TURBO
TOOLBOX

RBO- !?wg quickio & GINST) nstall ol
5 Usl DIS (Ge Om>

R

BORLAND 411 Scotts Valley Drve

INTERNATIONAL Scotts Valley, California 95066

TURBO
TOOLBOX™

Version 1.0

Reference Manual

Copyright® 1984 by
BORLAND INTERNATIONAL Inc.
4113 Scotts Valley Drive
Scotts Vailey, CA 95066
USA.

Copyright Notice®©

This software package and manual are copyrighted 1984 by BORLAND INTERNATIONAL
Inc. All rights reserved worldwide. No part of this publication may be reproduced, trans-
mitted, transcribed, stored in any retrieval system, or translated into any language by any
means without the express written permission of BORLAND INTERNATIONAL Inc., 4113
Scotts Valley Drive, Scotts Valley, CA 95066, USA.

Single CPU License

The price paid for one copy of TURBO TOOLBOX licenses you to use the producton one
CPU when and only when you have signed and returned the License Agreement printed
in this book. In addition, you are allowed to include TURBO Access and TURBO Sort
object code (only) modules in programs for general sale and/or distribution.

Disclaimer

Borland International makes no warranties as to the contents of this manual and specifi-
cally disclaims any implied warranties of merchantability or fitness for any particular
purpose. Borland International further reserves the right to make changes to the specifica-
tions of the program and contents of the manual without obligation to notify any person or
organization of such changes.

This manual is the result of a joint effort between Borland International of Scotts Valley,
California, and Technology Writing Services of San Jose, California.

First edition, July 1984
Printed in the United States of America
987654321

RETURN THIS LICENSE AGREEMENT TO BORLAND INTERNATIONAL

Program License Agreement

On the condition that you sign and return this License Agreement to Borland Inter-
national Inc., Borland hereby grants you a non-exclusive and nontransferable license to
use the copy of the software TURBO Toolbox as specified in this agreement on one CPU
only, with the additional understanding that object code only resulting from inclusion of
TURBO Access and/or TURBO Sort source code in your TURBO Pascal programs may
be distributed, given away, or sold as part of your programs. Failure to sign this
agreement and still use the software is illegal.

| agree that TURBO Toolbox remains the property of Borland international, Inc. and
accept that giving away or selling copies of TURBO Pascal is theft of Borland’s property
and understand that this will be prosecuted by the lawyers of Borland International.

The reference manual is, of course, my property but copyrighted by Borland Inter-
national Inc. as printed in the manual.

Borland warrants thatall material furnished by Borland constitutes an accurate original
manufacture of TURBO Toolbox and will replace any such material proven to be
defective, provided that such defect is found and reported within ten days after purchase.
Borland makes no other express or implied warranties with regard to performance or
accuracy of TURBO Toolbox and pertaining to documentation and specifically disclaims
any implied warranties of fitness for any particular purpose. | agree that Borland shall not
be held responsible for any consequential damages that| may possibly incur through the
use of TURBO Toolbox, whether through Borland’s negligence or not.

Termination of License. Any breach of one or more of the provisions of this agreement
by me shall constitute an immediate termination of this agreement. Nevertheless, | agree
that in the event of such termination, all provisions of this agreement which protect the
rights of Borland shall remain in force.

| hereby acknowledge that | have read this agreement, understand it, and agree to be
bound by its terms and conditions.

Name and signature:

Address:

My serial no:

USER'S COPY

Program License Agreement

On the condition that you sign and return this License Agreement to Borland inter-
national Inc., Borland hereby grants you a non-exclusive and nontransferable license to
use the copy of the software TURBO Toolbox as specified in this agreement on one CPU
only, with the additional understanding that object code only resulting from inclusion of
TURBO Access and/or TURBO Sort source code in your TURBO Pascal programs may
be distributed, given away, or sold as part of your programs. Failure to sign this agreement
and still use the software is illegal.

| agree that TURBO Toolbox remains the property of Borland International, Inc. and
accept that giving away or selling copies of TURBO Pascal is theft of Borland’s property
and understand that this will be prosecuted by the lawyers of Borland International.

The reference manual is, of course, my property but copyrighted by Borland Inter-
national inc. as printed in the manual.

Borland warrants thatall material furnished by Borland constitutes an accurate original
manufacture of TURBO Toolbox and will replace any such material proven to be
defective, provided thatsuch defectis found and reported within ten days after purchase.
Borland makes no other express or implied warranties with regard to performance or
accuracy of TURBO Toolbox and pertaining to documentation and specifically disclaims
any implied warranties of fitness for any particular purpose. | agree that Borland shali not
be held responsible for any consequential damages that | may possibly incur through the
use of TURBO Toolbox, whether through Borland’s negligence or not. -

Termination of License. Any breach of one or more ofthe provisions of this agreement
by me shall constitute an immediate termination of this agreement. Nevertheless, | agree
that in the event of such termination, all provisions of this agreement which protect the
rights of Borland shall remain in force.

I hereby acknowledge that | have read this agreement, understand it, and agree to be
bound by its terms and conditions.

Name and signature:

Address:

My serial no:

TABLE OF CONTENTS

INTRODUCTION ... it it it ittt ettt aaannenes 1
The TURBO TOOIbOX ...ttt i ettt e ea e o1
The TURBO ACCESS SYStemo.iteiiiitiii ittt iiieeeneinieaannenns 1
The TURBO Sort System ...ttt i ee e et eeeainas 2
GINST - The General Installation Systemot 2
Structure of ThisManual i it i ieainanns 2
TYPOGIAPNY ottt e e e e e 3
Copying the Distribution Disketteottt iiannanns 3
Acknowledgementso.in it e e e e 4
PART . The TURBO Access System 5

1. Introductionto TURBO Accesscciiiiiiiiiiiiinininnnennnns 7

1.1 TURBO ACCESS .« ittt ittt tniiieeenienannnans 7
1.2 TURBO Access Proceduresccooiiiiiiiiiiiiiniiiniinnnen, 8
2. File Access UsingB-Treesciiiiiiiiiiiiiiiiiiiiiiineannns, 9
2.1 Standard Data ACCESSoiiiiiiiiiiiiiiiiiiii it 9
2.1.1 Sequential Data ACCESScoitiiiiiiiiiiiiiiii i 10
2.1.2 Random Data ACCeSScuiiiiiiiiiiiiiiiaiiineennnn. 10
22 Structure of B-Trees ...ttt 11
2.2 KBS Lttt e e e 1
222 HEMS .t e i e eeaa 12
223 PageS ... i e e i 13
224 PagesintoTreesoiiiieitiiiiiiiiiiiii it 13
225 FindingtheDataReferenceo, 14
226 Formal Propertiesof B-treescooiiiiiiiiiiiiiiinn. 14
2.3 B-tree Administration i e 15
231 Inserting Keyesoiiiiiiiniiiiiiiiii i 15
232 Deleting Keysooiiiiiiiiiiii i e 15

3. TheTURBO Access Systemiiiiiiiiiiiiiinmnnnnnanananns 17

3.1 Main CompPoNentSoiitiiiiiiiriraiierieeereeaaronenesesosnnans 17
3.2 FUNCHON SUMMANYottt iaeeererninanaaasaanns 17
3.21 Data File Initialization and Updatec.iiiinie. 18
3.22 IndexFile Initializationo, 18
323 indexFileUpdatec.coiiiiiiiiiiinrerinerrorennnncennneennn 19
324 IndexFileSearchcoiviiiiiiiiiiiiiiiiiinriinnnnennnnes 19
33 TypesandVariablesc.ccuuiiuiiiiiiiiiiiin i inrineannnnennns 19
34 General Notesttt ittt 20
35 USiNgGTURBO ACCESS ...nnuveireneanaernnreenerennnneaanneennens 20
3.6 Skeleton Program ...ttt 22
3.7 Program Structure with TURBO ACCESSvvviiienneeennennnnnn 23
3.7.1 Initializing the User Programcoiiiiiiiiiiiiiinnnnnen, 23
3.72. AddingDataRecordscoviiiiiiiiiiiiiiiiiiiii, 23
373, KeyLocationcoviuiiiiiiiiiiiiii ittt 23
3.74. KeyDeletion ... 24
3.75. KeyChangeccuovvn... B 24
3.7.6 User Program Terminationccoviuieiiiiininnnnnnnnnens 24
3.7.7 UserProgramVariables cciiiiiiiiiiiiiiiin. 24

4. TURBO AccessRoutinescitiiiiiiiiiiiaieonennnnnnennns 25
4.1 DataFile Proceduresccciiiiiiiniiiiiiiiiiiiiiiiiiniireinnns 25
411 Reuse of Deleted DataRecordscccoiiiiiiinnnn. 25
412 MakeFile ... e e 26
413 OpenFileoiiti it i i i i i e et i e e 27
414 CloseFileottt it it e e 27
415 AddREC ...t e e 28
416 DeleteReC ...t e e 29
417 GetReC ..ot e i e e 29
418 PUtREC ... e e 30
419 Filelen ..o e e 30
4110 USEdRECS ...ttt iiiiiiii ittt 31
4.2 Index File SupportRoutinesoiiiiiiiiiiiiiininieneennnnn 31
421 Duplicate Keysciiiiiiiiiiiiiiiiiiiiii it 32
422 Numeric Keys ... ittt eiiiiaiiannans 32
423 DataFileSplitingcoviiiiiiiiiiiiiiiiiiiiiiiiiiiiie 33
424 InitIndex ... e e e 33
425 Makelndexcoiiiiiiiiiiii i i e e 34
426 Openindexcooiiiiiiiiiiiiiaiieneennns et 35
427 ClosSeINdexoiiiiiiiiiiiii i et e 35

428 AdAKEY ...ttt e e 36

429 DeleteKeyot e e, 36

4210 FINAKEY ..ovnniiiitiiiiiiieteteteieteaaarsanetencnnnananann 37

4211 SearChKeyttt iitiiieinnnnanans 38

4212 NextKey ..ot i ittt e 38

4213 PrevKey .. .iiveiiiiiiiiiii i iieie it ittt e 39

4214 ClearKey .. .ccuvnetntii et eeenereaneeaneaaneeeaaneranens 40

5. Programming Examples it i i et 41
5.1 Declaration EXxamplec.ciiiiiiiiiiiiiireinrenniennaaaacannns 41

52 FileCreation EXxampleccciiiiiiiiiiiiiiiiiiinrennennenennas 42

5.3 Adding Records Examplecciiiiiiieniernnnnnnenaanannas 43

54 FindRecordsExamplettt 44

5.5 DeletingRecordsExamlec...o ittt 45

5.6 Sequential Seek Examplettt it ittt 46

5.7 Status Field Exampleciiiiiiiiiiiiiiiiiiiniieeeeeennnns 47

5.8 RestoringIndexExamplecciiiiiiiiiiiiiiiiiiiiiiiiaaaa 48

6. EmorHandlingottt ittt ittt 49
7. Sample Programttt 51
7.1 Description of Sample Programccceiiiivereeeraronnaenacnn 51

7.2 BTREE.PAS/BTREE,INC SampleSourcecccviieinnnnnn. 52
PARTIl. The TURBO SortSystem 65
8. Introductionto TURBO Sortcciiiiiiiiiiiiiiiiiiiinnnnnnnn, 67
8.1 Thisis TURBO SOt ..ottt ittt eiaenieaans 67

82 Aboutthe Textot i et e 67

8.3 Files on the Toolbox Disketteccviiiiiiiiniiiiiiinnnnnnn. 68

9. Using TURBOSORTottt ittt eiieeaaeeeannanns 69
91 How TURBO SOrtWOIKSoveiiitiiii i ieieeanieenaannannnn 69

911 Dataltem Size ...ttt ittt e 70

9.1.2 Useof MemoOryciiiiiiiiiiiiiiiiiiiieieieeeeneaannnnnn 70

9.1.3 Maximum SortSizec.coiiiiiiieiiit ittt 70

9.2 A Sample Program Using TURBO Sortccoiiiiiiiininnnnn.. 71
921 ThelnpProcedureottt iiiiiiiinienens 72

922 ThelessFunctioniiiiiiiiiiiiiiiiineiiinninnnnnnn 72

9.32 TheOutP Procedurecciiiiiiimiiiiinnenennnenenannns 73

924 TheMain Programcoiiiiiiiiiniiinirnnenennneononenes 74

9.25 TURBO Sort Termination Information 74

9.3 Compiete EXampleniiiiiiiiitiiinirnennonenaananeaeennas 75

10. Advanced Sorting ittt e 77

10.1 Sorting DifferentData ...ttt e 77
10,2 MUliple KeYS ..ot e e e et 81
10.3 Complete Example ..ottt iiiii et ienaaaannnn 82
PART llIl. GINST - General Installation System 85
11. Introduction to GINST it 87
111 Thisis GINST L.ttt i e e ittt te et teeieeaannaens 87
11.2 Files on the Toolbox Diskettecooiiiiiiiiiiiiiinnnnn. 87
12. Generating an Installation Program ool 89
APPENDIX
A. ASCIITable ..ottt it ittt 91
B. SubjectIndex et 93

LIST OF ILLUSTRATIONS

2-1 Structure ofanltemintheindexFileo i, 12
2-2 StructureofaPageinthelndexFilet 13

INTRODUCTION

This book is a reference manual for the TURBO TOOLBOX as implemented for the
CP/M-80, CP/M-86, and MS-DOS operating systems. Although making thorough use of
examples, this manual does not explain how to program in Pascal nor how to use TURBO
Pascal. A fairly thorough knowledge of Pascal and some amount of actual TURBO Pascal
programming experience are assumed. If you have not already done so, you should read
your copy of the TURBO Pascal Reference Manual and familiarize yourself with this
implementation of Pascal.

The TURBO Toolbox

The TURBO Toolbox is a set of programs (“tools”) which you use with TURBO Pascal to
help you in program development. The Toolbox contains three important tools:

® TURBO Access system
® The TURBO Sort system

® The GINST general installation system

These three tools are provided in such a way that they can be included in your Pascal
programs for the benefit of your users. In this way, you save hours of development time
while making your programs easy to use.

The TURBO Access System

The TURBO Access system makes it possible to access records in afile by using keys (for
example, SMITH or JANUARY 21) instead of by number only. In addition to accessing files
by key, you can also access them in a sorted sequence. This is a very important tool if you
are working with direct access files.

Using the TURBO Access system, files are accessed via B-trees. B-trees are briefly
explained in this manual, and references are provided to other books for a more complete
discussion.

This tool is provided in such a way that you can provide its capabilities to your users
without doing extensive programming.

Introduction 1

The TURBO Sort System

Sorting is either a mystery or a problem area for many programmers. The TURBO Sort
system is the part of the TURBO Toolbox which answers this need.

The TURBO Sort system uses the Quicksort method to ensure fast and efficient sorting.
With this tool, you can sort any type of data either on a single item or on multiple keys. You
can also sort different data items in the same program.

This tool is also provided so that you can provide it to your users and save valuable
development time.

GINST—The General Installation System

GINST solves another potential problem facing programmers: how to make your
programs usable on various terminals. GINST is a program that lets you develop an install-
ation module identical to TURBO Pascal’s.This allows your users to install your programs
for their particular terminals.

The resulting installation program is intended to be included with your programs for use
by your customers.

Structure of This Manual

This manual is divided into three Parts:
® Part | explains the TURBO Access system
® Part Il explains the TURBO Sort system
® Part lll explains the general installation (GINST) program

Each Part of the manual is further divided into chapters which break the subject matter
into “chunks” of a reasonable size. You may read the Part(s) of the manual which pertains
to your needs. Each provides a complete description of how the particular tool is used.

2 TURBO TOOLBOX Reference Manual

Typography

The body of this manual is printed in normal typeface. Special characters are used for the
following special purposes:

Alternate Alternate characters are used to illustrate program examples and
screen display. Screen images are furthermore shown in rec-
tangular fields of thin lines.

ltalics ltalics are used in general to emphasize sections of the text. In particular,

predefined standard identifiers are printed in italics, and elements in
syntax descriptions are printed in italics. The meaning and use of italics
thus depends upon the context.

Boldface Boldface is used to mark reserved words, in the text as well as in
program examples.

You should refer to the TURBO Pascal Reference Manual for a complete descrip-

tion of the syntax, special characters, and overall appearance of the Pascal
language.

Copying the Distribution Diskette

The TURBO Toolbox distribution diskette contains several files related to each of the
tools. The actual file names belonging to each tool are provided in each Part of the
manual, respectively.

The distribution diskette is your only source of the toolbox files. The first thing you should
do uponreceiving the diskette is to compiete and mail the License Agreement at the front
of this manual. The second thing you should do is make a copy of the distribution diskette.
Then, put the distribution diskette away in a safe place and use the copy for doing your
work. If something happens to the copy, make a new copy from the original distribution
diskette.

You should never use the distribution diskette for actual work.

Introduction 3

Acknowledgements

In this manual, references are made to several programs. The following provides creditto
the owners of these programs:

® SideKick a registered trademark of Borland International Inc

® TURBO Pascal a registered trademark of Borland International Inc

® WordStar a registered trademark of MicroPro International Corp
e CP/M a registered trademark of Digital Research Inc

® MS-DOS a trademark of Microsoft Corporation

4 TURBO TOOLBOX Reference Manual

PART |
The TURBO Access System

TURBO Access System 5

TURBO TOOLBOX Reference Manual

1. INTRODUCTION TO TURBO ACCESS

This is the part of the manual for the TURBO Access system. TURBO Access is used to
include fastand efficientaccess and administration of large datafiles into TURBO Pascal
programs. TURBO Access is a set of source code files for inclusion in your TURBO
Pascal programs prior to compilation. Because this system is to be used with TURBO
Pascal, the resulting programs can be used with the operating systems under which
TURBO Pascal will run. These are CP/M-80, CP/M-86,and MS-DOS. We have assumed
that the TURBO Access user already has a working knowledge of the TURBO Pascal
language and its fundamental concepts, as they are described and defined in the TURBO
Pascal Reference Manual.

The source code of TURBO Access can be inserted into programs and compiled with
TURBO Pascal Version 2.0 (or more recent versions). If your TURBOQ Pascal is older than
Version 2.0, contact BORLAND INTERNATIONAL for an update.

1.1 TURBO Access

The problem of data access is fundamental in computer usage. Even though automatic
data processing is fast when compared to manual methods, the time required to store and
retrieve the data soon becomes significant when large amounts of data are involved.
Among the many methods developed for fast data access, TURBO Access represents
one of the most versatile and efficient.

TURBO Access is based upon the B-tree principle, named after R. Bayer, one of its
inventors. In a B-tree, a data unit is accessed by using a key. Any given key is related to
one and only one dataunitin a datafile. As an example, suitable keys for a file of customer
information might be customer names. In other situations, special codes may be more
appropriate as keys than customer names. Keys to a file of spare part information could
be string representations of the spare part numbers.

In the B-tree, keys are organized in such a way thata search for a particular key demands
very few accesses of background storage. At the same time, it is still possible to access
the keys in alphabetical order.

With TURBO Access it is possible to maintain several data files and to access each of
these files with several keys. Different data files can also be accessed by using the same
key.

In most cases, the data units to be stored or retrieved take up much more space than their
keys. This stows down the search process and is one of the reasons why the relationship
between keys and data units are often stored in separate, special files.

TURBO Access System 7

A special file of keys makes it possible to use unchanged general B-tree procedures in
any particular context. Throughout this manual we will call these special files Index files.
The files containing data units to be stored or retrieved, on the other hand, are called Data
files. Because a recordin an Index file contains little more than one key and one reference
to the data unit in a Data file, its transfer from background storage is very quick. In this
way, only one access is made to the Data file for each data unitto be accessed. If the key is
notfoundinthe Indexfile, the Data fileis notaccessed at all (exceptin the situation where
the next step is to be the insertion of a new data unit into the Data file.

As already mentioned, the organization of data references as a B-tree has no con-
sequences whatsoever with respect to the information in the Data file. Administration of
the Data file is exclusively the responsibility of the user. Although this administration is
facilitated by the TURBO Access procedures, the programmer must still determine how
the Index files will be used on the one hand, and how the Data files will be used on the
other hand.

1.2 TURBO Access Procedures

High level computer languages all offer the facility of procedures in programs. One
advantage of procedures is that once they are defined, their internal structures are
detached from the uses to which they will be put. To use procedures in a program it is
necessary only to know what they do under various circumstances. The standard pro-
cedures “Read” and “Write” are good examples of this.

There are several possible actions involved in the management of Index files organized
~ as B-trees. For example, searching for a particular key, and inserting or deleting a key
along with its associated data item are trivial exampies; however, the time and effort
required to program these actions is by no means trivial. With TURBO Access, the
program code for Index file management is supplied as procedures to be included
directly into the user’s program. This makes it possible for you to enjoy the advantages of
fast and reliable data access without programming a B-tree based system yourself. It is
not even necessary to understand what B-trees are all about. It must be emphasized,
however, that the use of TURBO Access procedures will be more meaningful when you
understand some basic facts about B-trees.

8 TURBO TOOLBOX Reference Manual

2. FILE ACCESS USING B-TREES

This chapter explains B-tree structure and management. It may serve as a general
introduction to the subject of B-trees with the exception that those aspects of B-trees
which do not relate to the TURBO Access implementation are not covered. A thorough
treatment of B-trees can be found in the following books:

® Wirth, Niklaus: Algorithms + Data Structures = Programs. Prentice Hall (1976).

® Knuth, Donald E.: The Art of Computer Programming (Vol. 3). Addison Wesley
(1973)

® Horowitz, E. et al: Fundamentals of Data Structures. Pitman (1976)

This chapter covers only subjects and structures relevant to the functional principles of
B-trees.

2.1 Standard Data Access

The fundamental way of storing data is to organize itinto similar units. These units can be
of any type, standard as well as user-defined (except files). For complex data, the usual
choice for a unitis a user-defined record. The units are then arranged into a file by using a
file declaration in the program. (For details on the declaration and use offiles, refer to the
TURBO Pascal Reference Manual: File Types). In TURBO Pascal there are two ways to
access the units of a file:

® Sequential data access

® Random data access

Each of these methods is discussed in the foliowing subsections.

TURBO Access System 9

2.1.1 Sequential Data Access

The simplest way to find a particular unit of data is to search through the file starting from
the beginning. The following is an example of code to accomplish this:

PresentUnit, WantedUnit : Unit;

DataFile : File of Unit;
Reset (DataFile);

Repeat

Read(DataFile,PresentUnit);

Until WantedUnit = PresentUnit;

Itis obvious that this method becomes increasingly slow asthe Data file grows. Every unit
prior to the desired unit must be completely examined before the search can be
completed.

2.1.2 Random Data Access

By using random access techniques, it is possible to avoid unnecessary reading of the
data file. Random access is performed by using the actual number of the desired unit of
data. In this method, the first unit of data stored is number 0 (zero). This number is called a
data reference. The process has two steps:first, the file pointer is positioned at the data
unit to be read, and second, the read operation is performed. The following example
shows how this type of operation is coded:

DataRef : 0. maxint;

PresentUnit, WantedUnit : Unit;
DataFile : File of Unit;
Seek(DataFile DataRef);

Read(DataFile PresentUnit);

10 TURBO TOOLBOX Reference Manual

Contrary to whatis implied by the term, random access demands that the user knows the
data reference to each unit in a Data file.
In TURBO Access, this vital information is supplied by the B-tree procedures working on
the Index files. As we shall see, an Index file is itself organized with units that contain
references to other units in the same file.

2.2 Structure of B-Trees

This section provides information about the structure of B-trees.

2.2.1 Keys

As mentioned in Chapter 1, key manipulation in the TURBO Access system does not
directly affectthe Data files. The user handles the Data files with the aid of data references
stored in Index files.

References for units of a Data file are stored and retrieved by means of keys. The keysare
strings of a user-specifed maximum length (less than or equal to 255 characters). The
construction of the key for a particular data object is exemplified in the sample program of
Chapter 7. In this example, the first and last names of persons are merged to form a key
with a maximum length of 25 characters.

Example:
John Jones — ‘Jones John’
Strings use an ordering system which uses the relational operators “=", “<”, and “>".

This ordering is described in the TURBO Pascal Reference Manual: String type. It follows
thatthere is only one way to place any set of different keys in order. The B-tree principle is
based upon the assumption that no two data references have the same key. Consequently,
TURBO Access procedures will make certain that there are no duplicate keys in the Index
file before the user is allowed to insert a new key. However, there is a way to handle
duplicate keys if this is specified when creating an Index file. The way in which duplicate
keys are handled is not included in the following description of B-tree principles.

The Random Access Memory (RAM) space required by the working B-tree procedures
grows with increasing key lengths. The key length must allow for a sufficient number of
possibilities of variations to separate all entries in the Index file. In many cases, abbrevi-
ations of the original key information will serve the purpose.

Example:

Henry Smidth, Plumber — ‘PlumSmidH’

TURBO Access System 11

If the program uses file access in key order, it is advisable to use only either upper or
lower-case letters for keys, because the ordering is based upon the ASCIl character
value (See Appendix B) of the string components. if no measures are taken to avoid
problems caused by the wrong case, this may produce unexpected sequences of keys.

Example:

‘RHINOCEROS’ < ‘mouse’

It it is appropriate to use a number as key, the number must be transformed into a string
representation. A simple way is to use the Str procedure (refer to the TURBO Pascal
Reference Manual: String Procedures). A more sophisticated method will be covered
later.

Example:
var SerialNumber,
Code : integer;
Key : String[6];

Key : = Str(Key,SerialNumber,Code);

2.2.2 Iltems

The connection between a key and its reference to a Data file is formalized as a record
called an item (see Figure 2-1). In addition to these two components, the item holds an
internal Index file reference (Page reference), which is used in the building of the tree
structure.

Key to unit of Data file:
‘ANDERSONJAMES’

internal Index file Data file
reference: 237 reference: 476

Figure 2-1: Structure of an Item in the Index File

12 TURBO TOOLBOX Reference Manual

2.2.3 Pages

The units of an Index file are called pages (see Figure 2-2). On each page is found an even
number of items. Thefirst page is called the root page. All other pages are always at [east
half full; that is, at least half of their items hold a key, a page reference, and a data
reference. This is why the order (n) of the B-tree is defined as half of the maximum item
number per page. In addition to the items, the page contains an extra page reference not
connected to any item.

KEY KEY

Pageref| Dataref Pageref| Dataref

Figure 2-2: Structure of a Page in the /ndex File

2.2.4 Pages into Trees

As we have seen, each key in a page item holds a possible reference to another page in
the data structure. In a B-tree, the page to which the page reference points contains
additional keys. All of these are larger than the key associated with the page reference
itself. Thus, consecutive jumps from a page item to the page of its reference will create a
path of ever-increasing keys. The path stops at the terminal page with no active page
references. The terminal pages are called leaf pages.

It is also possible to move from one page to another in such a way that any key in the
second page is smaller than any key in the first page. This is done by using the extra page
reference held by all pages. The single path made from only backward references will
end at the leaf page with the smallest keys in the B-tree.

All paths in the B-tree start at the root page, and each jump can be to either larger or
smaller keys. The ordering of keys in a B-tree has the consequence thateach page in the
tree can be reached by one and only one path. The number of jumps in this path is
referred to as the /evel of the page. (The root page is at level 1.)

TURBO Access System 13

2.2.5 Finding the Data Reference

The purpose of a B-tree is to provide a reference to a Data file by specifying a key. The
page with the data reference is found by following its path starting at the root page. This is
a guided tour, because comparison with the keys on pages encountered along the way
give exactinformation on the next jump. If all keys on the page are larger than the key you
are seeking, the next page to be investigated is referenced by the backward page
reference. If this is not the case, the reference to the next page is found in the item with the
largest key which is less than the key you are seeking. The search continues until the key
is found or until a leaf page is reached with no result.

2.2.6 Formal Properties of B-trees

The structure of B-trees is subject to several constraints that serve to keep the search
efficiency intact under all circumstances of key insertion and deletion. The constraints
(some of which have already been mentioned) are as follows:

® All pages hold at most 2n items (keys)
® With the exception of the root page, all pages hold at least n items (keys)

® Every page is either a leaf page with no active page references orithasm + 1
active page references (where mis the number of keys on the page (n <=m<=
2n)).

® All leaf pages are at the same level (called the tree height).

The advantage gained by adhering to these rules are several. They ensure that all parts of
the B-tree have a minimum information density. At the same time, most of the keys have
the same search path length; that is, the current tree height is the same. The remainder
have shorter paths.-

Each time the B-tree height grows by one due to insertion of new keys, the room for
additional keys is increased by a factor of between (n + 1) and (2n + 1) compared to the
previous level. The maximum number of keys in the TURBO Access system is MaxInt.
Given the order 3, this number of keys can be searched with a maximum path length of 7,
and in most cases less. If we choose an order of 16, the corresponding number is 4.
Without these restrictions in the B-tree structure, it would be impossible to predict
bounds for the path length of a tree. If this were true, path length would depend upon the
history of key insertion.

14 TURBO TOOLBOX Reference Manual

2.3 B-tree Administration

The rules given in Section 2.2.6 necessitate regular rearrangement of the page items in
the B-tree, when keys are inserted or deleted. This is all taken care of by the TURBO
Access procedures. We will present simple examples of this here, but will refer you to the
literature for details.

2.3.1 Inserting Keys

When a key is presented to the B-tree for insertion, a check is first performed to determine
whether or notthe key is already present in the tree. If the key is new, the search stops ata
leaf page with a negative result. This leaf is the appropriate place forinsertion of the new
key. The only problem that can occur is when the leaf page is full (that it, it already
contains 2n items).

This problem is solved by page splitting. The (2n + 1) keys are redistributed onto two
pages, one of which is new. The n largest keys are moved to a new leaf page, and key
number (n + 1) is moved to the ancestral page of the leaf, where it is associated with a
reference to the new leaf. This preserves the ordering of the keys affected by the
operation.

If the ancestral page is full, it must be split to accept the key moved from the leaf level. In
this way, page splitting may propagate from the leaves all the way to the root. When that
happens, splitting of the root resuits in creation of a new root, and the B-tree height is
increased by one. Immediately after this occurs, the new root holds only one item—the
one moved from the previous root. The B-tree grows in height by addition of a new
root—a simple way to ensure the requirement that all leaves must be at the same level.
The possibility of propagating page splitting makes it necessary to keep all pages of the
search path in RAM (called the B-tree stack) during the insert procedure. In addition to
this, the stack must also have room for a new page. TURBO Access makes certain in
advance that this space will be available.

2.3.2 Deleting Keys

When deletion of an existing key is requested, its location in the tree is found. If this turns
outto be on a leaf page, removal is simple. If the key is situated elsewhere in the tree, the
process of deletion is more complicated.

The vacant page reference must be connected to another key in the tree, without
destroying the key order. This must be a key at leaf level, as all other keys are engaged by
page references already. Fortunately, itis always possible to find such a key. The smallest
key which is larger than the one to be deleted is always on a leaf page. Likewise, the
largest key which is smaller than the one to be deleted is also on a leaf page. One of these
can be used without affecting the key ordering.

TURBO Access System 15

Moving a key from leaf level to take over the page referencing job of the deleted key only
solves half of the problem. The leaf page, from where the key came, may now have too few
items (thatis, less than n). If one of the adjacentleaves has more than nitems, itis possible
to redistribute items so that the two leaf pages have a legal number of items. Preservation
of key order makes itnecessary to shift items via the ancestral item separating the leaves
in question. This process is called balancing.

If no adjacent leaf page has a surplus of items, then itis possible to merge the “underflow
leaf” with one of them. This process is exactly the reverse of page splitting, which was
described in Section 2.3.1. Like page splitting, merging of pages may propagate to lower
levels of the tree. In the extreme case, B-tree heightis reduced by one. It is necessary to
have space for all pages of the search path plus 1 on the Heap at key deletion. Space
availability is determined beforehand by the TURBO Access procedure.

16 TURBO TOOLBOX Reference Manual

3. THE TURBO ACCESS SYSTEM

This chapter provides a functional description of the TURBO Access system.

3.1 Main Components

TURBO Access is supplied as four TURBO Pascal source files. These TURBO Access
modules are included in the compilation of an application program through the
{$! filename} directive of the TURBO compiler. The TURBO Access files are:

® ACCESS.BOX Contains the basic Data/Index file setup and data file
maintenance routines. This module must always be in-
cluded before any other TURBO Access modules.

® GETKEY.BOX Contains the search routines of TURBO Access. The
components are the NextKey, PrevKey, FindKey, and
SearchKey procedures.

e ADDKEY.BOX Contains the routine used for inserting keys into /ndex

files. This is done with the AddKey procedure.

® DELKEY.BOX Contains the routine used to delete keys from Index files.
This is done with the DeleteKey procedure.

The ACCESS.BOX module must always be included in a program that uses TURBO
Access and it must always be the first module. GETKEY.BOX, ADDKEY.BOX, and
DELKEY.BOX, however, may be included or omitted as required, and their order is of no
importance. As long as the precedence of ACCESS.BOX to the other modules is
observed, it is also possible to place the modules in program overlays.

3.2 Function Summary

TURBO Access routines fall into four categories:

® Data file initialization and update routines

® /ndex file initialization routines

TURBO Access System 17

® [ndex file update routines

® [ndex file search routines

The functions of each of these categories are summarized in the following subsections.
The descriptions also specify which TURBO Access module must be included in your
program to achieve the function.

3.2.1 Data File Initialization and Update

MakeFile
OpenFile
ClosefFile

AddRec

DeleteRec

GetRec
PutRec

FileLen

UsedRecs

Creates a Data file (DTAMAN).
Opens an existing Data file (DTAMAN).
Closes a Data file (DTAMAN).

Allocates a new data record. AddRec automatically reuses
previously deleted data records before extending the Data file
(DTAMAN).

Deletes a data record. The record is entered in the list of deleted
records, and will be reused by AddRec before the Data file is
extended (DTAMAN).

Reads a data record (DTAMAN).
Writes a data record (DTAMAN).

Returns the total number of records in a Data file, including
deleted and reserved records (DTAMAN).

Returns the number of data records in use in a Data file
(DTAMAN).

3.2.2 Index File Initialization

Initindex
Makelndex
Openindex

Closelndex

18

Initializes the TURBO Access Index file buffers (DTAMAN).
Creates an Index file (DTAMAN).
Opens an existing Index file (DTAMAN).

Closes an Index file (DTAMAN).

TURBO TOOLBOX Reference Manual

3.2.3 Index File Update

AddKey

DeleteKey

Adds a new key string and its associated data record number to
an Index file (ADDKEY).

Deletes a key string and its associated data record number from
an Index file (DELKEY).

3.2.4 Index File Search

FindKey

SearchKey

NextKey

PrevKey

ClearKey

Finds an Index file entry which is equal to a given search string
(KEYLOC).

Finds the first Index file entry which is equal to or greater than a
given search string (KEYLOC).

Returns the Index file which immediately follows the last entry
located by a search routine (KEYLOC).

Returns the index entry which immediately precedes the last
entry located by a search routine (KEYLOC).

Sets the index pointer to point to the beginning or end of an /ndex
file for sequential processing (DTAMAN).

3.3 Types and Variables

In addition to the basic Data/Index file maintenance routines, the TURBO Access
DTAMAN module also defines some global types and variables. They are:

DataFile

IndexFile

OK

Thistype of identifier is used to declare the Data file variables. All
TURBO Access Data files are declared with this identifier, even
though their data records are not of the same type and size.

This type of identifier is used to declare Index file variables.

A boolean variable used to return the status of some TURBO
Access routines.

TURBO Access System 19

3.4 General Notes

TURBO Access Data files may contain up to 65536 records and the record size, in theory,
may be up to 64K bytes.

In contrast to ordinary TURBO Pascal Data files, TURBO Access Data file variables are
always declared using the DataFile type (the actual record size is specified at run time
when a new Data file is created).

TURBO Access Data files always have fixed size records. The minimum data record
length is 8 bytes.

The first record of a Data file (record number 0) is reserved for system use (the AddRec
routine will automatically reserve this record).

TURBO Access makes not assumptions about the relationship between Index files and
Data files. It is the responsibility of your application program to extract key information
from each data record and enter itinto an Index file along with a data record number. As a
consequence, several Index files may reference one Data file. It is recommended that you
included the key values both in the Data file records and in the Index files since this will
greatly simplify the task of reconstructing a corrupted index. It also enables you to use
computed index keys (thatis, keys which are computed from one or more fields in a data
record).

For example, suppose your application program is designed to maintain a mailing list.
The keys stored in the index might then be the last name of each entry in the Data file,
converted to upper case. If a search string is also converted to upper case, TURBO
Access will find the appropriate entry regardless of whether it was entered using upper-
and/or lower-case letters, but the data record will still contain the data exactly as
entered. In general, key values should only be omitted from the Data file records if you
have a very limited amount of disk storage.

3.5 Using TURBO Access

As stated earlier, the TURBO Access routines are made available to your application

program by inciuding one or more of the four TURBO Access modules. The DTAMAN

module must always be included before other TURBO Access modules since it contains

the basic disk file interface. Following DTAMAN, you may then include the KEYLOG,

ADDKEY, and DELKEY modules as required.

Prior to including DTAMAN, some integer constants must be declared:

MaxDataRecSize Maximum record length. MaxDataRecSize should be set to

the size (in bytes) of the largest data records your program is
going to process (that is, if your program will process two
Data files with record sizes of 72 and 140 bytes, then
MaxDataRecSize should be set to 140).

20 TURBO TOOLBOX Reference Manual

MaxKeyLen Maximum key fength (an integer between 1 and 255).
MaxKeyLen should be set to the largest maximum key length
of the Index file your program is going to process (that is, if
your program will process three Index files with maximum key
lengths of 16, 10, and 25, then MaxKeyLen should be setto 25).

PageSize The maximum number of key entries allowed in each Index
file record (page). The page size must be the same for all
Index filesto be processed by your program. PageSize shouid
be an even number between 4 and 254. For further details,
see below.

Order Half of PageSize. The minimum number of items permissible
on an Index file page (except the root page). See Section 2.2.6.

PageStackSize Page buffer size. The number of Index file records (pages) that
can be kept within memory at one time. The minimum value is
3. In general, increasing PageStackSize will speed up the
system, because the probability that an Index file record is
already within memory when it is to be processed increases.

MaxHeight The maximum height of the Index file B-tree structures. This
constant applies to all /ndex files to be processed by your
program. For a calculation of MaxHeight, see below.

The maximum number of pages (K) to be searched to find a specific key in an /ndex file
with E keys is approximately:

K = Log(E) / Log(PageSize * 0.5)

Thus, asearch for large pages requires fewer disk accesses, and therefore less time, than
for small pages. The time required to perform a search within the page, once it has been
read intomemory, is of no significance compared to the time ittakes to read the page from
the disk. The MaxHeight parameter required by DTAMAN corresponds to the integer part
of (K + 1); therefore, once you have established the page size and the maximum number
of data records in your data base, you compute MaxHeight from:

MaxHeight = Int (Log(E) / Log(PageSize * 0.5)) + 1

Note that larger values of MaxHeight will only require very little extra memory. It is
therefore recommended that you add 2 or 3 instead of 1, to be on the safe side.

The number of bytes (N) occupied by each page in an Index fileis found as follows, where
KeySize is the key length for that specific Index file:

N = (KeySize + 5) * PageSize + 3
The maximum number of bytes (D) occupied by an Index file is:

D=N * E / (PageSize * 0.5)

TURBO Access System 21

This formula for D is based on a worst-case assumption, where all pages are assumed to
be only half full. Experience shows that the multiplication factor for PageSize to be
around 0.75.

The number of bytes (M) occupied in memory by the TURBO Access page buffer is:
M = ((MaxKeyLen + 5) * PageSize + 3) * PageStackSize

where MaxKeyLen is the largest key length used by the /ndex file to be processed, and
PageStackSize is the maximum number of pages that may be kept within memory at the
same time (note that this must be at least 3).

Itis difficult to devise a general method for calculating the optimum values of PageSize
and PageStackSize. PageSize usually lies between 16 and 32, depending on the
maximum key size and the number of keys in the index. Smaller values will resultin poor
performance due to the time required for key search, and larger values will require too
much memory for page buffers.

The minimum reasonable value for PageStackSize is the value of MaxHeight. If
PageStackSizeis less than MaxHeight, the same page will need to be read several times
to traverse the B-tree sequentially. In general, PageStackSize should be as large as
possible. Specifically, if PageStackSize is much larger than MaxHeight, TURBO Access
may keep the root page and the entire first level of the B-tree within memory, thus
reducing by at least one the disk accesses required to look up a key.

3.6 Skeleton Program

A skeleton program which uses TURBO Access might iook like this:

program YourProg;

const
MaxDataRecSize = 138; {Maximum record size
MaxKeyLen = 25; Maximum key length
PageSize = 24,
Order = 18 {(PageSize / 2
PageStackSize = 8 (Page buffer size
MaxHeight = 5 {Maximum B-tree height

$1 ACCESS.BOX}

{Include other TURBO Access modules}
{Your declarations}

begin
{Your main program/

end.

22 TURBO TOOLBOX Reference Manual

3.7 Program Structure with TURBO Access

In most cases, an application program will do one or more of the following four functions:
® Add data records
® Retrieve data records
® Update data records

® Delete data records

Also, prior to processing any data, an application program must prepare (open) the
necessary /Index and Data files, and at termination, close these files.

3.7.1 Initializing the User Program

The initialization phase consists of calling either MakeFile (for a new file) or OpenFile(for
an existing fite) for each Data file to be used, and MakeFile (new) or Openindex (existing)
for each Index file. In addition, /nitiIndex must be called to initialize the Index file manager
routines (this need only be done once, for example at the very beginning of the
application program, and only if any of the index routines are to be used).

3.7.2 Adding Data Records

To add a data record, first input the record, and then add it to the Data file by using
AddRec. Then, compute a key value for the new record (this may simply be a field in the
data record), and call AddKey to enter it into the Index file. When you call AddKey, you
must give the data reference returned by AddRec, so thatit may be entered into the index
along with the key. If your program maintains more than one index, call AddKey for each
Index file, passing over the same data reference each time.

3.7.3 Key Location

To locate a key value, you may use the FindKey, SearchKey, NextKey, PrevKey, and
Clearkeyroutines to search the index (or indexes). Once the key has been found, you may
use GetRec to obtain the associated data record from the Data file.

TURBO Access System : 23

3.7.4 Key Deletion

To delete a data record, first find its key with FindKey, SearchKey, NextKey, PrevKey, or
ClearKey as just described. Then call DeleteKey to delete the record from the Index file.
DeleteKey will return the data reference connected to the key justdeleted. If there is more
than one index, then read the data record (GetRec), and derive from it the keys to be
deleted from the other Index files. Finally, call DeleteRec to remove the data record from
the Data file.

3.7.5 Key Change

Changes made in a data record may affectthe key value(s). Forexample, the hairdresser
‘Andy’ may change his name to ‘Antoine’. If so, you must cail DeleteKey to delete the old
key and AddKeyto add the new key. If there is more than on Index file, this procedure must
be repeated for each file. Finally, call PutRec to update the record in the Data file.

3.7.6 User Program Termination

Attermination, your program must call CloseFilefor each Data filein use, and Closelndex
for each Index file.

3.7.7 User Program Variables

The TURBO Access modules contain a number of internal variables. To avoid duplication
of their names in your user programs, they all begin with the characters ‘TA’. This does
not preclude the use of variables starting with ‘TA’, but can result in compiler error
number 43: ‘Duplicate identifier or label’. The internal variables found in the source code
have been named to promote easy understanding. The actual TURBO Access include
files may use other names for internal variables.

24 TURBO TOOLBOX Reference Manual

4. TURBO ACCESS ROUTINES

This chapter describes the procedures made available to the TURBO Pascal programmer
by the TURBO Access utility.

Most TURBO Access routines return a status value by using a boolean variable called
OK, which is automatically declared by TURBO Access. For example, the OpenfFile
procedure sets OKto Trueif the file to be opened was found, and sets it to False if it was
not found. In case of severe or unrecoverable errors, a procedure called /Ocheck(which
is located in the ACCESS.BOX module) gains control. IOcheck outputs the name of the
file, the record number, and the error code, and terminates the program.

4.1 Data File Procedures

TURBO Access provides Data file support routines for the following tasks:
| ® Create, open, and close Data files

® Add and delete records to and from Data files

® Read and write records from and to Data files

® Report the size of Data files

4.1.1 Reuse of Deleted Data Records

As mentioned earlier, TURBO Access will automatically reuse previously-deleted data
records before expanding a Data file when new records are added. This is achieved by
maintaining a linked list of deleted data records -when a data record is deleted, its first
two bytes form a pointer to the next deleted record. Minus one (-1) indicates that the
record is the last record in the list. Since a zero pointer (two bytes of zero) never occurs,
you may reserve the first two bytes of each data record, and set them to zero when you
add a record to the file. This will enable you to distinguish used records from deleted
records if you process the file without reference to an index {for example, when you
reconstruct a corrupted Index file).

TURBO Access System 25

4.1.2 MakeFiIe

MakeFile creates a new Data file and prepares it for processing.

ACCESS.BOX:
procedure MakeFile(var DatF : DataFile;
FileN : String[141];
Reclen : Integer);
Parameters:
DatF The Data file variable to be prepared for access. DatF must be of type
DatafFile.
FileN A string expression of up to 14 characters specifying the name of
the new disk file.
RecLen The record length in bytes. The minimum record length is 8.

On exit, OK is True if the file was successfully created. If OK is False, there was not
enough space on the disk for a new file.

26 TURBO TOOLBOX Reference Manual

4.1.3 OpenfFile

OpenFile opens an existing Data file and prepares it for processing by the TURBO
Access routines.

ACCESS BOX:
procedure OpenTile(var DatF : DatakFile;
FileN : String[14];
Reclen : Integer);
Parameters:
DatF The Data file variable to be prepared to access. DatF must be of type
DatafFile.
FileN A string expression of up to 14 characters specifying the name of an
existing disk file.
ReclLen Therecordlength in bytes. The record length mustbe the same as the

one used when the file was created.

On exit, OKis Trueifthe file was found and opened successfully. Otherwise, OKis False.

4.1.4 CloseFile

CloseFile closes a Data file.

ACCESS.BOX:
procedure CloseFile(var DatF : DataFile);
Parameter:
DatF The Data file variable to be prepared to access. DatF must be of type

DatafFile.

If you make any changes to a Data file, aiways call CloseFile for that file before terminating
your program. Failing to do so may cause data to be lost, not to mention possible cor-
ruption of the Data file structure.

TURBO Access System 27

4.1.5 AddRec

AddRec adds a new record to a TURBO Access Data file.

ACCESS.BOX:

procedure AddRec(var DatF : DataFile;

var DataRef : Integer;
var Buffer)
Parameters:

DatF The Data file variable to which a record is added. DatF must be of
type DataFile.

DataRef Data record number. AddRec returns the data record number of the
newly allocated data record by using this variabie parameter. You
should pass this data record number to the AddKey index routine
when you enter a key value for the data record.

Buffer A variable containing the data record to be added. Since Bufferis an

untyped parameter, AddRec will accept any variablein its place. Itis
up to you to make sure thatthe variable passed is of the proper type.

Note that AddRec does not return a status value. It returns only if the data record was
added to the file successfully. If an 1/0 error occurs, /Ocheck will gain control and
terminate the program. We suggest that you call UsedRecs before calling AddRec to
make sure that there is enough space on the disk.

If any previously deleted records are available, they are automatically reused before the
disk file is expanded.

28 TURBO TOOLBOX Reference Manual

4.1.6 DeleteRec

DeleteRec removes a data record from a TURBO Access Data file.

ACCESS.BOX:
procedure DeleteRec(var DatF : DataFile;
DataRef : Integer);
Parameters:
DatF The Data file variable from which a record is deleted. DatF must be of

type DataFile.

DataRef The data record number. if you are maintaining an index, this
number should be passed to the DelKey index routine when the key
value is deleted.

The record is entered into the deleted data record list, so it may be reused by AddRec
before the Data file is expanded.

4.1.7 GetRec

GetRec reads a specified data record into memory.

ACCESS.BOX:
procedure GetRec(var DatF : DataFile;
DataRef : Integer;
var Buffer : %
Parameters:
DatF The Data file from which the record is read.

DataRef The data record number.

Buffer A variable to read the data into. Since Buffer is an untyped
parameter, GetRec will acceptany variablein its place. ltis up to you
to make sure that the variable passed is of the proper type.

TURBO Access System 29

4.1.8 PutRec

PutRec writes a data record to a specified position in a Data file.

ACCESS.BOX:
procedure PutRec(var DatF : DataFile;
DataRef : Integer;
var Buffer :);
Parameters:
DatF The Data file to which the record is written

DataRef The data record number.

Buffer The variable from which the data is written: Since Buffer is an
untyped parameter, GetRec will accept any variable in its place. Itis
up to you to make sure thatthe variable passed is of the proper type.

4.1.9 FileLen

FileLen returns the number of data records allocated to the Data file given by DatF.

ACCESS.BOX:

function FileLen(var DatF DataFile):Integer;
Parameter:

DatF The Data file from which the number of records is found.

The length returned by FileLen includes the reserved record at the beginning of the file
(record 0) as well as all deleted records.

30 TURBO TOOLBOX Reference Manual

4.1.10 UsedRecs

UsedRecs returns the number of records in DatF that contain valid data.

ACCESS.BOX:

function UsedRecs(var DatF : DataFile) : Integer;
Parameter:

DatF The Data file from which the number of records is found.

In contrast to FileLen, this function does not include reserved and deleted records.

4.2 Index File Support Routines

TurboAccess provides Index file support routines for the following tasks:
® Create, open, and close Index files
® Add and delete keys to and from Index files

® Search for keys in Index files

® Read through /ndex files forwards and backwards.

Index files are declared by using the IndexFile type identifier. Entries in an Index file
consist of a key string and a data reference. Key strings may assume values of type string.
The maximum length of the key strings is determined when the Index file is opened. If a
key string is too long, it will be truncated when itis passed to ar /ndex file support routine.

TURBO Access System

31

4.2.1 Duplicate Keys

There are many applications where key strings are not guaranteed to be unique, such as
an index based upon last names. For this reason, duplicate keys may occur. TURBO
Access only allows duplicate keys if the Status parameter in the call to Makelndex or
Openindexis 1.

When TURBO Access adds duplicate keys to Index files, equal keys are ordered by their
data references, so that key entries with low references appear first. Normally, this will
correspond to the order in which the keys are entered, since new data records are usually
added to the end of Data files.

The search routines FindKey and SearchKey will always locate the first key entry; that is,
the key entry with the lowest data record number.

To delete a key from an Index file with duplicate keys, itis not sufficient simply to specify
the key string, since this string may identify several entries. To selecta specific entry, you
must also specify the data record number. The DeleteKey procedure will delete the key
entry only ifthe key string and the data record number match the values found in the Index
file.

4.2.2 Numeric Keys

If your application program requires numeric key values, you must convertthese numeric
values to strings before passing them to TURBO Access. There are basically two
methods of doing this.

The simplest approach is to convert the numeric value to its ASCIl string representation
using the Strstandard procedure (refer to the TURBO Pascal Reference Manuat. String
Procedures. If you use this method, the resulting strings must be right justified (this is
easily accomplished by specifying a field width in the call to Str). The main disadvantage
to this method is thatthe key length must be setto the maximum number of digits that may
occur as opposed to the number of bytes required to store the number in its binary format.
The second approach only applies to integers. It takes advantage of the compactness of
integers in binary format. The routines shown below may be used to “pack” and “unpack”
integers to and from strings. IntToStr converts an integer to a string, and StrToint
converts a string into an integer. The strings returned by /ntToStrare two characters long;
the strings passed to StrToint must likewise be two characters long.

32 TURBO TOOLBOX Reference Manual

function IntToStr (N : Integer) : Str[R]
N: =N + $8000;
IntToStr;:=CHR(Hi(N)) + Chr(Lo(N));
end;
function StrToInt(S : Str[R]): Integer;

begin
StrToInt:=Swap(Ord(S[1]) +0rd(S[2] + $8000; end;

The above routines operate on signed integers (-32768 to 32767). Ifthe integers are to be
interpreted as unsigned quantities, simply remove the additions of $8000.

4.2.3 Data File Splitting

A TURBO Access Index file must be contained in a single disk file. Data files may,
however, be spread over more than one disk file. The only limitation is that the total
number of records may not exceed 65536. The splitting of Data file is quite simple to
implement and best illustrated by an example.

Assume thateach Data file can hold 10,000 records and that we need to store up to 30,000
records. We will require three Data files. When a record is added to the first file, the data
record number is entered directly into the Index file. However, when records are added to
the second and third file, we add 10,000 or 20,000 to the record number. Later, when the
Index file is read, record numbers may be divided by 10,000 to determine in which files the
records reside, and the remainders of the divisions are the actual data record numbers.
Note that since the first record number in a Data file is 1, you must subtract 1 before
dividing and add 1 to the remainder to produce the correct results.

4.2.4 Initindex

Initindex initializes the table used by the Index file routines.
ACCESS.BOX:

procedure InitIndex;
No parameters

Initindex must be called before other Index file routines. Only one cait is required, and itis
usually placed at the very beginning of the application program.

TURBO Access System 33

4.2.5 Makelndex

Makelndex creates a new Index file and prepares it for processing.

ACCESS.BOX:
procedure Makelndex(var IndexF : IndexFile;
FileN : String[14];
KeyLen,
Status : Integer %
Parameters:
IndexF The Index file variable to be prepared for access. it must be of type
IndexFile.
FileN A string expression of up to 14 characters specifying the disk file
name.
KeylLen The maximum length of the key strings to be stored in this file.
Status 0 indicates that duplicate keys are not allowed, 1 means that

duplicate keys may occur.

On exit, the OK flag is setto True if the file was created successfully. If OKis False, there
was no space on the disk for a new file.

34 TURBO TOOLBOX Reference Manual

4.2.6 Openindex

Openindex opens an existing /ndex file and prepares it for processing.

ACCESS.BOX:
procedure OpenIndex(var IndexF : IndexFile;
FileN : String[14]
Keylen,
Status Integer)
Parameters:
IndexF The Index file variable to be prepared for access. It must be of type
IndexFile.)
FileN A string expression of up to 14 characters specifying the disk file
name.
KeyLen The maximum length of the key strings to be stored in this file.
Status 0 indicates that duplicate keys are not allowed, 1 means that

duplicate keys may occur.

On exit, the OK flag is set to True if the file was created successfully. If OK is false, there
was no space on the disk for a new file.

4.2.7 Closelndex

Closelndex closes a TURBO Access Index file.

ACCESS.BOX:
procedure CloseIndex(var IndexF : IndexFile);
Parameter:
IndexF The Index file variable to be closed. it must be of type IndexFile.

If you make any changes to an Index file, always call Closelndex for that file before
terminating your program. Failing to do so may cause data to be lost, not to mention
possible corruption of the Index file structure.

TURBO Access System : 35

4.2.8 AddKey

AddKey adds a key string to an Index file.

ADDKEY.BOX:
procedure AddKey(var IndexF : IndexFile;
var DataRef : Integer;
var Key)}
Parameters:
IndexF The Index file to which the key is to be added.

DataRef The data record number to be associated with the key. Usually
DataRef is a Data file record number returned by AddRec.

Key The key string. Since Key is an untyped parameter, you may pass
string variables of any string type to AddKey. Itis, however, up to you
to ensure thatthe parameter is a string variable—other variables and
string expressions are not allowed. If the Key parameter is longer
than the maximum key length for IndexF, it will be truncated to the
maximum length.

On exit, the OK flag is set to True if the key string was added successfully. OK returns
False if you try to add a duplicate key when such keys are not allowed (that is, when the
Status parameter in the call to Openindex or Makelndex was 1.

4.2.9 DeleteKey

DeleteKey removes a key from an Index file.

DELKEY.BOX:
procedure DelKey(var IndexF : IndexFile;
var DataRef : - Integer;
var Key);
Parameters:
IndexF The Index file from which the key is to be removed.

36 TURBO TOOLBOX Reference Manual

DataRef

Key

The data record number associated with the key to be deleted. If
duplicate keys are not allowed in the Index file, DataRef need not be
initialized. If duplicate keys are allowed, however, DeleteKey needs
the data record to distinguish the keys from each other. To determine
the data record number, you may, for example, use SearchKey in
connection with NextKey and PrevKey. DataRef always returns the
data record number of the key that was deleted.

The key to be deleted. The Key parameter must be a string variable. If
it is longer than the maximum key length for IndexF, it will be
truncated to the maximum length.

On exit, OKis set to Trueifthe key was removed successfully. OKreturns Falseif the key
was notfound. If duplicate keys are allowed, OK will return Falseif a matching data record
number was not found, even though the key string existed.

4.2.10 FindKey

FindKey returns the data record number associated with a key.

GETKEY.BOX:
procedure FindKey(var IndexF : IndexFile;
var DataRef : Integer;
var Key)i
Parameters:
IndexF The Index file in which a search is to be conducted for the key.
DataRef If the key is found, its associated data reference is returned in this
parameter.
Key The key string for which to search. The Key parameter must be a

string variable. if itis longer than the maximum key length for IndexF,
it will be truncated to the maximum length.

FindKey locates the entry in the index file that exactly matches the string passed as the
Keyparameter. If the Index file contains duplicate keys, FindKey will always locate the first

key.

On exit, OK is set to True if a matching key is was found. Otherwise, OK is set to False.

TURBO Access System 37

4.2.11 SearchKey

SearchKey returns the data record number associated with the first entry in an /ndex file
that is equal to or greater than a specific key value.

GETKEY.BOX:
procedure SearchKey(var IndexF : IndexFile;
var DataRef : Integer;
var Key IndexFile;);
Parameters:
IndexF The Index file in which to search.
DataRef If the key is found, its associated data reference is returned in this
parameter.
Key The key string for which to search. The Key parameter must be a

string variable. Ifitis longer than the maximum key length for /ndexF,
it will be truncated to the maximum length.

SearchKey can be used to locate an entry in an Index file when only the first part of the key
value is known. If the Index file contains duplicate keys, SearchKey will always locate the
first key.

OK is always set to True on exit, unless no keys are greater than or equal to the search
key. In that case, OK is set to False.

4.2.12 NextKey

NextKey returns the data reference associated with the next key in an Index file.NextKey
also returns the key value in the Key parameter.

GETKEY.BOX:
procedure Next(var IndexF : IndexFile;
var DataRef : Integer;
var Key)

38 TURBO TOOLBOX Reference Manual

Parameters:

IndexF An Index file that has been prepared for sequential processing by a
call to FindKey, SearchKey, or ClearKey.

DataRef Returns the data reference associated with the key.
Key Returns the key read from the next index entry.

On exit, OKis setto True unless no nextindex entry exists. In that case, OKis setto False.
When OKreturns False (thatis, when the pointer is at the end of the index), NextKey will
return the first entry in the index if it is called again.

Before the very first call to NextKey for a given Index file or after the Index file is updated
with AddKey or DeleteKey, one of the other index search functions (except PrevKey) must
be called. The search functions establish the internal pointer used by NextKey and
PrevKey for sequential processing.

4.2.13 PrevKey

PrevKey returns the data reference associated with the preceding entry in an Index file.
PrevKey also returns the key value in the Key parameter.

GETKEY.BOX:
procedure PrevKey(var IndexF : IndexTFile;
var DataRef : Integer;
var Key)%
Parameters:
IndexF An Index file that has been prepared for sequential processing by a

call to FindKey, SearchKey, or ClearKey.
DataRef Returns the data reference associated with the key.
Key Returns the key from the preceding index entry.

On exit, OKis setto True unless no preceding index entry exists. In that case, OKiis setto
False. When OK returns False (that is, when the pointer is at the beginning of the index),
PrevKey will return the last entry in the index if it is called again.

Before the very first call to NextKey for a given Index file or after the Index file is updated
with AddKey or DeleteKey, one of the other index search functions (except NextKey) must
be called. The search functions establish the internal pointer used by NextKey and
PrevKey for sequential processing.

TURBO Access System 39

4.2.14 ClearKey

ClearKey sets the Index file pointer to the beginning or end of IndexF.

ACCESS.BOX:
procedure ClearKey(var IndexF : IndexFile);
Parameter:
IndexF An Index filethatis prepared for sequential processing starting atthe

beginning or end.

Following a call to ClearKey, a call to NextKey will return the first entry in the Index file,and
a call to PrevKey will return the last entry in the Index file.

When a TURBO Access Index fileis processed sequentially it may be compared to aring.
When the Index file pointer is at the end of the file, a request to read the next entry will
return the first entry in the file. Likewise, when the Index file pointer is at the beginning of
the file, a request to read the preceding entry will return the last entry in the file. In fact, the
beginning and the end are at the same point in the file.

40 TURBO TOOLBOX Reference Manual

5. PROGRAMMING EXAMPLES

The examples shown in this section demonstrate some common operations ona TURBO
Access data base. In this case, the data base is very simple. The records in the Data file
contain only two fields, and there is only one Index file. However, the principles are the
same for more complex data bases with larger records and several Index and Data files.

5.1 Declaration Example

The following record type is used for records in the Data file:

type
PhoneRec = record
Status s Integer;
Phone : String[15];
Name : String[30];
end,

The Phonefield will be used as the key in the index. Note the inclusion of a Statusfield in
the beginning of the record. If this field is set to zero when a record is added to the Data
file, it will enable you to distinguish used records from deleted records when processing
the Data file without reference to the Index file (for instance to rebuild a corrupted index).

The TURBO Access constants are defined-as follows:

const
MaxDataRecSize = 49; (* Max record size *)
MaxKeyLen = 185; (* Max key size *)
PageSize = 16; (* Page size *)
Order = & (* B-tree Order*)
PageStackSize = B (* Page buffer size *)
MaxHeight = B (* Max B-tree height *)

MaxDataRecSize is the size of the PhoneRec type, and MaxKeylLen is the maximum
length of the string contained in the Phone field.

TURBO Access System 41

The variables used in the examples are defined as follows:

var
DatF : DataFile;
IdxF : IndexFile;
PRec : PhoneRegc;
PhNum : String{15];
Ch : Char;
DatRef,
Buflen : Integer;

5.2 File Creation Example

The example shown below will create a Data file called PHONE.DAT and an Index file
called PHONE.IDX. Note that the SizeOffunction may be used to specify the size ofa data
record.
Example:
MakeFile(DatF, PHONE.DAT SizeOf(PRec));
if OK then MakeIndex(IdxF, PHONE.IDX",15,0);
if OK then
begin
CloseFile(DatF);
Closelndex(IdxF);
end .
else
Writeln(‘Cannot create data files’);

42 TURBO TOOLBOX Reference Manual

5.3 Adding Records Example

The following example is used to add records to the data base. Since duplicate phone
numbers are not allowed, the Status parameter in the call to Openindexis 0. A record is
only added if a call to FindKey returns False in OK, indicating that the key is notin the
index. If AddKey were to be called right away, the program would have to call DeleteRec
in case of a duplicate key. Otherwise, the Data file would contain a record which was not
in the index. Note that the Status field is set to zero before a new record is added so that
active records can be differentiated from deleted records when the Data fileis processed
without reference to the Index file.

Example:

InitIndex;
OpenFile(DatF, PHONE.DAT SizeOf(PRec));
if OK then OpenIndex(IdxF, PHONE. IDX’ 15,0);
if OK then
begin
repeat
Write(‘Phone number...: ©);
Readin(PhNum);
PRec.Phone := PhlNum;
FindKey(1dx¥ DatRef PhNum);
if OK then
begin
Writeln,;
Writeln(‘Already assigned’);
end
else
begin
Write(‘Name...........: : *); Readln(PRec. Name);
PRec.Status := 0;
AddRec(Da.tF,Dat.B.ef,PRac) AddKey(IdxF,Da.t.Ref,PRec Phone);
end;
Wmteln,
Write(‘Add another (Y/N)?); Bea.d]n(Ch),
Writeln;
until not (Ch in ['Y",7']);
CloseFile(DatF);
CloseIndex(IdxF);
end
else .
Writeln(‘Cannot open data files’);

TURBO Access System 43

5.4 Find Records Example

This example shows how to look up records via the index. FindKey is used to search the
index, and if the key exists FindKeyreturns the data reference. The data reference is then
used in a call to GetRec to read the actual data record.

Example:

InitIndex;
OpenFile(DatF, PHONE DAT SizeOf(PRec));
if OK then OpenIndex(IdxF,'PHONE.IDX',15,0);
if OK then
begin
repeat
Write(‘Phone number...: *);
Readln(PhNum);
FindKey(IdxF,DatRef,PhNum);
if OK then
begin
GetRec(DatF,DatRef,PRec);
Writeln(‘Name......... : . PRec.Name);
end
else
begin
Writeln;
Writeln(‘Key not found’);
end;
Writeln;
Write(‘Scan again (Y/N)? *);
Readln(Ch);
Writeln;
until not (Ch in [Y",Y']);
CloseFile(DatF);
CloseIndex(IdxF);
end
else
Writeln(‘Cannot open data files');

44 TURBO TOOLBOX Reference Manual

5.5 Deleting Records Example

The following example is used to delete records. DeleteKey is used to delete the specified
key string. if the key is deleted successfully, DeleteKey returns the data record number
associated with the key. This number is then used in a call to DeleteRec to delete the
actual data record.

Example:

InitIndex;
OpenFile(DatF, PHONE DAT SizeOf(PRec));
if OK then
OpenIndex(Idx¥, PHONE.IDX",15,0);
if OK then
begin
repeat
Write(‘Phone number...: ©);
Buflen := 15; '
Readln(PhNum);
DelsteKey(IdxF DatRef PaNum);
if OK then
DeleteRec(DatF DatRef)
else
begin
Writeln;
Writeln(‘Key not found’);
end;
Writeln;
Write(‘Scan again (Y/N)?");
ReadIn(Ch);
Writeln;
untilnot (Chin [Y"y’]);
CloseFile(DatF);
Closelndex(IdxF);
end
else
Writeln(‘Cannot open data, files’);

TURBO Access System 45

5.6 Sequential Seek Example

The ClearKeyand NextKeyroutines may be used to process the data base sequentially as
shown below. Note that NextKey returns False in OK when all keys in the index are
processed.

Example:

46

InitIndex;
OpenFile(DatF ' PHONE DAT SizeOf(PRec));
if OK then OpenIndex(Idx¥,PHONE.IDX',15,0);
if OK then
begin
ClearKey(Idx¥F);
repeat
NextKey(1dxF DatRef, PhNum);
if OK then
begin
GetRec(DatF,DatRef PRec);
Writeln(PRec.Phone,” :
16 - Length(PRec.Phone),PRec.Name);
end;
until not OK;
CloseFile(DatF); CloseIndex(IDxF);
end
else
Writeln(‘Cannot close data files');

TURBO TOOLBOX Reference Manual

5.7 Status Field Example

A Data file can also be processed without reference to an Index file. However this
requires that a status field (an integer) be included as the first field of each data record.
When a record is added to the Data file (using the AddRec routine) the application
program must manually set the status field to zero. When the Data file is processed
sequentially, the status field will still be zero for a particular record if that record is not
deleted. Other (non-zero) values indicate that the record is deleted. Note that processing
starts at record number 1, which is actually the second record in the Data file. The first
record, (that is, record number 0) is reserved by TURBO Access for various status
information.

Example:

OpenFile(DatF, PHONE.DAT SizeOf(PRec));
if OK then
begin

DatRef := 1;

while DatRef < FileLen(DatF) do

GetRec(DatF DatRef,PRec);
DatRef:=DatRef+1;
if PRec.Status = O then
Writeln(PRec.Phone,” : 16 - Length(PRec.Phone),
PRec.Name);
end;

CloseFile(DatF);
end
else
Writeln(‘Cannot open data, file’);

TURBO Access System 47

5.8 Restoring Index Example

The following example shows how to rebuild a corrupted Index file. The program reads
the Data file sequentially and adds the phone number of each active record to a new
Index file. If a duplicate key is encountered, an error message is output and the data
record is deleted.

Example:

InitIndex;
OpenFile(DatF,; PHONE.DAT SizeOf(PRec));
if OK then
begin
MakeFile(IdxF,PHONE.IDX’,15,0);
if OK then

DatRef := 1;
while DatRef<FileLen(DatF) do
begin
GetRec(DatF DatRef PRec);
if PRec.Status = O then
begin
AddKey(1dxF DatRef,PRec.Phone);
if not OK then
begin
Writeln(‘Duplicate key. Record ‘,DatRef);
DeleteRec(DatF DatRef);
end;
end;
DatRef:=DatRef+1;

end;
end
else
Writeln(‘Cannot create index file);
end

else
Writeln(‘Cannot open data file’);

48 TURBO TOOLBOX Reference Manual

6. ERROR HANDLING

TURBO Access routines generate two types of errors: non-fatal errors and fatal errors.
Fatal errors cause the program to terminate, whereas non-fatal errors are reported to the
program.

Non-fatal error conditions are reported through a boolean variable called OK, which is
automatically declared by the DTAMAN module. For instance OpenfFile returns Falsein
OK if the specified file was not found and FindKey returns False if the key string was not
found.

if a fatal error occurs, aroutine called Ta/Ocheckis invoked. TalOcheckis located in the
ACCESS file. It prints an error code, a file name, and a record number, and then
terminates the program. The following is an example of an error printout:

Example:

TURBO-file I/0 error 10
File A:CUST.DAT Record 103
Program terminated

A TURBO Access fatal error is actually equivalent to a TURBO Pascal I/O error. Possible
error codes are therefore the same as those listed in the TURBO Pascal Reference
Manual (note that TURBO Access outputs the error code in decimal, whereas TURBO
Pascal outputs it in hexadecimal).

In general, fatal errors occur only from corrupted Dataand/or Index file. However, a fatal
error will also occur if you try to expand a Data file or an Index file when there is
insufficient space on the disk.

TURBO Access System 49

50

NOTES

TURBO TOOLBOX Reference Manual

7. SAMPLE PROGRAM

This chapter provides a sample program which illustrates how to use TURBO Accessina
typical situation.

7.1 Description Of Sample Program

The file BTREE.PAS demonstrates how to use TURBO Pascal file to create and maintain a
simple customer data base. BTREE allows you to add, find, view, edit, delete, and list
customers of a predefined type (see the CustRec type definition below).

BTREE maintains three files: a Data file (CUST.DAT), a customer code index (CUST.IXC)
and a name index (CUST.IXN). The customer code index does not allow duplicate keys,
but the name index does. When the database program is run for the first time, it will
automatically create an empty data base.

The main menu offers three functions: Update, List, and Quit. Update is used to add, find,
view, edit, and delete customers. List is used to List customers, and Quit is used to
terminate the program.

On the Update menu, the Add function is used to add new customers. Find is used to
locate a customer, either by customer code or by last (and first) name. To Search for a
specific customer code, simply enter the desired code when the cursor is located in the
customer code field. if the code is found, the customer data is displayed. At this point, you
may, if you wish, Edit or Delete it. To search for a name, enter an empty customer code.
Then enter the last name and, if desired, the first name. (Note that if a first name is
specified, the first 15 characters of the last name must be entered in fuil.) The scan will
locate the first customer with the specified name, or if no exact match is found, the first
customer that follows the specified name. You may then use Next and Previous to move
forward and backward in alphabetical order. Once you have located the desired
customer, enter Quit. You may then Edit or Delete the record shown on the screen, or just
view it and leave it unchanged. -
Listis used to List customers. The listings will show the customer code, the name, and the
company. The Listing may be output to the Printer or to the Screen, and may be either
Unsorted or sorted by customer Code or Name.

For further information, study this sample source code.

On systems with only 64K of RAM you will find that the file BTREE.PAS is too large to
allow the compiler sufficient work space. This results in a compiler overflow error
condition. The problem is solved by spiitting BTREE.PAS into a main file and an insertfile.

TURBO Access System 51

7.2 BTREE.PAS / BTREE.INC Sample Source

program DataBase;

(*$A+C-R-V-*)
K 3k 2 3k 3k 3 ok ok o e ok o oK K ok 2k 3k ok 3 ok ok ok 3k 3 3k ok 3 ok sk ok sk sk K ko ok ok KOk K 3% 3k ok 3k 3k ok 3K ok Kk kK ok 3k K 2k ok 3k ok ok ok ok ok K ok Kok ok ok ok K ROk Kok ok K
* *
* TURBO-access version 1.00 *
* *
* *
N DATABASE example N
* *

¢ Copyright® 1984 by .

G BORLAND Int. .
* *
* *)
* *)

)

* *
*

(e kK 3 3K oK K oK 3Kk o R oK o oK kK ok S sk KK K o ok K K ook ok e sk ok ok Sk Sk ok o sk Sk K R s o sk ok 3 ok ok K 3 oK K K 3k o 3k o o ok ok ok o o KOk ok ok o kol ok o ok ek ok *)

1abel Stop;
const
(* data record Size definition *)
CustRegSize = 34%; (*customer record Size *)
(* TURBO-file constants *)
MaxDataRecSize = CustRegSize; . (* max record Size *)
MaxKeyLen = 285; (* max key Size *)
PageSize = 16; (* page Size *)
Order = g (* half page Size *)
PageStackSize = B (* page buffer Size *)
MaxHeight = B (* max B-tree height *)
var
NoOfRecs : Integer;
(* include TURBO-file modules *)
(*$1 ACCESS.BOX*)
(*$1 GETKEY.BOX*)
(*$I ADDKEY.BOX*)
(*$I DELKEY.BOX*)
type
Strs = string[5];
Str10 = string[10];
Str1s = string[15);
Str25 = string[25];
Str80 = string[80];
AnyStr = string[R55];

52 TURBO TOOLBOX Reference Manual

(* charagcter set type *)

CharSet = set of Char;
(* customer record definition *)
CustRec = record

CustStatus
CustCode
EntryDate
FirstName
LastName
Company
Addrl
Addra
Phone
PhoneExt
Remarksl
Remarks2
Remarks3
end;
var
(* global variables *)
DatF
CodeIndexFile,
NamelIndexFile
Ch :
function UpcaseStr(S : Str80) : Str80;
var
P: Integer;
begin

for P := 1 to Length(S) do
S[P] := Upcase(S[P]);

UpcaseStr .= S;

end;

Integer;
string[15];
string(8];
string[15];
string(30];
string[40];
string(40];
string[40];
string[15];
string(5];
string[40];
string(40];
string[40];

DataFile;

IndexFile;
Chaxr;

(* CustStatus *)

(* customer code *)
(* entry date *)

(* first name *)

(* last name *)

(* company *)

(* Address 1 ™)

(* Address R *)

(* Phone number *)
(* extension *)

(* remarks 1 *)

(* remarks 2 *)

(* remarks 3 *)

(* ConstStr returns a string with N characters of value C *)

function ConstStr(C : Char; N : Integer) : Str80;

var

S: string[80];

if N <O then
N:=0;

S[0] := Chr(N);

FillChar(S[1].N.C);

ConstStr := S;

end;

TURBO Access System

53

(* Beep sounds the terminal bell or beeper *)
procedure Beep;
begin

Write(1G);
end;

procedure InputStr(var S
LXY : Integer;
Term : CharSet;

var TC

const

UnderScore="'__";

var

P: Integer;
Ch : Char;

begin
GOtoXY(X + 1Y + 1); Write(S,ConstStr(UnderScore,L - Length(S)));

P:=0;
repeat

: AnyStr;

: Char);

GotoXY(X + P+ 1Y + 1); Read(Kbd,Ch);

case Ch of

#32.#126 : if P <L then

54

1A
tF
1G

tH#127

begin
Length(8) = L then
Delete(S,L,1);
P:=P+1;
Insert(Ch,S,P);
Write(Copy(S,P.L));
end
else Beep;
if P> 0 then
P:=P-1
else Beep;
if P < Length(S) then
P:=P+1
else Beep;
P:=0;
P:= Length(8);
if P < Length(S) then
begin
Delete(S,P + 1,1);
Write(Copy(S,P + 1,L),UnderScore);
end;
if P> O then

TURBO TOOLBOX Reference Manual

Delete(S,P,1);
Write(tH,Copy(S,P,L),UnderScore);
P:=P-1; .
end
else Beep;
Y . begin
Write(ConstStr(UnderScore,Length(S) P));
Delete(S,P + 1,L);
end;
else
if not (Ch in Term) then Beep;
end;lof case!
until Ch in Term;
P := Length(8);
GotoXY(X +P+ 1Y+ 1);
Write(“ :L-P);
TC :=Ch;
end;
procedure Select(Prompt : Str80;
Term : CharSet;
var TC : Char);
var
Ch : Char;
begin
GotoXY(1,23); Write(Prompt,'? *); ClrEol;
repeat
Read(Kbd,Ch);
TC := Upcase(Ch);
if not (TC in Term) then
Beep;
until TC in Term;
Write(Ch);
end;
(*ClearFrame clears the display frame, LE. Lines 3 to 20 *)
procedure ClearFrame;
var
I: Integer;
begin
forI.= 3to0do
begin
GotoXY(1,I + 1); ClrEol ;
end;
end;
(* OutForm displays the entry form on the screen *)

TURBO Access System

55

procedure OutForm;

begin
GotoXY(7,5); Write(‘Code :');
GotoXY(R9,8); Write(Date :');
GOtoXY(1,7); Write(‘First name :);
GotoXY(R9,7); Write(‘Last name :');
GotoXY(4,9); Write(‘Company :");
GotoXY(R,10); Write(‘Address 1 :');
GotoXY(2,11); Write(‘Address 2 :);
GotoXY(6,13); Write(‘Phone :');
GotoXY(R9,13); Write(‘Extension :");
GotoXY(R,18); Write(‘Remarks 1 :");
GotoXY(R,16); Write(‘Remarks 2 :);

GotoXY(R,17); Write(' Remarks 3 :");

end,

(* ClearForm clears all fields in the entry form *)

procedure ClearForm,;

begin
GotoXY(13,8); Write(:15);
GotoXY(35,8); ClrEol;
GotoXY(13,7); Write(” :15);
GotoXY(40,7); ClrEol;
GotoXY(13,9); CirEol;
GotoXY(13,10); ClrEol;
GotoXY(13,11); ClrEol;
GotoXY(13,13); Write(” :15);
GotoXY(40,13); ClrEol;
GotoXY(13,158); ClrEol;
GotoXY(13,16); ClrEol;
GotoX¥Y(13,17); ClrEol;

end;

procedure InputCust(var Cust : CustRec);

const

Term : CharSet = [1E,!L,IM,tX1Z];
var

L : Integer;

TC : Char;
begin

L:=1;

with Cust do

repeat

case L of

56

[« ISV B VI

: InputStr(CustCode,15,12,4 Term,TC);
: InputStr(EntryDate,8,34,4,Term,TC);
: InputStr(FirstNae,15,12,6,Term,TC);
: InputStr(LastName,30,39,6, Term,TC);
: InputStr(Company,40,12,8,Term,TC);

TURBO TOOLBOX Reference Manual

6 : InputStr(Addrl,30,12,9,Term,TC);
7 : InputStr(Addra,30,12,10,Term TC);
8 : InputStr(Phone,15,12,12,Term,TC);
9 : InputStr(PhoneExt,5,39,12,Term,TC);
10 : InputStr(Remarksl,40,12,14,Term,TC);
11 : InputStr(Remarks?,40,12,15,Term, TC);
1R : InputStr(Remarks3.40,1,16,Term,TC);
end;
if (TC = 1I) or (TC = M) or (TC = 1X) then
if .= 12 then
L:=1
elseL:=L+1
else
if TC = 1E then
ifL =1 then
L:=12
elselL:.—=L-1;
until (TC = M) and (L = 1) or (TC = 12);
end;
(* OutCust displays the customer data contained in Cust *)
procedure OutCust(var Cust : CustRec);
begin
with Cust do
begin
GotoXY(13,5); Write(CustCode,” :15 - Length(CustCode));
GotoXY(35,6); Write(EntryDate); CirEol ;
GotoXY(13,7); Write(FirstName,” :15 - Length(FirstNamse));
GotoXY(40,7); Write(LastName); ClrEol;
GotoXY(13,9); Write(Company); CirEol;
GotoXY(13,10); Write(Addrl); ClrEol;
GotoXY(13,11); Write(AddrR); CIrEol;
GotoXY(13,13); Write(Phone,” :15 - Length(Phone));
GotoXY(40,13); Write(PhoneExt); ClrEol;
GotoXY(13,158); Write(Remarksl); ClrEol;
GotoXY(13,16); Write(Remarks?); ClrEol;
GotoXY(13,17); Write(Remarks3); CirEol;
end;
end;
function KeyFromName(LastNm : Strl5; FirstNm : Strl0) : Strl5;
const
Blanks—"* %
begin
KeyFromName := UpcaseStr(LastNm)+
Copy(Blanks,1,15 - Length(LastNm))+
UpcaseStr(FirstNm);
end;

TURBO Access System

(* Update is used to update the data base D)

procedure Update;
var
Ch : Char;
(* Add is used to add customers *)
procedure Add;
var
DataF : Integer;
Ccode : string[15];
KeyN : string[R5];
Cust : CustRec;
begin
with Cust do
begin
FillChar(Cust,SizeOf(Cust),0);
repeat
InputCust(Cust);

Ccode := CustCode;
FindKey(CodeIndexFile, DataF,Ccode);
if OK then
begin
GotoXY(6,19);
Write(‘ERROR : Duplicate customer cods’);
Beep;
end;
until not OK;
AddRec(DatF,DataF,Cust);
AddKey(CodeIndexFile, DataF,CustCode);
KeyN := KeyFromName(LastName,FirstName);
AddKey(NameIndexFile, DataF KeyN);
GotoXY(6,19); ClrEol;

end;
end;
(* Find is used to find, edit and delete customers *)
procedure Fing;
var
DLI : Integer;
Ch,
TC : Char;
Ccode,
PCode,
FirstNm . string[15];
KeyN,
PNm : string[25];
LastNm : string[30];
Cust : CustRec;

58 TURBO TOOLBOX Reference Manual

if UsedRecs(DatF) > O then
begin
Ceode :=“;
repeat
InputStr(Ceode,15,12,4,[1M, Z],TC);
if Ccode <> “ then
begin
FindKey(CodeIndexFile,D,Ccode);
if OK then
begin
GetRec(DatF,DCust);
OutCust(Cust);
end
else
begin
GotoXY(6,19);

Write(‘ERROR : Customer code not found'); Beep;
end;
end;

until OK or (Ccode =);
GotoXY(6,19); ClrEol;
if Ccode = “ then
begin
L:=1;
FirstNm = ;
LastNm :=“;
repeat
case L of
1 : InputStr(FirstNm,15,12,6,[1I,'M,1Z].TC);
2 : InputStr(LastNm,30,39,6,[11,1M,1Z2],TC);
end;
if (TC = 1I) ox (TC = M) then
L:=3-L;
until (TC = 1M) and (L = 1) or (TC = 1Z);
KeyN := KeyFromName(LastNm FirstNm);
SearchKey(NameIndexFile, DKeyN);
if not OK then
PrevKey(NamelndexFile D, KeyN);
repeat
GetRec(DatF.D,Cust);
OutCust(Cust);
Select(‘Find : N)ext, P)revious, Q)uit’,['N";P'/Q’],Ch);
case Ch of
'N’ : repeat NextKey(NameIndexFile, D,KeyN) until OK;
P’ : repeat PrevKey(NamelIndexFile, D,KeyN) until OK;
end;

TURBO Access System

until Ch = ‘Q;
end;
Select(‘Find : E)dit, D)elete, @)uit’,['E’,D’,’Q],.Ch);
with Cust do
case Ch of

'E’: begin

PCode := CustCods;

PNm := KeyFromName(LastName,FirstName);

repeat
InputCust(Cust);
if CustCode = PCode then
OK := false
else
begin

Ceode := CustCode;
FindKey(CodeIndexFile, I,Ccode);
if OK then Beep; -
end;
until not OK;
PutRec(DatF,D,Cust);
if CustCode <> PCode then
begin
DeleteKey(CodeIndexFile, D,PCode);
AddKey(CodeIndexFile, D,CustCode);
end;
KeyN := KeyFromName(LastName, FirstName);
if KeyN <> PNm then
begin
DeleteKey(NameIndexFile, D,PNm);
AddKey(NameIndexFile, D,KeyN);

end;
end;

‘D’ : begin
DeleteKey(CodeIndexFile,D,CustCode);
KeyN := KeyFromName(LastName FirstName);
DeleteKey(NameIndexFile, D, KeyN);
DeleteRec(DatF,D);

end;

end;
end (of UsedRecs(DatF) >0 ..}

alse Beep;
end;

60 TURBO TOOLBOX Reference Manual

begin(* Update™)
OutForm,;
repeat
Select(‘Update : A)dd, F)ind, Q)uit’,[’A’,F,Q’],Ch);
case Ch of
A’ Add;
'F : Find;
end;
ifCh <> ‘Q then
begin
GotoXY(60,2); Write(UsedRecs(DatF) :5);
ClearForm;
end;
until Ch = ‘Q’;
end;
(* List is used to list customers *)
procedure List;
label Escape;
var
DLID : Integer;
Ch,CO,CS : Char;
Ccode : string[15];
KeyN : string[25];
Name : string[35];
Cust : CustBRec;
begin
Select(‘Output device : P)rinter, S)creen’,['P’,'S’],CO);
Select(‘Sort by : C)ode, N)amse, U)nsorted,['C/N’,U’],CS);
GotoXY(1,23); Write(‘Press <Esc> to abort’); ClrEol;
ClearKey(CodeIndexFile);
ClearKey(NameIndexFile);
D:=0;
LD:=FileLen(DatF)-1;
L:=3;
repeat
if KeyPressed then
begin
Read(Xbd,Ch);
if Ch = #27 then
goto Escape;
end; .

TURBO Access System

61

62

case CS of
‘C’ : NextKey(CodeIndexFile,D,Ccode);
‘N’ : NextKey(NameIndexFile,D,KeyN);
‘U’ : begin
OK := falge;
while (D <LD) and not OK do

D=D+1;
GetRec(DatF,D,Cust);
OK := Cust.CustStatus = 0;
end;
end;
end;
if OK then
with Cust do

if CS <> ‘U’ then
GetRec(DatF,D,Cust);
Name := LastName;
if FirstName <> “ then
Name := Name + ‘,‘ + FirstName;
i£ CO = ‘P’ then
begin
Write(Lst,CustCode,” :16 - Length(CustCode));
Write(Lst,Name,” :36 - Length(Name));
Writeln(Lst,Copy(Company,1,28));
end
else

begin
if L = 21 then

GotoXY(1,23);
Write(‘Press < RETURN> to continue’);
Write(‘ or <Esc> to abort’);
ClrEol;
repeat
Read(Xbd,Ch)
until (Ch = tM) or (Ch = #27);
if Ch = #27 then
goto Escape;
GotoXY(1,23);
Write(‘Press <Esc> to abort'); ClrEol;
ClearFrame;
L:=3;
end;
GotoXY(1,L + 1); Write(CustCode);

TURBO TOOLBOX Reference Manual

GotoXY(17,L + 1); Write(Nae);
GotoXY(583,L + 1); Write(Copy(Company,1,25));
L:=L+1;
end; { of with Cust do ..}
end; { of if OK ..}
until not OK;
if CO = ‘S’ then

GotoXY(1,23); Write(‘Press <RETURN>'); ClrEol;

repeat
Read(Kbd,Ch)
until Ch = 1M;
end;
Escape :
end;
(* Main program *)
begin
ClrSer;

Writeln(ConstStr(*-,79));
Writeln(“TURBO-file Customer Database’);
Writeln(ConstStr(-,79));
GotoXY(1,2R); Writeln(ConstStr(*-,79));
Writeln;
Write(ConstStr(*-,79)); GotoXY(1,4);
InitIndex;
OpenFile(DatF,'CUST.DAT’,CustRegSize);
if OK then
OpenIndex(CodeIndexFile, CUST.IXC',15,0);
if OK then
OpenIndex(NamelndexFile,CUST.IXN25,1);
if not OK then
begin
Select(‘Data files missing. Create new files (¥/N)’, ['Y’,/N’], Ch);
if Ch = Y’ then
begin
MakeFile(DatF, CUST.DAT’ CustRegSize);
MakeIndex(CodeIndexFile,CUST.IXC',15,0);
MakeIndex(NameIndexFile,CUST.IXN',25,1);
end
else goto Stop;
end;

TURBO Access System

63

GotoXY(60,2); Write(UsedRecs(DatF):5,” Records in use’);
repeat
Select(‘Select : U)pdate, L)ist, Q)uit’, [U°,L’,/Q’], Ch);
case Ch of
‘U’ : Update;
‘L’ : List;
end;
if Ch <> ‘Q then ClearFrame;
until UpCase(Ch) = ‘Q’;
CloseFile(DatF);
CloseIndex(CodeIndexFile) ;
CloseIndex(NameIndexFile) ;
Stop :ClrScr;
end.

TURBO TOOLBOX Reference Manual

PART I
The TURBO Sort System

TURBO Sort System

65

66

TURBO TOOLBOX Reference Manual

8. INTRODUCTION TO TURBO SORT

As a programmer, you can spend much time developing routines to sort your data. The
TURBO Sort system lets you rid yourself of the details of the steps required to sort your
data, and concentrate on other important aspects of your application program while
providing your users with a versatile sorting utility.

This chapter provides a brief overview of the capabilities of TURBO Sort.

8.1 This is TURBO Sort

TURBO Sort may be thought of as a ‘black box’ which will take care of all your sorting
needs with a minimum of coding on your part. TURBO Sort uses the Quicksort method to
ensure fast and efficient sorting, and will sort any type of data. TURBO Sort’s virtual
memory management means that you are not limited to sorting in memory; if your data:
requires more memory than is available for sorting, the disk will automatically be used as
an extension of memory.

TURBO Sort is supplied on the disk in.readable source code which you are free to use
any way you like. You can include this file in your own TURBO Pascal programs, as
explained later in this manual, without ever taking a look at the source code, and without
worrying about how it works. You may study the source code to learn from it, or you may
even make your own changes to it. But remember that if you do that, you are as much on
your own as if you had written the entire program-yourself, and our support staff will have
no way of helping you.

8.2 About the Text

This part of the manual teaches you how to use TURBO Sortin your own TURBO Pascal
programs. It provides all the information you need to perform sorting, but no more. We are
not trying to keep the inner workings of TURBO Sort a secret; on the contrary, TURBO
Sortis available to you in source code, but discussing it here is unnecessary and would
only cause confusion.

Chapter 9 shows you the few and simple things you must do to sort single data items.
Chapter 10 discusses some more advanced uses: sorting on multiple keys and sorting of
different data items in the same program.

Because TURBO Sortis a tool you use in TURBO Pascal programs of your own creation,
we have assumed that you are already familiar with TURBO Pascal. Therefore, the text
makes no attempt to explain the Pascal language or the extensions found in TURBO
Pascal.

TURBO Sort System 67

8.3 Files on the Toolbox Diskette

The TURBO Toolbox distribution diskette contains a number of files corresponding to
different TURBO tools. All tools have the extension .BOX. All sample programs are have
the extension .PAS. You should make a copy of the distribution diskette before you go to
work to ensure that you always have the original, untouched versions of your TURBO
tools.

The following files belong to the TURBO Sort system:

SORT.BOX Contains the TurboSortfunction and related procedures and
functions.
SORT1.PAS Sample TURBO Pascal program using TURBO Sort. Sorts

data from the CUSTOMER.DTA file.

SORT2.PAS Sample TURBO Pascal program using TURBO Sort. Sorts
data from the CUSTOMER.DTA file on a single key and from
the STOCK.DTA files on multiple keys.

CUSTOMER.DTA Data for SORT1 and SORT2 above.

STOCK.DTA Data for SORT2 above.

68 TURBO TOOLBOX Reference Manual

8. USING TURBO SORT

This chapter provides explanations and examples illustrating how to use TURBO Sort.
Read this information carefully, for this is the basis for all TURBO Sort operations.

9.1 How TURBO Sort Works

TURBO Sort is & function of type Integer. The TURBO Sort function is called with one
parameter, as follows:

SortResuit := TurboSort(itemSize);

where SortResultis an Integer variable and /temSize is an Integer expression giving the
size (in bytes) of the data items which are to be sorted.

TURBO Sort divides its work into three phases:

o the input phase
® the sorting phase
o the output phase

in the input phase, TURBO Sort calls the procedure Inp, which you must write. This
procedure inputs data to be sorted and passes itto TURBO Sort, one item atatime. Input
data may be read from a file, it may be data already in memory, or it may be produced by
the Inp procedure itself. In short, since you write the Inp procedure yourself, you are free
to obtain input by any means. Furthermore, input may be data of any type, because itis
passed to TURBO Sortas an untyped parameter. Inpis called only once. When itfinishes,
the sorting phase starts.

Since TURBO Sort knows nothing of the type of data being sorted, itrelies on the boolean
function Less (which you must write) to determine which of two data items is the smaller.
The Lessfunction is calied repeatedly during the sorting phase. When sorting is finished,
TURBO Sort enters the output phase.

In the output phase, TURBO Sort calls the procedure OutP (which you also must write).
OutP gets the sorted data one item at a time, allowing you to do with it whatever you
please; for example, write it on a file, put itin memory for further processing, printit, and so
forth. Like Inp, OutPgives you complete freedom in dealing with your data, becauseitisa
procedure of your own design. OutP is called only once, and when it finishes, TURBO
Sort terminates.

TURBO Sort System 69

When the TURBO Sort function terminates, it produces an integer value which indicates
whether sorting went well, or aborted with an error.

9.1.1 Data Item Size

The parameter passed to TURBO Sortis the size (in number of bytes) of the data item you
want to sort. The TURBO Pascal standard function SizeOf will give you this information,
as shown in the following example:

ItemSize := SizeOf(Dataltern);

where /temSizeis aninteger variabie and Dataltemis the variable you wantto sort (or the
type of that variable).

9.1.2 Use of Memory

TURBO Sort will automatically aliocate space on the Heap for sorting. TURBO Sort
allocates MaxAvailminus 2K bytes (to ensure ample space on the stack for local variables
and parameters). If your /np, Less, or OutP subprograms require Heap space, you must
allocate space for them before calling TurboSortby using the standard procedures New
or GetMem.

The minimum size required for sorting is:
3 * itemSize

or
3 * 128 bytes

whichever is larger. If less space is available, TURBO Sort aborts and returns the error
value 3.

TURBO Sort will perform sorting entirely within memory if space allows. Only if there is
insufficient space for internal sorting will TURBO Sort's virtual memory management be
activated. Then, the disk will work as an extension of memory.

9.1.3 Maximum Sort Size

The maximum number of records TURBO Sort will handle is 32767 (MaxInt). If more
records are to be found, TURBO Sort aborts with error code 9.

70 TURBO TOOLBOX Reference Manual

9.2 A Sample Program Using TURBO Sort

Let us suppose that you have a fite of customers that you want to sort. The following
illustrates how you might write a sample program that reads data from such a file, sorts it
by customer number, and outputs to the screen.

The file CUSTOMER.DTA on the distribution diskette contains 100 records of the type
defined below, and is used by the example for input.

You startyour program as usual with the type definition part and the variable declaration
part:

program SortExampleOne;

type
CustRec = record
Number: integer;
Name:string[30];
Addr:string[20];
City:string[12];
State:string[3];
Zip:string[5];
end;
var

CustFile: file of CustRec;
Customer: CustRec;

$ISORT.BOX

CustRec is the data item which is to be read from the file, sorted, and finally output to the
screen.

The $ISORT.BOX) statement causes the compiler to include the file SORT.BOX during
compilation. This file contains the TurboSort function and related declarations.

After making these declarations, you are ready to write the three simple subprograms /np,
Less, and OutP. The following subsections explain each of these.

TURBO Sort System 7

9.2.1 The Inp Procedure

Because the Inp procedure is catled from the TurboSortfunction in the SORT.BOX file, it
must be forward declared prior to the declaration of TurboSort. The SORT.BOX file
contains the necessary declaration. Your /np procedure should look like this:

procedure Inp;

begin
repeat
Read(CustFile,Customer);
SortRelease(Customer),

until EOF(Cust¥Ile);

end;

The Inpprocedure is called only once from TurboSort. It then reads records from the data
file CustFile, and passes them on for sorting with calls to the procedure SortRelease
(which is also included in the SORT.BOX file). This process is repeated until end-of-file is
reached. The parameter to SortRelease is untyped, which means that you can pass data
of any type to SortRelease.

You have now read all of your input data and passed it on for sorting. Clearly, data could
be obtained from other sources than files.

9.2.2 The Less Function

Like /np, the Less function is forward declared in the SORT.BOX file. It is declared as a
Boolean function with two untyped parameters X and Y. The type and the parameters
must not be repeated in your declaration of Less, which should look iike this:

function Less;
var
FirstCust:CustRec absolute X;
SecondCust: CustRec absolute Y;
begin
Less := FirgtCust.Number < SecondCust.Number;
end;

The Lessfunction receivestwo memory addresses in the parameters Xand Y. These are
the addresses of the first byte of the first to data items TurboSortis to compare. You then
declare two variables ‘on top’ of these data items by declaring the variables as absolute at
addresses X and Y. The variables then contain the data items to be compared.

72 TURBO TOOLBOX Reference Manual

Comparing the variables on the desired criteria is now simple. In the example, we
compare the customer number. The customer number thus becomes the sorting key. We
could have just as simply sorted on the Name, the Zip code, or any other field in the
record, or even could have sorted on muitiple keys by comparing more fields. But let's
keep the example simple.

Less is called repeatedly by TurboSort, once every time two data items are to be
compared. When TurboSort has finished sorting, the output procedure OutP is called.

9.2.3 The OutP Procedure

Like /np, the OutP procedure is called from the TurboSortfunction and must therefore be
forward declared in the SORT.BOX file.

procedure OutP;
var
I:Integer;
begin
repeat
SortReturn(Customer);
with Customer do
begin
Write(Number, ¢ { Name, ‘);
for I ;= Length(Name) to 30 do Write(* ©);
Write(Addr);
for I := Length(Addr) to 20 do Write(‘ *);
Write(City);
for I := Length(City) to 12 do Write(‘ *);
WriteLn(State,’ ‘Zip);
end;
until SortEOS;
end;

The OutP procedure is called only once from TurboSort. It then calls the SortReturn
procedure which is part of the SORT.BOX file. SortReturn returns one data item in its
parameter (again untyped). This data item can now be output. The process is repeated
until the SortEOS function (also part of the SORT.BOX file) returns True. The basic
functionality of the output procedure reads as follows:

repeat
SortReturn(Customer);
until SortEOS;

The with Customer do... statement writes the sorted customer records to the screen, one

record at a time, with each field left justified. The output could instead be sentto a file, a
printer, or anywhere else you can specify.

TURBO Sort System ' 73

9.2.4 The Main Program

in the main program, you first prepare the input file for reading by using the Assign and
Reset standard procedures. You then start the sorting with a call to the TurboSort
function. In the example, this is done in a WriteLn statement which will print the value of
the TurboSortfunction on the screen when sorting is over. This value tells you whether
everything went well, or sorting was aborted with an error.

begin (program SortExampleOne}
Assign(CustFile, CUSTOMER.DTA);
Reset(Custfile);
WriteLn(TurboSort(SizeOf(CustRec)));
end.

The parameter to TurboSortis an Integer expression giving the size (in bytes) of the data
item to be sorted. The standard function SizeOf is convenient to use because it returns
the size of its argument, which may be the identifier of either the type or the variable to be
sorted.

9.2.5 TURBO Sort Termination Information

The value of the function TurboSort (which is printed by the sample program), indicates
certain error conditions, as follows:

0 All went well.

3 Not enough memory available for sorting. The minimum size is three times the
size of the data item to be sorted, or 3 * 128 bytes, whichever is larger.

8 lllegal item length. ltem length must be >=2.
9 More than Maxint records input for sort.

10 An error occured during sorting. This may mean a bad disk or that the disk
became full.

11 Read error during sort. Probably due to a bad disk.

12 File creation error. The directory may be full, or you may try to access a
non-existing directory (MS-DOS/PC-DOS v. 2).

74 TURBO TOOLBOX Reference Manual

9.3 Complete Example

This section lists the complete example described above. The file SORT1.PAS on the
distribution diskette contains the example.

program SortExampleOne { Customer File };

type
CustRec = record
Number: integder;
Name: string{30];
Addr: string[20];
City: string[12];
State: string(3];
Zip: - string[5];
end;
var

CustFile: file of CustRec;
Customer: CustRec;
$ISORT.BOX}
procedure Inp; { forward declared in SORT.BOX }
begin
repeat
Read(CustFile,Customer);
SortRelease(Customer);
until EOF(CustFIle);
end;

. function Iess; { boolean function with two parameters, }
{X and Y, forward declared in SORT.BOX !
var
FirstCust:CustRec absolute X;
SecondCust: CustRec absolute Y;
begin
Less := FirstCust.Number < SecondCust.Number;
end;
procedure OutP; | forward declared in SORT.BOX |
var
I:Integer;
begin
repeat
SortReturn(Customer);
with Customer do

TURBO Sort System 75

76

begin
Write(Number, ‘ ‘,Name, *); -
for I .= Length(Name) to 30 do Write(‘);
Write(Addr);
for I := Length(Addr) to 20 do Write(* *);
Write(City);
for 1 := Length(City) to 12 do Write(* ©);
WriteLn(State, ‘Zip);
end;
until SortEOS;
end;
begin
Assign(CustFile,CUSTOMER.DTA");
Reset(Custfile);
WriteLn(TurboSort(SizeOf(CustRec)));
end.

TURBO TOOLBOX Reference Manual

10. ADVANCED SORTING

The example presented in the previous chapter deals with the simple case of sorting one
type of data, and sorting on one key. It was a useful example, for you will often wantto sort
in this manner. However, you may also want to be able to sort different kinds of data, or
sort on multiple keys. Such advanced sorting is discussed in this chapter.

10.1 Sorting Different Data

We will use the example from the previous chapter as a basis for a new program which
can sort both the customer data we already know and items in a stock list. The first thing
to do is to add the definition of a new type to the program declaration, as follows:

program SortExampleTwo (Customer File and Stock Filel;

type
CustRec = record
Nurnber: integer;
Name: string(30];
Addr: string[20];
City: string[12];
State: string(3];
Zip: string[5];
end;
ItemRec = record
Number: integer;
Descrip: string[30];
InStock: integer;
Price: real;
end;

The new type /temRec defines a data record which will hold information about items in
the stock list. The file STOCK.DTA contains 100 records of this type, and is used by our
program as input.

TURBO Sort System 77

We also must declare new variables for the stock list fite, and for the items in the stock list:

var
CustFile: file of CustRec;
Customer: CustRec;
StockFile: file of ItemRec;
Item: ItemRec;
Choice: Char;
{$ISORT.BOX!

The last variable, Choice, is used in the main body of the program which lets us choose
whether we want to sort the customer file or the stock file:

begin (program SortExampleOnel
Write(‘Sort Customers or Stock? (enter Cor 8):);
repeat
read(Kbd,Choice);
Choice := UpCase(Choice);
until Choice in [’C’,)S'];
WriteLn(Choice);
case Choice of
'C’: begin
Assign(CustFile, CUSTOMER.DTA");
Reset(CustFile);
WriteLn(TurboSort(SizeOf(CustRec)));
end,
’S’: begin
Assign(StockTFile,'STOCK.DTA");
Reset(StockFile);
WriteLn(TurboSort(SizeOf(ItemRec)));
end;
end; (case}
end.

The program first prompts you to enter a C or an S, and then keeps reading the choice
until one of these characters is entered. Note that the inputis converted to upper-case, so
your users can make their entries in either upperor fower-case.

Based on the choice the user makes, the case statement prepares the desired file for
reading, and calls TurboSort while providing the size of the applicable data type as the
parameter.

78 TURBO TOOLBOX Reference Manual

The Inp procedure also uses the variable Choicein a case statementto selectthe rightfile
for reading:

procedure Inp;
begin
case Choice of
'C": begin
repeat
Read(CustFile,Customer);
SortRelease(Customer);
until EOF(CustFile);
end;
'S begin
repeat
Read(StockFile Item);
SortRelease(Item);
until EOF(StockFile);
end;
end; (case}
end;

if the choice is C for customers, the customer file is read, and its data passed on for
sorting; if the choice is S for stock list, the stock list file is read.

In the Lessfunction, we must declare two new variables of type /femRec. Again, a case
statement uses the variable Choice to determine which variables should be used in the
comparison:

function Less;

var
FirstCust: CustRecabsolute X;
SecondCust: CustRec absolute Y;

FirstIitem: ItemRecabsolute X;
Seconditemn: ItemRecabsolute Y;
begin
case Choice of
’C’: Less := FirstCust.Number < SecondCust.Number;
’S": Less := FirstItem.Price < SecondItem.Price;
end;
end;

As you see, we use the field Price as the key for sorting the stock file.

TURBO Sort System 79

The use of the case statement is repeated in the last procedure, OutP:

procedure OutP;
var
I Integer;
begin
case Choice of
'C’: begin
repeat
SortReturn(Customer);
with Customer do

Write(Number, ‘ ‘,Name,’ *);
for I := Length(IName) to 30 do Write(‘);
Write(Addr);
for I := Length(Addr) to 20 do Write(‘ *);
Write(City);
for I := Length(City) to 12 do Write(‘ *);
WriteLn(State,’ ‘Zip);
end;
until SortEQS;
end;
'S’: begin
repeat
SortReturn(Item);
with Item do
begin
Write(Number, ‘ ‘,Descrip, ©);
for I := Length(Descrip) to 30 do Write(‘ *);
WriteLn(InStock:5,Price:8:2);
end,
until SortEOS;
end;
end; (case}
end;
Keeping the actual processing in the case statements as we have done here is a good
idea only as long as it is fairly simple to do. If your variousinput, output, and comparison
routines become more complicated, it may be a good idea to isolate each in a separate
subprogram, and then call these from the case statement, passing the necessary
information as parameters.

80 TURBO TOOLBOX Reference Manual

10.2 Multiple Keys

Suppose you want to sort the stock data, not just on price as above, but on two keys:
primarily on quantity in stock, and secondarily (if there are any of the specified items in
stock) on price.

This is easy to do. Simply rewrite the comparison of Firstitemand Secondltemas follows:

function Less;
var
FirstCust: CustRec absolute X;
SecondCust: CustRec absolute Y;
FirstItem: ItemRec absolute X;
Secondltem: ItemRec absolute Y;
begin
case Choice of

'C’: Less := FirstCust.Number < SecondCust.Number;
’S’: Less := (FirstIterm.InStock < Secondltem.InStock) or
((FirstItem.InStock = SecondItem.InStock) and
(FirstItem.Price < SecondItem.Price));
end;
end;

You first compare the InStock fields. If one is larger than the other, this comparison
determines which item is smaller. But if they are equal, the next comparison, between the
Price fields, determines which data item is smaller.
You could carry this scheme further, and sort on as many fields as you desire.

TURBO Sort System 81

10.3 Complete Example

The following is a listing of the complete example as described above. The file
SORT2.PAS on your distribution diskette contains the example.

program SortExampleTwo { Customer File and Stock File };

type
CustRec = record
Number: integer;
Name: " string[30];
Addr: string[20];
City: string[12];
State: string(3];
Zip: string[5];
end,
ItemRec = record
Number: integer;
Descrip: string[30];
InStock: integer;
Price: real;
end;)
var
CustFile: file of CustRec;
Customer: CustRec;
StockFile: file of ItemRec;
Item: ItemRec;
Choice: Char;
{$ISORT.BOX!
procedure Inp; {forward declared in SORT.BOX}
begin
case Choice of
'C’: begin
repeat
Read(CustFile,Customer);
SortRelease(Customer);
until EOF(CustFile);
end;
'S": begin
repeat
Read(StockFile Itemn);
SortRelease(Item);
until EOF(StockFile);
end;
end; (casel
end;

82 TURBO TOOLBOX Reference Manual

fanction Less; { boolean function with two parameters, |
{X and Y, forward declared in SORT.BOX }

var
FirstCust : CustRec absolute X;
SecondCust: CustRec absolute Y,
FirstItem: ItemRec absolute X;
SecondItem: ItemRec absolute Y;
begin

case Choice of
’C’: Less := FirstCust.Number < SecondCust.Number;
’S": Less := (FirstItem.InStock < SecondItem.InStock) or
((FirstItem.InStock = SecondItem.InStock) and
(FirstItem.Price < SecondItem.Price));
end;
end;
procedure OutP; { forward declared in SORT.BOX }
var
L Integer;
begin
case Choice of
’C’: begin
repeat
SortReturn(Customer);
with Customer do
begin
Write(Number, ‘ ‘ Name, ‘);
for I .= Length(Name) to 30 do Write(‘ *);
Write(Addr);
for I := Length(Addr) to 20 do Write(‘ *);
Write(City);
for I := Length(City) to 12 do Write(*);
WriteLn(State,’ ‘Zip);
end;
until SortEOS;
end;
’S’: begin
repeat
SortReturn(Item);
with Item do
begin
Write(Number, ‘,Descrip,’);
for I := Length(Descrip) to 30 do Write(‘ ©);
WriteLn(InStock:5,Price:8:2);
end;
until SortEOS;
end;

TURBO Sort System 83

84

end; [case}
end;
begin [program SortExampleOne)
Write(‘Sort Customers or Stock? (enter C or 8): ©);
repeat

read(Kbd,Choice);

Choice := UpCase(Choice);
until Choice in ['C',S’};
WriteLn(Choice);
case Choice of

'C". begin

Assign(CustFile,CUSTOMER.DTA");
Reset(CustFile);
WriteLn(TurboSort(SizeOf(CustRec)));
end;
’S": begin
Assign(StockFile,STOCK.DTA");
Reset(StockFile);

WriteLn(TurboSort(SizeOf(ItemRec)));
end,
end; [case!
end.

TURBO TOOLBOX Reference Manual

PART Il
GINST - General Installation
System |

GINST 85

86

TURBO TOOLBOX Reference Manual

11. INTRODUCTION TO GINST

This chapter explains how to use the GINST (General Installation) program to generate an
installation routine for your TURBO Pascal programs.

11.1 This is GINST

This program creates installation programs which allow your customers to install your
programs for their particular terminal(s). You may freely distribute the generated
installation programs with any program you develop with TURBO Pascal.

11.2 Files on the Toolbox Diskette

The TURBO Toolbox distribution diskette contains a number of files corresponding to
different TURBO tools. All tools have the extension .BOX. All sample programs are called
.PAS. You should make a copy of the distribution diskette before you go to work to ensure
that you always have the original, untouched versions of your TURBO tools.

The following files belong to the GINST system:
GINST.COM The GINST program. (CMD in the CP/M-86 version)

GINST.COD Object code for the generated installation program. Must be
present when you run GINST.

GINST.MSG Messages for GINST. These messages are also used to
generate the .MSG file for your own installation program and
must be present on the disk when you run GINST.

GINST.DTA Terminal installation data, used for generation the .DTA file for
your own installation program. May be omitted if you create
an installation program for an IBM PC.

INSTALL.DOC Documentation for the use of the installation program pro-

duced by GINST. You may include this text in your own
manuals.

GINST 87

NOTES

TURBO TOOLBOX Reference Manual

12. GENERATING AN INSTALLATION PROGRAM

GINST is not an installation program in itself; it is a program that generates installation
programs which will then install TURBO Pascal programs.

When you start GINST, it first asks you to enter the name of the program which is to be
installed by the generated installation program:

Turbo Pascal
Installation Program Generator

Version 3.00A
Copyright® 1984 by Borland Inc.

Enter name of program to install: MYPROG

You can enter any legal file name; for example MYPROG. If you don't enter an extension,
COM is assumed (CMD in the CP/M-86 version).

Nextyou must enter the first name you want to use for the generated installation program
files, as one through eight characters:

Enter first name for installation files: MYINST
As an example, let's run the installation program for the TURBO Pascal program

MYPROG to produce the installation program MYINST. GINST produces the following
installation files:

Creating MYINST.COM
Creating MYINST.MSG
Creating MYINST.DTA

Installation program for MYPROG.COM created

GINST 89

That is all there is to generating an installation program. Refer to the TURBO Pascal
Reference Manual: Installation for an explanation of how to install your program. The
procedure is identical to installing TURBO Pascal itself.

Note:As a part of the conditions under which you purchased TURBO Toolbox, you may
copy or paraphrase the Installation section only of the TURBO Pascal Reference Manual
and include this information in your own documentation for your TURBO Pascal
programs. This is the only extension of your priviedges under the terms of the license
agreements.

90 TURBO TOOLBOX Reference Manual

A. ASCIl TABLE

DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR

0 00 1@ NUL 32 20 SPC 64 40 @ 96 60 ‘
1 01 tA SOH 33 2t ! 65 41 A 97 61 a
2 02 1B STX 34 22 ” 66 42 B 98 62 b
3 03 tC ETX 3 23 # 67 43 C 99 63 c
4 04 D EOT 36 24 $ 68 44 D 100 64 d
5 05 tE ENQ 37 25 % 69 45 E 101 65 e
6 06 tF ACK 38 26 & 70 46 F 102 66 f
7 07 1G BEL 39 27 ’ 71 47 G 103 67 g
8 08 tH BS 40 28 (72 48 H 104 68 h
9 09 f1 HT 41 29) 73 49 I 105 69 i
10 O0A N LF 42 2A * 74 4A J 106 6A j
11 0B 1K VT 43 2B + 75 4B K 107 6B k
12 0C tL FF 44 2C , 76 4C L 108 6C]
13 0D tM CR 45 2D - 77 4D M 109 6D m
14 O0E IN SO 46 2E . 78 4E N 110 6E n
15 OF 1O Sl 47 2F / 79 4F O 111 6F 0
16 10 tP DLE 48 30 0 8 50 P 112 70 p
17 11 tQ DCi 49 31 1 81 51 Q 113 71 q
18 12 tR DC2 50 32 2 82 52 R 114 72 r
19 13 tS DC3 51 33/ 3 83 53 S 115 73 s
20 14 1T DC4 52 34 4 84 54 T 116 74 t
21 15 tU NAK 53 35 5 85 55 u 117 75 u
22 16 tVv SYN 54 36 6 86 56 vV 118 76 v
23 17 tW ETB 55 37 7 87 57 W 119 77 w
24 18 1X CAN 56 38 8 88 58 X 120 78 X
25 19 1Y EM 57 39 9 89 59 Y 121 79 y
26 1A 1Z SUB 58 3A : 9 5A Z 122 7A z
27 1B tf ESC 59 3B ; 91 5B [123 7B {
28 1C 1\ FS 60 3C < 92 5C \ 124 7C il
29 1D 1] GS 61 3D = 93 5D 1 125 7D }
30 1E 1t RS 62 3E > 94 5E 1t 126 7E ~
31 1F t_ US 63 3F ? 95 5F _ 127 7F DEL

91

92

TURBO TOOLBOX Reference Manual

B. SUBJECT INDEX

ACCESS.BOX, 17 Data file, 8, 14
Adding Data Records, 23 Data File Initialization and
AddKey, 36 _ Update, 17

and duplicate keys, 36 Data File Splitting, 33
ADDKEY.BOX, 17 Data ltem Size, 70
AddRec, 28

Data pointer

ASCl! table, 91 See: Data reference
Data reference, 14
: DataFile, 18
B example, 43
maximum record number, 20
B-tree height maximum record size, 20
reduction at deletion, 16 minimum record size, 20
B-tree Deleted data records
height, 15 indication, 25
order, 14 reuse, 25
order and path length, 14 Deleted records
path, 14 reuse, 47
principles, 14 DeleteKey, 36
stack, 15 DeleteRec, 29
B-trees) Deleting key
formal properties, 14 in user program, 24
Backward page reference, 14 Deleting Keys, 15
Balancing DelKey
of page, 16 and duplicate keys, 36
Bayer, R., 7 DELKEY.BOX, 17
Books on B-trees, 9 Different data, sorting 77
Duplicate keys, 32
and AddKey, 36
and DelKey, 36
C and SearchKey, 38
Case
of key characters, 12
Changing key E
in user program, 24
ClearKey, 40 Error codes, 74
CloseFile, 27 Extra page reference
Closelndex, 35 see: Backward page ref.
CUST.DAT, 51
CUST.IXC, 51

CUST.IXN, 51

F

FileLen, 30

Files on the Toolbox diskette, 68

Files
CUSTOMER.DTA, 68, 71
SORT.BOX, 68,71,72,73
SORT1.PAS, 68, 75
SORT2.PAS, 68, 82
STOCK.DTA, 68, 77

Finding the Data Reference, 14

FindKey, 37

Formal Properties of B-trees, 14

G

Generating an installation
program, 89

GETKEY.BOX, 17

GetMem, 70

GetRec, 29

GINST
general description, 87
general installation program, 89
running, 89

H

Heap space, 70
Heap

see also: B-tree stack, 16
Height

of B-tree, 15

170 errors
in TURBO Access, 49
Including modules in program, 17
Index file, 8, 11
Index File Initialization, 18
Index file reference
see Page reference
Index File Search, 19
Index File Update, 19
Index file
calculation of maximum size, 21

94 -

IndexFile, 19
example, 41
Initializing the User Program, 23
Initindex, 33, 69
Inp procedure, 72
Inserting Keys,
Installation
GINST, 89
of your TURBO Pascal
programs, 89
Insertion
of key, 15
Internal system variables, 24
IntToStr, 32
IOcheck, 25, 49
ltem size, 70
Iltems, 12
ltems per page
see: m
ltems
number per page, 14

K

Key, 7, 72
Key Change, 24
Key Deletion, 24
Key generation, 17
Key Location, 23
Key
case of characters, 12
delete, 15
duplicate, 11
duplication, 32
generation of, 15
insert, 15
length,
maximum length, 11
numeric, 12, 32
ordering, 12
search, 14
type, 11
Keys, 13
Keys per page
see:m

TURBO TOOLBOX Reference Manual

L (0

Leaf page, 15 OK, 25
Less function, 69, 72 OpenfFile, 27
Level) Openindex, 35
of page, 15 Order
Local variables, 70 and path length, 13
Locating key of B-trees, 12
in user program, 23 system constant, 21
system constant example, 41
Ordering
of keys, 12
M OutP procedure, 69, 73
m, 14 Overlays, 17
Main sample program, 74
MakeFile, 26
Makelndex, 34 P
MaxDataRecSize
example, 41 Page buffer
system constant, 22 calculation of size, 22
MaxHeight Page item
calculation, 21 see ltem
example, 41 Page level, 156
system constant, 21 Page reference, 15
Maximum Sort Size, 70 Page
MaxKeyLen balancing after deletion, 16
example, 41 leaf, 15
system constant, 22 merging after delete, 15
Memory size, 70 root, 13, 15
Memory usage, 70 splitting after insert, 15
Merge Pages, 13
of pages, 15 Pages into Trees, 13
Minimum memory, 70 PageSize
Modules determining, 22
inclusion in program, 17 example, 41
Multtiple keys, 81 system constant, 21
PageStackSize
determining, 22
N example, 41
system constant, 21
n, 13, 14 Parameters, 71
New, 70 untyped, 71,72, 73
NextKey, 38 Path, 13
Numeric keys, 12, 32 Path length
and order, 13
Prefix
internal system variables, 24
PrevKey, 39

Program overlays, 17
PutRec, 30

R

Random Data Access, 10
Return code values, 74
Reuse of Deleted Data Records, 25
Root page, 13, 15
new, 15
Running GINST, 89

S

Sample program, 71
Search path, 14
Search
of key, 14
SearchKey, 38
and duplicate keys, 38
Sequential Data Access, 10
SizeOf, 70
SizeOf function, 42
Sorting key, 73
Space allocation, 70
Splitting
Data file, 33
of page, 156
Stack, 70
Str procedure, 32
StrToint, 32
System constants
MaxDataRecSize, 20
MaxHeight, 21
MaxKeyLen, 21
Order, 21
PageSize, 21
PageStackSize, 21
System procedures, 8
AddKey, 36
AddRec, 28
ClearKey, 40
CloseFile, 27
Closelndex, 35
DeleteKey, 36
DeleteRec, 29
FileLen, 30
FindKey, 37
GetRec, 29
Initindex, 33
10check, 51
MakeFile, 26

96

Makelndex, 34
NextKey, 38
OpenFile, 27
Openindex, 35
PrevKey, 39
PutRec, 30
SearchKey, 38
System source files
order of inclusion, 20
System type
Data File, 19
DataFile, 19
System variable
OK, 19

T

Terminal page
see: Leaf page, 15
Terminating
user program, 24
TURBO Access files
ACCESS.BOX, 17
ADDKEY.BOX, 17
DELKEY.BOX, 17
GETKEY.BOX, 17
TURBO Pascal version, 7
TURBO Sort Termination
Information, 74
Type
of keys, 11

U

Untyped parameter, 70, 72, 73
Use of Memory, 70
UsedRecs, 25, 31
User Program Termination, 24
User Program Variables, 24
User program

adding a record, 23

changing key, 24

deleting key, 24

initializing, 23

location of key, 23

terminating, 24

TURBO TOOLBOX Reference Manual

\'/

Version
of TURBO Pascal, 7
Virtual memory, 70

97

NOTES

TURBO TOOLBOX Reference Manual

NOTES

99

NOTES

100 TURBO TOOLBOX Reference Manual

NOTES

101

NOTES

102 TURBO TOOLBOX Reference Manual

Something Totally

New in Applications
Software From Borland
2
ALWAYS JUST A
KEYSTROKE L

AWAY . ..

AVAILABLE FOR THE IBM PC, XT, jr. AND COMPATIBLES

WHETHER YOU'RE RUNNING ¢ A CALCULATOR ALL AT ONCE . . . OR ONE AT
LOTUS 1-2-3, WORDSTAR, * A NOTEPAD A TIME. ANYWHERE ON
dBASEII OR WHATEVER ... * AN APPOINTMENT THE SCREEN YOU LIKE.
JUST A KEYSTROKE CALENDAR ANOTHER KEYSTROKE, AND

YOURE RIGHT WHERE YOU
WINDOW OPENS . . . * A PHONE DIRECTORY gt OFF IN YOUR ORIGINAL

¢ AN ASCII TABLE

PROGRAM!
* AND MUCH MORE (you never really left!)

Something brand new. Crafted in Assembly Need to make a phone call? Whether the number is in
language as carefully as Borland’s famous Turbo an existing database, your own Sidekick phone directory,
Pascal™, so that it’s lightning-fast and as compact as or you've just typed it on the screen . . . put the cursor
only Borland knows how to make it! With a notepad next to the number, hit the keystroke, and Sidekick dials
that has a full-screen editor that saves your notes to disk. for you!*
You can even swap information back and forth between There's lots more, too. You can move the Sidekick
your applications software and your Sidekick™. windows anywhere on the screen you like. And you can

Suppose you're working with a spreadsheet, and you have as many on screen at a time as you need.
suddenly have an important idea. Just hit the button, a We designed it because we needed it. If you've ever been
window opens, you write the note and hit the button writing a report and needed to do a quick calculation, or
again. You're right back where you left off in the jot down a note, then you understand why.
spreadsheet. *Only with Hayes Smartmodem and compatibles.
YOU CAN ORDER YOUR COPY Available directly from:
OF SIDEKICK™ TODAY!

t mail a check, der or Vi .)

S asperrrd maamber g i e) INTERNATIONAL
e - : Borland International

Sidekick $49.95 + $5 shipping and bandling.

(California residents add 6% sales tax. Orders 4113 Sco
outside U.S., add $15 shipping and bandling.) Scotts Vz

-

