
PROGRAMMER'S
REFERENCE

• RUN·TIME LIBRARY

• COMMAND·lINE COMPILER

• ERROR MESSAGES

• COMPILER DIRECTIVES

BORLAND

7.0

Turbo PascafB>
Version 7.0

Programmer's Reference

BORLAND INTERNATIONAL INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, SCOTTS VALLEY, CA 95067·0001

Rl

Copyright © 1983, 1992 by Borland International. All rights
reserved. All Borland products are trademarks or registered
trademarks of Borland International, Inc. Windows, as used in this
manual, shall refer to Microsoft's implementation of a windows
system. Other brand and product names are trademarks or
registered trademarks of their respective holders.

PRINTED IN 'THE USA.

c o N T

Introduction 1
What's in this manual? 1
How to contact Borland 2

Chapter 1 Library reference 5
Sample procedure .. 5
Abs function 6
Addr function 6
Append procedure 6
ArcCoordsType type 7
Arc procedure .. 8
ArcTan function 8
Assign procedure 9
AssignCrt procedure 10
Assigned function 10
Bar constants .. 11
Bar procedure 11
Bar3D procedure 12
BitBlt operators 12
BlockRead procedure 13
BlockWrite procedure 14
Break procedure 15
ChDir procedure " 15
CheckBreak variable 16
CheckEOF variable 16
CheckSnow variable ~ ". 16
Chr function 17
Circle procedure 17
ClearDevice procedure 18
ClearViewPort procedure 19
Clipping conshints 19
Close procedure 20
CloseGraph procedure 20
ClrEol procedure 21
ClrScr procedure '.' 21
Color constants 22

E N T

Color constants for SetRGBPalette
Concat function
Continue procedure
Copy function
Cos function
CreateDir procedure
Crt mode constants
CSeg function
DateTime type ~
Dec procedure
Delay procedure
Delete procedure
DelLine procedure
DetectGraph procedure
DirectVideo variable
DiskFree function
DiskSize function
Dispose procedure
DosError variable
DosExitCode function ;
Dos Version function ;
DrawPoly procedure
Driver and mode constants
DSeg function
Ellipse procedure " ..
EnvCount function
EnvStr function
Eof function (text files)
Eof function (typed, untyped files)
Eoln function
Erase procedure
ErrorAddr variable
Exclude procedure
Exec procedure
Exit procedure
ExitCode variable

s

22
23
23
24
25
25
25
26
26
27
27
27
28
28
29
30
30
30
31
32
32
32
33
35
35
36
36
36
37
37
38
39
39
39
40
41

ExitProc variable .. 41
Exp function ;......... 42
fcXXXX flag constants 42
FExpand function ' 42
File attribute constants 43
File name length constants 43
FileExpand function 44
File-handling string types 44
FileMode variable 45
FilePos function 45
FileRec type 46
FileSearch function 46
FileSize function 47
FileSplit function. '.' : 47
Fill pattern constants 48
FillChar procedure 49
FillEllipse procedure .. ' 49
FillPatternType type 50
FillPoly procedure 50
FillSettingsType type 51
FindFirst procedure 51
FindNext procedure 52
Flag constants 53
FloodFill procedure 53
Flush procedure 54
fmXXXX constants 55
Font control constants 55
F~ac function : 55
FreeList variable 56
FreeMem procedure 56
FSearchfunction .. 57
FSplit procedure 57
GetArcCoords procedure , 58
GetArgCount function 59
GetArgStr function 59
GetAspectRatio procedure 59
GetBkColor function 60
GetCBreak procedure. 61
GetColor function 62
GetCurDir function 62
GetDate procedure 63
GetDefaultPalette function 63
GetDir procedure 64
GetDriverName function. 64

GetEnv function 65
GetEnvVar function. 66
GetFAttr procedure 66
GetFillPattern procedure 67
GetFillSettings procedure . " 67
GetFTime procedure 68
GetGraphMode function 69
GetImage procedure 70
GetIntVec procedure 71
GetLineSettings procedure 71
GetMaxColor function 72
GetMaxMode function. 72
GetMaxX'function ... ; 73
GetMax Y function 74
GetMem procedure 74
GetModeName function 75
GetModeRange procedure 75
GetPalette procedure 76
GetPaletteSize function 77
GetPixel function 77
GetTextSettings procedure 78
GetTime procedure 78
GetVerify procedure 79
GetViewSettings procedure 79
GetX function 80
GetY function 81
GotoXYprocedure 81
GraphDefaults procedure 82
GraphErrorMsg function. 82
GraphFreeMemPtr variable 83
GraphGetMemPtr variable 83
GraphResult function. 84
grXXXX constants 85
Halt procedure 85
HeapEnd variable 86
i-IeapError variable. 86
HeapOrg variable 86
HeapPtr variable. 87
Hi function 87
High function 87
High Video procedure 88
ImageSize function 'c.' ••••••••••• 88
Inc procedure89
Include procedure 90

InitGraph procedure 90
InOutRes variable 92
Input variable 92
Insert procedure 93
InsLine procedure 93
InstallUserDriver function 94
InstallUserFont function 96
Int function 97
Intr procedure 97
IOResult function 98
Justification constants 99
Keep procedure. .. 99
Key Pressed function 99
LastMode variable 100
Length function .. 100
Line procedure 100
Line style constants 101
LineRelprocedure 102
LineSettingsType type 103
LineTo procedure 103
Ln function 104
Lo function 104
Low function .. 104
LowVideo procedure 105
Lst variable 106
MaxAvail function 106
MaxColors constant 107
MemAvail function 107
MkDir procedure 108
Move procedure 108
MoveRelprocedure 109
MoveTo procedure 110
MsDos procedure 110
New procedure 111
NormVideo procedure 111
NoSound procedure 112
Odd function .. 112
Ofs function .. 112
Ord function 112
Output variable .. 113
OutText procedure 113
OutTextXYprocedure 115
OvrClearBuf procedure, 116
OvrCodeList variable 116

iii

OvrDebugPtr variable 117
OvrDosHandle variable . ~ 117
OvrEmsHandle variable 117
OvrFileMode variable 118
OvrGetBuf function 118
OvrGetRetry function 118
OvrHeapEnd variable 119
OvrHeapOrg variable 119
OvrHeapPtr variable 120
OvrHeapSize variable 120
OvrInit procedure. 120
OvrInitEMS procedure 121
OvrLoadCount variable. 122
OvrLoadList variable 122
OvrReadBuf variable 123
OvrResult variable 123
OvrSetBuf procedure 123
OvrSetRetry procedure 124
OvrTrapCount variable 125
ovrXXXX constants. 125
PackTime procedure 125
PaletteType type 126
ParamCount function 126
ParamStr function 127
Pi function .. 127
PieSlice procedure 127
PointType type 128
Pos function .. 128
Pred function .. 129
PrefixSeg variable 129
Ptr function 129
PutImage procedure. 130
PutPixel procedure 132
Random function 132
Randomize procedure 133
RandSeed variable 133
Read procedure (text files) ,. 133
Read procedure (typed files) 135
ReadKey function 135
Readln procedure 136
Rectangle procedure 136
RegisterBGIdriver function 137
RegisterBGIfont function. 139
Registers type 141

RemoveDir procedure 141
Rename procedure 142
Reset procedure 142
RestoreCrtMode procedure 143
Rewrite procedure 144
RmDir procedure 145
Round function .. 145
RunError procedure 146
SavelntXX variables 146
SearchRec type 147
Sector procedure 148
Seek procedure 149
SeekEof function 149
SeekEoln function 149
Seg function ; 150
Seg0040 variable 150
SegAOOO variable 150
SegBOOO variable 151
SegB800 variable 151
SelectorInc variable 151
SetActivePage procedure 152
SetAllPalette procedure 152
SetAspectRatio procedure 154
SetBkColor procedure 155
SetCBreak procedure 155
SetColor procedure 156
SetCurDir procedure 156
SetDate procedure 157
SetFAttr procedure 157
SetFillPattern procedure 158
SetFillStyle procedure 159
SetFTime procedure 160
SetGraphBufSize procedure 160
SetGraphMode procedure 160
SetIntVec procedure. 161
SetLineStyle procedure 162
SetPaletteprocedure 163
SetRGBPalette procedure 164
SetTextBuf procedure 168
SetTextJustify procedure 169
SetTextStyle procedure 169
SetTime procedure ~ 171
Set U serCharSize procedure 171
SetVerify procedure 172

iv

SetViewPort procedure 172
SetVisualPage procedure. 173
SetWriteMode procedure 174
Sin function 175
SizeOf function .. 176
Sound procedure 176
SPtr function 177
Sqr function 177
Sqrt function 177
SSeg function 177
StackLimit variable. 177
Str procedure 178
StrCat function 178
StrComp function 179
StrCopy function 179
StrDispose function 180
StrECopy function 180
StrEnd function " 181
StrIComp function 181
StrLCat function : .. 181
StrLComp function 182
StrLCopy function 182
StrLen function 183
StrLIComp function 183
StrLower function 184
StrMove function 184
StrNew function 185
StrPas function 185
StrPCopy function 186
StrPos function 186
StrRScan function 187
StrScan function 187
StrUpper function 188
Succ function .. 188
Swap function .. 188
Swap Vectors procedure. 189
TDateTime type 189
Test8086 variable 190
Test8087 variable 190
TextAttr variable. 191
Text color constants 192
TextBackground procedure 192
TextColor procedure 193
TextHeight function 193

TextMode procedure 194
TextRec type 195
TextSettingsType type 196
TextWidth function 196
TFileRec type 197
TRegisters type 198
Trunc function .. 198
Truncate procedure 198
TSearchRec type 199
TTextRec type 199
TypeOf function 200
UnpackTime procedure 200
UpCase function 200
Valprocedure 201
View PortType type 202
WhereX function. 202
Where Y function 202
WindMax and WindMin variables 203
Window procedure 203
Write procedure (text files) 204
Write procedure (typed files) 206
Writeln procedure 206

Chapter 2 Compiler directives 209
Align data 211
Boolean evaluation ; 211
Debug information 212
DEFINE directive 212
ELSE directive 213
Emulation 213
ENDIF directive 213
Extended syntax 214
Force far calls. .. 214
Generate 80286 Code 215
IFDEF directive .. 215
IFNDEF directive 215
IFOPT directive 215
Include file .. 216
Input/output checking. 216
Link object file .. 216
Local symbol information 217
Memory allocation sizes 218
Numeric coprocessor 218
Open string parameters 218

v

Overflow checking 219
Overlay code generation 219
Overlay unit name 220
Range checking .. 220
Stack-overflow checking 221
Symbol reference information 221
Type-checked pointers 222
UNDEF directive 222
Var-string checking 222
Using conditional compilation
directives 223

Conditional symbols 224

Chapter 3 Command-line compiler 227
Command-line compiler options 228

Compiler directive options 229
The switch directive option 229
The conditional defines option 230

Compiler mode options 230
The make (1M) option 231
The build all (lB) option 231
The find error (IF) option 231
The link buffer (lL) option 232
The quiet (I Q) option 232

Directory options 233
The TPL & CFG directory (IT)
option 233
The EXE & TPU directory (IE)
option 234
The include directories (IE) option. 234
The unit directories (lU) option . .. 234
The object files directories (I 0)
option 234

Debug options 234
The map file (I G) option 234
The debugging (IV) option 235

The TPC.CFG file 235

Chapter 4 Error messages' 237
Compiler error messages 237
Run-time errors 257

DOS errors .. 258
I/O errors 260
Critical Errors 261

Fatal errors. .. 261 Appendix B Compiler directives quick

Appendix A Editor reference 265
reference 271

Editor commands in depth 269 Appendix C Reserved words and
Searching with regular expressions 270 standard directives 275

Appendix 0 ASCII characters 277

Index 281

vi

T A B L E s

1.1: Graph unit driver constants 33 A.2: Block commands in depth 268
1.2: Graph unit mode constants 34 A.3: Borland-style block commands 269
1.3: The components of the output A.4: Other editor commands in depth ... 269

string 205 A.5: Regular expression wildcards 270
1.4: The components of the fixed-point B.1: Compiler directives 271

string 205 C.1: Turbo Pascal reserved words 275
3.1: Command-line options 228 C.2: Turbo Pascal standard directives ... 276
4.1: Error message types 237 D.1: ASCII table 278
A.1: Editing commands 266

vii

viii

N T R

See the User's Guide for an
oveNiew of the entire Turbo
Pascal documentation set.
Read its introduction to find

out how to use the Turbo
Pascal m'anuals most

effectively.

o D u c T o N

This manual is a reference that you can keep nearby when you're
programming. Use it when you want to

• Look up the details of a particular run-time library procedure,
function, variable, type, or constant and find out how to use it

• Understand what each compiler directive does, how it works,
and how to use it

• Learn how to use the command-line compiler

• Find out what an error message means

• Look up editor commands

• Look up compiler directives in a quick reference table

• Review a list of reserved words and standard compiler
directives

• Look up ASCII alphanumeric characters, symbols, and control
instructions

What's in this manual?

See the Language Guide for
an oveNiew of the units
found in Turbo Pascal's

run-time library.

Introduction

This manual has four reference chapters and four appendixes.

Chapter 1: Library reference is an alphabetized lookup of all the
procedures, functions, variables, types, constants, and typed
constants found in the units that make up the run-time library.

Chapter 2: Compiler directives explains how to use the three
types of compiler directives and presents a detailed, alphabetized
lookup of all the directives.

Chapter 3: Command-line compiler explains how to use the
command-line compiler.

Chapter 4: Error messages lists in numerical order all the error
messages you might encounter and explains what they mean.

Appendix A: Editor reference explains the key combinations and
commands you can use while editing your code. .

Appendix B: Compiler directives quick reference lists all the
compiler directives, their command-line equivalents, and brief
descriptions. To find more detailed explanations, read Chapter 2.

Appendix C: Reserved words and standard directives lists all the
reserved words and standard directives in Turbo Pascal.

Appendix D: ASCII characters lists all the American Standard
Code for Information Interchange (ASCII) characters.

How to contact Borland

2

Borland offers a variety of services to answer your questions
about Turbo Pascal.

1111" Be sure to send in the registration card; registered owners are
entitled to technical support and may receive information on
upgrades and supplementary products.

Tech Fax

800-822-4269 (voice) TechFax is a 24-hour automated service that sends free technical
information to your fax machine. You can use your touch-tone
phone to request up to three documents per call.

408-439-9096 (modem)
up to 9600 Baud

Borland Download BBS

The Borland Dowriload BBS has sample files, applications, and
technical information you can download with your modem. No
special setup is required.

Online informotion services

Subscribers to the CompuServe, GEnie, or BIX information
services can receive technical support by modem. Use the.
commands in the following table to contact Borland while
accessing an information service.

Programmer's Reference

Online information services

408-467 -9744
6 a.m. to 5 p.m. PT

900-555- 7007
6 a.m. to 5 p.m. PT

Introduction

Service Command

CompuServe GO BORLAND
BIX JOIN BORLAND
GEnie BORLAND

Address electronic messages to Sysop or All. Don't include your
serial number; messages are in public view unless sent by a
service's private mail system. Include as much information on the
question as possible; the support staff will reply to the message
within one working day.

Borland Technical Support

Borland Technical Support is available weekdays from 6:00 a.m.
to 5:00 p.m. Pacific time to answer technical questions about
Borland products. Please call from a telephone near your
computer, with the program running and the following
information available:

• Product name, serial number, and version number

• Brand and model of the hardware in your system

• Operating system and version number-use the operating
system's VER command to find the version number

• Contents of your AUTOEXEC.BAT and CONFIG.SYS files
(located in the root directory (\) of your computer's boot disk)

• Contents of your WIN.INI and SYSTEM.INI files (located in
your Windows directory)

• Daytime phone number where you can be reached

If the call concerns a software problem, please be able to describe
the steps that will reproduce the problem.

Borland Technical Support also publishes technical information
sheets on a variety of topics.

Borland Advisor Line

The Borland Advisor Line is a service for users who need
immediate access to advice on Turbo Pascal issues.

The Advisor Line operates weekdays from 6:00 a.m. to 5:00 p.m.
Pacific time. The first minute is free; each subsequent minute is
$2.00.

3

4

Borland Customer Service

408-467-9000 (voice) Borland Customer Service is available weekdays from 7:00 a.m. to
7 a.m. to 5 p.m. PT 5:00 p.m. Pacific time to answer nontechnical questions about

Borland products, including pricing information, upgrades, and
order status.

Programmer's Reference

c H A p T E R

1

Library reference

This chapter contains a detailed description of all Turbo Pascal
procedures, functions, variables, types, and constants. At the
beginning of each alphabetically listed entry is the name of the
unit or units containing the data element or routine, followed by
the purpose, the declaration format, and any remarks specifically
related to that entry. If any special restrictions apply, these are
also described. The cross-referenced entries and examples provide
additional information about how to use the specified entry. The
first sample procedure illustrates this format.

Sample procedure Unit it occupies

Purpose Description of purpose.

Declaration How the data element or routine is declared; user-defined entries are
italicized. Tables instead of declarations are used to illustrate constants
whose values cannot be changed.

Remarks Specific information about this entry.

Restrictions Special requirements that relate to this entry.

See also Related variables, constants, types, procedures, and functions that are also
described in this chapter.

Example A sample program that illustrates how to use this entry. In cases where
the same function (for example, DiskFree) is included in more than one

Chapter 7, Library reference 5

Abs function

unit (for example, the Dos and WinDos units), separate program examples
are listed only if significant differences exist between the two versions.

Abs function

Returns the absolute value of the argument.

function Abs (X) ;

System

Purpose

Declaration

Remarks X is an integer-type or real-type expression. The result, of the same type
as X, is the absolute value of X.

Example var
r: Real;
i: Integer;

begin
r := Abs(-2.3);
i : = Abs (-157) ;

end.

{ 2.3 }
{ 157 }

Addr function System

Purpose Returns the address of a specified object.

Declaration function Addr (X): Pointer;

Remarks X is any variable, or a procedure or function identifier. The result is a
pointer that points to X. Like nil, the result of Addr is assignment
compatible with all pointer types.

See also Dfs, Ptr, Seg

Example var P: Pointer;
begin

P : = Addr (P) ;
end.

Append procedure

Purpose Opens an existing file for appending.

Declaration procedure Append(var F: Text);

{ Now points to itself }

System

Remarks F is a text file variable that must have been associated with an external file
using Assign.

6 Programmer's Reference

Append procedure

Append opens the existing external file with the name assigned to F. An
error occurs if no external file of the given name exists. If F is already
open, it is closed, then reopened. The current file position is set to the end
of the file.

If a Ctrl+Z (ASCII 26) is present in the last 128-byte block of the file, the
current file position is set to overwrite the first Ctrl+Z in the block. In this
way, text can be appended to a file that terminates with a Ctrl+l.

If F was assigned an empty name, such as Assign(F, "), then, after the call
to Append, F refers to the standard output file (standard handle number 1).

After a call to Append, F becomes write-only, and the file pointer is at end­
of-file.

With {$I-}, IOResult returns 0 if the operation was successful; otherwise, it
returns a nonzero error code.

See also Assign, Close, Reset, Rewrite

Example var F:Text;
begin

Assign{F, 'TEST.TXT');
Rewrite (F) ; { Create new file }
Writeln{F, 'original text');
Close (F) ;
Append (F) ;
Writeln{F, 'appended text');
Close (F) ;

end.

ArcCoordsType type

{ Close file, save changes }
{ Add more text onto end }

{ Close file, save changes }

Graph

Purpose Used by GetArcCoords to retrieve information about the last call to Arc or
Ellipse.

Declaration type
ArcCoordsType = record

X, Y: Integer;
Xstart, Ystart: Integer;
Xend, Yend: Integer;

end;

See also GetArcCoords

Chapter 7, Library reference 7

I

Arc procedure

Arc procedure

Purpose Draws a circular arc from a starting angle to an ending angle.
i

Declaration procedure Arc (X, Y: Integer; StAngle, ,EndAngle, Radius: Word);

Graph

Remarks Draws a circular arc around (X, Y), with a radius of Radius from StAngle to
EndAngle in the current drawing color.

Each graphics driver contains an aspect ratio used by Circle, Are, and
PieS lice. A start angle of 0 and an end angle of 360 draws a complete circle.
The angles for Are, Ellipse, and PieS lice are counterclockwise with 0
degrees at 3 0' clock, 90 degrees at 12 0' clock, and so on. Information about
the last call to Arc can be retrieved by GetArcCoords.

Restrictions Must be in graphics mode.

See also ' Circle, Ellipse, FillEllipse, GetArcCoords, GetAspectRatio, PieS lice, Sector,
SetAspectRatio

Example uses Graph;
var

Gd, Gm: Integer;
Radius: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l) ;
for Radius := 1 to 5 do

Arc(100, 100, 0, 90, Radius * 10);
Readln;
CloseGraph;

end.

ArcTan function

Purpose Returns the arctangent of the argument.

Declaration function ArcTan (x: Real): Real;

System

Remarks X is a real-type expression. The result is the principal value, in radians, of
the arctangent of X.

See also Cos, Sin

8 Programmer's Reference

ArcTan function

Example var R: Real;
begin

R := ArcTan (Pi) ;
end.

Assign procedure System

Purpose Assigns the name of an external file to a file variable.

Declaration procedure Assign(var F; Name);

Remarks F is a file variable of any file type, and Name is a string-type expression or
an expression of type PChar if extended syntax is enabled. All further
operations on F operate on the external file with the file name Name.

After a call to Assign, the association between F and the external file
continues to exist until another Assign is done on F.

A file name consists of a path of zero or more directory names separated
by backslashes, followed by the actual file name:

Drive:\DirName\ .. . \ DirName \ Fi1 eName

If the path begins with a backslash, it starts in the root directory;
otherwise, it starts in the current directory.

Drive is a disk drive identifier (A-Z). If Drive and the colon are omitted,
the default drive is used. \DirName\ ... \ DirName is the root directory and
subdirectory path to the file name. FileName consists of a name of up to
eight characters, optionally followed by a period and an extension of up to
three characters. The maximum length of the entire file name is 79
characters.

A special case arises when Name is an empty string, that is, when
Length(Name) is zero. In that case, F becomes associated with the standard
input or standard output file. These special files allow a program to utilize
the I/O redirection feature of the DOS operating system. If assigned an
empty name, then after a call to Reset(F), F refers to the standard input file,
and after a call to Rewrite(F), F refers to the standard output file.

Restrictions Never use Assign on an open file.

See also Append, Close, Lst, Reset, Rewrite

Example {Try redirecting this program from DOS to PRN, disk file, etc. }
var F: Text;
begin

Assign(F, "); { Standard output }

Chapter 7, Library reference 9

I

Assign procedure

Rewrite (F) ;
Writeln(F, 'standard output ... ');
Close(F);

end.

AssignCrt procedure, Crt

Purpose Associates a text file with the CRT.

Declaration procedure AssignCrt (var F: Text);

Remarks AssignC~t works exactly like the Assign standard procedure except that no
file name is specified. Instead, the text file is associated with the CRT.

This allows faster output (and input) than would normally be possible
using standard output (or input).

Example uses Crt;
var F: Text;
begin

Write('Output to screen or printer [S, P]? ');
if UpCase(ReadKey) = 'P' then

Assign(F, 'PRN')
else

{ Output to printer }

AssignCrt(F); { Output to screen, use fast CRT routines}
Rewrite (F) ;
Writeln(F, 'Fast output via CRT routines ... ');
Close(F);

end.

Assigned function System

10

Purpose Tests to determine if a pointer or procedural variable is nil.

Declaration function Assigned(var P): Boolean;

Remarks P must be a variable reference of a pointer or procedural type. Assigned
returns True if P is not nil, or False if nil. Assigned(P) corresponds to the
test P <> nil for a pointer variable, and @P <> nil for a procedural variable.

Example var P: Pointer;
begin

P := nil;
if Assigned(P) then Writeln('You won't see this');
P := @P;
if Assigned(P) then Writeln('You'll see this');

end.

Programmer's Reference

Bar constants

Bar constants Graph

Purpose Constants that control the drawing of a 3-D top on a bar.

Remarks Used by the Bar3D procedure to control whether to draw a top on' 3-D
bars.

Constant

Top On
TopOf!

See also Bar3D

Value

True
False

Bar procedure Graph

Purpose Draws a bar using the current fill style and color.

Declaration procedure Bar(Xl, Yl, X2, Y2: Integer) i

Remarks Draws a filled-in rectangle (used in bar charts, for example). Uses the
pattern and color defined by SetFillStyle or SetFillPattern. To draw an
outlined bar, call Bar3D with a depth of zero.

Restrictions Must be in graphics mode.

See also Bar3D, GraphResult, SetFillStyle, SetFillPattern, SetLineStyle

Example uses Graphi
var

Gd; Gm: Integeri
I, Width: Integeri

begin
Gd := Detecti
InitGraph(Gd, Gm, ")i

if GraphResult <> grOk then
Halt(l) ;

Width := 10i
for I := 1 to 5 do

Bar(I * width, I * 10, Suce(I) * Width, 200) i

Readln;
CloseGraph;

end.

Chapter 7, Library reference 11

I

Bar3D procedure

Bar3D procedure Graph

Purpose Draws a 3-D bar using the current fill style and color.

Declaration procedure Bar3D(X1, Yl, X2, Y2: Integer; Depth: Word; Top: Boolean);

Remarks Draws a filled-in, three-dimensional bar using the pattern and color
defined by SetFillStyle or SetFillPattern. The 3-D outline of the bar is drawn
in the current line style and color as set by SetLineStyle and SetColor. Depth
is the length in pi~els of the 3-D outline. If Top is TopOn, a 3-D top is put
on the bar; if Top is TopOff, no top is put on the bar (making it possible to
stack several bars on top of one another).

A typical depth could be calculated by taking 25% of the width of the bar:

Bar3D(Xl, Yl, X2, Y2, (X2 - Xl + 1) div 4, TopOn);

Restrictions Must be in graphics mode.

See also Bar, GraphResult, SetFillPattern, SetFillStyle, SetLineStyle

Example uses Graph;
var

Gd, Gm: Integer;
YO, Yl, Y2, Xl, X2: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
YO := 10;
Yl := 60;
Y2 : = 110;
Xl := 10;
X2 := 50;
Bar3D(Xl, YO, X2, Yl, 10, TopOn);
Bar3D(Xl, Yl, X2, Y2, 10, TopOff);
Readln;
CloseGraph;

end.

BitBlt operators Graph

Purpose BitBlt operators used with PutImage and SetWriteMode.

Remarks . The following constant values represent the indicated logical operations.

12 Programmer's Reference

BitBlt operators

Constant

CopyPut
XORPut

Value

o (mov)
1 (xor)

These BitBlt constants are used by PutImage only:

OrPut 2(or)
AndPut 3 (and)
NotPut 4 (not)

BlockRead procedure System

Purpose Reads one or more records into a variable.

Declaration procedure BlockRead(var F: file; var Buf; Count: Word [; var Result: Word 1);

Remarks F is an untyped file variable, Buf is any variable, Count is an expression of
type Word, and Result is a variable of type Word.

BlockRead reads Count or fewer records from the file F into memory,
starting at the first byte occupied by Buf. The actual number of complete
records read (less than or equal to Count) is returned in the optional
parameter Result. If Result is not specified, an I/O error occurs if the
number read is not equal to Count.

The entire transferred block occupies at most Count * RecSize bytes, where
RecSize is the record size specified when the file was opened (or 128 if the
record size was unspecified). An error occurs if Count * RecSize is greater
than 65,535 (64K).

Result is an optional parameter. If the entire block was transferred, Result
will be equal to Count on return. Otherwise, if Result is less than Count, the
end of the file was reached before the transfer was completed. In that case,
if the file's record size is greater than 1, Result returns the number of
complete records read; that is, a possible last partial record is not included
in Result.

The current file position is advanced by Result records as an effect of
BlockRead.

With {$I-}, IOResult returns 0 if the operation succeeded; otherwise, it
returns a nonzero error code.

Restrictions File must be open.

See also BlockWrite

Chapter 7, Library reference 13

II

BlockRead prc;>cedure

Example program CopyFile;
{ Simple, fast file copy program with NO error-checking }
var

FromF, ToF: file;.
NumRead, NumWritten: Word;
Buf: array[1 .. 2048] of Char;

begin
Assign (FromF, ParamStr(l));
Reset (FromF, 1);
Assign(ToF, ParamStr(2));
Rewrite (ToF, 1);
Writeln('Copying " FileSize(FromF), , bytes ... ');
repeat

BlockRead(FromF, Buf, SizeOf(Buf), NumRead);
BlockWrite(ToF, Buf, NumRead, NumWritten);

until (NumRead = 0) or (NumWritten <> NumRead);
Close (FromF) ;
Close (ToF) ;

end.

{ Open input file }
{ Record size = 1 }

{ Open output file }
{. Record size = 1 }

BlockWrite procedure System

14

Purpose Writes one or more records from a variable.

Declaration procedure BlockWrite(var F: file; var Buf; Count: Word
[; var Result: Word]);

Remarks F is an untyped file variable, Buf is any variable, Count is an expression of
type Word, and Result is a variable of type Word.

BlockWrite writes Count or fewer records to the file F from memory,
starting at the first byte occupied by Buf. The actual number of complete
records written (less than or equal to Count) is returned in the optional
parameter Result. If Result is not specified, an I/O error occurs if the
number written is not equal to Count.

The entire block transferred occupies at Il)ost Count * RecSize bytes, where
RecSize is the record size specified when the file was opened (or 128 if the
record size was unspecified). An error occurs if Count * RecSize is greater
than 65,535 (64K).

Result is an optional parameter. If the entire block was transferred, Result
will be equal to Count on return. Otherwise, if Result is less than Count, the
disk became full before the transfer was completed. In that case, if the
file's record size is greater than I, Result returns the number of complete
records written.

Programmer's Reference

BlockWrite procedure

The current file position is advanced by Result records as an effect of the
BlockWrite.

Witl). {$I-}, IOResult returns 0 if the operation succeeded; otherwise, it
returns a nonzero error code.

Restrictions File must be open.

See also BlockRead

Example See example for BlockRead.

Break procedure System

Purpose Terminates a for, while, or repeat statement.

Declaration procedure Break;

Remarks Break exits the innermost enclosing for, while, or repeat statement
immediately. Break is analogous to a goto statement addressing a label
just after the end of the innermost enclosing repetitive statement. The
compiler reports an error if Break is not enclosed by a for, while, or repeat
statement.

See also Continue, Exit, Halt

Example var 8: string;
begin

while True do
begin

Readln(S) ;
if S = II then Break;
Writeln(S);

end;
end.

ChDir procedure System

Purpose Changes the current directory.

Declaration procedure ChDir (8: String);

Remarks The string-type expression changes the current directory to the path
specified by S. If S specifies a drive letter, the current drive is also
changed.

Chapter 7, Library reference 15

II

ChOir procedure

With {$I-}, IOResult returns 0 if the operation was successful; otherwise, it
returns a nonzero error code.

See also GetDir, MkDir, RmDir. SetCurDir performs the same function, but it takes
a null-terminated string as an argument rather than a Pascal-style string.

Example begin
{$I-}
{ Get directory n~me from command line }
ChDir(ParamStr(l)); ,
if IOResult <> 0 then

Writeln(/Cannot find directory/);
end.

CheckBreak variable

Purpose Enables and disables checks for Ctrl+Break.

Declaration var CheckBreak: Boolean;

Crt

Remarks When CheckBreak is True, pressing Ctrl+Break aborts the program when it
next writes to the display. When CheckBreak is False, pressing Ctrl+Break,
has no effect. CheckBreak is True by default. (At run time, Crt stores the old
Ctrl+Break interrupt veCtor, $lB, in a global pointer variable called
SavelntlB.) /

See also KeyPressed, ReadKey, SavelntlB

CheckEOF variable Crt

Purpose Enables and disables the end-of-file character.

Declaration var CheckEOF: Boolean;

Remarks When CheckEOF is True, an end-of-file character is generated if you press
Ctrl+Zwhile reading from a file assigned to the screen. When CheckEOF is
False, pressing Ctrl+Zhas no effect. CheckEOF is False by default.

CheckSnow variable Crt

Purpose Enables and disables "snow-checking" on eGA video adapters.

Declaration var CheckSnow: Boolean;

16 Programmer's Reference

CheckSnow variable

Remarks On most CGAs, interference will result if characters are stored in video
memory outside the horizontal retrace intervals. This does not occur with
monochrome adapters, EGAs, or VGAs.

When a color text mode is selected, CheckS now is set to True, and direct
video-memory writes will occur only during the horizontal retrace
intervals. If you are running on a newer CGA, you might want to set
CheckS now to False at the beginning of your program and after each call to
TextMode. This will disable snow-checking, resulting in significantly
higher output speeds.

Restrictions CheckS now has no effect when Direct Video is False.

See also Direct Video

Chr function System

Purpose Returns a character with a specified ordinal number.

Declaration function Chr (X: Byte): Chari

Remarks Returns the character with the ordinal value (ASCII value) of the byte­
type expression, X.

See also Ord

Example var I: Integer i
begin

for I := 32 to 255 do Write(Chr(I))i
end.

Circle procedure Graph

Purpose Draws a circle using (X, Y) as the center point.

Declaration procedure Circle (X, Y: Integer i Radius: Word) i

Remarks Draws a circle in the current color set by SetColor. Each graphics driver
contains an aspect ratio used by Circle, Arc, and PieS lice.

Restrictions Must be in graphics mode.

See also Arc, Ellipse, FillEllipse, GetArcCoords, GetAspectRatio, PieS lice, Sector,
SetAspectRatio

Chapter 7, Library reference 17

I

Circle procedure

Example uses Graph;
var

Gd, Gm: Integer;
Radius: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);
for Radius := 1 to 5 do

Circle(100, 100, Radius * 10);
Readlni
CloseGraph;

end.

ClearDevice procedure Graph

18

Purpose Clears the graphics screen and prepares it for output.

Declaration procedure ClearDevice;

Remarks ClearDevice moves the current pointer to (0,0), clears the screen using th~
background color set by SetBkColor, and prepares it for output.

Restrictions Must be in graphics mode.

See also Clear ViewPort, CloseGraph, GraphDefaults, InitGraph, RestoreCrtMode,
SetGraphMode

Example uses Crt, Graph;
var Gd, Gm: Inte~er;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
Randomize;
repeat

LineTo(Random(200), Random(200));
until KeyPressed;
ClearDevice;
Readln;
CloseGraph;

end.

Programmer's Reference

ClearViewPort procedure

ClearViewPort procedure Graph

Purpose Clears the current viewport.

Declaration procedure ClearViewPort;

Remarks Sets the fill color to the background color (Palette[O]) and moves the
current pointer to (0, 0).

Restrictions Must be in graphics mode.

See also ClearDevice, GetViewsettings, Set ViewPort

Example uses Graph;
var Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

Rectangle (19, 19, GetMaxX - 19, GetMaxY - 19);
SetViewPort(20, 20, GetMaxX - 20, GetMaxY - 20, ClipOn);
OutTextXY(O, 0, '<ENTER> clears viewport:');
Readln;
ClearViewPort;
OutTextXY(O, 0, '<ENTER> to quit:');
Readln;
CloseGraph;

end.

Clipping constants Graph

Purpose Constants that control clipping; used with SetViewPort.

Remarks With clipping on, graphics output is clipped at the viewport boundaries:

Constant

ClipOn
ClipOfJ

See also Set ViewPort

Chapter 1, Library reference

Value

True
False

19

I

Close procedure

Close procedure System

Purpose Closes an open file.

Declaration procedure Close (var F);

Remarks F is a file variable of any file type previously opened with Reset, Rewrite,
or Append. The external file associated with F is completely updated and
then closed, freeing its DOS file handle for reuse.

With {$I-}, IOResult returns a if the operation was successful; otherwise, it
returns a nonzero error code.

See also Append, Assign, Reset, Rewrite

Example var F: file;
begin

Assign(F, '\AUTOEXEC.BAT');
Reset(F,l);
Writeln('File size = " FileSize(F));
Close(F);

end.

{ Open file }

{ Close file }

CloseGraph procedure Graph

20

Purpose Shuts down the graphics system.

Declaration procedure CloseGraph;

Remarks CloseGraph restores the original screen mode before graphics was
initialized and frees the memory allocated on the heap for the graphics
scan buffer. Close Graph also de allocates driver and font memory buffers if
they were allocated by calls to GraphGetMem and GraphFreeMem.

Restrictions Must be in graphics mode.

See also DetectGraph, GetGraphMode, InitGraph, RestoreCrtMode, SetGraphMode

Example uses Graph;
var Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

Line(O, 0, GetMaxX, GetMaxY);

Programmer's Reference

CloseGraph procedure

Readlni
CloseGraphi

end.
{ Shut down graphics} I!IIII

ClrEol procedure

Purpose Clears all characters from the cursor position to the end of the line
without moving the cursor.

Declaration procedure ClrEol i

Crt

Remarks All character positions are set to blanks with the currently defined text
attributes. Thus, if TextBaekground is not black, the current cursor position
to the right edge becomes the background color.

ClrEol is window-relative. The following program lines define a text
window and clear the current line from the cursor position (1, 1) to the
right edge of the active window (60, 1).

Window(I, I, 60, 20)i
ClrEoli

See also ClrSer, Window

Example uses Crt i
begin

TextBackground(LightGray) i

ClrEoli { Changes cleated columns to LightGray background}
end.

ClrScr procedure Crt

Purpose Clears the active window and places the cursor in the upper left corner.

Declaration procedure ClrScr i

Remarks Sets all character positions to blanks with the currently defined text
attributes. Thus, if TextBaekground is not black, the entire screen becomes
the background color. This also applies to characters cleared by ClrEol,
InsLine, and DelLine, and to empty lines created by scrolling.

Chapter 1, Library reference 21

ClrScr procedure

ClrSer is window-relative. The following program lines define a text
window and clear a 60x20 rectangle beginning at (1,1).

Window(l, 1, 60, 20);
ClrScr;

See also ClrEol, Window

Example uses Crt;
begin

TextBackground(LightGray);
ClrScr; { Changes entire window to LightGray background }

end.

Color constants Graph

Purpose Color constants used by SetPalette and SetAllPalette.

Remarks
Constant Value

Black 0
Blue 1
Green 2
Cyan 3
Red 4
AJagenta 5
Brown 6
LightGray 7
DarkGray 8
LightBlue 9
LightGreen 10
LightCyan 11
LightRed 12
LightAJagenta 13
Yellow 14
White 15

See also SetAllPalette, SetPalette, SetColor

Color.constants for SetRGBPalette Graph

Purpose Constants that can be used with SetRGBPalette to select the standard EGA
colors on an IBM 8514 graphics adapter.

Remarks The following EGA color constant values are defined:

22 Programmer's Reference

Color constants for SetRGBPalette

Constant

EGABlack
EGABlue
EGAGreen
EGACyan
EGARed
EGAMagenta
EGABrown
EGALightGray
EGADarkGray
EGALightBlue
E GALight Green
EGALightCyan
EGALightRed
EGALightMagenta
EGAYellow
EGA White

See also SetRGBPalette

Concat function

Value

o (dark colors)
1
2
3
4
5

20
7

56 (light colors)
57
58
59
60
61
62
63

Purpose Concatenates a sequence of strings.

Declaration function Concat (Sl [, S2' ... , SN l: String): String;

System

Remarks Each parameter is a string-type expression. The result is the concatenation
of all the string parameters. If the resulting string is longer than 255
characters, it is truncated after the 255th character. Using the plus (+)
operator returns the same result as using the Concat function:

S := 'ABC' + 'DEF';

See also Copy, Delete, Insert, Length, Pos

Example var S: String;

begin

S := Concat('ABC', 'DEF');

end.

Continue procedure

Purpose Continues a for, while, or repeat statement.

Declaration procedure Continue;

Chapter 7, Library reference

{ , ABCDEF' }

System

23

I

Continue procedure

Remarks

See also

Example

Continue causes the innermost enclosing for, while, or repeat statement to
immediately proceed with the next iteration. The compiler will report an
error if a call to Continue is not enclosed by a for, while, or repeat
statement.

Break, Exit, Halt

var
I: Integer;
Name: string[79];
F: file;

begin
for I := 1 to ParamCount do
begin

Name := ParamStr(I);
Assign(F, Name);
{$I-}
Reset(F,l);
{$It}
if IOResult <> 0 then
begin

Writeln('File not found: ' Name);
Continue;

end;
Writeln(Name, ': " FileSize(F) , ' bytes');
Close(F) ;

end;
end.

Copy function System

Purpose Returns a substring of a string.

Declaration function Copy (S: String; Index: Integer; Count: Integer): String;

Remarks S is a string-type expression. Index and Count are integer-type expressions.
Copy returns a string containing Count characters starting with the Indexth
character in S. If Index is larger than the length of S, Copy returns an empty
string. If Count specifies more characters than remain starting at the
Indexth position, only the remainder of the string is returned.

See also Concat, Delete, Insert, Length, Pos

24 Programmer's Reference

Copy function

Example var S: string;

begin
S : =: 'ABCDEF';
S := Copy(S, 2, 3);

end.
{ 'BCD' }

Cos function System

Purpose Returns the cosine of the argument.

Declaration function Cos (X: Real): Real;

Remarks X is a real-type expression. The result is the cosine of X where X
represents an angle in radians.

See also ArcTan, Sin

Example var R: Real;
begin

R := Cos(Pi);
end.

CreateDir procedure WinDos

Purpose Creates a new subdirectory.

Declaration procedure CreateDir (Dir: PChar);

Remarks The subdirectory to be created is specified in Dir. Errors are reported in
DosError. MkDir performs the same function as CreateDir, but it takes a
Pascal-style string as an argument rather than a null-terminated string.

See also GetCurDir, SetCurDir, RemoveDir

Crt mode constants Crt

Purpose Used to represent Crt text and line modes.

Remarks· BW40, C040, BW80, and C080 represent the four color text modes
supported by the IBM PC Color/Graphics Adapter (CGA). The Mono
constant represents the single black-and-white text mode supported by
the IBM PC Monochrome Adapter. Font8x8 represents EGA/VGA 43- and
50-line modes and is used with C080 or LastMode. LastMode returns to the
last active text mode after using graphics.

Chapter 7, Library reference 25

I

Crt mode constants

Constant

BW40
BWBO
Mono
C040
COBO
FontBxB
C40
CBO

See also TextMode

Value

o
2
7
1
3

256
C040
C080

Description

40x25 B /W on color adapter
80x25 B /W on color adapter
80x25 B/W on monochrome adapter
40x25 color on color adapter
80x25 color on color adapter
For EGA/VGA 43 and 50 line
For Turbo Pascal 3.0 compatibility
For Turbo Pascal3.0 compatibility

CSeg function System

Purpose Returns the current value of the CS register.

Declaration function CSeg: Word;

Remarks The result of type Word is the segment address of the code segment within
which CSeg was called.

See also DSeg, SSeg

. DateTime type Dos

Purpose UnpackTime and PackTime use variables of DateTime type to examine and
construct 4-:byte, packed date-and-time values for the GetFTime, SetFTime,
FindFirst, and FindNext procedures.

Declaration type
DateTirne = record

Year, Month, Day, Hour, Min, Sec: Word;
end;

Remarks Valid ranges are Year 1980 .. 2099, Month 1..12, Day 1..31, Hour 0 .. 23, Min
0 . .59, and Sec 0 . .59.

See also FindFirst, FindNext, GetFTime, SetFTime

26 Programmer's Reference

Dec procedure

Dec procedure System

Purpose Decrements a variable.

Declaration procedure Dec (var X [; N: Longint 1);

Remarks X is an ordinal-type variable or a variable of type PChar if the extended
syntax is enabled, and N is an integer-type expression. X is decremented
by 1, or by N if N is specified; that is, Dee(X) corresponds to X := X-I,
and Dee(X, N) corresponds to X := X - N.

See also

Example

Dec generates optimized code and is especially useful in a tight loop.

Inc, Pred, Suee

var
IntVar: Integer;
LongintVar: Longint;

begin
Dec (IntVar) ;
Dec (LongintVar, 5);

end.

{ IntVar := IntVar - 1
{ LongintVar := LongintVar - 5

Delay procedure Crt

Purpose Delays a specified number of milliseconds.

Declaration procedure Delay (Ms: Word);

Remarks Ms specifies the number of milliseconds to wait.

Delay is an approximation, so the delay period will not last exactly Ms
milliseconds.

Delete procedure System

Purpose Deletes a substring from a string.

Declaration procedure Delete (var S: String; Index: Integer; Count: Integer);

Remarks 5 is a string-type variable. Index and Count are integer-type expressions.
Delete deletes Count characters from 5 starting at the Indexth position. If
Index is larger than the length of 5, no characters are deleted. If Count

Chapter 7, Library reference 27

II

Delete procedure

specifies more characters than remain starting at the Indexth position, the
remainder of the string is deleted.

See also Concat, Copy, Insert, Length, Pos

DelUne procedure Crt

Purpose Deletes the line containing the cursor:

Declaration procedure DelLine i

Remarks The line containing the cursor is deleted, and all lines below are moved
one line up (using the BIOS scroll routine). A new line is added at the
bottom.

All charader positions .are set to blanks with the currently defined text
attributes. Thus, if TextBackground is not black, the new line becomes the
background color.

Example DelLine is window-relative. The following example will delete the first line
in the window, which is the tenth line on the screen.

Window(l, 10, 60, 20) i
DelLinei

See also InsLine, Window

DetectGraph procedure Graph

28

Purpose Checks the hardware and determines which graphics driver and mode to
use.

Declaration procedure DetectGraph (var GraphDriver, GraphMode: Integer) i

Remarks Returns the detected driver and mode value that can be passed to
InitGraph, which will then load the correct driver. If no graphics hardware
was detected, the GraphDriver parameter and GraphResult returns a value
of grNotDetected. See page 33 for a list of driver and mode constants.

Unless instructed otherwise, In it Graph calls DetectGraph, finds and loads
the correct driver, and initializes the graphics system. The only reason to
call DetectGraph directly is to override the driver that DetectGraph recom­
mends. The example that follows identifies the system as a 64K or 256K
EGA, and loads the CGA driver instead. When you pass InitGraph a
GraphDriver other than Detect/you must also pass in a valid GraphMode for
the driver requested. .

Programmer's Reference

DetectGraph procedure

Restrictions You should not use DetectGraph (or Detect with InitGraph) with the IBM
8514 unless you want the emulated VGA mode.

See also CloseGraph, Driver and mode, GraphResult, InitGraph

Example uses Graph;
var GraphDriver l GraphMode: Integer;
begin

DetectGraph(GraphDriver l GraphMode);
if (GraphDriver = EGA) or

(GraphDriver = EGA64) then
begin

GraphDriver := CGA;
GraphMode := CGAHi;

end;
InitGraph(GraphDriver l GraphMode l II);
if GraphResult <> grOk then

Halt (1);
Line(OI 01 GetMaxX I GetMaxY);
Readln;
CloseGraph;

end.

DirectVideo variable Crt

Purpose Enables and disables direct memory access for Write and Writeln
statements that output to the screen.

Declaration var DirectVideo: . Boolean;

Remarks When DirectVideo is True, Writes and Writelns to files associated with the
CRT will store characters directly in video memory instead of calling the
BIOS to display them. When DirectVideo is False, all characters are written
through BIOS calls, which is a significantly slower process.

DirectVideo always defaults to True. If, for some reason, you want
characters displayed through BIOS calls, set DirectVideo to False at the
beginning of your program and after each call to TextMode.

See also CheckS now

Chapter 7, Library reference 29

I

DiskFree function

DiskFree function Dos, WinDos

Purpose Returns the number of free bytes on a specified disk drive.

Declaration function DiskFree(Drive: Byte): Longinti

Remarks A Drive of D indicates the default drive, 1 indicates drive Af 2 indicates Bf
and so on. DiskFree returns -1 if the drive number is invalid.

See also DiskSize, GetDir

Example uses Dos i

begin
Writeln(DiskFree(O) div 1024, , Kbytes free')i

end.

{ or WinDos }

DiskSize function Dos, WinDos

Purpose Returns the total size in bytes on a specified disk drive.

Declaration function DiskSize(Drive: Byte): Longinti

Remarks A Drive ofD indicates the default drive, 1 indicates drive Af 2 indicates Bf
and so on. DiskSize returns -1 if the drive number is invalid.

See also DiskFreef GetDir

Example uses Dos i

begin
Writeln(DiskSize(O) div 1024, , Kbytes capacity') i

end.

{ or WinDos }

Dispose procedure System

30

Purpose Disposes of a dynamic variable.

Declaration procedure Dispose (var, P: ,Pointer [, Destructor]) i

Remarks P is a variable of any pointer type previously assigned by the New
procedure or assigned a meaningful value by an assignment statement.
Dispose destroys the variable referenced by P and returns its memory
region to the heap. After a call to Dispose, the value of P becomes ,
undefined and it is an error to subsequently reference PA.

Dispose allows a destructor call as a second parameter, for disposing a
dynamic object type variable. In this case, P is a pointer variable pointing

Programmer's Reference

Dispose procedure

to an object type, and Destructor is a call to the destructor of that object
type.

Restrictions If P does not point to a memory region in the heap, a run-time error
occurs.

For a complete discussion of this topic, see "The heap manager" in
Chapter 19 of the Language Guide.

See also FreeMem, GetMem, New

Example type Str18 = string[18];
var P: "Str18;
begin

New(P) ;
P" := INow you see it .. . 1;
Dispose(P) ; { Now you don/t ... }

end.

DosError variable. Dos, WinDos

Purpose Used by many Dos and WinDos routines to report errors.

Declaration var DosError: Integer;

Remarks The values stored in DosError are DOS error codes. A value of 0 indicates
no error; other possible error codes include the following:

DOS error code

2
3
5
6
8

10
11
18

Meaning

File not found
Path not found
Access denied
Invalid file handle
Not enough memory
Invalid environment
Invalid format
No more files

See Chapter 4, "Error messages/' for a detailed description of DOS error
messages.

See also CreateDir, Exec, FindFirst, FindNext, GetCurDir, GetFAttr, GetFTime,
RemoveDir, SetCurDir, SetFAttr, SetFTime

Chapter 7, Library reference 31

I

DosExitCode fun~tion

DosExitCode function Dos

Purpose Returns the exit code of a subprocess.

Declaration function DosExi tCode: Wo~d;

Remarks The low byte is the code sent by the terminating process. The high byte is
set to

• 0 for normal termination

• 1 if terminated by Ctr/+C
.2 if terminated due to a device error

• 3 if terminated by the Keep procedure

See also Exec, Keep

DosVersionfunction

Purpose Returns the DOS version number.

Declaration function DosVersion: Word;

Dos, WinDos

Remarks Dos Version returns the DOS version number. The low byte of the result is
the major version number, and the high byte is the minor version number.
For example, DOS 3.20 returns 3 in the low byte, and 20 in the high byte.

Example uses Dos;

var Ver: Word;
begin

Ver := DosVersion;
Writeln('This is DOS version', Lo(Ver),

end.

See also Hi, Lo

DrawPoly procedure

{ or WinDos }

Hi (Ver));

Graph

Purpose Draws the outline of a polygon using the current line style and color.

Declaration procedure DrawPoly (NumPoints: Word; var PolyPoints);

Remarks PolyPoints is an untyped parameter that contains the coordinates of each
intersection in the polygon. NumPoints specifies the number of coordi­
nates in PolyPoints. A coordinate consists of two words, an X and a Y
value.

32 Programmer's Reference

DrawPoly procedure

DrawPoly uses the current line style and color. Use SetWriteMode to
determine whether the polygon is copied to or XORed to the screen.

Note that in order to draw a closed figure with N vertices, you must pass
N + 1 coordinates to DrawPoly, where

PolyPoints[N + 1] = PolyPoints[l]

In order to draw a triangle, for example, four coordinates must be passed
to DrawPoly.

Restrictions Must be in graphics mode.

See also FillPoly, GetLineSettings, GraphResult, SetColor, SetLineStyle, SetWriteMode

Example uses Graph;
const

Triangle: array [1. .4] of PointType = ((X: 50; Y: 100), (X: 100; Y: 100),
(X: 150; Y: 150), (X: 50; Y: 100));

var Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

DrawPoly(SizeOf(Triangle) div SizeOf(PointType), Triangle);
Readln;

{ 4 }

CloseGraph;
end.

Driver and mode constants

Purpose Used with routines that call graphics drivers and color palettes.

Remarks The following tables list graphics drivers and color palettes.

Table 1.1
Graph unit driver

constants

Driver Constant

Detect
CGA
MCGA
EGA
EGA64
EGAMono
IBM8514
HercMono

Chapter 7, Library reference

Value Meaning

0 Requests autodetection
1 CGAmode
2 MCGAmode
3 EGA mode
4 EGA64 mode
5 EGAMono mode
6 IBM8514 mode
7 HercMono mode

Graph

33

I

Driver and mode constants

Table 1.1: Graph unit driver constants (continued)

ATT400 8 ATT400mode
VGA 9 VGAmode
PC3270 10 PC3270mode
CurrentDriver -128 Passed to GetModeRange

Table 1 .2: Graph unit mode constants

Constant Column
Name Value x Row Palette Colors Pages

ATT400CO 0 320x200 0 LightGreen, LightRed, Yellow 1
ATT400Cl 1 320x200 1 LightCyan, LightMagenta, White 1
ATT400C2 2 320x200 2 Green, Red, Brown 1
ATT400C3 3 320x200 3 Cyan, Magenta, LightGray 1
ATT400Med 4 640x200
ATT400Hi 5 640x400

CGACO 0 320x200 ·0 LightGreen, LightRed, Yellow 1
CGACl 1 320x200 1 LightCyan, LightMagenta, White 1
CGAC2 2 320x200 2 Green, Red, Brown 1
CGAC3 3 320x200 3 Cyan, Magenta, LightGray 1
CGAHi 4 640x200

EGALo 0 640x200 16 color 4
EGAHi 1 640x350 16 color 2
EGA64Lo 0 640x200 16 color 1
EGA64Hi 1 640x350 4 color 1
EGAMonoHi 3 640x350 64Kon catd, 1

256K on card 2

HercMonoHi 0 720x348

IBM8514Lo 0 640x480 256 colors
IBM8514Hi 1 1024x768 256 colors

MCGACO 0 320x200 0 LightGreen, LightRed, Yellow 1
MCGACl 1 320x200 1 LightCyan, LightMagenta, White 1
MCGAC2 2 320x200 2 Green, Red, Brown 1
MCGAC3 3 320x200 3 Cyan, Magenta, LightGray 1
MCGAMed 4 640x200
MCGAHi 5 640x480

PC3270Hi 0 720x350
• VGALo 0 640x200 16 color 4

VGAMed 1 640x350 16 color 2
VGAHi 2 640x480 16 color 1

See also DetectGraph, GetModeRange, InitGraph

34 Programmer's Reference

DSeg function

DSeg function System

Purpose Returns the current value of the DS register.

Declaration function DSeg: Word;

Remarks The result of type Word is the segment address of the data segment.

See also CSeg, SSeg

Ellipse procedure Graph

Purpose Draws an elliptical arc from start angle to end angle, using (X, Y) as the
center point.

Declaration procedure Ellipse(X, Y: Integer; StAngle, EndAngle: Word;

YRadius, YRadius: Word);

Remarks Draws an elliptical arc in the current color using (X, Y) as a center point,
and XRadius and YRadius as the horizontal and vertical axes travelling
from StAngle to EndAngle.

A start angle of 0 and an end angle of 360 draws a complete oval. The
angles for Are, Ellipse, and PieS lice are counterclockwise with 0 degrees at
3 o'clock, 90 degrees at 12 0' clock, and so on. Information about the last
call to Ellipse can be retrieved by GetArcCoords.

Restrictions Must be in graphics mode.

See also Are, Circle, FillEllipse, GetArcCoords, GetAspectRatio, PieS lice, Sector,
SetAspectRatio

Example uses Graph;

var Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");

if GraphResult <> grOk then
Halt (1);

Ellipse(100, lOa, a, 360, 30, 50);
Ellipse(100, lOa, a, 180, 50, 30);
Readln;
CloseGraph;

end.

Chapter 7, Library reference 35

I

EnvCount function

EnvCount function Dos

Purpose Returns the number of strings contained in the DOS environment.

Declaration function EnvCount: Integer i

Remarks EnvCount returns the number of strings contained in the DOS
environment. Each environment string is of the form V AR= V ALUE. The
strings can be examined with the EnvStr function.

For more information about the DOS environment, see your DOS
manuals.

See also EnvStr, GetEnv

Example uses Dos i
var I: Integeri
begin

for I := 1 to EnvCount do
Writeln(EnvStr(I)) i

end.

EnvStr function

Purpose Returns a specified environment string.

Declaration function EnvStr (Index: Integer): String i

Dos

Remarks EnvStr returns a specified string from the DOS environment. The string
EnvStr returns is of the form VAR= VALUE. The index of the first string is
one. If Index is less than one or greater than EnvCount, EnvStr returns an
empty string.

For more information about the DOS environment, see your DOS
manuals.

See also EnvCount, GetEnv

Eaf function (text files) System

Purpose Returns the end-of-file status of a text file.

Declaration function Eof [(var F: Text) l: Booleani

Remarks F, if specified, is a text file variable. If F is omitted, the standard file
variable Input is assumed. Eof(F) returns True if the current file position is

36 Programmer's Reference

Eof function (text files)

beyond the last character of the file or if the file contains no components;
otherwise, Eof(F) returns False.

With {$I-}, IOResult returns 0 if the operation was successful; otherwise, it
returns a nonzero error code.

See also

Example

Eoln,SeekEof

var
F: Text;
Ch: Char;

begin
{ Get file to read from command line }
Assign(F, ParamStr(l));
Reset(F);
while not Eof(F) do
begin

Read (F, Ch);
Write (Ch) ;

end;
{ Dump text file }

end.

Eof function (typed, untyped files) System

Purpose Returns the end-of-file status of a typed or untyped file.

Declaration function Eof (var F): Boolean;

Remarks F is a file variable. Eof(F) returns True if the current file position is beyond
the last component of the file or if the file contains no components;
otherwise, Eof(F) returns False.

With {$I-}, IOResult returns 0 if the operation was successful; otherwise, it
returns a nonzero error code.

Eoln function System

Purpose Returns the end-of-line status of a text file.

Declaration function Eoln [(var F: Text) 1: Boolean;

Remarks F, if specified, is a text file variable. If F is omitted, the standard file
variable Input is assumed. Eoln(F) returns True if the current file position
is at an end-of-line marker or if Eof(F) is True; otherwise, Eoln(F) returns
False.

Chapter 7, Library reference 37

I

Eoln function

With {$I-}, IOResult returns 0 if the operation was successful; otherwise, it
returns a nonzero error code.

See also Eof, SeekEoln

Erase procedure System

38

Purpose Erases an external file.

Declaration procedure Erase (var F);

Remarks F is a file variable of any file type. The external file associated with F is
erased.

Restri~tions

See also

Example

With {$I.;.}, IOResult returns 0 if the operation was successful; otherwise, it
returns a nonzero error code.

Never use Erase on an open file.

Rename

var
F: file;
Ch: Char;

begin
{ Get file to delete from command line }
Assign(F, ParamStr(l));
{$I-}
Reset(F);
{$It}
if IOResult <> 0 then

Writeln('Cannot find' ParamStr(l))
else
begin

Close (F) ;
Write('Erase " ParamStr(l) , '? ');
Readln (Ch) ;
if UpCase(Ch) = 'Y' then

Erase (F) ;
end;

end.

Programmer's Reference

ErrorAddr variable

ErrorAddr variable System

Purpose Contains the address of the statement causing a run-time error.

Declaration var ErrorAddr: Pointer;

Remarks If a program terminates normally or stops due to a call to Halt, ErrorAddr
~s nil. If a program ends because of a run-time error, ErrorAddr contains
the address of the statement in error. For additional information, see "Exit
procedures" in Chapter 20 in the Language Guide.

See also ExitCode, ExitProc

Exclude procedure System

Purpose Excludes an element from a set.

Declaration procedure Exclude (var S: set of T; I: T);

Remarks 5 is a set type variable, and I is an expression of a type compatible with
the base type of S. The element given by I is excluded from the set given
by S. The construct

Exclude (S, I)

corresponds to

S:=S-[1]

but the Exclude procedure generates more efficient code.

See also Include

Exec procedure Dos

Purpose Executes a specified program with a specified command line.

Declaration procedure Exec (Path, CmdLine: String);

Remarks The program name is given by the Path parameter, and the command line
is given by c,mdLine. To execute a DOS internal command, run '
COMMAND. COM; for instance,

Exec('\COMMAND.COM', , IC D1R *.PAS');

Chapter 7, Library reference 39

II

Exec procedure

The Ie in front of the command is a requirement of COMMAND.COM
(but not of other applications). Errors are reported in DosError. The exit
c~de of any child process is reported by the Dos Exit Code function.

It is recommended that Swap Vectors be called just before and just after the
call toExec. Swap Vectors swaps the contents of the SavelntXX pointers in
the System unit with the current contents of the interrupt vectors. This
ensures that the Exec'd process does not use any interrupt handlers
installed by the current process, and vice versa.

Exec does not change the memory allocation state before executing the
program. Therefore, when compiling a program that uses Exec, be sure to
reduce the maximum heap size using a $M compiler directive; otherwise,
there won't be enough memory (DosError = 8).

See also DosError, DosExitCode, SavelntXX, Swap Vectors

Example {$M $4000,O,O}

uses Dos;
{ 16K stack, no heap required or reserved }

var ProgramName, CmdLine: String;
begin

Write('Program to Exec (include full path): ');
Readln(ProgramName) ;
write('Command line to pass to " ProgramName, ': ');
Readln(CmdLine);
writeln('About to Exec ... ');
SwapVectors;
Exec (ProgramName, CmdLine);
SwapVectors;
Writeln(' ... back from Exec');
if DosError <> 0 then

Writeln('Dos error #', DosError)
else

Writeln('Exec successful. Child process exit code =' DosExitCode);
end.

{ Error? }

Exit procedure System

Purpose Exits immediately from the current block.

Declaration procedure Exi t ;

Remarks Executed in a subroutine (procedure or function), Exit causes the
subroutine to return. Executed in the statement part of a program, Exit
causes the program to terminate. A call to Exit is analogous to a goto
statement addressing a label just before the end of a block.

40 Programmer's Reference

Exit procedure

See also Halt

Example procedure WasteTime;
begin

repeat
if KeyPressed then Exit;
Write('Xx');

until False;
end;

begin
WasteTime;

end.

ExitCode variable System

Purpose Contains the application's exit code.

Declaration var ExitCode: Integer;

Remarks An exit procedure can learn the cause of termination by examining
ExitCode.1f a program terminates normally, ExitCode is zero. If a program
stops through a call to Halt, ExitCode contains the value passed to Halt. If a
program ends due to a run-time error, ExitCode contains the error code.

See also ErrorAddr, ExitProc, and Chapter 20, "Control issues," in the Language
Guide for more information about exit procedures.

ExitProc variable System

Purpose Implements an application's exit procedure list.

Declaration var ExitProc: Pointer;

Remarks ExitProc lets you install an exit procedure to be called as part of a
program's termination, whether it is a normal termination, a termination
through a call to Halt, or a termination due to a run-time error.

See also ErrorAddr, ExitCode, and Chapter 20, "Control issues," in the Language
Guide for more information about exit procedures.

Chapter 7, Library reference 41

II

Expfunction

Exp function System

Purpose Returns the exponential of the argument.

Declaration function Exp (X: Real): Reali

Remarks X is a real-type expression. The result is the exponential of X; that is, the
value e raised to the power of X, where e is the base of the natural
logarithms.

See also Ln

fcXXXX flag constants WinDos

Purpose Return flags used by the function FileSplit.

Remarks The followingfxXXXX constants are defined:

Constant Value

fcExtension $0001
fcFileName $0002
fcDirectory $0004
fcWildcards $0008

See also FileSplit

FExpand function Dos

Purpose Expands a file name into a fully qualified file name.

Declaration function FExpand(Path: PathStr): PathStri

Remarks Expands the filename in Path into a fully qualified file name. The
resulting name is converted to uppercase and consists of a drive letter, a
colon, a root relative directory path, and a file name. Embedded '.' and ' .. '
directory references are removed.

The PathStr type is defined in the Dos unit as string[79].

Assuming that the current drive and directory is C: \ SOURCE \ PAS, the
following FExpand calls would produce these values:

FExpand('test.pas') 'C:\SOURCE\PAS\TEST.PAS'

FExpand(·' .. *.TPU') 'C:\SOURCE*.TPU'
FExpand('c:\bin\turbo.exe') 'C:\BIN\TURBO.EXE'

42 Programmer's Reference

FExpand function

FSplit can separate the result of FExpand into a drivel directory string, a
file-name string, and an extension string.

See also FileExpand, FindFirst, FindNext, FSplit, File-handling string types

File attribute constants Dos, WinDos

Purpose Used to construct file attributes in connection with the GetFAttr, SetFAttr,
FindFirst, and FindNext procedures.

Remarks These are the file attribute constants defined in the Dos and WinDos units.

Dos Constant WinDos Constant Value

ReadOnly faReadOnly $01
Hidden faHidden $02
SysFile faSysFile $04
VolumeID faVolumeID $08
Directory faDirectory $10
Archive faArchive $20
AnyFile faAnyFile $3F

The constants are additive, that is, the statement

FindFirst('*.*', ReadOnly + Directory, S)i { Dos }

or

FindFirst('*.*', faReadOnly + faDirectory, S) i { WinDos }

will locate all normal files as well as read-only files and subdirectories in
the current directory. The AnyFile (orfaAnyFile) constant is simply the
sum of all attributes.

See also FindFirst, FindNext, GetFAttr, SetFAttr

File name length constants WinDos

Purpose Contain the maximum file name component string lengths used by the
functions FileSearch and FileExpand.

Remarks The following file name length constants are defined:

Chapter 7, Library reference 43

I

File name length constants

Constant

fsPathName
fsDirectory
fsFileName
fsExtension

See also FileSearch, FileSplit

FileExpand function

Value

79
67
8
4

WinDos

Purpose Expands a file name into a fully qualified file name.

Declaration function FileExpand(Dest, Name: PChar): PChari

Remarks Expands the file name in Name into a fully qualified file name. The
resulting name is converted to uppercase and consists of a drive letter, a
colon, a root relative directory path, and a file name. Embedded '.' and ' .. '
directory references are removed, and all name and extension components
are truncated to 8 and 3 characters respectively. The returned value is
Dest. Dest and Name can refer to the same location.

Assuming that the current drive and directory is C: \SOURCE\P AS, the
following FileExpand calls would produce these values:

FileExp~nd(S, 'test.pas') = 'C: \SOURCE\PAS\TEST. PAS'
FileExpand(S, ' .. *.TPW') = 'C:\SOURCE*.TPW'
FileExpand(S, 'c:\bin\turbo.exe') = 'C:\BIN\TURBO.EXE'

The FileSplit function can be used to split the result of FileExpand into a
drive / directory string, a file-name string, and an extension string.

See also FExpand, FindFirst, File name lengths, FindNext, FileSplit

File-handling string types Dos

Purpose String types are used by various procedures and functions in the Dos unit.

Remarks The following string types are defined:

ComStr = string[127] i
PathStr = string[79] i
DirStr = string[67]i
NameStr::: string[8];
ExtStr = string[4];

See also FExpand, FSplit

{ Command-line string}
{ Full file path string }

{ Drive and directory string }
{ File-name string }

{ File-extension string }

44 Programmer's Reference

File Mode variable

FileMode variable System

Purpose Determines the access code to pass to DOS when typed and untyped files
are opened using the Reset procedure.

Declaration var FileMode: Byte;

Remarks The range of valid FileMode values depends on the version of DOS in use. I
For all versions, however, the following modes are defined:

o Read only
1 Write only
2 Read/Write

The default value, 2, allows both reading and writing. Assigning another
value to FileModecauses all subsequent Resets to use that mode. New files
using Rewrite are always opened in read/write mode (that is,
FileMode = 2).

DOS version 3.x and higher defines additional modes, which are
primarily concerned with file-sharing on networks. For more details, see
your DOS programmer's reference manual.

See also Rewrite

FilePos function System

Purpose Returns the current file position of a file.

Declaration function FilePos (var F): Longinti

Remarks F is a file variable. If the current file position is at the beginning of the file,
FilePos(F) returns O. If the current file position is at the end of the file-that
is, if Eof(F) is True-FilePos(F) is equal to FileSize(F).

With {$I-}, IOResult returns 0 if the operation was successful; otherwise, it
returns a nonzero error code.

Restrictions Cannot be used on a text file. File must be open.

See also FileSize, Seek

Chapter 7, Library reference 45

FileRec type

FileRec type Dos

Purpose

Declaration

Record definition used internally by Turbo Pascal and also declared in the
Dos unit.

type
FileRec = record

Handle: Word;
Mode: Word;
RecSize: Word;
Private: array[1 .. 26] of Byte;
UserData: array[l .. 16] of Byte;
Name: array[O .. 79] of Char;

end;

Remarks FileRec defines the internal data format of both typed and untyped files.

See also . TextRec

FileSearch function WinDos

46

Purpose Searches for a file in a list of directories.

Declaration function FileSearch(Dest, Name, List: PChar): PChar;

Remarks Searches for the file given by Name in the list of directories given by List.
The directories in List must be separated by semicolons, just like the
directories specified in a PATH command in DOS. The search alw~ys
starts with the current directory of the current drive. If the file is found,
FileSearch stores a concatenation of the directory path and the file name in
Dest. Otherwise, FileSearch stores an empty string in Dest. ~e returned
value is Dest. Dest and Name must not refer to the same location.

The maximum length of the result is defined by the fsPathName constant,
which is 79.

To search the PATH used by DOS to locate executable files, call
GetEnv Var('P ATH') and pass the result to FileSearch as the List parameter.

The result of FileSearch can be passed to FileExpand to convert it into a
fully qualified file name; that is, an uppercase file name that includes both
a drive letter and a root-relative directory path. In addition, you can use
FileSplit to split the file name into a drivel directory string, a file-name
string, and an extension string ..

Programmer's Reference

See also File name lengths, FileExpand, FileSplit, FSearch

Example uses WinDos;
var

8: array[O .. fsPathName] of Char;
begin

File8earch(8, , TURBO. EXE' , GetEnvVar('PATH'));
if 8[0] = #0 then

Writeln('TURBO.EXE not found')
else

Writeln('Found as " FileExpand(S, 8));
end.

FileSize function

Purpose Returns the current size of a file.

Declaration function FileSize (var F): Longint i

FileSearch function

System

Remarks F is a file variable. FileSize(F) return~ the number of components in F. If
the file is empty, FileSize(F) returns O.

With {$I-}, IOResult returns 0 if the operation was successful; otherwise, it
returns a nonzero error code.

Restrictions Cannot be used on a text file. File must be open.

See also FilePos

Example var F: file of Byte;
begin

{ Get file name from command line }
Assign(F,ParamStr(l)) ;
Reset (F) ;
Writeln (' File size in bytes: ' FileSize (F)) ;
Close(F);

end.

FileSplit function

Purpose Splits a file name into its three components.

Declaration function FileSplit (Path, Dir, Name, Ext: PChar): Word;

WinDos

Remarks Splits the file name specified by Path into its three components. Dir is set
to the drive and directory path with any leading and trailing backslashes,
Name is set to the file name, and Ext is set to ~he extension with a

Chapter 7, Library reference 47

II

FileSplit· function

preceding period. If a component string parameter is nil, the
corresponding part of the pathis not stored. If the path does not contain a
given component, the returned component string is empty. The maximum
string lengths returned in Dir, Name, and Ext are defined by the
fsDirectory, fsFileName, and fsExtension constants.

The returned value is a combination of the fcDirectory, fcFileName, and
fcExtension bit masks, indicating which components were present in the
path. If the name or extension contains any wildcard characters (* or ?),
the fcWildcards flag is set in the returned value.

See page 42 for a list of fcXXXX flag constants and page 43 for a list of
fsXXXX file name length constants.

See also FileExpand, FindFirst, FindNext, FSplit

Example uses Strings, WinDos;
var

Path: array[O .. fsPathName] of Char;
Dir: array[O .. fsDirectory] of Char;
Name: array[O .. fsFileName] of Char;
Ext: array[O .. fsExtension] of Char;

begin
Write('Filename (WORK. PAS) : ');
Readln (Path) ;
FileSplit(Path, Dir, Name, Ext);
if Name[O] = #0 then StrCopy(Name, 'WORK');
if Ext [0] = #0 then StrCopy (Ext, '. PAS') i
StrECopy (StrECopy(StrECopy (Path, Dir), Name), Ext) i

Writeln('Resulting name is " Path) i

end.

Fill pattern constants Graph

48

Purpose Constants that determine the pattern used to fill an area.

Remarks Use SetFillPattern to define your own fill pattern, then call
SetFillStyle(UserFill, SomeColor) and make your fill pattern the active style.

Constant

EmptyFill
SolidFill
LineFill
LtSlashFill
SlashFill
BkSlashFill
LtBkSlashFill

Value

o
1
2
3
4
5
6

Description

Fills area in background color
Fills area in solid fill color
-fill
III fill
/ / / fill with thick lines
\ \ \ fill with thick lines
\\\fi11

Programmer's Reference

Fill paffern constants

HatchFill
XHatchFill
InterleaveFill
WideDotFill
CloseDotFill
UserFill

7
8
9
10
11
12

Light hatch fill
Heavy cross hatch fill
Interleaving line fill
Widely spaced dot fill
Closely spaced dot fill
User-defined fill

See also FillPatternType, GetFillSettings, SetFillStyle

FiliChar procedure System

Purpose Fills a specified number of contiguous bytes with a specified value.

Declaration procedure FillChar (var X; Count: Word; Value);

Remarks Xis a variable reference of any type. Count is an expression of type Word.
Value is any ordinal-type expression. FillChar writes Count contiguous
bytes of memory into Value, starting at the first byte occupied by X. No
range.,.checking is performed, so be careful to specify the correct number
of bytes.

Whenever possible, use the SizeD! function to specify the count parameter.
When using FillChar on strings, remember to set the length byte
afterward.

See also Move

Example var s: string [80] ;

begin
{ Set a string to all spaces
FillChar(S, SizeOf(S}, , '};
S[O] := #80; { Set length byte }

end.

FiliEilipse procedure Graph

Purpose Draws a filled ellipse.

Declaration procedure FillEllipse (X, Y: Integer; XRadius, YRadius: Word);

Remarks Draws a filled ellipse using (X, Y) as a center point, and XRadius and
YRadius as the horizontal and vertical axes. The ellipse is filled with the
current fill color and fill style, and is bordered with the current color.

Restrictions Must be in graphics mode.

Chapter 7, Library reference 49

I

FiliEllipse procedure

See also Are, Circle, Ellipse, GetArcCoords, GetAspectRatio, PieS lice, Sector,
SetAspectRatio

Example uses Graph;
const R = 30;
var

Driver, Mode: Integer;
Xasp, Yasp: Word;

begin
Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult < 0 then

Halt (1);

{ Draw ellipse }
FillEllipse(GetMaxX div 2, GetMaxY div 2, 50, 50);
GetAspectRatio(Xasp, Yasp);
{ Circular ellipse }
FillEllipse(R, R, R, R * Longint(Xasp) div Yasp);
Readln;
CloseGraphi

end.

{ Put in graphics mode }

FiliPatternType type Graph

Purpose Record that defines a user-defined fill pattern.

Declaration FillPatternType = array [1. .8] of Byte;

See also Fill pattern constants, GetFillPattern, SetFillPattern

FiliPoly procedure Graph

50

Purpose Draws and fills a polygon, using the scan converter.

Declaration procedure FillPoly (NumPoints: Word; var PolyPoints);

Remarks PolyPoints is an untyped parameter that contains the coordinates of each
intersection in the polygon. NumPoints specifies the number of coordi­
nates in PolyPoints.A coordinate consists of two words, an X and a Y
value.

FillPoly calculates all the horizontal intersections, and then fills the
polygon using the current fill style and color defined by SetFillStyle or
SetFillPattern. The outline of the polygon is drawn in the current line style
and color as set by SetLineStyle.

Programmer's Reference

FiliPoly procedure

If an error occurs while filling the polygon, GraphResult returns a value of
-6 (grNoScanMem).

Restrictions Must be in graphics mode.

See also DrawPoly, GetFillSettings, GetLineSettings, GraphResult, SetFillPattern,
SetFillStyle, SetLineStyle

Example uses Graph;
const

Triangle: array[1 .. 3J of PointType = ((X: 50; Y: 100),
(X: 100; Y: 100), (X: 150; Y: 150));

var Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

FillPoly(SizeOf(Triangle) div SizeOf(PointType), Triangle);
Readln;
CloseGraph;

end.

FiliSettingsType type Graph

Purpose The record that defines the pattern and color used to fill an area.

Declaration type
FillSettingsType = record

Pattern: Word;
Color: Word;

end;

See also GetFillSettings

FindFirst procedure Dos, WinDos

Purpose Searches the specified (or current) directory for the first entry matching
the specified file name and set of attributes.

Declaration procedure FindFirst(Path: String; Attr: Word; var S: SearchRec); { Dos

procedure FindFirst(Path: PChar; Attr: Word; var S: TSearchRec); { WinDos }

Remarks Path is the directory mask (for example, * . *). The Attr parameter specifies
the special files to include (in addition to all normal files). See page 43 for
a list of Dos and WinDos file attribute constants.

Chapter 7, Library reference 51

II

FindFirst procedure

The result of the directory search is returned in the specified search
record. See page 147 for a declaration of SearchRec and page 199 for a
declaration of TSearchRec.

Errors are reported in DosError; possible error codes are 3 (Path not
found) and 18 (No more files).

See also DosError, FExpand, File attribute constants, FileExpand, FindNext, SearchRec,
TSearchRec

Example uses Dos;
var DirInfo: SearchRec;
begin

FindFirst('*.PAS', Archive, DirInfo);
while DosError = 0 do
begin

Writeln(DirInfo.Name);
FindNext(DirInfo);

end;
end.

FindNext procedure

{ or WinDos }
{ or TSearchRec }
{ or faArchive }

{ Same as DIR *.PAS }

Dos, WinDos

Purpose Returns the next entry that matches the name and attributes specified in a
previous call to FindFirst.

Declaration procedure FindNext (var S: SearchRec); { Dos

procedure FindNext(var S: TSearchRec) i { WinDos

Remarks The search record must be the same search record passed to FindFirst.
Errors are reported in DosError; the only possible error code is 18 (No
more files).

See also Dos Error, File attribute, FExpand, FileExpa.nd, FindFirst, SearchRec,
TSearchRec

Example See the example for FindFirst.

52 Programmer's Reference

Flag constants

Flag constants Dos, WinDos

Purpose Used to test individual flag bits in the Flags register after a call to Intr or
MsDos.

Remarks
Constants Value

FCarry $0001
FParity $0004
FAuxiliary $0010
FZero $0040
FSign $0080
FOverflow $0800

For instance, if R is a register record, the tests

R.Flags and FCarry <> 0
R.Flags and FZero = 0

are True respectively if the Carry flag is set and if the Zero flag is clear.

See also Intr, MsDos

FloodFili procedure Graph

Purpose Fills a bounded region with the current fill pattern.

Declaration procedure FloodFill (X, Y: Integer; Border: Word);

Remarks Fills an enclosed area on bitmap devices. (X, Y) is a seed within the
enclosed area to be filled. The current fill pattern, as set by SetFillStyle or
SetFillPattern, is used to flood the area bounded by Border color. If the seed
point is within an enclosed area,'then the inside will be filled. If the seed is
outside the enclosed area, then the exterior will be filled.

If an error occurs while flooding a region, GraphResult returns a value of
grNoFloodMem.

Note that FloodFill stops after two blank lines have been output. This can
occur with a sparse fill pattern and a small polygon. In the following
program, the rectangle is not completely filled:

program StopFill;
uses Graph;
var Driver, Mode: Integer;

Chapter 7, Library reference 53

I

FloodFili procedure

begin
Driver := Detecti
InitGraph(Driver, Mode, 'c:\bgi') i
if GraphResult <> grOk then

Halt(l) i
SetFillStyle(LtSlashFill, GetMaxColor)i
Rectangle (0, 0, 8, 20) i

FloodFill(l, 1, GetMaxColor)i
Readlni .
CloseGraphi

end.

In this case, using a denser fill pattern like SlashFill will completely fill the
figure.

Restrictions Use FillPoly instead of FloodFill whenever possible so you can maintain
code compatibility with future versions. Must be in graphics mode. This
procedure is not available when using the IBM 8514 graphics driver
(IBM8514.BGI).

See also FillPoly, GraphResult, SetFillPattern, SetFillStyle

Example uses Graphi
var Gd, Gm: Integeri
begin

Gd := Detect;
InitGraph(Gd, Gm, ")i

if GraphResult <> grOk then
Halt(l)i

SetColor(GetMaxColor)i
Circle(50, 50, 20) i

FloodFill(50, 50, GetMaxColor) i

Readlni
CloseGraphi

end.

Flush procedure System

54

Purpose Flushes the buffer of a text file open for output.

Declaration procedure Flush(var F: Text) i

Remarks F is a text file variable.

When a text file has been opened for output using Rewrite or Append, a call
to Flush will empty the file's buffer. This guarantees that all characters
written to the file at that time have actually been written to the external
file. Flush has no effect on files opened for input.

Programmer's Reference

fmXXXX constants

With {$I-}, IOResult returns 0 if the operation was successful; otherwise, it
returns a nonzero error code.

fmXXXX constants Dos, WinDos

Purpose Defines the allowable values for the Mode field of a TextRec and TFileRec
text file record.

Remarks The Mode fields of Turbo Pascal's file variables contain one of the values
specified here:

Constant

fmClosed
fmlnput
fmOutput
fmlnOut

See also TextRec, TFileRec

Value

$D7BO
$D7Bl
$D7B2
$D7B3

Font control constants Graph

Purpose Constants that identify fonts.

Remarks
Constant

DefaultFont
TriplexFont
SmallFont
SansSerifFont
GothicFont

HorizDir
VertDir

UserCharSize

Value

a (8x8 bit mapped font)
1 ("stroked" fonts)
2
3 '
4

a (left to right)
1 (bottom to top)

a (user-defined Char size)

See also GetTextSettings, SetTextStyle, TextSettingsType

Frac function System

Purpose Returns the fractional part of the argument.

Declaration function Frac (X: Real): Real i

Chapter 7, Library reference 55

II

Frac function

Remarks X is a real-type expression. The result is the fractional part of X; that is,
Frac(X) = X - Int(X). .

See also Int

Example var R: Real;
begin

R := Frac(123.456);
R := Frac(-123.456);

end.

FreeList variable

Purpose Points to the first free block in the heap.

Declaration var FreeList: Pointer;

{ 0.456 }
{ -0.456 }

System

Remarks The FreeList variable points to the first free block in the heap. This block
contains a pointer to the next free block, which contains a pointer to the
next free block, and so forth. The last free block contains a pointer to the
'top of the heap. If there are no free blocks on the free list, FreeList will be
equal to HeapPtr. See Chapter 12, "Standard procedures and functions,"
in the Language Guide for more information.

See also Dispose, FreeMem, HeapPtr

FreeMem procedure System

Purpose Disposes of a dynamic variable. of a given size.

Declaration procedure FreeMern(var P: Pointer; Size: Word);

Remarks P is a variable of any pointer type previously assigned by the GetMem
procedure or assigned a meaningful value by an assignment statement.
Size is an expression specifying the size in bytes of the dynamic variable to
dispose of; it must be exactly the number of bytes previously allocated to
that variable by GetMem. FreeMem destroys the variable referenced by P
and returns its memory region to the heap. If P does not point to a
memory region in the heap, a run-time error occurs. After a call to
FreeMem, the value of P becomes undefined, and an error occurs if you
subsequently reference PA.

See/also Dispose, FreeMem, HeapError, New

56 Programmer's Reference

FSearch function

FSearch function Dos

Purpose Searches for a file in a list of directories.

Declaration function FSearch (Path: PathStri DirList: String): PathStri

Remarks Searches for the file given by Path in the list of directories given by DirList.
The directories in DirList must be separated by semicolons, just like the
directories specified in a PATH command in DOS. The search always
starts with the current directory of the current drive. The returned value is
a concatenation of one of the directory paths and the file name, or an
empty string if the file could not be located.

To search the PATH,used by DOS to locate executable files, call
GetEnv('PATH') and pass the result to FSearch as the DirList parameter.

The result of FSearch can be passed to FExpand to convert it into a fully
qualified file name, that is, an uppercase file name that includes both a
drive letter and a root-relative directory path. In addition, you can use
FSplit to split the file name into a drivel directory string, a file-name
string, and an extension string.

See also FExpand, FSplit, GetEnv

Example uses Dos i

var S: PathStri
begin

S := FSearch('TURBO.EXE', GetEnv('PATH'))i
if S = " then

Writeln('TURBO.EXE not found')
else

Wri teln (, Found as " FExpand (S)) i

end.

FSplit procedure Dos

Purpose Splits a file name into its three components.

Declaration procedure FSplit (Path: PathStri var Dir: DirStri var Name: NameStri

var Ext: ExtStr) i

Remarks Splits the file name specified by Path into its three components. Dir is set
to the drive and directory path with any leading and trailing backslashes,
Name is set to the file name, and Ext is set to the extension with a

Chapter 7, Library reference 57

II

FSpiit procedure

preceding dot. Each of the component strings might possibly be empty, if
Path contains no such component.

FSplit never adds or removes characters when it splits the file name, and
the concatenation of the resulting Dir, Name, and Ext will always equal the
specified Path.

See page 44 for a list of File-handling string types.

See also FExpand, File-handling string types

Example uses Dos;
var

P: PathStr;
D: DirStr;
N: NameStr;
E: ExtStr;

begin
Write('Filename (WORK. PAS) : ');
Readln(P) ;
FSplit(p, D, N, E);
if N = " then

N .- 'WORK';
if E = " then

E . - '. PAS';
P := D + N + E;
Writeln('Resulting name is' P);

end.

GetArcCoords procedure Graph

58

Purpose Lets the user inquire about the coordinates of the last Arc command.

Declaration procedure GetArcCoords (var ArcCoords: ArcCoordsType);

Remarks GetArcCoords returns a variable of type ArcCoordsType. GetArcCoords
returns a variable containing the center point (X, Y), the starting position
(Xstart, Ystart), and the ending position (Xend, Yend) of the last Arc or
Ellipse command. These values are useful if you need to connect a line to
the end of an ellipse.

Restrictions Must be in graphics mode.

See also Arc, Circle, Ellipse, FillEllipse, PieS lice, PieSliceXY, Sector

Example uses Graph;
var

Gd, Gm: Integer;

Programmer's Reference

GetArcCoords procedure

ArcCoords: ArcCoordsType;
begin

Gd := Detect;
InitGraph (Gd, Gm, ");
if GraphResuIt <> grOk then

HaItH) ;
Arc (100, 100, 0, 270, 30);
GetArcCoords(ArcCoords);
with ArcCoords do

Line (Xstart, Ystart, Xend, Yend);
ReadIn;
CIoseGraph;

end.

GetArgCount function WinDos

Purpose Returns the number of parameters passed to the program on the
command line.

Declaration function GetArgCount: Integer

See also GetArgStr, ParamCount, ParamStr

GetArgStr function WinDos

Purpose Returns the command-line parameter specified by Index.

Declaration function GetArgStr (Dest: PChar; Index: Integer; MaxLen: Word): PChar;

Remarks If Index is less than zero or greater than GetArgCount, GetArgStr returns an
empty string. If Index is zero, GetArgStr returns the file name of the
current module. Dest is the returned value. The maximum length of the
returned string is specified by the MaxLen parameter.

See also GetArgCount, ParamCount, ParamStr

GetAspectRatio procedure Graph

Purpose Returns the effective resolution of the graphics screen from which the
aspect ratio (Xasp:Yasp) can be computed.

Declaration procedure GetAspectRatio (var Xasp, Yasp: Word);

Chapter 7, Library reference 59

I

GetAspectRatio procedure

Remarks Each driver and graphics mode has an aspect ratio associated with it
(maximum Y resolution divided by maximum X resolution). This ratio
can be computed by making a call to GetAspectRatio and then dividing the
Xasp parameter by the Yasp parameter. This ratio is used to make circles,
arcs, and pie slices round.

Restrictions Must be in graphics mode.

See also Arc, Circle, Ellipse, GetMaxX, GetMaxY, PieS lice, SetAspectRatio

Example uses Graph;
var

Gd, Gm: Integer;
Xasp, Yasp: Word;
XSideLength, YSideLength: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Ha1t(1);

GetAspectRatio(Xasp, Yasp);
XSideLength := 20;

{ Adjust Y length for aspect ratio
YSideLength := Round((Xasp I Yasp) * XSideLength);

{ Draw a "square" rectangle on the screen}
Rectangle (0, 0, XSideLength, YSideLength);
Readln;
CloseGraph;

end.

GetBkColor function Graph

Purpose Returns the index into the palette of the current background color.

Declaration function GetBkColor: Word;

Remarks Background colors range from 0 to 15, depending on the current graphics
driver and current graphics mode.

GetBkColor returns 0 if the Oth palette entry is changed by a call to
SetPalette or SetAllPalette.

Restrictions Must be in graphics mode.

See also GetColor, GetPalette, InitGraph, SetAllPalette, SetBkColor, SetColor, SetPalette

60 Programmer's Reference

Example uses Crt I Graph;
var

Gd , Gm: Integer;
Color: Word;
Pal: PaletteType;

begin
Gd := Detect;
InitGraph(Gd, Gm , ");
if GraphResult <> grOk then

Halt (1);

Randomize;
GetPalette(Pal);
if Pal.Size <> 1 then
begin

repeat
Color := Succ(GetBkColor);
if Color> Pal.Size-l then

Color := 0;
SetBkColor(Color);
LineTo(Random(GetMaxX) I Random(GetMaxY));

until KeyPressed;
end
else

Line(O, 0, GetMaxX , GetMaxY);
Readln;
CloseGraph;

end.

GetCBreak procedure

Purpose Gets Ctrl+Break checking.

Declaration procedure GetCBreak(var Break: Boolean);

GetBkColor function

{ Cycle through colors }

Dos, WinDos

Remarks GetCBreak sets the value of Break depending on the state of Ctrl+Break
checking in DOS. When off (False), DOS only checks for Ctrl+Break during
I/O to console, printer, or communication devices. When on (True), checks
are made at every system call.

See also SetCBreak

Chapter 7, Library reference 61

I

GetColor function

GetColor function Graph

Purpose Returns the color value passed to the previous successful call to SetColor.

Declaration function GetColor: Word;·

Remarks Drawing colors range from 0 to 15, depending on the current graphics
driver and current graphics mode.

Restrictions Must be in graphics mode.

See also GetBkColor, GetPalette, InitGraph, SetAllPalette, SetColor, SetPalette

Example uses Graph;
var

Gd, Gm: Integer;
Color: Word;
Pal: PaletteTypei

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

Randomize;
GetPalette (Pal) ;
repeat

Color := Succ(GetColor);
if Color> Pal.Size - 1 then

Color := 0;
SetColor(Color);
LineTo(Random(GetMaxX), Random(GetMaxY));

until KeYPressed;
CloseGraphi

end.

GetCurDir function

Purpose Returns the current directory of a specified drive.

Declaration function GetCurDir (Dir: PChar ; Drive: Byte): PChar

WinDos

Remarks The string returned in Dir always starts with a drive letter, a colon, and a
backslash. Drive = 0 indicates the current drive, 1 indicates A, 2 indicates
B, and so on. The returned value is Dir. Errors are reported in DosError.

If the drive specified by Drive is invalid, Dir returns 'X:\', as if it were the
root directory of the invalid drive.

62 Programmer's Reference

GetCurDir function

The maximum length of the resulting string is defined by the fsDirectory
constant.

See also SetCurDir, CreateDir, RemoveDir. GetDir returns the current directory of a
specified drive as a Pascal-style string.

GetDate procedure Dos, WinDos

Purpose Returns the current date set in the operating system.

Declaration procedure GetDate (var Year, Month, Day, DayofWeek: Word);

Remarks Ranges of the values returned are Year 1980 .. 2099, Month 1..12, Day 1..31,
and DayOfWeek 0 .. 6 (where 0 corresponds to Sunday).

See also Get Time, SetDate, SetTime

GetDefaultPalette function Graph

Purpose Returns the palette definition record.

Declaration function GetDefaultPalette(var Palette: PaletteType): PaletteType;

Remarks GetDefaultPalette returns a PaletteType record, which contains the palette as
the driver initialized it during InitGraph.

Restrictions Must be in graphics mode.

See also InitGraph, GetPalette, SetAllPalette, SetPalette

Example uses Crt, Graph;
var

Driver, Mode, I: Integer;
MYPal, OldPal: PaletteType;

begin
DirectVideo := False;
Randomize;
Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult < 0 then

Halt (1);
GetDefaultPalette(OldPal) ;
MyPal := OldPal;
{ Display something }

Chapter 7, Library reference

{ Put in graphics mode }

{ Preserve old one }
{ Duplicate and modify }

63

I

GetDefaultPalette function

for I := 0 to MyPal.Size - 1 do
begin

SetColor(I) ;
OutTextXY(10, I * 10, ' ... Press any key ... ');

end;
repeat { Change palette until a key is pressed }

with MyPal do
Colors[Randorn(Size)] := Randorn(Size + 1);

SetAllPalette(MyPal);
until KeyPressed;
SetAllPalette(OldPal); { Restore original palette}
ClearDevice;
OutTextXY(10, 10, 'Press <Return> ... ');
Readln;
CloseGraph;

end.

GetDir procedure

Purpose Returns the current directory of a specified drive.

Declaration procedure GetDir (D: Byte; var S: String);

System

Remarks D is an integer-type expression, and S is a string-type variable. The
current directory of the drive specified by D is returned in S. D = 0 indi­
cates the current drive, 1 indicates drive A, 2 indicates drive B, and so on.

GetDir performs no error-checking. If the drive specified by D is invalid, S
returns 'X:V, as if it were the root directory of the ihvalid drive.

See also ChDir, MkDir, RmDir. GetCurDir performs the same function as GetDir,
but it takes a null-terminated string as -an argument instead of a Pascal­
style string.

GetDriverName function Graph:

Purpose Returns a string containing the name of the current driver.

Declaration function GetDri verNarne: String;

Remarks After a call to InitGraph, returns the name of the active driver.

Restrictions Must be in graphics mode.

See also GetModeName, InitGraph

64 Programmer's Reference

GetDriverNome function

Example uses Graph;
var Driver, Mode: Integer;
begin

Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult < 0 then

{ Put in graphics mode }

Halt (1);

OutText('Using driver' + GetDriverName);
Readln;
CloseGraph;

end.

GetEnv function

Purpose Returns the value of a specified environment variable.

Declaration function GetEnv(EnvVar: String): String;

Dos

Remarks GetEnv returns the value of a specified variable. The variable name can be
either uppercase or lowercase, but it must not include the equal sign (=)
character. If the specified environment variable does not exist, GetEnv
returns an empty string.

For more information about the DOS environment, see your DOS
manuals.

See also EnvCount, EnvStr

Example {$M 8192,O,O}
uses Dos;
var Command: string[79];
begin

Write('Enter DOS command: ');
Readln (Command) ;
if Command <> " then

Command := ' IC ' + Command;
SwapVectors;
Exec(GetEnv('COMSPEC'), Command);
SwapVectors;
if Dos Error <> 0 then

Writeln('Could not execute COMMAND.COM');
end.

Chapter 7, Library reference 65

I

GetEnvVor function

GetEnvVar function WinDos

Purpos~ Returns a pointer to the value of a specified environment variable.

Declaration function GetEnvVar (VarN-ame: PChar): i PChar

Remarks GetEnv Var returns a pointer to the value of a specified variable; for
example, a pointer to the first character after the equals sign (=) in the
environment entry given by VarName. The variable name can be in either
uppercase or lowercase, but it must not include the equal sign (=)
character. If the specified environment variable does not exist, GetEnvVar
returns nil.

Example uses WinDos;
begin

Writeln{/The current PATH is I GetEnvVar{/PATH/));
end.

GetFAttr procedure Dos, WinDos

66

Purpose Returns the attributes of a file.

Declaration procedure GetFAttr (var F; var Attr: Word);

Remarks Fmust be a file variable (typed; untyped, or text file) that has been
assigned but not opened. The attributes are examined by anding them
with the file attribute masks defined as constants in the Dos unit. See.
page 43 for a list of file attribute constants for Dos and WinDos units.

Errors are reported in DosError; possible error codes are

.3 (Invalid path)

.5 (File access denied)

Restrictions F cannot be open.

See also DosError, File attribute constants, GetFTime, SetFAttr, SetFTime

Example uses Dos;
var

F: file;
Attr: Word;

begin
{ Get file name from command line }
Assign{F I ParamStr{l));
GetFAttr{F I Attr);
Writeln{ParamStr{l)) ;

{ or WinDos }

Programmer's Reference

GetFAttr procedure

if DosError <> 0 then
Writeln('DOS error code =' DosError)

else
begin

Write('Attribute = " Attr);
{ Determine attribute type using File attribute constants in Dos or WinDos
unit }
if Attr and ReadOnly <> 0 then

Writeln('Read only file');
if Attr and Hidden <> 0 then

Writeln(',Hidden file');
if Attr and SysFile <> 0 then

Writeln('System file');
if Attr and VolumeID <> 0 then

Writeln('Volume ID');
if Attr and Directory <> 0 then

Writeln('Directory name');
if Attr an~ Archive <> 0 then

Writeln('Archive (normal file) ');
end; { else}

end.

GetFiliPattern procedure Graph

Purpose Returns the last fill pattern set by a previous call to SetFillPattern.

Declaration procedure GetFillPattern(var FillPattern: FillPatternType);

Remarks If no user call has been made to SetFillPattern, GetFillPattern returns an
array filled with $FF.

Restrictions Must be in graphics mode.

See also GetFillSettings, SetFillPattern, SetFillStyle

GetFiliSettings procedure Graph

Purpose Returns the last fill pattern and color set by a previous call to SetFillPattern
or SetFillStyle.

Declaration procedure GetFillSettings (var Filllnfo: FillSettingsType);

Remarks The Pattern field reports the current fill pattern selected. The Color field
reports the current fill color selected. Both the fill pattern and color can be
changed by calling the SetFillStyle or SetFillPattern procedure. If Pattern is

Chapter 7, Library reference 67

I

GefFiliSettings procedure

equal to UserFill, use GetFillPattern to get the user-defined fill pattern that
is selected.

Restrictions Must-be in grap~ics mode.

See also FillPoly, GetFillPattern, SetFillPattern, SetFillStyle

Example uses Graph;
var

Gd, Gm: Integer;
FillInfo: FillSettingsType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

GetFillSettings(Filllnfo);
Bar (0, 0, 50, 50);
SetFillStyle(XHatchFill, GetMaxColor);
Bar (50, 0, 100, 50);
with FillInfo do

SetFillStyle(Pattern, Color);
Bar (100, 0, 150, 50);
Readln;
CloseGraph;

end.

GetFTime procedure

Purpose Returns the date and time a file was last written.

Declaration procedure GetFTime(var F; var Time: Longint);

Save fill style and color }

{ New style }

{ Restore old fill style }

005 , WinDos

Remarks F must be a file variable (typed,untyped, or text file) that has been
assigned and opened. The time returned in the Time parameter can be
unpacked through a call to UnpackTime. Errors are reported in Dos Error;
the only possible error code is 6 (Invalid file handle).

Restrictions Fmust be open.

See also Dos Error, PackTime, SetFTime, UnpackTime

68 Programmer's Reference

GetGraphMode function

GetGraphMode function Graph

Purpose Returns the current graphics mode.

Declaration function GetGraphMode: Integer;

Remarks GetGraphMode returns the current graphics mode set by InitGraph or

I SetGraphMode. The Mode value is an integer from 0 to 5, depending on the
current driver.

The following mode constants are defined:

Graphics Constant Column
driver name Value x row Palette Pages

CGA CGACO 0 320x200 CO 1
CGAC1 1 320x200 C1 1
CGAC2 2 320x200 C2 1
CGAC3 3 320x200 C3 1
CGAHi 4 640x200 2 color 1

MCGA MCGACO 0 320x200 CO 1
MCGAC1 1 320x200 C1 1
MCGAC2 2 320x200 C2 1
MCGAC3 3 320x200 C3 1
MCGAMed 4 640x200 2 color 1
MCGAHi 5 640x480 2 color 1

EGA EGALo 0 640x200 16 color 4
EGAHi 1 640x350 16 color 2

EGA64 EGA64Lo 0 640x200 16 color 1
EGA64Hi 1 640x350 4 color 1

EGA-MONO EGAMonoHi 3 640x350 2 color 1*
EGAMonoHi 3 640x350 2 color 2**

HERC HercMonoHi 0 720x348 2 color 2

ATT400 ATT400CO 0 320x200 CO 1
ATT400C1 1 320x200 C1 1
ATT400C2 2 320x200 C2 1
ATT400C3 3 320x200 C3 1
ATT400Med 4 640x200 2 color 1
ATT400Hi 5 640x400 2 color 1

VGA VGALo 0 640x200 16 color 2
VGAMed L 640x350 16 color 2
VGAHi 2 640x480 16 color 1

Chapter 7, Library reference 69

GetGraphMode function

PC3270 PC3270Hi 0 720x350 2 color

IBM8514 IBM8514Lo 0 640x480 256 color
IBM8514 IBM8514Hi 0 1024x768 256 color

* 64K on EGAMono card
** 256K on EGAMono card

Restrictions Must be in graphics mode.

See also ClearDevice, DetectGraph, InitGraph, RestoreCrtMode, SetGraphMode

Example uses Graph;
var

Gd, Gm: Integer;
Mode: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
Out Text ('<ENTER> to leave graphics:');
Readln;
RestoreCrtMode;
Writeln('Now in text mode');
Write('<ENTER> to enter graphics mode:');
Readln;
SetGraphMode(GetGraphMode) ;
OutTextXY(O, 0, 'Back in graphics mode');
OutTextXY(O, TextHeight('H'), '<ENTER> to quit:');
Readln;
CloseGraphi

end.

1

1
1

Getlmage procedure Graph

70

Purpose Saves a bit image of the specified region into a buffer.

Declaration procedure GetImage (Xl, Yl, X2, Y2: Integer; var BitMap);

Remarks Xl, Yl, X2, and Y2 define a rectangular region on the screen. BitMap is an
untyped parameter that must be greater than or equal to 6 plus the
amount of area defined by the .region. The first two words of BitMap store
the width and height of the region. The third word is reserved.

The remaining part of BitMap is used to save the bit image itself. Use the
ImageSize function to determine the size requirements of BitMap.

Programmer's Reference

Getlmage procedure

Restrictions Must be in graphics mode. The memory required to save the region must
be less than 64K.

See also ImageSize, PutImage

Example uses Graph;
var

Gd, Gm: Integer;
P: Pointer;
Size: Word;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

Bar(O, 0, GetMaxX, GetMaxY);
Size := ImageSize(10, 20, 30, 40);
GetMem(P, Size); { Allocate memory on heap }
GetImage(10, 20, 30, 40, PA

);

Readln;
ClearDevice;
Put Image (100, 100, pAl NormalPut);
Readln;

. CloseGraph;
end ..

GetlntVec procedure Dos, WinDos

Purpose Returns the address stored in a specified interrupt vector.

Declaration procedure GetIntVec (IntNo: Byte; var Vector: Pointer);

Remarks IntNo specifies the interrupt vector number (0 .. 255), and the address is
returned in Vector.

See also SetIntVec

GetLineSettings procedure Graph

Purpose Returns the current line style,line pattern, and line thickness as set by
SetLineStyle.

Declaration procedure GetLineSettings (var LineInfo: LineSettingsType);

Remarks See page 103 for the declaration of LineSettingsType.

Restrictions Must be in graphics mode.

Chapter 7, Library reference 71

I

GetLineSettings procedure

See also DrawPoly, LineSettingsType, Line Style, SetLineStyle

Example uses Graph;
var

Gd, Gm: Integer;
OldStyle: LineSettingsType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

Line (0, 0, 100, 0);
GetLineSettings(OldStyle);
SetLineStyle(DottedLn, A, ThickWidth);
Line(O, la, lOa, 10);
with OldStyle do

SetLineStyle(LineStyle, Pattern, Thickness);
Line(O, 20, lOa, 20);
Readln;
CloseGraph;

end.

GetMaxColor function

{ New style }

{ Restore old line style }

Graph

Purpose Returns the highest color that can be passed to the SetColor procedure.

Declaration function GetMaxColor: Word;

Remarks As an example, on a 256K EGA, GetMaxColor always returns IS, which
means that any call to SetColor with a value from 0 .. 15 is valid. On a eGA
in high-resolution mode or on a Hercules monochrome adapter,
GetMaxColor returns a value of 1 because these adapters support only
draw colors of 0 or 1.

Restrictions Must be in graphics mode.

See also SetColor

GetMaxMode function Graph

Purpose Returns the maximum mode number for the currently loaded driver.

Declaration function GetMaxMode: Word;

Remarks GetMaxMode lets you find out the maximum mode number for the current
driver, directly from the driver. (Formerly, GetModeRange was the only way

72 Programmer's Reference

GetMaxMode function

you could get this number; GetModeRange is still supported, but only for
the Borland drivers.)

The value returned by GetMaxMode is the maximum value that can be
passed to SetGraphMode. Every driver supports modes O .. GetMaxMode.

Restrictions Must be in graphics mode.

See also GetModeRange, SetGraphMode

Example uses Graph;
var

Driver, Mode: Integer;
I: Integer;

begin
Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult < 0 then

{ Put in graphics mode }

Halt (1) ;

for I := 0 to GetMaxMode do { Display all mode names }
OutTextXY(10, 10 * Succ(I), GetModeName(I));

Readln;
CloseGraph;

end.

GetMaxX function Graph

Purpose Returns the rightmost column (x resolution) of the current graphics driver
and mode.

Declaration function GetMaxX: Integer;

Remarks Returns the maximum X value for the current graphics driver and mode.
On a eGA in 320x200 mode, for example, GetMaxX returns 319.

GetMaxX and GetMaxY are invaluable for centering, determining the
boundaries of a region on the screen, and so on.

Restrictions Must be in graphics mode.

See also GetMaxY, GetX, GetY, MoveTo

Example uses Graph;
var Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

Chapter 7, Libraryreference 73

I

GetMaxX function

Rectangle (0, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end:

{ Draw a full-screen box}

GetMaxY function Gr.aph

Purpose Returns the bottommost row (y resolution) of the current graphics driver
and mode.

Declaration function GetMaxY: Integer;

Remarks Returns the maximum y value for the current graphics driver and mode.
On a CGA in 320x200 mode, for example, GetMaxY returns 199.

GetMaxX and GetMax Yare invaluable for centering, determining the
boundaries of a region on the screen, and so on.

Restrictions Must be in graphics mode.

See also GetMaxX, GetX, GetY, MoveTo

Example uses Graph;
var Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph (Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);
Rectangle (0, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end.

{ Draw a full-screen box}

GetMem procedure . System

74

Purpose Allocates a block of memory of a specified size.

Declaration procedure GetMem (var P: Pointer; Size: Word);

Remarks P is a variableofany pointer type. Size is an expression specifying the size
in bytes of the dynamic variable to allocate. The newly created variable
can be referenced as PA. .

If there isn't enough free space in the heap to allocate the new variable, a
run-time error occurs. (It is possible to avoid a run-time error; see "The
HeapError variable" in Chapter 19 of the Language Guide.)

Programmer's Reference

GetMem procedure

Restrictions The largest block that can be safely allocated on the heap at one time is
65,528 bytes (64K-$8).

See also Dispose, FreeMem, HeapError, New

GetModeName function Graph

Purpose Returns a string containing the name of the specified graphics mode.

Declaration function GetModeName (ModeNumber: Integer): String;

Remarks The mode names are embedded in each driver. The return values (320x200
CGA PI, 640x200 CGA, and so on) are useful for building menus, display
status, and so forth.

Restrictions Must be in graphics mode.

See also GetDriverName, GetMaxMode, GetModeRange

Example uses Graph;
var

Driver, Mode: Integer;
I: Integer;

begin
Driver := Detect; { Put in graphics mode}
InitGraph(Driver, Mode, ");
if GraphResult < 0 then

Halt (1);
for I := 0 to GetMaxMode do

OutTextXY(10, 10 * Succ(I), GetModeName(I));
Readln;
CloseGraph;

end.

GetModeRange procedure

{ Display all mode names }

Graph

Purpose Returns the lowest and highest valid graphics mode for a given driver.

Declaration procedure GetModeRange (GraphDri ver: Integer; var LoMode, HiMode: Integer);

Remarks The output from the following program will be Lowest = 0 and Highest = 1:

uses Graph;
var Lowest, Highest: Integer;
begin

GetModeRange(EGA64, Lowest, Highest);

Chapter 1, Library reference 75

I

GetModeRange procedure

Write{'Lowest = " Lowest);
Write{' Highest = " Highest);

end.

If the value of GraphDriver is invalid, the LoMode and HiMode are set to-1.

See also DetectGraph, GetGraphMode, InitGraph, SetGraphMode

GetPalette procedure Graph

76

Purpose Returns the current palette and its size.

Declaration procedure Getpalette (var Palette: PaletteType);

Remarks Returns the current palette and its size in a variable of type PaletteType.

Restrictions Must be in graphics mode, and can only be used with EGA,EGA 64, or
VGA (not the IBM 8514 or the VGA in 256-color mode).

See also GetDefaultPalette, GetPaletteSize, SetAllPalette, SetPalette

Example uses Graph;
var

Gd, Gm: Integer;
Color: Word;
Palette:. PaletteType;

begin,
Gd := Detect;
InitGraph{Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);
GetPalette{Palette);
if Palette. Size <> 1 then

for Color := 0 to Pred{Palette.Size) do
begin

SetColor{Color);
Line{O, Color * 5, 100, Color * 5);

end
else

Line (0, 0, 100, 0);
Readln;
CloseGraph;

end.

Programmer's Reference

GetPaletteSize function

GetPaletteSize function Graph

Purpose Returns the size of the palette color lookup table.

Declaration function GetpaletteSize: Integer;

Remarks GetPaletteSize reports how many palette entries can be set for the current
graphics mode; for example, the EGA in color mode returns a value of 16.

Restrictions Must be in graphics mode.

See also GetDejaultPalette, GetMaxColor, GetPalette, SetPalette

GetPixel function

Purpose Gets the pixel value at X, Y.

Declaration function Getpixel (X, Y: Integer): Word:

Remarks Gets the color of the pixel at (X, Y).

Restrictions Must be in graphics mode.

See also GetImage, PutImage, PutPixel, SetWriteMode

Example uses Graph;
var

Gd, Gm: Integer;
PixelColor: Word;

begin
Gd := Detect;
InitGraph(Gd, Gm, "):
if GraphResult <> grOk then

Halt (1);

PixelColor := GetPixel(10, 10);
if Pixel Color = 0 then

PutPixel(10, 10, GetMaxColor):
Readln;
CloseGraph;

end.

Chapter 7, Library reference

Graph

77

I

GetTextSettings procedure

GetTextSettings procedure Graph

Purpose Returns the current text font, direction, size, and justification as set by
SetTextStyle and SetTextJustify .

. Declaration procedure GetTextSettings (var TextInfo: TextSettingsType);

Remarks See page 55 for the declaration of the Font control constants and page 196
for a declaration of the TextSettingsType record.

Restrictions Must be in graphics mode.

See also Font control constants, In it Graph, SetTextJustify, SetTextStyle, TextHeight,
TextSettingsType, Text Width

Example uses Graph;
var

Gd, Gm: Integer;
OldStyle: TextSettingsType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);
GetTextSettings(OldStyle) ;
OutTextXY(O, 0, 'Old text style');
SetTextJustify(LeftText, CenterText);
SetTextStyle(TriplexFont, VertDir, 4);

. OutTextXY(GetMaxX div 2, GetMaxY div 2, 'New Style');
with OldStyle do
begin { Restore old text style }

SetTextJustify(Horiz, Vert);
SetTextStyle(Font, Direction, CharSize);

end;
OutTextXY(O, TextHeight('H'), 'Old style again');
Readln;
CloseGraph;

end.

GetTime procedure

Purpose Returns the current time set in the operating system.

Declaration procedure GetTime(var Hour, Minute, Second, Sec100: Word);

Dos, WinDos

78 Programmer's Reference

GetTime procedure

Remarks Ranges of the values returned are Hour 0 .. 23, Minute 0 . .59, Second 0 .. 59,
and Sec100 (hundredths of seconds) 0 .. 99.

See also GetDate, SetDate, SetTime, UnpackTime

GetVerify procedure Dos, WinDos

Purpose Returns the state of the verify flag in DOS.

Declaration procedure GetVerify (var Verify: Boolean);

Remarks GetVerify returns the state of the verify flag in DOS~ When off (False), disk
writes are not verified. When on (True), all disk writes are verified to
ensure proper writing.

See also Set Verify

GetViewSettings procedure Graph

Purpose Returns the current viewport and clipping parameters, as set by
SetViewPort.

Declaration procedure GetViewSettings (var ViewPort: ViewPortType);

Remarks GetViewSettings returns a variable of ViewPortType. See page 202 for a
declaration of the record ViewPort Type.

Restrictions Must be in graphics mode.

See also Clear ViewPort, Set ViewPort, ViewPortType

Example uses Graph;
var

Gd, Gm: Integer;
ViewPort: ViewPortType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

GetViewSettings(ViewPort);
with ViewPort do
begin

Rectangle (0, 0, X2 - Xl, Y2 - Y1);
if Clip then

OutText('Clipping is active.')

Chapter 7, Library reference 79

I

GetViewSettings procedure

else
Out Text ('No clipping today.');

end;
Readln;
CloseGraph;

end.

GetX function Graph

80

Purpose Returns the X coordinate of the current position (CP).

'Declaration function GetX: Integer;

Remarks The value of Get X is relative to the dimensions of the active viewport, as
the following examples illustrate.

• SetViewPort (0, 0, GetMaxX, Get~axY, True);
Moves CP to absolute (0, 0), and GetX returns a value of 0.

• MoveTo (5, 5);
Moves CP to absolute (5,5), and GetX returns a value of 5 .

• SetViewPort (10, la, 100 j lOa, True);
Moves CP to absolute (10, 10), but GetX returns a value of 0.

• MoveTo (5, 5);
Moves CP to absolu!e (15, 15), but GetX returns a value of 5.

Restrictions Must be in graphics mode.

See also GetViewsettings, GetY, InitGraph, MoveTo, Set ViewPort

Example uses Graph;
var

Gd, Gm: Integer;
X, Y: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

OutText('Starting here. ');
X := GetX;
Y := Gety;
OutTextXY(20, 10, 'Now over here ');
OutTextXY(X, Y, 'Now back over here.');
Readln;
CloseGraph;

end.

Programmer's Reference

GetV function

GetV function Graph

Purpose Returns the Y coordinate of the current position (CP).

Declaration function GetY: Integer;

Remarks The value of Get X is relative to the dimensions of the active viewport as
the following examples illustrate.

• SetViewPort (0, a, GetMaxX, GetMaxY, True);
Moves CP to absolute (a, a), and GetY returns a value of o .

• MoveTo (5, 5) i

Moves CP to absolute (5,5), and GetY returns a value of 5 .

• SetViewPort (10, 10, lOa, lOa, True);
Moves CP to absolute (la, 10), but GetY returns a value of o .

• MoveTo (5, 5);
Moves CP to absolute (IS, IS), but GetY returns a value of 5.

Restrictions Must be in graphics mode.

See also GetViewSettings, GetX, InitGraph, MoveTo, Set ViewPort

Example uses Graph;
var

Gd, Gm: Integer;
X, Y: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

OutText('Starting here. ');
X := GetX;
Y := Gety;
OutTextXY(20, 10, 'Now over here ... ');
OutTextXY(X, Y, 'Now back over here.');
Readln;
CloseGraph;

end.

GotoXV procedure Crt

Purpose Moves the cursor to the given coordinates.

Declaration procedure GotoXY(X, Y: Byte);

Chapter 7, Library reference 81

I

GotoXY procedure

Remarks Moves the cursor to the position within the current window specified by
X and Y (X.is the column, Yis the row). The upper left corner is (I, 1).

This procedure is window-relative. The following example moves the
cursor to the upper left corner of the active window (absolute coordinates
(I, 10)):

Window(l, 10, 60, 20);
GotoXY(l, 1);

Restrictions If the coordinates are in any way invalid, the call to GataXY is ignored.

See also WhereX, Where Y, Window

GraphDefaults procedure Graph

Purpose Resets the graphics settings.

Declaration procedure GraphDefaul ts i

Remarks Homes the current pointer (CP) and resets the graphics system to the
default values for

• Viewport

• Palette
• Draw and background colors

• Line style and line pattern

• Fill style, fill color, and fill pattern

• Active font, text style, text justification, and user Char size

Restrictions Must be in graphics mode.

See also InitGraph

GraphErrorMsg function Graph

Purpose Returns an error message string for the specified ErrorCade.

Declaration function GraphErrorMsg (ErrorCode: Integer): String;

Remarks This function returns a string containing an error message that
corresponds with the error codes in the graphics system. This makes it
easy for a user program to display a descriptive error message ("Device
driver not found" instead of "error code -3").

82 Programmer's Reference

GraphErrorMsg function

See also DetectGraph, GraphResult, InitGraph

Example uses Graph;
var

GraphDriver, GraphMode: Integer;
ErrorCode: Integer;

begin
GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ");
ErrorCode := GraphResult;
if ErrorCode <> grOk then
begin

Writeln('Graphics error: ' GraphErrorMsg(ErrorCode));
Readln;
Halt (1);

end;
Line(O, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end.

GraphFreeMemPtr variable Graph

Purpose Holds the address of the heap deallocation routine.

Declaration var GraphFreeMemPtr: Pointer;

Remarks Initially GraphFreeMemPtr points to the Graph unit's heap deallocation
routine. If your program does its own heap management, assign the
address of your de allocation routine to this variable. See Chapter 17,
"Using the Borland Graphics Interface," in the Language Guide for
additional information about this routine.

GraphGetMemPtr variable Graph

Purpose Holds the address of the heap allocation routine.

Declaration var GraphGetMemPtr: Pointer;

Remarks Initially GraphGetMemPtr points to the Graph unit's heap allocation
routine. If your program does its own heap management, assign the
address of your allocation routine to this variable. See 17, "Using the
Borland Graphics Interface," in the Language Guide for additional
information about this routine.

Chapter 1, Library reference 83

I

GraphResult function

GraphResultfunction Graph

84

Purpose Returns an error code for the last graphics operation.

Declaration function GraphResult: Integer;

Remarks See page 85 for a list of the gr XXXX constant values.

The following routines set GraphResult:

Ear GetGraphMode
Bar3D Imagesize
ClearViewPort InitGraph
CloseGraph InstallUserDriver
DetectGraph InstallUserFont
DrawPoly PieS lice
FillPoly RegisterBGldriver
FloodFill RegisterBGIfont

setAllPalette
setFillPattern
setFillStyle
setGraphBufsize
setGraphMode
setLinestyle
setPalette
setTextJustify
setTextstyle

Note that GraphResult is reset to zero after i~ has been called (similar to
IOResult). Therefore, the user should store the value of GraphResult into a
temporary variable and then test it.

A string function, GraphErrorMsg, is provided to return a string that
corresponds with each error code.

See also GraphErrorMsg, grXXXX constants

Example uses Graph;
val,'

ErrorCode: Integer;
GrDriver , GrMode: Integer;

begin
GrDriver := Detect;
InitGraph(GrDriver , GrMode , ");
ErrorCode := GraphResu1t; { Check for errors }
if ErrorCode <> grOk then
begin

Write1n('Graphics error: ');
Write1n(GraphErrorMsg(ErrorCode)) ;
Write1n(IProgram aborted .. . ');
Halt (1) ;

end;

Programmer's Reference

{ Do some graphics ... }
ClearDevicei

GraphResult function

Rectangle(O, 0, GetMaxX, GetMaxY)i
Readln;
CloseGraph;

end.

grXXXX constants Graph

Purpose Used by the GraphResult function to indicate the type of error that
occurred.

Remarks
Constant

grOk
grNolnitGraph
gr Not Detected
grFileNotFound
grlnvalidDriver
grNoLoadMem
grNoScanMem
grNoFloodMem
grFontNotFound
grNoFontMem
grlnvalidMode
grError

grIOerror
grlnvalidFont
grlnvalidFontNum

See also GraphResult

Halt procedure

Value Description

a
-1
-2
-3
-4
-5
-6
-7
-8
-9

-10
-11

-12
-13
-14

No error.
(BGI) graphics not installed (use InitGraph).
Graphics hardware not detected.
Device driver file not found.
Invalid device driver file.
Not enough memory to load driver.
Out of memory in scan fill.
Out of memory in flood fill.
Font file not found.
Not enough memory to load font.
Invalid graphics mode for selected driver.
Graphics error (generic error); there is no room in
the font table to register another font. (The font
table holds up to 10 fonts, and only 4 are
provided, so this error should not occur.)
Graphics 1/ a error.
Invalid font file; the font header isn't recognized.
Invalid font number; the font number in the font
header is not recognized.

System

Purpose Stops program execution and returns to the operating system.

Declaration procedure Hal t [(Exi tCode: Word) 1 i

Remarks ExitCode is an optional expression of type Word that specifies the
program's exit code. Halt without a parameter corresponds to Halt(D).

Chapter 7, Library reference 85

I

Halt procedure

Note that Halt initiates execution of any Exit procedures. See
Chapter 20, UControl issues," in the Language Guide for more information.

See also Exit, RunError

HeapEnd variable System

Purpose Points to the end of DOS memory used by programs.

Declaration var HeapEnd: Pointer;

,Remarks HeapEnd is initialized by the system unit when your program begins. See
Chapter 19, UMemory issues," in the Language Guide for more information.

See also HeapOrg, HeapPtr

HeapError variable System

Purpose Points to the heap error function.

Declaration var HeapError: Pointer;

Remarks HeapError contains the address of a heap error function that is called
whenever the heap manager can't complete an alloc~tion request. Install a
heap error function by assigning its address to HeapError:

HeapError := @HeapFunc;

See Chapter 19, "Memory issues," in the Language Guide for more
information about using heap error functions.

See also GetMem, New

HeapOrg variable

Purpose Points to the bottom of the heap .

. Declaration var HeapOrg: Pointer;

System

Remarks HeapOrg contains the address of the bottom of the heap. See Chapter 19,
"Memory issues," in the Language Guide for more information.

See also HeapEnd, HeapPtr

86 Programmer's Reference

HeapPtr variable

HeapPtr variable System

Purpose Points to the top of the heap.

Declaration var HeapPtr: Pointer;

Remarks HeapPtr contains the address of the top of the heap, that is, the bottom of
free memory. Each time a dynamic variable is allocated on the heap, the
heap manager moves HeapPtr upward by the size of the variable. See
Chapter 19, "Memory issues," in the Language Guide for more information.

See also HeapOrg, HeapEnd

Hi function System

Purpose Returns the high-order byte of the argument.

Declaration function Hi (X): Byte;

Remarks X is an expression of type Integer or Word. Hi returns the high-order byte
of X as an unsigned value.

See also La, Swap

Example var B: Byte;

begin
B := Hi($1234); { $12 }

end.

High function System

Purpose Returns the highest value in the range of the argument.

Declaration function High (X) ;

Result type X, or the index type of X.

Remarks X is either a type identifier or a variable reference. The type denoted by X,
or the type of the variable denoted by X, must be an ordinal type, an array
type, or a string type. For an ordinal type, High returns the highest value
in the range of the type. For an array type, High returns the highest value
within the range of the index type of the array. For a string type, High
returns the declared size of the string. For an open array or string

Chapter 7, Library reference 87

a

High function

parameter, High returns a value of type Word, giving the number of
elements in the actual parameter minus one element.

See also Low

Example function Sum(var X: array of Real): Real;
var

I: Word;
S: Real;

begin

S : = 0;
for I := 0 to High(X) do S := S + X[I];
Sum := S;

end;

HighVideo procedure

Purpose Selects high-intensity characters.

Declaration procedure HighVideo;

Crt

Remarks There is a Byte variable in Crt-TextAttr-that is used to hold the current
video attribute. High Video sets the high intensity bit of TextAttr's fore­
ground color, thus mapping colors 0-7 onto colors 8-15.

See also LowVideo, NormVideo, TextBackground, TextColor

Example uses Crt;

begin
TextAttr := LightGray;
HighVideo;

end.

ImageSize function

{ Color is now white }

Graph

Purpose Returns the number of bytes required to store a rectangular region of the
screen.

Declaration function ImageSize(Xl, Yl, X2, Y2: Integer): Word;

Remarks Xl, Yl, X2, and Y2 define a rectangular region on the screen. ImageSize
determines the number of bytes necessary for GetImage to save the
specified region of the screen. The image size includes space for several
words. The first stores the width of the region, and the second stores the
height. The next words store the attributes of the image itself. The last
word is reserved.

88 Programmer's Reference

ImageSize function

If the memory required to save the region is greater than or equal to 64K,
a value of 0 is returned and GraphResult returns -11 (grError).

Restrictions Must be in graphics mode.

See also GetImage, PutImage

Example uses Graph;
var

Gd, Gm: Integer;
P: Pointer;
Size: Word;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

Bar(O, 0, GetMaxX, GetMaxY);
Size := ImageSize(10, 20, 30, 40);
GetMem(P, Size);
Get Image (10, 20, 30, 40, PAl;
Readln;
ClearDevice;
Put Image (100, 100, pA, NormalPut);
Readln;
CloseGraph;

end.

{ Allocate memory on heap }

Inc procedure System

Purpose Increments a variable ..

Declaration procedure Inc (var X [; N: Longint 1);

Remarks X is an ordinal-type variable or a variable of type PChar if the extended
syntax is enabled and N is an integer-type expression. X is incremented by
1, or by N if N is specified; that is, Inc(X) corresponds to X := X + 1, and
Inc(X, N) corresponds to X := X + N.

See also

Example

Inc generates optimized code and is especially useful in tight loops.

Dec, Pred, Succ

var
IntVar: Integer;
LongintVar: Longint;

Chapter 7 I Library reference 89

II

Inc procedure

begin
Inc (IntVar) ;
Inc (LongintVar, 5);

end.

{ IntVar := IntVar + 1 }
{ LongintVar := LongintVar + 5 }

Include procedure System

Purpose Includes an element in a set.

Declaration procedure Include (var 8: set of T; I: T);

Remarks S is a set type variable, and I is an expression of a type compatible with
the base type of S. The element given by I is included in the set given by S.
The construct

Include (8, I)

corresponds to

8:=8+[I]

but the Include procedure generates more efficient code.

See also Exclude

InitGraph procedure Graph

90

Purpose Initializes the graphics system and puts the hardware into graphics mode.

Declaration procedure InitGraph(var GraphDriver: Integer; var GraphMode: Integer;
PathToDriver: 8tring);

Remarks If GraphDriver is eq-q.al to Detect, a call is made to any user-defined
auto detect routines (see InstallUserDriver) and then DetectGraph. If
graphics hardware is detected, the appropriate graphics driver is
initialized, and a graphics mode is selected.

If GraphDriver is not equal to 0, the value of GraphDriver is assumed to be
a driver number; that driver is selected, and the system is put into the
mode specified'by GraphMode. If you override auto detection in this
manner, you must supply a valid GraphMode parameter for the driver
requested. '

PathToDriver specifies the directory path where the graphics drivers can
be found. If PathToDriver is null, the driver files must be in the current
directory.

Programmer's Reference

InitGraph procedure

Normally, InitGraph loads a graphics driver by allocating memory for the
driver (through GraphGetMem), then loads the appropriate .BGI file from
disk. As an alternative to this dynamic loading scheme, you can link a
graphics driver file (or several of them) directly into your executable
program file. You do this by first converting the .BGI file to an .OBJ file
(using the BINOBJ utility), then placing calls to RegisterBGldriver in your
source code (before the call to InitGraph) to register the graphics driver(s).
When you build your program, you must link the .OBJ files for the
registered drivers. You can also load a BGI driver onto the heap and then
register it using RegisterBGldriver.

If memory for the graphics driver is allocated on the heap using
GraphGetMem, that memory is released when a call is made to CloseGraph.

After calling InitGraph, GraphDriver is set to the current graphics driver,
and GraphMode is set to the current graphics mode.

If an error occurs, both GraphDriver and GraphResult (a function) return
one of the following gr XXXX constant values: grNotDetected,
grFileNotFound, grlnvalidDriver, grNoLoadMem, grlnvalidMode. See page 85
for a complete list of graphics error constants.

InitGraph resets all graphics settings to their defaults (current pointer,
palette, color, viewport, and so on).

You can use InstallDriver to install a vendor-supplied graphics driver (see
InstallUserDriver for more information).

Restrictions Must be in graphics mode. If you use the Borland Graphics Interface (BGI)
on a Zenith Z-449 card, Turbo Pascal's autodetection code will always
select the 640x480 enhanced EGA mode. If this mode isn't compatible
with your monitor, select a different mode in the InitGraph call. Also,
Turbo Pascal cannot autodetect the IBM 8514 graphics card (the
autodetection logic recognizes it as VGA). Therefore, to use the IBM 8514
card, the GraphDriver variable must be assigned the value IBM8514 (which
is defined in the Graph unit) when InitGraph is called. You should not use
DetectGraph (or Detect with InitGraph) with the IBM 8514 unless you want
the emulated VGA mode.

See also CloseGraph, DetectGraph, GraphDefaults, GraphResult, grXXXX constants,
InstallUserDriver, RegisterBGldriver, RegisterBGIfont, RestoreCrtMode,
SetGraphBufSize, SetGraphMode

Example uses Graph;

var
grDriver: Integer;
grMode: Integer;

Chapter 7, Library reference 91

I

InitGraph procedure

ErrCode: Integer;
begin

grDriver := Detect;
InitGraph(grDriver, grMode, ");
ErrCode :~ GraphResult;
if ErrCode = grOk then
begin

Line(O, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end
else

Writeln('Graphics error:', GraphErrorMsg(ErrCode));
end.

{ Do graphics }

InOutRes variable System

Purpose Stores the value that the next call to IOResult returns .

. Declaration var InOutRes: Integer;

Remarks InOutRes is used by the built-in 1/ a functions.

See also 10 Result

Input variable System

92

Purpose Standard input file.

Declaration var Input: Text;

Remarks Input is a read~only file associated with the operating system's standard
input file; usually this is the keyboard.

A number of Turbo Pascal's standard file handling procedures and
functions allow the file variable parameter to be omitted, in which case,
the procedure or function will instead operate on the Input or Output file
variable. For example, Read(X) corresponds to .Read(Input, X), and Write(X)
corresponds to Write(Output, X). The following standard file handling
procedures and functions operate on the Input file when no file parameter
is specified: Eof, Eoln, Read,
Readln, SeekEof, and SeekEoln.

Programmer's Reference

Input variable

See Chapter 13, "Input and output," in the Language Guide for details
about I/O issues.

See also Output

Insert procedure System

Purpose Inserts a substring into a string.

Declaration procedure Insert (Source: String; var S: String; Index: Integer);

Remarks Source is a string-type expression. S is a string-type variable of any length. II
Index is an integer-type expression. Insert inserts Source into S at the
Indexth position. If the resulting string is longer than 255 characters, it is
truncated after the 255th character.

See also Concat, Copy, Delete, Length, Pos

Example var S: string;
begin

S := 'Honest Lincoln';
Insert ('Abe " s, 8); { 'Honest Abe Lincoln' }

end.

InsLine procedure Crt

Purpose Inserts an empty line at the cursor position.

Declaration procedure Ins Line ;

Remarks All lines below the inserted line are moved down one line, and the bottom
line scrolls off the screen (using the BIOS scroll routine).

All character positions are set to blanks with the currently defined text
attributes. Thus, if TextBackground is not black, the new line becomes the
background color.

Example InsLine is window-relative. The following example inserts a line 60
columns wide at absolute coordinates (1, 10):

Window(l, 10, 60, 20);
InsLine;

See also DelLine, Window

Chapter 7, Library reference 93

InstaliUserDriver function

InstaliUserDriver function Graph

94

Purpose Installs a vendor-added device driver to the BGl device driver table.

Declaration function InstallUserDri ver (Name: String; AutoDetectptr: Pointer): Integer;

Remarks InstallUserDriver lets you use a vendor-added device driver. The Name
parameter is the file name of the new device driver. AutoDetectPtr is a
pointer to an optional autodetect function that can accompany the new
driver. This auto detect function takes no parameters and returns an
integer value.

If the internal driver table is full, InstallUserDriver returns a value of -11
(grError); otherwise InstallUserDriver assigns and returns a driver number
for the new device driver.

There are two ways to use this vendor-supplied driver. Let's assume you
have a new video card called the Spiffy Graphics Array (SGA) and that
the SGA manufacturer provided you with a BGl device driver (SGA.BGl).
The easiest way to use this driver is to install it by calling InstallUserDriver
and then passing the return value (the assigned driver number) directly to
InitGraph:

var Driver, Mode: Integer;
begin

Driver := InstallUserDriver('SGA', nil);
if Driver = grError then

Halt (1);

Mode : = 0;
InitGraph(Driver, Mode, ");

end.

{ Table full?

{ Every driver supports mode of 0
{ Override autodetection }

{ Do graphics ... }

The nil value for the AutoDetectPtr parameter in the InstallUserDriver call
indicates there isn't an autodetect function for the SGA.

The other, more general way to use this driver is to link in an autodetect
function that will be called by InitGraph as part of its hardware-detection
logic. Presumably, the manufacturer of the SGA gave you an autodetect
function that looks something like this:

{$F+}

function DetectSGA: Integer;
var Found: Boolean;
begin

DetectSGA := grError;
Found := '"

{ Assume it's not there}
{ Look for the hardware }

Programmer's Reference

InstaliUserDriver function

if not Found then
Exit;

DetectSGA := 3;
end;

{ Returns -11 }
{ Return recommended default video mode }

{$F-}

DetectSGA's job is to look for the SGA hardware at run time. If an SGA
isn't detected, DetectSGA returns a value of -11 (grError); otherwise, the
return value is the default video mode for the SGA (usually the best mix
of color and resolution available on this hardware).

Note that this function takes no parameters, returns a signed, integer-type
value, and must be a far call. When you install the driver (by calling
InstallUserDriver), you pass the address of DetectSGA along with the
device driver's file name:

var Driver, Mode: Integer;
begin

Driver := InstallUserDriver('SGA', @DetectSGA);
if Driver = grError then { Table full? }

end.

Ha1t(l) ;
Driver := Detect;
InitGraph(Driver, Mode, ");
{ Discard SGA driver #; trust autodetection }

After you install the device driver file name and the SGA auto detect
function, you call InitGraph and let it go through its normal autodetection
process. Before InitGraph calls its built-in autodetection function
(DetectGraph), it first calls DetectSGA. If DetectSGA doesn't find the SGA
hardware, it returns a value of -11 (grError) and InitGraph proceeds with
its normal hardware detection logic (which might include calling any
other vendor-supplied auto detection functions in the order in which they
were "installed"). If, however, DetectSGA determines that an SGA is
present, it returns a nonnegative mode number, and InitGraph locates and
loads SGA.BGl, puts the hardware into the default graphics mode recom­
mended by DetectSGA, and finally returns control to your program.

See also GraphResult, InitGraph, InstallUserFont, RegisterBGldriver, RegisterBGIfont

Example uses Graph;
var

Driver, Mode,
TestDriver,
ErrCode: Integer;

{$F+}

Chapter 7, Library reference 95

III

InstaliUserDriver function

function TestDetect: Integer;
{ Autodetect function: assume hardware is always present; return value =

recommended default mode }
begin

TestDetect := 1;
end;
{$F-}
begin

{ Install the driver
TestDriver := InstallUserDriver(/TEST ' I @TestDetect};
if GraphResult <> grOk then
begin

Writeln(/Error installing TestDriver /};
Halt (1) ;

end;
Driver := Detect;
InitGraph(Driver , Mode, "J;
ErrCode := GraphResult;
if ErrCode <> grOk then

begin
Writeln(/Error during Init: I ErrCode};
Halt (1);

end;
OutText(/Installable drivers supported . .. /};
Readln;
CloseGraph;

end.

{ Default mode = 1 }

{ Put in graphics mode }

InstaliUserFont function Graph

96

Purpose Installs a new font not built into the BGI system.

Declaration function InstallUserFont (FontFileName: String): Integer;

Remarks FontFileName is the file name of a stroked font. InstallUserFont returns the
font ID number that can be passed to SetTextStyle to select this font. If the
internal font table is full, a value of DefaultFont will be returned.

See also InstallUserDriver, RegisterBGldriver, RegisterBGIfont, SetTextStyle

Example uses Graph;
var

Driver , Mode: Integer;
TestFont: Integer;

Programmer's Reference

InstaliUserFont function

begin
TestFont := InstallUserFont(/TEST /); { Install the font}
if GraphResult <> grOk then
begin

Writeln(/Error installing TestFont (using DefaultFont) ');
Readln;

end;
Driver := Detect;
InitGraph(Driver , Mode, ");
if GraphResult <> grOk then

{ Put in graphics mode }

Halt (1);
SetTextStyle(TestFont , HorizDir , 2);
OutText(/Installable fonts supported ... ');
Readln;

{ Use new font }

CloseGraph;
end.

Int function System

Purpose Returns the integer part of the argument.

Declaration function Int (X: Real): Real;

Remarks X is a real-type expression. The result is the integer part of X; that is, X
rounded toward zero.

See also Frac, Round, Trunc

Example var R: Real;
begin

R := Int(123.456);
R := Int(-123.456);

{ 123.0
{ -123.0

end.

Intr procedure Dos 1 WinDos

Purpose Executes a specified software interrupt.

Declaration procedure Intr (IntNo: Byte; var Regs: Registers);

procedure Intr(IntNo: Byte; var Regs: TRegisters);

{Dos}

{WinDos}

Remarks IntNo is the software interrupt number (0 .. 255). Registers is a record
defined in the Dos unit; TRegisters is a record defined in the WinDos unit.
See page 141 for the declaration of Registers and page 198 for the
declaration of TRegisters.

Chapter 7, Library reference 97

I

Intr procedure

Before executing the specified software interrupt, Intr loads the 8086
CPU's AX, BX, CX, DX, BP, 51, DI, DS, and ES registers from the Regs
record. When the interrupt completes, the contents of the AX, BX, CX, DX,
BP, 51, DI, DS, ES, and Flags registers are stored back into the Regs record.

For details on writing interrupt procedures, see the section "Interrupt
handling" in Chapter 20 of the Language Guide.

Restrictions Software interrupts that depend on specific values in SP or 55 on entry, or
modify SP and 55 on exit, cannot be executed using this procedure.

See also Flag constants, MsDos, Register, TRegister

IOResult function System

Purpose Returns the status of the last 1/ a operation performed.

Declaration function IOResult: Integer;

Remarks I/O-checking must be off-{$I-}-in order to trap I/O errors using
IOResult. If an I/O error occurs and I/O-checking is off, all subsequent
I/O operations are ignored until a call is made to IOResult. A call to
IOResult clears the internal error flag.

The codes returned are summarized in Chapter 4. A value of 0 reflects a
successful 1/ a operation.

Example var F: file of Byte;
begin

{ Get file name command line }
Assign(F, ParamStr(l));
{$I-}
Reset(F);
{$It}
if IOResult = 0 then

Writeln('File size in bytes: ' FileSize(F))
else

Writeln('File not found');
end.

See also InOutRes

98 Programmer's Reference

Justification constants

Justification constants Graph

Purpose Constants that control horizontal and vertical justification.

Remarks

Constant

LeftText
CenterText
RightText

BottomText
CenterText
Top Text

See also SetTextJustify

Value

a
1
2

a
1
2

Keep procedure Dos

Purpose Keep (or terminate and stay resident) terminates the program and makes it
stay in memory.

Declaration procedure Keep (Exi tCode: Word);

Remarks The entire program stays in memory-including data segment, stack
segment, and heap-so be sure to specify a maximum size for the heap
using the $M compiler directive. The ExitCode corresponds to the one
passed to the Halt standard procedure.

Restrictions Use with care! Terminate-and-stay-resident (TSR) programs are complex
and no other support for them is provided. See the MS-DOS technical
documentation for more information.

See also Dos Exit Code

KeyPressed function Crt

Purpose Returns True if a key has been pressed on the keyboard; False otherwise.

Declaration function KeyPressed: Boolean;

Remarks The character (or characters) is left in the keyboard buffer. KeyPressed does
not detect shift keys like Shift, Aft, NumLock, and so on.

See also ReadKey

Chapter 7, Library reference 99 .

III

KeyPressed function

Example uses' Crt;

begin
repeat

Write('Xx');
until KeYPressed;

end.

{ Fill the screen until a key is typed }

LastMode variable Crt

Purpose Stores current video mode each time TextMode is called.

Declaration var LastMode: Word;

Remarks At program startup, LastMode is initialized to the then-active video mode.

See also TextMode

Length function

Purpose Returns the dynamic length of a string.

Declaration function Length (S: String): Integer;

Remarks Returns the length of the String S.

See also Concat, Copy, Delete, Insert, Pos

Example var S: String;

begin
Readln(S) ;
Writeln('II', S, '"');
Writeln('length = " Length(S));

end.

Line procedure

Purpose Draws a line from the (Xl, Yl) to (X2, Y2).

Declaration procedure Line (Xl, Yl, X2, Y2: Integer);

System

Graph

Remarks Draws a line in the style and thickness defined by SetLineStyle and uses
the color set bySetColor. Use SetWriteMode to determine whether the line
is copied or XORed to the screen.

100 Programmer's Reference

Line procedure

Note that

MoveTo(100, 100);
LineTo(200, 200);

is equivalent to

Line(100, 100, 200, 200);
MoveTo(200, 200);

Use LineTo when the current pointer is at one endpoint of the line. If you
want the current pointer updated automatically when the line is drawn,
use LineRel to draw a line a relative distance from the CPo Note that Line
doesn't update the current pointer.

Restrictions Must be in graphics mode. Also, for drawing a horizontal line, Bar is faster
than Line.

See also GetLineStyle, LineRel, LineTo, MoveTo, Rectangle, SetColor, SetLineStyle,
Set WriteMode

Example uses Crt, Graph;
var Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt(l);

Randomize;
repeat

Line (Random(200), Random(200) , Random(200) , Random(200));
until KeyPressedi
Readlni
CloseGraph;

end.

Line style constants Graph

Purpose Constants used to determine a line style and thickness; used with
GetLineSettings and SetLineStyle.

Remarks The following Line style constants are defined:

Constant Value

SolidLn 0
DottedLn 1
CenterLn 2
DashedLn 3

Chapter 7, Library reference 101

I

Line style constants

UserBitLn
Norm Width
ThickWidth

See also LineSettingsType

4 (user-defined line style)
1 .
3,

LineRel procedure Graph

102

Purpose Draws a line to a point that is a relative distance from the current pointer
(CP).

Declaration procedure LineRel (Dx, Dy: Integer);

Remarks LineRel will draw a line from the current pomter to a point that is a
relative (Dx, Dy) distance from the current pointer. The current line style
and pattern, as set by SetLineStyle, are used for drawing the line and uses
the color set by SetColor. Relative move and line commands are useful for
drawing a shape on the screen whose starting point can be changed to
draw the same shape in a different location on the screen. Use
SetWriteMode to determine whether the line is copied or XORed to the
screen.

The current pointer is set to the last point drawn by LineRel.

Restrictions Must be in graphics mode.

See also GetLineStyle, Line, LineTo, MoveRel, MoveTo, SetLineStyle, SetWriteMode

Example uses Graph;
var Gd, Gm: Integer;
begin

Gd :=Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

MoveTo(l, 2);
LineRel(100, 100);
Readln;
CloseGraph;

end.

{ Draw to the point (101,102) }

Programmer's Reference

LineSeHingsType type

LineSettingsType type Graph

Purpose The record that defines the style, pattern, and thickness of a line.

Declaration type

LineSettingsType= record
LineStyle: Word;
Pattern: Word;
Thickness: Word;

end;

Remarks See Line style constants for a list of defined line styles and thickness values.

See also GetLineSettings, SetLineStyle

_Li_n_e_To __ p_ro __ c_e_d_u_re ______________________________ ~ __ G __ ra_p __ h ~
Purpose Draws a line from the current pointer to (X, Y).

Declaration procedure LineTo(X, Y: Integer);

Remarks Draws a line in the style and thickness defined by SetLineStyle and uses
the color set by SetColor. Use SetWriteMode to determine whether the line
is copied or XORed to the screen.

Note that

MoveTo(100, 100);
LineTo(200, 200);

is equivalent to

Line(100, 100, 200, 200);

The first method is slower and uses more code. Use LineTo only when the
current pointer is at one endpoint of the line. Use LineRel to draw a line a
relative distance from the CPo Note that the second method doesn't
change the value of the current pointer.

LineTo moves the current pointer to (X, Y).

Restrictions Must be in graphics mode.

See also GetLineStyle, Line, LineRel, MoveRel, MoveTo, SetLineStyle, SetWriteMode

Example uses Crt, Graph;
var Gd, Gm: Integer;

Chapter 7, Library reference 103

LineTo procedure

begin
Gd : = Detect;
InitGraph(Gd, Gm, ");

if GraphResult <> grOk then
Halt (1) ;

Randomize;
repeat

LineTo(Random(200) , Random(200));
until KeyPressed;
Readln;
CloseGraph;

end.

Ln function System

Purpose Returns the natural logarithm of the argument.

Declaration function Ln(X: Real): Real;

Remarks Returns the natural logarithm of the real-type expression X.

See also Exp

Lo function System

Purpose Returns the low-order byte of the argument.

Declaration function Lo (X): Byte;

Remarks X is an expression of type Integer or Word. Lo returns the low-order byte of
X as an unsigned value.

See also Hi, Swap

Example, var B: Byte;
begin

B := Lo($1234); {$34}
end.

Low function System

Purpose Returns the lowest value in the range of the argument.

Declaration function Low (X) ;

Result type X, or the index type of X.

104 Programmer's Reference

Remarks

See also

Example

Low function

X is either a type identifier or a variable reference. The type denoted by X,
or the type of the variable denoted by X, must be an ordinal type, an array
type, or a string type. For an ordinal type, Low returns the lowest value in
the range of the type. For an array type, Low returns the lowest value
within the range of the index type of the array. For a string type, Low
returns O. For an open array or string parameter, Low returns O.

High

var
A: array[l .. 100] of Integeri
I: Integer;

begin
for I := Low(A) to High(A) do A[I] := Oi

end.
type

TDay = (Monday, Tuesday, Wednesday, Thursday,
Friday, Saturday, SundaY)i

const
DayNarne: array [TDay] of string[3] = (

'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun') i
var

Day: TDaYi

Hours: array [TDay] of 0 .. 24i
begin

for Day := Low (TDay) to High (TDay) do
begin

Write('Hours worked on " DayNarne[Day] , '7 ')i

Readln(Hours[Day]) i

endi
end.

LowVideo procedure Crt

Purpose Selects low-intensity characters.

Declaration procedure Lowvideoi

Remarks There is a Byte variable in Crt-TextAttr-that holds the current video
attribute. LowVideo clears the high-intensity bit of TextAttr's foreground
color, thus mapping colors 8 to 15 onto colors 0 to 7.

See also HighVideo, NormVideo, TextBackground, TextColor

Chapter 7, Library reference 105

I

LowVideo procedure

Example uses Crt;
begin

Lst variable

TextAttr := White;
LowVideo;

end.
{ Color is now light gray }

Printer

Purpose Stores the standard output as a text file.

Declaration var Lst: Text;

Remarks Use Lst to send the output of your program to the printer.

See also Assign, Rewrite

Example program Print It ;
var

Lst: Text;
begin

Assign(Lst, 'LPT1');
Rewrite (Lst) ;
Writeln(Lst, 'Hello printer.');
Close(Lst)

end.

MaxAvail function

{ Declare Lst as text file variable

{ Assign text file to standard output
{ Call Rewrite to send text file to printer }

{ Close text file }

System

Purpose Returns the size of the largest contiguous free block in the heap,
corresponding to the size of the largest dynamic variable that can be
allocated at that time.

Declaration function MaxAvail: Longint;

Remarks MaxAvail returns the size of the largest contiguous free block in the heap,
corresponding to the size of the largest dynamic variable that can be
allocated at that time using New or GetMem. To find the total amount of
free memory in the heap, call MemAvail.

MaxAvail compares the size of the largest free block below the heap
pointer to the size of free memory above the heap pointer, and returns the
larger of the two values. Your program can specify minimum and
maximum heap requirements using the $M directive.

See also MemAvail

106 Programmer's Reference

Example type
PBuffer = ATBuffer;
TBuffer = array[O .. 163831 of Char;

var Buffer: PBuffer;
begin

if MaxAvail < SizeOf(TBuffer) then OutOfMernory else
begin

New (Buffer) ;

end;

end.

MaxColors constant

MaxAvaii function

Graph

Purpose The constant that determines the maximum number of colors.

Declaration const MaxColors = 15;

See also GetDefaultPalette, GetPalette, SetAllPalette

MemAvail function System

Purpose Returns the amount of free memory in the heap.

Declaration function MernAvail: Longint;

Remarks MernA vail returns the sum of the sizes of all free blocks in the heap. Note
that a contiguous block of storage the size of the returned value is
unlikely to be available due to fragmentation of the heap. To find the
largest free block, call MaxAvail.

MemAvail is calculated by adding the sizes of all free blocks below the
heap pointer to the size of free memory above the heap pointer. Your
program can specify minimum and maximum heap requirements using
the $M directive.

See also MaxAvail

Chapter 7, Library reference 107

II

MemAvaii function

Example begin
Writeln(MemAvail, , bytes available');
Writeln('Largest free block is " MaxAvail, , bytes');

end.

MkDir procedure System

Purpose Creates a subdirectory.

Declaration procedure MkDir (S: String);

Remarks Creates a new subdirectory with the path specified by string S. The last
item in the path cannot be an existing file name.

With {$I-}, IOResult returns 0 if the operation was successful; otherwise, it
returns a nonzero error code.

See also ChDir, GetDir, RmDir. CreateDir performs the same function as MkDir, but
it takes a null-terminated string rather than a Pascal-style string.·

Example begin
{$I-}
MkDir(ParamStr(l)) ;
if IOResult <> 0 then

Wri teln,(, Cannot create directory')
else

Writeln('New directory created');
end.

{ Get directory name from command line }

Move procedure System

108

Purpose

Declaration

Remarks

Copies a specified number of contiguous bytes from a source range to a
destination range.

procedure Move (var Source, Dest; Count: Word);

Source and Dest are variable references of any type. Count is an expression
of type Word. Move copies a block of Count bytes from the first byte
occupied by Source to the first byte occupied by Dest. No checking is
performed, so be careful with this procedure.

I

When Source and Dest are in the same segment, that is, when the segment
parts of their addresses are equal, Move automatically detects and
compensates for any overlap. Intrasegment overlaps never occur on

Programmer's Reference

See also

Example

Move procedure

statically and dynamically allocated variables (unless they are deliberately
forced); therefore, such deliberately forced overlaps are not detected.

Whenever possible, use SizeO! to determine Count.

FillChar

var
A: array[l .. 4J of Char;
B: Longint;

begin
Move (A, B, SizeOf(A));

end.
{ SizeOf = safety! }

MoveRel procedure Graph

Purpose Moves the current pointer (CP) a relative distance from its current
location.

Declaration procedure MoveRel (Dx, Dy: Integer);

Remarks MoveRel moves the current pointer (CP) to a point that is a relative
(Dx, Dy) distance from the current pointer. Relative move and line
commands are useful for drawing a shape on the screen whose starting
point can be changed to draw the same shape in a different location on the
screen.

Restrictions Must be in graphics mode.

See also GetMaxX, GetMaxY, GetX, GetY, LineRel, Line To, MoveTo

Example uses Graph;
var Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

MoveTo(l, 2);
MoveRel(lO, 10); { Move to the point (11, 12) }
Put Pixel (GetX, Gety, GetMaxColor);
Readln;
CloseGraph;

end.

Chapter 7, Library reference 109

I

MoveTo procedure

MoveTo procedure Graph

Purpose Moves the current pointer (CP) to (X, Y).

Declaration procedure MoveTo(X, Y: Integer);

Remarks The CP is similar to a text mode cursor except that the CP is not visible.
The following routines move the CP:

Clear Device
Clear ViewPort
GraphDefaults
InitGraph

LineRel
LineTo
MoveRel
MoveTo

OutText
SetGraphMode
Set ViewPort

If a viewport is active, the CP will be viewport-relative (the X and Y
values will be added to the viewport's Xl and Yl values). The CP is never
clipped at the current viewport's boundaries.

See also GetMaxX, GetMaxY, GetX, GetY, MoveRel

Example uses Graph;
var Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

MoveTo(O, 0);
LineTo(GetMaxX, GetMaxY);
Readln;
CloseGraph;

end.

MsDos procedure

Purpose Executes a DOS function call.

Declaration procedure MsDos (var Regs: Registers);

procedure MsDos(var Regs: TRegisters);

{ Upper left corner of viewport }

Dos, WinDos

{Dos}

{WinDos}

Remarks The effect of a call to MsDos is the same as a call to Intr with an IntNo of
$21. Registers is a record defined in the Dos unit. TRegisters is defined in
the WinDos unit. See page 141 for the declaration of Registers and page 198
for the declaration of TRegisters.

110 Programmer's Reference

MsDos procedure

Restrictions Software interrupts that depend on specific calls in SP or SS on entry or
modify SP and SS on exit cannot be executed using this procedure.

See also Intr, Registers, TRegisters

New procedure System

Purpose Creates a new dynamic variable and sets a pointer variable to point to it.

Declaration procedure New(var P: Pointer [I Init: Constructor 1)i

Remarks P is a variable of any pointer type. The size of the allocated memory block
corresponds to the size of the type that P points to. The newly created
variable can be referenced as PA. If there isn't enough free space in the
heap to allocate the new variable, a run-time error occurs. (It is possible to
avoid a run-time error in this case; see "The HeapError variable" in
Chapter 19 in the Language Guide.)

New allows a constructor call as a second parameter for allocating a
dynamic object type variable. P is a pointer variable, pointing to an object
type, and Init refers to a constructor of that object type.

An additional extension allows New to be used as a function, which
allocates and returns a dynamic variable of a specified type. If the call is of
the form New(T), T can be any pointer type. If the call is of the form
New(T, Init), T must be a pointer to an object type, and Init must refer to a
constructor of that object type. In both cases, the type of the function
result is T.

See also Dispose, FreeMem,GetMem, HeapError

NormVideo procedure Crt

Purpose Selects the original text attribute read from the cursor location at startup.

Declaration procedure NorrnVideo i

Remarks There is a Byte variable in Crt-TextAttr-that holds the current video
attribute. NormVideo restores TextAttr to the value it had when the
program was started.

See also HighVideo, LowVideo, TextBackground, TextColor

Chapter 7, Library reference 111

II

NoSound procedure

NoSound procedure Crt

Purpose Turns off the internal speaker ..

Declaration procedure NoSound;

Remarks The following program fragment emits a 440-hertz tone for half a second:

Sound(440);
Delay(500);
NoSound;

See also Sound

Odd function System

Purpose Tests if the argument is an odd number.

Declaration function Odd (X: Longint): Boolean;

Remarks X is an integer-type expression. The result is True if X is an odd number,
and False if X is an even number.

Ofs function System

Purpose Returns the offset of a specified object.

Declaration function Ofs (X): Word;

Remarks X is any variable, or a procedure or function identifier. The result of type
Word is the offset part of the address of X.

Restrictions In protected-mode programs, Gfs should be used only on valid pointer
addresses; pointing to an invalid pointer address will generate a general
protection fault error message.

See also Addr, Seg

Ord function System

Purpose Returns the ordinal value of an ordinal-type expression.

Declaration function Ord (X): Longint;

112 Programmer's Reference

Ord function

Remarks X is an ordinal-type expression. The result is of type Longint and its value
is the ordinality of X.

See also Chr

Output variable System

Purpose Standard output file.

Declaration var Output: Text i

Remarks Output is a write-only file associated with the operating system's standard
output file, which is usually the display.

A number of Turbo Pascal's standard file handling procedures and
functions allow the file variable parameter to be omitted, in which case
the procedure or function will instead operate on the Input or Output file
variable. For example, Read(X) corresponds to Read(Input, X), and Write(X)
corresponds to Write(Output, X). The following standard file handling
procedures and functions operate on the Output file when no file
parameter is specified: Write, Writeln. See Chapter 13 "Input and output,"
in the Language Guide for details about 110 issues.

See also Input

OutText procedure Graph

Purpose Sends a string to the output device at the current pointer.

Declaration procedure OutText (TextString: String) i

Remarks Displays TextString at the current pointer using the current justification
settings. TextString is truncated at the viewport border if it is too long. If
one of the stroked fonts is active, TextString is truncated at the screen
boundary if it is too long. If the default (bit-mapped) font is active and the
string is too long to fit on the screen, no text is displayed.

OutText uses the font set by SetTextStyle. In order to maintain code com­
patibility when using several fonts, use the TextWidth and TextHeight calls
to determine the dimensions of the string.

OutText uses the output options set by SetTextJustify (justify, center, rotate
90 degrees, and so on).

The current pointer (CP) is updated by OutText only if the direction is
horizontal, and the horizontal justification is left. Text output direction is

Chapter 7, Library reference 113

I

OutText procedure

114

set by SetTextStyle (horizontal or vertical); text justification is set by
SetTextJustify (CP at the left of the string, centered around CP, or CP at the
right of the string-written above CP, below CP, or centered around CP).
In the following example, block #1 outputs ABCDEF and moves CP (text
is both horizontally output and left-justified); block #2 outputs ABC with
DEF written right on top of it because text is right-justified; similarly,
block #3 outputs ABC with DEF written right on top of it because text is
written vertically.,

program CPupdate;
uses Graph;
var Driver, Mode: Integer;
begin

Driver := Detect;
InitGraph(Driver, Mode, _");
if GraphResult < 0 then

Halt(l) ;
{ #1 }
MoveTo(O, 0);
SetTextStyle(DefaultFont, HorizDir, 1);
SetTextJustify(LeftText, TopTe~t);

OutText (' ABC') ;
OutText ('DEF') ;
{ #2 }
MoveTo(100, 50);
SetTextStyle(DefaultFont, HorizDir, 1);
SetTextJustify(RightText, TopText);
OutText (' ABC') ;
OutText ('DEF') ;
{ #3 }
MoveTo(100, 100);
SetTextStyle(DefaultFont, VertDir, 1);
SetTextJustify(LeftText, TopText)i
OutText (' ABC') i

OutText ('DEF') i

Readlni
CloseGraphi

end.

The CP'is never updated by OutTextXY.

{ CharSize = 1 }

{ CP is updated }
{ CP is updated }

{ CharSize = 1 }

{ CP is updated }
{ CP is updated }

{ CharSize = 1 }

{ CP is NOT updated }
{ CP is NOT updated }

The default font (8x8) is not clipped at the screen edge. Instead, if any part
of the string would go off the screen, no text is output. For example, the
following statements would have no effect:

Programmer's Reference

OutText procedure

SetViewPort(O, 0, GetMaxX, GetMaxY, ClipOn);
SetTextJustify(LeftText, TopText);
OutTextXY(-5, 0);
OutTextXY(GetMaxx - 1, 0, 'ABC');

{ -5,0 not onscreen }
{ Part of 'A', }

{ All of 'BC' off screen}

The stroked fonts are clipped at the screen edge, however.

Restrictions Must be in graphics mode.

See also GetTextSettings, OutTextXY, SetTextfustify, SetTextStyle, SetUserCharSize,
TextHeight, TextWidth

Example uses Graph;
var Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);

OutText('Easy to use');
Readln;
CloseGraph;

end.

OutTextXy procedure Graph

Purpose Sends a string to the output device.

Declaration procedure OutTextXY(X, Y: Integer; TextString: String);

Remarks Displays TextString at (X, Y). TextString is truncated at the viewport
border if it is too long. If one of the stroked fonts is active, TextString is
truncated at the screen boundary if it is too long. If the default (bit­
mapped) font is active and the string is too long to fit on the screen, no
text is displayed.

Use OutText to output text at the current pointer; use OutTextXY to output
text elsewhere on the screen.

procedure, OutTextXY and In order to maintain code compatibility when
using several fonts, use the TextWidth and TextHeight calls to determine
the dimensions of the string.

OutTextXYuses the output options set by SetTextJustify (justify, center,
rotate 90 ,degrees, and so forth).

Restrictions Must be in graphics mode.

Chapter 1, Library reference 115

I

OutTextXY procedure

See also GetTextSettings, OutText, SetTextJustify, SetTextStyle, SetUserCharSize,
TextHeight, TextWidth

Example uses Graph;
var

Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

MoveTo(O, 0);
OutText('Inefficient');
Readln;
OutTextXY(GetX, GetY, 'Also inefficient');
Readln;
ClearDevice;
OutTextXY(O, 0, 'Perfect!');
Readln;
CloseGraph;

end.

OvrClearBuf procedure

Purpose Clears the overlay buffer.

Declaration procedure OvrClearBuf;

{ Replaces above }

Overlay

Remarks Disposes of all currently loaded overlays from the overlay buffer. This
forces subsequent calls to overlaid routines to reload the overlays from
the overlay file (or from EMS). If OvrClearBufis called from an overlay,
that overlay will immediately be reloaded upon return from OvrClearBuf

The overlay manager never requires you to call OvrClearBuf; in fact, doing
so will decrease performance of your application, since it forces overlays
to be reloaded. OvrClearBufis solely intended for special use, such as
temporarily reclaiming the memory occupied by the overlay buffer.

See also OvrGetBuf, OvrSetBuf

OvrCodeList variable System

Purpose Overlay code segment list.

Declaration var OvrCodeList: Word;

116 Programmer's Reference

OvrCodeList variable

Remarks OvrCodeList is initialized at link time by Turbo Pascal's linker and used
internally by the overlay manager. It is zero if the program contains no
overlays, or nonzero otherwise. You should never modify OvrCodeList.

OvrDebugptr variable System

Purpose Overlay debugger hook.

Declaration var OvrDebugPtr: Pointer;

Remarks OvrDebugPtr is used by Turbo Pascal's integrated debugger and by Turbo
Debugger to implement debugging of overlaid programs. You should
never modify OvrDebugPtr.

OvrDosHandle variable System

Purpose Overlay file handle.

Declaration var OvrDosHandle: Word;

Remarks OvrDosHandle stores the file handle of the program's overlay file. I
OvrDosHandle is initialized by the Ovrlnit routine in the Overlay unit. A •
value of zero in OvrDosHandle indicates that the overlay file is not
currently open. You should never modify OvrDosHandle.

See also Overlnit

OvrEmsHandle variable System

Purpose Overlay EMS handle.

Declaration var OvrEmsHandle: Word;

Remarks OvrEmsHandle stores the handle of the expanded memory block
containing the program's overlays. OvrEmsHandle is initialized by the
OverlnitEMS routine in the Overlay unit. A value of $FFFF in
OvrEmsHandle indicates that no expanded memory block has been.
allocated for overlays. You should never modify OvrEmsHandle.

See also Overlnit,OverlnitEMS

Chapter 7, Library reference 117

OvrFileMode variable

OvrFileMode variable Overlay

Purpose Determines the access code to pass to DOS when the overlay file is
opened.

Declaration var OvrFileMode: Byte;

Remarks The default OvrFileMode is 0, corresponding to read-only access. By
assigning a new value to OvrFileMode before calling Ovrlnit, you can
change the access code. You might change it to allow shared access on a
network system, for example. For further details on access code values,
see your DOS programmer's reference manual.

See also Ovrlnit

OvrGetBuf function Overlay

Purpose Returns the current size of the overlay buffer.

Declaration function OvrGetBuf: Longint;

Remarks The size of the overlay buffer is set through a call to OvrSetBuf Initially,
the overlay buffer is as small as possible, corresponding to the size of the
largest overlay. When an overlajd program is executed, a buffer of this
size is automatically allocated. Because it includes both code and fix-up
information for the largest overlay, however, the initial buffer size could
be larger than 64K.

See also Ovrlnit, OvrlnitEMS, OvrSetBuf

Example {$M 16384,65536,655360}
uses Overlay;
const ExtraSize = 49152; {48K}
begin

Ovrlnit('EDITOR.OVR');
Writeln('Initial size of overlay buffer is " OvrGetBuf,' bytes.');
OvrSetBuf(OvrGetBuf+ExtraSize);
Writeln('Overlay buffer now increased to " OvrGetBuf,' bytes.');

end.

OvrGetRetry function

Purpose Returns the current size of the probation area.

Declaration function OvrGetRetry: Longint;

Overlay

118 Programmer's Reference

OvrGetRetry function

Remarks OvrGetRetry returns the current size of the probation area which is the
value last set with OvrSetRetry.

See also OvrSetRetry

OvrHeapEnd variable System

Purpose Overlay buffer end.

Declaration var OvrHeapEnd: Word;

Remarks OvrHeapEnd stores the segment address of the end of the overlay buffer.
Except as specified in the description of OvrHeapOrg, you should never
modify OvrHeapEnd.

See also OvrHeapOrg, OvrSetBuf

OvrHeapOrg variable System

Purpose Overlay buffer origin.

Declaration var OvrHeapOrg: Word;

Remarks OvrHeapOrg stores the segment address of the start of the overlay buffer.

The run-time library's start-up code initializes OvrHeapOrg, OvrHeapPtr,
and OvrHeapEnd to point to an overlay buffer between the program's stack
segment and heap. The size of this initial overlay buffer (in 16-byte
paragraphs) is given by the OvrHeapSize variable, and it corresponds to
the size of the largest overlay in the program, including fixup information
for the overlay. .

It is possible for a program to move the overlay buffer to another location
in memory by assigning new values to OvrHeapOrg, OvrHeapPtr, and
OvrHeapEnd. Any such relocation should be done before the call to Ovrlnit
or right after a call to OvrClearBuf to ensure that the overlay buffer is
empty. To move the overlay buffer, assign the segment address of the start
of the buffer to OvrHeapOrg and OvrHeapPtr, and assign the segment
address of the end of the buffer to OvrHeapEnd. You must ensure that the
size of the buffer (calculated by OvrHeapEnd - OvrHeapOrg) is greater than
or equal to OvrHeapSize.

See also OvrHeapEnd, OvrHeapPtr, OvrSetBuf

Chapter 1, Library reference 119

II

OvrHeapPtr variable

OvrHeapPtr variable System

Purpose Overlay buffer pointer.

Declaration var OvrHeapPtr: Word;

. Remarks OvrHeapPtr is used internally by the overlay manager. Except as specified
in the description of OvrHeapOrg, you should never modify OvrHeapPtr.

See also OvrHeapOrg

OvrHeapSize variable System

Purpose Minimum overlay heap size.

Declaration var OvrHeapSize:Word;

Remarks OvrHeapSize contains the minimum size of the overlay buffer in 16-byte
paragraphs. OvrHeapSize is initialized at link time to contain the size of
the largest overlay in the program, including fixup information for the
overlay. It is zero if the program contains no overlays. You should never
modify OvrHeapSize.

See also OvrHeapOrg

Ovrlnit procedure Overlay

120

Purpose Initializes the overlay manager and opens the overlay file.

Declaration procedure Ovrlnit(FileName: String);

Remarks If FileName does not specify a drive or asubdirectory, the overlay manager
searches for the file in the current directory, in the directory that contains
the .EXE file (if running under DOS 3.x or later), and in the directories
specified in the PATH environment variable.

Errors are reported in the OvrResult variable. ovrOk indicates success.
ovrError means that the overlay file is of an incorrect format, or that the
program has no overlays. ovrNotFound means that the overlay file could
not be located.

In case of error, the overlay manager remains uninstalled, and an attempt
to call an overlaid routine win produce run-time error 208 ("Overlay
manager not installed").

Programmer's Reference

Ovrlnit procedure

Ovrlnit must be called before any of the other overlay manager
procedures.

See also OvrGetBuf, OvrlnitEMS, OvrSetBuf

Example uses Over lay;
begin

OvrInit('EDITOR.OVR') ;
if OvrResult <> ovrOk then
begin

case OvrResult of
ovrError: Writeln('Program has no overlays.');
ovrNotFound: Writeln('Overlay file not found.');

end;
Halt (1) ;

end;
end.

OvrlnitEMS procedure Overlay

Purpose Loads the overlay file into EMS if possible.

Declaration procedure OvrIni tEMS;

Remarks If an EMS driver can be detected and if enough EMS memory is available,
OvrlnitEMS loads all overlays into EMS and closes the overlay file.
Subsequent overlay loads are reduced to fast in-memory transfers.
OvrlnitEMS installs an exit procedure, which automatically deallocates
EMS memory upon termination of the program.

Errors are reported in the OvrResult variable. ovrOk indicates success.
ovrError means that Ovrlnit failed or was not called. ovrIOError means that
an I/O error occurred while reading the overlay file. ovrNoEMSDriver
means that an EMS driver could not be detected. ovrNoEMSMemory
means that there is not enough free EMS memory available to load the
overlay file.

In case of error, the overlay manager will continue to function, but
overlays will be read from disk.

The EMS driver must conform to the Lotus/Intel/Microsoft Expanded
Memory Specification (EMS). If you are using an EMS-based RAM disk,
make sure that the command in the CONFIG.SYS file that loads the
RAM-disk driver leaves some unallocated EMS memory for your overlaid
applications.

See also OvrGetBuf, Ovrlnit, OvrResult, OvrSetBuf

Chapter 7, Library reference 121

I

OvrlnitEMS procedure

Example uses Overlay;
begin

OvrInit(/EDITOR.OVR/};
if OvrResult <> ovrOk then
begin

Writeln(/Overlay manager initialization failed. I};
Halt(l} ;

end;
OvrInitEMS;
case OvrResult of

ovrIOError: Writeln(/Overlay file I/O error. I};
ovrNoEMSDriver: Writeln(I EMS driver not installed. I};
ovrNoEMSMemory: Writeln(/Not enough EMS memory. I};
else Writeln(/Using EMS for faster overlay swapping. I};

end;
end;

OvrLoadCount variable

Purpose Overlay load count.

Declaration var OvrLoadCount: Word;

Overlay

Remarks The initial value of OvrLoadCount is zero. The overlay manager increments
OvrLoadCount each time an overlay is loaded. By examining OvrTrapCount
and OvrLoadCount in the Debugger's Watch window during identical runs
of an application, you can monitor the effect of different probation area
sizes (set with OvrSetRetry) to find the optimal size for your particular
application.

See also . OvrTrapCount

OvrLoadList variable System

Purpose Loaded overlays list.

Declaration var OvrLoadList: Word;

Remarks OvrLoadList is used internally by the overlay manager. You should never
modify OvrLoadList.

122 Programmer's Reference

OvrReadBuf variable·

Purpose Overlay read function pointer.

Declaration type OvrReadFunc = function (OvrSeg: Word): Integeri

var OvrReadBuf: OvrReadFunci

OvrReadBuf variable

Overlay

Remarks OvrLoadList lets you intercept overlay load operations to implement error
handling, for example, or to check that a removable disk is present.
Whenever the overlay manager needs to read an overlay, it calls the
function whose address is stored in OvrReadBuf If the function returns
zero, the overlay manager assumes that the operation was successful; if
the function result is nonzero, run-time error 209 is generated. The OvrSeg
parameter indicates what overlay to load, but you'll never need to access
this information. See Chapter 18, "Using overlays," in the Language Guide
for details about installing your own overlay read function.

OvrResult variable Overlay

Purpose Result code for last overlay procedure call.

Declaration var OvrResul t: Integer i

Remarks Before returning, each of the procedure in the Overlay unit stores a result
code in the ovrResult variable. Possible OvrXXXX return codes are listed
on page 125. In general, a value of zero indicates success. The OvrResult
variable resembles the IOResult standard function except that OvrResult is
not set to zero once it is accessed. Thus, there is no need to copy OvrResult
into a local variable before it is examined.

See also Ovrlnit, OvrlnitEMS, OvrSetBuf

OvrSetBuf procedure Overlay

Purpose Sets the size of the overlay buffer.

Declaration procedure OvrSetBuf (BufSize: Longint) i

Remarks BufSize must be larger than or equal to the initial size of the overlay buffer,
and less than or equal to MemAvail + OvrGetBuf The initial size of the
overlay buffer is the size returned by OvrGetBufbefore any calls to
OvrSetBuf

Chapter 7, Library reference 123

I

OvrSetBuf procedure

If the specified size is larger than the current size, additional space is
allocated from the beginning of the heap, thus decreasing the size of the
heap. Likewise, if the specified size is less than the current size, excess
space is returned to the heap.

OvrSetBuj requires that the heap be empty; an error is returned if dynamic
variables have already been allocated using New or GetMem. For this
reason, make sure to call OvrSetBujbefore the Graph unit's InitGraph
procedure; InitGraph allocates memory on the heap and-once it has done
so-all calls to OvrSetBuj will be ignored.

If you are using OvrSetBuj to increase the size of the overlay buffer, you
should also include a $M compiler directive in your program to increase
the minimum size of the heap accordingly.

Errors are reported in the OvrResult variable. ovrOk indicates success.
ovrError means that Ovrlnit failed or was not called, that BujSize is too
small, or that the heap is not empty. ovrNoMemory means that there is not
enough heap memory to increase the size of the overlay buffer.

See also OvrGetBuf, Ovrlnit, OvrlnitEMS, OvrResult, ovrXXXX constants

Example {$M 16384,65536, 655360}
uses Overlay;
const ExtraSize = 49152; {48K}
begin

Ovrlnit('EDITOR.OVR');
OvrSetBuf(OvrGetBuf + ExtraSize);

end.

OvrSetRetry procedure Overlay

124

Purpose Sets the size of the probation area in the overlay buffer.

Declaration procedure OvrSetRetry(Size: Longint);

~emarks If an overlay falls within the Size bytes before the overlay buffer tail, it is
automatically put on probation. Any free space in the overlay buffer is
considered part of the probation area. For reasons of compatibility with
earlier versions of the overlay manager, the default probation area size is
zero, which effectively disables the probation/reprieval mechanism.

There is no empirical formula for determining the optimal size of the
probationary area; however, experiments have shown that values ranging
from one-third to one-half of the overlay buffer size provide the best
results.

Programmer's Reference

OvrSetRetry procedure

See also OvrGetRetry

Example Here's an example of how to use OvrSetRetry:
Ovrlni t (I MYPROG. OVR I);
OvrSetBuf(BufferSize) ;
OvrSetRetry(BufferSize div 3);

OvrTrapCount variable Overlay

Purpose Overlay call interception count.

Declaration var OvrTrapCount: Word;

Remarks Each time a call to an overlaid routine is intercepted by the overlay
manager, either because the overlay is not in memory or because the
overlay is on probation, the OvrTrapCount variable is incremented. The
initial value of OvrTrapCount is zero.

See also OvrLoadCount

ovrXXXX constants Overlay

Purpose Return codes stored in the OvrResult variable.

Remarks

Constant Value Meaning

ovrOk o Success
-1 Overlay manager error
-2 Overlay file not found

ovrError
ovrNotFound
ovrNoMemory
ovrIOError
ovrNoEMSDriver
ovrNoEMSMemory

-3 Not enough memory for overlay buffer
-4 Overlay file 1/ 0 error
-5 EMS driver not installed
-6 Not enough EMS memory

PackTime procedure Dos, WinDos

Purpose Converts a DateTime record into a 4-byte, packed date-and-time Longint
used by SetFTime.

Declaration procedure PackTime (var DT: DateTime; var Time: Longint); {Dos}

procedure PackTime(var DT: TDateTime; var Time: Longint); {WinDos}

Chapter 7, Library reference 125

I

PackTime procedure

Remarks The fields of the DateTime record are not range-checked. DateTime is a
DOS record; use TDateTime if you are writing a program using WinDos.
See page 26 for the declaration of DateTime or page 189 for the TDateTime
declaration.

See also GetFTime, GetTime, SetFTime, SetTime, UnpackTime

PaletteType type

Purpose The record that defines the size and colors of the palette; used by
GetPalette, GetDejaultPalette, and SetAllPalette.

Declaration type
PaletteType = record

Size: Byte;
Colors: array[O .. MaxColors] of Shortint;

end;

PaletteType is defined as follows:

const
MaxColors = 15;

type
PaletteType = record

Size: Byte;
Colors: array[O .. MaxColors] of Shortint;

end;

Graph

The size field reports the number of colors in the palette for the current
driver in the current mode. Colors contains the actual colors O .. Size - 1.

ParamCount function

Purpose Returns the number of parameters passed to the program on the
command line.

Declaration function ParamCount: Word;

Remarks Blanks and tabs serve as separators.

See also ParamStr

System

126 Programmer's Reference

ParamCount function

Example begin
if ParamCount = 0 then

Writeln('No parameters on command line')
else

Writeln(ParamCount, , parameter(s)');
end.

ParamStr function System

Purpose Returns a specified command-line parameter.

Declaration function ParamStr (Index): String;

Remarks Index is an expression of type Word. ParamStr returns the Indexth
parameter from the command line, or an empty string if Index is greater
than ParamCount. ParamStr(O) returns the path and file name of the
executing program (for example, C: \ TP\MYPROG.EXE).

See also ParamCount

Example var I: Word;
begin

for I := 1 to ParamCount do
Writeln(ParamStr(I));

end.

Pi function System I
Purpose Returns the value of pi (3.1415926535897932385).

Declaration function Pi: Real;

Remarks Precision varies, depending on whether the compiler is in 80x87 or
software-only mode.

PieSlice procedure Graph

Purpose Draws and fills a pie slice, using (X, Y) as the center point and drawing
from start angle to end angle.

Declaration procedure PieS lice (X, Y: Integer; StAngle, EndAngle, Radius: Word);

Remarks The pie slice is outlined using the current color, and filled using the
patternand color defined by SetFillStyle or SetFillPattern.

Chapter 7, Library reference 127

PieSlice procedure /

Each graphics driver contains an aspect ratio that is used by Circle, Arc,
and PieS lice. A start angle of 0 and an end angle of 360 will draw and fill a
complete circle. The angles for Arc, Ellipse, and PieS lice are counterclock­
wise with 0 degrees at 3 a' clock, 90 degrees at 12 a' clock, and so on.

If an error occurs while filling the pie slice, GraphResuU returns a value of
grNoScanMem. .

Restrictions Must be in graphics mode.

See also Arc, Circle, Ellipse, FillEllipse, GetArcCoords, GetAspectRatio, Sector,
SetFillStyle, SetFillPattern, SetGraphBujSize

Example uses Graph;
const Radius = 30;
var Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;
PieSlice(100, 100, 0, 270, Radius);
Readln;
CloseGraph;

end.

PointType type Graph

Purpose A type defined for your convenience. Both fields are of type Integer rather
than Word.

Declaration type
PointType = record

X, Y: Integer;
end;

Pas function System

Purpose Searches for a substring in.a string.

D.eclaration function Pos (Substr, S: String): Byte;

Remarks Substr and S are string-type expressions. Pos searches for Substr within S,
and returns an integer value that is the index of the first character of
Substr within S. If Substr is not found, Pos returns zero.

128 Programmer's Reference

Pos function

See also Concat, Copy, Delete, Insert, Length

Example var S: String i
begin

S .- I 123.S ' i

while POS(' I I S) > 0 do
S[POS(' " S)] := 'O'i

{ Convert spaces to zeros }

end.

Pred function System

Purpose Returns the predecessor of the argument.

Declaration function Pred (X) i

Remarks X is an ordinal-type expression. The result, of the same type as X, is the
predecessor of X.

See also Dec, Inc, Succ

PrefixSeg variable System

Purpose Contains the segment address of the Program Segment Prefix (PSP)
created by DOS when the application executes.

Declaration var PrefixSeg: Wordi

Remarks For a complete description of the Program Segment Prefix, see your DOS
manuals.

Ptr function System

Purpose Converts a segment base and an offset address to a pointer-type value.

Declaration function Ptr(Seg , Ofs: Word): Pointeri

Remarks Seg and Ofs are expressions of type Word. The result is a pointer that
points to the address given by Seg and Ofs. Like nil, the result of Ptr is
assignment compatible with all pointer types.

The function result can be dereferenced and typecast:

if Byte(Ptr(Seg0040 , $49)") = 7 then
Writeln(/Video mode = mono/)i

See also Addr, Ofs, Seg

Chapter 7, Library reference 129

I

Ptr function

Example var P: AByte;
begin

P := Ptr(Seg0040, $49);
Writeln('Current video mode is' PAl;

end.

Putlmage procedure Graph

130

Purpose Puts a bit image onto the screen.

Declaration procedure PutImage (X, Y: Integer; var BitMap; BitBlt: Word);

Remarks (X, Y) is the upper left corner of a rectangular region on the screen. BitMap
is an untyped parameter that contains the height and width of the region,
and the bit image that will be put onto the screen. BitBlt specifies which
binary operator will be used to put the bit image onto the screen. See
page 12 for a list of BitBlt operators.

Each constant corresponds to a binary operation. For example,·
PutImage(X, Y, BitMap, NorrnalPut) puts the image stored in BitMap at
(X, Y) using the assembly language MOV instruction for each byte in the
image.

Similarly, PutImage(X, Y, BitMap, XORPut) puts the image stored in
BitMap at (X, Y) using the assembly language XOR instruction for each
byte in the image. This is an often-used animation technique for
"dragging" an image around the screen.

PutImage(X, Y, BitMap, NotPut) inverts the bits in BitMap and then puts
the image stored in BitMap at (X, Y) using the assembly language MOV for
each byte in the image. Thus, the image appears in inverse video of the
original BitMap.

Note that PutImage is never clipped to the viewport boundary.
Moreover-with one exception-it is not actually clipped at the screen
edge either. Instead, if any part of the image would go off the screen, no
image is output. In the following example, the first image would be
output, but the middle three PutImage statements would have no effect:

program NoClipi
uses Graphi
var

Driver, Mode: Integer;
P: Pointer;

Programmer's Reference

begin
Driver := Detect;
InitGraph(Driver, Mode, "};
if GraphResult < 0 then

Halt (1);
SetViewPort(O, 0, GetMaxX, GetMaxY, ClipOn};
GetMem(p, ImageSize(O, 0, 99, 49}};
PieSlice(50, 25, 0, 360, 45};
GetImage(O, 0, 99, 49, PAl;
ClearDevice;
PutImage(GetMaxX - 99, 0,

pA, NormalPut};
PutImage(GetMaxX - 98, 0,

pA, NormalPut};
PutImage (-1, 0,

pA, NormalPut);
PutImage (0, -1,

pA, NormalPut);
Put Image (0, GetMaxY - 30,

pA, NormalPut};
Readln;
CloseGraph;

end.

Putlmage procedure

width = 100, height = 50

{ Will barely fit

{ X + Height > GetMaxX

-1,0 not onscreen

0,-1 not onscreen

Will output 31 "lines"

In the last PutImage statement, the height is clipped at the lower screen
edge, and a partial image is displayed. This is the only time any clipping
is performed on PutImage output.

Restrictions Must be in graphics mode.

See also BitBlt operators, GetImage, ImageSize

Example uses Graph;
var

Gd, Gm: Integer;
P: Pointer;
Size: Word;

begin
Gd := Detect;
InitGraph(Gd, Gm, "};
if GraphResult <> grOk then

Halt(l} ;
Bar(O, 0, GetMaxX, GetMaxY};
Size := ImageSize(10, 20, 30, 40};
GetMem(P, Size};
Get Image (10, 20, 30, 40, PA};
Readln;
ClearDevice;

Chapter 7, Library reference

{Allocate memory on heap}

131

I

Putlmage procedure

PutImage(100, 100, pA, NormalPut);
Readln;
CloseGraph;

end ..

PutPixel procedure

Purpose Plots a pixel at X, Y.

Declaration procedure Putpixel (X, Y: Integer; Pixel: Word);

Remarks Plots a point in the color defined by Pixel ~t (X, Y).

Restrictions Must be in graphics mode.

See also GetImage, GetPixel, PutImage

Example uses Crt, Graph;
var

Gd, Gm: Integer;
Color: Word;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

Color := GetMaxColor;
Randomize;
repeat

PutPixel(Random(100), Random(100), Color);
Delay(10) ;

until KeyPressed;
Readln;
CloseGraph;

end.

Random function

Purpose Returns a random number.

Declaration function Random [(Range: Word) 1;

Result type Real or Word, depending on the parameter

Graph

{ Plot "stars" }

System

Remarks If Range'is not specified, the result is a Real-type random number within
the range 0 <= X < 1. If Range is specified, it must be an expression of

132 Programmer's Reference

Random function

type Word, and the result is a Word-type random number within the range
a <= X < Range. If Range equals 0, a value of a is returned.

The random number generator should be initialized by making a call to
Randomize, or by assigning a value to RandSeed.

See also Randomize

Randomize procedure System

Purpose Initializes the built-in random generator with a random value.

Declaration procedure Randomize;

Remarks The random value is obtained from the system clock. The random number
generator's seed is stored in a predeclared Longint variable called
RandSeed.

See also Random

RandSeed variable System

Purpose Stores the built-in random number generator's seed.

Declaration var RandSeed: Longint;

Remarks By assigning a specific value to RandSeed, a specific sequence of random
numbers can be generated over and over. This is particularly useful in
applications that deal with data encryption, statistics, and simulations.

See also Random, Randomize

Read procedure (text files) System

Purpose Reads one or more values from a text file into one or more variables.

Declaration procedure Read ([var F: Text; 1 V1 [f V2f ••• f VN 1);

Remarks F, if specified, is a text file variable. If F is omitted, the standard file
variable Input is assumed. Each V is a variable of type Char, Integer, Real,
or String .

• With a type Char variable, Read reads one character from the file and
assigns that character to the variable. If Eof(F) was True before Read was
executed, the value Chr(26) (a Ctrl+Z character) is assigned to the
variable. If Eoln(F) was True, the value Chr(13) (a carriage-return

Chapter 7, Library reference 133

I

Read procedure (text files)

character) is assigned to the variable. The next Read starts with the next
character in the file.

• With a type integer variable, Read expects a sequence of characters that
form a signed whole number according to the syntax illustrated in
section "Numbers" in Chapter 2 of the Language Guide. Any blanks,

. tabs, or end-of-line markers preceding the numeric string are skipped.
Reading ceases at the first blank, tab, or end-of-line marker following
the numeric string or if Eof(F) becomes True. If the numeric string does
not conform to the expected format, an I/O error occurs; otherwise; the
value is assigned to the variable. If Eof(F) was True before Read was
executed or if Eof(F) becomes True while skipping initial blanks, tabs,
and end~of-line markers, the value 0 is assigned to the variable. The
next Read will start with the blank, tab, or end-of-line marker that
terminated the numeric string.

• With a type real variable, Read expects a sequence of characters that
form a signed whole number (except that hexadecimal notation is not
allowed). Any blanks, tabs, or end-of-line markers preceding the
numeric string are skipped. Reading ceases at the first blank, tab, or
end-of-line marker following the numeric string or if Eof(F) becomes
True. If the numeric string does not conform to the expected format, an
I/O error occurs; otherwise, the value is assigned to the variable. If
Eof(F) was True before Read was executed, or if Eof(F) becomes True
while skipping initial blanks, tabs, and end-of-line markers, the value 0
is assigned to the variable. The next Read will start with the blank, tab,
or end-of-line marker that terminated the numeric string.

• With a type string variable, Read reads all characters up to, but not
including, the next end-of-line marker or until Eof(F) becomes True. The
resulting character string is assigned to the variable. If the resulting .
string is longer than the maximum length of the string variable, it is
truncated. The next Read will start with the end-of-line marker that
terminated the string.

• When the extended syntax is enabled, Read can also be used to read
null-terminated strings into zero-based character arrays. With a
character array of the form array[O .. N] of Char, Read reads up to N
characters, or until Eoln(F) or Eof(F) become True, and then appends a
NULL (#0) terminator to the string.

With {$I-}, IOResult returns 0 if the operation was successful; otherwise, it
returns a nonzero error code.

Restrictions Re.ad with a type string variable does not skip to the next line after
reading. For this reason, you cannot use successive Read calls to read a
sequence of strings because you'll never get past the first line; after the

134 Programmer's Reference

Read procedure (text files)

first Read, each subsequent Read will see the end-of-line marker and return
a zero-length string. Instead, use multiple Readln calls to read successive
string values.

See also Readln, Write, Writeln

Read procedure (typed files) System

Purpose Reads a file component into a variable.

Declaration procedure Read (F, V 1 [, V 2' ••• , V N 1) i

Remarks F is a file variable of any type except text, and each V is a variable of the
same type as the component type of F. For each variable read, the current
file position is advanced to the next component. An error occurs if you
attempt to read from a file when the current file position is at the end of
the file; that is, when Eof(F) is True.

With {$I-}, IOResult returns 0 if the operation was successful; otherwise, it
returns a nonzero error code.

Restrictions File must be open.

See also Write

ReadKey function

Purpose Reads a character from the keyboard.

Declaration function ReadKey: Char i

Remarks The character read is not echoed to the screen. If KeyPressed was True
before the call to ReadKey, the character is returned immediately.
Otherwise, ReadKey waits for a key to be typed.

The special keys on the PC keyboard generate extended scan codes.

Crt

Special keys are the function keys, the cursor control keys, Alt keys, and so .
on. When a special key is pressed, ReadKey first returns a null character
(#0), and then returns the extended scan code. Null characters cannot be
generated in any other way, so you are guaranteed the next character will
be an extended scan code.

The following program fragment reads a character or an extended scan
code into a variable called Ch and sets a Boolean variable called FuncKey
to True if the character is a special key:

Chapter 7, Library reference 135

I

ReadKey function

Ch : = ReadKey;
if Ch <> #0 then FuncKey := False else
begin

FuncKey : = True;
Ch : = ReadKey;

end;

The CheckBreak variable controls whether Ctrl+Break should abort the
program or be returned like any other key. When CheckBreak is False,
ReadKey returns a Ctrl+C (#3) for Ctrl+Break.

See also Key Pressed

Readln procedure System

Purpose Executes the Read procedure then skips to the next line of the file.

Declaration procedure Readln ([var F: Text; 1 vi [, V 2' ••• , V N 1);

Remarks Readln is an extension to Read, as it is defined on text files. After executing
the Read, Readln skips to the beginning of the next line of the file.

Readln(F) with no parameters causes the current file position to advance to
the beginning of the next line if there is one; otherwise, it goes to the end
of the file. Readln with no parameter list corresponds to Readln(Input).

With {$I-}, IOResult returns 0 if the operation was successful; otherwise, it
returns a nonzero error code.

Restrictions Works only on text files. File must be open for input.

See also Read

Rectangle procedure Graph

136

Purpose Draws a rectangle using the current line style and color.

Declaration procedure Rectangle (Xl, Y1, X2, Y2: Integer);

Remarks (Xl, Yl) define the upper left corner of the rectangle, and (X2, Y2)
define the lower right comer (0 <= Xl < X2 <= GetMaxX, and
o <= Yl < Y2 <= GetMaxY).

Draws the rectangle in the current line style and color, as set by
SetLineStyle and SetColor. Use SetWriteMode to determine whether the
rectangle is copied or XORed to the screen.

Programmer's Reference

Rectangle procedure

Restrictions Must be in graphics mode.

See also Bar, Bar3D, GetViewSettings, InitGraph, SetColor, SetLineStyle, Set ViewPort,
Set WriteMode

Example uses Crt, Graph;
var

GraphDriver, GraphMode: Integer;
Xl, Y1, X2, Y2: Integer;

begin
GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ");
if GraphResult<> grOk then

Halt (1) ;

Randomize;
repeat

Xl := Random(GetMaxX);
Y1 := Random(GetMaxY);
X2 := Random(GetMaxX - Xl) + Xl;
Y2 := Random(GetMaxY - Y1) + Y1;
Rectangle (Xl, Y1, X2, Y2);

until KeyPressed;
CloseGraph;

end.

RegisterBGldriver function Graph

Purpose Registers a user-loaded or linked-in BGI driver with the graphics system.

Declaration function RegisterBGIdriver (Driver: Pointer): Integer;

Remarks If an error occurs, the return value is less than 0; otherwise, the internal
driver number is returned.

This routine enables a user to load a driver file and "register" the driver
by passing its memory location to RegisterBGldriver. When that driver is
used by InitGraph, the registered driver will be used (instead of being
loaded from disk by the Graph unit). A user-registered driver can be
loaded from disk onto the heap, or converted to an .OBJ file (using
BINOBJ .EXE) and linked into the .EXE.

Returns grlnvalidDriver if the driver header is not recognized.

The following program loads the eGA driver onto the heap, registers it
with the graphics system, and calls InitGraph:

Chapter 1, Library reference 137

I

RegisterBGldriver function

138

program LoadDriv;
uses Graph;
var

Driver, Mode: Integer;
DriverF: file;
DriverP: Pointer;

begin
{ Open driver file, read into memory, register it }
Assign (DriverF, 'CGA.BGI'};
Reset (DriverF, 1};
GetMem(DriverP, FileSize(DriverF}};
BlockRead(DriverF, DriverPA

, FileSize(DriverF}};
if RegisterBGldriver(DriverP} < 0 then
begin

Writeln('Error registering driver: '
GraphErrorMsg(GraphResult}};

Halt (1) ;

end;
{ Init graphics
Driver := CGA;
Mode : = CGAHi;
InitGraph(Driver, Mode, "} i
if GraphResul t < 0 then

Halt (1);
OutText('Driver loaded by user program'};
Readlni
CloseGraphi

end.

The program begins by loading the eGA driver file from disk and
registering it with the Graph unit~ Then a call is made to InitGraph to
initialize the graphics system. You might wish to incorporate one or more
driver files directly into your .EXE file. In this way, the graphics drivers
that your program needs will be built-in and only the .EXE will be needed
in order to run. The process for incorporating a driver file into your .EXE
is straightforward:

1. ~un BINOBJ on the driver file(s).

2. Link the resulting .OBJ file(s) into your program.

3. Register the linked-in driver file(s) before calling InitGraph.

For a detailed explanation and example of the preceding, see the
comments at the top of the BGILINK.P AS example program onthe
distribution disks. For information on the BINOBJ utility, see the file
UTILS. Doe (in ONLINE.ZIP) on your distrih~tion disks.

Programmer's Reference

RegisterBGldriver function

It is also possible to register font files; see the description of
RegisterBGIfont.

Restrictions Note that the driver must be registered before the call to InitGraph. If a call
is made to RegisterBGldriver once graphics have been activated, a value of
grError will be returned. If you want to register a user-provided driver,
you must first call InstallUserDriver, then proceed as described in the
previous example.

See also InitGraph, InstallUserDriver, RegisterBGIfont

RegisterBGlfont function Graph

Purpose Registers a user-loaded or linked-in BCI font with the graphics system.

Declaration function RegisterBGIfont(Font: Pointer): Integer;

Remarks The return value is less than 0 if an error occurs. Possible error codes are
grError, grlnvalidFont, and grlnvalidFontNum. If no error occurs, the
internal font number is returned. This routine enables a user to load a font
file and "register'~ the font by passing its memory location to
RegisterBGIfont. When that font is selected with a call to SetTextStyle, the
registered font will be used (instead of being loaded from disk by the
Graph unit). A user-registered font can be loaded from disk onto the heap,
or converted to an .OBJ file (using BINOBJ.EXE) and linked into the .EXE.

There are several reasons to load and register font files. First, Graph only
keeps one stroked font in memory at a time. If you have a program that
needs to quickly alternate between stroked fonts, you might want to load
and register the fonts yourself at the beginning of your program. Then
Graph will not load and unload the fonts each time a call to SetTextStyle is
made.

Second, you might wish to incorporate the font files directly into your
.EXE file. This way, the font files that your program needs will be built-in,
and only the .EXE and driver files will be needed in order to run. The
process for incorporating a font file into your .EXE is straightforward:

1. Run BINOBJ on the font file(s).

2. Link the resulting .OBJ file(s) into your program.

3. Register the linked-in font file(s) before calling InitGraph.

For a detailed explanation and example of the pre~eding, see the
comments at the top of the BCILINK.P AS example program on the

Chapter 7, Library reference 139

I

RegisterBGlfont function

140

distribution disks. Documentation on the BINOBJ utility is available in the
file UTILS.DOC (in ONLINE.ZIP) on your distribution disks.

Note that the default (8x8 bit-mapped) font is built into GRAPH.TPU, and
thus is always in memory. Once a stroked font has been loaded, your
program can alternate between the default font and the stroked font
without having to reload either one of them.

It is also possible to register driver files; see the description of
ReglsterBGldriver.

The following program loads the triplex font onto the heap, registers it
with the graphics system, and then alternates between using triplex and
another stroked font that Graph loads from disk (SansSerifFont):

program LoadFont;
uses Graph;
var

Driver, Mode: Integer;
FontF: file;
FontP: Pointer;

begin
{ Open font file, read into memory, register it }
Assign(FontF, 'TRIP.CHR');
Reset (FontF, 1);
GetMem(FontP, FileSize(FontF));
BlockRead(FontF, FontpA

, FileSize(FontF));
if RegisterBGIfont(FontP) < 0 then
begin

Writeln('Error registering font: ' GraphErrorMsg(GraphResult));
Halt (1) ;

end;
{ Init graphics
Driver := Detect;
InitGraph(Driver, Mode, ' .. \');
if GraphResult < 0 then

Halt(l) ;
Readln;
{ Select registered font
SetTextStyle(TriplexFont, HorizDir, 4);
OutText ('Triplex loaded by user program');
MoveTo(O, TextHeight('a'));
Readln;
{ Select font that must be loaded from disk }
SetTextStyle(SansSerifFont, HorizDir, 4);
OutText('Your disk should be spinning ... ');
MoveTo(O, Gety + TextHeight('a'));
Readln;

Programmer's Reference

See also

Registers type

Purpose

Declaration

RegisterBGlfont function

{ Reselect registered font (already in memory)
SetTextStyle(TriplexFont, HorizDir, 4);
OutText('Back to Triplex');
Readln;
CloseGraph;

end.

The program begins by loading the triplex font file from disk and
registering it with the Graph unit. Then a call to InitGraph is made to
initialize the graphics system. Watch the disk drive indicator and press
Enter. Because the triplex font is already loaded into memory and regis­
tered, Graph does not have to load it from disk (and therefore your disk
drive should not spin). Next, the program will activate the sans serif font
by loading it from disk (it is unregistered). Press Enter again and watch the
drive spin. Finally, the triplex font is selected again. Since it is in memory
and already registered, the drive will not spin when you press Enter.

InitGraph, InstallUserDriver, InstallUserFont, RegisterBGIfont, SetTextStyle

Dos

The Intr and MsDos procedures use a variable parameter of type Registers
to specify the input register contents and examine the output register
contents of a software interrupt.

type
Registers = record

case Integer of

end;

0: (AX, BX, CX, DX, BP, SI, DI, DS, ES, Flags: Word);
1: (AL, AR, BL, BH, CL, CH, DL, DH: Byte);

Notice the use of a variant record to map the 8-bit registers on top of their
16-bit equivalents.

See also Intr, MsDos

RemoveDir procedure WinDos

Purpose Removes an empty subdirectory.

Declaration procedure RemoveDir (Dir: PChar);

Remarks The subdirectory with the path specified by Dir is removed. Errors, such
as a non-existing or non-empty subdirectory, are reported in the DosError
variable.

Chapter 7, Library reference 141

I

RemoveDir procedure

See also GetCurDir, CreateDir, SetCurDir. RmDir removes an empty subdirectory
also, but it takes a Pascal-style string as the argument rather than a null­
terminated string.

Rename procedure ' System·

Purpose Renames an external file.

Declaration procedure Rename (var F; Newname);

Remarks F is a variable of any file type. Newname is a string-type expression or an
expression of type PChar if the extended syntax is enabled. The external
file associated with F is renamed to Newname. Further operations on F
operate on the external file with the new name.

With {$I-}, IOResult returns 0 if the operation was successful; otherwise, it
returns a nonzero error code.

Restrictions Never use Rename on an open file.

See also Erase

Reset procedure System

142

Purpose Opens an existing file.

Declaration procedure Reset (var F [: file; RecSize: word 1);

Remarks F is a variable of any file type associated with an external file using Assign.
RecSize is an optional expression of type Word, which can be specified only
if F is an untyped file. If F is an untyped file, RecSize specifies the record
size to be used in data transfers. If RecSize is omitted, a default record size
of 128 bytes i~ assumed.

Reset opens the existing external file with the name assigned to F. An error
results if no existing external file of the given name exists. If F is already
open, it is first closed and then reopened. The current file position is set to
the beginning of the file.

If F is assigned an empty name, such as Assign(F, If), then after the call to
Reset, F refers to the standard input file (standard handle number 0).

If F is a text file, F becomes read-only. After a call to Reset, Eof(F) is True if
the file is empty; otherwise, Eof(F) is False. . .

Programmer's Reference

Reset procedure

With {$I-}, IOResult returns 0 if the operation was, successful; otherwise, it
returns a nonzero error code.

See also Append, Assign, Close, Rewrite, Truncate

Example function FileExists (FileName: String): Booleani
{ Boolean function that returns True if the file existsi otherwise, it returns

False. Closes the file if it exists. }
var F: filei
begin

{$I-}
Assign(F, FileName) i

FileMode := Oi { Set file access to read only. }
Reset (F) i

Close (F) i

{$It }

FileExists := (IOResult = 0) and (FileName <> ") i
endi {FileExists}

begin
if FileExists(ParamStr(l)) then

Writeln('File e~ists')
{ Get file name from command line }

else
Writeln('File not found') i

end.

RestoreCrtMode procedure Graph

Purpose Restores the screen mode to its original state before graphics mode was
initialized.

Declaration procedure RestoreCrtMode i

Remarks Restores the original video mode detected by InitGraph. Can be used in
conjunction with SetGraphMode to switch back and forth between text and
graphics modes.

Restrictions Must be in graphics mode.

See also CloseGraph, DetectGraph, GetGraphMode, InitGraph, SetGraphMode

Example uses Graphi
var

Gd, Gm: Integeri
Mode: Integeri

begin
Gd.:= Detecti
InitGraph(Gd, Gm, ")i

Chapter 7, Library reference 143

I

RestoreCrtMode procedure

if GraphResult <> grOk then
Halt (1) i

OutText('<ENTER> to leave graphics:') i
Readlni
RestoreCrtModei
Writeln('Now in text mode')i
Write('<ENTER> to enter graphics mode:') i

Readlni
SetGraphMode(GetGraphMode) i

OutTextXY(O, 0, 'Back in graphics mode')i
OutTextXY(O, TextHeight('H'), '<ENTER> to quit:') i
Readlni
CloseGraphi

end.

Rewrite procedure

Purpose Creates and opens a new file.

Declaration procedure Rewrite (var F [: file i RecSize: Word 1) i

System

Remarks F is a variable of any file type associated with an external file using Assign.
RecSize is an optional expression of type Word, which can only be specified
if F is an untyped file. If F is an untyped file, RecSize specifies the record
size to be used in data transfers. If RecSize is omitted, a default record size
of 128 bytes is assumed.

Rewrite creates a new external file with the name assigned to F. If an
external-file with the same name already exists, it is deleted and a new
empty file is created in its place. If F is already open, it is first closed and
then re-created. The current file position is set to the beginning of the
empty file.

If F was assigned an empty name, such as Assign(F, "), then after the call
to Rewrite, F refers to the standard output file (standard handle number 1).

If F is a text file, F becomes write-only. After a call to Rewrite, Eof(F) is
always True.

With {$I-}, IOResult returns 0 if the operation was successful; otherwise, it
returns a nonzero error code.

See also Append, Assign, FileMode, Lst, Reset, Truncate

144 Programmer's Reference

Example var F: Text;
begin

Assign(F, 'NEWFILE.$$$'};
Rewrite (F) ;
Writeln(F, 'Just created file with this text in it ... '};
Close (F) ;

end ..

RmDir procedure

Purpose Removes an empty subdirectory.

Declaration procedure RmDir (S: String);

Rewrite procedure

System

Remarks Removes the subdirectory with the path specified by S. If the path does
not exist, is non-empty, or is the currently logged directory, an IIO error
occurs.

With {$I-}, IOResult returns 0 if the operation was successful; otherwise, it
returns a nonzero error code.

See also MkDir, ChDir, GetDir.' RemoveDir performs the same function as RmDir,
but it takes a null-terminated string as an argument rather than a Pascal­
style string.

Example begin
{$I-}
RmDir(PararnStr(l}};
if IOResult <> 0 then

Writeln('Cannot remove directory'}
else

Writeln('Directory removed'};
end.

Round function

{ Get directory name from command line }

System

Purpose Rounds a real-type value to an integer-type value.

Declaration function Round (X: Real): Longint;

Remarks X is a real-type expression. Round returns a Longint value that is the value
of X rounded to the nearest whole number. If X is exactly halfway
between two whole numbers, the result is the number with the

Chapter 7, Library reference 145

I

Round function

greatest absolute magnitude. A run-time error occurs if the rounded value
of X is not within the Longint range.

See also Int, Trunc

RunError procedure System

Purpose Stops program execution and generates a run-time error.

Declaration procedure RunError [(ErrorCode: Byte) 1 i

Remarks The RunError procedure corresponds to the Halt procedure, except in
addition to stopping the program, it generates a run-time error at the
current statement. ErrorCode is the run-time error number (0 if omitted). If
the current module is compiled with debug information on, and you're
running the program from the IDE, Turbo Pascal automatically takes you
to the RunError call, just as if an ordinary run-time error occurred.

See also Exit, Halt

Example {$IFDEF Debug}

if P = nil then
RunError(204) i

{$ENDIF}

SavelntXX variables

Purpose Stores interrupt vectors.

Declaration The System unit declares the following SaveIntXX variables.

Name Type Description

SavelntOO Pointer { Saved interrupt $00 }
Savelnt02 Pointer { Saved interrupt $02 }
SavelntlB Pointer { Saved interrupt $lB } .
SaveInt21 Pointer { Saved interrupt $21 }
SaveInt23 Pointer { Saved interrupt $23 }
Savelnt24 Pointer { Saved interrupt $24 }
Savelnt34 Pointer { Saved interrupt $34 }
Savelnt35 Pointer { Saved interrupt $35 }
Saveint36 Pointer { Saved interrupt $36 }
Savelnt37 Pointer { Saved interrupt $37 }
Savelnt38 Pointer { Saved interrupt $38 }
SaveInt39 Pointer { Saved interrupt $39 }
Savelnt3A Pointer { Saved interrupt $3A }

System

146 Programmer's Reference

Savelnt3B
Savelnt3C
Savelnt3D
SaveInt3E
Savelnt3F
Savelnt75

Pointer
Pointer
Pointer
Pointer
Pointer
Pointer

SavelntXX variables

{ Saved interrupt $3B }
{ Saved interrupt $3C }
{ Saved interrupt $3D }
{ Saved interrupt $3E }
{ Saved interrupt $3F }
{ Saved interrupt $75 }

Remarks The System unit and a number of other run-time library units take over
several interrupt vectors. The run.;.time library initialization code in the
System unit stores the old vectors in the SavelntXX variables before
installing any interrupt handling routines. Likewise, the run-time library
termination code restores the interrupt vectors using the SavelntXX
variables before returning to the operating system.

If an application needs to access the "original" interrupt vector (the one
that was in place before the run-time library installed a new interrupt
handler), it can access the corresponding SavelntXX variable. If there is no
SavelntXX variable for a particular interrupt vector, it is because the run­
time library doesn't modify that vector.

See also Exec, Swap Vectors

SearchRec type Dos

Purpose The FindFirst and FindNext procedures use variables of type SearchRec to
scan directories.

Declaration type

SearchRec = record
Fill: array[l .. 21] of Byte;
Attr: Byte;
Time: Longint;
Size: Longint;
Name: string[12];

end;

The information for each file found by one of these procedures is reported
back in a SearchRec. The Aftr field contains the file's attributes (constructed
from file attribute constants), Time contains its packed date and time (use
UnpackTime to unpack), Size contains its size in bytes, and Name contains
its name. The Fill field is reserved by DOS and should never be modified.

Chapter 7, Library reference 147

I

Sector procedure

Sector procedure Graph.

148

Purpose Draws and fills an elliptical sector.

Declaration procedure Sector(X, Y: Integer; StAngle, EndA)1gle, XRadius, YRadius: Word);

Remarks Using (X, Y) as the center point, XRadius and YRadius specify the
horizontal and vertical radii, respectively; Sector draws from StAngle to
EndAngle, outlined in the current color and filled with the pattern· and
color defined by SetFillStyle or SetFillPattern.

A start angle of 0 and an end angle of 360 will draw and fill a complete
ellipse. The angles for Arc, Ellipse, FillEllipse, PieS lice, and Sector are
counterclockwise with 0 degrees at3 o'clock, 90 degrees at 12 o'clock, and
soon.

If an error occurs while filling the sector, GraphResult returns a value of
grNoScanMem.

Restrictions Must be in graphics mode.

See also Arc, Circle, Ellipse, FillEllipse, GetArcCoords, GetAspectRatio, PieS lice,
SetFillStyle, SetFillPattern, SetGraphBufSize

Example uses Graph;
const R = 50;
var

Driver, Mode: Integer;
Xasp, Yasp: Word;

begin
Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult < 0 then

Halt (1);

Sector(GetMaxX div 2, GetMaxY div 2, 0, 45, R, R);
GetAspectRatio(Xasp, Yasp);
Sector(GetMaxX div 2, GetMaxY div 2,

180, US,
R, R * Longint(Xasp) div Yasp);

Readln;
CloseGraph;

·end.

{ Put in graphics mode }

{ Draw circular sector }
{ Center point }

{ Mirror angle above }
{ Circular }

Programmer's Reference

Seek procedure

Seek procedure System

Purpose Moves the current position of a file to a specified component.

Declaration procedure Seek(var F; N: Longint);

Remarks F is any file variable type except text, and N is an expression of type
Longint. The current file position of F is moved to component number N.
The number of the first component of a file is O. To expand a file, you can
seek one component beyond the last component; thatis, the statement
Seek(F, FileSize(F)) moves the current file position to the end of the file.

With {$I-}, IOResult returns 0 if the operation was successful; otherwise, it
returns a nonzero error code.

Restrictions Cannot be used on text files .. File must be open.

See also FilePos

SeekEof function System

Purpose Returns the end-of-file status of a file.

Declaration function SeekEof [(var F: Text) l: Boolean;

Remarks SeekEof corresponds to Eof except that it skips all blanks, tabs, and end-of­
line markers before returning the end-of-file status. This is useful when
reading numeric values from a text file. .

With {$I-}, IOResult returns 0 if the operation was successful; otherwise, it
returns a nonzero error code.

Restrictions Can be used only on text files. File must be open.

See also Eof, SeekEoln

SeekEoln function System

Purpose Returns the end-of-line status of a file.

Declaration function SeekEoln [(var F: Text) l;

Remarks SeekEoln corresponds to Eoln except that it skips all blanks and tabs before
returning the end-of-line status. This is useful when reading numeric
values from a text file. .

Chapter 7, Library reference 149

I

SeekEoln function

With {$I-}, IOResult returns 0 if the operation was successful; otherwise, it
returns a nonzero error code.

Restrictions Can be used only on text files. File must be open.

See also Eoln, SeekEof

Seg function System

Purpose Returns the segment of a specified object.

Declaration function Seg (Xl: Word;

Remarks X is any variable,or a procedure or function identifier. The result, of type
Word, is the segment part of the address of X.

See also Addr,Ofs

Seg0040 variable System

Purpose Selector for segment $0040.

Declaration var Seg0040: Word;

Remarks Seg0040 contains a selector that can be used to access the ROM BIOS
workspace at segment address $0040. This variable is included for com­
patibility between DOS real and protected mode. In real mode Seg0040
always contains the value $0040, but in protected mode the actual value
can vary.

See also SegAOOO, SegBOOO, SegBBOO

SegAOOO variable System

Purpose Selector for segment $AOOO.

Declaration var SegAO 0 0: Word;

Remarks SegAOOO contains a selector that can be used to access the EGA and VGA
graphics memory pages at segment address $AOOO. This variable is
included for compatibility between DOS real and protected mode. In

150 Programmer's Reference

SegAOOO variable

real mode SegAOOO always contains the value $AOOO, but in protected
mode the actual value can vary.

See also Seg0040, SegBOOO, SegBBOO

Seg8000 variable System

Purpose Selector for segment $BOOO.

Declaration var SegBOOO: Word;

Remarks SegBOOO contains a selector that can be used to access the Monochrome
Adapter video memory at segment address $BOOO. This variable is
in<;luded for purposes of compatibility between DOS real and protected
mode. In real mode SegBOOO always contains the value $BOOO, but in
protected mode the actual value might vary.

See also Seg0040, SegAOOO, SegBBOO

Seg8800 variable System

Purpose Selector for segment $B800.

Declaration var SegB800: Word;

Remarks SegBBOO contains a selector that can be used to access the Color Graphics
Adapter video memory at segment address $B800. This variable is
included for purposes of compatibility between DOS real and protected
mode. In real mode SegBBOO always contains the value $B800, but in
protected mode the actual value can vary.

See also Seg~040, SegAOOO, SegBOOO

Selectorlnc variable System

Purpose Selector increment value.

Declaration var Selectorlnc: Word;

Remarks Selectorlnc contains the value that must be added to or subtracted from the
selector part of a pointer to increment·or decrement the pointer by 64K
bytes. In real mode, Selectorlnc always contains $1000, but in protected
mode the actual value can vary.

Chapter 7, Library reference 151

I

SetActivePage procedure

SetActivePage procedure Graph

Purpose Set the active page for graphics output.

Declaration procedure SetActivePage (Page: Word);

Remarks Makes Page the active graphics page, directing all subsequent graphics
output to Page.

Multiple pages are supported only by the EGA (256K), VGA, and
Hercules graphics cards. With multiple graphics pages, a program can
direct graphics output to an off-screen page, then quickly display the off­
screen image by changing the visual page with the SetVisualPage
procedure. This technique is especially useful for animation.

Restrictions Must be in graphics mode.

See also SetVisualPage

Example uses Graph;
var Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);
if (Gd = HercMono) or (Gd = EGA) or (Gd = EGA64) or (Gd = VGA) then
begin

SetvisualPage(O);
SetActivePage(l);
Rectangle (10, 20, 30, 40);
SetVisualPage(l) ;

end
else

OutText('No paging supported.');
Readln;
CloseGraph;

end.

SetAIiPalette procedure

Purpose Changes all palette colors as specified.

Declaration procedure SetAllPalette (var Palette) ;

,Graph

152 Programmer's Reference

SetAIiPalette procedure

Remarks Palette is an untyped parameter. The first byte is the length of the palette.
The next n bytes will replace the current palette colors. Each color might
range from -1 to 15. A value of -1 will not change the previous entry's
value.

Note that valid colors depend on the current graphics driver and current
, graphics mode.

If invalid input is passed to SetAllPalette, GraphResult returns a value of
-11 (grError), and no changes to the palette settings will occur.

Changes made to the palette are seen immediately onscreen. In the
example listed here, several lines are drawn onscreen, then the palette is
changed. Each time a palette color is changed, all onscreen occurrences of
that color will be changed to the new color value.

See Color constants for SetRGBPalette for a definition of color constants and
to PaletteType for a definition of PaletteType record.

Restrictions Must be in graphics mode, and can be used only with EGA, EGA 64, or
VGA (not the IBM 8514 or the VGA in 256-color mode).

See also GetBkColor, GetColor, GetPalette, GraphResult, SetBkColor, SetColor,
SetPalette,SetRGBPalette

Example uses Graph;
var

Gd, Gm: Integer;
Palette: PaletteType;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;

Line(O, 0, GetMaxX, GetMaxY);
with Palette do
begin

Size := 4;
Colors [0] : = 5;
Colors [1] : = 3;
Colors[2] := 1;
Colors [3] : = 2;
SetAllPalette(Palette) ;

end;
Readln;
CloseGraph;

end.

Chapter 7, Library reference 153

I

SetAspectRatio procedure

SetAspectRatio procedure Graph

154

Purpose Changes the default aspect-ratio correction factor . .

Declaration procedure SetAspectRatio (Xasp, Yasp: Word): Word;

Remarks SetAspectRatio is used to change the default aspect ratio of the current
graphics mode. The aspect ratio is used to draw circles. If circles appear
elliptical, the monitor is not aligned properly. This can be corrected in the
hardware by realigning the monitor, or can be corrected in the software by
changing the aspect ratio using SetAspectRatio. To read the current aspect
ratio from the system, use GetAspectRatio.

Restrictions Must be in graphics mode.

See also GetAspectRatio

Example uses Crt, Graph;
const R = 50;
var

Driver, Mode: Integer;
Xasp, Yasp: Word;

begin
DirectVideo := False;
Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult < 0 then

Halt (1) ;
GetAspectRatio(Xasp, Yasp);
if Xasp = Yasp then
{ Adjust for VGA and 8514. They have 1:1 aspect

Yasp := 5 * Xasp;
while (Xasp < Yasp) and not KeyPressed do

{ Put in graphics mode }

{ Get default aspect ratio }

{ Keep modifying aspect ratio until 1:1 or key is pressed}
begin

SetAspectRatio(Xasp, Yasp);
Circle (GetMaxX div 2, GetMaxY div 2, R);
Inc(Xasp, 20);

end;
SetTextJustify(CenterText, CenterText);
OutTextXY(GetMaxX div 2, GetMaxY div 2, 'Donel');
Readln;
CloseGraph;

end.

Programmer's Reference

SetBkColor procedure

SetBkColor procedure Graph

Purpose Sets the current background color using the palette.

Declaration procedure SetBkColor (ColorNum: Word);

Remarks Background colors range from 0 to 15, depending on the current graphics
driver and current graphics mode. On a eGA, SetBkColor sets the flood
overscan color.

SetBkColor(N) makes the Nth color in the palette the new background
color. The only exception is SetBkColor(O), which always sets the
background color to black.

Restrictions Must be in graphics mode.

See also GetBkColor, GetColor, GetPalette, SetAllPalette, SetColor, SetPalette,
SetRGBPalette

Example uses Crt
l

Graph;
var

GraphDriver l GraphMode: Integer;
Palette: PaletteType;

begin
GraphDriver := Detect;
InitGraph(GraphDriver l GraphMode l II);

Randomize;
if GraphResult <> grOk then

Halt(l) ;
GetPalette(Palette);
repeat

if Palette. Size <> 1 then
SetBkColor(Random(Palette.Size)) ;

LineTo(Random(GetMaxX)/Random(GetMaxY));
until KeyPressed;
CloseGraph;

end.

SetCBreak procedure Dos, WinDos

Purpose Sets the state of Ctrl+Break checking in DOS.

Declaration procedure SetCBreak(Break: Boolean);

Chapter 7, Library reference 155

I

-SetCBreak procedure

Remarks SetCBreak sets the state of Ctrl+Break checking in DOS. When off (False),
DOS only checks for Ctrl+Break during I/O to console, printer, or communi­
cation devices. When on (True), checks are made at every system call.

See also GetCBreak

SetColor procedure Graph

Purpose Sets the current drawing color using the palette.

Declaration procedure SetColor (Color: Word);

Remarks SetColor(S) makes the fifth color in the palette the current drawing color.
Drawing colors might range from 0 to IS, depending on the current
graphics driver and current graphics mode.

GetMaxColor returns the highest valid color for the current driver and
mode.

Restrictions Must be in graphics mode.

See also DrawPoly, GetBkColor, GetColor, GetMaxColor, GetPalette, GraphResult,
SetAllPalette, SetBkColor, SetPalette, SetRGBPalette

Example uses Crt, Graph;
var

GraphDriver, GraphMode: Integer;
begin

GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ");
if GraphResult <> grOk then

Halt (1);

Randomize;
repeat

SetColor(Random(GetMaxColor) + 1);
LineTo(Random(GetMaxX), Random(GetMaxY));

until KeyPressed;
end.

SetCurDir procedure

Purpose Changes the current directory to the path specified by Dir.

Declaration procedure SetCurDir (Dir: PChar);

WinDos

156 Programmer's Reference

SetCurDir procedure

Remarks If Dir specifies a drive letter, the current drive is also changed. Errors are
reported in DosError.

See also GetCurDir, CreateDir, RemoveDir. ChDir performs the same function as
SetCurDir, but it takes a Pascal-style string as the argument rather than a
null-terminated string.

SetDote procedure Dos, WinDos

Purpose Sets the current date in the operating system.

Declaration procedure SetDate (Year, Month, Day: Word);

Remarks Valid parameter ranges are Year 1980 .. 2099,Month 1..12, and Day 1..31. If
the date is invalid, the request is ignored.

See also GetDate, GetTime, SetTime

SetFAttr procedure Dos, WinDos

Purpose Sets the attributes of a file.

Declaration procedure SetFAttr (var F; Attr: Word);

Remarks F must be a file variable (typed, untyped, or text file) that has been
assigned but not opened. The attribute value is formed by adding the
appropriate file attribute masks defined as constants in the Dos and
WinDos units. See page 43 for a list of file attribute constants.

Errors are reported in DosError; possible error codes are 3 (Invalid path)
and 5 (File access denied).

Restrictions F cannot be open.

See also File attribute, GetFAttr, GetFTime, SetFTime

Example uses Dos;
var F: file;
begin

Assign(F, 'C:\AUTOEXEC.BAT');
SetFAttr(F, Hidden);
Readln;
SetFAttr(F, Archive);

end.

Chapter 7, Library reference

{ or WinDos }

{ or faHidden }

{ or faArchive }

157

I

SetFiliPattern procedure'

SetFiliPattern procedure Graph

158

Purpose Selects a user-defined fill pattern.

Declaration procedure SetFillPattern(Pattern: FillPatternType; Color: Word);

Remarks Sets the pattern and color for all filling done by FillPoly, FloodFill, Bar,
Bar3D, and PieS lice to the bit pattern specified in Pattern and the color
specified by Color. If invalid input is passed to SetFillPattern, GraphResult
returns a value of grError, and the current fill settings will be unchanged.
The fill pattern is based on the underlying Byte values contained in the
Pattern array. The pattern array is 8 bytes long with each byte corre­
sponding to 8 pixels in the pattern. Whenever a bi~ in a pattern byte is
valued at I, a pixel will be plotted. For example, the following pattern
represents a checkerboard (50% gray scale):

Binary Hex

10101010 $AA (1st byte)
01010101 $55 (2nd byte)
10101010 $AA (3rd byte)
01010101 $55 (4th byte)
10101010 $AA (5th byte)
01010101 $55 (6th byte)
10101010 $AA (7th byte)
01010101 $55 (8th byte)

User-defined fill patterns enable you to create patterns different from the
predefined fill patterns that can be selected with the SetFillStyle
procedure. Whenever you select a new fill pattern with SetFillPattern or
SetFillStyle, all fill operations will use that fill pattern. Calling SetFillStyle
(UserField, SomeColor) will always select the user-defined pattern. This lets
you define and use a new pattern using SetFillPattern, then switch
between your pattern and the built-ins by making calls to SetTextStyle.

Restrictions Must be in graphics mode.

See also Bar, Bar3D, FillPoly, GetFillPattern, GetFillSettings, GraphResult, grXXXX
constants, PieS lice

Example uses Graph;
const

Gray50: FillPatternType = ($AA, $55, $AA, $55, $AA, $55, $AA, $55);
var Gd, Gm: Integer;

Programmer's Reference

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;
SetFillPattern(Gray50, White);
Bar (0, 0, 100, 100);
Readln;
CloseGraph;

end.

SetFiliStyle procedure

Purpose Sets the fill pattern and color.

SetFiIIPaHern procedure

{ Draw a bar in a 50% gray scale }

Graph

Declaration procedure SetFillStyle(Pattern: Word; Color: Word);

Remarks Sets the pattern and color for all filling done by FillPoly, Bar, Bar3D, and
PieS lice. A variety of fill patterns are available. The default pattern is solid,
and the default color is the maximum color in the palette. If invalid input
is passed to SetFillStyle, GraphResult returns a value 'of grError, and the
current fill settings will be unchanged. If Pattern equals UserFill, the user­
defined pattern (set by a call to SetFillPattern) becomes the active pattern.
See page 48 for the declaration of Fill pattern constants.

Restrictions Must be in graphics mode.

See also Bar, Bar3D, FillPattern, FillPoly, GetFillSettings, PieS lice, GetMaxColor,
GraphResult

Example uses Graph;
var Gm, Gd: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
SetFillStyle(SolidFill, 0);
Bar (0, 0, 50, 50);
SetFillStyle(XHatchFill, 1);
Bar (60, 0, 11 0, 50);
Readln;
CloseGraph;

end.

Chapter 7, Library reference 159

I

SetFTime procedure

SetFTime procedure Dos, WinDos

Purpose Sets the date and time a file was last written.

Declaration procedure SetFTime (var F; Time: Longint);

Remarks F must be a file variable (typed, untyped, or text file) that has been
assigned and opened. TheTime parameter can be created by calling
PackTime. Errors are reported in Dos Error; the only possible error code is 6
(Invalid file handle).

Restrictions F must be open.

See also DosError, GetFTime, PackTime, SetFAttr, UnpackTime

SetGraphBufSize procedure Graph

Purpose Lets you change the size of the buffer used for scan and flood fills.

Declaration procedure SetGraphBufSize (BufSize: Word);

Remarks Sets the internal buffer size to BufSize, and allocates a buffer on the heap
when a call is made to InitGraph.

The default buffer size is 4K, which is large enough to fill a polygon with
about 650 vertices. Under rare circumstances, you might need to enlarge
the buffer in order to avoid a buffer overflow.

Restrictions Note that after InitGraph is called, calls to SetGraphBufSize are ignored.

See also FloodFill, FillPoly, InitGraph

SetGraphMode procedure Graph

160

Purpose Sets the system to graphics mode and clears the screen.

Declaration procedure SetGraphMode (Mode: Integer);

Remarks Mode must be a valid mode for the current device driver. SetGraphMode is
used to select a graphics mode different than the default one set by
InitGraph.

SetGraphMode can also be used in conjunction with RestoreCrtMode to
switch back and forth between text and graphics modes.

SetGraphMode resets all graphics settings to their defaults (current pointer,
palette, color, viewport, and so forth).

Programmer's Reference

GetModeRange returns the lowest and highest valid modes for the current
driver.

If an attempt is made to select an invalid mode for the current device
driver, GraphResult returns a value of grlnvalidMode.

See page 33, Drive and Mode constants, for a list of graphics drivers and
modes.

Restrictions A successful call to InitGraph must have been made before calling this
routine.

See also ClearDevice, CloseGraph, DetectGraph, Driver and Mode, GetGraphMode,
GetModeRange, GraphResult, InitGraph, RestoreCrtMode

Example uses Graph;
var

GraphDriver: Integer;
GraphMode: Integer;
LowMode: Integer;
HighMode: Integer;

begin
GraphDriver := Detect;
InitGraph(GraphDriver , GraphMode , ");
if GraphResult <> grOk then

Halt (1) ;
GetModeRange(GraphDriver , LowMode , HighMode);
SetGraphMode(LowMode); { Select low-resolution mode }
Line(O, 0, GetMaxX, GetMaxY);
Readln;
CloseGraph;

end.

SetlntVec procedure Dos, WinDos

Purpose Sets a specified interrupt vector to a specified address.

Declaration procedure SetIntVec(IntNo: Byte; Vector: Pointer);

Remarks IntNo specifies the interrupt vector number (0 .. 255), and Vector specifies
the address. Vector is often constructed with the @ operator to produce the
address of an interrupt procedure. Assuming Int1BSave is a variable of
type Pointer, and IntlBHandler is an interrupt procedure identifier, the
following statement sequence installs a new interrupt $1B handler and
later restores the original handler:

Chapter 7, Library reference 161

I

SetlntVec procedure

GetIntVec($lB, Int1BSave);
SetIntVec($lB, @Int1BHandler);

SetIntVec($lB, Int1BSave);

See also GetIntVec

SetLineStyle procedure Graph

162

Purpose Sets the current line width and style.

Declaration procedure SetLineStyle (LineStyle: Word; Pattern: Word; Thickness: Word);

Remarks Affects all lines drawn by Line, LineTo, Rectangle, DrawPoly, Are, and so on.
Lines can be drawn solid, dotted, centerline, or dashed. If invalid input is
passed to SetLineStyle, GraphResult returns a value of grError, and the
current line settings will be unchanged. See Line style constants for a list of
constants used to determine line styles. LineStyle is a value from SolidLn to
UserBitLn(O . .4), Pattern is ignored unless LineStyle equals UserBitLn, and
Thickness is NormWidth or ThickWidth. When LineStyle equals UserBitLn,
the line is output using the 16-bit pattern defined by the Pattern
parameter. For example, if Pattern = $AAAA, then the 16-bit pattern looks
like this:

1010101010101010

1010101010101019
1010101010101010
1010101010101010

Restrictions Must be in graphics mode.

{ NormWidth }

{ ThickWidth }

See also DrawPoly, GetLineSettings, GraphResult, Line, LineRel, LineTo, Line style,
Set WriteMode

Example uses Graph;
var

Gd, Gm: Integer;
Xl, Y1, X2, Y2: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;
Xl := 10;
Y1 := 10;

Programmer's Reference

SetLineStyle procedure

X2 := 200;
Y2 := 150;
SetLineStyle(DottedLn, 0, NormWidth);
Rectangle (Xl, Y1, X2, Y2);
SetLineStyle(UserBitLn, $C3, ThickWidth);
Rectangle (Pred(X1) , Pred(Y1), Succ(X2), Succ(Y2));
Readln;
CloseGraph;

end.

·SetPalette procedure Graph

Purpose Changes one palette color as specified by ColorNum and Color.

Declaration procedure SetPalette (ColorNum: Word; Color: Shortint);

Remarks Changes the ColorNum entry in the palette to Color. SetPalette(O, LightCyan)
makes the first color in the palette light cyan. ColorNum might range from
o to 15, depending on the current graphics driver and current graphics
mode. If invalid input is passed to SetPalette, GraphResult returns a value
of grError, and the palette remains unchanged.

Changes made to the palette are seen immediately onscreen. In the
example here, several lines are drawn onscreen, then the palette is
changed randomly. Each time a palette color is changed, all occurrences of
that color onscreen will be changed to the new color value. See Color
constants for a list of defined color constants.

Restrictions Must be in graphics mode, and can be used only with EGA, EGA 64, or
VGA (not the IBM 8514).

See also GetBkColor, GetColor, GetPalette, GraphResult, SetAllPalette, SetBkColor,
SetColor, SetRGBPalette

Example uses Crt, Graph;
var

GraphDriver, GraphMode: Integer;
Color: Word;
Palette: PaletteType;

begin
GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ");
if GraphResult <> grOk then

Halt (1) ;

GetPalette(Palette) ;
if Palette. Size <> 1 then

Chapter 7, Library reference 163

I

SetPaleHe procedure

begin
for Color := 0 to Pred(Palette.Size) do
begin

SetColor(Color) ;
Line(O, Color * 5, 100, Color * 5);

end;
Randomize;
repeat

SetPalette(Random(Palette.Size),Random(Palette.Size));
i until KeyPressed;

end
else

Line(O, 0, 100, 0);
Readln;
CloseGraph;

end.

SetRGBPalette procedure Graph

164

Purpose

Declaration

Remarks

Restrictions

See also

Example

Modifies palette entries for the IBM 8514 and VGA drivers.

procedure SetRGBPalette(ColorNum, RedValue, GreenValue, BlueValue: Integer);

ColorNum defines the palette entry to be loaded, while RedValue,
GreenValue, and BlueValue define the component colors of the palette
entry.

For the IBM 8514 display, ColorNum is in the range 0 .. 255. For the VGA in
256K color mode, ColorNum is the range 0 . .15. Only the lower byte of
RedValue, GreenValue or BlueValue is used, and out of this byte, only the 6
most-significant bits are loaded in the palette.

For compatibility with other IBM graphics adapters, the BGI driver
defines the first 16 palette entries of the IBM 8514 to the default colors of
the EGA/VGA. These values can be used as is, or they can be changed by
using SetRGBPalette.

SetRGBPalette can be used only with the IBM 8514 driver and the VGA.

GetBkColor, GetColor, GetPalette, GraphResult, SetAllPalette, SetBkColor,
SetColor, SetPalette

The first example illustrates how to use SetRGBPalette on a system using
an EGA graphics driver; the second example shows how to use
SetRGBPalette on a system using a VGA graphics driver.

Programmer's Reference

SetRGBPalette procedure

Example 1:

uses Graph;
type

RGBRec = record
RedVal, GreenVal, BlueVal: Integer;

end;
const

EGAColors: array[O .. MaxColors] of RGBRec =

var

({NAME COLOR}
(RedVal:$OO;GreenVal:$OO;BlueVal:$OO) ,{Black EGA O}
(RedVal:$OO;GreenVal:$OO;BlueVal:$FC) ,{Blue EGA 1}
(RedVal:$24;GreenVal:$FC;BlueVal:$24) ,{Green EGA 2}
(RedVal:$OO;GreenVal:$FC;BlueVal:$FC) ,{Cyan EGA 3}
(RedVal:$FC;GreenVal:$14;BlueVal:$14) ,{Red EGA 4}
(RedVal:$BO;GreenVal:$OO;BlueVal:$FC) ,{Magenta EGA 5}
(RedVal:$70;GreenVal:$48;BlueVal:$00) ,{Brown EGA 20}
(RedVal:$C4;GreenVal:$C4;BlueVal:$C4) ,{White EGA 7}
(RedVal:$34;GreenVal:$34;BlueVal:$34) ,{Gray EGA 56}
(RedVal:$00;GreenVal:$00;BlueVal:$70},{Lt Blue EGA 57}
(RedVal:$00;GreenVal:$70;BlueVal:$00},{Lt Green EGA 58}
(RedVal:$00;GreenVal:$70;BlueVal:$70},{Lt Cyan EGA 59}
(RedVal:$70;GreenVal:$00;BlueVal:$00},{Lt Red EGA 60}
(RedVal:$70;GreenVal:$00;BlueVal:$70},{Lt Magenta EGA 61}
(RedVal:$FC;GreenVal:$FC;BlueVal:$24) , {Yellow EGA 62}
(RedVal;$FC;GreenVal:$FC;BlueVal:$FC) {Br. White EGA 63}
};

Driver, Mode, I: Integer;
begin

Driver := IBM8514; { Override detection
Mode := IBM8514Hi;
InitGraph(Driver, Mode, "};
if GraphResult < 0 then

Halt(l} ;
{ Zero palette, make all graphics output invisible
for I := 0 to MaxColors do

with EGAColors[I] do
SetRGBPalette(I, 0, 0, O};

{ Display something }
{ Change first 16 8514 palette entries
for I := 1 to MaxColors do
begin

SetColor(I} ;
OutTextXY(lO, I * 10, ' .. Press any key .. '};

end;

Chapter 7, Library reference

Put in graphics mode

165

I

SetRGBPaleHe procedure

166

{ Restore default EGA colors to 8514 palette }
for I := 0 to MaxColors do

with EGAColors[I] do
SetRGBPalette (I, RedVal, GreenVal, BlueVall i

Readlni
CloseGraphi.

end.

Example 2:

{ Example for SetRGBPalette with VGA 16 color modes }
uses Graph, CRTi
type

RGBRec = record
RedVal, GreenVal, BlueVal : Integeri

{ Intensity values (values from 0 to 63) }
Name: Stringi
ColorNum: Integeri

{ The VGA color palette number as mapped into 16 color palette }
endi

const
{ Table of suggested colors forVGA 16 color modes }
Colors : array[O . . MaxColors] of RGBRec = (

(RedVal:OiGreenVal:OiBlueVal:OiName:'Black'iColorNum: 0),
(RedVal:OiGreenVal:OiBlueVal:40iName:'Blue'iColorNum: 1),
(RedVal:OiGreenVal:40iBlueVal:OiName:'Green' iColorNum: 2),
(RedVal:OiGreenVal:40iBlueVal:40iName:'Cyan' iColorNum: 3),
(RedVal:40iGreenVal:7iBlueVal:7iName: 'Red' iColorNum: 4),
(RedVal:40iGreenVal:OiBlueVal:40iName:'Magenta'iColorNum: 5),
(RedVal:40iGreenVal:30i BlueVal:OiName: 'Brown' iColorNum: 20),
(RedVal:49iGreenVal:49iBlueVal:49iName: 'Light Gray'iColorNum: 7),
(RedVal:26iGreenVal:26iBlueVal:26iName: 'Dark Gray'iColorNum: 56),
(RedVal:OiGreenVal:OiBlueVal:63iName:'Light Blue'iColorNum: 57),
(RedVal:9iGreenVal:63iBlueVal:9iName:'Light Green'iColorNum: 58),
(RedVal:OiGreenVal:63iBlueVal:63iName:'Light Cyan'iColorNum: 59),
(RedVal:63iGreenVal:10iBlueVal:10iName:'Light Red'iColorNum: 60),
(RedVal:44iGreenVal:OiBlueVal:63iName:'Light Magenta'i

ColorNum:61) ,
(RedVal:63iGreenVal:63iBlueVal:18iName:'Yellow'iColorNum: 62),
(RedVal:63i GreenVal:63i BlueVal:63i Name: 'White'i ColorNum: 63)

)i

var
Driver, Mode, I, Error: Integeri

begin
{ Initialize Graphics Mode
Driver := VGAi
Mode := VGAHii

Programmer's Reference

SetRGBPaleHe procedure

1nitGraph(Driver, Mode, 'C:\TP\BG1');
Error := GraphResult;
if Error <> GrOk then

begin
writeln(GraphErrorMsg(Error));
halt (1) ;

end;
SetFillStyle(SolidFill, Green); {Clear}
Bar(O, 0, GetMaxX, GetMaxY);
if GraphResult < 0 then

Halt(l); { Zero palette, make graphics invisible}
SetRGBPalette(Colors[O] .ColorNum, 63, 63, 63)i
for i := 1 to 15 do

with Colors[i] do
SetRGBPalette(ColorNum, 0, 0, 0);

{ Display the color name using its color with an appropriate
background }

{ Notice how with the current palette settings, only the text for "Press any
key ... ", "Black", "Light Gray", and "White" are visible. This occurs because
the palette entry for color 0 (Black) has been set to display as white. For
the text "Light Gray" and "White," color 0 (Black) is used at the background.}

SetColor(O);
OutTextXY(O, 10, 'Press Any Key ... ');
for I := 0 to 15 do
begin

with Colors[1] do
begin

SetColor(1);
SetFillStyle(SolidFill, (I xor 15) and 7) i

. { "(I xor 15)" gives an appropriate background}
{ " and 7" reduces the intensity of the background}

Bar(10, (I + 2) * 10 - 1, 10 + TextWidth(Name) ,
(I + 2) * 10 + TextHeight(Name) - 1);

OutTextXY(10, (I + 2) * 10, Name);
end;

end;
ReadKey;

{ Restore original colors to the palette. The default colors might vary
depending upon the initial values used by your video system.}

for i := 0 to 15 do
with Colors[i] do

SetRGBPalette(ColorNum, RedVal, GreenVal, BlueVal);
{ Wait for a keypress and then quit graphics and end. }
ReadKey;
Closegraphi

end.

Chapter 7, Library reference 167

I

SetTextBuf procedure

SetTextBuf procedure System

168

Purpose Assigns an I/O buffer to a text file.

Declaration procedure SetTextBuf (var F: Text; var Buf [; Size: Word]);

Remarks F is a text file variable, Buf is any variable, and Size is an optional
expression of type Word.

Each text file variable has an internal 128-byte buffer that, by default, is
used to buffer Read and Write operations. This buffer is adequate for most
applications. However, heavily I/O-bound programs, such as applications
that copy or convert text files, benefit from a larger buffer because it
reduces disk head movement and file system overhead.

SctTextBuf changes the text file F to use the buffer specified by Buf instead
of F's internal buffer. Size specifies the size of the buffer in bytes. If Size is .
omitted, SizeOf(Buj) is assumed; that is, by default, the entire memory
region occupied by Buf is used as a buffer. The new buffer remains in
effect until F is next passed to Assign.

Restrictions SetTextBuf should never be applied to an open file, although it can be
called immediately after Reset, Rewrite, and Append. Calling SetTextBuf on
an open file once I/O operations has taken place can cause loss of data
because of the change of buffer.

Turbo Pascal doesn't ensure that the buffer exists for the entire duration of
I/O operations on the file. In particular, a common error is to install a
local variable as a buffer, then use the file outside the procedure that
declared the buffer.

Example var
F: Text;
Ch: Char;
Buf: array [0 .. 4095] of Char;

begin
{ Get file to read from command line }
Assign(F, ParamStr(l));
{ Bigger buffer for faster reads }
'SetTextBuf(F, Buf);
Reset (F) ;
{ Dump text file onto screen }
while not Eof(f) do
begin

Read (F, Ch);
Write (Ch) ;

end;
end.

{ 4K buffer }

Programmer's Reference

SetTextJustify procedure

SetTextJustify procedure Graph

Purpose Sets text justification values used by OutText and OutTextXY.

Declaration procedure SetTextJustify(Horiz, Vert: Word);

Remarks Text output after a setTextJustify will be justified around the current
pointer in the manner specified. Given the following:

SetTextJustify(CenterText, CenterText);
OutTextXY(100, 100, 'ABC');

The point (100, 100) will appear in the middle of the letter B. The default
justification settings can be restored by setTextfustify(LeftText, TopText). If
invalid input is passed to setTextfustify, GraphResult returns a value of
grError, and the current text justification settings will be unchanged. See
page 99 for a list of Justification constants.

Restrictions Must be in graphics mode.

See also GetTextsettings, GraphResult, Justification, OutText, OutTextXY, setLinestyle,
setUserCharsize, TextHeight, TextWidth

Example uses Graph;
var Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;
{ Center text onscreen }
SetTextJustify(CenterText, CenterText);
OutTextXY(Succ(GetMaxX) div 2, Succ(GetMaxY) div 2, 'Easily Centered');
Readln;
CloseGraph;

end.

SetTextStyle procedure Graph

Purpose Sets the current text font, style, and character magnification factor.

Declaration procedure SetTextStyle(Font: Word; Direction: Word; CharSize: Word);

Remar.ks Affects all text output by OutText and OutTextXY. One 8x8 bit-mapped
font and several stroked fonts are available. Font directions supported
are normal (left to right) and vertical (90 degrees to normal text, starts at
the bottom and goes up). The size of each character can be magnified
using the Char Size factor. A Charsize value of one will display the 8x8 bit-

Chapter 7, Library reference 169

I

SetTextStyle procedure

170

mapped font in an 8x8 pixel rectangle onscreen, a CharSize value equal to
2 will display the 8x8 bit-mapped font in a 16x16 pixel rectangle arid so on
(up to a limit of 10 times the normal size). Always use TextHeight and
TextWidth to determine the actual dimensions of the text.

The normal size values for text are 1 for the default font and 4 for a
stroked font. These are the values that should be passed as the CharSize
parameter to SetTextStyle. SetUserCharSize can be used to customize the -
dimensions of stroked font text.

Normally, stroked fonts are loaded from disk onto the heap when a call is
made to SetTextStyle. However, you can load the fonts yourself or link
them directly to your .EXE file. In either case, use RegisterBGlfont to
register the font with the Graph unit.

When stroked fonts are loaded from disk, errors can occur when trying to
load them. If an error occurs, GraphResult returns one of the following
values: grFontNotFound, grNoFontMem, grError, grIOError, grlnvalidFont, or -
grlnvalidFontNum.

Restrictions Must be in graphics mode.

See also Font control, GetTextS~ttings, GraphResult, OutText, OutTextXY,
RegisterBGlfont, SetTextJustify, SetUserCharSize, TextHeight, TextWidth

Example uses Graph;
var

Gd,Gm: Integer;
Y, Size: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, II);

if GraphResult <> grOk then
Halt (1) ;

Y := 0;
for Size := 1 to 4 do
begin

SetTextStyle(DefaultFont, HorizDir, Size);
OutTextXY(O, Y, 'Size = ' + Chr(Size + 48));
Inc(Y, TextHeight('H') + 1);

end;
Readln;
CloseGraphi

end.

Programmer's Reference

SetTime procedure

SetTime" procedure Dos, WinDos

Purpose Sets the current time in the operating system.

Declaration procedure SetTime (Hour, Minute, Second, Sec100: Word);

Remarks Valid ranges are Hour 0 .. 23, Minute 0 . .59, Second 0 . .59, and Sec100
(hundredths of seconds) 0 .. 99. If the time isn't valid, the request is ignored.

See also GetDate, GetTime, PackTime, SetDate, UnpackTime

SetUserCharSize procedure Graph

Purpose Allows the user to vary the character width and height for stroked fonts.

Declaration procedure SetuserCharSize(MultX, Divx, MultY, DivY: Word;)

Remarks MultX:DivX is the ratio multiplied by the normal width for the active font;
MultY:DivY is the ratio multiplied by the normal height for the active font.
In order to make text twice as wide, for example, use a MultX value of 2,
and set DivX equal to 1 (2 div 1 = 2). Calling SetUserCharSize sets the
current character size to the specified values.

Restrictions Must be in graphics mode.

See also SetTextStyle, OutText, OutTextXY, TextHeight, TextWidth

Example The following program shows how to change the height and width of text:

uses Graph;
var Driver, Mode: Integer;
begin

Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult <> grOk then

Halt (1) ;
{ Showoff }
SetTextStyle(TriplexFont, HorizDir, 4);
OutText ('Norm') ;
SetUserCharSize(l, 3, 1, 1);
OutText('Short ');
SetUserCharSize(3, 1, 1, 1);
OutText ('Wide');
Readln;
CloseGraph;

end.

Chapter 7, Library reference 171

I

SetVerify procedure

SetVerify procedure Dos, WinDos

Purpose Sets the state of the verify flag in DOS.

Declaration procedure SetVerify(Verify: Boolean);

Remarks Set Verify sets the state of the verify flag in DOS. When off (False), disk
writes are not verified. When on (True), DOS verifies all disk writes to
ensure proper writing.

See also Get Verify

. SetViewPort procedure Graph

172

Purpose Sets the current ,?utput viewport or window for graphics output.

Declaration procedure SetViewPort(X1, Y1, X2, Y2: Integer; Clip: Boolean); .

Remarks (Xl, Yl) define the upper left corner of the viewport, and (X2, Y2) define
the lower right corner (0 <= Xl < X2and 0 <= Yl < Y2). The upper left
corner of a viewport is (0,0).

The Boolean parameter Clip determines whether drawings are clipped at
the current viewport boundaries. setViewPort(O, 0, GetMaxX, GetMaxY,
True) always sets the viewport to the entire graphics screen. If invalid
input is passed to Set ViewPort, GraphResult returns grError, and the
current view settings will be unchanged.

All graphics commands (for example, GetX, OutText, Rectangle, MoveTo,
and so on) are viewport-relative. In the following example, the
coordinates of the dot in the middle are relative to the boundaries of the
viewport.

(0,0) (GetMaxX,O)

(X1,Y1) (X2,Y1)

D
(X1,Y2) (X2,Y2)

(O,GetMaxY) (GetMaxX,GetMaxY)

If the Boolean parameter Clip is set to True when a call to setViewPort is
made, all drawings will be clipped to the current viewport. Note that the

Programmer's Reference

SetViewPort procedure

"current pointer" is never clipped. The following will not draw the
complete line requested because the line will be clipped to the current
viewport:

SetViewPort(10, 10, 20, 20, ClipOn);
Line(O, 5, 15, 5);

The line would start at absolute coordinates (10,15) and terminate at
absolute coordinates (25, 15) if no clipping was performed. But since
clipping was performed, the actual line that would be drawn would start
at absolute coordinates (10, 15) and terminate at coordinates (20, 15).

InitGraph, GraphDefaults, and SetGraphMode all reset the viewport to the
entire graphics screen. The current viewport settings are available by
calling the procedure GetViewsettings, which accepts a parameter of
ViewPort Type.

Set ViewPort moves the current pointer to (0,0).

Restrictions Must be in graphics mode.

See also ClearViewPort, GetViewsettings, GraphResult

Example uses Graph;
var Gd, Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;
if (Gd = HercMono) or (Gd = EGA) or (Gd = EGA64) or (Gd = VGA) then
begin

SetVisualPage(O);
SetActivePa~e(l) ;
Rectangle(10, 20, 30, 40) i
SetvisualPage(l);

end
else

OutText('No paging supported.');
Readlni
CloseGraph;

end.

SetVisualPage procedure Graph

Purpose Sets the visual graphics page number.

Declaration procedure SetVisualPage (Page: Word);

Chapter 7, Library reference 173

I

SefVisualPage procedure

Remarks Makes Page the visual graphics page.

Multiple pages are only supported by the EGA (256K), VGA, and
Hercules graphics cards. With multiple graphics pages, a program can
direct graphics output to an off-screen page, then quickly display the off­
screen image by changing the visual page with the Set VisualPage
procedure. This technique is especially useful for animation.

Restrictions Must be in graphics mode.

See also SetActivePage

Example uses Graph;
var Gd,Gm: Integer;
begin

Gd := Detect;
InitGraph(Gd, Gm, If);

if GraphResult <> grOk then
Halt(l) ;

if (Gd = HercMono) or (Gd = EGA) or (Gd = EGA64) or (Gd = VGA) then
begin

SetVisualPage(O);
SetActivePage(l);
Rectangle (10, 20, 30, 40);
SetVisualPage(l);

end
else

OutText('No paging supported.');
Readln;
CloseGraph;

end.

SetWriteMode procedure Graph

174

Purpose Sets the writing mode for line drawing.

Declaration procedure SetWriteMode (WriteMode: Integer);

Remarks See page 12 for a list of BitBlt operators used by SetWriteMode. Each
constant corresponds to a binary operation between each byte in the line
and the corresponding bytes on the screen. CopyPut uses the assembly
language MOV instruction, overwriting with the line whatever is on the
screen. XORPut uses the XOR command to combine the line with the
screen. Two successive XOR commands will erase the line and restore the
screen to its original appearance.

Programmer's Reference

SetWriteMode procedure

SetWriteMode affects calls only to the following routines: DrawPoly, Line,
LineRel, Line To, and Rectangle.

See also BitBlt operators, Line, LineTo, PutImage, SetLineStyle

Example uses Crt, Graph;

Sin function

var
Driver, Mode, I: Integer;
Xl, Y1, Dx, Dy: Integer;
FillInfo: FillSettingsType;

begin
DirectVideo := False;
Randomize;
Driver := Detect;
InitGraph(Driver, Mode, ");
if GraphResult < 0 then

Halt (1) ;

{ Fill screen with background'pattern
GetFillSettings(FillInfo);
SetFillStyle(WideDotFill, FillInfo.Color)i
Bar(O, 0, GetMaxX, GetMaxY);
Dx := GetMaxX div 4;
Dy := GetMaxY div 4;
SetLineStyle(SolidLn, 0, ThickWidth);
SetWriteMode(XORPut);
repeat

Xl := Random(GetMaxX - Dx);
Y1 := Random(GetMaxY - Dy);
Rectangle (Xl, Y1, Xl + Dx, Y1 + Dy);
Delay(10) ;
Rectangle (Xl, Y1, Xl + Dx, Y1 + Dy);

until KeyPressed;
Readln;
CloseGraph;

end.

Purpose Returns the sine of the argument.

Declaration function Sin (X: Real): Real;

{ Turn off screen write

{ Put in graphics mode

{ Get current settings }

{ Determine rectangle's dimensions}

{ XOR mode for rectangle }
Draw until a key is pressed }

{ Draw it }
Pause briefly }

{ Erase it }

,System

Remarks X is a real-type expression. Returns the sine of the angle X in radians.

See also ArcTan, Cos

Chapter 7, Library reference 175

I

Example var R: Real i
begin

R := Sin(pi) i
end.

SizeOf function System

Purpose Returns the number of bytes occupied by the argument.

Declaration function SizeOf (X): Wordi

RSmarks X is either a variable reference or a type identifier. SizeO! returns the
number of bytes of memory occupied by X.

SizeO! should always be used when passing values to FillChar, Move,
GetMem, and so on:

FillChar(S, SizeOf(S), O)i

GetMem(P, SizeOf(RecordType))i

Example type
CustRec = record

Name: string[30]i
phone: string[14] i

endi
var P: ACustReci
begin

GetMem(P, SizeOf(CustRec))i
end.

Sound procedure

Purpose Starts the internal speaker.

Declaration procedure Sound (Hz: Word) i

Remarks Hz specifies the frequency of the emitted sound in hertz. The speaker
continues until explicitly turned off by a call to NoSound.

See also NoSound

Example uses Crt i
begin

Sound (220) i

Delay(200) i

NoSoundi
end.

Crt

176 Programmer's Reference

SPtr function

SPtr function System

Purpose Returns the current value of the SP register.

Declaration function SPtr: Word;

Remarks Returns the offset of the stack pointer within the stack segment.

See also SSeg

Sqr function System

Purpose Returns the square of the argument.

Declaration function Sqr (Xl;

Result type Same type as parameter.

Remarks X is an integer-type or real-type expression. The result, of the same type
as X, is the square of X, or X * X.

Sqrt function System

Purpose Returns the square root of the argument.

Declaration function Sqrt (X: Real l: Real;

Remarks X is areal-type expression. The result is the square root of X.

SSeg function System

Purpose Returns the current value of the SS register.

Declaration function SSeg: Word;

Remarks The result, of type Word, is the segment address of the stack segment.

See also SPtr, CSeg, DSeg

StackLimit variable System

Purpose Contains the offset of the bottom of the stack in the stack segment.

Declaration var StackLimit: Word;

Chapter 7, Library reference 177

I

StackLimit variable

Remarks StackLimit returns the lowest value the SP register can contain before it is
considered a stack overflow.

See also SPtr

Str procedure System

Purpose Converts a numeric value to its string representation.

Declaration procedure Str (X [: Width [: Decimals]]; var S);

Remarks X is an integer-type or real-type expression. Width and Decimals are
integer-type expressions. S is a string-type variable or a zero-based
character array variable if extended syntax is enabled. Str converts X to its
string representation, according to the Width and Decimals formatting
parameters. The effect is exactly the same as a call to the Write standard
procedure with the same parameters, except that the resulting string is
stored in S instead of being written to a text file.

See also Val, Write

Example function IntToStr (I: Longint): String;
{ Convert any integer type to a string }
var s: string [11] ;
begin

Str(I, S);
IntToStr := S;

end;
begin

Writeln(IntToStr(-5322));
end.

Streat function Strings

Purpose Appends a copy of one string to the end of another and returns the
concatenated string.

Declaration function StrCat (Dest, Source: PChar): PChar;

Remarks StrCat appends a copy of Source to Dest and returns Dest. StrCat does not
perform any length checking. You must ensure that the buffer given by
Dest has room for at least StrLen(Dest) + StrLen(Source) + 1 characters. If
you want length checking, use the StrLCat function.

See also StrLCat

178 Programmer's Reference

Streat function

Example uses Strings;
const

Turbo: PChar = 'Turbo';
Pascal: PChar = 'Pascal';

var
S: array[O .. 15] of Char;

begin
StrCopy(S, Turbo);
StrCat(S, ' ');
StrCat(S, Pascal);
Writeln(S) ;

end.

StrComp function

Purpose Compares two strings.

Declaration function StrComp (Str1, Str2: PChar): Integer;

Remarks ,StrComp compares Strl to Str2. The return value is less than a if
Strl < Str2, a if Strl = Str2, or greater than a if Strl > Str2.

See also StrIComp, StrLComp, StrLIComp

Example uses Strings;
var

C: Integer;
Result: PChar;
Sl, S2: array[O .. 79] of Char;

begin
Readln(Sl) ;
Readln(S2) ;
C := StrComp(Sl, S2);
if C < 0 then Result := ' is less than ' else

if C > 0 then Result := ' is greater than' else
Result := 'is equal to ';

Writeln(Sl, Result, S2);
end.

StrCopy function

Purpose Copies one string to another.

Declaration function StrCopy(Dest, Source: PChar): PChar;

t'

Chapter 7~' Library reference

Strings

Strings

179

I

5trCopy function

Remarks StrCopy copies Source to Dest and returns Dest. StrCopy does not perform
any length checking. You must ensure that the buffer given by Dest has
room for at least StrLen(Source) + 1 characters. If you want length
checking, use the StrLCopy fUhction.

See also StrECopy, StrLCopy

Example uses Strings;
var

S: array [0 .. 15) of. Char;
begin

StrCopy(S, 'Turbo Pascal');
Writeln (S) ;

end.

StrDispose function Strings

Purpose Disposes of a string on the heap.

Declaration function StrDispose (Str: PChar);

Remarks StrDispose disposes of a string that was previously allocated with StrNew.
If Str is nil, StrDispose does nothing.

See also StrNew

StrECopy function Strings

180

Purpose Copies one string to another, returning a pointer to the end of the
resulting string.

Declaration function StrECopy(Dest, Source: PChar): PChar;

Remarks StrECopy copies Source to Dest and returns StrEnd(Dest). You must ensure
that the buffer given by Dest has room for at least StrLen(Source) + 1
characters. Nested calls to StrECopy can be used to concatenate a sequence
of strings-this is illustrated by the example that follows.

See also StrCopy, StrEnd

Example uses Strings;
const

Turbo: PChar = 'Turbo';
Pascal: PChar = 'Pascal';

var
S: array[O .. 15) of Char;

Programmer's Reference

5trECopy function

begin
StrECopy(StrECopy(StrECopy(S, Turbo), ' '), Pascal);
Writeln(S) ;

end.

StrEnd function

Purpose Returns a pointer to the end of a string.

Declaration function StrEnd(Str: PChar): PChar;

Remarks StrEnd returns a pointer to the null character that terminates Str.

See also Str Len

Example uses Strings;

var
S: array[O .. 79] of Char;

begin
Readln(S);
Writeln('String length is' StrEnd(S) - S);

end.

StrlComp function

Purpose Compares two strings without case sensitivity.

Declaration function StrIComp (Strl, Str2: PChar): Integer;

Strings

Strings

Remarks StrIComp compares Strl to Str2 without case sensitivity. The return value
is the same as StrComp.

See also StrComp, StrLComp, StrLIComp

StrLCat function Strings

Purpose Appends characters from a string to the end of another, and returns the
concatenated string.

Declaration function StrLCat (Dest, Source: PChar; MaxLen: Word): PChar;

Chapter 7, Library reference 181

I

StrLCat function

Remarks StrLCat appends at most MaxLen - StrLen(Dest) characters from Source to
the end of Dest, and returns Dest. The SizeD! standard function can be
used to determine the MaxLen parameter.

See also StrCat

Example uses Strings;
var

S: array[O .. 9] of Char;
begin

StrLCopy(S, 'Turbo', SizeOf(S) - 1)
StrLCat(S, ' " SizeOf(S) - 1);
StrLCat(S, 'Pascal', SizeOf(S) - 1);
Writeln(S) ;

end.

StrLComp function

Purpose Compares two strings, up to a maximum length.

Declaration function StrLComp (Str1, Str2: PChar; MaxLen: Word): Integer;

Strings

Remarks StrLComp compares Strl to Str2, up to a maximum length of MaxLen
characters. Theretum value is the same as StrComp.

'See also StrComp, StrLIComp, StrIComp

Example uses Strings;
var

Result: PChar;
Sl, S2: array[O .. 79] of Char;

begin
Readln(Sl);
Readln (S2) ;
if StrLComp(Sl, S2, 5) = 0 then

Result .- 'equal'
else

Result .- 'different';
Writeln('The first five characters are' Result);

end.

StrLCopy function Strings

Purpose Copies characters fr6m one string to another.

Declaration function StrLCopy(Dest, Source: PChar; MaxLen: Word): PChar;

182 Programmer's Reference

StrLCopy function

Remarks StrLCopy copies at most MaxLen characters from Source to Dest and returns
Dest. The SizeO! standard function can be used to determine the MaxLen
parameter-this is demonstrated by the example that follows.

See also StrCopy

Example uses Strings;
var

S: array[O .. 9] of Char;
begin

StrLCopy(S, 'Turbo Pascal', SizeOf(S) - 1);
Writeln(S) ;

end.

StrLen function Strings

Purpose Returns the number of characters in Str.

Declaration function StrLen(Str: PChar): Word;

Remarks StrLen returns the number of characters in Str, not counting the null
terminator.

See also StrEnd

Example uses Strings;

var
S: array[O .. 79] of Char;

begin
Readln(S) ;
Writeln('St:dng length is' StrLen(S));

end.

_St_rL_I_C_o_m~p __ fu_n_c_t_io_n ____________________________ ~ ____ St_r_in_g_s III
Purpose Compares two strings, up to a maximum length, without case sensitivity.

Declaration function StrLIComp (Strl, Str2: PChar; MaxLen: Word): Integer;

Remarks StrLIComp compares Strl to Str2, up to a maximum length -of MaxLen
characters, without case sensitivity. The return value is the same as
StrComp.

See also StrComp, StrIComp, StrLComp

Chapter 7, Library reference 183

5trLower function

StrLower function Strings

Purpose Converts a string to lowercase.

Declaration function StrLower(Str: PChar): PChar;

Remarks StrLower converts Str to lowercase and returns Str.

See also StrUpper

Example uses Strings;
var

S: array[0 .. 79] of Char;
begin

Readln(S);
Writeln(StrLower(S));
Writeln(StrUpper(S));

end.

StrMove function Strings

184

Purpose Copies characters from one string to another.

Declaration function StrMove(Dest, Source: PChar; Count: Word): PChar;

Remarks StrMove copies exactly Count characters from Source to Dest and returns
Dest. Source and Dest can overlap.

Example function StrNew(S: PChar): PChari
var.,

L: Word;
P: PChar;

begin
if (S = nil) or (SA = #0) then StrNew :~ nil else
begin

L := StrLen(S) + 1;
GetMem(P, L);
StrNew := StrMove(P, S, L);

end;
end;
procedure StrDispose(S: PChar);
begin

if S <> nil then FreeMem(S, StrLen(S) + 1);
end;

{ Allocate string on heap }

{ Dispose of string on heap }

Programmer's Reference

StrNew function

StrNew function Strings

Purpose Allocates a string on the heap.

Declaration function StrNew(Str: PChar): PChar;

Remarks StrNew allocates a copy of Str on the heap. If Str is nil or points to an
empty string, StrNew returns nil and doesn't allocate any heap space.
Otherwise, StrNew makes a duplicate of Str, obtaining space with a call to
the GetMem standard procedure, and returns a pointer to the duplicated
string. The allocated space is StrLen(Str) + 1 bytes long.

See also StrDispose

Example uses Strings;

var
P: PChar;
S: array[O .. 79] of Char;

begin
Readln(S) ;
P : = StrNew(S);
Writeln (P) ;
StrDispose(P);

end.

StrPas function

Purpose Converts a null-terminated string to a Pascal-style string.

Declaration function StrPas (Str: PChar): String;

Remarks StrPas converts Str to a Pascal-style string.

See also StrPCopy

Example uses Strings;
var

A: array[O .. 79] of Char;
S: string [79] ;

begin
Readln (A) ;
S : = StrPas (A); _
Writeln(S);

end.

Chapter 7, Library reference

Strings

185

I

StrPCopy function

StrPCopy function Strings

Purpose Copies a Pascal-style stri1::,-g into a null-terminated string.

Declaration function StrPCopy(Dest: PChari Source: String): PChari

Remarks . StrPCopy copies the Pascal-style string Source into Dest and returns Dest.
You must ensure that the buffer given by Dest has room for at least

. Length(Source) + 1 characters.

See also StrCopy

Example uses Strings i
var

A: array[O .. 79] of Chari

S: string[79] i
begin

Readln(S) i

StrPCopy(A, S) i

Writeln (A) i

end.

StrPos function Strings

186

Purpose Returns a pointer to the first occurrence of a string in another string.

Declaration function StrPos (Strl, Str2: PChar): PChari

Remarks StrPos rehlrns a pointer to the first occurrence of Str2 in Strl. If Str2 does
not occur in Strl, StrPos returns nil.

Example uses Strings i
var

P: PChari

S, SubStr: array[O .. 79] of Chari

begin
Readln(S)i
Readln(SubStr)i
P := StrPos(S, SubStr)i
if P = nil then

Writeln('Substring not found')i
else

Writeln('Substring found at index', P - S)i

end.

Programmer's Reference

StrRScan function

StrRScan function Strings

Purpose Returns a pointer to the last occurrence of a character in a string.

Declaration function StrRScan(Str: PChar; Chr: Char}: PChar;

Remarks StrRScan returns a pointer to the last occurrence of Chr in Str. If Chr does
not occur in Str, StrRScan returns nil. The null terminator is considered to
be part of the string.

See also StrScan

Example {Return pointer to name part of a full path name
function NamePart(FileName: PChar}: PChar;
var

P: PChar;
begin

P := StrRScan(FileName, '\'};
if P = nil then
begin

P := StrRScan(FileName, , :'};
if P = nil then P := FileName;

end;
NamePart : = P;

end;

StrScan function

Purpose Returns a pointer to the first occurrence of a character in a string.

Declaration function StrScan(Str: PChar; Chr: Char}: PChar;

Strings

Remarks StrScan returns a pointer to the first occurrence of Chr in Str.1f Chr does
not occur in Str, StrScan returns nil. The null terminator is considered to
be part of the string.

See also StrRScan

Example {Return True if file name has wildcards in it
function HasWildcards(FileName: PChar}: Boolean;
begin

HasWildcards := (StrScan(FileName, '*') <>nil} or
(StrScan(FileName, '?') <> nil};

end;

Chapter 7, Library reference 187

I

5trUpper function

StrUpper function

Purpose Converts a string to uppercase.

Declaration function StrUpper(Str: PChar): PChari

Remarks StrUpper convertsStr to uppercase and returns Str.

See also' StrLower

Example uses Strings i
var

S: array[O .. 79] of Chari
begin

Readln(S) i
Writeln(StrUpper(S)) i
Writeln(StrLower(S))i

end.

Strings

Succ function System

Purpose Returns the successor of the argument.

Declaration function Succ (X) :

Result type Same type as parameter.

Remarks X is an ordinal-type expression. The result, of the same type as X, is the
successor of X.

See also Dec, Inc, Pred

Swap function System

Purpose Swaps the high- and low-order bytes of the argument.

Declaration function Swap (X) i

Result type Same type as parameter.

Remarks X is an expression of type Integer or Word.

See also Hi, La

188 Programmer's Reference

Example var x: Word;
begin

X := Swap($1234); {$3412}
end.

SwapVectors procedure

Purpose Swaps interrupt vectors.

Declaration procedure SwapVectors;

Swap function

Dos

Remarks Swaps the contents of the SaveIntXX pointers in the System unit with the
current contents of the interrupt vectors. Swap Vectors is typically called
just before and just after a call to Exec. This ensures that the Execed
process does not use any interrupt handlers installed by the current
process and vice versa.

See also Exec, SavelntXX

Example {$M 8192,O,O}
uses Dos;
var Command: string[79];
begin

Write('Enter DOS command: ~);

Readln(Command) ;
if Command <> " then

Command:= 'IC ' + Command;
SwapVectors;
Exec (GetEnv('COMSPEC'), Command);
SwapVectors;
if DosError <> 0 then

Writeln('Could not execute COMMAND. COM');
end.

TDate Time type WinDos

Purpose Variables of type TDateTime are used in connection with UnpackTime and
PackTime procedures to examine and construct 4-byte, packed date-and­
time values for the GetFTime, SetFTime, FindFirst, and FinNext procedures.

Declaration type
TDateTime'= record

Year,Month,Day,Hour,Min, Sec: Word;
end;

Chapter 7, Library reference 189

I

TOateTime type

Remarks Valid ranges are Year 1980 .. 2099, Month 1..12, Day 1..31, Hour 0 .. 23, Min
0 . .59, and Sec 0 . .59.

See also PackTime

Test8086 variable System

Purpose Identifies the type of 80x86 processor the system contains.

Declaration var Test8086: Byte;

Remarks The run-time library's start-up code contains detection logic that auto­
matically determines what kind of 80x86 processor the system contains.
The result of the CPU detection is stored in T estSOS6 as one of the
following values:

Value Definition

o Processor is an 8086
1 Processor is an 80286
2 Processor is an 80386 or later

When the run-time library detects that the processor is an 80386 or later
CPU, it uses 80386 instructions to speed up certain operations. In
particular, Longint multiplication, division, and shifts are performed using
32-bit instructions when an 80386 is detected.

See also TestSOS7

Test808? variable System

190

Purpose Stores the results of the 80x87 autodetection logic and coprocessor
classification.

Declaration var Test8087: Byte;

Remarks The TestSOS7 variable indicates whether floating-point instructions are
being emulated or actually executed. The following values stored in
TestSOS7 are defined.

Value

o
1
2
3

Definition

No coprocessor detected
8087 detected
80287 detected
80387 or later detected

Programmer's Refer€?nce

Test8087 variable

~ If an application contains no 80x87 instructions, the80x87 detection logic
is not linked into the executable, and Test8087 will therefore always
contain zero.

For additional information on writing programs using the 80x87, see
Chapter 14, "Using the 80x87," in the Language Guide~

Example The following program tests for the existence of a coprocessor.
program Test87;
{$N+}
{$E+}

{ Enable 80x87 instructions }
{ Include 80x87 emulator library }

var
x: Single;

begin
X := 0; { Force generation of 80x87 instructions
case Test8087 of

0: Writeln ('No numeric coprocessor detected.');
1: writeln ('8087 detected. ');
2: Writeln ('80287 detected.');
3: Writeln ('80387 or later detected.');

end;
end.

TextAttr variable Crt

Purpose Stores the currently selected text attribute.

Declaration var TextAt tr: Byte;

Remarks Although text attributes are normally set through calls to TextColor and
TextBackground, you can also set them by directly storing a value in
TextAttr. The color information is encoded in TextAttr as follows:

bit - 7 6 5 4 3 2 1 0
Islblblblflflflfl

where ffff is the 4-bit foreground color, bbbb is the 3-bit background color,
and B is the blink-enable bit. If you use the color constants for creating
TextAttr values, the background color can only be selected from the first 8
colors, and it must be multiplied by 16 to get it into the correct bit
positions. For example, the following assignment selects blinking yellow
characters on a blue background:

TextAttr := Yellow + Blue * 16 + Blink;

See also LowVideo, NormVideo, TextBackground, TextColor

Chapter 7, Library reference 191

I

Text color constants

Text color constants

Purpose Represents the text colors.

Remarks The following constants are used in connection with the T ext Color and
TextBackground procedures.

Constant Value

Black 0
Blue 1
Green 2
Cyan 3
Red 4

. Magenta 5
Brown 6
LightGray 7
DarkGray 8
LightBlue 9
LightGreen' 10
LightCyan 11
LightRed 12
LightMagenta 13
Yellow 14
White 15
Blink 128

Crt

Text colors are represented by the numbers between 0 and 15; to easily
identify each color, you can use these constants instead of numbers. In the
color text modes, the foreground of each character is selectable from 16
colors, and the background from 8 colors. The foreground of each
character can also be made to blink.

See also TextAttr, TextBackground, TextColor

TextBackground procedure Crt

Purpose Selects the background color.

Declaration procedure TextBackground(Color: Byte);

Remarks Color is an integer expression in the range 0 .. 7, corresponding to one of the
first eight text color constants. There is a byte variable in Crt-TextAttr­
that is used to hold the current video attribute. TextBackground sets bits
4-6 of TextAttr to Color.

192 Programmer's Reference

TextBackground procedure

The background of all characters subsequently written will be in the
specified color.

See also HighVideo, LowVideo, NormVideo, TextColor, Text color

TextColor procedure Crt

Purpose Selects the foreground character color.

Declaration procedure TextColor (Color: Byte);

Remarks Color is an integer expression in the range 0 .. 15, corresponding to one of
the text color constants defined in Crt.

There is a byte-type variable in Crt-TextAttr-that is used to hold the
current video attribute. TextColor sets bits 0-3 to Color. If Color is greater
than 15, the blink bit (bit 7) is also set; otherwise, it is cleared.

You can make characters blink by adding 128 to the color value. The Blink
constant is defined for that purpose; in fact, for compatibility with Turbo
Pascal 3.0, any Color value above 15 causes the characters to blink. The
foreground of all characters subsequently written will be in the specified
color.

See also HighVideo, LowVideo, NormVideo, TextBackground, Text color

Example TextColor (Green);
TextColor(LightRed + Blink);
TextColor(14) ;

T extHeight function

Purpose Returns the height of a string in pixels.

Declaration function TextHeight (TextString: String): Word;

{ Green characters
{ Blinking light-red characters }

{ Yellow characters }

Graph

Remarks Takes the current font size and multiplication factor, and determines the
height of TextString in pixels. This is useful for adjusting the spacing
between lines, computing viewport heights, sizing a title to make it fit on
a graph or in a box, and more.

For example, with the 8x8 bit-mapped font and a multiplication factor of 1
(set by SetTextStyle), the string Turbo is 8 pixels high.

It is important to use TextHeight to compute the height of strings, instead
of doing the computation manually. In that way, no source code modifi­
cations have to be made when different fonts are selected.

Chapter 7, Library reference 193

II

TextHeight function

Restrictions Must be in graphics mode.

See also OutText, OutTextXY, SetTextStyle, SetUserCharSize, TextWidth

Example uses Graph;
var

Gd, Gm: Integer;
Y, Size: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1);
Y := 0;
for Size := 1 to 5 do
begin

SetTextStyle(DefaultFont, HorizDir, Size);
OutTextXY(O, Y, 'Turbo Graphics');
Inc(Y, TextHeight('Turbo Graphics'));

end;
Readln;
CloseGraph;

end.

TextMode procedure Crt

194

Purpose Selects a specific text mode.

Declaration procedure TextMode (Mode: Word);

Remarks See page 25 for a list of defined Crt mode constants. When TextMode is
called, the current window is. reset to the entire screen, DirectVideo is set to
True, CheckS now is set to True if a color mode was selected, the current text
attribute is reset to normal corresponding to a call to NormVideo, and the
current video is stored in LastMode. In addition, LastMode is initialized at
program startup to the then-active video mode.

Specifying TextMode(LastMode) causes the last active text mode to be
reselected. This is useful when you want to return to text mode after using
a graphics package, such as Graph or Graph3.

The following call to TextMode:

TextMode(C80 + Font8x8)

will reset the display into f-l3lines and 80 columns on an EGA, or 50 lines
and 80 columns on a VGA' with a color monitor. TextMode(Lo(LastMode))

Programmer's Reference

TextMode procedure

always turns off 43- or 50-line mode and resets the display (although it
leaves the video mode unchanged); while

TextMode (Lo (LastMode) + Font8x8)

will keep the video mode the same, but reset the display into 43 or 50
lines.

If your system is in 43- or 50-line mode when you load a Turbo Pascal
program, the mode will be preserved by the Crt startup code, and the
window variable that keeps track of the maximum number of lines
onscreen (WindMax) will be initialized correctly.

Here's how to write a "well-behaved" program that will restore the video
mode to its original state:

program Video;
uses Crt;
var OrigMode: Integer;
begin

OrigMode := LastMode; { Remember original mode }

TextMode(OrigMode) ;
end.

Note that TextMode does not support graphics modes, and therefore
TextMode(OrigMode) will only restore those modes supported by
TextMode.

See also Crt mode constants, RestoreCrtMode

TextRec.type Dos

Purpose Record definition used internally by Turbo Pascal and also declared in the
Dos unit.

Declaration type
TextBuf = array[O .. 127J of Char;
TextRec = record

Handle: Word;
Mode: Word;
BufSize: Word;
Private: Word;
BufPos: Word;
BufEnd: Word;
BufPtr: ATextBuf;
OpenFunc: Pointer;
InOutFunc: Pointer;

Chapter 7, Library reference 195

I

TextRec type

FlushFunc: Pointer;
CloseFunc: Pointer;
UserData: array[l .. 16] of Byte;
Name: array[O .. 79] of Char;
Buffer: TextBuf;

end;

Remarks TextRec is the internal format of a variable of type Text. See Chapter 18,
"Using overlays," in the Language Guide for additional information.

See also FileRec

TextSettingsType type Graph

Purpose The record that defines the text attributes used by GetTextSettings.

Declaration type
TextSettingsType = record

Font: Word;
Direction: Word;
CharSize: Word;
Horiz: Word;
Vert: Word;

end; .

Remarks See page 55 for a list of the Font control control constants used to identify
font attributes.

TextWidth function Graph

Purpose Returns the width of a st~ing in pixels.

Declaration function TextWidth(TextString: String): Word;

Remarks Takes the string length, current font size, and multiplication factor, and
determines the width of TextString in pixels. This is useful for computing
viewport widths, sizing a title to make it fit on a graph or in a box, and so
on.

For example, with the 8x8 bit-mapped font and a multiplication factor of 1
(set by SetTextStyle), the string Turbo is 40 pixels wide.

It is important to use TextWidth to compute the width of strings, instead of
doing the computation manually. In that way, no source code
modifications have to be made when different fonts are selected.

Restrictions Must be in graphics mode.

196 Programmer's Reference

TextWidth function

See also OutText, OutTexfXY, SetTextStyle~ SetUserCharSize, TextHeight

Example uses Graph;
var

Gd, Gm: Integer;
Row: Integer;
Title: String;
Size: Integer;

begin
Gd := Detect;
InitGraph(Gd, Gm, ");
if GraphResult <> grOk then

Halt (1) ;
Row := 0;
Title := 'Turbo Graphics';
Size := 1;
while TextWidth(Title) < GetMaxX do
begin

OutTextXY(O, Row, Title);
Inc (Row, TextHeight('M'));
Inc(Size);
SetTextStyle(DefaultFont, HorizDir, Size);

end;
Readln;
CloseGraph;

'end.

TFileRec type WinDos

Purpose A record definition used f~r both typed and untyped files.

Declaration type
TFileRec = record
Handle: Word;
Mode: Word;
RecSize: Word;
Private: array[1 .. 26] of Byte;
UserData: array[1 .. 16] of Byte;
Name: array[O .. 79] of Char;

end;

Remarks TFileRec is a record definition used internally by Turbo Pascal as well
as being declared in the WinDos unit. See "Internal data formats" in
Chapter 19 in the Language Guide.

Chapter 7, Library reference 197

I

TRegisters type

TRegisters type WinDos

Purpose Variables of type TRegisters are used by Intr and MsDos procedures to
specify the specify input register contents and examine output register
contents of a software interrupt.

Declaration type
TRegisters = record

case Integer of

end;

0: (AX, BX, CX i DX, BP, SI, DI, DS, ES, Flags: Word);
1: (AL, AR, BL, BH, eLi CH, DL, DH: Byte);

Notice the use of a variant record to map the 8-bit registers on top of their
16-bit equivalents.

Trunc function System

Purpose Truncates a real-type value to an integer-type value.

Declaration function Trunc (X: Real): Longint;

Remarks X is a real-type expression. Trunc returns a Longint value that is the value
of X rounded toward zero.

Restrictions A run-time error occurs if the truncated value of X is not within the
Longint range.

See also Round, Int

Truncate procedure System

Purpose Truncates the file size at the current file position.

Declaration procedure Truncate (var F);

Remarks F is a file variable of any type. All records past F are deleted, and the
current file position also becomes end-of-file (Eof(F) is True).

If I/O-checking is off, the IOResult function returns a nonzero value if an
error occurs.

Restrictions F must be open. Truncate does not work on text files.

See also Reset, Rewrite, Seek

198 Programmer's Reference

TSearchRec type

TSearchRec type WinDos

Purpose Variables of type TSearchRec are used by the FindFirst and FindNext
procedures to scan directories.

Declaration type
TSearchRec = record

Fill: array[1 .. 21] of Byte;
Attr: Byte;
Time: Longint;
Size: Longint;
Name: array[O .. 12] of Char;

end;

Remarks The information for each file found by one of these procedures is reported
back in a TSearchRec. The Attr field contains the file's attributes
(constructed from file attribute constants), Time contains its packed date
and time (use UnpackTime to unpack), Size contains its size in bytes, and
Name contains its name. The Fill field is reserved by DOS; don't modify it.

See also FindFirst, FindNext

TIextRec type WinDos

Purpose A record definition that is the internal format of a variable of type Text.

Declaration type
PTextBuf = ATTextBuf;
TTextBuf = array[O .. 127] of Char;
TTextRec = record

Handle: Word;
Mode: Word;
BufSize: Word;
Private: Word;
BufPos: Word;
BufEnd: Word;
BufPtr: PTextBuf;
OpenFunc: Pointer;
InOutFunc: Pointer;
FlushFunc: Pointer;
CloseFunc: Pointer;
UserData: array[1 .. 16] of Byte;
Name: array[O .. 79] of Char;
Buffer: TTextBuf;

end;

Chapter 7, Library reference 199

I

TTextRec type

Remarks TTextRec is a record definition used internally by Turbo Pascal as well
as being declared in the WinDos unit. See "Internal data formats" in
Chapter 19 in the Language Guide.

TypeOf function System

Purpose Returns a pointer to an object type's virtual method table (VMT).

Declaration function TypeOf (X): Pointer i

Remarks X is either an object type identifier or an instance of an object type. In
either case, TypeO! returns the address of the object type's virtual method
table. TypeO! can be applied only to object types that have a VMT; all
other types result in an error. See Chapter 19, "Memory issues," in the
Language Guide.

UnpackTime procedure Dos, WinDos

Purpose Converts a 4-byte, packed date-and-time Longint returned by GetFTime,
FindFirst, or FindNext into an unpacked DateTime record.

Declaration procedure UnpackTime(Time: Longintivar DT: DateTime) i

Remarks DateTime is a record declared in the Dos unit. If you are writing Windows
programs, use TDateTime. The fields of the Time record are not range­
checked. See page 26 for the DateTime record declaration and page 189 for
the TDateTime r~cord declaration.

See also DateTime, GetFTime, GetTime, PackTime, SetFTime, SetTime, TDateTime

UpCase function System

Purpose Converts a character to uppercase.

Declaration function UpCase (Ch: Char): Char i

Remarks Ch is an expression of type Char. The result of type Char is Ch converted to
uppercase. Character values not in the range a .. z are unaffected.

200 Programmer's Reference

Val procedure

Val procedure System

Purpose Converts the string value to its numeric representation.

Declaration procedure Val (8i var Vi var Code: Integer) i

Remarks S is a string-type expression or an expression of type PChar if the
extended syntax is enabled. V is an integer-type or real-type variable. Code
is a variable of type Integer. S must be a sequence of characters that form a
signed whole number according to the syntax shown in the section
"Numbers" in Chapter 2 in the Language Guide. Val converts S to its
numeric representation and stores the result in V. If the string is somehow
invalid, the index of the offending character is stored in Code; otherwise,
Code is set to zero. For a null-terminated string, the error position returned
in Code is one larger than the actual zero-based index of the character in
error.

Val performs range checking differently depending on the state of {$R}
and the type of the parameter V.

With range checking on, {$R+}, an out-of-range value always generates a
run-time error. With range checking off, {$R-}, the values for an out-of­
range value vary depending upon the data type of V. If V is a Real or
Longint type, the value of V is undefined and Code returns a nonzero
value. For any other numeric type, Code returns a value of zero, and V will
contain the results of an overflow calculation (assuming the string valueis
within the long integer range).

Therefore, you should pass Val a Longint variable and perform range
checking before making an ,assignment of the returned value:

{$R-}
Val('65536', LongIntVar, Code)
if (Code <> 0) or (LongIntVar < 0) or (LongIntVar > 65535) then

{ Error}

else
WordVar := LongIntVari

In this example, LongIntVar would be set to 65,536, and Code would equal
O. Because 65,536 is out of range for a Word variable, an error would be
reported.

Restrictions Trailing spaces must be deleted.

See also Str

Chapter 7, Library reference 201

I

Val procedure

Example var I, Code: Integer;
begin

Val(ParamStr(l), I, Code); { Get text from command line }
if code <> 0 then { Error during conversion to integer? }

Writeln('Error at position: ' Code)
else

Writeln('Value = " I);
end.

ViewPortType type Graph

Purpose A record that reports the status of the current viewport; used by
Get View Settings .

Declaration type
ViewPortType = record

Xl, Y1, X2, Y2: Integer;
Clip: Boolean;

end;

Remarks The points (Xl, Yl) and (X2, Y2) are the dimensions of the active viewport
and are given in absolute screen coordinates. Clip is a Boolean variable
that controls whether clipping is active.

See also GetViewSettings

WhereX function

Purpose Returns the X-coordinate of the current cursor position, relative to the
current window.

Declaration function WhereX: Byte;

See also GotoXY, WhereY, Window

WhereY function

Purpose Returns the Y-coordinate of the current cursor position, relative to the
current window.

Declaration function WhereY: Byte;

See also GotoXY, WhereX, Window

Crt

Crt

202 Programmer's Reference

WindMax and WindMin variables

WindMax and WindMin variables Crt

Purpose Store the screen coordinates of the current window.

Declaration var WindMax,' WindMin: Word;

Remarks These variables are set by calls to the Window procedure. WindMin defines
the upper left corner, and WindMax defines the lower right corner. The
x-coordinate is stored in the low byte, and the y-coordinate is stored in the
high byte. For example, Lo(WindMin) produces the x-coordinate of the left
edge, and Hi(WindMax) produces the y-coordinate of the bottom edge.
The upper left corner of the screen corresponds to (x,y) = (0,0). However,
for coordinates passed to Window and GotoXY, the upper left corner is at
(1,1).

See also GotoXY, High, Lo, LoWindow

Window procedure Crt

Purpose Defines a text window onscreen.

Declaration procedure Window (Xl, Y1, X2,' Y2: Byte);

Remarks Xl and Yl are the coordinates of the upper left corner of the window, and
X2 and Y2 are the coordinates of the lower right corner. The upper left
corner of the screen corresponds to (1, 1). The minimum size of a text
window is one column by one line. If the coordinates are in any way
invalid, the call to Window is ignored. .

The default window is (1, 1,80,25) in 25-line mode, and (1, 1,80,43) in
43-linemode, corresponding to the entire screen.

All screen coordinates (except the window coordinates themselves) are
relative to the current window. For instance, GotoXY(1, 1) will always
position the cursor in the upper left corner of the current window.

Many Crt procedures and functions are window-relative, including ClrEol,
ClrSer, DelLine, GotoXY, InsLine, WhereX, WhereY, Read, Readln, Write,
Writeln.

WindMin and WindMax store the current window definition. A call to the
Window procedure always moves the cursor to (1, 1).

See also ClrEol, ClrSer, DelLine, GotoXY, WhereX, WhereY

Chapter 7, Library reference 203

I

Window procedure

Example uses Crt;
var

X, Y: Byte;
begin

TextBackground(Black);
ClrScr;
repeat

X := Succ(Random(80));
Y := Succ(Random(25));
Window (X, Y, X + Random(lO) I Y + Random(8));
TextBackground(Random(16));
ClrScr;

until KeYPressed;
end.

{ Clear screen }

{ Draw random windows }

{ In random colors }

Write procedure (text-files) System

204

Purpose Writes one or more values to a text file.

Declaration procedure Write([var F: Text; 1 PI [, P2/ •• "PN 1);

Remarks F, if specified, is a text file variable. If F is omitted, the standard file
variable Output is assumed. Each P is a write parameter. Each write
parameter includes an output expression whose value is to be written to
the file. A write parameter can also contain the specifications of a field
width and a number of decimal places. Each output expression must be of
. a type Char, Integer, Real, string, packed string, or Boolean.

A write parameter has the form

OutExpr [: MinWidth [: DecPlaces 1 1

where OutExpr is an output expression. Min Width and DecPlaces are type
integer expressions.

Min Width specifies the minimum field width, which must be greater than
O. Exactly Min Width characters are written (using leading blanks if neces­
sary) except when OutExpr has a value that must be represented in more
than Min Width characters. In that case, enough characters are written to
represent the value of OutExpr. Likewise, if MinWidth is omitted, then the
necessary number of characters are written to represent the value of
OutExpr.

DecPlaces specifies the number of decimal places in a fixed-point represen­
tation of a type Real value. It can be specified only if OutExpr is of type

Programmer's Reference

Table 1.3
The components of

the output string

Table 1.4
The components of

the fixed-point
string

Real, and if Min Width is also specified. When Min Width is specified, it
must be greater than or equal to O.

Write with a character-type value: If MinWidth is omitted, the character
value of OutExpr is written to the file. Otherwise, Min Width - 1 blanks
followed by the character value of OutExpr is written.

Write with a type integer value: If Min Width is omitted, the decimal
representation of OutExpr is written to the file with no preceding blanks.
If Min Width is specified and its value is larger than the length of the
decimal string, enough blanks are written before the decimal string to
make the field width Min Width.

Write with a type real value: If OutExpr has a type real value, its decimal
representation is written to the file. The format of the representation
depends on the presence or absence of DecPlaces.

If DecPlaces is omitted (or if it is present but has a negative value), a
floating-point decimal string is written. If Min Width is also omitted, a
default MinWidth of 17 is assumed; otherwise, if Min Width is less than 8, it
is assumed to be 8. The format of the floating-point string is

I - 1 <digit> . <decimals> E [+ I - 1 <exponent>

The components of the output string are shown in Table 1.3:

[I -]

<digit>

<decimals>

E

[+ I -]

<exponent>

" " or "-", according to the sign of OutExpr

Single digit, "0" only if OutExpr is 0

Digit string of MinWidth-7 (but at most 10) digits

Uppercase [E] character

According to sign of exponent

Two-digit decimal exponent

If DecPlaces is present, a fixed-point decimal string is written. If DecPlaces
is larger than 11, it is assumed to be 11. The format of the fixed-point
string follows:

[<blanks> 1 [- 1 <digits> [. <decimals> 1

The components of the fixed-point string are shown in Table 1.4:

[<blanks>]

[-]

<digits>

[. <decimals>]

Blanks to satisfy Min Width

If OutExpr is negative

At least one digit, but no leading zeros

Decimals if DecPlaces > 0

Chapter 7, Library reference 205

I

Write with a string-type value: If Min Width is omitted, the string value of
OutExpr is written to the file with no leading blanks. If Min Width is
specified, and its value is larger than the length of OutExpr, enough
blanks are written before the decimal string to make the field width
Min Width.

Write with a packed string-type value: If OutExpr is of packed string type,
the effect is the same as writing a string whose length is the number of
elements in the packed string type.

Write with a Boolean value: If OutExpr is of type Boolean, the effect is the
same as writing the strings True or False, depending on the value of
OutExpr.

With {$I-}, IOResult returns a if the operation was successful; otherwise, it
returns a nonzero error code.

Restrictions File must be open for output.

See also Read, Readln, Writeln

Write procedure (typed files) System

Purpose Writes a variable into a file component.

Declaration procedure Write (F / Vi [/ V2/· •• / VN 1) i

Remarks F is a file variable, and each V is a variable of the same type as the
component type of F. For each variable written, the current file position is
advanced to the next component. If the current file position is at the end
of the file (that is, if Eof(F) is True) the file is expanded.

With {$I-}, IOResult returns a if the operation was successful; otherwise, it
returns a nonzero error code.

See also Writeln

Writeln procedure System

Purpose Executes the Write procedure, then outputs an end-of-line marker to the
file.

Declaration procedure Wri teln ([var F: Text i 1 Pi [/ P2 /· •• / PN 1) i

Remarks vyriteln procedure is an extension to the Write procedure, as it is defined
for text files. After executing Write, Writeln writes an end-of-line marker
(carriage-return/linefeed) to the file. ,Writeln(F) with no parameters writes

206 Programmer's Reference

WrlTeln proceaure

an end-of-line marker to the file. (Writeln with no parameter list altogether
corresponds to Writeln(Output).)

Restrictions File must be open for output.

See also Write

Chapter 7, Library reference 207

I

208 Programmer's Reference

c H

See Appendix B for a table
summarizing the compiler

directives.

A p T E R

2

Compiler directives

This chapter describes the compiler directives you can use to
control the features of the Turbo Pascal compiler. Listed
alphabetically, each compiler directive is classified as either a
switch, parameter, or conditional compilation directive. Following
the list of compiler directives is a brief discussion of how to use
the conditional compilation directives. This section describes how
to use conditional constructs and symbols to produce different
code from the same source text. .

A compiler directive is a comment with a special syntax. Turbo
Pascal allows compiler directives wherever comments are
allowed. A compiler directive starts with a $ as the first character
after the opening comment delimiter, immediately followed by a
name (one or more letters) that designates the particular directive.
You can include comments after the directive and any necessary
parameters.

There are three types of directives described in this chapter:

• Switch directives turn particular compiler features on or off by
specifying + or - immediately after the directive name. Switch
directives are either global or local.

• Global directives affect the entire compilation and must appear
before the declaration part of the program or the unit being
compiled. .

• Local directives affect only the part of the compilation that
extends from the directive until the next occurrence of the
same directive. They can appear anywhere.

Chapter 2, Compiler directives 209

210

See page 223 for more
information about using
conditional compilation

directives.

You can group switch directives in a single compiler directive
comment by separating them with commas with no intervening
spaces. For example,

{$B+,R-,S-}

• Parameter directives. These directives specify parameters that
affect the compilation, such as file names and memory sizes.

• Conditional directives. These directives control conditional
compilation of parts of the source text, based on user-definable
conditional symbols.

All directives, except switch directives, must have at least one
blank between the directive name and the parameters. Here are
some examples of compiler directives:

{$B+}
{$R- Turn off range checking}
{$I TYPES. INC}
{SO EdFormat}
{$M 65520,8192,655360}
{$DEFINE Debug}
{$IFDEF Debug}
{$ENDIF}

You can put compiler directives directly into your source code.
You can also change the default directives for both the
command-line compiler (TPC.EXE) and the IDE (TURBO.EXE or
TPX.EXE). The Options I Compiler menu contains many of the
compiler directives; any changes you make to the settings there
will affect all subsequent compilations.

When using the command-line compiler, you can specify compiler
directives on the command line (for example, TPC I$R+ MYPROG), or
you can place directives in a configuration file (see Chapter 3).
Compiier directives in the source code always override the
default values in both the command-line compiler and the IDE.

If you are working in the IDE, using the editor's Alternate
command set, and want a quick way to see what compiler
directives are in effect, press Ctr/+O O. Turbo Pascal will insert the
current settings at the top of your edit window.

. Programmer's Reference

Align data

Syntax

Default

Type

Remarks

{$A+} or {$A-}

{$A+}

Global

Align data

Switch

The $A directive switches between byte and word alignment of variables
and typed constants. Word alignment has no effect on the 8088 CPU.
However, on a1l80x86 CPUs, word alignment means faster execution
because word-sized items on even addresses are accessed in one memory
cycle rather than two memory cycles for words on odd addresses.

In the {$A+} state, all variables and typed constants larger than one byte
are aligned on a machine-word boundary (an even-numbered address). If
required, unused bytes are inserted between variables to achieve word
alignment. The {$A+} directive does not affect byte-sized variables, nor
does it affect fields of record structures and elements of arrays. A field in a
rec01;:d will align on a word boundary only if the total size of all fields
before it is even. For every element of an array to align on a word
boundary, the size of the elements must be even.

In the {$A-} state, no alignment measures are taken. Variables and typed
constants are simply placed at the next,available address, regardless of
their size.

Regardless of the state of the $A directive, each global var and const
declaration section always starts at a word boundary. Likewise, the
compiler always keeps the stack pointer (SP) word aligned by allocating
an extra unus~d byte in a procedure'S stack frame if required.

Boolean evaluation Switch

Syntax {$B+} or {$B-}

Default {$B- }

Type Local

Remarks The $B directive switches between the two different models of code
generation for the and and or Boolean operators.

In the {$B+} state, the compiler generates code for complete Boolean
expression evaluation. This means that every operand of a Boolean
expression built from the and and or operators is guaranteed to be
evaluated, even when the result of the entire expression is already known.

Chapter 2, Compiler directives 211

Boolean evaluation

In the {$B-} state, the compiler generates code for short-circuit Boolean
expression evaluation, which means that evaluation stops as soon as the
result of the entire expression becomes evident.

For further details, see the section "Boolean operators" in Chapter 6,
"Expressions," in the Language Guide.

Debug information Switch

Syntax { $D+} or {$D-}

Default {$D+ }

Type Global

Remarks The $0 directive enables or disables the generation of debug information.
This information consists of a line-number table for each procedt:Lre,
which maps object code addresses into source text line numbers.

For units, the debug information is recorded in the .TPU file along with
the unit's object code. Debug information increases the size of .TPU files
and takes up additional room when compiling programs that use the unit,
but it does not affect the size or speed of the executable program.

When a program or unit is compiled in the {$O+} state, Turbo Pascal's
integrated debugger lets you single-step and set breakpoints in that
module.

The Standalone debugging (Options I Debugger) and Map file (Options I
Linker) options produce complete line information for a given module
only if you've compiled that module in the {$O+} state.

The $0 switch is usually used in conjunction with the $L switch, which
enables and disables the generation of local symbol information for '
debugging. .

If you want to use Turbo Debugger to debug your program, set Compile I
Destination to Disk, choose Options I Debugger, and select the Standalone
option.

DEFINE directive Conditional compilation

Syntax {$DEFINE name}

Remarks Defines a conditional symbol with the given name. The symbol is
'recognized for the remainder of the compilation of the current module in

212 Programmer's Reference

ELSE directive

which the symbol is declared, or until it appears in an {$UNDEF name}
directive. The {$DEFINE name} directive has no effect if name is already
defined.

ELSE directive Conditional compilation

Syntax {$ELSE}

Remarks Switches between compiling and ignoring the source text delimited by the
last {$IFxxx} and the next {$ENDIF}.

Emulation Switch

Syntax {$E+} or {$E-}

Default {$E+}

Type Global

Remarks The $E directive enables or disables linking with a run-time library that
will emulate the 80x87 numeric coprocessor if one is not present.

When you compile a program in the {$N+,E+} state, Turbo Pascal links
with the fu1l80x87 emulator. The resulting .EXE file can be used on any
machine, regardless of whether an 80x87 is present. If one is found, Turbo
Pascal will use it; otherwise, the run-time library emulates it.

In the {$N+,E-} state, Turbo Pascal produces a program which can only be
used if an 80x87 is present.

The 80x87 emulation switch has no effect if used in a unit; it applies only
to the compilation of a program. Furthermore, if the program is compiled
in the {$N-} state, and if all the units used by the program were compiled
with {$N-}, then an 80x87 run-time library is not required, and the 80x87
emulation switch is ignored.

ENDIF directive Conditional compilation

Syntax {$ENDIF}

Remarks Ends the conditional compilation initiated by the last {$IFxxx} directive.

Chapter 2, Compiler directives 213

Extended syntax

Extended syntax Switch

Syntax

Default

Type

Remarks

The {$X+} directive
does not apply to

built-in functions
(those defined in
the System unit).

Force for calls

214

Syntax

Default

Type

Remarks

{$X +} or {$X - }

{$X+}

Global

The $X directive enables or disables Turbo Pascal's extended syntax:

• Function statements. In the {$X+} mode, function calls can be used as
procedure calls; that is, the result of a function call can be discarded.
Generally, the computations performed by a function are represented
through its result, so discarding the result makes little sense. However,
in certain cases a function can carry out multiple' operations based on its
'parameters, and some of those cases may not produce a useful result. In
such cases, the {$X+} extensions allow the function to be treated as a
procedure .

• Null-terminated strings. A {$X+} compiler directive enables Turbo
Pascal's support for null-terminated strings by activating the special
rules that apply to the built-in PChar type and zero-based character
arrays. For more details about null-terminated strings, see
Chapter 16, "Using null-terminated strings," in the Language Guide.

{$F+}or {$F-}

{$F-}

Local'

r

Switch

The $F directive determines which call model to use for subsequently
compiled procedures and functions. Procedures and functions compiled
in the {$F+} state always use the far call modeL In the {$F-} state, Turbo
Pascal automatically selects the appropriate model: far if the procedure or
function is declared in the interface section of a unit; otherwise it selects
near.

The near and far call models are described in full in Chapter 20, "Control
issues," in the Language Guide.

Programmerrs Reference

Generate 80286 Code

Generate 80286 Code Switch

Syntax { $G+} or {$G-}

Default { $G- }

Type Global

Remarks The $G directive enables or disables 80286 code generation. In the {$G-}
state, only generic 8086 instructions are generated, and programs com­
piled in this state can run on any 80x86 family processor. You can specify
{$G-} any place within your code.

In the {$G+} state, the compiler uses the additional instructions of the
80286 to improve code generation, but programs compiled in this state
cannot run on 8088 and 8086 processors. Additional instructions used in
the {$G+} state include ENTER, LEAVE, PUSH immediate, extended IMUL,
and extended SHL and SHR.

IFDEF directive Conditional compilation

Syntax { $ IFDEF name}

Remarks Compiles the source text that follows it if name is defined.

IFNDEF directive Conditional compilation

Syntax { $ IFNDEF name}

Remarks Compiles the source text that follows it if name is not defined.

IFOPT directive Conditional compilation

Syntax {$IFOPT switch}

Remarks Compiles the source text that follows it if switch is currently in the
specified state. switch consists of the name of a switch option, followed by
a + or a - symbol. For example, the construct

{$IFOPT N+}
type Real ,= Extended;

{$ENDIF}

will compile the type declaration if the $N option is currently active.

Chapter 2, Compiler directives 215

Include file

Include file Parameter

Syntax { $ I filename}

Type Local

Remarks The $1 parameter directive instructs the compiler to include the named file
in the compilation. In effect, the file is inserted in the compiled text right
after the {$I filename} directive. The default extension for filename is .P AS. If
filename does not specify a directory path, then, in addition to searching
for the file in the current directory, Turbo Pascal searches in the directories
specified in the Options I Directories I Include Directories input box (or in
the directories specified in the II option on the TPC command line).

There is one restriction to the use of include files: An include file can't be
specified in the middle of a statement part. In fact, all statements between
the begin and end of a statement part must exist in the same source file.

Input/output checking Switch

Syntax {$I+} or {$I-}

Default {$I+}

Type Local

Remarks The $1 switch directive enables or disables the automatic code generation
that checks the result of a call to an I/O procedure. I/O procedures are
described in Chapter 13, "Input and output," in the Language Guide. If an
I/O procedure returns a nonzero I/O result when this switch is on, the
program terminates and displays a run-time error message. When this
switch is off, you must check for I/O errors by calling IOResult.

Link object file Parameter

Syntax {$L filename}

Type Local

Remarks The $L parameter directive instructs the compiler to link the named file
with the program or unit being compiled. The $L directive is used to link
with code written in assembly language for subprograms declared to be
external. The named file must be an Intel relocatable object file (.OBJ file).

216 Programmer's Reference

Link object file

The default extension for filename is .OBJ. If filename does not specify a
directory path, then, in addition to searching for the file in the current
directory, Turbo Pascal searches in the directories specified in the
Options I Directories I Object Directories input box (or in the directories
specified in the /0 option on the TPC command line). For further details
about linking with assembly language, see Chapter 23, "Linking
assembler code," in the Language Guide.

Local symbol information Switch

Syntax {$L+} or {$L- }

Default {$L+ }

Type Global

Remarks The $L switch directive enables or disables the generation of local symbol
information. Local symbol information consists of the names and types of
all local variables and constants in a module, that is, the symbols in the
module's implementation part, and the symbols within the module's
procedures and functions.

For units, the local symbol information is recorded in the .TPU file along
with the unit's object code. Local symbol information increases the size of
.TPU files, and takes up additional room when compiling programs that
use the unit, but it does not affect the size or speed of the executable
program.

When a program or unit is compiled in the {$L+} state, Turbo Pascal's
integrated debugger lets you examine and modify the module's local
variables. Furthermore, calls to the module's procedures and functions can
be examined via View I Call Stack.

The Standalone debugging (Options I Debugger) and Map file (Options I
Linker) options produce local symbol information for a given module
only if that module was compiled in the {$L+} state.

The $L switch is usually used in conjunction with the $0 switch, which
enables and disables the generation of line-number- tables for debugging.
The $L directive is ignored if the compiler is in the {$O-} state.

Chapter 2, Compiler directives 217

Memory allocation sizes

Memory allocation sizes

{$M stacksize,heapmin,heapmax}

{$M 16384,~,655360}

Global

Parameter

Syntax

Default

Type

Remarks The $M directive specifies an application's memory allocation parameters.
stacksize must be an integer number in the range 1,024 to 65,520 which
specifies the size of the stack segment. heapmin and heapmax specify the
minimum and maximum sizes of the heap, respectively. heapmin must be
in the range 0 to 655360, and heapmax must be in the range heapmin to
655360.

The $M directive has no effect when used in a unit.

Numeric coprocessor

Syntax {$N+} or {$N-}

Default { $N - }

Type Global

Switch

Remarks The $N directive switches between the two different models of floating-
. point code generation supported by Turbo Pascal. In the {$N-} state, code

is generated to perform all real-type calculations in software by calling
run-time library routines. In the {$N+} state, code is generated to perform
all real-type calculations using the 80x87 numeric coprocessor.

Open string parameters

Syntax {$P+} or {$p-}

Default {$p- }

Type Local

Switch

Remarks The $P directive controls the meaning of variable parameters declared
using the string keyword. In the {$P-} state, variable parameters declared
using the string keyword are normal variable parameters, but in the {$P+}
state, they are open string parameters. Regardless of the setting of the $P
directive, the OpenString identifier can always be used to declare open

218 Programmer's Reference

Overflow checking

string parameters. For more information about open parameters, see
Chapter 9, "Procedures and functions," in the Language Guide.

Overflow checking Switch

Syntax

Default

Type

Remarks

{$Q+} or {$Q-}

{$Q-}

Local

The $Q directive controls the generation of overflow checking code. In the
{$Q+} state, certain integer arithmetic operations (+, -, *, Abs, Sqr, Succ,
and Pred) are checked for overflow. The code for each of these integer
arithmetic operations is followed by additional code that verifies that the
result is within the supported range. If an overflow check fails, the
program terminates and displays a run-time error message.

The {$Q+} does not affect the Inc and Dec standard procedures. These
procedures are never checked for overflow.

The $Q switch is usually used in conjunction with the $R switch, which
enables and disables the generation of range-checking code. Enabling
overflow checking slows down your program and mak~s it somewhat
larger, so use {$Q+} only for debugging.

Overlay code generation Switch

Syntax {$O+} or {$O-}

Default {$O- }

Type Global

Remarks The $0 switch directive enables or disables overlay code generation.
Turbo Pascal allows a unit to be overlaid only if it was compiled with
{$O+}. In this state, the code generator takes special precautions when
passing string and set constant parameters from one overlaid procedure
or function to another.

The use of {$O+} in a unit does not force you to overlay that unit. It just
instructs Turbo Pascal to ensure that the unit can be overlaid, if so desired.
If you develop units that you plan to use in overlaid as well as non­
overlaid applications, then compiling them with {$O+} ensures that you
can indeed do both with just one version of the unit.

Chapter 2, Compiler directives 219

Overlay code generation

~ A {$O+} compiler directive is almost always used in conjunction with a
{$F+} directive to satisfy the overlay manager's far call requirement.

For further details on overlay code generation, see Chapter 18, "Using
overlays,'~ in the Language Guide.

Overlay unit name Parameter

Syntax {$O uni tname}

Type Local

Remarks The Overlay unit name directive turns a unit into an overlay.

The {SO unitname} directive has no effect if used in a unit; when compiling
a program, it specifies which of the units used by the program should be
place~ in an .OVR file instead of in the .EXE file.

{SO unitname} directives must be placed after the program's uses clause ..
Turbo Pascal reports an error if you attempt to overlay a unit that wasn't
compiled in the {$O+} state.

Range checking Switch

220

Syntax {$R+} or {$R-}

Default { $R- }

Type Local

Remarks The $R directive enables or disables the generation of range-checking .
code. In the {$R+} state, all array and string-indexing expressions are
verified as being within the defined bounds and all assignments to scalar
and subrange variables are checked to be within range. If a range check
fails, the program terminates and displays a run-time error message.

If $R is switched on, all calls to virtual methods are checked for the
initialization status of the object instance making the call. If the instance
making the call has not been initialized by its constructor, a range check
run-time error occurs.

Enabling range checking and virtual method call checking slows down
your program and makes it somewhat larger, so use the {$R+} only for
debugging.

Programmer's Reference

Stack -overflow checking

Stack-overflow checking Switch

Syntax {$S+} or {$S-}

Default {$S+ }

. Type Local

Remarks The $S directive enables or disables the generation of stack-overflow
checking code. In the {$S+} state, the compiler generates code at the
beginning of each procedure or function that checks whether there is
sufficient stack space for the local variables and other temporary storage.
When there is not enough stack space, a call to a procedure or function
compiled with {$S+} causes the program to terminate and display a run­
time error message. In the {$S-} state, such a call is likely to cause a system
crash.

Symbol reference information Switch

Syntax {$Y+} or {$Y-}

Default { $Y + }

Type Global

Remarks The $Y directive enables or disables generation of symbol reference
information. This information consists of tables that provide the line
numbers of all declarations of and references to symbols in a module.

For units, the symbol reference information is recorded in the .TPU file
along with the unit's object code. Symbol reference information increases
the size of .TPU files, but it does not affect the size or speed of the
executable program.

When a program or unit is compiled in the {$Y+} state, Turbo Pascal's
integrated browser can display symbol definition and reference
information for that module.

The $Y switch is usually used in conjunction with the $0 and $L switches,
which control generation of debug information and local symbol
information. The $Y directive has no effect unless both $0 and $L are
enabled.

Chapter 2, Compiler directives 221

Type-checked p'ointers

Type-checked pOinters Switch

Syntax {$T+} or {$T-}

Default {$T-}

Type Global

Remarks The $T directive controls the types of pointer values generated by the @

operator. In the {$T-} state, the result type of the @ operator is always
Pointer. In other words, the result is an untyped pointer that is compatible
with all other pointer types. When @ is applied to a variable reference in
the {$T +} state, the type of the result is AT, where T is the type of the.
variable reference. In other words, the result is of a type that is compatible
only with other pointers to the type of the variable.

UNDEF directive Conditional compilation

Syntax {$UNDEF name}

Remarks Undefines a previously defined conditional symbol. The symbol is
forgotten for the remainder of the compilation or until it reappears in a
{$DEFINE name} directive. The {$UNDEF name} directive has no effect if
name is already undefined.

Var-string checking Switch

222

Syntax

Default

Type

Remarks

{$V+} or {$V-}

{$V+}

Local.

The $V directive controls type checking on strings passed as variable
parameters. In the {$V+} state, strict type checking is performed, requiring
the formal and actual parameters to be of identical string types. In the {$V -}
(relaxed) state, any string type variable is allowed as an actual parameter,
even if the declared maximum length is not the same as that of the formal
parameter.

The {$V-} state essentially provides an ('unsafe" version of open string
parameters. Although {$V-} is still supported, you should use .open string .
parameters. For additional information, see "Open string parameters" in
Chapter 9 in the Language Guide.

Programmer's Reference

Using conditional compilation directives

Two basic conditional compilation constructs closely resemble
Pascal's if statement. The first construct,

{$IFxxx}

{$ENDIF}

causes the source text between {$IFxxx} and {$ENDIF} to be
compiled only if the condition specified in {$IFxxx} is True. If the
condition is False, the source text between the two directives is
ignored.

The second conditional compilation construct

{$IFxxx}

{$ELSE}

{$ENDIF}

causes either the source text between {$IFxxx} and {$ELSE} or the
source text between {$ELSE} and {$ENDIF} to be compiled,
depending on the condition specified by the {$I F xxx}.

Here are some examples of conditional compilation constructs:

{$IFDEF Debug}
writeln(/X = " Xl;

{$ENDIF}

{$IFDEF CPU87}
{$N+}
type

Real = Double;
{$ELSE}

{$N-}
type

Single = Real;
Double = Real;
Extended = Real;
Comp = Real;

{$ENDIF}

You can nest conditional compilation constructs up to 16 levels
deep. For every {$IFxxx}, the corresponding {$ENDIF} must be
found within the same source file-which means there must be an
equal number of {$IFxxx}'s and {$ENDIF}'s in every source file.

Chapter 2, Compiler directives 223

224

Conditional
symbols Conditional compilation is based on the evaluation of conditional

symbols. Conditional symbols are defined and undefined using
the directives

{$DEFINE name}
{$UNDEF name}

You can also use the /0 switch in the command-line compiler (or
place it in the Conditional Defines input box from within
Options I Compiler of the IDE).

Conditional symbols are best compared to Boolean variables:
They are either True (defined) or False (undefined). The {$OEFINE}
directive sets a given symbol to True, and the {$UNOEF} directive
sets it to False.

Conditional symbols follow the same rules as Pascal identifiers:
They must start with a letter, followed by any combination of
letters, digits, and underscores. They can be of any length, but
only the first 63 characters are significant.

Conditional symbols and Pascal identifiers have no correlation
whatsoever. Conditional symbols cannot be referenced in the
actual program and the program's identifiers cannot be referenced
in conditional directives. For example, the construct

const
Debug = True;

begin
{$IFDEF Debug}
Writeln('Debugis on');

{$ENDIF}
end;

will not compile the Writeln statement. Likewise, the construct

{$DEFINE Debug}
begin

if Debug then
Writeln('Debug is on');

end;

will result in an unknown identifier error in the if statement.

Turbo Pascal defines the following standard conditional symbols:

Programmer's Reference

VER70

MSOOS

CPU86

CPU87

Always defined, indicating that this is version 7.0 of
Turbo Pascal. Each version has corresponding
predefined symbols; for example, version B.O would
have VERBO defined, version B.S would have VERBS
defined, and so on.

Always defined, indicating that the operating
system is MS-DOS or PC-DOS.

Always defined, indicating that the CPU belongs to
the BOxB6 family of processors. Versions of Turbo
Pascal for other CPU s will instead define a symbolic
name for that particular CPU.

Defined if an BOxB7 numeric coprocessor is present
at compile time. If the construct

{$IFDEF CPU87} {$N+} {$ELSE} {$N-} {$ENDIF}

appears at the beginning of a compilation, Turbo
Pascal automatically selects the appropriate model
of floating-point code generation for that particular
computer.

Other conditional symbols can be defined before a compilation by
using the Conditional Defines input box (Options I Compiler), or
the 10 command-line option if you are using the command-line
compiler.

Chapter 2, Compiler directives 225

226 Programmer's Reference

c H

If you need help using the
command-line compiler, you

can get online help by
typing THELP at the

command line.

A p T E R

3

Command-line compiler

Turbo Pascal command-line compiler (TPC.EXE) lets you invoke
all the functions of the IDE compilers (TURBO.EXE and TPX.EXE)
from the DOS command line.

You run TPC.EXE from the DOS prompt using a command with
the following syntax:

TPC [options] filename [options]

options are zero or more optional parameters that provide
additional information to the compiler. filename is the name of the
source file to compile. If you type TPC alone, it displays a help
screen of command-line options and syntax.

If filename does not have an extension, TPC assumes .P AS. If you
don't want the file you're compiling to have an extension, you
must append a period (.) to the end of filename. If the source text
contained infilename is a program, TPC creates an executable file
named FILENAME.EXE. If filename contains a unit, TPC creates a
Turbo Pascal unit file named FILENAME. TPU.

You can specify a number of options for TPC. An option consists
of a slash (I) immediately followed by an option letter. In some
cases, the option letter is followed by additional information, such
as a number, a symbol, or a directory name. Options can be given
in any order and can come before and/or after the file name.

Chapter 3, Command-line compiler 227

Command-line compiler options

Table 3.1
Command-line options

If you type TPC alone at the
command line, a list of

command-line compiler
options appears on your

screen.

228

The IDE lets you set various options through the menus; TPC
gives you access to these options using the slash (/) delimiter. You
can also precede options with a hyphen (-) instead of a slash (I),
but those options that start with a hyphen must be separated by
blanks. For example, the following two command lines are
equivalent and legal:

TPC -IC:\TP -DDEBUG SORTNAME -$S- -$F+
TPC /IC:\TP/DDEBUG SORTNAME /$S-/$F+

The first command line uses hyphens with at least one blank
separating the options; the second uses slashes, and no separation
is needed.

The following table lists the command-line options:

Option

·'$A+
I$A-
1$8+
1$8-

.1$0+
1$0-
I$E+
I$E-
I$F+
I$F-
I$G+
I$G-
1$1+
1$1-
I$L+
I$L­
I$Mstack,min,max
I$N+
I$N-
1$0+
1$0-
I$P+
I$P-
1$0+
1$0-
I$R+
I$R-
1$5+
1$5-
I$T+
I$T-
I$V+
I$V-
I$X+

Description

Align data on word boundaries
Align data on byte boundaries
Complete Boolean evaluation
Short circuit Boolean evaluation
Debugging information on
Debugging information off
Emulation on
Emulation off
Force far calls on
Force far calls off
286 code generation on
286 code generation off
I/O checking on
I/O checking off
Local symbols on
Local symbols off
Memory sizes
Numeric coprocessor on
Numeric coprocessor off
Overlay code generation on
Overlay code generation off
Open parameters on
Open parameters off
Overflow checking on
Overflow checking off
Range checking on
Range checking off
Stack checking on
Stack checking off
Type-checked pointers on
Type-checked pointers off
Strict var-string checking
Relaxed var-string checking
Extended syntax support on

Programmers Reference

Compiler
directive options

The switch directive
option

Table 3.1: Command-line options (continued)

!$X-

18
lOde fines
IEpath
IFsegment:offset
IGS
IGP
IGO
Ilpath
IL
1M
IOpath
10
fTpath
IUpath
N

Extended syntax support off

Build all units
Define conditional symbol
EXE and TPU directory
Find run-time error
Map file with segment
Map file with publics
Detailed map file
Include directories
Link buffer on disk
Make modified units
Object directories
Quiet compile
TPL & CFG directories
Unit directories
EXE debug information

Turbo Pascal supports several compiler directives, all of which are
described in Chapter 2, "Compiler directives."

The 1$ and 10 command-line options let you change the default
states of most compiler directives. Using 1$ and 10 on the
command line is equivalent to inserting the corresponding
compiler directive at the beginning of each source file compiled.

The 1$ option lets you change the default state of all the switch
directives. The syntax of a switch directive option is 1$ followed
by the directive letter, followed by a plus (+) or a minus (-). For
example,

TPC MYSTUFF /$R-

compiles MYSTUFF.P AS with range checking turned off, while

TPC MYSTUFF /$R+

compiles it with range checking turned on. Note that if a {$R+} or
{$R-} compiler directive appears in the source text, it overrides the
I$R command-line option.

You can repeat the 1$ option in order to specify multiple compiler
directives:

TPC MYSTUFF /$R-/$I-/$V-/$F+

Alternately, TPC lets you write a list of directives (except for $M),
separated by commas:

Chapter 3, Command-line compiler 229

Note that only one dollar sign
($) is needed.

The conditional defines
option

230

Compiler mode
options

TPC MYSTUFF /$R-,I-,V-,F+

In addition to changing switch directives, 1$ also lets you specify a
program's memory allocation parameters, using the following
format:

/$Mstacksize,heapmin,heapmax

where stacksize is the stack size, heapmin is the minimum heap
size, and heapmax is the maximum heap size. The values are in
bytes, and each is a decimal number unless it is preceded by a
dollar sign ($), in which case it is assumed to be hexadecimal. So,
for example, the following command lines are equivalent:

TPC MYSTUFF /$M16384,256,4096
TPC MYSTUFF /M4000,$100,$1000

Note that, because of its format, you cannot use the $M option in a
list of directives separated by commas.

The 10 option lets you define conditional symbols, corresponding
to the {$OEFINE symbol} compiler directive. The 10 option must be
followed by one or more conditional symbols, separated by
semicolons (;). For example, the following command line

TPC MYSTUFF /DIOCHECKiDEBUGiLIST

. defines three conditional symbols, iocheck, debug, and list, for the
compilation of MYSTUFF.P AS. This is equivalent to inserting

{$DEFINE IOCHECK}
{$DEFINE DEBUG}
{$DEFINE LIST}

at the beginning of MYSTUFF.PAS. If you specify multiple 10
directives, you can concatenate the symbol lists. Therefore,

TPC MYSTUFF /DIOCHECK/DDEBUG/DLIST

is equivalent to the first example.

A few options affect how the compiler itself functions. These are
1M (Make), 18 (Build), IF (Find Error), IL (Link Buffer), and IQ
(Quiet). As with the other options, you can use the hyphen format
(remember to separate th~ options with at least one blank).

Programmer's Reference

The make (1M) option TPC has a built-in MAKE utility to aid in project maintenance.
The 1M option instructs TPC to check all units upon which the file
being compiled depends.

A unit will be recompiled if

• The source file for that unit has been modified since the .TPU
file was created.

• Any file included with the $1 directive, or any .OBJ file linked in
by the $L directive, is newer than the unit's .TPU file.

• The interface section of a unit referenced in a uses statement
has changed.

~ Units in TURBO.TPL are excluded from this process.

The build all (lB) option

You can't use /M and /8 at
the same time.

The find error (IF)
option

If you were applying this option to the previous example, the
command would be

TPC MYSTUFF 1M

Instead of relying on the 1M option to determine what needs to be
updated, you can tell TPC to update all units upon which your
program depends using the 18 option.

If you were using this option in the previous example, the
command would be

TPC MYSTUFF IB

When a program terminates due to a run-time error, it displays an
error code and the address (segment:offset) at which the error
occurred. By specifying that address in a /Fsegment:offset option,
you can locate the statement in the source text that caused the
error, provided your program and units were compiled with
debug information enabled (via the $0 compiler directive).

Suppose you have a file called TEST.PAS that contains the
following program:

program Test;
var

x : Real;
begin

x := 0;
x := x I x;

end •
{ Force a divide by zero error }

. Chapter 3, Command-line compiler 231

232

The link buffer (fL)
option

First, compile this program using the command-line compiler:

TPC TEST

If you do a DIR TEST.*, DOS lists two files: TEST. PAS, your
source code, and TEST.EXE, the executable file.

Now, type TEST to run. You'll get a run-time error: "Run-time
error 200 at 0000:003D." Notice that you're given an error code
(200) and the address (0000:003D in hex) of the instruction pointer
(CS:IP) where the error occurred. To figure out which line in your
source caused the error, simply invoke the compiler, use IF and
specify the segment and offset as reported in the error message:

C:\>TPC TEST /FO:3D
Turbo Pascal 7.0 Copyright (c) 1983,92 Borland International
10/02/92 14:09:53
TEST.PAS(7)
TEST. PAS (6) : Target address found.

x := x / x;

In order for TPC to find the run-time error with IF, you must
compile the program with all the same command-line parameters
you used the first time you compiled it.

The compiler now gives you the file name and line number, and
points to the offending line number and text in your source code.

As mentioned previously, you must compile your program and
units with debug information enabled for TPC to be able to find
run-time errors. By default, all programs and units are compiled
with debug information enabled, but if you turn it off, using a
{$O-} compiler directive or a 1$0- option, TPC will not be able to
locate run-time errors.

The IL option disables buffering in memory when .TPU files are
linked to create an .EXE file. Turbo Pascal's built-in linker makes
two passes. In the first pass through the .TPU files, the linker
marks every procedure that gets called by other procedures. In
the second pass, it generates an .EXE file by extracting the marked
procedures from the .TPU files.

By default, the .TPU files are kept in memory between the two
passes; however, if the IL option is specified, they are read again
from disk during the second pass. The default method is faster
but requires more memory; for very large programs, you may
have to specify IL to link successfully.

Programmer's Reference

The quiet (lQ) option The quiet mode option suppresses the printing of file names and
line numbers during compilation. When TPC is invoked with the
quiet mode option

Directory options

The TPL & CFG
directory (IT) option

TPC MYSTUFF /Q

its output is limited to the sign-on message and the usual statistics
at the end of compilation. If an error occurs, it will be reported.

TPC supports several options that let you specify the five
directory lists used by TPC: TPL & CFG, EXE & TPU, Include,
Unit, and Object.

Excluding the EXE and TPU directory option, you may specify
one or multiple directories for each command-line directory
option. If you specify multiple directories, separate them with
semicolons (;). For example, this command line tells TPC to search
for Include files in C: \ TP \ INCLUDE and D: \ INC after searching
the current directory:

TPC MYSTUFF /IC:\TP\INCLUDEiD:\INC

If you specify multiple directives, the directory lists are
concatenated. Therefore,

TPC MYSTUFF /IC:\TP\INCLUDE /ID:\INC

is equivalent to the first example.

TPC looks for two files when it is executed: TPC.CFG, the
configuration file, and TURBO.TPL, the resident library file. TPC
automatically searches the current directory and the directory
containing TPC.EXE. The IT option lets you specify other
directories in which to search. For example, you could say

TPC /TC:\TP\BIN MYSTUFF

If you want the IT option to affect the search for TPC.CFG, it must
be the very first command-line argument, as in the previous
example.

Chapter 3, Command-line compiler 233

The EXE & TPU .. directory
(fE) option

You can specify only one EXE
and TPU directory

The include directories
(fE) option

The unit directories (fU)
option

The object files
directories (f0) option

Debug options

The map file (fG)
option

Unlike the binary format of
.EXE and. TPU files, a .MAP file

is a legible text file that can
be output on a printer or

loaded into the editor.

234

This option lets you tell TPC where to put the .EXE and .TPU files
it creates. It takes a directory path as its argument:

TPC MYSTUFF /EC:\TP\BIN

If no such option is given, TPC creates the .EXE and .TPU files in
the same directories as their corresponding source files.

Turbo Pascal supports include files through the {$Ifilename}
compiler directive. The II option lets you specify a list of
directories in which to search for Include files.

When you compile a program that uses units, TPC first attempts
to find the units in TURBO.TPL (which is loaded along with
TPC.EXE). If they cannot be found there, TPC searches for
unitname.TPU in the current directory. The IU option lets you
specify additional directories in which to search for units.

Using {$L filename} compiler directives, Turbo Pascal lets you link
in .OBI files containing external assembly language routines, as
explained in Chapter 23, "Linking assembler code," in the
Language Guide. The 10 option lets you specify a list of directories
in which to search for such .OBI files.

TPC has two command-line options that enable you to generate
debugging information: the map file option and the debugging
option.

The IG option instructs TPC to generate a .MAP file that shows
the layout of the .EXE file. The IG option must be followed by the .
letter S, P, or D to indicate the desired level of information in the
.MAP file. A .MAP file is divided into three sections:

• Segment

• Publics

• Line Numbers

The IGS option outputs only the Segment section, IGP outputs the
Segment and Publics section, and IGO outputs all three sections.

Programmer's Reference

The debugging (IV)
option

The TPC,CFG file

For modules (program and units) compiled in the {$O+,L+} state
(the default), the Publics section shows all global variables,
procedures, and functions, and the Line Numbers section shows
line numbers for all procedures and functions in the module. In
the {$D+,L-} state, only symbols defined in a unit's interface part
are listed in the Publics section. For modules compiled in the {$O-}
state, there are no entries in the Line Numbers section.

When you specify the N option on the command line, TPC
appends Turbo Debugger-compatible debug information at the
end of the .EXE file. Turbo Debugger includes both source- and
machine-level debugging and powerful breakpoints including
breakpoints with conditionals or expressions attached to them.

Even though the debug information generated by N makes the
resulting .EXE file larger, it does not affect the actual code in the
.EXE file, and if it is executed, the .EXE file does not require
additional memory.

The extent of debug information appended to the .EXE file
depends on the setting of the $0 and $L compiler directives in
each of the modules (program and units) that make up the
application. For modules compiled in the {$O+,L+} state, which is
the default, all constant, variable, type, procedure, and function
symbols become known to the debugger. In the {$O+,L-} state,
only symbols defined in a unit's interface section become known
to the debugger. In the {$O-} state, no line-number records are
generated, so the debugger cannot display source lines when you
debug the application.

You can set up a list of options in a configuration file called
TPC.CFG, which will then be used in addition to the options
entered on the command line. Each line in TPC.CFG corresponds
to an extra command-line argument inserted before the actual
command-line arguments. Thus, by creating a TPC.CFG file, you
can change the default setting of any command-line option.

TPC lets you enter the same command-line option several times,
ignoring all but the last occurrence. This way, even though you've
changed some settings with a TPC.CFG file, you can still override
them on the command line.

Chapter 3, Command-line compiler 235

236

When TPC starts, it looks for TPC.CFG in the current directory. If
the file isn't found there, TPC looks in the directory where
TPC.EXE resides. To force TPC to look in a specific list of
directori~s (in addition to the current directory), specify a rr
command-line option as the first option on the command line.

If TPC.CFG contains a line that does not start with a slash (I) or a
hyphen (-), that line defines a default file name to compile. In that
case, starting TPC with an empty command line (or with a
command line consisting of command-line options only and no
file name) will cause it to compile the default file name, instead of
displaying a syntax summary.

Here's an example TPC.CFG file, defining some default directories
for include, object, and unit files, and changing the default states
of the $F and $S compiler directives:

/IC:\TP\INCiC:\TP\SRC
/OC:\TP\ASM
/UC:\TP\UNIT
/$F+
/$s-

Now, if you type

TPC .MYSTUFF

at the system prompt, TPC acts as if you had typed in the
following:

TPC /IC:\TP\INCiC:\TP\SRC /OC:\TP\ASM /UC:\TP\UNIT /$F+ /$S- MYSTUFF

Programmer's Reference

c H

Table 4.1
Error message types

A p T E R

4

Error messages
This chapter describes the possible e~ror messages you can get
from Turbo Pascal during program development. The error
messages are grouped according to the categories listed in
Table 4.1. Run-time errors are subdivided.into DOS, I/O, critical,
and fatal errors. Within each of the groups, the errors are listed in
numerical order.

Type of message

Compiler

DOS

I/O

Critical

Fatal

Page

See page 238.

See page 258.

See page 260.

See page 261.

See page 261.

Compiler error messages

Chapter 4, Error messages

Whenever possible, the compiler will display additional
diagnostic information in the form of an identifier or a file name.
For example,

Error 15: File not found (GRAPH.TPU).

When an error is detected, Turbo Pascal (in the IDE) automatically
loads the source file and places the cursor at the error. The '
command-line compiler displays the error message and number

237

238

and the source line, and uses a caret (/\) to indicate where the
error occurred. Note, however, that some errors are not detected
until a little later in the source text. For example, a type mismatch
in an assignment statement cannot be detected until the entire
expression after the := has been evaluated. In such cases, look for
the error to the left of or above the cursor.

1. Out of memory.

This error occurs when the compiler runs out of memory. Try
these possible solutions:

• If Compile I Destination is set to Memory, set it to Disk in the
integrated environment.

• If Options I Linker I Link Buffer is set to Memory, toggle it to
Disk. Use a IL option to place the link buffer on disk when
using the command-line compiler.

If these suggestions don't help, your program or unit might
simply be too large to compile in the amount of memory avail­
able, and you might have to break it into two or more smaller
units.

2 Identifier expected.

An identifier was expected at this point. You might be trying to
redeclare a reserved word.

3 Unknown identifier.

This identifier has not been declared, or might not be visible
within the current scope.

4 Duplicate identifier.

The identifier already represents a program or unit's name, a
constant, a variable, a type, aprocedure, or a function declared
within the current block.

5 Syntax error.

An illegal character was found in the source text. You might have
forgotten the quotes around a string constant.

Programmer's Reference

Chapter 4, Error messages

6 Error in real constant.

The syntax of type constants is defined in Chapter 2, "Tokens," in
the Language Guide.

7 Error in integer constant.

The syntax of integer-type constants is defined in Chapter 2,
"Tokens," in the Language Guide. Note that whole real numbers
outside the maximum integer range must be followed by a
decimal point and a zero; for example, 12345678912.0.

8 String constant exceeds line.

You have most likely forgotten the ending quote in a string
constant.

10 Unexpected end of file.

You might have gotten this error message for one of the following
reasons:

• Your source file ends before the final end of the main statement
part. Most likely, your begin and end statements do not match.

• An Include file ends in the middle of a statement part. Every
statement part must be entirely contained in one file.

• You didn't close a comment.

11 Line too long.

The maximum line length is 127 characters.

12 Type identifier expected.

The identifier does not denote a type as it should.

13 Too many open files.

If this error occurs, your CONFIG.syS file does not include a
FILES=xx entry or the entry specifies too few files. Increase the
number to some suitable value, such as 20.

, 239

240

14 Invalid file name.

The file name is invalid or specifies a nonexistent path.

15 File not found.

The compiler could not find the file in the current directory or in
any of the search directories that apply to this type of file.

16 Disk full.

Delete some files or use a different disk.

17 Invalid compiler directive.

The compiler directive letter is unknown, one of the compiler
directive parameters is invalid, or you are using a global compiler
directive when compilation of the body of the program has
begun.

18 Too many files.

There are too many files involved in the compilation of the
program or unit. Try to use fewer files. For example, you could
merge include files. You could also shorten the file names or
move all the files into one directory and make it the current
directory at compile time.

19 Undefined type in pointer definition.

The type was referenced in a pointer-type declaration previously,
but it was never declared.

20 Variable identifier expected.

The identifier does not denote a variable as it should.

21 Error in type.

This symbol cannot start a type definition.

22 Structure too large.

The maximum allowable size of a structured type is 65,535 bytes.

Programmer's Reference

Chapter 4, Error messages

23 Set base type out of range.

The base type of a set must be a subrange with bounds in the
range 0 .. 255 or an enumerated type with no more than 256
possible values.

24 File components may not be files or objects.

file of file and file of object constructs are not allowed; nor is a file
of any structured type that includes an object type or file type.

25 Invalid string length.

The declared maximum length of a string must be in the range
1..255.

26 Type mismatch.

This is due to one of the following:

• Incompatible types of the variable and the expression in an
assignment statement

• Incompatible types of the actual and formal parameter in a call
to a procedure or function

• An expression type that is incompatible with the index type in
array indexing

• Incompatible types of operands in an expression

27 Invalid subrange base type.

All ordinal types are valid base types.

28 Lower bound greater than upper bound.

The declaration of a subrange type specifies a lower bound
greater than the upper bound.

29 Ordinal type expected.

Real types, string types, structured types, and pointer types are
not allowed here.

30 Integer constant expected.

241

242

31 Constant expected.

32 Integer or real constant expected.

33 Pointer type identifier expected.

The identifier does not denote a pointer type as it should.

34 Invalid function result type.

Valid function result types are all simple types, string types, and
pointer types.

35 . Label identifier expected.

The identifier does not denote a label as it should.

36 BEGIN expected.

A begin is expected here, or there is an error in the block structure
of the unit or program.

37 END expected.

An end is expected here, or there is an error in the block structure
of the unit or program.

38 Integer expression expected.

The preceding expression must be of an integer type.

39 Ordinal expression expected.

The preceding expression must be of an ordinal type.

40 Boolean expression expected.

The preceding expression must be of a boolean type.

41 Operand types do not match operator.

The operator cannot be applieq./ to operands of this type, for
example, 'A' div '2'.

Programmer's Reference

Chapter 4, Error messages

42 Error in expression.

This symbol cannot participate in an expression in the way it
does. You might have forgotten to write an operator between two
operands.

43 Illegal assignment.

• Files and untyped variables cannot be assigned values .

• A function identifier can only be assigned values within the
statement part of the function.

44 Field identifier expected.

The identifier does not denote a field in the corresponding record
or object variable.

45 Object file too large.

Turbo Pascal cannot link in .OB] files larger than 64K.

46 Undefined external.

The external procedure or function did not have a matching
PUBLIC definition in an object file. Make sure you have specified
all object files in {$Lfilename} directives, and check the spelling of
the procedure or function identifier in the .ASM file.

47 Invalid object file record.

The .OB] file contains an invalid object record; make sure. the file
is in fact an .OB] file.

48 Code segment too large.

The maximum size of the code of a program or unit is 65,520
bytes. If you are compiling a program, move some procedures or
functions into a unit. If you are compiling a unit, break it into two
or more units.

243

244

, 49 Data segment too large.

The maximum size of a program's data segment is 65,520 bytes,
including data declared by the used units. If you need more
global data than this, declare the larger structures as pointers, and
allocate them dynamically using the New procedure.

50 DO expected.

The reserved word do does not appear w~ere it should;

51 Invalid PUBLIC definition.

• Two or more PUBLIC directives in assembly language define
the same identifier.

• The .OBJ file defines PUBLIC symbols that do not reside inthe
CODE segment.

52 Invalid EXTRN definition.

• The identifier was referred to through an EXTRN directive in
assembly language, but it is not declared in the Pascal program
or unit, nor in the interface part of any of the used units.

• The identifier denotes an absolute variable.

• The identifier denotes an inline procedure or function.

53 Too many EXTRN definitions.

Turbo Pascal cannot handle .OBJ files with more than 256 EXTRN
definitions.

54 OF expected.

The reserved word of does not appear where it should.

55 INTERFACE expected.

The reserved word interface does not appear where it should.

56 Invalid relocatable reference.

• The .OBJ file contains data and relocatable references in
segments other than CODE. For example, you are attempting to
declare initialized variables in the DATA segment.

Programmer's Reference

Chapter 4, Error messages

• The .OBI file contains byte-sized references to relocatable
symbols. This error occurs if you use the HIGH and LOW
operators w.ith relocatable symbols or if you refer to relocatable
symbols in DB directives.

• An operand refers to a relocatable symbol that was not defined
in the CODE segment or in the DATA segment.

• An operand refers to an EXTRN procedure or function with an
offset, for example, CALL SortProc+S.

57 THEN expected.

The reserved word then does not appear where it should.

58 TO or DOWNTO expected.

The reserved word to or downto does not appear where it should.

59 Undefined forward.

• The procedure or function was declared in the interface part of
a unit, but its definition never occurred in the implementation
part.

• The procedure or function was declared with forward, but its
definition was never found.

61 Invalid typecast.

• The sizes of the variable reference and the destination type
differ in a variable typecast.

• You are attempting to typecast an expression where only a
variable reference is allowed.

62 Division by zero.

The preceding operand attempts to divide by zero.

63 Invalid file type.

The file type is not supported by the file-handling procedure; for
example, Readln with a typed file or Seek with a text file.

245

246

64 Cannot Read or Write variables of this type .

• Read and Readln can input variables of character, integer, real,
and string types .

• Write and Writeln can output variables of character, integer, real,
string, and boolean types.

65 Pointer variable expected.

The preceding variable must be of a pointer type.

66 String variable expected.

The preceding variable must be of a string type.

67 String expression expected.

The pr,eceding expression must be of a string type.

68 Circular unit reference.

Two units are not allowed to use each other in the interface part.
It is legal for two units to use each other in the implementation
part. Rearrange your uses clauses so that circular references occur
only in the implementation parts. For more details, see "Circular
unit references" in Chapter 10 in the Language Guide.

69 Unit name mismatch.

The name of the unit found in the .TPU file does not match the
name specified in the uses clause.

70 Unit version mismatch.

One or more of the units used by this unit have been changed
since the unit was compiled. Use Compile I Make or Compile I
Build in the IDE and 1M or IB options in the command-line
compiler to automatically compile units that need recompilation.

71 Internal stack overflow.

The compiler's. internal stack is exhausted due to too many levels
of nested statements. Rearrange your code so it is not nested so
deeply. For example, move the inner levels of nested statements
into a separate procedure.

Programmer's Reference

Chapter 4, Error messages

72 Unit file format error.

The ~ TPU file is somehow invalid; make sure it is in fact a . TPU
file. The. TPU file might have been created with an older version
of Turbo Pascal. In this case, a new .TPU must be created by
recompiling the source file.

73 IMPLEMENTATION expected.

The reserved word implementation does not appear where it
should. You are probably including the implementation of a
procedure, function, or method in the interface part of the unit.

74 Constant and case types do not match.

The type of the case constant is incompatible with the case
statement's selector expression.

75· Record or object variable expected.

The preceding variable must be of a record or object type.

76 Constant out of range.

You are trying to

• Index an array with an out-of-range constant

• Assign an out-of-range constant to a variable

• Pass an out-of-range constant as a parameter to a procedure or
function

77 File variable expected.

The preceding variable must be of a file type.

78 Pointer expression expected.

The preceding expression must be of a pointer type.

79 Integer or real expression expected.

The preceding expression must be of an integer or a real type.

247

248

80 Label not within current block.

A goto statement cannot reference a label outside the current
block.

81 Label already defined.

The label already marks a statement. .

82 Undefined label in preceding statement part.

The label was declared and referenced in the preceding statement
part, but it :was never defined.

83 Invalid @ argument.

Valid arguments are variable references and procedure or
function identifiers.

84 UNIT expected.

The reserved word unit does not appear where it should.

85 ";" expected.

A semicolon does not appear where it should.

86 ":" expected.

A colon does not appear where it should.

87 "," expected.

A comma does not appear where it should.

88 . "(" expected.

An opening parenthesis does not appear where it should.

89 ")" expected.

A closing parenthesis does not appear where it should.

Programmer's Reference

Chapter 4, Error messages

90 "=" expected.

An equal sign does not appear where it should.

91 ":=" expected.

An assignment operator does not appear where it should.

92 "[" or "(." expected.

A left bracket does not appear where it should.

93 "]" or ".)" expected.

A right bracket does not appear where it should.

94 "." expected.

A period does not appear where it should. Check to make sure
that a type is not being used as a variable or that the name of the
program does not override an important identifier from another
unit.

95 " .. " expected.

A subrange does not appear where it should.

96 Too many variables .

• The total size of the global variables declared within a program
or unit cannot exceed 64K .

• The total size of the local variables declared within a procedure
or function cannot exceed 64K.

97 Invalid FOR control variable.

The for statement control variable must be a simple variable
defined in the declaration part of the current subprogram.

98 Integer variable expected.

The' preceding variable must be of an integer type.

249

250

99 File types are not allowed here.

A typed constant cannot be of a file type.

100 String length mismatch.

The length of the string constant does not match the number of
components in the character array.

101 Invalid ordering of ,fields.

The fields of a record- or object-type constant must be written in
the order of declaration.

102 String constant expected.

A string constant does not appear where it should.

103 Integer or real variable expected.

The preceding variable must be of an integer or real type.

104 Ordinal variable expected.

The preceding variable must be of an ordinal type.

105 INLINE error.

The < operator is not allowed in conjunction with relocatable
references to variables-such references are always word-sized.

106 Character expression expected.

The preceding expression must be of a character type.

107 Too many relocation items.

The size of the relocation table part of the .EXE file exceeds 64K,
which is Turbo Pascal's upper limit. If you encounter this error,
your program is simply too big for Turbo Pascal's linker to
handle. It is probably also too big for DOS to execute. You will
have to split the program into a "main" part that executes two or
more "subprogram" parts using the Exec procedure in the Dos
unit.

Programmer's Reference

Chapter 4, Error messages

108 Overflow in arithmetic operation.

The result of the preceding arithmetic operation is not in the
Longint range (-2147483648 .. 2147483647). Correct the operation or
use real-type values instead of integer-type values.

109 No enclosing FOR, WHILE, or REPEAT statement.

The Break and Continue standard procedures cannot be used
outside a for, while, or repeat statement.

112 CASE constant out of range.

For integer-type case statements, the constants must be within
the range -32768 . .32767.

113 Error in statement.

This symbol cannot start a statement.

114 Cannot call an interrupt procedure.

You cannot directly call an interrupt procedure.

116 Must be in 8087 mode to compile this.

This construct can only be compiled in the {$N+} state. Operations
on the 80x87 real types (Single, Double, Extended, and Comp) are
not allowed in the {$N-} state.

117 Target address not found.

The Search I Find Error command in the IDE or the IF option in
the command-line version could not locate a statement that
corresponds to the specified address.

118 Include files are not allowed here.

Every statement part must be entirely contained in one file.

119 No inherited methods are accessible here.

You are using the inherited keyword outside a method or in a
method of an object type that has no ancestor.

251

252

121 Invalid qualifier.

You are trying to do one of the following:

• Index a variable that is not an array.

• Specify fields in a variable that is not a record.

• Dereference a variable that is not a pointer.

122 Invalid variable reference.

The preceding construct follows the syntax of a variable reference,
but it does not denote a memory location. Most likely, you are
trying to modify a const parameter, or you are calling a pointer
function but forgetting to dereference the result.

123 Too many symbols.

The program or unit declares more than 64K of symbols. If you
are compiling with {$D+},try turning it off-note, however, that
this will prevent you from finding run-time errors in that module.
Otherwise, you could try moving some declarations into a
separate unit.

124 Statement part too large.

Turbo Pascal limits the size of a statement part to about 24K. If
you encounter this error, move sections of the statement part into
one or more procedures. In any case, with a statement part of that
size, it's worth the effort to clarify the structure of your program.

126 Files must be var parameters.

You are attempting to declare a file-type value parameter. File­
type parameters must be var parameters.

127 Too many conditional symbols.

There is not enough room to define further conditional symbols.
Try to eliminate some symbols, or shorten some of the symbolic
names.

Programmer:S Reference

128 Misplaced conditional directive.

The compiler encountered an {$ELSE} or {$ENOIF} directive
without a matching {$IFDEF}, {$IFNOEF}, or {$IFOPT} directive.

129 ENOIF directive missing.

The source file ended within a conditional compilation construct.
There must be an equal number of {$IFxxx}s and {$ENOIF}s in a
source file.

130 Error in initial conditional defines.

The initial conditional symbols specified in Options I Compiler I
Conditional Defines (in the IDE) or in a 10 directive (with the
command-line compiler) are invalid. Turbo Pascal expects zero or
more identifiers separated by blanks, commas, or semicolons.

131 Header does not match previous definition.

The procedure or function header specified in the interface part or
forward declaration does not match this header.

133 Cannot evaluate this expression.

You are attempting to use a non-supported feature in a constant
expression. For example, you're attempting to use the Sin function
in a const declaration. For a description of the allowed syntax of
constant expressions, see Chapter 3, "Constants," in the Language
Guide.

134 Expression incorrectly terminated.

Integrated debugger only Turbo Pascal expects either an operator or the end of the
expression at this point, but found neither.

135 Invalid format specifier.

Integrated debugger only You are using an invalid format specifier, or the numeric
argument of a format specifier is out of range. For a list of valid
format specifiers, see Chapter 5, "Debugging in the IDE," in the
User's Guide.

Chapter 4, Error messages 253

136 Invalid indirect reference.

The statement attempts to make an invalid indirect reference. For
example, you are using an absolute variable whose base variable
is not known in the current module, or you are using an inline
routine that references a variable not known in the ~urrent
module.

137 Structured variables are not allowed here.

You are attempting to perform a non-supported operation on a
structured variable. For example, you are trying to multiply two
records.

138 Cannot evaluate without system unit.

Integrated debugger only Your TURBO. TPL library must contain the System unit for the
debugger to be able to evaluate expressions.

139 Cannot access this symbol.

Integrated debugger only A program's entire set of symbols is available as soon as you have
compiled the program. However, certain symbols, such as
variables, cannot be accessed until you actually run the program.

254

140 Invalid floating-point operation.

An operation on two real type values produced an overflow or a
division by zero.

141 Cannot compile overlays to memory.

A program that uses overlays must be compiled to disk.

142 Pointer or procedural variable expected.

The Assigned standard function requires the argument to be a
variable of a pointer or procedural type.

143 ,Invalid procedure or function reference .

• You are attempting to call a procedure in an expression .

• If you are going to assign a procedure or function to a
procedural variable, it must be compiled in the {$F+} state and
cannot be declared with inline or interrupt.

Programmer's Reference

Chapter 4, Error messages

144 Cannot overlay this unit.

You are attempting to overlay a unit that wasn't compiled in the
{O+} state.

146 File access denied.

The file could not be opened or created. Most likely, the compiler
is trying to write to a read-only file.

147 Object type expected.

The identifier does not denote an object type.

148 Local object types are not allowed.

Object types can be defined only in the outermost scope of a
program or unit. Object-type definitions within procedures and
functions are not allowed.

149 VIRTUAL expected.

The reserved word virtual is missing.

150 Method identifier expected.

The identifier does not denote a method.

151 Virtual constructors are not allowed.

A constructor method must be static.

152 Constructor identifier expected.

The identifier does not denote a constructor.

153 Destructor identifier expected.

The identifier does not denote a destructor.

154 Fail only allowed within constructors.

The Fail standard procedure can be used only within constructors.

255

256

155 Invalid combination of opcode and operands.

The assembler ope ode does not accept this combination of
operands. Possible causes are:

• There are too many or too few operands for this assembler
opcode; for example, INC AX,BX or MOV AX .

• The number of operands is correct, bl1-t their types or order do
not match the opcode; for example, DEC 1, MOV AX,CL or
MOV 1,AX.

156 Memory reference expected.

The assembler operand is not a memory reference, which is
required here.\Most likely you have forgotten to put square
brackets around an index register operand, for example,
MOV AX,BX+SI instead of MOV AX,[BX+SI].

157 Cannot add or subtract relocatable symbols.

The only arithmetic operation that can be performed on a
relocc:ttable symbol in an assembler operand is addition or
subtraction of a constant. Variables, procedures, functions, and
labels are relocatable symbols. Assuming that Var is a variable
and Const is a constant, then the instructions MOV P:I.., Const+Const

and MOV P:I.., Var+Const are valid, but MOV P:I.., VartVar is not.

158 Invalid register combination.

Valid index register combinations are [BX], [BP], [SI], [DI],
[BX+SI], [BX+DI], [BP+SI], and [BP+DI]. Other index register
combinations (such as [AX], [BP+BX], and [SI+DX]) are not
allowed.

Local variables (variables declared in procedures and functions)
are always allocated on the stack and accessed via the BP register.
The assembler automatically adds rBP] in references to such vari­
ables, so even though a construct like Local[BX] (where Local is a
local variable) appears valid, it is not since the final operand
would become Local[BP+BX].

Programmer's Reference

Run-time errors

Chapter 4, Error messages

159 286/287 instructions are not enabled.

Use a {$G+} compiler directive to enable 286/287 opcodes, but be
aware that the resulting code cannot be run on 8086- and 8088-
based machines.

160 Invalid symbol reference.

This symbol cannot be accessed in an assembler operand. Possible
causes. follow:

• You are attempting to access a standard procedure, a standard
function, or the Mem, MemW, MemL, Port, or PortW special
arrays in an assembler operand.

• You are attempting to access a string, floating-point, or set
constant in an assembler operand.

• You are attempting to access an inline procedure or function in
an assembler operand.

• You are attempting to access the @Result special symbol outside
a function.

• You are attempting to generate a short JMP instruction that
jumps to something other than a label.

161 Code generation error.

The preceding statement part contains a LOOPNE, LOOPE, lOOP,
or JCXZ instruction that cannot reach its target label.

162 ASM expected.

You are attempting to compile a built-in assembler function or
procedure that contains a begin ... end statement instead of
asm ... end.

Certain errors at run time cause the program to display an error
message and terminate:

Run-time error nnn at xxxx:yyyy

where nnn is the run-time error number, and xxxx:yyyy is the
run-time error address (segment and offset).

257

DOS errors

258

The run-time errors are divided into four categories: DOS errors, 1
through 99; I/O errors, 100 through 149, critical errors, 150
through 199; and fatal errors, 200 through 255.

1 Invalid function number.

You made a call to a nonexistent DOS function.

2 File not found.

Reported by Reset, Append, Rename, Rewrite if the file name is
invalid, or Erase if the name assigned to the file variable does not
specify an existing file.

3 Path not found.

• Reported by Reset, Rewrite, Append, Rename, or Erase if the name
assigned to the file variable is invalid or specifies a nonexistent
subdirectory.

• Reported by ChDir, MkDir, or RmDir if the path is invalid or
specifies a nonexistent subdirectory.

4 Too many open files.

Reported by Reset, Rewrite, or Append if the program has too many
open files. DOS never allows more than 15 open files per process.
If you get this error with less than 15 open files, it might indicate
that the CONFIG5YS file does not include a FILES=xx entry or
that the entry specifies too few files. Increase the number to some
suitable value, such as 20.

5 File access denied.

• Reported by Reset or Append if FileMode allows writing and the
name assigned to the file variable specifies a directory or a
read-only file.

• Reported by Rewrite if the directory is full or if the name
assigned to the file variable specifies a directory or an existing
read-only file.

• Reported by Rename if the name assigned to the file variable
specifies a directory or if the new name specifies an existing file.

Programmer's Reference

Chapter 4, Error messages

• Reported by Erase if the name assigned to the file variable
specifies a directory or a read-only file.

• Reported by MkDir if a file with the same name exists in the
parent directory, if there is no room in the parent directory, or if
the path specifies a device.

• Reported by RmDir if the directory isn't empty, if the path
doesn't specify a directory, or if the path specifies the root
directory.

• Reported by Read or BlockRead on a typed or untyped file if the
file is not open for reading.

• Reported by Write or BlockWrite on a typed or untyped file if the
file is not open for writing.

6 Invalid file handle.

This error is reported if an invalid file handle is passed to a DOS
system call. It should never occur; if it does, it is an indication that
the file variable is somehow trashed.

12 Invalid file access code.

Reported by Reset or Append on a typed or untyped file if the
value of FileMode is invalid.

15 Invalid drive number.

Reported by GetDir or ChDir if the drive number is invalid.

16 Cannot remove current directory.

Reported by RmDir if the path specifies the current directory.

17 Cannot rename across drives.

Reported by Rename if both names are not on the same drive.

18 No more files.

Reported by the DosError variable in the Dos and WinDos units
when a call to Fi'ndFirst or FindNext finds no files matching the
specified file name and set of attributes.

259

I/O errors

260

These errors cause termination if the particular statement was
compiled in the {$I+} state. In the {$I-} state, the program
continues to execute, and the error is reported by the IOResult
function.

100 Disk read error.

Reported by Read on a typed file if you attempt to read past the
end of the file.

101 Disk write error.

Reported by Close, Write, Writeln, or Flush if the disk becomes full.

102 File not assigned.

Reported by Reset, Rewrite, Append, Rename, and Erase if the file
variable has not been assigned a name through a call to Assign.

103 File not open.

Reported by Close, Read, Write, Seek, Eof, FilePos, FileSize, Flush,
BlockRead, or BlockWrite if the file is not open.

104 File not open for input.

Reported by Read, Readln, Eof, Eoln, SeekEof, or SeekEoln on a text
file if the file is not open for input.

105 File not open for output.

Reported by Write and Writeln on a text file if the file is not open
for output.

106 Invalid numeric format.

Reported by Read or Readln if a numeric value read from a text file
does not conform to the proper numeric format.

Programmer's Reference

Critical Errors

Fatal errors

Chapter 4, Error messages

For more information about these errors, see your DOS
programmer's reference manual.

150 Disk is write protected.

151 Unknown unit.

152 Drive not ready.

153 Unknown command.

154 CRC error in data.

155 Bad driv~ request structure length.

156 Disk seek error.

157 Unknown media type.

158 Sector not found.

159 Printer out of paper.

160 Device write fault.

161 Device read fault.

162 Hardware failure.

Dos reports this error as a result of sharing violations and various
network errors.

These errors always immediately terminate the program.

200 Division by zero.

The program attempted to divide a number by zero during a I,
mod, or div operation.

201 Range check error.

This error is reported by statements compiled in the {$R+} state
when one of the following situations arises:

• The index expression of an array qualifier was out of range .

• You attempted to assign an out-of-range value to a variable.

261

262

• You attempted to assign an out-of-range value as a parameter
to a procedure or function.

202 Stack overflow error.

This error is reported on entry to a procedure or function com­
piled in the {$S+} state when there is not enough stack space to
allocate.the subprogram's local variables. Increase the size of the
stack by using the $M compiler directive.

This error might also be caused by infinite recursion, or by an
assembly language procedure that d()es not maintain the stack
properly.

203 Heap overflow error.

This error is reported by New or GetMem when there is not
enough free space in the heap to allocate a block of the requested
size.

For a complete discussion of the heap manager, see Chapter 19,
"Memory issues," in the Language Guide.

204 Invalid pointer operation.

This error is reported by Dispose or FreeMem if the pointer is nil or
points to a location outside the heap .

. 205 Floating point overflow.

A floating-point operation produced a number too large for Turbo
Pascal or the numeric coprocessor (if any) to handle.

206 Floating point underflow.

A floating-point operation produced an underflow. This error is
only reported if you are using the 8087 numeric coprocessor with
a control word that unmasks underflow exceptions. By default, an
underflow causes a result of zero to be returned.

207 Invalid floating point operation .

• The real value passed to Trunc or Round could not be converted
to an integer within the Longint range (-2,147,483,648 to
2,147,483,647).

Programmer's Reference

Chapter 4, Error messages

• The argument passed to the Sqrt function was negative.

• The argument passed to the Ln function was zero or negative.

• An 8087 stack overflow occurred. For further details on
correctly programming the 8087, see Chapter 14, "Using the
80x87," in the Language Guide.

208 Overlay manager not installed.

Your program is calling an overlaid procedure or function, but the
overlay manager is not installed. Most likely, you are not calling
Ovrlnit, or the call to Ovrlnit failed. Note that, it you have
initialization code in any of your overlaid units, you must create
an additional non-overlaid unit which callsOvrlnit, and use that
unit before any of the overlaid units.

209 Overlay file read error.

A read error occurred when the overlay manager tried to read an
overlay from the overlay file.

210 Object not initialized.

With range-checking on, you made a call to an object's virtual
method, before the object had been initialized via a constructor
call.

211 Call to abstract method.

This error is generated by the Abstract procedure in the Objects
unit; it indicates that your program tried to execute an abstract
virtual method. When an object type contains one or more
abstract methods it is called an abstract object type. It is an error to
instantiate objects of an abstract type-abstract object types exist
only so that you can inherit from them and override the abstract
methods.

For example, the Compare method of the TSortedCollection type in
the Objects unit is abstract, indicating that to implement a sorted
collection you must create an object type that inherits from
TSortedCollection and overrides the Compare method.

263

264

212 Stream registration error.

This error is generated by the RegisterType procedure in the
Objects unit indicating that one of the following errors has
occurred:

• The stream registration record does not reside in the data
segment.

• The ObjType field of the stream registration record is zero.

• The type has already been registered.

• Another type with the same ObjType value already exists.

213 Collection index out of range.

The index passed to a method of a TCollection is out of range.

214 . Collection overflow error.

The error is reported by a TCollection if an attempt is made to add
an element when the collection cannot be expanded.

215 Arithmetic overflow error.

This error is reported by statements compiled in the {$Q+} state
when an integer arithmetic operation caused an overflow I such as
when the result of the operation was outside the supported ~ange.

Programmer's Reference

A p p E N D x

A

Editor reference

The tables in this appendix list all the available editing commands
you can use in the Turbo Pascal IDE. If two sets of key
combina tions can be used for a single command, the second set is
listed as an alternate key combination. Footnoted references in
Table A.l mark those commands that are described in depth in
Tables A.2, A.3, and A.4.

Appendix A, Editor reference 265

266

Table Al
Editing commands

A word is defined as a
sequence of characters
separated by one of the
fol/owing: space < > , ;
.()()/\'*+-/$
#=I-?'''%&':

@ \, and aI/ control and
graphic characters.

Command

Cursor movement commands
Character left

, Character right
Word left
Word right
Lineup
Line down
Scroll up one line
Scroll down one line
Page up
Page down
Beginning of line

End of line

Top of window
Bottom of window
Top of file,
Bottom of file
Move to previous position

-Insert and delete commands
Delete character
Delete character to left

Delete line
Delete to end of line
Delete to end of word
Insert newline
Insert mode on/off

Block commands
Move to beginning of block
Move to end of block
Set beginning of block §
Set end of block §

Exit to menu bar
Hide/Show block §

Mark line
Print selected block
Mark word
Delete block

Keys

~

~

Ctrl+~
Ctrl+~
i
,t
Ctrl+W
Ctrl+Z
PgUp
PgDn
Home
Ctrl+Q S
End
Ctrl+Q D
Ctrl+Q E
Ctrl+QX
Ctrl+Q R
Ctrl+Q C
Ctrl+Q P

Del
Backspace
Shift+Tab
Ctrl+Y
Ctrl+Q Y
Ctrl+T
Ctrl+N
Ins

Ctrl+Q B
Ctrl+Q K
Ctrl+K B
Ctrl+K K
Ctrl+K D
Ctrl+KH
Ctrl+K L
Ctrl+KP
Ctrl+KT
Ctrl+KY

Alternate Keys

Ctrl+S
Ctrl+D
Ctrl+A
Ctrl+F
Ctrl+E
Ctrl+X

Ctrl+R
Ctrl+C

Ctrl+Home
Ctrl+End
Ctrl+PgUp
Ctrl+PgDn

Ctrl+G
Ctrl+H

Ctrl+V

* n represents a number from 0 to 9.
t Enter control characters by first pressing Ctrl+P, then pressing the desired

control character.
:j: See Table A.2.
§ See Table A.3.
See Table A.4.

Programmer's Reference

Table A.l: Editing commands (continued)

Command Keys Alternate Keys

Copy block § Ctr/tK C
Move block § Ctr/tK V
Copy to Clipboard :j: Ctr/t/ns
Cut to Clipboard :j: ShifttDe/
Delete block :j: Ctr/tDe/
Indent block Ctr/tK /
Paste from Clipboard :j: Shiftt/ns
Read block from disk :j: Ctr/tK R
Unindent block Ctr/tK U
Write block to disk:j: Ctr/tKW

Extending selected blocks
Left one character Shiftt f-

Right one character Shiftt ~
End of line ShifttEnd
Beginning of line ShifttHome
Same column on next line Shiftt .t
Same column on previous line Shiftt l'
One page down ShifttPgDn
One page up ShifttPgUp
Left on~ word ShifttCtr/t f-

Right one word ShifttCtr/t ~
End of file ShifttCtr/tEnd ShifttCtr/tPgDn
Beginning of file ShifttCtr/tHome ShifttCtr/tPgUp

Other editing commands
Autoindent mode on/off # Ctr/tO /
Cursor through tabs on/off # Ctr/tO R
Exit the IDE A/ttX
Find place marker # Ctr/tOn *
Help F1
Help index ShifttF1
Insert control character Ctr/tpt
Maximize window F5
Open file # F3
Optimal fill mode on/off # Ctr/tO F
Pair matching Ctr/tO [,

Ctr/tO J
Save file # Ctr/tK S F2
Search Ctr/tO F
Search again Ctr/+L
Search and replace Ctr/tOA

• n represents a number from 0 to 9.
t Enter control characters by first pressing Ctr/+P, then pressing the desired •

control character.
See Table A.2.
See Table A.3.

See Table A.4.

Appendix A, Editor reference 267

Table A.l: Editing commands (continued)

Command

Set marker #

Tabs mode on/off #

Topic search help
Undo
Unindent mode on/off #

Display compiler directives

Keys

Ctrl+K n *
Ctrl+O T
Ctrl+F1
Alt+Backspace
Ctrl+O U
Ctrl+O 0

Alternate Keys

* n represents a number from 0 to 9.
t Enter control characters by first pressing Ctr/+P, then pressing the desired

control character.
See Table A.2.
See Table A.3.

See Table A.4.

Table A.2: Block commands in depth

Command

Copy to Clipboard and
Paste from Clipboard

Copy to Clipboard

Cut to Clipboard

Delete block

Cut to Clipboard and
Paste from Clipboard

Paste from
Clipboard

Read block
from disk

Write block
to disk

268

Keys

Ctrl+lns,
Shift+lns

Ctrl+lns

Shift+Del

Ctrl+Del

Shift+Del,
Shift+lns

Shift+lns

Ctrl+K R

Ctrl+KW

Function

Copies a previously selected block to the Clipboard
and, after you move your cursor to where you want the
text to appear, pastes it to the new cursor position. The
original block is unchanged. If no block is selected,
nothing happens.

Copies selected text to the Clipboard.

Cuts selected text to the Clipboard.

Deletes a selected block. You can "undelete" a
block with Undo.

Moves a previously selected block from its original
position to the Clipboard and, after you move your
cursor to where you want the text to appear, pastes it to
the new cursor position. The block disappears from its
original position. If no block is selected, nothing happens.

Pastes the contents of the Clipboard.

Reads a disk file into the current text at the cursor
position exactly as if it were a block. The text read is then
selected as a block. When this command is issued, you
are prompted for the name of the file to read. You can
use wildcards to select a file toread; a directory is
displayed. The file specified can be any legal file name.

Writes a selected block to a file. When you give this
command, you are prompted for the name of the file to
write to. The file can be given any legal name (the default
extension is PAS). If you prefer to use a file name without
an extension, append a period to the end of its name.

Programmer's Reference

Table A.3
Borland-style block

commands

Selected text is highlighted
only if both the beginning

and end have been set and
the beginning comes before

the end.

Editor commands
in depth

If you have used Borland editors in the past, you might prefer to
use the block commands listed in the following table.

Command Keys Function

Set beginning of block Ctr/+K B Begin selection of text.

Set end of block Ctr/+KK End selection of text.

Hide/show block Ctr/+K H Alternately displays and hides selected
text.

Copy block Ctr/+K C Copies the selected text to the position
of the cursor. Useful only with the
Persistent Block option.

Move block Ctr/+K V Moves the selected text to the position
of the cursor. Useful only with the
Persistent Block option.

The next table describes certain editing commands in more detail.
The table is arranged alphabetically by command name.

Table A.4: Other editor commands in depth

Command

Autoindent mode on/off

Cursor through
tabs on/off

Find place
marker

Open file

Optimal fill mode on/off

Save file

Keys

Ctr/+O /

Ctr/+O R

Ctr/+Qn'

F3

Ctr/+O F

F2

, n represents a number from 0 to 9.

Appendix A, Editor reference

Function

Toggles the automatic indenting of successive lines. You can
also use Options I Editor A1!toindent in the IDE to turn
automatic indenting on and off.

The arrow keys will move the cursor to the middle of
tabs when this option is on; otherwise the cursor jumps several
columns when moving the cursor over multiple tabs. Ctr/+O R is
a toggle.

Finds up to ten place markers (n can be any number in
the range 0 to 9) in text. Move the cursor to any previously set
marker by pressing Ctr/+O and the marker number.

Lets you load an existing file into an edit window.

Toggles optimal fill. Optimal fill begins every line with the
minimum number of characters possible, using tabs and spaces
as necessary. This produces lines with fewer characters.

Saves the file and returns to the editor.

269

Table A.4: Other editor commands in depth (continued)

Command Keys Function

Set marker Ctr/+K n * You can mark up to ten places in text. After marking your
location, you can work elsewhere in the file and then easily
return to your marked location by using the Find Place Marker
command (being sure to use the same marker number). You
can have ten places marked in each window.

Tabs mode on/off Ctr/+O T Toggles Tab mode. You can specify the use of true tab
characters in the IDE with the Options I Editor Use Tab
Character option.

Unindent mode on/off Ctr/+O U Toggles Unindent. You can turn Unindent on and off from the
IDE with the Options I Editor Backspace Unindents option.

• n represents a number from a to 9.

Searching with regular expressions

You can choose to search for text using wildcards in the search
string. This table lists the wildcards you can use:

Table A.S
Regular expression wildcards Expression Function

------------------------~-------------------------------
A

$

*

+

[]

[-]

\

270

A circumflex at the start of the string matches the start of a
line.
A dollar sign at the end of the expression matches the end
of a line.
A period matches any character.
A character followed by an asterisk matches any number
of occurrences (including zero) of that charact~r. For
example, bo* matches bot, b, boo, and also be.
A character followed by a plus sign matches any number
of occurrences (but not zero) of that character. For
example, bo+ matches bot and boo, but not be or b.
Characters in brackets match anyone character that
appears in the brackets but no others. For example [bot]
matches b, 0, or t.
A circumflex at the start of the string in brackets means
not. Hence, ["botJ matches any character except b, 0, or t.
A hyphen within the brackets signifies a range of
characters. For example, [b-oJ matches any character from
b througho.
A backslash before a wildcard character tells Turbo Pascal
to treat that character literally, not as a wildcard. For
example, \" matches" and does not look for the start of a
line.

Programmer's Reference

A p p E N D x

B

Compiler directives quick reference

This appendix lists all of the Turbo Pascal compiler directives. It shows
the syntax as you would enter it in your source code, displays the

. command-line equivalent, and briefly describes each directive.

Asterisks (*) indicate the default setting. For example, the default setting
for debug information {$D+} is on.

Table B.l: Compiler directives

Source Code
Directive Syntax Default Command-line Description

Align data word {$A+} * /$A+ Aligns variables and typed
constants on word boundaries.

Align data byte {$A-} /$A- Aligns variables and typed
constants on byte boundaries.

Boolean evaluation - {$B+} /$B+ Complete Boolean expression
complete evaluation.

Boolean evaluation - {$B-} * /$8- Short circuit Boolean expression
short circuit evaluation.

Debug information {$D+} * /$0+ Generates debug information.
on

Debug information {$D-} /$0- Turns off debug information.
off

Appendix B, Compiler directives quick reference 271

Table B.l : Compiler directives (continued)

Source Code
Directive Syntax Default Command-line Description

DEFINE {DEFINE name} /Dname Defines a conditional symbol of
name.

ELSE {ELSE} Switches between compiling and
ignoring source delimited by
{$IFxxx} and {$ENDIF}.

Emulation on {$E+} * I$E+ Enables linking with a run-time
library that emulates the 80x87
numeric coprocessor ..

Emulation off {$E-} I$E- Disables linking with a run-time
library that emulates the 80x87
numeric coprocessor.

ENDIF {$ENDIF} Ends conditional compilation
started by last {$IFxxx}.

Extended syntax1

Force far calls on {$F+} /$F+ Procedures and functions
compiled always use far call
model.

Force far calls off {$F-} * /$F- Compiler selects appropriate
model: far or near.

80286 code {$G+} /$G+ Generates 80286 instructions
generation on to improve code generation.

·80286 code {$G-} * /$G- Generates only generic 8086
generation off instructions.

Input! output {$I+} * /$1+ Enables the automatic code
checking on generation that checks the

result of a call to an II 0
procedure.

Input! output {$I-} /$1- Disables the automatic code
checking off generation that checks the

result of a call to an I/O
procedure,

Include file {$I filename} Includes the named file in the
compilation.

IFDEF {IFDEF name} Compiles source text that follows
if name is defined.

IFNDEF {IFNDEF name} Compiles the source text that
follows if name is not defined.

1 See $X on page 274.

272 Programmer's Reference

Table B.l: Compiler directives (continued)

Source Code
Directive Syntax Default Command-line Description

IFOPT {lFOPT switch} Compiles the source text that
follows if switch is currently in the
specified state.

Link object file {$L filename} Links the named object file with
the program or unit being
compiled.

Local symbol {$L+} * /$L+ Generates local symbol
information on information.

Local symbol {$L-} /$L- Disables generation of local
information off symbol information.

Memory allocation {$M}stacksize, / $Mstacksize, Specifies an application or
sizes heapmin,heapmax heapmin,heapmax library'S memory allocation

parameters.

Numeric coprocessor {$N+} /$N+ Generates code that performs
on all real-type calculations

using 80x87.

Numeric coprocessor {$N-} * /$N- Generates code that performs
off all real-type calculations by

calling run-time library routines.

Open parameters on {$P+} /$P+ Enables open string and array
parameters in procedure and
function declarations.

Open parameters off {$P-} * /$P- Disables open string and array
parameters.

\

Overflow checking on {$Q+} /$Q+ Enables the generation of
overflow-checking code.

Overflow checking off {$Q-} * /$Q- Disables the generation of
overflow-checking code.

Overlay code {$O+} /$0+ Enables overlay code
generation generation

Overlay code {$O-} * /$0- Disables overlay code
generation generation.

Range checking on {$R+} /$R+ Generates range-checking code.

Range checking off {$R-} * /$R- Disables generation of range-
checking code.

Stack-overflow {$S+} * /$S+ Generates stack-overflow
checking on checking code.

Appendix 8, Compiler directives quick reference 273

Table B.1: Compiler directives (continued)

Source Code
Directive Syntax Default Command-line Description

Stack-overflow {$S-} /$S- Disables generation of stack-
checking off overflow code.

Type-checked pointers {$T +} /$T+ Enables the generation of
on type-checked pointers when the

@ operator is used.

Type-checked pointers {$T-} * /$T- Disables the generation of
off type-checked pointers when the

@ operator is used.

UNDEF ,{UNDEF name} Undefines a previously defined
conditional symbol.

Var-string. checking {$V+} * /$V+ Strict type checking js enabled.
on

Var-string checking {$V-} /$V- Type checking is relaxed.
off

Extended syntax on {$X+} * /$X+ Enables extended syntax to permit
discarding result of a function call
and to support null-terminated
strings.

Extended syntax off {$X-} /$X- Disables extended syntax.

274 Programmer,s Reference

A p p E N D x

c

Reserved words and standard
directives

Table C.l

This appendix lists the Turbo Pascal reserved words and standard
directives.

Reserved words and standard directives appear in lowercase
boldface throughout the manuals. Turbo Pascal isn't case
sensitive, however, so you can use either uppercase or lowercase
letters in your programs.

Reserved words have a special meaning to Turbo Pascal; you
can't redefine them.

and end mod shl
Turbo Pascal reserved words array file nil shr

asm for not string
begin function object then
case goto of to
const if or type
constructor implementation packed unit
destructor in procedure until
div inherited program uses
do inline record var
downto interface repeat while
else label set with

xor

The following are Turbo Pascal's standard directives. Unlike
reserved words, you may redefine them. It's advised that you
avoid creating user-defined identifiers with the same names as

Appendix C, Reserved words and standard directives 275

276

TableC.2
Turbo Pascal standard

directives

directives because doing so can produce unexpected results and
make it difficult to debug your ,program.

absolute
assembler
external

far
forward
interrupt

near
private
public

resident
virtual

private and public act as reserved words within object type
declarations, but are otherwise treated as directives.

Programmer's Reference

A p p E N D x

D

ASCII characters

This appendix contains a table that lists the American Standard
Code for Information Interchange (ASCII) characters. ASCII is a
code that translates alphabetic and numeric characters and
symbols and control instructions into 7-bit binary code. Table D.l
shows both printable characters and control characters.

Appendix 0, ASCII characters 277

Table D.l
ASCII table

The caret in A@ means to
press the elrl key and type @.

278

Dec Hex Char

o A@ NUL

1 1 @ SOH

2 2 • STX

3 • ETX

4 4 • EOT

5 5 .to ENQ

6 6 .. ACK

7 • BEL
8 C BS

o TAB

10 A I LF

11 B o-VT

12 C ~ FF

13 D jl CR

14 E ~ SO
15 F ¢- S1

16 10 ~ DLE

17 11 ... DC1

18 12 DC2

19 13 !! DC3

20 14 ~ DC4

21 15 § NAK

22 16 • SYN

23 17 1 ETB

24 18 t CAN

25 19 ~ EM

26 1A ~ SUB

27 1B ~ ESC

28 1C L FS

29 1D e GS

30 1E .. RS

31 1F ~ US

Dec Hex Char

32 20

33 21

34 22

35 23

36 24

37 25

38 26

39 27

40 28

41 29

42 2A

43 2B
. 44 2C

45 2D

46 2E

47 2F

48 30

49 31

50 32

51 33

52 34

53 35

54 36

55 37

56 38

57 39

.58 3A

59 3B

$
J\(o

&

(
)

*
+

/
o
1
2
3
4
5
6
7
8
9

60 3C <

61 3D

62 3E >

63 3F ?

Dec Hex Char

64 40

65 41

66 42

67 43

68 44

69 45

70 46

71 47

72 48

73 49

74 4A

75 4B

76 4C

77 4D

78 4E

79 4F

80 50

81 51

82 52

83 53

84 54

85 55

86 56

87 57

88 58

89 59

90 5A

91 5B

92 5C

93 5D

94 5E

95 5F

@

A
B
C
D
E
F
G
H
I
J
K
L
M

N
o
p

Q

R
S
T
U
V
W
X
Y
Z
[

\
]
A

Dec Hex Char

96 60
97 - 61

98 62

99 63

100 64

101 65

102 66

103 67

104 68

105 69

106 6A

107 6B

108 6C

109 6D

110 6E

111 6F

112 70

113 71

114 72

115 73

116 74

117 75

118 76

119 77

120 78

121 79

a
b
c
d
e
f

9
h

j

k

m
n
o
p
q
r
s
t
u
v
w
x
y

122 7A Z

123 7B

124 7C

125 7D

126 7E

127 7F

Programmer's Reference

Table D.l: ASCII table (continued)

Appendix 0, ASCII characters

Dec Hex Char Dec Hex Char

128 80 C(
129 81 jj

130 82 e
131 83 a
132 84 a
133 85 a
134 86 a
135 87 c;
136 88 e
137 89 e
138 8A e
139 8B ;'

140 8C 'I

141 8D

142 8E

143 8F

144 90

145 91

146 92

147 93

148 94

149' 95

150 96

151 97

152 98

153 99

154 9A

155 9B

156 9C

157 9D

158 9E

159 9F

A
A
E
a!

If.
a
o
o
Q

U

Y
o
o
¢

£
¥
PI

f

160 AO

161 A1

162 A2

163 A3

164 A4

165 A5

166 A6

167 A7

168 A8

169 A9

170 AA

171 AB

172 AC

173 AD

174 AE

175 AF

176 BO

177 B1

178 B2

179 B3

180 B4

181 B5

182 B6

183 B7

184 B8

185 B9

186 BA

187 BB

188 BC

189 BD

190 BE

191 BF

6
U
fi
N
a

o

m
II
I
i
=l

~I
11

9
{I
II
il
:!J
lJ

d

1

Dec Hex Char

192 co
193 C1

194 C2

195 C3

196 C4

197 C5

198 C6

199 C7

200 C8

201 C9

202 CA

203 CB

204 CC

205 CD

206 CE

207 CF

208 DO

209 Dl

210 D2

211 D3

212 D4

213 D5

214 D6

215 D7

216 D8

217 D9

218 DA

219 DB

220 DC

221 DD

222 DE

223 DF

L

.L

Ii'
:!!:

JL
lr
:!:
II

If
lL

If

* =f

r
I
•
I
I
•

Dec Hex Char

224 EO

225 E1

226 E2

227 E3

228 E4

229 E5

230 E6

231 E7

232 E8

233 E9

234 EA

235 EB

236 EC

ex
B
r
IT

I
a
J1
T

cJ>

()

o
o
00

237 ED ifJ
238 EE

239 EF

240 FO

241 F1

242 F2

243 F3

244 F4

245 F5

246 F6

247 F7

248 F8

249 F9

250 FA

251 FB

252 FC

253 FD

254 FE

255 FF

E

n

±

r
J

n

2

•

279

280 Programmer's Reference

N

80286 code generation compiler switch 215
286 Code option 215
80x87 code option 218

A
$A compiler directive 211
Abs function 6
absolute value of an argument 6
access code passed to DOS 45
Addr function 6
address

converting to pointer 129
of object 6

Align Data command 211
aligning data 211
AndPut constant 13
AnyFile constant 43
Append procedure 6
Arc procedure 8
ArcCoordsType type 7
Archive constant 43
ArcTan function 8
arctangent of an argument 8
argument

arctangent of 8
predecessor of 129
size 176
successor of 188

arguments
command-line compiler 227
number passed 59

ASCII characters 277
aspect ratio 59

correction factor, changing 154
assembly language 216
assign buffer to text file 168
assign file name to file variable 9
Assign procedure 9

Index

D E

AssignCrt procedure 10
Assigned function 10
autoindent mode 267, 269

B
/B command-line option (TPC) 231
$B compiler directive 211
bar constants 11
Bar3D procedure 12
Bar procedure 11
BGI, Zenith Z-449 and 91
binary format 234
BINOBJ 137, 139
bit images 70
BitBlt operators 12, 130
BIX, Borland information 2 .
BkSlashFill constant 48
Black constant 22
Black text color constant 192
Blink text color constant 192
block

copy 267, 268
Borland-style 269

cut 268
delete 267, 268
extend 267

. hide and show 266
Borland-style 269

indent 267
move 267, 268

Borland-style 269
to beginning of 266
to end of 266

print 266
read from disk 267, 268
set beginning of 266

Borland-style 269
set end of 266

x

281

Borland-style 269
unindent 267
write to disk 267, 268

BlockRead procedure 13
BlockWrite procedure 14
Blue constant 22
Blue text color constant 192
Boolean evaluation

compiler switch 211
complete 211
short circuit 211

Borland, contacting 2-4
BottomText constant 99
Break procedure 15
Brown constant 22
Brown text color constant 192
buffer, assigning to text file 168
buffers, flushing 54
Build command 231
build command-line option 231
BW40 mode constant 26
BW80 mode constant 26
bytes, copying 108

c
C040 mode constant 26
C080 mode constant 26
C40 mode constant 26
C80 mode constant 26
CenterLn constant 101
CenterText constant 99
CGA25
changing directories 15
characters

, convert to uppercase 200
delete 266
filling string with 49
ordinal number of 17

ChDir procedure 15
CheckBreak variable 16
CheckEof variable 16
CheckSnow variable 16
Chr function 17
Circle procedure 17
Clear command 268
ClearDevice procedure 18
clearing the overlay buffer 116

282

ClearViewPort procedure 19
Clipboard

copy to 267
cut to 267
paste from 267, 268

ClipOff constant 19
ClipOn constant 19
clipping constants 19
clipping parameters 79
Close procedure 20
CloseDotFill constant 49
CloseGraph procedure 20
ClrEol procedure 21
ClrScr procedure 21
colors 67

background 60
changing text 192
constants 22
constants for SetRGBPalette 22
drawing 62

command-line
compiler reference 227-236
options 229-235

/B231
/D230
debug 234
/E234
/F 231
/G234
/GD234
/GP 234
/GS234
/1234
/L232
/M231
mode 230

, /0234
/Q232
switching directive defaults (/$) 229
/T 233
/U234
/V 235

command-line compiler
arguments 227
compiling and linking with 227
extended syntax 228
options 227

Programmer's Reference

286 code generation 228
align data 228
append debug information to EXE 235
Boolean evaluation 228
build all 230, 231
build all units 229
debug 234
debug information 228, 235

inEXE229
define conditional symbol 229
emulation 228
EXE & TPU directory 229, 234
find error 231
find run-time error 229
force far calls 228
I/O checking 228
include directories 229, 234
link buffer 230, 232
link buffer on disk 229
list of 228
local symbols 228, 235
make 231
make modified units 229
map file 229, 234
memory sizes 228
numeric coprocessor 228
object directories 229, 234
open parameters 228
overflow checking 228
overlay code generation 228
quiet compile 229, 230, 232
range checking 228
stack checking 228
TPL & CFG directories 229, 233
type-checked pointers 228
unit directories 229, 234
var-string checking 228

command-line parameter 59, 127
commands, editor

block operations 266
cursor movement 266
insert and delete 266

compilation, conditional 223
compiler

directives 268
$A211
$B 211

Index

change state of 229
conditional 210
$D 212, 231
$DEFINE 212, 224, 230
$E213
$ELSE 213
$ENDIF 213
$F 214
$G215
$198,216
$IFDEF 215
$IFNDEF 215
$IFOPT 215
$L 216, 217
$M 99, 106, 124,218,230
$N218
$0219,220
$P218
parameter 210
$R220
$S221
switch 209
$UNDEF 222, 224
$V222
$X214
$Y 221

error messages 237
compiling to .EXE file 231
Complete Boolean Eval option 211
CompuServe, Borland information 2
ComStr type 44
Concat function 23
concatenating strings 23
conditional

defines (command-line option) 230
symbols 224

CONFIG.SYS 121
configuration file

TPC.CFG235
Continue procedure 23
control characters 277

insert 267
copy block 267

Borland-style 269
Copy Junction 24
copy to Clipboard 267

283

copying
bytes 108
substrings 24

CopyPut constant 13
Cos function 25
cosine of an argument 25
CPU symbols 225
CreateDir procedure 25
critical errors 261
Crt unit

AssignCrt procedure 10
ClrEol procedure 21
ClrScr procedure 21
Delay procedure 27
DelLine procedure 28
GotoXY procedure 81
High Video procedure 88
InsLine procedure 93
KeyPressed function 99
LowVideo procedure 105
Norm Video procedure 111
NoSound procedure 112
ReadKey function 135
Sound procedure 176
TextBackground procedure 192
TextColor procedure 193
TextMode procedure 194
WhereX function 202
Where Y function 202
Window procedure 203

CS register value 26
CSeg function 26
cursor position

reading 202
setting 81

cursor through tabs 267, 269
customer assistance 2-4
cut to Clipboard 267
Cyan constant 22
Cyan text color constant 192

D
/D command-line option 230
$D compiler directive 212, 231
DarkGray constant 22
DarkGray text color constant 192
DashedLn constant 101

284

data alignment 211
date and time procedures

GetDate 63
GetFTime 68
GetTime 78
SetDate 157
SetFTime 160
SetTime 171

DateTime type 26
Debug Information

command 212
option 212

debugging
command-line option 235
information switch 212
options, command-line 234
range-checking switch 220
run-time error messages 257
stack overflow switch 221

Dec procedure 27
DefaultFont constant 55
$DEFINE compiler directive 212, 224, 230
Delay procedure 27
delete

block 267
characters 266
lines 266
words 266

Delete procedure 27
deleting files 38
deleting substrings 27
DelLine procedure 28
DetectGraph procedure 28
devices 18

installing drivers 94
directives 275
directories 64

changing 15, 156
command-line options 233
creating 25, 108
procedures 145
searching 46,51,57

directory
current 62, 64
remove a 141, 145

Directory constant 43
DirectVideo variable 29

Programmer's Reference

DirStr type 44
DiskFree function 30
disks, space 30
DiskSize function 30
Dispose procedure 30
DOS

Pascal functions for 110
verify flag 79

setting 172
Dos unit

DiskFree function 30 .
DiskSize function 30
DosExitCode function 32
Dos Version function 32
EnvCount function 36
EnvStr function 36
Exec procedure 39
FExpand function 42
FindFirst procedure 51
FindNext procedure 52
FSearch function 57
FSplit procedure 57
GetCBreak procedure 61
GetDate procedure 63
GetEnv function 65
GetF Attr procedure 66
GetFTime procedure 68
GetIntVec procedure 71
GetTime procedure 78
GetVerify procedure 79
Intr procedure 97
Keep procedure 99
MsDos procedure 110
PackTime procedure 125
SetCBreak procedure· 155
SetFTime procedure 160
SetIntVec procedure 161
SetTime procedure 171
SetVerify 172
SwapVectors procedure 189
UnpackTime procedure 200

DosError variable 31, 39, 160
DosExitCode function 32
Dos Version function 32
DottedLn constant 101
DrawPoly procedure 32
driver constants 33

Index

drivers
active 64
maximum mode number 72

DS register value 35
DSeg function 35
dynamic variables, creating 74

E
IE command-line option 234
$E compiler directive 213
edit windows, moving cursor in 266
editing

block operations 266
deleting 268
reading and writing 268

commands
cursor movement 266
insert and delete 266

EGABlack constant 23
EGABlue constant 23
EGABrown constant 23
EGACyan constant 23
EGADarkGray constant 23
EGAGreen constant 23
EGALightBlue constant 23
EGALightCyan constant 23
EGALightGray constant 23
EGALightGreen constant 23
EGALightMagenta constant 23
EGALightRed constant 23
EGAMagenta constant 23
EGARed constant.23
EGA White constant 23
EGA Yellow constant 23
ellipse, drawing 49
Ellipse procedure 35
elliptical sector, drawing and filling 148
$ELSE compiler directive 213
EmptyFill constant 48
emulating numeric coprocessor (8087)

compiler switch 213
Emulation

command 213
option 213

end-of-file
error messages 239
status 36, 37, 149

285

end-of-line status 37, 149
$ENDIF compiler directive 213
EnvCount function 36
environment variable 66
EnvStr function 36
Eof function 36, 37
Eoln function 37
Erase procedure 38
error messages 237

fatal 261
searching 231

ErrorAdr variable 39
errors

codes for graphics operations 82, 84
messages 82
range 220

Exclude procedure 39
EXE & TPU directory command-line option 234
.EXE files, creating 231
Exec procedure 39
exit

codes 32
procedures 40
the IDE 267

ExitCode variable 41
ExitProc variable 41
Exp function 42
exponential of an argument 42
extend block 267
extended syntax 214
Extended Syntax option 214
external

declarations 216
procedure errors 243

EXTRN definition errors 244
ExtStr type 44

F
IF command-line option 231
$F compiler directive 214
far calls, forcing use of models in 214
fatal run-time errors 261
F Auxiliary constant 53
FCarry constant 53
fcDirectory constant 42
fcExtension constant 42
fcFileName constant 42

286

fcWildcards constant 42
fcXXXX constants 42
FcXXXX flag constants 48
FExpand function 42
file

expanding file names 44
open 267, 269
position 45
reading file components 135
save 267, 269
size of 47
split into components 47

file attribute constants 43
file-handling procedures

Rename 142
Reset 142
Rewrite 144
Seek 149
SetFAttr 157
Truncate 198

file-handling string types 44
file mode constants 55
file name length constants 43
file record types 46, 195
FileExpand function 44
FileMode variable 45
FilePos function 45
FileRec type 46
files

access-denied error 258
attributes 66
closing 20
creating new 144
erasing 38
.MAP234
.OBJ 234

linking with 216
opening existing 142
record definition for 197
text, record definition 199
truncating 198
untyped, variable 13, 14

FileSearch function 46
FileSize function 47
FileSplit constants 42
FileSplit function 44,47
fill pattern constants 48

Programmer's Reference

fill patterns 67
FillChar procedure 49
FillEllipse procedure 49
filling areas 53
FillPattemType type 50
FillPoly procedure 50
FillSettingsType type 51
Find Error command 231, 232
find error command-line option 231
FindFirst procedure 43, 51
FindNext procedure 52
flag constants in Dos unit 53
flag constants in WinDos unit 53
floating-point errors 262
FloodFill procedure 53
Flush procedure 54
fmClosed constant 55
fmInOut constant 55
fmInput constant 55
fmOutput constant 55
fmXXXX constants 55
font control constants 55
Font8x8 mode constant 26
Font8x8 variable 194, 195
fonts

installing 96
stroked 171

Force Far Calls
command 214
option 214

force far calls compiler switch 214
FOverflow constant 53
FParity constant 53
Frac function 55
fractions, returning 55
FreeList variable 56
FreeMeni. procedure 56
fsDirectory constant 44
FSearch function 57
fsFileName constant 44
FSign constant 53
fsPathName constant 44
FSplit procedure 43, 57
fsWildCards constant 44
FsXXXX constants 48
fsXXXX constants 43

Index

functions
discarding results 214
extended syntax and 214

FXXXX constants 53
fXXXX constants 53
FZero constant 53

G
/G command-line option 234
$G compiler directive 215
/ GD command-line option 234
GEnie, Borland information 2
GetArcCoords procedure 58
GetArgCount function 59
GetArgStr function 59
GetAspectRatio procedure -59
GetBkColor function 60
GetCBreak procedure 61
GetColor function 62
GetCurDir function 62
GetDate procedure 63
GetDefaultPalette function 63
GetDir procedure 64
GetDriverName function 64
GetEnv function 65
GetEnvVar function 66
GetF Attr procedure 43, 66
GetFillPattem procedure 67
GetFillSettings procedure 67
GetFTime procedure 68
GetGraphMode function 69
GetImage procedure 70
GetIntVec procedure 71
GetLineSettings procedure 71
GetMaxColor function 72
GetMaxMode function 72
GetMaxX function 73
GetMax Y function 74
GetMem procedure 74
GetModeName function 75
GetModeRange procedure 75
GetPalette procedure 76

IBM 8514 and 76
GetPaletteSize function 77
GetPixel function 77
GetTextSettings procedure 78
GetTime procedure 78

287

GetVerify procedure 79
GetViewSettings procedure 79
GetX function 80
Get Y function 81
GothicFont constant 55
GotoXY procedure 81
/GP command-line option 234
Graph unit

Arc procedure 8
Bar3D procedure 12
Bar procedure 11
Circle procedure 17
ClearDevice procedure 18
ClearViewPort procedure 19
CloseGraph procedure 20
DetectGraph procedure 28
DrawPoly procedure 32
Ellipse procedure 35
FillEllipse procedure 49
FillPoly procedure 50
FloodFill procedure 53
GetArcCoords procedure 58
GetAspectRatio procedure 59
GetBkColor function 60
GetColor function 62
GetDefaultPalettefunction 63
GetDriverName function 64
GetFillPattern procedure 67
GetFillSettings procedure 67
GetGraphMode function 69
GetImage procedure 70
GetLineSettings procedure 71
GetMaxColor function 72
GetMaxMode function 72
GetMaxX function 73
GetMax Y function 74
GetModeName function 75
GetModeRange procedure 75
GetPalette procedure 76
GetPaletteSize function 77
GetPixel function 77
GetTextSettings procedure 78
GetViewSettings procedure 79
GetX function 80
GetY function 81
GraphDefaults procedure 82
GraphErrorMsg function 82

288

GraphResult function 84
ImageSize function 88
InitGraph procedure 90
InstallUserDriver function 94
InstallUserFont function 96
Line procedure 100
LineRel procedure 102
LineTo procedure 103
MoveRel procedure 109
MoveTo procedure 110
OutText procedure 113
OutTextXY procedure 115
PieSlice procedure 127
PutImage procedure 130
PutPixel procedure 132
Rectangle procedure 136
RegisterBGIdriver function 137
RegisterBGIfont function 139
RestoreCrtMode procedure 143
Sector procedure 148
SetActivePage procedure 152
SetAllPalette procedure 152
SetAspectRatio procedure 154
SetBkColor procedure 155
SetColor procedure 156
SetFillPattern procedure 158
SetFillStyle procedure 159
SetGraphBufSize procedure ·160
SetGraphMode procedure 160
SetLineStyle procedure 162
SetPalette procedure 163
SetRGBPalette procedure 164
SetTextJustify procedure 169
SetTextStyle procedure 169
SetUserCharSize procedure 171
SetViewPort procedure 172
SetVisualPage procedure 173
SetWriteMode 174
TextHeight function 193
TextWidth function 196

GraphDefaults procedure 82
GraphDriver variable

IBM 8514 and 91
. GraphErrorMsg function 82

GraphFreeMemPtr variable 83
GraphGetMemPtr variable 83

Programmer's Reference

graphics
bit-image operations 130
cards 28,91
drawing operations 100, 102, 103, 127, 136,
162
drivers 90
fill operations 158, 159
mode 69, 90, 101, 102, 103
page operations 152, 173
palette operations 152, 155, 156, 163
plotting operations 132
pointer operations 110
polygons, drawing 32
resolution 59
system operations 160
text operations 113, 115, 169, 193
video mode operations 143
viewport operations 172

GraphMode procedure 90·
GraphResult function 84

error codes 84
Green constant 22
Green text color constant 192
grError constant 85
grFileNotFound constant 85
grFontNotFound constant 85
grInvalidDriver constant 85
grInvalidFont constant 85
grInvalidFontNum constant 85
grInvalidMode constant 85
grIOerror constant 85
grNoFloodMem constant 85
grNoFontMem constant 85
grNoInitGraph constant 85
grNoLoadMem constant 85
grNoScanMem constant 85
grNotDetected constant 85
grOk constant 85
grXXXX constants 85
IGS command-line option 234

H
Halt procedure 85
HatchFill constant 49
heap

end function, poiilter to 86
error function, pointer to 86

Index

free memory in 107
management sizes 218, 230
org function, pointer to 86
ptr function, pointer to 87
return memory to 30

HeapEnd variable 86
HeapError variable 86
HeapOrg variable 86
HeapPtr variable 87
Help 267

index 267
topic search 268

Hi function 87
Hidden constant 43
High function 87
high-intensity characters 88
high-order byte 87
high-order bytes

swapping 188
High Video procedure 88
HorizDir constant 55

II command-line option 234
$1 compiler directive 98,216
I/O

checking 98, 216
error-checking 216
errors 260
operation, status of last 98

1/ 0 Checking
command 216
option 216

IBM 8514
GetPalette procedure and 76
GraphDriver variable and 91
InitGraph procedure and 91
palette entries, modifying 164
SetAllPalette procedure and 153
SetPalette procedure and 163

. $IFDEF compiler directive 215
$IFNDEF compiler directive 215
$IFOPT compiler directive 215
ImageSize function 88
Inc procedure 89
Include directories command-line option 216,

'234

289

Include files 216
nesting 216

include files 234
Include procedure 90
indent block 267
InitGraph procedure 90

SetGraphMode and 160
InOutRes variable 92
input file, name of standard 92
Input variable 92
insert

lines 266
mode 266
substring into a string 93

Insert procedure 93
inserting lines 93
InsLine procedure 93
InstallUserDriver function 94
InstallUserFont function 96
Int function 97
integer part of argument 97
InterleaveFill constant 49
interrupt

procedures 161
vectors 71 .

swapping 189
Intr procedure 97
invalid typecasting errors 245
IOResult function 98

J
justification, font 78
justification constants 99

K
Keep procedure 99
keyboard operations 99, 135
KeyPressed function 99

L
IL command-line option 232
$L compiler directive 216, 217
LastMode variable 100
LeftText constant 99
Length function 100
length of file name string 43

290

LightBlue constant 22
LightBlue text color constant 192·
LightCyan constant 22
LightCyan text color constant 192
LightGray constant 22
LightGray text color constant 192
LightGreen constant 22
LightGreen text color constant 192
LightMagenta constant 22
LightMagenta text color constant 192
LightRed constant 22
LightRed text color constant 192
line

drawing, setting writing mode for 174 .
mark a 266
settings 71

Line procedure 100
line style constants 101
LineFill constant 48
LineRel procedure 102
lines

delete 266
insert 266

LineSettingsType type 103
LineTo procedure 103
Link Buffer option 232
linking

buffer option 232
object files 216

Ln function 104
Lo function 104
local symbol information switch 217
Local Symbols

command 217
option 217

logarithm, natural 104
Low function 104
low-order bytes 104

swapping 188 .
LowVideo procedure 105
Lst variable 106
LtBkSlashFill constant 48
LtSlashFill constant 48

M
1M command-line option 231
$M compiler directive 99, ·106, 124,218,230

Programmer's Reference

Magenta constant 22
Magenta text color constant 192
Make command 231
make command-line option 231
map file command-line option 234
.MAP files 234
marker

find 267, 269
set 268,270

MaxAvail function 106
MaxColors constant 107
MemAvail function 107
memory 74

allocation 230
compiler directive 218

block, size of largest 106
error messages 238
free amount of 107
freeing 30, 56
size 218

MkDir procedure 108
mode constants, video 33
Mono mode constant 26
move block 267
Move procedure 108
MoveRel procedure 109
MoveTo procedure 110
MsDos procedure 110
MSDOS symbols 225

N
$N compiler directive 218
NameStr type 44
nesting files 216
New procedure 111

extended syntax, constructor passed as
parameter 111

Norm Video procedure 111
NormWidth constant 102
NoSound procedure 112
NotPut constant 13
null-terminated strings, compiler directive 214
number, random 132
numeric coprocessor, compiler'switch 218
numeric value, convert to string 178

Index

o
/0 command-line option 234
$0 compiler directive 219, 220
.OBJ files 234

linking with 216
object

directories, compiler directive 216
files, linking with 216
segment of 150

object directories command-line option 234
Odd function 112
odd number 112
offset of an object 112
Ofs function 112
online information services 2
Open a File dialog box 269
Open command 269
open file 267, 269
open string parameters compiler switch 218
Optimal Fill option 267, 269
Ord function 112
ordinal number of a character 17
ordinal value, of expression 112
OrPut constant 13
out-of-memory errors 238
output file, name of standard 113
Output variable 113
OutText procedure 113
OutTextXYprocedure 115
overflow checking 219
overlay buffers

clearing 116
returning size 118
setting size 123

Overlay unit
, OvrClearBuf procedure 116

OvrGetBuf function 118
OvrGetRetry function 118
OvrInit procedure 120
OvrInitEMS procedure 121
OvrSetBuf procedure 123
OvrSetRetry procedure 124

overlay unit name 220
overlays

code generation, compiler switch 219
files

loading into EMS 121

291

opening 120
manager, initializing. 120

Overlays Allowed
command 219, 220
option 219

OvrClearBuf procedure 116
OvrCodeList variable 116
OvrDebugPtr variable 117
OvrdosHandle variable 117
OvrEmsHandle variable 117
OvrFileMode variable 118
OvrGetBuf function 118
OvrGetRetry function 118
OvrHeapEnd variable 119
OvrHeapOrg variable 119
OvrHeapPtr variable 120
OvrHeapSize variable 120
OvrInit procedure 120
OvrInitEMS procedure 121
ovrIOError constant 125
OvrLoadCount variable 122
OvrLoadList variable 122
ovrNoEMSDriver constant 125
ovrNoEMSMemory constant 125
ovrNoMemory constant 125
ovrNotFound constant 125
ovrOk constant 125
OvrReadBuf variable 123
OvrResult variable 123
OvrSetBuf procedure 123
OvrSetRetry procedure 124
OvrTrapCount variable 125
ovrXXXX constants 125

p
$P compiler directive 218
PackTime procedure 125
pair matching 267
palette

color lookup table, returning size 77
definition record 63

PaletteType type 126
ParamCount function 126
parameters

command-line 59, 127
number of 126

292

number passed 59
ParamStr function 127
paste from Clipboard 267, 268
PathStr type 44
Pi function 127
PieSlice procedure 127
pixel values 77
place marker

find 267, 269
set 268, 270

PointType type 128
polygons, drawing 32
Pos function 128
Pred function 129
PrefixSeg variable 129
Printer unit, Lst variable 106
process-handling routines 99
Program Segment Prefix, address of 129
programs

execution, stopping 146
halting 85
rebuilding 231

Ptr function 129
PUBLIC definition errors 244
Putlmage procedure 130
PutPixel procedure 132

Q
/ Q command-line option 232
quiet mode command-line option 232

R
$R compiler directive 220
Random function 132
random generator

initialize 133
seed 133

random number 132
Randomize procedure 133
RandSeed variable 133
Range Checking

command 220
option 220

range checking 229
compiler switch 220
Val and 201

Programmer's Reference

read
a line 136
block 267
file component 135
records into a variable 13
t~xt file 133

Read procedure
text files 133
typed files 135

ReadKey function 135
Readln procedure 136
ReadOnly constant 43
Rectangle procedure 136
Red constant 22
Red text color constant 192
referencing errors 252
RegisterBGIdriver function 137
Register BGIfont function 139
registers, CS 26
Registers type 141
regular expressions

searching 270
wildcards 270

relaxed string parameter checking 222
relocatable reference .errors 244
RemoveDir procedure 141
Rename procedure 142
Reset procedure 142
resolution, graphics 59
RestoreCrtMode procedure 143
results, discarding 214
return flags for FileSplit constants 42
Rewrite procedure 144
RightText constant 99
RmDir procedure 145
Round function 145
run-time errors 257

, address of 39
fatal 261
Find Error command and 231
finding 231
generating 146

RunError procedure 146

5
$S compiler directive 221
SansSerifFont constant 55

Index

save file 267, 269
SaveIntOO variable 146
SaveInt02 variable 146
SaveInt21 variable 146
SaveInt23 variable 146
SaveInt24 variable 146
SaveInt34 variable 146
SaveInt35 variable 146
SaveInt36 variable 146
SaveInt37 variable 146
SaveInt38 variable 146
SaveInt39 variable 146
SaveInt75 variable 147
SaveInt3A variable 146
SaveIntlB variable 146
SaveInt3B variable 147
SaveInt3C variable 147
SaveInt3D variable 147
SaveInt3E variable 147
SaveInt3F variable 147
SaveIntXX variables 146
search for text 267
searching

directories 51
run-time error messages 231

SearchRec type 147
Sector procedure 148
Seek procedure 149
SeekEof function 149
SeekEoln function 149
Seg0040 variable 150
Seg function 150
SegAOOO variable 150
SegBOOO variable 151
SegB800 variable 151
segment of object 150
SelectorInc variable 151
SetActivePage procedure 152
SetAllPalette procedure 152

IBM 8514 and 153
SetAspectRatio procedure 154
SetBkColor procedure 155
SetCBreak procedure 155
SetColor procedure 156
SetCurDir procedure 156
SetDate procedure 157
SetF Attr procedure 43, 157

293

SetFillPattern procedure 158
SetFillStyle procedure 159
SetFTime procedure 160
SetGraphBufSize procedure 160
SetGraphMode procedure 160
SetIntVec procedure 161
SetLineStyle procedure 162
SetPalette procedure 163

IBM 8514 and 163
SetRGBPalette procedure 164
SetTextBuf procedure 168
SetTextJustify procedure 169
SetTextStyle procedure 169

OutText and 113
OutTextXYand 115

SetTime procedure 171
SetU serCharSize procedure 171,
SetVerify procedure 172
SetViewPort procedure 172
SetVisualPage procedure 173
SetWriteMode procedure 174
short-circuit Boolean evaluation 211
Sin function 175
sine of argument 175
size

free memory in heap 107
largest free block in heap 106
of argument 176

SizeOf function 49, 176
SlashFill constant 48
SmallFont constant 55
software interrupts 97
SolidFill constant 48
SolidLn constant 101
sound operations

NoSound 112
Sound 176

Sound procedure 176
source debugging compiler switch 212
SP register, value of, 177
SPtr function 177
Sqr function 177
Sqrt function 177
square of argument 177
square root of argument 177
SS register, value of 177
SSeg function 177

294

stack
checking switch directive 221
overflow, switch directive 221
size 218

Stack Checking
command 221
option 221

Str procedure 178
StrCat function 178
StrComp function 179
StrCopy function 179
Str Dispose function 180
StrECopy function 180
Str End function 181
StrIComp function 181
strict string parameter checking 222
string

convert to 178
convert to number 201
first occurrence of 186
first occurrence of character in 187
last occurrence of character in 187
length of 1 ~O, 183
point to end of 181

String Var Checking
command 222
option 222

strings
allocating on heap 185
appending 178, 181
comparing 179

up to maximum length 182
without case sensitivity 181, 183

comparing up to maximum length 183
concatenation of 23
converting null-terminated 185
converting to lowercase 184
converting to uppercase 188
copying 179, 180, 186
copying characters 182, 184
deleting 27
disposing of 180
initializing 49
length byte 49
null-terminated 214
relaxed parameter checking of 222
strict parameter checking of 222

Programmer's Reference

StrLCat function 181
StrLComp function 182
Str LCopy function 182
Str Len function 183
StrLIComp function 183
StrLower function 184
StrMove function 184
StrNew function 185
stroked fonts 171
Str Pas function 185
StrPCopy function 186
StrPos function 186
StrRScan function 187
StrScan function 187
StrUpper function 188
subdirectory, create a 108
substrings

copying 24
deleting 27
inserting 93
position of 128

Succ function 188
support, technical 2-4
Swap function 188
swapping bytes 188
SwapVectors procedure 189
switch compiler directives 209
symbol reference, compiler switch 221
symbols

conditional 224
CPU 225
local information 217

syntax, extended 214
SysFile constant 43

T
IT command-line option 233
Tab mode 270
Tabs mode 268
TDateTime type in WinDos unit 189
technical support 2-4
terminating a program 40

cause of 41
with exit procedure 41

terminating program 85
Test8086 type in System unit 190
Test8087 variable 190

Index

text attribute variable 191
text attributes 78
text color constants 192
text file, reading from 133
text file record definition 199
text files 36
TextAttr variable

ClrEol and 21
ClrScr and 21
High Video and 88
LowVideo and 105
Norm Video and 111
TextBackground and 192
TextColor and 193

TextBackground procedure 192
TextColor procedure 193
TextHeight function 193
TextMode procedure 194
TextRec type 46, 195
TextSettingsType type 196
TextWidth function 196
TFileRec file record type in WinDos unit 197
ThickWidth constant 102
time procedures

GetFTime 68
GetTime 78
SetFTime 160
SetTime 171

Topic search in Help 268
TopOff constant 11
TopOn constant 11
TopText constant 99
TPC.CFG file 233, 235

sample 236
TPL & CFG directory command-line option 233
trapping I/O errors 216
TRegisters type 198
TriplexFont constant 55
Trunc function 198
truncate a value 198
Truncate procedure 198
TSearchRec type 199
TTextRec file record type 199
TURBO.TPL 233, 234
type checking, strings and 222
typecasting, invalid 245
TypeOf function 200

295

types
file record 46, 195
mismatches, error messages 241

U
IU command-line option 234
$UNDEF compiler directive 222, 224
undo 268
unindent

block 267
mode 268, 270

Unit Directories option 234
units, version mismatch errors 246
UnpackTime procedure 200
untyped files, variable 13, 14
UpCase function 200
UserBitLn constant 102
UserCharSize constant 55
UserFill constant 49

V
IV command-line option 235
$V compiler directive 222
Val procedure 201
var, string checking, compiler switch 222
variable

decrementing a 27
environment 66

variables
disposing of 30, 56
DosError 39, 52, 66, 68, 160
dynamic, creating 74, 111
incrementing 89
untyped file 13, 14

VER70 symbol 225
VertDir constant 55
VGA

driver, modifying palette entries for 164
modes, emulated 91

VGAHi 69
VGALo 69
VGAMed 69
video mode constants 33
video operations

AssignCrt 10
CirEol21

296

ClrScr 21
DelLine procedure 28
GotoXY 81
High Video 88
InsLine 93
LowVideo 105
Norm Video 111
RestoreCrtMode 143
TextBackground 192
TextColor 193
WhereX202
WhereY 202
Window 203
Write (text) 204
Write (typed) 206
Writeln206

viewports 19
parameter 79

ViewPortType type 202
VMT, pointer to a 200
VolumeID constant 43

W
WhereX function 202
Where Y function 202
White constant 22
White text color constant 192
WideDotFill constant 49
WindMax and WindMin variables 203
WinDos unit

DiskFree function 30
DiskSize function 30
GetCBreak procedure 61
GetDate procedure 63
GetFAttr procedure 66
GetFTime procedure 68
GetIntVec procedure 71
GetTime procedure 78
GetVerify procedure 79
Intr procedure 97
MsDos procedure 110
PackTime procedure 125
SetCBreak procedure 155
SetFTime procedure 160
SetIntVec procedure 161
SetTime procedure 171
SetVerify 172

Programmer's Reference

UnpackTime procedure 200
Window procedure 203
word

delete 266
mark 266

write block 267
Write procedure

text files 204
typed files 206

write records from a variable 14
Writeln procedure 206

Index

x
$X compiler directive 214
XHatchFill constant 49
XORPut constant 13

y
$Y compiler directive 221
Yellow constant 22
Yellow text color constant 192

Z
Zenith Z-449, BGI and 91

297

7.0

B o R L A N D
Corporate Headquarters: 1800 Green Hills Road , P.O. Box 660001 , Scotts Valley, CA 95067-0001 , (408) 438-8400. Offices in: Australia,
Belgium, Canada, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Malaysia, Netherlands, New Zealand , Singapore, Spain,
Sweden, Taiwan, and United Kingdom · Part #11 MN-TPL03-70 • BOR 4681

