOW error on line
6702. What have we learned? We have learned how to write simple
programs that ask for too much data or code space and therefore
generate compiler errors.

Writing Large Programs 277

TOO MUCH TEXT

Actually, you will run into a slight problem when trying to compile
program Example4. If you try to type the assignment statement 7,000
times, you will end up with an 88K text ftle. Since the Turbo Pascal
editor has a text buffer of only 64K, the ftle will be too big for the
compiler! editor to load.

Let's take a look at how quickly memory is eaten up on a 16-bit
system. When you boot your computer, DOS will take up to 40K of
memory (depending on which version you're running). Load Turbo
Pascal, and the program takes up about 40K memory; it also loads
the 12K Pascal runtime library. We've already used 92K, and we
haven't loaded your program text (up to 64K) or generated any code
(another, 52K):

bL;O TOP OF MEMORY

data, heap and stack areas
208

program code generated by compiler (S2K)
lSb

K program text (bL;K)
B 92
Y Turbo Pascal compiler (L;OK)
T 52
E Pascal run time library (12K)
S L;O

DOS (L;OK)
0

MAX. BYTES

Simplified DOS memory map. Figures are approximate.

If you are working on a 128K system, there is obviously not enough
room for all of this. And if you run any RAM-resident programs
such as SideKick, SuperKey, or Turbo Lightning-there is even less
room available. If you are using a 64K CP/M-80 system, all of the
preceding (except DOS) must ftt into one 64K chunk of RAM.

THE STACK

After memory has been reserved for the runtime library, your code,
and the global data you declared, any remaining memory is set aside
for the stack and heap. The stack is a scratch area of memory used by
your program (we'll discuss the heap in a moment).

You don't have to worry about the details of what the stack does or
how it works; just keep in mind that parameters passed to procedures/
functions, locally declared variables, and other similar objects are all

278 Turbo Tutor Owner's Handbook

placed on and removed from the stack automatically each time a proce
dure or jUnction is called. You also don't have to worry about keeping this
scratch area clean and tidy-Turbo takes care of that for you. Given this
general introduction about the stack, consider the following examples:
program GlobalData;
type

BigArrayType = array[O .. MaxIntl of char; {32K array}
var

BigArray : BigArrayType;
begin {program body }
end.

This program is perfectly reasonable and will compile; however, we
have already used up half of our data area on one variable. If we are
only using the variable during part of the program, we should declare it
locally (inside a procedure, for example) and space will be set aside for
it on the stack (rather than waste room in the data area):
program LocalData;
type

BigArrayType = array[O .. MaxIntl of char; {32K array}
procedure UseTheArray;
var

BigArray : BigArrayType;
begin
end; UseTheArray}

begin program body }

UseTheArray;

end.

Now we still have 64K worth of data space available. In general,
declare your variables locally unless

• You need access to theni gloBally (a perfectly valid reason).

• You are writing a video game or other real-time application and
speed is essential (it takes slightly longer to manipulate stack data).

• Your local variables will overflow the stack (the stack is limited
to 64K).

On CP/M-80 systems, even local variables are declared statically;
though no memory is saved by using local variables, it is still good
programming practice to use them whenever possible. Of course, if a
TOO MANY VARIABLES warning or an OUT OF MEMORY
error occurs, you will need to economize memory usage using one of
the methods discussed in this chapter. (There is an excellent memory
map of Turbo Pascal on CP/M-80 systems in Chapter 22 of your Turbo
Pascal Reference Manual.)

Writing Large Programs 279

THE HEAP

As explained in Chapter 17, Turbo Pascal supports an unlimited heap.
All the extra memory on your system is "heaped" into a large contin
uous chunk after (higher in memory than) your data area. On a 640K
system, you may end up with over 512K of heap space available. You
can use all this RAM to store and manipulate variables. Instead of
referring to these variables with an identifier, however,. you must
declare a pointer variable and refer to this pointer when you want to
access a variable:
program PointerData;
type

BigArrayType = array[O .. MaxIntl of char; {32K array}
var

one, two, three : ABigArrayType;
begin {program body }

New(one) ;
New(two) ;
New (three) ;

end.

This program uses three 32K arrays (the New statement reserves
memory from the heap at runtime). Of course, there has to be room on
the heap or an error will occur.

If there isn't enough room on the heap and a New statement is called, a
heap/stack collision error will occur (RUNTIME ERROR FF). Simi
larly, if there isn't enough room on the stack and you call a routine that
uses a lot of stack space, the same error will occur. Note that this error
will cause your program to crash. If you ever encounter one, your
stack has overflowed onto your heap or vice versa. (Refer to Chapter
17 for more information about using pointer variables.)

SOLUTIONS

Now that you have a better understanding of the perils of memory
management, let's discuss some techniques for dealing with "out of
memory" errors.

INCLUDE FILES

There are two good reasons to use Include files: (1) they reduce the
amount of text held in memory and therefore free up more RAM for
Turbo to work with, and(2) they make it easy to break your program
into modules of related routines. When you compile, each module is
pulled in as needed. This not only solves the overflow problem, but
also lets you edit program files that would be too big to edit in
memory all at once.

280 Turbo Tutor Owner's Handbook

The {$I} (Include) compiler directive allows you to divide your pro
gram into smaller sections for editing purposes. These sections of code
are rejoined when the program is compiled. The compiler directive
takes this format:
{$I filename.ext}

The file name must follow the standard conventions of your operating
system (drive, path name, allowable characters, and so on). If no
extension is specified, then . PAS is assumed; if you really want a file
name with no extension, then use filename., which explicitly puts a
period (.) after the name.

Note: The Include compiler directive is not to be confused with the
liD compiler directive that enables/disables I/O checking. The I/O
compiler directive is {$I +} to turn I/O checking on and {$I-} to turn
liD checking off (refer to Chapter 18 for more about file I/O). When
the compiler sees a file name after the I, it knows to include that file.

MODULAR PROGRAMMING
A common programming practice is to put all global declarations into
a separate fue and pull them in via the Include option. Likewise, the
procedures and functions can be grouped together in another file. Your
main program might look like this:
program Whatever;
{$I whatever.def } { pull in declarations
{$I whatever.prc } { procedures and functions

{note: only 1 include directive is allowed on a line
begin {main body of program Whatever

Initialize;
repeat

GetCommand(Cmd);
HandleCommand(Cmd);
UpdateStatus

until Done;
Cleanup

end. {of prog Whatever }

The file WHATEVER.DEF has all the const, type, and var state
ments for this program, and WHATEVER. PRC has all the subrou
tines (including Initialize, GetCommand, HandleCommand, UpdateStatus,
and Cleanup).
Don't worry about keeping track of what you're editing and what you
want to compil~the Turbo Pascal main menu makes it easy. Use the
Main file command and give it the name of the file containing your
main program (such as WHATEVER.PAS). Now, you can use the
Work file command to freely select between WHATEVER.DEF,
WHATEVER.PRC, and WHATEVER.PAS, editing whichever one

Writing Large Programs 281

you'd like. When you compile, Turbo will automatically save the file
you were working on before starting the compilation. What's more, if
there is a compiler error, Turbo will bring in the correct file and go to
where the error occurred.

Note that the main file, WHATEVER.PAS, contains all the Include fue
statements; Include modules are not allowed to include other modules.
Don't let the idea of Include files confuse you. They are simply a way
to keep most of the source code for a program on disk. This helps free
up RAM, and it also makes it easy to adopt some good programming
habits (keeps related routines in the same file, encourages the use of
"libraries," makes it easy to find a routine-instead of searching
through lines and lines of code, simply load the right module).

LIBRARIES

Once you start writing large programs, or even just a lot of programs,
you can save yourself time and effort by creating subroutine libraries. A
library is a collection of procedures and functions (with any accompa
nying declarations) you can use repeatedly in different programs.

Using a library has a number of advantages. First, it allows you to
solve a certain problem, then go on to your debugged routines. Sec
ond, your programs will tend to be more consistent with one another,
performing the same functions in the same way. Third, you'll be able
to write programs more quickly, since much of the "grunt work" will
already be done. Fourth, you'll save disk space, since one file of routines
may be included in several programs.

Note: Although source code libraries aid in development speed, they
must be recompiled into each program that uses them. You can include
libraries just like any other Include file, although you usually place the
Include statements right after the program statement so that subse
quent declarations and routines can make full use of the libraries.

USING OVERLAYS TO SAVE CODE SPACE

Libraries, Include commands, and .COM fues can all help to solve the
problem of insufficient memory during compilation (called compiler
overflow). But what if the resulting program is just too big? What if
your .COM file, together with the data structures you declare, exceed
your available memory? If this happens, then you have memory over
flow, and the previously described methods offer no solution because
they do not affect the size of the generated program code.

However, one method for saving code space is to use overlays. Overlays
are portions of a program that are loaded into the same area of

282 Turbo Tutor Owner's Handbook

memory, but not at the same time. Since only one chunk is loaded at
anyone time, the program only has to set aside enough memory to
accommodate the largest one. For example, if you have five procedures
occupying a total of20K and the largest is only 6K in size, then you've
reclaimed a total of 14K. Consequently, you can only save code space if
there is more than one overlay procedure.

In Turbo Pascal, overlay groups are formed by sets of procedures and
functions. Each overlay group has its own area of memory; the proce
dures and functions found in that group share that area in memory.
This is an important point: The procedures and functions in a
given group all compete for that area of memory, thus only one can be
loaded in at any time. It also means that subprograms in an overlay
group must not call each other (even indirectly), since the calling
routine must be flushed out before the called routine can be loaded in.·
This would wipe out the rest of your calling routine and prevent you
from continuing.

To create an overlay group, you must group together all procedures
and functions into one part of the program. Each subprogram must
have the key word overlay at the start of its procedure statement,
like so:
overlay procedure Initialize;

{ declarations }
begin

end; {of proc Initialize

overlay procedure Pilotage;
{ declarations }

begin

end; {of proc Pilotage

overlay procedure MoveInShip;
{ declarations }

begin

end; {of proc MoveInShip

overlay procedure DoRepairs;
{ declarations }

begin

end; {of proc DoRepairs

overlay procedure HandlePod;
{ declarations }

begin

end; {of proc HandlePod

overlay procedure Cleanup;

Writing Large Programs 283

{ declarations
begin

end; {of proc Cleanup

The six procedures-Initialize, Pilotage, MoveInShip, DoRepairs,
HandlePod, and Cleanup-form one overlay group. Only one of the six
can be in memory at any given time. The amount of memory set aside
is that needed by the largest of the six. An overlay group ends when the
first non-overlay procedure (or the main body of the program) is
encountered. You can have multiple overlay groups, separated from
one another by regular subprograms (which can be "do nothing"
procedures, such as a procedure statement begin and end). Note
that procedures in one overlay group can call a procedure in another
overlay group.
When you compile a program with overlay groups, each group is
written out to a separate file. The first group is written to the file
(ftlename).OOO, the second to (ftlename).OO1, and so on, up to
(ftlename).099. These files are created whether or not you've selected
the .COM-file option; otherwise, you couldn't test your program
while still in the Turbo environment.

To get a given procedure from an overlay group into memory, you
must call it. If it's not in memory, it'll be loaded in, overwriting
whatever procedure from the group that is currently in memory. This
means that you'll probably want to design your program to avoid
constant, successive calling of procedures in the same overlay group;
otherwise, the program will be constantly loading in those procedures
from the disk. For example, the main body of the previous program
might look like this:
program StarShip;
{ declarations }
type

States = (InPilotage,InShip,InRepair,InPod,GameOver);
var

GameState : States;
{ more declarations, including overlay group }

begin {main body
Initialize;
repeat

case GameState
InPilotage
InShip
InRepair
InPod

end
until GameState =
Cleanup

end. {of program

284

of program StarShip }

of
Pilotage;
MoveInShip;
DoRepairs;
HandlePod

GameOver;

StarShip }

Turbo Tutor Owner's Handbook

This program uses the overlay group we've already defined to break up
the major functions into manageable chunks and keep only one chunk
in memory at anyone time. The global variable GameState controls
which ship function you're running at the moment.

Menu Program Example One: Overlays

Since many programs are menu-driven, let's look at how to overlay a
menu program. A simple method is to have each menu option carried
out by an overlay procedure that has all of its utility routines nested
inside of it. These subroutines are considered part of the overlay
procedure and are all loaded simultaneously when the option is
selected. The following sample program has two options: to enter data
and to generate reports.
program MENU;
{$I Share.def} { type, variable and procedure definitions

{ available to both overlay procedures
overlay procedure DataEntry;

procedure InitDataValues; { nested procedure}
begin

end; {InitDataValues

procedure GetUserData; nested procedure }
begin

end; {GetUserData}

begin {DataEntry
InitDataVals;

GenUserData;
end; {DataEntry

overlay procedure PrintReports;

procedure InitPrintVals; {nested procedure}
begin
end; {InitPrintVals}

procedure GenerateReports {nested procedure }
begin

end; {GenerateReports

begin { PrintReports
InitPrintVals;

GenerateReports;
end; {PrintReports

Writing Large Programs 285

var
choice: char;

begin {main}
repeat

GetChoice(Choice); Prompts the user
case Choice of and reads the choice

'D': DataEntry
'P': PrintReports;

else;
end;

until Choice = 'Q'
end. { Menu }

This method is simple and effective for a number of reasons. First of
all, you only need to overlay as many procedures as there are user
options. Second, only one overlay file is created. Third, you generally
do not have to worry about different menu selections calling each
other. And fourth, program execution is slowed by disk access only
when the option is selected (and not even then if the option was chosen
previously), rather than at various points in the option's execution.

Note: This program only generates one overlay file, yet saves a great
deal of code space. Remember, it is not the total number of overlay files
(or groups) that is important, rather, it is how much space can be saved
in a given overlay flie.

Location of Overlay Files
Normally, Turbo Pascal expects overlay flies (fliename).OOO, and so
on) to be on the logged drive. If you're using version 2.0 (or later) of
MS-DOS/PC-DOS, then the logged path name is used.

You can, however, tell your program where to look for the overlay
flies. If you're using MS-DOS/PC-DOS, then you can use the built-in
procedure OvrPath(PathName), where PathName is a string giving the
drive and/or directory path name where the overlay file is to be found.
The string '.' selects the current logged drive.

In the same way, you can use the procedure OvrDrive(DNum) to
specify which drive to use when running under CP/M or CP/M-86.
DNum is an integer value indicating the drive: 0 = logged drive, 1 =
A:, 2 = B:, and so on.

Overlay Restrictions
In Chapter 18 of the Turbo Pascal Reference Manual, there is a discussion
of overlays and some of their restrictions. Most notably, it is stated that
you cannot have recursive procedures within overlay groups (some
thing else to watch for if you're building libraries). The reference
manual suggests making a regular subroutine recursive and have it
call the overlay procedure. You're probably better off fmding a non-

286 Turbo Tutor Owner's Handbook

recursive implementation (remember QuickSort in Chapter 22 of this
manual), or moving the recursion out of the overlay group altogether.

Likewise, you can't declare an overlay procedure as forward, though
the solution does work easily. Simply declare ~ r~gular subroutine as
forward, declare the overlay procedure, then put in the original (for
ward) subroutine. For example, suppose you have two procedures in
two different overlay groups that need to be able to call each other. You
might set up something like this:
procedure CallTest2; forward;
overlay procedure Test1; {start of first overlay group}
begin

CallTest2;

end; {of overproc Test1 }

procedure Dummy;
begin
end:

{ Dummy to end the first overlay group }

overlay procedure Test2; {start of second overlay group}
begin

TesU;

end; {of overproc Test2 end of second overlay group}

procedure CallTest2;
begin

Test2
end; {of proc CallTest2

Since Testl is declared before Test2, there's no problem with Test2
calling Test1. However, the procedure CallTest2 is declared forward
before Testl and actually created after Test2. That way, Testl can call
Call Test2, and CallTest2 can call Test2. Simple, huh? Remember,
though, that this assumes that Testl and Test2 are in two separate
overlay groups. If they're in the same group, they can't call each other
regardless of what you do. (Actually, they can call each other, but your
program may die a quick and messy death.)

CHAINING
There are alternatives to overlays. For example, your program may
actually be several distinct and independent programs (each of which
can be 64K) sharing the same data (and data structures), but with the
need to be run at different times. Turbo Pascal lets you chain between
programs.

Writing Large Programs 287

Chaining lets a currently running program load. another program in its
place. So if you're running the program Testl and chain to the pro
gram Test2, all of Test1 is thrown away, Test2 is loaded into memory,
and execution starts at the top of the main body of Test2. Likewise, if
Test2 chains back to Testl, Test1 is pulled in while Test2 is discarded,
and execution starts at the top of the main body of Test1. (Note
execution of Testl does not begin where Test1 had previously chained
to Test2.)

If you want to run a group of chained programs, the first program
executed must be a regular .COM file (that is, one created using the
Com-file command under the compiler Options menu). All others
must be .CHN files, created by the cHn-file option in the same menu .
. CHN files omit library routines (about 12K in size) and so are gener
ally much smaller. The runtime routines are loaded when the .COM
file is executed and remain in memory as each . CHN file is loaded in.

While chained programs don't share code (except for the runtime
routines), they can share data if you declare things properly. The global
declarations in each program are created in the same area of memory,
in the order of declaration and are not initialized (except for typed
constants). So, if you have the identical set of global variable declara
tions at the start of each chained program, then those variables will
retain their values during the chaining process. The easiest way to
ensure this is to declare said variables in a separate file, then include that
file at the start of each program:
program TesU;
{$I test. def }

end. { of program Testl }

program Test2;
{$I test.def }

end. { of program Test2 }

Note that the file TEST.DEF can include all types of declarations:
constants, types, variables, subprograms, and so on. Be aware,
though, that any typed constants used by chained programs will be
reinitialized.

For one program to chain to another, you must first assign the . CHN
file to a file variable (which can be of any type), then chain to it. You
might want to define something like this:
type

Filestr : string[801;
procedure ChainTo(FileName FileStr; var IOCode Integer);
var

CFile : file;

288 Turbo Tutor Owner's Handbook

begin
Assign(CFile,FileName);
{$I }
Chain(CFile) ;
{$I+ }

rOCode := rOResult
end; { of proc ChainTo

This routine will attempt to chain to the file name passed to it. If an
error occurs, it will return an I/O error code (0 = no error) in the
parameter IGCode; otherwise, contol will be passed along to the
chained program.

One immediate caution to note: The procedure Chain can only chain to
a .CHN file; you cannot chain back to the original (.COM) file. This is
important to remember, especially if you want to chain back and forth
between programs. (Read the section "Executing Files" for a way
around that restriction.)

One more caution is in order. After each .CHN file has compiled,
make a note of the code and data printout that comes up on the screen.
When you have finished compiling all the .CHN files, select the Com
option to compile your main, executable program. When the Options
menu appears, you must set
mlnlmum cOde segment size: XXXX paragraphs
minimum Data segment size: XXXX paragraphs
mInimum free dynamic memory: XXXX paragraphs

If the code or data is smaller than any of the . CHN values, choose the
largest value from the data acquired when compiling the chain files.
When you enter these values the compiler will add overhead space and
return the computed values. Note: The module with the largest code
segment size may not necessarily have the largest data size, so pick the
largest value for each code and data segment.

EXECUTING FILES

The Execute procedure works exactly like the Chain procedure, with
one important distinction: The file being executed must be a Turbo
Pascal .COM file, rather than a .CHN flie. This means the executed
program can be run as a standalone program, which mayor may not
be an advantage. Note: You may have to set the minimum code and
data segment sizes discussed in the previous section when using Execute
as well.

Writing Large Programs 289

Menu Program Example 2: Chain and Execute

In the section on overlays, we showed you how to save code space in a
menu-driven program. In this example, we'll show you how to save
code space using Chain and Execute. Chain/Execute is especially tailored
to the structure of a menu program, since each option is usually a
distinct self-contained task. The following shows how you can chain
back and forth between programs. Menu serves as the main program,
chaining to the separate programs DataEntry and GenReports:
program Menu;
{$I Share.DEF }

var
Choice:char;
OptionFile: File;

begin
repeat

GetChoice(choice); { Prompt the user and
case choice of { read the selection

'P': Assign(OptionFile,'GenReport.CHN');
'D': Assign(OptionFile,'DataEntry.CHN'),
else;

end;
if Choice in ['D','P'] then

Chain (OptionFile);
until Choice = '0';

end.

program DataEntry;
{$I Share. Def }

procedure InitDataValues;
begin

end;

procedure GetUserData;
begin
end;

var
MainFile: File;

begin
GetUserData;
Assign(MainFile,'Menu.COM');
Execute(MainFile); { re-execute main menu program}

end. { DataEntry }

290 Turbo Tutor Owner's Handbook

program GenReports;
UI Share.Def }
procedure InitPrintVals;
begin

end;

procedure GenerateReports;
begin

end;

var
MainFile: File;

begin
GenerateReports
Assign(MainFile,'Menu.Com');
Execute(MainFile);

end. {GenerateReports}

In program MENU.COM, when an option is selected it chains to the
corresponding . CHN program (DataEntry or GenReports). The chain
program completes its task and re-executes the main program. This is
necessary because, unlike a subroutine call, when the task is completed
the control of the program does not automatically return to the calling
procedure. Instead the main program is re-executed from the begin
ning. However, since our main program is a repeat loop, it doesn't
matter if you restart it at the top of the loop.

OVERLAY VS. CHAIN/EXECUTE

We have shown you two ways to implement a menu-driven program,
and each has its strong and weak points. The overlay solution generally
uses a smaller number of fues since all the options are in one overlay
fue. Also, if you choose the same option repeatedly, an overlay pro
gram will probably run faster than a menu-driven one because the
option doesn't need to be loaded in from disk. Also, in the Chain/
Execute solution, the main program must be loaded in from disk when
it is re-executed, further slowing execution time.

Non-overlay utility routines can be used by several overlay procedures,
reducing the amount of duplicated code. In Chain/Execute on the other
hand, utility procedures must be duplicated in each .CHN file.
Chain/Execute has the advantage in compile time. Once you have
compiled the. CHN programs, they do not have to be recompiled with
the main program. Also, a Chain fue need only be recompiled as a
. COM program in order to run as a stand-alone program. It is also
easier to incorporate this module into a different menu-driven
program.

Writing Large Programs 291

REVIEW

You can use overlays, the heap, and Include modules to create large,
fast Turbo Pascal programs. The heap and stack can be used to
augment the static data storage area, overlays (and, less commonly,
chaining) can be used to supplement the code area, and include fues
serve the dual purpose of allowing modular, portable programming
while freeing up RAM previously used for storing text for the editor.

292 Turbo Tutor Owner's Handbook

24 Typed Constants
In Chapter 7, we introduced the concept of a Pascal constant. As you
may recall, constants are fixed values associated with identifiers and
have the following properties:

• They must be of a scalar type (the one exception being string
constants, which are strings of characters).

• They cannot be changed during the course of a program.

Many other computer languages, such as C, do not restrict constants to
string and scalar types. In fact, constants of "structured" types
especially arrays and records-can be very useful in many programs.

For instance, suppose you were writing a program to play a game of
cards. You might define the types:
type

SuitType = (Clubs, Diamonds, Hearts, Spades);
RankType = (Ace, Deuce, Three, Four, Five, Six, Seven,

Card =
Suit
Rank

end;

Eight, Nine, Ten, Jack, Queen, King);
record

SuitType;
: RankType;

Now suppose you wanted a constant value in your program for the
Ace of Spades, so that you could make a card the Ace of Spades, or test
to see whether a card has that suit and rank. In standard Pascal you
could not define such a constant and would be forced to work on the
individual fields of the record:
ThisCard.Suit := Spades;
ThisCard.Rank := Ace;

In Turbo Pascal, however, you can use a structure called a typed constant
to make the manipulation of records easier to program and understand.
You could define the typed constant as
const

AceOfSpades : Card = (Suit: Spades; Rank Ace);

293

Then, to make the variable ThisCard become the Ace of Spades, you
could simply write
ThisCard := AceOfSpades;

Typed constants are a Turbo Pascal specialty. In this chapter, we'll
explore the properties and uses of this powerful feature.

DEFINING A TYPED CONSTANT

To define a typed constant, you must place a typed constant definition
in the constant defInition part of your program. The syntax of a typed
constant definition is shown in Figure 24-1.

typed
constant
definition

Figure 24-1 Syntax Diagram of Typed Constant Definition

Note that this definition looks like a combination of a variable declara
tion and a constant definition. Like a variable declaration, it specifies
explicitly the type of the constant (hence the name "typed constant").
Like a constant defInition, however, it specifies the value of the
typed constant.

The value of a typed constant can be a value you might give an
ordinary constant, that is, a scalar or a string of characters. It can also
be a structured constant, a constant specifying the fields of a record,
the elements of an array, or the members of a set. The syntax diagrams
showing the notation for a structured constant are displayed in Figures
24-2 through 24-5.

294

structured constant --~--.t array constant

1-----1~ record constant

L-----1~ set constant

Figure 24-2 Syntax Diagram of Structured Constant

Turbo Tutor Owner's Handbook

array constant

Figure 24-3 Syntax Diagram of Array Constant

record constant field identifier

Figure 24-4 Syntax Diagram of Record Constant

Figure 24-5 Syntax Diagram of Set Constant

Each kind of structured constant (array, record, and set) merits detailed
explanation. Let's begin with the simplest, the array constant.

ARRAY CONSTANTS

An array constant consists of a constant for each element of an array,
separated by semicolons. These constants may be of any type, even
structured types, except a file or pointer type (since there is no way to
describe constants of these types in Turbo). For instance, suppose you
were to declare
type

LaundryType : (Socks, Shirts, Blouses, Pants, Skirts,
Ties, Jackets);

Typed Constants 295

You could then specify a constant describing a laundry list by writing:

const
LaundryList : array [LaundryType] of

integer = (3, 2,1;,1, 8, 1, 1);

The preceding constant would then describe a laundry list containing 3
socks (oops, guess an odd one got in there somehow!), 2 shirts, 4
blouses, 1 pair of pants, 8 skirts, 1 tie, and 1 jacket. In the special case of
arrays of characters, either the previous notation or a string notation
can be used. Thus, the two definitions that follow are equivalent:

const
Digits

const
Digits

array [0 .. 9] of char =
('0','1','2','3','1;'~'5','6','7','8','9');

array [0 .. 9] of char = '01231;56789';

RECORD CONSTANTS

A record constant contains constants giving values for each of the fields of
a record. As with the elements of an array constant, these fields may
have values of any type except file or pointer types.

Here is an example of a record constant. If you were to define

type
Point : record

X, y, Z : integer;
end;

you could then define a typed constant as

const
Here: Point = (X : 0; Y : 11;; Z : 23);

Note that in a record constant definition you must specify in order the
names of the fields in which the constant values are to be placed. This
allows you to specify the fields of a variant record, if necessary.
Remember if your variant record type contains a tag field, a value must
be specified for that field.

SET CONSTANTS

A set constant has a syntax similar to that of a set constructor (described
in Chapter 16), except that it can contain only constants. A set constant
can only contain constants of the base type of the set.

Here are some examples of set constants:

type
CharSet set of char;
DaySet set of (Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday, Sunday);

296 Turbo Tutor Owner's Handbook

const
Vowels CharSet ['A', 'E', 'I', '0', 'U', 'y',

'a', 'e', 'i', 'a', 'u', 'y'];
Days DaySet [Monday, Wednesday, Friday .. Sunday];

Note that subrange notation is allowed in set constants; in the previous
example, we have used it to save typing.

SPECIAL PROPERTIES OF TYPED CONSTANTS

We've already discussed the most common and obvious use of typed
constants: to create constants of structured types. When used for this
purpose, typed constants can be treated exactly as ordinary constants.
Unlike ordinary constants, however, Turbo Pascal typed constants
have a number of unique properties that make them even more useful.

Mutability

The most important (and perhaps surprising) property of typed con
stants is that the value of a typed constant may be changed during execution.
When a program is first loaded into memory and begins running, the
typed constants in that program have the values given in the typed
constant definition. However, if a typed constant is changed (either by
assignment or by a procedure or function called with it), it will assume
the new value as if it were a variable.

While this property of typed constants may at first seem odd or even
dangerous, it is extremely useful, as we shall see in later sections.

Ufetime
Another important property of typed constants is that their lifetime (as
defined in Chapter 12) is equal to the total time the program runs, even
if they are defmed in subprograms. In other words, if a typed constant
is defmed in the declaration part of a procedure or function, and that
subprogram stores a value in the typed constant, the same value will be
there the next time the procedure is called. This contrasts sharply with
the behavior of local variables, which "lose" their values when the
subprogram in which they are defined is exited.

An object whose lifetime is the entire length of the program is said to
be static. Typed conStants, like variables declared in the declaration part
of a main program, are static objects.

Scope
The third important property of typed constants (which only shows
when they are defined within subprograms) is that recursion does not

Typed Constants 297

cause new instances of them to be created as it does with local vari
ables. Consider, for example, the following program:
program TCDemo;

procedure Recurse;
const

A : integer = 0;
var

B : integer;
begin

B : = A;
A := Succ(A); {We can assign to A as if it were an

integer variable }
if A < 10 then Recurse;
Writeln (A:3, B:3);

end; {Recurse}

begin { TCDemo
Recurse;

end. {TCDemo

When run, this program will call the procedure Recurse, which will
recurse 10 times. Can you tell what will be printed when this program
is run, before going on to the next paragraph?

The correct sequence output by the program is
10 q
10 8
10 7

10 1
10 0

Why does A retain its value after each recursive call, while B doesn't?
The answer is that a new B is created each time the procedure Recurse is
called, and the old one is saved until after the call is finished. This is not
the case for typed constants, however-all references to A refer to the
sameA.

TYPED CONSTANTS AS STATIC VARIABLES

As stated earlier, all variables declared within a procedure or function
"lose" their values when the procedure or function is exited. In standard
Pascal, which does not have typed constants, this "feature" makes it
impossible to make a procedure or function "pick up where it left off'
from a previous call-unless, of course, global variables are declared
specifically for use by that subprogram. .

Such global variables can make a program harder to understand, since
they must be declared far from where the subprogram is declared

298 Turbo Tutor Owner's Handbook

(usually at the beginning of the program). Typed constants, defined
within the subprogram where they are used, avoid this confusion and
let you write procedures like the Counter procedure that follows:
progral CounterDemo;
var

I : integer;

procedure Counter;
const

Count: integer = 0;
begin

Writeln (Count);
Count := Succ(Count);

end;

begin { CounterDemo }
for I := 1 to 10 do
Counter;

end. { CounterDemo }

In this program, the procedure Counter is able to remember where it
was in its counting sequence because it stores the current count in a
typed constant.

TYPED CONSTANTS AS INITIALIZED
VARIABLES

In a Pascal program, all of the variables are undefmed from the time a
program starts running until they are assigned a value. Of course, most
of the time we want at least some of our variables (counters, for
instance) to start out with known values. For this reason, many Pascal
programs start out with an initialization procedure containing large
numbers of assignment statements to set up all of these values.

Unfortunately, this mass of assignment statements, confined to a
separate procedure far from where the variables are used, can be very
confusing. (Where is the declaration of the initialized variable? How
can you tell if a variable has been left out?) Because Turbo Pascal typed
constants let you specify the initial value next to the defmition itself,
this "scattering" of information is minimized. And, because no assign
ment statements need be executed (the value of the typed constant is
read directly from disk), the program is smaller and faster as well.

MANIPULATING COMPONENTS
OF CONSTANTS
One idiosyncrasy of standard Pascal is that it treats constants as indivis
ible objects, even if they are naturally divisible into smaller pieces. For

Typed Constants 299

instance, if you try to use an array index to pull the third character out
of a string constant, the compiler will complain. As a demonstration,
suppose we define a constant string:
canst

Twister = 'Peter Piper picked a peck of pickled peppers.';

and wish to send it, character by character, to a modem. Suppose also
that we have a procedure called Modemout, which takes a character as an
argument and sends it to the modem. A seemingly "obvious" way to
program such a task might be:
var

I: integer;

for I := 1 to Length(Twister) do
Modemout(Twister [il);

If you were to compile this example with Turbo, however, the com
piler would stop at the last line shown, with the message:
Error 5: ')' expected. Press <ESC>

Upon pressing the I]£l key, you would return to the editor with the
cursor on the [. Why? Well, the Pascal language in general doesn't
allow you to manipulate the components of constants. In this case, a
subscripting operation is being used to pick out a single element of a
constant string. But since ordinary constants are treated by Pascal as
whole and indivisible objects, this is not allowed.

The answer to this problem, as you may have already guessed, is to
replace the "ordinary" constant with a typed constant. If the constant
definition given earlier is changed to
canst

test: string [~5l = 'Peter Piper ... etc.

then the program will work as expected.

SAVING CONSTANT SPACE

In standard Pascal, constants frequently waste space. Whenever they
are used, they are simply inserted as a whole directly into the compiled
code. Thus, if you were to make the declaration:

const
Hello = 'Hello, world, my name is Joe';

and then wrote, as part of your program:

Writeln(Hello);

Wri teln (Hello) ;

300 Turbo Tutor Owner's Handbook

Writeln(Hello) ;

a new copy of the whole string, "Hello, world, my name is Joe" would
be inserted into the compiled program as part of each one of these
statements. In a large program, with many messages, much valuable
memory can be wasted this way. Fortunately, typed constants again
come to the rescue. If the first declaration given is replaced with
const

Hello: string[301 = 'Hello, world, my name is Joe';

then each of the Writeln statements will not generate a new copy of the
string; instead, the one instance of the typed constant is used for all the
calls to Writeln.

PASSING CONSTANTS AS VAR PARAMETERS
Another use of typed constants is to pass a "constant" value to a
procedure as a var parameter. Turbo Pascal, like all versions of Pascal,
cannot permit an object that cannot be changed (that is, an ordinary
constant) to be passed as a var parameter to a procedure or function,
since the subprogram needs to be able to change such a parameter .. if
needed. Because typed constants can be changed, they can be passed
as var parameters. This feature can save both space and time when
large structures (such as long strings) are passed as parameters to a sub
program.

As mentioned in Chapter 12, when a non-var parameter is passed
to a subprogram, a working copy is made of that parameter before
the subprogram starts to execute. This copying process can use large
amounts of memory (for the copy) and large amounts of time
(to make it), and can be avoided entirely if the parameter is a var
parameter. Using typed constants, rather than ordinary constants,
allows this option.

HOW TYPED CONSTANTS ARE STORED IN MEMORY
Turbo Pascal typed constants work the way they do because they are
stored in the same part of memory as the compiled code of your
program. When your program is loaded in from the disk (or processed
by the compiler if you are running the program from memory), the
proper values are put into these locations before the program even
starts running. By contrast, your program's global variables are not
accessed until the program starts running, and the place where a local
variable is stored is not used until the subprogram in which it is defined
is called.

Typed Constants 301

Thus, typed constants are "ready to use" from the moment the pro
gram is loaded into memory and need not be initialized at all. Also,
they occupy well-defmed memory locations (unlike ordinary con
stants, which can't be said to have an address at all), so they can be
passed as var parameters or altered, if necessary.

A FINAL CAVEAT: TYPED CONSTANTS AND
EXECUTION FROM MEMORY
Because of the storage scheme previously mentioned, it is important to
"take care when running programs that change typed constants from
memory (instead of from a .COM or .CMD file). Why? Well, as we
said before, typed constants are set to their initial values when the
program is loaded in from the disk, or when it is compiled into
memory. They are not, however, reset to their initial values when a
program is re-run from memory. Thus, if you compile a program to
memory, run it once (altering a few typed constants), then run it a
second time from memory without recompiling, the typed constants
will not be re-initialized. Rather, they will start out with the values they
had at the end of the previous run of the program, and may produce
erratic results.

For this reason, we recommend not running programs that alter the
values of typed constants from memory, unless you remember to
always recompile between runs.

REVIEW

Turbo Pascal's typed constants are a powerful extension to the Pascal
language, allowing you to defme constants of any type. They are also
useful as pre-initialized static variables, and also as a way of saving
space in a Turbo Pascal program. Typed constants can be passed as var
parameters to a subprogram, and allow full access to their components.
Because they are stored in the section of memory normally reserved for
program code, typed constants are only initialized when a program
is loaded or compiled into memory. Care must be taken when running
a program that alters its typed constants from memory rather than
from disk.

302 Turbo Tutor Owner's Handbook

25 The Goto Statement
In this chapter, we'll take a brief look at a statement type that is rarely
used in Pascal programs-the goto statement. A goto statement
simply says a program should continue executing with another state
ment somewhere else in the program text, a place marked by a special
construct called a label.

SYNTAX OF THE GOTO STATEMENT

The syntax of the goto statement is simple: It consists of the reserved
word goto, followed by a number or identifier that has been declared
as a label in the declaration part of the currently executing block
(program or subprogram). Gotos cannot be used to jump outside of
procedure bounds. Its syntax diagram is shown in Figure 25-1.

Figure 25-1 Syntax Diagram of Goto Statement

A label marks the destination of a goto statement and must be declared
in a label declaration part, which is in turn included in the declaration
part. The syntax of a label declaration part in Turbo Pascal is depicted
in Figure 25-2.

303

label declaration part-

Figure 25-2 Syntax Diagram of Label Declaration Part

In standard Pascal, labels cannot be identifiers; they must be unsigned
integers only. Turbo allows labels to be identifiers, to describe the
places in the program to which they refer.

HOW TO USE THE GOTO STATEMENT-
AND WHY NOT TO

In early programming languages, such as BASIC and FORTRAN,
there were far fewer "structured" statements (such as if, while,
repeat ... until, and for) than are available in Pascal. For instance, the
original FORTRAN language had nothing similar to the else clause in
its version of the if statement. Here are two versions of a program
fragment, one written in Pascal, the other in FORTRAN. See if you
can figure out what the FORTRAN version means:

Pascal FORTRAN
if A (27 then

A := A + 2
else

A:=A+1;

IF A .LT. 27 THEN GOTO 1
A = A + 1
GOTO 2

1 A = A + 2
2 CONTINUE

Since we don't expect you to understand FORTRAN, we'll run
through the FORTRAN example briefly. The first line is FOR
TRAN's version of the if statement, which does something only if a
condition is TRUE. In this case, if the value of the variable A is less
than 27 (.LT. is FORTRAN's way of saying "less than"), execution
continues on the line with the number 1 (a label) before it; otherwise,
the statement A = A + 1 is executed. (FORTRAN uses = for
assignment; Pascal uses: =.) Then the computer executes the statement
GOTO 2, which jumps to the statement with the word CONTINUE
in it. (The CONTINUE statement in FORTRAN does nothing; it is
merely a placeholder for a label.)

Note how much clearer the Pascal version is. Instead of thinking in
terms of labels and jumping to them, you can think in terms of if ..
then ... else conditions in the program. Because of the descriptive
power of Pascal's structured statements, you have no need to use gotos
and labels.

304 Turbo Tutor Owner's Handbook

However, there are a few places where using a goto is helpful in Pascal.
One instance is when you must exit from the middle of a loop, such as
a for or a while. For instance, suppose we had the loop:
for I := 1 to 10 do { Get 10 numbers}
begin

Write('Enter a number (0 to stop): ');
Readln(Number[Il);
if Number (0 then

go to NoMore;
end;
NoMore:

This loop normally gets 10 numbers from the user, but can be tenni
nated at once if the user enters a negative number. Even in this case,
it is better programming style to place the loop in a procedure and
use Exit to leave the procedure (as well as the loop) if you need to
terminate early.

Here's another example of how confusing just a few goto statements
can be. The following program contains only 4 labels and 4 gotos, but
can you tell what it writes to the screen?*
program Spaghetti;
label

One, Two, Three, Four;
var

A : Integer;
b·egin

A : = 0;
One: if A) 3 then

goto Three;
Two: A := A + 5;

goto Four;
Three: A := A + 3;

goto Two;
Four: if A mod 3 () 0 then

goto One;
. Writeln(A);

end.

As Niklaus Wirth and Kathleen Jensen said in the Pascal User Manual
and Report: "The presence of gotos in a Pascal program is often an
indication that the programmer has not yet learned 'to think' in Pascal
(as this is a necessary construct in other programming languages)."

We agree, and encourage you to build your programs without using
the goto statement.

* Answer: 21

The Goto Statement 305

REVIEW

Though gotos are rarely used in Pascal, there are a few instances where
they prove useful. Overall, though, you are better off discovering the
ins and outs of Pascal rather than resorting to the use of gotos.

306 Turbo Tutor Owner's Handbook

26 Absolute Variables and
Untyped Parameters

Standard Pascal was originally intended as a teaching language and
therefore omitted facilities students would be unlikely to need. Turbo
Pascal, however, was designed as a language for serious programmers
as well as for students, and includes special features to make certain
programming tasks easier. Two of the most important of these are
absolute variables, which reside at any address you specify in memory,
and untyped parameters, formal parameters that allow a subprogram to
accept a variable of any type as an actual parameter.

ABSOLUTE VARIABLES

Normally, when you compile and run a Turbo Pascal program, the
compiler and the operating system of your computer make decisions
about where data will be stored in memory. (This is generally not true
in assembly language programming, where the programmer must
specify where everything goes.) While this automatic allocation is
exactly what you need 99.9 percent of the time, there are a few
instances where you might want to tell the compiler to place a variable
in a specific spot, such as in the same place as another variable, or at a
fixed place in memory.

Turbo allows you to do both by providing you with absolute vari
ables, variables whose "absolute" address is specified explictly in the
variable declaration. Using absolute variables, you can exchange
information directly with your computer's operating system and make
quick use of untyped parameters (described in the next section).

How do you declare an absolute variable? The syntax is the same as
the declaration of an ordinary variable, except that you must add the
reserved word absolute and a numeric address (or an identifier) after
the variable's type. If you specify a numeric address, then the variable is
considered to be at that location. If you specify an identifier (which

307

must be the name of a variable or a typed constant), then the variable
you are declaring will reside at the same address as the object specified.

The syntax diagram for the variable declaration part (shown in Figure
26-1) includes the syntax for declaring an absolute variable. (The
syntax diagram of an address is shown in Figure 26-2.)

variable
declaration
part

Figure 26-1 Syntax Diagram of Variable Declaration Part

address ---.------l~

"CP/M-80 I-------l~
only '------.......1

.... MS-DOS, I'""u-n-si-gn-e-d-i-nt-e-ge-r-'
CP/M-86
only

Figure 26-2 Syntax Diagram of Address

(Note that for 16-bit (MS-DOS and CP/M-86) processors, an address
consists of two unsigned integers; on 8-bit (CP/M-80) processors an
address is just one unsigned integer.)

When you use absolute variables, you will most often use them to
make two variables occupy the same space (we'll demonstrate this in
the "Untyped Parameters" section). The following two examples of
absolute variables are used to access system functions.

In CP/M-80 systems, the operating system resides in the high part of
memory, and your program starts near the bottom. Many programs
(including Turbo Pascal itself) want to use as much memory as possi
ble. They must therefore find where CP/M's lowest memory location
is and avoid writing above it.

You can look at that address by defining the variable
var

HiMem : Integer absolute 6;
{ Address of first byte of CP/M appears at

absolute location 6 in memory }

On an IBM PC system running PC-DOS, many locations in the
lowest part of memory contain useful information. Two of these are
storage locations where the computer remembers what time it is.

308 Turbo Tutor Owner's Handbook

var
ClockLow Integer absolute $OO~O:$OObC;

{ Low word of tick count }
ClockHi Integer absolute $OO~O:$OObE;

{ High word of tick count }

Together, these locations form a 32-bit counter that changes 18.2 times
a second. Turbo Pascal uses this counter in the built-in procedure
Delay(ms) to measure delay times; your programs can use it for this
purpose as well. Special areas of memory like these can contain a
wealth of useful data on current activity in your system. For more
information on the specific addresses used by your computer, see the
documentation for your hardware and operating system.

UNTYPED PARAMETERS

When declaring a formal parameter for a procedure or a function in
standard Pascal, you must declare a type for that parameter. By doing
so, you give the compiler important information about how the
parameter can be used within the subprogram.

Sometimes, however, you may want to write a subprogram to take an
actual parameter of any type, such as Turbo's FillChar, which fills any
variable with a number of bytes all of the same value.

Or you may want to write a "universal" string function, one that
operates on any string (regardless of its length) without requiring
the user to invoke the {$V-} directive. (This directive, described at
length in Chapter 14, "relaxes" type checking on strings passed as var
parameters.)

These and other operations are made possible by Turbo's untyped
parameters. To create an untyped parameter, you can declare a var
parameter to a subprogram, omitting the colon and the type specifica
tion that normally follow, like so:
procedure TrimTrailing(var Str);

Of course, you need not limit yourself to one parameter, or one
untyped parameter. A procedure can have any number of untyped
parameters, and they can be mixed in with ordinary typed parameters:
procedure SwapVars(var Var1, Var2; Size: Integer);

Note that both Varl and Var2 are untyped variable (var) parameters,
while Size is a value parameter of type integer. An untyped parameter
cannot be a value parameter. The syntax diagram for a formal parame
ter list (shown in Figure 26-3) includes a path for untyped parameters.
It is the shaded path that "detours" around the colon and type of a
formal parameter.

Absolute Variables and Untyped Parameters 309

formal
parameter
list

Figure 26-3 Syntax Diagram of Formal Parameter List

Using Untyped Parameters
Untyped parameters are visible within the subprogram, just like any
other parameter. However, since they have no type, they are incompat
ible with anything that does. In fact, they cannot even be coerced to a
scalar type through the mechanism discussed in Chapter 18. Nonethe
less, their addresses are available through the Addr function and can be
passed to Turbo procedures and functions that work on variables of
any type (such as BlockRead, Block Write, Fill Char, and Move). Also,
because the address of an untyped parameter is passed to the subpro
gram at the time of the call, absolute variables can be made to reside at
the same memory location as an untyped parameter. This allows the
untyped parameter to be manipulated as if it were of any type at all.

Here are two examples that demonstrate the usefulness of untyped
parameters. The first is a simple procedure that removes or "trims" any
blanks present at the end of a string; the second, also a procedure,
swaps the contents of any two variables regardless of size or type.
procedure TrimTrailing(var AnyString);
var

Len byte absolute AnyString;
{ The variable Len overlays the length

byte of AnyString }
St string[2551 absolute AnyString;

{ The variable St overlays all of AnyString, and
perhaps other things. This is OK, since only the
length byte is changed. }

begin { TrimTrailing }
while (Len) 0) and (St[Lenl ") do

{ If St ends with ' , }
Len := Pred(Len); { Decrement its length}

end; {TrimTrailing}

In this procedure, we define a var parameter Any String, which we
expect to be a string when the procedure is called. (If this doesn't occur,
neither the compiler nor the program will detect the error.) We don't
know the maximum size of the string to be passed; however, we do
know that its length will be present in its first byte. We will only make

310 Turbo Tutor Owner's Handbook

the string shorter-never longer-and will do this by changing the
length byte. Because every string, regardless of size, has a length byte,
it is safe to defme an absolute variable of the type string[255] (the
largest possible type of string) to overlay AnyString, as long as the other
bytes of AnyString do not change. When called, the procedure simply
reduces the length of the string until the last character is not blank (or
the string is empty).

Swap Vars, the second procedure, swaps the contents of two variables of
a given size (up to Maxint).
procedure SwapVars(var Var1, Var2; Size: Integer);
type

BigArray = array [1 .. Maxintl of Byte;
var

V1 BigArray absolute Var1;

V2
{ Treat Var1 and Var2 like large
BigArray absolute Var2;
{ arrays of bytes for this move

Count Integer;

Tmp
{ Count of bytes moved }
Byte;
{ Temporary place to keep byte }

begin { SwapVars }
for Count := 1 to Size do .
begin { for }

Tmp := V1[Countl;
V1[Countl := V2[Countl;
V2[Countl := Tmp;

end; {for}
end; {SwapVars

{Save original byte from V1 . }
{Move value to V1 from V2 }
{Move to V2 from original V1 }

Here, as before, we have declared absolute variables at the same
addresses as the untyped parameters. We then swap their bytes, one at a
time, without any regard for what those bytes really mean. (It doesn't
matter, since for our purposes they are just bytes.) Because Size is not a
var parameter, the caller can use the built-in SizeoJ function (which
gives the size of a data object in bytes) as the actual parameter.
Therefore a call to Swap Vars might look like this:
SwapVars(A, B, Sizeof(A));

Untyped parameters don't allow total freedom in the specification of
parameters. They won't let you write subprograms with varying
numbers of parameters (like Readln and Writeln) , and cannot provide
your subprogram with a definite indication of the actual parameter
type used. However, if used with care, untyped parameters can help
you avoid duplicating code when the same subprogram can be used
with more than one type of data.

Absolute Variables and Untyped Parameters 311

REVIEW

Here, we've provided you with a brief look at some special features of
Turbo Pascal: absolute variables and untyped parameters. Both of
these features can make programming in Turbo Pascal easier. In the
next chapter we'll examine computer numbering systems and
boolean operations.

312 Turbo Tutor Owner's Handbook

27 Computer Numbering
Systems and Boolean
Operations on Integers

In our discussion of operators in Chapter 9 we mentioned that it was
possible to use the operators normally reserved for values of the type
boolean with integers and bytes as well. What does it mean to talk
about "3 and 25," or "254 xor 12?" In this chapter, we will explore the
meanings and uses of such expressions.

INTEGERS AS BITS AND BYTES:
HOW INTEGERS ARE REPRESENTED
IN MEMORY .

In order to fully understand how boolean operators work on integers
and bytes, you must first understand the way in which these data
objects are stored in your computer's memory. As you may recall from
earlier discussions, all data is represented in your computer as ls and
Os, that is, as bits. How does a group of bits "get together" to describe
the value of an integer? The "code" is similar to what we normally use
to represent integers. We will examine the base 10, or decimal, system
we use daily and see how we can make it work if there are only two
possible values for a digit: ° and 1.

Place Value

When we count to 10, we begin counting by single digits, like so:
o 9 digits left
1 B" ..
2 7" ..
3 b" ..
4 5
54" ..

313

6 3" ..
7 2" ..
8 1" ..
9 no digits left

After counting to 9, virtually all of us will automatically write 10---a 1
followed by a 0. What are we really doing here? We are "re-using"
symbols to avoid inventing new ones. The 1 in the number 10 is the
symbol for 1, but because of its place in the number it represents a
value of ten (the 0, a placeholder, represents a value of zero). Similarly,
the 2 in the number 20 represents a value of twenty and the 3 in 35
represents a value of thirty (with the 5 still representing a value of jive).
The idea of having a digit represent a different value depending on its
location in the number is called place value, and is the root of all modern
numbering systems (including binary and hexadecimal).

The second digit from the right in a decimal number is said to be in the
"tens" place; similarly, the 5 in the number 543 is said to be in the
"hundreds" place. Each place to the left has a value of 10 times its
predecessor, ad infinitum (or until you get tired of writing digits). It is
no accident that the multiplying factor between places is 10.

If suddenly there were no longer the digits 8 and 9, we would have no
way of representing them with a single digit; but we could make the
symbol 10 stand for the value eight, 11 for nine, and so on. In this case,
we'd be counting in octal, or base 8.

If we continued our exercise by eliminating all the digits down to 7, 6,
or 5, then the number we could count to without adding more places to
our number would decrease--and the multiplying factor for the num
bers in successively higher places would decrease as well. In base 2,
there are two digits, and a multiplying factor of two between places in
the number. Here's a table to show what happens:

Base Available Digits Place Values Value of Symbol' 10'
Base 10 0, / ,2,3,4,5,6,7,8,9 /,10,100,1000, ... Ten

Base 8 0,1,2,3,4,5,6,7 1,8,64,256, ... Eight
Base 7 0, I ,2,3,4,5,6 1,7,49,343, ... Seven

Base 3 0,1,2 1,3,9,27,81, ... Three
Base 2 0,1 1,2,4,8,16,32,64 ... Two

Using these place values, we can understand how to read a number in
any base. For instance, in the number 1437 (where the subscript 7
indicates that the number is to be read in base 7), we can look at the
places as follows:

314 Turbo Tutor Owner's Handbook

1 X 72 = 49 r-;===== 4 X 71 = 28

! rr== 3X7'=+ 7~
143

How about the number 001110012? It would read

jr--!r---!======= ~ ~ ~: :: i~
r---------- 1 X 23 = 8

1r------1 X 2° = + 1
, --s7

001 1 100 1

Of course, it is possible to have a numbering system with more than 10
digits. In fact, hexadecimal (called "hex" for short) has 16 digits-O
through 9 plus A through F. The digit A has the value ten, B is eleven,
and so on up to F, which has the value fifteen. Here's an example of
how to read hex:

fF
3X162= 48

15 X 161 = 240

F14Xl&>=+ ~~
$3 F E

Hexadecimal is commonly used to represent numbers in certain com
puting tasks. Since few computer screens have subscripts and super
scripts, however, hexadecimal numbers are usually marked by a dollar
sign, or (in some systems) with a letter H at the end. Turbo Pascal uses
the dollar-sign convention to indicate that a number is expressed in
hex. Note that the values of the places in hex go up by a factor of 16
each time you move to the left. Thus, it is possible to write large
numbers in only a few hex digits. (The number 10000016 is equal to
1,048,576 in decimal.) In general, a numbering system with greater
possible digits (that is, with a higher base) can always express a number
more compactly than one with fewer possible digits (a lower base); for
instance, the number 4095 is FFF16 and 111111111112.
Exercises Now, try translating some numbers to base 10 on your
own. (The answers are given in Appendix B.) Here are a few to
start with:

1. 12123
2. 84359

3. 1111112
4. 30517
5. 3FF16

Computer Numbering Systems and Boolean Operations on Integers 315

It is also useful to understand how to reverse the process, to convert
numbers from decimal to an arbitrary base. To do this, consider the
values of the places in the base you are converting to, and fmd the
largest number that is less than the one you are converting jom.
Then, divide the number you are converting by the value of that
place, and place the quotient in that place. Next, take the remainder
from the division and repeat the process, filling in unused places with
Os as necessary.

To show this technique in action, let's convert the decimal number 37
to binary. In the preceding chart, we can see that the places in binary
have the values 1,2,4,8,16,32,64, and so on, the powers of two from 0
on up. Since 37 is less than 64, the left-most digit (also called the
most- significant digit) of the binary representation of37 must be in the
32's place:

32's 16's 8's ~'s 2's l's
37/32 = 1, remainder = 51? ? ? ? ?

Now, begin again with the remainder 5. Since 5 is smaller than 16 or 8,
those places are filled in with Os; however, since 5 is greater than 4, we
do another division operation:
5/~ = 1, remainder = 1 1 0 0 1 ? ?

Finally, we only have a 1 remaining. We therefore put a 0 in the 2's
place, and the 1 fits into the l' s place with a remainder of 0:
1/1 = 1, remainder = 0 1 0 0 1 0 1

Thus, the binary representation of 3710 is 1001012 • Before we give you
some examples to try, let's run through another example, converting
the number 5008510 to hex.

50085/~Og6 = 12 = $C, remainder=g33
g33/256 = 3, remainder=165
165/16 = 10 = $A, remainder=5

~Dg6's 256's 16's l's
C
C
C

?
3
3

?
?
A

?
?
5

In this example we converted all quotients produced by division to
single digits of the base we were converting to. Thus, the quotient of
12 decimal from the first division was converted to the single digit C.
Two divisions later, we converted 10 decimal to the value A. In all
cases, the result must be able to be converted to a single digit, or you
have made a mistake.

Exercises Convert the following numbers to the bases indicated (see
Appendix B for solutions):

667310 to base 5

6553310 to hex

4510 to binary

326~o to base 7.

316 Turbo Tutor Owner's Handbook

THE SPECIAL RELATIONSHIP BETWEEN
BINARY AND HEX

Because 16 is a power of two, you might expect that a relationship
exists between binary and hexadecimal numbers. In fact, this turns out
to be the case, and the resulting relationship makes it easy to manipu
late binary numbers using hex digits.

Let's look at the number 151 expressed in both binary and hex. The
binary for 151 is:
1 001 0 1 1 1

while in hex it is:
9 7

Note that if you divide the digits in the binary number into groups of
four and convert those groups to hex digits, then you get the equivalent
number in hex. Similarly, you can convert hex to binary. The hex
number $AF can be converted to binary by remembering that $A =
l0to = 10102, and $F = 15to = 11112, Thus,
A F

equals
101 0 111 1

This "trick" is used by programmers when they want to keep track of
values of the individual bits of a number, but do not want to write
every number out as a collection of ls and Os.

TWO'S COMPLEMENT NOTATION:
REPRESENTING NEGATIVE NUMBERS

So far we've shown you how to represent positive numbers in binary,
hex, and other bases, but we haven't talked about representing negative
numbers. In Turbo, an integer can range from -32768 to 32767; so,
how does Turbo know whether a number is positive or negative?

Turbo Pascal, like virtually all computers and computer languages,
makes use of a notation known as two's complement to represent inte
gers. Here we'll introduce this notation, and show the way to deter
mine how any integer is stored in memory.

As you may recall, an integer in Turbo is stored in 16 bits, or 2 bytes,
of memory. If we only wanted to represent positive numbers using
these 16 bits, the largest number we could represent would be
11111111111111112 (that is, 16 ones, or 65535 decimal), and the smallest
would be O-a total of 65536 combinations. In order to represent
negative numbers, two's complement notation divides the 16-bit num-

Computer Numbering Systems and Boolean Operations on Integers 317

bers into two equal groups: 32768 positive numbers (0 to 32767) and
32768 negative ones (-1 to - 32768).

To tell immediately whether a number is positive or negative, the left
most bit of the binary number is used as the sign hit. If the left-most bit
is a 0, the number is positive; if it is a 1, the number is negative.

SDDDDDDDDDDDDDDD
II I I I I I I I I I I I I I I

Sign bit Digits

If the number is positive, the digits are encoded the same as any binary
number. However, if the number is negative, they are encoded so that
it's easy to do arithmetic with them-as the two's complement of the
corresponding positive number.

The two's complement of a binary number is the result of changing all
is to Os and all Os to is, then adding 1 to the result. (For 16-bit
numbers, you can also subtract the number from 65536-the value of
the next place after the left-most place of the number-and get the
two's complement and the sign bit.)

Why are negative numbers represented this way, rather than as ordi
nary positive numbers plus a sign? One reason is to avoid having two
representations for the number 0 (+0 and -0). Since storage ,space in a
computer can be a valuable commodity, it would be wasteful to use
two combinations of bits to represent the same number. It would also
make the circuitry of the computer more complex, as it would have to
recognize both "kinds" ofO. The second reason is that logic circuits that
work with two's complement numbers are easy to design (and simple
to build) and are included in virtually every microprocessor on the
market today. Turbo Pascal uses these circuits to do integer math as
quickly and efficiently as possible.

HOW BYTE VALUES ARE STORED IN MEMORY
The type byte (discussed in Chapter 7) is actually a subrange of the
type integer: 0 .. 255. Turbo Pascal saves memory when storing bytes
by using only 8 bits (instead of 16), treating bytes exactly as if they
were the lower 8 bits of an integer (with the upper 8 bits always 0).
Because of this convention bytes can never have a negative value, since
the implicit sign bit is always o.
When Turbo Pascal works on a byte value, it converts it to an integer
by appending a byte of all Os to it. When a byte result is stored in
memory once again, the top byte of the integer's intermediate value is
removed, and the lower byte is written to memory. Turbo does not

318 Turbo Tutor Owner's Handbook

check to see whether the result of a calculation done with byte values is
larger or smaller than the value that can be held by a byte; thus it is
important that your byte calculations do not overflow.

BOOLEAN OPERATIONS ON INTEGERS
AND BYTES

Now that we understand a bit more about how integers and bytes are
stored in memory, we are ready to take a look at what it means to use
the boolean operators and, or, xor, and the special operations shl and
shr, on objects of these types.

When the and operation works on operands of the type boolean (as
mentioned in Chapter 11), it produces a value of TRUE if and only if
both of its operands are TRUE. Since it doesn't make sense to talk
about integers as being "true" or "false," what does it mean to use and
on them?

The answer lies in the way integers are stored as bits in memory. Each
bit of each integer can be thought of as a tiny boolean variable
holding a 1 to represent TRUE, or a 0 to represent FALSE. When we
do an and of two integers, we are actually performing the and
operation on the pairs of bits in corresponding places in the two
integers, as follows:
5 and el? =

0000000000000101 (= 5 decimal)
and 0000000001100001 (= 97 decimal)

0000000000000001 (= 1 decimal)

The same is true for the or and xor operations. Here are some
examples of how these operations work on integers:

0000000001100011 (= 99 decimal)
xor 0000001111111111 (= 1023 decimal)

0000001110011100 (= 92~ decimal)

0000000001100011 (= 99 decimal)
or 0000001111111111 (= 1023 decimal)

0000001111111111 (= 1023 decimal)

The not operator also works on integers and bytes. When used on
these operands, not inverts every bit, changing allIs to Os and all Os to
Is. Thus,
not 1010111001010001 = 0101000110101110

Under most conditions, you will probably not use the boolean opera
tors in this manner. However, some operations are much more efficient
using boolean operators than more conventional ones. For instance,

Computer Numbering Systems and Boolean Operations on Integers 319

one common application of the and operator is to unconditionally clear
a particular bit of a byte or word. One of the situations in which this
function is useful is in programs that read fIles produced by word
processors such as WordStar.

When WordS tar creates files on the disk, it sometimes sets the high bits
of the bytes that represent the characters of your text. These bits
remind WordStar that these characters are at the ends of words, and
that these words can be spaced out evenly along a line by fIlling the
gaps between them with spaces. While this format works well for
WordS tar, it often makes WordS tar fIles unreadable by other programs;
thus, these programs must "strip" (clear) the high bit of every byte in
the file as it is read.

The and operator can be used to do this:
11000001 ($CA ASCII "A" ($L;A) with high bit set)

and 01111111 ($7F byte with all bits but high bit set)

01000001 ($L;A normal ASCII "A")

By performing an and operation on every byte of the fIle, we can
render all of the characters in the file readable. These operations will
also prove useful if your program needs to pass information directly to
the operating system (through the MSDOS call in MS-DOS or
PC-DOS Turbo, or through the BIOS and BDOS calls in CP/M ver
sions). For more information on these calls and what they can do, see
the reference guide for your operating system and computer.

THE SHIFTING OPERATORS: SHL AND SHR

Turbo's shl and shr operators provide you with direct access to two
powerful operations that move the bits within a byte or integer to the
left or the right. These have no direct counterparts in standard Pascal.

Suppose we had an integer I with the binary representation
0000000011111111. Here are the results of applying the shl and shr
operations to I and an integer from 1 to 16:
I shr 1 0000000001111111 I shl 1
I shr 2 0000000000111111 I shl 2
I shr 3 0000000000011111 I shl 3
I shr L; 0000000000001111 I shl L;
I shr 5 0000000000000111 I shl 5
I shr b 0000000000000011 I shl b
I shr 7 0000000000000001 I shl 7
I shr B 0000000000000000 I shl 0
I shr 9 0000000000000000 I shl 9
I shr 10 0000000000000000 I shl 10
I shr 11 0000000000000000 I shl 11
I shr 12 0000000000000000 I shl 12
I shr 13 0000000000000000 I shl 13

000000011111 111 0
00000011111 11 1 00
0000011111111000
0000111111110000
00011111111 00000
0011111111000000
0111111110000000
1111111100000000
1111111000000000
1111110000000000
1111100000000000
1111000000000000
1110000000000000

320 Turbo Tutor Owner's Handbook

I shr 1~ 0000000000000000 I shl 1~ 1100000000000000
I shr 15 0000000000000000 I shl 15 1000000000000000
I shr 16 0000000000000000 I shl 16 0000000000000000

As you can see, the shr operator works by shifting all of the bits of the
first operand to the right by the number of places indicated in the
second operand, and then adds Os to the left. Similarly, the shl operator
shifts its operand to the left and adds Os to the right.

How are these operations useful? From our previous discussion of place
value, you may recall that the values of the places in a binary number
increase by a factor of 2 as you move to the left. Thus, I shl 1 is
equivalent to 1*2 (unless, of course, a 1 is shifted into the sign bit).
Similarly, I shr 1 is equivalent to I div 2 for all positive numbers.

Because a multiplication or division operation is much more compli
cated than a shift operation (and takes about 40 times as long), you can
frequently make your programs run faster by using shift operations in
well-chosen places. As with other operations on bytes and integers,
Turbo will not provide a warning if overflow occurs, so use these
operations with care.

REVIEW

In this chapter, we provided an in-depth look at how computer
numbering systems work, how integers and bytes are represented
in memory, and how boolean and shifting operations can be used
on integers and bytes. Armed with this information, you can use
Turbo Pascal to perform many sophisticated machine-level operations
in your programs.

Computer Numbering Systems and Boolean Operations on Integers 321

322 Turbo Tutor Owner's Handbook

28 Using 8088/8086
Assembly Language
with Turbo Pascal

This chapter shows experienced assembly language programmers how
to include their assembly routines in their Turbo Pascal programs. If
you are unfamiliar with assembly language, do not try to use this
chapter as a tutorial.

Turbo Pascal provides two methods of incorporating assembly lan
guage (or, more precisely, the machine codes produced once it has been
assembled) into your Turbo program. The first technique, the external
subprogram, allows you to incorporate the machine language output of
an assembler or debugger into your program without modifications.
The second, the inline statement, requires you to edit the hexadecimal
output from one of these programs into your Turbo Pascal code
flles, while making access to Turbo variables and constants very
straightforward.

EXTERNAL SUBPROGRAMS
An external subprogram is a procedure or function that has been
assembled by an assembler or debugger to run as a stand-alone
program and then be called by Turbo at runtime. For example, an
assembly language subprogram for Turbo on the IBM PC (or another
MS-DOS or CP/M-86 machine) might look like this:
CODE SEGMENT

ASSUME NOTHING; Can make no assumptions about
location!

MYPROC PROC NEAR External routines must
NEAR procedures

PUSH BP Save the value of BP
MOV BP,SP Set up stack to access parameters

Code for MyProc goes here

323

MOV
POP
RET

MYPROC ENDP
CODE ENDS

END

SP,BP ; Restore SP
BP ; Restore BP
PARAMETERBYTES Leave routine and

restore the stack

How can such a subprogram be called by a Turbo Pascal program?
The first step in making this possible is to create a file with the
extension .BIN (or .CMD for CP/M-86)-a process that can be
performed differently according to the set of tools you have available
on your computer. Under PC-DOS or MS-DOS, the most commonly
used tools are the programs MASM.EXE (the Microsoft Macro
Assembler), LINK.EXE (the Microsoft Linker), and EXE2BIN.EXE
(a utility that converts the .EXE files produced by the linker to .BIN
files). If the code shown previously were contained in a file called
MYPROC.ASM, then the commands to create the .BIN file might
include these:
ASM MYPROC;
LINK MYPROC;
EXE2BIN MYPROC.EXE

After MYPROC.BIN has been .created, the next step is to let
Turbo know that it exists and what it contains. This is done by
declaring My Proc as an external procedure (it could also be a function) as
follows:
procedure MyProc(var X : integer; Y : integer); external
'MYPROC.BIN';

The reserved word external tells the Turbo compiler that the machine
code for the procedure MyProc is contained in the file MYPROC.BIN.
When this declaration is compiled, the machine code in MYPROC.
BIN is read from the disk and incorporated directly into the code of
your program at the point of declaration. Note that since this happens
at compile time and not at runtime, you must recompile every time
the .BIN file is changed in order to load in the new version.

Because of the way in which Turbo incorporates the machine code into
the compiled program, certain rules must be observed. First, since
there is no easy way to determine the address at which the code will
ultimately reside, the assembly language code must be "relocatable";
that is, it must never rely on being loaded into memory at a specific
address. Also, since all Turbo subprograms are activated with a Near
call, the subprogram must do the same and terminate with a Near
return. Finally, the routine may change any of the processor's registers,
but must restore Turbo's SS (Stack Segment), SP (Stack Pointer), BP
(Base Pointer), CS (Code Segment), and DS (Data Segment) registers
before returning.

324 Turbo Tutor Owner's Handbook

ACCESSING PARAMETERS
FROM EXTERNAL SUBPROGRAMS
Most useful subprograms have parameters. When a subprogram is
called, the parameters (or their addresses, if they are var parameters)
are pushed onto the runtime stack in the same order in which they are
declared. The following illustrates how to access these parameters:
CODE SEGMENT

ASSUME NOTHING
procedure Simple(var X : integer; Y : integer);

Simply adds X to Y and returns the sum in X.
Note that X is a var parameter (address passed on
the stack) and Y is a value parameter (value passed
on the stack).

NEAR SIMPLE PROC
PUSH
MOV
LES

BP
BP,SP
DI,DWORD

Save old BP, and load in SP so that
BP can be used to address parameters
PTR [BP+bl ; Move X's ADDRESS

MOV
ADD
POP
RET

; into ES:DI
AX,[BP+~l ; Move Y's VALUE into AX
WORD PTR ES:[DIl,AX ; Add Y's value to X's
BP Restore BP
b Return, popping b bytes of

parameters bytes of parameters from
stack: ~ for x (a var parameter) and
2 for y (an integer value parameter)

SIMPLE ENDP
CODE ENDS

END

To understand how parameters are accessed, let's look at a "picture" of
the stack. After executing the first two instructions of SIMPLE (PUSH
BP and MOV BP,SP), the stack will look like this:

HIGH MEMORY
...

BP+8 SEG(X)

BP+b OFS(X)

BP+~ Y (INTEGER)

BP+2 RETURN ADDRESS

OLD BP
<-2 BYTE WIDTH->

... <-(BP) [BASE POINTER REGISTERl

LOW MEMORY

Using 808818086 Assembly Language with Turbo Pascal 325

The stack grows downward from SS:SP to SS:OO, which means that it
starts at high-memory addresses and moves toward low-memory
addresses. Everything is pushed onto the stack in 2-byte quantities.

The parameters are pushed onto the stack immediately before the
call to Simple, and the call itself causes the return address to be pushed
as well. To access the parameters, the subprogram can use the BP
register. Once BP has been loaded with the previous value of SP, it
points the stack segment at a location relative to the parameters.

Turbo pushes the parameters in the order specified by the external
procedure's parameter list. Since the stack grows downward, the last
parameter, Y, is at the lowest address-BP + 4. Y is a value parameter,
which means that its actual value is pushed onto the stack. Since Y is an
integer, it occupies 2 bytes.

X, on the other hand, is a var parameter. This means that its long
address-segment and offset-is pushed onto the stack, consuming 4
bytes. Note that all addresses take 4 bytes of stack, regardless of the size
of the object they reference. In keeping with 8088 conventions, the
segment address is pushed first, followed by the offset address.
Thus, XS segment and offset are located at BP + 8 and BP + 6,
respectively, and can be accessed as a "double word" (by the LES and
LDS instructions) at BP + 6. (These two instructions are the fastest
way of obtaining the location of a var parameter, and have the
added advantage of preparing the processor for block and string opera
tions. Remember, however, to save and restore the DS register when
using LDS.)

When a subprogram is completed, it returns control to the calling
routine with a Near RET instruction. If the subprogram is called
with parameters, they must be popped from the stack when returning;
in addition, if the subprogram is a function, a .fUnction-result variable may
need to be popped as well. The RET instruction allows this task to
be performed automatically during a return (use the instruction
RET N to pop N bytes of parameters). In procedure Simple, we used
a RET 6 instruction to deallocate the parameters from the stack-2
bytes for Yand 4 for X. If the procedure has no parameters, N need not
be specified.

If the subprogram is a function, a function result (of the size required
by the type of the result) is allocated on the stack before the first
parameter is pushed. This area can be used as temporary storage by the
function during execution. The method by which function results are
returned depends on the result type. Scalar function results are returned
in the AX register, and boolean functions set the Z flag as well (1 for
FALSE, 0 for TRUE). Scalar functions should always remove the one
word function result from the stack when returning.

326 Turbo Tutor Owner's Handbook

Functions that return pointers do so by placing the pointer in DX:AX
and popping the two-word function result when returning.

Functions that return real results do so by leaving the result on the stack
instead of popping it off when returning.

Functions that return other structures are heavily dependent on internal
Turbo Pascal runtime routines to perform function returns (their
implementation as externals is not recommended). If you must imple
ment such functions, we suggest that you use the inline statement or
var parameters instead.

The sample assembly routines discussed in this chapter demonstrate
the use of both value and var parameters, as well as techniques for
returning a function result. The Turbo Pascal Reference Manual contains
more information on the internal data formats of parameters.

ALLOCATING LOCAL VARIABLE SPACE

If your external subprogram needs a local work space in which to
perform calculations, it may allocate room for them on the stack. This
can be done by saving the stack pointer before performing the MOV
BP,SP (shown previously), as follows:
PUSH BP Always save BP
SUB SP,LOCALS Allocate space for locals
MOV BP,SP Save BP (used to access locals

AND parameters)
Code for subprogram goes here

ADD SP,LOCALS Restore stack pOinter to where BP
was saved

POP BP Restore BP
RET PARMS Return, deallocating parameters (if

any)

When this technique is used, the local variables may be accessed in the
same way as parameters. It often helps to draw a picture of the stack to
aid in calculating the offsets of both.

Note that this method of allocating local storage provides temporary
storage only; the locals are destroyed upon exiting from the routine.

ALLOCATING STATIC STORAGE

It is also possible (though not straightforward) to allocate the equiva
lent of a local typed constant; that is, local storage that retains its value
between calls. Such data objects may be allocated by the assembler
directly in the code segment; however, since their location within the
code segment is not known, it must be determined at runtime.

Since the IP register of the processor is not directly accessible by the
program, the best way to obtain it is to perform a call to a known

Using 808818086 Assembly Language with Turbo Pascal 327

location, then pop the return address off of the stack instead of
returning. If the call is made immediately before the beginning of the
local storage area, the proper address can be calculated as shown here:

ORG DOH
CODE SEGMENT

ASSUME CS:CODE Use to get offsets relative
to start of routine

TRICKY PROC NEAR
CALL RESUME

TCONSTt DW ~ DUP(o)
TCONST2 DB 5

First instruction is a call
An array of ~ zeroes
A string of length 5

DB 'Hello'

; More static storage here

RESUME: POP BX Pop the return address
SUB BX,3 Subtract 3 to get location of

routine (short call=3 bytes);
leave in BX

PUSH BP Usual setup to access
parameters/locals

SUB SP,LOCALS Optional Allocate space
for locals

MOV BP,SP Set up BP to access
parameters and/or locals

; Some examples of how to access static storage:

MOV AX,CS:[BX + OFFSET TCONSTtl
Load value into AX from
static area

MOV CL,BYTE PTR CS:[BX + OFFSET TCONST21
CL gets string length

ADD SP,LOCALS Restore stack pOinter to
where BP was saved

POP BP Restore BP
RET PARMS Return, deal locating

parameters (if any)
TRICKY ENDP
CODE ENDS

END

This method is not recommended unless you have a good grasp of the
subtleties of 8088/8086 programming.

LIBRARIES (PC-DOS/MS-DOS ONLY)

Often, you may want to create an assembly language fIle containing a
number of related external routines. This may be strictly for ease of
development (only one fIle to assemble, link, convert, and read in), or
it may be to allow a group of externals to be distributed to other Turbo
Pascal users as a single file.

328 Turbo Tutor Owner's Handbook

Turbo Pascal allows you to do this by declaring external subprograms
to have a known offset relative to the beginning of a .BIN flie. As we
have already mentioned, the declaration
procedure MyProc(var X : integer; Y : integer);

external 'MYPROC.BIN';

indicates that the procedure MyProc starts at location 0 of the flie
MYPROC.BIN. After this declaration is made, however, you can also
declare other subprograms at other offsets relative to the beginning of
the flie, as follows:
function MagicNumber: Integer; external MyProc[SOl;

This declaration tells Turbo Pascal that the function MagicNumber
begins at byte number 50 (counting from 0) of the same file as My Proc.
As you develop a library of external subprograms, the relative offsets
of the routines in the file are likely to change. To avoid having to
modify the offsets in your Turbo code every time you change your
assembly language routines, we strongly recommend the use of a
structure called a jump table. A jump table is merely a group of jump
instructions at the beginning of the flie, each of which jumps to a
routine in the library. Since the offsets of these jump instructions
(which are always 3 bytes long) do not change when the routines are
moved within the library, the Turbo program can be recompiled with
no changes.
Let's describe a library of assembly language routines that access and
modify blocks of data. The structure of the jump table for the three
library routines is as follows:
ChrPos PROC NEAR

JMP ChrPosCode
, ChrPos has been called, bypass other jumps

JMP GetStr
, GetStr has been called bypass last jump

JMP PutStr
, PutStr has been called

ChrPosCode:
actual code for ChrPos

GetStr PROC NEAR
code for GetStr

PutStr PROC NEAR
code for PutStr

The corresponding declarations of externals in a . PAS file reflect the
positions of the entries in the jump table:
function ChrPos(var Block; Search: char;

Start,NmBytes: integer) : integer; external 'TEST.BIN';
procedure GetStr(var Block; var Retrieve: Str2SS;

Start: integer; StrLen : byte); external ChrPos[31;

Using 808818086 Assembly Language with Turbo Pascal 329

procedure PutStr(InStr : Str255;
var Block; Index: integer); external ChrPos[bl;

As you can see, the declaration of the first external subprogram in a
file specifies the name of the file, and the routine begins (or, in this case,
has a jump to it) at the beginning of the file. Other subprograms in the
same file do not redundantly specify the machine code file name;
instead, the offset from the start of the first procedure (that is, the start
of the file) is specified. Because a short, intrasegment jump takes up 3
bytes, GetStr and PutStr can be reached by entering the jump table at
offsets 3 and 6, respectively. The jumps in the table then direct execu
tion to the actual code for these procedures.

THE INLINE STATEMENT

Syntax and Semantics of the In line Statement
Turbo's inline statement allows you to include virtually any sequence
of bytes in the executable code of your Turbo program, without
(necessarily) using a separate assembler. The syntax of the inline
statement is shown in Figure 28-1. The diagrams of the code element
and the data element are shown in Figure 28-2 and Figure 28-3,
respectively.

inline statement ~COde~

Figure 28-1 Syntax Diagram of Inline Statement

code element

Figure 28-2 Syntax Diagram of Code Element

330 Turbo Tutor Owner's Handbook

data element ---r--l~ unsigned integer

Figure 28-3 Syntax Diagram of Data Element

The inline statement consists of a list of code elements, which are in
turn made up of one or more data elements separated by the addition
(+) and subtraction (-) operators. A data element may be any legal
byte or integer constant, or a Turbo identifier. Unlike external sub
programs that are assembled completely independently of Turbo,
inline statements may contain Turbo identifiers. These identifiers are
converted to data bytes or words, as follows:

Identifier Type

Scalar Constant
Local Variable

Global Variable

Typed Constant
Procedure or function

Parameter of current
procedure or function

Non-local, non-global
variables, parameters

Value
Byte or word value of constant
Offset of variable relative to BP

Offset of variable relative to DS
Offset of constant relative to CS

Offset of routine relative to CS

Offset of parameter value (address for var
parameters) relative to BP

DO NOT USE

Note that a function identifer does not give the location of the function
result. However, this location can be calculated using the location and
size of the first parameter. Also, a result may be placed in a local
variable and transferred to the function result by an assignment follow
ing the inline statement. The data element * refers to the location at
which the current data element is about to be stored (that is, the
"current" address in the code segment).

Each code element in the inline statement is stored as a byte if its value
is less than 256; otherwise, it is stored as a word. This automatic sizing
process can be overridden with the < and) operators. The operator <
will cause only the least-significant byte of the code element to be
stored, regardless of magnitude; the) operator will force a word to
be stored.

Using 808818086 Assembly Language with Turbo Pascal 331

The following sample procedure uses an inline statement:
procedure VInLine(var Value: integer);
{ A simple use of inline code. Note that some constants

have been defined and used, while other values are left
as literal hexadecimal constants. This is done just for
illustration. The following routine example divides an
integer by 2 and discards the remainder.}

const
CLC = $F8;
INC_DI = $~7;

begin
inline ($C~/$BEIVALUEI { LES DI,VALUE[BP] }

CLCI { CLC }
$26/$DO/$1D); { RCR ES:WORD PTR [DI]

end; { VInLine }

The hexadecimal codes for an inline statement may be "hand
assembled," or (for sequences of any size) an assembler or debugger
may be used. In either case, care should be taken to ensure that the
correct operand lengths for offsets and immediate values are observed,
since the 8088 allows most of these to be either a byte or a word
(depending on the addressing field of the instruction). If possible, use
representative "dummy" values in the code processed by the assembler,
then replace them with the appropriate Turbo symbols in the inline.

SPEEDING UP TURBO PROGRAMS
WITH INLINE STATEMENTS
Some routines are time-critical enough that you may want to optimize
them for speed (video output, for example). Inline code is an ideal way
to optimize small routines in your Turbo program.

How can you examine the code generated by Turbo to determine if it
needs to be optimized? One good way to locate specific object code is
to surround it with a string ofNo-Ops (machine code instructions that
do nothing). Then, once the program has been compiled, you can use
your favorite debugging program to search for these strings and disas
semble the object code between them:
inline($90/$90/$90/$90/$90/$90/$90); { front marker}
{ ... Brief Pascal routine to be optimized .. }
inline($90/$90/$90/$90/$90/$90/$90); { back marker}

If you see that the Turbo code can be improved upon, you can then
replace it with an inline statement or an external routine.

Interrupt Handling

Turbo Pascal provides all of the necessary resources for writing an
interrupt service routine (ISR) , such as the one invoked with each tick of
the system clock. An interrupt handler can be written almost entirely

332 Turbo Tutor Owner's Handbook

in Pascal source code, with a few bits of inline code to handle the
entrance to and exit from the ISR.

The following is a sample of a Turbo Pascal ISR:
Program InterruptHandler;
const

DataSave : integer = 0;
{ a typed constant that will hold the value of DS.

It is located in the code segment so it is
accessible by the ISR.
Note: You should not use local variables in an ISR or
in any routine called by an ISR, because the routine
whose code is being executed may have limited stack
space. Access only global variables and typed
constants when using an ISR. }

{$K-} { IMPORTANT: Always turn off stack checking before
an ISR. }

procedure TurboISR;
begin

{ ISR Entry code:
The interrupt service routine must save the contents of
all registers that may be used in the compiled code of

the body of the ISR }
{ PUSH AX }
{ PUSH BX }
{ PUSH CX }
{ PUSH DX }
{ PUSH DI }
{ PUSH SI }
{ PUSH DS }
{ PUSH ES }

inline($501
$531
$511
$521
$571
$5bl
$131
$Obl
$FBI

{ The
{STI Enable other interrupts }

following instructions are only necessary if
the ISR needs to access global variables.

$2EI
$A11
DataSavel

$8E/$D8) ;

ISR Exit code:

{ MOV AX,CS:[DataSave] this instruction
moves the value of DS for this Turbo
program accessed by a typed constant
(since a code segment variable is
always accessible) }

{ MOV DS,AX Now DS has the segment value
for this program

{ ... Pascal source body of the ISR ...

The previous contents of the register are restored as
well as the restore of the SP and BP that were
automatically pushed by Turbo at the start of the
procedure. }

inline($071
$lFI
$5EI

POP ES.}
POP DS }
POP SI }

Using 808818086 Assembly Language with Turbo Pascal 333

end;

$5FI
$5AI
$591
$5BI
$581
$8B/$EDI
$5DI
$CF) ;

POP DI }
POP DX }
POP CX }
POP BX }
POP AX }
MOV SP,BP
POP BP }

{ IRET }
Return to the interrupted program }

{$K+} Okay to restore stack checking after an ISR }

{ ... other declarations ...

begin { Main }
DataSave := DSeg;
{ Stores the value of DS into DataSave, which

will make the value accessible to the
interrupt service routine }

{ ... other statements ... }
end.

The Interrupt Service Routine is set up by pointing the vector for
the interrupt you are servicing to the address TurboISR. To obtain
TurboISR's segment and offset addresses, use CSeg and
Ofs(TurboISR), respectively. As interrupt handlers are often quite
difficult to debug (a programming error usually causes the machine to
lock up), you should understand the intricacies involved in the inter
rupt system for your machine before attempting to write one.

REVIEW

This chapter has provided details of how to access and use assembly
language routines within a Turbo Pascal program.

This chapter also marks the end of the advanced section-you've come
a long way. The remainder of this manual is devoted to appendices that
encompass such information as CP/M-80/86 operation with Turbo
Pascal, a complete set of syntax diagrams, a summary of the standard
procedures and functions in Turbo Pascal, and more. Make use of what
you need currently and refer back to the other materials as necessary.

334 Turbo Tutor Owner's Handbook

p A

/
/

R T IV

Appendices

335

336 Turbo Tutor Owner's Handbook

A Syntax Diagrams
for Turbo Pascal

We have provided several syntax diagrams throughout this manual,
with specific instructions on how to read them in Chapter 7. The
following serves as a complete alphabetical reference guide to all of the
Turbo Pascal syntax diagrams, displaying those we have yet to men
tion as well as the ones previously discussed.

address --,---__ .-t

·CP/M-80 ~----t.,; only '---____ ---l

-·MS-DOS, r-u-n-s-ig-ne-d-in-te-g-e""r
CP/M-86
only

array constant

array type -----4~

337

assignment statement

block l=:j declaration part ~ statement part

body

external declaration

case statement

character ----. < machine-dependent>

code element

338 Turbo Tutor Owner's Handbook

compound statement

constant identifier

constant

unsigned number

constant --~
definition '----.... T

simple constant definition

part typed constant definition

constant list TI constant ~constant I t

control character -....,.......c

unsigned integer

data element ---'r--~ unsigned integer

Syntax Diagrams for Turbo Pascal 339

declaration part --r--r-t~ label declaration part

constant definition part

type definition part

variable definition part

procedure declaration

function declaration

digit

expression simple expression

simple expression

external declaration --~

CP/M-SO

O~"--________ ~ ________________ -, r--. address r

unsigned integer

340 Turbo Tutor Owner's Handbook

factor

field list ----'---I~~I fixed part ~L.. __ ; ____ v_a_r_ia_n_t_p_a_rt __ T-J

file type ---.~~ ~pe T

fixed part

for statement variable identifier

Syntax Diagrams for Turbo Pascal 341

formal
parameter
list

hex digit

type identifier

identifier,
type identifier, ---I~~lletter
constant identifier, ~ letter H
procedure identifier,
function identifier,
variable identifier, ~
field identifier

342 Turbo Tutor Owner's Handbook

if statement --....,

inlineSlatement~Code ~

label declaration part

letter

pointer type ---I~~@--+I type identifier

procedure call procedure identifier

Syntax Diagrams for Turb,o Pascal 343

procedure
declaration

formal
parameter list

program ~ program heading k?yI block f--O-

program
heading

record constant field identifier

record type -----.(record H field list

repeat statement

344 Turbo Tutor Owner's Handbook

set type

simple constant definition -.J identifier ~ constant i-+

simple expression ---+----.,.-t~

simple type -....,... type identifier

Syntax Diagrams for Turbo Pascal 345

statement -,.----------__ ...,.-r---'~

statement
part

\
can also be defi ned as

I compound statement

string --....-T-~
constant

with statement

goto statement

inline statement

string type ~ string)---.(D--.J constant

346 Turbo Tutor Owner's Handbook

structured constant ---r--i~ array constant

I----.t record constant

set constant

structured type -""T""------:lrT"""-~ set type

~====~
array type

record type

file type

string type

term

type simple type

pointer type

structured type

type definttion part ~ idemifi"' ~

typed
constant
definition

Syntax Diagrams for Turbo Pascal 347

unsigned constant --: constant identifier
J jl"

.

~ unsigned integer L
J

~ unsigned real L
J

-- nil

--.J string L
I

unsigned integer

unsigned
real ----tl~

variable ---,-~ variable identifier

field identifier

field identifier

* unsigned integer unsigned integer

* MS - Dos, CP/M-86 only

348 Turbo Tutor Owner's Handbook

variable
declaration
part

variant part -- -_.._.
'----'

type identifier

while statement ~expression ~statement ~

with statement

Syntax Diagrams for Turbo Pascal 349

350 Turbo Tutor Owner's Handbook

B Exercise Solutions

CHAPTER 7

1. 15

2. 15 (again)

3. 24

4. 15

5. 24

6. 4

Answers to Sample Program Questions

1. Identifiers:

1 user-defined constants (YourName)

3 user-defined variables (A,B,C)
3 predeclared identifiers (integer, Readln, Writeln)

4. Change assisgnment statement to

a. C:= 2 * (A-B);
b. C: = A - 2 * B;

c. C:= 5 * A - 3 * B;

d. C:= A * B;

e. C:= A mod B;

5. A and B are of the type integer, and cannot have values of the type
real; trying to enter one causes a runtime error.

6. A and B are now of the type real and can therefore have real values.

351

CHAPTER 9

First Set
1. No (too big)

2. No (contains comma)

3. Yes (hexadecimal $b = 11 decimal)

4. Yes (predefined in Turbo)

5. Yes (smallest possible number)

6. No ("H" is not a legal hex digit)

7. No (the decimal point makes it a real number)

8. Yes

Second Set
1. 2.0E4 (or 2E4, 20E3, ...)

2. -2.5E-5 (or -0.25E-4, -0.025E-3, ...)

3. 4.277E1 (or 0.4277E2, etc.)

4. -5.300005E5 (and others)

Third Set
1. .00000000015

2. -5545454000000.0

3. 2.0

CHAPTER 10

1. One way to set Yesterday to the previous day of the week reliably
would be like this:

352

if DayOfWeek = Monday then
Yesterday:= Sunday

else
Yesterday := Pred (DayOfWeek);

Turbo Jutor Owner's Handbook

CHAPTER 27

First Set
1. 50

2. 6188

3. 63
4. 1065

Second Set
1. 2031385

2. $FFD
3. 1011012

4. 12357

Exercise Solutions 353

354 Turbo Tutor Owner's Handbook

C Summary of Standard
Procedures and
Functions

This appendix lists all standard procedures and functions available in
Turbo Pascal and describes their use, syntax, parameters, and type.
The following symbols are used to denote elements of various types:

string
type
file
scalar
pointer

Any string type
Any type
Any file type
Any scalar type
Any pointer type

When a parameter-type specification is not present, it means that the
procedure or function accepts variable parameters of any type.

INPUT/OUTPUT PROCEDURES AND
FUNCTIONS
The following procedures use a non-standard syntax in their parameter
lists:
Read;
Read(var V: type) ;
Read(var F:
Read(var F:
Read(var F:

file of type; var V: ty~);
text; var I: integer);
text; var R: real);

Read(var F: text; var C: char);
Read(var F: text; var S: string);
Readln;
Readln(var V:
Readln(var F:
Readln(var F:
Readln(var F:
Readln(var F:

type) ;
text) ;
text; var I
text; var R
text; var C

integer) ;
real) ;
char) ;

355

Readln(var F: text; var S: string);
Write(var V: type);
Write(var F: file of type; var V: type);
Write(var F: Text; I: integer);
Write(var F: Text; R: real);
Write(var F: Text; B: boolean);
Write(var F: Text; C: char);
Write(var F: Text; S: string);
Writeln;
Writeln(var V:
Writeln(var F:
Writeln(var F:
Writeln(var F:
Writeln(var F:
Writeln(var F:
Writeln(var F:

type) ;
Text) ;
Text; I:
Text; R:
Text; B:
Text; C:
Text; S:

integer) ;
real) ;
boolean) ;
char) ;
string) ;

ARITHMETIC FUNCTIONS
Abs(I: integer): integer;
Abs(R: real): real;
ArcTan(R: real): real;
Cos(R: real): real;
Exp(R: real): real;
Frac(R: real): real;
Int(R: real): real;
Ln(R: real): real;
Sin(R: real): real;
Sqr(I: integer): integer;
Sqr(R: real): real;
Sqrt(R: real): real;

FILE-HANDLING ROUTINES

Procedures
Append(var F: text; Name: string); {PC/MS-DOS, CP/M-Bb}
Assign(var F: file; Name: string);
BlockRead(var F: file; var Dest: Type; Num: integer);

{untyped files}
BlockRead(var F: file; var Dest: Type; Num: integer;

var RecsRead: integer); {untyped files PC/MS-DOS}
BlockWrite(var F: file; var Dest: Type; Num: integer);

{untyped files}
BlockWrite(var F: file; vtr Dest: Type; Num: integer;

var RecsWritten: integer);
{untyped files PC/MS-DOS}

Chain(var F: file);
Close(var F: file);
Erase(var F: file);
Execute(var F: file);
Rename(var F: file; Name: string);
Reset(var F: file);

356 Turbo Tutor Owner's Handbook

Reset(var F: file; BlockSize : integer);
{untyped files PC/MS-DOS}

Rewrite(var F: file);
Rewrite(F: file; BlockSize : integer);

{untyped files PC/MS-DOS}
Seek(var F: file Pos: integer); {except text files}
LongSeek(var F: file; POS: real);

{except text files, PC/MS-DOS only}

Functions
Eof(var F: file): boolean;
Eoln(var F: Text): boolean;
FilePos(var F: file of type): integer;
FilePos(var F: file): integer;
LongFilePos(var F: file): real;
. {except text files, PC/MS-DOS only}
FileSize(var F: file): integer; {except text files}
LongFileSize(var F: file): real;

{except text files, PC/MS-DOS only}
SeekEof(var F: file): boolean;
SeekEoln(var F: Text): boolean;

HEAP CONTROL PROCEDURES
AND FUNCTIONS

Procedures
Dispose(var P: pOinter);
FreeMem(var P: pointer, I: integer);
GetMem(var P: pointer; I: integer);
Mark(var P: pOinter);
New(var P: pointer);
Release(var P: pointer);

Functions
MaxAvail: integer;
MemAvail: integer;
Ord(P: pointer): integer;· {CP/M-8D}
Ptr(segment, offset: integer): Pointer; {PC/MS-DOS, CP/M-86}

MISCELLANEOUS PROCEDURES
AND FUNCTIONS

Procedures
Bdos(Func {,Param }: integer); {CP/M-8D}
Bdos(Func: integer; Param: record); {CP/M-86}
Bios(Func {,Param }: integer); {CP/M}
Delay(MS: integer);
Exit;
FillChar(var Dest, Length: integer; Data: char);
FillChar(var Dest, Length: integer; Data: byte);

Summary of Standard Procedures and Functions 357

Halt;
Intr(Func : integer; Param : record); {PC/MS-DOS}
MsDos(Func: integer; Param: record); {PC/MS-DOS}
Move(var Source,Dest; Length: integer);
Randomize;

Functions
Addr(var Variable): Pointer; {PC/MS-DOS, CP/M-8b}
Addr(var Variable): integer; {CP/M-80}
Addr«function identifier»: integer; {CP/M-80}
Addr«procedure identifier»: integer; (CP/M-80}
Bdos(FUnC, Param: integer): byte; {CP/M-80}
BdosHL(Func, Param: integer): integer; {CP/M-80}
Bios(Func, Param: integer): byte; {CP/M}
BiosHL(Func, Param: integer): integer; {CP/M}
Hi(I: integer): byte;
IOresult: integer;
KeyPressed : boolean;
Lo(I: integer): byte;
Ofs(var Variable): integer; {PC/MS-DOS, CP/M-8b}
Ofs«function identifier»: integer; {PC/MS-DOS, CP/M-8b}
Ofs«procedure identifier»: integer; {PC/MS-DOS, CP/M-8b}
ParamCount: integer;
ParamStr(N: integer): string;
Random(Range: integer): integer;
Random: real;
Seg(var Variable): integer; {PC/MS-DOS, CP/M-8b}
SizeOf(var Variable): integer;
SizeOf«type identifier»: integer;
Swap(I: integer): integer;
UpCase(Ch: char): char;

SCALAR FUNCTIONS
Functions
Odd(I: integer): boolean;
Pred(X: scalar): scalar;
Succ(X: scalar): scalar;

DIRECTORY-RELATED PROCEDURES
(PC/MS-DOS)
Procedures
ChDir(Path: string)
GetDir(Drv: integer var Path: string);
MkDir(Path: string)
RmDir(Path: string)

358 Turbo Tutor Owner's Handbook

SCREEN-RELATED PROCEDURES
AND FUNCTIONS
Procedures
CrtExit;
CrtInit;
ClrEol;
ClrScr;
DelLine;
GotoXY{X, Y: integer);
InsLine;
LowVideo;
HighVideo;
NormVideo;

STRING PROCEDURES AND FUNCTIONS

The Sty procedure uses a non-standard syntax for its numenc
parameter.
Procedures
Delete{var S: string; Pos, Len: integer);
Insert{S: string; var D: string; POS: integer);
Str{I: integer; var S: string);
Str{R: real; var S: string);
Val{S: string; var R: real; var p: integer);
Val{S: string; var I, p: integer);

Functions
Concat{St,S2, ... ,Sn: string): string;
Copy{S: string; Pos, Len: integer): string;
Length{S: string): integer;
Pos{Pattern, Source: string): integer;

TRANSFER FUNCTIONS
Chr(I: integer): char;
Ord(X: scalar): integer;
Round{R: real): integer;
Trunc{R: real): integer;

Summary of Standard Procedures and Functions 359

IBM PC PROCEDURES AND FUNCTIONS

The following procedures and functions apply to IBM implementa
tions only.

Basic Graphics, Windows, and Sound

Procedures
Draw(X1,Y1,X2,Y2,Color: integer);
GraphBackground(Color: integer);
GraphColorMode;
GraphMode;
GraphWindow(Xl,Y1,X2,Y2: integer);
HiRes;
HiResColor(Color: integer);
NoSound;
Palette(Color: integer);
Plot(X,y,Color: integer);
Sound(I: integer);
TextBackground(Color: integer);
TextColor(Color: integer);
TextMode(Color: integer);
Window(X1,Y1,X2,Y2: integer);

Functions
WhereX: integer;
WhereY: integer;

Constants
BWL;O: integer;
CL;O: integer;
BWBO: integer;
CBO: integer;
Black: integer;
Blue: integer;
Green: integer;
Cyan: integer;
Red: integer;
Magenta: integer;
Brown: integer;
LightGray: integer;
DarkGray: integer;
LightBlue: integer;
LightGreen: integer;
LightCyan: integer;
LightRed: integer;
LightMagenta: integer;
Yellow: integer;
White: integer;
Blink: integer;

o
1
2
3
o
1
2
3
1;

5
6
7
B
9

10
11
12
13

15
16

360 Turbo Tutor Owner's Handbook

Extended Graphics
Procedures
Are(X,Y,Angle,Radius,Color: integer);
Cirele(X,Y,Radius,Color: integer);
ColorTable(C1,C2,C3,C~: integer);
FillSereen(Color: integer);
FillShape(X,Y,FillColor,BorderColor: integer);
FillPattern(X1,Y1,X2,Y2,Color: integer);
GetPie(var Buffer: AnyType; X1,Y1,X2,Y2: integer);
Pattern(P: Array[0 .. 71 of Byte);
PutPie(var Buffer: type; X,Y: integer);
function GetDotColor(X,Y: integer): integer;

Turtlegraphics

Procedures
Baek(Dist: integer);
ClearSereen;
Forward(Dist: integer);
HideTurtle;
Home;
NoWrap;
PenDown;
PenUp;
SetHeading(Angle: integer);
SetPenColor(Color: integer);
SetPosition(X,Y: integer);
ShowTurtle;
TurnLeft(Angle: integer);
TurnRight(Angle: integer);
TurtleDelay(Ms: integer);
TurtleWindow(X,y,W,H: integer);
Wrap;

Functions
Heading: integer;
Xeor: integer;
Yeor: integer;
TurtleThere: boolean;

Constants
North = 0;
East = gO;
South = 180;
West = 270;

Summary of Standard Procedures and Functions 361

362 Turbo Tutor Owner's Handbook

o Using Turbo Pascal with
Other Borland Products

If you have an IBM PC or compatible, you can enhance the power of
Turbo Pascal and many of your other programs with Borland's Side
Kick, SuperKey, and Turbo Lightning.

If you do not currently own a copy of these products, check with any
local computer dealer. If you own one or all of these products, or are
simply curious about how they can enhance your programming capa
bilities in Turbo Pascal, read on.

SIDEKICK

The Notepad

If you know how to use Turbo Pascal's editor, then you already know
how to use SideKick's Notepad-all the text-editing keys are the same.
Notepad, however, doesn't auto-indent program lines the way Turbo
Pascal does, so you'll have to do the indentation yourself if you're using
Notepad for editing. By and large you will find the Notepad editor to
be perfect for small, programming-related editing tasks.

Reminders

By this time in the tutorial, you have doubtless been warned many
times that all identifiers must be declared before they are used. Side
Kick's Notepad provides a convenient way to avoid violating this rule:
With SideKick installed, press l]Ej)][), then I]l (or (!D), and up
comes a Notepad window to hold comments, reminders, or even the
actual declarations you want to enter into your program. You can then
return to your work, confident that you will be able to pick up all the
loose ends later.

363

Documentation

Documenting your program is always a good idea, whether it's to
benefit the next user or programmer, . or yourself Most programmers
comment their code; but even the best of us sometimes put off writing
the instructions for the user until the last minute, and the documenta
tion suffers as a result.

Notepad lets you jot down instructions as you write the program, instead
of afterward. Every time you add a new feature or "trick" to your
program, pop up the Notepad window and add a line or two to your
program notes. Then, when you're finished writing your program, the
documentation will be nearly complete.

Include Files

When writing big or complex Turbo Pascal programs, you may want
to take advantage of Turbo Pascal's ability to include a number of
smaller fues in a program. (You can do this by using the I compiler
directive described in Chapter 17 of the Turbo Pascal Reference Manual.)
Using Include files is a good way to organize your program, but can
sometimes make editing more difficult.

For example, if you are in the middle of writing a program and you
need to know what is in a different Include fue, you must:

• Save the changes to the fue you are currently working on.

• Make the Include file the current work file.

• Find the specified data.

• Go back to your original work fue.

• Find the place where you left off in the original fue (since Turbo
Pascal always places the cursor at the top of the file when the editor is
re-entered) .

There is an easier way. Notepad can handle any Include fue up to 4K in
length (longer, if you use the program SKINST to increase the
Notepad size). Once the fue has been loaded into the Notepad, you can
view it (and make changes to it) without leaving the Turbo Pascal
editor. All the declarations, comments, and code in the fue are available
to you without having to reload it every time it's needed. (If you
position the Notepad window at the right place on the screen, you
should be able to see the code you are writing alongside the code in the
Include file.) When you leave Notepad, SideKick puts you back in
Turbo Pascal exactly where you left off.

364 Turbo Tutor Owner's Handbook

Interruptions

Because good programming requires intense concentration, you will
probably want to minimize interruptions while you work. For most of
us, however, some interruptions are inevitable-and SideKick can help
you deal with them gracefully.

If, for example, an idea that you just can't lose pops into your head
(perhaps, you just figured out what to do with that big account at
work), you don't have to quit Turbo Pascal to save it. With SideKick,
you needn't leave your chair or Turbo Pascal; just jot the information
down in Notepad and come back to it later.

The Calculator

The SideKick Calculator was designed with the programmer in mind.
It can do calculations in decimal, hex, or binary notation, and can
convert between the three at the touch of a key (great for those hackers
using the inline feature to insert assembly language into a program).

Once a result has been computed with the calculator, it's easy to bring
it into the text of your paragraph using the P ("program") command.
Simply press III while you're in the calculator, followed by whatever
key you choose to insert the number on the screen into the text. Then
return to Turbo Pascal, press the key you've selected, and the number
will appear in your program.

The ASCII Table

Have you ever tried to draw a box on your screen using the graphics
characters in the IBM PC character set? Or have you ever wanted to
print out (or test for) a character that has some meaning to the Turbo
Pascal editor? If you want the codes for these and other special charac
ters at your fingertips, you'll make good use of the SideKick ASCII
table.

To bring the table up, enter SideKick by pressing f£ill)ill, then press
W. All characters in the table will be displayed exactly as they appear
on the screen. Use the arrow keys to scroll through the pages of the
table to find the character(s) you want.

SUPERKEY

SuperKey's macro key capability can improve the already simple and
powerful user interface of Turbo Pascal. This section describes the
macros included on the SuperKey disk, as well as other macros you can
add or customize yourself

Using Turbo Pascal with Other Borland Products 365

Using the Predefined Macros in TURBO.MAC

To load the standard set of Turbo Pascal macros, press [][JZJ to
activate SuperKey and select Load from the Macros menu. When
prompted for the name of a macro file to load, type TURBO.MAC.
(Note: If this file is not in SuperKey's current directory, you may need
to add directory information to the file name or change disks). When
the file is successfully loaded, a help window will appear. To bring this
window up any time, press f]li!)ill.

Fast Entry to Turbo Pascal
When starting Turbo Pascal, did you ever wish you could skip the
initial "Include error messages?" prompt and get right down to busi
ness? The I]IJ]J and!][)E macros let you do just that by supplying
a Y in response to that prompt. (There's hardly ever a reason not to
include the error messages, since they take up only 3K and make
programming a lot easier.)

When you press I]IJ]J at the DOS command prompt, SuperKey
inv.okes Turbo Pascal, answers the question with a Y, and leaves you at
the Turbo) prompt. The !][)E keys, which are used to start a new
work file, let you enter the name of the new file. Then this macro
jumps into the editor and inserts an {R +} compiler directive. (This
directive causes Turbo Pascal to catch range errors in your program,
which is quite useful when debugging.) The macro then leaves you in
the editor so that you may begin writing your new program.

Turbo Pascal Templates
The five macro keys in Turbo Pascal-f][JI), 1][J]l, I][)]l, and
IID]}--let you create the "skeleton" for an entire block of Pascal code
with a single keystroke.

I]!J!l helps you create a procedure by typing the word "procedure,"
then waits for you to supply the procedure name. When you press fEl,
it finishes the job by creating the main begin/end block, and helps to
document your code by commenting the end for you. IIDIl helps
you define a function in a similar way, stopping to wait for you to type
both the function name and the return type. I][J]l and !][J]J
accomplish the same thing using case and repeat ... until statements.
I][)]l prints out a simple begin/end block.

Of course, every programmer has his/her own style, and these macros
may not produce code in the exact format you require. Fortunately, all
of these macros can be edited with SuperKey's macro editor, enabling
you to write code to your own specifications.

366 Turbo Tutor Owner's Handbook

Saving your Work

The macros, !][J]), !]!J]J, rID]), and ~, help you save your
work (in case of power failures, random crashes, and so on) and
perform other, related functions with a minimum of fuss and bother.

!][J]), when used from within the Turbo Pascal editor, saves your
program to disk and returns you to your editing session. !]!J]J also
saves the program, but then exits Turbo Pascal and returns you to the
DOS command level. rID]) saves your file and then compiles it (but
doesn't start it running), allowing you to check your program for
syntax errors. Finally, ~ saves the file and prepares Turbo Pascal
to accept the name of a new file for editing. (Note: This defmition of
~ overrides the use of this key combination to bring up the
SideKick Notepad. If you have SideKick and use the notepad, you may
wish to define another key for this macro.)

Other Macros

Macros not included in TURBO.MAC may also prove useful when
you are using Turbo Pascal. One of the most common key combina
tions a Pascal programmer must type is : =, an awkward sequence
requiring you to test your digital dexterity. One way to make this
sequence easier (and avoid typographical errors) is to program a single
key, such as []![J:J, to produce the: = all at once. To program this new
macro into SuperKey, type:

[][E) []![J:J 0 c:J [][E)
Because the Turbo editor only defines two of the IBM PC function
keys ~ and l!E)), the remaining keys are available for use in defming
other macros for the editor. For instance, the key sequences for "find"
(f]ill)])Il) and "find and replace" ((£li!)]Jll) can be programmed
into the function keys l!D and (EJ like this:

Find: [][E) IEJ @illl]l CO [][E)
Find and Replace: [][E) (EJ @illl]l !1l ~
After this is done, you still have six function keys to define.

Other SuperKey Functions

SuperKey has so many diverse and useful functions that we couldn't
possibly describe all of them in detail here. Some of the most useful
ones for Pascal programmers include:

• Privacy to prevent visitors from looking over your shoulder when
there's confidential information on your screen.

• Keyboard lock to prevent access to your programs when you're away
from your desk.

Using Turbo Pascal with Other Borland Products 367

• Cut and paste allows you to cut and paste material from other
programs to Turbo Pascal (and vice versa).

• Encryption to protect your confidential fues, and/or convert them to a
form easily transmittable by modem.

TURBO LIGHTNING
Turbo Pascal programmers should be sure to turn the Control-Break
{$C-} option OFF when writing programs to be used with Turbo
Lightning. Otherwise, when you run the program, the keyboard will
be flushed and the Auto-Proof function can cause a character to be
dropped if you type quickly.

For a complete description of any of the features and functions of these
products, refer to their respective manuals.

368 Turbo Tutor Owner's Handbook

E Programming Style
"Programming style" refers to many aspects of programming-how
you format programming commands, the length and capitalization of
declared identifiers, the types of programming structures used or omit
ted, and more. And just as there is no universal style for writing
English, there is no universal style for writing programs; however,
there are some general rules. Read these suggestions, evaluate them
carefully, and choose the ones you find most appealing.

CONSISTENCY: A MATTER OF STYLE

Using good programming style promotes the writing of efficient,
readable programs that are easy to maintain and modify.

Don't let yourself fall into the trap of quickly typing in your program,
with good intentions to edit it "later on." Instead, type your programs
using good programming style the first time through, commenting the
code as you go. If you are eager to test an idea or a routine, first create a
test file, perfect the routine, and then comment the code before merg
ing it with your main program.

The following conventions--or others like them-will make it easier
for you to modify your programs, or to cannibalize routines for use in
other applications.

INDENTATION

Always indent nested statements two or three spaces. If you use more
than this, any long statements will run off the screen; if you use less, it
will be more difficult to visually discern the program blocks:
if condition then
begin

StmU;

StmtN;
end; {if}

case i of
0: Write('None found');
1: Write('Found it!');
else;

end; {case}

369

Take up the habit of aligning associated begins and ends. This will
s'1.ve you hours of thumbing through printouts trying to find a missing
begin.

SPELLING

To avoid trying to figure out why you abbreviated something. and
what it stands for, spell things out! For example, use an identifier called
NetPay instead of NP; use Balance instead of ba. Save those short cryptic
names for short simple procedures where long names may get in the
way.

Keep in mind that any important identifier should be well documented;
consider the following approaches and pick the best one for you:

Terse Identifier Names
var global declarations }

B, D, W : real;

function Nb(b, d, w real);
begin

Nb := b + d - w;
end;

Descriptive Identifier Names
var { global declarations }

Balance
Deposits,
WithDrawals: real;

function NewBalance(bal, dep, wid real);
begin

NewBalance := bal + dep - wid;
end;

Of course, we stacked the deck to prove a point: The first example
would require a comment on virtually every line to make the code
readable. In the long run, by choosing descriptive identifier names you
will actually cut down on excess typing.

Note that the parameter identifiers are shorter than the global ones.
That's because most of the work of a "real" program is performed by
trusted procedures and functions. Many people use abbreviated lower
case identifiers to designate local variables and parameters. Then, when
they are pouring through the code at half-past midnight, they know to
look "locally" to trace a particular variable.

Save those one-letter identifiers for scratch variables of little impor
tance, or for more traditional uses like the following:

370 Turbo Tutor Owner's Handbook

x,y Represent screen coordinates
i,j Represent integer indexes into an array
n Traditional integer loop variable

Consider the following (and note the difference in readability):
for n := 1 to 7 do { seems reasonable}

Read(SomeArray[nJ);

for day := 1 to 7 do
Read(SomeArray[dayJ);

PARAMETERS

obviously superior

Use parameters and functions whenever possible. If your programs
have scores of global variables and few procedures or functions with
parameters, then you have not yet mastered the fundamentals of
Pascal. For example, you could type this:
var

OK, Okl : boolean;
FileName : string[bbJ;

procedure OpenFile;
begin

{ opens file, sets OK to indicate success/failure }
end;

begin
FileName := 'Testl';
OpenFile;
Okl := OK;
FileName := 'Test2';
OpenFile;
if Okl and OK then ...

end;

But then why not try this instead:
type

NameType = string[bbJ;

function OpenFile(FileName : NameType) : boolean;
begin

{ opens file, returns true/false }
end;

begin
if OpenFile('Testl') and OpenFile('Test2') then ...

end;

Ah, that's much better. We eliminated three global variables used inside
OpenFile. Of course, sometimes you want to use globals, but not
nearly as often as you feel compelled to type them.

Programming Style 371

STRUCTURES

Pascal provides many powerful, high-level structures and constructs
(sets, user-defined scalar types, case statements, records, and so on)
use them. Beginners often take some poor overworked structure and
use it unnaturally; for example:
var

Answer : char;
begin

repeat
Read(KBD,Answer);
Answer := UpCase(Answer);

until (Answer ly/) or
(Answer 'N/) or
(Answer = 'M/);

{ convert to capital
{ yes

end;

That works, but now look at this:
var

Answer : char;
begin

repeat
Read(KBD,Answer);

{ no
{ maybe

until UpCase(Answer) in [/Y/,/N/,/M/]; {yes,no,maybe}
end;

No big deal, you say. Well, what if there were 20 legal answers instead
of only 3? In general, use sets and records to collect "like" objects.
Don't leave a pile of related globals lying around haphazardly; tuck
them out of sight by putting them into a record, like so:
var

x, y,
Ht, Wid,
ForeG, BackG : byte;
Title: string[20];

procedure DrawWindow;
begin

{ has to "remember" all the globals, can only
work on one window definition unless you want
to pass all those guys as parameters separately

end;

Compare the previous one with the following:
type

WindowRec = record
x, y,

372

U~ TJ~ i'I
U ... , ".LU,

ForeG, BackG : byte;
Title: string[20];

end;

Turbo Tutor Owner's Handbook

var
MainWindow : WindowRec;

procedure DrawWindow(w : WindowRec);
begin

with w do
begin

{ ... draw the window ... }
end;

end;

That's much cleaner-now you can pass different windows to the
routine. Similar objects are placed in a well-labeled container and
handed over to the Draw Window procedure.

Become familiar with user-defmed scalars:
var

Month: 1 .. 12;
case Month of

12 .. 2 Writeln('Winter');
3 .. 5 Writeln('Spring');
b •• 8 Writeln('Summer');
q •• 11 Writeln('Autumn');

end;

That's fine, but Pascal let's you write English with no additional
overhead. For example:
type

Months = (Jan, Feb, Mar, Apr, May, Jun,
Jul, Aug, Sep, Oct, Nov, Dec);

var
Month: Months;

case Month
Dec .. Feb
Mar .. May
Jun .. Jul
Aug .. Nov

end;

of
Writeln('Winter');
Writeln('Spring');
Writeln('Summer');
Writeln('Autumn');

The following scheme really comes in handy for menu routines:
repeat

Selection := GetChoice([Reports .. QuitJ); { legal choices
case Selection of

Reports : PrintReports;
Edit : EditFile;
Setup : ChangeSetup;

end; { case }
until Selection = Quit;

Programming Style 373

CONSTANTS

Develop the habit of using constants wherever possible. For example:
const

MenuRow = 10;
MenuCol = 10;
Menultems 5;

procedure GetMenultem(var item integer);
begin

repeat
GoToXY(MenuCol, MenuRow);
ClrEOL;
Read(item);

until item in [l •• Menultemsl;
end;

The advantage here is clear: If you need to add more menu items, you
don't have to search for every occurence of the number 5 in your
program. In addition, using constants makes it much easier to use the
same routine in a different program (or another part of the same
program).

COMMENTS

We've already discussed the basics of comments, but here are some
new ideas.
There are different kinds of comments, each with an appropriate place.
For instance, always place a long, explanatory comment at the begin
ning of your program:
{ Written 01/01/86 by Ace Coder.
Last modified 01/02/86 by More AlertCoder.
O/S: PC DOS 2.0 or later, CPIM 2.2 or later

MS DOS 2.0 or later, CPIM 86 1.1
Systems: All machines that run Turbo Pascal
Memory: 6~K or greater
This program creates a feeling of euphoria in
the user by ...
}

You can use other comments to date-stamp modifications, both at the
top of the file (like in the previous one) and in the code:

i := Pred(i); { Modified 01/06 by FB }

You can also place comments next to each global variable to explain
what it does and which routines use or modify it:
var

Error : boolean;

374

set by IOerror if an
IIO error occurs. Error msg
is displayed by PaintMsg }

Turbo Tutor Owner's Handbook

Then again you can place a comment beneath every procedure and
function to explain what each one does, which global variables it uses
(if any), and when it was last modified (if ever):
procedure Abort(msg : StringType);
{ Displays the message, then halts program execution

And if you port the routine from another program or extract it from
somewhere else, mention it in a comment so you'll know who to
praise later.

SUMMING IT UP

We could go on, but then we'd probably just keep trying to convince
you to use our style conventions. Instead, be reasonable-find a style
that is easy to maintain and readable to your fellow programmers (and
also to yourself six months down the road). Don't believe anyone if
they tell you their style is the only way; instead, remember that your
objective is to write well-behaved, well-documented code. It is our
experience that the two generally accompany each other.

Happy coding.

Programming Style 375

376 Turbo Tutor Owner's Handbook

F Using Turbo Pascal
with CP/M-80 and
CP/ M-86 Systems

We have mentioned information applicable to CP/M-80/86 systems
throughout this manual, but much of the system-specific details pertain
to PC-DOS and MS-DOS systems. This chapter offers those CP/M-
80/86 users some basic information about Turbo Pascal operation with
their systems. For more detailed information, refer to the Turbo Pascal
Reference Manual.

MAKING BACKUPS
CP/M-80 and CP/M-86 systems provide a utility called PIP.COM
(PIP. CMD for CP / M-86) that will copy files onto a disk, one file at a
time. Even if your system provides a utility that copies a disk all at
once, it is a good idea to use the PIP utility for your first copy. (This is
because PIP allows a single-sided disk to be copied onto a machine that
has a double-sided native format.)

To make a backup of your Turbo Pascal system disk, follow these
steps:

1. Place your CP/M system master in drive A, and a new disk to be
formatted in drive B.

2. Format the disk in drive B by using your system's formatting
utility. If there is an option for copying CP/M onto the disk at the
same time, use this option and skip step 3.

3. Copy CP/M onto the disk in drive B using the operating system's
copying utility. This utility is generally called SYSGEN, and can
be used by typing in the utility name and the destination disk
drive, like so:
A> Sysgen b:

377

(If your system does not have SYSGEN, consult your documenta
tion for an equivalent utility.)

4. Now copy the program PIP.COM onto the disk in drive B:
A> pip b:=a:pip.com

For CP/M-86:
A> pip b:=a:pip.cmd

5. Take the disk out of drive B and place it into drive A. Insert your
Turbo Pascal or Turbo Tutor disk (whichever one you wish to
copy) into drive B and reboot. If you have a reset button that
reboots the machine, press it. If you don't, then turn the computer
off and then on again for a complete reset.

6. At the A) prompt, get a directory listing of all the files on drive B
by typing:
A> dir B:

7. After the A) prompt, copy all of the files on drive B to drive A by
typing:
A> pip a:=b:*.*

Your system will display each file name as it is copied from drive B
to drive A.

Now you have a copy of the Turbo Tutor (or Turbo Pascal) distribu
tion disk and the CP 1M system, too. You can use this disk to boot
your machine, as well as use the programs on it.

INSTALLATION AND aDOS ERRORS

On all CP/M 2.2 versions (and some CP/M-86 versions), when you
remove a disk from one of the drives, any disk you put into that drive
is automatically set to read-only status. Thus, if you try to write to that
disk, you will get the error
BDOS ERROR ON X:R/O

where X is the name of the drive and RIO means read-only. On these
systems, you must boot the system with the same disks in the same
drives you plan to use throughout your current session.

Thus, if you decide to change disks in the drive where you've installed
Turbo Tutor, you will get a read-only error. If this happens and you
have followed the preceding steps for copying the Turbo Tutor distri
bution disk to a system disk using the PIP utility, then press []li[J]l at
the prompt and rerun TINST. If you have not followed the steps, go
back to review them and make a new disk. Then boot your system
with the new disk before re-running the installation program.

378 Turbo Tutor Owner's Handbook

COMPILING TO DISK

Be sure that your Turbo disk is correctly logged in before compiling
with the .COM option, otherwise, you'll get a read-only error if you
change disks in the drive running Turbo Pascal. For CP/M-86 systems,
this is the only difference between compiling to disk on your system
and the MS-DOS and PC-DOS. systems.

For CP/M-80 systems, the method for selecting a .COM file from the
compiler options menu is the same as that described in Chapter 6 (see
the section entitled "Saving Your Compiled Program"). There are
differences, however, in what is displayed on your screen when you
enter the compiler options menu. Your screen will show:
compile-) Memory

Com file
cBn file

Find run-time error Quit

When you press @lefor Com file), your screen will display:
Memory

compile-) Com file
cBn file

Start address: 20E9 (min 20E9)
End address: F042 (max F306)

Find run-time error Quit

The Start and End address options allow you to change the beginnning
or ending address of your program. These are usually used when
making room for assembly code modules, compiling files to be used
with chaining, or moving .COM from one computer to another.

Now press ([l and IB to return to the main menu. At the main
menu, press @l for Compile. Your screen should now look like this:
Logged drive: A
Work file: A:FIRST.PAS
Main file

Edit Compile

eXecute Dir

Text: 111 bytes
Free: 27902 bytes

)

Run Save

Quit compiler Options

Compiling-) A:FIRST.COM
6 lines

Using Turbo Pascal with CP/M-80 and CPlM-86 Systems 379

Code 88 bytes (20E9-21~1)
Free 5285b bytes (21~2-EFBA)
Data 135 bytes (EFBB-FO~2)

The remainder of the lesson in Chapter 6 (from "Main Menu Over
view" on) is applicable to your CP/M-80 system.

THE EXECUTE OPTION
The CP/M-80 implementation of Turbo Pascal has a handy feature: It
can run compile, and create a .COM file from your program. Then
press fl) in the main menu of Turbo Pascal to bring up the following
prompt:
Program:_

Next, type in the name of your .COM program (in Chapter 6, the
name FIRST was used) and press IB to make it run. When the
program completes, Turbo Pascal will reload the source program and
return you to the system prompt:
Loading TURBO.MSG
Loading FIRST.PAS
)

Now press IB to return to the main menu.

380 Turbo Tutor Owner's Handbook

G Common Questions
and Answers About
Turbo Pascal

GENERAL
How much RAM do I need to run Turbo Pascal?
You'll need at least 48K on a CP/M-80 machine and 128K on a 16-bit
or PC-compatible machine.

Are variables initialized automatically in Turbo Pascal?
Turbo doesn't initialize user-defmed variables at runtime. The pro
grammer must initialize a variable before it can be used.

My program runs correctly in memory, but crashes or peiforms differently when
I run the .COMfile. What's wrong?
There are several possibilities:

• You are using a variable or data structure that has not been initial
ized.

• You are going out of bounds on an array or a string and conse
quently overwriting something in memory. Set the R compiler
directive to {$R +}.

• You are using a pointer that has not been properly allocated, which
can cause a program to overwrite something in memory.

• You are using assembly language externals and Turbo Pascal version
2.0 on MS-DOS, PC-DOS, or CP/M-86. Under these conditions,
external assembly code is not always transferred properly during a
compile to disk. It is necessary to compile first in memory, then,
without running the program, select the .COM option using the
compiler options menu and recompile.

381

• You are using typed constants that change.

• You may be overwriting memory somehow. Suspect any code that
uses

1. MEM or MEMW arrays or pointers

2. absolute variables

3. INLINE, externals, or interrupt calls

4. Calls to the procedures FillChar or Move

What causes the runtime error FO?

There are four possible causes: (1) a recursive routine that is overlaid;
(2) a procedure that calls another procedure in the same overlay group;
(3) calling for an overlay inside a read or write statement, which is not
allowed; and (4) insufficient file handles when calling for an overlay, a
.CHN, or an Execute (MS/PC-DOS only).

Why do I get an 110 error FO when I try to Append to a text file?
You cannot use the Append procedure on an empty flie. The existing
file must have text in it in order to successfully append.

Why am I getting a compile-time error in my type declaration for a large data
structure?
It may be over 64K in size (Turbo's upper limit for the size of a data
structure).

Why do I keep getting a type mismatch with the labels I'm using in my case
statement?

You may be trying to use strings as labels in your case statement.
Pascal only allows simple types to be used as case statement labels. In
addition, the labels must be constants, not variables or typed constants.

How do I assign an integer variable a value of - 32768?
By assigning the integer a value of $8000.

When I change my program into a . CHN /Execute file, the program either
hangs, gives a memory allocation error, or gives erroneous results. What am I
doing wrong?
For Chain and Execute to work, you must set the minimum code and
data segment to the size of the code and data of the largest program in
the Chained or Executed series (on CP/M-80 systems, you must adjust
the end address). These settings can be changed using the compiler
Options menu.

382 Turbo Tutor Owner's Handbook

When using the jUnctions EOF and EOLN on a file, my program seems to
hang. What's the cause?
Turbo Pascal adds an extension to the functions EOF and EOLN. This
extension lets you pass to the two functions a parameter specifying
which flle you are checking (for example, EOF(File Variable)). If you do
not specify this optional parameter, then set the B compiler directive.

GotoXY isn't working in my program. What am I doing wrong?
The most common mistake is reversing the row and column coordi
nates. They should read as:
GotoXy(Column,Row);

where 1 < = column < = 80 (on most machines)
and 1 < = row < = 25 (or 24 lines on most generic machines)

How do I get a real number printed in non-exponential notation?
You must use real formatting:
Writeln(R:M:3)

This means write the value of R, use a field width of 14 characters, 3 of
which should be to the right of the decimal point.

When I use FillChar on a string, the string gets messed up. My?
Remember that the zero'th byte of a string is used to hold the current
length of the string. Immediately after using the FillChar routine, you
must be sure to set the length byte of your string to the appropriate
value.

I have a for loop that writes to the string position using index (str1 [iJ).
However, when I write out the string, it has its old length. My?
When updating the value of a particular index of a string, you must
update the length byte. We recommend using the Insert procedure to
change the value of a particular character in a string, since all the string
manipulation routines in Turbo Pascal automatically change the length
of the string.

Mat is the maximum length of a string in Turbo Pascal?
255 characters

Common Questions and Answers About Turbo Pascal 383

How do you declare an enumerated type and use it in a for loop?
Try using this code:

type
Num (one,two,three);

var
Count: Num;

begin
for count := one to three do

Write (I • ') ;

end.
How can I access command-line parameters?
Use the ParamStr and ParamCount functions described in Chapter 16 of
the Turbo Pascal Reference Manual. These functions allow complete"
access to the command line from your Turbo Pascal program.

How do you access a file on another disk drive?
When assigning the drive, make your file name 'B:fIlename' or use
Chdir('B:') (MS/PC-DOS only).

When I write my linked list data structure to a disk file, why doesn't it store
properly?
Linked lists are dynamic data structures that can only be properly
allocated/represented in memory. In order to store the information in a
dynamic data structure to a disk file, you must write a routine that
traverses the entire linked list and writes each piece of data to your file.
When you read the information back from the tile, you must recon
struct your linked list.

I made afile with a text editor, and now I'm trying to read it as a recordfile and
it doesn't work. What's wrong?
Record files use a different data format from text files. You'll need to
write a program to convert your data from text to record files.

How do I get typeahead in a Turbo Pascal program?
First set the C and U compiler directives to {$C-} and {$U-}. This will
prevent Turbo Pascal from clearing the keyboard buffer during screen
110. From now on, whenever you do any reads, you can read one
character at a time from the logical device KBD: Read(KBD,ch).

384 Turbo Tutor Owner's Handbook

Why can't I read more than one integer/character/real on a line using a repeat
loop and a read(ch)?

The following routine reads an input line of characters, requiring the
user to press ~ only once.
var

ch : char;

begin
repeat

read(TRM,ch); { read from the logical device TRM }
write(ch);

until Ch = #13;
end.

You can read from the TRM device, read(TRM,var1), for version 3.0
for standard input, or use the compiler directive {$B-} for version 2.0.

My can't I read/write from the logical device AUX?
Turbo Pascal treats the logical device AUX exactly like a text file.
Because of the BIOS design, most users find that they have great
difficulty trying to write serial communication routines using reads and
writes from AUX. We recommend writing your own interrupt service
routines and/or checking the status of the serial port before you try
doing a read or write.

16-BIT MACHINES ONLY (including IBM PC)

My would I get the I/O error F3?
Because you are trying to use too many file handles. MS-DOS and
PC-DOS limit a program to a maximum number of file handles. You
can raise the number to 20 using this line in your CONFIG.SYS file:
FILES = 20

This will allow you to use up to 15 files in your program (DOS uses 5).
When all handles have been used, you must close some files before
opening any new ones.

How can I use more than 64K of variables?
You can expand the amount of data space available to your program by
using pointer variables.

How do I get the time/date in Turbo Pascal?
The files DOSFCALL.DOC and INTRPTCL.DOC on your Turbo
Pascal disk demonstrate how to get the date and time.

Common Questions and Answers About Turbo Pascal 385

How can I tell if my printer is ready to print?

You can check for the printer's status ·by polling DOS interrupt 17.

I wrote an interrupt handler, but it doesn't work. Do you mask interrupts
during I/O?

No. You are probably using global variables, but DS has the wrong
value after you enter the interrupt procedure. Save the value of DS in
the code segment (that is, in a typed constant) and restore it within the
interrupt handler.

What interrupt is used by the MS-DOS and PC-DOS implementations of
Turbo Pascal to handle the keyboard?

Turbo Pascal uses interrupt 16 to check the keyboard status.

I can't get Turbo Pascal to load on my DEC Rainbow. Why?
Make sure you are using the DEC format, not the MS-DOS format.

I'm having trouble running Turbo Pascal on Concurrent PC-DOS. Why?
We recommend using the MS-DOS generic implementation of Turbo
Pascal under Concurrent PC-DOS.

How can I use Turbo Pascal to write to DOS's null device?
Use the following code:
var

T : text;
begin

Assign(T, 'Nul');
Rewrite(T) ;
Writeln(T, 'help');
Close(T);

end.

IBM PC ONLY

Does Turbo Pascal 3.0 for the IBM PC use direct screen writes in its editor?
Yes.

How can I get inverse video when running Turbo Pascal?

After executing the following statements, all text will be displayed in
inverse video:
begin

TextColor(Black);
TextBackground(White);

end;

386 Turbo Tutor Owner's Handbook

Any idea why I can't get the sample graphics programs on the Turbo Pascal
disk to run on my system?
You must have an IBM Color Graphics Adapter (CGA) card or
compatible in order to use the built-in graphics abilities of Turbo
Pascal.

What resolution setting does the Hires graphics mode on the IBM PC version of
Turbo Pascal require?
Hires is set at (640 X 2(0).

How can I change the border color on a CGA?
The following program will let you change the border color to blue
(substitute any color you wish):
begin

Port[$3D91 := Blue;
end.

Will Turbo Pascal's graphics run on the Hercules Graphics card?
Turbo Pascal's built-in graphics will only run on the IBM Color
Graphics Adapter card, or something compatible with this card. To
write graphics programs using Turbo with the Hercules card, you can
use the Turbo Graphix Toolbox.

Why doesn't my graphics program run on my Paradise Modular Graphics card?
The graphics routines built into Turbo Pascal and included in the
extended graphics (GRAPH.P) will only run on an IBM Color
Graphics Adapter card (or compatible).

How can I hide the cursor in Turbo Pascal?
The following routine turns the cursor on and off in Turbo Pascal:
procedure SetCursor(On:boolean);
var

reg : record
ax,bx,cx,dx,bp,si,di,ds,es,flags: integer;

end;
begin

with reg do
begin

if On then { turn cursor on }
cx $COB { $706 if on color monitor }

else { turn cursor off }
cx := $20;
bx : = 0;
ax := $0100;

end; {with}
intr(UO,reg) ;

end; {procedure SetCursor }

Common Questions and Answers About Turbo Pascal 387

How can I find out if the flUICW keys are on?

The status of these keys is kept in RAM at address $40:$17.

How do I get the I PrtSe I key on an IBM PC to work with a Turbo Pascal
program?

To re-enable DOS's standard I/O redirection capabilities, the G and P
compiler directives must be set in your program: {$P128,G128}.

Why can}t I get Turbo Pascal to run under Topview?

You must have Turbo Pascal version 3.01 to use under Topview, and
you must install Topview with the following parameters:
Does it read directly from the keyboard? Yes
Does it access video RAM directly? Yes

Is the 8087 version of Turbo Pascal compatible with the 80287 co-processor?

Yes.

I have the 8087 version of the compiler. The program compiles but it doesn}t
run. Why not?

For version 2.0 users: Turbo Pascal does not check for the 8087 at
compile time; instead, it tries to use it at runtime. If it is not there,
Turbo Pascal will wait until you respond.

For version 3.0 owners: Turbo Pascal will not allow compilation on a
machine without an 8087. If the program is compiled and taken to a
machine without an 8087, it will crash.

How fast is the 8087?

The 8087 version of Turbo performs real-number calculations approxi
mately 10 times faster than a non-8087 compiler.

Is there a switch in the BCD or 8087 compilers that lets you use regular real
number arithmetic?

No, they are separate compilers.

Is Turbo-BCD as fast as the regular Turbo compiler?

If you are using real numbers, Turbo-BCD will run more slowly than
regular Turbo Pascal. Also note that Sin, Cos, Exp, and Ln are not
implemented in Turbo-BCD.

388 Turbo Tutor Owner's Handbook

CP/M-80 MACHINES ONLY

Can I use the program I developed under CP/M-BO on my IBM PC?
Yes, you can, provided there are no machine-specific calls in your code
and that you recompile the source code on an IBM PC implementation
of Turbo Pascal.

What software do I need to get Turbo Pascal up and running on my Osborne
executive computer?
You need the Osborne version of Turbo Pascal and BIOS revision 1.21
or greater.

How can I get Turbo Pascal 3.0 to run on my Bondwell CP/M-BO computer?
To run 3.0 on your Bondwell, you will have to contact Bondwell to get
a patch to their BIOS.

Common Questions and Answers About Turbo Pascal 389

390 Turbo Tutor Owner's Handbook

H Glossary
8087 A high-speed math co-processor available for 8086-based
machines.
Ascn set The American Standard Code for Information Inter
change's standard set of numbers used to identify the characters and
control signals used by computers.
absolute variable A variable declared to exist at a fixed location in
memory, rather than letting the compiler determine its location.
actual parameter A variable, expression, or constant that is substi
tuted for a formal parameter in a procedure or function call.
address A specific location in memory.
algorithm A set of rules that defme the solution to a problem.
allocate To designate memory space for a particular purpose.
array A sequential group of identical data elements that are arranged
in one data structure and are accessible by an index.
argument An alternative name for a parameter (see actual param
eter).
assignment operator The symbol : =, which assigns a value to a
variable or function of the same type.
assignment statement A statement that assigns a specific value to
an identifier.
assembler A program that converts assembly language programs
into machine language.
assembly language The first language level above machine lan
guage. Assembly language is specific to the microprocessor it is run
ning on. The major difference between assembly language and
machine language is that assembly language provides mnemonics that
make it more readable.
binary A method of representing numbers using base 2 notation,
where the only digits are 0 and 1.

391

binary coded decimal (BCD) A method of floating-point arith
metic that prevents the normal round-off error inherent in computer
based arithmetic.

bit A binary digit with a value of either 0 or 1. The smallest unit of
data in a computer.

block The associated declaration and statement parts of a program or
subprogram.

boolean A data type that can have a value of TRUE or FALSE.

buffer An area of memory allocated as temporary storage.

byte A sequence of adjacent bits (by convention) consisting of8 bits.

case label A constant, or list of constants, that label a component
statement in a case statement.

case selector An expression whose result is used to select which
component statement of a case statement will be executed.

central processing unit (CPU) The "brain" of a computer system
that interprets and executes instructions.

chaining The passing of control from one program to another.
char A type that represents a single character.

code segment The place in memory where a program's code is
stored.

comment A note or explanation in the source code enclosed by the
symbols (* *) or { }.
compiler A program that translates a program written in a high
level language into machine language.

compiler directive An instruction to the compiler that is embedded
within the program; for example, {$R+} turns on range-checking.

compound statement A series of statements surrounded by a
matching set of the reserved words begin and end.

concatenate The joining of two or more strings.

constant A fixed value in a program.

control structure A statement that manages the flow of execution
of a program.

data segment The segment in memory where the static global
variables of a program are stored.

data structure A structure built of many data elements that are all of
the same type. It is used for convenient storage, retrieval, and manipu
lation of data.

debugger A special program that provides capabilities to start and
stop execution of a program at will, as well as analyze values that the
program is manipulating.

392 Turbo Tutor Owner's Handbook

decimal A method of representing numbers using base 10 notation,
where legal digits range from 0 to 9.

declare The act of explicitly defining the name and type of an
identifier in a program.

dereferencing The act of accessing a value pointed to by a pointer
variable.

definition part The part of a program where constants, labels, and
structured types are defined.

delimiter A boundary marker that can be a word, a character, or a
symbol.

directory A work area on a disk (an MS/PC-DOS feature); a listing
of flies or directories on a disk.

dynamic allocation The allocation and de-allocation of memory at
runtime through the use of pointers.

dynamic variable A variable on the heap.

enumerated type A user-defined type that consists of a list of
identifiers in which the order and identifier names are determined by
the programmer.

expression Part of a statement that represents a value or can be used
to calculate a value.

extension Any addition to the standard definition of a language.

external A file of one or more subprograms that have been written
in assembly language and assembled to native executable code.

field list The field name and type definition of a record.

field width The number of place holders in an output statement.

file A collection of data that can be stored on and retrieved from a
disk.

file pointer A pointer that tracks where the next object will be
retrieved from within a file.

file variable An identifier in a program that represents a file.

flag A variable, usually of type integer or boolean, that changes
value to indicate that an event has taken place.

formal parameter An identifier in a procedure or function declara
tion heading that represents the arguments that will be passed to the
subprogram when it is called.

forward declaration The declaration of a procedure or function and
its parameters in advance of the actual definition of the subroutine.

function A subroutine that computes and returns a value.

global variable A variable declared in the main program block that
can be accessed from anywhere within the program.

Glossary 393

heap The area of memory reserved for the dynamic allocation of
variables.

hexadecimal A method of representing numerals using base 16
notation, where legal digits range from 0 to 9 and A to F.

high-level language A programming language that is closer to
human language than to machine language.

identifier A user-defined name for a specific item.

increment To increase the value of a variable.

index A position within a list of elements.

initialize The act of giving a known initial value to a variable or data
structure.

input The data a program receives from some external device.

integer A numeric variable that is a number in the range -32768 to
32767.

interactive A program that communicates with a user through
some I/O device.

interrupt The temporary halting of a program in order to process an
event of higher priority.

I/O Short for Input/Output, this is the process of receiving or send
ing data.

110 error An error that occurs while trying to input or output data.

I/O redirection The ability in PC-DOS/MS-DOS to direct I/O to
access devices other than the default MS-DOS devices.

interpreter A program that sequentially interprets each statement in
a program into machine code, and then immediately executes it.

iteration The process of repetition or looping.

label An identifier that marks a place in the program text for a
GOTO statement.

linked list A dynamic data structure that is made up of elements,
each of which point to the next element in the list through a pointer
variable.

local identifier An identifier declared within a procedure or a func
tion.

local variable A variable declared within a procedure or a function.

machine language A language consisting of strings of Os and 1 s that
the computer interprets as instructions.

main program The main statement part of a program from which
all its subprograms are executed.

module A self-contained routine or group of routines.

nesting The placement of one unit within another.

394 Turbo Tutor Owner's Handbook

nil pointer A pointer value that is undefined; that is, it doesn't point
to anything.

node An individual element of a tree or list.

object code The output of a compiler.

offset An index within a segment.

operand An argument that is combined with one or more operands
and operators to form an expression.

operating system A program that manages all operations and
resources of the computer.

operator A symbol, such as +, that is used to form expressions.

operator hierarchy The rules that determine the order in which
operators in an expression are evaluated.

ordinal type An ordered range of values.

overflow The condition that results when an operation produces a
value that is larger or smaller than the computer can represent, given
the allocated space for the value or expression.
overlay A group of subprograms stored in an external fue, all of
which share the same part of the code segment.

parameter A variable or value that is passed to a procedure or
function.

parameter list The list of value and variable parameters declared in
the heading of a procedure or function declaration.

pointer A variable that points to a specific memory location.

pop The removal of the top-most element from a stack.

port An I/O device that can be accessed through the CPU's data bus.
predefined identifier A constant, type, fue, logical device, proce
dure, or function that is available to the programmer without having to
be defined or declared.

procedure A subprogram that can be called from various parts of a
larger program.

procedure call The invocation of a procedure.

push The addition of an element to the top of a stack.

queue A data structure in which the first element placed in the data
structure is the first element to be removed.

random access Directly accessing an element of a data structure
without sequentially searching the entire structure for the element.

random access memory (RAM) The memory device that can be
read from and written to.

range-checking A Turbo Pascal feature that checks a value to make
sure it is within the legal range defined.

Glossary 395

read-only memory (ROM) The memory device from which data
can be read but not written.

real number A number that contains a decimal point.

record A structured data type referenced by one identifier that con
sists of several different fields.

recursion A subprogram that calls itself

relational operator The =,<>,<,>,<=,>=, and IN operators,
all of which are used to form boolean expressions.

reserved word An identifier reserved by the compiler.

scalar type A Pascal data type consisting of ordered components.

scope The visibility of an identifier within a program.

segment On 8088-based machines, RAM is divided into several
segments, or parts, each made up of 64 Kb of memory.

sequential access The ordered access of each element of a data
structure, starting at the first element of the structure.

set An unordered group of elements, all of the same scalar type.

set operator The +,- ,*,=,<=,>=,<>, and IN symbols, all of
which operate on set-type operands.

simple type A predefmed or user-defined scalar type.

source code The textual input to a compiler.

stack A data structure in which the last element stored is the first to
be removed.

stack overflow An error condition that occurs when the amount of
space allocated to the computer's stack is used up.

stack segment The segment in memory allocated as the program's
stack.

statement The simplest unit in a program; statements are separated
by semicolons.

static variable A variable with a lifetime that exists the entire length
of the program. Memory for static variables is allocated in the data
segment (or area).

string A sequence of characters that can be treated as a single unit.

structured type One of the predefined types (array, set, record, file,
or string) that are composed of structured data elements.

subprogram A procedure or function within a program; a subrou
tine.

subrange A continuous range of any scalar type.

syntax error An error caused by violating the rules of a program
ming language.

396 Turbo Tutor Owner's Handbook

terminal An 110 device for communication between a user and a
computer.

tracing Manually stepping through each statement in a program in
order to understand the program's behavior; an important debugging
technique.

transfer function A function that converts a value of one type to a
value of another type.

tree A dynamic data structure in which a node may point to one or
more other nodes.

turtlegraphics An intuitive, coordinate-based graphics system.

type definition The specification of a type based upon other types
that are already defined.
typed constant A variable with a value that is defined at compile
time, but can be modified at runtime. (You can think of it as a
preinitialized variable.)

untyped parameter A formal parameter that allows the actual
parameter to be of any type.
value parameter A procedure or function parameter that is passed
by value; that is, the value of the parameter is passed and cannot be
changed.
variable declaration A declaration that consists of the variable and
its associated type.
variable parameter A procedure or function parameter that is
passed by reference; that is, the address of the parameter is passed so
that the value of the parameter can be accessed and modified.

variant record A record in which some fields share the same area in
memory.

word A location in memory occupying 2 adjacent bytes.

Glossary 397

398 Turbo Tutor Owner's Handbook

Index
A
Absolute variables, 307-309
Addition operators, 62-63
Algorithms, bibliographic

reference to, 274
Allocation (see Dynamic

allocation)
ANIMALS.PAS, 6, 254
Animation, real-time, 234-236
Append procedure, 214
Application software, 16
Array assignment, 151-152
Array constant, 295-296
Arrays, 147-155

base type of, 148, 150
index type of, 148-150
initializing, 152-153
multidimensional, 150
packed, 154-155
range-checking and, 152
representing in memory,

153-154
sparse, 260-263

mixed,262
A rt of Computer Programming,

The, bibliographic reference
to, 251

ASCII character set, 17, 94
ASCII table, 95
Assemblers, 16, 22

Assembly language, 22-23
8088/8086, used with Turbo

Pascal, 323-334
allocating local variable

space, 327
allocating static storage,

327-328
external subprograms,

323-327
inline statement, 330-334
interrupt handing, 332
libraries, 328-330

Assign procedure, 213-214
Assignment statement, 66

B

Backup copies of disks, 30-31,
36
with CP/M-80 and CP/M-86
systems, 377-378

Base type, of subrange, 108
Binary numbering system,

13-14
compared to hexadecimal
system, 317

Binary search, 271-272
Binary trees, 254-258

inserting into, 255-256
searching, 254-255
traversing, 256-257

399

Bit, description of, 13
Boolean data type, 55, 93
Boolean expressions, 113-116
Boolean operators, 113-115

operations on integers and
bytes, 319-320

Boolean values, Turbo's
extension for, 209

Byte, description of, 14
Byte data type, 55, 90
Byte values, memory storage

of, 318-319

c

Case statement, 123-125
constant list in, 125

Central Processing Unit (CPU),
12

Chain/Execute procedures,
289-290
vs. overlays, 291

Chaining, 287-289
Char data types, 55, 94-96
Characters, 16-19

ASCII, 17,94-95
control (non-printing), 17, 94,

97-98
extended character set, 17
printing, 16-17

ChDir procedure, 222
Children, of tree, 253
Chips, computer, 14
Circular linked lists, 241-245
Close procedure, 215
Command names, 41
Comment delimiters, 82
Comments, 66-67, 71-72, 81-84
Compiler directive, 107
Compilers, 16, 25-26
Compiling a program, 45-47

with CP/M systems, 379
Compound statements, 80-81

if statement, 112-113

Computer numbering systems,
313-319
binary, 13-14
decimal, 313-314
hexadecimal, 88, 313-314
place value, 313-316

Conditional control structure,
111-116
boolean expressions, 113-116
if statement, 111-113

Constants, 59-61, 293
passing as var parameters, 301
(see also Typed constants)

Control characters, 17, 94
in a string, 97-98

Control structures, 111-126
case, 123-125
conditional, 111-116
goto, 303-306
iterative, 116-122

CP/M-80 and CP/M-86
systems, with Turbo Pascal,
377-380

CPU (see Central Processing
Unit)

D

Dangling pointer, 201
Data types, 54-55

predefined, 54-55, 87-100
boolean, 55, 93
byte, 55, 90
char, 55, 94-96
integer, 55,87-90
real, 55, 90-93

simple, 87
structured, 87
user-defined, 55

Decimal numbering system,
314-314

Declaration part, 69, 76-79

400 Turbo Tutor Owner's Handbook

Defined scalar types, 101-110
enumerated, 101-108

avoiding range errors in,
106

ordinal values of, 103-104
range-checking in, 106-107
type definition part,

102-103
undefined values in,

107-108
input and output, 110
memory usage of, 110
standard functions for,

104-105
subranges, 101, 108-110

Deque list type, 249
Dereferencing pointers, 194
Device 110,223-225
Digital data, 13-14
Directed graph, 259
Directory management

procedures (MS-DOS, PC
DOS),222-223

Directory path, 32-33, 215-216
Disk drive, 12-13
Disks, Turbo Tutor and Turbo

Pascal,
backup copies, how to make,

30-31, 36
files on, 5-6, 35-36
system disk, how to make,

31-32
Dispose procedure, 200-201
Div operator, 88-89
Double-ended queue, 249
Doubly linked lists, 242
Dynamic Allocation, 193-194

de referencing pointers, 194
heap, 199
linked links, 195-199
MaxA vail function, 199-200
New procedure, 193-194
Nil pointer, 194-195

Index

Dynamic variables
deallocation of, 200-203
Dispose procedure, 200-201
Mark and Release

procedures, 202-203

E

Editor, Turbo Pascal, 42-44,
49-50
block commands, 49
cursor movement commands,

49
customized commands, 48
insert and delete commands,

49
miscellaneous commands, 50
status line, 42-43

Endless loops, 122, 218
Eof function, 215
Eoln function, 215
Erase procedure, 222
Error messages, 40
Errors, 110,227,230
.EX files, 4, 5
Examples, modifying online

tutorial, 5
Execute option, on CP 1M

systems, 380
Executing files, 289-291
Exercise solutions, 351-353
Exit procedure, 144-146
Exponential notation, 91-93
Expressions, 63-66
Extended character set, 17
Extensions of file names, 213
External search, 273-274
External subprograms, 323-327

401

F

Field widths, 207
FIFO, 247 (see also Queues)
File 110, 233
File names, 41-42, 213
File pointer, 214
File types, 210
Files, 205-230

appending, 221
closing, 215
erasing from disk, 222
executing, 289-291
110 procedures, 205-207
on Turbo Tutor and Turbo

Pascal disks, 5-6, 35-36
random access, 215-221
renaming, 222
standard, 224
text, 211-215
truncating, 221
untyped, 225-227

declaring, 226
specifying block size, 227

FILEMGR.PAS,6
FilePos function, 221
FileSize function, 221
Firmware, 14-15
Floating-point data type (see

Real data type)
Floating-point numbers, (see

Two's complement notation)
Flush procedure, 222
Forest, of trees, 257
Formal parameter list, 138
Formatting

declarations, 77-79
real numbers, 209
statements, 79-80

Forward declarations, 142-143
Fragmentation, of memory. 202
Free unions, 182-183
Function declaration, 139

Functions, 105, 138-141
summary of, 355-361
(see also Procedures and
functions)

Fundamentals of Data Structures in
Pascal, bibliographic reference
to, 251

G

Games
ANIMALS.PAS, 6,
TYPIST.PAS, 6,232

Get procedure, 210
GetDir procedure, 223
Goto statement, 303-306
Graphs, 259
GRAPH.BIN, 36
GRAPH.P,36

H

Hard disk, using Turbo Tutor
with,37

Hardware, 11-14
central processing unit
(CPU),12
input devices, 13
mass storage (disk drives),

12-13
memory, 12
output devices, 13

Hashing, 272-273
Header node, 242-243
Heap, 199-203,280
Hexadecimal numbering

system, 88
compared to binary
numbering system, 317

High-level languages, 23-24
History of programming, 21-27
How to Solve it by Computer,

bibliographic reference to, 263

402 Turbo Tutor Owner's Handbook

I

Identifier declaration, 77
Identifiers, 55-58
If statement, 66,111-113
.INC files, 6
Include files, 280-281
Indentation, of programs,

369-370
Initialized variables, 299
Inline statement, 330-334
Input devices, 13
Input/Output, of enumerated

scaler types, 110
(see also 110)

Insertion sort, 265-268
Installation, 32-35

on CP/M systems, 378
Integer data type, 55, 87-90
Integers

and arithmetic overflow, 89
unsigned, 87

Integrated circuits, 14
Interpreters, 16, 25-26
Interrupt handling, 332-334
I/O errors, 227-230
110 file, 233
110 procedures, 205-210

Get and Put, 210
Read, 206
Readln, 206
Write parameters, 207-209

Iteration, 116-122
endless loops, 122

K

for statement, 119-122
repeat ... until statement, 118
while statement, 117-118

Keyboard, 13, 224-225
Key Pressed function,225

Index

L

Labels, 76
Large programs, writing,

275-292
Leaf, of tree, 253
.LIB files, 6
Libraries, 282

assembly language (PC-DOS,
MS-DOS), 328-330

LIFO list, 245 (see also Stacks)
Lightning (see Turbo Lightning)
Linked lists, 195-199,241-245

circular, 243
deletion of, 245
doubly linked, 242
header node, used in,

242-243
nodes, used in, 241
singly linked, 241
starting, 242-245

Lists, 250-251
LISTT.PAS,6
Local variables, 135
Logical devices, 223-224
LongFilePos function, 221
LongFileSize function, 221
Loops, 116

endless, 122, 218

M

Machine language, 14
Main menu, 4, 39-42

commands, 41, 42
MANUAL.PAS,6
Mark procedure, 202-203
MaxA vail function, 199-200
MaxInt,88
Memory, 12

exceeding, 275-278
fragmentation of, 202
heap, 199, 280
RAM, 12
ROM,12

403

Memory management, 200-203
Menu (see Main menu)
Microcomputers, 24
Mixed arrays, 262
MkDir procedure, 222-223
Mod operator, 88-89
Modular programming, 281-282
Multiplication operators, 62-63

N

Negation operator, 62-63
Negative numbers, 317-318
Nested comments, 82
Nevv procedure, 193-194
Nil pointer, 194-195
Nodes, 241-245
Null statement, 81
Numbering systems, computer,

313-319

o

binary, 13-14,317
decimal, 313-314
hexadecimal, 88, 317
hovv byte values are stored in

memory, 318-319
negative numbers, 317-318
place value, 313-316
tvvo's complement notation,

317-318

Online tutorial, 4
Operating systems, 15-16
Operations, order in

expressions, 64-66
Operators, 62-63
Output devices, 13
Overlays, 282-287

in menu program, 285
location of overlay files, 286
procedures in, 284
restrictions, 286
vs. chain/execute, 291

p

Parameter list, formal, 138
Parameters, 105, 135-138, 371

untyped,309-311
value, 137-138
var, 301

.PAS files, 36
Pascal, standard, 24-25

program structure, 84-85
reserved vvords, 59
(see also Turbo Pascal)

Path, in directory, 32-33,
215-216'

Peripherals, communicating
vvith, 223-225

Place value, in numbering
systems, 313-316

Pointers, 191-193
dangling, 201
de referencing, 194
nil pointer, 194-195
pointer type, 192

Portability, of languages, 23
Predefined data types, 54-55,

87-100
boolean, 55, 93
byte, 55, 90
char, 55, 94-96
integer, 55, 87-90
real, 55, 90-93

Printing characters, 16-17
Procedure body, 128, 233
Procedure call, 80
Procedure declaration, 128
Procedures and functions,

127-146, 355-361
exit procedure, 144-146
forvvard declarations, 142-143
local variables, 135
parameters, 135-138

formal parameter list, 138
value, 137-138

scope, 130-135
and recursion, 143-144

404 Turbo Tutor Owner's Handbook

standard, summary of,
355-361

subprograms, 127-130
recursive, 141-142

Program heading, 69, 75-76
Program structure, 75-85,

372-373
Programming style, 369-375
Proper sets, 186
Put procedure, 210

Q

Queues, 247-249
double-ended (deque), 249

Quicksort, 268-270
Quitting Turbo Pascal, 47-48

R

RAM,12
Random access files, 216-221

appending, 221
creating, 216-219
FilePos and LongFilePos

functions, 221
FileSize and LongFileSize

functions, 221
properties of, 219
Seek procedure, 220
Truncate procedure, 221

Random Access Memory
(RAM),12

Range-checking, 106-107
Read procedure, 206

with text files, 214
Readln procedure, 206

with text files, 214
Readln statement, 70-71
READ.ME, 5, 36
README.COM, 5
Read Only Memory (ROM), 12
Real data type, 55
Real numbers, formatting, 209
Record constant, 296

Index

Records, 173-183
fields in, 174
free unions, 182-183
variant, 179-182
with statement, 176-179

Recursion, and scope, 143-144
Recursive subprograms, 141-142
Release procedure, 202-203
Rename procedure, 222
Repetitive tasks (see iteration)
Reserved words, 59
Reset procedure, 214, 227
Rewrite procedure 214, 227
RmDir procedure, 222-223
ROM, 12
Root, of tree, 253

s

Saving compiled programs,
46-47

Saving source programs, 45-46
Scalar types, 101, 104~105

converting from one type to
another, 218

(see also Defined scalar types)
Scope, 130-135

and recursion 143-144
Searching, 270-274

binary search, 271-272
external search, 273-274
hashing, 272-273
sequential search, 270-271

Seek procedure, 220
SeekEof function, 215
SeekEoln function, 215
Sentinel, 266
Sequential search, 270-271
Set constant, 296-297
Set constructor, 186
Sets, 185-190

building, 186
defining a set type, 186-188
operations, 188-189
proper, 186

405

Shellsort, 267-268
Shifting operators (shl, shr),

320-321
Siblings, of tree, 253
SideKick, with Turbo Pascal,

363-365
Sign bit, 318
Simple data types, 87
Single drive system, using

Turbo Pascal with, 37
Singly linked list, 242
Software, 14-16

application, 16
firmware, 14-15
operating systems, 15-16

Solutions to Turbo Tutor
exercises, 351-353

Sorting, 265-270
insertion sort, 265-268
quicksort, 268-270
shellsort, 267-268

Source code examples, 6
Source program, how to save,

45-46
Sparse arrays, 260-263

mixed, 262
w hen to use, 263

Stacks, 245-247
Standard files, 224
Standard procedures and

functions, summary of,
355-361

Statement part, 69-72, 79-81
Statement types, 80-81
Statements, 66

assignment, 66
compound,80-81
if, 66
null, 81
Readln, 70-71
Writeln,70

Static variables, 298-299
String assignments, 159
String comparisons, 166-167
String constants, 97

String procedures and functions,
159-164
chr, 164
concat, 160
copy, 161
delete, 162-164
insert, 162-164
length, 159
pos, 161
upcase, 164

String types, 157-158
String variables, declaring, 98
Strings, 96-99, 157-170

as parameters, 169-170
control characters in, 97-98
numeric conversions of,

167-169
representing in memory,

164-166
Structure, of Turbo Pascal

programs, 75-85
Structured constant, 294-295
Structured types, 87, 96
Subprograms, 127-130

recursive, 141-142
Subranges, 90, 101, 108-110
Subroutine libraries, 282
Subtree terminal mode, 253
Subtrees, 253

deleting, 257-258
SuperKey, using with Turbo

Pascal, 365-368
Syntax diagrams, 56-58,

337-349
complete set, 337-349
how to read, 57-58

System disk, how to make,
31-32

406 Turbo Tutor Owner's Handbook

T

Tag field, omitting, 182-183
Terminal node, of tree, 253
Text files, 210-215

Assign procedure, 213-214
Close procedure, 215
Eof function, 215
Eoln function, 215
file pointer, 214
Read and Readln, 214
Reset and Rewrite

procedures, 214
SeekEof function, 215
SeekEoln function, 215

TINST (installation) files, 32-35
on IBM or compatible

system, 35
on non-IBM system, 33-35

Trees, 253-259
binary, 254-258
non-binary, 258-259

Truncate procedure, 221
Turbo Lightning, used with

Turbo Pascal, 368
TURBO.MSG,35
TURBO.OVR, 35-36
Turbo Pascal

command names, 41
compared with standard

Pascal, 26-27
editor, 42-44, 49-50
error messages, 40
installation of, 32-35
main menu, 4,39-42
on hard disk, 37
on single drive system, 37
program structure, 75-85
quitting, 47-48
reserved words, 59
with CP/M-80 and CP/M-86

systems, 377-380
with SideKick, 355-361
with Super Key , 365-368
with Turbo Lightning, 368

Index

Turbo Tutor
before using, 29-30
files on disk, 5-6, 35-36
(see also Turbo Pascal)

Turbo Typist, 231-238
Tutorial, on-line, 4-5
TUTOR. COM, 4
TUTOR.PAS, 4-5
Two's complement notation,

317-318
Type conversion, 218
Type definition part, 102-103
Typed constants, 293-302

array constant, 295-296
as initialized variables, 299
as static variables, 298-299
defining, 294-295
execution from memory, 302
manipulating components of,

299-300
passing constants as var

parameters, 301
properties of, 297-298

mutability, 297
lifetime, 297
scope, 297-298

record constant, 296
saving constant space,

300-301
set constant, 296-297
stored in memory, 301-302
structured constant,

TYPING.PAS, 6, 232

407

u

Unary minus operator, 62-63
Undirected graph, 259
Unsigned integers, 87
Untyped files, 225-227

declaring, 226
specifying block size, 227

Untyped parameters, 309-311
User-defined data types, 55
User-defined scalars,

v

Value parameters, 137-138
Var parameters, 301
Variable declarations, 61-62, 69

Variables, 61-62
absolute, 307-309
dynamic, 200-203
initialized, 299
static, 298-299

Variant records, 179-182

w

Weighted graph, 259
While statement, 117-118
With statement, 176-179
Write parameters, 167-169,

207'-209
Write procedure, 206
Writeln procedure, 206-207
Write-protecting disks, 29

408 Turbo Tutor Owner's Handbook

Borland
Software

ii
BORLAND
INTERNATIONAL 4585 Scotts Valley Drive, Scotts Valley, CA 95066

Available at better dealers nationwide.
To order by credit card, call (800) 255-8008; CA (800) 742-1133.

•• 1111°
Whether you're running WordStar,@ Lotus,@ dBASE,@

or any other program, SideKick puts all these desktop
accessories at your lingertips-Instantly

A lull-screen WordStar-like Editor to jot
down notes and edit files up to 25 pages long.

A Phone Directory for names, addresses, and
telephone numbers. Finding a name or a
number is a snap.

An Autodialer for all your phone calls. It will
look up and dial telephone numbers for you.
(A modem is required to use this function.)

All the SideKick windows stacked up over Lotus 1-2-3."
From bottom to top: SideKick's "Menu Window," ASCII
Table, Notepad, Calculator, Appointment Calendar, Monthly
Calendar, and Phone Dialer.

A Monthly Calendar from 1901 through 2099.

Appointment Calendar to remind you of
important meetings and appointments.

A lull-Ieatured Calculator ideal for business
use. It also performs decimal to hexidecimal to
binary conversions.

An ASCII Table for easy reference.

Here's SideKick running over Lotus 1-2-3. In the SideKick
Notepad you'll notice data that's been imported directly
from the Lotus screen. In the upper right you can see the
Calculator.

The Critics' Choice
"In a simple, beautiful implementation of WordStar's
block copy commands, SideKick can transport all or
any part of the display screen (even an area overlaid
by the notepad display) to the notepad."

-Charles Petzold, PC MAGAZINE

"SideKick deserves a place in every PC."
-Gary Ray, PC WEEK

"SideKick is by far the best we've seen. It is also the

least expensive. Ron Mansfield, ENTREPRENEUR

"If you use a PC, get SideKick. You'll soon become
dependent on it." -Jerry Pournelle, BYTE

Suggested Retail Price: $54=95 (copy protected); $84.95 (not copy protected)

Minimum system configuration: IBM PC, Xl, AT, PC;r and true compatibles. The IBM PC;r will only accept the
SideKick not-copy-protected versions. PC-DOS 2.0 (MS-DOS) or greater. 128K RAM. One disk drive. A Hayes-compatible modem,
IBM PCjr internal modem, or AT&T Modem 4000 is required for the autodialer function.

SideKick is a registered trademark of Borland International, Inc. dBASE is a registered trademark of
Ashton-Tate. IBM, XT, AT, and PCjr are registered trademarks of International Business Machines Corp.
AT&T is a registered trademark of American Telephone & Telegraph Company. Lotus and 1-2-3 aie
registered trademarks of Lotus Development Corp. WordStar is a registered trademark of MicroPro
International Corp. Hayes is a trademark of Hayes Microcomputer Products, Inc. BOR 0060A

SideKick, The Macintosh Office Manager,"· brings
information management, desktop organization, and
telecommunications to your Macintosh."· Instantly,

while running any other program

A lull-screen editor/mini-word processor
lets you jot down notes and create or edit
files. Your files can also be used by your
favorite word processing program, like
MacWrite'· or Microsoft8 Word.

A complete telecommunications program
sends or receives information from any
on-line network or electronic bulletin
board while using any of your favorite
application programs.

A lull-/eatured IInancial and scientilic
calculator sends a paper -tape output to
your screen or printer and comes
complete with function keys for financial
modeling purposes.

A print spooler prints any "text only" file
while you run other programs.

A versatile calendar lets you view your
appointments for a day, a week, or an
entire month. You can easily print out your
schedule for quick reference.

A convenient "Things-to-Do" lile reminds
you of important tasks.

A convenient alarm system alerts you to
daily engagements.

PhoneLink allows you to autodial any
phone number, as well as acces any long
distance carrier (modem requirel .

A phone log keeps a complete record of all
your telephone activities. It even computes
the cost of every call.

Area code look-up provides instant access
to the state, region, and time zone for all
area codes.

An expense account lile records your
business and travel expenses.

A credit card lile keeps track of your credit
card balances and credit limits.

A report generator prints out your mailing
list labels, phone directory, and weekly
calendar in convenient sizes.

A convenient analog clock with a sweeping
second-hand can be displayed anywhere
on your screen.

On-line help is available for all of the
powerful SideKick features.

Best 01 all, everything runs concurrently

Suggested Retail Price: $99.95 (not copy protected)

Minimum system configuration: 128K RAM and one disk drive. Two disk drives are recommended II you wish to use other
application programs. HFS compatible.

SideKick is a registered trademark and PhroeLink is a trademark of Borland International, Inc.
MaCintosh is a trademark of Mcintosh Laboratory, Inc. licensed to Apple Computer, Inc.
MacWrite is a trademark of Apple Computer, Inc. Microsoft Word is a registered trademark of
Microsoft Corp.

BOR0069A

The Organizer For The Computer Age!
Traveling SideKick is BinderWare;M both a binder you take with you when you travel
and a software program-which includes a Report Generator-that generales and

prinls oul all the information you'll need to take with you.

Information like your phone list, your client list,
your address book, your calendar, and your
appointments. The appointment or calendar files
you're already using in your SideKicke can auto
matically be used by your Traveling SideKick. You
don't waste time and effort reentering information
that's already there.

One keystroke prints out a form like your address
book. No need to change printer paper;

What's inside Traveling SideKick

you simply punch three holes, fold and clip
the form into your Traveling SideKick binder, and
you're on your way. Because Traveling SideKick is
CAD (Computer-Age Designed), you don't fool
around with low-tech tools like scissors, tape, or
staples. And because Traveling SideKick is
electronic, it works this year, next year, and all the
"next years" after that. Old-fashioned daytime
organizers are history in 365 days.

What the software program and its
Report Generator do for you before
you go-and when you get back

Before you go:
• Prints out your calendar,

appointments, addresses, phone
directory, and whatever other
information you need from your
data files

When you return:
• Lets you quickly and easily enter all

the new names you obtained while
you were away into your
SideKick data files

It can also:
• Sort your address book by contact,

TRAVeLING SIDEKICK SOFlWAIIE
GENERATES. UPDATES. AND PRINTS YOUR
ADDRESS AND CALENDAR ALES.

zip code or company name
• Print mailing labels

·Suggested Retail Price: $69.95

• Print information selectively
• Search files for existing addresses

or calendar engagements

Minimum system configuration: IBM PC, XT, AT, Portable, PClr, 3270 and true compatibles. PC·DOS (MS· DOS) 2.0 or later.
256K RAM mlmlmum.

*Speclallntroductory oHer

SideKick and Traveling SideKick are registered trademarks and BinderWare is a trademark of
Bor!and !nternatioroal, Inc. 18M, AT, XT, and PCji are regisiered irademarks oi international
Business Machines Corp. MS· DOS is a registered trademark of Microsoft Corp. BOR 0083

INCREASE YOUR PRODUCTIVITY
BY 50% OR YOUR MONEY BACK

SuperKey turns 1,000 keystrokes into 1!
Yes, Super Key can record lengthy keystroke sequences and play them back at the touch of a
single key. Instantly. Like magic.
Say, for example, you want to add a column of figures in 1-2-3.8 Without SuperKey, you'd
have to type 5 keystrokes just to get started: @ sum (. With SuperKey, you can turn those
5 keystrokes into 1.

SuperKe, keeps your confidential files-CONFIDENTIAL!
Time after time you've experienced it: anyone can walk up to your PC and read your
confidential files (tax returns, business plans, customer lists, personal letters, etc.).
With SuperKey you can encrypt any file, even while running another program. As long as you
keep the password secret, only YOU can decode your file. SuperKey implements the U.S.
government Data Encryption Standard (DES).

SuperKey helps protect your capital investment
SuperKey, at your convenience, will make your screen go blank after a predetermined time of
screen/keyboard inactivity. You've paid hard-earned money for your PC. SuperKey will
protect your monitor's precious phosphor and your investment.

SuperKey protects your work from intruders while you take a break
Now you can lock your keyboard at any time. Prevent anyone from changing hours of work.
Type in your secret password and everything comes back to life-just as you left it.

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: IBM PC, Xl, AT, PCjr and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 128K RAM. One disk drive.

SuperKey is a registered trademark of Borland International. Inc. IBM. Xl. AT. and PCjr are registered
trademarks of International Business Machines Corp. 1-2-3 is a registered trademark of Lotus
Development Corp.

BOR0062A

REFLEX~
THE ANAlYST

Reflex is the most amazing and easy-to-use database management
system. And if you already use Lotus 1-2-3,® dBASE,® or PFS: File,®

you need Reflex--because it's a totally new way to look at your data.
It shows you patterns and interrelationships you didn't know were

there, because they were hidden in data and numbers.
It's also the greatest report generator for 1-2-3.

REFLEX OPENS MULTIPLE WINDOWS WITH NEW VIEWS AND GRAPHIC INSIGHTS INTO YOUR DATA.
1111115

iM Edit Printlfile

IlUIfICIlI)

IOOH'!IEl
IIIH:_

Pllllll:1,~

11f11U1,'"

'.IOIIDrII.II' I'""" .. lOIi11cord
DelettAlcord
PtrronlSort
Il0<.l1<
ClurO,tabasr

IJIPrCfIT [.1: S53 xMIII:15,ax

lilIES,

16.
UiM Edit

I:~
I"'''' I,JaI"f$

I "
IF

PrintlFile IIi<ifdi lurch lISt

II IlflUI IlUlrs .. 1
HMn ~ 16' 1333 - TUs , .. SI7J - Cwras 47' un
W.rt ~ '" "17
Wor! IUs II, I'"
Will _as
Pitrct ~ Ul9
P.lret TUs m $tlJ
PitrC:t -as I" 171
I_I ~ ". 'I" Tr8lDl'l1 TUs '" 1i29
Trftllt Cwras IS' '" - ~ 611

IW
Ui_ it rin! ill

IISIOII

"" Un
Sf41
$191 ...
III

1166
In
'16 ...
'" ",

Ill!

I-~'
hleslllconl

,., i III"H~-!i

IS"
111H:_
PIlQ£T. CMer.

I. 1IIIII1lV'"

Forf(f~ Cw" TV lUI

SfW 193

alST IN

Plll'1T19

I£:: IIIN'.rt P!IDfr,ertt ;-:1Ml11IJ575
...... 1

The FORM VIEW lets you build and examine your database. The LIST VIEW lets you put data in tabular list form The GRAPH VIEW gives you instant interactive
graphic representations. just like a spreadsheet.

,..-------,

Uieus _~it ~_inllFlie l",dI Crosstib

I ... ",:~ Fitld:!sifi
The CROSSTAB VIEW PIIIIII:T The REPORT VIEW
gives you amazing "cross- Cw" IV till Ill. allows you to import
referenced" pictures of the llllMn "" . "" "" and export to and from o Will 1.1 '" "" "" links and relationships hidden ~ Pime I. III 1911 "" Reflex, 1-2-3, dBASE,
in your data. I_I 1194 '" 1611 "" PFS: File, and other

Ill. "" "" "" .. '" applications, and prints
out information in the

formats you want.

So Raflax shows you-Instant answers. Instant pictures. Instant analysis. Instant understanding.

THE CRITICS' CHOICE:
"The next generation of software has offiCially arrived." The program is easy to use and not intimidating to the novice ...

Reflex not only handles the usual database functions such as
sorting and searching, but also "what-if" and statistical analysis ...
it can create interactive graphics with the graphics module. The
separate report module is one of the best we've ever seen."

Peter Norton, PC WEEK

"Reflex is one of the most powerful database programs on the
market. Its multiple views, interactive windows and graphics, great
report writer, pull-down menus, and cross tabulation make this one
of the best programs we have seen in a long time ...

Suggested Retail Price $149.95 (not copy protected)

Marc Stern, INFOWORLD

Minimum system configuraUon: IBM PC, Xl, AT, and true compaUbies. PC-DOS (MS-DOS) 2.0 or greater. 384K RAM minimum. IBM
Color Graphics Adapter, Hercules Monochrome Graphics Card, or equivalent. Hard disk and mouse optional. Lotus 1-2-3, dBASE, or
PFS: File optional.

BORLAND
INTERNATI.ONAL

Reflex is a registered trademark of Borland/Aralytica Inc. Lotus 1-2-3 is a registered trademark of
Lotus Development Corporation. dBASE is a registered trademark of Ashton-Tate. PFS: File is a
registered tiaoemark oi Software Pubiishing Corporation. IBM, XT, AT, and IBM Color Graphics
Adapter are registered trademarks of Internati<ml Business Machines Corporation. Hercules Graphics
Card is a trademark of Hercules Computer T~hnology. BOR 0066A

REFLEX

Includes 22 "instant templates" covering a broad range of
business applications (listed below). Also shows you how to

customize databases, graphs, cross tabs, and reports. It's an invaluable
analytical tool and an important addition to another one of

our best sellers, Reflex: The Analyst 1.1.

Fast-start tutorial examples:
Learn Reflex as you work with practical business applications. The Reflex Workshop Disk supplies databases
and reports large enough to illustrate the power and variety of Reflex features. Instructions in each
Reflex Workshop chapter take you through a step-by-step analysis of sample data. You then follow simple
steps to adapt the files to your own needs.
22 practical business applications:
Workshop's 22 "instant templates" give you a wide range of analytical tools:

Administration • Tracking Manufacturing Quality Assurance
• Scheduling Appointments • Analyzing Product Costs
• Planning Conference Facilities Accounting and Finalcial Planning
• Managing a Project • Tracking Petty Cash
• Creating a Mailing System • Entering Purchase Orders
• Managing Employment Applications • Organizing Outgoing Purchase Orders
Sales and Marketing • Analyzing Accounts Receivable
• Researching Store Check Inventory • Maintaining Letters of Credit

• Reporting Business Expenses
• Tracking Sales Leads • Managing Debits and Credits
• Summarizing Sales Trends • Examining Leased Inventory Trends
• Analyzing Trends . • Tracking Fixed Assets
Production and Operations • Planning Commercial Real Estate Investment
• Summarizing Repair Turnaround

Whether you're a newcomer learning Reflex basics or an experienced "power user" looking for tips, Reflex
Workshop will help you quickly become an expert database analyst.

Minimum system configuration: IBM PC, AT, and XT, and Irue compatibles. PC·DOS (MS· DOS) 2.0 or greater. 384K RAM minimum. Requires Rellel: The
Analyst, and IBM Color Graphics Adapler, Hercules Monochrome Graphics Card or equivalent.

Suggested Retail Price: $69.95
(not copy protected)

Reflex is a registered trademark and Reflex Workshop is a trademark of Borland/ Analytica. Inc. IBM. AT, and XT are registered tr'ademarks of International BUSiness Machines
Corp. Hercules is a trademark of Hercules Computer Technology.

BOR 0088

....... J v'-& ,-&UO,", "-L IU... A '-',]VU J.J.\,..\,..U

T U R B 0

Lightning®
Turbo Lightning teams up
with the Random House@
Concise Dictionary to
check your spelling as
you type!

Turbo Lightning, using the
83,OOO-word Random House
Dictionary, checks your spelling
as you type. If you misspell a
word, it alerts you with a beep.
At the touch of a key, Turbo
Lightning opens a window on
top of your application pro
gram and suggests the correct
spelling. Just press one key
and the misspelled word is
instantly replaced with the
correct word. It's that easy!

Turbo Lightning works
hand-in-hand with the
Random House Thesaurus
to give you instant access
to synonyms

Turbo Lightning lets you choose
just the right word from a list of
alternates, so you don't say the
same thing the same way every
time. Once Turbo Lightning
opens the Thesaurus window,
you see a list of alternate
words, organized by parts of
speech. You just select the
word you want, press ENTER
and your new word will in
stantly replace the original
word. Pure magic!

11 you ever write a
word, think a word, or
say a word, you need
Turbo Lightning

The Turbo Lightning Thesaurus

The Turbo Lightning Dictionary

Turbo Lightning's
intelligence lets you teach
it new words. The more
you use Turbo Lightning,
the smarter it gets

You can also teach your new
Turbo Lightning your name,
business associates' names,
street names, addresses,
correct capitalizations, and any
speCialized words you use
frequently. Teach Turbo
Lightning once, and it
knows forever.

Turbo Lightning
is the engine that
powers Borland's Turbo
Lightning Library·

Turbo Lightning brings
electronic power to the Random
House Dictionary and Random
House Thesaurus. They're at
your fingertips-even while
you're running other programs.
Turbo Lightning will also
"drive" soon-to-be-released
encyclopedias, extended
thesauruses, specialized
dictionaries, and many other
popular reference works.
You get a head start with this
first volume in the Turbo
Lightning Library.

Suggested Retail Price: $99.95 (not copy protected)

And because Turbo Lightning is
a Borland product. you know
you can rely on our quality, our
60-day money-back guarantee,
and our eminently fair prices:

Minimum system configuration: IBM PC, Xl, Al, PCjr, and true compatibles with 2 floppy disk drives. PC·DOS (MS·DOS) 2.0 or greater.
25&K RAM. Hard disk recommended.

IBM, XT, AT, and PCjr are registered trademarks of International BUSiness Machines Corp. Turbo
Lightning is a registered trademark and Turbo Lightning. Library is a trademaik of BOilanu
International, Inc. Random House is a registered trademark of Random House Inc. BOR 0070A

Your Development Toolbox and Technical Reference Manual for Thrbo Lightning

l I G H T N I N G

Lightning Word Wizard includes complete, commented Turbo
Pascal® source code and all the technical information you'll

need to understand and work with Turbo Lightning's "engine. JJ

More than 20 fully documented Turbo Pascal procedures reveal
powerful Turbo Lightning® engine calls. Harness the full power

of the complete and authoritative Random House® Concise
Dictionary and Random House Thesaurus.

Turbo Lightning's "Reference
Manual"
Developers can use the versatile on-line
examples to harness Turbo Lightning's
power to do rapid word searches. Lightning
Word Wizard is the forerunner of the data
base access systems that will incorporate
and engineer the Turbo Lightning'LibraryTM
of electronic reference works.

The ultimate collection of word
games and crossword solvers!
The excitement, challenge, competition,
and education of four games and three
solver utilities-puzzles, scrambles, spell
searches, synonym-seekings, hidden words,
crossword solutions, and more. You and
your friends (up to four people total) can
set the difficulty level and contest the high
speed smarts of Lightning Word Wizard!

Turbo Lightning-Critics' Choice
"Lightning's good enough to make programmers and users cheer, executives of other
software companies weep." Jim Seymour, PC Week

"The real future of Lightning clearly lies not with the spelling checker and thesaurus currently
included, but with other uses of its powerful look-up engine." Ted Silveira, Profiles

"This newest product from Borland has it all." Don Roy, Computing Now!

Minimum system configuration: IBM PC, Xl, AT, PCjr, Portable, and true compatibles. 256K RAM minimum. PC-DOS (MS-DOS) 2.0
or greater. Turbo Lightning softw .. e required. Optional-Turbo Pascal 3.0 or greater to edit and compile Turbo Pascal source code.

Suggested Retail Price: $69.95

Turbo Pascal and Turbo Lightning are registered Irademarks and Lightning Word Wizard and Turbo Lightning Library are trademarks of Borland International, Inc, Random
House is a registered trademark of Random House, Inc, IBM, XT, AT, and PCjr are registered trademarks of International Business Machines Corp, MS-DOS is a registered
trademark of Microsoft Corp, BOROO87

TURBO

Turbo Prolog brings fifth-generation supercomputer
power to your IBMepc!

Turbo Prolog takes
programming into a new,
natural, and logical
environment

With Turbo Prolog,
because of its natural,
logical approach, both
people new to programming
and professional programmers
can build powerful applica
tions such as expert systems,
customized knowledge
bases, natural language
interfaces, and smart
information management systems.

Turbo Prolog is a declarative language
which uses deductive reasoning to solve
programming problems.

Turbo Prolog's development system
includes:
o A complete Prolog incremental compiler

that conforms to the Clocksin and Mellish
Edinburgh standard Prolog.

o A full-screen interactive editor.
o Support for both graphic and text windows.
o Ali the toois that iet you buiid your own

expert sytems and AI applications with
unprecedented ease.

BORLAND
INTERNATIONAL

Turbo Prolog provides
a fully integrated pro
gramming environment
like Borland's Turbo
Pascal,® the de facto
worldwide standard.

You get the complete
Turbo Prolog program
ming system
You get the 2DD-page
manual you're holding,
software that includes
the lightning-fast Turbo
Prolog incremental

compiler and interactive editor, and the
free GeoBase natural query language
database, which includes commented
source code on disk, ready to compile.
(GeoBase is a complete database
designed and developed around U.S.
geography. You can modify it or use
it "as is.")

Minimum system configuration: IBM PC, XT, AT,
Portable, 3270, PCjr, and true compatibles. PC-DOS
(MS-DOS) 2.0 or later. 384K RAM minimum.

Suggested Retail Price $99.95
(Not Copy Protected)

Turbo Prolog is a trademark and Turbo Pascal is a registered trademark of
Borland International. Inc. IBM AT. Xl and PCjr are registered trademarks of
International Business Machines Corp. MS-DOS is a registered
trademark of Microsoft Corp.

BOR0016A

lVR8OPAscAL°
VERSION 3.0 with 8081 support and BCD reals

Free MicroCa/c Spreadsheet With Commented Source Code!
FEATURES:
One-Step Compile: No hunting & fishing
expeditions! Turbo finds the errors, takes you
to them, lets you correct them, and instantly
recompiles. You're off and running in
record time.

Built-in Interactive Editor: WordStar~like
easy editing lets you debug quickly.

Automatic Overlays: Fits big programs into
small amounts of memory.

THE CRITICS' CHOICE:
"Language deal of the century ... Turbo Pascal:
it introduces a new programming environment
and runs like magic."

-Jeff Duntemann,· PC Magazine

"Most Pascal compilers barely fit on a disk, but
Turbo Pascal packs an editor, compiler, linker,
and run-time library into just 39K bytes of
random access memory."

-Dave Garland, Popular Computing

MicroCalc: A sample spreadsheet on your disk
with ready-to-compile source code.

"What I think the computer industry is headed
for: well-documented, standard, plenty of
good features, and a reasonable price."

IBM@ PC Version: Supports Turtle Graphics,
color, sound, full tree directories, window
routines, input/output redirection, and
much more.

-Jerry Pournelle, BYTE

LOOK AT TURBO NOW!

[if' More than 500,000 users worldwide.

[if' Turbo Pascal is the de facto industry
standard.

[if' Turbo Pascal wins PC MAGAZINE'S
award for technical excellence.

[if' Turbo Pascal named "Most
Significant Product of the Year" by
PC WEEK.

[if' Turbo Pascal 3.0-the fastest Pascal
development environment on the
planet, period.

Suggested Retail Price: $99.95; CPIM@-BO version without 8081 and BCD: $69.95

Features for 16-bit Systems: 8087 math co-processor support for intensive calculations.
Binary Coded Decimals (BCD): eliminates round-off error! A must for any serious business application.

Minimum system configuration: 128K RAM minimum. Includes 8087 & BCD features for 16-bit MS-DOS 2.0 or later and
CP/M-861.1 or later. CP/M-80 version 2.2 or later 48K RAM minimum (8087 and BCD features not available). 8087
version requires 8087 or 80287 co-processor.

TlIbo Pascal is a registered tradernlrk 01 BorBnd International. Inc. CP/M is a registered trademark
01 Digital Research Inc. IBM is a registered trDmark 01 International Business Maclines Cap. MS
DOS is a registered trademark 01 Microsoft cap. 'MlrdStar is a registered trademark 01 MicroPro
Internalional.

BOR0061A

TORBO PASCAl.

DATABASE2txx-sOXI™
Is The Perfect Complement To Turbo Pascal@

It contains a complete library of Pascal procedures that
allows you to sort and search your data and build powerful database

applications. It's another set of tools from Borland that will give
even the beginning programmer the expert's edge.

THE TOOLS YOU NEED!
TURBO ACCESS Using B+ trees: The best way to organize and search your data. Makes it
possible to access records in a file using key words instead of numbers. Now available with
complete source code on disk, ready to be included in your programs.

TURBO SORT: The fastest way to sort data using the QUICKSORT algorithm-the method
preferred by knowledgeable professionals. Includes source code.

GINST (General Installation Program): Gets your programs up and running on other
terminals. This feature alone wi" save hours of work and research. Adds tremendous value
to a" your programs.

GET STARTED RIGHT AWAY-FREE DATABASE!
Included on every Toolbox diskette is the source code to a working database which
demonstrates the power and simplicity of oUr Turbo Access search system. Modify it to suit
your individual needs or just compile it and run.

THE CRITICS' CHOICE!
liThe tools include a B+ tree search and a sorting system. I've seen stuff like this, but not as
we" thought out, sell for hundreds of dollars." -Jerry Pournell, BYTE MAGAZINE

liThe Turbo Database Toolbox is solid enough and useful enough to come recommended."
-Jeff Duntemann, PC TECH JOURNAL

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: 128K RAM and one disk drive (CP/M-80: 48K). 16-bit systems: Turbo
Pascal 2.0 or greater for MS-DOS or PC-DOS 2.0 or greater. Turbo Pascal 2.1 or greater for CP/M-86
1.0 or greater. 8-bit systems: Turbo Pascal 2.0 or greater for CP/M-80 2.2 or greater.

BORLAND
INTERNATIONAL

Turbo Pascal is a registered trademark and Turbo Database Toolbox is a trademark of Borland
International Inc. CP/M is a registered trademark of Digital ResearCh, Inc. MS-DOS is a
regislered trademark of Microsoft Corp. BOR 0063A

GAME --" __ ~ , •• ..-_ TM

Secrets And Strategies Of The Masters Are
Revealed For The First Time

Explore the world of state-of-the-art computer games with Turbo GameWorks. Using
easy-to-understand examples,' Turbo GameWorks teaches you techniques to quickly create
your own computer games using Turbo Pascal.e Or, for instant excitement, play the three

great computer games we've included on disk-compiled and ready to run.

TURBO CHESS

Test your chess-playing skills against your computer challenger. With Turbo GameWorks, you're on your
way to becoming a master chess player. Explore the complete Turbo Pascal source code and discover
the secrets of Turbo Chess.

"What impressed me the most was the fact that with this program you can become a computer
chess analyst. You can add new variations to the program at any time and make the program play
stronger and stronger chess. There's no limit to the fun and enjoyment of playing Turbo GameWorks
Chess, and most important of all, with this chess program there's no limit to how it can help you
improve your game."

-George Koltanowski, Dean of American Chess, former President of
the United Chess Federation, and syndicated chess columnist.

TURBO BRIDGE

Now play the world's most popular card game-bridge. Play one-on-one with your computer or against
up to three other opponents. With Turbo Pascal source code, you can even program your own bidding
or scoring conventions.

"There has never been a bridge program written which plays at the expert level, and the ambitious
user will enjoy tackling that challenge, with the format already structured in the program. And for the
inexperienced player, the bridge program provides an easy-to-follow format that allows the user to start
right out playing. The user can 'play bridge' against real competition without having to gather three
other people."

-Kit Woolsey, writer of several articles and books on bridge,
and twice champion of the Blue Ribbon Pairs.

TURBO GO-MOKU

Prepare for battle when you challenge your computer to a game of Go-Moku-the exciting strategy
game also know as "Pente.8 " In this battle of wits, you and the computer take turns placing X's and O's
on a grid of 19X19 squares until five pieces are lined up in a row. Vary the game if you like, usinq the
source code available on your disk.

Suggeste.d Retail Price: $69.95 (not copy protected)
Minimum system conllguntlon: IBM PC, Xl, AT, Portable, 3270, PCjr, and true compatibles. PC·DOS (MS·DOS) 2.0 or later. 192K
RAM minimum. To edit and comple the Turbo Pascal source code, you must be using Turbo Pascal 3.0 lor IBM PCs and
compatibles.

Turbo Pascal is a registered trildemark and Turbo GameWorks is a irademark of Borland
International, Inc. Pente is a registered trademark of Parker Brothers. IBM, XT, AT. and PCjr are
registered trademarks of International Business Machines Corporation. MS"DOS is a registered
trademark of Microsoft Corporation.

BOR0065A

2VRBOPASCA£

.EDl2OR2tDtBOXTM
It's All You Need To Build Your Own Text Editor

. Or Word Processor
Build your own lightning-fast editor and incor
porate it into your Turbo Pascal@ programs.
Turbo Editor Toolbox gives you easy-ta-install
modules. Now you can integrate a fast and powerful
editor into your own programs. You get the source
code, the manual, and the know-how.

Create your own word processor. We provide all
the editing routines. You plug in the features you want.
You could build a WordStar~ -like editor with pull-down
menus like Microsoft's~ Word, and make it work as fast
as WordPerfect.~

To demonstrate the tremendous power of Turbo Editor Toolbox, we give you the source code for
two sample editors:

Simple Editor A complete editor ready to include in your programs. With windows, block commands, and
memory-mapped screen routines.

MicroStar A full-blown text editor with a complete pull-down menu user interface, plus a lot more.
Modify MicroStar's pull-down menu system and include it in your Turbo Pascal programs.

The Turbo Editor Toolbox gives you all the
standard features you would expect to find
in any word processor:'

• Wordwrap
• UN-delete last line
• Auto-indent
• Find and Find/Replace with options
• Set left and right margin
• Block mark, move, and copy
• Tab, insert and overstrike modes,

centering, etc. MicroStar's pull-down menus.

And Turbo Editor Toolbox has features that word processors selling for several hundred dollars can't begin to match.
Just to name a few:

[3' RAM-based editor. You can edit very large [!] Multiple windows. See and edit up to eight
files and yet editing is lightning fast. documents-or up to eight parts of the~ame

[3" Memory-mapped screen routines. In- document-all at the same time,
stant paging, scrolling, and text display. [!] Multitasking. Automatically save your

[3" Keyboard installation. Change control text. Plug in a digital clock, an appointment
keys from WordStar -like commands to any that alarm-see how it's done with MicroStar's
you prefer. "background" printing.

Best of all, source code is included for everything in the Editor Toolbox.

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: IBM PC, XT, AT, 3270, PCjr, and true compatibles. PC-DOS (MS-DOS) 2.0 or greater. 192K RAM. You must bE
using Turbo Pascal 3.0 for IBM and compatibles.

Turbo Pascal is a registered trademark and Turbo Editor Toolbox is a trademark of Borland
International. Inc. WordStar is a registered trademark of MicroPro International Corp. Word and
MS-DOS are registered trademarks of Microsoft Corp. WordPerfect is a trademark of Satellite
Software International. IBM, XT, AT, and PC; are registered trademarks of International Business
Machines Corp. BOR 0067A

mR80 .PASCJlI.

GRAPHlXl00r-sox@
A Library 01 Graphics Routines lor Use with Turbo Pasca/@

High-resolution graphics for your IBM~ PC, AT, ~ XT, ~ PCir~, true PC compatibles, and the Heath
Zenith Z-100:" Comes complete with graphics window management.

Even if you're new to Turbo Pascal programming, the Turbo Pascal Graphix Toolbox will get you started
right away. It's a collection of tools that will get you right into the fascinating world of high-resolution
business graphics, including graphics window management. You get immediate, satisfying results. And
we keep Royalty out of American business because you don't pay any-even if you distribute your own
compiled programs that include all or part of the Turbo Pascal Graphix Toolbox procedures.

What you get includes:

• Complete commented source code on disk.
• Tools for drawing simple graphics.
• Tools for drawing complex graphics, including

curves with optional smoothing.
• Routines that let you store and restore

graphic images to and from disk.
• Tools allowing you to send screen images to

Epson-compatible printers.

• Full graphics window management.
• Two different font styles for graphic labeling.
• Choice of line-drawing styles.
• Routines that will let you quickly plot

functions and model experimental data.
• And much, much more ...

"While most people only talk about low-cost personal computer software, Borland has been doing
something about it. And Borland provides good technical support as part of the price."

John Markov & Paul Freiberger, syndicated columnists.

If you ever plan to create Turbo Pascal programs that make use 01 business graphics or scientific
graphics, you need the Turbo Pascal Graphix Toolbox.

Suggested Retail Price: $69.95 (not copy protected)

Minimum system configuration: IBM PC, Xl, AT, PCjr, true compatibles and the Heath Zenith Z·10o. Turbo Pascal 3.0 or later. 192K RAM
minimum. Two disk drives and an IBM Color Graphics Adapter (CGA), IBM Enhanced Graphics Adapter (EGA), Hercules Graphics Card or
compatible.

Turbo Pascal and Turbo Graphix Toolbox are registered trademarks of Borland International. Inc.
IBM. XT. AT, and PCjr are registered trademarks of International Business Machines Corporation.
Hercules Graphics Card is a trademark of Hercules Computer Tech. Heath Zenith Z-100 is a
trademark of Zenith Data Systems. BOA 0068A

.HoWlbBuy
Borland
Software

-

rr; - - - .to}' ill I' CO,by I

BORLAND .b110}'~l)-~1J i I 'INTERNATIONAL i

II To Order . .",.... In . ' i
By Credit I ~~~1i::fEK 'California I'

I Card, . . ' ... ".' call
I Call (800) I'

I (800) 742-1133 I'

255-8008-'- - I

L:-------i
I

VERSION 2.0

Learn Pascal From The Folks Who Created
The Turbo Pascal® Family

Borland International proudly presents Turbo Tutor, the perfect complement
to your Turbo Pascal compiler. Turbo Tutor is really for everyone

even if you've never programmed before.

And if you're already proficient, Turbo Tutor can sharpen up the fine pOints. The
manual and program disk focus on the whole spectrum of Turbo Pascal
programming techniques.

• For the Novice: It gives you a concise history of . Pascal, tells you how to write a simple
program, and defines the basic programming terms you need to know.

• Programmer's Guide: The heart of Turbo Pascal. The manual covers the fine points of
every aspect of Turbo Pascal programming: program structure, data types, control structures,
procedures and functions, scalar types, arrays, strings, pointers, sets, files, and records.

• Advanced Concepts: If you're an expert, you'll love the sections detailing such topiCS as
linked lists, trees, and graphs. You'll also find sample program examples for PC-DOS and
Microsoft" MS-DOS.

10,000 lines of commented source code, demonstrations of 20 Turbo Pascal features, multiple
choice quizzes, an on-line tutor, and more!

Turbo Tutor may be the only reference work about Pascal and programming you'll ever need!

Minimum system configuration: Turbo Pascal 3.0, 192K RAM, PC-DOS (MS-DOS) 2.0 or later. CP/M-8o version 2.2 or
later: 48K RAM.

BORLAND
INTERNATI O NAL

4585 SCOTTS VALLEY DRIVE
SCOTTS VALLEY, CALIFORNIA 95066

Turbo Pascal and Turbo Tutor are registered trademarks of Borland Internationalloc. CP/M is a registered
tradernar1< of Digital Research loc. MS-DOS is a registered Irademar'< of MicrosoH Corp. ISBN 0-87524-004-6

