
BORLAND

Turbo PascafBJ
Version 6.0

Turbo Vision Guide

BORLAND INTERNATIONAL INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, scons VALLEY, CA 95067-0001

R2

Copyright © 1990 by Borland International. All rights reserved. All
Borland products are trademarks or registered trademarks of
Borland International, Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.

PRINTED IN THE USA.
10 9 8 7 6 5 4 3 2 1

c o N T

Introduction 1
Why Turbo Vision? 1
What is Turbo Vision? 1
What you need to know 2
What's in this book? 2

Part 1 Learning Turbo Vision

Chapter 1 Inheriting the wheel 7
The framework of a windowing
application .. 7
A new Vision of application development. 8
The elements of a Turbo Vision
application .. 9

Naming of parts 9
Views 9
Events 9
Mute objects. 10

A common "look and feel" 10
"Hello, World!" Turbo Vision style 12

Running HELLO.P AS 13
Pulling down a menu. 14
A dialog box 15
Buttons 15
Getting out 16

Inside HELLO.PAS 16
The application object 17
The dialog box object 18
Flow of execution and debugging 19
HELLO's main program. 19
The Init method 20
The Run method 20
The Done method 21

Summary 21

E N T s

Chapter 2 Writing Turbo Vision
applications 23

Your first Turbo Vision application 23
The desktop, menu bar, and status line .. 25

The desktop .. 26
The status line .. 26

Creating new commands. 27
The menu bar 28
A note on structure 30

Opening a window. 31
Standard window equipment 31
Window initialization 33

The Insert method 33
Closing a window. 34

Window behavior 34
Look through any window 35
What do you see? 37

A better way to Write. 38
A simple file viewer 38

Reading a text file 39
Buffered drawing 40

The draw buffer 40
Moving text into a buffer 41
Writing buffer contents 41
Knowing how much to write 42

Scrolling up and down 42
Multiple views in a window 45
Where to put the functionality 46

Making a dialog box. 47
Executing a modal dialog box 49
Taking control 50

Button, button... 50
Normal and default buttons 52
Focused controls 52

Take your pick 53

Creating a cluster 53
Check box values 53
One more cluster. 54

Labeling the controls 55
The input line object. 55
Setting and getting data 56
Shortcut keys and conflicts 59
Ending the dialog box 61

Other dialog box controls 61
Static text 61
List viewer 61
List box 61
History 62

Standard dialog boxes 62

Part 2 Programming Turbo Vision

Chapter 3 The object hierarchy 65
Object typology 67

Abstract objects 67
Abstract methods 68

Object instantiations and derivations ... 68
Instantiation 68
Derivation 69

Turbo Vision methods 69
Abstract methods 69
Pseudo-abstract methods 70
Virtual methods 70
Static methods .. 70

Turbo Vision fields 70
Primitive object types 71

TPoint 72
TRect 72
TObject 72

Views 72
Views overview 73
Groups 73

The abstract group 73
Desktops 74
Programs 74
Applications 74
Windows 74
Dialog boxes 74

Terminal views 75

ii

Frames 75
Buttons 75
Clusters 75
Menus 75
Histories .. 76
Input lines 76
List viewers 76
Scrolling objects 76
Text devices 77
Static text 77
Status lines .. 78

Non-visible elements ' 78
Streams 78

DOS streams 79
Buffered streams 79
EMS streams 79

Resources .. 79
Collections .. 79

Sorted collections 80
String collections 80
Resource collections 80

String lists 80

Chapter 4 Views 81
"We have taken control of your TV ... " .. 81
Simple view objects 82

Setting your sights 82
Getting the TPoint 83
Getting into a TRect 83
Turbo Vision coordinates 84

Making an appearance. 84
Territoriality 85
Drawing on demand 85

Putting on your best behavior 85
Complex views 86

Groups and subviews 86
Getting into a group 87

Another angle on Z-order 88
Group portraits 89
Relationships between views 90

The object hierarchy 91
Ownership .. 91

Sub views and view trees 92

Selected and focused views 95
Finding the focused view 96
How does a view get the focus? 96
The focus chain 97

Modal views 97
Modifying default behavior 98

The Options flag word 98
of Selectable 99
ofTopSelect 99
ofFirstClick 99
ofFramed 99
ofpreProcess 99
ofpostProcess 99
ofBuffered 100
ofTileable 100
of Center X .. 100
ofCenterY .. 100
of Centered .. 101

The GrowMode flag byte 101
gfGrowLoX 101
gfGrowLo Y 101
gfGrowHiX 101
gfGrowHiY 101
gfGrow All 101
gfGrowRel 101

The DragMode flag byte 102
dmDragMove 102
dmDragGrow 102
dmLimitLoX 102
dmLimitLo Y 102
dmLimitHiX 102
dmLimitHiY 102
dmLimitAll 102

State flag and SetState 102
Acting on a state change 103

What color is your view? 104
Color palettes 105
Inside color palettes 105
The GetColor method 106
Overriding the default colors 107
Adding new colors 108

iii

Chapter 5 Event-driven
programming 109

Bringing Turbo Vision to life 109
Reading the user's input 109

The nature of events 111
Kinds of events 111

Mouse events 112
Keyboard events 112
Message events 112
"Nothing" events 112

Events and commands 113
Routing of events 113

Where do events come from? 113
Where do events go? 114

Positional events 114
Focused events 115
Broadcast events 115
User-defined events 116

Masking events 116
Phase 116

The Phase field 118
Commands 119

Defining commands 119
Binding commands 120
Enabling and disabling commands .. 120

Handling events 121
The event record 122

Clearing events 123
Abandoned events 123

Modifying the event mechanism 124
Centralized event gathering 124
Overriding GetEvent. 125
Using idle time 125

Inter-view communication 126
Intermediaries 126
Messages among views 127
Who handled the broadcast? 128

Is anyone out there? 128
Who's on top? 129

Calling HandleEvent 129
Help context 130

Chapter 6 Writing safe programs 131
All or nothing programming 131
. The safety pool 132

The ValidView method 133
Non-memory errors 134

Reporting errors 135
Major consumers 135

Chapter 7 Collections 137
Collection objects 138

Collections are dynamically sized ... 138
Collections are polymorphic 138
Type checking and collections 138

Collecting non-objects 139
Creating a collection. 139
Itera tor methods 141

The ForEach iterator 141
The FirstThat and LastThat iterators 142

Sorted collections 143
String collections 144

Iterators revisited 145
Finding an item 146

Polymorphic collections 146
Collections and memory management 149

Chapter 8 Streams 151
The question: Object I/O 152
The answer: Streams 152

Streams are polymorphic. 152
Streams handle objects 153

Essential stream usage 153
Setting up a stream 154
Reading and writing a stream 154

Putting it on 155
Getting it back 155
In case of error 156

Shutting down the stream 156
Making objects streamable 156

Load and Store methods 156
Stream registration 157

Object ID numbers 158
The automatic fields 158

Register here 159
Registering standard objects 159

iv

The stream mechanism 159
The Put process 159
The Get process 160
Handling nil object pointers 160

Collections on streams: A complete
example 160

Adding Store methods. , 161
Registration records 162
Registering .. 163
Writing to the stream 163

Who gets to store things? 164
Subview instances 164
Peer view instances 165

Storing and loading the desktop 166
Copying a stream 167
Random-access streams 167
Non-objects on streams 168
Designing your own streams 168

Stream error handling 168

Chapter 9 Resources 169
Why use resources? 169
What's in a resource? 170
Creating a resource 171
Reading a resource 172
String lists 173

Making string lists 174

Chapter 10 Hints and tips 175
Debugging Turbo Vision applications 175

It doesn't get there 176
Hiding behind a mask 176
Stolen events 176
Blame your parents 177

It doesn't do what I expect 177
It hangs .. 177

Porting applications to Turbo Vision ... 178
Scavenge your old code. 178
Rethink your organization 179

Using bitmapped fields 180
Flag values. .. 180
Bit masks 180
Bitwise operations 181

Setting a bit 181

Clearing a bit 181
Checking bits 182
Using masks 182

Summary 182

Part 3 Turbo Vision Reference

Chapter 11 How to use the
reference 185

How to find what you want 185
Objects in general 186
Naming conventions 186

Chapter 12 Unit cross reference 189
The Objects unit 189

Types 190
Type conversion records 190
Objects unit types 190

Constants .. 190
Stream access modes 190
Stream error codes 190
Maximum collection size 191
Collection error codes 191

Variables 191
Procedures and functions 191

The Views unit 192
Types 192
Constants .. 192

TView State masks 192
Views unit constants 193
TView Option masks 193
TView GrowMode masks 193
TView DragMode masks. 193
Scroll bar part codes 194
Window flag masks 194
TWindow palette entries 194
Standard view commands 194

Variables 194
Function .. 195

The Dialogs unit 195
Types 195
Constants .. 195

Button flags 195
Procedures and functions 196

v

The App unit .. 196
Types 196
Variables 196

The Menus unit .. 197
Types 197
Procedures and functions 197

TMenuItem functions 197
TMenu routines 197
TStatusLine functions 197

The Drivers unit 198
Types 198
Constants 198

Mouse button state masks 198
Event codes 198
Event masks 198
Keyboard state and shift masks ... 199
Standard command codes 199
TDialog standard commands 199
Screen modes. 199

Variables 200
Initialized variables 200
UninitiaIized variables 200
System error handler variables 200

Procedures and functions 201
Event manager procedures 201
Screen manager procedures 201
Default system error handler
function 201
System error handler procedures .. 201
Keyboard support functions 201
String formatting procedure 201
Buffer move procedures 202
String length function 202
Driver initialization 202

The TextView unit 202
Types _ 202
Procedure. .. 202

The Memory unit 202
Variables 203
Procedures and functions 203

The HistList unit 203
Variables 203
Procedures and functions 204

Chapter 13 Object reference 205
TSample object 206

Fields 206
Methods 206

TApplication 207
Methods .. 207

TBackground .. 208
Field 208
Methods .. 208
Palette .. 209

TBufStream 209
Fields 210
Methods .. 210

TButton 212
Fields 212
Methods .. 213
Palette 215

TCheckBoxes 215
Fields 215
Methods 216
Palette. .. 216

TCluster 217
Fields 217
Methods 218
Palette .. 220

TCollection 221
Fields 221
Methods .. 222

TDeskTop .. 227
Methods 227

TDialog .. 228
Methods 229
Palette .. 229

TDosStream .. 230
Fields 231
Methods 231

TEmsStream 232
Fields 232
Methods 233

TFrame 234
Methods 234
Palette .. 235

TGroup 235

vi

Fields 236
Methods .. 237

THistory .. 244
Fields 244
Methods .. 245
Palette .. 245

THistoryViewer 246
Field· 246
Methods .. 246
Palette .. 247

THistoryWindow 247
Field 247
Methods .. 247
Palette .. 248

TInputLine .. 248
Fields 249
Methods .. 250
Palette .. 252

TLabel 253
Fields 253
Methods .. 253
Palette .. 254

TListBox .. 255
Field 255
Methods .. 256
Palette .. 257

TListViewer .. 258
Fields 258
Methods .. 259
Palette. .. 261

TMenuBar 262
Methods .. 262
Palette .. 263

TMenuBox .. 263
Methods .. 263
Palette 264

TMenu View. .. 264
Fields 265
Methods .. 265
Palette .. 267

TObject 267
Methods .. 267

TParamText 268

Fields 268
Methods .. 268
Palette .. 269

TPoint 269
Fields 269

fProgram .. 270
Methods .. 270
Palettes .. 274

TRadioButtons 276
Methods .. 277
Palette .. 277

TRect 278
Fields 278
Methods .. 278

TResourceCollection 279
TResourceFile 279

Fields 280
Methods .. 280

TScrollBar 282
Fields 282
Methods .. 283
Palette .. 286

TScroller 286
Fields 286
Methods .. 287
Palette .. 288

TSortedCollection 289
Methods .. 289

TStaticText 290
Field 291
Methods .. 291
Palette .. 292

TSta tusLine 292
Fields 293
Methods .. 293
Palette .. 294

TStream 295
Fields 295
Methods .. 296

TStringCollection 298
Methods .. 299

TStringList 299
Methods .. 300

TStrListMaker
Methods

TTerminal
Fields
Methods
Palette

TTextDevice
Methods
Palette

TView
Fields
Methods

TWindow
Fields
Methods
Palette

Chapter 14 Global reference
Sample procedure '.' ..
Abstract procedure
Application variable
AppPalette variable
apXXXX constants
AssignDevice procedure
bfXXXX constants
ButtonCount variable
CheckSnow variable
ClearHistory procedure
ClearScreen procedure
cmXXXX constants
coXXXX constants
CStrLen function
CtrlBreakHit variable
CtrlToArrow function
CursorLines variable
DeskTop variable
DisposeMenu procedure
DisposeStr procedure
dmXXXX constants
DoneEvents procedure
DoneHistory procedure
DoneMemory procedure
DoneSysError procedure

vii

300
301
302
302
303
304
305
305
305
306
306
309
321
322
322
325

327
327
328
328
328
329
329
329
330
330
330
331
331
334
334
335
335
336
336
336
336
337
337
338
338
338

DoneVideo procedure 338
DoubleDelay variable 339
EmsCurHandle variable 339
EmsCurPage variable. 339
evXXXX constants 340
FN ameStr type 341
FocusedEvents variable 341
FormatStr procedure 341
FreeBufMem procedure 343
GetAltChar function 343
GetAltCode function 343
GetBufMem procedure 344
GetKeyEvent ptocedure 344
GetMouseEvent procedure 345
gfXXXX constants 345
hcXXXX constants 346
HideMouse procedure 347
HiResScreen variable 347
HistoryAdd procedure 347
History Block variable 347
HistoryCount function 348
HistorySize variable 348
HistoryStr function 348
HistoryUsed variable 348
InitEvents procedure 349
InitHistory procedure 349
InitMemory procedure 349
InitSysError procedure 349
InitVideo procedure 350
kbXXXX constants 350
LongDiv function 352
LongMul function. 353
LongRec type. .. 353
LowMemory function 353
LowMemSize variable 353
MaxBufMem variable 354
MaxCollectionSize variable 354
MaxViewWidth constant. 354
mbXXXX constants 354
MemAlloc function. 355
MemAllocSeg function 355
MenuBar variable 355
Message function 356

viii

Min WinSize variable 356
MouseButtons variable 356
MouseEvents variable 357
MouselntFlag variable 357
MouseWhere variable 357
MoveBuf procedure 357
MoveChar procedure 358
MoveCStr procedure 358
MoveStr procedure. 358
N ewItem function 359
NewLine function. 359
N ewMenu function 359
N ewSItem function 360
NewStatusDef function 360
NewStatusKey function 360
NewStr function 361
NewSubMenu function 361
of XXX X constants 361
PChar type. .. 363
PositionalEvents variable 363
PrintStr procedure 363
PString type .. 364
PtrRec type 364
RegisterDialogs procedure 364
Registertype procedure 364
RepeatDelay variable 365
SaveCtrlBreak variable 365
sbXXXX constants 365
ScreenBuffer variable 366
ScreenHeight variable 366
ScreenMode variable 367
Screen Width variable 367
SelectMode type 367
SetMemTop procedure 367
SetVideoMode procedure 368
sfXXXX constants. 368
Shadow Attr variable 370
ShadowSize variable 370
ShowMarkers variable 370
ShowMouse procedure 371
smXXXX constants 371
SpecialChars variable 371
stXXXX constants 372

StartupMode variable 372
StatusLine variable 373
StreamError variable 373
SysColorAttr variable 373
SysErrActive variable.· 374
SysErrorFunc variable 374
SysMonoAttr variable 374
SystemError function 375
TByteArray type 375
TCommandSet type 376
TDrawBuffer type. 376
TEvent type 376
TItemList type .. 377
TMenu type .. 377
TMenuItem type 378
TMenuStr type : 379
TPalette type 379

ix

TScrollChars type 379
TSItem type .. 379
TStatusDef type 380
TStatusItem type 380
TStreamRec type 381
TStrIndex type 382
TStrlndexRec type 382
TSysErrorFunc type 382
TT erminalBuffer type. 383
TTitleStr type. .. 383
TVideoBuf type .. 383
TWordArray type 383
wfXXXX constants 383
wnNoNumber constant. 384
WordRec type 384
wpXXXX constants 385

Index 387

T A B L E s

2.1: Data for dialog box controls 58 14.16: Special key codes 351
3.1: Inheritance of view fields 71 14.17: Alt-number key codes 351
5.1: Turbo Vision command ranges 120 14.18: Function key codes 352
11.1: Turbo Vision constant prefixes 187 14.19: Shift-function key codes 352
12.1: Turbo Vision units 189 14.20: Ctrl-function key codes 352
13.1: Stream error codes 295 14.21: Alt-function key codes 352
14.1: Application palette constants 329 14.22: Mouse button constants 354
14.2: Button flags 329
14.3: Standard command codes 331

14.23: Option flags 361
14.24: Scroll bar part constants 365

14.4: Dialog box standard commands ... 332 14.25: StandardScrollBar constants 366
14.5: Standard view commands 333 14.26: State flag constants 368
14.6: Collection error codes 334 14.27: Screen mode constants 371
14.7: Control-key mappings 335 14.28: Stream access modes 372
14.8: Drag mode constants 337 14.29: Stream error codes 372
14.9: Standard event flags 340 14.30: System error function codes 374
14.1 0: Standard event masks 340 14.31: System error function return
14.11: Format specifiers and their results .342 values 374
14.12: Grow mode flag definitions 346 14.32: SystemError function messages .. 375
14.13: Help context constants 346 14.33: Stream record fields 381
14.14: Keyboard state and shift masks ... 350 14.34: Window flag constants 384
14.15: Alt-letter key codes 351 14.35: Standard window palettes 385

x

F G u R E s

1.1: Turbo Vision objects onscreen 11 4.8: Basic Turbo Vision view tree 92
1.2: The HELLO.PAS startup screen 13 4.9: Desktop with file viewer added 93
1.3: The HELLO.P AS Hi menu 14 4.10: View tree with file viewer added ... 93
1.4: The Hello World! dialog box 15 4.11: Desktop with file viewer added 94
2.1: Default TApplication screen 25 4.12: View tree with two file viewers
2.2: TVGUID04 with multiple windows added 94

open 35 4.13: The focus chain 96
2.3: TVGUID05 with open window 37 4.14: Options bit flags 99
2.4: Multiple file views 41 4.15: GrowMode bit flags 101
2.5: File viewer with scrolling interior 44 4.16: DragMode bit flags 102
2.6: Window with multiple panes 46 4.17: State flag bit mapping 103
2.7: Simple dialog box 49 4.18: TScroller's default color palette 105
2.8: Dialog box with buttons 51 4.19: Mapping a scroller's palette onto a
2.9: Dialog box with labeled clusters window 106

added 55 5.1: TEvent. What field bit mapping 112
2.10: Dialog box with input line added ... 56 13.1: GrowMode bit mapping 307
2.11: Dialog box with initial values set ... 59 13.2: DragMode bit mapping 307
3.1: Turbo Vision object hierarchy 66 13.3: Options bit flags 308
4.1: Turbo Vision coordinate system 84 14.1: Drag mode bit flags 337
4.2: TApplication screen layout 87 14.2: Event mask bit mapping 340
4.3: Side view of a text viewer window ... 88 14.3: Grow mode bit mapping 345
4.4: Side view of the desktop 89 14.4: Options bit flags 363
4.5: A simple dialog box 90 14.5: Scroll bar parts 366
4.6: Turbo Vision object hierarchy 91 14.6: State flag bit mapping 369
4.7: A simple dialog box's view tree 91

xi

N T R o D u c T o N

This volume contains complete documentation for Turbo Vision, a
whole new way of looking at application development. We
describe not only what Turbo Vision can do and how, but also why.
If you take the time to understand the underlying principles of
Turbo Vision, you will find it a rewarding, time-saving, and
productive tool: You can build sophisticated, consistent
interactive applications in less time than you thought possible.

Why Turbo Vision?

After creating a number of programs with windows, dialogs,
menus, and mouse support at Borland, we decided to package all
that functionality into a reusable set of tools. Object-oriented
programming gave us the vehicle, and Turbo Vision is the result.

Does it work? You bet! We used Turbo Vision to write the new
integrated development environment for Turbo Pascal in a
fraction of the time it would have taken to write it from scratch.
Now you can use these same tools to write your own applications.

With Turbo Vision and object-oriented programming, you don't
have to reinvent the wheel-you can inherit ours!

If you write character-based applications that need a high
performance, flexible, and consistent interactive user interface,
Turbo Vision is for you.

What is Turbo Vision?

Introduction

Turbo Vision is an object-oriented application framework for
windowing programs. We created Turbo Vision to save you from

endlessly recreating the basic platform on which you build your
application programs.

Turbo Vision is a complete object-oriented library, including:

• Multiple, resizeable, overlapping windows

• Pull-down menus

• Mouse support

• Dialog boxes
• Built-in color installation

• Buttons, scroll bars, input boxes, check boxes and radio buttons

• Standard handling of keystrokes and mouse clicks
• And more!

Using Turbo Vision, all your applications can have this state-of
the-art look and feel, with very little effort on your part.

What you need to know

You need to be pretty comfortable with object-oriented
programming in order to use Turbo Vision. Applications written
in Turbo Vision make extensive use of object-oriented techniques,
including inheritance and polymorphism. These topics are
covered in Chapter 4, "Object-oriented programming," in the
User's Guide.

In addition to object-oriented techniques, you also need to be
familiar with the use of pointers and dynamic variables, because
nearly all of Turbo Vision's object instances are dynamically
allocated on the heap. You may want to review the extended
syntax of the New function, which allows the inclusion of a
constructor as a parameter. Most instances of Turbo Vision objects
are created that way.

What's in this book?

2

Because Turbo Vision is new, and because it uses some techniques
that might be unfamiliar to many programmers, we have
included a lot of explanatory material and a complete reference
section.

Turbo Vision Guide

Introduction

This manual is divided into three parts:

• Part 1 introduces you to the basic principles behind Turbo
Vision and provides a tutorial that walks you through the
process of writing Turbo Vision applications.

• Part 2 gives greater detail on all the essential elements of Turbo
Vision, including explanations of the members of the Turbo
Vision object hierarchy and suggestions for how to write better
applications.

• Part 3 is a complete reference lookup for all the objects and
other elements included in the Turbo Vision units.

3

4 Turbo Vision Guide

p A R T

1

Learning Turbo Vision

5

6 Turbo Vision Guide

c H A p T E R

1

Inheriting the wheel

How much of your last application was meat, and how much was
bones?

The meat of an application is the part that solves the problem the
application was written to address: Calculations, database
manipulations, and so on. The bones, on the other hand, are the
parts that hold the whole thing together: Menus, editable fields,
error reporting, mouse handlers, and so on. If your applications
are like most, you spend as much or more time writing the bones
as you do the meat. And while this sort of program infrastructure
can in general be applied to any application, out of habit most
programmers just keep writing new field editors, menu
managers, event handlers, and so on, with only minor differences,
for each new project they begin.

You've been warned often enough to avoid reinventing the same
old wheel. So here's your chance to stop reinventing the wheel
and start inheriting it.

The framework of a windowing application

Turbo Vision is the framework of an event-driven, windowing
application. There's no meat as delivered-just a strong, flexible
skeleton. You flesh the skeleton out by using the extensibility
feature of Turbo Pascal object-oriented programming. Turbo
Vision provides you with a skeleton application object,

Chapter 7, Inheriting the wheel 7

T Application, and you create a descendant object of T Application
call it MyApplication, perhaps-to act as your application. Then
you add to MyApplication what it needs to get your job done.

At the very highest level, that's all there is to it. The entire
begin .. end block of your application program looks like this:

begin
MyApplication.lnit:
MyApplication.Run;
MyApplication.Done;

end.

{ Set the application up, .. .
{ ... run it, .. .

... and then put it away when you're done!

A new Vision of application development

8

You've probably used procedure/function libraries before, and at
first glance Turbo Vision sounds a lot like traditional libraries.
After all, libraries can be purchased to provide menus, windows,
mouse bindings, and so on. But beneath that superficial
resemblance is a radical difference, one that is worth
understanding to avoid running up against some very high and
very hard conceptual walls.

The first thing to do is remind yourself that you're now in object
country. In traditional structured programming, when a tool such
as a menu manager doesn't quite suit your needs, you modify the
tool's source code until it does. Going in and changing the tool's
source code is a bold step that is difficult to reverse, unless you
somehow take note of exactly what the code originally looked like.
Furthermore, changing proven source code (especially source
code written by somebody else) is a fine way to introduce
obnoxious new bugs into a proven subsystem, bugs that could
propagate far beyond your area of original concern.

With Turbo Vision, you never have to modify the actual source
code. You "change" Turbo Vision by extending it. The T Application
application skeleton remains unchanged inside APP.TPU. You
add to it by deriving new object types, and change what you need
to by overriding the inherited methods with new methods that
you write for your new objects.

Also, Turbo Vision is a hierarchy, not just a disjoint box full of tools.
If you use any of it at all, you should use all of it. There is a single
architectural vision behind every component of Turbo Vision, and
they all work together in many subtle, interlocking ways. You

Turbo Vision Guide

shouldn't try to just "pull out" mouse support and use it-the
"pulling out" would be more work than writing your own mouse
bindings from scratch.

These two recommendations are the foundation of the Turbo
Vision development philosophy: Use object-oriented techniques
fully, and embrace the entirety of Turbo Vision on its own terms. This
means playing by Turbo Vision's "rules" and using its component
object types as they were intended to be used. We created Turbo
Vision to save you an enormous amount of unnecessary, repetitive
work, and to provide you with a proven application framework
you can trust. To get the most benefit from it,let Turbo Vision do
the work.

The elements of a Turbo Vision application

Naming of parts

Views

Views are covered in detail
in Chapter 4.

Events

Before we look at how a Turbo Vision application works, let's take
a look at "what's in the box" -what tools Turbo Vision gives you
to build your applications with.

A Turbo Vision application is a cooperating society of views,
events, and mute objects.

A view is any program element that is visible on the screen-and
all such elements are objects. In a Turbo Vision context, if you can
see it, it's a view. Fields, field captions, window borders, scroll
bars, menu bars, and dialog boxes are all views. Views can be
combined to form more complex elements like windows and
dialog boxes. These collective views are called groups, and they
operate together as though they were a single view. Conceptually,
groups may be considered views.

Views are always rectangular. This includes rectangles that
contain a single character, or lines which are only one character
high or one character wide.

An event is some sort of occurrence to which your application
must respond. Events come from the keyboard, from the mouse,
or from other parts of Turbo Vision. For example, a keystroke is
an event, as is a click of a mouse button. Events are queued up by

Chapter 7, Inheriting the wheel 9

Events are explained in detail
in Chapter 5.

Mute objects

A common ulook
and feel"

10

Turbo Vision's application skeleton as they occur, then they are
processed in order by an event handler. The T Application object,
which is the body of your application, contains an event handler.
Through a mechanism that will be explained later on, events that
are not serviced by T Application are passed along to other views
owned by the program until either a view is found to handle the
event, or an "abandoned event" error occurs.

For example, an F1 keystroke invokes the help system. Unless
each view has its own entry to the help system (as might happen
in a context-sensitive help system) the F1 keystroke is handled by
the main program's event handler. Ordinary alphanumeric keys or
the line-editing keys, by contrast, need to be handled by the view
that currently has the focus; that is, the view that is currently
interacting with the user.

Mute objects are any other objects in the program that are not
views. They are "mute" because they do not speak to the screen
themselves. They perform calculations, communicate with
peripherals, and generally do the work of the application. When a
mute object needs to display some output to the screen, it must do
so through the cooperation of a view. This concept is very
important to keeping order in a Turbo Vision application: Only
views may access the display.

Nothing will stop your mute objects from writing to the display
with Turbo Pascal's Write or Writeln statements. However, if you
write to'the display "on your own," the text you write will disrupt
the text that Turbo Vision writes, and the text that Turbo Vision
writes (by moving or sizing windows, for example) will obliterate
this "renegade" text.

Because Turbo Vision was designed to take a standardized,
rational approach to screen design, your applications acquire a
familiar look and feel. That look and feel is identical to that of the
Turbo languages themselves, and is based on years of experience
and usability testing. Having a common and well-understood
look to an application is a distinct advantage to your users and to
yourself: No matter how arcane your application is in terms of
what it does, the way to use it will always be familiar ground, and
the learning curve will be easier to ascend.

Turbo Vision Guide

All these items are described
in Chapter 4, "Views."

Figure 1.1
lurbo Vision objects

onscreen

Figure 1.1 shows a collection of common objects that might appear
as part of a Turbo Vision application. The desktop is the shaded
background against which the rest of the application appears.
Like everything else in Turbo Vision, the desktop is an object. So
are the menu bar at the top of the display and the status line at the
bottom. Words in the menu bar represent menus, which are
"pulled down" by clicking on the words with the mouse pointer
or by pressing hot keys.

MenuBar
... , 1111 .. 111111.' .. 11111."" .. 111 " ' 1111111 ... 11111111111 .. 11 1111 11111111 .. 11 11111 " II .. llIlInllll IIII II
, ... 10 '" ... 11 11 11
••• ,11.111111 111 1."" .. ' .. ".' 11 ' III.II."O ".'" •• III .. II.' H II.I.I .. '"I 11.11 11 11.11.11.11 11.11.11 11 11 11.11
.. 11 " 11.111 11 11 .. 11 111111111 ... 11111 11111111 ... 1111 11 .. 111111 111.11 ... 11 11 111111 111111 111111111"".11 11 ... 111" 1
... , 11 ... M
... , .. , 11 11 , M." II II 1 ...
11 " ... 1 " 11 .. I1 I1 I .. " I1 IIII M 1 11
• 11 .. 11 ... 11 .. 11 1
'n." II n'"IIII .. ' .. II III ... II.I "" II .. lnll .. II" II IIIIII II 1I1I1 .. IIII'"I1 I1 IIII ... I1 MIII
1 .. ' 11 11 1 .. 11 11 1 ... 11 1
..................... 11 ... , .. "
.............. 1 .. " ... 11 1 .. 1 ...
..................................... , .. 1.1 1 11 11 6 1 ,,, •••• 11 .. ,
...................................... 11 .. , M
.. ., ... 1 " .. 1 111111 11 .. 11 11 11 11111111" IIIIIII .. III .. III .. II ... I II ... I1 IIIIIIIII .. ' M 11 ... 1 "
........... 11 ' 11111 .. 11 ... 11 .. 11 11 '.111111 6110 1 .. 1111 11 ...
... 6 .. 11
...... '"' 11 11 1 11 11.11 11 ' ... 11
........ ' 11 11 111 •• 1 11 1 .. ' 11 11 ... ' 11 II," H H II
.. 11
... 8 ... 11 .. " " 1 11 ...
......... , 11.11 .. 1 ' ... 11 , II, II.IIIII.II.n.II I ".I .. M ' ... H II I H
................... H ... " H H H
..................... 1 1111 .. 111 1111 .. 11 1" .. 111111 11 11 ... 111111.111111.1111 1 11 •• 1111 .. 11 " ... 11 .. "" .. 11 .. 1 "
..... 1 11.1 111 , .. , , 11 ... , '.II.III H " " 11 " , 18 11
...................................... 111.' 111 , ... H II II .. H
.... 11111111 11 ' 1 ... 1 .. 11111.11.111 , .. ,." , I1 I1 HI ... II.IIIII.II I1 II.M I1 ' I II ... I III '".II.II ...
...... , 1111 111 111 11111 , 11 11 1111111 1 11 " 11111 .. 1 1 "
.. II H 'M .. H
.................................... 11111' ... 111 .. 111 , .. , ... ' I" II.H , " II 11 "1 .. "
......... II .. I1 N .. IIIII.IIIIII I III ... III " .. 11'1111111111 ... 1111 1111 .. 111111111111111 11 11 IIIIII.II ".IIINIIIIIII
.. 11 ... 1 .. " M II H

::::::::::::DeskTop:::?::::::::::::::::::::::::::::=::::::::::::::::::::::::::::::::E:::=:E:::::::::::Em
1 11 11 11 1 1111" 1 11 1111 .. ".1111 ... 1 1 11111111111 ... " 1" I ,
....... 11 .. " 111 111111 1 ... 111111 .. 11 ... ''' 1111 "" 11111 11 .. 111 '" 11.11 11 11 .. 111 1
...... , .. H ... H
............ 11 11 " .. 1 1111 .. 11 , 11 11 11 1111' 11 11 " 11 ... 1
.... 11' .. 11111 ... 11 111111 1 .. 1 ... 1111 .. 11' 11.11 .. 1 11 11111"1111 11 " ... 11 1 1 11
.. II II ... M
.............. 1 " " 11 1 I II ... II'.H ... IIII I1 I1 IIM 11 "
..... " ... 11 "" 11 11 " " 11." 11 111 .. 1111 ' 1 ... 11111111 1111
............................... H H .. , ... H H' II
.... 0 1 ' 11 " 11 11111 1" " 1111 ... 11 11" ... 11 11
... 1 ... 1111111 .. 11111111 1111 , ""11 11111111 .. 111 1 11 11111.11' ... 1 11 11 .. " •• " ... ' 111111 ".""1111111 .. 1
.. H ... , .. , H
........................... ,11 ... 11111111111111 11 1111 .. 111111 1 IIIIIII .. IIIIIII .. ' IIII .. III .. ln.IIII II 1I11 ... 11 11 11 11
..... " IIII".IIII H III IIIIII 11.11 .. 1 1 1 ••• 11.111111 " ""11 1 1111111
................................... 11 11 .. 1"' , 1111 " 11 .. .
... , ' .. 1111 .. 11"11 111 ' 1111 .. ""11 1 11 1" 11 , 11111 1 11" """11 .. 111111111 1
... 111' 11 111111 " ... 11.111111 1111 "'" .. ' 11 " 111 .. 111.1111 11.11
.............................. , ••• H H .. H .. ,,, ... ,H H
............. IIII 'H I1'" I1 IIIII 11 1 111 11" .. 1 " 11 1
........... 11.11 ... "1 .. 111111 .. 1 ' 11 ... 11.11 .. 11 .. 11 ' 111111111.11111 .. 11 11111 " ,,,.III IHIII IIIIII ' ,
... 11 H , II.H H
........ 11 1111 .. 11111111111 .. 111111 11 .. 111 " " 1111 •• 1111 1 1 111 ..
....... 1111.' 1 1111 •• 11 11 H ' I1 IIII H , II '"
... " ... H I "
.............................. I I1 II.III I H 11 1 " 11 11 " H,, II
.............................. , H 11 1 I " II.II " H II H H H ... H H , , ... " H." H
.. 11,11 .. 11111.1111 .. 11 ' 1111111 111 111111 ... 11 11'" 1111 11 .. 11' ... 1111 .. 11 .. 111111111 11"' "" , 1111 11 111"
............... 1111 '"1 11 1111 " I1 IIII I1 II.II IIIHIII .. I IIIIII"I" 1111 111
11 .. " 111 11 " HII II II II I 8 11
............... I IH ... III I ' I1." 111111111" " 11111 ' 11 H.HII"
.... 11 .. 1111 1111111 ... "" .. ,, 1 1 111 .. 11" .. '8 " II.NINI I1 IIIIII •
... 11

StatusLine

The text that appears in the status line is up to you, but typically it
displays messages about the current state of your application,
shows available hot keys, or prompts for commands that are
currently available to the user.

When a menu is pulled down, a highlight bar slides up and down
the menu's list of selections in response to movements of the
mouse or cursor keys. When you press Enter or click the left mouse
button, the item highlighted at the time of the button press is
selected. Selecting a menu item transmits a command to some
part of the application.

Your application typically communicates with the user through
one or more windows or dialog boxes, which appear and disappear
on the desktop in response to commands from the mouse or the
keyboard. Turbo Vision provides a great assortment of window
machinery for entering and displaying information. Window
interiors can be made scrollable, which enbles windows to act as
portals into larger data displays such as document files. Scrolling
the window across the data is done by moving a scroll bar along

Chapter 7, Inheriting the wheel 11

the bottom of the window, the right side of the window, or both.
The scroll bar indicates the window's position relative to the
entirety of the data being displayed.

Dialog boxes often contain buttons, which are highlighted words
that can be selected by clicking on them (or by Tabbing to the
button and pressing Spacebar). The displayed words appear to
move "downward" in response to the click (as a physical push
button would) and can be set to transmit a command to the
application.

"Hello, World!" Turbo Vision style

The "Hello, World" code is
given in the file HELLO.PAS on

your distribution disks.

12

The traditional way to demonstrate how to use any new language
or user interface toolkit is to present a "Hello, world" program
written with the tools in question. This program usually consists
of only enough code to display the string "Hello, World" on the
screen, and to return control to DOS.

Turbo Vision gives us a different way to say "Hello, World!"

The classic "Hello, World" program is not interactive (it "talks"
but it doesn't "listen") and Turbo Vision is above all a tool for
producing interactive programs.

The simplest Turbo Vision application is much more involved
than a Writeln sandwiched between begin and end. Compared to
the classic "Hello, World" program, Turbo Vision's HELLO.P AS
does a fair number of things, including

• clearing the desktop to a halftone pattern

• displaying a menu bar and a status line at the top and bottom of
the screen

• establishing a handler for keystrokes and mouse events

• building a menu object "behind the scenes" and connecting it to
the menu bar

• building a dialog box, also "behind the scenes"

• connecting the dialog box to the menu

• waiting for you to take some action, through the mouse or
keyboard

Nowhere in this list is there anything about displaying text to the
screen. Some text has been prepared, but it's all in the
background, waiting to be called up on command. That's

Turbo Vision Guide

Running
HELLO.PAS

Figure 1.2
The HELLO.PAS startup screen

something to keep in mind while you're learning Turbo Vision:
The essence of programmIng with Turbo Vision is designing a
custom view and teaching it what to do when it receives
commands. Turbo Vision-the framework-worries about getting
your view the proper commands. You only have to worry about
what to do when the keystroke, mouse click, or menu command
finds its way to your view's code.

The meat of your program is the code that performs some
meaningful work in response to commands entered by the user
and this "meaty" code is contained in the view objects you create.

Before we dissect HELLO.P AS in detail, it would be a good idea
to load the program, compile it, and follow through its execution.

When run, Hello clears the screen, and creates a desktop like that
shown in Figure 1.2. No windows are open, and only one item
appears in the menu bar at the top of the screen: the command
Hello. Notice that the "H" in Hello is set off in a different color
from the "ello", and that the status bar contains a message: Alt-X
Exit.

Hello
IIIIIIIHINI"'IIIIIIII.,,''''HI'' ••• 'OI,IIIII.IIIHI .. , •• ,.II.'III,III .. IIII , .. IIIIH." •••• I""IIII,I.'"I'"II.".IIIIIIIII'"1III"'"' I .. IIIIII n "" I"" ... HIIIIHI '"IIII ... I"lnl .. III.HI"
..... I ''' III II IHI O 111 '"' 11.11 11 "'"' ""11 ... 111 ... 1 .. '

IH '"III' IIII .. IIII II III.III •• III ... II", .. '"'"IIII''''"IIII ... I.IIII.'''''''N'"'"'"'.'.'"'N'"'NII'' •• 1I1 •• III I1 '_' IIH ' .. ' I ••• ' ,.""''''N
........ " .. , .. , .. , .. , .. , , .. , .. , , , .. , "., , ' ... 11 ... '.' , ,,, ... 11, 11 II ,", , .. , ' ... H' " ••• ,., •
............... 11 , , , , ... , .. , ' 11 .. ,
,111111 ' ••• 11.1 ,111111 1111 1., 11' '11 ' , '"' ' " "'.' , •• " , 1 .. 11 " ... ' , , , 11 , ..
, ' ... H H •• ' , .. , HII" ' ,." .. , " ... '"' ••• ' .. 1 1 11 , .. ' '.11.' .. ' , , , '"1" 11'".11' .. '"' .. , ..
'" '" 11 " ... 11 ... , 11 11 11.11 •• 11 , , ... 11 '" '

, H H '.' ... H II , ' ".11 1 .. ' .. '" ... 11 '." ... ' .. '" 11'" , ' .. '".II II II ... ' .. 'H' .. ' .. '
' ... 11 •• " .. ' 111111 11'".11 ••• 0' ... 11' 11.'.' 1 .. ' 'H'"' .. '"' II.'I.'" ' .. '"II '"'.'" , " '"' .. ' .. '" " .. " ... 11' .. ' ' .. ' 11 '.11.'" ... ' .. '
, 11.11.11 ... 111 '" 1111 ' 11 '"' ... 11 11111.11 11 11 ' .. , 11 11 .. 11 11 11 11 1 ... 11
, , 11 "' 11 11 '" 11 I1 I1 II.II I1 II.II' .. ' ".IIIIII ... I1 H II.II' '"' .. 'H'H II , ••••
• II II H.H , ' II ' .. II II.II ' '" 11.11 11 " ... '" •••• , ' 0 11
... , ... " 11 , , 11 11 ' 11.11 ... 1 11.1111 11.11' ... 11 ... , 11 11 ,II

.11 ... '" ... ' '" 11 ... '.'"'11111 ... ' ... 11 ... '.'.11 11 ... , .. '"'"'"'"'''''',.,""''''''''"'"'"''''''"'''"'''''''"'''''''''''''"'''.".'." ' .. '.1111'" ... '" ... '." " 11 ' ..
, ' .. 11 •• " '"' '.' 11 , ' ••• 11 , , , .. , , ' 11 , , 11 11 , 11 ... ' ,
...... 11 11.11 11 11 11 ' .. 11 1111 11 11 '" 11 ' ... 11.11 11
... ' ... 11 1.11 ' 11' .. ' , ' .. '.11 ' .. '" 11'" , , , ' .. ' ... 11 ... ' .. '.' .. '.1111''' ... '.'" 11.11 " , .. , ' .. '.11 '" 1 11'"1 11'.
n •• II II ' IIII .. tllIlI.II' .. II II ".III.IIIIIIII .. II 11 ... "' .. '"1111.111111.1111111111'""'" 11.11' ... 11' .. ' .. 1111 .. '.'" "" .. 1 ... I1""'''''''"' ... I' .. ' .. ' .. '"' .. IIII .. IIIIIIII •• H
................ 11.11 11 11 •• ' ... 1111 11 ... 1 11 •• 11.11.11 , 11 ... ' 11 ... 11 1111 11 11 11 11 , '" 11' .. ' ... 11 ... '"' .. ' .. '"11 '".11 11 • "' '" 1 111 111 ' .. '"'"'.""' .. '" 11 II II '".II'" ... ' H II ... '"'" ' '"
' ... 11'" 11.11 1 .. ' ' '"' 11 11 ... 11 , '" •• '" 11.11.11 11 ... ' .. ' 11 , ' ... 11 11 11 , ' ... 11
, 11.11 11 '" ' ... 11'".11 11 11."' ... 11' '" 11.11.11.11' 11 ... ' , , ... 11 11 11 ' 11 , .. , 11.11 11 ... ' .. ' ,.
'".11 ' .. ' ... 11 1 ' '"'"'"' " '"' '", 11.11 1111 •• 11 , , ' .. ' .. '"."' " ' .. 1 11 ... ' ,", .. ' .. ' ... 11' .. 1111 .. ' ' , , ..
... ,""""".," •• , .. ,"''''"'''''''.''''''1'''"11"",,,,",,,'"'.11'' .. 1 ... 11 11.11.11 ... '"' .. ' .. ' .. ' .. ' ... 11'"'" , , ... "'"'"''''"'"'.'"''''"''''.'''''''''''''''' ... 11 ' .. '"'"'"''' 11 11.11.11 .. , , , 11 11 ' 11 11 11 ... '"' 11
... ' •• 11'"11 '"' .. '"1 '.'."111 ' 11.'"' .. '"' .. 111'"111 11'" ••• 11'"'"'.'.' .. ' ... 111 .. ' ... " ... '" 11 "'" •• ' .. ' ... 11' '.1 .. ' 11 ... ' .. ' ' ... 11' .. '.1 ' 11,
............ ' ... 11'"' 11 11 ••• 11' .. ' ... 11' , , 11 11.11 ... ' , , 111 11' ... 11 , 111 ... '".11 '
....... 11 11 ... 11 11 , ' •• 11 ... 111 11 ' •• 11 , ... , ... 11 11 ... ' ' .. ' ... 11
11 11 '"'"' ... 11 " ' 11 .. ' .. ' .. '., .. ,.' .. ' ... 11 ' ... 1I ... ' .. '" '.' .. ' .. III H' IIII ' I'"' ' 11' 1 ' , .. ' .. ' 1111.".11 ... '".11 1 ..
, 11 ' .. '".".11111 11' 11 .. ' 1 ... 11 "" 11 11 , , , ... 11.11' ... 11 11 N , , , .. ' II ' II '.
, 11 '" '".".11.11 " , 11 11 _ 11 11 11 , 11 ' ..
'"' ' .. '" ... '"' .. ' ... " 1 1 1' '" 11 1 .. 11I""",,,,,,, .. ,",I'I' II'"''''U, •• II,,,,o,, II'.'"' ... 1I ... ,.' 11' ... 111 '" •• ' ... 11'"'"'" ... ' .. " "'" ," ... ' ... I ... I ' .. '".I ... '" HIIIIIII , .. ,., ' .. '.'".111 11 ' ... 11' ... 11 ... ' ' .. ' ... 11 11 11' ' .. , ' ... 11' '
'" 11 , " 11 11 ... ' , ,.H II H I II 11 , .. , 11.11 , ,
..... ' '" I1 .. ' .. ' ' '" ... '"'"'"'" ... ' ' ... ' .. n'"'11 •• ' .. ' , , .. ' .. ' .. '"'.'" '"."' .. ' .. '111"'"11.'"' .. III' .. II ••• I .. ' .. ' ' .. '.'lln' .. ' I •• '".II ,
1 , 'n' , ' .. ' .. '".H.II ••• II '8 ... ' ... II' ... H 0.1I.1I ," II II ... 'H'H 11' .. ' '".".11' .. ' 11 11'" ... ' •••
............. 11 11 11 11 " , 11.11 11 ,,, .. 11 11 "
• II, .. ' .. '.'" '"."'"' .. I .. ' .. ' .. '"I .. '.'".II.II'HI" ' .. I"'I'"'"III ... ,",.,I II'.,I1''',I1''".,,,'''''''I'".II'.'H.II ' ... II.II II.II' .. '" ... ' .. '".IIII.'".I1 H ... ' .. III'.'.
11.'" •• ' , .. ,",", .. ,", .. ," " 11 , .. , .. '".11'".11 11 11'.' .. ' 1 ' .. '"'"' .. '"'11" •• 11'" ... 11 '" 11.11.1111 .. 1 .. '"' ' ... 11 ... 1 ' .. 1 ' .. ' .. '" •• ' .. '.
' 11 ,., .. , _, H ' II _ , .. ,,, , ,, H ,"
' .. '" , .. '"' .. '.1.' 11' .. '" ... 1.' '.,"," '" " ' •• '.1111 .. '"' .. '" ' ,".11, .. 11 1 ' , .. , .. ' .. '.1111"'.1"1111 .. ' '" 0 ... ' 1 ... ' '" , .. , ..
'"'UII.II""IIIIIIIIII"''''"III'I' .. '"'"I",,,,,,,,,,"., ... '"' .. '.II •• 11 ... '" "' ... 11' ... "'"'"'.' .. 11.'.'11.11 ... '" "'.,.""''''" ... 1 1 11 •••• "111"''',,,,,,,"",,,,,,", .. ,",,,,,,,,,,,,,,,
' 11.11 ... ' ... 11' .. ' ... 11 11 ... ' , ... , 11 11.11 ' , .. , .. , 11
................... 11 11.11 11 11 11 11 11." , ' .. '"' ' .. , .. , ..
• 1I ... IIIII ... '"III II ... I1.' .. ' ... I1' .. ' ', .. "., ... "' H ... ' '.11 .. '.11 .. "' ' 11 1".11 ,., .. ' .. ' .. '".11.11' '"' ... 11 , ' .. '" ... ' .. ' ' .. 11.' .. 1 .. ' 11 , ..
.. 1.1111 , , 11 , , I ... II H II ' ' ... II'"' .. II ' ... II II.II.1I ... ' I1.' III.H.II' .. I I1 II.II II' ..
' ... II •• I1 .. ' , .. , .. ' .. ' .. ' .. III II.H' ... II.II , I1 , ... I1 ' II'HII ... ' ' .. II •• I1' .. ' .. I11 ... '"' , ' .. '" ••• 11' , .. , •• 11 , , ' .. '"'" ... ' .. ' '".II ... '"I II ... ," ... '"'" ... ' .. '" ... , 'HI '"' .. '"' ... I1 ... '"I , .. , '"IH' .. '.III'"I1.'"' .. ' .. ' '" •• II.' II' .. ' •• '".n' ' .. , ,I, n.n.II' .. ' .. ' .. I "' .. ,", ..
.............................. '".H " II 11 , ' ... " ... 11 •• 11 " ," 1 '"' ' H
'"' .. '.11"'.'0' .. ' ' .. '"'"' .. '"' ," '" ••• 11.1· .. ·' 111'.11".11"1 ... ' ... 11,11''''.'.' '"' .. ' .. 1 1,,,.,.'" ... 111' , 11' '"'.' .. ,11' 11 ••• 11 , .. , ..
.... 11'.1111' ... 0.0 ... '" ' ... 11.11111 ... ' .. ' .. ,", 111' .. '"' •• 11 11 ... ' .. '" 11 ••• 11 "1.' '".11 ' .. ' ... II •• I .. ' II H.II
.... " 11 ... ' ... 11 11 ••• 1111 11 11 , 11 ' ... 11 ' 11' ' ... 11' ' •• 11 , .. , , ..
111.11 ... '" ... 11 '" •• ' ••••• ' ... 11 ••• 11 111' ' ' '" 11 11' '" ... ' .. '"'"' '" 11 .. '"11 11 , , .. , ," , ' .. 1 .. ' ' •• 11' .. ' ..
... ' .. ' .. ' .. 11111 ' .. 11 ••• ' .. 111 ' .. ' .. ' .. '"'.'" " , , ... 11.11 ... ' '".11'"'" , .. , 11 ... 1 .. ' ' ... "'" 1 ... 11'" ••• 111 ' '"' .. ' 1 ' .. '., .. , , , ..
... ' .. 111 11 11 ... ' 11 ' 11 11 11 11 11 "1111."" _ •• , 11
... ' •• 11 11'.' .. ' .. , '" ... 1111 .. '.1111'".'"11 ... ' , .. '" ... '"' 1 11 .. ,." ... 0.11,",",.,,,,.,.,,,,"," 11"""'"'"''' ... '" ' 11 •• "'"'" , .. ' 11' ' , • • 11.1111 ,"",,,,,", .. ' ... 11.11'.11 .. ' ... 11'" ,,,", .. ,,,, .. , .. , .. ,11 ... 1"""",",",", .. ,11 ... ,", ,",",."",",",,,,",", 111' .. '"' ' ... 11' .. 111'1 '"' '0 •• ' 11 ' 11 .. ' ..
..................................... 11 1111 11 ' ... 11 ' 11 11 0111 ,11 ' ... 11 11 11.11 11 "
... ' .. '"' .. ' ... 11 ... ' ' 1'.'".11' ' ... 11 11 ' .. '"'"'" II 'H ... ' , .. , ,", , , ' 11"' • ... , , '"' ... 11 11, .. , '"' 11 ... ' .. ' .. 11 11 , .. , .. , ... '.' ... 11 ' '".I1' ' ... I1 ... '".I1 'U III I1 , .. , .. , ," ... , ... " " ' .. 1 ' '"'" ,
, 1 ' ... 11 ... 1 '"' ... 11' 11 11 ' 11.11 11 11" 11 11 ... , ' .. '"111' , ... 11 , ..
'"'.'"' .. '".11.111 ' .. '" ... ' .. ' ... 1'" ".111 11.11 1111'"' '".11 11'" ,., '.'"' .. '.' .. , , II.II ... ' .. ' .. , .. ' 'HI ... II' ' .. , , .. , , ..
.......... I1, .. , .. , ' II.H ... 11.' II ... III •• '" ... III " ... I .. ' ' ,", ,I' .. '".n II" , .. , ' .. '"' ... II' .. , .. , .. ,.' ... "' .. 1 , .. , ,"'" 11."'" ' .. '"'"1
....... 11 ... ' 11.11.11 , , , ... 11' .. ' .. ' , , 11111 " ' 1 .. ' ' 11 ... ' , " 11' .. ' 11
,",I, .. 'u, ".'"'.II'.""'"'" .. I •• '" ••• I ... ' .. ' ... I.I""'"1"'.'"'"'"'"''''"'''''''"11"",",,,,",,,,",",",,,,",,,'".11'"'''.11, , '.1 .. ' .. ' .. 111' .. '"' ' , ' .. " •• 11 ...
.... II U ... , '"'"' .. ".I ••• ' .. '" ,", , .. ,"'.'"'"I .. '.''''.'"''''''" .. 'I''".II, .. I"II.'"'"III'I' .. 'H,.,",,,,,,,,,, .. 'H'"',,' ... 11'"' .. '"1.' , .. ' .. ' 11111 , ' ... 11 ... 1"' .. ' •
................ " 11.11 11 ... 11 ••• 11 11 11 11.11 ' ... 11.11.11.11.11 81 11

Alt-X Exit

This is a good time to point out two general rules for program
ming in any user environment: Never put the user at a loss as to what
to do next, and always give the user a way forward and a way back.
Before doing anything at all, the user of Hello has two clear
choices: Either select the menu item Hello or press Alt-X to leave
the program entirely.

Chapter 7, Inheriting the wheel 13

14

Pulling down a
menu With that in mind, select Hello in the menu bar. There are actually

three ways to do this:

• Move the mouse pointer over Hello and click the left button.

• Press F10 to take the cursor to the menu bar, where Hello
becomes highlighted. Then press Enter to select Hello.

• Press Alt-H, where H is the highlighted character in the menu
command Hello.

In all three cases, a pull-down menu appears beneath the item
Hello. This should feel familiar to you, as a Turbo Pascal
programmer. It's the same way the Turbo Pascal IDE operates.
You'll find that Turbo Vision uses all of the conventions of the
Turbo Pascal integrated environment. After all, the IDE is a Turbo
Vision application!

The menu that appears is shown in Figure 1.3. There are only two
items in the menu, separated by a single line into two separate
panes. Hello is so simple that there is only one menu item in each
pane, but in fact there may be any number of items in a pane,
subject to the limitations of the screen.

Figure 1.3 Hello

The HELLO.PAS Hi menu ~~~~~

You can select a menu item either from the keyboard or with the
mouse. The arrow keys move the highlight bar up and down the
menu. Selecting a highlighted item from the keyboard is done by
pressing Enterwhen the desired item is under the highlight bar.
More interesting is selection by mouse: You "grasp" the highlight
bar by pressing the left mouse button down while the mouse
pointer is on the highlight bar and holding the button down. As long
as you hold the button down, you can move the bar up and down
the list of menu items within the menu. You select one of the
menu items by letting go of the mouse button when the highlight
bar is over the menu item that you wish to select.

Turbo Vision Guide

A dialog box
An ellipsis (.. .) after a menu
Item Is used to indicate that

the item invokes a dialog
box.

Figure 1.4
The Hello World! dialog box

Buttons

However you select it, the Greeting item in the menu brings up a
rectangular window called a dialog box, as shown in Figure 1.4.
The dialog box appears in the center of the screen, but you can
move it around the screen by moving the mouse pointer to the
top line of the dialog box, pressing the left mouse button, and
moving the mouse while you hold the button down. As soon as you
let the button up, the dialog box will stop where it is and remain
there.

[1]= Hello, World!

Terrific,

OK ,
How are' you?

Lousy I
Cancel I

The dialog box has a title, "Hello, World!", and a close icon at its
upper left corner. The close icon, when clicked by the mouse,
closes the dialog box and make it disappear. Inside the dialog box
is a short text string: "How are you?" This is an example of static
text, which is text that can be read but which contains no
interactive power. In other words, static text is used to label
things, but nothing happens if you click on it.

The four rectangles on the right side of the box are the most
interesting parts of the "Hello, World!" dialog box. These are
called buttons, and are examples of controls. They are called
controls because they resemble the controls on electronic
instruments. Each button has a label, which indicates what
happens when that button is pushed.

You push a button by clicking on it with the mouse, or by making
the button the default (described later in this section)and then
pressing Enter. Try pressing one of the buttons with the mouse
(holding down the mouse button while the pointer is on the
button) and see what happens: The body of the button moves one
position to the right, and its shadow vanishes. The illusion is that
of a rectangular button being pressed "downward" toward the

Chapter 1, Inheriting the wheel 15

Monochrome systems
indicate the default button

with "" ((N characters.

Getting out

screen. When you release the mouse button, the action specified
by the button takes place.

Notice that the title inside the Cancel button is colored differently
than the others. The difference in color indicates that the Cancel
button is currently the default control within the dialog box. If
you press Enter while Cancel is the default, you are in effect
pressing the Cancel button.

The default control within a dialog box can be changed by
pressing the Tab key. Try Tabbing around in the "Hello, World!"
dialog box. The distinctive default colors move from one button to
the next with each press of the Tab key. This allows the user to
press a button without using a mouse, by moving the default to
the chosen button with the Tab key, and then pressing Enter or
Spacebar to perform the actual "press of the button."

Pressing any of the buttons in Hello "puts away" the dialog box
and leaves you with an empty desktop. You can pull down the
Hello menu again, and bring up the dialog box again, any number
of times. To exit the program, you can either select the Exit item in
the Hello menu, or simply press the Exit shortcut, Alt-X. Note that
this shortcut is presented both inside the Hello menu and in the
status line at the bottom of the screen.

This is good practice: Always make it easy for the user to exit the
program. Frustrated users who can't find the door are quite likely
to reboot the system, preventing your application from closing
files or otherwise cleaning house before shutting down.

Inside HELLO.PAS

16

That's what Hello does if you run it. Now, how does it make all
this happen? Much-in fact, most-of the code comprising Hello
is inherited from predefined objects provided in Turbo Vision. So
much is inherited that when the program runs, how it works may
first seem a bit of a mystery. Tracing execution with the integrated
debugger will not show you the whole picture, since Turbo Vision
is provided as compiled units. Fortunately, if you take the time to
understand what is going on, the exact how won't be necesssary.

Turbo Vision Guide

The application
object

To understand a Turbo Vision application, start by reminding
yourself that a Turbo Vision application is a society of objects working
together. Find the major objects and understand how they work
together. Then see how the lesser objects support the major
objects.

Be sure you read and understand the object definitions before you
read the method implementations. It's important that you first
understand what an object contains and how it relates to the other
objects in the system.

The cornerstone object of any application is the T Application
object. Actually, you never create an instance of object type
T Application. T Application is an abstract object type-just bones, no
meat. It doesn't do anything. You use TApplication by creating a
descendant object type of T Application that contains the meat of
the program you're writing.

In Hello, that descendant object type is THelloApp:

PHelloApp = ATHelloApp;
THelloApp = object (TApplication)

procedure GreetingBox;
procedure HandleEvent(var Event: TEvent); virtual;
procedure InitMenuBar; virtual;
procedure InitStatusLine; virtual;

end;

As shown here, it's a good idea to define a pointer type to every
object type that you define, since most serious work with objects
operates through pointer references. Polymorphism works
primarily through pointer references.

THelloApp contains much more than just these four methods, of
course; a descendant object inherits everything from its ancestor. In
defining THelloApp, you define how the new object differs from its
ancestor, T Application. Everything that you do not redefine is
inherited unchanged from T Application.

If you think about it, the four method definitions in THelloApp pin
down the ''big picture" of your entire application:

• How the application functions is dictated by what events it
responds to, and how it responds to them. You must define a
HandleEvent method to fulfill this all-important requirement. A
HandleEvent method is defined in T Application to deal with

Chapter 7 I Inheriting the wheel 17

18

The dialog box
object

generic events that occur within any application, but you must
provide one that handles events specific to your own
application.

• The InitMenuBar method sets up the menus behind the menu
bar for your application. T Application has a menu bar but no
menus; if you want menus (and it would be a poor application
indeed without them!) you simply define a method to define
the menus. You might wonder why InitMenuBar's code isn't
part of THelloApp's constructor. It could be, but a more
advanced application might wish to choose among several
possible menus for its initial menu display. Best to leave that
outside of the constructor, and allow the constructor to set up
only those things that are always done the same way every time
the application is run.

• The InitStatusLine method sets up the status line text at the
bottom of the screen. This text typically displays messages
about the current state of the application, shows the available
hot keys, or notifies the user of some action to be taken.

• The GreetingBox method brings up the dialog box in response to
the menu item Greeting. GreetingBox is called from within the
HandleEvent method, in response to the event triggered by the
selection of the Greeting menu item. In more advanced
applications, you would have separate methods to respond to
each of the menu items defined in the initial menu.

In short, THelloApp's methods provide what all main-program
objects must provide: a means to set the application up, an
"engine" (the event handler) to respond to events, and methods to
embody the responses to particular events. These three things are,
by and large, what you must add to T Application when you create
descendant object types of T Application.

The only other major object used in Hello is a dialog box object.
Because the dialog box doesn't have to do anything special, Hello
uses an instance of the TDialog object. There is no need to derive a
special object from TD ia log.

TDialog itself contains no interactive elements. It is nothing more
than a frame (albeit a clever frame); you provide whatever fields
or controls are to interact with the user.

Turbo Vision Guide

Flow of execution
and debugging

For more hints and tips on
debugging Turbo Vision

applications, see Chapter 70,
"Hints and tips. H

HELLO's main

THelloApp.GreetingBox builds on TDialog by inserting four buttons
which are also Turbo Vision views. (~emember that all program
elements that display anything to the screen must be Turbo Vision
views!) This is typical when using dialog boxes. Usually you just
insert the controls you want to have in the dialog box. Everything
else that a dialog box must have (including an event handler) is
built into TDialog.

Because Turbo Vision applications are event-driven, the code is
structured somewhat differently than conventional programs.
Specifically, event-driven programs separate the control
structures that read and evaluate user input (and other events)
from the procedures and functions that act on that input.

Conventional programs typically contain many blocks of code,
each of which involves getting some input, deciding which code
gets that input, calling the appropriate routine(s) to process the
input, then doing the same thing again. In addition, the code that
finishes processing the input must then know where to give
control for the next round of input.

Event-driven programs, on the other hand, have a central event
dispatching mechanism, so the bulk of your program does not
have to worry about fetching input and deciding what to do with
it. Your routines simply wait for the central dispatcher to hand
them input to process. This has important implications for
debugging your programs: You will probably want to rethink
your debugging strategies, setting breakpoints in event-handling
routines to check the dispatching of messages, and setting
breakpoints in your event-responding code to check that it
functions properly.

program At the very highest level, the main program portion of all Turbo
Vision applications look pretty much like HELLO:

Chapter 7, Inheriting the wheel

var
HelloWorld: THelloApp;

begin
HelloWorld.lnit;
HelloWorld.Run;
HelloWorld. Done;

end.

19

The Init method

The Run method

For more detail on how
events are hand/ed, refer to

Chapter 5.

20

Each of these three methods deserves some explanation.

The first of the three statements (Hello World.1nit) is the necessary
constructor call. All objects containing virtual methods must be
constructed (through a call to their constructor) before any other
method of the object is called. As a convention, all Turbo Vision
constructors are named Init. This is a very good convention for
you to follow in your own code as well.

Hello WJrld.Init sets up the main program object for use. It clears
the screen, provides initial values for certain important variables,
builds the halftone desktop, and lays out the status line and the
menu bar. It calls the constructors of a great many other objects,
some of which you never see because all these calls happen
/I offstage."

It's interesting to use the integrated debugger to step over the
Hello W7rld.Init call via FB, and then press Alt-FS to inspect the
display. The desktop, menu bar, and status line will all be laid out
and complete, ready for the main program to use. Setting up a
main program object via its constructor is pretty straightforward.

Nearly all of the mystery in a Turbo Vision application is in the
main program's Run method. The mystery starts when you look in
the definition of THelloApp to find the Run method definition. It's
not there--because Run is inherited intact from THelloApp's parent
object type, T Application.

Run is where your application will probably spend the bulk of its
time. It consists primarily of a repeat .. untilloop, shown here in
pseudo-code format:

repeat
Get an event;
Handle the event;

until Quit;

Again, this is not the exact code, but a conceptual summary of
what Run does with all the details removed. In essence, a Turbo
Vision application loops through two tasks: Getting an event
(where an event is essentially "something to do"), and servicing
that event. Eventually, one of the events resolves to some sort of
quit command, and the loop terminates.

Turbo Vision Guide

The Done
method

Summary

The Done destructor is really quite simple: It disposes of the
objects owned by the application-the menu bar, the status line,
and the desktop-and shuts down Turbo Vision's error handler
and drivers. In general, your application's Done method should
undo anything special that the Init constructor set up, then call
T Application.Done, which handles all the standard elements. If you
override T Application.Init, you will probably have to override
T Application.Done.

In this chapter you've had just a taste of what Turbo Vision is all
about. You have seen objects interacting in an event-driven
framework and gotten some idea of the kinds of tools that Turbo
Vision provides.

At this point you may feel confident enough to try modifying the
HELLO.P AS program to do some other things. Feel free to do so.
One of the nicest features of Turbo Vision is the freedom it gives
you to change your programs with very little effort.

The next chapter will take you through the steps of building a
Turbo Vision program of your own from the skeleton we provide.

Chapter 7, Inheriting the wheel 21

22 Turbo Vision Guide

c H A p T E R

2

Writing Turbo Vision applications

Now that you've seen what a Turbo Vision application looks like,
inside and out, you're probably itching to write one yourself. In
this chapter, you'll do just that, starting with an extremely simple
framework and adding small fragments of code at each step so
you can see what each of them does.

You probably have a lot of questions at this point. How exactly do
views work? What can I do with them? How can I customize
them for my applications? If Turbo Vision were a traditional run
time library, most likely you would dig into the source code to get
the answers.

But Turbo Vision is already a working application. The best way
to answer your questions about Turbo Vision is to actually try out
views. As you'll see, you can initialize them with a minimum of
code.

Your first Turbo Vision application

A Turbo Vision application always begins by instantiating an
object descended from T Application. In the following example, you
will create a descendant of TApplication called TMyApp, and in it,
begin to override T Application methods. This new object is then
instantiated as MyApp.

In the rest of this chapter, we will refer often to MyApp. By that we
mean your application, an instance of an object descended from

Chapter 2, Writing Turbo Vision applications 23

There is normally only one
TApplication object in a

program.

Several stages of the
example code are on your

distribution disks. The file
names are indicated next to

the code examples, and
they correspond to the
names declared in the

program statement.

This program is in
7VGUID07.PAS, which is

included with the demo
programs on your distribution

disks.

24

T Application. When you write your own Turbo Vision
applications, you will probably call them something else,
something indicative of the function of each application. We use
MyApp, because it is shorter than saying "the instance of the
object you derived from T Application."

Beginning with the following code example, you're going to be
building an example program. Rather than giving the entire
program listing each time, we've only included the added or
changed parts in the text. If you follow along and make all the
indicated changes, you should get a good feel for what it takes to
add each increment of functionality. We also strongly recommend
that you try modifying the examples.

The main block of TVGUIDOl (and of every Turbo Vision
application) looks like this:

program TFirst;

uses App;

type
TMyApp = object (TApplication)
end;

var

{ application objects are in APP.TPU }

{ define your application type }
leaving room for future expansion }

MyApp: TMyApp; { you need an instance of your new type }

begin
MyApp.lnit;
MyApp.Run;
MyApp.Done;

end.

{ set it up }
interact with the user }

{ clean up afterward }

Note that you haven't added any new functionality to TMyApp
(yet). Normally, you would never declare a whole new object type
with no new fields or methods. You would simply declare the
variable MyApp as an instance of the T Application type. Since
you'll be adding to it later, as you will when writing Turbo Vision
applications, you've set up TMyApp for flexible expansion. For
now, it will behave as a "plain vanilla" T Application. The default
behavior of a TApplication produces a screen like that in Figure 2.1.

Turbo Vision Guide

Figure 2.1
Default TApplfcation screen

Alt-X Exit

This working program does only one thing: It responds to Alt-X to
terminate the program. To get it to do more, you need to add to
the default behavior by adding commands to the status line
and/or the menu bar. In the next section, you'll do both.

The desktop I menu baL and status line

Objects used:
TView

TMenuView
TMenuBar
TMenuBox

TStatusLine
TGroup

TDeskTop

Objects and their units are
cross-referenced in

Chapter 12.

TFirst's desktop, menu bar, and status line are created by the
TApplication methods InitDeskTop, InitMenuBar, and InitStatusLine.
These three methods are called by T Application.lnit, so you never
need to call them directly. Instead, your application's Init method
will call T Application.lnit in its first line. For example:

procedure TMyApp.lnit;
begin

TApplication.lnit;
{ initialization code

end;

{ call ancestor's method first
specific to your application goes here }

Note that you'll need to add some Turbo Vision units to the uses
line in the program. In order to use menus and the status bar and
the standard key definitions, you'll need to use Objects, Menus,
and Drivers in addition to App.

If your program doesn't need to do any special initialization, you
simply use the inherited Init method. Because the Init and
InitDeskTop, InitMenuBar, and InitStatusLine methods are virtual,
calling the inherited Init calls the proper InitStatusLire and

Chapter 2, Writing Turbo Vision applications 25

The desktop

The status line

Hot keys are single keystrokes
that act like menu or status

line items.

This is TVGUID02.PAS

26

InitMenuBar methods. You'll see an ~xample of this in
TVGUID02.P AS.

InitDeskTop, InitMenuBar, and InitStatusLine give values tothe
global variables DeskTop, MenuBar, and StatusLine, respectively.
Let's look at each of these in turn.

The~esktop is an extremely important object, but it needs little
attention from you. You should never need to override the
inherited initialization method. Let T Application.InitDeskTop
handle it. DeskTop is owned by MyApp, and whenever MyApp
instantiates a new view in response to the user clicking on a menu
selection, it should attach the new view to DeskTop. Beyond this,
the desktop knows how to manage views by itself.

T Application.InitStatusLine instantiates a TStatusLine view called
StatusLine to define and display hot key definitions. StatusLine is
displayed starting at the left edge of the screen, and any part of
the bottom screen line not needed for status line items is free for
other views. StatusLine binds hot keys to commands, and the
items themselves can also be clicked on with the left mouse
button.

TVGUID02.P AS creates a working status line by overriding
T Application.lnitStatusLine like this:

procedure TMyApp.InitStatusLine;
var R: TRect; { this will hold the boundaries of the status line
begin

GetExtent(R); { set R to the coordinates of the full screen}
R.A.Y := R.B.Y - 1; { move top to 1 line above bottom}
StatusLine := New (PStatusLine, Init (R, { create status line }

NewStatusDef(O, $FFFF, { set range of help contexts}
NewStatusKey('~Alt-X~ Exit', kbAltX, cmQuit, { define item}
NewStatusKey('~Alt-F3- Close', kbAltF3, cmClose, { another}
nil)) , { no more keys }

nil) { no more defs }
));

end;

Don't forget to add procedure InitStatusLine; virtual; to the
declaration of TMyApp.

Turbo Vision Guide

Turbo Vision commands are
constants. Their identifiers

start with "cm. U

Creating new
commands

Turbo Vision reserves some
constants for its own

commands. See "Defining
commands u in Chapter 5.

The initialization is a sequence of nested calls to standard Turbo
Vision functions NewStatusDe/, NewStatusKey, and NewStatusBar
(described in detail in Chapter 14). TVGUID02 defines a status
line to be displayed for a range of help contexts from 0 through
$FFFF and in it binds the standard Turbo Vision command cmQuit
to the Alt-X keystroke, and the standard command cmClose to the
Alt-F3 key.

You may note that, unlike TMyApp.Init, the InitStatusLine method
does not call the method it overrides, T Application.lnitStatusLine.
The reason is simple: Both routines set up status lines that cover
the same range of help contexts, and assign them to the same
variable. There is nothing in T Application.InitStatusLine that would
help TMyApp.lnitStatusLine do its job more easily, and in fact, you
would waste time and memory by calling it.

The last string displayed on the command line by this initializa
tion is 'Alt-F3 Close.' The part of the string enclosed by tildes (.....)
will be highlighted on the screen. The user will be able to click
with the left mouse button anywhere within the string to activate
the command.

When you run TVGUID02, you'll notice that the Alt-F3 status item
is not highlighted, and clicking on it has no effect. This is because
the cmClose command is disabled by default, and items that
generate disabled commands are also disabled. Once you open a
window, cmClose and the status item will be activated.

Your status line work is over once you've initialized StatusLine,
because you are using only predefined commands (cmQuit and
cmClose). StatusLine can handle the user's input without any
further attention from you.

Note that cmQuit and cmClose, the commands you bound to the
status line items, are standard Turbo Vision commands, so you
don't have to define them. In order to use customized commands,
you simply declare your commands as constant values. For
example, you can define a new command for opening a new
window:

const
cmNewWin = 199;

Next you can bind that command to a hot key and a status line
item:

Chapter 2, Writing Turbo Vision applications 27

The menu bar

I File i

.~'"T::II
::::::::::::::::::::4:::::::::::::::::::::::

28

StatusLine := New(PStatusLine, Init(R,
NewStatusDef(O, $FFFF,

NewStatusKey('~Alt-X~ Exit', kbAltX, cmQuit,
NewStatusKey('~F4~ New', kbF4, cmNewWin, { bind new command}
NewStatusKey('~Alt-F3~ Close', kbAltF3, cmClose,
nil))),

nil)
));

The status line's initialization syntax is a good introduction to
menu initialization, which is somewhat more complex.

The Turbo Vision menu bar variable MenuBar is initialized with
nested calls to the standard Turbo Vision functions NewMenu,
NewSubMenu, NewItem, and NewLine.

Once you've initialized a menu, your work is finished. The menu
bar knows how to handle the user's input without your help.

Initialize a simple menu bar, one menu containing one selection,
like this:

const
cmFileOpen = 200;

procedure TMyApp.lnitMenuBar;
var R: TRect;
begin

{ define a new command }

GetExtent(R); { get area of the application}
R.B.Y := R.A.Y + 1; { set bottom 1 line below top}
MenuBar := New(PMenuBar, Init(R, NewMenu({create bar with menu}

NewSubMenu('~F~ile', hcNoContext, NewMenu({ define menu}
Newltem('~O~pen', 'F3', kbF3, cmFileOpen, hcNoContext, {item}
nil)) , { no more items }

nil) { no more submenus }
))); { end of the bar}

end;

The single menu produced by this code is called 'File,' and the
single menu selection is called 'Open.' The tildes (.....) make F the
shortcut letter in 'File,' and O'the shortcut letter in 'Open,' and the
F3 key is bound as a hot key for 'Open.'

All Turbo Vision views can have a help context number associat
ed with them. The number makes it easy for you to implement
context-sensitive help throughout your application. By default,
views have a context of hcNoContext, which is a special context
that doesn't change the current context. Help context numbers

Turbo Vision Guide

~:~r Window ~

···"···";55i'I' "1 .. ".. II

:::::::::::::::::: Zoom F5 ::
1 .. 111111111111." ..
11I1I1I .. n.1I1I1I II II................ II ".111111111........ II
u 111I1 .1
1I1I u.... '1
........... III UIIlI '1
.. 11 .. 1111 111 11111111.'11.111 1111111.'11111
........ 11' ... 11 111 ... 11 1111 1111,111 .. '"111111

This is TVGUID03.PAS

appear in the initialization of the menu bar because the nested
structure of this object makes it difficult to add numbers later.
When you're ready to add help context to the menu bar, you can
substitute your own values for hcNoContext in the Init code.

To add a second item to the 'File' menu, you simply nest another
NewItem function, like this:

MenuBar := New(PMenuBar, Init(R, NewMenu(
NewSubMenu('-F-ile', hcNoContext, NewMenu(

Newltem('-O-pen', 'F3', kbF3, cmFileOpen, hcNoContext,
Newltem('-N-ew', 'F4', kbF4, cmNewWin, hcNoContext,
nil))) ,

nil)
)));

To add a second menu, you nest another NewSubMenu function
call, like this:

MenuBar := New(PMenuBar, Init(R, NewMenu(
NewSubMenu('-F-ile', hcNoContext, NewMenu(

Newltem('-O-pen', 'F3', kbF3, cmFileOpen, hcNoContext,
Newltem('-N-ew', 'F4', kbF4, cmNewWin, hcNoContext,
nil))), {closing parens for menu selections}

NewSubMenu('-W-indow', hcNoContext, NewMenu(
Newltem('-N-ext', 'F6', kbF6, cmNext, hcNoContext,
Newltem('-Z-oom', 'FS', kbFS, cmZoom, hcNoContext,
nil)),

nil))) {closing parens for menus}
)));

_ You just bound two more standard Turbo Vision commands,
cmNext and cmZoom, to menu items and hot keys.

To add a horizontal line between menu selections, insert a call to
NewLine between the NewItem calls, like this:

MenuBar := New(PMenuBar, Init(R, NewMenu(
NewSubMenu('-F-ile', hcNoContext, NewMenu(

Newltem('-O-pen', 'F3', kbF3, cmFileOpen, hcNoContext,
Newltem('-N-ew', 'F4', kbF4, cmNewWin, hcNoContext,
NewLine (
Newltem('E-x-it', , Alt-X' , kbAltX, cmQuit, hcNoContext,
nil))))),

NewSubMenu('-W-indow', hcNoContext, NewMenu(
Newltem('-N-ext', 'F6', kbF6, cmNext, hcNoContext,
Newltem('-Z-oom', 'FS', kbFS, cmZoom, hcNoContext,
nil))) ,

nil))
)));

Chapter 2, Writing Turbo Vision applications 29

30

A note on

You may notice that the version of TVGUID03.P AS supplied on
your disk also adds a status key to the status line, binding the F10
key to the cmMenu command. cmMenu is a standard Turbo Vision
command that helps non-mouse users make use of the menu bar.
In this case, the F10 keystroke causes the menu bar to be activated,
allowing menus and menu items to be selected using cursor keys.

You may also notice that the status item has a null string as its
text, so nothing appears on the screen for it. Although it might be
nice to alert users that F10 will activate the menus, it is rather
pointless to have an item to click on that performs that action.
Clicking directly on the menu bar makes much more sense.

structure At this point, a number of commands are available, but most of
them are disabled, and the cmNew Win and cmFileOpen commands
don't yet perform any actions.

If your initial reaction is one of disappointment, it shouldn't be
you've accomplished a lot! In fact, what you've just discovered is
one of the big advantages of event-driven programming: You
separate the function of getting your input from the function of
responding to that input.

With traditional programming techniques, you would need to go
back into the code you've just written and start adding code to
open windows and such. But you don't have to do that: You've
got a solid engine that knows how to generate commands. All you
need to do is write a few routines that respond to those
commands. And that's just what you'll do in the next section.

The Turbo Vision application framework takes you one step
beyond traditional modular programming. Not only do you break
your code up into functional, reusable blocks, but those blocks
can be smaller, more independent, and more interchangeable.

Your program now has several different ways to generate a
command (cmNewWin) to open a window: a status line item, a
menu item, and a hot key. In a moment, you'll see how easy it is
to tell your application to open a window when that command
shows up. The most important thing is that the application
doesn't care how the command was generated, and neither will
the window. All that functionality is independent.

If, later on, you decide you want to change the binding of the
command-move the menu selection, remap the hot keys,

Turbo Vision Guide

whatever-you don't have to worry or even think about how it
will affect your other code. That's what event-driven program
ming buys you: It separates your user interface design from your
program workings, and as you'll see, it also allows different parts
of your program to function just as independently.

Opening a window

Objects used:
TRect
TView

TWindow
TGroup

TScrol/er
TScrollBar

Standard window

If you're a typical programmer, you may have jumped directly to
this section as soon as you opened the book. After all, what's more
central to writing a windowed application than making a
window?

It's true that if Turbo Vision were a collection of traditional library
routines, then jumping right to this section and trying to get right
to work might be a good idea. You could very well get a good
sense of the library's overall quality and organization.

But Turbo Vision isn't a traditional library. If you've read the
preceding chapters, you already know that. In order to program
in Turbo Vision, there are some things you need to do before it
makes sense to create a window. You need to understand just
what a Turbo Vision window is (it's an object!), and how it is
different from windows you might have used before. When
you've done this, you will be further along in your first
application than you'd ever imagine.

So, if you've jumped into the cookbook at this point, you need to
go back to the preceding sections and lay a little groundwork. It
will be well worth it.

equipment A Turbo Vision window is an object, and built into it is the ability
to respond to much of the user's input without you having to
write a line of code. A Turbo Vision window already knows how
to open, resize, move, and close. But you don't write on a Turbo
Vision window. A Turbo Vision window is a container that holds
and manages other objects: It is these objects that represent
themselves on the screen, not the window itself. The window
manages the views, and your application's unique functionality is
in the views that the window owns and manages. The views you
create retain great flexibility about where and how they will
appear.

Chapter 2, Writing Turbo Vision applications 31

This is TVGUl004.PAS

Note that we a/ways declare
a pointer type for each new

object type.

32

So how do you combine the standard window tools with the
things you want to put in the window? Over and over again,
remind yourself that you've got a strong framework to build on
and use it! Start with a standard window, then add the features
you want. As you go through the next few examples you'll see
how easy it is to flesh out the skeleton Turbo Vision provides.

The following code initializes a window and attaches it to the
desktop. Remember to add the new methods to the declaration of
your TMyApp type. Note that again you are defining a new type
(TDemoWindow) without adding any fields or methods to its
ancestor type. As before, you're doing that just to provide a
simple platform you can build on easily. You'll add new methods
as you go.

uses Views;

const
WinCount: Integer = 0;

type
PDemoWindow = ATDemoWindow;
TDemoWindow = object(TWindow)
end;

procedure TMyApp.NewWindow;
var

Window: PDemoWindow;
R: TRect;

begin
Inc(WinCount);

{ initialize window counter }

{ define a new window type }

R.Assign(O, 0, 26, 7); { set initial size and position
R.Move(Random(53), Random(16)); { randomly move around screen
Window := New(PDemoWindow, Init(R, 'Demo Window', WinCount));
DeskTopA.Insert(Window); { put window into desktop

end;

procedure TMyApp.HandleEvent(var Event: TEvent);
begin

TApplication.HandleEvent(Event); {basically, act like ancestor}
if Event.What = evCommand then
begin

case Event.Command of
cmNewWin: NewWindow;

else
Exit;

end;
ClearEvent(Event);

end;
end;

{ but respond to additional commands
{ define action for cmNewWin command }

{ clear event after handling }

Turbo Vision Guide

Window
initialization

The TRect object is described
in detail in Chapter 4,

"Views. '"

To use this window in your program, you first need to bind the
command cmNew Win to a menu option or status line hot key, as
you did earlier. When the user invokes cmNew Win, Turbo Vision
dispatches the command to TMyApp.HandleEvent, which responds
by calling TMyApp.New Window.

You need to give a Turbo Vision window three parameters for it
to initialize itself: its size and position on the screen, a title, and a
window number.

The first parameter, determining the window's size and position,
is a TRect, Turbo Vision's rectangle object. TRect is a very simple
object. Its Assign method gives it a size and position, based on its
top-left comer and its bottom-right comer. There are several other
ways to assign or change the values of a TRect object. Consult
Chapte~ 14, "Global reference," for complete descriptions.

In TVGUID04, R is created at the origin of DeskTop, then moved a
random distance into the desktop. "Normal" programs probably
won't do that kind of random movement, but for this exercise you
want to be able to open a lotof windows and not have them all be
in the same place.

The second initialization parameter is a string, which is displayed
as the window's title.

The last initialization parameter is stored in the window's Number
field. If Number is between 1 and 9, it will be displayed on the
window frame, and the user can select a numbered window by
pressing Alt-1 through Alt-9.

If you don't need to assign. a number to a window, just pass it the
Turbo Vision constant wnNoNumber.

The Insert method Inserting a window into DeskTop automatically makes the
window appear. The Insert method is used to give a view control
over another view. When you execute the instruction

DeskTopA.lnsert(Window);

you are inserting Window into the desktop. You may insert any
number of views into a group object like the desktop. The group
you insert a view into is called the owner view, and the view you
insert into it is called a subview. Note that a sub view may itself be
a group, and may have its own subviews. For instance, when you
insert a window into the desktop, the window is a subview, but

Chapter 2, Writing Turbo Vision applications 33

All these relationships among
views are explained in

Chapter 4.

Closing a window

Window behavior

34

the window may itself own a frame, scroll bars, or other
subviews.

This process of establishing links between view objects creates a
view tree, so named because the multiple linkages of views and
sub views branch out from the central view, the application, much
as limbs branch out from the trunk of a tree.

Clicking the close icon on a window generates the same emClose
command you bound to the AIt-F3 keystroke and a status line item.
By default, opening a window (with F4 or the File I Open menu
choice) automatically enables the em Close command and the
views that generate it (as well as other window-related com
mands like emZoom and emNext).

You don't have to write any new code to close the window. When
the user clicks on the window's close icon, Turbo Vision does the
rest. By default, a window responds to the em Close command by
calling its Done destructor:

Dispose(MyWindow, Done);

As part of the window's Done method, it calls the Done methods of
all its subviews. If you've allocated any additional memory your
self in the window's constructor, you need to make sure that you
deallocate it in the window's Done method.

Take some time to play with the program you've written. It has a
great deal of capability already. It knows how to open, close,
select, move, resize, and zoom multiple windows on the desktop.
Not bad for fewer than 100 lines of code!

After TMyApp initializes the window, it inserts it into the desktop.
As you recall, DeskTop is a group, which means that its purpose is
to own and manage subviews, like your window. If you compile
and run the code, you'll notice that you can resize, move, and
close the new window. Your mouse input is being turned into a
series of events and routed from the desktop to the new window,
which knows how to handle them.

If you keep invoking emNewWin, more windows will appear on
the desktop, each with a unique number. These windows can be
resized, selected, and moved over one another. Figure 2.2 shows
the desktop as it appears with several windows open.

Turbo Vision Guide

Figure 2.2
TVGUID04 with multiple

windows open

Look through any
window

Fil e Wi ndow .
1I1 ... IIII .. '''"II IIIII.IIIIIIIIIIIIIIIIII''''' IIIIIIIIIIIHIUIl .. " "IIIIIII.IIIIIHI""II"IIII.II .. IIIIIIIII .. IIIIIIII"IIIII IIII.IIIIII 11111111111 11111111 .. " 111 1111111 •
......... 1 1 1 ... 11 " ... , 1 1 .. 11 18 ... ' 11 1 11 ..

[11]ltll~ De~ W:::Ww~L I=~~~~;!::jii

Crcemo Window 4 I .. .

1

::::::::::ELi Demo Win~dOW 6 ·····W·i~d~;··2·-· ·····i§ -- . --- --- --- -t.li.llli;;;C~D~O WIndow 9=['l~~~fi~
.... I""'"''''"''.,II, .. II." IIIIIIIII II'"IIII,IIIUIHIIIIIII1I1 llIlnlnl 'O' .. IIIIUI ... " II.IIII""H'"I""IIIIIIIIII'"III""'"'''"IIIII"II"""""HIII"""III""I"II1111.1'"111
.1I.1I1 .. 11I1"11I11I ... IIII ... I1I .. II1I III""IIII.'HI I .. II .. I1I .. I111 .. 1 .. 11I III"I"'"I ••• IIII"" III.HI .. I .. IIIIIIIHI I" ... 1 1""11 11"11 '"" .. 1 .. 1 .. 111" 1 ... 111 ... 11 111
1 I1 IIII ... H.II , .. , •• ," 11 1111.'.'.1"' .. 111.1111 " '" " ... ' ... 11'II.II H III III II.III II.II 11111

Alt-X Exit F4 New Alt-F3 Close

A TWindow is a group that initially owns one view, a TFrame. The
user clicks on the frame's icons to move, resize, or close the
window. The frame displays the title that it receives during the
window's initialization, and it draws the window's background,
just as TBackGround does for the desktop. All this happens, as
you've seen, without you writing any code.

If you were dealing with a traditional window here, the next step
would be to write something in it. But a TWindow isn't a blank
slate to be written on: It's a Turbo Vision group, a TGroup object,
with no screen representation at all beyond its frame view. To put
something "in" a window, you need to take an additional step, a
step that puts tremendous power in your hands.

To make something appear in the window, you create a view that
knows how to draw itself and insert it into the window. This view
is called an interior.

This first interior will entirely fill the window, but you'll find it
easy later to reduce its size and make room for other views. A
window can own multiple interiors, and any number of other
useful views-input lines, labels, buttons, or check boxes. You'll
also see how easy it is to place scroll bar views on a window's
frame.

Chapter 2, Writing Turbo Vision applications 35

This makes TVGUl005.PAS

36

You can tile or overlap the subviews within a group-how the
views interact is up to you. TDeskTop has a method, Tile, that can
tile subviews after they are initialized, but that method is for the
desktop alone to use.

The interior you'll create next is a simple descendant of TView.
Any TView can have a frame that operates like a traditional static
window frame. A TView's frame, which can't be clicked on, is
outside the clipping region of any writing that takes place inside
the view. It's just a line around the view.

If your TView interior fills its entire owner window, it doesn't
matter if it has a frame-the window's frame covers the interior's
frame. If the interior is smaller than the window, the interior
frame is visible. Multiple interiors within a window can then be
delineated by frames, as you'll see in a later example.

The following code writes "Hello, World!" in the demonstration
window, and the results are shown in Figure 2.3.

PInterior = ATInterior;
TInterior = object(TView)

constructor Init(var Bounds: TRect);
procedure Draw; virtual;

end;

constructor TInterior.Init(var Bounds: TRect);
begin

TView.Init(Bounds);
GrowMode := gfGrowHiX + gfGrowHiY; { make size follow window's}

end;

procedure TInterior.Draw;
begin

TView.Draw;
WriteStr(4, 2, 'Hello, World!', 1);

end;

constructor TDemoWindow.Init(Bounds: TRect; WinTitle: TString;
WindowNo: Integer);

var
Interior: PInterior;
S: string[3];

begin
Str(WindowNo, S); { put window number into title
TWindow.Init(Bounds, WinTitle + ' , + S, wnNoNumber);
GetClipRect(Bounds);
Bounds.Grow(-l,-l); { make interior fit inside window frame
Interior := New(PInterior, Init(Bounds));

Turbo Vision Guide

Figure 2.3
TVGUID05 with open window

What do you
see?

Insert(Interior);
end;

{ add interior to window }

Fi 1 e Wi ndow .
... 11, ... 1 1 " ,"", '., " , "." , " 111 ... 1 1 ''''",., •
•• , 1 ••• ' ... , ' 1 ,1 ,", 1 ,.1 It ... ,", ,., ,., , , ,., ,., .. ' '" , , ,.,., .. , .. , ,., ,., .. , ,
... ,", .. ,., ", , , ," 11 ... '11 •• ' , '" ... '11' '11' 'U , '.I' ... I1' ' .. ' .. III' '".II'II .. I1 "" ... ,., , , , , , .. , , .. , ,
... , .. , ' .. I _ , .. ' 'H'"."'"' ' .. ," ... , ... " ' ... 11 ' , .. , .. , , .. , , .. , , .. , .. , .. , ,", , .. , .. , .. , .. , ,
,,,,,,.11, .. , , .. , , .. , , .. , .. , .. ' .. ' .. 1 .. '11, .. , .. , .. '11 ... ' 1 .. , ' ' .. 1 .. ' .. ' .. 1 .. ' ' .. 1 .. ' .. ' .. 1 .. 1 .. ' 1 .. ' .. '"' .. , .. , , .. , .. , .. , , ... ' .. '11
, I .. I u ' .. III.II.II H H , , II ",,,,,,,,,,,,,,,'''''' '" 1 " ... ' ... " '"' •
..... , ,.' 11 , .. ,., , .. , , , 11 ' .. ' ... 11 ... 111' , ... " , , 11 •• 11 , .. , .. ,
, , , I .. ' H.II' , II., .. , , , , , ' .. ' .. 1 " , , .. , , 1, .. ", , .. , , ' 11
, I .. H , , , , .. ' 11 , ••• , .. , , , .. , ,
' ... , ' , .. , ... ", , , , , " ... , , , , '11' .. ' .. ' .. , , ' .. ' 111 ... ' , .. ' .. ' ... 11' ,.
" ,,, , .. , .. , .. , .. , , ' .. ' .. '" ... "11 1' .. ' .. ' .. '"' .. '" ... ' 11' .. '"' .. ' ' '" ... '.1' .. ' .. ' 11." , ' ... 11 11 ... ' ' 111 ' .. '"' ,
... , '" , ' .. '"' , .. , , , , 11 ' , " , , ... " ... , " "
, , 11.11 11 , , "., .. , , , ... 11'" " , , 11 ' ... 11' , , '"'" ... ' .. ' .. , .. ,., .. ,,', .. ,
......... '"'"' ' .. , .. , .. , , , .. , , , .. , , .. , ' ... H 'H ' II ... ' .. ' , .. , .. , •• , 11 ' , .. ''' ... '"." 11 '" ... ' , , ..
... , ... " , .. , , , .. , .. , ' 1 .. ' ' ... 11' , , , , , 11 ' .. ' .. '" "' , .. , , ,
.. 1' 111111 .. 11 .. ' .. ' .. ' .. , ' 1111111 .. ' .. ' .. ' .. , .. , , .. , 11 1111 .. ' .. '11' ' 11111 .. '"' ' .. , .. ,.'"111'11 " U .. II ' .. '"
, , ... 11 , '.11 11 11' 11'" ... ' .. ' .. '" , , , ' 11 , ,", .. , , ... '"' .. ' .. '".1, ' "' .. 1 .. ' .. '"' ' .. '"' ' .. '11
................ " "." .. , ... , , II .. ,

' .. ''''.11 .. ' .. ' .. 111 11'"' " ... , .. ",,", ", ,", .. '"' ' ... "'"' , .. , , " ".11'" , 11 ... ' ... "'" ' ' .. 1 ' .. '"' 11 ... '"' .. " , ..
, ' ... 11 ... ' .. ' .. " .. " "" .. , "" "" ", " .. 11 '" ... III'.'I II ... II' .. I II.II'""IIH.1I'" 11 .. ' ' 11 .. 11' .. '''.'' , , , , , .. , , , , , , , , ... " ... , , ... , ,

Hello, World!

Alt-X Exit F4 New Alt-F3 Close

All Turbo Vision views know how to draw themselves. A view's
drawing takes place within the method Draw. If you create a
descendant view with a new screen representation, you need to
override its ancestor's Draw method and teach the new object how
to represent itself on the screen. Tlnterior is a descendant of TView,
and it needs a new Draw method.

Notice that the new Tlnterior.Draw first calls the Draw of its
ancestor, TView, which in this case just clears the rectangle of the
view. Normally you would not do this: Your interior view's Draw
method should take care of its entire region, making the
TView.Draw call redundant.

If you really have something to put into a window's interior, you
won't want to call the inherited Draw method anyway. Calling
TView.Draw will tend to cause flickering, because parts of the
interior are being drawn more than once.

As an exercise, you might try recompiling TVGUIDOS.P AS with
the call to TView.Draw commented out. Then move and resize the
window. This should make quite clear why a view needs to take
responsibility for covering its entire region!

Turbo Vision calls a view's Draw method whenever the user
opens, closes, moves, or resizes views. If you need to ask a view

Chapter 2, Writing Turbo Vision applications 37

38

to redraw itself, call DrawView instead of Draw. DrawView draws
the view only if it is exposed. This is important: You override
Draw, but never call it directly; you call DrawView, but you never
override it!

A better way to Write While you can make Turbo Pascal's Write procedure work in
Turbo Vision, it is the wrong tool for the job. First, if you simply
write something, there's no way you can keep a window or other
view from eventually coming along and obliterating it. Second,
you need to write to the current view's local coordinates, and clip
to the view's boundary. Third, there is the question of what color
to use when writing.

A simple file

Turbo Vision's WriteStr not only knows how to write with local
coordinates and how to be clipped by the view's boundaries, but
also how to use the view's color palette. The WriteStr procedure
takes x- and y-coordinates, the string to be written, and a color
index as parameters.

Similar to WriteStr is WriteChar, defined as

WriteChar(X, Y, Ch, Color, Count)

Like WriteStr, WriteChar positions its output at x- and y
coordinates within the view, and writes Count copies of the
character Ch in the color indicated by the Color'th entry in the
view's palette.

Each of these Write methods should only be called from within a
view's Draw method. That's the only place you need to write
anything in Turbo Vision.

viewer In this section you'll add some new functionality to your window
and put something real in the interior. You'll add methods to read
a text file from disk and display it in the interior.

Warningl This program will display some "garbage" characters. Don't
worry-we did that on purpose!

This is TVGUl006.PAS. const
MaxLines = 100;

var
LineCount: Integer;

{ This is an arbitrary number of lines

Lines: array[O .. MaxLines - 1] of PString;

PInterior = ATInterior;

Turbo Vision Guide

TInterior = object(TView)
constructor Init(var Bounds: TRect);
procedure Draw; virtual;

end;

procedure TInterior.Draw;
var

this will look ugly!

Y: Integer;
begin

for Y := 0 to Size.Y - 1 do
begin

WriteStr(O, Y, Lines[y]A, $01);
end;

end;

procedure ReadFile;
var

F: Text;
s: String;

begin
LineCount := 0;
Assign(F, FileToRead);
Reset(F);
while not Eof(F) and (LineCount < MaxLines) do
begin

ReadLn(F, S);
Lines [LineCount] := NewStr(S);
Inc(LineCount);

end;
Close(F);

end;

procedure DoneFile;
var

I: Integer;
begin

for I := 0 to LineCount - 1 do
if Lines[I] <> nil then DisposeStr(Lines[i]);

end;

simple line counter

{ write each line

Reading a text file Your application needs to call ReadFile to load the text file into the
array Lines, and DoneFile after executing to deallocate the space
used by Lines.

In ReadFile, the Turbo Vision global type PString is a string
pointer. Turbo Vision also supplies a function called NewStr that
stores a string on the heap and returns a pointer to it. Even
though NewStr returns a pointer, don't use Dispose to get rid of it.

Chapter 2, Writing Turbo Vision applications 39

Buffered drawing

40

The draw buffer

MaxViewWidth is 732
characters.

This is TVGUID07.PAS

Always use the companion procedure DisposeStr to deallocate the
string.

You will notice that when you run this program, there are
1/ garbage" characters displayed on the screen where there should
be empty lines. That's a result of the incomplete Draw method. It
violates the principle that a view's Draw method needs to cover
the entire area for which the view is responsible.

Also, the text array Lines is not really in the proper form to be
displayed in a view. Text typically consists of variable length
strings, many of which will be of zero length. Because the Draw
method needs to cover the entire area of the interior, the text lines
need to be padded to the width of the view.

To take care of this, create a new Draw that assembles each line in
a buffer before writing it in the window. TDrawBuffer is a global
type:

TDrawBuffer = array[O .. MaxViewWidth-l] of Word;

TDrawBuffer holds alternating attribute and character bytes.

The new Tlnterior.Draw looks like this:

procedure TInterior.Draw;
var

Color: Byte;
Y: Integer;
B: TDrawBuffer;

begin
Color := GetColor(I);
for Y := 0 to Size.Y - 1 do
begin

{ corrected Draw method }

MoveChar(B, , " Color, Size.X); { fill line with spaces
if (Y < LineCount) and (Lines[Y] <> nil) then

MoveStr(B, Copy(Lines[Y]A, 1, Size.X), Color); {copy in text
WriteLine(O, Y, Size.X, 1, B); { write the line

end;
end;

Figure 2.4 shows TVGUID07 with several windows open.

Turbo Vision Guide

Figure 2.4
Multiple file views

Moving text into a
buffer

Writing buffer contents

Fi le Wi ndow
Demo Wl ndow 1 :::

{************************************** I :::::::::::=::::::::::::::::::::::::::::::::::::-.::::::::::=::::::::::::::
{ [I] -jjeno·-WiOdo;-5·------·--·--·[tr-1S1S~~~
{ Turbo Pascal 6.0 { **} ::::::::::
{ Demo program from { } ::::::::::
{ { Turbo Pascal 6.0 } ::::::::::
(Copyright ec) 1990 { Demo program from the Turbo Vision Guide } i~i§§§ {{ }==
{********************* (Copyright ec) 1990 by Borland International } ~i~i~~~
program TVGUID07; { } ::::::::::

. { **} ~5~E~S~~E

~:::t ObJ ects. Dri vers. ~i~l~l~l~l~l~l~l~~lsl~l~lEl~l~lE~l~lal~l~lEl~lElEl~l~lElElE~lEl~~~~~~~~~
MaxL i nes = 100; §~~~~~~'-'-'-'-'-D'~~;-w'i~do;-r'-'--'--~~§~~lE~E1E1ElE1E1E~E

I....-____________J:::::::: {********************* :::::::::::::E::::::::
::: { ::::::::::::::::::::::
1------------ Demo Window 4 { Turbo Pascal 6.0 ::
{** { Demo program from ::
{ Demo Wi ndow 3 { ::
{ Turbo P {******************** ::
{ Demo pr { sion Guide ::

{ Turbo Pascal 6.0 ::

Draw first uses a MoveChar call to move Size.X number of spaces
(the width of your interior) of the proper color into a TDrawBuffer.
Now every line it writes will be padded with spaces to the width
of the interior. Next, Draw uses MoveStr to copy a text line into the
TDrawBuffer, then displays the entire buffer with a WriteLine call.

Turbo Vision supplies four global procedures for moving text into
a TDrawBuffer: MoveStr, which you just looked at, and MoveChar,
MoveCStr, and MoveBut, which move characters, control strings
(strings with tildes for menus and status items), and other buffers,
respectively, into a buffer. All these procedures are explained in
detail in Chapter 14, "Global reference."

Turbo Vision provides two different procedures for writing the
contents of a buffer to a view. One, WriteLine(X, Y, W, H, Buf), was
shown in TVGUID07.

In Tlnterior.Draw, WriteLine writes TDrawBuffer on one line. If the
fourth parameter, H (for height), is greater than I, WriteLine
repeats the buffer on subsequent lines. Thus, if But holds "Hello,
World!", Wri teLine (0,0, 13,4, Buf) will write

Hello, World!
Hello, World!
Hello, World!
Hello, World!

Chapter 2, Writing Turbo Vision applications 41

Knowing how much to
write

42

Scrolling up and
down

This is TVGUID08.PAS

The other procedure, WriteBut(X, Y, W, H, But), will also write a
rectangular area of the screen. Wand H refer to the width and
height of the buffer. If But holds" ABCDEFGHIJKLMNOP",
WriteBut(O,O,4,4,But) will write

ABeD
EFGH
IJKL
MNOP

Unlike their non-buffered counterparts, WriteStr and WriteChar,
you'll notice that you don't specify the color palette entry to use
when writing a draw buffer. This is because colors are specified
when the text is moved into the buffer, meaning that text with
differing attributes may appear in the same buffer.

Both WriteLine and WriteBut are explained in detail in Chapter 14,
"Global reference."

Note that Tlnterior.Draw draws just enough of the file to fill the
interior. Otherwise, Draw would spend much of its time writing
parts of the file that would just end up being clipped by the
boundaries of Tlnterior.

If a view requires a lot of time to draw itself, you can first call
GetClipRect. GetCIipRect returns the rectangle that is exposed
within the owner, so you only need to draw the part of the view
that is exposed. For example, if you have a complex dialog box
with a number of controls in it, and you move it most of the way
off the screen so you can look at something behind it, calling
GetClipRect before drawing would save having to redraw the
parts of the dialog box that are temporarily off the screen.

Obviously, a file viewer isn't much use if you can only look at the
first few lines of the file. So next you'll change the interior to a
scrolling view, and give it scroll bars, so that Tlnterior becomes a
scrollable window on the textfile. You'll also change
TDemoWindow, giving it a Makelnterior method to separate that
function from the mechanics of opening the window.

type
Plnterior = ATlnterior;

Turbo Vision Guide

Note that you have
changed the ancestor of

Tfnterior!

TInterior ; object(TScroller)
constructor Init(var Bounds: TRect; AHScrollBar, AVScrollBar:

PScrollBar) ;
procedure Draw; virtual;

end;
PDemoWindow ~ ATDemoWindow;
TDemoWindow ~ object (TWindow)

constructor Init(Bounds: TRect; WinTitle: String; WindowNo:
Word) ;

procedure MakeInterior(Bounds: TRect);
end;

constructor TInterior.Init(var Bounds: TRect; AHScrollBar,
AVScrollBar: PScrollBar);

begin
TScroller.Init(Bounds, AHScrollBar, AVScrollBar);
GrowMode := gfGrowHiX + gfGrowHiY;
SetLimit(128, LineCount); { horizontal, vertical scroll limits}

end;

procedure TInterior.Draw;
var

Color: Byte;
Y, I: Integer;
B: TDrawBuffer;

begin
Color := GetColor($Ol);
for Y := ° to Size.Y - 1 do
begin

{ use normal text color
still need to count lines

MoveChar(B, ' " Color, Size.X); { fill buffer with spaces
I := Delta.Y + Y; { Delta is scroller offset
if (I < LineCount) and (Lines[I) <> nil) then

MoveStr(B, Copy (Lines [I) A, Delta.X + 1, Size.X), Color);
WriteLine(O, Y, Size.X, 1, B);

end;
end;

procedure TDemoWindow.Makelnterior(Bounds: TRect);
var

HScrollBar, VScrollBar: PScrollBar;
Interior: PInterior;
R: TRect;

begin
VScrollBar :~ StandardScrollBar(sbVertical);
HScrollBar :~ StandardScrollBar(sbHorizontal);
Interior :; New(PInterior, Init(Bounds, HScrollBar, VScrollBar));
Insert(Interior);

end;

constructor TDemoWindow.Init(Bounds: TRect; WinTitle: String;

Chapter 2, Writing Turbo Vision applications 43

44

Figure 2.5
File viewer with scrolling

interior

WindowNo: Integer);
var

S: string[3];
begin

Str(WindowNo, S);
TWindow.Init(Bounds, WinTitle + ' , + S, wnNoNurnber);
GetExtent(Bounds);
Bounds.Grow(-l,-l);
MakeInterior(Bounds);

end;

Fi le Wi ndow
.------- Demo Wl ndow 1 ::

{**} ~l§~l~§l~~l~~l~l~l~§~~l~l§~l~§l~~l~l~l~

I ~~~~o p~~~~:! ~~~m the Turbo Vi si on Gu1 de I ~~1~1~~~1~~1~1~1~~1~1~1~1~~~~1~1~1~~1~1~
1 Copyright (c) 1990 by Borland International I 1~~1~1~1~~1~1~1~~1~1~1~1~~1~1~1~1~~~1~1~1~~1~
t **~*** J §l~l~l~§l~l~§jgj~jgEj~j~j§gjm~Ejgjgj~j~j~j~E
program TVGUID08; [.]= Demo Wlndow 3 =[t]=u::::::::::::::::::::::::::::::::::::

Plnteri or = "'TInteri or; ...::::::::::::::::::::::::::::::::::::
uses Obj ects. Dri vers. Vi ews. TInteri or = obj ect {TScro 11 el"::::::::::::::::::::::::::::::::::

constructor Inft{var Boun o'"W'i~d~;'"2-"--'"'"'
AVScrollBar: PScrollBa llBar: PScrollB

ffi~~~E~~~E~E~E~ElE~ElE~E1E~E~E~~~~m~m~E~E1E~E~E~~E~~1~lElE procedure Draw; vi rtua 1; •
:: end; Jl er. Init {Bounds
:::a:: de: = 9 fG rowH i X
:::Em:: PDemoWl ndow = ATDemoWi ndowi s: = Opti cns or
:: TDemoWi ndow = obj ect {TWi ndo it {128. Li neCou
ffiml~~~lEl~l~l~l~lE~l~ml~~~~ElEl~lEl~lEmlEl~lEl~lEl~l~l~lE con s t ru cto r In i t {Bo u n d s :
:: ,r!oc~e!du~r!e ~M!ak~e!ln!t,er~i~or~Bo~",~~~~~~
l~l~l§l~lglgl§l~l~l~l~ffil~l§lgml§i§l~i§i~igiili§igi~i~i~i§i§i§:::::::~r:::::::::::::::::::::::::::::::::::: ~ re Tin t e r1 0 r • Ora
Alt-X Exit F4 New Alt-F3 Close

The horizontal and vertical scroll bars are initialized and inserted
in the group, and then are passed to TScroller in its initialization.

A scroller is a view designed to display part of a larger virtual
view. A scroller and its scroll bars cooperate to produce a
scrollable view with remarkably little work by you. All you have
to do is provide a Draw method for the scroller so it displays the
proper part of the virtual view. The scroll bars automatically
control the scroller values Delta.X (the column to begin
displaying) and Delta.Y (the first line to begin displaying).

You must override a TScroller's Draw method in order to make a
useful scroller. The Delta values will change in response to the
scroll bars, but it won't display anything by itself. The Draw
method will be called whenever Delta changes, so that is where
you need to put the response to Delta.

Turbo Vision Guide

Multiple views in a
window

Be sure to change the
declaration of Makelnterior!

This is TVGUJ009.PAS.

Next, you duplicate the interior and create a window with two
scrolling views of the text file. The mouse or the tab key
automatically selects one of the two interior views. Each view
scrolls independently and has its own cursor position.

To do this, you add a bit to the Makelnterior method so it knows
which side of the window the interior is on (since the different
sides behave a bit differently), and you make two calls to
Makelnterior in TDemo Window.Init.

procedure TDernoWindow.MakeInterior(Bounds: TRect; Left: Boolean);
var

Interior: PInterior;
R: TRect;

begin
Interior := New(PInterior, Init(Bounds,

StandardScrollBar(sbHorizontal),
StandardScrollBar(sbVertical)));

if Left then InteriorA.GrowMode := gfGrowHiY
else InteriorA.GrowMode := gfGrowHiX + gfGrowHiY;
Insert(Interior);

end;

constructor TDernoWindow.Init(Bounds: TRect; WinTitle: String;
WindowNo: Word);

var
S: string[3];
R: TRect;

begin
Str(WindowNo, S);
TWindow.Init(Bounds, WinTitle + ' , + S, wnNoNurnber);
GetExtent(Bounds);
R.Assign(Bounds.A.X, Bounds.A.Y, Bounds.B.X div 2 + I, Bounds.B.Y);
MakeInterior(R, True);
R.Assign(Bounds.B.X div 2, Bounds.A.Y, Bounds.B.X, Bounds.B.Y);
MakeInterior(R,False);

end;

Chapter 2, Writing Turbo Vision applications 45

Figure 2.6
Window with multiple panes

Remember to add SizeLimits
to TDemoWindow. It's virtual!

This is 7VGUID70.PAS.

Where to put the
functionality

46

=[1] Demo Window 1 [t]91
procedure DoneFil e, It.

ineCount: Integer, var J
ines: array[O •• MaxLin I: Integer;

begin
e for I := 0 to LineCount - 1
MyApp = object(TAppli if Lines[I] <> nil then Di
procedure HandleEven end;
procedure InitMenuBa
procedure InitStatus { TInterior }
procedure NewDialog; constructor TInterior.Init(va
procedure NewWindow; AVScrollBar: PScrollBar); I

nd; begin fa
TScroller. Init(Bounds. AHScrti

Interior = "TInterior 0gtions:= Ogtions or ofFram ..
l!=========:!:~lwm!!!m!! m ~ 1 !!i!!I!1 -I

Note that you've changed MakeInterior both in style and in
substance. Instead of declaring two static scroll bars and then
passing them to the Init method, you simply included the
StandardScrollBar calls as parameters to Init. The earlier style is
somewhat clearer; the latter is a bit more efficient.

If you shrink down the windows in TVGUID09.P AS, you'll notice
that the vertical scroll bar gets overwritten by the left interior
view if you move the right side of the window too close to the
left. To get around this, you can set a limit on how small you're
allowed to make the window. You do this by overriding the
TWindow method SizeLimits.

procedure TDemoWindow.SizeLimits(var Min, Max: TPoint);
var R: TRect;
begin

TWindow.SizeLimits(Min, Max);
GetExtent (R) ;
Min.X := R.B.X div 2;

end;

Note that you do not have to call SizeLimits. You just override it,
and it will be called at the appropriate times. This is the same
thing you did with the Draw method: You told the view how to
draw itself, but not when. Turbo Vision already knew when to call
Draw. The same applies to SizeLimits: You set the limits, and the
view knows the appropriate times to check them.

You've now created a window with a number of views: a frame
and two scrolling interiors, each with two scroll bars. You're on
your way to creating a window that can carry out specific
functions in an application.

Turbo Vision Guide

How do you proceed? Suppose you want to turn your window
into a full-fledged text editor. Since the window has two views,
you may be tempted to put some of the text-editing functionality
into the group, and then have the group communicate with the
two views. After all, a group's job is to manage views. Isn't it
natural for it to be involved in all the work?

While a group is as capable of being extended as any view, and
you can put any functionality in it that you wish, your Turbo
Vision applications will be more robust and flexible if you follow
these two pointers: keep objects as autonomous as possible, and keep
groups (such as windows) as dumb and devoid of additional
functionality as possible.

Thus, you'd build the text editor by putting all the functionality
into the interior view: Create a text editor view type. Views can be
easily reusable if you design them properly, and moving your text
editor into a different environment wouldn't be very easy if its
editing functionality were divided between a group and a view.

Making a dialog box

Objects used:
TView

TGroup
TDia/og
TC/uster

TCheckBoxes
TRadioButtons

TLabe/
TlnputLine

This is TVGUlD 7 7.PAS

A dialog box is just a special kind of window. In fact, TDialog is a
descendant of TWindow, and though you can treat it as just
another window, you will usually do some things differently.

Building on your demonstration program, you'll add a new menu
item that generates a command to open a dialog box, add a
method to your application that knows how to do that, and add a
line to the application's HandleEvent method to link the command
to the action.

Note that you do not need to derive a new object type from
TDialog as you did with TWindow (to produce TDemoWindow).
Rather than creating a special dialog box type, you'll add the
intelligence to the application: Instead of instantiating a dialog
box object that knows what you want it to do, you'll instantiate a
generic dialog box and tell it what you want it to do.

You will rarely find it necessary to create a descendant of TDialog,
since the only difference between any two dialog boxes is what
they contain, not how the dialog boxes themselves work.

const
cmNewDialog = 200;

Chapter 2, Writing Turbo ViSion applications 47

48

procedure TMyApp.lnitMenuBar;
var R: TRect;
begin

GetExtent (R) ;
R.B.Y := R.A.Y + 1;
MenuBar := New(PMenuBar, Init(R, NewMenu(

NewSubMenu('~F~ile', hcNoContext, NewMenu(
Newltern('~O~pen', 'F3', kbF3, crnFileOpen, hcNoContext,
Newltern('~N~ew', 'F4', kbF4, crnNewWin, hcNoContext,
NewLine (
Newltern('E~x~it', 'Alt-X', kbAltX, crnQuit, hcNoContext,
nil))))),

NewSubMenu('~W~indow', hcNoContext, NewMenu(
Newltern('~N~ext', 'F6', kbF6, crnNext, hcNoContext,
Newltern('~Z~oorn', 'F5', kbFS, crnZoom, hcNoContext,
Newltern('~D~ialog', 'F2', kbF2, cmNewDialog, hcNoContext,
nil)))) ,

nil))

I));

end;

procedure TMyApp.NewDialog;
var

Dialog: PDialog;
R: TRect;

begin
R.Assign(O, 0, 40, 13);
R.Move(Random(39) , Randorn(10));
Dialog := New(PDialog, Init(R, 'Demo Dialog'));
DeskTopA.lnsert(Dialog);

end;

procedure TMyApp.HandleEvent(var Event: TEvent);
begin

TApplication.HandleEvent(Event);
if Event.What = evCommand then
begin

case Event.Command of
cmNewWin: NewWindow;
cmNewDialog: NewDialog;

else
Exit;

end;
ClearEvent(Event);

end;
end;

Turbo Vision Guide

Figure 2.7
Simple dialog box

Modal views are discussed in
Chapter 4, "Views. ,.

Executing a
modal dialog box

This is TVGUID72.PAS

[1]= Demo Dialog Box ====jJ

There are really very few differences between this dialog box and
your earliest windows, except for the following:

• The default color of the dialog box is gray instead of blue.

• The dialog box is not resiza,ble or zoomable.

• The dialog box has no window number.

Note that you can close the dialog box either by clicking on its
close icon, clicking the Alt-FS status line item, or pressing the Esc
key. By default, the Esc key cancels the dialog box.

This is an example of what is called a non-modal (or "modeless")
dialog box. Dialog boxes are usually modal, which means that they
define a mode of operation. Usually when you open a dialog box,
the dialog box is the only thing active: it is the modal view.
Clicking on other windows or the menus will have no effect as
long as you are in the dialog box's mode. There may be occasions
when you want to use non-modal dialog boxes, but in the vast
majority of cases, you will want to make your dialog boxes modal.

So how do you make your dialog box modal? It's really very easy.
Instead of inserting the dialog box object into the desktop, you
execute it, by calling the DeskTopl\.ExecView function:

procedure TMyApp.NewDialog;
v'!-r

Dialog: PDialog;
R: TRect;
Control: Word;

begin
R.Assign (O, 0, 40, 13);
R.Move{Random(39), Random{lO)):
Dialog := New{PDialog, Init{R, 'Demo Dialog'));
Control := DeskTopA.ExecView{Dialog);

end;

Chapter 2, Writing Turbo Vision applications 49

Taking control

A TDialog already knows how to respond to an Esc key event
(which it turns into a cmCancel command) and an Enter key event
(which will be handled by the dialog box's default TButton). A
dialog box always closes in response to a cmCancel command.

Calling Exec View both inserts the dialog box into the group and
makes the dialog box modal. Execution remains in ExecView until
the dialog box is closed or canceled. ExecView then removes the
dialog box from the group and exits. For the moment, you'll
ignore the value returned by the ExecView function and stored in
Control. You'll make use of this value in TVGUID16.

Of course, a dialog box with nothing in it is not much of a dialog
box! To make this interesting, you need to add controls. Controls
are various elements within a dialog box that allow you to
manipulate information. The important thing to remember about
controls is that they only affect things within the dialog box.

Command handling is
explained more in Chapter 5,
"Event-driven programming."

The only exception to this rule is the case of a button in a
modeless dialog box. Because buttons generate commands, those
commands will spread downward from the current modal view.
If the dialog box is not the modal view, those commands will go
to places outside the dialog box, which may have unintended
effects.

50

In general, when setting up controls in a dialog box, you can
separate the visual presentation from the handling of data. This
means you can easily design an entire dialog box without having
to create the code that sets up or uses the data provided in the
dialog box, just as you were able to set up menus and status items
without having code that acted on the commands generated.

Button, button... One of the simplest control objects is the TButton. It works very
much like a fancy status line item: It's a colored region with a text
label on it, and if you click on it, it generates a command. There is
also a shadow "behind" the button, so that when you click on the
button it gives a sort of three-dimensional movement effect.

Most dialog boxes have at least one or two buttons. The most
common are buttons for "OK" (meaning "I'm done. You may
close the dialog box and accept the results.") and "Cancel"
(meaning "I want to close the dialog box and ignore any changes

Turbo Vision Guide

This is TVGUID73.PAS

Figure 2.8
Dialog box with buttons

made in it."). A Cancel button will usually generate the same
cmCancel command that the close icon produces.

The Dialogs unit defines five standard dialog commands that can
be bound to a TButton: cmOK, cmCancel, cmYes, cmNo, and
cmDefault. The first four commands also close the dialog box by
having TDialog call its EndModal method, which restores the
previous modal view to modal status.

You can also use buttons to generate commands specific to your
application.

procedure TMyApp.NewDialog;
var

Dialog: PDialog;
R: TRect;
Control: Word;

begin
R.Assign (20, 6, 60, 19);
Dialog := New(PDialog, Init(R, 'Demo Dialog'));
with Dialog" do
begin

R.Assign (15, 10, 25, 12);
Insert (New (PButton, Init(R, '-O-K', cmOK, bfDefault)));
R.Assign(28, 10, 38, 12);
Insert (New (PButton, Init(R, 'Cancel', cmCancel, bfNormal)));

end;
Control := DeskTop".ExecView(Dialog);

end;

Creating a button requires four parameters for the Init
constructor:

1. the region the button will cover (Remember to leave room for
the shadow!)

2. the text that will appear on the button

3. the command to be bound to the button

4. a flag indicating the type of button (normal or default)

[1]= Demo Dialog Box ===91

Chapter 2, Writing Turbo Vision applications 51

Normal and default
buttons

Focused controls

Labels are discussed later in
this chapter.

Tob order is important!

52

Notice that you didn't highlight the "C" in "Cancel" because
there is already a hot key (Esc) for canceling the dialog box. This
leaves C available as a shortcut for some other control.

Whenever you create a button, you give it a flag, either bfNormal
or bfDefault. Most buttons will be bfNormal. A button flagged with
bfDefault will be the default button, meaning that it will be
"pressed" when you press the Enter key. Turbo Vision does not
check to ensure that you have only one default button-that is
your responsibility. If you designate more than one default
control, the results will be unpredictable.

Usually, the "OK" button in a dialog box is the default button,
and users become accustomed to pressing Enter to close a dialog
box and accept changes made in it.

Notice that when a dialog box is open, one of the controls in it is
always highlighted. That is the active, or focused, control. Focus of
controls is most useful for directing keyboard input and for
activating controls without a mouse. For example, if a button has
the focus, the user can "press" the button by pressing Spacebar.
Characters can only be typed into an input line if the input line
has the focus.

The user can press the Tab key to move the focus from control to
control within the dialog box. Labels won't accept the focus, so
the Tab key skips over them.

You will want the user to be able to Tab around the dialog box in
some logical order. The Tab order is the order in which the objects
were inserted into the dialog box. Internally, the objects owned by
the dialog box are maintained in a circular linked list, with the last
object inserted linked to the first object.

By default, the focus ends up at the last object inserted. You can
move the focus to another control either by using the dialog box's
SelectNext method or by calling the control's Select method
directly. SelectNext allows you to move either forward or
backward through the list of controls. SelectNext(False) moves you
forward through the circular list (in Tab order); SelectNext(True)
moves you backward.

Turbo Vision Guide

Take your pick

Creating a cluster

[] Hvarti
[] Til set
[] Jarl sberg

Often, the choices you want to offer your users in a dialog box are
not simple ones that can be handled by individual buttons. Turbo
Vision provides several useful standard controls for allowing the
user to choose among options. Two of the most useful are check
boxes and radio buttons.

Check boxes and radio buttons function almost identically, with
the exception that you can pick as many (or as few) of the check
boxes in a set as you want, but you can pick only one (and exactly
one) radio button. The reason the two sets appear and behave so
similarly is that they both derive from a single Turbo Vision
object, the TCluster.

If you're not familiar with the concept of check boxes and radio
buttons, you might look at the Options menu in the Turbo Pascal
integrated environment. Many of the dialog boxes brought up by
that menu feature cluster controls.

There is probably no reason you would ever want to create an
instance of a plain TCluster. Since the process for setting up a
check box cluster is the same as that for setting up a cluster of
radio buttons, you only need to look at the process in detail once.

Add the following code to the TMyApp.NewDialog method, after
the dialog box is created but before the buttons are added. Keep
the buttons as the last items inserted so they will also be last in
Tab order.

var
B: PView;

R.Assign (3, 3, 18, 6);
B := New(PCheckBoxes, Init(R,

NewSltem('~H~varti' ,
NewSltem('~T~ilset' ,
NewSltem('~J~arlsberg' ,
nil)))

));

Insert(B);

The initialization is quite simple. You designate a rectangle to
hold the items (remembering to allow room for the check boxes
themselves), and then create a linked list of pointers to strings
that will show up next to the check boxes, terminated by a nil.

Chapter 2, Writing Turbo Vision applications 53

54

Check box values The preceding code creates a set of check boxes with three
choices. You may have noticed that you gave no indication of the
settings for each of the items in the list. By default, they will all be
unchecked. But often you will want to set up boxes where some
or all of the entries are already checked. Rather than assigning
values when you set up the list, Turbo Vision provides a way to
set and store values easily, outside the visual portion of the
control.,

One more cluster

(.) So, i d
() Runny
() Mel ted

A set of check boxes may have as many as 16 entries. Since you
have up to 16 items that may be checked either on or off, you can
represent the information as a single 16-bit word, with each bit
corresponding to one item to be checked.

After you finish constructing the dialog box as a whole, you will
look at how to set and read the values of all the controls. For now,
concentrate on getting the proper controls in place.

Before moving on, however, add a set of radio buttons to the
dialog box so you can compare them with check boxes. The
following code sets up a set of three radio buttons next to your
check boxes:

R.Assign(, , ,);
B := New (PRadioButtons, Init(R,

NewSltem('-S-olid' ,
NewSltem('-R-unny' ,
NewSltem('-M-elted' ,
nil)))

));

Insert(B);

The main differences you will note between the check boxes and
the radio buttons are that you can only select one radio button in
the group, and the first item in the list of radio buttons is selected
by default.

Since you don't need to know the state of every radio button (only
one can be on, so you only need to know which one it is), radio
button data is not bitmapped. This means you can have more than
just 16 radio buttons, if you choose, but since the data is still
stored, you are limited to 65,536 radio buttons per cluster. This
should not be a serious impediment to your design. A value of
zero indicates the first radio button is selected, a one indicates the
second button, a two the third, and so on.

Turbo Vision Guide

Labeling the
controls

This is TVGUID 74.PAS

Figure 2.9
Dialog box with labeled

clusters added

The input line
object

Of course, setting up controls may not be sufficient. Simply
offering a set of choices may not tell the user just what he is
choosing! Turbo Vision provides a handy method for labeling
controls in the form of another control, the TLabel.

There's more to the TLabel than appears at first glance. A TLabel
not only displays text, it is also bound to another view. Clicking
on a label will move the focus to the bound view. You can also
define a shortcut letter for a label by surrounding the letter with
tildes (-).

To label your check boxes, add the following code right after you
insert the check boxes into the dialog box:

R.Assign(2, 2, 10, 3);
Insert (New (PLabel, Init(R, 'Cheeses', B)));

You can now activate the set of check boxes by clicking on the
word "Cheeses." This also lets the uninformed know that the
items in the box are, in fact, cheeses.

Similarly, you can add a label to your radio buttons with the
following code:

R.Assign(21, 2, 33, 3);
Insert (New (PLabel, Init(R, 'Consistency', B)));

There is one other fairly simple kind of control that you can add
to your dialog box: an item for editing string input, called an input
line. Actually, the workings of the input line are fairly complex,
but from your perspective as a programmer, TInputLine is a very
simple object to use.

Chapter 2, Writing Turbo Vision applications 55

56

This is TVGUlD75.PAS

Figure 2.10
Dialog box with input line

added

Setting and
getting data

Add the following code after the code for labeling the radio
buttons and before you execute the dialog box:

R.Assign(3, 8, 37, 9);
B := New(PlnputLine, Init(R, 128));
Insert(B);
R.Assign(2, 7, 24, 8);
Insert (New (PLabel, Init(R, 'Delivery instructions', B)));

Setting up an input line is simplicity itself: You assign a rectangle
that determines the length of the input line within the screen. The
only other parameter required is one defining the maximum
length of the string to be edited. That length may exceed the
displayed length because the TlnputLine object knows how to
scroll the string forward and backward. By default, the input line
can handle keystrokes, editing commands, and mouse clicks and
drags.

Delivery instructions

The input line also has a label for clarity, since unlabeled input
lines can be even more confusing to users than unlabeled clusters.

Now that you have constructed a fairly complex dialog box, you
need to figure out how to use it. You have set up the user interface
end; now you need to set up the program interface. Having
controls isn't much help if you don't know how to get
information from them!

There are basically two things you need to be able to do: Set the
initial values of the controls when the dialog box is opened, and
read the values back when the dialog box is closed. Note that you
don't want to modify any data outside the dialog box until you
successfully close the box. If the user decides to cancel the dialog
box, you have to be able to ignore any changes made while the
dialog box was open.

Turbo Vision Guide

Luckily, Turbo Vision facilitates doing just that. Your program
hands a record of information to a dialog box when it is opened.
When the user ends the dialog box, your program needs to check
to see if the dialog box was canceled or closed normally. If it was
canceled, you can simply proceed, without modifying the record.
If the dialog box closed successfully, you can read back a record
from the dialog box in the same form as the one given to it.

The methods SetData and GetData are used to copy data to and
from a view. Every view has both a SetData and GetData method.

When a group (such as TDiaZog) is initialized through a SetData
call, it passes the data along by calling each of its subviews'
SetData methods.

When you call a group's SetData, you pass it a data record that
contains the data for each view in the group. You need to arrange
each view's data in the same order as the group's views were
inserted.

You also need to make the data the proper size for each view.
Every view has a method called DataSize which returns the size of
the view's data space. Each view copies DataSize amount of data
from the data record, then advances a pointer to tell the next view
where to begin. If a subview's data is the wrong size, each
subsequent subview will also copy invalid data.

If you create a new view and add data fields to it, don't forget to
override DataSize, SetData, and GetData so that they handle the
proper values. The order and sizes of the data in the data
structure is entirely up to you. The compiler will return no errors
if you make a mistake.

After the dialog box executes, your program should first make
sure the dialog box wasn't canceled, then call GetData to import
the dialog box's information back into your application.

So, in your example program, you initialize in turn a cluster of
check boxes, a label, a cluster of radio buttons, a label, an input
line of up to 128 characters, a label, and two buttons (Ok and
Cancel). Table 2.1 summarizes the data requirements for each of
these.

Chapter 2, Writing Turbo Vision applications 57

Table 2.1
Data for dialog box controls

This is TVGUlD 76.PAS

58

Control

check boxes
label
radio buttons
label
input line
label
button
button

Data required

WJrd
none
WJrd
none
string[128]
none
none
none

Views that have no data (such as labels and buttons) use the
GetData method they inherit from TView, which does nothing at
all, so you don't need to concern yourself with them here. This
means that when getting and setting data, you can skip over
labels and buttons.

Thus, you are only concerned with three of the views in the dialog
box: the check boxes, the radio buttons, and the input line. As
noted earlier, each of the cluster items stores its data in a Word
type field. The input line's data is stored in a string. You can set
up a data record for this dialog box in a global type declaration:

DialogData = record
CheckBoxData: Word;
RadioButtonData: Word;
InputLineData: string[128];

end;

Now all you have to do is initialize the record when you start up
the program (MyApp.Init is a good place), set the data when you
enter the dialog box, and read it back when the dialog box closes
successfully. It's almost easier to say that in Pascal than it was in
English! Once you've declared the type as we did here, you
declare a global variable:

var
DemoDialogData: DialogData;

then add one line before executing the dialog box and one after:

DialogA.SetData(DemoDialogData);
control := DeskTopA.ExecView(Dialog);
if Control <> cmCancel then DialogA.GetData(DemoDialogData);

and add six lines to the TMyApp.Init method to set the initial
values for the dialog box:

with DemoDialogData do

Turbo Vision Guide

Figure 2.11
Dialog box with initial values

set

Shortcut keys and
conflicts

begin
CheckboxData := 1;
RadioButtonData := 2;
InputLineData := 'Phone home.';

end;

DeliVVf.j instructions
'R,uid..".!,,!-

N OW any changes you make to the dialog box should be there
when you reopen it, as long as you didn't cancel the dialog.

One of the things we learned as we wrote the Turbo Pascal
integrated environment was that it is a good idea to have your
program store information that gets altered by a dialog box in the
form of a record that can be used for setting or getting data from
the dialog box. This keeps you from having to construct lots of
data records from discrete variables every time you want to open
a dialog box, and from having to disperse the information
returned from a dialog box to various variables when it's done.

By default, labels, check boxes and radio buttons can respond to
shortcut keys even when the focus is elsewhere within the dialog.
For example, when your example dialog box first opens, the focus
is in the check boxes, and the cursor is on the first check box.
Pressing an M for "Melted" will immediately move the focus to
the Melted radio button and turn it on.

While you obviously want shortcut keys to be as mnemonic as
possible, there are only 26 letters and 10 digits available. This may
cause some conflicts. For example, in your little dialog box it
would make sense to have C as the shortcut for "Cheeses,"
"Consistency," and maybe a cheese called "Cheddar." There are a
couple of ways to deal with such situations.

First, while it is nice to have the first letter of a word be the
shortcut, it is not always possible. You can resolve the conflict
between "Cheeses" and "Consistency," for example, by making 0
the shortcut for "Consistency," but the result is not as easy to

Chapter 2, Writing Turbo Vision applications 59

60

The Options field and the
of PostProcess bit are both

explained in Chapter 4.

See the "Phase'" section in
Chapter 5 for more

explanation.

remember. Another way, of course, is to relabel something.
Instead of the label "Cheeses," you could label that cluster "Kind
of Cheese," with K as the shortcut.

This sort of manipulation is the only way around conflicts of
shortcut keys at the same level. However, there is another
approach you can take if the conflict is between, say, a label and a
member of a cluster: Shortcut keys can be made local within a
dialog box item. In the previous example, for example, if you
localize the shortcuts within each cluster, pressing M when the
check boxes are focused will not activate the "Consistency"
buttons or the "Melted" button. M would only function as a
shortcut if you clicked or Tabbed into the "Consistency" cluster
first.

By default all shortcut keys are active over the entire dialog box. If
you want to localize shortcuts, change the default Options field for
the object you are about to insert into the dialog box. For example,
if you want to make the shortcuts in your check boxes local, you
would add another line before inserting into the dialog box:

R.Assign (3, 3, 18, 6);
B := New(PCheckBoxes, Init(R,

NewSltern('-H-varti' ,
NewSltern('-T-ilset' ,
NewSltern('-J-arlsberg' ,
nil)))

));

B~.Options := B~.Options and not ofPostProcessi
Insert(B);

Now the H, T, and J shortcut keys only operate if you click or Tab
into the "Cheeses" cluster first. Alt-H, A It-T, and Alt-J will continue to
function as before, however.

Keep in mind that a label never gets the focus. Therefore, a label
must have its ofPostProcess bit on for its shortcut to operate.

Having ofPostProcess set means that the user can enter information
in a dialog box quickly. However, there are some possible
drawbacks. A user may press a shortcut key expecting it to go to
one place, but because of a conflict it goes somewhere else.
Similarly, if the user expects shortcut keys to be active, but they're
only active locally, it could be confusing to have a shortcut key do
nothing when it is pressed outside the area where it is active.

The best advice we can give you is to test your dialog boxes
carefully for conflicts. Avoid having duplicate shortcut keys when

Turbo Vision Guide

Ending the dialog
box

possible, and always make it clear to the user which options are
available.

When you are through with the dialog box, you call Dispose(D,
Done). Calling Done also removes the dialog box from the desktop.

Other dialog box controls

Static text

List viewer

List box

The Dialogs unit has some additional ready-made parts that
weren't used in this example. They are used in the same way as
the items you did use: You create a new instance, insert it into the
dialog box, and include any appropriate data in the data record.
This section will just describe briefly the functions and usage of
each one. Much more detail is contained in Chapter 13, "Object
reference."

TStaticText is a view that simply displays the string passed to it.
The string is word wrapped within the view's rectangle. The text
will be centered if the string begins with a Ctr/-C and line breaks
can be forced with etr/-M. By default, the text can't get the focus,
and of course, the object gets no data from the data record.

A TListViewer will display a single or multiple column list, from
which the user can select items. A ListViewer can also
communicate with two scroll bars.

TListViewer is meant to be a building block, and is not usable by
itself. It has the ability to handle a list, but does not itself contain a
list. Its abstract method GetText loads the list members for its
Draw method. A working descendant of TListViewer needs to
override GetText to load actual data.

TListBox is a working descendant of TListViewer. It owns a
TCollection that is assumed to be pointers to strings. TListBox only
supports one scroll bar. An example of a list box is the file

Chapter 2, Writing Turbo Vision applications 61

History

selection list in the Turbo Pascal integrated environment, or the
file list used by TFileDialog in STDDLG.P AS.

Getting and setting data with list boxes is greatly facilitated by the
use of the TListBoxRec record type, which holds a pointer to a
collection containing the list of strings to be displayed and a word
indicating which item is currently selected in the list.

THistory implements an object that works together with an input
line and a related list box. By clicking on the arrow icon next to
the input line, the user brings up a list of previous values given
for the input line, any of which may then be selected. This saves
on repetitive typing.

THistory objects are used in many places in the Turbo Pascal
integrated environment, such as the File I Open dialog box and in
the Search I Find dialog box.

Standard dialog boxes

62

The StdDlg unit contains a pre-built dialog called TFileDialog. You
use this dialog box in the integrated environment when you open
a file. TFileDialog uses a number of further objects, also in the
StdDlg unit, which you may find useful:

TFilelnputLine = object(TlnputLine)
TFileCollection = object (TSortedCollection)
TSortedListBox = object (TListBox)
TFileList = object(TSortedListBox)
TFilelnfoPane = object (TView)

Because the source for the entire standard Dialogs unit is included,
we will not describe the objects in detail here.

Turbo Vision Guide

p A R T

2

Programming Turbo Vision

63

64 Turbo Vision Guide

c H A p T E R

3

The object hierarchy

This chapter assumes that you have a good working knowledge
of Turbo Pascal, especially the object-oriented extensions,
although we do recap some relevant facts about object types. It
also assumes that you have read Part 1 of this book to get an
overview of Turbo Vision's philosophy, capabilities, and
terminology.

After some general comments on OOP and hierarchies, this
chapter takes you quickly through the Turbo Vision object
hierarchy, stressing how the objects are related through the
inheritance mechanism. By learning the main properties of each
standard object type (many of which are related to the object's
name in an obvious way), you will gain an insight into how the
inherited and new fields and methods of each object combine to
provide the object's functionality.

The complete hierarchy tree is shown in Figure 3.1. You'll find
that this picture repays careful study. To know that TDialog, for
example, is derived from TWindow, which is a descendant of
TGroup, which is a descendant of TView, reduces the learning
curve considerably. Each new derived object type you encounter
already has familiar inherited properties; you simply study
whatever additional fields and properties it has over its parent.

Chapter 3, The object hierarchy 65

Figure 3.1
Turbo Vision object hierarchy

TObj ect TVi ew'-----.-TBackground
TButton

66

TCl uster'-----r-TCheckBoxes
LTRadioButtons

TFrame
TGrOUpl------rC-TDeskTop

TPrograml-----TAppl i cati on
TWindow------.--TDialog

LTHistoryWindow
THistory
TlnputLine
TL i stVi ewer'--~-TLi stBox

LTHi storyVi ewer
TMenuVi ew'-------rL-TMenuBar

TMenuBox
TScroll er'-----TTextDevi ce----TTermi nal
TScroll Bar
TStati cText--~-TLabel

LTParamText
TStatusLine

TCollection------TSortedCollection---TStringCollection---TResourceCollection
TStream c=TDosStream TBufStream

TEmsStream
TResourceFile
TStri ngLi st
TStrListMaker

As you develop your own Turbo Vision applications, you will
find that a general familiarity with the standard object types and
their mutual relationships is an enormous help. Mastering the
minute details will come later, but as with all OOP projects, the
initial overall planning of your new objects is the key to success.

There is no "perfect" hierarchy for any application. Every object
hierarchy is something of a compromise obtained by careful
experiment (and a fair amount of intuition acquired with
practice). You can benefit from our experience in developing
object type hierarchies. Naturally, you can create your own base
object types to achieve special effects beyond the standard objects
provided.

Chapter 13, "Object reference," describes the methods and fields
of each standard object type in depth, but until you acquire an
overall feel for how the hierarchy is structured, you can easily
become overwhelmed by the mass of detail. This chapter presents
an informal browse through the hierarchy before you tackle the

Turbo Vision Guide

detail. The remainder of this part will give more detailed
explanations of the components of Turbo Vision and how to use
them. Part 3 provides alphabetical reference material.

Object typology

Abstract objects

Not all object types are created equal in Turbo Vision. You can
separate their functions into three distinct groups: primitive
objects, view objects, and mute objects. Each of these is described
in a separate section of this chapter.

Within each of these groups there are also different sorts of
objects, some of which are useful objects that you can instantiate
and use, and others of which are abstract objects that serve as the
basis for deriving related, useful objects. Before we look at the
objects in the Turbo Vision hierarchy, it will be helpful to
understand a little about these abstract objects.

Many object types exist as "abstract" bases from which more
specialized and immediately useful object types can be derived.
The reason for having abstract types is partly conceptual but
largely serves the practical aim of reducing coding effort.

Take the TRadioButtons and TCheckBoxes types, for example. They
could each be derived directly from TView without difficulty.
However, they share a great deal in common: They both represent
sets of c0ntrols with similar responses. A set of radio buttons is a
lot like a set of check boxes within which only one box can be
checked, although there are a few other technical differences. This
commonality warrants an abstract class called TCluster.
TRadioButtons and TCheckBoxes are then derived from TCluster
with the addition of a few specialized methods to provide their
individual functionalities.

Abstract types are never usefully instantiated. An instance of
TCluster, MyCluster, for example, would not have a useful Draw
method: It inherits TView.Draw without overriding, so
MyCluster.Draw would simply display an empty rectangle of the
default color. If you want a fancy cluster of controls with
properties different from radio buttons or check boxes, you might
try deriving a TMyCluster from TCluster, or it might be easier to
derive your special cluster from TRadioButtons or TCheckBoxes,

Chapter 3, The object hierarchy 67

Abstract methods

depending on which is closer to your needs. In all cases, you
would add fields, and add or override methods, with the least
possible effort. If your plans include a whole family of fancy
clusters, you might find it convenient to create an intermediate
abstract object type. I

Whether you can usefully instantiate an object type depends
entirely on the circumstances. Many of Turbo Vision's standard
types have abstract methods that must be defined in descendant
types. Standard types may also have pseudo-abstract methods
offering minimal default actions that may suit your purposes-if
not, a derived type will be needed.

A general rule is that as you travel down the Turbo Vision
hierarchy, the standard types become more specialized and less
"abstract." Their names reveal the functionality encapsulated in
their fields and methods. For most applications there will be
obvious base types from which you can create a "standard"
interface: a desktop, menu bar, status line, dialog boxes, and so
on.

Object instantiations and derivations

Instantiation

68

Given any object type there are two basic operations available:
You can create an instance of that type ("instantiate" it), or you
can derive a descendant object type. In the latter case, you have a
new object type on which the previous two operations can again
be applied. Let's examine these operations in more detail.

Creating an instance of an object is usually accomplished by a
variable declaration, either static or dynamic:

MyScrollBar: TScrollBar;
SomeButton: PButton;

MyScrollBar would be initialized by TScrollBar.lnit with certain
default field values. These can be found by consulting the
TScrollBar.lnit entry in Chapter 13,"Object reference." Since
TScrollBar is a descendant of TView, TScrollBar.lnit calls TView.lnit
to set the fields inherited from TView. Similarly, TView.lnit is a

Turbo Vision Guide

Derivation

descendant of TObject, so it calls the TObject constructor to
allocate memory. TObject has no parent, so the buck stops there.

The MyScrollBar object now has default field values which you
may need to change. It also has all the methods of TScrollBar plus
the methods (possibly overridden) of TView and TObject. To make
use of MyScrollBar, you need to know what its methods do,
especially HandleEvent and Draw. If the required functionality is
not defined in TScrollBar, you need to derive a new descendant
type.

You can easily derive a new object type from an existing one:

PNewScrollBar = ATNewScrollBar;
TNewScrollBar = object(TScrollBar)

end;

You do not yet have any instances of this new object type. Before
declaring any TNewScrollBar objects, you need to define new
methods or override some of TScrollBar's methods and possibly
add some new fields; otherwise there would be no reason to
create a new scroll bar object type. The new or revised methods
and fields you define constitute the process of adding
functionality to TScrollBar. Your new Init method would
determine the default values for your new scroll bar objects.

Turbo Vision methods

Abstract methods

Turbo Vision methods can be characterized in four (possibly
overlapping) ways, each described here.

In the base object type, an abstract method has no defining body
(or a body containing the statement Abstract set to trap illegal
calls). Abstract methods must be defined by a descendant before
they can be used. Abstract methods are always virtual methods.
An example of this is TStream.Read.

Chapter 3, The object hierarchy 69

Pseudo-abstract
methods

Virtual methods

Static methods

In the base object type, a pseudo-abstract method has a minimal
action defined. It will almost always be overridden by a
descendant to be useful, but the method provides a reasonable
default for all objects in the inheritance chain. An example is
TSortedCollection.Compare.

Virtual methods use the virtual directive in their prototype
declarations. A virtual method can be redefined (overridden) in
descendants but the redefined method must itself be virtual and
match the original method's header exactly. Virtual methods need
not be overridden, but the usual intention is that they will be
overridden sooner or later. An example of this is TView.DataSize.

A static method cannot be overridden per se. A descendant type
may define a method with the same name using entirely different
arguments and return types, if necessary, but static methods do
not operate polymorphically. This is most critical when you call
methods of dynamic objects. For example, if PGeneric is a pointer
variable of type PView, you can assign pointers of any type from
the hierarchy to it. However, when you dereference the variable
and call a static method, the method called will always be TView's,
since that is the type of the pointer as determined at compile time. .
In other words, PGeneric".StaticMethod is always equivalent to
TView.StaticMethod, even if you have assigned a pointer of some
other type to PGeneric. An example is TView.Init.

Turbo Vision fields

70

If you take an important trio of objects: TView, TGroup, and
TWindow, a glance at their fields reveals inheritance at work, and
also tells you quite a bit about the growing functionality as you
move down the hierarchy (recall that object trees grow downward
from the root!).

Turbo Vision Guide

Table 3.1
Inheritance of view fields TView fields TGroup fields TWindow fields

Owner Owner
Next Next
Origin Origin
Size Size
Cursor Cursor
GrowMode GrowMode
DragMode DragMode
HelpCtx HelpCtx
State State
Options Options
EventMask EventMask

Buffer
Phase
Current
Last

Owner
Next
Origin
Size
Cursor
GrowMode
DragMode
HelpCtx
State
Options
EventMask
Buffer
Phase
Current
Last
Flags
Title
Number
ZoomRect
Palette
Frame

Notice that TGroup inherits all the fields of TView and adds
several more that are pertinent to group operation, such as
pointers to the current and last views in the group. TWindow in
turn inherits all of TGroup's fields and adds yet more which are
needed for window operation, such as the title and number of the
window.

In order to fully understand TWindow, you need to keep in mind
that a window is a group and also a view.

Primitive object types

Turbo Vision provides three simple object typesthat exist
primarily to be used by other objects or to act as the basis of a
hierarchy of more complex objects. TPoint and TRect are used by
all the visible objects in the Turbo Vision hierarchy. TObject is the
basis of the hierarchy.

Note that objects of these types are not directly displayable.
TPoint is simply a screen-position object (X, Y coordinates). TRect
sounds like a view object, but it just supplies upper-left, lower
right rectangle bounds and several non-display utility methods.

Chapter 3, The object hierarchy 71

TPoint

TRect

TObject

Views

72

This object represents a point. Its fields, X and Y, define the
cartesian (X,Y) coordinates of a screen position. The point (0,0) is
the topmost,leftmost point on the screen. X increases horizontally
to the right; Y increases vertically downwards. TPoint has no
methods, but other types have methods that convert between
global (whole screen) and local (relative to a view's origin)
coordinates.

This object represents a rectangle. Its fields, A and B, are TPoint
objects defining the rectangle's upper-left and lower-right points.
TRect has methods Assign, Copy, Move, Grow, Intersect, Union,
Contains, Equals, and Empty. TRect objects are not visible views
and cannot draw themselves. However, all views are rectangular:
Their Init constructors all take a Bounds parameter of type TRect to
determine the region they will cover.

TObject is an abstract base type with no fields. It is the ancestor of
all Turbo Vision objects except TPoint and TRect. TObject provides
three methods: Init, Free, and Done. The constructor, Init, forms the
base for all Turbo Vision constructors by providing memory
allocation. Free disposes of this allocation. Done is an abstract
destructor that must be overriden by descendants. Any objects
that you intend to use with Turbo Vision's streams must be
derived ultimately from TObject.

TObject's descendants fall into one of two families: views or non
views. Views are descendants of TView, which gives them special
properties not shared by non-views. Views can draw themselves
and handle events sent to them. The non-view objects provide a
host of utilities for handling streams and collections of other
objects, including views, but they are not directly "viewable."

The displayable descendants of TObject are known as views, and
are derived from TView, an immediate descendant of TObject. You

Turbo Vision Guide

Views overview

Groups

should distinguish "visible" from "displayable," since there may
be times when a view is wholly or partly hidden by other views.

A view is any object that can be drawn (displayed) in a
rectangular portion of the screen. The type of a view object must
be a descendant of TView. TView itself is an abstract object
representing an empty rectangular screen area. Having TView as
an ancestor, though, ensures that each derived view has at least a
rectangular portion of the screen and a minimal virtual Draw
method (forcing all immediate descendants to supply a specific
Draw method).

Most of your Turbo Vision programming will use the more
specialized descendants of TView, but the functionality of TView
permeates the whole of Turbo Vision, so you'll need to
understand what it offers.

The importance of TView is literally apparent from the hierarchy
chart shown in Figure 3.1. Everything you can see in a Turbo
Vision application derives in some way from TView. But some of
those visible objects are also important for another reason: They
allow several objects to act in concert.

The abstract group TGroup lets you handle dynamically chained lists of related,
interacting subviews via a designated view called the owner of the
group. Each view has an Owner field of type PView that points to
the owning TGroup object. A nil pointer means that the view has
no owner. A field called Next provides a link to the next view in
the view chain. Since a group is a view, there can be subviews that
are groups owning their own subviews, and so on.

The state of the chain is constantly changing as the user clicks and
types during an application. New groups can be created and
subviews can be added to (inserted) and deleted from a group.
During its lifespan, a subview can be hidden or exposed by
actions performed on other subviews, so the group needs to
coordinate many activities.

Chapter 3, The object hierarchy 73

Desktops TDesktop is the normal startup background view, providing the
familar user's desktop, usually surrounded by a menu bar and
status line. Typically, T Application will be the owner of a group
containing TDesktop, TMenuBar and TStatusLine objects. Other
views (such as windows and dialog boxes) are created, displayed,
and manipulated in the desktop in response to user actions
(mouse and keyboard events). Most of the actual work in an
application goes on inside the desktop.

Programs TProgram provides a set of virtual methods for its descendant,
T Application.

Applications T Application provides a program template object for your Turbo
Vision application. It is a descendant of TGroup (via TProgram).
Typically, it will own TMenuBar, TDesktop and TStatusLine
subviews. T Application has methods for creating and inserting
these three subviews. The key method of T Application is
TApplication.Run which executes the application's code.

Windows TWindow objects, with help from associated TFrame objects, are
the popular bordered rectanglar displays that you can drag,
resize, and hide using methods inherited from TView. A field
called Frame points to the window's TFrame object. A TWindow
object can also zoom and close itself using its own methods.
TWindow handles the Tab and Shift-Tab key method for selecting
the next and previous selectable subviews in a window.
TWindow's event handler takes care of close, zoom, and resize
commands. Numbered windows can be selected with AIt-n hot
keys.

Dialog boxes TDialog is a descendant of TWindow used to create dialog boxes to
handle a variety of user interactions. Dialog boxes typically
contain controls such as buttons and check boxes. The parent's
ExecView method is used to save the previous context, insert a
TDialog object into the group, and then make the dialog box
modal. The TDialog object then handles user-generated events
such as button clicks and keystrokes. The Esc key is treated
specially as an exit (cmCancel). The Enter key is specially treated as
a broadcast cmDefault event (usually meaning that the default
button has been selected). Finally, ExecView restores the
previously saved context.

74 Turbo Vision Guide

Terminal views
Terminal views are all views that are not groups. That is, they
cannot own other views. They are therefore the endpoints of any
chains of views.

Frames TFrame provides the displayable frame (border) for a TWindow
object together with icons for moving and closing the window.
TFrame objects are never used on their own, but always in
conjunction with a TWindow object.

Buttons A TButton object is a titled box used to generate a specific
command event when "pushed." They are usually placed inside
(owned by) dialog boxes, offering such choices as "OK" or
"CanceL" The dialog box is usually the modal view when it
appears, so it traps and handles all events, including its button
events. The event handler offers several ways of pushing a button:
mouse-clicking in the button's rectangle, typing the shortcut letter,
or selecting the default button with the Enterkey.

Clusters TCluster is an abstract type used to implement check boxes and
radio buttons. A cluster is a group of controls that all respond in
the same way. Cluster controls are often associated with TLabel
objects, letting you select the control by selecting on the adjacent
explanatory label. Additional fields are Value, giving a user
defined value, and Sel, indexing the selected control of the cluster.
Methods for drawing text-based icons and mark characters are
provided. The cursor keys or mouse clicks can be used to mark
controls in the cluster.

Radio buttons are special clusters in which only one control can
be selected. Each subsequent selection deselects the current one
(as with a car radio station selector). Check boxes are clusters in
which any number of controls can be marked (selected).

Menus TMenu View and its two descendants, TMenuBar and TMenuBox,
provide the basic objects for creating pull-down menus and
submenus nested to any level. You supply text strings for the
menu selections (with optional highlighted shortcut letters)
together with the commands associated with each selection. The
HandleEvent methods take care of the mechanics of mouse and/or
keyboard (including shortcut and hot key) menu selection.

Chapter 3, The object hierarchy 75

76

Menu selections are displayed using a TMenuBar object, usually
owned by a T Application object. Menu selections are displayed in
objects of type TMenuBox.

For most applications, you will not be involved directly with
menu objects. By overriding T Application.lnitMenuBar with a
suitable set of nested New, NewSubMenu, NewItem and NewLine
calls, Turbo Vision builds, displays, and interacts with the
required menus.

Histories The abstract type THistory implements a generic pick-list
mechanism. Its two additional fields, Link and Historyld, give each
THistory object an associated TlnputLine and the 1D of a list of
previous entries in the input line. THis tory works in conjunction
with THis tory Window and THistoryViewer.

Input lines TlnputLine is a specialized view that provides a basic input line
string editor. It handles all the usual keyboard entries and cursor
movements (including Home and End). It offers deletes and inserts
with selectable insert and overwrite modes and automatic cursor
shape control. The mouse can be used to block mark text.

List viewers The TListViewer object type is an abstract base type from which to
derive list viewers of various kinds, such as TListBox. TListViewer's
fields and methods let you display linked lists of strings with
control over one or two scroll bars. The event handler permits
mouse or key selection (with highlight) of items on the list. The
Draw method copes with resizing and scrolling. TListViewer has
an abstract GetText method, so you need to supply the mechanism
for creating and manipulating the text of the items to be
displayed.

TListBox, derived from TListViewer, implements the most
commonly used list boxes, namely those displaying lists of strings
such as file names. TListBox objects represent displayed lists of
such items in one or more columns with an optional vertical scroll
bar. The horizontal scroll bars of TListViewer are not supported.
The inherited TListViewer methods let you select (and highlight)
items by mouse and keyboard cursor actions. TListBox has an
additional field called List, pointing to a TCollection object. This
provides the items to be listed and selected. The contents of the
collection are your responsibility, as are the actions to be
performed when an item is selected.

Turbo Vision Guide

Scrolling objects A TScroller object is a scrollable view that serves as a portal onto
another larger "background" view. Scrolling occurs in response to
keyboard input or actions in the associated TScrollBar objects.
Scrollers have two fields, HScrollld and VScrollld, identifying their
controlling horizontal and vertical scroll-bars. The Delta field in
TScroller determines the unit amount of X and Y scrolling in
conjunction with fields in the associated scroll bars.

TScrollBar objects provide either vertical or horizontal control. The
key fields are Value (the position of the scroll bar indicator),
PgStep (the amount of scrolling needed in response to mouse
clicks and PgUp, PgJ, keys) and ArStep (the amount of scrolling
needed in response to mouse clicks and arrow keys).

A scroller and its scroll bars are usually owned by a TWindow
object leading to a complex set of events to be handled. For
example, resizing the window must trigger appropriate redraws
by the scroller. The values of the scroll bar must also be changed
and redrawn.

Text devices TTextDevice is a scrollable TIY -type text viewer/device driver.
Apart from the fields and methods inherited from TScroller,
TTextDevice defines virtual methods for reading and writing
strings from and to the device. TTextDevice exists solely as a base
type for deriving real terminal drivers. TTextDevice uses TScroller's
constructor and destructor.

TTerminal implements a "dumb" terminal with buffered string
reads and writes. The size of the buffer is determined at
initialization.

Static text TStaticText objects are simple views used to display fixed strings
provided by the field Text. They ignore any events sent to them.
The TLabel type adds the property that the view holding the text,
known as a label, can be selected (highlighted) by mouse-click,
cursor key, or shortcut Alt-Ietter keys. The additional field Link
associates the label with another view, usually a control view that
handles all label events. Selecting the label selects the linked
control and selecting the linked control highlights the label as
well as the control.

Chapter 3, The object hierarchy 77

Status lines A TStatusLine object is intended for various status and hint (help)
displays, usually at the bottom line of the screen. A status line is a
one-character high strip of any length up to the screen width. The
object offers dynamic displays reacting with events in the
unfolding application. Items on the status line can be mouse or
hot key selected rather like TLabel objects. Most application
objects will start life owning a TMenuBar object, a TDesktop object,
and a TStatusLine object. The added fields for TStatusLine provide
an Items pointer and a Defs pointer.

The Items field points to the current linked list of TStatusItem
records. These hold the strings to be displayed, the hot key
mappings, and the associated Command word. The Defs field
points to a linked list of PStatusDef records used to determine the
current help context so you can display short ~/hints." TStatusLine
can be instantiated and initialized using
T Application.InitStatusLine.

Non-visible elements

Streams

78

The non-view families derived from TObject provide streams,
resource files, collections, and string lists.

A stream is a generalized object for handling input and output. In
traditional device and file I/O, separate sets of functions must be
devised to handle the extraction and conversion of different data
types. With Turbo Vision streams, you can create polymorphic
1/ a methods such as Read and Write that know how to process
their own particular stream contents.

TStream is the base abstract object providing polymorphic 110 to
and from a storage device. TStream provides a Status field
indicating the access mode (read only, write only, read/write) and
an Errorlnfo field to report I/O failures. There are seven virtual
methods: Flush, GetPos, GetSize, Read, Seek, Truncate, and Write.
These must be overridden to derive specialized stream types.
You'll see that Turbo Vision adopts this strategy to derive
TDosStream, TEmsStream, and TBufStream. Other methods include
CopyFrom, Error, Get, ReadStr, Reset, and WriteStr.

Turbo Vision Guide

Object types must be registered using RegisterType before they can
be used with streams. Turbo Vision's standard object types are
preregistered (see URegisterType procedure" in Chapter 14,
"Global reference").

DOS streams TDosStream is a specialized TStream derivative implementing
unbuffered DOS file streams. A Handle field is provided,
corresponding to the familiar DOS file handle. The Init
constructor creates a DOS stream with a given file name and
access mode. TDosStream defines all the abstract methods of
TStream except for Flush, which is needed only for buffered
streams.

Buffered streams TBufStream implements a buffered version of TDosStream. The
Buffer and BufSize fields are added to specify the location and size
of the buffer. The fields BufPtr and BufEnd define a current
position and final position within the buffer. The abstract
TStream.Flush method is defined to flush the buffer. Flushing
means writing out and clearing any residual buffer data before a
stream is closed.

EMS streams A further specialized stream, TEmsStream implements streams in
EMS memory. New fields provide an EMS handle, the number of
pages, the stream size, and the current position within the stream.

Resources

Collections

A resource file is a special kind of stream where generic objects
("items") can be indexed via string keys. Rather than derive
resource files from TStream, TResouceFile has a field, Stream,
associating a stream with the resource file. Resource items are
accessed with Get(Key) calls where Key is the string index. Other
methods provided are Put (store an item with a given key), KeyAt
(get the index to a given item), Flush (write all changes to the
stream), Delete (erase the item at a given key), and Count (return
the number of items on file).

TCollection implements a general set of items, including arbitrary
objects of different types. Unlike the arrays, sets, and lists of non
OOP languages, a Turbo Vision collection allows for dynamic
sizing. TCollection is an abstract base for more specialized

Chapter 3, The object hierarchy 79

80

collections, such as TSortedCollection. The chief field is Items, a
pointer to an array of items. Apart from the indexing, insertion,
and deletion methods, TCollection offers several iterator routines.
A collection can be scanned for the first or last item that meets a
condition specified in a user-supplied test function. With the
ForEach method you can also trigger user-supplied actions on
each item in the collection.

Sorted collections TSortedCollection implements collections that are sorted by keys.
Sorting is defined via a virtual, abstract Compare method. Your
derived types can therefore specify particular ordering for
collections of objects of any type. The Insert method adds items to
maintain this ordering, and keys can be located quickly with a
binary Search method.

String collections TStringCollection is a simple extension of TSortedCollection for
handling sorted collections of Turbo Pascal strings. The secret
ingredient is the overriding of the Compare method to provide
alphabetical ordering. A FreeItem method removes a given string
item from the collection. For writing and reading string
collections on streams, the virtual PutItem and GetItem methods
are provided.

Resource collections TResourceCollection implements a collection of sorted resource
indexes used by resource files. The TStringCollection methods,
FreeItem, GetItem, KeyOf, and PutItem are all overriden to handle
resources.

String lists
TStringList implements a special kind of string resource in which
strings can be accessed via a numerical index using the Get
method. A Count field holds the number of strings in the object.
TStringList simplifies internationalization and multilingual text
applications. String lists can be read from a stream using the Load
constructor. To create and add to string lists, you use
TStrListMaker.

TStringList offers access only to existing numerically indexed
string lists. TStrListMaker supplies the Put method for adding a
string to a string list, and a Store method for saving string lists on
a stream.

Turbo Vision Guide

c H A p T E R

4

Views

By now, you should have a sense, from reading Chapters 1 and 2
and from looking at the integrated environment, of what a Turbo
Vision application looks like from the outside. But what's behind
the scenes? That's the subject of the next two chapters.

"We have taken control of your N ... /I

Chapter 4, Views

One of the adjustments you make when you use Turbo Vision is
that you give up writing directly to the screen. Instead of using
Write and Writeln to convey information to the user, you give the
information to Turbo Vision, which makes sure the information
appears in the right places at the right time.

The basic building block of a Turbo Vision application is the view.
A view is a Turbo Pascal object that manages a rectangular area of
the screen. For example, the menu bar at the top of the screen is a
view. Any program action in that area of the screen (for example,
clicking the mouse on the menu bar) will be dealt with by the
view that controls that area.

Menus are views, as are windows, the status line, buttons, scroll
bars, dialog boxes, and usually even a simple line of text. In
general, anything that shows up on the screen of a Turbo Vision
program must be a view, and the most important property of a
view is that it knows how to represent itself on the screen. So, for
example, when you want to make a menu system, you simply tell

81

Turbo Vision that you want to create a menu bar containing
certain menus, and Turbo Vision handles the rest.

The most visible example of a view, but one you probably would
not think of as a view, is the program itself. It controls the entire
screen, but you don't notice that because the program sets up
other views (called its subviews) to handle its interactions with the
user. As you will see, what appears to the user as a single object
(like a window) is often a group of related views.

Simple view objects

Setting your sights

82

As you can see from the hierarchy chart in Figure 4.6, all Turbo
Vision views have TObject as an ancestor. TObject is little more
than a common ancestor for all the objects. Turbo Vision itself
really starts at TView.

A TView itself just appears on the screen as a blank rectangle.
There is little reason to instantiate a TView itself unless you want
to create a blank rectangle on the screen for proto typing purposes.
But even though TView is visually simple, it contains all of Turbo
Vision's basic screen management methods and fields.

There are two things any TView-derived object must be able to do:

The first is draw itself at any time. TView defines a virtual method
called Draw, and each object derived from TView must also have a
Draw method. This is important, because often a view will be
covered or overlapped by another view, and when that other
view goes away or moves, the view must be able to show the part
of itself that was hidden.

The second is handle any events that come its way. As noted in
Chapter I, Turbo Vision programs are event-driven. This means
that Turbo Vision gathers input from the user and parcels it out to
the appropriate objects in the application. Views need to know
what to do when events affect them. Event handling is covered in
detail in Chapter 5.

Before discussing what view objects do, you need to learn a bit
about what they are-how they represent themselves on the
screen.

Turbo Vision Guide

TPoint is described in the next
section.

The location of a view is determined by two points: its top left
corner (called its origin) and its bottom right corner. Each of these
points is represented in the object by a field of the type TPoint.
The Origin field is a TPoint indicating the origin of the view, and
the Size field represents the lower right corner.

Note that Origin is a point in the coordinate system of the owner
view: If you open a window on the desktop, its Origin field
indicates the x- and y-coordinates of the window relative to the
origin of the desktop. The Size field, on the other hand, is a point
relative to the origin of its own object. It tells you how far the
lower right corner is from the origin point, but unless you know
where the view's origin is located within another view, you can't
tell where that corner really is.

Getting the TPoint The TPoint type is extremely simple. It has only two fields, called X
and Y, which are its coordinates. It has no methods. Turbo Vision
uses the TPoint object to allow views to specify their coordinates
as a single field.

Getting into a TRect For convenience, TPoints are rarely dealt with directly in Turbo
Vision. Since each view object has both an origin and a size, they
are usually handled together in an object called TRect. TRect has
two fields, A and B, each of which is a TPoint. When specifying
the boundaries of a view object, those boundaries are passed to
the constructor in a TRect.

ThisWindow and PlnsideView
are just made up for this

example.

Chapter 4, Views

TRect and TView both provide useful methods for manipulating
the size of a view. For example, if you want to create a view that
fits just inside a window, you can get the window to tell you how
big it is, then shrink that size and assign it to the new inside view.

procedure ThisWindow.MakeInside;
var

R: TRect;
Inside: PInsideView;

begin
GetExtent(R); { sets R to size of ThisWindow }
R.Grow(-l, -1); shrinks the rectangle by 1, both ways}
Inside := New(PInsideView, Init(R)); { creates inside view}
Insert(Inside); { insert the new view into the window}

end;

GetExtent is a TView method that sets the argument TRect to the
coordinates of a rectangle covering the entire view. Grow is a

83

84

Turbo Vision
coordinates

Figure 4.1
Turbo Vision coordinate

system

Making an

TRect method that increases (or with negative parameters,
decreases) the horizontal and vertical sizes of a rectangle.

Turbo Vision's method of assigning coordinates may be different
from what you're used to. The difference is that, unlike most
coordinate systems that designate the character spaces on the
screen, Turbo Vision coordinates specify the grid between the
characters.

For example, if R is a TReet object, R.Assign (0, 0, 0, 0) designates a
rectangle with no size-it is only a point. The smallest rectangle
that can actually contain anything would be created with
R.Assign(O,O,l,l).

Figure 4.1 shows a TReet created by R.Assign (2, 2, 4, 5).

o 123 4 5 6 7
o

2

3

4

5

R

R

R R

R R

Thus, R.Assign (2, 2, 4, 5) produces a rectangle that contains six
character spaces. Although this coordinate system is slightly
unconventional, it makes it mueh easier to calculate the sizes of
rectangles, the coordinates of adjacent rectangles, and some other
things as well.

appearance The appearance of a view object is determined by its Draw
method. Nearly every new type of view will need to have its own
Draw, since it is, generally, the appearance of a view that
distinguishes it from other views.

There are a couple of rules that apply to all views with respect to
appearance. A view must

• cover the entire area for which it is responsible, and

• be able to draw itself at any time.

Both of these properties are very important and deserve some
discussion.

Turbo Vision Guide

Territoriality There are good reasons for each view to take responsibility for its
own territory. A view is assigned a rectangular region of the
screen. If it does not fill in that whole area, the contents of the
unfilled area are undefined: Just about anything could show up
there, and you would have no control over it. The program
TVDEM005.PAS demonstrates what happens if a view leaves
some of its appearance to chance.

Drawing on demand In addition, a view must always be able to represent itself on the
screen. That's because other views may cover part of it but then be
removed, or the view itself might move. In any case, when called
upon to do so, a view must always know enough about its present
state to show itself properly.

Putting on your
best behavior

Event handling is covered in
detail in Chapter 5, "Event

driven programming. H

Chapter 4, Views

Note that this may mean that the view does nothing at all: It may
be entirely covered, or it may not even be on the screen, or the
window that holds it might have shrunk to the point that the view
is not visible at all. Most of these situations are handled
automatically, but it is important to remember that your view
must always know how to draw itself.

This is different from a lot of other windowing schemes, where
the writing on a window, for example, is persistent: You write it
there and it stays, even if something covers it up then moves
away. In Turbo Vision, you can't assume that a view you uncover
is correct-after all, something may have told it to change while it
was covered!

The behavior of a view is almost entirely determined by a method
called HandleEvent. HandleEvent is passed an event record, which
it must process in one of two ways. It can either perform some
action in response to the event and then mark the event as having
been handled, or it can pass the event along to the next view (if
any) that should see it.

The key to behavior, really, is how the view responds to certain
events. For example, if a window receives an event containing a
em Close command, the expected behavior is that the window
would close. It is possible that you might devise some other
response to that command, but not likely.

85

Complex views

86

Groups and
subviews

You've already learned something about the most important
immediate descendant of TView, the TGroup. TGroup and its
descendants are collectively referred to as groups. Views not
descended from TGroup are called terminal views.

Basically a group is just an empty box that contains and manages
other views. Technically, it is a view, and therefore responsible for
all the things that any view must be able to do: manage a
rectangular area of the screen, visually represent itself at any time,
and handle events in its screen region. The difference is really in
how it accomplishes these things: most of it is handled by
subviews.

A subview is a view that is owned by another view. That is, some
view (a group) has delegated part of its region on the screen to be
handled by another view, called a sub view, which it will manage.

An excellent example is T Application. T Application is a view that
controls a region of the screen-the whole screen, in fact.
T Application is also a group that owns three subviews: the menu
bar, the desktop, and the status line. The application delegates a
region of the screen to each of these subviews. The menu bar gets
the top line, the status line gets the bottom line, and the desktop
gets all the lines in between. Figure 4.2 shows a typical
T Application screen.

Turbo Vision Guide

Figure 4.2
TApplication screen layout

Getting into a
group

Chapter 4, Views

MenuBar

StatusLi ne P

Notice that the application itself has no screen representation
you don't see the application. Its appearance is entirely
determined by the views it owns.

How does a subview get attached to a group? The process is
called insertion. Subviews are created and then inserted into
groups. In the previous example, the constructor T Application.lnit
creates three objects and inserts them into the application:

InitDeskTop;
InitStatusLine;
InitMenuBar;
if DeskTop <> nil then Insert(DeskTop);
if StatusLine <> nil then Insert(StatusLine);
if MenuBar <> nil then Insert(MenuBar);

Only when they have been inserted are the newly created views
part of the group. In this particular case, T Application has divided
its region into three separate pieces and delegated one to each of
its subviews. This makes the visual representation fairly
straightforward, as the sub views do not overlap at all.

There is no reason, however, that views cannot overlap. Indeed,
one of the big advantages of a windowed environment is the
ability to have multiple, overlapping windows on the desktop.
Luckily, groups (including the desktop) know how to handle
overlapping sub views.

87

88

Another angle on Z
order

Figure 4.3
Side view of a text viewer

window

Groups keep track of the order in which sub views are inserted.
That order is referred to as Z-order. As you will see, Z-order
determines the order in which subviews get drawn and the order
in which events get passed to them.

The term Z-order refers to the fact that subviews have a three
dimensional spatial relationship. As you've already seen, every
view has a position and size within the plane of the view as you
see it (the X and Y dimensions), determined by its Origin and Size
fields. But views and subviews can overlap, and in order for
Turbo Vision to know which view is in front of which others, we
have to add a third dimension, the Z-dimension.

Z-order, then, refers to the order in which you encounter views as
you start closest to you and move back "into" the screen. The last
view inserted is the "front" view.

Rather than thinking of the screen as a flat plane with things
written on it, consider it a pane of glass providing a portal onto a
three-dimensional world of views. Indeed, every group may be
thought of as a "sandwich" of views, as illustrated in Figure 4.3.

TWindow - ~---~
(a pane of glass)

TScroller _

TScrollbar _

TFrame -

The window itself is just a pane of glass covering a group of
views. Since all you see is a projection of the views behind the

Turbo Vision Guide

Figure 4.4
Side view of the desktop

TDesktop

TWindow,
active and inactive

TBackground

Group portraits

Chapter 4, Views

glass on the screen, you can't see which views are in front of
others unless they overlap.

By default, a window has a frame, which is inserted before any
other subviews. It is therefore the ''background'' view. In creating
a scrolling interior, two scroll bars get overlaid on the frame. To
you, in front of the whole scene, they look like part of the frame,
but from the side, you can see that they actually float "above" the
frame, obscuring part of the frame from view.

Finally, the scroller itself gets inserted, covering the entire area
inside the border of the frame. Text gets written on the scroller,
not on the window, but you can see it when you look through the
window.

On a larger scale, you can see the desktop as just a larger pane of
glass, covering a larger sandwich, many of the contents of which
are also smaller sandwiches, as shown in Figure 4.4.

Again, the group (this time the desktop) is a pane of glass. Its first
subview is a TBackground object, so that view is ''behind'' all the
others. This view also shows two windows with scrolling interior
views on the desktop.

Groups are sort of an exception to the rule that views must know
how to draw themselves, because a group does not draw itself per
se. Rather, a TGroup asks its subviews to draw themselves.

The subviews are called upon to draw themselves in Z-order,
meaning that the first sub view inserted into the group is the first

89

90

Relationships
between views

Figure 4.5
A simple dialog box

one drawn. That way, if subviews overlap, the one most recently
inserted will be in front of any others.

The subviews owned by a group must cooperate to cover the
entire region controlled by the group. A dialog box, for example,
is a group, and its subviews-frame, interior, controls, and static
text-must combine to fully "cover" the full area of the dialog box
view. Otherwise, "holes" in the dialog box would appear, with
unpredictable (and unpleasant!) results.

When the subviews of a group draw themselves, their drawing is
automatically clipped at the borders of the group. Because
subviews are clipped, when you initialize a view and give it to a
group, the view needs to reside at least partially within the
group's boundaries. (You can grab a window and move it off the
desktop until only one corner remains visible, for example, but
something must remain visible for the view to be useful.) Only
the part of a subview that is within the bounds of its owner group
will be visible.

You may wonder where the desktop gets its visible background if
it is a TGroup. At its initialization, the desktop creates and owns a
subview called TBackGround, whose sole purpose is to draw in a
uniform background for the whole screen. Since the background
is the first subview inserted, it is obscured by the other views
drawn in front of it.

Views are related to each other in two distinct ways: They are
members of the Turbo Vision object hierarchy, and they are
members of the view tree. When you are new to Turbo Vision, it is
important to remember the distinction.

For example, consider the simple dialog box in Figure 4.5. It has a
frame, a one-line text message, and a single button that closes the
dialog box. In Turbo Vision terms, that's a TDialog view that owns
a TFrame, a TStaticText, and a TButton.
[.]= Sample dialog box ===;r

This is a dialog box text message

Turbo Vision Guide

The object hierarchy One way views are related is as parent and child in the object
hierarchy. Notice in the hierarchy diagram (Figure 4.6) that
TButton is a descendant of the TView object type. The TButton
actually is a TView, but it has additional fields and methods that
make it a button. TDialog is also a descendant of TView (through
TGroup and TWindow), so it has much in common with TButton.
The two are distant "cousins" in the Turbo Vision hierarchy.

Figure 4.6 TObject--r-lIl'.lI~----.

Turbo Vision object hierarchy

TFrame

'---,TCheckBoxes
LTRadi oButtons

TGrOUPI------.-CTProgram TApp1 i cati on
TDeskTop
TWi ndow---r-fi'ilF.fr.

THistory
TInputLine
TListViewer---,TListBox

LTHi storyVi ewer
TMenuVi ew LTMenuBar

TMenuBox

L Tiii"S'tO'ryWi n dow

TScroll er'---TTextDevi ce-e ---TTermina1
TScro11 Bar
TStati cText---,TLabe 1

LTParamText
TStatusLi ne

TCo 11 ecti on--TSortedCo 11 ect i on-TStri ngCo 11 ect i on-TResourceCo 11 ecti on
TStream LTDosStream TBufStream

TEmsStream
TResourceFi 1 e
TStringList
TStrLi stMaker

Ownership The other way that views are related is in a view tree. In the view
tree diagram (Figure 4.7), the TDialog owns the TButton. Here the
relationship is not between hierarchical object types (TDialog is not
an ancestor of TButton!), but between instances of objects, between
owner and subview.

Figure 4.7
A simple dialog box's view

tree

Chapter 4, Views

As you program, you'll need to make a TButton interact with its
owner in the view tree (TDialog), and the TButton will also draw
upon attributes inherited from its ancestor (TView). Don't confuse
the two relationships.

A running Turbo Vision application looks like a tree, with views
instantiating and owning other views. As your Turbo Vision
application opens and closes windows; the view tree grows and
shrinks as object instances are inserted and removed. Of course,

91

Subviews and

the object hierarchy only grows when you derive new object types
from the standard objects.

view trees As noted earlier, the T Application view owns and manages the
three subviews that it creates. You can think of this relationship as
forming a view tree. Application is the trunk, and MenuBar,
DeskTop, and StatusLine form the branches, as shown in Figure 4.8.

Figure 4.8
Basic Turbo Vision view tree

92

This same kind of object is
depicted somewhat

differently in Figure 4.3.

Remember, the relationship illustrated in Figure 4.8 is not an
object hierarchy, but a model of a data structure. The links
indicate ownership, not inheritance.

In a typical application, as the user clicks with the mouse or uses
the keyboard, he creates more views. These views will normally
appear on the desktop, and so form further branches of the tree.

It is important to understand these relationships between owners
and subviews, as both the appearance and the behavior of a view
depend a great deal on who owns the view.

Let's follow the process. Say, for instance, that the user clicks on a
menu selection that calls for a file viewer window. The file viewer
window will be a view. Turbo Vision will create the window and
attach it to the desktop.

A window will most likely own a number of subviews: a TFrame
(the frame around the window), a TScroller (the interior view that
holds a scrollable array of text), and a couple of TScrollbars. When
the window is called into being, it creates, owns, and manages its
subviews.

More views are now attached to our growing application, which
now looks something like Figure 4.9.

Turbo Vision Guide

Figure 4.9
Desktop with file viewer

added

Figure 4.10
View tree with file viewer

added

Chapter 4, Views

MenuBar

StatusLine

The view tree has also become somewhat more complex, as
shown in Figure 4.10. (Again, these are ownership links.)

Now suppose the user clicks on the same menu selection and
creates another file viewer window. Turbo Vision will create a
second window and attach it to the desktop, as shown in Figure
4.11.

93

Figure 4.11
Desktop with file viewer

added

Figure 4.12
View tree with two file

viewers added

Event routing is explained in
Chapter 5.

94

MenuBar

[.]= File Viewer Window ~ol=l'J'llll~1111
File text

File

StatusLi ne

The view tree also becomes correspondingly more complex, as
shown in Figure 4.12.

As you'll see in Chapter 5, program control flows down this view
tree. In the preceding example, suppose you click on a scroll bar
in the file viewer window. How does that click arrive at the right
place?

The Application program sees the mouse click, realizes that it's
within the area controlled by the desktop, and passes it to the
desktop object. The desktop in turn sees that the click is within
the area controlled by the file viewer, and passes it off to that
view. The file viewer now sees that the click was on the scroll bar,
and lets the scroll bar view handle the click, generating an
appropriate response.

The actual mechanism for this is unimportant at this point. The
important thing to remember is how views are connected. No

Turbo Vision Guide

matter how complex the structure becomes, all views are
ultimately connected to your application object.

If the user clicks on the second file viewer's close icon or on a
Close Window menu item, the second file viewer will close. Turbo
Vision then takes it off the view tree and disposes it. The window
will dispose all of its subviews, then be disposed itself.

Eventually, the user will trim the views down to just the original·
four, and will indicate at some point that he is finished by
pressing Alt-X or by selecting Exit from a menu. T Application will
dispose its three subviews, then dispose itself.

Selected and focused views

The focused view is the end
of the chain of selected

views that storts at the
application.

Chapter 4, Views

Within each group of views, one and only one subview is selected.
For example, when your application sets up its menu bar,
desktop, and status line, the desktop is the selected view, because
that is where further work will take place.

When you have several windows open on the desktop, the
selected window is the one in which you're currently working.
This is also called the active window (typically the topmost
window).

Within the active window, the selected subview is called the
focused view. You can think of the focused view as being the one
you're looking at, or the one where action will take place. In an
editor window, the focused view would be the interior view with
the text in it. In a dialog box, the focused view is the highlighted
control.

In the application diagrammed in Figure 4.12, Application is the
modal view, and DeskTop is its selected view. Within the desktop,
the second (more recently inserted) window is selected, and
therefore active. Within that window, the scrolling interior is
selected, and because it is a terminal view (that is, it's not a
group), it is the end of the chain, the focused view. Figure 4.13
depicts the same view tree with the chain of focused views
highlighted by double-lined boxes.

95

Figure 4.13
The focus chain

Finding the
focused view

On monochrome displays,
Turbo Vision adds arrow

characters to indicate the
focus.

How does a view
get the focus?

96

Among other things, knowing which view is focused tells you
which view gets information from the keyboard. For more
information, see the section on focused events in Chapter 5,
"Event-driven programming."

The currently focused view is usually highlighted in some way on
the screen. For example, if you have several windows open on the
desktop, the active window is the one with the double-lined
frame; the others' frames will be single-lined. Within a dialog box,
the focused control (controls are views, too!) is brighter than the
others, indicating that it is the one that will be acted upon if you
press Enter. The focused control is therefore the default control, as
well.

A view can get the focus in two ways, either by default when it is
created, or by some action by the user.

When a group of views gets created, the owner view specifies
which of its subviews is to be focused by calling that subview's
Select method. This establishes the default focus.

The user may wish to change which view currently has the focus.
A common way to do this is to click the mouse on a different
view. For instance, if you have several windows open on the
desktop, you can select different ones simply by clicking on them.
In a dialog box, you can move the focus among views by pressing
Tab, which cycles through all the available views, or by clicking
the mouse on a particular view, or by pressing a hot key.

Turbo Vision Guide

The focus chain

See Chapter 5, "Event-driven
programming, '" for a full

explanation.

Modal views

Chapter 4, Views

Note that there are some views that are not selectable, including
the background of the desktop, frames of windows, and scroll
bars. When you create a view, you may designate whether that
view is selectable, after which the view will determine whether it
lets itself be selected. If you click on the frame of a window, for
example, the frame does not get the focus, because the frame
knows it cannot be the focused view.

If you start with the main application and trace to its selected
subview, and continue following to each subsequent selected
subview, you will eventually end up at the focused view. This
chain of views from the T Application object to the focused view is
called the focus chain. The focus chain is used for routing focused
events, such as keystrokes.

A mode is a way of acting or functioning. A program may have a
number of modes of operation, usually distinguished by different
control functions or different areas of control. Turbo Pascal's
integrated environment, for example, has an editing and
debugging mode, a compiler mode, and a run mode. Depending
on which of these modes is active, keys on the keyboard may
have varying effects (or no effect at all).

A Turbo Vision view may define a mode of operation, in which
case it is called a modal view. The classic example of a modal view
is a dialog box. Usually, when a dialog box is active, nothing
outside it functions. You can't use the menus or other controls not
owned by the dialog box. In addition, clicking the mouse outside
the dialog box has no effect. The dialog box has control of your
program until closed. (Some dialog boxes are non-modal, but
these are rare exceptions.)

When you instantiate a view and make it modal, only that view
and its subviews can interact with the user. You can think of a
modal view as defining the "scope" of a portion of your program.
When you create a block in a Turbo Pascal program (such as a
function or a procedure), any identifiers declared within that
block are only valid within that block. Similarly, a modal view
determines what behaviors are valid within it-events are

97

The status line is a/ways "hot, "
no matter what view is

modal.

handled only by the modal view and its subviews. Any part of the
view tree that is not the modal view or owned by the modal view
is inactive.

There is actually one exception to this rule, and that is the status
line. Turbo Vision "cheats" a little, and keeps the status line
available at all times. That way you can have active status line
items, even when your program is executing a modal dialog box
that does not own the status line. Events and commands
generated by the status line, however, will be handled as if they
were generated within the modal view.

There is always a modal view when a Turbo Vision application is
running. When you start the program, and often for the duration
of the program, the modal view is the application itself, the
T Application object at the top of the view tree.

Modifying default behavior

98

The Options flag
word

Up to this point, you have seen mostly the default behavior of the
standard views. But sometimes you will want to make your views
look or act a little different, and Turbo Vision provides for that.
This section explains the ways you can modify the standard
views.

Every Turbo Vision view has four bitmapped fields that you can
use to change the behavior of the view. Three of them are covered
here: the Options word, the GrowMode byte, and the DragMode
byte. The fourth, the EventMask word, is covered in Chapter 5,
"Event-driven programming."

There is also a State word that contains information about the
current state of the view. Unlike the others, State is essentially
read-only. Its value should only be changed by the SetState
method. For more details, see the "State flag and SetState" section
in this chapter.

Options is a bitmapped word in every view. Various descendants
of TView have different Options set by default.

The Options bits are defined in Figure 4.14; explanations of the
possible Options follow.

Turbo Vision Guide

Figure 4.14
Options bit flags

IlmSbl
I

I I I

Unde}ined

I I I I
I

I I I I I

I
I 11Sbii

I ~

fCentered

fSel ectabl e
fTopSel ect
fFi rstCl i cl<
fFramed
fPreProcess
fPostProcess
fBuffered
fTi 1 eable
fCenterX
fCenterY

of Selectable If set, the user can select the view with the mouse. If the view is in
a group, the user can select it with the mouse or Tab key. If you
put a purely informatiomil view on the screen, you might not
want the user to be able to select it. Static text objects and window
frames, for example, are usually not selectable.

ofT opSelect The view will be moved to the top of the owner's subviews if the
view is selected. This option is designed primarily for windows
on the desktop. You shouldn't use it for views in a group.

of First Click The mouse click that selects the view is sent on to the view. If a
button is clicked, you definitely want the process of selecting the
button and operating it to happen with one click, so a button has
ofFirstClick set. But if someone clicks on a window, you mayor
may not want the window to respond to the selecting mouse click
other than by selecting itself.

of Framed If set, the view has a visible frame around it. This is useful if you
create multiple "panes" within a window, for example.

of PreProcess If set, allows the view to process focused events before the
focused view sees them. See the "Phase" section in Chapter 5,
"Event-driven programming" for more details.

of PostProcess If set, allows the view to handle focused events after they have
been seen by the focused view, assuming the focused view has
not cleared the event. See the "Phase" section in Chapter 5,
"Event-driven programming" for more details.

of Buffered When this bit is set, groups can speed their output to the screen.
When a group is first asked to draw itself, it automatically stores
the image of itself in a buffer if this bit is set and if enough
memory is available. The next time the group is asked to draw
itself, it copies the buffered image to the screen instead of asking
all its subviews to draw themselves. If a New or GetMem call runs
out of memory, Turbo Vision's memory manager will begin
disposing of these group buffers until the memory request can be
satisfied.

If a group has a buffer, a call to Lock will stop all writes of the
group to the screen until the method Unlock is called. When
Unlock is called, the group's buffer is written to the screen.
Locking can decrease flicker during complicated updates to the
screen. For example, the desktop locks itself when it is tiling or
cascading its subviews.

ofTileable The desktop can tile or cascade the windows that are currently
open. If you don't want a window to be tiled, you can clear this
bit. The window will then stay in the same position, while the rest
of the windows will be automatically tiled.

Tiling or cascading views from T Application.HandleEvent is simple:

cmTile:
begin

DeskTopA.GetExtent(R);
DeskTopA.Tile(R);

end;
cmCascade:

begin
DeskTopA.GetExtent(R);
DeskTopA.Cascade(R);

end;

If there are too many views to be successfully cascaded, the
desktop will do nothing.

of Center X When the view is inserted in a group, center it in the x dimension.

ofCenterY When the view is inserted in a group, center it in the y dimension.
You may find this an important step in making a window work
well with 25- or 43-line text modes.

100 Turbo Vision Guide

of Centered

The GrowMode
flag byte

Figure 4.15
GrowMode bit flags

Center the view in both the x and y dimensions when it is
inserted in the group.

A view's GrowMode field determines how the view will change
when its owner group is resized.

The GrowMode bits are defined as follows:
,...--,.---r---r---<lfGrowA 11

fGrowLoX
fGrowLoY

'-----afGrowHiX
'------QfGrowHi Y

'-------<JfGrowRel

gfGrowLoX If set, the left side of the view will maintain a constant distance
from its owner's left side.

gfGrowLoY If set, the top of the view will maintain a constant distance from
the top of its owner.

gfGrowHiX If set, the right side of the view will maintain a constant distance
from its owner's right side.

gfGrowHiY If set, the bottom of the view will maintain a constant distance
from the bottom of its owner.

gfGrowAIl If set, the view will always remain the same size, and will move
with the lower right corner of the owner.

gfGrowRel If set, the view will maintain its size relative to the owner's size.
You should only use this option with TWindows (or descendants
of TWindow) that are attached to the desk top. The window will
maintain its relative size when the user switches the application
between 25- and 43/50-line mode. This flag isn't designed to be
used with views within a window.

Chapter 4, Views 101

102

The DragMode
flag byte

Figure 4.16
DragMode bit flags

A view's DragMode field determines how the view will behave
when it,is dragged.

The DragMode bits are defined as follows:
r--.----,---,-------amLimi tA 11

mDragMove
mDragGrow

'---------omLimitLoX
'---------amLi mit LoY

'----------ClmLimitHiX
'-----------amLimitHiY

The DragMode settings include the following:

dmDragMove When this bit is set, when you click on the top of a window's
frame, you can drag it.

dmDragGrow When this bit is set, the view can grow.

dmLimitLoX If set, the left side of the view cannot go out of the owner view.

dmLimitLoY If set, the top of the view is not allowed to go out of the owner
view.

dmLimitHiX

dmLimitHiY

dmLimitAII

State flag and
SetState

If set, the right side of the view cannot go out of the owner view.

If set, the bottom of the view cannot go out of the owner view.

If set, no part of the view can go out of the owner view.

A view also has a bitmapped flag called State which keeps track of
various aspects of the view, such as whether it is visible, disabled,
or being dragged.

The State flag bits are defined in Figure 4.17.

Turbo Vision Guide

Figure 4.17
State flag bit mapping

Acting on a state
change

Chapter 4, Views

Ilmsbl I I I I I I I I I I I I

I I
I 11Sbii

L:: sf Visible "$0001
s fCursorVi s .. $0002
sf Cursor Ins .. $0004
sf Shadow = $0008
sfActi ve .. $0010
sfSel ected .. $0020
sf Focused = $0040
s fDraggi ng .. $0080
sf Disabled "$0100
sf Modal .. $0200
sf Default .. $0400
sf Exposed .. $0800

The meanings of each of the state flags is covered in Chapter 14,
"Global reference," under "sfXXXX state flag constants." This
section focuses on the mechanics of manipulating the State field.

Turbo Vision changes a view's state flag through its SetState
method. If the view gets the focus, gives up the focus, or becomes
selected, Turbo Vision calls SetState. This differs from the way the
other bitmapped flags are handled, because those are set on
initialization and then not changed (if a window is resizable, it is
always resizable, for example). The state of a view, however, will
often change during the time it is on the screen. Because of this,
Turbo Vision provides a mechanism in SetState that allows you
not only to change the state of a view, but also to react to those
changes in state.

SetState receives a state (AS tate) and a flag (Enable) indicating
whether the state is being set or cleared. If Enable is True, the bits
in AState are set in State. If Enable is False, the corresponding State
bits are cleared. That much is essentially like what you would do
with any bitmapped field. The difference comes when you want a
view to do something when you change its state.

Views often take some action when SetState is called, depending
on the resulting state flags. A button, for example, watches State
and changes its color to cyan when it gets the focus. Here's a
typical SetState for a descendant of TView:

procedure TButton.SetState(AState: Word; Enable: Boolean);
begin

TView.SetState(AState, Enable); { set/clear state bits
if AState and (sf Selected + sf Active) <> 0 then DrawView;
if AState and sf Focused <> 0 then MakeDefault(Enable);

end;

Notice that you should always call TView.SetState from within a
new SetState method. TView.SetState does the actual setting or

103

This is the code used by the
IDE's editor view.

clearing of the state flags. You can then define any special actions
based on the state of the view. TButton checks to see if it is in an
active window in order to decide whether to draw itself. It also
checks to see if it has the focu!?, in which case it calls its
MakeDefault method, which grabs or releases the focus, depending
on the Enable parameter.

If you need to make changes in the view or the application when
the state of a particular view changes, you can do it by overriding
the view's SetState. Suppose your application includes a text
editor, and you want to enable or disable all the menu bar's text
editing commands depending on whether or not an editor is
open. The text editor's SetState is defined like this:

procedure TEditor.SetState(AState: Word; Enable: Boolean);
const

EditorCommands = [cmSearch, cmReplace, cmSearchAgain, cmGotoLine,
cmFindProc, cmFindError, cmSave, cmSaveAs);

begin
TView.SetState(AState, Enable);
if AState and sf Active <> 0 then

end;

if Enable then EnableCommands(EditorCommands)
else DisableCommands(EditorCommands);

This code comes directly from the Turbo Pascal integrated
environment, so the behavior it describes should be familiar.

The programmer and Turbo Vision often cooperate when the state
changes. Suppose you want a block cursor to appear in your text
editor when the editor's insert mode is toggled on, for example.

First, the editor insert mode will have been bound to a key
stroke-say, the Ins key. When the text editor is the focused view
and the Ins key is pressed, the text editor receives the Ins key
event. The text editor's HandleEvent method responds to the Ins
event by toggling some internal state of the view saying that the
insert mode has changed, and by calling the BlockCursor method.
Turbo Vision does the rest. BlockCursor calls the view's SetState to
set the sfCursorlns state true.

What color is your view?

104

No one ever seems to agree on what colors are ''best'' for any
computer screen. Because of this, Turbo Vision allows you to

Turbo Vision Guide

Color palettes
Palettes for all standard

views are listed in Chapter
13, "Object reference."

Figure 4.18
TScroller's default color

palette

GetColor is a TView method.

Selecting non-default colors
is described in the next

section.

Inside color
palettes

Chapter 4, Views

change the colors of the views you put on the screen. In order to
facilitate this, Turbo Vision provides you with color palettes.

When a Turbo Vision view draws itself, it asks to be drawn, not
with a specific color, but with a color indicated by a position in its
palette. For example, the palette for TScroller looks like this:

CScroller = #6#7;

Color palettes are actually stored in strings, which allows them to
be flexible arrays of varying length. CScroller, then, is a two
character string, which you can think of as two palette entries.
The layout of the TScroller palette is defined as

{ Palette layout }
{ 1 = Normal }
{ 2 = Highlight }

but it might be more useful to look at it this way:
1 2

CScroller B
I 1-' -------- Highlighted text
1-. --------- Nonnal text

This means there are two kinds of text a scroller object knows
how to display: normal and highlighted. The default color of each
is determined by the palette entries. When displaying normal text,
the Draw method needs to call GetColor(1), meaning it wants the
color indicated by the first palette entry. To show highlighted text,
the call would be GetColor(2).

If all you want to do is display the default colors, that's really all
you need to know. The palettes are set up so that any reasonable
combination of objects should produce decent looking colors.

Palette entries are actually indexes into their owner's palette, not
the colors themselves. If a scroller is inserted into a window, you
get normal text by calling for the normal text color in the scroller's
palette, which contains the number 6. To translate that into a
color, you find the sixth entry in the owner's palette. Figure 4.19
shows TWindow's palette.

105

Figure 4.19
Mapping a scroller's palette

onto a window

106

The GetColor
method

r----------- Frame passive
r--------- Frame active

,-------- Frame icon

~
Scroll bar page

~
Scroll bar controls

rr=r=
Scroller normal text r-:::: Scroller selected text

I I Reserved

4 5 7 8

'--------- Highlighted text
'----------- Normal text

The sixth entry in TWindow's palette is 13, which is an index into
the palette of the window's owner (the desktop), which in turn
indexes into the palette of its owner, the application. TDeskTop has
a nil palette, meaning that it doesn't change anything-you can
think of it as a "straight" or "transparent" palette, with the first
entry being the number 1, the second being 2, and so on.

The application, does have a palette, a large one containing entries
for all the elements you might insert into a Turbo Vision
application. Its 13th element is $1E. The application is the end of
the line (it has no owner), so the mapping stops there.

So now you are left with $1E, which is a text attribute byte
corresponding to background color 1 and foreground color $E (or
14), which produces yellow characters on a blue background.
Again, don't think of this in terms of yeUow-on-blue, but rather
say that you want your text displayed as the normal color for
window text.

Don't think of palettes as colors. They are kinds of things to display.

Color palette mapping is done by the virtual TView function
GetColor. GetColor climbs up the view tree from the object being
drawn to its owner, to the owner's owner, and so on, until it gets
to the application object. At each object along that chain, GetColor
calls GetPalette for that object. The end result is a color attribute.

A view's palette contains offsets into its owner's palette, except the
application, whose palette contains color attributes.

Turbo Vision Guide

Overriding the
default colors

Chapter 4, Views

The obvious way to change colors is to change the palette. If you
don't like your scroller's normal text color, your first instinct
might be to change entry 1 (the normal text entry) in the scroller's
palette, perhaps from 6 to 5. Normal scroller text is then mapped
onto the window entry for scroll bar controls (blue on cyan, by
default). Remember: 5 is not a color! All you've done is tell the
scroller that its normal text should look like the scroll bars around
it!

So what if you don't want bright yellow on blue? Change the
palette entry for normal window text in T Application. Since that is
the last non-nil palette, the entries in the application palette
determine the colors that will appear in all views within a
window. Make this your color mantra: Colors are not absolute,
but are determined by the owner's palettes.

This makes sense: Presumably you want your windows to look
similar. You certainly don't want to have to tell every single
window what color it should be. If you change your mind later
(or you allow users to customize colors) you would have to
change the entries for each window.

Also, a scroller or other interior does not have to worry about its
colors if it is inserted into some window other than the one you
originally intended. If you put a scroller into a dialog box instead
of a window, for example, it will not (by default) come up in the
same colors, but rather in the colors of normal text in a dialog box.

To change a view's palette, override its GetPalette method. To
create a new scroller object type that draws itself in the window's
frame color instead of the normal text color, the declaration and
implementation of the object would include the following: .

type
TMyScroller = object(TScroller)

function GetPalette: PPalette; virtual;
end;

function TMyScoller.GetPalette: PPalette;
const

CMyScroller = #1#7;
PMyScroller: string[Length(CMyScroller)] = CMyScoller;

begin
GetPalette := @PMyScroller;

end:

107

The types TPalette and String
are completely

interchangeable.

Adding new
colors

Palettes are strings, so you
can use string operations like

"+. '

108

Note that the palette constant is a string constant because Turbo
Vision uses the String type to represent the palettes. This allows
for easier manipulation of the palettes, since all the string
functions and the like can also be used with palettes.

You may want to add additional colors to the window object type,
which will allow for a variety of colors to be used for new views
you create. For example, you might decide you want a third color
in your scroller for a different type of highlight, such as the one
used for the breakpoints in the IDE editor. This can be done by
deriving a new object type from the existing TWindow, and
adding to the default palette, as shown here:

type
TMyWindow = object (TWindow)

function GetPalette: PPalette; virtual;
end;

function TMyWindow.GetPalette: PPalette;
const

CMyWindow = CBlueWindow + #84;
P: string[Length(CMyWindow)] = CMyWindow;

begin
GetPalette := @P;

end;

Now TMyWindow has a new palette entry that contains this new
type of hightlight. CWindow is a string constant containing
TWindow's default palette. You will have to change the GetPalette
routine of MyScroller to take advantage of this:

function TMyScroller.GetPalette: PPalette;
const

CMyScroller = #6#7#9;
P: string[Length(CMyScroller)] = CMyScoller;

begin
GetPalette := @P;

end;

The scroller's palette entry 3 is now the new highlight color (in
this case bright white on red). If you use this new GetPalette using
the CMyScroller that accesses the ninth element in its owner's
palette, be sure that the owner is indeed using the CMyWindow
palette. If you try to access the ninth element in an eight-element
palette, the results are undefined.

Turbo Vision Guide

c H A p T E R

5

Event -driven programming

The purpose of Turbo Vision is to provide you with a working
framework for your applications so you can focus on creating the
"meat" of your applications. The two major Turbo Vision tools are
built-in windowing support and handling of events. Chapter 4
explained views, and this chapter will deal with how to build
your programs around events.

Bringing Turbo Vision to life

Reading the
user's input

We have already described Turbo Vision applications as being
event-driven, and briefly defined events as being occurrences to
which your application must respond.

In a traditional Pascal program, you typically write a loop of code
that reads the user's keyboard, mouse, and other input, and you
make decisions based on that input within the loop. You'll call
procedures or functions, or branch to a code loop somewhere else
that again begins reading the user's input:

Chapter 5, Event-driven programming 109

110

repeat
B := ReadKey;
case B of

'i': InvertArray;
'e': EditArrayParams;
'g': GraphicDisplay;
'q': Quit := true;

end;
until Quit;

An event-driven program is not really structured very differently
from this. In fact, it is hard to imagine an interactive program that
doesn't work this way. However, an "event-driven program looks
different to you, the programmer.

In a Turbo Vision application, you no longer have to read the
user's input because Turbo Vision does it for you. It packages the
input into Pascal records called events, and dispatches the events
to the appropriate views in the program. That means your code
only needs to know how to deal with relevant input, rather than
sorting through the input stream looking for things to handle.

For instance, if the user clicks on an inactive window, Turbo
Vision reads the mouse action, packages it into an event record,
and sends the event record to the inactive window.

If you come from a traditional programming background, you
might be thinking at this point, NO.K., so I don't need to read the
user's input anymore. What I'll be doing instead is learning how
to read a mouse click event record and how to tell an inactive
window to become active." In fact, there's no need for you to
write even that much code.

Views can handle much of a user's input all by themselves. A
window knows how to open, close, move, be selected, resize, and
more. A menu knows how to open, interact with the user, and
close. Buttons know how to be pushed, how to interact with each
other, and how to change color. Scroll bars know how to be
operated. The inactive window can make itself active without
any attention from you.

So what is your job as programmer? You will define new views
with new actions, which will need to know about certain kinds of
events that you'll define. You'll also teach your views to respond
to standard commands, and even to generate their own
commands (Nmessages") to other views. The mechanism is

Turbo Vision Guide

already in place: All you have to do is generate commands and
teach views what to do when they see them.

But what exactly do events look like to your program, and how
does Turbo Vision handle them for you?

The nature of events

Kinds of events

Events can best be thought of as little packets of information
describing discrete occurrences to which your application needs
to respond. Each keystroke, each mouse action, and any of certain
conditions generated by other components of the program,
constitute a separate event. Events cannot be broken down into
smaller pieces; thus, the user typing in a word is not a single
event, but a series of individual keystroke events.

In the object-oriented world of Turbo Vision, you probably expect
events to be objects, too. But they're not. Events themselves
perform no actions; they only convey information to your objects,
so they are record structures.

At the core of every event record is a single Word-type field
named What. The numeric value of the What field describes the
kind of event that occurred, and the remainder of the event record
holds specific information about that event: the keyboard scan
code for a keystroke event, information about the position of the
mouse and the state of its buttons for a mouse event, and so on.

Because different kinds of events get routed to their destination
objects in different ways, we need to look first at the different
kinds of events recognized by Turbo Vision.

Let's look at the possible values of Event. What a little more closely.
There are basically four classes of event: mouse events, keyboard
events, message events, and "nothing" events. Each class has a
mask defined, so your objects can determine quickly which
general type of event occurred without worrying about what
specific sort it was. For instance, rather than checking for each of
the four different kinds of mouse events, you can simply check to
see if the event flag is in the mask. Instead of

if Event.What and (evMouseDown or evMouseUp or evMouseMove or
evMouseAuto) <> 0 then ...

Chapter 5, Event-driven programming 111

Figure 5.1
TEvent. What field bit

mapping

you can use

if Event.What and evMouse <> 0 then

The masks available for separating events are evNothing (for
"nothing" events), evMouse for mouse events, evKeyboard for
keyboard events, and evMessage for messages.

The event mask bits are defined in Figure 5.1.
.---.--.--,----,-.--.---.------------evMessage = $FFOO

.--------evKeyboard = $0010
r-.--.--,--evMouse .. $OOOF

vMouseDown = $0001
vMouseUp = $0002

'-----evMouseMove = $0004
'-----evMouseAuto = $0008

L...--------evKeyDown II $0010
'-------------evCorrmand II $0100

'-------------evBroadcast = $0200

Mouse events There are basically four kinds of mouse events: an up or down
click with either button, a change of position, or an "auto" mouse
event. Pressing down a mouse button results in an evMouseDown
event. Letting the button back up generates an evMouseUp event.
Moving the mouse produces an evMouseMove event. And if you
hold down the button, Turbo Vision will periodically generate an
evMouseAuto event, allowing your application to perform such
actions as repeated scrolling. All mouse event records include the
position of the mouse, so an object that processes the event knows
where the mouse was when it happened.

Keyboard events Keyboard events are even simpler. When you press a key, Turbo
Vision generates an evKeyDown event, which keeps track of which
key was pressed.

Message events Message events come in three flavors: commands, broadcasts and
user messages. The difference is in how they are handled, which
is explained later. Basically, commands are flagged in the What
field by evCommand, broadcasts byevBroadcast, and user-defined
messages by some user-defined constant.

"Nothing" events A "nothing" event is really a dead event. It has ceased to be an
event, because it has been completely handled. If the What field in
an event record contains the value evNothing, that event record
contains no useful information that needs to be dealt with.

112 Turbo Vision Guide

Events and

When a Turbo Vision object finishes handling an event, it calls a
method called ClearEvent, which sets the What field back to
evNothing, indicating that the event has been handled. Objects
should simply ignore evNothing events, as they have already been
dealt with by another object.

commands Ultimately, most events end up being translated into commands
of some sort. For example, clicking the mouse on an item in the
status line generates a mouse event. When it gets to the status line
object, that object responds to the mouse event by generating a
command event, with the Command field value determined by the
command bound to the status line item. A mouse click on Alt-X

Exit generates the cmQuit command, which the application
interprets as an instruction to shut down and terminate.

Routing of events

Where do events

Turbo Vision's views operate on the principle "Speak only when
spoken to." That is, rather than actively seeking out input, they
wait passively for the event manager to tell them that an event
has occurred to which they need to respond.

In order to make your Turbo Vision programs act the way you
want them to, you not only have to tell your views what to do
when certain events occur, you also need to understand how
events get to your views. The key to getting events to the right
place is correct routing of the events. Some events get broadcast all
over the application, while others are directed rather narrowly to
particular parts of the program.

come from? As noted in Chapter 1, "Inheriting the wheel," the main process
ing loop of a T Application, the Run method, calls TGroup.Execute,
which is basically a repeat loop that looks something like this:

var E: TEventi
E.What := evNothingi { indicate no event has occurred}
repeat

if E.What <> evNothing then EventError(E)i
GetEvent(E)i { pack up an event record}
HandleEvent(E)i { route the event to the right place}

Chapter 5, Event-driven programming 113

GetEvent, HandleEvent and
EventError are all described
in greater detail on pages

724, 727, and 723,
respectively.

Where do events

until EndState <> Continue; { until the quit flag is set

Essentially, GetEvent looks around and checks to see if anything
has happened that should be an event. If it has, GetEvent creates
the appropriate event record. HandleEvent then routes the event to
the proper views. If the event is not handled (and cleared) by the
time it gets back to this loop, EventError is called to indicate an
abandoned event. By default, EventError does nothing.

go? Events always begin their routing with the current modal view.

114

Positional events

Z-order is explained in
Chapter 4, "Views. H

For normal operations, this usually means your application object.
When you execute a modal dialog box, that dialog box object is
the modal view. In either case, the modal view is the one that
initiates event handling. Where the event goes from there
depends on the nature of the event.

Events are routed in one of three ways, depending on what kind
of event they are. The three possible routings are positional,
focused, and broadcast. It is important to understand how each
kind of event gets routed.

Positional events are virtually always mouse events (evMouse).

The modal view gets the positional event first, and starts looking
at its subviews in Z-order until it finds one that contains the
position where the event occurred. The modal view then passes
the event to that view. Since views can overlap, it is possible that
more than one view will contain that point. Going in Z-order
guarantees that the topmost view at that position will be the one
that receives the event. After all, that,'s the one the user clicked on!

This process continues until an object cannot find a view to pass
the event to, either because it is a terminal view (one with no
subviews) or because there is no subview in the position where
the event occurred (such as clicking on open space in a dialog
box). At that point, the event has reached the object where the
positional event took place, and that object handles the event.

Turbo Vision Guide

Focused events

For details on focused views
and the focus chain, see

"Selected and focused
views" in Chapter 4, "Views."

Non-focused views may
handle focused events. See

the "Phase" section in this
chapter.

Focused events are generally keystrokes (evKeyDown) or
commands (evCommand), and they are passed down the focus
chain.

The current modal view gets the focused event first, and passes it
to its selected subview. If that subview has a selected subview, it
passes the event to it. This process continues until a terminal view
is reached: This is the focused view. The focused view receives
and handles the focused event.

If the focused view does not know how to handle the particular
event it receives, it passes the event back up the focus chain to its
owner. This process is repeated until the event is handled or the
event reaches the modal view again. If the modal view does not
know how to handle the event when it comes back, it calls
EventError. This situation is an abandoned event.

Keyboard events illustrate the principle of focused events quite
clearly. For example, in the Turbo Pascal integrated environment,
you might have several files open in editor windows on the
desktop. When you press a key, you know which file you intend
to get the character. Let's see how Turbo Vision ensures it actually
gets there.

Your keystroke produces an evKeyDown event, which goes to the
current modal view, the T Application object. TApplication sends the
event to its selected view, the desktop (the desktop is always
T Application's selected view). The desktop sends the event to its
selected view, which is the active window (the one with the
double-lined frame). That editor window also has subviews-a
frame, a scrolling interior view, and two scrollbars. Of those, only
the interior is selectable (and therefore selected, by default), so the
keyboard event goes to it. The interior view, an editor, has no
subviews, so it gets to decide how to handle the character in the
evKeyDown event.

Broadcast events Broadcast events are generally either broadcasts (evBroadcast) or
user-defined messages.

Broadcast events are not as directed as positional or focused
events. By definition, a broadcast does not know its destination,
so it is sent to all the sub views of the current modal view.

The current modal view gets the event, and begins passing it to its
sub views in Z-order. If any of those subviews is a group, it too

Chapter 5, Event-driven programming 115

Broadcasts can be directed
to an object with the

Message function.

passes the event to its subviews, also in Z-order. The process
continues until all views owned (directly or indirectly) by the
modal view have received the event.

Broadcast events are commonly used for communication between
views. For example, when you click on a scroll bar in a file viewer,
the scroll bar needs to let the text view know that it should show
some other part of itself. It does that by broadcasting a view
saying "I've changed!" which other views, including the text, will
receive and react to. For more details, see the "Inter-view
communication" section in this chapter.

User-defined events As you become more comfortable with Turbo Vision and events,
you may wish to define whole new categories of events, using the
high-order bits in the What field of the event record. By default,
Turbo Vision will route all such events as broadcast events. But
you may wish your new events to be focused or positional, and
Turbo Vision provides a mechanism to allow this.

Manipulating bits in masks is
explained in Chapter 70,

"Hints and tips. "

MaskinQ events

Phase

116

Turbo Vision defines two masks, Positional and Focused, which
contain the bits corresponding to events in the event record's What
field that should be routed by position and by focus, respectively.
By default, Positional contains all the evMouse bits, and Focused
contains evKeyboard. If you define some other bit to be a new kind
of event that you want routed either by position or focus, you
simply add that bit to the appropriate mask.

Every view object has a bitmapped field called EventMask which
is used to determine which events the view will handle. The bits
in the EventMask correspond to the bits in the TEvent. What field. If
the bit for a given kind of event is set, the view will accept that
kind of event for handling. If the bit for a kind of event is cleared,
the view will ignore that kind of event.

There are certain times when you want a view other than the
focused view to handle focused events (especially keystrokes). For
example, when looking at a scrolling text window, you might
want to use keystrokes to scroll the text, but since the text
window is the focused view, keystroke events go to it, not to the
scroll bars that can scroll the view.

Turbo Vision Guide

Turbo Vision provides a mechanism, however, to allow views
other than the focused view to see and handle focused events.
Although the routing described in the "Focused events" section of
this chapter is essentially correct, there are two exceptions to the
strict focus-chain routIng.

When the modal view gets a focused event to handle, there are
actually three "phases" to the routing:

• The event is sent to any sub views (in Z-order) that have their
ofPreProcess option flags set.

• If the event isn't cleared by any of them, the event is sent to the
focused view.

• If the event still hasn't been cleared, the event is sent (again in
Z-order) to any subviews with their ofPostProcess option flags
set.

So in the preceding example, if a scroll bar needs to see keystrokes
that are headed for the focused text view, the scroll bar should be
initialized with its ofPreProcess option flag set. If you look at the
example program TVDEM009.P AS, you will notice that the scroll
bars for the interior views all have their ofPostProcess bits set. If
you modify the code to not set those bits, keyboard scrolling will
be disabled.

Notice also that in this particular example it doesn't make much
difference whether you set ofPreProcess or ofPostProcess: Either one
will work. Since the focused view in this case doesn't handle the
event (TScroller itself doesn't do anything with keystrokes), the
scroll bars may look at the events either before or after the event is
routed to the scroller.

In general, however, you would want to use ofPostProcess in a case
like this, because it provides greater flexibility. Later on you may
wish to add functionality to the interior that checks keystrokes,
but if the keystrokes have been taken by the scroll bar before they
get to the focused view (ofPreProcess), your interior will never get
to act on them.

Although there are times when you will need to grab focused
events before the focused view can get at them, it's a good idea to
leave as many options open as possible so that you (or someone
else) can derive something new from this object in the future.

Chapter 5, Event-driven programming 117

118

The Phase field Every group has a field called Phase, which has any of three
values: phFocused, phPreProcess, and phPostProcess. By checking its
owner's Phase flag, a view can tell whether the event it is handling
is coming to it before, during, or after the focused routing. This is
sometimes necessary, because some views look for different
events, or react to the same events differently, depending on the
phase.

Consider the case of a simple dialog box that contains an input
line and a button labeled" All right," with A being the shortcut key
for the button. With normal dialog box controls, you don't really
have to concern yourself with phase. Most controls have
ofPostProcess set by default, so keystrokes (focused events) will get
to them and allow them to grab the focus if it is their shortcut
letter that was typed. Pressing A moves the focus to the" All right"
button.

But suppose the input line has the focus, so keystrokes get
handled and inserted by the input line. Pressing the A key puts an
"A" in the input line, and the button never gets to see the event,
since the focused view handled it. Your first instinct might be to
have the button check for the A key preprocess, so it can snag the
shortcut key before the focused view handles it. Unfortunately,
this would always preclude your typing the letter" A" in the
input line!

The solution is actually rather simple: Have the button check for
different shortcut keys before and after the focused view handles
the event. Specifically, by default, a button will look for its
shortcut key in Alt-Ietter form pre process, and in letter form post
process. That's why you can always use the Alt-Ietter shortcuts in a
dialog box, but you can only use regular letters when the focused
control doesn't "eat" keystrokes.

This is easy to do. By default, buttons have both ofPreProcess and
ofPostProcess set, so they get to see focused events both before and
after the focused view does. But within its HandleEvent, the button
only checks certain keystrokes if the focused control has already
seen the event:

evKeyDown: { this is part of a case statement
begin

C := HotKey{TitleA);
if (Event.KeyCode = GetAltCode{C)) or

(OwnerA.Phase = phPostProcess) and (C <> #0) and

Turbo Vision Guide

Commands

Defining
commands

(Upcase(Event.CharCode) = C) or
(State and sf Focused <> 0) and (Event.CharCode = ' ') then

begin
PressButton;
ClearEvent(Event);

end;
end;

Most positional and focused events wind up getting translated
into commands by the objects that handle them. That is, an object
often responds to a mouse click or a keystroke by generating a
command event.

For example, by clicking on the status line in a Turbo Vision
application, you generate a positional (mouse) event. The
application determines that the click was positioned in the area
controlled by the status line, so it passes the event to the status
line object, StatusLine.

StatusLine determines which of its status items controls the area
where you clicked, and reads the status item record for that item.
That item usually will have a command bound to it, so StatusLine
creates a pending event record with the What field set to
evCommand and the Command field set to whatever command was
bound to that status item. It then clears the mouse event, meaning
that the next event found by GetEvent will be the command event
just generated.

Turbo Vision has many predefined commands, and you will
define many more yourself. When you create a new view, you
will also create a command that will be used to invoke the view.
Commands may be called anything, but Turbo Vision's
convention is that a command identifier should start with "cm."
The actual mechanics of creating a command are simple-you just
create a constant:

const
cmConfuseTheCat = 100;

Chapter 5, Event-driven programming 119

120

Table 5.1
Turbo Vision command

ranges

Binding
commands

Enabling and
disabling

commands

Turbo Vision reserves commands a through 99 and 256 through
999 for its own use. Your applications may use the numbers 100
through 255 and 1000 through 65,535 for commands.

The reason for having two ranges of commands is that only the
commands a through 255 may be disabled. Turbo Vision reserves
some of the commands that can be disabled and some of the
commands that cannot be disabled for its standard commands
and internal workings. You have complete control over the
remainder of the commands.

The ranges of available commands are summarized in Table 5.1.

Range Reserved Can be disabled

0 .. 99 Yes Yes
100 .. 255 No Yes
256 .. 999 Yes No
1000 .. 65535 No No

When you create a menu item or a status line item, you bind a
command to it.. When the user chooses that item, an event record
is generated, with the What field set to evCommand, and the
Command field set to the value of the bound command. The
command may be either a Turbo Vision standard command or
one you have defined. At the same time you bind your command
to a menu or status line item, you may also bind it to a hot key.
That way, the user can invoke the command by pressing a single
key as a shortcut to using the menus or the mouse.

The important thing to remember is that defining the command
does not specify what action will be taken when that command
appears in an event record. You will have to tell the appropriate
objects how to respond to that command.

There are times when you want certain commands to be
unavailable to the user for a period of time. For example, if you
have no windows open, it makes no sense for the user to be able
to generate em Close, the standard window closing command.
Turbo Vision provides a way to disable and enable sets of
commands.

Turbo Vision Guide

Handling events

Specifically, to enable or disable a group of commands, you use
the global type TCommandSet, which is a set of numbers 0 through
255. (This is why only commands in the range 0 .. 255 can be
disabled.) The following code disables a group of five window
related commands:

var
WindowCornmands: TCornmandSet;

begin
WindowCornmands := [cmNext, cmPrev, cmZoom, cmResize, cmClose];
DisableCornmands(WindowCornmands);

end;

Once you have defined a command and set up some kind of
control to generate it-for example, a menu item or a dialog box
button-you need to teach your view how to respond when that
command occurs.

Every view inherits a HandleEvent method that already knows
how to respond to much of the user's input. If you want a view to
do something specific for your application, you need to override
its HandleEvent and teach the new HandleEvent two things-how·
to respond to new commands you've defined, and how to
respond to mouse and keyboard events the way you want.

A view's HandleEvent method determines how it behaves. Two
views with identical HandleEvent methods will respond to events
in the same way. When you derive a'new view type, you
generally want it to behave more-or-Iess like its ancestqr vlew,
with some changes. By far the easiest way to accomplish this is to
call the ancestor's HandleEvent as part of the new object's
HandleEvent method.

The general layout of a descendant's HandleEvent would look like
this:

procedure NewDescendant.HandleEvent(var Event: TEvent);
begin

{ code to change or eliminate parental behavior }
Parent.HandleEvent(Event);
{ code to perform additional functions

end;

Chapter 5, Event-driven programming 121

In other words, if you want your new object to handle certain
events differently than its ancestor does (or not at all!), you would
trap those particular events before passing the event to the
ancestor's HandleEvent method. If you want your new object to
behave just like its ancestor, but with certain additional functions,
you would add the code to do that after the call to the ancestor's
HandleEvent procedure.

The event record

122

Up to this point, this chapter has discussed events in a fairly
theoretical fashion. We have talked about the different kinds of
events (mouse, keyboard, message, and "nothing") as determined
by the event's What field. We have also discussed briefly the use of
the Command field for command events.

Now it's time to discuss what an event record actually looks like.
The DRIVERS.TPU unit of Turbo Vision defines the TEvent type
as a variant record:

TEvent = record
What: Word;
case Word of

evNothing: ();
evMouse: (

Buttons: Byte;

end;

Double: Boolean;
Where: TPoint);

evKeyDown: (
case Integer of

0: (KeyCode: Word);
1: (CharCode: Char;

ScanCode: Byte));
evMessage: (

Cormnand: Word;
case Word of

0: (InfoPtr: Pointer);
1: (InfoLong: Longint);
2: (InfoWord: Word);
3: (InfoInt: Integer);
4: (InfoByte: Byte);
5: (InfoChar: Char));

Turbo Vision Guide

Clearing events

Abandoned

TEvent is a variant record. You can tell what is in the record by
looking at the field What. Thus, if TEvent. What is an evMouseDown,
TEvent will contain:

Buttons: Byte;
Double: Boolean;
Where: TPoint;

If TEvent. What is an evKeyDown, the compiler will let you access
the data either as

KeyCode: Word;

or as

CharCode: Char;
ScanCode: Byte;

The final variant field in the event record stores a Pointer, Longint,
Word, Integer, Byte or Char value. This field is used in a variety of
ways in Turbo Vision. Views can actually generate events
themselves and send them to other views, and when they do, they
often use the InfoPtr field. Communication among views and the
InfoPtr field are both covered in the "Inter-view communication"
section of this chapter.

When a view's HandleEvent method has handled an event, it
finishes the process by calling its ClearEvent method. ClearEvent
sets the Event. What field equal to evNothing and Event.InfoPtr to
@Se1f, which are the universal signals that the event has been
handled. If the event then gets passed to another object, that
object should ignore this "nothing" event.

events Normally, every event will be handled by some view in your
application. If no view can be found that handles an event, the
modal view calls EventError. EventError calls the view owner's
EventError and so forth up the view tree until
T Application.EventError is called.

T Application.EventError by default does nothing. You may find it
useful during program development to override EventError to
bring up an error dialog box or issue a beep. Since the end user of
your software isn't responsible for the failure of the software to

Chapter 5, Event-driven programming 123

handle an event, such an error dialog box in a shipping version
would probably just be irritating.

ClearEvent also helps views communicate with each other. For
now, just remember that you haven't finished handling an event
until you call ClearEvent.

Modifying the event mechanism

Centralized event
gathering

124

At the heart of the current modal view is a loop that looks
something like this:

var
E: TEvent;

begin
E.What := evNothing;
repeat

if E.What <> evNothing then EventError(E);
GetEvent(E);
HandleEvent(E);

until EndState <> Continue;
end;

One of the greatest advantages of event-driven programming is
that your code doesn't have to know where its events come from.
A window object, for example, just needs to know that when it
sees a em Close command in an event, it should close. It doesn't
care whether that command came from a click on its close icon, a
menu selection, a hot key, or a message from some other object in
the program. It doesn't even have to worry about whether that
command is intended for it. All it needs to know is that it has
been given an event to handle, and since it knows how to handle
that event, it does.

The key to these "black box" events is the application's GetEvent
method. GetEvent is the only part of your program that has to
concern itself with the source of events. Objects in your
application simply call GetEvent and rely on it to take care of
reading the mouse, the keyboard, and the pending events
generated by other objects.

If you want to create new kinds of events (for example, reading
characters from a serial port),' you would simply override

Turbo Vision Guide

Overriding
GetEvent

Using idle time

An example of a heap
viewer is included in the

example programs on your
distribution disks.

TApplication.GetEvent in your application object. As you can see
from the TProgram.GetEvent code in APP.PAS, the GetEvent loop
scans among the mouse and the keyboard and then calls Idle. To
insert a new source of events, you could either override Idle to
look for characters from the serial port and generate events based
on them, or override GetEvent itself to add a GetComEvent(Event)
call to the loop, where GetComEvent returns an event record if
there is a character available at the designated serial port.

The current modal view's GetEvent calls its owner's GetEvent, and
so on, all the way back up the view tree to T Application.GetEvent,
which is where the next event is always actually fetched.

Because Turbo Vision always uses T Application.GetEvent to
actually fetch events, you can modify events for your entire
application by overriding just this one method. For example, to
implement keystroke macros, you could watch the events
returned by GetEvent, grab certain keystrokes, and unfold them
into macros. As far as the rest of the application would know, the
stream of events would be coming straight from the user.

procedureTMyApp.GetEvent(var Event: TEvent);
begin

TApplication.GetEvent(Event);
{ special processing here }

end;

Another benefit of T Application.GetEvent's central role is that it
calls a method called TApplication.ldle if no event is ready.
TApplication.ldle is a dummy (empty) method that you can
override in order to carry out processing concurrent with that of
the current view.

Suppose, for example, you define a view called THeapView that
uses a method called Update to display the currently available
heap memory. If you override T Application.Idle with the following,
the user will be able to see a continuous display of the available
heap memory, no matter where he is in your program.

procedure TMyApp.Idle;
begin

HeapViewer.Update;
end;

Chapter 5, Event-driven programming 125

Inter-view communication

Intermediaries

126

A Turbo Vision program is encapsulated into objects, and you
write code only within objects. Suppose an object needs to
exchange information with another object within your program?
In a traditional program, that would probably just mean copying
information from one data structure to another. In an object
oriented program, that may not be so easy, since the objects may
not know where to find one another.

Inter-view communication is not as easy as sending data between
equivalent parts of a traditional Pascal program. (Although two
parts of a traditional Pascal application can never achieve the
functionality of two Turbo Vision views.)

If you need to do inter-view communication, the first question to
ask is if you have divided the tasks up between the two views
properly. It may be that the problem is one of poor program
design. Perhaps the two views really need to be combined into
one view, or part of one view moved to the other view.

If indeed the program design is sound, and the views still need to
communicate with each other, it may be that the proper path is to
create an intermediary view.

For example, suppose you have a spreadsheet object and a word
processor object, and you want to be able to paste something from
the spreadsheet into the word processor, and vice-versa. In a
Turbo Vision application, you can accomplish this with direct
view-to-view communication. But suppose that at a later date you
wanted to add, say, a database to this group of objects, and to
paste to and from the database. You will now need to duplicate
the communication you established between the first two objects
between all three.

A better solution is to establish an intermediary view-in this
case, say, a clipboard. An object would then need to know only
how to copy something to the clipboard, and how to paste
something from the clipboard. No matter how many new objects
you add to the group, the job will never become any more
complicated than this.

Turbo Vision Guide

Messages among
views If you've analyzed your situation carefully and are certain that

your program design is sound and that you don't need to create
an intermediary, you can implement simple communication
between just two views.

Top View points to the current
modo/view.

Before one view can communicate with another, it may first have
to find out where the other view is, and perhaps even make sure
that the other view exists at the present time.

First, a straightforward example. The Stddlg unit contains a dialog
box called TFileDialog (it's the view that opens in the integrated
environment when you want to load a new file). TFileDialog has a
TFileList that shows you a disk directory, and above it, a
FilelnputLine that displays the file currently selected for loading.
Each time the user selects another file in the FileList, the FileList
needs to tell the FilelnputLine to display the new file name.

In this case, FileList can be sure that FilelnputLine exists, because
they are both initialized within the same object, FileDialog. How
does FileList tell FilelnputLine that the user just selected a new
name?

FileList creates and sends a message. Here's TFileList.FocusItem,
which sends the event, and FilelnputLine's HandleEvent, which
receives it:

procedure TFileList.FocusItem(Item: Integer);
var

Event: TEvent;
begin

TSortedListBox.FocusItem(Item); { call inherited method first
Message (TopView, evBroadcast, cmFileFocused, ListA.At(Item));

end;

procedure TFileInputLine.HandleEvent(var Event: TEvent);
var

Name: NameStr;
begin

TInputLine.HandleEvent(Event);
if (Event.What = evBroadcast) and (Event.Command = cmFileFocused)

and (State and sf Selected = 0) then
begin

if PSearchRec (Event. InfoPtr) A.Attr and Directory <> 0 then
DataA := PSearchRec(Event.InfoPtr)A.Name t '\'t

PFileDialog(Owner)A.WildCard

Chapter 5, Event-driven programming 127

else Data~ := PSearchRec(Event.lnfoPtr)~.Name;
DrawView;

end;
end;

Message is a function that generates a message event and returns a
pointer to the object (if any) that handled the event.

Note that TFileList.FocusItem uses the Turbo Pascal extended
syntax (the $X+ compiler directive) to use the Message function as
a procedure, since it doesn't care about any results that come back
from Message.

Who handled the

128

broadcast? Suppose you need to find out if there is a window open on the
desktop before you perform some action. How can you find this
out? The answer is to have your code send off a broadcast event
that windows know how to respond to. The "signature" left by
the object that handles the event will tell you who, if anyone,
handled it.

Is anyone out there? Here's a concrete example. In the Turbo Pascal IDE, if the user
asks to open a watch window, the code which opens watch
windows needs to check to see if there is already a watch window
open. If there isn't, it opens one; if there is, it brings it to the front.

Sending off the broadcast message is easy:

AreYouThere := Message (DeskTop, evBroadcast, crnFindWindow, nil);

In the code for a watch window's HandleEvent method is a test to
respond to cmFindWindow by clearing the event:

case Event.Command of

cmFindWindow: ClearEvent(Event);

end;

ClearEvent, remember, not only sets the event record's What field
to evNothing, it also sets the InfoPtr field to @Self. Message reads
these fields, and if the event has been handled, it returns a pointer
to the object who handled the message event. In this case, that
would be the watch window. So following the line that sends the
broadcast, we include

if AreYouThere = nil then

Turbo Vision Guide

CreateWatchWindow
else AreYouThere~.Select;

{ if there is none, create one }
{ otherwise bring it to the front }

As long as a watch window is the only object that knows how to
respond to the cmFindWindow broadcast, your code can be
assured that when it finishes, there will be one and only one
watch window at the front of the views on the desktop.

Who's on top? Using the same techniques outlined earlier, you can also
determine, for example, which window is the topmost view of its
type on the desktop. Because a broadcast event is sent to each of
the modal view's subviews in Z-order (reverse insertion order),
the most recently inserted view is the view "on top" of the
desktop.

Calling
HandleEvent

"Peer' views are subviews
with the same owner.

Consider for a moment the situation encountered in the IDE when
the user has a watch window open on top of the desktop while
stepping through code in an editor window. The watch window
can be the active window (double-lined frame, top of the stack),
but the execution bar in the code window needs to keep tracking
the executing code. If you have multiple editor windows open on
the desktop, they might not overlap at all, but the IDE needs to
know which one of the editors it is supposed to be tracking in.

The answer, of course, is the front, or topmost editor window,
which is defined as the last one inserted. In order to figure out
which one is "on top," the IDE broadcasts a message that only
editor windows know how to respond to. The first editor window
to receive the broadcast will be the one most recently inserted; it
will handle the event by clearing it, and the IDE will then know
which window to use for code tracking by reading the result
returned by Message.

You can also create or modify an event, then call a HandleEvent
directly. You can make three types of calls:

1. You can have a view call a peer subview's HandleEvent
directly. The event won't propagate to other views. It goes
directly to the other HandleEvent, then control returns to you.

2. You can call your owner's HandleEvent. The event will then
propagate down the view chain. (If you are calling the
HandleEvent from within your own HandleEvent, your

Chapter 5, Event-driven programming 129

Help context

130

HandleEvent will be called recursively.) After the event is
handled, control returns to you.

3. You can call the HandleEvent of a view in a different view
chain. The event will travel down that view chain. After it is
handled, control will return to you.

Turbo Vision has built-in tools that help you implement context
sensitive help within your application. You can assign a help
context number to a view, and Turbo Vision ensures that
whenever that view becomes focused, its help context number
will become the application's current help context number.

To create global context-sensitive help, you can implement a
HelpView that knows about the help context numbers that you've
defined. When HelpView is invoked (usually by the user pressing
F1 or some other hot key), it should ask its owner for the current
help context by calling the method GetHelpCtx. Help View can then
read and display the proper help text. An example HelpView is
included on your Turbo Pascal distribution disks.

Context-sensitive help is probably one of the last things you'll
want to implement in your application, so Turbo Vision objects
are initialized with a default context of hcNoContext, which is a
predefined context that doesn't change the current context. When
the time comes, you can work out a system of help numbers, then
plug the right number into the proper view by setting the view's
HelpCtx field right after you construct the view.

Help contexts are also used by the status line to determine which
views to display. Remember that when you create a status line,
you call NewStatusDef, which defines a set of status items for a
given range of help context values. When a new view receives the
focus, the help context of that item determines which status line is
displayed.

Turbo Vision Guide

c H A p T E R

6

Writing safe programs

Handling errors in an interactive user interface is much more
complicated than in a command line utility. In a non-interactive
application, it is quite acceptable (and indeed, expected) that
errors cause the program to display an error message and
terminate the program. In an interactive setting, however, the
program needs to recover from errors and leave the user in an
acceptable state. Errors should not be allowed to corrupt the
information the user is working on, nor should they terminate the
program, regardless of their nature. A program that meets these
programming criteria can be considered "safe."

Turbo Vision facilitates writing safe programs. It promotes a style
of programming that makes it easier to detect and recover from
errors, especially the wily and elusive "Out of memory" error. It
does this by promoting the concept of atomic operations.

All or nothing programming

An atomic operation is an operation that cannot be broken down
into smaller operations. Or, more specific to our use, it is an
operation that either completely fails, or completely succeeds.
Making operations atomic is especially helpful when dealing with
memory allocation.

Typically, programs allocate memory in many small chunks. For
example, when constructing a dialog box, you allocate memory

Chapter 6, Writing safe programs 131

The safety pool

The size of the safety pool is
set by the variable

LowMemSize.

132

for the dialog box, then allocate memory for each of the controls.
Each of these allocations could potentially fail, and each possible
failure requires a test to see if you should proceed with the next
allocation or stop. If any allocation does fail, you need to
deallocate any memory allocated successfully. Ideally, you would
allocate everything and then check to see if any of your
allocations failed. Enter the safety pool.

Turbo Vision sets aside a fixed amount of memory (4K by default)
at the end of the heap, called the safety pool. If allocating memory
on the heap reaches into the safety pool, the Turbo Vision
function LowMemory returns True. This indicates that further
allocations are not safe and might fail.

For the safety pool to be effective, the pool must be as large as the
largest atomic allocation. In other words, it needs to be large
enough to make sure that all allocations between checks of
LowMemory will succeed; 4K should suffice in most applications.

Using the traditional approach to memory allocation, constructing
a dialog box would look something like this:

OK := True;
R.Assign(20,3,60,lO);
D := New(Dialog, Init(R, 'My dialog'));
if D <> nil then
begin

with D" do
begin

R.Assign(2,2,32,3);
Control := New(PStaticText, Init(R,

'Do you really wish to do this?'));
if Control <> nil then Insert(Control)
else OK := False;
R.Assign(5,S,14,7);
Control := New(PButton, Init(R, '~Y~es', cmYes));
if Control <> nil then Insert(Control)
else OK := False;
R.Assign(16,6,25,7);
Control := New(PButton, Init(R, '~N~o', cmNo));
if Control <> nil then Insert(Control)
else OK := False;
R.Assign(27,5,36,7);
Control := New(PButton, Init(R, '~C~ancel', cmCancel));
if Control <> nil then Insert(Control)

Turbo Vision Guide

else OK := False:
end:
if not OK then Dispose(D, Done)i

end:

Note that the variable OK is used to indicate jf any of the
allocations failed. If any did, the whole dialog box needs to be
disposed. Remember, disposing of a dialog box also disposes of
all its subviews. On the other hand, with a safety pool this entire
block of code can be treated as an atomic operation, changing the
code to this:

R.Assign(20,3,60,10) :
D := New(Dialog, Init(R, 'My dialog')):
with D" do
begin

R.Assign(2,2,32,3):
Insert (New (PStaticText, Init(R,

'Do you really wish to do this?')));
R.Assign(5,5, 14,7):
Insert (New (PButton, Init(R, '~Y~es', cmYes)));
R.Assign(16,6,25,7):
Insert (New (PButton, lnit(R, '~N~o', cmNo)))i
R.Assign(27,5,36,7)i
Insert (New (PButton, lnit(R, '~C~ancel', cmCancel)));

end;
if LowMemory then
begin

{ check if we hit the safety pool

Dispose(D, Done):
OutOfMemorYi
Dolt := False;

end
else

Dolt := Desktop".ExecView(D) = cmYes:

{ report out of memory error }

Since the safety pool is large enough to allocate the entire dialog
box, which takes up much less than 4k, the code can assume that
all the allocations succeeded. After the dialog box is completely
allocated, the LowMemory variable is checked, and if True, the
entire dialog box is disposed of; otherwise, the dialog box is used.

The ValidView method Since the LowMemory check is done quite often, T Application has a
method called ValidView that can be called to perform the
necessary check. Using ValidView, the if test in the last eight lines
of the code can be condensed into two: .

Dolt := (ValidView(D) <> nil) and
(Desktop".ExecView(D) = cmYes);

Chapter 6, Writing safe programs 133

134

Non-memory

ValidView returns either a pointer to the view passed or nil if the
view was invalid. If LowMemory returns True, Va lid View takes care
of disposing the view in question and calling OutOfMemory.

errors Of course, not all errors are memory related. For example, a view
could be required to read a disk file for some information, and the
file might be missing or invalid. This type of error must also be
reported to the user. Fortunately, Va lid View has a "hook" built in
for handling non-memory errors: It calls the view's Valid,method.

TView.Valid returns True by default. TGroup.Valid only returns
True if all the subviews owned by the group return True from
their Valid functions. In other words, a group is valid if all the
subviews of the group are valid. When you create a view that
may encounter non-memory errors, you will need to override
Valid for that view to return True only if it has been successfully
instantiated.

Valid can be used to indicate that a view should not be used for
any reason; for example, if the view could not find its file. Note
that what Valid checks for and how it checks are entirely up to
you. A typical Valid method would look something like this:

function TMyView.Valid(Command: Word): Boolean;
begin

Valid := True;
if Command = crnValid then
begin

if ErrorEncountered then
begin

ReportError;
Valid := False;

end;
end;

end;

When a view is first instantiated, its Valid method should be
called with a Command parameter of em Valid to check for any
non-memory related errors involved in the creation of the view.
Valid View (X) calls X.Valid(emValid) automatically, as well as
checking the safety pool, so calling ValidView before using any
new view is a good idea.

Valid is also called whenever a modal state terminates, with the
Command parameter being the command that terminated the

Turbo Vision Guide

modal state (see Chapter 4, "Views"). This gives you a chance to
trap for conditions like unsaved text in an editor window before
terminating your application.

ErrorEncountered could be, and most likely is, a (Boolean) instance
variable of the object type that is specified at the call to Init.

Reporting errors Before a Valid method returns False, it should let the user know
about whatever error occurred, since the view is not going to
show up on the screen. This is what the ReportError call in the
previous example does. Typically this involves popping up a
message dialog box. Each individual view, then, is responsible for
reporting any errors, so the program itself does not have to know
how to check each and every possible condition.

Major consumers

This is an important advance in programming technique, because
it lets you program as if things were going right, instead of
always looking for things going wrong. Group objects, including
applications, don't have to worry about checking for errors at all,
except to see if any of the views they own were invalid, in which
case the group simply disposes of itself and its subviews and
indicates to its owner that it was invalid. The group can assume that
its invalid subview already notified the user of the problem.

Using Valid allows the construction of windows and dialog boxes
to be treated as atomic operations. Each subview that makes up
the window can be constructed without checking for failure; if the
constructor fails, it simply sets Valid to False. The window then
goes through its entire construction, at which point the entire
window can be passed to ValidView. If any of the subviews of the
window are invalid, the entire window returns False from the
valid check. Va lid View will dispose of the window and return nil.
All that needs to be done is to check the return result from
ValidView.

The Valid function can also handle major consumers, which are
views that allocate memory greater than the size of the safety
pool, such as reading the entire contents of a file into memory.
Major consumers should check LowMemory themselves, instead of
waiting until they have finished all construction and then
allowing ValidView to do so for them.

Chapter 6, Writing safe programs 135

136

If a major consumer runs out of memory in the middle of
constructing itself, it sets a flag in itself that indicates that it
encountered an error (such as the ErrorEncountered flag in the
earlier example) and stops trying to allocate more memory. The
flag would be checked in Valid and the view would call
Application".OutOfMemory and return False from the Valid call.

Obviously, this is not quite as nice as being able to assume that
your constructors work, but it is the only way to manage the
construction of views that exceed the size of your safety pool.

The program FILEVIEW.P AS included on the Turbo Pascal
distribution disks demonstrates the use of these techniques to
implement a safe file viewer.

Turbo Vision Guide

c H

Chapter 7, Collections

A p T E R

7

Collections

Pascal programmers traditionally spend much programming time
creating code that manipulates and maintains data structures,
such as linked lists and dynamically-sized arrays. Virtually the
same data structure code tends to be written and debugged again
and again.

As powerful as traditional Pascal is, it only provides you with
built-in record and array types. Any structure beyond that is up to
you.

For example, if you're going to store data in an array, you
typically need to write code to create the array, to import data into
the array, to extract array data for processing, and perhaps to
export data to 110 devices. Later, when the program needs a new
array element type, you start all over again.

Wouldn't it be great if an array type came with code that would
handle many of the operations you normally perform on an
array? An array type that could also be extended without
disturbing the original code?

That's the aim of Turbo Vision's TCollection type. It's an object that
stores a collection of pointers and provides a host of methods for
manipulating them.

137

Collection objects

Collections are
dynamically sized

138

Collections are
polymorphic

Type checking
and collections

Besides being an object, and therefore having methods built into
it, a collection has two additional features that address
shortcomings of ordinary Pascal arrays-it is dynamically sized
and polymorphic.

The size of a standard Turbo Pascal array is fixed at compile time,
which is fine if you know exactly what size your array will always
need to be, but it may not be a particularly good fit by the time
someone is actually running your code. Changing the size of an
array requires changing the code and recompiling.

With a collection, however, you set an initial size, but it can
dynamically grow at run-time to accommodate the data stored in
it. This makes your application much more flexible in its compiled
form.

A second aspect of arrays that can be limiting to your application
is the fact that each element in the array must be of the same type,
and that type must be determined when the code is compiled.

Collections get around this limitation by using untyped pointers.
Not only is this fast and efficient, but a collection can then consist
of objects (and even non-objects) of different types and sizes. Just
like a stream, a collection doesn't need to know anything about
the objects it is handed. It just holds on to them and gives them
back when asked.

A collection is an end-run around Pascal's traditional strong type
checking. That means that you can put anything into a collection,
and when you take something back out, the compiler has no way
to check your assumptions about what that something is. You can
put in a PHedgehog and read it back out as a PSheep, and the
collection will have no way of alerting you.

As a Turbo Pascal programmer, you may rightfully feel nervous
about such an end-run. Pascal's type checking, after all, saves
hours and hours of hunting for some very elusive bugs. So you

Turbo Vision Guide

should proceed with caution here: You may not even be aware of
how difficult a mixed-type bug can be to find, because the
compiler has been finding all of them for you! However, if you
find that your programs are crashing or locking up, carefully
check the types of objects being stored in and read from
collections.

Collecting non-objects You can even add something to a collection that isn't an object at
all, but this raises another serious point of caution. Collections
expect to receive untyped pointers to something. But some of
TCollection's methods act specifically on a collection of TObject
derived instances. These include the stream access methods
PutItem and GetItem as well as the standard FreeItem procedure.

This means that you can store a PString in a collection, for
example, but if you try to send that collection to a stream, the
results aren't going to be pretty unless you override the
collection's standard GetItem and Putltem methods. Similarly,
when you attempt to deallocate the collection, it will try to
dispose of each item using FreeItem. If you plan to use non-TObject
items in a collection, you need to redefine the meaning of "item"
in GetItem, PutItem, and FreeItem. That is precisely what
TStringCollection, for example, does.

If you proceed with prudence, you will find collections (and the
descendants of collections that you build) to be fast, flexible,
dependable data structures.

Creating a collection

Remember to define a
pointer for each new object

type.

Chapter 7, Collections

Creating a collection is really just as simple as defining the data
type you wish to collect. Suppose you're a consultant, and you
want to store and retrieve the account number, name, and phone
number of each of your clients. First you define the client object
(TClient) that will be stored in the collection:

type
PClient = ATClient;
TClient = object(TObject)

Account, Name, Phone: PString;
constructor Init(NewAccount, NewName, NewPhone: String);
destructor Done; virtual;

end;

139

This is TVGUID 77.PAS.

Print All and SearchPhone are
procedures that will be

discussed later.

140

Next you implement the Init and Done methods to allocate and
dispose of the client data. Note that the object fields are of type
PString so that memory is only allocated for the portion of the
string that is actually used. The NewStr and DisposeStr functions
handle dynamic strings very efficiently.

constructor TClient.Init(NewAccount, NewName, NewPhone: String);
begin

Account := NewStr(NewAccount);
Name := NewStr(NewName);
Phone := NewStr(NewPhone);

end;

destructor TClient.Done;
begin

DisposeStr(Account);
DisposeStr(Name);
DisposeStr(Phone);

end;

TCIient.Done will be called automatically for each client when you
dispose of the entire collection. Now you just instantiate a
collection to store your clients, and insert the client records into it.
The main body of the program looks like this:

var
ClientList: PCollection;

begin
Client List := New(PCollection, Init(50, 10));
with ClientList A do
begin

Insert (New (PClient, Init('90-167', 'Smith, Zelda',
, (800) 555-1212')));

Insert (New (PClient, Init('90-160', 'Johnson, Agatha',
, (302) 139-8913')));

Insert (New (PClient, Init('90-177', 'Smitty, John',
, (406) 987-4321')));

Insert (New (PClient, Init('91-100', 'Anders, Smitty',
, (406) 111-2222')));

end;
PrintAll(ClientList);
Writeln; Writeln;
SearchPhone(ClientList, , (406)');
Dispose (ClientList, Done);

end.

Notice how easy it was to build the collection. The first statement
allocates a new TCollection called ClientList with an initial size of
50 clients. If more than 50 clients are inserted into ClientList, its

Turbo Vision Guide

size will increase in increments of 10 clients whenever needed.
The next 2 statements create a new client object and insert it into
the collection. The Dispose call at the end frees the entire
collection-clients and all.

Nowhere did you have to tell the collection what kind of data it
was collecting-it just took a pointer.

Iterator methods

The ForEach

Insert and deleting items aren't the only common collection
operations. Often you'll find yourself writing for loops to range
over all the objects in the collection to display the data or perform
some calculation. Other times, you'll want to find the first or last
item in the collection that satisfies some search criterion. For these
purposes, collections have three iterator methods: ForEach,
FirstThat, and LastThat. Each of these takes a pointer to a
procedure or function as its only parameter.

iterator ForEach takes a pointer to a procedure. The procedure has one
parameter, which is a pointer to an item stored in the collection.
ForEach calls that procedure once for each item in the collection, in
the order that the items appear in the collection. The PrintAll
procedure in TVGUID17 shows an example of a ForEach iterator.

Chapter 7, Collections

procedure PrintAII(C: PCollection); { print info for all clients

procedure PrintClient(P: PClient); far; { local procedure}
begin

with pA do
Writeln(Account A

, ":20-Length(AccountA
), {show client info}

Name", ":20-Length(Name"),
Phone", ":20-Length(Phone"));

end;

begin
Writeln;
Writeln;
C".ForEach(@PrintClient);

end;

{ end of local procedure }

{ PrintAll }

{ Call Print Client for each item in C }

For each item in the collection passed as a parameter to PrintAll,
the nested procedure PrintClient is called. PrintClient simply
prints the client object information in formatted columns.

141

Iterators must call for local
procedures.

The FirstThat and

You need to be careful about what sort of procedures you call
with iterators. In this example, PrintClient must be a procedure
it cannot be an object's method-and it must be local to (nested in
the same block with) the routine that is calling it. It must also be
declared as a far procedure, either with the far directive or with
the $F+ compiler directive. Finally, the procedure must take a
pointer to a collection item as its only parameter.

LastThat iterators In addition to being able to apply a procedure to every element in
the collection, it is often useful to be able to find a particular
element in the collection based on some criterion. That is the
purpose of the FirstThat and LastThat iterators. As their names
imply, they search the collection in opposite directions until they
find an item meeting the criteria of the Boolean function passed as
an argument.

142

FirstThat and LastThat return a pointer to the first (or last) item
that matches the search conditions. Consider the earlier example
of the client list, and imagine that you can't remember a client's
account number or exactly how his last name is spelled. Luckily,
you distinctly recall that this was the first client you acquired in
the state of Montana. Thus you want to find the first occurrence of
a client in the 406 area code (since your list happens to be in
chronological order). Here's a procedure using the FirstThat
method that would do the job

procedure SearchPhone(C: PClientCollection; PhoneToFind: String);

function PhoneMatch(Client: PClient): Boolean; far;
begin

PhoneMatch := Pos(PhoneToFind, Client~.Phone~) <> 0;
end;

var
FoundClient: PClient;

begin
FoundClient := C~.FirstThat(@PhoneMatch);
if FoundClient = nil then

Writeln('No client met the search requirement')
else

with FoundClient~ do
Writeln('Found client: " Account~,' ',Name~,' ',Phone~);

end;

Turbo Vision Guide

Again notice that PhoneMatch is nested and uses the far call
modeL In this case, it's a function that returns True only if the
client's phone number and the search pattern match. If no object
in the collection matches the search criteria, a nil pointer is
returned.

Remember: ForEach calls a user-defined procedure, while FirstThat
and LastThat each call a user-defined Boolean function. In all
cases, the user-defined procedure or function is passed a pointer
to an object in the collection.

Sorted collections

Chapter 7, Col/ections

Sometimes you need to have your data in a certain order. Turbo
Vision provides a special type of collection that allows you to
order your data in any manner you want: the TSortedCollection.

TSortedCollection is a descendant of TCollection which
automatically sorts the objects it is given. It also automatically
checks the collection when a new member is added and rejects
duplicate members.

TSortedCollection is an abstract type. To use it, you must first
decide what type of data you're going to collect and define two
methods to meet your particular sorting requirements. To do this,
you will need to derive a new collection type from
TSortedCollection. In this case, call it TClientColiection.

Your TClientCollection already knows how to do all the real work
of a collection. It can Insert new client records and Delete existing
ones-it inherited all this basic behavior from TCollection. All you
have to do is teach TClientCollection which field to use as a sort
key and how to compare two clients and decide which one
belongs ahead of the other in the collection. You do this by
overriding the KeyOf and Compare methods and implementing
them as shown here:

PClientCollection = ATClientCollection;
TClientCollection = object(TSortedCollection)

function KeyOf(Item: Pointer): Pointer; virtual;
function Compare(Keyl, Key2: Pointer): Integer; virtual;

end;

function TClientCollection. KeyOf (Item,: Pointer): Pointer;
begin

KeyOf := PClient(Item)A.Name;

143

Keys must be typecast
because they are untyped

pointers.

This is TVGUlD18.PAS.

end;

function TClientCollection.Compare(Key1, Key2: Pointer): Integer;
begin

if PString(Key1)A = PString(Key2)A then
Compare := 0 { return 0 if they're equal

else if PString(Key1)A < PString(Key2)A then
Compare := -1 { return -1 if Key1 comes first

else
Compare : = 1;

end;
otherwise return 1; Key2 comes first

KeyOf defines which field or fields should be used as a sort key. In
this case, it's the client's Name field. Compare takes two sort keys
and determines which one should come first in the sorted order.
Compare returns -1, 0, or 1, depending on whether Keyl is less
than, equal to, or greater than Key2. This example uses a straight
alphabetical sort of the key (Name) strings.

Note that since the keys returned by KeyOf and passed to Compare
are untyped pointers, you need to typecast them into PStrings
before dereferencing them.

That's all you have to define! Now if you redefine ClientList as a
PClientCollection instead of a PCollection (changing the var
declaration and the New call), you can easily list your clients in
alphabetical order:

var
ClientList: PClientCollection;

begin
ClientList := New(PClientCollection, Init(50, 10));

end.

Notice also how easy it would be if you wanted the client list
sorted by account number instead of by name. All you would
have to do is change the KeyOfmethod to return the Account field
instead of the Name field.

String collections

144

Many programs need to keeping track of sorted strings. For this
purpose, Turbo Vision provides a special purpose collection,
TStringCollection. Note that the elements in a TStringCollection are
not objects-they are pointers to Turbo Pascal strings. Since a

Turbo Vision Guide

This is TVGUID 19.PAS.

Iterators revisited

Chapter 7, Collections

string collection is a descendant of TSortedCollection, duplicate
strings are not stored.

Using a string collection is easy. Just declare a pointer variable to
hold the string collection. Allocate the collection, giving it an
initial size and an amount to grow by as more strings are added

var
WordList: PCollection;
WordRead: String;

begin
WordList := New(PStringCollection, Init(lO, 5));

WordList holds ten strings initially and then grows in increments
of five. All you have to do is insert some strings into the
collection. In this example, words are read out of a text file and
inserted into the collection:

repeat

if WordRead <> II then
WordList~.Insert(NewStr(WordRead));

until WordRead = ";

Dispose (WordList , Done);

Notice that the NewStr function is used to make a copy of the
word that was read and the address of the string copy is passed to
the collection. When using a collection, you always give it control
over the data you're collecting. It will take care of de-allocating
the data when you're done. And that's exactly what the call to
Dispose does; it disposes each element in the collection, and then
disposes the WordList collection itself.

The ForEach method traverses the entire collection one item at a
time, and passes each one to a procedure you provide. Continuing
with the previous example, the procedure Print Word is given a
pointer to a string to display. Note that PrintWord is a nested (or
local) procedure. Wrapped around it is another procedure, Print,
which is given a pointer to a TStringCollection. Print uses the
ForEach iterator method to pass each item in its collecton to the
Print WJrd procedure.

145

The Col/Draw procedure in
TVGUID20.PAS shows how to
call a method from inside an

iterator call,

Finding an item

procedure Print(C: PCollection);

procedure PrintWord(P : PString); far;
begin

Writeln(p A); { Display the string}
end;

begin { Print
Writeln;
Writeln;
CA,ForEach(@PrintWord);

end;
{ Call PrintWord }

PrintWJrd should look familiar; it's just a procedure that takes a
string pointer and passes its value to Writeln. Note the far
directive after Print Word's declaration. PrintWord cannot be a
method-it must a procedure. And it must be a nested procedure
as well. Think of Print as a wrapper around a procedure that has
the job of doing something-displaying or modifying data,
perhaps-with each item in the collection. You can have more
than one procedure like the preceding Print Word, but each has to
be nested inside Print and each has to be a far procedure {using
the far directive or {$F+}).

Sorted collections (and therefore string collections) have a Search
method that returns the index of an item with a particular key.
But how do you find an item in a collection that may not be
sorted? Or when the search criteria don't involve the key itself?
The answer, of course, is to use FirstThat and LastThat. You simply
define a Boolean function to test for whatever criteria you want,
and call FirstThat.

Polymorphic collections

146

You've seen that collections can store any type of data
dynamically, and there are plenty of methods to help you access
collection data efficiently. In fact, TCollection itself defines 23
methods. When you use collections in your programs, you'll be
equally impressed by their speed. They're designed to be flexible
and implemented to be fast.

But now comes the real power of collections: items can be treated
polymorphically. That means you can do more than just store an
object type on a collection; you can store many different objects
types, from anywhere in your object hierarchy.

Turbo Vision Guide

This is TVGUlD20.PAS.

Chapter 7, Collections

If you consider the collection examples you've seen so far, you'll
realize that all the items on each collection were of the same type.
There was a list of strings in which every item was a string. And
there was a collection of clients. But collections can store any
object that is a descendant of TObject, and you can mix these
objects freely. Naturally, you'll want the objects to have
something in common. In fact, you'll want them to have an
abstract ancestor object in common.

As an example, here's a program that puts 3 different graphical
objects into a collection. Then a ForEach iterator is used to traverse
the collection and display each object.

This example uses the Graph unit and BGI drivers, so make sure
GRAPH.TPU is in the current directory or on your unit path
(Options I Directories I Unit directory) when you compile. When
you run the program, change to the directory that contains the
.BGI drivers or modify the call to InitGraph to specify their
location (for example, C: \ TP\BGI).

The abstract ancestor object is defined first.

type
PGraphObject = ATGraphObject;
TGraphObject = object(TObject)

X, Y: Integer;
constructor Init;
procedure Draw; virtual;

end;

You can see from this declaration that each graphical object can
initialize itself ([nit) and display itself on the graphics screen
(Draw). Now define a point, a circle, and a rectangle, each
descended from this common ancestor:

PGraphPoint = ATGraphPoint;
TGraphPoint = object (TGraphObject)

procedure Draw; virtual;
end;

PGraphCircle = ATGraphCircle;
TGraphCircle = object(TGraphObject)

Radius: Integer;
constructor Init;
procedure Draw; virtual;

end;

PGraphRect = ATGraphRect;
TGraphRect = object (TGraphObject)

147

148

Width, Height: Integer;
constructor Init;
procedure Draw; virtual;

end;

These three object types all inherit the X and Y fields from
PGraphObject, but they are all different sizes. PGraphCircle adds a
Radius, while PGraphRect adds a Width and Height. Here's the code
to make the collection:

List := New(PCollection, Init(10, 5));

for I := 1 to 20 do
begin

{ Create collection }

case I mod 3 of { Create an object }
0: P := New(PGraphPoint, Init);
1: P := New(PGraphCircle, Init);
2: P := New(PGraphRect, Init);

end;
ListA.Insert(P); { Add it to collection}

end;

As you can see, the for loop inserts 20 graphical objects into the
List collection. All you know is that each object in List is some
kind of TGraphObject. But once inserted, you'll have no idea
whether a given item in the collection is a circle, point or
rectangle. Thanks to polymorphism, you don't need to know
since each object contains the data and the code (Draw) it needs.
Just traverse the collection using an iterator method and have
each object display itself:

procedure DrawAII(C: PCollection);

procedure CalIDraw(P: PGraphObject); far;
begin

pA .Draw;
end;

{ Call the Draw method }

begin { DrawAll
CA.ForEach(@CalIDraw);

end;

var
GraphicsList: PCollection;

begin

DrawAII(GraphicsList);

end.

{ Draw each object }

Turbo Vision Guide

This ability of a collection to store different but related objects
leans on one of the powerful cornerstones of object-oriented
programming. In the next chapter, you'll see this same principal
of polymorphism applied to streams with equal advantage.

Collections and memory management

Chapter 7, Collections

A TCollection can grow dynamically from the initial size set by Init
to a maximum size of 16,380 elements. The maximum collection
size is stored by Turbo Vision in the variable MaxCollectionSize.
Each element you add to a collection only takes four bytes of
memory, because the element is stored as a pointer.

No library of dynamic data structures would be complete unless
it provided some provision for error detection. If there is not
enough memory to initialize a collection, a nil pointer is returned.

If memory is not available when adding an element to a
TCollection, the method TCollection.Error is called and a run-time
heap memory error occurs. You may want to override
TCollection.Error to provide your own error reporting or recovery
mechanism.

You need to pay special attention to heap availability, because the
user has much more control of a Turbo Vision program than a
traditional Pascal program. If the user is the one who controls the
adding of objects to a collection (for example, by opening new
windows on the desktop), the possibility of a heap error may not
be so easy to predict. You may need to take steps to protect the
user from a fatal run-time error, with either memory checks of
your own when a collection is being used, or a run-time error
handler that lets the program recover gracefully.

149

150 Turbo Vision Guide

c H

Chapter 8, Streams

A p T E R

8

Streams
Object-oriented programming techniques and Turbo Vision give
you a powerful way of encapsulating code and data, and
powerful ways of building an interrelated structure of objects. But
what if you want to do something simple, like store some objects
on disk?

Back in the days when data sat by itself in a record, writing data
to disk was pretty dear-cut, but the data within a Turbo Vision
program is largely bound up within objects. You could, of course,
separate the data from the object and write the data to a disk file.
But you've achieved something important by joining the two
together in the first place, and it would be a step backwards to
take them a part.

Couldn't OOP and Turbo Vision themselves somehow be enlisted
in solving this problem? That's what streams are all about .

... rT"t .. •• -.

~ J. UlLlU V l;)lUH ;)UCCUU l;) a \,;UllC\,;UUU Vi VUJC\,;L;) VH ll~ way

somewhere: typically to a file, EMS, a serial port, or some other
device. Streams handle I/O on the object level rather than the
data level. When you extend a Turbo Vision object, you need to
provide for handling any additional data fields that you define.
All the complexity of handling the object representation is taken
care of for you.

151

The question: Object I/O

As a Pascal programmer, you know that before you can do any
file I/O, you must tell the compiler what type of data you will be
reading or writing to the file. The file must be typed, and the type
must be determined at compile time.

Turbo Pascal implements a very useful workaround to this rule:
an untyped file accessed with BlockWrite and BlockRead. But the
lack of type checking creates some extra responsibilities for the
programmer, although it does let you perform very fast binary
I/O.

A second problem, though, is that you can't use files directly with
objects. Turbo Pascal doesn't allow you to create a typed file of
objects. And because objects may contain virtual methods who
addresses are determined at run-time, storing the VMT
information outside the program is pointless; reading such
information into a program is even more so.

Again, you can work around the problem. You can copy the data
out of your objects and store the information in some sort of file,
then rebuild the objects from the raw data again later. But that is a
rather inelegant solution at best, and complicates the construction
of objects.

The answer: Streams

152

Streams are
polymorphic

Turbo Vision allows you to overcome both of these difficulties,
and gives you some side benefits as well. Streams provide a
simple, yet elegant, means of storing object data outside your
program.

A Turbo Vision stream gives you the best of both typed and
untyped files: type checking is still there, but what you intend to
send to a stream doesn't have to be determined at compile time.
The reason is that streams know they are dealing with objects, so
as long as the object is a descendant of TObject, the stream can
handle it. In fact, different Turbo Vision objects can as easily be
written to the same stream as a group of identical objects.

Turbo Vision Guide

Streams handle
objects All you have to do is define for the stream which objects it needs

to handle, so it knows how to match data with VMTs. Then you
can put objects onto the stream and get them back effortlessly.

But how can the same stream read and write such widely
differing objects as a TDeskTop and a TDialog, and not even need
to know at compile time what objects it is going to be handed?
This is very different from traditional Pascal 1/ O. In fact, a stream
can even handle new object types that weren't even created when
the stream was compiled.

The answer is registration. Each Turbo Vision object type (and any
new object types you derive from the hierarchy) is assigned a
unique registration number. That number gets written to the
stream ahead of the object's data. Then, when you go to read the
object back from the stream, Turbo Vision gets the registration
number first, and based on that knows how much data to read
and what VMT to attach to your data.

Essential stream usage

Chapter 8, Streams

On a fairly fundamental level, you can think about streams much
as you think about Pascal files. At its most basic, a Pascal file can
be simply a sequential I/O device: you write things to it, and you
read them back. A stream, then, is a polymorphic sequential I/O
device, meaning that it behaves much like a sequential file, but
you can also read or write various types of objects at the current
point.

Streams can also (like Pascal files) be viewed as a random-access
T /r'\ ..:I __ ..! ____ ._1.. ___________ 1. L _____ !L! __ !_ Ll __ £:1 ____ ..:I ___ .--!L_

..... , "'" "-4. "-""...." J "'~, " ~...., J:'"''''tJ'''~V'''L.A.£.La..&. , '-'&.,.........,

at that point, return the position of the file pointer, and so on.
These operations are also available with streams, and are
described in the section "Random-access streams."

There are two different aspects of stream usage that you need to
master, and luckily they are both quite simple. The first is setting
up a stream, and the second is reading and writing objects to the
stream.

153

Setting up a
stream

Reading and
writing a stream

154

All you have to do to use a stream is initialize it. The exact syntax
of the Init constructor will vary, depending on what type of
stream you're dealing with. For example, if you're opening a DOS
stream, you need to pass the name of the DOS file and the access
mode (read-only, write-only, read/write) for the file containing
the stream.

For example, to initialize a buffered DOS stream for loading the
desktop object into a program, all you need to is this:

var
SaveFile: TBufStream;

begin
SaveFile.Init('SAMPLE.DSK', stOpen, 1024);

Once you've initialized the stream, you're ready to go-that's all
there is to it.

TStream is an abstract stream mechanism, so you can't actually
create an instance of it, but useful stream objects are all derived
from TStream. These include TDosStream, which provides disk
I/O, and TBufStream, which provides buffered disk I/O (useful if
you read or write a lot of small pieces to disk), and TEmsStream, a
stream that sends objects to EMS memory (especially useful for
implementing fast resources).

Turbo Vision also implements an indexed stream, with a pointer
to a place in the stream. By relocating the pointer, you can do
random stream access.

TStream, the basic stream object implements three basic methods
you need to understand: Get, Put, and Error. Get and Put roughly
correspond to the Read and Write procedures you would use for
ordinary file I/O operations. Error is a procedure that gets called
whenever a stream error occurs.

Turbo Vision Guide

Putting it on Let's look first at the Put procedure. The general syntax of a Put
method is this:

SomeStream.Put(PSomeObject);

where SomeStream is any object descended from TStream that has
been initialized, and PSomeObject is a pointer to any object
descended from TObject that has been registered with the stream.
That's all you have to do. The stream can tell from PSomeObject's
VMT what type of object it is (assuming the type has been
registered), so it knows what ID number to write, and how much
data to write after it.

Of special interest to you as a Turbo Vision programmer,
however, is the fact that when you Put a group with subviews
onto a stream, the subviews are automatically written to the
stream as well. Thus, saving complex objects is not complex at
all-in fact, it's automatic! You can save the entire state of your
program simply by writing the desktop onto a stream. When you
restart your program and load the desktop back in, it will be in
the same condition it was in when you saved it.

Getting it back Getting objects back from the stream is just as easy. All you have
to do is call the stream's Get function:

Chapter 8, Streams

PSomeObject := SomeStream.Get;

where again, SomeStream is an initialized Turbo Vision stream,
and PSomeObject is a pointer to any type of Turbo Vision object.
Get simply returns a pointer to whatever it has pulled off the
stream. How much data it has pulled, and what type of VMT it
has assigned to that data, is determined not by the type of
PSomeObject, but by the type of object found on the stream. Thus,
if the object at the current position of SomeStream is not of the
______ • _______ nf"' _____ "l.! __ L ___ •• _._!11 __ L ___ t..1_""] !_1: ____ L! __

tJUJ..LL""" '"J Y '-4v.L vv" '-'Vj ""' .. , J '-''-4. Y .. .£..A..L b""'''' blL4.L...., ... """""" L.A."'L "'

As with Put, Get will retrieve complex objects. Thus, if the object
you retrieve from a stream is a view that owns subviews, the
subviews will be loaded as well.

155

In case of error

Shutting down
the stream

Finally, the Error procedure determines what happens when a
stream error occurs. By default, TStream.Error simply sets two
fields (Status and Errorlnfo) in the stream. If you want to do
anything fancier, like generating a run-time error or popping up
an error dialog box, you'll need to override the Error procedure.

When you're finished using a stream, you call its Done method,
much as you would normally call Close for a disk file. As with any
Turbo Vision object, you do this as

Dispose (SorneStream, Done);

so as to dispose of the stream object as well as shutting it down.

Making obj~cts streamable

156

Load and Store
methods

All standard Turbo Vision objects are ready to be used with
streams, and all Turbo Vision streams know about the standard
objects. When you derive a new object type from one of the
standard objects, it is very easy to prepare it for stream use, and to
alert streams to its existence.

The actual reading and writing of objects to the stream is handled
by methods called Load and Store. While each object must have
these methods to be usable by streams, you never call them
directly. (They are called by Get and Put.) So all you need to do is
make sure that your object knows how to send itself to the stream
when called upon to do so.

Because of OOP, this job is very easy, since most of the
mechanism is inherited from the ancestor object. All your object
has to handle is loading or storing the parts of itself that you
added; the rest is taken care of by calling the ancestor's method.

For example, let's say you derive a new kind of view from
TWindow, named after the surrealist painter Rene Magritte, who
painted many famous pictures of windows:

Turbo Vision Guide

type
TMagritte = object(TWindow)

Painted: Boolean;
constructor Load(var S: TStream);
procedure Draw;
procedure Store (var S: TStream);

end;

All that has been added to the data portion of the window is one
Boolean field. In order to load the object, then, you simply read a
standard TWindow, then read an additional byte to accommodate
the Boolean field. The same applies to storing the object: you
simply write a TWindow, then write one more byte. Typical Load
and Store methods for descendant objects look like this:

constructor TMagritte.Load(var s: Stream);
begin

TWindow.Load(S);
S.Read(Painted, SizeOf(Boolean));

end;

procedure TMagritte.Store(var S: Stream);
begin

TWindow.Store(S);
S.Write(Painted, SizeOf(Boolean));

end;

load the ancestor type }
read additional fields }

{ store the ancestor type
{ write additional fields

Warningl It is entirely your responsibility to ensure that the same amount of
data is stored as is loaded, and that data is loaded in the same
order that it is stored. The compiler will return no errors. This can
cause huge problems if you are not careful. If you modify an
object's fields, make sure to update both the Load and Store
methods.

Stream
registration

Turbo Vision registers 01/ the
standard objects, so you

don't have to.

Chapter 8, Streams

In addition to defining the Load and Store methods for a new
object, you will also have to register your new object type with the
streams. Registration is a simple, two-step process: you define a
stream registration record, and you pass it to the global procedure
RegisterType.

To define a stream registration record, just follow the format.
Stream registration records are Pascal records of type TStreamRec,
which is defined as follows:

PStrearnRec = ATStreamRec;
TStrearnRec = record

157

Object 10 numbers

The automatic fields

158

ObjType: Word;
VmtLink: Word;
Load: Pointer;
Store: Pointer;
Next: Word;

end;

By convention, all Turbo Vision stream registration records are
given the same name as the corresponding object type, with the
initial "T" replaced by an "R." Thus, the registration record for
TDeskTop is RDeskTop, and the registration record for TMagritte is
RMagritte. Abstract types such as TObject and TView do not have
registration records because there should never be instances of
them to store on streams.

The ObjType field is really the only part of the record you need to
think about; the rest is mechanical. Each new type you define will
need its own, unique type-identifier number. Turbo Vision
reserves the registration numbers 0 through 99 for the standard
objects, so your registration numbers can be anything from 100
through 65,535.

It is your responsibility to create and maintain a library of 10.
numbers for all your new objects that will be used in stream I/O,
and to make the IDs available to users of your units. As with
command constants, the numbers you assign may be completely
arbitrary, as long as they are unique.

The VmtLink field is a link to the objects virtual method table
(VMT). You simply assign it as the offset of the type of your
object:

RSomeObject.VmtLink := Ofs(TypeOf(TSomeObject)A);

The Load and Store fields contain the addresses of the Load and
Store methods of your object, respectively.

RSomeObject.Load := @TSomeObject.Load;
RSomeObject.Store := @TSomeObject.Store;

The final field, Next, is assigned by RegisterType, and requires no
intervention on your part. It simply facilitates the internal use of a
linked list of stream registration records.

Turbo Vision Guide

Register here

Registering
standard objects

Once you have constructed the stream registration record, you
call RegisterType with your record as its parameter. So, to register
your new TMagritte object for use with streams, you would
include the following code:

const
RMagritte: TStreamRec = (

ObjType: 100;

)i

VmtLink: Ofs(TypeOf(TMagritte)A)i
Load: @TMagritte.Loadi
Store: @TMagritte.Store

RegisterType(RMagritte)i

That's all there is to it. Now you can Put instances of your new
object type to any Turbo Vision stream and read instances back
from streams.

Turbo Vision defines stream registration records for all its
standard objects. In addition, each Turbo Vision unit defines a
RegisterXXXX procedure that automatically registers all of the
objects in that unit.

The stream mechanism

The Put process

Chapter 8, Streams

Now that you've examined the process you go through to use
streams, you should probably take a quick look behind the scenes
to see just what Turbo Vision does with your objects when you
r",1- ,..,._ n .. ,,s. k"' T ',... "' "'",.,""11"' 1"'\"...,~ 11"'\ ,.....~ ",'h;"....,..,-I-("I ;.,..... ... n-:\,.....f..1,.,,..,.
-~. ~- - -'---" -. - --. ---------.. -------r-- -- --)---- ------ -------0
and using the methods built into each other.

When you send an object to a stream with the stream's Put
method, the stream first takes the VMT pointer from offset 0 of
the object and looks through the list of types registered with the
streams system for a match. When it finds the match, the stream
retrieves the object's registration ID number and writes it to the

159

The Get process

Handling nil
object pointers

stream's destination. The stream then calls the object's Store
method to finish writing the object. The Store method makes use
of the stream's Write procedure, which actually writes the correct
number of bytes to the stream's destination.

Your object doesn't have to know anything about the stream-it
could be a disk file, an chunk of EMS memory, or any other sort of
stream-your object merely says "Write me to the stream," and
the stream handles the rest.

When you read an object from the stream with the Get method, its
ID number is retrieved first, and the list of registered types is
scanned for a match. When the match is found, the registration
record provides the stream with the location of the object's Load
method and VMT. The Load method is then called to read the
proper amount of data from the stream.

Again, you simply tell the stream to Get the next object it contains
and stick it at the location of the new pointer you specify. Your
object doesn't even care what kind of stream it's dealing with. The
stream takes care of reading the proper amount of data by using
the object's Load method, which in turn relies on the stream's Read
method.

All this is transparent to the programmer, but it shows you how
crucial it is to register a type before attempting stream I/O with it.

You can write a nil object to a stream. However, when you do, a
word of 0 is written to the stream. On reading an ID word of 0,
the stream returns a nil pointer. 0 is therefore reserved, and cannot
be used as a stream object ID number.

Collections on streams: A complete example

160

In Chapter 7, "Collections," you saw how a collection could hold
different, but related, objects. The same polymorphic ability
applies to streams as well, and they can be used to store an entire
collection on disk for retrieval at another time or even by another
program. Go back and look at TVGUID20.P AS. What more must
you do to make that program put the collection on a stream?

Turbo Vision Guide

The answer is remarkably simple. First, start at the base object,
TGraphObject, and "teach" it how to store its data (X and Y) on a
stream. That's what the Store method is for. Then, similarly define
a new Store method for each descendant of TGraphObject that adds
additional fields (TGraphCircle adds a Radius; TGraphRec adds
Width and Height).

Next, build a registration record for each object type that will
actually be stored and register each of those types when your
program first begins. And thafs it. The rest is just like normal file
1/0: declare a stream variable; create a new stream; put the entire
collection on the stream with one simple statement; and close the
stream.

Adding Store methods Here are the Store methods. Notice that PGraphPoint doesn't need
one, since it doesn't add any fields to those it inherits from
PGraphObject

TGraphObject doesn 't call
TObject.Store because

TObject has no data to store.

Chapter 8, Streams

type
PGraphObject = ~TGraphObject;

TGraphObject = object(TObject)

procedure Store(var S: TStream); virtual;
end;

PGraphCircle = ~TGraphCircle;

TGraphCircle = object(TGraphObject)
Radius: Integer;

procedure Store (var S: TStream); virtual;
end;

PGraphRect = ~TGraphRect;

TGraphRect = object(TGraphObject)
Width. Heiaht: Inteaer:

procedure Store (var S: TStream); virtual;
end;

Implementing the Store is quite straightforward. Each object calls
its inherited Store method, which stores all the inheriteci data.
Then the stream's Write method to write the additional data

procedure TGraphObject.Store(var S: TStream);
begin

S.Write(X, SizeOf(X));
S.Write(Y, SizeOf(Y));

end;

161

Registration records

162

procedure TGraphCircle.Store(var S: TStream);
begin

TGraphObject.Store(S);
S.Write(Radius, SizeOf(Radius));

end;

procedure TGraphRect.Store(var S: TStream);
begin

TGraphObject.Store(S);
S.Write(Width, SizeOf(Width));
S.Write(Height, SizeOf(Height));

end;

Note that TStream's Write method does a binary write. Its first
parameter can be a variable of any type, but TStream. Write has no
way to know how big that variable is. The second parameter
provides that information and you should follow the convention
of using the standard SizeD! function. That way, if you decide to
change the coordinate system to use floating point numbers, you
won't have to revise your Store methods.

Defining a registration record constant for each of the descendent
types is our last step. It's a good idea to follow the Turbo Vision
naming convention of using an R as the initial letter, replacing the
type's T.

Remember, each registration record gets a unique object ID
number (Dbjtype). Turbo Vision reserves 0 through 99 for its
standard objects. It's a good idea to keep track of all your objects
stream ID numbers in one central pl~ce to avoid duplication.

const
RGraphPoint: TStreamRec = (

ObjType: 150;
VmtLink: Ofs(TypeOf(TGraphPoint)~);

Load: nil;
Store: @TGraphPoint.Store);

RGraphCircle: TStreamRec = (
ObjType: 151;
VmtLink: Ofs(TypeOf(TGraphCircle)~);

Load: nil;
Store: @TGraphCircle.Store);

RGraphRect: TStreamRec = (

ObjType: 152;
VmtLink: Ofs(TypeOf(TGraphRect)~);

Load: nil;
Store: @TGraphRect.Store);

{ No load method yet }

{ No load method yet }

{ No load method yet }

Turbo Vision Guide

You don't need a registration record for TGraphObject beause it's
an abstract type and thus won't ever'be instantiated or put onto a
collection or stream. Each registration record's Load pointer is set
nil here because this example is only concerned with storing data
onto a stream. Load methods will be defined and the registration
records will be updated in the next example (TVGUID22.P AS).

Registering You must always remember to register each of these records
before performing any stream I/O. The easiest way to do this is to
wrap them all in one procedure and call it at the very beginning
of your program (or in your application's Init method)

procedure StreamRegistration;
begin

RegisterType(RCollection);
RegisterType(RGraphPoint);
RegisterType(RGraphCircle);
RegisterType(RGraphRect);

end;

Notice that you have to register the TCollection (using its
RCollection record-now you see why naming conventions make
programming easier) even though you didn't define TCollection.
The rule is simple and unforgiving: it's your responsibility to
register every object type that your program will put onto a
stream.

Writing to the stream All that's left to follow is the normal file I/O sequence of: create a
stream; put the data (a collection) onto it; close the stream. You
don't have to write a ForEach iterator to stream each collection
item. You just tell the stream to Put the collection on the stream:

This is TVGUlD21.PAS.

Chapter 8, Streams

var
GraphicsList: PCollectionj
GraphicsStream: TBufStream;

begin
StreamRegistration; { Register all streams }

{ Put the collection in a stream on disk
GraphicsStream.lnit('GRAPHICS.STM', stCreate, 1024);
GraphicsStream.Put (GraphicsList); { 'Output collection}
GraphicsStream.Donei { Shut down stream }

end.

This creates a disk file that contains all the information needed to
"read" the collection back into memory. When the stream is

163

opened and the collection is retrieved (see TVGUID22.PAS), all
the hidden links between the collection and its items, and objects
and their virtual method tables will be magically restored. This
same technique is used by the Turbo Pascal IDE to save its
desktop file. The next example shows you how to do that. But first
you have to learn about streaming objects that contain links to
other objects.

Who gets to store things?

164

Subview

An important caution about streams: the owner of an object is the
only one that should write that object to a stream. This caution is
similar to one with which you have probably become familiar
while using traditional Pascal: the owner of a pointer is the one
that should dispose of the pointer.

In the midst of the complexity of a real-life application, numerous
objects will often have a pointer to a particular structure. When
the time arrives for stream I/O, you need to decide who "owns"
the structure; that owner alone should be the one to send that
structure to the stream. Otherwise, you'll end up with multiple
copies in the stream of what was initially just one structure. When
you then read the stream, multiple instances of the structure will
be created, with each of the original objects now pointing at their
own personal copy of the structure instead of at the original single
structure.

instances Many times you'll find it convenient to store pointers to a group's
subviews in local instance variables. For example, a dialog box
will often store pointers to its control objects in mnemonically
named fields for easy access (fields like OKButton or
FilelnputLine). When that view is then inserted into the view tree,
the owner has two pointers to the subview, one in the field and
one in the subview list. If you don't make allowances for this,
reading back the object from a stream will result in duplicate
instances.

The solution is provided in the TGroup methods called
GetSubViewPtr and PutSubViewPtr. When storing a field that is
also a subview, rather than writing the pointer as if it were just
another variable, you call PutSubViewPtr, which stores a reference

Turbo Vision Guide

Peer view

to the ordinal position of the subview in the group's subview list.
This way, when you Load the group back from the stream, you can
call GetSubViewPtr, which makes sure the field and the subview
list point to the same object.

Here's a quick example using GetSubViewPtr and PutSubViewPtr
in a simple window:

type
TButtonWindow = object(TWindow)

Button: PButton;
constructor Load(var S: TStrearn);
procedure Store (var S: TStrearn);

end;

constructor Load(var S: TStrearn);
begin

TWindow.Load(S);
GetSubViewPtr(S, Button);

end;

procedure Store(var S: TStrearn)i
begin

TWindow.Store(S);
PutSubViewPtr(S, Button);

end;

Let's take a look at how this Store method differs from a normal
Store. After storing the window normally, all you have to do is
store a reference to the Button field, rather than storing the field
itself as you would normally do. The actual button object is stored
as a subview of the window when you call TWindow.Store. All you
have to do in addition is put information on the stream indicating
that Button is to point to that subview. The Load method does the
same thing in reverse, first loading the window and its button
subview, then restoring the pointer to that subview to Button.

instances A similar situation can arise when a view has a field that points to
one of its peers. A view is called a peer view of another if both
views are owned by the same group. An excellent example is that
of a scroller. Because the scroller has to know about two scroll
bars which are also members of the same window that contains
the scroller, it has two fields that point to those views.

Chapter 8, Streams

As with subviews, you can run into problems when reading and
writing references to peer views to streams. The solution,

165

however, is also similar. The TView methods PutPeerViewPtr and
GetPeerViewPtr provide a means for accessing the ordinal position
of another view in the owner object's list of subviews.

The only thing to worry about is loading references to peer views
that have not yet been loaded (that is, they come later in the
subview list, and therefore later on the stream). Turbo Vision
handles this automatically, keeping track of all such forward
references and resolving them when all the subviews of the group
have been loaded. The part you may need to consider is that peer
view references are not valid until the entire Load has been
completed. Because of this, you should not put any code into Load
methods that makes use of sub views that depend on their peer
subviews, as the results will be unpredictable.

Storing and loading the desktop

166

If the object you save to a stream is the desktop, the desktop will
in turn save everything it owns: the entire desktop environment,
including all current views.

If you intend to let the user save the desktop, you need to ensure
that all possible views have proper Store and Load methods, and
that all views are registered, since what the desktop contains at
any moment will most likely be up to the user.

To do this, you can use something like the following code:

procedure TMyApp.RestoreDeskTopi
var

SaveFile: TBufStreami
Temp: PDeskTopi

begin
SaveFile.Init('T.DSK' ,stOpen, 1024)i
Temp := PDeskTop(SaveFile.Get)i
SaveFile.Donei
if Temp <> nil then
begin

{ Open a buffered file }
{ Read a desktop object }

{ Close the file }
{ If we got something ... }

... get rid of the old desktop} Dispose (DeskTop, Done)i
DeskTop := Tempi
Insert(DeskTop)i
DeskTopA.DrawView;

{ ... assign the one we read to DeskTop}
{ ... and insert it into the application}

{ Show us what we got! }
end;
if SaveFile.Status <> 0 then ErrorReadingFile;

end;

Turbo Vision Guide

You can even go a step further and save and restore whole
applications. A T Application object can save and restore itself.

Copying a stream

TStream has a method CopyFrom(S,Count), which copies Count
bytes from the given stream S. CopyFrom can be used to copy the
entire contents of a stream to another stream. If you repeatedly
access a disk-based stream, for example, you may want to copy it
to an EMS stream for more rapid access:

NewStream := New(TEmsStream, Init(OldStreamA.GetSize));
OldStreamA.Seek(O);
NewStreamA. CopyFrom (OldStream, OldStreamA.GetSize);

Random-access streams

Resources are discussed in
Chapter 9, "Resources. H

Chapter 8, Streams

So far, we have dealt with streams as sequential devices: you Put
objects at the end of a stream, and Get them back in the same
order. But Turbo Vision provides more capabilities than that.
Specifically, it allows you to treat a stream as a virtual, random
access device. In addition to Get and Put, which correspond to
Read and Write on a file, streams provide features analogous to a
file's Seek, FilePos, FileSize, and Truncate.

• The Seek procedure of a stream moves the current stream
pointer to a specified position (in bytes from the beginning of
the stream), just like the standard Turbo Pascal Seek procedure.

• The GetPos function is the inverse of the Seek procedure. It
returns a Longint with the current position of the stream.

• The GetSize function returns the size of the stream in bytes.

• The Truncate procedure deletes all data after the current stream
position, making the current position the end of the stream.

While these routines are useful, random access streams require
you to keep an index, outside the stream, noting the starting
position of each object in the stream. A collection is ideal for this
purpose, and is, in fact, the means used by Turbo Vision with
resource files. If you want to use a random access stream, consider
whether using a resource file would do the job for you.

167

Non-objects on streams

You can write things that are not objects onto streams, but you
have to use a somewhat different approach to do it. The standard
stream Get and Put methods require that you load or store an
object derived from TObject. If you want to create a stream of
non-objects, go directly to the lower-level Read and Write
procedures, each of which reads or writes a specified number of
bytes onto the stream. This is the same mechanism used by Get
and Put to read and write the data for objects; you're simply
bypassing the VMT mechanism provided by Get and Put.

Designing your own streams

168

Stream error
handling

This section summarizes the methods and error-handling capabil
ities of Turbo Vision streams so that you know what you can use
to create new types of streams.

TStream itself is an abstract object that must be extended to create
a useful stream type. Most of TStream's methods are abstract and
must be implemented in your descendant, and some depend
upon TStream abstract methods. Basically, only the Error, Get, and
Put methods of TStream are fully implemented. GetPos, GetSize,
Read, Seek, SetPos, Truncate, and Write must be overridden. If the
descendant object type has a buffer, the Flush method should be
overridden as well.

TStream has a method called Error(Code, Info), which is called
whenever the stream encounters an error. Error simply sets the
stream's Status field to one of the constants listed in Chapter 14,
"Global reference" under "stXXXX constants."

The ErrorInfo field is undefined except when Status is stGetError or
stPutError. If Status is stGetError, the ErrorInfo field contains the
stream ID number of the unregistered type. If Status is stPutError,
the ErrorInfo field contains the VMT offset of the type you tried to
put onto the stream. You can override TStream.Error to generate
any level of error handling, including run-time errors.

Turbo Vision Guide

c H A ,P T E R

9

Resources

A resource file is a Turbo Vision object that will save objects
handed to it, and can then retrieve them by name. Your
application can then retrieve the objects it uses from a resource
rather than initializing them. Instead of making your application
initialize the objects it uses, you can have a separate program
create all the objects and save them to a resource.

The mechanism is really fairly simple: a resource file works like a
random-access stream, with objects accessed by keys, which are
simply unique strings identifying the resources.

Unlike other portions of Turbo Vision, you probably won't need
or want to change the resource mechanism. As provided,
resources are robust and flexible. You really should only need to
learn to use them.

Why use resources?

Chapter 9, Resources

There are a number of advantages to using a resource file.

Using resources allows you to customize your application
without changing the code. For example, the text of dialog boxes,
the labels of menu items, and the colors of views can all be altered
within a resource, allowing the appearance of your application to
change without anyone having to get inside of it.

169

You can normally save code by putting all your object Inits in a
separate program. Inits often turn out to be fairly complex,
containing calculations and other operations that can make the
rest of your code simpler. You still have a Load in your application
for each object, but loads are trivial compared to Inits. You can
usually expect to save about 8% to 10% of your code size by using
a resource.

Using a resource also simplifies maintaining language-specific
versions of an application. Your application loads the objects by
name, but the language that they display is up to them.

If you want to provide versions of an application with differing
capabilities, you can, for example, design two sets of menus, one
of which provides access to all capabilities and another which
provides access to only a limited set of functions. That way you
don't have to rewrite your code at all, and you don't have to
worry ;;tbout accidentally stripping out the wrong part of the code.
And you can upgrade the program to full functionality by
providing C'nly a new resource, instead of replacing the whole
program.

In short, a resource isolates the representation of the objects in
your program, and makes it easier for it to change.

What's in a resource?

170

Before digging into the details of resources, you might want to
make sure you're comfortable with streams and collections,
because the resource mechanism uses both of them. You can use
resources without needing to know just how they work, but if you
plan to alter them in any way, you need to know what you're
getting into.

A TResourceFile contains both a sorted string collection and a
stream. The strings in the collection are keys to objects in the
stream. TResourceFile has an Init method that takes a stream, and a
Get method that takes a string and returns an object.

Turbo Vision Guide

Creating a resource

Chapter 9, Resources

Creating a resource file is essentially a four-step process. You
need to open a stream, initialize a resource file on that stream,
store one or more objects with their keys, and close the resource.

The following code creates a simple resource file called MY.REZ
containing a single resource: a status line with the key 'Waldo.'

program BuildResource;

uses Drivers, Objects, Views, App, Menus;

type
PHaltStream = ATHaltStream:
THaltStream = object(TBufStream)

procedure Error (Code, Info: Integer): virtual:
end:

const cmNewDIg = IDOl:
var

MyRez: TResourceFile:
MyStrm: PHaltStream:

procedure THaltStream.Error(Code, Info: Integer):
begin

Writeln('Stream error: " Code, ' (',Info,')'):
Halt(!);

end:

procedure CreateStatusLine;
var

R: TRect:
StatusLine: PStatusLine:

begin
R.Assign(O, 24, 80, 25);
StatusLine := New(PStatusLine, Init(R,

l~CWoJL.aL.u"I.JCl. IV, v!:!:!:!:,

NewStatusKey('~Alt-X~ Exit', kbAltX, cmQuit,
NewStatusKey('~F3~ Open', kbF3, cmNewDlg,
NewStatusKey('~F5~ Zoom', kbF5, cmZoom,
NewStatusKey('~Alt-F3~ Close', kbAltF3, cmClose,
nil)))),

nil)

));

MyRez.Put(StatusLine, 'Waldo');
Dispose (StatusLine, Done);

end:

begin
MyStrm := New(PHaltStream, Init('MY.REZ', stCreate, 1024)):

171

MyRez.lnit(MyStrm);
RegisterType(RStatusLine);
CreateStatusLine;
MyRez.Done;

end.

Reading a resource

172

Retrieving a resource from a resource file is just as simple as
getting an object from a stream: You just call the resource file's Get
function with the desired resource's key as a parameter. Get
returns a generic PObject pointer.

The status line resource created in the previous example can be
retrieved and used by an application in this way:

program MyApp;

uses Objects, Drivers, Views, Menus, Dialogs, App;

var
MyRez: TResourceFile;

type
PMyApp = ATMyApp;
TMyApp = object(TApplication)

constructor Init;
procedure InitStatusLine; virtual;

end;

constructor TMyApp.lnit;
const

MyRezFileName: FNameStr = 'MY.REZ';.
begin

MyRez.lnit(New(PBufStream, Init(MyRezFileName, stOpen, 1024)));
if MyRez.StreamA.Status <> 0 then Halt(l);
RegisterType(RStatusLine);
TApplication.lnit;

end;

procedure TMyApp.lnitStatusLine;
begin

StatusLine := PStatusLine(MyRez.Get('Waldo'));
end;

var Wa1doApp: TMyApp;
begin

WaldoApp.lnit;
WaldoApp.Run;
Wa1doApp.Done;

Turbo Vision Guide

String lists

Chapter 9, Resources

end.

When you read an object off a resource, you need to be aware of
the possibility of receiving a nil pointer. If your index name is
invalid (that is, if there is no resource with that key in the file), Get
returns nil. After your resource code is debugged, however, this
should no longer be a problem.

You can read an object repeatedly off a resource. It's unlikely that
you would want to do so with our example of a status line, but a
dialog box, for example, might typically be retrieved many times
by a user during the course of an application's running. A
resource just repeatedly provides an object when it is requested.

This can potentially produce problems with slow disk I/O, even
though the resource file is buffered. You can adjust your disk
buffering, or you can copy the stream to an EMS stream if you
have EMS installed.

In addition to the standard resource mechanism, Turbo Vision
provides a pair of specialized objects that handle string lists. A
string list is a special resource access object that allows your
program to access resourced strings by number (usually
represented by an integer constant) instead of a key string. This
allows a program to store strings out on a resource file for easy
customization and internationalization.

For example, the Turbo Pascal IDE uses a string list object for all
its error messages. This means the program can simply call for an
error message by number, and different versions in different
countries will find different strings in their resources.

The string list object is by design not very flexible, but it is fast
and convenient when used as designed.

The TStringList object is used to access the strings. To create the
string list requires the use of the TStrListMaker object. The
registration records for both have the same object type number.

The string list object has no Init method. The only constructor it
has is a Load method, because string lists only exist on resource
files. Similarly, since the string list is essentially a read-only
resource, it has a Get function, but no Put procedure.

173

Making string lists

174

The TStrListMaker object type is used to create a string list on a
resource file for use with TStringList. In contrast to the string list,
which is read-only, the string list maker is write-only. Basically, all
you can do with a string list maker is initialize a string list, write
strings onto it sequentially, and store the resulting list on a
stream.

Turbo Vision Guide

c H A p T E R

10

Hints and tips

This chapter contains a few additional suggestions on how to use
Turbo Vision more effectively. Because object-oriented
programming and event-driven programming are fairly new
concepts to even experienced programmers, we want to try to
provide some guidance in using these new paradigms.

Debugging Turbo Vision applications

Chapter 70, Hints and tips

If you have tried stepping or tracing through any of the example
programs provided in this cookbook, you have probably noticed
that you don't get very far. Because Turbo Vision programs are
event-driven, much (or even most) of the program's time is spent
running through a rather tight loop in TGroup.Execute, waiting for
some sort of event to occur. As a result, stepping and tracing is
not very meanlngtul at that pOInt.

The key to debugging Turbo Vision applications is breakpoints,
breakpoints, and breakpoints.

Let's look at how well-placed breakpoints can help you find
problems in Turbo Vision programs.

175

It doesn't get
there One problem in debugging your application might be that some

portion of your code is not being executed. For example, you
might click on a status line item or select a menu option that you
know is supposed to bring up a window, but it doesn't.

Your normal instinct might tell you to step through your program
until you get to that command, and then figure out where
execution does go instead of where you expected. But if you try it,
it doesn't help. You step, and you end up right back where you
were.

The best approach in this situation is to set a breakpoint in the
HandleEvent method that should be calling the code that isn't
getting executed. Set the breakpoint at the beginning of the
HandleEvent method and when it breaks, inspect the event record
that's being processed to make sure it's the event you expected. At
this point you can also starr stepping through your code, because
the HandleEvent and any code responding to your own commands
will be code you have written, and therefore code you can trace
through.

Hiding behind a mask Keep in mind, however, that there are a couple of reasons why
your object may never get to see the event you intend it to handle.
The first and simplest mistake is leaving a type of event out of
your object's event mask. If you haven't told your object that it is
allowed to handle a certain kind of event, it won't even look at
those events!

176

Stolen events A second possibility you need to consider is that some other
object is "stealing" the event. That is, the event is being handled
and cleared by some object other than the one you intended to
give it to.

There are a couple of things which could cause this. The first is
duplicate command declarations: if two commands have been
assigned the same constant value, they could be handled
interchangeably. This is why it is crucial to keep track of which
constants you have assigned which values, particularly in a
situation when you are reusing code modules.

Another possible cause of this would be duplicate command
labels, particularly in reused code. Thus, if you assign a command

Turbo Vision Guide

Blame your parents

It doesn't do
what I expect

It hangs

Warningl
This code will hang your

system. Do not run itllt is only
an illustration.

Chapter 70, Hints and tips

cmJump, and there is a HandleEvent method in some other object
that already responds to a command cmJump that you have
forgotten about and never deleted, you could have conflicts.
Always check to see if some other object is handling the events
that seem to get "lost."

Finally, check to make sure that the event isn't being handled in a
call to the object's ancestor. Often, the HandleEvent method of a
derived type will rely on the event handler of its ancestor to deal
with most events, and it may be handling one that you didn't
expect. Try trapping the event before the call to the ancestor's
HandleEvent.

Perhaps your window does show up, but it displays garbage, or
something other than what you expected. That indicates that the
event is being handled properly, but the code that responds to the
event is either incorrect or perhaps overridden. In this instance, it
is best to set a breakpoint in the routine that gets called when the
event occurs. Once execution breaks, you can step or trace
through your code normally.

Hang bugs are among the most difficult to track down, but they
can be found. First you might try some combination of the
breakpointing methods suggested previously to narrow down
just where the hang occurs. The second thing to look for is
pointers being disposed of twice. This can happen when a view is
disposed of by its owner, and then you try to dispose of it directly.
For example:

var
Bruce, Pizza: PGroup;
R: TRect;

begin
R.Assign(5, 5, 10, 10);
Pizza := New(PGroup, Init(R));
R.Assign(10, 10, 20, 20);
Bruce := New(PGroup, Init(R));
BruceA.lnsert(Pizza);
Dispose (Bruce, Done);
Dispose (Pizza, Done);

end;

{ dispose of Bruce and subviews }
{ This will hang your system }

177

Disposing of the group Bruce also disposes of Bruce's subview,
Pizza. If you then try to dispose of Pizza, your program will hang.

Hangs can also be cause by such things as reading stream data
into the wrong type of object and incorrectly typecasting data
from collections.

Porting applications to Turbo Vision

178

Scavenge your
old code

If you want to port an existing application to Turbo Vision, your
first inclination might be to try to port the Turbo Vision interface
into the application, or to put a Turbo Vision layer on top of your
application. This will be an exercise in frustration. Turbo Vision
applications are event-driven, and most existing applications will
not shift easily, if at all, to that paradigm.

There is an easier way. By now, you know that the essence of
programming a specific application in Turbo Vision is
concentrated in the application's Init, Draw, and HandleEvent
methods. The better approach to porting an existing application is
first to write a Turbo Vision interface that parallels your existing
one, and then scavenge your old code into your new application.
Most of the scavenged code will end up in new view's Init, Draw,
and HandleEvent methods.

You need to spend some time thinking about the essence of your
application, so you can divide your interface code from the code
that carries out the work of your application. This can be difficult,
because you have to think differently about your application.

The job of porting will involve some rewriting to teach the new
objects how to represent themselves, but it will also involve a lot
of throwing away of old interface code. This shouldn't introduce a
lot of new bugs, and can actually be a fun thing to do.

If you port an application, you will be amazed to discover how
much of your code is dedicated to handling the user interface.
When you let Turbo Vision work for you, a lot of the user
interface work you did before will simply disappear.

We discovered how rewarding this can be when we ported Turbo
Pascal's integrated environment to Turbo Vision. We scavenged
the compiler, the editor, the debugger-all the various engines-

Turbo Vision Guide

Rethink your
organization

Chapter 10, Hints and tips

from the old user interface, and brought them into a user interface
written in Turbo Vision.

Programming in this new paradigm takes some getting used to. In
traditional programming, we tend to think of the program from
the perspective of the code. We are the code, and the data is "out
there," something on which we operate. At first glance, we might
be tempted to organize a program such as Turbo Pascal's
integrated environment around an editor object. After all, that's
what you're doing most of the time in the environment, editing.
The editor would edit, and at intervals, it would call the compiler.

But we need to make some shifts in perspective to use the true
power of object-oriented programming. It makes more sense in
the integrated environment to make the application itself the
organizing object. When it's time to edit, the application calls up
an editor. When it's time to compile, the application brings up the
compiler, initializes it, and tells it what files to compile.

If the compiler hits an error, how is the user returned to the point
of error in the source code? The application calls the compiler, and
it gets a result back from it. If the compiler returns an error result,
it also returns a file name and a line number. The application
looks to see if it already has an editor open for that file, and if not,
it opens it. It passes the error information, including the line
number, to the editor and constructs an error message string for
the editor.

There's no reason for the editor to know anything about a
compiler, or the compiler to know about an editor. The center of it
all is the application itself. It's the application that needs the editor
and the annliC'rltion thrlt npPc1~ thp rm,,!'ilpr A ftpr ~ 11, 't.o\T'h~t;ro;: ~n

application but something that binds things together? If we had
continued to look on the application as just a lump of data that
should be "out there" somewhere, and we might have been
tempted to put the center of the application elsewhere. We would
then have had to carry a burden of excessive and strained
communications among parts of the program.

All in all, the job of writing the integrated environment in Turbo
Vision took a fraction of the time that writing the environment
from scratch would have taken. We look forward to you
discovering the same strengths when you write your next
a pplica tion.

179

Using bitmapped fields

Flag values

Bit masks

180

Turbo Vision's views use several fields which are bitmapped. That
is, they use the individual bits of a byte or word to indicate
different properties. The individual bits are usually called flags,
since by being set (equal to 1) or cleared (equal to 0), they indicate
whether the designated property is activated.

For example, each view has a bitmapped Word-type field called
Options. Each of the individual bits in the word has a different
meaning to Turbo Vision. Definitions of the bits in the Options
word follow:

In the diagram, msb indicates the "most significant bit", also
called the "high-order bit" because in constructing a binary
number that bit has the highest value (215). The bit at the lowest
end of the binary number is marked Isb, for "least significant bit,"
also called the "low-order bit."

So, for example, the fourth bit is called ofFramed. If the ofFramed bit
is set to 1, it means the view has a visible frame around it. If the
bit is a 0, the view has no frame.

As it turns out, you really don't have to worry about what the
actual values of the flag bits are unless you plan to define your
own, and even in that case, you really only need to be concerned
that your definitions be unique. For instance, the six highest bits
in the Options word are presently undefined by Turbo Vision. You
may define any of them to mean anything to the views you
derive.

A mask is simply a shorthand way of dealing with a group of bit
flags together. For example, Turbo Vision defines masks for
different kinds of events. The evMouse mask simply contains all
four bits that designate different kinds of mouse events, so if a
view needs to check for mouse events, it can compare the event
type to see if it's in the mask, rather than having to check for each
of the individual kinds of mouse events.

Turbo Vision Guide

Bitwise operations
Turbo Pascal provides quite a number of useful operations to
manipulate individual bits. Rather than giving a detailed
explanation of how each one works, this section will simply tell
you what to do to get the job done.

Seiting a bit To set a bit, use the or operator. For instance, to set the
ofPostProcess bit in the Options field of a button called MyButton,
you would use this code:

Don't do this!

MyButton.Options := MyButton.Options or of PostProcess;

Note that you should not use addition to set bits unless you are
absolutely sure what you are doing. For example, if instead of the
preceding code, you used

MyButton.Options := MyButton.Options + of PostProcess;

your operation would work if and only if the ofPostProcess bit was
not already set. If the bit was set before you added another one,
the binary add would carry over into the next bit <ofBuffered),
setting or clearing it, depending on whether it was clear or set to
start with.

In other words: adding bits can have unwanted side effects. Use
the or operation to set bits instead.

Before leaving the topic of setting bits, note that you can set
several bits in one operation by oring the field with several bits at
once. The following code would set two different grow mode
flags at once in a scrolling view called MyScroller:

MyScroller.GrowMode := MyScroller.GrowMode or (gfGrowHiX +
gfGrowHiY);

Clearing a bit Clearing a bit is just as easy as setting it. You just use a different
operation. The best way to do this is actually a combination of
two bitwise operations, and and not. For instance, to clear the
dmLimitLoX bit in the DragMode field of a label called ALa bel, you
would use

ALabel.DragMode := ALabel.DragMode and not dmLimitLoX;

As with setting bits, multiple bits may be set in a single operation.

Chapter 10, Hints and tips 181

182

Checking bits Quite often, a view will want to check to see if a certain flag bit is
set. This uses the and operation. For example, to see if the
window A Window may be tiled by the desktop, you need to check
the ofI'ileable option flag like this:

if AWindow.Options and of Tile able = of Tile able then ...

Using masks Much like checking individual bits, you can use and to check to
see'if one or more masked bits are set. For example, to see if an
event record contains some sort of mouse event, you could check

if Event.What and evMouse <> 0 then ...

Summary
The following list summarizes the bitmap operations:

Setting a bit:

field := field or flag;

Clearing a bit:

field := field and not flag;

Checking if a flag is set:

if field and flag = flag then ...

Checking if a flag is in a mask:

if flag and mask <> 0 then ...

Turbo Vision Guide

p A R T

3

Turbo Vision Reference

183

184 Turbo Vision Guide

c H A p T E R

1 1

How to use the reference

The Turbo Vision reference describes all the standard objects and
methods in the Turbo Vision hierarchy together with the
mnemonic identifiers and miscellaneous constants and records
needed to develop Turbo Vision applications. It is not intended as
a tutorial.

By their nature, complex libraries of objects like those in Turbo
Vision have a multitude of components. In order to avoid endless
repetition of material, we have put as much complete information
into the alphabetical lookup sections (Chapters 13 and 14), along
with other, less detailed material that allows you to see Turbo
Vision's components in their hierarchical and physical
relationships, with references to the more detailed information.

How to find what vou want

Chapter 12, "Unit cross reference" describes the various units that
comprise Turbo Vision. It includes lists of all the types, constants,
variables, procedures and functions declared in each unit.

Chapter 13, "Object reference," is an alphabetical lookup chapter
for all the Turbo Vision standard object types, including all their
fielqs and methods.

Chapter 14, "Global reference," is an alphabetical lookup chapter
for all the global constants, variables, procedures and functions in

Chapter 7 7, How to use the reference 185

Turbo Vision. In general, if it's not an object or a part of an object,
you'll find it listed here.

Keep in mind that the lookup chapter only covers the aspects of
each object that are particular to it. Most of the objects will have
fields and methods inherited from other objects. Thus, if you want
to find a method for an object, check that object first. If you don't
find the method listed for that object, check it's immediate
ancestor object type. There is a diagram at the beginning of the
entry for each object that depicts its relationships to its ancestors
and immediate descendants.

Objects in general

Remember that each object (apart from the base object TObjeet,
and the two special objects TPoint and TReet) inherits the fields
and methods of its parent object. New objects that you derive will
also inherit their parents' methods and fields. Many of the
standard objects have abstract methods which must be overridden
by your derived objects. Other methods are marked virtual,
meaning that you will normally want to override them. There are
other methods that provide useful default actions in the absence
of overrides.

Naming conventions

186

All the standard Turbo Vision object types have a set of names
using a mnemonic set of prefixes. The first letter of the identifier
tells you whether you are dealing with the object type, a pointer
to it, its stream registration record, or its color palette.

• Object types start with T: TObjeet
• Pointers to objects start with P: PObjeet = ATObject
• Stream registration records start with R: RObjeet
• Color palettes start with C: CObjeet

All Turbo Vision constants have two-letter mnemonic prefixes
that indicate their usage.

Turbo Vision Guide

Table 11.1
Turbo Vision constant prefixes Prefix Meaning Example

ap Application palette apColor
bf Button flag bfNonnal
cm Command cmQuit
co Collection code coOverFlow
dm Drag mode dm DragG row
ev Event constant evMouseDown
gf Grow mode flag gfGrowLoX
hc Help context hcNoContent
kb Keyboard constant kbAltX
mb Mouse button mbLeftButton
of Option flag ofTopSelect
sb Scroll bar sbLeftArrow
sf State flag sfVisible
sm Screen mode smMono
st Stream code stOK
wf Window flag wfMove
wn Window numbers wnNoNumber
wp Window palette wpBlue Window

Chapter 7 7, How to use the reference 187

188 Turbo Vision Guide

c H

Table 12.1
Turbo Vision units

The Objects unit

A p T E R

12

Unit cross reference

This chapter describes briefly the contents of each of the modules
that make up Turbo Vision. First we'll take an overview of the
Turbo Vision units, then each of the units will be described in
more detail.

Turbo Vision consists of nine units:

Unit

App
Dialogs
Drivers

HistList
Memory
Menus

Objects

Contents

All object definitions for writing event-driven applications
Tools and controls for use in dialog boxes
Mouse support, keyboard handler, system error handler,
etc.
History lists for input lines
Memory management system
Objects for adding menus and status bars to Turbo Vision
applications
Basic object definitions, including all object types for
~L_~~~~ ~~11~~L!~_~ ~_...;J _~~~ .. _~~~
~ .. --.. -, -_ .. __ .. _.- _ .. - .-~--.---

TextView More specialized views for presenting text
Views Base objects for using windows in your applications:

views, windows, frames, scroll bars, etc.

The Objects unit contains the basic object definitions for Turbo
Vision, including the base object for the Turbo Vision hierarchy,
TObject, as well as all the non-visible elements of Turbo Vision:
streams, collections, and resources.

Chapter 72, Unit cross reference 189

Types

Type conversion
records

Objects unit types

Constants

Stream access modes

190

Type

FNameStr
LongRec
PChar
PString
PtrRec
TByteArray
TV\brdArray
V\brdRec

Type

TBufStream
TCollection
TDosStream
TEmsStream
TItemList
TObject
TPoint
TRect

Use

String to hold a DOS file name
Converts a Longint into low- and high-order W>rds
Pointer for dynamic character allocation
Pointer for dynamic strings
Converts a Pointer value into offset and segment parts
Array of Byte values used for typecasting
Array of V\brd values used for typecasting
Converts a V\brd into low- and high-order Bytes

Use

A buffered Turbo Vision DOS stream
Basically a polymorphic array
A Turbo Vision stream on a DOS file
A Turbo Vision stream in EMS memory
An array of pointers, used by collections
Base object for the Turbo Vision hierarchy
Object designating a point on the screen
Simple object composed of two points for
defining a region on the screen

TResourceCollection
TResourceF ile
TSortedCollection
TStream
TStreamRec
TStrlndex
TStrlndexRec
TStringCollection
TStringList
TStrListMaker

Specialized TCollection for resources
Object for storing resources on disk
Specialized TColiection that sorts automatically
Basic object defining a Turbo Vision stream
Stream registration record
Array of TStrlndexRec
Record of string indexes used by TStrlndex
Specialized TSortedCollection for strings
String list object used for string resources
Special object for constructing string lists

Constant

stCreate
stOpenRead
stOpen Write
stOpen

Value

$3COO
$3DOO
$3DOl
$3D02

Meaning

Creates new file
Read access only
Write access only
Read and write access

Turbo Vision Guide

Stream error codes

Maximum collection
size

Collection error codes

Variables

Procedures and
functions

Error code

stOk
stError
stInitError
stReadError
st WriteError
stGetError
stPutError

Constant

Value Meaning

o
-1
-2
-3
-4
-5
-6

No error
Access error
Cannot initialize stream
Read beyond end of stream
Cannot expand stream
Get of unregistered object type
Put of unregistered object type

Value Meaning

MaxCollectionSize 16,380 Maximum size of a TCollection

Error code

colndexError
coOver flow

Variable

Value

-1
-2

Type

Meaning

Index out of range
Overflow

Initial value Meaning

EmsCurHandle Word
EmsCurPage Word

$FFFF
$FFFF

Current EMS handle
Current EMS page

Procedure

Abstract

DisposeStr
RegisterType

Function

LongDiv
LongMul
NewStr

Operation

Default routine for methods that must be
overridden
Disposes of a string created with NewStr
Registers an object type with Turbo Vision
t"' n,." ~

Operation

Divides a long integer by an integer
Multiplies two integers into a long integer
Allocates a string on the heap

Chapter 72, Unit cross reference 191

The Views unit

Types

Constants

Niew State masks

192

The Views unit contains the basic elements of views, the visible
portions of Turbo Vision. Included are both abstract types such as
TView and TGroup and useful components of more complex
groups, such as window frames and scroll bars. More complex
visible elements are found in the Dialogs and TextView units.

Type

TCommandSet

TDrawBuffer
TFrame
TGroup
TLis t Viewer
TPalette
TScrollBar
TScrollChars
TScroller
TTitleStr
TVideoBuf
TView
TWindow

Constant

sfVisible
sf Cursor Vis
sfCursorlns
sf Shadow
sf Active
sf Selected
sfFocused
sfDragging
sfDisabled
sf Modal
sfExposed

Use

Allows groups of commands to be enabled or
disabled

. Buffer used by draw methods
Frame object used by windows
Abstract object for complex views
Base type for list boxes and such
Color palette type used by all views
Object defining a scroll bar
Scroll bar component characters
Base object for scrolling text windows
Title string used by TFrame
Video buffer used by screen manager
Abstract object; base of all visible objects
Base object for resizable windows

Value

$0001
$0002
$0004
$0008
$0010
$0020
$0040
$0080
$0100
$0200
$0800

Meaning

View is visible
View has visible cursor
View's cursor is block for insert mode
View has a shadow
View is, or is owned by, the active window
View is owner's selected view
View has the focus
View is being dragged
View is disabled
View is in modal state
View is attached to the application

Turbo Vision Guide

Views unit constants
Constant Value Meaning

hcNoContext 0 Neutral help context code
hcDragging 1 Help context while view is dragged
MaxView Width 132 Maximum width in characters of a view
wnNoNumber 0 TWindow number constant

TView Option masks Constant Value Meaning

of Selectable $0001 View can be selected
ofTopSelect $0002 Selecting view moves it to top of owner's

subviews
ofFirstClick $0004 Mouse click selects and performs action
ofFramed $0008 View has a visible frame
of PreProcess $0010 View sees focused events before focused

view
ofPostProcess $0020 View sees focused events after focused

view
ofBuffered $0040 Group should have a cache buffer
ofTileable $0080 View can be tiled on the desktop
ofCenterX $0100 Center view horizontally within owner
ofCenterY $0200 Center view vertically within owner
ofCentered $0300 Center view both horizontally and

vertically within owner

TView GrowMode Constant Value Meaning
masks

gfGrowLoX $01 Left side follows owner's right side
gfGrowLoY $02 Top follows owner's bottom
gfGrowHiX $04 Right side follows owners right side
gfGrowHiY $08 Bottom follows owner's bottom
gfGrowAll $OF View follows owner's lower-right corner
gfGrowRel $10 Keep relative size when screen size

changes

T\/io'A,llrrtl""tl\lIrv-lo
- 0 -O";;r 0 0 __ 0 _ \ionstam value IVlt:i:U 11119

masks
dmDragMove $01 View can move
dmDragGrow $02 View can change size
dmLimitLoX $10 View's left side cannot move outside

Limits
dmLim itLoY $20 View's top cannot move outside Limits
dmLimitHiX $40 View's right side cannot move outside

Limits
dmLimitHiY $80 View's bottom cannot move outside

Limits
dmLimitAIl $FO No part of view can move outside Limits

Chapter 72, Unit cross reference 193

Scroll bar part codes

Window flag masks

TWindow palette

194

entries

Standard view
commands

Variables

Constant Value Meaning

sbLeftArrow 0 Horizontal bar's left arrow
sbRightArrow 1 Horizontal bar's right arrow
sbPageLeft 2 Horizontal bar's left paging area
sbPageRight 3 Horizontal bar's right paging area
sbUpArrow 4 Vertical bar's top arrow
sbDownArrow 5 Vertical bar's bottom arrow
sbPageUp 6 Vertical bar's upward paging area
sbPageDown 7 Vertical bar's downward paging area
sblndieator 8 Scroll bar indicator tab

Constant Value Meaning

wfMove $01 Window frame's top line can move window
wfGrow $02 Window frame has resize corner
wfClose $04 Window frame has close icon
wfZoom $08 Window frame has zoom icon

Constant Value Meaning

wpBlue Window 0 Window text is yellow on blue
wpCyan Window 1 Window text is blue on cyan
wpGray Window 2 Window text is black on gray

Constant Value Meaning

emReeeivedFoeus 50
emReleasedFoeus 51
emCommandSetChanged 52
emSerollBarChanged 53
emSerollBarClieked 54
em Select WindowNum 55

emReeordHistory 56

View has recieved focus
View has released focus
Command set has changed
Scroll bar has changed value
Scroll bar was clicked on
User wants to select a window by
number
History list should save contents of
input line

Variable Type Initial value Meaning

MinWinSize TPoint (X: 16; Y: 6) Minimum window size
ShadowSize TPoint (X: 2; Y: 1) Window shadow size
ShadowAttr Byte $08 Window attribute

Turbo Vision Guide

Function

The Dialogs unit

Types

Constants

Button flags

Function Operation

Message Sends user-defined messages between views

The Dialogs unit defines most of the elements most often used in
constructing dialog boxes. These include dialog boxes themselves
(which are specialized windows) as well as various controls such
as buttons,labels, check boxes, radio buttons, input lines and
history lists.

Type

TButton
TCheckBoxes
TCluster
TDialog
THistory
TlnputLine
TLabel
TListBox
TParamText
TRadioButtons

TSltem
TStaticText

Constant

bfNormal
bfDefault
bfLeftJust

Use

Pushbuttons to generate commands
Clusters of on/off toggle switches
Abstract type for check boxes and radio buttons
Specialized window for dialog boxes
List of previous entries for an input line
Text input editor
Smart label for a cluster or an input line
Scrollable list for user choices
Formatted static text
Cluster of buttons, only one of which may be
pressed at a time
String items in a linked list, used by clusters
Plain text

Value

$00
$01
$02

Meaning

Button is a normal button
Button is the default button
Button text should be left-justified

Chapter 72, Unit cross reference 195

Procedures and
functions

The App unit

Types

Variables

196

Function Operation

NewSItem Creates a new string item for a list box

Procedure Operation

RegisterDialogs Registers all objects in the Dialogs unit for use with
streams

The App unit (provided in source code form) provides the
elements of the Turbo Vision application framework. Four very
powerful object types are defined in App, including the TProgram
and T Application objects which actually serve as Turbo Vision
programs, and the desktop object that controls most of the other
elements in a windowing application.

Type

T Application

TBackground
TDeskTop
TProgram

Variable

Application

DeskTop
StatusLine

MenuBar

Use

Application object with event manager, screen
manager, error handling, and memory management
Colored background for desktop
Group object to hold windows and dialog boxes
Abstract application object

Type Initial value Meaning

PProgram nil Pointer to current
application

PDeskTop nil Pointer to current desktop
PStatusLine nil Pointer to current status

line
PMenuView nil Pointer to current menu

bar

Turbo Vision Guide

The Menus unit

Types

Procedures and
functions

TMenultem functions

IIVIC;:::IIU IUUIIIIC;:::~

TStatusLine functions

The Menus unit provides all the objects and support routines for
the Turbo Vision menuing systems, including pull-down and
pop-up menus and active status line items.

Type

TMenu
TMenuBar
TMenuBox
TMenultem

TMenuStr
TMenuView
TStatusDef

TStatusItem

TStatusLine

Function

NewItem
NewLine
NewSubMenu

Routine

Use

Linked list of TMenuItem records
Horizontal menu header, connected to menus
Pull-down or pop-up menu box
Record linking a label text, a hot key, a command, and
a help context for use within a menu
String type for menu labels
Abstract object type for menu bars and menu boxes
Record linking a range of help contexts with a list of
status line items
Record linking a label text, a hot key, and a command
for use on a status line
Message line for the bottom of the application screen,
including a list of TStatusDef records

Operation

Creates a new menu item
Creates a line across a menu box
Creates a menu off a menu bar or menu box

Operation

NewMenu function
DisposeMenu procedure

Allocates a menu on the heap
Deallocates menu from heap

Function Operation

NewStatusDef Defines a range of help contexts and a pointer to a
list of status items

NewStatusKey Defines a status line item and binds it to a command
and an optional hot key

Chapter 72, Unit cross reference 197

The Drivers unit

198

Types

Constants

Mouse button state
masks

Event codes

Event masks

The Drivers unit contains all the specialized drivers used by Turbo
Vision, including mouse and keyboard drivers, video support,
and system error handling along with the event manager for
event-driven programs.

Type

TEvent
TSysErrorFunc

Constant

mbLeftButton
mbRightButton

Constant

evMouseDown
evMouseUp
evMouseMove
evMouseAuto
evKeyDown
evCommand
evBroadcast

Constant

evNothing
evKeyboard
evMouse
evMessage

Use

Event record type
System error handler function type

Value

$01
$02

Value

$0001
$0002
$0004
$0008
$0010
$0100
$0200

Value

$0000
$0010
$OOOF
$FFOO

Meaning

Left mouse button
Right mouse button

Me,aning

Mouse button pressed
Mouse button released
Mouse changed location
Automatic mouse repeat event
Event is a keystroke
Event is a command
Event is a broadcast

Meaning

Event has been cleared
Event came from keyboard
Event came from mouse
Event is a message or command

Turbo Vision Guide

Keyboard state and
Constant Value Meaning

shift masks
kbRightShift $0001 Right shift key pressed
kbLeftShift $0002 Left shift key pressed
kbCtrlShift $0004 Ctrl and shift keys pressed
kbAltShift $0008 Alt and shift keys pressed
kbSeroliState $0010 Scroll lock set
kbNumState $0020 Num lock set
kbCapsState $0040 Caps lock set
kblnsState $0080 Insert mode on

Standard command Command Value Meaning
codes

em Valid 0 Check validity of a new view
emQuit 1 Terminate the application
emError 2 Undefined
emMenu 3 Move focus to menu bar
em Close 4 Close the current window
emZoom 5 Zoom (or unzoom) a window
emResize 6 Resize a window
emNext 7 Make the next window active
emPrev 8 Make the previous window active

TDialog standard Command Value Meaning
commands

emOK 10 Ok button pressed
emCaneel 11 Cancel button or Esc key pressed
emYes 12 Yes button pressed
emNo 13 No button pressed
emDefault 14 Default button or Enter pressed

Screen modes Constant Value Meaning

smBW80 $0002 Black and white screen mode
smC080 $0003 Color screen mode

"'''''(V'7 ~.~.:::~:::':~:::::: ::::::-:. ~~~':' ClI'J..L V.J.U, "V ~VVVI

smFont8x8 $0100 43- or 50-line mode (EGA/VGA)

Chapter 72, Unit cross reference 199

Variables

Initialized variables Variable Type Initial value Meaning

ButtonCount Byte 0 Number of buttons on the
mouse

MouseEvents Boolean False Indicates whether a mouse
was detected

DoubleDelay Word 8 Maximum delay time
between double clicks

RepeatDelay Word 8 Delay between automatic
mouse repeats

Uninitialized variables Variable Type Meaning

MouselntFlag Byte Internal use only
MouseButtons Byte Which button was pressed
Mouse Where TPoint Position of the mouse cursor
StartupMode Word Screen mode when program was started
ScreenMode Word Current screen mode
Screen Width Byte Width of screen in columns
ScreenHeight Byte Height of screen in lines
CheckSnow Boolean Determines whether to slow output for

eGA adapters
HiRes Screen Boolean Screen can display 43 or 50 lines

(EGA/VGA)
ScreenBuffer Pointer Pointer to video screen buffer
CursorLines Word Beginning and ending scan lines, for

setting cursor type

System error handler Variable Type Initial value Meaning
variables

SysErrorFunc TSysErrorFunc SystemError Function called by
the system error
manager when a
system error occurs

SysColor Attr Word $4E4F Video attributes for
error messages on
color screen

SysMonoAttr Word $7070 Video attributes for
error messages on
monochrome screen

CtrlBreakHit Boolean False Indicates whether
user pressed Gtrl·Break

SaveCtrlBreak Boolean False Status of GtrI·Break
checking at startup
of program

200 Turbo Vision Guide

Procedures and
functions

Event manager
procedures

Screen manager
procedures

Default system error
handler function

System error handler
procedures

Keyboard support
functions

String formatting
procedure

Procedure

InitEvents
DoneEvents
ShowMouse
HideMouse
GetMouseEvent
GetKeyEvent

Procedure

In it Video
DoneVideo
SetVideoMode

Clear Screen

Function

SystemError

Procedure

InitSysError
DoneSysError

Function

GetAltChar
r..pfAlfrrll/p

Procedure

FormatStr

Chapter 72, Unit cross reference

Operation

Initializes the event manager
Shuts down the event manager
Displays the mouse cursor
Hides the mouse cursor
Creates event record from mouse action
Creates event record from keyboard input

Operation

Initializes the screen manager
Shuts down the screen manager
Selects screen mode (color, black & white, mono
chrome, high resolution)
Clears the screen in any video mode

Operation

Displays an error message on the bottom line of the
screen and prompts for abort or retry

Operation

Initializes the system error manager
Shuts down the system error manager

Operation

Returns character from keyboard
R~hlrnc: C:(,,::ln rnrt&> frnTn k-~'Thn::lrrt

Operation

Formats a string and the parameters passed with it

201

Buffer move
procedures

String length function

Driver initialization

Procedure

MoveBuf
MoveChar

MoveCStr
MoveStr

Function

CStrLen

Procedure

InitDrivers

Operation

Moves a buffer into another buffer
Moves one or more copies of a character into a
buffer
Moves a control string into a buffer
Moves a string into a buffer

Operation

Returns length of a control string, ignoring tildes

Operation

Initialize drivers unit

The T extView unit

Types

Procedure

The TextView unit contains several specialized views for
displaying text in a scrolling window.

Type

TTerminal
TTerminalBuffer
TTextDevice

Procedure

AssignDevice

Use

TTY-like scrolling text device
Circular text buffer for TTerminal
Abstract text device object

Operation

Assigns a text file device for input and/or output

The Memory unit

202

The Memory unit contains Turbo Vision's memory management
routines, which provide heap management functions that
facilitate safe programming.

Turbo Vision Guide

Variables

Procedures and
functions

The HistList unit

Variables

Variable Type Initial value Meaning

LowMemSize Word 4096 div 16
MaxBufMem Word 65536 div 16

Size of safety pool
Maximum memory for cache
buffers

Procedure

DoneMemory
FreeBufMem
GetBufMem
InitMemory
SetMemTop

Function

Operation

Shuts down the memory manager
Deallocate cache buffer for a group
Allocate cache buffer for a group
Initializes the memory manager
Sets top of application's memory block

Operation

LowMemory Indicates whether safety pool has been eaten into
MemAIloc Allocates memory with safety pool check
MemAIlocSeg Allocates segment-aligned memory block

The HistList unit contains all the variables, procedures and
functions needed to implement history lists.

vanaole Iype mltlal value Meaning

HistoryBlock Pointer nil Memory buffer to hold all
history list items

HistorySize Word 1024 Size of history block
History Used Word 0 Offset into history block

indicating amount of
block used

Chapter 72, Unit cross reference 203

204

Procedures and
functions

Procedure

ClearHistory
DoneHistory
HistoryAdd
InitHistory

Function

HistoryCount
HistoryStr

Operation

Clears all history lists
Shuts down the history list manager
Adds a string to a history list
Initialized the history list manager

Operation

Returns the number of strings in a history list
Returns a particular string from a history list

Turbo Vision Guide

c H

To save you some
hunting, all fields

and methods are
indexed.

A p T E R

13

Object reference

This chapter contains an alphabetical listing of all the standard Turbo
Vision object types, with explanations of their general purposes and
usage, their fields, methods and color palettes.

To find information on a specific object, keep in mind that many of the
properties of the objects in the hierarchy are inherited from ancestor
objects. Rather than duplicate all that information endlessly, this chapter
only documents fields and methods that are new or changed for a
particular object.

For example, if you want to know about the Owner field of a TLabel object,
you might first look under TLabel's fields, where you won't find Owner
listed. You would then check TLabel's immediate ancestor in the hierarchy,
TStaticText. Again, Owner will not be listed. You would next check
TStaticText's immediate ancestor, TView. There you will find complete
information about Owner. which is inherited unchanQ"ed bv TLabel.

Each object's entry in this chapter has a graphical representation of the
object's ancestors and immediate descendants, so it should be easy for you
to find the objects from which fields and methods are inherited.

Each object's entry is laid out in the following format:

Chapter 73, Object reference 205

TSample object

TSample object Object's unit

Fields
This section will list all fields for each object, alphabetically. In addition to
showing the declaration of the field and an explanation of its use, there is
a Read only or Read/write designation. Read-only fields are generally
fields that are set up and maintained by the object's methods, and they
should not be on the left side of an assignment statement.

AField AField: SomeType; Read only

AField is a field that holds some information about this sample object. This
text explains how it functions, what it means, and how you use it.

See also: related fields, methods, objects, global functions, etc.

AnotherField AnotherField: Word; Read/write

Methods

AnotherField has similar information to that for AField.

This section lists all methods which are either newly defined for this
object or which override inherited methods. For virtual methods, an
indication will be given as to how often you will probably need to
override the method: Never, Seldom, Sometimes, Often, or Always.

Init constructor Init (AParameter: SomeType);

Init creates a new sample object, setting the AField field to AParameter.

Zilch procedure Zilch; virtual;

Override: The Zilch procedure causes the sample object to perform some action.
Sometimes

See also: TSomethingElse.Zilch

206 Turbo Vision Guide

TAp plication II
TApplication App

Methods

T Application is a simple "wrapper" around TProgram, and only differs
from TProgram in its constructor and destructor methods. T Application.Init
first initializes all Turbo Vision subsystems (the memory, video, event,
system error, and history list managers) and then calls TProgram.Init.
Likewise, T Application.Done first calls TProgram.Done and then shuts down
all Turbo Vision subsystems.

Normally you will want to derive your own applications from
T Application. Should you require a different sequence of subsystem
initialization and shut down, however, you can derive your application
from TProgram, and manually initialize and shut down the Turbo Vision
subsystems along with your own.

Init constructor Initi

The actual implementation of T Application.Init is shown below:

constructor TApplication.Init;
begin

InitMemory;
InitVideo;
InitEvents;
InitSysError;
InitHistory;
TProgram. Init;

end;

See also: TProgram.Init

Chapter 73, Object reference 207

TApplication

Done destructor Done; virtual;

Override: The actual implementation of T Application.Done is shown below:
Sometimes

destructor TApplication.Donei
begin

TPrograrn.Donei
DoneHistory;
DoneSysError;
DoneEvents;
DoneVideoi
DoneMemory;

end;

TBackground

Field

TBackground is a simple view consisting of a uniformly patterned
rectangle. It is usually owned by a TDeskTop.

App

PaHern Pattern: Char; Read only

The bit pattern giving the view's background.

Methods

Init constructor Init(var Bounds: TRect; APattern: Char);

Creates a TBackground object with the given Bounds by calling TViewlnit.
GrowMode is set to gfGrowHiX + gfGrowHiY, and the Pattern field is set to
APattern.

See also: TView.Init, TBackground.Pattern

Load constructor Load (var S: TStream);

208 Turbo Vision Guide

TBackground

Creates a TBackground object and loads it from the stream 5 by calling
TView.Load and then reading the Pattern field.

See also: TView.Load

Draw procedure Draw; virtual;

Override: Seldom Fills the background view rectangle with the current Pattern in the default
color.

G7etPaleHe function GetPalette: PPalette; virtual;

Override: Seldom Returns a pointer to the default background palette, CBackground.

Store procedure Store(var S: TStream);

Palette

TBufStream

Stores the TBackground view on the stream by calling TView.Store and then
writing the Pattern field.

See also: TView.Store, TBackground.Load

Background objects use the default palette CBackground to map onto the
first entry in the application palette.

CBackground II ~ II
Color

Objects

J TOb~.ct J

TStrp.ilm

TBufStream implements a buffered version of TDosStream. The additional
fields specify the size and location of the buffer, together with the current
and last positions within the buffer. In addition to overriding the eight
methods of TDosStream, TBufStream defines the abstract TStream.Flush

Chapter 73, Object reference 209

I

TBufStream

method. The TBufStream constructor creates and opens a named file by
calling TDosStream.Init, then creates the buffer with GetMem.

TBufStream is significantly more efficient than TDosStream when a large
number of small data transfers take place on the stream, such as when
loading and storing objects using TStream.Get and TStream.Put.

Fields

Buffer Buffer: Pointer;

A painter to the start of the stream's buffer

BufSize BufSize: Word;

The size of the buffer in bytes

BufPtr BufPtr: Word;

Read only

Read only

Read only

An offset from the Buffer pointer indicating the current position within the
buffer.

BufEnd BufEnd: Word; Read only

Methods

If the buffer is not full, BufEnd gives an offset from the Buffer pointer to the
last used byte in the buffer.

Init constructor Init (FileName: FNameStr; Mode, Size: Word);

Creates and opens the named file with access mode Mode by calling
TDosStream.Init. Also creates a buffer of Size bytes with a GetMem call. The
Handle, Buffer and BufSize fields are suitably initialized. Typical buffer
sizes range from 512 bytes to 2,048 bytes.

See also: TDosStream.Init

Done destructor Done; virtual;

Override: Never Closes and disposes of the file stream; flushes and disposes of its buffer.

See also: TBufStream.Flush

Flush procedure Flush; virtual;

Override: Never Flushes the calling file stream's buffer provided the stream is stOK.

See also: TBufStream.Done

210 Turbo Vision Guide

TBufStream

G7etPos function Getpos: Longint; virtual;

Override: Never Returns the value of the calling stream's current position (not to be
confused with BufPtr, the current location within the buffer).

See also: TBufStream.Seek

G7etSize function GetSize: Longint; virtual;

Override: Never Flushes the buffer then returns the total size in bytes of the calling stream.

Read procedure Read(var Buf; Count: Word); virtual;

Override: Never If stOK, reads Count bytes into the Bufbuffer starting at the calling
stream's current position.

Note that Buf is not the stream's buffer, but an external buffer to hold the
data read in from the stream.

See also: TBufStream. Write, stReadError

Seek procedure Seek (Pos: Longint); virtual;

Override: Never Flushes the buffer then resets the current position to Pos bytes from the
start of the calling stream. The start of a stream is position O.

See also: TBufStream.GetPos, TBufStream.GetPos

Truncate procedure Truncate; virtual;

Override: Never Flushes the buffer then deletes all data on the calling stream from the
current position to the end. The current position is set to the new end of
the stream.

See also: TBufStream.GetPos, TBufStream.Seek

Write procedure Write (var Buf; Count: Word); virtual;

Override: Never If stOK, writes Count bytes from the Bufbuffer to the calling stream,
,...L _L! __ L .L1..... _ __ _L __ !L! __

Note that Bufis not the stream's buffer, but an external buffer to hold the
data being written to the stream. When Write is called, Buf will point to
the variable whose value is being written.

See also: TBufStream.Read, st WriteError

Chapter 73, Object reference 211

TButton

TButton

Fields

Dialogs

A TButton object is a box with a title and a shadow that generates a
command when pressed. These are the buttons that are used extensively
in the IDE (e.g., OK and Cancel on dialog boxes). A button can be selected

. by pressing the highlighted letter, by tabbing to the button and pressing
Spacebar, by pressing Enterwhen the button is the default (indicated by
highlighting), or by clicking on the button with a mouse.

With color and black & white palettes, a button has a three-dimensional
look that moves when selected. On monochrome systems, a button is
bordered by brackets, and other ASCII characters are used to indicate
whether the button is default, selected, etc.

Like the other controls defined in the Dialogs unit, TButton is a IIterminal"
object. It can be inserted into any group and is intended for use without
having to override any of its methods.

A button is initialized by passing it a TReet, a title string, the command to
generate when the button is pressed, and byte of flags. To define a
shortcut key for the button, the title string may contain tildes (-) around
one of its characters, which becomes the shortcut. The AFlag parameter
indicates whether the title should be centered or left justified, and
whether or not the button should be the default (and therefore selectable
by Enter).

There can only be one default button in a window or dialog at any given
time. Buttons that are peers in a group grab and release the default state
via evBroadeast messages. Buttons can be enabled or disabled using
SetState and the CommandEnabled methods.

Title Title: PStringi Read only

A pointer to the button label's text.

Command Cormnand: Word; Read only

The command word of the event generated when this button is pressed.

212 Turbo Vision Guide

TBuHon

See also: TButton.Init, TButton.Load

Flags Flags: Byte; Read/write

Flags is a bitmapped field used to indicate whether button text is left
justified or centered. The individual flags are described in Chapter 14,
under "bfXXXX button flag constants."

See also: TButton.Draw, bfXXXX button flag constants

AmDefault AmDefault: Boolean; Read only

Methods

If True, the button is the default (and therefore selected when Enter is
pressed). Otherwise the button is "normal."

See also: bfXXXX button flag constants

Init constructor Init(var Bounds: TRect; ATitle: TTitleStr; ACornmand: Word;
AFlags: Byte);

Creates a TButton object with the given size by calling TView.Init.
NewStr(ATitle) is called and assigned to Title. AFlags serves two purposes:
If AFlags and bfDefault is nonzero, AmDefault is set to True; in addition,
AFlags indicates whether the title should be centered or left-justified by
testing whether AFlags and bfLeftJust is nonzero.

Options is set to (of Selectable + ofFirstClick + ofPreProcess + ofPostProcess).
EventMask is set to evBroadcast. If the given ACommand is not enabled,
sfDisabled is set in the State field.

See also: TView.lnit, bfXXXX button flag constants

Load constructor Load (var s: TStream);
r"" ___ L_ ,..,.,nl.,L_ _1-!.-_L __ ...J ! __ !L!_1! ___ !I. r ______ .1 ___ ~ ______ , _____ 1 ".
_ ... __ .. _v _, v,,J,J)"-"- ... I,A..a.L"""", ..L.&.L.L U..&..L~"""'~ '" .&..&.V&.L "'.l.L\wo 5.1." ~.I.L .::JL.l.CU.L.l.l V) \".uJ.J..L.1L5

TView.Load(S). Other fields are set via S.Read calls, and State is set
according to whether the command in the Command field is enabled. Used
in conjunction with TButton.Store to save and retrieve TButton objects on a
TStream.

See also: TView.Load, TButton.Store

Done destructor Done; virtual;

Override: Never Disposes the memory assigned to the button's Title, then calls TView.Done
to destroy the view.

See also: TView.Done

Chapter 13, Object reference 213

TButton

Draw procedure Draw; virtual;

Override: Seldom Draws the button with appropriate palettes for its current state (normal,
default, disabled) and positions the label according to the bfLeftJust bit in
the Flags field.

GetPaleHe

Override:
Sometimes

HandleEvent

Override:
Sometimes

function GetPalette: PPalette; virtual;

Returns a pointer to the default palette, CButton

procedure HandleEvent(var Event: TEvent); virtual;

Responds to being pressed in any of three ways: mouse clicks on the
button, its shortcut key being pressed, or being the default button when a
cmDefault broadcast arrives. When the button is pressed, a command
event is generated with TView.PutEvent, with the TButton.Command field
assigned to Event.Command and Event.InfoPtr set to @Self.

Buttons also recognize the broadcast commands cmGrabDefault and
cmReleaseDefault, to become or "unbecome" the default button, as
appropriate, and cmCommandSetChanged, which causes them to check
whether their commands have been enabled or disabled.

See also: TView.HandleEvent

MakeDefault procedure MakeDefault (Enable: Boolean);

This method does nothing if the button is already the default button.
Otherwise, the button's Owner is told of the change in the button's default
status. If Enable is True the cmGrabDefault command is broadcast,
otherwise the cmReleaseDefault is broadcast. The button is redrawn to
show the new status.

See also: TButton.AmDefault, bfDefault

SetState procedure SetState(AState: Word; Enable: Boolean); virtual;

Override: Seldom Calls TView.SetState, then DrawView's the button if the button has been
made sf Selected or sf Active. If focus is received (i.e., if AState is sfFocused),
the button grabs or releases default from the default button by calling
MakeDefault.

214

See also: TView.SetState, TButton.MakeDefault

Store procedure Store(var S: TStream);

Stores the TButton object on the given TStream by calling TView.Store(S)
followed by S. Write calls to store the Title and Command values. Used in
conjunction with TButton.Load to save and retrieve TButton objects on
streams.

Turbo Vision Guide

Palette

TButton

See also: TView.Store, TButton.Load, TStream. Write

Button objects use the default palette CButton to map onto CDiaiog palette
entries 10 through 15.

23456 8

CButton

Text Nomal
Text Default,----'
Text Sel ected-------I
Text Disabled-----....J

Shadow
Shortcut Sel ected

L.....------'Shortcut Defaul t
L.....------'Shortcut Nomal

TCheckBoxes Dialogs

Fields

TCheckBoxes is a specialized cluster of one to sixteen controls. Unlike radio
buttons, any number of check boxes can be marked independently, so
there is no default check box in the group. Marking can be made with
mouse clicks, cursor movements, and Alt-Ietter shortcuts. Each check box
can be highlighted and toggled on/off (with the Spacebar). An X appears in
the box when it is selected. Other parts of your application typically
examine the state of the check boxes to determine which options have
been chosen by the user (the IDE, for example, has compiler/linker

. -- ~

up nuns se!ecrea In rnls way). \....neCK DOX C!llSrerS are orren aSSOClarea WlIn
TLabel objects.

None apart from Value and Sel, which are inherited from TCluster. The
Value word is interpreted as a set of 16 bits (0 through 15), with a 1 in the
Item'th bit position meaning that the Item'th check box is marked.

Chapter 73, Object reference 215

TCheckBoxes

Methods
Note that TCheckBoxes does not override the TCluster constructors,
destructor, or event handler. Derived object types, however, may need to
override them.

Draw procedure Draw; virtual;

Override: Seldom Draws the TCheckBoxes object by calling the inherited TCluster.DrawBox
method. The default check box is II [1 II when unselected and II [Xl II

when selected.

Note that if the boundaries of the view are sufficiently wide, check boxes
may be displayed in multiple columns.

See also: TCluster.DrawBox

~ark function Mark(Item: Integer): Boolean; virtual;

Override: Seldom Returns True if the Item'th bit of Value is set, that is, if the Item'th check
box is marked. You can override this to give a different interpretation of
the Value field. By default, the items are numbered 0 through 15.

216

See also: TCheckBoxes.Press

Press procedure Press(Item: Integer); virtual;

Palette

Toggles the Item'th bit of Value. You can override this to give a different
interpretation of the Value field. By default, the items are numbered 0
through 15.

See also: TCheckBoxes.Mark

By default, check boxes objects use CCluster, the default palette for all
cluster objects.

2 3 4

CClu.ter Jg; I 17 I I~
Text Normal I Shortcut Selected
Text Selected . Shortcut Nonnal

Turbo Vision Guide

TCluster

Fields

TCluster

Dialogs I

A cluster is a group of controls that all respond in the same way. TCluster
is an abstract object type from which the useful group controls
TRadioButtons and TCheckBoxes are derived. Cluster controls are often
associated with TLabel objects, letting you select the control by selecting
on the adjacent explanatory label.
While buttons are used to generate commands and input lines are used to
edit strings, clusters are used to toggle bit values in the Value field, which
is of type Word. The two standard descendants of TCluster use different
algorithms when changing Value: TCheckBoxes simply toggles a bit, while
TRadioButtons toggles the enabled one and clears the previously selected
bit. Both inherit almost all of their behavior from TCluster.

Value Value: Word; Read only

Current value of the control. The actual meaning of this field is
~ - - - - - ~ .. .

aetermlnea oy tne metnoas aevelOpea ill tne ODJeCt types aenvea rrOIll

TCluster.

Sel Sel: Integer;

The currently selected item of the cluster.

Strings Strings: TStringCollection;

The list of items in the cluster.

Chapter 73, Object reference

Read only

Read only

217

TCluster

Methods

Init constructor Init (var Bounds: TRect; AStrings: PSItern);

Clears the Value and Sel fields. The AStrings parameter is usually a series
of nested calls to the global function NewSItem. In this way, an entire
cluster of radio buttons or check boxes may be created in one constructor
call:

var
Control: PView;

R.Assign (30, 5, 52, 7);
Control := New(PRadioButtons, Init(R,

NewSltem('-F-orward' ,
NewSltem('-B-ackward', nil))));

When adding additional radio buttons or check boxes to a cluster (or
menus and status lines, for that matter), just copy the first call to NewSItem
and replace the title with the desired text. Then add an additional closing
parenthesis for each new line you added and the statement will compile
without syntax errors. Alternatively, just keep re-compiling and adding
one additional closing parenthesis until the compiler accepts the
statement.

See also: TSltem type

Load constructor Load (var S: TStrearn);

Done

Override:
Sometimes

Creates a TCluster object by calling TView.Load(S) then setting the Value
and Sel fields with S.Read calls. Finally the Strings field for the cluster is
loaded from S with Strings.Load(S). Used in conjunction with
TCluster.Store to save and retrieve TCluster objects on a stream.

See also: TCluster.Store, TView.Load

destructor Done; virtual;

Disposes of the cluster's string memory allocation then destroys the view
with a TView.Done call.

See also: TView.Done

DataSize function DataSize: Word; virtual;

218 Turbo Vision Guide

TCluster

Override: Seldom Returns the size of Value. Must be overridden in derived object types that T.
change Value or add other data fields, in order to work with GetData and
SetData.

See also: TCluster.GetData, TCluster.SetData

DravvBox procedure DrawBox(Icon: Strlng; Marker: Char);

Called by the Draw methods of descendant types to draw the box in front
of the string for each item in the cluster. Icon is a 5-character string (, [] ,
for check boxes,' () 'for radio buttons). Marker is the character to use
to indicate the box has been marked (' X' for check boxes, ' .' for radio
buttons).

See also: TCheckBoxes.Draw, TRadioButtons.Draw

(7etData procedure GetData(var Rec); virtual;

Override: Seldom Writes the Value field to the given record and DrawView's the cluster.
Must be overridden in derived object types that change the Value field, in
order to work with DataSize and SetData.

See also: TCluster.DataSize, TCluster.SetData, TView.DrawView

(7etHelpCtx function GetHelpCtx: Word; virtual;

Override: Seldom Returns the value of Sel added to HelpCtx. This enables you to have
separate help contexts for each item in the cluster. Reserve a range of help
contexts equal to HelpCtx plus the number of cluster items minus one.

(7etPalette function Getpalette: PPalette; virtual;

Override: Returns a pointer to the default palette, CCluster.
Sometimes

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Override: Seldom Calls TView.HandleEvent then handles all mouse and keyboard events
appropriate to this cluster. Controls are selected by mouse click or cursor

-. - - - - --movement Keys unclualng i:JpaceUafj. 1 ne ClUSter IS rearawn to snow tne
selected controls.

See also: TView.HandleEvent

~ark function Mark (Item: Integer): Boolean; virtual;

Override: Always Called by Draw to determine which items are marked. The default
TCluster.Mark returns False. Mark should be overridden to return True if
the Item'th control in the cluster is marked, otherwise False.

~ovedTo procedure MovedTo (Item: Integer); virtual;

Chapter 73, Object reference 219

TCluster

Override: Seldom Called by HandleEvent to move the selection bar to the Item'th control of
the cluster.

Press procedure Press (Item: Integer); virtual;

Override: Always Called by HandleEvent when the Item'th control in the cluster is pressed
either by mouse click or keyboard event. This abstract method must be
overridden.

SetData procedure SetData(var Rec); virtual;

Override: Seldom Reads the Value field from the given record and DrawView's the cluster.
Must be overridden in derived cluster types that require other fields to
work with DataSize and GetData.

See also: TCluster.DataSize, TCluster.GetData, TView.DrawView

SetState procedure SetState(AState: Word; Enable: Boolean); virtual;

Override: Seldom Calls TView.SetState, then DrawView's the cluster if AState is sf Selected.

220

See also: TView.SetState, TView.DrawView

store procedure Store(var S: TStream);

Palette

Stores the TCluster object on the given stream by calling TView.Store(S),
writing Value and Sel to S, then storing the cluster's Strings field by using
its Store method. Used in conjunction with TCluster.Load to save and
retrieve TCluster objects on a stream.

See also: TCluster.Load, TStream. Write

TCluster objects use CCluster, the default palette for all cluster objects, to
map onto entries 16 through 18 of the standard dialog box palette.

1 234

eeluster J:g I 17 11f:g
Text Normal I Shortcut Selected
Text Selected . Shortcut Normal

Turbo Vision Guide

TCollection

Fields

TColiection

Objects m

TCollection is an abstract type for implementing any collection of items,
including other objects. TCollection is a more general concept than the
traditional array, set, or list. TCollection objects size themselves
dynamically at run time and offer a base type for many specialized types
such as TSortedCollection, TStringCollection, and TResourceCollection. In
addition to methods for adding and deleting items, TCollection offers
several iterator routines that call a procedure or function for each item in
the collection.

Items Items: PItemList; Read only

,-.,...

A pointer to an array of item pointers.

See also: TItemList type
,",,_ •• __ L. 'T_L __ ~ ___ •

vvu.~",\.. .. ,.t...I..I.\..""'::1"""''''
0 __ '" ~ I _-- -... ~

The current number of items in the collection, up to MaxCollectionSize.

See also: MaxCollectionSize variable

Limit Limi t: Integer;

The currently allocated size (in elements) of the Items list.

See also: Delta, TCollection.Init

Delta Delta: Integer;

Chapter 73, Object reference

Read only

Read only

221

TColiection

222

Methods

The number of items by which to increase the Items list whenever it
becomes full. If Delta is zero, the collection cannot grow beyond the size
set by Limit.

Increasing the size of a collection is fairly costly in terms of performance.
To minimize the number of times it has to occur, try to set the initial Limit
to an amount that will encompass all the items you might want to collect,
and set Delta to a figure that will allow a reasonable amount of expansion.

See also: Limit, TCollection.Init

Init constructor Init (ALimit, ADelta: Integer);

Creates a collection with Limit set to ALimit and Delta set to ADelta. The
initial number of items will be limited to ALimit, but the collection is
allowed to grow in increments of ADelta until memory runs out or the
number of items reaches MaxCollectionSize.

See also: TCollection.Limit, TCollection.Delta

Load constructor Load (var S: TStream);

Creates and loads a collection from the given stream. TCollection.Load calls
GetItem for each item in the collection.

See also: TCollection.GetItem

Done destructor Done; virtual;

Override: Often Deletes and disposes of all items in the collection by calling
TColiection.FreeAli and setting Limit to 0

See also: TCollection.FreeAll, TCollection.Init

At function At (Index: Integer): Pointer;

Returns a pointer to the item indexed by Index in the collection. This
method lets you treat a collection as an indexed array. If Index is less than
zero or greater than or equal to Count, the Error method is called with an
argument of coIndexError, and a value of nil is returned.

See also: TColiection.IndexOf

AtDelete procedure AtDelete(Index: Integer);

Deletes the item at the Index'th position and moves the following items up
by one position. Count is decremented by 1, but the memory allocated to
the collection (as given by Limit) is not reduced. If Index is less than zero

Turbo Vision Guide

TColiectiori

or greater than or equal to Count, the Error method is called with an
argument of coIndexError.

See also: TCollection.FreeItem, TCollection.Free, TCollection.Delete

Atlnsert procedure AtInsert (Index: Integer; Item: Pointer);

Inserts Item at the Index'th position and moves the following items down
by one position. If Index is less than zero or greater than Count, the Error
method is called with an argument of coIndexError and the new Item is not
inserted. If Count is equal to Limit before the call to AtInsert, the allocated
size of the collection is expanded by Delta items using a call to SetLimit. If
the SetLimit call fails to expand the collection, the Error method is called
with an argument of coOverflow and the new Item is not inserted.

See also: TCollection.At, TCollection.AtPut

AtPut procedure AtPut(Index: Integer; Item: Pointer);

Replaces the item at index position Index with the item given by Item. If
Index is less than zero or greater than or equal to Count, the Error method
is called with an argument of coIndexError.

See also: TCollection.At, TCollection.AtInsert

Delete procedure Delete(Item: Pointer);

Deletes the item given by Item from the collection. Equivalent to
AtDelete(IndexOf(Item)).

See also: TCollection.AtDelete, TCollection.DeleteAll

DeleteAIi procedure DeleteAll;

I=rrnr

Override:
Sometimes

Deletes all items from the collection by setting Count to zero.

See also: TCollection.Delete, TCollection.AtDelete

""" .. "',.AA "[;'1,...,....",,.../,,,,,,4,,, T",1=",. T"+-f"\rr~,...\. ",.; "'~"!!:I' .
~--------- -----,-----, -----. -----;,J--" -------.-.

Called whenever a collection error is encountered. By default, this method
produces a run-time error of (212 - Code).

See also: coXXXX collection constants

FirstThat function FirstThat (Test: Pointer): Pointer;

FirstThat applies a Boolean function, given by the function pointer Test, to
each item in the collection until Test returns True. The result is the item
pointer for which Test returned True, or nil if the Test function returned
False for all items. Test must point to a far local function taking one Pointer
parameter and returning a Boolean value. For example

Chapter 13, Object reference 223

TColiection

function Matches (Item: Pointer): Boolean; far;

The Test function cannot be a global function.

Assuming that List is a TCollection, the statement

P := List.FirstThat(@Matches);

corresponds to

I := 0;
while (I < List.Count) and not Matches(List.At(I)) do Inc(I);
if I < List.Count then P := List.At(I) else P := nil;

See also: TCollection.LastThat, TCollection.ForEach

ForEach procedure ForEach (Action: Pointer);

ForEach applies an action, given by the procedure pointer Action, to each
item in the collection. Action must point to a far local procedure taking
one Pointer parameter. For example

function PrintItem(Itern: Pointer); far;

The Action procedure cannot be a global procedure.

Assuming that List is a TCollection, the statement

List.ForEach(@PrintItern);

corresponds to

for I := 0 to List.Count - 1 do PrintItern(List.At(I));

See also: TCollection.FirstThat, TCollection.LastThat

Free procedure Free(Item: Pointer);

Deletes and disposes of the given Item. Equivalent to

Delete (Item) ;
Free Item (Item) ;

See also: TCollection.FreeItem, TCollection.Delete

FreeAII procedure FreeAll;

Deletes and disposes of all items in the collection.

See also: TCollection.DeleteAll

Freeltem procedure FreeItem (Item: Pointer); virtual;

224 Turbo Vision Guide

Override:
Sometimes

Getltem

Override:
Sometimes

TColiection

The FreeItem method must dispose the given Item. The default
TCollection.FreeItem assumes that Item is a pointer to a descendant of
TObject, and thus calls the Done destructor:

if Item <> nil then Dispose (PObject (Item) , Done);

FreeItem is called by Free and FreeAll, but it should never be called directly.

See also: TCollection.Free, TCollection.FreeAll

function TCollection.GetItem(var S: TStream): Pointer; virtual;

Called by TCollection.Load for each item in the collection. This method can
be overridden but should not be called directly. The default
TCollection.GetItem assumes that the items in the collection are
descendants of TObject, and thus calls TStream.Get to load the item:

GetItem := S.Get;

See also: TStream.Get, TCollection.Load, TCollection.Store

IndexOf function IndexOf (Item: Pointer): Integer; virtual;

Override: Never Returns the index of the given Item. The converse operation to
TCollection.At. If Item is not in the collection, IndexOfreturns -1.

See also: TCollection.At

Insert procedure Insert (Item: Pointer); virtual;

Override: Never Inserts Item into the collection, and adjusts other indexes if necessary. By
default, insertions are made at the end of the collection by calling
AtInsert(Count, Item);

See also: TCollection.AtInsert

LastThct function LastThat (Test: Pointer): Pointer;

LastThat applies a Boolean function, given by the function pointer Test, to
each item in the collection in reverse order until Test returns True. The
result is the item pointer for which Test returned True, or nil if the Test
function returned False for all items. Test must point to a far local function
taking one Pointer parameter and returning a Boolean, for example

function Matches (Item: Pointer): Boolean; far;

The Test function cannot be a global function.

Assuming that List is a TCollection, the statement

P := List.LastThat(@Matches);

corresponds to

Chapter 73, Object reference 225

TColiection

I := List.Count - 1;
while (I >= 0) and not Matches(List.At(I)) do Dec(I);
if I >= 0 then P := List.At(I) else P := nil;

See also: TCollection.FirstThat, TCollection.ForEach

Pack procedure Pack;

Putltem

Override:
Sometimes

Deletes all nil pointers in the collection.

See also: TColiection.Delete, TColiection.DeleteAli

procedure PutItem(var S: TStream; Item: Pointer); virtual;

Called by TColiection.Store for each item in the collection. This method can
be overridden but should not be called directly. The default
TCollection.PutItem assumes that the items in the collection are
descendants of TObject, and thus calls TStream.Put to store the item:

S .Put (Item) ;

See also: TColiection.GetItem, TColiection.Store, TColiection.Load

SetLimit procedure SetLimit (ALimit: Integer); virtual;

Override: Seldom Expands or shrinks the collection by changing the allocated size to ALimit.

226

If ALimit is less than Count it is set to Count, and if ALimit is greater than
MaxCollectionSize it is set to MaxColiectionSize. Then, if ALimit is different
from the current Limit, a new Items array of ALimit elements is allocated,
the old Items array is copied into the new array, and the old array is
disposed.

See also: TCollection.Limit, TCollection.Count, MaxCollectionSize variable

Store procedure Store(var S: TStream);

Stores the collection and all its items on the stream S. TColiection.Store calls
TCollection.PutItem for each item in the collection.

See also: TColiection.PutItem

Turbo Vision Guide

TDeskTop

Methods

TDeskTop

App

TDeskTop is a simple group that owns the TBackground view upon which
the application's windows and other views appear. TDeskTop represents
the desktop area of the screen between the top menu bar and bottom
status line.

Init constructor Init (var Bounds: TRect);

Creates a TDeskTop group with size Bounds. The default GrowMode is
gfGrowHiX + gfGrowHiY. Init also calls NewBackground to insert a
TBackground view into the group.

See also: TDeskTop.NewBackground, TGroup.lnit, TGroup.Insert

Cascade procedure Cascade (var R: TRect);

NewBackground

Override:
Sometimes

Redisplays all tileable windows owned by the desktop in cascaded
format. The first tileable window in Z-order (the window "in back") is
zoomed to fill the desktop, and each succeeding window fills a region
hpO"inninO" nnp linp lmATPr ;:tnn nnp sn;:tC'P f;:trthpr to the ri2:ht than the one

before. The active window appears·"on top," as the sm~iIest window.

See also: ofI'ileable, TDeskTop.Tile

function NewBackground: PView; virtual;

Returns a pointer to the background to be used in the desktop. This
method is called in the TDeskTop.Init method. Descendant objects can
change the background type by overriding this method.

See also: TDeskTop.Init

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Chapter 73, Object reference 227

TDeskTop

Override: Seldom Calls TGroup.HandleEvent and takes care of the commands cmNext
(usually the hot key F6) and cmPrevious by cycling through the windows
(starting with the currently selected view) owned by the desktop.

See also: TGroup.HandleEvent, cmXXXX command constants

Tile procedure Tile (var R: TRect);

TlleError

Override:
Sometimes

TDialog

228

Redisplays all ofTileable views owned by the desktop in tiled format.

See also: TDeskTop.Cascade, ofTileable

procedure TileError; virtual;

TileError is called if an error occurs during TDeskTop. Tile or
TDeskTop.Cascade. By default it does nothing. You may wish to override it
to notify the user that the application is unable to rearrange the windows.

See also: TDeskTop. Tile, TDeskTop.Cascade

Dialogs

TDialog is a simple child of TWindow with the following properties:

• GrowMode is zero; that is, dialog boxes are not growable.

• Flag masks wfMove and wfClose are set; that is, dialog boxes are
moveable and closable (a close icon is provided).

• The TDialog event handler calls TWindow.HandleEvent but additionally
handles the special cases of Esc and Enter key responses. The Esc key
generates a cmCancel command, while Enter generates the cmDefault
command.

• The TDialog. Valid method returns True on em Cancel, otherwise it calls its
TGroup. Valid.

Turbo Vision Guide

TDialog

Methods

Init constructor Init(var Bounds: TRect; ATitle: TTitleStr);

HandleEvent

Override:
Sometimes

Creates a dialog box with the given size and title by calling
TWindow.Init(Bounds, ATitle, wnNoNumber). GrowMode is set to 0, and
Flags is set to wfMove + wfClose. This means that, by default, dialog boxes
can move and close (via the close icon) but cannot grow (resize).

Note that TDialog does not define its own destructor, but uses Close and
Done inherited via TWindow, TGroup, and TView.

See also: TWindow.lnit

procedure HandleEvent(var Event: TEvent); virtual;

Calls TWindow.HandleEvent(Event), then handles Enter and Esc key events
specially. In particular, Esc generates a cmCancel command, and the Enter
key broadcasts a cmDefault command. This method also handles cmOK,
cmCancel, cmYes, and cmNo command events by ending the modal state of
the dialog box. For each of the above events handled successfully, this
method calls ClearEvent.

See also: TWindow.HandleEvent

GetPaleHe function GetPalette: PPalette; virtual;

Override: Seldom This method returns a pointer to the default palette, CPalette.

Valid function Valid (Command: Word): Boolean; virtual;

Override: Seldom Returns True if the command given is cmCancel or if all the group controls
return True.

See also: TGroup.Valid

Dialog box objects use the default palette CDialog to map onto the 32nd
through 63rd entries in the application palette.

CDialog

Frame Passive-------I
Frame Active-------'
Frame Icon---------'
Scroll Bar Page:-----------I
Scroll Bar Control s----------'

Chapter 13, Object reference

Label Shortcut
Label Highl ight

'-----Label Nonnal
'-------Stati cText

229

TDiclog

TDosStream

230

10 11 12 13 14 15 16 17 18

CDtalog

Button Nonnal------'
Button Oefault,-----'
Button Selected,------'
Button 01 sabl ed----------'
Button Shortcut----------'

1 us ter Shortcut
"----(;luster Selected

'------(;luster Nonnal
L-------Button Shadow

19 20 21 22 23 24 25

CDtalog

InputLine Nonnal
InputLine Selected----'
InputLine Arrows------l
Hi story Arrow---------'

istoryWindow Scroll Bar controls
"------Hi storyWindow Scroll Bar page

L..-----Hi story 5i des

26 27 28 29 30 31 32

CDtalog

ListViewer Nonnal
Li stVi ewer Focused----'
ListViewer Selectedl-----l
Li stVi ewer 01vider-------l

Reserved
Reserved

L-----InfoPane

See also: GetPalette method for each object type

Objects

TDosStream is a specialized TStream derivative implementing unbuffered
DOS file streams. The constructor lets you create or open a DOS file by
specifying its name and access mode: stCreate, stOpenRead, stOpen Write, or
stOpen. The one additional field of TDosStream is Handle, the traditional
DOS file handle used to access an open file. Most applications will use the
buffered derivative of TDosStream called TBufStream. TDosStream
overrides all the abstract methods of TStream except for TStream.Flush.

Turbo Vision Guide

TDosStream

Fields

Handle Handle: Word Read only

Handle is the DOS file handle used to access an open file stream.

Methods

Init constructor Init (FileName: FNameStr; Mode: Word);

Creates a DOS file stream with the given FileName and access mode. If
successful, the Handle field is set with the DOS file handle. Failure is
signaled by a call to Error with an argument of stInitError.

The Mode argument must be set to one of the values stCreate, stOpenRead,
stOpen Write, or stOpen. These constant values are explained in Chapter 14
under UstXXXX stream constants."

Done destructor Done; virtual;

Override: Never Closes and disposes of the DOS file stream

See also: TDosStream.Init

G7etPos function GetPos: Longint; virtual;

Override: Never Returns the value of the calling stream's current position.

See also: TDosStream.Seek

GefSize function GetSize: Longint; virtual;

Override: Never Returns the total size in bytes of the calling stream.

Read procedure Read (var Buf; Count: Word); virtual;

Override: Never Reads Count bytes into the Bufbuffer starting at the calling stream's
current position.

See also: TDosStream. Write, stReadError

Seek procedure Seek (Pos: Longint); virtual;

Override: Never Resets the current position to Pos bytes from the beginning of the calling
stream.

See also: TDosStream.GetPos, TDosStream.GetSize

Truncate procedure Truncate; virtual;

Override: Never Deletes all data on the calling stream from the current position to the end.

Chapter 13, Object reference 231

TDosStream

See also: TDosStream.GetPos, TDosStream.Seek

Write procedure Write (var Buf; Count: Word); virtual;

Writes Count bytes from the Bufbuffer to the calling stream, starting at the
current position.

See also: TDosStream.Read, st WriteError

TEmsStream Objects

232

Fields

TEmsStream is a specialized TStream derivative for implementing streams
in EMS memory. The additional fields provide an EMS handle, a page
count, stream size, and current position. TEmsStream overrides the six
abstract methods of TStream as well as providing a specialized constructor
and destructor.

When debugging a program using EMS streams, the IDE cannot recover
EMS memory allocated by your program if your program terminates
prematurely or if you forget to call the Done destructor for an EMS stream.
Only the Done method (or rebooting) can release the EMS pages owned by
the stream.

Handle Handle: Word; Read only

The EMS handle for the stream.

PageCount PageCount: Word; Read only

The number of allocated pages for the stream, with 16K per page.

Size Size: Longint; Read only

The size of the stream in bytes.

Position Position: Longint; Read only

The current position within the stream. The first position is O.

Turbo Vision Guide

TEmsStream

Methods

Inlt constructor Init (MinSize: Longint);

Creates an EMS stream with the given minimum size in bytes. Calls
TStream.Init then sets Handle, Size and PageCount. Calls Error with an
argument of stInitError if initialization fails.

See also: TEmsStream.Done

Done destructor Done; virtual;

Override: Never Disposes of the EMS stream and releases EMS pages used.

See also: TEmsStream.Init

G7etPos function Getpos: Longint; virtual;

Override: Never Returns the value of the calling stream's current position.

See also: TEmsStream.Seek

G7etSize function GetSize: Longint; virtual;

Override: Never Returns the total size of the calling stream.

Read procedure Read(var Buf; Count: Word); virtual;

Override: Never Reads Count bytes into the But buffer starting at the calling stream's
current position.

See also: TEmsStream. Write, stReadError

Seek procedure Seek(Pos: Longint); virtual;

Override: Never Resets the current position to Pos bytes from the start of the calling
stream.

See also: TEmsStream.GetPos, TEmsStream.GetSize

Truncate procedure Truncate; virtual;

Override: Never Deletes all data on the calling stream from the current position to the end.
The current position is set to the new end of the stream.

See also: TEmsStream.GetPos, TEmsStream.Seek

Write procedure Write(var Buf; Count: Word); virtual;

Override: Never Writes Count bytes from the Bufbuffer to the calling stream, starting at the
current position.

Chapter 73, Object reference 233

TFrame

TFrame

See also: TStream.Read, TEmsStream.GetPos, TEmsStream.Seek

Views

TFrame provides the distinctive frames around windows and dialog
boxes. Users will probably never need to deal with frame objects directly,
as they are added to window objects by default.

Methods

Init constructor Init (var Bounds: TRect);

Calls TView.Init, then sets GrowMode to gfGrowHiX + gfGrowHiY and sets
EventMask to EventMask or evBroadcast, so TFrame objects default to
handling broadcast events.

See also: TView.Init

Draw procedure Draw; virtual;

Override: Seldom Draws the frame with color attributes and icons appropriate to the current
State flags: active, inactive, being dragged. Adds zoom, close and resize
icons depending on the owner window's Flags. Adds the title, if any, from
the owner window's Title field. Active windows are drawn with a double
lined frame and any icons, inactive windows with a single-lined frame
and no icons.

See also: sfXXXX state flag constants, wfXXXX window flag constants

GetPaleHe function GetPalette: PPalette; virtual;

Override: Seldom Returns a pointer to the default frame palette, CFrame.

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Override: Seldom Calls TView.HandleEvent, then handles mouse events. If the mouse is
clicked on the close icon, TFrame generates a cmClose event. Clicking on
the zoom icon or double-clicking on the top line of the frame generates a
cmZoom event. Dragging the top line of the frame moves the window, and

234 Turbo Vision Guide

TFrame

dragging the resize icon moves the lower-right corner of the view and
therefore changes its size.

See also: TView.HandleEvent

SetState procedure SetState{AState: Word; Enable: Boolean); virtual;

Override: Seldom Calls TView.SetState, then if the new state is sf Active or sfDragging, calls
Draw View to redraw the view.

Palette

TGroup

See also: TView.SetState

Frame objects use the default palette, CFrame, to map onto the first three
entries in the standard window palette.

2 3 4 5

CFrame 21 I 1 I 2 I 2r:g3 I
Passi ve Fram I I Icons
Passive Titl- Active Title
Active Frame-e ----'.

Views

I IUlalog I I TApplication I

TGroup objects and their derivatives (which we call groups for short)
provide the central driving power to Turbo Vision. A group is a special
breed of view. In addition to all the fields and methods derived from
TView, a group has additional fields and methods (including many
overrides) allowing it to control a dynamically linked list of views
(including other groups) as though they were a single object. We often talk
about the sub views of a group even when these subviews are often
groups in their own right.

Chapter 73, Object reference 235

I

TGroup

236

Fields

Although a group has a rectangular boundary from its TView ancestry, a
group is only visible through the displays of its subviews. A group
conceptually draws itself via the Draw methods of its subviews. A group
owns its subviews, and together they must be capable of drawing (filling)
the group's entire rectangular Bounds. During the life of an application,
subviews and subgroups are created, inserted into groups, and displayed
as a result of user activity and events generated by the application itself.
The subviews can just as easily be hidden, deleted from the group, or
disposed of by user actions (such as closing a window or quitting a dialog
box).

The three derived object types of TGroup, namely TWindow, TDeskTop, and
TApplication (via TProgram) illustrate the group and subgroup concept.
T Application will typically own a TDeskTop object, a TStatusLine object, and
a TMenu View object. TDeskTop is a TGroup derivative, so it, in turn, can
own TWindow objects, which in turn own TFrame objects, TScrollBar
objects, and so on.

TGroup objects delegate both drawing and event handling to their
subviews, as explained in Chapter 4, ''Views'' and Chapter 5, "Event
driven programming".

Many of the basic TView methods are overridden in TGroup in a natural
way. For example, storing and loading groups on streams can be achieved
with single calls to TGroup.Store and TGroup.Load.

TGroup objects are not usually instantiated; rather you would instantiate
one or more of TGroup's derived object types: T Application, TDeskTop, and
TWindow.

Last Last: PView Read only

Points to the last subview in the group (the one furthest from the top in
Z-order). The Next field of the last subview points to the first subview,
whose Next field points to the next subview, and so on, forming a circular
list.

Current Current: PView; Read only

Points to the subview that is currently selected, or is nil if no subview is
selected.

See also: sf Selected, TView.Select

Buffer Buffer: PVideoBufi Read only

Turbo Vision Guide

TGroup

Points to a buffer used to cache redraw operations, or is nil if the group
has no cache buffer. Cache buffers are created and destroyed
automatically, unless the ofBuffered flag is cleared in the group's Options
field.

See also: TGroup.Draw, TGroup.Lock, TGroup.Unlock

Phase Phase: (phFocused, phPreProcess, phPostProcess); Read only

Methods

The current phase of processing for a focused event. Subviews that have
the ofPreProcess and/or ofPostProcess flags set can examine Ownerl\.Phase to
determine whether a call to their HandleEvent is happening in the
phPreProcess, phFocused, or phPostProcess phase.

See also: ofPreProcess, ofPostProcess, TGroup.HandleEvent

Init· constructor Init (var Bounds: TRect);

Calls TView.lnit, sets of Selectable and ofBuffered in Options, and sets
EventMask to $FFFF.

See also: TView.Init, TGroup.Load

Load constructor Load (var S: TStream);

Loads an entire group from a stream by first calling the inherited
TView.Load and then using TStream.Get to read each subview. Once all
subviews have been loaded, a pass is performed over the subviews to fix
up all pointers that were read using GetPeerViewPtr.

If an object type derived from TGroup contains fields that point to
subviews, it should use GetSubViewPtr within its Load to read these fields.

See also: TView.Load, TGroutJ.Store, TGroutJ.GetSubViewPtr

Done destructor Done; virtual;

Override: Often Overrides TView.Done. Hides the group using Hide, disposes each
subview in the group using a Dispose(P, Done), and finally calls the
inherited TView.Done.

See also: TView.Done

ChangeBounds procedure Change Bounds (var Bounds: TRect); virtual;

Override: Never Overrides TView.ChangeBounds. Changes the group's bounds to Bounds
and then calls CalcBounds followed by ChangeBounds for each subview in
the group.

Chapter 73, Object reference 237

II

TGroup

See also: TView.CalcBounds, TView.ChangeBounds

DataSlze function DataSize: Word; virtual;

Override: Seldom Overrides TView.DataSize. Returns total size of group by calling and
accumulating DataSize for each subview.

238

See also: TView.DataSize

Delete procedure Delete (P: PView);

Deletes the subview P from the group and redraws the other subviews as
required. P's Owner and Next fields are set to nil.

See also: TGroup.Insert

Draw procedure Draw; virtual;

Override: Never Overrides TView.Draw. If a cache buffer exists (see TGroup.Buffer field)
then the buffer is written to the screen using TView. WriteBuf.
Otherwise, each subview is told to draw itself using a call to
TGroup.Redraw.

See also: TGroup.Buffer, TGroup.Redraw

End Modal procedure EndModal (Command: Word); virtual;

Override: Never If this group is the current modal view, it terminates its modal state.

EventError

Override:
Sometimes

ExecView

Command is passed to ExecView (which made this view modal in the first
place), which returns Command as its result. If this group is not the current
modal view, it calls TView.EndModal.

See also: TGroup.ExecView, TGroup.Execute

procedure EventError(var Event: TEvent); virtual;

EventError is called whenever the modal TGroup.Execute event-handling
loop encounters an event that cannot be handled. The default action is: If
the group's Owner is not nil, EventError calls its owner's EventError.
Normally this chains back to TApplication's EventError. You can override
EventError to trigger appropriate action.

See also: TGroup.Execute, TGroup.ExecView, sf Modal

function ExecView(P: PView): Word;

ExecView is the "modal" counterpart of the "modeless" Insert and Delete
methods. Unlike Insert, after inserting a view into the group, ExecView
waits for the view to execute, then removes the view, and finally returns
the result of the execution. ExecView is used in a number of places
throughout Turbo Vision, most notably to implement T Application.Run
and to execute modal dialog boxes.

Turbo Vision Guide

TGroup

ExecView saves the current context (the selected view, the modal view,
and the command set), makes P modal by calling pA.SetState(sfModal,
True), inserts P into the group (if it isn't already inserted), and calls
pA . Execute. When pA . Execute returns, the group is restored to its previous
state, and the result of PA.Execute is returned as the result of the ExecView
call. If P is nil upon a call to ExecView, a value of cmCancel is returned.

See also: TGroup.Execute, sf Modal.

Execute function Execute: Word; virtual;

Override: Seldom Overrides TView.Execute. Execute is a group's main event loop: It repeat
edly gets events using GetEvent and handles them using HandleEvent. The
event loop is terminated by the group or some sub view through a call to
EndModal. Before returning, however, Execute calls Valid to verify that the
modal state can indeed be terminated.

The actual implementation of TGroup.Execute is shown below. Note that
EndState is a private field in TGroup which gets set by a call to EndModal.

function TGroup.Execute: Word;
var

E: TEvent;
begin

repeat
EndState : = 0;
repeat

GetEvent(E);
HandleEvent(E);
if E.What <> evNothing then EventError(E);

until EndState <> 0;
until Valid(EndState);
Execute := EndState;

end;

See also: TGroup.GetEvent, TGroup.HandleEvent, TGroup.EndModal,
TGroup. Valid

First function First: PView;

Returns a pointer to the first subview (the one closest to the top in Z
order), or nil if the group has no subviews.

See also: TGroup.Last

FirstThat function FirstThat (Test: Pointer): PView;

FirstThat applies a boolean function, given by the function pointer Test, to
each subview in Z-order until Test returns True. The result is the sub view
pointer for which Test returned True, or nil if the Test function returned

Chapter 73, Object reference 239

TGroup

False for all subviews. Test must point to a far local function taking one
Pointer parameter and returning a Boolean value. For example:

function MyTestFunc(P: PView): Boolean; far;

The SubViewAt method shown below returns a pointer to the first
subview that contains a given point.

function TMyGroup.SubViewAt(Where: TPoint): PView;

function ContainsPoint(P: PView): Boolean; far;
var

Bounds: TRect;
begin

PA.GetBounds(Bounds);
ContainsPoint := (pA.State and sf Visible <> 0) and

Bounds.Contains(Where);
end;

begin
SubViewAt := FirstThat(@ContainsPoint);

end;

See also: TGroup.ForEach

ForEach procedure ForEach (Action: Pointer);

ForEach applies an action, given by the procedure pointer Action, to each
subview in the group in Z-order. Action must point to a far local
procedure taking one Pointer parameter, for example:

procedure MyActionProc(P: PView); far;

The MoveSubViews method show below moves all subviews in a group by
a given Delta value. Notice the use of Lock and Unlock to limit the number
of redraw operations performed, thus eliminating any unpleasant flicker.

procedure TMyGroup.MoveSubViews(Delta: TPoint);

procedure DoMoveView(P: PView); far;
begin

PA.MoveTo(PA.Origin.X + Delta.X, PA.Origin.Y + Delta.Y);
end;

begin
Lock;
ForEach(@DoMoveView);
Unlock;

end;

See also: TGroup.FirstThat

(;etData procedure GetData(var Rec); virtual;

240 Turbo Vision Guide

TGroup

Override: Seldom Overrides TView.GetData. Calls GetData for each sub view in reverse Z
order, incrementing the location given by Rec'by the DataSize of each
subview.

See also: TView.GetData, TGroup.SetData

GetHelpCtx function GetHelpCtx: Word; virtual;

Override: Seldom Returns the help context of the current focused view by calling the
selected subviews' GetHelpCtx method. If no help context is specified by
any sub view, GetHelpCtx returns the value of its own HelpCtx field.

GetSubViewPtr procedure GetSubViewPtr (var S: TStreami var P);

Loads a subview pointer P from the stream S. GetSubViewPtr should only
be used inside a Load constructor to read pointer values that were written
by a call to PutSubViewPtr from a Store method.

See also: TView.PutSubViewPtr, TGroup.Load, TGroup.Store

HandleEvent procedure HandleEvent (var Event: TEvent) i virtual;

Override: Often Overrides TView.HandleEvent. A group basically handles events by
passing them on to the HandleEvent methods of one or more of its
subviews. The actual routing, however, depends on the event class.

For focused events (by default evKeyDown and evCommand, see
FocusedEvents variable), event handling is done in three phases: First, the
group's Phase field is set to phPreProcess and the event is passed to
HandleEvent of all subviews that have the ofPreProcess flag set. Next, Phase
is set to phFocused and the event is passed to HandleEvent of the currently
selected view. Finally, Phase is set to phPostProcess and the event is passed
to HandleEvent of all sub views that have the ofPostProcess flag set.

For positional events (by default evMouse, see PositionalEvents variable),
the event is passed to the HandleEvent of the first subview whose
1..~ •• _..l:_~ _~_L __ ~l ____ L_: __ Lt.. ___ !_L _! _____ 1 ___ T"_._ •• L TA71._ •• _

---.. _ 0 -~- b.A. _"' ~ v ~4L ,t''''.l.41.''' O V""'.&.L "'-'J ~V"''''''. r 1', ,,,.

For broadcast events (events that aren't focused or positional), the event is
passed to the HandleEvent of each subview in the group in Z-order.

If a subview's EventMask field masks out an event class,
TGroup.HandleEvent will never send events of that class to the sub view.
For example, the default EventMask of TView disables evMouseUp,
evMouseMove, and evMouseAuto, so TGroup.HandleEvent will never send
such events to a standard TView.

See also: FocusedEvents, PositionalEvents, ev XXXX event constants,
TView.EventMask, HandleEvent methods

Chapter 73, Object reference 241

I

TGroup

242

Insert procedure Insert (P: PView);

Inserts the view given by P in the group's subview list. The new subview
is placed on top of all other subviews. If the subview has the ofCenterX
and/or ofCenterY flags set, it is centered accordingly in the group. If the
view has the sfVisible flag set, it will be shown in the group-otherwise it
remains invisible until specifically shown. If the view has the of Selectable
flag set, it becomes the currently selected subview.

See also: TGroup.Delete, TGroup.ExecView, TGroup.Delete

InsertBefore procedure InsertBefore(p, Target: PView);

Inserts the view given by P in front of the view given by Target. If Target is
nil, the view is placed behind all other subviews in the group.

See also: TGroup.Insert, TGroup.Delete

Lock procedure Lock;

PutSubViewPtr

Locks the group, delaying any screen writes by subviews until the group
is unlocked. Lock has no effect unless the group has a cache buffer (see
ofBuffered and TGroup.Buffer). Lock works by incrementing a lock count,
which is decremented correspondingly by Unlock. When a call to Unlock
decrements the count to zero, the entire group is written to the screen
using the image constructed in the cache buffer.

By "sandwiching" draw-intensive operations between calls to Lock and
Unlock, unpleasant "screen flicker" can be reduced if not eliminated. For
example, the TDeskTop. Tile and TDeskTop.Cascade methods use Lock and
Unlock in an attempt to reduce flicker.

Lock and Unlock calls must be balanced, otherwise a group may end up in a
permanently locked state, causing it to not redraw itself properly when so
requested.

See also: TGroup. Unlock

procedure PutSubViewPtr(var S: TStre~m; P: PView);

Stores a subview pointer P on the stream S. PutSub ViewPtr should only be
used inside a Store method to write pointer values that can later be read
by a call to GetSubViewPtr from a Load constructor.

See also: TGroup.GetSubViewPtr, TGroup.Store, TGroup.Load

Redraw procedure Redraw;

Redraws the group's sub views in Z-order. TGroup.Redraw differs from
TGroup.Draw in that redraw will never draw from the cache buffer.

Turbo Vision Guide

TGroup

See also: TGroup.Draw

SelectNext procedure SelectNext (Forwards: Boolean);

If Forwards is True, SelectNext will select (make current) the next selectable
subview (one with its of Selectable bit set) in the group's Z-order. If Forwards
is False, the method selects the previous selectable subview.

See also: of XXX X option flag constants

SetData procedure SetData(var Rec); virtual;

Override: Seldom Overrides TView.SetData. Calls SetData for each subview in reverse Z
order, incrementing the location given by Rec by the DataSize of each
subview.

See also: TGroup.GetData, TView.SetData

SefSfafe procedure SetState(AState: Word; Enable: Boolean); virtual;

Override: Seldom Overrides TView.SetState. First calls the inherited TView.SetState, then
updates the subviews as follows:

If AState is sf Active, sfExposed, or sfDragging then each sub view's SetState is
called to update the subview correspondingly.

If AState is sfFocused then the currently selected subview is called to focus
itself correspondingly.

See also: TView.SetState

Store procedure Store(var S: TStream);

Stores an entire group on a stream by first calling the inherited
TView.Store and then using TStream.Put to write each subview.

If an object type derived from TGroup contains fields that point to
subviews, it should use PutSubViewPtr within its Store to write these
fipln~

See also: TView.Store, TGroup.PutSubViewPtr, TGroup.Load

Unlock procedure Unlock;

Unlocks the group by decrementing its lock count. If the lock count
becomes zero, then the entire group is written to the screen using the
image constructed in the cache buffer.

See also: TGroup.Lock

Valid function Valid (Command: Word): Boolean; virtual;

Chapter 73, Object reference 243

I

TGroup

Overrides TView.Valid. Returns True if all the subview's Valid calls return
True. TGroup.Valid is used at the end of the event handling loop in
TGroup.Execute to confirm that termination is allowed. A modal state
cannot terminate until all Valid calls return True. A subview can return
False if it wants to retain control.

See also: TView.Valid, TGroup.Execute

THistory Dialogs

244

Fields

A THistory object implements a pick-list of previous entries, actions, or
choices from which the user can select a "rerun". THistory objects are
linked to a TlnputLine object and to a history list. History list information
is stored in a block of memory on the heap. When the block fills up, the
oldest history items are deleted as new ones are added.

THistory itself shows up as an icon (II) next to an input line. When the
user clicks on the history icon, Turbo Vision opens up a history window
(see THistoryWindow) with a history viewer (see THistoryViewer)
containing a list of previous entries for that list.

Different input lines can share the same history list by using the same ID
number.

Link Link: PInputLine; Read only

A pointer to the linked TlnputLine object.

HistorylD HistoryID: Word; Read only

Each history list has a unique ID number, assigned by the programmer.
Different history objects in different windows may share a history list by
using the same history rD.

Turbo Vision Guide

THistory

Methods

Init constructor Init(var Bounds: TRect; ALink: PInputLine; AHistoryId: Word);

Creates a THistory object of the given size by calling TView.lnit, then
setting the Link and Historyld fields with the given argument values. The
Options field is set to ofPostProcess and EventMask to evBroadcast.

See also: TView.Init

Load constructor Load (var S: TStrearn);

Creates and initializes a THistory object from the given TStream by calling
TView.Load(S) and reading Link and Historyld from S.

See also: TView.Store

Draw procedure Draw; virtual;

Override: Seldom Draws the THistory icon in the default palette.

GetPaleHe function GetPalette: PPalette; virtual;

Override: Returns a pointer to the default palette, CHistory.
Sometimes

Store procedure Store(var S: TStrearn);

Palette

Saves a THistory object on the target TStream by calling TView.Store(S)
then writing Link and Historyld to S.

See also: TView.Load

History icons use the default palette, CHis tory, to map onto the 22nd and
23rd entries in the standard dialog box palette.

1 2

CHi story @ I 2t!

Arrow~ Sides

Chapter 73, Object reference 245

III

THistoryViewer

THistoryViewer Dialogs

Field

THistoryViewer is a rather straightforward descendant of TListViewer. It is
used by the history list system, and appears inside the history window set
up by clicking on the history icon. For details on how THistory,
THistoryWindow, and THistoryViewer cooperate, see the entry for THistory
in this chapter.

Hlstoryld HistoryId: Word; Read only

HistoryID is the ID number of the history list to be displayed in the view.

Methods

Init constructor Init(var Bounds: TRect; AHScrollBar, AVScrollBar: PScrollBar;
AHistoryId: Word);

Initializes the viewer list by first calling TListViewer.Init to set up the
boundaries, a single column, and the two scroll bars passed in
AHScrollBar and A VScrollBar. The view is then linked to a history list,
with the HistoryID field set to the value passed in AHistory. That list is
then checked for length, so the range of the list is set to the number of
Items in the list. The first item in the history list is given the focus, and the
horizontal scrolling range is set to accommodate the widest item in the
list.

See also: TListViewer.lnit

GetPaleHe function GetPalette: PPalette; virtual;

Override: Returns a pointer to the default palette, CHistoryViewer.
Sometimes

GetText function Get Text (Item: Integer; MaxLen: Integer): String; virtual;

Override: Seldom Returns the Item'th string in the associated history list. GetText is called by
the virtual Draw method for each visible item in the list.

HandleEvent

Override:
Sometimes

246

See also: TListViewer.Draw, HistoryStr function

procedure HandleEvent(var Event: TEvent); virtual;

The history viewer handles two kinds of events itself; all others are passed
to TListViewer.HandleEvent. Double clicking or pressing the Enter key will
terminate the modal state of the history window with a cmOK command.

Turbo Vision Guide

THistoryViewer

Pressing the Esc key, or any cmCancel command event, will cancel the
history list selection.

See also: TListViewer.HandleEvent

HlstoryWidth function HistoryWidth: Integer i

Palette

Returns the length of the longest string in the history list associated with
HistoryID.

History viewer objects use the default palette CHistoryViewer to map onto
the 6th and 7th entries in the standard dialog box palette.

234

CHistoryViewer I
~r===r=9=='====;=!:::y:::!J

Acti ve-------l
Inactive------'
Focused---------I

ivider
'-----:Se 1 ected

THistoryWindow Dialogs

Field

THis tory Window is a specialized descendant of TWindow used for holding
a history list viewer when the user clicks on the history icon next to an
input line. By default, the window has no title and no number. The history
window's frame has a close icon so the window can be closed, but cannot
be resized or zoomed.

For details on the use of history lists and their associated objects, see the
entry for THistory in this chapter.

Viewer Viewer: PListViewer i Read only

Viewer points to a list viewer to be contained in the history window.

Methods

Init constructor Init (var Bounds: TRecti Historyld: Word) i

Calls TWindow.lnit to set up a window with the given bounds, a null title
string, and no window number (wnNoNumber). The TWindow.Flags field is

Chapter 73, Object reference 247

THistoryWindow

set to wfClose to provide a close icon, and a history viewer object is created
to show the items in the history list given by HistoryID.

See also: TWindow.Init, THistoryWindow.InitViewer

GetPaleHe function Getpalette: PPalette; virtual;

Override: Returns a pointer to the default palette, CHistoryWindow.
Sometimes

GetSelection function GetSelection: String; virtual;

Override: Never Returns the string value of the focused item in the associated history
viewer.

See also: THistoryViewer.GetText
InitViewer procedure InitViewer (Historyld: Word); virtual;

Override: Never Instantiates and inserts a THistoryViewer object inside the boundaries of
the history window for the list associated with the ID Historyld. Standard
scroll bars are placed on the frame of the window to scroll the list.

Palette

See also: THistoryViewer.Init

History window objects use the default palette CHis tory Window to map
onto the 19th through 25th entries in the standard dialog box palette.

Frame passiv
Frame active-----'
Frame icon-------1

5

i storyVi ewer sel ected text
'---I1i storyVi ewer nonna 1 text

L------ScrollBar controls
L--------ScrollBar page area

TlnputLine Dialogs

248

A TlnputLine object provides a basic input line string editor. It handles
keyboard input and mouse clicks and drags for block marking and a
variety of line editing functions (see TlnputLine.HandleEvent). The selected
text is deleted and then replaced by the first text input. If MaxLen is

Turbo Vision Guide

Fields

TlnputLine

greater than the X dimension (Size.X), horizontal scrolling is supported
and indicated by left and right arrows.

The GetData and SetData methods are available for writing and reading
data strings (referenced via the Data pointer field) into the given record.
TInputLine.SetState simplifies the redrawing of the view with appropriate
colors when the state changes from or to sf Active and sf Selected.

An input line frequently has a TLabel and/or a THistory object associated
with it.

TInputLine can be extended to handle data types other than strings. To do
so, you'll generally add additional fields and then override the Init, Load,
Store, Valid, DataSize, GetData, and SetData methods. For example, to II
define a numeric input line, you might want it to contain minimum and
maximum allowable values which will be tested by the Valid function.
These minimum and maximum fields would be Loaded and Stored on the
stream. Valid would be modified to make sure the value was numeric and
within range. DataSize would be modified to include the size of the new
range fields (probably SizeOf(Longint) for each). Oddly enough, in this
example it would not be necessary to add a field to store the numeric
value itself. It could be stored as a string value (which is already managed
by TInputLine) and converted from string to numeric value and back by
GetData and SetData respectively.

Data Data: PString; Read/write

Pointer to the string containing the edited information.

MaxLen MaxLen: Integer; Read only

Maximum length allowed for strin~ to ~ow. P.x('l11ciin~ thp lpn~th h~Ttp

See also: TInputLine.DataSize

CurPos CurPos: Integer;

Index to insertion point (that is, to the current cursor position).

See also: TInputLine.SelectAll

FirstPos Firstpos: Integer;

Index to the first displayed character.

See also: TInputLine.SelectAll

Chapter 73, Object reference

Read/write

Read/write

249

TlnputLine

SelStart SelStart: Integer; Read only

Index to the beginning of the selection area (that is, to the first character
block marked).

See also: TlnputLine.SelectAll

SelEnd SelEnd: Integer; Read only

Methods

Index to the end of the selection area (that is, to the last character block
marked).

See also: TlnputLine.SelectAll

Init constructor Init (var Bounds: TRect; AMaxLen: Integer);

Creates an input box control with the given argument values by calling
TlnputLine.lnit. State is set to sfCursorVis, Options is set to (of Selectable +
ofFirstClick), and MaxLen is set to AMaxLen. Memory is allocated and
cleared for AMaxlen+l bytes and the Data field set to point at this
allocation.

See also: TView.Init, TView.sfCursorVis, TView.ofSelectable,
TV iew.ofFirstClick

Load constructor Load (var S: TStream);

Creates and initializes a TlnputLine object by calling TView.Load(S) to load
the view off the given stream, then reads the integer fields off the stream
using S.Read, allocates MaxLen+l bytes at Data with GetMem, and finally
sets the string-length byte and loads the data from the stream with two
more S.Read calls. Load is used in conjunction with TlnputLine.Store to save
and retrieve TlnputLine objects on a TStream.

Override this method if you define descendants that contain additional
fields.

See also: TView.Load, TlnputLine.Store, TStream.Read

Done destructor Done; virtual;

Override: Seldom Deallocates the Data memory allocation, then calls TView.Done to destroy
the TlnputLine object.

See also: TView.Done

250 Turbo Vision Guide

DataSize

Override:
Sometimes

TlnputLine

function DataSize: Word; virtual;

Returns the size of the record for TlnputLine.GetData and
TlnputLine.SetData calls. By default, it returns MaxLen+ 1. Override this
method if you define descendants to handle other data types.

See also: TlnputLine.GetData, TlnputLine.SetData

Draw procedure Draw; virtual;

Override: Seldom Draws the input box and its data. The box is drawn with the appropriate
colors depending on whether the box is sfFocused or not (that is, whether
the box view owns the cursor or not), and arrows are drawn if the input
string exceeds the size of the view (in either or both directions). Any
selected (block marked) characters are drawn with the appropriate
palette.

(;etData procedure GetData(var Ree); virtual;

Override:
Sometimes

(;etPaleHe

Override:
Sometimes

HandleEvent

Override:
Sometimes

Writes DataSize bytes from the string Datal\. to given record. Used with
TlnputLine.SetData for a variety of applications, e.g., temporary storage or
passing on the input string to other views. Override this method if you
define descendants to handle non-string data types. Use this method to
convert from a string to your data type after editing by TlnputLine.

See also: TlnputLine.DataSize, TlnputLine.SetData

function GetPalette: PPalette; virtual;

Returns a pointer to the default palette, ClnputLine.

procedure HandleEvent(var Event: TEvent); virtual;

Calls TView.HandleEvent, then handles all mouse and keyboard events if
the input box is selected. This method implements the standard editing
capability of the box.

1=<rl;Mn,..,. ~n"""""' .. nC' ;n,.,l"rl,..,. h1",.,1.- "'"' 1.-;n,..,. TH;4-h ",",""CO ,.,1;,.,1.- ""nrl ...1 .. "",..,.. "h1("\,...1.-
- -------0 - ---- --- -- ----- ---- -- - -- --- -----------0 - - ---- --- - --- - --- -- - ---- -- --- --0' - - - ---

deletion; insert or overwrite control with automatic cursor shape change;
automatic and manual scrolling as required (depending on relative sizes
of Data string and Size.X); manual horizontal scrolling via mouse clicks on
the arrow icons; manual cursor movement by arrow, Home, and End keys
(and their standard Clrl key equivalents); character and block deletion with
Del and CtrJ-G. The view is redrawn as required and the TlnputLine fields
are adjusted appropriately.

See also: sfCursorlns, TView.HandleEvent, TlnputLine.SelectAll

SelectAIi procedure SelectAll (Enable: Boolean);

Chapter 73, Object reference 251

III

TlnputLine

SetOata

Override:
Sometimes

Sets CurPos, FirstPos, and SelStart to O. If Enable is set True, SelEnd is set to
Length (Da ta/\) thereby selecting the whole input line; if Enable is set False,
SelEnd is set to 0, thereby deselecting the whole line. Finally, the view is
redrawn by calling DrawView.

See also: TView.DrawView

procedure SetData(var Rec)i virtual;

By default, reads DataSize bytes from given record to the Data/\ string and
calls SelectAll(True) to reset CurPos, FirstPos, and SelStart to zero; SelEnd is
set to the last character of Data/\ and the view is Draw View' d. Override
this method if you define descendants to handle non-string data types.
Use this method to convert your data type to a string for editing by
TlnputLine.

See also: TlnputLine.DataSize, TlnputLine.GetData, TView.DrawView

SetState procedure SetState(AState: Word; Enable: Boolean); virtual;

Override: Seldom Called when the input box needs redrawing (for example, palette
changes) following a change of State. Calls TView.SetState to set or clear
the view's State field with the given AState bit(s). Then if AState is sf Selected
or if AState is sf Active and the input box is sf Selected, SelectAll(Enable) is
called.

252

See also: TView.SetState, TView.DrawView

Store procedure Store(var S: TStream);

Palette

Stores the view on the given stream by calling TView.Store(S), then stores
the five integer fields and the Data string with S. Write calls. Used in
conjunction with TlnputLine.Load for saving and restoring entire
TlnputLine objects. Override this method if you define descendants that
contain additional fields.

See also: TView.Store, TlnputLine.Load, TStream. Write

Input lines use the default palette, ClnputLine, to map onto the 19th
through 21st entries in the standard dialog palette.

Passiv
Aeti ve--------'

Arrow
'----:Se 1 eeted

Turbo Vision Guide

TLabel

TLabel

Dialogs

A TLabel object is a piece of text in a view that can be selected
(highlighted) by mouse click, cursor keys, or Alt-Ietter shortcut. The label is
usually "attached" via a PView pointer to some other control view such as
an input line, cluster, or list viewer to guide the user. Selecting (or II!
"pressing") the label will select the attached control. Conversely, the label
is highlighted when the linked control is selected.

Fields

Link Link: PView; Read only

Pointer to the control associated with this label.

Light Light: Boolean; Read only

Methods

If True, the label and its linked control has been selected and will be
highlighted.

Init constructor Init (var Bounds: TRect; AText: String; ALink: PView);

Creates a TLabel object of the given size by calling TStaticText.lnit, then
sets the Link field to Alink for the associated control (make ALink nil if no
control is needed). The Options field is set to of PreProcess and ofPostProcess.
The EventMask is set to evBroadcast. The AText field is assigned to the Text
field by TStaticText.Init. AText can designate a shortcut letter for the label
by surrounding the letter with tildes (/ /).

See also: TStaticText.lnit

Load constructor Load (var S: TStrearn);

Chapter 73, Object reference 253

TLabel

254

Creates and loads a TLabel object from the given stream by calling
TStaticText.Load, then calling GetPeerViewPtr(S, Link) to reestablish the link
to the associated control (if any).

See also: TLabel.Store

Draw procedure Draw; virtual;

Override: Never Draws the view with the appropriate colors from the default palette.

GetPalette function Getpalette: PPalette; virtual;

Override: Returns a pointer to the default palette, CLabel.
Sometimes

HandleEvent procedure HandleEvent (var Event: TEvent); virtual;

Override: Never Handles all events by calling TStaticText.HandleEvent. If an evMouseDown
or shortcut key event is received, the appropriate linked control (if any) is
selected. This method also handles cmReceivedFocus and cmReleasedFocus
broadcast events from the linked control in order to adjust the value of the
Light field and redraw the label as necessary.

See also: TView.HandleEvent, cmXXXX command constants

Store procedure Store(var S: TStream);

Palette

Stores the view on the given stream by calling TStaticText.Store, then
records the link to the associated control by calling PutPeerViewPtr.

See also: TLabel.Load

Labels use the default palette, CLabel, to map onto the 7th, 8th and 9th
entries in the standard dialog palette.

CLabel

Text Nonnal
Text Sel ected

234

Shortcut Selected
Shortcut Nonnal

Turbo Vision Guide

TListBox

Field

TListBox

Dialogs

TListBox is derived from TListViewer to help you set up the most
commonly used list boxes, namely those displaying collections of strings
such as file names. TListBox objects represent displayed lists of such items II!
in one or more columns with an optional vertical scroll bar. The horizontal
scroll bars of TListViewer are not supported. The inherited TListViewer
methods let you select (and highlight) items by mouse and keyboard
cursor actions. TListBox does not override TListViewer.HandleEvent or
TListViewer.Draw, so you should refer to the sections describing these
before using TListBox in your applications.

TListBox has an additional field called List not found in TListViewer. List
points to a TCollection object that provides the items to be listed and
selected. Inserting data into the TCollection is your responsibility, as are
the actions to be performed when an item is selected.

TListViewer inherits its Done method from TView, so it is also your
responsibility to dispose of the contents of List when you are finished with
it. A call to NewList will dispose of the old list, so calling NewList(nil) and
then disposing the list box will free everything.

List List: PCollection; Read only

List points at the collection of items to scroll through. Typically, this might
be a collection of PStrings representing the item texts.

Chapter 73, Object reference 255

TListBox

256

Methods

Inlt constructor Init(var Bounds: TRect; ANumCols: Word; AScrollBar:
PScrollBar) ;

Creates a list box control with the given size, number of columns, and a
vertical scroll bar referenced by the AScrollBar pointer. This method calls
TListViewer.Init with a nil horizontal scroll bar argument.

The List field is initially nil (empty list) and the inherited Range field is set
to zero. Your application must provide a suitable TCollection holding the
strings (or other objects) to be listed. The List field must be set to point to
this collection using NewList.

See also: TListViewer.Init, TListBox.NewList

Load constructor Load (var S: TStream);

Creates a TListBox object and loads it with values from the given TStream.
This method calls TListViewer.Load then sets List by reading a List pointer
from S with S.Get.

See also: TListViewer.Load, TListBox.Store, TStream.Get

DataSize . function DataSize: Word; virtual;

Override:
Sometimes

GetData

Override:
Sometimes

GetText

Override:
Sometimes

Returns the size of the data read and written to the records passed to
TListBox.GetData and TListBox.SetData. These three methods are useful for
initializing groups. By default TListBox.DataSize returns the size of a
pointer plus the size of a word (for the List and the selected item). You
may need to override this method for your own applications.

See also: TListBox.GetData, TListBox.SetData

procedure GetData(var Rec); virtual;

Writes TListBox object data to the target record. By default, this method
writes the current List and Focused fields to Rec. You may need to override
this method for your own applications.

See also: TListBox.DataSize, TListBox.SetData

function GetText(Item: Integer; MaxLen: Integer): String; virtual;

Returns a string from the calling TListBox object. By default, the returned
string is obtained from the Jtem'th item in the TCollection using
PString(List".At(Item»". If List contains non-string objects, you will need
to override this method. If List is nil, Get Text returns an empty string.

Turbo Vision Guide

TListBox

See also: TCollection.At

NewList procedure NewList (AList: PCollection); virtual;

Override: Seldom If AList is non-nil, a new list given by AList replaces the current List. The
inherited Range field is set to the Count field of the new TCollection, and
the first item is focused by calling FocusItem(O). Finally, the new list is
displayed with a DrawView call. Note that if the previous List field is
non-nil it is disposed of before the new list values are assigned.

See also: TListBox.SetData, TListViewer.SetRange, TListViewer.FocusItem,
TView.Draw View

SetOata procedure SetData(var Rec); virtual;

Override:
Sometimes

Store

Palette

Replaces the current list with List and Focused values read from the given
Rec record. SetData calls NewList so that the new list is displayed with the
correct focused item. As with GetData and DataSize, you may need to
override this method for your own applications.

See also: TListBox.DataSize, TListBox.GetData, TListBox.NewList

procedure Store(var s: TStream)i

Writes the list box to the given TStream by calling TListViewer.Store and
then puts the collection onto the stream by calling S.Put(List).

See also: TListBox.Load, TListViewer.Store, TStream.Put

List boxes use the default palette, CListViewer, to map onto the 26th
through 29th entries in the standard application palette.

1 2 3 4 5

II 26 I 26 I 27 I 28 I 20

Active-e __ ----II I I I ~lvider
CLi stVi ewer

~~~~~!~e I L----:)e I ectea 

Chapter 73, Object reference 257 

I 



TLisfViewer 

TListViewer Views 

258 

Fields 

The TListViewer object type is essentially a base type from which to derive 
list viewers of various kinds, such as TListBox. TListViewer's basic fields 
and methods offer the following functionality: 

• A view for displaying linked lists of items (but no list) 

• Control over one or two scroll bars 
• Basic scrolling of lists in two dimensions 
• Loading and storing the view and its scroll bars from and to a TStream 
• Ability to mouse or key select (highlight) items on list 

• Draw method that copes with resizing and scrolling 

TListViewer has an abstract GetText method, so you need to supply the 
mechanism for creating and manipulating the text of the items to be 
displayed. 

TListViewer has no list storage mechanism of its own. Use it to display 
scrollable lists of arrays, linked lists, or similar data structures. You can 
also use its descendants, such as TListBox, which associates a collection 
with a list viewer. 

HScrollBar HScrollBar: PScrollBari Read only 

Pointer to the horizontal scroll bar associated with this view. If nil, the 
view does not have such a scroll bar. 

VScrollBar VScrollBar: PScrollBar i Read only 

Pointer to the vertical scroll bar associated with this view. If nil, the view 
does not have such a scroll bar. 

NumCols NumCols: Integer i Read only 

Turbo Vision Guide 



TListViewer 

The number of columns in the list control. 

Topltem TopItern: Integer; Read/write 

The item number of the top item to be displayed. Items are numbered 
from 0 to Range-1. This number depends on the number of columns, the 
size of the view, and the value of Range. 

See also: Range 

Focused Focused: Integer; Read only 

The item number of the focused item. Items are numbered from 0 to Range 
-1. Initially set to 0, the first item, Focused can be changed by mouse click 
or Spacebar selection. 

See also: Range 

Range Range: Integer; Read only 

Methods 

The current total number of items in the list. Items are numbered from 0 
to Range-1. 

See also: TListViewer.SetRange 

Init constructor Init(var Bounds: TRect; ANurnCols: Integer; AHScrollBar, 
AVScrollBar: PScrollBar); 

Creates and initializes a TListViewer object with the given size by first 
calling TView.lnit. The NumCols field is set ANumCols. Options is set to 
(ofFirstClick + of Selectable) so that mouse clicks that select this view will be 
passed first to TListViewer.HandleEvent. The EventMask is set to evBroadcast. 
The initial values of Range and Focused are zero. Pointers to vertical 
and/or horizontal scroll bars can be supplied via the A VScrollBar and 
AHScrollBar arguments. Set either or both to nil if you do not want scroll 
bars. These two pointer arguments will be assigned to the VScrollBar and 
HScrollBar fields. 

If you provide valid scroll bars, their PgStep and ArStep fields will be 
adjusted according to the TListViewer size and number of columns. For a 
single-column TListViewer, for example, the default vertical PgStep is 
Size. Y - 1, and the default vertical ArStep is 1. 

See also: TView.Init, TScrollBar.SetStep 

Load constructor Load (var S: TStrearn); 

Chapter 73, Object reference 259 



TLisfViewer 

Creates a TListViewer object by calling TView.Load. The scroll bars, if any, 
are also loaded from the given stream using calls to GetPeerViewPtr. All 
integer fields are also loaded, using S.Read. 

See also: TView.Load, TListViewer.Store 

ChangeBounds procedure ChangeBounds (var Bounds: TRect); virtual; 

Override: Never Changes the size of the TListViewer object by calling TView.ChangeBounds. 
If a horizontal scroll bar has been assigned, this method adjusts PgStep if 
necessary. 

See also: TView.ChangeBounds, TScrollBar.ChangeStep 

Draw procedure Draw; virtual; 

Override: Never Draws the TListViewer object with the default palette by repeatedly calling 
GetText for each visible item. Takes into account the focused and selected 
items and whether the view is sf Active. 

See also: TListViewer.GetText . 

Focusltem procedure FocusItem(Item: Integer); virtual; 

Override: Never Makes the given item focused by setting the Focused field to Item. The 
method also sets the Value field of the vertical scroll bar (if any) to Item 
and adjusts the TopItem field. 

See also: TListViewer.IsSelected, TScrollBar.SetValue 

C;etPaleffe function GetPalette: PPalette; virtual; 

Override: Returns a pointer to the default TListViewer palette. 
Sometimes 

C;etText function GetText(Item: Integer; MaxLen: Integer): String; virtual; 

Override: Always This is an abstract method. Derived types must supply a mechanism for 
returning a string not exceeding MaxLen given an item index given by 
Item. 

See also: TListViewer.Draw 

IsSelected function IsSelected (Item: Integer): Boolean; virtual; 

Override: Never Returns true if the given Item is focused, that is, if Item = Focused. 

See also: TListViewer.FocusItem 

HandleEvent procedure HandleEvent (var Event: TEvent); virtual; 

Override: Seldom Handles events by calling TView.HandleEvent. Mouse clicks and "auto" 
movements over the list will change the focused item. Items can be 
selected with double mouse clicks. Keyboard events are handled: Spacebar 

260 Turbo Vision Guide 



TListViewer 

selects the currently focused item; the arrow keys, PgUp, PgDn, Ctrl-PgDn, 
Ctrl-PgUp, Home, and End keys are tracked to set the focused item. Finally, 
broadcast events from the scroll bars are handled by changing the focused 
item and redrawing the view as required. 

See also: TView.HandleEvent, TListViewer.FocusItem 

Selectltem procedure SelectItem (Item: Integer); virtual; 

Override: An abstract method for selecting the item indexed by Item. 
Sometimes 

See also: TListViewer.FocusItem 

SetRange procedure SetRange (ARange: Integer); 

Sets the Range field to ARange. If a vertical scroll bar has been assigned, its 
parameters are adjusted as necessary. If the currently focused item falls 
outside the new Range, the Focused field is set to zero. 

See also: TListViewer.Range, TScrollBar.SetParams 

SetState procedure SetState(AState: Word; Enable: Boolean); virtual; 

Override: Seldom Calls TView.SetState to change the TListViewer object's state if Enable is 
True. Depending on the AState argument, this can result in displaying or 
hiding the view. Additionally, if AState is sf Selected and sf Active, the scroll 
bars are redrawn; if AState is sf Selected but not sf Active, the scroll bars are 
hidden. 

See also: TView.SetState, TScrollBar.Show, TScrollBar.Hide 

Store procedure Store(var S: TStream); 

Palette 

Calls TView.Store to save the TListViewer object on the target stream, then 
stores the scroll bar objects (if any) using calls to PutPeerViewPtr, and 
finally saves the integer fields using S. Write. 

See also: TView.Store, TListViewer.Load 

List viewers use the default palette, CListViewer, to map onto the 26th 
through 29th entries in the standard application palette. 

CListViewer 

Active----' 
Inactive-----i 
Focused---------' 

ivider 
Selected 

Chapter 13, Object reference 261 



TMenuBar 

TMenuBar 

Methods 

Menus 

TMenuBar objects represent the horizontal menu bars from which menu 
selections can be made by: 

• direct clicking 
• F10 selection and shortcut keys 
• selection (highlighting) and pressing Enter 
• hot keys 

The main menu selections are displayed in the top menu bar. This is 
represented by an object of type TMenuBar usually owned by your 
T Application object. Submenus are displayed in objects of type TMenuBox. 
Both TMenuBar and TMenuBox are descendants of the abstract type 
TMenuView (a child of TView). 

For most Turbo Vision applications, you will not be involved directly with 
menu objects. By overriding T Application.InitMenuBar with a suitable set 
of nested New, NewSubMenu, NewItem and NewLine calls, Turbo Vision 
takes care of it. 

Init constructor Init (var Bounds: TRecti AMenu: PMenu) i 

Creates a menu bar with the given Bounds by calling TMenuView.lnit. The 
grow mode is set to gfGrowHiX. The Options field is set to ofPreProcess to 
allow hot keys to operate. The Menu field is set to AMenu, providing the 
menu selections. 

See also: TMenuView.Init, gfXXXX grow mode flags, of XXX X option flags, 
TMenuView.Menu 

Draw procedure Draw; virtual; 

262 Turbo Vision Guide 



TMenuBar 

Override: Seldom Draws the menu bar with the default palette. The Name and Disabled fields 
of each TMenultem record in the linked list are read to give the menu 
legends in the correct colors. The Current (selected) item is highlighted. 

GetltemRect procedure GetItemRect (Item: PMenuItem; var R: TRect); virtual; 

Override: Never. Overrides the abstract method in TMenuView. Returns the rectangle 
occupied by the given menu item in R. It is used to determine if a mouse 
click has occurred on a given menu selection. 

Palette 

TMenuBox 

Methods 

See also: TMenuView.GetItemRect 

Menu bars, like all menu views, use the default palette CMenu View to 
map onto the 2nd through 7th entries in the standard application palette. 

1 2 3 4 5 6 

CMenuVfew ~ I 3 I 4 I 5 I ~ Text Normal I I I 
Se 1 ected Shortcut 

Text Disabled Selected Disabled 
Text Shortcut Selected Normal 

Menus II 

l1VlenuJjOX oDJeCtS represent verncai menu Doxes. 1 nese can conrain 
arbitrary lists of selectable actions, including submenu items. As with 
menu bars, color coding is used to indicate disabled items. Menu boxes 
can be instantiated as submenus of the menu bar or other menu boxes, or 
can be used alone as pop-up menus. 

Init constructor Init(var Bounds: TRect; AMenu: PMenui AParentMenu: 
PMenuView) ; 

Chapter 13, Object reference 263 



TMenuBox 

Init adjusts the Bounds parameter to accommodate the width and length of 
the items in AMenu, then creates a menu box by calling TMenuView.lnit. 

The ofPreProcess bit in the Options field is set so that hot keys will operate. 
State is set to include sf Shadow. The Menu field is set to AMenu, which 
provides the menu selections. The ParentMenu field is set to AParentMenu. 

See also: TMenuView.Init, sfXXXX state flags, of XXX X option flags, 
TMenu View.Menu, TMenu View.ParentMenu 

Draw procedure Draw; virtual; 

Override: Seldom Draws the framed menu box and menu items in the default colors. 

GetltemRect procedure GetIternRect (Item: PMenuItern; var R: TRect); virtual; 

Override: Seldom Overrides the abstract method in TMenuView. Returns the rectangle 
occupied by the given menu item. It is used to determine if a mouse click 
has occurred on a given menu selection. 

Palette 

TMenuView 

264 

See also: TMenuView.GetItemRect 

Menu boxes, like all menu views, use the default palette CMenuView to 
map onto the 2nd through 7th entries in the standard application palette. 

234 6 

CMenuView 

Text Normal 
Text Oisabledl-----' 
Text Shortcut:------' 

Se 1 ected Shortcut 
Se 1 ected 01 sab 1 ed 

'-----Selected Normal 

Menus 

TMenu View provides an abstract menu type from which menu bars and 
menu boxes (either pull-down or pop-up) are derived. You will probably 
never instantiate a TMenuView itself. 

Turbo Vision Guide 



TMenuView 

Fields 

ParentMenu ParentMenu: PMenuViewi Read only 

A pointer to the TMenuView (or descendant) object that owns this menu. 
Note that TMenuView is not a group. Ownership here is a much simpler 
concept than TGroup ownership, allowing menu nesting: the selection of 
submenus and the return back to the "parent" menu. Selections from 
menu bars, for example, usually result in a submenu being "pulled 
down." The menu bar in that case is the parent menu of the menu box. 

See also: TMenuBox.lnit 

Menu Menu: PMenui Read only 

A pointer to the TMenu record for this menu, which holds a linked list of 
menu items. The Menu pointer allows access to all the fields of the menu 
items in this menu view. 

See also: TMenuView.FindItem, TMenuView.GetItemRect, TMenu type 

Current Current: PMenuItemi Read only 

A pointer to the currently selected menu item. 

Methods 

Init constructor Init (var Bounds: TRect); 

Calls TView.lnit to create a TMenuView object of size Bounds. The default 
EventMask is set to evBroadcast. This method is not intended to be used for 
instantiating TMenu View objects. It is designed to be called by its 
descendant types, TMenuBar and TMenuBox. 

See also: TView.lnit. evBroadcast. TMenuBar.lnit. TMenuBox.lnit 

Load constructor TMenuView.Load(var s: TStream)i 

Creates a TMenu View object and loads it from the stream S by calling 
TView.Load and then loading the items in the menu list. 

See also: TView.Load, TMenu View. Store 
Execute function Execute: Wordi virtuali 

Override: Never Executes a menu view until the user selects a menu item or cancels the 
process. Returns the command assigned to the selected menu item, or 

Chapter 13, Object reference 265 



TMenuView 

zero if the menu was canceled. This method should never be called except 
by ExecView. 

See also: TGroup.ExecView 

Findlfem function FindItem(Ch: Char): PMenuItem; 

Returns a pointer to the menu item that has Ch as its shortcut key (the 
highlighted character). Returns nil if no such menu item is found or if the 
menu item is disabled. Note that Ch is case-insensitive. 

GetltemRect procedure GetItemRect (Item: PMenuItem; var R: TRect); virtual; 

Override: Always This method returns the rectangle occupied by the given menu item in R. 

GetHelpCtx 

Override: 
Sometimes 

It is used to determine if a mouse click has occurred on a given menu 
selection. Descendants of TMenuView must override this method in order 
to respond to mouse events. 

See also: TMenuBar.GetItemRect, TMenuBox.GetItemRect 

function GetHelpCtx: Word; virtual; 

By default, this method retuIns the help context of the current menu 
selection. If this is hcNoContext, the parent menu's current context is 
checked. If there is no parent menu, GetHelpCtx returns hcNoContext. 

See also: hcXXXX help context constants 

GetPaleHe function GetPalette: PPalette; virtual; 

Override: Returns a pointer to the default CMenuBar palette. 
Sometimes 

HandleEvent procedure HandleEvent (var Event: TEvent); virtual; 

Override: Never Called whenever a menu event needs to be handled. Determines which 
menu item has been mouse or keyboard selected (including hot keys) and 
generates the appropriate command event with PutEvent. 

See also: TView.HandleEvent, TView.PutEvent. 

HotKey function HotKey(KeyCode: Word): PMenultem; 

Returns a pointer to the menu item associated with the hot key given by 
KeyCode. Returns nil if no such menu item exists, or if the item is disabled. 
Hot keys are usually function keys or Alt key combinations, determined by 
arguments in NewItem and NewSubMenu calls during InitMenuBar. This 
method is used by TMenuView.HandleEvent to determine whether a 
keystroke event selects an item in the menu. 

Store procedure Store(var s: TStream); 

266 Turbo Vision Guide 



Palette 

TObject 

Methods 

TMenuView 

Saves the calling TMenuView object (and any of its submenus) on the 
stream S by calling TView.Store and then writing each menu item to the 
stream. 

See also: TMenuView.Load 

All menu views use the default palette CMenuView to map onto the 2nd 
through 7th entries in the standard application palette. 

123 4 5 6 

CHennVie. Q I 3 I 4 I 5 I r::g 
Text Normal---=:J I I I Sel ected Shortcut 
Text Disabled Selected Disabled 
Text Shortcut .. Sel ected Normal 

Objects 

TObject is the starting point of Turbo Vision's object hierarchy. As the base 
object, it has no parents but many descendants. Apart from TPoint and 
TRect, in fact, all of Turbo Vision's standard objects are ultimately derived 
r._~ ____ ,..,.,,,,_: __ , A _____ 1_~ __ •• 1 __ •.. ___ ~ .... 1 __ ,,{T!_! _ .• , __ • _ r . . -,-,-. or 
...... V ..... L .A. '-'VJ ......... .J. .... LJ VLlJ,.;. .... L L.A.."L U.,,.;.., ... U ... LlV V ... ., ... V .... ., .,L ... I;;" ....... ., ... U.~ ......... L ... C;., IHU~~ 
trace its ancestry back to TObject. 

InH constructor Init; 

Allocates space on the heap for the object and fills it with zeros. Called by 
all derived objects' constructors. Note that TObject.lnit will zero all fields 
in descendants, so you should always call TObject.Init before initializing 
any fields in the derived objects' constructors. 

Chapter 73, Object reference 267 

II 



TObject 

Free procedure Freei 

Disposes of the object and calls the Done destructor. 

Done destructor Donei virtuali 

Performs the necessary cleanup and disposal for dynamic objects. 

TParamText Dialogs 

Fields 

TParamText is a derivative of TStaticText that uses parameterized text 
strings for formatted output, using the FormatStr procedure. 

ParamCount ParamCount: Integer; 

ParamCount indicates the number of parameters contained in ParamList. 

See also: TParamText.ParamList 

ParamList ParamList: Pointer; 

Methods 

ParamList is an untyped pointer to an array or record of pointers or 
Longint values to be used as formatted parameters for a text string. 

Init constructor Init(var Bounds: TRect; AText: String; AParamCount: Integer); 

Initializes a static text object by calling TStaticText.lnit with the given 
Bounds and a text string, AText, that may contain format specifiers in the 
form % [ -] [nnn] x, which will be replaced by the parameters passed at run
time. The parameter count, passed in AParamCount, is assigned to the 
ParamCount field. Format specifiers are described in detail in the entry for 
the FormatStr procedure. 

See also: TStaticText.Init, FormatStr procedure 

Load constructor Load (var S: TStream); 

Allocates a TParamText object on the heap and loads its value from the 
stream S by first calling TStaticText.Load and then reading the ParamCount 
field from the stream. 

See also: TStaticText.Load 
DataSize function DataSize: Word; virtual; 

268 Turbo Vision Guide 



TParamText 

Returns the size of the data required by the object's parameters, that is, 
ParamCount * SizeOf(Longint). 

c;etText procedure GetText(var S: String); virtual; 

Produces a formatted text string in S, produced by merging the 
parameters contained in ParamList into the text string in Text, using a call 
to FormatStr(S, TextA, ParamUstA). 

See also: FormatStr procedure 

SetOata procedure SetData(var Rec); virtual; 

The view reads DataSize bytes into ParamList from Rec. 

See also: TView.SetData 

Store procedure Store(var s: TStream)i 

Stores the object on the stream S by first calling TStaticText.Store and then 
writing the ParamCount field to the stream. 

See also: TStaticText.Store 

Palette 
TParamText objects use the default palette CStaticText to map onto the 
sixth entry in the standard dialog palette. 

CStaticText /1 ~ II 
Text 

TPoint Objects 

TPoint is a simple object representing a point on the screen. 

Fields 

X x: Integer 

X is the screen column of the point. 

Y Y: Integer 

Y is the screen row of the point. 

Chapter 73, Object reference 269 

I 



TProgram 

TProgram 

Methods 

Init 

Override: 
Sometimes 

Done 

Override: 
Sometimes 

App 

TProgram provides the basic template for all standard Turbo Vision 
applications. All such programs must be derived from TProgram or its 
child, T Application. T Application differs from TProgram only in its default 
constructor and destructor methods. Both object types are provided for 
added flexibility when designing nonstandard applications. For most 
Turbo Vision work, your program will be derived from T Application. 

TProgram is a TGroup derivative since it needs to contain your TDeskTop, 
TStatusLine, and TMenuBar objects 

constructor Init; 

Sets the Application global variable to @Self; calls TProgram.InitScreen to 
initialize screen mode dependent variables; calls TGroup.lnit passing a 
Bounds rectangle equal to the full screen; sets the State field to sfVisible + 
sf Selected + sfFocused + sfModal + sfExposed; sets the Options field to zero; 
sets the Buffer field to the address of the scre~n buffer given by 
ScreenBuffer; and finally calls InitDeskTop, InitStatusLine, and InitMenuBar, 
and inserts the resulting views into the TProgram group. 

See also: TGroup.lnit, TProgram.InitDeskTop, TProgram.InitStatusLine, 
TProgram.lnitMenuBar 

destructor Done; virtual; 

Disposes the DeskTop, MenuBar, and StatusLine objects, and sets the 
Application global variable to nil. 

See also: TGroup.Done 

(;etEvent procedure GetEvent(var Event: TEvent); virtual; 

270 Turbo Vision Guide 



TProgram 

Override: Seldom The default TView.GetEvent simply calls its owner's GetEvent, and since a 
TProgram (or TApplication) object is the ultimate owner of every view, 
every GetEvent call will end up in TProgram.GetEvent (unless some view 
along the way has overridden GetEvent). 

GetPaleHe 

Override: 
Sometimes 

TProgram.GetEvent first checks if TProgram.PutEvent has generated a 
pending event; if so, GetEvent returns that event. If there is no pending 
event, GetEvent calls GetMouseEvent; if that returns evNothing, it then calls 
GetKeyEvent. If both return evNothing, indicating that no user input is 
available, GetEvent calls TProgram.Idle to allow "background" tasks to be 
performed while the application is waiting for user input. Before 
returning, GetEvent passes any evKeyDown and evMouseDown events to the 
StatusLine for it to map into associated evCommand hot key events. 

See also: TProgram.PutEvent, GetMouseEvent, GetKeyEvent 

function GetPalette: PPalette; virtual; 

Returns a pointer to the palette given by the palette index in the 
AppPalette global variable. TProgram supports three palettes, apColor, 
apBlackWhite, and apMonochrome. The AppPalette variable is initialized by 
TProgram.InitScreen. 

See also: TProgram.InitScreen, AppPalette, apXXXX constants 

HandleEvent procedure HandleEvent (var Event: TEvent); virtual; 

Override: Always Handles Alt-1 through AIt-9 keyboard events by generating an evBroadcast 
event with a Command value of cmSelect WindowNum and an InfoInt value 
of 1..9. TWindow.HandleEvent reacts to such broadcasts by selecting the 
window if it has the given number. 

Idle 

Override: 
Sometimes 

Handles an evCommand event with a Command value of cmQuit by calling 
EndMndal{r.mOuitL whiC'h in pffprt tprmin::ltp~ thp ::lnnlir::ltinn. 

TProgram.HandleEvent is almost always overridden to introduce handling 
of commands that are specific to your own application. 

See also: TGroup.HandleEvent 

procedure Idle; virtual; 

Idle is called by TProgram.GetEvent whenever the event queue is empty, 
allowing the application to perform background tasks while waiting for 
user input. 

Chapter 73, Object reference 271 

II 



TProgram 

The default TProgram.Idle calls StatusLineA.Update to allow the status line 
to update itself according to the current help context. Then, if the 
command set has changed since the last call to TProgram.Idle, an 
evBroadcast with a Command value of cmCommandSetChanged is generated 
to allow views that depend on the command set to enable or disable 
themselves. 

If you override Idle, always make sure to call the inherited Idle. Also, make 
sure that any tasks performed by your Idle do not suspend the application 
for any noticeable length of time, since this would block user input and 
give an unresponsive feel to the application. 

InitDeskTop procedure InitDeskTop; virtual; 

Override: Seldom Creates a TDeskTop object for the application and stores a pointer to it in 
the DeskTop global variable. InitDeskTop is called by TProgram.Init but 
should never be called directly. InitDeskTop can be overridden to 
instantiate a user-defined descendant of TDeskTop instead of the standard 
TDeskTop. 

See also: TProgram.Init, TDeskTop, TWindow.lnit 

InitMenuBar procedure InitMenuBar; virtual; 

Override: Always Creates a TMenuBar object for the application and stores a pointer to it in 
the MenuBar global variable. InitMenuBar is called by TProgram.Init but 
should never be called directly. InitMenuBar is almost always overridden 
to instantiate a user defined TMenuBar instead of the default empty 
TMenuBar. 

InitScreen 

Override: 
Sometimes 

InitStatusLine 

Override: Always 

272 

See also: TProgram.lnit, TMenuBar, TWindow.lnit 

procedure InitScreen; virtual; 

Called by TProgram.Init and TProgram.SetScreenMode every time the screen 
mode is initialized or changed. This is the method that actually performs 
the updating and adjustment of screenmode-dependent variables for 
shadow size, markers and application palette. 

See also: TProgram.Init, TProgram.SetScreenMode 

procedure InitStatusLine; virtual; 

Creates a TStatusLine object for the application and stores a pointer to it in 
the StatusLine global variable. InitStatusLine is called by TProgram.lnit but 
should never be called directly. InitStatusLine is almost always overridden 
to instantiate a user defined TStatusLine instead of the default TStatusLine. 

See also: TProgram.Init, TStatusLine 

Turbo Vision Guide 



TProgram 

OutOfMemory procedure OutOfMernory; virtual; 

Override: Often OutOfMemory is called by TProgram.ValidView whenever it detects that 
LowMemory is True. OutOfMemory should alert the user to the fact that 
there is not enough memory to complete an operation. For example, using 
the MessageBox routine in the StdDIg unit: 

procedure TMyApp.OutOfMemory; 
begin 

MessageBox('Not enough memory to complete operation.', 
nil, mfError + mfOKButton); 

end; 

See also: TProgram.ValidView, LowMemory 

PutEvent procedure PutEvent(var Event: TEvent); virtual; 

Override: Seldom The default TView.PutEvent simply calls its owner's PutEvent, and since a 
TProgram (or T Application) object is the ultimate owner of every view, 
every PutEvent call will end up in TProgram.PutEvent (unless some view 
along the way has overridden PutEvent). 

TProgram.PutEvent stores a copy of the Event record in a buffer, and the 
next call to TProgram.GetEvent will return that copy. 

See also: TProgram.GetEvent, TView.PutEvent 

Run procedure Run; virtual; 

Override: Seldom Runs the TProgram by calling the Execute method (which TProgram 
inherited from TGroup). 

See also: TGroup.Execute 

SetScreenMode procedure SetScreenMode (Mode: Word); 

Sets the screen mode. Mode is one of the constants smC080, smBW80, or 
smMono, optionally with smFont8x8 added to select 43- or 50-line mode on 
an EGA or VGA. SetScreenMode hides the mouse, calls SetVideoMode to 
actually change the screen mode, calls InitScreen to initialize any screen 
mode dependent variables, assigns ScreenBuffer to TProgram.Buffer, calls 
ChangeBounds with the new screen rectangle, and finally shows the 
mouse. 

See also: TProgram.InitScreen, SetVideoMode, smXXXX constants 

ValidView function TPrograrn. ValidView (P: PView): PView; 

Checks the validity of a newly instantiated view, returning P if the view is 
valid, nil if not. First, if P is nil a value of nil is returned. Second, if 

Chapter 73, Object reference 273 

III 



TProgram 

Palettes 

274 

LowMemory is True upon the call to ValidView, the view given by P is 
disposed, the OutOfMemory method is called, and a value of nil is 
returned. Third, if the call P/\.Valid(cmValid) returns False, the view is 
disposed and a value of nil is returned. Otherwise, the view is considered 
valid, and P, the pointer to the view, is returned. 

Va lid View is often used to validate a new view before inserting it in its 
owner. The following statement, for example, shows a typical sequence of 
instantiation, validation, and insertion of a new window on the desktop 
(both TProgram.ValidView and TGroup.lnsert know how to ignore possible 
nil pointers resulting from errors). 

DeskTopA.lnsert(ValidView(New(TMyWindow, Init( ... )))); 

See also: LowMemory, TProgram.OutOfMemory, Valid methods 

The palette for an application object controls the final color mappings for 
all views in the application. All other palette mappings eventually result 
in the selection of an entry in the application's palette, which provides text 
attributes. 

The first entry is used by TBackground for the background color. Entries 2 
through 7 are used by both menu views and status lines. 

23456 

CColor 1$71 1$70 1$78 1$74 1$20 1$28 1$24 I 
I I 

CBlackWhit e 1$70 I $70 I $78 I $7F I $07 I $07 I $OF I 
I I 

CMonochrom e 1$70 I $07 I $07 I $OF I $70 I $70 I $70 I 
~ Background 

Normal Tex 
Disabled T 
Shortcut t 

I I I I l L-s hortcut sel ecti on 
isabled selection 
ormal selection 

t -" 
ext .. 
ext 

Entries 8 through 15 are used by blue windows. 
8 9 10 11 12 13 14 15 

Ceolor $1A $31 $31 $1E $71 $00 

CBlackWhite $07 $70 $70 $07 $70 $00 

CMonochrome 

Frame Passi v eserved 
Frame Activ Scroller Selected Text 
Frame Icon Scroller Normal Text 
Scroll Bar Page Scroll Bar Reserved 

Entries 16 through 23 are used by cyan windows. 

Turbo Vision Guide 



TProgram 

16 17 18 19 20 21 22 23 

CColor 1$37 1$3F 1$3A 1$13 1$13 1$3E 1$21 1$00 I 
I I 

CBlackWhit e 1$07 I $OF I $07 I $70 I $70 I $07 I $70 I $00 I 
I I 

CMonochrom e 1$07 I $OF I $07 I $70 I $70 I $07 I $70 I $00 I 
Frame Pass 
Frame Actf 
Frame Icon 
Scroll Bar 

ive-J 
I I I I I 

Reserved L=: v_ 

Pag 

Scroller Selected Text 
Scroller Normal Text 
Scro 11 Bar Reserved 

Entries 24 through 31 are used by gray windows. 
24 25 26 27 28 29 30 31 

CColor 1$70 1$7F 1$7A 1$13 1$13 1$70 1$7F 1$00 I 
I I 

CBlackWhit e !$70 I $7F I $7F I $70 I $07 I $70 I $07 I $00 I 
I I 

CMonochrom e 1$70 I $70 I $70 I $07 I $07 I $70 I $07 I $00 I 
Frame Pass 
Frame Acti 
Frame Icon 
Scroll Bar 

ive---l 
v 

Pag_ 

I J I I I I 
L-I Reserved 

Scroller Selected Text 
Scroller Normal Text 
Scroll Bar Reserved 

Entries 32 through 63 are used by dialog box objects. See TDialog for 
individual entries. 

CColor 

CBlackWhit e 

CMonochrom e 

iv 
v 

Frame Pass 
Frame Acti 
Frame Icon 
Scroll Bar 
Scroll Bar 

Page 
Controls 

CColor 

CBlackWhite 

CMonochrome 

Button Normal 
Button Oefaul 
Button Sel ect 
Button Oi sabl 
Button Shortc 

Chapter 73, Object reference 

t 
ed 
ed 
ut 

32 33 34 35 36 37 38 39 40 

$70 1$7F 1$7A 1$13 1$13 1$70 1$70 1$7F IS7E 

1$70 1$7F 1$7F 1$70 1$07 1$70 1$70 1$7F IS7F I 
I I 
1$70 I $70 I $70 I $07 I $07 I $70 I $70 I $70 I $7F I 

I 
I I I I I I 

L-I Label Shortcut 
Label Highlight 
Label Normal 
StaticText 

41 42 43 44 45 46 47 48 49 

11~?n I ~?R I ~?F I ~7R I ~?F I t7n 1(':10 I (':IF I (':IF II 
II 

S07 I $OF I $OF I $78 I $OF I $78 I $07 I $OF I $OF 
I I 
1$07 I $07 I $OF I $70 I $OF I $70 I $07 I $OF I $OF I 

I I I I I I ~ 
,. 
;; 

1 uster Shortcut 
1 uster Selected 
luster Normal 
utton Shadow 

275 

I 



TProgram 

CColor 

CBlackWh1te 

CMonochrome 

Inputlfne No 
Inputlfne Se 
InputLine Ar 
H1 story Arro 

CColor 

CBlackWhite 

CMonochrome 

nnal 
lecte:! 
rows 

If stVi ewer Nonna 1 

50 51 52 53 54 55 56 

I$IF I $2F I $1A I $20 I $72 I $31 I $31 I 
I I 
I$OF I $70 I $OF I $07 I $70 I $70 I $70 I 
I I 
1$07 I $70 I $07 I $07 I $70 I $07 I $07 I 

I I I I l ~ 

57 58 59 60 61 62 63 

/$30 1$2F IS3E 1$31 1$13 1$00 1$00 I 
I I 
1$07 I S70 I $OF I $07 I $07 I $00 1$00 ! 

u 

istoryW1ndow Scroll Bar controls 
1 storyW1 ndow Scroll Bar page 
i story S1 des 

If stVi ewer Focused,------' 
ListViewer Selectedl------' 
L1stV1ewer Divider---------' 

eserved 
'----R'eserved 

'------InfoPane 

TRadioButtons Dialogs 

276 

TRadioButtons objects are clusters of up to 65,536 controls with the special 
property that only one control button in the cluster can be selected. 
Selecting an unselected button will automatically deselect (restore) the 
previously selected button. Most of the functionality is derived from 
TCluster including Init, Load, and Done. Radio buttons are often associated 
with a TLabel object. 

TRadioButtons interprets the inherited TCluster.Value field as the number 
of the "pressed" button, with the first button in the cluster being number 
o. 

Turbo Vision Guide 



TRadioBuHons 

Methods 

Draw procedure Draw; virtual; 

Override: Seldom Draws buttons as" ( ) "surrounded by a box. 

~ark function Mark(Item: Integer): Boolean; virtual; 

Overide: Never Returns True if Item = Value, that is, if the Item'th button represents the 
current Value field (the "pressed" button). 

See also: TCluster.Value, TCluster.Mark 

~ovedTo procedure MovedTo (Item: Integer); virtual; 

Override: Never Assigns Item to Value. 

See also: TCluster.MovedTo, TRadioButtons.Mark 

Press procedure Press(Item: Integer); virtual; 

Override: Never Assigns Item to-Value. Called when the Item'th button is pressed. 

Set Data procedure SetData(var Rec); virtual; 

Override: Seldom Calls TCluster.SetData to set the Value field, then sets Sel field equal to 
Value, since the selected item is the "pressed" button at startup. 

See also: TCluster.SetData 

Palette 
TRadioButtons objects use CCluster, the default palette tor all cluster 
objects, to map onto the 16th through 18th entries in the standard dialog 
palette. 

123 4 

CCluster 1116 1 17 1 18 1 18 II 
Text Normal--=:J I iF_nShortcut Selected 
Text Selected ~Shortcut Normal 

Chapter 73, Object reference 277 

I 



TRect 

TRect Objects 

Fields 

A A: TPoint 

A is the point defining the top left corner of a rectangle on the screen. 

B B: TPoint 

B is the point defining the bottom right corner of a rectangle on the screen. 

Methods 

Assign procedure Assign (XA, YA, XB, YB: Integer); 

This method assigns the parameter values to the rectangle's point fields. 
XA becomes A.X, XB becomes X.B, etc. 

Copy procedure Copy (R: TRect); 

Copy sets all fields equal to those in rectangle R. 

Move procedure Move (ADX, ADY: Integer); 

Moves the rectangle by adding ADX to A.X and B.X and adding ADY to 
A.YandB.Y. 

Grow procedure Grow(ADX, ADY: Integer); 

Changes the size of the rectangle by subtracting ADX from A.X, adding 
ADX to B.X, subtracting ADY from A.Y, and adding ADY to B.Y. 

Intersect procedure Intersect (R: TRect); 

Changes the location and size of the rectangle to the region defined by the 
intersection of the current location and that of R. 

Union procedure Union (R: TRect); 

Changes the rectangle to be the union of itself and the rectangle Ri that is, 
to the smallest rectangle containing both the object and R. 

Contains function Contains(P: TPoint): Boolean; 

Returns true if the rectangle contains the point P. 

Equals function Equals (R: TRect): Boolean; 

278 Turbo Vision Guide 



TRact 

Returns true if R is the same as the rectangle. 

Empty function Empty: Boolean; 

Returns True if the rectangle is empty, meaning the rectangle contains no 
character spaces. Essentially, the A and B fields are equal. 

TResourceColiection Objects 

TResourceCollection is a derivative of TStringCollection used with 
TResourceFile to implement collections of resources. A resource file is a 
stream that is indexed by key strings. Each resource item therefore has an 
integer Pos field and a string Key field. The overriding methods of 
TResourceCollection are mainly concerned with handling the extra string 
element in its items. 

TResourceCollection is used internally by TResourceFile objects to maintain a 
resource file's index. 

Objects 113 TResourceFile 

TResourceFile implements a stream that can be indexed by key strings. 
When objects are stored in a resource file, using TResourceFile.Put, a key 
string, which identifies the object, is also supplied. The objects can later be 
retrieved by specifying the key string in a call to TResourceFile.Get. 

To provide fast and efficient access to the objects stored in a resource file, 
TResourceFile stores the key strings in a sorted string collection (using the 

Chapter 13, Object reference 279 



TResourceFile 

280 

Fields 

TResourceCollection type) along with the position and size of the resource 
data in the resource file. 

As is the case with streams, the types of objects written to and read from 
resource files must have been registered using RegisterType. 

Stream Stream: PStream; Read only 

Pointer to the stream asso~iated with this resource file 

Modified Modified: Boolean; Read/write 

Methods 

Set True if the resource file has been modified. 

See also: TResourceFile.Flush 

Init constructor Init (AStream: PStream); 

Override: Never Initializes a resource file using the stream given by AStream and sets the 
Modified field to False. The stream must have already been initialized. For 
example: 

ResFile.lnit(New(TBufStream, Init('MYAPP.RES', stOpenRead, 1024))); 

During initialization, Init will look for a resource file header at the current 
position of the stream. The format of a resource file header is 

type 
TResFileHeader = record 

Signature: array[1 .. 4] of Char; 
ResFileSize: Longint; 
IndexOffset: Longint; 

end; 

where Signature contains 'FBPR', ResFileSize contains the size of the entire 
resource file excluding the Signature and ResFileSize fields (i.e. the size of 
the resource file minus 8 bytes), and IndexOffset contains the offset of the 
index collection from the beginning of the header. 

If Init does not find a resource file header at the current position of 
AStream, it assumes that a new resource file is being created, and thus 
instantiates an empty index. 

If Init sees an .EXE file signature at the current position of the stream, it 
seeks the stream to the end of the .EXE file image, and then looks for a 

Turbo Vision Guide 



TResourceFile 

resource file header there. Likewise, Init will skip over an overlay file that 
was appended to the .EXE file (as will Ovrlnit skip over a resource file). 
This means that you can append both your overlay file and your resource 
file (in any order) to the end of your application's .EXE file. (This is, in fact, 
what the IDE's executable file, TURBO.EXE, does.) 

See also: TResourceFile.Done 

Done destructor Done; virtual; 

Override: Never Flushes the resource file, using TResourceFile.Flush, and then disposes of 
the index and the stream given by the Stream field. 

See also: TResourceFile.lnit, TResourceFile.Flush 

Count function Count: Integer; 

Returns the number of resources stored in the calling resource file. 

See also: TResourceFile.KeyOf 

Delete procedure Delete(Key: String); 

Deletes the resource indexed by Key from the calling resource file. The 
space formerly occupied by the deleted resource is not reclaimed. You can 
reclaim this memory by using SwitchTo to create a packed copy of the file 
on a new stream. 

See also: TResourceFile.SwitchTo 

Flush procedure Flush; 

If the resource file has been modified (checked using the Modified field), 
Flush stores the updated index at the end of the stream and updates the 
resource header at the beginning of the stream. It then resets Modified to 
False. 

See also: TResourceFile.Done, TResourceFileModified 

Get function Get (Key: String): PObject; 

Searches for the given Key in the resource file index. Returns nil if the key 
is not found. Otherwise, seeks the stream to the position given by the 
index, and calls StreamA.Get to create and load the object identified by Key. 
An example: 

DeskTopA.lnsert(ValidView(ResFile.Get('EditorWindow'))); 

See also: TResourceFile.KeyAt, TResourceFile.Put 

KeyAf function KeyAt (I: Integer): String; 

Chapter 73, Object reference 281 



TResourceFile 

Returns the string key of the I'th resource in the calling resource file. The 
index of the first resource is zero and the index of the last resource is 
TResourceFile.Count minus one. Using Count and KeyAt you can iterate 
over all resources in a resource file. 

See also: TResourceFile.Count 

Put procedure Put (Item: PObject; Key: String); 

Adds the object given by P to the resource file with the key string given by 
Key. If the index already contains the Key, then the new object replaces the 
old object. The object is appended to the existing objects in the resource 
file using Streaml\.Put. 

See also: TResourceFile.Get 

SwitchTo function SwitchTo (AStream: PStreami Pack: Boolean): PStreami 

Switches the resource file from the stream it is on to the stream passed in 
AStream, and returns a pointer to the original stream as a result. 

If the Pack parameter is True, the stream will eliminate empty and unused 
space from the resource file before writing it to the new stream. Thisis the 
only way to compress resource files. Copying with the Pack parameter 
False, however, provides faster copying, but without the compression. 

TScroliBar Views 

282 

Fields 

Value Value: Integer; Read only 

The Value field represents the current position of the scroll bar indicator. 
This specially colored marker moves along the scroll bar strip to indicate 
the relative position (horizontally or vertically depending on the scroll bar 
orientation) of the scrollable text being viewed relative to the total text 
available for scrolling. Many events can directly or indirectly change 
Value, such as mouse clicking on the designated scroll bar parts, resizing 

Turbo Vision Guide 



TScroliBar 

the window, or changing the text in the scroller. Similarly, changes in 
Value may need to trigger other events. TScrollBar.Init sets Value to zero by 
default. 

See also: TScrollBar.SetValue, TScrollBar.SetParams, TScrollBar.ScrollDraw, 
TScroller.HandleEvent, TScrollBar.Init 

Min Min: Integer; Read only 

Min represents the minimum value for the Value field. TScrollBar.lnit sets 
Min to zero by default. 

See also: TScrollBar.SetRange, TScrollBar.SetParams 

Max Max: Integer; Read only 

Max represents the maximum value for the Value field. TScrollBar.lnit sets 
Max to zero by default. 

See also: TScrollBar.SetRange, TScrollBar.SetParams 

PgStep PgStep: Integer; Read only 

PgStep is the amount added or subtracted to the scroll bar's Value field 
when a mouse click event occurs in any of the page areas (sbPageLeft, 
sbPageRight, sbPageUp, or sbPageDown) or an equivalent keystroke is 
detected (Ctr/+-, Ctr/~, PgUp, or PgDn). TScrollBar.Init sets PgStep to 1 by 
default. PgStep can be changed using TScrollBar.SetStep, 
TScrollBar.SetParams or TScroller.SetLimit 

See also: TScrollBar.SetStep, TScrollBar.SetParams, TScroller.SetLimit, 
TScrollBar.ScrollStep 

ArStep ArStep: Integer; Read only 

Methods 

ArStep is the amount added or subtracted to the scroll bar's Value field 
when an arrow area is clicked (sbLeftArrow, sbRightArrow, sbUpArrow, or 
"hn"7""'" Ll ...... "7"'1 ,.... ..... "h" "rf":;"T ... l,..~ ... l/"'''T ........ ,....l/,.. .......... rI,.. 'T'C,.. ... "l1"R"' ... T'M;~ ... ,.. ...... 
- - - - -- .. - _ .. - --, -- ---- --1---' ------- ---J - -- ---- --------. - - -. - ----- •• -. --- - ---

ArStep to 1 by default. 

See also: TScrollBar.SetStep, TScrollBar.SetParam, TScrollBar.ScrollStep 

Init constructor Init (var Bounds: TRect); 

Creates and initializes a scroll bar with the given Bounds by calling 
TView.Init. Value, Max, and Min are set to zero. PgStep and ArStep are set 

Chapter 73, Object reference 283 

-Ii 



TScroliBar 

to 1. The shapes of the scroll bar parts are set to the defaults in 
TScrollChars. 

If Bounds produces Size.X = 1, you get a vertical scroll bar; otherwise, you 
get a horizontal scroll bar. Vertical scroll bars have the GrowMode field set 
to gfGrowLoX + gfGrowHiX + gfGrowHiY; horizontal scroll bars have the 
GrowMode field set to gfGrowLoY + gfGrowHiX + gfGrowHiY; 

Load constructor Load (var S: TStream); 

Creates then loads the scroll bar on the stream S by calling TView.Load and 
then T('ading the five integer fields with S.Read. 

See also: TScrollBar.Store 

Dravv procedure Draw; virtual; 

Over ide: Never Draws the scroll bar depending on the current Bounds, Value and palette. 

See also: TScrollBar.ScrollDraw, TScrollBar.Value 

GetPaleHe function GetPalette: PPalette; virtual; 

Override: Returns a pointer to CScrollBar, the default scroll bar palette. 
Sometimes 

HandleEvent procedure HandleEvent (var Event: TEvent); virtual; 

Override: Never Handles scroll bar events by calling TView.HandleEvent then analyzing 
Event. What. Mouse events are broadcast to the scroll bar's owner (see 
Message function) which must handle the implications of the scroll bar 
changes (for example, by scrolling text). TScrollBar.HandleEvent also 
determines which scroll bar part has received a mouse click (or equivalent 
keystroke). The Value field is adjusted according to the current ArStep or 
PgStep values and the scroll bar indicator is redrawn. 

See also: TView.HandleEvent 

ScroliDraw procedure ScrollDraw; virtual; 

Override: Seldom ScrollDraw is called whenever the Value field changes. This pseudo
abstract methods defaults by sending a cmScrollBarChanged message to the 
scroll bar's owner: 

Message (Owner, evBroadcast, cmScrollBarChanged, @Self); 

See also: TScrollBar. Value, Message function. 
ScroliStep function ScrollStep (Part: Integer): Integer; virtual; 

Override: Never By default, ScrollStep returns a positive or negative step value depending 
on the scroll bar part given by Part, and the current values of ArStep and 

284 Turbo Vision Guide 



TScroliBar 

PgStep. The Part argument should be one of the sbXXXX scroll bar part 
constants described in Chapter 14. 

See also: TScrollBar.SetStep, TScrollBar.SetPara"ms 
SetParanns procedure SetParams(AValue, AMin, AMax, APgStep, AArStep: Integer); 

SetParams sets the Value, Min, Max, PgStep, and ArStep fields with the 
given argument values. Some adjustments are made if your arguments 
conflict. For example, Min cannot be set higher than Max, so if AMax < 
AMin, Max is set to AMin. Value must lie in the closed range [Min,Max], so 
if AValue < AMin, Value is set to AMin; and if AValue > AMax, Value is set 
to AMax. The scroll bar is redrawn by calling Draw View. If Value is 
changed, ScrollDraw is also called. 

See also: TView.DrawView, TScrollBar.ScrollDraw, TScrollBar.SetRange, 
TScrollBar.Set Value 

SetRange procedure SetRange (AMin, AMax: Integer); 

SetRange sets the legal range for the Value field by setting Min and Max to 
the given arguments AMin and AMax. SetRange calls SetParams, so 
DrawView and ScrollDraw will be called if the changes require the scroll 
bar to be redrawn. 

See also: TScrollBar.SetParams 

SetStep procedure SetStep (APgStep, AArStep: Integer); 

SetStep sets the fields PgStep and ArStep to the given arguments APgStep 
and AArStep. This method calls SetParams with the other arguments set to 
their current values. 

See also: TScrollBar.SetParams, TScrollBar.ScrollStep 

SetValue procedure SetValue (AValue: Integer); 

SetValue sets the Value field to A Value by calling SetParams with the other 
_~ _ .1 __ o. ,_ f'. 0-" _ ,.,.. ~ .. __ ._T7~ __ . ___ , 1"""_ ••• 11T"""\. ___ . _____ !111._ 

UJ.5UJ.J.L\':;J.LL~ ~CL LV LJ.LCJ.J. '-UJ.J.CJ.LL VUJ.UC~. L.JIULV" £I'LV UJ.LU ..... L..IUUL.JIULV VVJ.J.J. vc 

called if this call changes Value. 

See also: TScrollBar.SetParams, TView.DrawView, TScrollBar.ScrollDraw, 
TScroller.ScrollTo 

Store procedure Store(var S: TStream); 

Stores the calling TScrollBar object on the stream S by calling TView.Store 
and then writing the five integer fields to the stream using S. Write. 

See also: TScrollBar.Load 

Chapter 73, Object reference 285 

-It; 



TScrollBar 

Palette 
Scroll bar objects use the default palette, CScrollBar, to map onto the 4th 
and 5th entries in the standard application palette. 

2 3 

CScrol1Bar 
ll=;;==!==;='=;::dJ 

Page------' 
Arrows------J 

Indicator 

TScrolier Views 

286 

Fields 

HScrollBar HScrollBar: PScrollBar i Read only 

HScrollBar points to the horizontal scroll bar associated with the scroller. If 
there is no such scroll bar, HScrollBar is nil. 

VScrollBar VScrollBar: PScrollBar; Read only 

VScrollBar points to the vertical scroll bar associated with the scroller. If 
there is no such scroll bar, VScrollBar is nil. 

Delta Delta: TPoint; Read only 

Delta holds the X (horizontal) and Y (vertical) components of the scroller's 
position relative to the virtual view being scrolled. Automatic scrolling is 
achieved by changing either or both of these components in response, for 
example, to scroll bar events that change the Value field(s). Conversely, 
manual scrolling changes Delta, triggers changes in the scroll bar Value 
fields, and leads to updating of the scroll bar indicators. 

Turbo Vision Guide 



See also: TScroller.ScrollDraw, TScroller.ScrollTo 

Limit Limit: TPoint; 

TScrolier 

Read only 

Limit.X and Limit. Yare the maximum allowed values for Delta.X and 
Delta.Y 

See also: TScroller.Delta 

Methods 

Init constructor Init(var Bounds: TRect; AHScrollBar, AVScrollBar: 
PScrollBar) ; 

Creates and initializes a TScroller object with the given size and scroll bars. 
Calls TView.Init to set the view's size. Options is set to of Selectable and 
EventMaskis set to evBroadcast. AHScrollBar should be nil if you do not 
want a horizontal scroll bar; similarly AVScrollBar should be nil if you do 
not want a vertical scroll bar. 

See also: TView.Init, TView.Options, TView.EventMask 

Load constructor Load (var S: TStream); 

Loads the scroller view from the stream S by calling TView.Load, then 
restores pointers to the scroll bars using GetPeerViewPtr, and finally reads 
the Delta and Limit fields using S.Read. 

See also: TScroller.Store 

Change Bounds procedure ChangeBounds (var Bounds: TRect); virtual; 

Override: Never Changes the scroller's size by calling SetBounds. If necessary, the scroller 
and scroll bars are then redrawn by calling DrawView and SetLimit. 

See also: TView.SetBounds, TView.DrawView, TScroller.SetLimit 

Getpalene function GetPalette: PPalette; virtual; 

Override: Returns a pointer to CScroller, the default scroller palette. 
Sometimes 

HandleEvent procedure HandleEvent (var Event: TEvent); virtual; 

Override: Seldom Handles most events by calling TView.HandleEvent. Broadcast events with 
the command cmScrollBarChanged, if they come from either HScrollBar or 
VScrollBar, result in a call to TScroller.ScrollDraw. 

See also: TView.HandleEvent, TScroller.ScrollDraw 

Scro"Oraw procedure ScrollDraw; virtual; 

Chapter 73, Object reference 287 

-IIi1 



TScrolier 

Override: Never Checks to see if Delta matches the current positions of the scroll bars. If 
not, Delta is set to the correct value and DrawView is called to redraw the 
scroller. 

See also: TView.DrawView, Tscroller.Delta, Tscroller.HscrnHBar, 
Tscroller. VscrollBar 

ScroliTo procedure ScrollTo (X, Y: Integer); 

Sets the scroll bars to (X,Y) by calling HscrollBar/\.setValue(X) and 
VscrollBar/\.setValue(Y), and redraws the view by calling DrawView. 

See also: TView.DrawView, Tscroller.setValue 

SetLimit procedure SetLimit (X, Y: Integer); 

Sets Limit.X to X and Limit.Y to Y, then calls HscrollBar/\.setParams and 
VscrollBar/\ .setParams (if these scroll bars exist) to adjust their Max 
field(s). These calls may trigger scroll bar redraws. Finally, DrawView is 
invoked to redraw the scroller if necessary. 

See also: Tscroller.Limit, Tscroller.HscrollBar, Tscroller. VscrollBar, 
TscrollBar.setParams 

SetState procedure SetState(AState: Word; Enable: Boolean); virtual; 

Override: Seldom This method is called whenever the scroller's state changes. Calls 
TView.setstate to set or clear the state flags in Astate. If the new state is 

288 

sf Selected and sf Active, setstate displays the scroll bars, otherwise they are 
hidden. 

See also: TView.setstate 

Store procedure Store(var S: TStream); 

Palette 

Writes the scroller to the stream 5 by calling TView.store, then stores 
references to the scroll bars using PutPeerViewPtr, and finally writes the 
values of Delta and Limit using S. Write. 

See also: Tscroller.Load, Tstream. Write 

Scroller objects use the default palette, Cscroller, to map onto the 6th and 
7th entries in the standard application palette. 

1 2 

CScroller Q I tL 
Nonnal~ ighlight 

Turbo Vision Guide 



TSortedColiection 

TSortedColiection Objects 

Methods 

TSortedCollection is a specialized derivative of TCollection implementing 
collections sorted by key without duplicates. Sorting is implied by a 
virtual TStringCollection.Compare method which you override to provide 
your own definition of element ordering. As new items are added they are 
automatically inserted in the order given by the Compare method. Items 
can be located using the binary search method, TStringCollection.Search. 
The virtual KeyOf method that returns a pointer for Compare, can also be 
overridden if Compare needs additional information. 

Compare function Compare (Key!, Key2: Pointer): Integer; virtual; 

Override: Always Compare is an abstract method that must be overridden in all descendant 
types. Compare should compare the two key values, and return a result as 
follows: 

-1 
(l 

1 

if Keyl < Key2 
;/= Y01,7 - Y01'? 

ifK~i >K~2 

Keyl and Key2 are pointer values, as extracted from their corresponding 
collection items by the TSortedCollection.KeyOf method. The 
TSortedCollection.Search method implements a binary search through the 
collection's items using Compare to compare the items. 

See also: TSortedCollection.KeyOf, TSortedCollection.Compare 

IndexOf function IndexOf (Item: Pointer): Integer; virtual; 

Chapter 73, Object reference 289 

-Ii 



TSortedColiection 

Override: Never Uses TSortedCoIlection.Search to find the index of the given Item. If the item 
is not in the collection, IndexOfreturns -1. The actual implementation of 
TSortedCollection.IndexOf is: 

if Search(KeyOf(Item), I) then IndexOf := I else IndexOf := -1; 

See also: TSortedCollection.Search 

Insert procedure Insert(Item: Pointer); virtual; 

Override: Never If the target item is not found in the sorted collection, it is inserted at the 
correct index position. Calls TSortedCollection.Search to determine if the 
item exists, and if not, where to insert it. The actual implementation of 
TSortedCoIlection.Insert is: 

KeyOf 

Override: 
Sometimes 

if not Search(KeyOf(Item), I) then AtInsert(I, Item); 

See also: TSortedCollection.Search 

function KeyOf(Item: Pointer): Pointer; virtual; 

Given an Item from the collection, KeyOf should return the corresponding 
key of the item. The default TSortedCollection.KeyOf simply returns Item. 
KeyOfis overridden in cases where the key of the item is not the item 
itself. 

See also: TSortedCollection.IndexOf 

Search function Search (Key: Pointer; var Index: Integer): Boolean; virtual; 

Override: Seldom Returns True if the item identified by Key is found in the sorted collection. 
If the item is found, Index is set to the found index; otherwise Index is set 
to the index where the item would be placed if inserted. 

See also: TSortedCollection.Compare, TSortedCollection.Insert 

TStaticText Dialogs 

290 Turbo Vision Guide 



TStaticText 

TStaticText objects represent the simplest possible views: they contain 
fixed text and they ignore all events passed to them. They are generally 
used as messages or passive labels. Descendants of TStaticText perform 
more active roles. 

Field 

Text Text: PString; Read only 

A pointer to the text string to be displayed in the view. 

Methods 

Init constructor Init (var Bounds: TRect; AText: String); 

Creates a TStaticText object of the given size by calling TView.Init, then 
sets Text to NewStr(AText). 

See also: TView.Init 

Load constructor Load (var s: TStrearn); 

Creates and initializes a TStaticText object off the given stream. Calls 
TView.Load and sets Text with S.ReadStr. Used in conjunction with 
TStaticText.Store to save and retrieve static text views on a stream. 

See also: TView.Load,TStaticText.Store, TStream.ReadStr 

Done destructor Done; virtual; 

Override: Seldom Disposes of the Text string then calls TView.Done to destroy the object. 

Draw procedure Draw; virtual; 

Override: Seldom Draws the text string inside the view, word wrapped if necessary. A Ctrl-M 
in the text IndIcates the begmning ot a new llne. A llne or text IS centereci 
in the view if the line begins with Ctr/~C. 

GetPalette function GetPalette: PPalette; virtual; 

Override: Returns a pointer to the default palette, CStaticText. 
Sometimes 

GetText procedure Get Text (var S: String); virtual; 

Override: Returns the string pointed to by Text in S. 
Sometimes 

Store procedure TStaticText.Store(var s: TStream); 

Chapter 13, Object reference 291 

-iii 



TStaticText 

Palette 

TStatusLine 

292 

Stores TStaticText object on the given stream by calling TView.Store and 
S. WriteStr. Used in conjunction with TStaticText.Store to save and retrieve 
static text views on a stream. 

See also: TStaticText.Load, TView.Store, TStream. WriteStr 

Static text objects use the default palette, CStaticText, to map onto the 6th 
entry in the standard dialog palette. 

CStatiCTe:t II ~ II 
Text colo 

Menus 

The TStatusLine object is a specialized view, usually displayed at the 
bottom of the screen. Typical status line displays are lists of available hot 
keys, displays of available memory, time of day, current edit modes, and 
hints for users. The items to be displayed are set up in a linked list using 
InitStatusLine called by T Application, and the one displayed depends on 
the help context of the currently focused view. Like the menu bar and 
desktop, the status line is normally owned by a T Application group. 

Status line items are records of type TStatusItem, which contain fields for a 
text string to be displayed on the status line, a key code to bind a hot key 
(typically a function key or an Alt-key combination), and a command to be 
generated if the displayed text is clicked on with the mouse or the hot key 
is pressed. 

Status line displays are help context-sensitive. Each status line object 
contains a linked list of status line Defs (of type TStatusDej), which define 
a range of help contexts and a list of status items to be displayed when the 
current help context is in that range. In addition, hints or predefined 
strings can be displayed according to the current help context. 

Turbo Vision Guide 



TStatusLine 

Fields 

Items Items: PStatusItem; Read only 

A pointer to the current linked list of TStatusItem records. 

See also: TStatusItem 

Defs Defs: PStatusDefi Read only 

Methods 

A pointer to the current linked list of TStatusDef records. The list to use is 
determined by the current help context. 

See also: TStatusDef, TStatusLine.Update, TStatusLine.Hint 

Init constructor Init (var Bounds: TRect; ADefs: P'StatusDef); 

Creates a TStatusLine object with the given Bounds by calling TView.Init. 
The ofPreProcess bit in Options is set, EventMask is set to include 
evBroadcast, and GrowMode is set to gfGrowLoY + gfGrowHiX + gfGrowHiY. 
The Defs field is set to ADefs. If ADefs is nil, Items is set to nil, otherwise, 
Items is set to ADefsA .Items 

See also: TView.Init 

Load constructor Load (var S: TStream); 

Creates a TStatusLine object and loads it from the stream S by calling 
TView.Load and then reading the Defs and Items from the stream. 

See also: TVi~w.Load, TStatusLine.Store 

Done destructor Done; virtual; 

Override: Never nl<;:TVl<;:Q<;: nf ~11 thQ Tfpmc;: ~nr1 npfc;: in thp T.C.tnt1Jc;:T.inp ohiprt. thpn C't'llls 
~ J " • 

TView.Done. 

See also: TView.Done 

Draw procedure Draw; virtual; 

Override: Seldom Draws the status line by writing the Text string for each status item that 
has one, then any hints defined for the current help context, following a 
divider bar. 

See also: TStatusLine.Hint 

GetPaleHe function GetPalette: PPalette: virtual; 

Chapter 73, Object reference 293 

.. 
II 



TStatusLine 

Override: Returns a pointer to the default palette, CStatusLine 
Sometimes 

HandleEvent procedure HandleEvent (var Event: TEvent); virtual; 

Override: Seldom Handles events sent to the status line by calling TView.HandleEvent, then 
checking for three kinds of special events. Mouse clicks that fall within the 
rectangle occupied by any status item generate a command event with 
Event. What set to the Command in that status item. Key events are checked 
against the KeyCode field in each item; a match causes a command event 
with that item's Command. Broadcast events with the command. 
cmCommandSetChanged cause the status line to redraw itself to reflect any 
hot keys that might have been enabled or disabled. 

294 

See also: TView.HandleEvent 

Hint function Hint (AHelpCtx: Word): String; virtual; 

Override: Often This pseudo-abstract method returns a null string. It must be overridden 
to provide a context-sensitive hint string for the AHelpCtx argument. A 
non-null string will be drawn on the status line after a divider bar. 

See also: TStatusLine.Draw 

Store procedure Store(var S: TStream); 

Saves the TStatusLine object on the stream 5 by calling TView.Store and 
then writing all the status definitions and their associated lists of items 
onto the stream. The saved object can be recovered by using 
TStatusLine.Load. 

See also: TView.Store, TStatusLine.Load 

Update procedure Update; 

Palette 

Selects the correct Items from the lists in Defs, depending on the current 
help context, then calls DrawView to redraw the status line if the items 
have changed. 

See also: TStatusLine.Defs 

Status lines use the default palette CStatusLine to map onto the 2nd 
through 7th entries in the standard application palette. 

2 3 4 5 

CStatusLine 

Text Normal 
Text Disabledl----' 
Text Shortcut------' 

Sel ected Shortcut 
Selected Disabled 

'-----Selected Normal 

Turbo Vision Guide 



TStream 

Fields 

TStream 

Objects 

TStream is a general abstract object providing polymorphic 110 to and 
from a storage device. You can create your own derived stream objects by 
overriding the virtual methods: GetPos, GetSize, Read, Seek, Truncate, and 
Write. Turbo Vision itself does this to derive TDosStream and TEmsStream. 
For buffered derived streams, you must also override TStream.Flush. 

Status Status: Integer Read/write 

Table 13.1 
Stream error codes 

Indicates the current status of the stream as follows: 

TStream error codes 

stOk 
stError 
stInitError 
stReadError 
st WriteError 
stGetError 
stPutError 

No error 
Access error 
Cannot initialize stream 
Read beyond end of stream 
Cannot expand stream 
Get of unregistered object type 
Put of unregistered object type 

If Status is not stOk all operations on the stream are suspended until Reset 
is called. 

Errorlnfo ErrorInfo: Integer Read/write 

Errorlnfo contains additional information when Status is not stOk. For 
Status values of stError, stlnitError, stReadError, and st WriteError, Errorlnfo 
contains the DOS or EMS error code, if one is available. When Status is 
stGetError, Errorlnfo contains the object type ID (the ObjType field of a 
TStreamRec) of the unregistered object type. When Status is stPutError, 

Chapter 73, Object reference 295 

-II 



TStream 

296 

Methods 

ErrorInfo contains the VMT data segment offset (the VmtLink field of a 
TStreamRec) of the unregistered object type. 

CopyFrom procedure CopyFrom (var S: TStreami Count: Longint); 

Error 

Override: 
Sometimes 

Flush 

Override: 
Sometimes 

Copy Count bytes from stream S to the calling stream object. For example: 

{Create a copy of entire stream} 
NewStream := New(TEmsStream, Init(OldStreamA.GetSize)); 
OldStreamA.Seek(O); 
NewStreamA.CopyFrom(OldStream, OldStreamA.GetSize); 

See also: TStream.GetSize, TObject.Init 

procedure Error(Code, Info: Integer); virtual; 

Called whenever a stream error occurs. The default TStream.Error stores 
Code and Info in the Status and ErrorInfo fields and then, if the global 
variable StreamError is not nil, calls the procedure pointed to by 
StreamError. Once an error has occurred, all stream operations on the 
stream are suspended until Reset is called. 

See also: TStream.Reset, StreamError variable 

procedure Flush; virtual; 

An abstract method that must be overridden if your descendant 
implements a buffer. This method can flush any buffers by clearing the 
read buffer, by writing the write buffer, or both. The default TStream.Flush 
does nothing. 

See also: TDosStream.Flush 

Get function Get: PObject; 

Reads an object from the stream. The object must have been previously 
written to the stream by TStream.Put. Get first reads an object type IO (a 
word) from the stream. It then finds the corresponding object type by 
comparing the IO to the ObjType field of all ,registered object types (see the 
TStreamRec type), and finally calls the Load constructor of that object type 
to create and load the object. If the object type IO read from the stream is 
zero, Get returns a nil pointer; if the object type IO has not been registered 
(using RegisterType), Get calls TStream.Error and returns a nil pointer; 
otherwise, Get returns a pointer to the newly created object. 

See also: TStream.Put, RegisterType, TStreamRec, Load methods 

Turbo Vision Guide 



TStream 

(;etPos function Getpos: Longint; virtual; 

Override: Always Returns the value of the calling stream's current position. This is an 
abstract method that must be overridden. 

See also: TStream.Seek 

(;etSize function GetSize: Longint; virtual; 

Override: Always Returns the total size of the calling stream. This is an abstract method that 
must be overridden. 

Put procedure Put(P: PObject); 

Writes an object to the stream. The object can later be read from the 
stream using TStream.Get. Put first finds the type registration record of the 
object by comparing the object's VMT offset to the VmtLink field of all 
registered object types (see the TStreamRec type). It then writes the object 
type ID (the ObjType field of the registration record) to the stream, and 
finally calls the Store method of that object type to write the object. If the P 
argument passed to Put is nil, Put writes a word containing zero to the 
stream. If the object type of P has not been registered (using RegisterType), 
Put calls TStream.Error and doesn't write anything to the stream. 

See also: TStream.Get, RegisterType, TStreamRec, Store methods 

Read procedure Read (var Buf; Count: Word); virtual; 

Override: Always This is an abstract method that must be overridden in all descendant 
types. Read should read Count bytes from the stream into Buf and advance 
the current position of the stream by Count bytes. If an error occurs, Read 
should call Error, and fill Buf with Count bytes of zero. 

See also: TStream. Write, TStream.Error. 

ReadStr function ReadStr: PString; 
n~_...l~ _ ~L...! __ L-~_ L1.. __ • ___ L_~~!L!~_ ~C.L1.. _ __ 11! ___ '-___ _ ~L.._!___ _ 

PStri~i ;~~~~;~ TSir~~~~Re~dSirc~n;G;iM;~-t~ an~~:t~ (L~~~;h+ l~)b;t;s m 
for the string. IIiiI 
See also: TStream. WriteStr 

Reset procedure Reset; 

Resets any stream error condition by setting Status and Errorlnfo to zero. 
This method lets you continue stream processing following an error 
condition that you have corrected. 

See also: TStream.Status, TStream.Errorlnfo, stXXXX error codes 

Chapter 73, Object reference 297 



TStream 

Seek procedure Seek (Pas: Longint); virtual; 

Override: Always This is an abstract method that must be overridden by all descendants. 
TStream.Seek sets the current position to Pos bytes from the start of the 
calling stream. The start of a stream is position O. 

See also: TStream.GetPos 

Truncate procedure Truncate; virtual; 

Override: Always This is an abstract method that must be overridden by all descendants. 
TStream. Truncate deletes all data on the calling stream from the current 
position to the end. 

See also: TStream.GetPos, TStream.Seek 

Write procedure Write (var Buf; Count: Word); virtual; 

Override: Always This is an abstract method that must be overridden in all descendant 
types. Write should write Count bytes from But onto the stream and 
advance the current position of the stream by Count bytes. If an error 
occurs, Write should call Error. 

See also: TStream.Read, TStream.Error. 

WriteStr procedure WriteStr (P: PString); 

Writes the string pA to the calling stream, starting at the current position. 

See also: TStream.ReadStr 

TStringColiection Objects 

298 

TSortedCollection is a simple derivative of TSortedCollection implementing a 
sorted list of ASCII strings. The TStringCollection.Compare method is 
overridden to provide the conventional lexicographic ASCII string 

Turbo Vision Guide 



Methods 

Compare 

Override: 
Sometimes 

TStringColiection 

ordering. You can override Compare to allow for other orderings, such as 
those for non-English character sets. 

function Compare (Keyl, Key2: Pointer): Integer; virtual; 

Compares the strings Keyl/\ and Key2/\ as follows: return -1 if Keyl < 
Key2; 0 if Keyl = Key2; and +1 if Keyl > Key2. 

See also: TStringCollection.Search 

Freeltem procedure FreeItem(Item: Pointer); v1rtual; 

Override: Seldom Removes the string Item/\ from the sorted collection and disposes of the 
string. 

Getltem function GetItem(var S: TStream): Pointer; virtual; 

Override: Seldom By default, reads a string from the TStream by calling S.ReadStr. 

See also: TStream.ReadStr 

Putltem procedure PutItem(var S: TStream; Item: Pointer); virtual; 

Override: Seldom By default, writes the string Item/\ on to the TStream by calling S. WriteStr. 

TStringList 

See also: TStream. WriteStr 

Objects 

TStringList provides a mechanism for accessing strings stored on a stream. 
Each string in a string list is identified by a unique number (its key) 
between 0 and 65,535. String lists take up less memory than normal string 
literals, since the strings are stored on a stream instead of in memory. 
Also, string lists permit easy internationalization, as the strings are not 
"burned into" the program. 

TStringList has methods only for accessing strings; you must use 
TStrListMaker to create string lists. 

Chapter 73, Object reference 299 

-iii 



TStringList 

Methods 

Note that TStringList and TStrListMaker have the same object type ID 
(ObjType field in a TStreamRec), and that they can therefore not both be 
registered and used in the same program. 

Load constructor Load (var S: TStream); 

Loads the string list index from the stream S and stores internally a 
reference to S so that TStringList.Get can later access the stream when 
reading strings. 

Assuming that TStringList has been registered using 
RegisterType(RStringList), here's how to instantiate string list (created 
using TStrListMaker and TResourceFile.Put) from a resource file: 

ResFile.lnit(New(TBufStream, Init('MYAPP.RES', stOpenRead, 1024))); 
Strings :; PStringList(ResFile.Get('Strings')); 

See also: TStrListMaker.lnit, TStringList.Get 

Done destructor Done; virtual; 

Override: Never Deallocates the memory allocated to the string list. 

See also: TStrListMaker.lnit, TStringList.Done 

Get function Get (Key: Word): String; 

Returns the string given by Key, or an empty string if there is no string 
with the given Key. An example: 

P :; @FileName; 
FormatStr(S, StringsA.Get(sLoadingFile), P); 

See also: TStrListMaker.Put 

TStrListMaker Objects 

300 

TStrListMaker is a simple object type used to create string lists for use with 
TStringList. 

Turbo Vision Guide 



Methods 

TStrListMaker 

The following code fragment shows how to create and store a string list in 
a resource file. 

const 
sInformation 
sWarning 
sError 
sLoadingFile 
sSavingFile 

var 

= 100; 
= 101; 
= 102; 
= 200; 
= 201; 

ResFile: TResourceFile; 
S: TStrListMaker; 

begin 
RegisterType(RStrListMaker); 

ResFile.Init(New(TBufStream, Init('MYAPP.RES', stCreate, 1024))); 
S. Init (16384, 256); 

S.Put(sInformation, 'Information'); 
S.Put(sWarning, 'Warning'); 
S.Put(sError, 'Error'); 
S.Put(sLoadingFile, 'Loading file %s.'); 
S.Put(sSavingFile, 'Saving file %s.'); 

ResFile.Put(@S, 'Strings'); 
S.Done; 
ResFile. Done; 

end; 

Inn constructor Init(AStrSize, AlndexSize: Word); 

Creates an in-memory string list of size AStrSize with an index of 
Ll T""rin'VC:';...,n "'1"' ...... "' ... '-... A ... ,-: ... ~ 1-. •• CC~_ ~ ... ...:I __ :_...:1 ~~. 1-_.L:L:~_ ~L: L1- ____ _ !t:! _..l 

- - ...... - ..... - '"'-- ----.... - ...... - ..... - .......... 0 - _ ...... _ ... _ .... - _ ............. - ..... ,'" """ ................. A ""' .... "' ... L ...... ,"",!"""","-...A..&. ... """"'" 

size is allocated on the heap. 

AStrSize must be large enough to hold all strings to be added to the string 
list-each string occupies its length plus one bytes. 

As strings are added to the string list (using TStrListMaker.Put), a string 
index is built. Strings with contiguous keys (such as sInformation, 
s Warning, and sError in the example above) are recorded in one index 
record, up to 16 at a time. AlndexSize must be large enough to allow for all 
index records generated as strings are added. Each index entry occupies 6 
bytes. 

See also: TStringList.Load, TStrListMaker.Done 

Chapter 73, Object reference 301 

-iii 



TStrListMaker 

Done destructor Done; virtual; 

Frees the memory allocated to the string list maker. 

See also: TStrListMaker.Init 

Put procedure Put (Key: Word; S: String); 

Add the given String to the calling string list (with the given numerical 
Key). 

Store procedure Store(var S: TStream); 

Stores the calling string list on the target stream. 

lTerminal TextView 

302 

TTerminal implements a "dumb" terminal with buffered string reads and 
writes. The default is a cyclic buffer of 64K bytes. 

Fields 

BufSize BufSize: Word; Read only 

The size of the terminal's buffer in bytes. 

Buffer Buffer: PTerminalBuffer; Read only 

Points to the first byte of the terminal's buffer. 

QueFront QueFront: Word; Read only 

Offset (in bytes) of the first byte stored in the terminal buffer. 

QueBeck QueBack: Word; Read only 

Offset (in bytes) of the last byte stored in the terminal buffer. 

Turbo Vision Guide 



ITerminal 

Methods 

Init constructor Init(var Bounds: TRect; AHScrollBar, AVScrollBar: PScrollBar; 
ABufSize: Word); 

Creates a TTerminal object with the given Bounds, horizontal and vertical 
scroll bars, and buffer by calling TTextDevice.lnit with the Bounds and 
scroller arguments, then creating a buffer (pointed to by Buffer) with 
BufSize equal to ABufSize. GrowMode is set to gfGrowHiX + gfGrowHiY. 
QueFront and QueBack are both initialized to 0, indicating an empty buffer. 
The cursor is shown at the view's origin, (0,0). 

See also: TScroller.Init 

Done destructor Done; virtual; 

Override: Deallocates the buffer and calls TTextDevice.Done to dispose the object. 
Sometimes 

See also: TScroller.Done, TTextDevice.Done 

BufDec procedure BufDec (var Val: Word); 

Used to manipulate queue offsets with wrap around: If Val is zero, Val is 
set to (BufSize -1); otherwise, Val is decremented. 

See also: TTerminal.BufInc 

Buflnc procedure BufInc (var Val: Word); 

Used to manipulate a queue offsets with wrap around: Increments Val by 
1, then if Val >= BufSize, Val is set to zero. 

See also: TTerminal.BufDec 

CalcWidth function CalcWidth: Integer; 

Returns the length of the longest line in the text buffer. 
- - -
\"UIIIII~tm tunctl.on Can Insert (Amount: Word): Boolean; 

Returns True if the number of bytes given in Amount canbe inserted into 
the terminal buffer without having to discard the top line. 

Draw procedure Draw; virtual; 

Override: Seldom Called whenever the TTerminal scroller needs to be redrawn, for example, 
when the scroll bars are clicked on, the view is unhidden or resized, the 
Delta values are changed, or when added text forces a scroll. 

NextLine function NextLine (Pas: Word): Word; 

Chapter 73, Object reference 303 



TTerminal 

Returns the buffer offset of the start of the line that follows the position 
given by Pos. 

See also: TTerminal.PrevLines 

PrevLines function PrevLines (Pos :Word; Lines: Word): Word; 

StrRead 

Override: 
Sometimes 

StrWrite 

Override: Seldom 

Returns the offset of the start of the line that is Lines lines previous to the 
position given by Pos. 

See also: TTerminal.NextLine 

function StrRead(var s: TextBuf): Byte; virtual; 

Abstract method returning O. You must override if you want a derived 
type to be able to read strings from the text buffer. 

procedure StrWrite{var s: TextBuf; Count: Byte); virtual; 

Inserts Count lines of the text given by S into the terminal's buffer. This 
method handles any scrolling required by the insertion and selectively 
redraws the view with DrawView. 

See also: TView.Draw View 

~ueEnnpty function QueEmpty: Boolean; 

Palette 

304 

Returns true if QueFront is equal to QueBack. 

See also: TTerminal.QueFront, TTerminal.QueBack 

Terminal objects use the default palette, CScroller, to map onto the 6th and 
7th entries in the standard application palette. 

2 

CScroller ij6 I ~ 
Nonnal~ ighlight 

Turbo Vision Guide 



TTextOevice 

11 extDevice TextView 

Methods 

TTextDevice is a scrollable TTY type text viewer/device driver. Apart from 
the fields and methods inherited from TScroller, TT extDevice defines 
virtual methods for reading and writing strings from and to the device. 
TTextDevice exists solely as a base type for deriving real terminal drivers. 
TTextDevice uses TScroller's constructor and destructor. 

StrRead function StrRead (var S: TextBuf): Byte; virtual; 

Override: Often Abstract method returning 0 by default. You must override in any derived 
type to read a string from a text device into S. The method returns the 
number of lines read. 

StrWrite procedure StrWrite (var S: TextBuf; Count: Byte); virtual; 

Override: Always Abstract method to write a string to the device. It must be overridden by 
derived types. For example, TTenninal.StrWrite inserts Count lines of the 
text given by S into the terminal's buffer and redraws the view. 

Palette 
Text device objects use the default palette CScroller to map onto the 6th 
and 7th entries in the standard application palette. 

1 2 

CS.."l1er Q I [. 
Nonnal~ ighlight 

Chapter 73, Object reference 305 



TView 

TView Views 

Include the statement 

uses Views; 

in programs that make use of TView, TFrame, TScrollBar, TScroller, 
TListViewer, TGroup and TWindow objects. It is hard to envisage a Turbo 
Vision application that does not use some of these objects. 

TView objects are rarely instantiated in Turbo Vision programs. The TView 
object type exists to provide basic fields and methods for its descendants. 

Fields 

306 

Owner Owner: PGroup i Read only 

Owner points to the TGroup object that owns this view. If nil, the view has 
no owner. The view is displayed within its owner's view and will be 
clipped by the owner's bounding rectangle. 

Next Next: PViewi Read only 

Pointer to next peer view in Z-order. If this is the last sub view, Next points 
to Owner's first subview. 

Origin Origin: TPointi Read only 

Turbo Vision Guide 



TView 

The (X, Y) coordinates, relative to the owner's Origin, of the top-left corner 
of the view. 

See also: MoveTo, Locate 

Size Size: TPoint; Read only 

The size of the view. 

See also: GrowTo, Locate 

Cursor Cursor: TPoint; Read only 

The location of the hardware cursor within the view. The cursor is visible 
only if the view is focused (sfFocused) and the cursor turned on 
(s!CursorVis). The shape of the cursor is either underline or block 
(determined by sfCursorlns). 

See also: SetCursor, ShowCursor, HideCursor, NormalCursor, BlockCursor 

GrowMode GrowMode: Byte; Read/write 

Figure 13.1 
GrowMode bit 

mapping 

Determines how the view will grow when its owner view is resized. 
GrowMode is assigned one or more of the following GrowMode masks: 

.--.---r---r--ofGrowA 11 = $OF 

fGrowLoX .. $01 
fGrowLoY .. $02 

L..----afGrowHiX = $04 
'------gfGrowHiY = $08 

'--------afGrowRe1 .. $10 

Example: GrowMode : = gfGrowLoX or gfGrowLoY i 

See also: gfXXXX grow mode constants 

DragMode DragMode: Byte; Read/write 

Figure 13.2 
DragMode bit 

mapping 

Determines how the view should behave when mouse-dragged. 

The DragMode bits are defined as follows: 
.--.--.----r-------amLimi tA 11 .. $FO 

mDragMove .. $01 
mDragGrow = $02 

'---------a:mLimitLoX .. $10 
'---------IlmLimitLoY = $20 

L..---------dmLimitHiX .. $40 
'-----------amLimitHiY = $80 

The DragMode masks are defined in Chapter 14 under "dmXXXX 
DragMode constants." 

See also: TView.DragView 

Chapter 73, Object reference 307 

I 



TView 

308 

HelpCtx HelpCtx: Word; Read/write 

The help context of the view. When the view is focused, this field will 
represent the help context of the application unless the context number is 
hcNoContext, in which case there is no help context. 

See also: TView.GetHelpCtx. 

State State: Word; Read only 

The state of the view is represented by bits set or clear in the State field. 
Many TView methods test and/or alter the State field by calling 
TView.SetState. TView.GetState(AState) returns true if the view's State is 
AState. The State bits are represented mnemonically by sfXXXX constants, 
described in Chapter 14 under "sfXXXX state flag constants." 

Options Options: Word; Read/write 

Figure 13.3 
Options bit flags 

The Options word flags determine various behaviors of the view. 

The Options bits are defined as follows: 

I I 

Ilmsbl I I I I I I I I 
I I 

undJined 

I I I I I Ilsbll 

II I L. 

fCentered = $0300 

fSel ectabl e = $0001 
fTopSelect "$0002 
fFi rstCl i ck "$0004 
fFramed .. $0008 
fPreProcess "$0010 
fPostProcess .. $0020 
fBuffered " $0040 
fTileable = $0080 
fCenterX .. $0100 
fCenterY .. $0200 

For detailed descriptions of the option flags, see " of XXX X option flag 
constants" in Chapter 14. 

EventMask EventMask: Word; Read/write 

EventMask is a bit mask that determines which event classes will be 
recognized by the view. The default EventMask enables evMouseDown, 
evKeyDown, and evCommand. Assigning $FFFF to EventMask causes the 
view to react to all event classes; conversely, a value of zero causes the 
view to not react to any events. For detailed descriptions of event classes, 
see "evXXXX event constants" in Chapter 14. 

See also: HandleEvent methods 

Turbo Vision Guide 



TView 

Methods 

Init constructor Init (var Bounds: TRect); 

Override: Often Creates a TView object with the given Bounds rectangle. Init calls 
TObject.Init and sets the fields of the new TView to the following values: 

Owner 
Next 
Origin 
Size 
Cursor 
GrowMode 
DragMode 
HelpCtx 
State 
Options 
EventMask 

nil 
nil 
(Bounds.A.X, Bounds.A.Y) 
(Bounds.B.x - Bounds.A.x, Bounds.B.Y - Bounds.A.Y) 
(0,0) 
o 
dmLimitLoY 
hcNoContext 
sfVisible 
o 
evMouseDown + evKeyDown + evCommand 

Note that TObject.Init will zero all fields in TView descendants. Always 
call TView.Init before initializing any fields. 

See also: TObject.Init 

Load constructor Load (var s: TStrearn); 

Override: Often Creates a TView object and loads it from the stream S. The size of the data 
read from the stream must correspond exactly to the size of the data 
written to the stream by the view's Store method. If the view contains peer 
view pointers, Load should use GetPeerViewPtr to read these pointers. An 
overridden Load constructor should always call its parent's Load 
constructor. 

The default TView.Load sets the Owner and Next fields to nil, and reads the 
remaining fields from the stream. 
rt ___ 1 __ f"rjTT~ .... ,.." ,.,..,,.,, ......, , ,.,..,,.,, 

IJ~'" u..I..::IV. .I. .. ~"U/.v"'VI '" .L V/.-/ "~/".\JC", .L vH c~II,.r.u" 

Done destructor Done; virtual; 

Override: Often Hides the view and then, if it has an owner, deletes it from the group . 

. HandleEvent procedure HandleEvent (var Event: TEvent); virtual; 

Override: Always HandleEvent is the central method through which all Turbo Vision event 
handling is implemented. The What field of the Event parameter contains 
the event class (evXXXX), and the remaining Event fields further describe 
the event. To indicate that it has handled an event, HandleEvent should 
call ClearEvent. HandleEvent is almost always overridden in descendant 
object types. 

Chapter 13, Object reference 309 

II 



TView 

TView.HandleEvent handles evMouseDown events as follows: If the view is 
not selected (sf Selected) and not disabled (sfDisabled) and if the view is 
selectable (of Selectable), then the view selects itself by calling Select. No 
other events are handled by TView.HandleEvent. 

See also: TView.ClearEvent 

BlockCursor procedure BlockCursor; 

Override: Never Sets sfCursorlns to change the cursor to a solid block. The cursor will only 
be visible if sfCursorVis is also set (and the view is visible). 

See also: sfCursorlns, sfCursorVis, TView.NormaICursor, TView.ShowCursor, 
TView.HideCursor 

CalcBounds procedure CalcBounds (var Bounds: TRect; Delta: TPoint); virtual; 

Override: Seldom When a view's owner changes size, the owner repeatedly calls CalcBounds 
and ChangeBounds for all its subviews. CalcBounds must calculate the new 
bounds of the view given that its owner's size has changed by Delta, and 
return the new bounds in Bounds. 

TView.CalcBounds calculates the new bounds using the flags specified in 
the TView.GrowMode field. 

See also: TView.GetBounds, TView.ChangeBounds, gfXXXX grow mode 
constants 

Change Bounds procedure ChangeBounds (var Bounds: TRect); virtual; 

Override: Seldom ChangeBounds must change the view's bounds (Origin and Size fields) to 
the rectangle given by the Bounds parameter. Having changed the bounds, 
ChangeBounds must then redraw the view. ChangeBounds is called by 
various TView methods but should never be called directly. 

TView.ChangeBounds first calls SetBounds(Bounds) and then calls DrawView. 

See also: TView.Locate, TView.MoveTo, TView.GrowTo 

ClearEvent procedure ClearEvent (var Event: TEvent); 

Standard method used in HandleEvent to signal that the view has 
successfully handled the event. Sets Event. What to evNothing and 
Event.lnfoPtr to @Self. 

See also: HandleEvent methods 

CommandEnabled function CornmandEnabled(Cornmand: Word): Boolean; 

310 

Returns true if the given Command is currently enabled, otherwise it 
returns false. Note that when you change a modal state, you can then 

Turbo Vision Guide 



TView 

disable and enable commands as you wish; when you return to the 
previous modal state, however, the original command set will be restored. 

See also: TView.DisableCommand, TView.EnableCommand, 
TView.SetCommimds. 

DataSize function DataSize: Word; virtual; 

Override: Seldom DataSize must return the size of the data read from and written to data 
records by SetData and GetData. The data record mechanism is typically 
used only in views that implement controls for dialog boxes. 

TView.DataSize returns zero to indicate that no data is transferred. 

See also: TView.GetData, TView.SetData 

DisableCommands procedure DisableCornmands (Commands: TCommandSet); 

Disables the commands specified in the Commands argument. 

See also: TView.CommandEnabled, TView.EnableCommands, 
TView.SetCommands. 

DragView procedure DragView (Event: TEvent; Mode: Byte; var Limits: TRect; MinSize, 
MaxSize: TPoint); 

Drags the view using the dragging mode given by dmXXXX flags in Mode. 
Limits specifies the rectangle (in the owner's coordinate system) within 
which the view can be moved, and Min and Max specifies the minimum 
and maximum sizes the view can shrink or grow to. The event leading to 
the dragging operation is needed in Event to distinguish mouse dragging 
from use of the cursor keys. 

See also: TView.DragMode, dmXXXX drag mode constants 

Draw procedure Draw; virtual; 

1"""\.,_ •• :,.J_.I\'t",_" ... _._ ... __ .. .... -/~ 

DrawView 

,...., l' l' ., , .. ,,, T"""'to • ., 

_all~U VVU~.1L~V~~ UL~ v~~vv llLU;:)L \.uavv \u~;:)lllay IlL;:)~.ll. LJIUW .llLU;:)L \.vv~~ UL~ 

entire area of the view. This method must be overridden appropriately for 
each descendant. Draw is seldom called directly, since it is more efficient 
to use DrawView, which draws only views that are exposed, that is, some 
or all of the view is visible on the screen. If required, Draw can call 
GetClipRect to obtain the rectangle that needs redrawing, and then only 
draw that area. For complicated views, this can improve performance 
noticeably. 

See also: TView.DrawView 

procedure DrawViewi 

Chapter 73, Object reference 311 

I 



TView 

Calls Draw if TView.Exposed returns True, indicating that the view is 
exposed (see sfExposed). You should call DrawView (not Draw) whenever 
you need to redraw a view after making a change that affects its visual 
appearance. 

See also: TView.Draw, TGroup.ReDraw, TView.Exposed 

EnableCommands procedure EnableCommands (Commands: TCommandSet); 

Enables all the commands in the Commands argument. 

See also: TView.DisableCommands, TView.GetCommands, 
TView.CommandEnabled, TView.SetCommands. 

EndModal procedure EndModal (Command: Word); virtual; 

Override: Never Terminates the current modal state and retur,ns Command as the result of 
the ExecView function call that created the modal state; 

See also: TGroup.ExecView, TGroup.Execute, TGroup.EndModal 

EventAvail function EventAvail: Boolean; 

Returns True if an event is available for GetEvent. 

See also: TView.MouseEvent, TView.KeyEvent, TView.GetEvent 

Execute function Execute: Word; virtual; 

Override: Seldom Execute is called from TGroup.ExecView whenever a view becomes modal. 
If a view is to allow modal execution, it must override Execute to provide 
an event loop. The result of Execute becomes the value returned from 
TGroup.ExecView. 

TView.ExecView simply returns cmCancel. 

See also: sf Modal, TGroup.Execute, TGroup.ExecView. 

Exposed function Exposed: Boolean; 

Returns true if any part of the view is visible on the screen. 

See also: sfExposed, TView.DrawView 

GetBounds procedure GetBounds (var Bounds: TRect); 

Returns, in the Bounds variable, the bounding rectangle of the view in its 
owners coordinate system. Bounds.A is set to Origin, and Bounds.B is set to 
the sum of Origin and Size. 

See also: TView.Origin, TView.Size, TView.CalcBounds, 
TView.ChangeBounds, TView.SetBounds, TView.GetExtent 

GetClipRect procedure GetClipRect (var Clip: TRect); 

312 Turbo Vision Guide 



TView 

Returns, in the Clip variable, the minimum rectangle that needs redrawing 
during a call to Draw. For complicated views, Draw can use GetClipRect to 
improve performance noticeably. 

See also: TView.Draw 

GetColor function GetColor (Color: Word): Word; 

Maps the palette indices in the low and high bytes of Color into physical 
character attributes by tracing through the palette of the view and the 
palettes of all its owners. 

See also: TView.GetPalette. 

GetCommands procedure GetCommands (var Commands: TCommandSet); 

Returns, in the Commands argument, the current command set. 

See also: TView.CommandsEnabled, TView.EnableCommands, 
TView.DisableCommands, TView.SetCommands. 

GetOata procedure GetData(var Rec); virtual; 

Override: Seldom GetData must copy DataSize bytes from the view to the data record given 
by Rec. The data record mechanism is typically used only in views that 
implement controls for dialog boxes. 

The default TView.GetData does nothing. 

See also: TView.DataSize, TView.SetData 

GetEvent procedure GetEvent (var Event: TEvent); virtual; 

Override: Seldom Returns the next available event in the TEvent argument. Returns 
evNothing if no event is available. By default, it calls the view's owner's 
GetEvent. 

See also: TView.EventAvail, TProgram.ldle, TView.HandleEvent, 
TView.PutEvent 

GetExtent procedure GetExtent(var Extent: TRect); 

Returns, in the Extent variable, the extent rectangle of the view. Extent.A is 
set to (0,0), and Extent.B is set to Size. 

See also: TView.Origin, TView.Size, TView.CalcBounds, 
TView.ChangeBounds, TView.SetBounds, TView.GetBounds 

GetHelpCtx function GetHelpCtx: Word; virtual; 

Override: Seldom GetHelpCtx must return the view's help context. 

Chapter 73, Object reference 313 

I 



TView 

The default TView.GetHelpCtx returns the value in the HelpCtx field, or 
returns hcDragging if the view is being dragged (see sfDragging). 

See also: HelpCtx 

GetPaleHe function Getpalette: PPalette; virtual; 

Override: Always GetPalette must return a pointer to the view's palette, or nil if the view has 
no palette. GetPalette is called by GetColor, WriteChar, and WriteStr when 
converting palette indices to physical character attributes. A return value 
of nil causes no color translation to be performed by this view. GetPalette 
is almost always overridden in descendant object types. 

The default TView.GetPalette returns nil. 

See also: TView.GetColor, TView. WriteXXX 

GetPeerVlewPtr procedure GetpeerViewPtr (var S: TStream; var P); 

314 

Loads a peer view pointer P from the stream S. A peer view is a view with 
the same owner as this view-a TScroller, for example, contains two peer 
view pointers, HScrollBar and VScrollBar, that point to the scroll bars 
associated with the scroller. GetPeerViewPtr should only be used inside a 
Load constructor to read pointer values that were written by a call to 
PutPeerViewPtr from a Store method. The value loaded into P does not 
become valid until the view's owner completes it's Load operation; 
therefore, de-referencing a peer view pointer within a Load constructor 
does not produce the correct value. 

See also: TView.PutPeerViewPtr, TGroup.Load, TGroup.Store 

GetState function GetState(AState: Word): Boolean; 

Returns True if the state(s) given in AState is (are) set in the field State. 

See also: State, TView.SetState 

GrowTo procedure GrowTo (X, Y: Integer); 

Grows or shrinks the view to the given size using a call to TView.Locate. 

See also: TView.Origin, TView.Size, TView.Locate, TView.MoveTo 

Hide procedure Hide; 

Hides the view by calling SetState to clear the sfVisible flag in State. 

See also: sfVisible, TView.SetState, TView.Show 

HldeCursor procedure HideCursor; 

Hides the cursor by clearing the sfCursorVis bit in State. 

Turbo Vision Guide 



TView 

See also: sfCursorVis, TView.ShowCursor 

KeyEvent procedure KeyEvent(var Event: TEvent); 

Returns, in the Event variable, the next evKeyDown event. It waits, 
ignoring all other events, until a keyboard event becomes available. 

See also: TView.GetEvent, TView.EventAvail 

Locate procedure Locate(var Bounds: TRect); 

Changes the bounds of the view to those of the Bounds argument. The 
view is redrawn in its new location. Locate calls SizeLimits to verify that 
the given Bounds are valid, and then calls ChangeBounds to change the 
bounds and redraw the view. 

See also: TView.GrowTo, TView.MoveTo, TView.ChangeBounds 

MakeFirst procedure MakeFirst; 

Moves the view to the top of its owner's subview list. A call to MakeFirst 
corresponds to PutInFrontOf( Owner" .First). 

See also: TView.PutInFrontOf 

MakeGlobal procedure MakeGlobal (Source: TPoint; var Dest: TPoint); 

Converts the Source point coordinates from local (view) to global (screen) 
and returns the result in Dest. Source and Dest may be the same variable. 

See also: TView.MakeLocal 

MakeLocal procedure MakeLocal (Source: TPoint; var Dest: TPoint); 

Converts the Source point coordinates from global (screen) to local (view) 
and returns the result in Dest. Useful for converting the Event. Where field 
of an evMouse event from global coordinates to local coordinates, for 
example MakeLocal(Event. Where, MouseLoc). 

- _... __ ...... _--0 

;:,ee alSO: 1 vzew.1VlaKeGLOVUl, 1 vzeW.1VlUuselnvzew 

MouseEvent functi9n MouseEvent(var Event: TEvent; Mask: Word): Boolean; 

Returns the next mouse event in the Event argument. Returns True if the 
returned event is in the Mask argument, and False if an evMouseUp event 
occurs. This method lets you track a mouse while its button is down, e.g., 
in drag block-marking operations for text editors. 

Here's an extract of a HandleEvent routine that tracks the mouse with the 
view's cursor. 

procedure TMyView.HandleEvent(var Event: TEvent); 
begin 

Chapter 13, Object reference 315 



TView 

316 

TView.HandleEvent(Event)i 
case Event.What of 

evMouseDown: 
begin 

repeat 
MakeLocal(Event.Where, Mouse); 
SetCursor(Mouse.X, Mouse.Y)i 

until not MouseEvent(Event, evMouseMove)i 
ClearEvent(Event); 

endi 

end; 
end; 

See also: Event Masks, TView.KeyEvent, TView.GetEvent. 

MouselnView function MouseInView (Mouse: TPoint): Boolean; 

Returns true if the Mouse argument (given in global coordinates) is within 
the calling view. 

See also: TView.MakeLocal 

MoveTo procedure MoveTo (X, Y: Integer); 

Moves the Origin to the point (X,Y) relative to the owner's view. The 
view's Size is unchanged. 

See also: Origin, Size, TView.Locate, TView.GrowTo 

NexlView function NextView: PView; 

Returns a pointer to the next subview in the owner's subview list. A nil is 
returned if the calling view is the last one in its owner's list. 

See also: TView.PrevView, TView.Prev, TView.Next 

NormalCursor procedure NormalCursor i 

Clears the sfCursorIns bit in State, thereby making the cursor into an 
underline. If sfCursorVis is set, the new cursor will be displayed. 

See also: sfCursorlns, sfCursorVis, TView.HideCursor, TView.BlockCursor, 
TView.HideCursor 

Prey function Prev: PViewi 

Returns a pointer to the previous subview in the owner's subview list. If 
the calling view is the first one in its owner's list, Prev returns the last view 
in the list. Note that TView.Prev treats the list as circular, whereas 
TView.PrevView treats the list linearly. 

Turbo Vision Guide 



TView 

See also: TView.NextView, TView.PrevView, TView.Next 

PrevVlew function PrevView: PView; 

Returns a pointer to the previous subview in the owner's subview list. nil 
is returned if the calling view is the first one in its owner's list. Note that 
TView.Prev treats the list as circular, whereas TView.PrevView treats the list 
linearly. 

See also: TView.NextView, TView.Prev 

PutEvent procedure PutEvent(var Event: TEvent); virtual; 

Override: Seldom Puts the event given by Event into the event queue, causing it to be the 
next event returned by GetEvent. Only one event can be pushed onto the 
event queue in this fashion. Often used by views to generate command 
events, for example: 

Event.What := evCommand; 
Event.Command := cmSaveAll; 
Event.InfoPtr := nil; 
PutEvent(Event); 

The default TView.PutEvent calls the view's owner's PutEvent. 

See also: TView.EventAvail, TView.GetEvent, TView.HandleEvent 

PutlnFrontOf procedure PutInFrontOf (Target: PView); 

Move the calling view in front of the Target view in the owner's subview 
list. The call 

TView.PutlnFrontOf(OwnerA.First); 

is equivalent to TView.MakeFirst: This method works by changing pointers 
in the subview list. Depending on the position of the other views and their 
visibility states, PutInFrontOf may obscure (clip) underlying views. If the 
view is selectable (see of Selectable) and is put in front of all other subviews, 
then the view becomes selected. 

See also: TView.MakeFirst 

PutPeerViewPtr procedure PutPeerViewPtr (var S: TStream; P: PView); 

Stores a peer view pointer P on the stream S. A peer view is a view with 
the same owner as this view. PutPeerViewPtr should only be used inside a 
Store method to write pointer values that can later be read by a call to 
GetPeerViewPtr from a Load constructor. 

See also: TView.PutPeerViewPtr, TGroup.Load, TGroup.Store 

Select procedure Select; 

Chapter 73, Object reference 317 



TView 

Selects the view (see sf Selected). If the view's owner is focused then the 
view also becomes focused (see sfFocused). If the view has the ofI'opSelect 
flag set in its Options field then the view is moved to the top of its owner's 
subview list (using a call to TView.MakeFirst). 

See also: sfSelected, sfFocused, ofI'opSelect, TView.MakeFirst 

SetBounds procedure SetBounds (var Bounds: TRect); 

Sets the bounding rectangle of the view to the value given by the Bounds 
parameter. The Origin field is set to Bounds.A, and the Size field is set to 
the difference between Bounds.B and Bounds.A. The SetBounds method is 
intended to be called only from within an overridden ChangeBounds 
method-you should never call Set Bounds directly. 

See also: TView.Origin, TView.Size, TView.CalcBounds, 
TView .ChangeBounds, TV iew.GetBounds, TV iew.Get Extent 

SetCommonds procedure SetCommands (Commands: TCornmandSet); 

Changes the current command set to the given Commands argument. 

See also: TView.EnableCommands, TView.DisableCommands 

SetCursor procedure SetCursor (X, Y: Integer); 

Moves the hardware cursor to the point (X,Y) using view-relative (local) 
coordinates. (0,0) is the top-left comer. 

See also: TView.MakeLocal, TView.HideCursor, TView.ShowCursor 

SetDoto procedure SetData(var Rec); virtual; 

Override: Seldom GetData must copy DataSize bytes from the data record given by Rec to the 
view. The data record mechanism is typically used only in views that 
implement controls for dialog boxes. 

SetState 

Override: 
Sometimes 

318 

The default TView.SetData does nothing. 

See also: TView.DataSize, TView.GetData 

procedure SetState(AState: Word; Enable: Boolean); virtual; 

Sets or clears a state flag in the TView.State field. The AState parameter 
specifies the state flag to modify (see sfXXXX), and the Enable parameter 
specifies whether to turn the flag off (False) or on (True). TView.SetState 
then carries out any appropriate action to reflect the new state, such as 
redrawing views that become exposed when the view is hidden (sfVisible), 
or reprogramming the hardware when the cursor shape is changed 
(sfCursorVis and sfCursorlns). 

Turbo Vision Guide 



TView 

SetState is sometimes overridden to trigger additional actions that are 
based on state flags. The TFrame type, for example, overrides SetState to 
redraw itself whenever a window becomes selected or is dragged. 

ptocedure TFrarne.SetState(AState: Word; Enable: Boolean); 
begin 

TView.SetState(AState, Enable); 
if AState and (sf Active + sf Dragging) <> 0 then DrawView; 

end; 

Another common reason to override SetState is to enable or disable 
commands that are handled by a particular view. 

procedure TMyView.SetState(AState: Word; Enable: Boolean); 
const 

MyCommands = [cmCut, cmCopy, crnPaste, cmClearj 
begin 

TView.SetState(AState, Enable); 
if AState = sf Selected then 

end; 

if Enable then 
EnableCommands(MyCommands) else 
DisableCornmands(MyCommands); 

See also: TView.GetState, TView.State, sfXXXX state flag constants 

Show procedure Show i 

Shows the view by calling SetState to set the sfVisible flag in State. 

See also: TView.SetState 

ShowCursor procedure ShowCursor; 

SizeLimits 

Override: 
Sometimes 

Turns on the hardware cursor by setting sfCursorVis. Note that the cursor 
is invisible by default. 

See also: sf Cursor Vis, TView.HideCursor 

procedure SizeLimits(var Min, Max: TPoint); virtual; 

Returns, in the Min and Max variables, the minimum and maximum 
values that the Size field may assume. 

The default TView.SizeLimits returns (0, 0) in Min and Ownerl\.Size in Max. 

See also: TView.Size 

Store procedure Store(var S: TStream); 

Override: Often Stores the view on the stream S. The size of the data written to the stream 
must correspond exactly to the size of the data read from the stream by 

Chapter 73, Object reference 319 

II 



TView 

the view's Load constructor. If the view contains peer view pointers, Store 
should use PutPeerViewPtr to write these pointers. An overridden Store 
method should always call its parent's Store method. 

The default TView.Store writes all fields but Owner and Next to the stream. 

See also: TView.Load, TStream.Get, TStream.Put 

TopView function TopView: PView; 

Valid 

Override: 
Sometimes 

Returns a pointer to the current modal view. 

function Valid(Command: Word): Boolean; virtual; 

This method is used to check the validity of a view after it has been 
constructed (using Init or Load) or at the point in time when a modal state 
ends (due to a call to EndModal). 

A Command parameter value of cmValid (zero) indicates that the view 
should check the result of its construction: Valid(cmValid) should return 
True if the view was successfully constructed and is now ready to be used, 
False otherwise. 

Any other (nonzero) Command parameter value indicates that the current 
modal state (such as a modal dialog box) is about to end with a resulting 
value of Command. In this case, Valid should check the validity of the view. 

It is the responsibility of Valid to alert the user in case the view is invalid, 
for example by using the MessageBox routine in the StdDlg unit to show an 
error message. 

The object types defined in the StdDlg unit contain a number of examples 
of overridden Valid methods. 

The default TView.Valid simply returns True. 

See also: TGroup.Valid, TDialog.Valid, TProgram.ValidView 

WriteBuf procedure TView. WriteBuf (X, Y, W, H: Integer; var Buf); 

Writes the given buffer to the screen starting at the coordinates (X,Y), and 
filling the region of width Wand height H. Should only be used in Draw 
methods. The But parameter is typically of type TDrawBuffer, but it can be 
any array of words, each word containing a character in the low byte and 
an attribute in the high byte. 

See also: TView.Draw 

WrlteChar procedure TView. WriteChar (X, Y: Integer; Ch: Char; Color: Byte; Count: 
Integer) ; 

320 Turbo Vision Guide 



TView 

Beginning at the point (X,Y), writes Count copies of the character Ch in the 
color determined by the Color'th entry in the current view's palette. 
Should only be used in Draw methods. 

See also: TView.Draw 

WriteLine procedure TView. WriteLine (X, Y, W, H: Integer; var Buf); 

Writes the line contained in the buffer But to the screen, beginning at the 
point (X,Y), and within the rectangle defined by the width Wand the 
height H. If H is greater than 1, the line will be repeated H times. Should 
only be used in Draw methods. The But parameter is typically of type 
TDrawBuffer, but it can be any array of words, each word containing a 
character in the low byte and an attribute in the high byte. 

See also: TView.Draw 

WriteStr procedure TView.WriteStr(X, Y: Integer; Str: String; Color: Byte); 

Writes the string Str with the color attributes of the Color'th entry in the 
view's palette, beginning at the point (X,Y). Should only be used in Draw 
methods. 

TWindow 

See also: TView.Draw 

Views 

A TWindow object is a specialized group that typically owns a TFrame 
object, an interior TScroller object, and one or two TScrollBar objects. These 
attached subviews provide the "visibility" to the TWindow object. The 
TFrame object provides the familiar border, a place for an optional title II 
and number, and functional icons (close, zoom, drag). TWindow objects 
have the "built-in" capability of moving and growing via mouse drag or 
cursor keystrokes. They can be zoomed and closed via mouse clicks in the 
appropriate icon regions. They also "know" how to work with scroll bars 

Chapter 73, Object reference 321 



TWindow 

322 

Fields 

and scrollers. Numbered windows from 1-9 can be selected with the Alt-n 
keys (n = 1 to 9). 

Flags Flags: Bytei Read/write 

The Flags field contains combinations of the following bits: 

fMove II $01 
fGrow = $02 

'------wfClose .. $04 
'-------wfZoom .. $08 

For definitions of the window flags, see "wfXXXX window flag 
constants" in Chapter 14. 

ZoomRect ZoomRect: TRecti Read only 

The normal, unzoomed boundary of the window. 

Number Number: Integer i Read/write 

The number assigned to this window. If TWindow.Number is between 1 
and 9, the number will appear in the frame title, and the window can be 
selected with the Alt-n keys (n = 1 to 9). 

PaleHe Palette: Integer i Read/write 

Specifies which palette the window is to use: wpBlueWindow, 
wpCyanWindow, or wpGrayWindow. The default palette is wpBlueWindow. 

See also: TWindow.GetPalette, wpXXXX constants 

Frame Frame: PFramei Read only 

Frame is a pointer to this window's associated TFrame object 

See also: TWindow.lnitFrame 

Title Title: PStringi Read/write 

A character string giving the (optional) title that appears on the frame. 

Methods 

Init constructor Init(var Bounds: TRecti ATitle: TTitleStri ANumber: Integer)i 

Calls TGroup.Init(Bounds). Sets default State to sf Shadow. Sets default 
Options to (of Selectable + ofTopSelect). Sets default GrowMode to gfGrowAll + 

Turbo Vision Guide 



TWindow 

gfGrowRel. Sets default Flags to (wfMove + wfGrow + wfClose + wfZoom). 
Sets Title field to NewStr(ATitle), Number field to ANumber. Calls InitFrame, 
and if the Frame field is non-nil, inserts it in this window's group. Finally, 
the default ZoomRect is set to the given Bounds. 

See also: TFrame.lnitFrame 

Load constructor Load (var S: TStream); 

Done 

Override: 
Sometimes 

Close 

Override: Seldom 

GetPaleHe 

Override: 
Sometimes 

Creates and loads a window from the stream S by first calling TGroup.Load 
and then reading the additional fields that are introduced by TWindow. 

See also: TGroup.Load 

destructor Done; virtual; 

Disposes of the window and any subviews. 

procedure Close; virtual; 

Closes and disposes of the window, usually in response to a cmClose 
command event. Corresponds to calling the Done destructor. 

function GetPalette: PPalette; virtual; 

Returns a pointer to the palette given by the palette index in the Palette 
field. 

See also: TWindow.Palette 

GetTitle function GetTitle (MaxSize: Integer): TTitleStr; virtual; 

Override: Seldom GetTitle should return the window's title string. If the title string is longer 
than MaxSize characters, GetTitle should attempt to shorten it; otherwise, it 
will be truncated by dropping any text beyond the the MaxSize'th 
character. TFrame.Draw calls OwnerA.GetTitle to obtain the title string to 
display in the frame. 

The default TWindow.GetTitle returns the string TitleA , or the null string if 
the Title field is nil. 

See also: TWindow.Title, TFrame.Draw 

HandleEvent procedure HandleEvent (var Event: TEvent); virtual; 

Override: Often First calls TGroup.HandleEvent, and then handles events specific to a 
TWindow as follows: 

The following evCommand events are handled if the TWindow.Flags field 
permits that operation: cmResize (move or resize the window using the 
TView.DragView method), cmClose (close the window using the 

Chapter 73, Object reference 323 



TWindow 

TWindow.Close method), and cmZoom (zoom the window using the 
TWindow.Zoom method). 

evKeyDown events with a KeyCode value of kbTab or kbshiftTab are handled 
by selecting the next or previous selectable subview (if any). 

An evBroadcast event with a Command value of em Select WindowNum is 
handled by selecting the window if the Event.InfoInt field is equal to 
TWindow.Number. 

See also: TGroup.HandleEvent, wfXXXX constants 

InitFrame procedure InitFrame; virtual; 

Override: Seldom Creates a TFrame object for the window and stores a pointer to the frame 
in the TWindow.Frame field. InitFrame is called by TWindow.Init but should 
never be called directly. InitFrame can be overridden to instantiate a user 
defined descendant of TFrame instead of the standard TFrame. 

See also: TWindow.Init 

SetState procedure SetState(AState: Word; Enable: Boolean); virtual; 

Override: Seldom First calls TGroup.setstate. Then, if Astate is equal to sf Selected, activates or 
deactivates the window and all its sub views using a call to 
SetS ta te(sf Active, Enable), and calls TView.EnableCommands or 
TView.DisableCommands for cmNext, cmPrev, cmResize, em Close, and 
cmZoom. 

See also: TGroup.setstate, EnableCommands, DisableCommands 

SizeLimits procedure SizeLimits (var Min,Max: TPoint); virtual; 

Override: Seldom Overrides TView.sizeLimits. First calls TView.sizeLimits and then changes 
Min to return the value stored in the Min Win Size global variable. 

See also: TView.SizeLimits, Min Win Size variable 

StandardScrollBar function StandardScrollBar (AOptions: Word): PScrollBar; 

324 

Creates, inserts, and returns a pointer to a "standard" scroll bar for the 
window. "Standard" means the scroll bar fits onto the frame of the 
window without covering corners or the resize icon. 

The AOptions parameter can either sbHorizontal to produce a horizontal 
scroll bar along the bottom of the window or sbVertical to produce a 
vertical scroll bar along the right side of the window. Either may be 
combined with sbHandleKeyboard to allow the scroll bar to respond to 
arrows and page keys from the keyboard in addition to mouse clicks. 

See also: sbXXXX scroll bar constants. 

Turbo Vision Guide 



TWindow 

Store procedure TWindow.Store(var s: TStream); 

Stores the window on the stream S by first calling TGroup.Store and then 
writing the additional fields that are introduced by TWindow. 

See also: TGroup.Store 

Zoom procedure TWindow. Zoom; virtual; 

Override: Seldom Zooms the calling window. This method is usually called in response to a 
cmZoom command (triggered by a click on the zoom icon). Zoom takes into 
account the relative sizes of the calling window and its owner, and the 
value of ZoomRect. 

Palette 

See also: cmZoom, ZoomRect 

Window objects use the default palettes CBlueWindow (for text windows), 
CCyanWindow (for messages), and CGrayWindow (for dialog boxes). 

2 3 4 5 6 8 

CGrayWtndow 

CCyanWt ndow 

CBl uewt ndow 

Frame Passiv 
Frame Active-----I 
Frame Icon--------' 
ScrollBar Page--------' 

eserved 
L---:Scroller Selected Text 

'-----:Scroller Nonnal Text 
'-------:Scroll Bar Reserved 

Chapter 73, Object reference 325 



326 Turbo Vision Guide 



c H A p T E R 

14 

Global reference 

This chapter describes all the elements of Turbo Vision that are not part of 
the Turbo Vision standard object hierarchy. The standard objects are all 
described in Chapter 13, "Object reference." 

The elements listed in this chapter include types, constants, variables, 
procedures, and functions defined in the Turbo Vision units. A typical 
entry looks like this: 

Sample procedure Sample's unit 

Declaration procedure Sample (AParameter); 

Function Sample performs some useful function on its parameter, AParameter. 

See also Example function 

Chapter 74, Global reference 327 



Sample procedure 

Abstract procedure Objects 

Declaration procedure Abstract; 

Function A call to this procedure terminates the program with a run~time error 211. 
When implementing an abstract object type, use calls to Abstract in those 
virtual methods that must be overridden in descendant types. This 
ensures that any attempt to use instantances of the abstract object type 
will fail. 

See also "Abstract methods" in Chapter 3 

Application variable App 

Declaration Application: PApplication = nil; 

Function The Application variable is set to @Self at the beginning of TProgram.Init 
(called by T Application.Init) and cleared to nil at the end of TProgram.Done 
(called by T Application.Done). Thus, throughout the execution of a Turbo 
Vision program, Application points to the application object. 

See also TProgram.Init 

AppPalette variable App 

Declaration AppPalette: Integer = apColor; 

Function Selects one of the three available application palettes (apColor, 
apBlackWhite, or apMonochrome). AppPalette is initialized by 
TProgram.InitScreen depending on the current screen mode, and used by 
TProgram.GetPalette to return one of the three available application 
palettes. You can override TProgram.InitScreen to change the default 
palette selection. 

See also TProgram.lnitScreen, apXXXX constants 

328 Turbo Vision Guide 



apXXXX constants 

apXXXX constants 

Values The following application palette constants are defined: 

Table 14.1 
Application palette 

constants 

Constant Value Meaning 

Use palette for color screen 
Use palette for LCD screen 

App 

apColor 
apBlackWhite 
apMonochrome 

o 
1 
2 Use palette for monochrome screen 

Function Constants beginning with /lap" are used to designate which of three 
standard color palettes a Turbo Vision application should use. The three 
palettes are used for color, black and white, and monochrome displays. 

AssignDevice procedure TextView 

Declaration procedure AssignDevice (var T: Text; Screen: PTextDevice); 

Function Associates a text file with a TTextDevice. AssignDevice works exactly like 
the Assign standard procedure, except that no file name is specified. 
Instead, the text file is associated with the TTextDevice given by Screen (by 
storing Screen in the first four bytes of the UserData field in TextRec(T). 
SubsequentI/O operations on the text file will read from and write to the 
TTextDevice, using the StrRead and StrWrite virtual methods. Since 
TTextDevice is an abstract type, the Screen parameter typically points to an 
instance of TTerminal, which implements a fully functional TTY-like 
scrolling view. 

See also TTextDevice; TextRec 

bfXXXX constants 

Values The following button flags are defined: 

Table 14.2 
Button flags 

Function 

Constant 

bfNonnal 
bfDefault 
bfLeftJust 

Chapter 74, Global reference 

Value 

$00 
$01 
$02 

Meaning 

Button is a: normal button 
Button is the default button 
Button label is left-justified 

Dialogs 

329 

iii 
II 



bfXXXX constants 

A combination of these values is passed to TButton.Init to determine the 
newly created button's style. bfNormal indicates a normal, non-default 
button. bfDefault indicates that the button will be the default button. It is 
the responsibility of the programmer to ensure that there is only one 
default button in a TGroup. The bfLeftJust value can be added to bfNormal 
or bfDefault and affects the position of the text displayed within the 
button: If clear, the label is centered; if set, the label is left-justified. 

See also TButton.Flags, TButton.MakeDefault, TButton.Draw 

ButtonCount variable Drivers 

Declaration ButtonCount: Byte = 0 i 

Function ButtonCount holds the number of buttons on the mouse, or zero if no 
mouse is installed. You can use this variable to determine whether mouse 
support is available. The value is set by the initialization code in Drivers, 
and should not be changed. 

CheckSnow variable Drivers 

Declaration CheckS now : Boolean 

Function CheckS now performs the same function as the flag of the same name in the 
standard Turbo Pascal Crt unit. Snow checking is only needed to slow 
down screen output for some older eGA adapters. 

CheckSnow is set True by InitVideo only if a eGA adapter is detected. The 
user may set the value to False at any time after the InitVideo call for faster 
screen I/O. 

See also InitVideo 

ClearHistory procedure HistList 

Declaration procedure ClearHistory i 

Function Removes all strings from all history lists. 

330 Turbo Vision Guide 



ClearScreen procedure 

ClearScreen procedure Drivers I 
Declaration . procedure ClearScreen; 

Function Clears the screen. ClearScreen assumes that InitVideo has been called first. 
You seldom need to use this routine, as is explained in the description of 
InitVideo. 

See also InitVideo 

cmXXXX constants Views 

Function These constants represent Turbo Vision's predefined commands. They are 
passed in the TEvent.Command field of evMessage events (evCommand and 
evBroadcast), and cause the HandleEvent methods of Turbo Vision's stan
dard objects to perform various tasks. 

Turbo Vision reserves constant values 0 through 99 and 256 through 999 
for its own use. Standard Turbo Vision objects' event handlers respond to 
these predefined constants. Programmers can define their own constants 
in the ranges 100 through 255 and 1,000 through 65,535 without 
conflicting with predefined commands. 

Values The following standard commands are defined by Turbo Vision and used 
by standard Turbo Vision objects: 

Table 14.3 
Standard 

command codes 

Command Value Meaning 

em Valid 0 Passed to TView. Valid to check the validity of a newly 
instantiated view. 

emError 2 

emMenu 3 

em Close 4 

r ...... ,,.."'ro TD .... ,..,... .... ,.,........, u,., ...... riJ",r"1,.,""' ..... 1""\ ......... 11 r:'..,.AAA",...A"ll,....1-t.1'f""l..,,';.,.' 
--~----- - - . -0' ......... - - ............. _- - - ...... -- ---- - ........ -.-_ .......... \ _ .... 1'<." .......... " 

terminating the application. The status line or one of the 
menus typically contains an entry that maps kbAltX to 
emQuit. 
Never handled by any object. May be used to represent 
unimplemented or unsupported commands. 
Causes TMenuView.HandleEvent to call ExeeView on itself 
to perform a menu selection process, the result of which 
may generate a new command through PutEvent. The 
status line typically contains an entry that maps kbFl0 to 
emMenu. 
Handled by TWindow.HandleEvent if the InfoPtr field of 
the event record is nil or points to the window. If the 
window is modal (such as a modal dialog), an 

Chapter 74, Global reference 331 



cmXXXX constants 

332 

Table 14.4 
Dialog box 

standard 
commands 

Table 14.3: standard command codes (continued) 

emZoom 5 

em Resize 6 

emNext 7 

emPrev 8 

evCommand with a value of emCaneel is generated 
through PutEvent. If the window is modeless, the 
window's Close method is called if the window supports 
closing (see wfClose flag). A click in a window's close box 
generates an evCommand event with a Command of 
em Close and an InfoPtr that points to the window. The 
status line or one of the menus typically contains an 
entry that maps kbAItF3 to em Close. 
Causes TWindow.HandleEvent to call TWindow.Zoom on 
itself if the window supports zooming (see wfZoom flag) 
and if the InfoPtr field of the event record is nil or points 
to the window. A click in a window's zoom box or a 
double-click on a window'f; title bar generates an 
evCommand event with a Command of cmZoom and an 
InfoPtr that points to the window. The status line or one 
of the menus typically contains an entry that maps kbF5 
toemZoom. 
Causes TWindow.HandleEvent to call TView.DragView on 
itself if the window supports resizing (see wfMove and 
wfGrow flags). The status line or one of the menus 
typically contains an entry that maps kbCtrlF5 to 
emResize. 
Causes TDeskTop.HandleEvent to move the last window 
on the desktop in front of all other windows. The status 
line or one of the menus typically contains an entry that 
maps kbF6 to emNext. 
Causes TDeskTop.HandleEvent to move the first window 
on the desktop behind all other windows. The status line 
or one of the menus typically contains an entry that 
maps kbShiftF6 to emPrev. 

The following standard commands are used to define default behavior of 
dialog box objects: 

Command 

emOK 
emCaneel 

emYes 
emNo 
emDefauIt 

Value 

10 
11 

12 
13 
14 

Meaning 

OK button was pressed 
Dialog box was canceled by Cancel button, close icon 
or Esc key 
Yes button was pressed 
No button was pressed 
Default button was pressed 

An event with one of the commands cmOK, em Cancel, cmYes, or cmNo 
causes a modal dialog's TDialog.HandleEvent to terminate the dialog and 
return that value (by calling EndModal). A modal dialog typically contains 
at least one TButton with one of these command values. 
TDialog.HandleEvent will generate a cmCancel command event in response 
to a kbEsc keyboard event. 

Turbo Vision Guide 



cmXXXX constants 

The cmDefault command causes the TButton.HandleEvent of a default 

I button (see bfDefault flag) to simulate a button press. TDialog.HandleEvent 
will generate a cmDefault command event in response to a kbEnter 
keyboard event. 

The following standard commands are defined for use by standard views: 

Table 14.5 
Command Value Meaning Standard view 

commands cmReceivedFocus 50 TView.SetState uses the Message function to 
cmReleasedFocus 51 send an evBroadcast event with one of these 

values to its TView.Owner whenever sfFocused 
is changed. The InfoPtr of the event points to 
the view ifself. This in effect informs any peer 
views that the view has received or released 
focus, and that they should update 
themselves appropriately. TLabel objects, for 
example, respond to these commands by 
highlighting or unhighlighting themselves 
when the peer view they label is focused or 
unfocused. 

cmCommandSetChanged 52 The TProgram.Idle method generates an 
evBroadcast event with this value whenever it 
detects a change in the current command set 
(as caused by a call to TView's 
EnableCommands, DisableCommands, or 
SetCommands methods). The 
cmCommandSetChanged broadcast is sent to 
the HandleEvent of every view in the physical 
hierarchy (unless their TView.EventMask 
specifically masks out evBroadcast events). If a 
view's appearance is affected by command set 
changes, it should react to 
cmCommandSetChanged by redrawing itself. 
TButton, TMenuView, and TStatusLine objects, 
for example, react to this command bv 
redrawing themselves. 

cmScrollBarChanged 53 A TScrollBar uses the Message function to 
send 

cmScrollBarClicked 54 an evBroadcast event with one of these values 
to its TView.Owner whenever its value 
changes or whenever the mouse is clicked on 
the scroll bar. The InfoPtr of the event points 
to the scroll bar ifself. Such broadcasts are 
reacted upon by any peer views controlled by 
the scroll bar, such as TScroller and 
TListViewer objects. 

cmSelect WindowNum 55 Causes TWindow.HandleEvent to call 
TView.Select on itself if the InfoInt of the event 

Chapter 14, Global reference 333 



cmXXXX constants 

Table 14.5: Standard view commands (continued) 

cmRecordHistory 

record corresponds to TWindow.Number. 
TProgram.HandleEvent responds to AIt-1 
through AIt-9 keyboard events by broad
casting a cmSelectWindowNum event with an 
InfoInt of 1 through 9. 

60 Causes a THistory object to "record" the 
current contents of the TInputLine object it 
controls. A TButton sends a cmRecordHistory 
broadcast to its owner when it is pressed, in 
effect causing all THistory objects in a dialog 
to "record" at that time. 

See also TView.HandleEvent, TCommandSet 

coXXXX constants Objects 

Function The coXXXX constants are passed as the Code parameter to the 
TCollection.Error method when a TCollection detects an error during an 
operation. 

Values The following standard error codes are defined for all Turbo Vision 
collections: 

Table 14.6 
Collection error 

codes 

Error code 

coIndexError 

co Overflow 

See also TCollection 

CStrLen function 

Value 

-1 

-2 

Meaning 

Index out of range. The Info parameter passed to the 
Error method contains the invalid index. 
Collection overflow. TCollection.SetLimit failed to 
expand the collection to the requested size. The Info 
parameter passed to the Error method contains the 
requested size. 

Drivers 

Declaration function CStrLen (S: String): Integer; 

Function Returns the length of string 5, where 5 is a control string using tilde 
characters (' ..... ') to designate shortcut characters. The tildes are excluded 
from the length of the string, as they will not appear on the screen. For 
example, given the string' -B-roccoli' as its parameter, CStrLen returns 8. 

334 Turbo Vision Guide 



CStrLen function 

See also MoveCStr 

Drivers I CtrlBreakHit variable 

Declaration CtrlBreakHit: Boolean = False; 

Function Set True by the Turbo Vision keyboard interrupt driver whenever the Gtrl
Break key is pressed. This allows Turbo Vision applications to trap and 
respond to Gtrl-Break as a user control. The flag may be cleared at any time 
simply by setting it to False. 

See also SaveCtrlBreak 

CtrlToArrow function Drivers 

Declaration function Ctrl ToArrow (KeyCode: Word): Word; 

Function Converts a WordStar-compatible control key code to the corresponding 
cursor key code. If the low byte of KeyCode matches one of the control key 
values in Table 14.7, the result is the corresponding kbXXXX constant. 
Otherwise, KeyCode is returned unchanged. 

Table 14.7 
Keystroke Lo(KeyCode) Result Control-key 

mappings Ctrl-A $01 kbHome 
Ctrl-D $04 kbRight 
Ctrl-E $05 kbUp 
Ctrl-F $06 kbEnd 
Ctrl-G $07 kbDel 
Ctrl-S $13 kbLeft 
Ctrl-V $16 kblns 
Ctrl-X $18 kbDown 

Chapter 14, Global reference 335 



CursorLines variable 

CursorLines variable Drivers 

Declaration Cursor Lines: Word; 

Function Set to the starting and ending scan lines of the cursor by InitVideo. The 
format used is that expected by BIOS interrupt $10, function 1 to set the 
cursor type. . 

See also InitVideo, TView.ShowCursor, TView.HideCursor, TView.BlockCursor, 
TView.NormalCursor 

DeskTop variable 

Declaration DeskTop: PDeskTop = nil; 

App 

Function Stores a pointer to the application's TDeskTop. The DeskTop variable is 
initialized by TProgram.InitDeskTop, which is called by TProgram.Init. 
Windows and dialog boxes are normally inserted (TGroup.Insert) or 
executed (TGroup.ExecView) on the DeskTop. 

DisposeMenu procedure Menus 

Declaration procedure DisposeMenu (Menu: PMenu); 

Function Disposes of all the elements of the specified menu (and all its submenus). 

See also TMenu type 

DisposeStr procedure Objects 

Declaration procedure DisposeStr (P: PString); 

Disposes of a string allocated on the heap by the NewStr function. 

See also NewStr 

336 Turbo Vision Guide 



dmXXXX constants 

dmXXXX constants Views I 
Values The DragMode bits are defined as follows: 

Figure 14.1 
Drag mode bit flags 

r---r---.---.-------arnLirni tAll = $FO 

mDragMove = $01 
mDragGrow = $02 

L-------<lrnLirnitLoX = $10 
L--------<lrnLirnitLoY = $20 

'---------arnLirnitHfX = $40 
L-----------<lrnLirnitHiY = $80 

Function The drag mode constants are used to compose the Mode parameter of the 
TView.DragView method. They specify whether the view is allowed to 
move and/or change size, and how to interpret the Limits parameter. 

Table 14.8 
Drag mode 

constants 

The drag mode constants are defined as follows: 

Constant 

dmDragMove 
dmDragGrow 
dmLimitLoX 
dmLimitLoY 
dmLimitHiX 
dmLimitHiY 
dmLimitAll 

Meaning 

Allow the view to move. 
Allow the view to change size. 
The view's left-hand side cannot move outside Limits. 
The view's top side cannot move outside Limits. 
The view's right-hand side cannot move outside Limits. 
The view's bottom side cannot move outside Limits. 
No part of the view can move outside Limits. 

The DragMode field of a TView may contain any combination of the 
dmLimitXX flags; by default, TView.lnit sets the field to dmLimitLoY. 
Currently, the DragMode field is used only in a TWindow to construct the 
Mode parameter to DragView when a window is moved or resized. 

DoneEvents procedure Drivers 

Declaration procedure DoneEventsi 

Function Terminates Turbo Vision's event manager by disabling the mouse 
interrupt handler and hiding the mouse. Called automatically by 
T Application.Done. 

See also T Application.Done, InitEvents 

Chapter 14, Global reference 337 



DoneHistory procedure 

DoneHistory procedure HistList 

Declaration procedure DoneHistory; 

Function Frees the history block allocated by InitHistory. Called automaticallv by 
T Application.Done. 

See also InitHistory procedure, T Application.Done 

DoneMemory procedure Memory 

Declaration procedure DoneMemory; 

Function Terminates Turbo Vision's memory manager by freeing all buffers 
allocated through GetBufMem. Called automatically by TApplication.Done. 

See also T Application.Done, InitMemory 

DoneSysError procedure Drivers 

Declaration procedure DoneSysError; 

Function Terminates Turbo Vision's system error handler by restoring interrupt 
vectors 09H, IBH, 21H, 23H, and 24H and restoring the Ctrl-Breakstate in 
DOS. Called automatically by T Application. Done. 

See also T Application.Done, InitSysError 

DoneVideo procedure Drivers 

Declaration procedure DoneVideo; 

Function Terminates Turbo Vision's video manager by restoring the initial screen 
mode (given by StartupMode), clearing the screen, and restoring the cursor. 
Called automatically by T Application.Done. 

See also T Application.Done, InitVideo, StartupMode variable 

338 Turbo Vision Guide 



DoubleDelay variable 

DoubleDelay variable 

Declaration DoubleDelay: Word = 8; 

Drivers I 
Function Defines the time interval (in 1/18.2 parts of a second) between mouse

button presses in order to distinguish a double-click from two distinct 
clicks. Used by GetMouseEvent to generate a Double event if the clicks 
occur within this time interval. 

See also TEvent.Double, GetMouseEvent 

EmsCurHandle variable Objects 

Declaration EmsCurHandle: Word = $FFFF; 

Function Holds the current EMS handle as mapped into EMS physical page 0 by a 
TEmsStream. TEmsStream avoids costly EMS remapping calls by caching 
the state of EMS. If your program uses EMS for other purposes, be sure to 
set EmsCurHandle and EmsCurPage to $FFFF before using a TEmsStream
this will force the TEmsStream to restore its mapping. 

See also TEmsStream.Handle 

EmsCurPage variable Objects 

Declaration EmsCurPage: Word = $FFFF; 

Function Holds the current EMS logical page number as mapped into EMS physical 
_~~~ 1"11-__ ~ """T:' ••• ~("L •• ~~ ••• """T"._.~("L.. __ .. _ ____ !..1 ____ .1._ ro, IU'" .. _____ . __ • . " 

r-l:)- v ..., J ,...., ... ~".IJ~'" ""' ..... ",. • ..I. LJ""IJ.....,,,, .......... " .. U. Y \J.1.\.A..t.:l '-VCI&.J..J .&...:.l.Y,La....I J..\;;J..llUYYllL5 \..UJ..1., 

by caching the state of EMS. If your program uses EMS for other pur
poses, be sure to set EmsCurHandle and EmsCurPage to $FFFF before using 
a TEmsStream-this will force the TEmsStream to restore its mapping. 

See also TEmsStream.Page 

Chapter 74, Global reference 339 



ev XXXX constants 

ev XXXX constants Drivers 

Function These mnemonics indicate types of events to Turbo Vision event handlers. 
ev XXXX constants are used in several places: In the What field of an event 
record, in the EventMask field of a view object, and in the PositionalEvents 
and FocusedEvents variables. 

Values The following event flag values designate standard event types: 

Table 14.9 
standard event 

flags 

Table 14.10 
Standard event 

masks 

Figure 14.2 
Event mask bit 

mapping 

Constant 

evMouseDown 
evMouseUp 
evMouseMove 
evMouseAuto 
evKeyDown 
evCommand 
evBroadcast 

Value 

$0001 
$0002 
$0004 
$0008 
$0010 
$0100 
$0200 

Meaning 

Mouse button depressed 
Mouse button released 
Mouse changed location 
Periodic event while mouse button held down 
Key pressed ! 

Command event 
Broadcast event 

The following constants can be used to mask types of events: 

Constant 

evNothing 
evMouse 
evKeyboard 
evMessage 

Value 

$0000 
$OOOF 
$0010 
$FFOO 

Meaning 

Event already handled 
Mouse event 
Keyboard event 
Message (command, broadcast, or user-defined) 
event 

The event mask bits are defined as follows: 
r--.--r-----r--r-,.--.---.-------------evMessage .. $FFOO 

...------evKeyboard .. $0010 
r---.---.---r---evMouse .. $OOOF 

vMouseDown = $0001 
vMouseUp .. $0002 

L..----evMouseMove .. $0004 
'------evMouseAuto = $0008 

'-------evKeyDown .. $0010 
'------------evCorrmand .. $0100 

'--------------evBroadcast = $0200 

The standard event masks can be used to quickly determine whether an 
event belongs to a particular IIfamily" of events. For example, 

if Event.What and evMouse <> 0 then DoMouseEvent; 

See also TEvent, TView.EventMask, GetKeyEvent, GetMouseEvent, HandleEvent 
methods, PositionalEvents, FocusedEvents 

340 Turbo Vision Guide 



FNameStr type 

Declaration FNarneStr = string [79] i 

Function DOS file nam~ string 

FocusedEvents variable 

Declaration FocusedEvents: Word = evKeyboard + eVCorrunandi 

FNameStr type 

Objects 

Views 

Function Defines the event classes that are focused events. The FocusedEvents and 
PositionalEvents variables are used by TGroup.HandleEvent to determine 
how to dispatch an event to the group's subviews. If an event class isn't 
contained in FocusedEvents or PositionalEvents it is treated as a broadcast 
event. 

See also PositionalEvents variable, TGroup.HandleEvent, TEvent, ev XXXX constants 

FormatStr procedure Drivers 

Declaration procedure FormatStr(var Result: String; Format: String; var Pararns); 

Function A generalized string formatting routine that works much like the C 
languag~'s vsprintf function. Given a string in Format that includes format 
specifiers and a list of parameters in Params, FormatStr produces a 
formatted output string in Result. 

The Format parameter can contain any number of format specifiers 
~;'t"n,..,"";...,rr T .. .,h"" .... t" .... ~., .... ~,... .... ,.... '\...-.1"'\ .... ,.,,....A -1-,..... A.:,... ....... l ......... .,. .... t....1"'\ ___ ..... _""'...---" .... __ ~ :_ D_ ........ 4AA,.. ---- ------0 .. ----- -------- -- .- -- ---- .- ---r--J --.- r-----·----- -_. - .'0 ..... ~. 

Format specifiers are of the form % [-] [nnn] x, where 

• % indicates the beginning of a format specifier 

• [-] is an optional minus sign (-) indicating the parameter is to be left
justified (by default, parameters are displayed right-justified) 

• [nnn] is an optional, decimal-number width specifier in the range 0 .. 255 
(0 indicates no width specified, and non-zero means to display in a field 
of nnn characters) 

• X is a format character: 

• 's' means the parameter is a pointer to a string. 

Chapter 14, Global reference 341 

I 



FormatStr procedure 

342 

Table 14.11 
Format specifiers 
and their results 

• 'd' means the parameter is a Longint to be displayed in decimal. 

• 'c' means the low byte of the parameter is a character. 
• 'x' means the parameter is a Longint to be displayed in hexadecimal. 

• '#' sets the parameter index to nnn. 

For example, if the parameter points to a string containing' spiny' for 
printing, the following table shows specifiers and their results: 

Specifier 

%65 
%-65 
%35 
%-35 
%065 
%-065 

Result 

, spiny' 
'spiny' 
'iny' 
'spi' 
, Ospiny' 
, spinyO' 

Params is an untyped var parameter containing enough parameters to 
match each of the format specifiers in Format. Params must be a zero-based 
array of Longints or pointers or a record containing Longints or pointers. 

For example, to print the error message string Error in file [file name] 
at line [line number], you could pass the following string in Format: 
'Error in file %s at line %d'. Params, then, needs to contain a pointer to a 
string with the file name and a Longint representing the line number in the 
file. This could be specifed in either of two ways, in an array or in a 
record. 

The following example shows two type declarations and variable 
assignments that both produce acceptable values to be passed as Params to 
FormatStr: 

type 
ErrMsgRec = record 

FileName: PSt ring; 
LineNo: Longint; 

end; 

ErrMsgArray = array[O .. l) of Longint; 

const 
TemplateMsg = 'Error in file %s at line %d'; 

var 
MyFileName: FNameStr; 
OopsRec: ErrMsgRec; 
DarnArray: ErrMsgArray; 
TestStr: String; 

begin 

Turbo Vision Guide 



MyFileName := 'WARTHOG.ASM'; 

with OopsRec do 
begin 

FileName := @MyFileName; 
LineNo := 42; 

end; 
ForrnatStr(TestStr, TernplateMsg, OopsRec); 
Writeln(TestStr); 

DarnArray[O) := Longint(@MyFileName); 
DarnArray[l) := 24; 
ForrnatStr(TestStr, TernplateMsg, DarnArray); 
Writeln(TestStr); 

end. 

See also SystemError function, TParamText object 

FreeBufMem procedure 

Declaration procedure FreeBufMern (P: Pointer); 

Function Frees the cache buffer referenced by the pointer P. 

See also GetBufMem, DoneMemory 

GetAltChar function 

Declaration function GetAltChar (KeyCode: Word): Char; 

FormatStr procedure 

Memory 

Drivers 

Function Returns the character, Ch, for which Alt-Ch produces the 2-byte scan code 
given by the argument KeyCode. This function gives the reverse mapping 
to GetAltCode. 

See also GetAItCode 

GetAltCode function Drivers 

Declaration function GetAl tCode (Ch: Char): Word; 

Function Returns the 2-byte scan code (keycode) corresponding to Alt-Ch. This 
function gives the reverse mapping to GetAItChar. 

See also GetAItChar 

Chapter 74, Global reference 343 

I 



GetBufMem procedure 

GetBufMem procedure Memory 

Declaration procedure GetBufMem (var P: Pointer; Size: Word); 

Function Allocates a cache buffer of Size bytes and stores a pointer to the buffer in 
P. If there is no room for a cache buffer of the requested size, P is set to nil. 
Cache buffers differ from normal heap blocks (allocated by New, GetMem, 
or MemAlloc) in that they can be moved or disposed by the memory 
manager at any time to satisfy a normal memory allocation request. The 
pointer passed to GetBufMem becomes the cache buffer's master pointer, 
and it (and only it) is updated when the buffer is moved by the memory 
manager. If the memory manager decides to dispose the buffer, it sets the 
master pointer to nil. A cache buffer can be manually disposed through a 
call to FreeBufMem. Cache buffers will occupy any unallocated heap space 
between HeapPtr and HeapEnd, including the area set aside for the 
application's safety pool. 

Turbo Vision uses cache buffers to cache the contents of TGroup objects 
(such as windows, dialog boxes, and the desktop) whenever these objects 
have the ofBuffered flag set-this greatly increases performance of redraw 
operations. 

See also FreeBuffMem, InitMemory, TGroup.Draw 

GetKeyEvent procedure Drivers 

Declaration procedure GetKeyEvent (var Event: TEvent); 

Function Checks whether a keyboard event is available by calling the BIOS INT 
16H service. If a key has been pressed, Event. What is set to evKeyDown and 
Event.KeyCode is set to the scan code of the key. Otherwise, Event. What is 
set to eVNothing. GetKeyEvent is called by TProgram.GetEvent. 

See also TProgram.GetEvent, evXXXX constants, TView.HandleEvent 

344 Turbo Vision Guide 



GetMouseEvent procedure 

GetMouseEvent procedure Drivers 

Declaration procedure GetMouseEvent (var Event: TEvent); 

Function Checks whether a mouse event is available by polling the mouse event I 
queue maintained by Turbo Vision's event handler. If a mouse event has 
occurred, Event. What is set to evMouseDown, evMouseUp, evMouseMove, or 
evMouseAuto; Event.Buttons is set to mbLeftButton or mbRightButton; 
Event.Double is set to True or False; and Event. Where is set to the mouse 
position in global coordinates (corresponding to T Application's coordinate 
system). If no mouse events are available, Event. What is set to evNothing. 
GetMouseEvent is called by TProgram.GetEvent. 

See also TProgram.GetEvent, evXXXX events, HandleEvent methods 

gfXXXX constants Views 

Function 

Values 

Figure 14.3 
Grow mode bit 

mapping 

These mnemonics are used to set the GrowMode field in all TView and 
derived objects. The bits set in GrowMode determine how the view will 
grow in relation to changes in its owner's size. 

The GrowMode bits are defined as follows: 
r--,.-,--,--qfGrowA 11 = $OF 

fGrowLoX = $01 
fGrowLoY $02 

L-----afGrowHiX $04 
L------qfGrowHiY $08 

L-------QfGrowRe1 $10 

Chapter 14, Global reference 345 



gfXXXX constants 

Table 14.12 
Grow mode flag 

definitions 
Constant Meaning 

gfGrowLoX If set, the left-hand side of the view will maintain a constant 
distance from its owner's right-hand side. 

gfGrowLoY If set, the top of the view will maintain a constant distance from 
the bottom of its owner. 

gfGrowHiX If set, the right-hand side of the view will maintain a constant 
distance from its owner's right side. 

gfGrowHiY If set, the bottom of the view will maintain a constant distance 
from the bottom of its owner's. 

gfGrowAIl If set, the view will move with the lower-right corner of its 

gfGrowRel 
owner. 
For use with TWindow objects that are in the desktop: The view 
will change size relative to the owner's size. The window will 
maintain its relative size with respect to the owner even when 
switching between 25 and 43/50 line modes. 

Note that LoX = left side; LoY = top side; HiX = right side; HiY = bottom 
side. 

See also TView.GrowMode 

hcXXXX constants 

Values The following help context constants are defined: 

Table 14.13 
Help context 

constants 

Constant 

hcNoContext 
hcDragging 

Value 

o 
1 

Meaning 

No context specified 
Object is being dragged 

Views 

Function The default value of TView.HelpCtx is hcNoContext, which indicates that 
there is no help context for the view. TView.GetHelpCtx returns hcDragging 
whenever the view is being dragged (as indicated by the 
sfDragging state flag). 

Turbo Vision reserves help context values 0 through 999 for its own use. 
Programmers may define their own constants in the range 1,000 to 65,535. 

See also TView.HelpCtx, TStatusLine.Update 

346 Turbo Vision Guide 



HideMouse procedure 

HideMouse procedure Drivers 

Declaration procedure HideMouse; 

Function The mouse cursor is initially visible after the call to InitEvents. HideMouse 
hides the mouse and increments the internal"hide counter" in the mouse 
driver. ShowMouse will decrement this counter, and show the mouse I 
cursor when the counter becomes zero. Thus, calls to HideMouse and 
ShowMouse can be nested, but must also always be balanced. 

See also InitEvents, DoneEvents, ShowMouse 

HiResScreen variable Drivers 

Declaration HiResScreen: Boolean; 

Function Set True by InitVideo if the screen supports 43- or 50-line mode (EGA or 
VGA); otherwise set False. 

See also InitVideo 

HistoryAdd procedure 

Declaration procedure HistoryAdd (Id: Byte; var Str: String); 

Function Adds the string Str to the history list indicated by ld. 

II! _.L _ ._. • n 1 _ _ I. • • _ •. _! _.1_ 1 _ 

1-11'>1 VI Y DIV\....rt\. VUllUUlv 

Declaration HistoryBlock: Pointer = nil; 

HistList 

I: ....... 1 : ....... 
IIvl L.lv I 

Function Points to a buffer called the history block used to store history strings. The 
size of the block is defined by HistorySize. The pointer is nil until set by 
InitHistory, and its value should not be altered. 

See also InitHistory procedure, HistorySize variable 

Chapter 14, Global reference 347 



HistoryCount function 

HistoryCount function HistList 

Declaration function HistoryCount (Id: Byte): Word; 

Function Returns the number of strings in the history list corresponding to ID 
number ld. 

HistorySize variable HistList 

Declaration HistorySize: Word = 1024; 

Function Specifies the size of the history block used by the history list manager to 
store values entered into input lines. The size is fixed by InitHistory at 
program startup. The default size of the block is lK, but may be changed 
before InitHistory is called. The value should not be changed after the call 
to InitHistory. 

See also InitHistory procedure, HistoryBlock variable 

HistoryStr fUnction HistList 

Declaration function HistoryStr(Id: Byte; Index: Integer): String; 

Function Returns the lndex'th string in the history list corresponding to ID number 
ld. 

HistoryUsed variable HistList 

Declaration HistoryUsed: Word = 0; 

Function Used internally by the history list manager to point to an offset within the 
history block. The value should not be changed. 

348 Turbo Vision Guide 



InitEvents procedure 

InitEvents procedure Drivers 

Declaration procedure InitEvents; 

Function Initializes Turbo Vision's event manager by enabling the mouse interrupt 
handler and showing the mouse. Called automatically by 
T Application.Init. 

See also DoneEvents 

HistList I InitHistory procedure 

Declaration procedure InitHistory; 

Function Called by T Application.lnit to allocate a block of memory on the heap for 
use by the history list manager. The size of the block is determined by the 
HistorySize variable. After InitHistory is called, the HistoryBlock variable 
points to the beginning of the block. 

See also TProgram.Init, DoneHistory procedure 

InitMemory procedure Memory 

Declaration procedure InitMemory; 

Function Initializes Turbo Vision's memory manager by installing a heap 
notification function in HeapError. Called automatically by 
T Application.Init. 

See also DoneMemory 

InitSysError procedure Drivers 

Declaration procedure InitSysError; 

Function Initializes Turbo Vision's system error handler by capturing interrupt 
vectors 09H, IBH, 2IH, 23H, and 24H and clearing the Ctrl-Breakstate in 
DOS. Called automatically by T Application.Init. 

See also DoneSysError 

Chapter 74, Global reference 349 



InitVideo procedure 

InitVideo procedure Drivers 

Declaration procedure InitVideo; 

Function Initializes Turbo Visio'n's video manager. Saves the current screen mode in 
StartupMode, and switches the screen to the mode indicated by 
ScreenMode. The Screen Width, ScreenHeight, HiRes Screen, CheckS now, 
ScreenBuffer, and CursorLines variables are updated accordingly. The 
screen mode can later be changed using SetVideoMode. InitVideo is called 
automatically by T Application.Init. 

See also DoneVideo, SetVideoMode, smXXXX 

kbXXXX constants Drivers 

Function There are two sets of constants beginning with "kb," both dealing with the 
keyboard. 

Values The following values define keyboard states, and can be used when 
examining the keyboard shift state which is stored in a byte at absolute 
address $40:$17. For example, 

var 
ShiftState: Byte absolute $40:$17; 

if ShiftState and kbAltShift <> 0 then AltKeyDown; 

Table 14.14 
Keyboard state and 

shift masks 

Constant 

kbRightShift 
kbLeftShift 
kbCtrlShift 
kbAItShift 
kbScrollState 
kbNumState 
kbCapsState 
kblnsState 

Value 

$0001 
$0002 
$0004 
$0008 
$0010 
$0020 
$0040 
$0080 

Meaning 

Set if the Right Shift key is currently down 
Set if the Left Shift key is currently down 
Set if the Ctrl key is currently down 

350 

Set if the Alt key is currently down 
Set if the keyboard is in the Scroll Lock state 
Set if the keyboard is in the Num Lock state 
Set if the keyboard is in the Caps Lock state 
Set if the keyboard is in the Ins Lock state 

The following values define keyboard scan codes and can be used when 
examining the TEvent.KeyCode field of an evKeyDown event record: 

Turbo Vision Guide 



kbXXXX constants 

Table 14.15 
Constant Value Constant Value Alt-Ietter key codes 

kbAltA $lEOO kbAltN $3100 
kbAltB $3000 kbAltO $1800 
kbAltC $2EOO kbAltP $1900 
kbAltD $2000 kbAltQ $1000 
kbAltE $1200 kbAltR $1300 
kbAltF $2100 kbAltS $lFOO 
kbAltG $2200 kbAltT $1400 
kbAltH $2300 kbAltU $1600 
kbAltI $1700 kbAltV $2FOO 
kbAltJ $2400 kbAltW $1100 
kbAltK $2500 kbAltX $2DOO 
kbAltL $2600 kbAlty $1500 
kbAltM $3200 kbAltZ $2COO I Table 14.16 

Special key codes Constant Value Constant Value 

kbAltEqual $8300 kbEnd $4FOO 
kbAltMinus $8200 kbEnter $lCOD 
kbAltSpace $0200 kbEsc $Ol1B 
kbBack $OE08 kbGrayMinus $4A2D 
kbCtrlBack $OE7F kbHome $4700 
kbCtrlDel $0600 kblns $5200 
kbCtrlEnd $7500 kbLeft $4BOO 
kbCtrlEnter $lCOA kbNoKey $0000 
kbCtrlHome $7700 kbPgDn $5100 
kbCtrlIns $0400 kbPgUp $4900 
kbCtrlLeft $7300 kbrayPlus $4E2B 
kbCtrlPgDn $7600 kbRight $4DOO 
kbCtrlPgUp $8400 kbShiftDel $0700 
kbCtrlPrtSc $7200 kbShiftIns $0500 
kbCtrlRight $7400 kbShiftTab $OFOO 
kbDel $5300 kbTab $OF09 
kbDown $5000 kbUp $4800 

Table 14.17 
Alt-number key Constant Value Constant Value 

codes 
kbAltl $7800 kbAlt6 $7D00 
kbAlt2 $7900 kbAlt7 $7E00 
kbAlt3 $7AOO kbAlt8 $7F00 
kbAlt4 $7BOO kbAlt9 $8000 
kbAlt5 $7COO kbAltO $8100 

Chapter 74, Global reference 351 



kbXXXX constants 

Table 14.18 
Function key codes Constant Value Constant Value 

kbFl $3BOO kbF6 $4000 
kbF2 $3COO kbF7 $4100 
kbF3 $3DOO kbFB $4200 
kbF4 $3EOO kbF9 $4300 
kbF5 $3FOO kbFI0 $4400 

Table 14.19 
Shift-function key Constant Value Constant Value 

codes 
kbShiftFl $5400 kbShiftF6 $5900 
kbShiftF2 $5500 kbShiftF7 $5AOO 
kbShiftF3 $5600 kbShiftFB $5BOO 
kbShiftF4 $5700 kbShiftF9 $5COO 
kbShiftF5 $5800 kbShiftF10 $5DOO 

Table 14.20 
Ctrl-function key Constant Value Constant Value 

codes 
kbCtrlFl $5EOO kbCtrlF6 $6300 
kbCtrlF2 $5FOO kbCtrlF7 $6400 
kbCtrlF3 $6000 kbCtrlFB $6500 
kbCtrlF4 $6100 kbCtrlF9 $6600 
kbCtrlF5 $6200 kbCtrlF10 $6700 

Table 14.21 
Alt-function key Constant Value Constant Value 

codes 
kbAltFl $6800 kbAltF6 $6DOO 
kbAltF2 $6900 kbAltF7 $6EOO 
kbAltF3 $6AOO kbAltFB $6FOO 
kbAltF4 $6BOO kbAltF9 $7000 
kbAltF5 $6COO kbAltFI0 $7100 

See also evKeyDown, GetKeyEvent 

LongDiv function Objects 

Declaration function LongDiv(X: Longint; Y: Integer): Integer; 
inline($59/$58/$5A/$F7/$F9); 

Function A fast, inline assembly coded division routine, returning the integer value 
x/Yo 

352 Turbo Vision Guide 



LongMul function 

Declaration function LongMul (X, Y: Integer): Longint: 

inline($5A/$58/$F7/$EA); 

LongMul function 

Objects 

Function A fast, inline assembly coded multiplication routine, returning the long 
integer value X * Y. 

LongRec type Objects 

Declaration LongRec = record 

La, Hi: Word; 
end; 

Function A useful record type for handling double-word length variables. 

LowMemory function Memory 

Declaration function LowMemory: Boolean; 

Function Returns True if memory is low, otherwise False. True means that a memory 
allocation call (for example, by a coristructor) was forced to "dip into" the 
memory safety pool. The size of the safety pool is defined by the 
LowMemSize variable. 

See also Chapter 6, "Writing safe programs," InitMemory, TView.Valid, 
LowMemSize 

LowMemSize variable Memory 

Declaration LowMemSize: Word = 4096 div 16; 

Function Sets the size of the safety pool in 16-byte paragraphs. The default value is 
the usual pratical minimum, but it can be increased to suit your 
application. 

See also InitMemory, Safety pool, TView.Valid, LowMemory 

Chapter 74, Global reference 353 



MaxBufMem variable 

MaxBufMem variable Memory 

Declaration MaxBufMem: Word = 65536 div 16; 

Function Specifies the maximum amount of memory, in 16-byte paragraphs, that 
can be allocated to cache buffers. 

See also GetBufMem, FreeBufMem 

MaxColiectionSize variable Objects 

Declaration MaxCollectionSize = 65520 div SizeOf (Pointer); 

Function MaxCollectionSize determines that maximum number of elements that may 
be contained in a collection, which is essentially the number of pointers 
that can fit in a 64K memory segment. 

MaxViewWidth constant 

Declaration MaxViewWidth = 132; 

Function Sets the maximum width of a view. 

See also TView.Size field 

mbXXXX constants 

Views 

Drivers 

Function These constants can be used when examining the TEvent.Buttons field of 
an evMouse event record. For example, 

if (Event.What = evMouseDown) and 
(Event.Buttons = mbLeftButton) then LeftButtonDown; 

Values The following constants are defined: 

Table 14.22 
Mouse button 

constants 

Constant 

mbLeftButton 
mbRightButton 

See also GetMouseEvent 

Value 

$01 
$02 

Meaning 

Set if left button was pressed 
Set if right button was pressed 

354 Turbo Vision Guide 



MemAlloc function 

MemAlloc function Memory 

Declaration function MemAlloc(Size: Word): Pointer; 

Function Allocates Size bytes of memory on the heap and returns a pointer to the 
block. If a block of the requested size cannot be allocated, a value of nil is 
returned. As opposed to the New and GetMem standard procedures, 
MemAlloc will not allow the allocation to dip into the safety pool. A block 
allocated by MemAlloc can be disposed using the FreeMem standard 
procedure. 

See also New, GetMem, Dispose, FreeMem, MemAllocSeg 

MemAllocSeg function Memory 

Declaration function MemAllocSeg (Size: Word): Pointer; 

Function Allocates a segment-aligned memory block. Corresponds to MemAlloc, 
except that the offset part of the resulting pointer value is guaranteed to 
be zero. 

See also MemAlloc 

MenuBar variable App 

Declaration MenuBar: PMenuView = nil; 

Function Stores a pointer to the application's menu bar (a descendant of 
".,. K_ •••• Tn __ •• \ ".,L _ • K_ •••. n_ .. ___ •• !_1_1_!_ !_!L!_1! __ ..l 1-__ 
.L.LV.U ... ,,,,,,,, v ...... '-'VI • .L..LL"," "y..l."" ......... L.J'HooI v '-4. ....... "....., ........ ~iJ ...... &. .... '" ........... ~-- ..., J 

TProgram.InitMenuBar, which is called by TProgram.lnit. A value of nil 
indicates that the application has no menu bar. 

Chapter 74, Global reference 355 



Message function 

Message function Views 

Declaration function Message (Receiver: PView; What, Command: Word; Infoptr: 
Pointer): Pointer; 

Function Message sets up a command event with the arguments What, Command and 
InfoPtr then, if possible, invokes ReceiverA.HandleEvent to handle this 
event. Message returns nil if Receiver is nil, or if the event is not handled 
successfully. If the event is handled successfully (that is, if HandleEvent 
returns Event. What as evNothing), the function returns Event.InfoPtr. The 
latter can be used to determine which view actually handled the 
dispatched event. The What argument is usually set to evBroadcast. For 
example, the default TScrollBar.ScrollDraw sends the following message to 
the scroll bar's owner: 

Message (Owner, evBroadcast, cmScrollBarChanged, @Self); 

The above message ensures that the appropriate views are redrawn 
whenever the scroll bar's Value changes. 

See also TView.HandleEvent, TEvent type, cmXXXX constants, evXXXX constants 

MinWinSize variable Views 

Declaration MinWinSize: TPoint = (X: 16; Y: 6); 

Function Min Win Size defines the minimum size of a TWindow or a descendant of 
TWindow. The value is returned in the Min parameter on a call to 
TWindow.SizeLimits. Any change to Min Win Size will affect all windows, 
unless a window's SizeLimits method is overridden. 

See also TWindow.SizeLimits 

MouseButtons variable Drivers 

Declaration MouseButtons: Byte; 

Function Contains the current state of the mouse buttons. MouseButtons is updated 
by the mouse interrupt handler whenever a button is pressed or released. 
The mbXXXX constants can be used to examine MouseButtons. 

See also mbXXX constants 

356 Turbo Vision Guide 



MouseEvents variable 

MouseEvents variable Drivers 

Declaration MouseEvents: Boolean = False; 

Function Set True if a mouse is installed and detected by InitEvents; otherwise set 
False. If False, all mouse event routines are bypassed. 

See also GetMouseEvent 

MouselntFlag variable Drivers 

Declaration MouselntFlag: Byte; 

Function Used internally by Turbo Vision mouse driver and by views. Set 
whenever a mouse event occurs. 

Declaration MouseWhere: TPoint; 

Drivers I MouseWhere variable 

Function Contains the current position of the mouse in global coordinates. 
Mouse Where is updated by the mouse interrupt handler whenever the 
mouse is moved. Use the MakeLocal routine to convert to local, window
relative coordinates. Mouse Where is passed to event handlers together 
with other mouse data. 

See also GetMouseEvent, GetEvent methods, MakeLocal 

MoveBuf procedure Drivers 

Declaration procedure MoveBuf (var Dest; var Source; Attr: Byte; Count: Word); 

Function Moves text into a buffer to be used with TView. WriteBuf or 
TView. WriteLine. Dest must be TDrawBuffer (or an equivalent array of 
words) and Source must be an array of bytes. Count bytes are moved from 
Source into the low bytes of corresponding words in Dest. The high bytes 
of the words in Dest are set to Attr, or remain unchanged if Attr is zero. 

See also TDrawBuffer type, MoveChar, MoveCStr, MoveStr 

Chapter 74, Global reference 357 



MoveChar procedure 

MoveChar procedure Drivers 

Declaration procedure MoveChar(var Dest; C: Char; Attr: Byte; Count: Word); 

Function Moves characters into a buffer to be used with TView. WriteBuf or 
TView. WriteLine. Dest must be TDrawBuffer (or an equivalent array of 
words). The low bytes of the first Count words of Dest are set to C, or 
remain unchanged if Ord(C) is zero. The high bytes of the words are set to 
Attr, or remain unchanged if Attr is zero. 

See also TDrawBuffer type, MoveBuf, MoveCStr, MoveStr 

MoveCStr procedure Drivers 

Declaration procedure MoveCStr (var Dest; Str: String; Attrs: Word); 

Function Moves a two-colored string into a buffer to be used with TView. WriteBuf 
or TView. WriteLine. Dest must be TDrawBuffer (or an equivalent array of 
words). The characters in Str are moved into the low bytes of 
corresponding words in Dest. The high bytes of the words are set to 
Lo(Attr) or Hi(Attr). Tilde characters ( .... ) in the string are used to toggle 
between the two attribute bytes passed in the Attr word. 

See also TDrawBuffer type, MoveChar, MoveBuf, MoveStr 

MoveStr procedure Drivers 

Declaration procedure MoveStr(var Dest; Str: String; Attr: Byte); 

Function . Moves a string into a buffer to be used with TView. WriteBuf or 
TView. WriteLine. Dest must be TDrawBuffer (or an equivalent array of 
words). The characters in Str are moved into the low bytes of 
corresponding words in Dest. The high bytes of the words are set to Attr, 
or remain unchanged if Attr is zero. 

See also TDrawBuffer type, MoveChar, MoveCStr, MoveBuf 

358 Turbo Vision Guide 



Newltem function 

Newltem function Menus 

Declaration function NewItem(Name, Param: TMenuStr; KeyCode: Word; Command: Word; 

AHelpCtx: Word; Next: PMenuItem): PMenuItem; 

Function Allocates and returns a pointer to a new TMenuItem record that represents 
a menu item (NewStr is used to allocate the Name and Param string pointer 
fields). The Name parameter must be a non-empty string, and the 
Command parameter must be non-zero. Calls to Newltem, NewLine, 
NewMenu, and NewSubMenu can be nested to create entire menu trees in 
one Pascal statement; for examples of this, refer to Chapter 2, "Writing 
Turbo Vision applications." 

See also TApplication.InitMenuBar, TMenuView type, NewLine, NewMenu, 
NewSubMenu # 

Newline function Menus 

Declaration function NewLine (Next: PMenuItem): PMenuItem; 

Function Allocates and returns a pointer to a new TMenuItem record that represents 
a separator line in a menu box. 

See also T Application.InitMenuBar, TMenu View type, NewMenu, NewSubMenu, 
NewItem 

NewMenu function Menus 

Declaration function NewMenu (Items: PMenuItern): PMenu; 

Function Allocates and returns a pointer to a new TMenu record. The Items and 
Default fields of the record are set to the value given by the Items 
parameter. 

See also TApplication.InitMenuBar, TMenuView type, NewLine, NewSubMenu, 
Newltem 

Chapter 74, Global reference 359 

I 



NewSlfem function 

NewSltem function Dialogs 

Declaration function NewS Item (Str: String; ANext: PSltem): PSItemi 

Function Allocates and returns a pointer to a new TSItem record. The Value and 
Next fields of the record are set to NewStr(Str) and ANext, respectively. 
The NewSItem function and the TSItem record type allow easy 
construction of singly-linked lists of strings; for an example of this, refer 
to Chapter 4, "Views." 

NewStatusDef function Menus 

Declaration function NewStatusDef (AMin, AMax: Word; AItems: PStatusItem; ANext: 
PStatusDef): PStatusDef; 

Function Allocates and returns a pointer to a new TStatusDef record. The record is 
initialized with the given parameter values. Calls to NewStatusDef and 
NewStatusKey can be nested to create entire status line definitions in one 
Pascal statement; for an example of this, refer to Chapter 2, 'Writing 
Turbo Vision applications." 

See also T Application.InitStatusLine, TStatusLine, NewStatusKey 

NewStatusKey function Menus 

Declaration function NewStatusKey (AText: String; AKeyCode: Word; ACommand: Word; 
ANext: PStatusltem): PStatusltem; 

Function Allocates and returns a pointer to a new TStatusItem record. The record is 
initialized with the given parameter values (NewStr is used to allocate the 
Text pointer field). If AText is empty (which results in a nil Text field), the 
status item is hidden, but will still provide a mapping from the given 
KeyCode to the given Command. 

See also T Application.InitStatusLine, TStatusLine, NewStatusDef 

360 Turbo Vision Guide 



NewStr function 

NewStr function Objects 

Declaration function NewStr (S: String): PStringi 

Function Dynamic string routine. If 5 is nul, New5tr returns a nil pointer; otherwise, 
Length(5)+1 bytes is allocated containing a copy of 5, and a pointer to the 
first byte is returned. 

Strings created with NewStr should be disposed of with DisposeStr. 

See also DisposeStr 

NewSubMenu function Menus 

Declaration function NewSubMenu (Name: TMenuStri AHelpCtx: Wordi SubMenu: PMenui Next: 
PMenultem): PMenultemi 

Function Allocates and returns a pointer to a new TMenuItem record, which 
represents a submenu (NewStr is used to allocate the Name pointer field). 

See also TAppIication.lnitMenuBar, TMenuView type, NewLine, NewItem, NewItem 

ofXXXX constants Views I 
Function These mnemonics are used to refer to the bit positions of the 

TView.Options field. Setting a bit position to 1 indicates that the view has 
that particular attribute; clearing the bit position means that the attribute 
is off or disabled. For example, 

MyWindow.Options := of Tile able + of Selectable; 

Values The following option flags are defined: 

Table 14.23 
Option flags Constant 

of Selectable 

ofTopSelect 

Chapter 74, Global reference 

Meaning 

Set if the view should select itself automatically (see 
sf Selected), for example, by a mouse click in the view, or a Tab 
in a dialog box. 

Set if the view should move in front of all other peer views 
when selected. When the ofTopSelect bit is set, a call to 
TView.Select corresponds to a call to TView.MakeFirst. 
Windows (TWindow and descendants) by default have the 

361 



of XXX X constants 

362 

Table 14.23: Option flags (continued) 

ofFirstCIick 

ofFramed 

ofPreProcess 

ofPostProcess 

ofBuffered 

ofTileable 

ofCenterX 

ofCenterY 

ofCentered 

ofTopSelect bit set, which causes them to move in front of all 
other windows on the desktop when selected. See also 
TView.Select, TGroup.MakeFirst. 

If clear, a mouse click that selects a view will have no further 
effect. If set, such a mouse click is processed as a normal 
mouse click after selecting the view. Has no effect unless 
of Selectable is also set. See also TView.HandleEvent, sf Select, 
of Selectable. 

Set if the view should have a frame drawn around it. A 
TWindow, and any descendant of TWindow, has a TFrame as 
its last subview. When drawing itself, the TFrame will also 
draw a frame around any other subviews that have the 
ofFramed bit set. See also TFrame, TWindow. 

Set if the view should receive focused events before they are 
sent to the focused view. Otherwise clear. See also sfFocused, 
ofPostProcess, TGroup.Phase. 

Set if the view should receive focused events in the event that 
the focused view failed to handle them. Otherwise clear. See 
also sfFocused, ofPreProcess, TGroup.Phase. 

Used for TGroup objects only: Set if a cache buffer should be 
allocated if sufficient memory is available. The group buffer 
holds a screen image of the whole group so that group 
redraws can be speeded up. In the absence of a buffer, 
TGroup.Draw calls on each subview's DrawView method. If 
later New and GetMem calls cannot gain enough memory, 
group buffers will be deallocated to make memory available. 
See also GetBufMem. 

Set if the desktop can tile (or cascade) this view. Usually used 
only with TWindow objects. 

Set if the view should be centered on the X-axis of its owner 
when inserted in a group using TGroup.Insert. 

Set if the view should be centered on the Y-axis of its owner 
when inserted in a group using TGroup.Insert. 

Set if the view should be centered on both axes of its owner 
when inserted in a group using TGroup.Insert. 

Turbo Vision Guide 



The Options bits are defined as follows: 

Figure 14.4 
Options bit flags Ilmsbl 

I 
I I I 
unde};ned 

See also TView.Options 

I 
I 

r I 

I I I I I I I 

I 
I I 11Sbii 

I ~ 

of XXX X constants 

fCentered a $0300 

fSel ectabl e = $0001 
fTopSelect = $0002 
fFirstCl i ck = $0004 
fFramed = $0008 
fPreProcess a $0010 
fPostProcess = $0020 
fBuffered .. $0040 
fTil eab 1 e = $0080 
fCenterX = $0100 
fCenterY = $0200 

PChar type Objects 

Declaration PChar = "Char; 

Function Defines a pointer to a character. 

PositionalEvents variable Views 

Declaration PositionalEvents: Word = evMousei 

Function Defines the event classes that are positional events. The FocusedEvents and 
PositionalEvents variables are used by TGroup.HandleEvent to determine 
how to dispatch an event to the group's subviews. If an event class isn't 
contained in FocusedEvents or PositionalEvents, it is treated as a broadcast 
event. 

See also TGroup.HandleEvent, TEvent type, evXXXX event constants, FocusedEvents 
vanaDle 

PrintStr procedure Drivers 

Declaration procedure PrintStr (S: String); 

Function Prints the string S on the screen, using DOS function ca1l40H to write to 
the DOS standard output handle. Has the same effect as Write(S), except 
that PrintStr doesn't require the file I/O run-time library to be linked into 
the application. 

Chapter 74, Global reference 363 



PString type 

PString type Objects 

Declaration PString = "'String; 

Function Defines a pointer to a string. 

PtrRec type Objects 

Declaration PtrRec = record 
Gfs, Seg: Word; 

end; 

Function A record holding the offset and segment values of a pointer. 

RegisterDialogs procedure 

Declaration procedure RegisterDialogs; 

Dialogs 

Function Calls RegisterType for each of the standard object types defined in the 
Dialogs unit: TDialog, TlnputLine, TButton, TCluster, TRadioButtons, 
TCheckBoxes, TListBox, TStaticText, TParamText, TLabel, and THistory. This 
allows any of these objects to be used with stream 1/ O. 

See also TStreamRec, RegisterTypes 

Registertype procedure Objects 

Declaration procedure RegisterType (var S: TStreamRec); 

Function A Turbo Vision object type must be registered using this method before it 
can be used in stream I/O. The standard object types are preregistered 
with ObjTypes in the reserved range 0 .. 99. RegisterType creates an entry in 
a linked list of TStreamRec records. 

See also TStream.Get, TStream.Put, TStreamRec 

364 Turbo Vision Guide 



RepeatOelay variable 

RepeatDelay variable Drivers 

Declaration RepeatDelay: Word = 8; 

Function Defines the number of clock ticks (1/18.2 parts of a second) that must 
transpire before evMouseAuto events starts being generated. The time 
interval between evMouseAuto events is always one clock tick. 

See also DoubleDelay, GetMouseEvent, ev XXXX constants 

SaveCtrlBreak variable Drivers 

Declaration SaveCtrlBreak: Boolean = False; 

Function The InitSysError routine stores the state of DOS etr/-Break checking in this 
variable before it disables DOS elrl-Break checks. DoneSysError restores 
DOS etr/-Break checking to the value stored in SaveCtrlBreak. 

See also InitSysError, DoneSysError 

sbXXXX constants Views 

Function These constants define the different areas of a TScrollBar in which the 
mouse can be clicked. 

Table 14.24 
Scroll bar part 

constants 

The TScrollBar.ScrollStep function serves to convert these constants into 
actual scroll step values. Although defined, the sblndicator constant is 
never passed to TScrollBar.ScrollStep. 

Constant 

sbLeftArrow 
sbRightArrow 
sbPageLeft 
sbPageRight 
sbUpArrow 
sbDownArrow 
sbPageUp 
sbPageDown 
sblndicator 

Value 

o 
1 
2 
3 
4 
5 
6 
7 
8 

Meaning 

Left arrow of horizontal scroll bar 
Right arrow of horizontal scroll bar 
Left paging area of horizontal scroll bar 
Right paging area of horizontal scroll bar 
Top arrow of vertical scroll bar 
Bottom arrow of vertical scroll bar 
Upper paging area of vertical scroll bar 
Lower paging area of vertical scroll bar 
Position indicator on scroll bar 

Chapter 14, Global reference 365 

-III 



sbXXXX constants 

Figure 14.5 
Scroll bar parts 

t:t--sbUpArrow 

!!!t--sbPageup 

Sjblndi cator-----t.~t--sbPageDOWn 

;t--sbDownArrow 

;::::::::::::::::::f:::::::::::::::::::::::::::a::::::::::::::::::::::f:::::::::::::::::::::::::::::::::::::::, 

I sbPageLeft sbPageRight I 
sbLeftArrow sbRightArrow 

The following values can be passed to the TWindow.StandardScrollBar 
function: 

Table 14.25 
StandardScroliBar 

constants 

Constant Value Meaning 

Scroll bar is horizontal 
Scroll bar is vertical 

sbHorizontal 
sbVertical 
sbHandleKeyboard 

$0000 
$0001 
$0002 Scroll bar responds to keyboard commands 

See also TScrollBar, TScrollBar.ScrollStep 

ScreenBuffer variable 

Declaration ScreenBuffer: Pointer; 

Function Pointer to the video screen buffer, set by InitVideo. 

See also In it Video 

ScreenHeight variable 

Declaration ScreenHeight: Byte; 

Drivers 

Drivers 

Function Set by InitVideo and SetVideoMode to the screen height in lines of the 
current video screen. 

See also InitVideo, SetVideoMode, ScreenWidth 

366 Turbo Vision Guide 



Screen Mode variable 

ScreenMode variable Drivers 

Declaration ScreenMode: Word; 

Function Holds the current video mode. Set initially by the initialization code of the 
Drivers unit, ScreenMode can be changed using SetVideoMode. ScreenMode 
values are usually set using the smXXXX screen mode mnemonics. 

See also InitVideo, SetVideoMode, smXXXX 

ScreenWidth variable Drivers 

Declaration ScreenWidth: Byte; 

Function Set by In it Video to the screen width (number of characters per line). 

See also InitVideo 

SelectMode type 

Declaration SelectMode = (NormalSelect, EnterSelect, LeaveSelect); 

Function Used internally by Turbo Vision. 

See also TGroup.ExecView, TGroup.SetCurrent 

SetMemTop procedure 

Declaration procedure SetMemTop (MemTop: Pointer); 

Views 

Memory 

Function Sets the top of the application's memory block. The initial memory top 
corresponds to the value stored in the HeapEnd variable. SetMemTop is I 
typically used to shrink the application's memory block before executing a 
DOS shell or another program, and to expand the memory block 
afterward. 

Chapter 74, Global reference 367 



SetVideoMode procedure 

SetVideoMode procedure Drivers 

Declaration procedure SetVideoMode (Mode: Word) i 

Function Sets the video mode. Mode is one of the constants smC080, smBW80, or 
smMono, optionally with smFont8x8 added to select 43- or 50-line mode on 
an EGA or VGA. SetVideoMode initializes the same variables as InitVideo 
(except for the StartupMode variable, which isn't affected). SetVideoMode is 
normally not called directly. Instead, you should use 
TApplication.SetScreenMode, which also adjusts the application palette. 

See also InitVideo, smXXXX constants, TApplication.SetScreenMode 

sfXXXX constants Views 

Function These constants are used to access the corresponding bits in TView.State 
fields. TView.State fields must never be modified directly; instead, you 
should use the TView.SetState method. 

Values The following state flags are defined: 

Table 14.26 
State flag constants Constant Meaning 

368 

sfVisible 

sJCursorVis 

sfCursorlns 

sf Shadow 

sf Active 

sf Selected 

Set if the view is visible on its owner, otherwise clear. Views are 
by default sfVisible. The TView.Show and TView.Hide methods 
may be used to modify sfVisible. An sfVisible view is not 
necessarily visible on the screen, since its owner might not be 
visible. To test for visibility on the screen, examine the sfExposed 
bit or call the TView.Exposed function. 

Set if a view's cursor is visible, otherwise clear. The default is 
clear. The TView.ShowCursor and TView.HideCursor methods 
may be used to modify sJCursorVis. 

Set if the view's cursor is a solid block, clear if the view's cursor 
is an underline. The default is clear. The TView.BlockCursor and 
TView.NormalCursor methods can be used to modify sJCursorlns. 

Set if the view has a shadow, otherwise clear. 

Set if the view is the active window or a subview in the active 
window. 

Set if the view is the currently selected subview within its owner. 
Each TGroup object has a Current field that points to the 
currently selected subview (or is nil if no subview is selected). 
There can be only one currently selected subview in a TGroup. 

Turbo Vision Guide 



sfXXXX constants 

Table 14.26: State flag constants (continued) 

sfFocused 

sfDragging 

sfDisabled 

sfModal 

sfExposed 

Set if the view is focused. A view is focused if it is selected and 
all owners above it are also selected, that is, if the view is on the 
chain that is formed by following each Current pointer of all 
TGroups starting at Application (the topmost view in the view 
hierarchy). The last view on the focused chain is the final target 
of all focused events. 

Set if the view is being dragged, otherwise clear. 

Set if the view is disabled; clear if the view is enabled. A 
disabled view will ignore all events sent to it. 

Set if the view is modal. There is always exactly one modal view 
in a running Turbo Vision application, usually a TApplication or 
TDialog object. When a view starts executing (through an 
ExecView call), that view becomes modal. The modal view 
represents the apex (root) of the active event tree, getting and 
handling events until its EndModal method is called. During this 
"local" event loop, events are passed down to lower subviews in 
the view tree. Events from these lower views pass back up the 
tree, but go no further than the modal view. See also sf Selected, 
sfFocused, TView.SetState, TView.HandleEvent, TGroup.ExecView. 

Set if the view is owned directly or indirectly by the Application 
object, and therefore possibly visible on the screen. The 
TView.Exposed method uses this flag in combination with further 
clipping calculations to determine whether any part of the view 
is actually visible on the screen. See also TView.Exposed. 

Values The state flag bits are defined as follows: 

Figure 14.6 
State flag bit 

mapping 

IlmSbl I I 

See also TView.State 

Chapter 74, Global reference 

I I I I I I I I I 

I 
I I 
I 

11Sbii .c= sf Visible = $0001 
sfCursorVi s = $0002 
sfCursorIns = $0004 
sf Shadow = $0008 
sfActi ve = $0010 
sf Selected = $0020 
sf Focused = $0040 
s~~~ag!J~ n~ = ,~~~~ 
::'IUI::'ClUICU - .pU.LUU 

L..-------------sfModal = $0200 
'----------------sfExposed = $0800 

369 

I 



ShadowAttr variable 

ShadowAttr variable Views 

Declaration ShadowAttr: Byte = $08; 

Function This value controls the color of the "shadow" effect available on those 
views with the sf Shadow bit set. The shadow is usually a thin, dark region 
displayed just beyond the view's edges giving a 3-D illusion. 

See also ShadowSize 

ShadowSize variable Views 

Declaration ShadowSize: TPoint = (x: 2; Y: 1); 

Function This value controls the size of the shadow effect available on those views 
with the sf Shadow bit set. The shadow is usually a thin, dark region 
displayed just beyond the view's right and bottom edges giving a 3-D 
illusion. The default size is 2 in the X direction, and 1 in the Y direction. 

TProgram.InitScreen initializes ShadowSize as follows: If the screen mode is 
smMono, Shadow Size is set to (0,0). Otherwise ShadowSize is set to (2, 1), 
unless smFont8x8 (43- or 50-line mode) is selected, in which case it is set to 
(1, 1)~ 

See also TProgram.InitScreen, ShadowAttr 

ShowMarkers variable Drivers 

Declaration ShowMarkers: Boolean; 

Function Used to indicate whether indicators should be placed around focused 
controls. TProgram.InitScreen sets ShowMarkers to True if the video mode is 
monochrome, otherwise it is False. The value may, however, be set on in 
color and black and white modes if desired. 

See also TProgram.InitScreen, Special Chars variable 

370 Turbo Vision Guide 



ShowMouse procedure 

ShowMouse procedure Drivers 

Declaration procedure ShowMousei 

Function ShowMouse decrements the "hide counter" in the mouse driver, and 
makes the mouse cursor visible if counter becomes zero. 

See also InitEvents, DoneEvents, HideMouse 

smXXXX constants Drivers 

Function These mnemonics are used with SetVideoMode to set the appropriate video 
mode value in ScreenMode. 

Values The following screen modes are defined by Turbo Vision: 

Table 14.27 
Screen mode 

constants 

Constant 

smBWBO 
smCOBO 
smMono 
smFontBxB 

Value 

$0002 
$0003 
$0007 
$0100 

See also SetVideoMode, ScreenMode 

Meaning 

Black-and-white mode with color video 
Color mode 
Monochrome mode 
43-line or 50-line mode 

SpecialChars variable Views 

Declaration 

I=lln~tinn 

See also 

SpecialChars: array[O .. 5] of Char = (#175, #174, #26, #27, ' " ' ')i 
nnh't"'\I"H"t .,..1,1""'\ .; ...... ;:1.;,..."'''",,_ ..... 1-.,"'_ .... _ ... __ ....... ,.._...l J.._ t...:_t...l:_t..L Lt....,.. ' __ ... __ ...3 _-! __ ._!-
- ---- ... -- -- ... - --.---- ... -- - .... ---- .. - .... - ---- .- ......... tJ ... ~t:J ..................... "" ..... '-'Lu,...."'" W'.&.'- ,W ~L 

monochrome video mode. These characters are displayed if the 
ShowMarkers variable is True. 

ShowMarkers variable 

Chapter 74, Global reference 371 



stXXXX constants 

stXXXX constants . Objects 

Function There are two sets of constants beginning with "st" that are used by the 
Turbo Vision streams system. 

Values The following mode constants are used by TDosStream and TBufStream to 
determine the file access mode of a file being opened for a Turbo Vision 
stream: 

Table 14.28 
Stream access 

modes 

Constant 

stCreate 
stOpenRead 
stOpen Write 
stOpen 

Value 

$3COO 
$3DOO 
$3D01 
$3D02 

Meaning 

Create new file 
Open existing file with read access only 
Open existing file with write access only 
Open existing file with read and write access 

The following values are returned by TStream.Error in the 
TStream.ErrorInfo field when a stream error occurs: 

Table 14.29 
Stream error codes Error code Value 

stOk 
stError 
stInitError 
stReadError 
st WriteError 
stGetError 
stPutError 

See also TStream 

StartupMode variable 

Declaration StartupMode: Word; 

o 
-1 
-2 
-3 
-4 
-5 
-6 

Meaning 

No error 
Access error 
Cannot initialize stream 
Read beyond end of stream 
Cannot expand stream 
Get of unregistered object type 
Put of unregistered object type 

Drivers 

Function The InitVideo routine stores the current screen mode in this variable before 
it switches to the screen mode given by ScreenMode. DoneVideo restores the 
screen mode to the value stored in StartupMode. 

See also InitVideo, DoneVideo, ScreenMode 

372 Turbo Vision Guide 



StatusLine variable 

StatusLine variable App 

Declaration Status Line : PStatusLine = nil; 

Function Stores a pointer to the application's status line. The StatusLine variable is 
initialized by TProgram.lnitStatusLine, which is called by TProgram.Init. A 
value of nil indicates that the application has no status line .. 

See also InitStatusLine 

Stream Error variable Objects 

Declaration StreamError: Pointer = nil; 

Function In non-nil, StreamError points to a procedure that will be called by a 
stream's Error method when a stream error occurs. The procedure must be 
a far procedure with one var parameter that is a TStream. That is, the 
procedure must be declared as 

procedure MyStreamErrorProc(var S: TStrearn); far; 

StreamError allows you to globally override all stream error handling. To 
change error handling for a particular type of stream you should override 
that stream type's Error method. 

SysColorAttr variable Drivers 

Declaration SysColorAttr: Word = $4E4F; 

Function The default color used for error message displays by the system error 
handler. On monochrome systems, SysMonoAttr is used in place of 
SysColorAttr. Error message with a cancel/retry option are displayed on 
the status line. The previous status line is saved and restored when 
conditions allow. 

See also SystemError, SysMonoAttr 

Chapter 74, Global reference 373 

I 



SysErrActive variable 

SysErrActive variable Drivers 

Declaration SysErrActive: Boolean = False; 

Function Indicates whether the system error manager is currently active. Set True 
by InitSysError. 

SysErrorFunc variable Drivers 

Declaration SysErrorFunc: TSysErrorFunc = SystemError; 

Function SysErrorFunc is the system error function, of type TSysErrorFunc. The 
system error function is called whenever a DOS critical error occurs and 
whenever a disk swap is required on a single floppy system. ErrorCode is a 
value between 0 and 15 as defined in Table 14.30, and Drive is the drive 
number (O=A, l=B, etc.) for disk-related errors. The default system error 
function is SystemError. You can install your own system error function by 
assigning it to SysErrorFunc. System error functions cannot be overlayed. 

Table 14.30 
System error 

function codes 

Table 14.31 
System error 

function return 
values 

Error code 

0 .. 12 
13 
14 
15 

Meaning 

DOS critical error codes 
Bad memory image of file allocation table 
Device access error 
Drive swap notification 

Return values of the function should be as follows: 

Return value 

o 
1 

Meaning 

User requested retry 
User requested abort 

See also SystemError function, TSysErrorFunc type, InitSysError procedure 

SysMonoAttr variable Drivers 

Declaration SysMonoAttr: Word = $7070; 

Function The default attribute used for error message displays by the system error 
handler. On color systems, SysColorAttr is used in place of SysMonoAttr. 
Error message with a cancel/retry option are displayed on the status line. 
The previous status line is saved and restored when conditions allow. 

374 Turbo Vision Guide 



SysMonoAttr variable 

See also SystemError, SysColor Attr 

System Error function Drivers 

Declaration function SysternError (ErrorCode: Integer ; Drive: Byte): Integer; 

Function This is the default system error function. It displays one of the following 
error messages on the status line, depending on the value of ErrorCode, 
using the color attributes defined by SysColor Attr or SysMonoAttr. 

Table 14.32 
System Error function 

messages 

Error code 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Message 

Disk is write-protected in drive X 
Critical disk error on drive X 
Disk is not ready in drive X 
Critical disk error on drive X 
Data integrity error on drive X 
Critical disk error on drive X 
Seek error on drive X 
Unknown media type in drive X 
Sector not found on drive X 
Printer out of paper 
Write fault on drive X 
Read fault on drive X 
Hardware failure on drive X 
Bad memory image of FAT detected 
Device access error 
Insert diskette in drive X 

See also SysColorAtrr, SysMonAttr, SysErrorFunc 

TByteArray type 

Declaration TByteArray = array [0 .. 32767] of Byte; 

Function A byte array type for general use in typecasts. 

See also TStringListMaker 

Chapter 74, Global reference 

Objects 

375 

I 



TCommandSet type 

TCommandSet type Views 

Declaration TComrnandSet = set of Byte; 

Function TCommandSet is useful for holding arbitrary sets of up to 256 commands. 
It allows for simple testing whether a given command meets certain 
criteria in event handling routines and lets you establish command masks. 
For example, TView's methods: EnableCommands, DisableCommands, 
GetCommands, and SetCommands all take arguments of type TCommandSet. 
A command set can be declared and initialized using the Pascal set 
syntax: 

CurCommandSet: TCommandSet = [0 .. 255] - [cmZoom, cmClose, cmResize, cmNext]; 

See also cmXXXX, TView.DisableCommands, TView.EnableCommands, 
TViewGetCommands, TView.SetCommands. 

TDrawBuffer type Views 

Declaration TDrawBuffer = array [0 .. MaxViewWidth-l] of Word; 

Function The TDrawBuffer type is used to declare buffers for a variety of view Draw 
methods. Typically, data and attributes are stored and formatted line by 
line in a TDrawBuffer then written to the screen: 

var 
B: TDrawBuffer; 

begin 
MoveChar(B, ' " GetColor(l) , Size.X); 
WriteLine(O, 0, Size.X, Size.Y, B); 

end; 

See also TView.Draw, MoveBuf, MoveChar, MoveCStr, MoveStr 

TEvent type Drivers 

376 

Declaration TEvent = record 
What: Word; 
case Word of 

evNothing: (); 
evMouse: ( 

Buttons: Byte; 
Double: Boolean; 

Turbo Vision Guide 



end; 

Where: TPoint); 
evKeyDown: ( 

case Integer of 
0: (KeyCode: Word); 
1: (CharCode: Char; 

ScanCode: Byte)); 
evMessage: ( 

Conunand: Word; 
case Word of 

0: (InfoPtr: Pointer); 
1: (InfoLong: Longint); 
2: (InfoWord: Word); 
3: (InfoInt: Integer); 
4: (InfoByte: Byte); 
5: (InfoChar: Char)); 

TEventtype 

Function The TEvent variant record type plays a fundamental role in Turbo Vision's 
event handling strategy. Both outside events, such as mouse and 
keyboard events, and command events generated by inter-communicating 
views, are stored and transmitted as TEvent records. 

See also evXXXX, HandleEvent methods, GetKeyEvent, GetMouseEvent 

TltemList type Objects 

Declaration TItemList = array [0 .. MaxCollectionSize - 1] of Pointer; 

Function An array of generic pointers used internally by TCollection objects. 

TI\I1Anl I t\lnA 
- - - I ,- -

Declaration TMenu = record 
Items: PMenuItem; 
Default: PMenuItemi 

end; 

I\AAnll~ 

Function The TMenu type represents one level of a menu tree. The Items field points 
to a list of TMenuItems, and the Default field points to the default item 
within that list (the one to select by default when bringing up this menu). 
A TMenu View object (of which TMenuBar and TMenuBox are descandants) 

Chapter 14, Global reference 377 

I 



TMenutype 

has a Menu field that points to a TMenu. TMenu records are created and 
destroyed using the NewMenu and DisposeMenu routines. 

See also TMenuView, TMenuItem, NewMenu, DisposeMenu, TMenuView.Menu field 

TMenultem type 

Declaration TMenuItem = record 
Next: PMenuItem; 
Name: PString; 
Command: Word; 
Disabled: Boolean; 
KeyCode: Word; 
HelpCtx: Word; 
case Integer of 

0: (Param: PString); 
1: (SubMenu: PMenu); 

end; 
end; 

Menus 

Function The TMenuItem type represents a menu item, which can be either a normal 
item, a submenu, or a divider line. Next points to the next TMenuItem 
within a list of menu items, or is nil if this is the last item. Name points to a 
string containing the menu item name, or is nil if the menu item is a 
divider line. Command contains the command event (see cmXXXX 
constants) to be generated when the menu item is selected, or zero if the 
menu item represents a submenu. Disabled is True if the menu item is 
disabled, False otherwise. KeyCode contains the scan code of the hot key 
associated with the menu item, or zero if the the menu item has no hot 
key. HelpCtx contains the menu item's help context number (a value of 
hcNoContext indicates that the menu item has no help context). If the 
menu item is a normal item, Param contains a pointer to a parameter 
string (displayed to the right of the item in a TMenuBox), or is nil if the 
item has no parameter string. If the menu item is a submenu, SubMenu 
points to the submenu structure. 

TMenuItem records are created using the NewItem, NewLine, and 
NewSubMenu functions. 

See also TMenu, TMenuView, NewItem, NewLine, NewSubMenu 

378 Turbo Vision Guide 



TMenuStr type 

TMenuStr type Menus 

Declaration TMenuStr = string[31]; 

Function A string type used by NewItem and NewSubMenu. The maximum menu 
item title is 31 characters. 

See also NewItem, NewSubMenu 

TPalette type 

Declaration TPalette = String; 

Function A string type used to declare Turbo Vision palettes. 

See also GetPalette methods 

TScrollChars type 

Declaration TScrollChars = array[O .. 4] of Char; 

Function An array representing the characters used to draw a TScrollBar. 

See also TScrollBar 

Views 

Views 

TSltem type Dialogs 

DeClaraTIon TSItem = record 
Value: PString; 
Next: PSItem; 

end; 

Function The TSItem record type provides a singly-linked list of PStrings. $uch lists 
can be useful in many Turbo Vision applications where the full flexibility 
of string collections is not required (see TCluster.lnit, for example). A 
utility function NewSItem is provided for adding records to a TSItem list. 

Chapter 74, Global reference 379 

II 



TStatusDef type 

TStatusDef type Menus 

Declaration TStatusDef = record 
Next: PStatusDef; 
Min, Max: Word; 
Items: PStatusltem; 

end; 

Function The TStatusDef type represents a status line definition. The Next field 
points to the next TStatusDef in a list of status lines, or is nil if this is the 
last status line. Min and Max define the range of help contexts that 
correspond to the status line. Items points to a list of status line items, or is 
nil if there are no status line items. 

A TStatusLine object (the actual status line view) has a pointer to a list of 
TStatusDef records, and will always display the first status line for which 
the current help context is within Min and Max. A Turbo Vision 
application automatically updates the status line view by calling 
TStatusLine.Update from TProgram.Idle. 

TStatusDef records are created using the NewStatusDef function. 

See also TStatusLine, TProgram.Idle, NewStatusDef function 

TStatusltem type Menus 

380 

Declaration TStatusItem = record 
Next: PStatusltem; 
Text: PString; 
KeyCode: Word; 
Command: Word; 

end; 

Function The TStatusItem type represents a status line item that can be visible or 
invisible. Next points to the next TStatusItem within a list of status items, 
or is nil if this is the last item. Text points to a string containing the status 
item legend (such as' Alt-X Exit'), or is nil if the status item is invisible (in 
which case the item serves only to define a hot key). KeyCode contains the 
scan code of the hot key associated with the status item, or zero if the the 
status item has no hot key. Command contains the command event (see 
cmXXXX constants) to be generated when the status item is selected . 

. TStatusItem records function not only as definitions of the visual 
appearance of the status line, but are also used to define hot keys, that is, 

Turbo Vision Guide 



TStatusltem type 

an automatic mapping of key codes into commands. The 
TProgram.GetEvent method calls TStatusLine.HandleEvent for all 
evKeyDown events. TStatusLine.HandleEvent scans the current status line 
for an item containing the given key code, and if one is found, it converts 
that evKeyDown event to an evCommand event with the Command value 
given by the TStatusItem. 

TStatusItem records are created using the NewStatusKey function. 

See also TStatusLine, NewStatusKey, TStatusLine.HandleEvent 

TStreamRec type Objects 

Declaration PStreamRec = "TStreamReci 
TStreamRec = record 

ObjType: Wordi 
VmtLink: Wordi 
Load: Pointeri 
Store: Pointer; 
Next: Word; 

end; 

Function A Turbo Vision object type must have a registered TStreamRec before its 
objects can be loaded or stored on a TStream object. The RegisterTypes 
routine registers an object type by setting up a TStreamRec record. 

Table 14.33 
Stream record fields 

The fields in the stream registration record are defined as follows: 

Field 

ObjType 
VmtLink 
Load 
t:"L ....... _ 

Next 

Contents 

A unique numerical id for the object type 
A link to the object type's virtual method table entry 
A pointer to the object type's Load constructor 

A __ !_L ..... _ L_ Lt... ...... _L': __ L J....'P __ ' ... CJ."' .. II .... __ .. ""',.,,~ 

4~ r''''~u~-~ ~.., ... - "'~J--~ ~J r-~ ~.-. - ~-.-.-.--

A pointer to the next TStreamRec 

Turbo Vision reserves object type IDs (ObjType) values 0 through 999 for 
its own use. Programmers can define their own values in the range 1,000 
to 65,535. 

By convention, a TStreamRec for a Txxxx object type is called Rxxxx. For 
example, the TStreamRec for a TCalculator type is called RCalculator, as 
shown in the following code: 

type 
TCalculator = object(TDialog) 

Chapter 74, Global reference 381 

I 



TStreamRec type 

constructor Load(var S: TStrearn); 
procedure Store (var S: TStream); 

end; 

const 
RCalculator: TStrearnRec = 

ObjType: 2099; 
VrntLink: Ofs(TypeOf(TCalculator)A); 
Load: @TCalculator.Load; 
Store: @TCalculator.Store); 

begin 
RegisterType(RCalculator); 

end; 

See also RegisterType 

TStrlndex type 

Declaration TStrlndex = array[O .. 9999] of TStrlndexReci 

Function Used internally by TStringList and TStrListMaker. 

TStrlndexRec type 

Declaration TStrlndexRec = record 
Key, Count, Offset: Wordi 

end; 

Function Used internally by TStringList and TStrListMaker. 

TSysErrorFunc type 

Objects 

Object 

Drivers 

Declaration TSysErrorFunc = function (ErrorCode: Integer ; Drive: Byte): Integer; 

Function TSysErrorFunc defines the type of a system error handler function. 

See also SysErrorFunc, SystemError, InitSysError, DoneSysError 

382 Turbo Vision Guide 



TTerminalBuffer type 

IT erminalBuffer type 

Declaration TTerminalBuffer = array[O .. 65519] of Chari 

Function Used internally by TTerminal. 

See also TTerminal 

ITitleStr type 

Declaration TTitleStr = string[80] i 

Function This type is used to declare text strings for titled windows. 

See also TWindow.Title 

TVideoBuf type 

Declaration TVideoBuf = array[O .. 3999] of Wordi 

Function This type is used to declare video buffers. 

See also TGroup.Buffer 

TWordArray type 

Declaration TWordArray = array [0 .. 16383] of Wordi 

Function A word array type for general use. 

wfXXXX constants 

TextView 

Views 

Views 

Objects 

Views 

Function These mnemonics define bits in the Flags field of TWindow objects. If the 
bits are set, the window will have the corresponding attribute: The 
window can move, grow, close, or zoom. 

Values The window flags are defined as follows: 

Chapter 74, Global reference 383 

I 



wfXXXX constants 

fMove = $01 
fGrow = $02 

'------wfClose = $04 
'-------wfZoom = $08 

Table 14.34 
Window flag 

constants 

Constant 

wfMove 

wfGrow 

wfClose 

wfZoom 

Value 

$01 

$02 

$04 

$08 

Meaning 

Window can be moved 

Window can be resized and has a grow icon in the lower
right corner. 

Window frame has a close icon that can be mouse-clicked 
to close the window. 

Window frame has a zoom icon that can be mouse-clicked 
to zoom the window 

If a particular bit is set (=1), the corresponding property is enabled, 
otherwise if clear (=0), that property is disabled. 

See also TWindows.Flags 

wnNoNumber constant Views 

Declaration wnNoNumber = 0; 

Function If the TWindow.Number field holds this constant, it indicates that the 
window is not to be numbered and cannot be selected via the Alt+number 
key. If the Number field is between 1 and 9, the window number is 
displayed, and Alt-number selection is available. 

See also TWindow.Number 

WordRec type 

Declaration WordRec = record 

Lo, Hi: Byte; 
end; 

Objects 

Function A utility record allowing access to the Lo and Hi bytes of a word. 

See also LongRec 

384 Turbo Vision Guide 



wpXXXX constants 

wpXXXX constants Views 

Function These constants define the three standard color mapping assignments for 
windows. By default, a TWindow object has a Palette of wpBlue Window. The 
default for TDialog objects is wpGrayWindow. 

Values Three standard window palettes are defined: 

Table 14.35 
Standard window 

palettes 

Constant Value 

wpBlue Window 0 
wpCyan Window 1 
wpGray Window 2 

Meaning 

Window text is yellow on blue 
Window text is blue on cyan 
Window text is black on gray 

See also TWindow.Palette, TWindow.GetPalette 

Chapter 74, Global reference 385 



386 Turbo Vision Guide 



A 
A 

TRect field 278 
abstract 

N 

methods 68, 69, 186, 328 
objects 67 

Abstract procedure 328 
AmDefault 

TButton field 213 
ancestor views 

vs. owner views 91 
Application variable 328 
applications 17, 74, 206, 269 

appearance of 271, 328 
as groups 74 
as modal views 98 
as views 86 
behavior of 271 
constructor 25, 207, 270 

example 20 
debugging 16 
default behavior 24 
designing 179 
desktop and 272 
destructor 21,207, 270 

examole 21 
events and 270 
execution 273 
flow of execution 19 
global variable 328 
idle time 271 
main block 8, 24 

example 19 
menu bars and 272 
Run method 113,273 

example 20 
status lines and 272 
storing on streams 166 

Index 

D E 

tracing execution 16 
AppPalette variable 328 
apXXXX constants 328 
ArStep 

TScrollBar field 283 
Assign 

TRect method 84, 278 
AssignDevice procedure 329 
At 

TCollection method 222 
AtDelete 

TCollection method 222 
AtInsert 

TCollection method 223 
atomic operations 131 

safety pool and 132 
Valid method and 135 

AtPut 
TCollection method 223 

B 
B 

TRect field 278 
background 208 

appearance of 209, 227 

of desktop 90 
pattern 208 

bfXXXX constants 329 
bitmapped fields 180, 181, 182 
bits 

checking 182 
clearing 181 
masking 182 
setting 181 

BlockCursor 
TView method 310 

BMenu View palette 263, 264, 267 

x 

387 



Bounds 
TView field 72 

breakpoints 175 
in HandleEvent 176 
in views 177 
program hangs and 177 

broadcast events See events, broadcast 
BufDec 

TTerminal method 303 
BufEnd 

TBufStream field 210 
Buffer 

TBufStream field 210 
TGroup field 236 
TTerminal field 302 

buffered 
drawing 40, 376 

example 40 
locking and 242 
unlocking 243 

streams 209 
views 100 

buffers 
group 236 
memory 

assigning 343 
freeing 343 

moving 357 
moving characters into 357 
moving strings into 358 
screen 366 
streams 210 

end pointer 210 
flushing 210 
position pointer 210 
size of 210 

terminal 303 
beginning 302 
end 302 
position 303 
size of 302 

video 383 
writing to screen 320 

Bufinc 
TTerminal method 303 

BufPtr 
TBufStream field 210 

388 

BufSize 
TBufStream field 210 
TTerminal field 302 

ButtonCount variable 330 
buttons 12,15,50,75,211 

appearance of 213,214,215 
behavior of 118,214 
Cancel 16,51 
commands 50, 212 

binding 51 
constructor 51, 213 
default 16,52,213,214,329 
destructor 213 
example 51 
flags 213,329 
labels 50,212, 329 

left-justified 213 
mouse 330, 354, 356 
normal 213, 329 
OK 52 
phase and 118 
streams and 213, 214 

c 
CalcBounds 

TView method 310 
CalcWidth 

TTerminal method 303 
Cancel button 16 
CanInsert 

TTerminal method 303 
Cascade 

TDeskTop method 227 
CBackground palette 209 
CButton palette 215 
CCluster palette 216, 220, 277 
CDialog palette 229 
centering See views, centering 
CFrame palette 235 
ChangeBounds 

TGroup method 237 
TListViewer method 260 
TScroller method 287 
TView method 310 

characters 
pointers to 363 

Turbo Vision Guide 



writing to screen 320 
check boxes 75,215 

appearance of 216 
constructor 53, 216 
description 53 
destructor 216 
example 53 
marked 216 
setting values 53 
toggling 216 
values 54,216 

setting 216 
CheckSnow variable 330 
CHis tory palette 245 
ClnputLine palette 252 
CLabel palette 254 
ClearEvent 

TView method 112, 123, 310 
TView method 

messages and 128 
ClearScreen procedure 330 
clipping 90, 312 
CListViewer palette 257, 261 
Close 

TWindow method 323 
clusters 53, 75,216, See also radio buttons; 

check boxes 
appearance of 219,220 
behavior of 219 
constructor 53,218 
destructor 218 
setting values 53 
streil'.&.ns and 218 
values 217, 218, 219 

reaamg~/:::J 

setting 220 
CMenu View palette 263, 264, 267 
crnXxxx constants 49, 51, 119, 331 
collections 79, 137, 220, 377 

arrays vs. 138 
constants 334 
constructor 222 
destructor 140, 222 
dynamic sizing 138 
errors 149, 223 

codes 334 
examples 139-141, 143-144 

Index 

groups and 139 
items 221 

constructor 139 
defining 139 
deleting 222, 223, 224 
deleting all 223, 224 
indexed 222, 225 
inserting 140,223,225 
number 221 
replacing 223 

iterator methods 141,223,224,225 
list boxes and 255 
maximum size 149 
non-objects and 139 
packing 226 
pointers and 138, 149 
polymorphism and 138 
resource 80, 279 
size 140,221 

increasing 140, 221 
maximum 221, 226, 354 

sorted 80, 143, 288 
items 

comparing 144, 289 
finding 290 
indexes 289 
inserting 290 
keys 290 

keys 143, 144 
streams and 170, 222, 225, 226 
string 80, 144, 298 

items 
comparing 299 
deleting 299 
Ot::LUUO ~vv 

putting 299 
type checking and 138 

color See palettes 
Command 

TButton field 212 
CommandEnabled 

TView method 310 
commands 119 

binding 120 
buttons and 50,212 
conflicting 176 
defining 27, 119 

389 



dialog boxes 49 
standard 51,332 

disabling 27, 120,311 
enabling 120,310,312 
events and 113 
focused events and 119 
positional events and 119 
reserved by Turbo Vision 119, 331 
sets of 313,318,375 
standard 27, 331 

dialog boxes 51 
dialogs 332 

Compare 
TSortedColIection method 289 
TStringCollection method 299 

constants 
application palettes 328 
button flags 329 
collections 334 
commands 331 
grow mode 345 
help context 346 
keyboard 350 
option flags 361 
prefixes 186 
screen modes 371 
scroll bar parts 365 
state flags 368 
stream 371 

constructors 2 
Contains 

TRect method 278 
controls See also dialog boxes, controls 

binding labels to 55, 253 
button See also buttons 
cluster See also clusters 
default 16 
dialog boxes and 50, 74 
focused 52, 96 

default 52 
history lists See also history lists 
input lines See also input lines 
label See also labels 
list boxes See also list boxes 
list viewers See also list viewers 
phase and 118 

390 

static text See also text, static 
values 

setting 56 
conventions 

naming 186 
coordinate system 83, 84, 269, 277 
coordinates 

global 315 
local 315 

Copy 
TRect method 278 

CopyFrom 
TStream method 167, 296 

Count 
TCollection field 221 
TResourceFile method 281 

coXXXX constants 334 
CScrollBar palette 286 
CScroller palette 288, 304, 305 
CStaticText palette 292 
CStatusLine palette 294 
CStrLen function 334 
CtrlBreakHit variable 335 
CtrlToArrow function 335 
CurPos 

TInputLine field 249 
Current 

TGroup field 236 
TMenu View field 265 

Cursor 
TView field 307 

cursor 
hiding 314 
location of 318 
mouse 

hiding 346 
showing 370 

position 307 
input lines 249 

size of 336 
type 310,316,368 
visible 319, 368 

CursorLines variable 336 
customization 169, 170 

string lists and 173 
CWindow palette 325 

Turbo Vision Guide 



D 
Data 

TlnputLine field 249 
DataSize 

TCluster method 218 
TGroup method 238 
TlnputLine method 250 
TListBox method 256 
TParamText method 268 
TView method 57, 311 

debugging 175 
commands 176 
event handling 176 

default 
behavior 

modifying 98 
views 110 

button 16,213,214 
safety pool 132 

Defs 
TStatusLine field 293 

Delete 
TCollection method 223 
TGroup method 238 
TResourceFile method 281 

DeleteAlI 
TCollection method 223 

Delta 
TCollection field 140,221 
TScrolIer field 286 

Delta values 
scroller 44 

deriving object types 69 
desktop 74, 226 

appearance YU 
appearance of 227 
behavior of 227 
cascading windows on 227 
constructor 26, 227 
creation by application 272 
global variable 336 
storing on streams 166 

example 166 
streams and 166 
tiling windows on 35, 100, 228 

errors 228 

Index 

DeskTop variable 26, 336 
dialog boxes 74,228 

appearance of 229 
behavior of 229 
buttons See buttons 
canceling 49 
check boxes See check boxes 
closing 49,61 
commands 

standard 51, 332 
constructor 229 
controls 50, 61 

shortcuts 59 
values 

setting 56 
default behavior 49 
designing 50 
Enter key and 52 
file open 62 
history lists See history lists 
input lines See input lines 
labels See labels 
list boxes See list boxes 
list viewers See list viewers 
modal 49 

example 49 
modeless 49, 50 

example 47 
opening 47 

example 47, 132, 133 
overview 18 
radio buttons See radio buttons 
shortcuts 59 

conflicts 59 
,.., .... .. ,..'" 
uPClI..CLlCU. r..cy ClUU. oJ&.. 

standard 62 
static text See text, static 
stream registration and 364 
Tab key and 52 
using 15 
values 

reading 57 
setting 56, 57 

example 58 
storing 59 

windows vs. 49 

391 



DisableCommands 
TView method 311 

display access 1 0 
DisposeMenu procedure 336 
DisposeStr procedure 39, 336 
dmXXXX constants 336 
Done 

TApplication method 207 
TBufStream method 210 
TButton method 213 
TCluster method 218 
TCollection method 222 
TDosStream method 231 
TEmsStream method 233 
TGroup method 237 
TInputLine method 250 
TObject method 268 
TProgram method 270 
TResourceFile method 281 
TStaticText method 291 
TStatusLine method 293 
TStringList method 300 
TStrListMaker method 301 
TTerminal method 303 
TView method 309 
TWindow method 323 

DoneEvents procedure 337 
DoneHistory procedure 337 
DoneMemory procedure 338 
DoneSysError procedure 338 
DoneVideo procedure 338 
DoubleDelay variable 338 
DragMode 

constants 336 
TView field 98, 102, 307 

DragView 
TView method 311 

Draw 
buffered 40, 376 

example 40 
procedures 41 

clipping 90, 312 
colors and 104 
groups and 89 
requirements for 42 
TBackground method 209 

392 

TButton method 213 
TCheckBoxes method 216 
TFrame method 234 
TGroup method 238 
THistory method 245 
TInputLine method 251 
TLabel method 254 
TListViewer method 260 
TMenuBar method 262 
TMenuBox method 264 
TRadioButtons method 277 
TScrollBar method 284 
TStaticText method 291 
TStatusLine method 293 
TTerminal method 303 
TView method 37, 73, 82, 84, 311 

draw buffer 40, 376 
palettes and 42 
writing to screen 320 

DrawBox 
TCluster method 219 

DrawView 
TView method 37, 311 

dynamic variables 2 

E 
Empty 

TRect method 279 
EmsCurHandle variable 339 
EmsCurPage variable 339 
EnableCommands 

TView method 312 
EndModal 

TGroup method 238 
TView method 51, 312 

Enter key 
dialog boxes and 52 

environment 
saving 166 

example 166 
Equals 

TRect method 278 
Error 

TCollection method 149, 223 
TStream method 154, 156, 168, 296 

overriding 168 

Turbo Vision Guide 



ErrorInfo 
TStream field 156, 168, 295 

errors 
abandoned event 9, 115, 238 
collections 149, 223 

codes 334 
detecting 132 
file 134 
handler 374,375,382 

initializing 349 
handling 131 

groups and 243 
standard 338 

hangs 138 
memory 133 
out of memory 131, 133 
recovering from 131 
streams 156, 168, 295, 296, 372, 373 

resetting 297 
system 375 

event-driven programming 19, 30, 109-111 
event record 111, 122, 340, 376 
EventAvail 

TView method 312 
EventError 123 

TGroup method 238 
TView method 114, 115 

EventMask 
TView field 116, 308 

events 110 
abandoned 9, 115, 123, 238 
broadcast 115, 128, 355 
clearing 112, 123,310 
command 120 
commands and 113 
concept 111 
constants 339 
debugging 176 
defining additional types 124 
focused 115,237, 341 

command 115 
commands and 119 
example 115 
keyboard 115 
routing 115, 116, 117 

getting 113, 124,239,312,313 
handled 112 

Index 

handling 9, 17, 82, 85, 121, 320 
keyboard 96, 112, 115, 116, 123, 315, 344, 

See also events, focused 
manager 337 

initializing 348 
masks 111, 116,308,340 

debugging and 176 
message 112, 127, 128,355 

responding to 128 
mouse 99, 110, 112, 114, 122, 315, 344, 356, 

357, 362, 364, See also events, positional 
nothing 112 
positional 94, 114 

commands and 119 
queuing 273, 317 
routing 113, 114 
types 111,340 
views and 94 

ev XXXX constants 339 
Execute 

TGroup method 113, 239 
TMenu View method 265 
TView method 312 

ExecView 
TGroup function 49, 50 
TGroup method 238 

existing code 
porting 178 

Exposed 
TView method 312 

F 
fields 70 
&;1"", 

access modes 372 
handles 231 
objects and 152 
resource 169, See also resources, file 

creating 171 
string lists and 173 

type checking and 152 
vs. streams 151 
writing objects to 152 

FILEVIEW.PAS example 136 
FindItem 

TMenu View method 266 

393 



First 
TGroup method 239 

FirstPos 
TInputLine field 249 

FirstThat 
TCollection method 142, 223 
TGroup method 239 

Flags 
TButton field 213 
TWindow field 322 

flags 98, 180, 182 
buttons 213, 329 
checking 182 
clearing 181 
defining 180 
interpreting 180 
option 180,308,361 
Options 99 
setting 181 
state 98, 308, 368 
window 322 
windows 383 

Flush 
TBufStream method 210 
TResourceFile method 281 
TStream method 296 

FNameStr type 340 
focus chain See also views, focused 

events and 115 
Focused 

TListViewer field 259 
focused See also selected 

control 52, 96 
default 52 

events 341, See events, focused 
item 

history list 248 
list viewer 259, 260 

views 10, 95, 96, 368 
default 96 

FocusedEvents variable 341 
FocusItem 

TListViewer method 260 
ForEach 

TCollection method 141,224 
TGroup method 240 

FormatStr procedure 341 

394 

Frame 
TWindow field 322 

frames 234 
appearance of 234, 235 
behavior of 234 
constructor 234 
views 99, 362 
windows 35, 75, 92, 322 

active 96 
creating 324 

Free 
TCollection method 224 
TObject method 267 

FreeAll 
TCollection method 224 

FreeBufMem procedure 343 
FreeItem 

TCollection method 139, 224 
TStringCollection method 299 

G 
Get 

TResourceFile method 281 
TStream method 154, 155, 160, 296 
TStringList method 300 

GetAltChar function 343 
GetAltCode function 343 
GetBounds 

TView method 312 
GetBufMem procedure 343 
GetClipRect 

TView method 42, 312 
GetColor 

palettes and 106 
TView method 105, 106, 31 ~ 

GetCommands 
TView method 313 

GetData 
TCluster method 219 
TGroup method 240 
TInputLine method 251 
TListBox method 256 
TView method 313 

GetEvent 
modifying 125 
overriding 125 

Turbo Vision Guide 



TProgram method 270 
TView method 114, 124, 313 

GetExtent 
TView method 83, 313 

GetHelpCtx 
TCluster method 219 
TGroup method 241 
TMenu View method 266 
TView method 130, 313 

GetItem 
TCollection method 139, 225 
TStringCollection method 299 

GetItemRect 
TMenuBar method 263 
TMenuBox method 264 
TMenu View method 266 

GetKeyEvent procedure 344 
GetMouseEvent procedure 344 
GetPalette 

overriding 107 
TBackground method 209 
TButton method 214 
TCluster method 219 
TDialog method 229 
TFrame method 234 
THistory method 245 
THistoryViewer method 246 
THistoryWindow method 248 
TInputLine method 251 
TLabel method 254 
TListViewer method 260 
TMenu View method 266 
TProgram method 271 
TScrollBar method 284 

.. ." 
.I. "l.:.l.U!l~l· Ul~LllUU ,c,OI 

TStaticText method 291 
TStatusLine method 293 
TView method 107,314 
TWindow method 323 

GetPeerViewPtr 
TView method 165, 314 

GetPos 
TBufStream method 210 
TDosStream method 231 
TEmsStream method 233 
TStream method 167, 296 

Index 

GetSelection 
THistoryWindow method 248 

GetSize 
TBufStream method 211 
TDosStream method 231 
TEmsStream method 233 
TStream method 167, 297 

GetState 
TView method 314 

GetSub ViewPtr 
example 165 
TGroup method 164, 241 

GetText 
THistoryViewer method 246 
TListBox method 256 
TListViewer'method 260 
TParamText method 269 
TStaticText method 291 

GetTitle 
TWindow method 323 

gfXXXX constants 345 
groups 9, 33, 73,86,87, 235 

appearance of 89, 237, 238, 242, 243 
applications as 92 
behavior of 241 
collections and 139 
constructor 237 
data size of 238 
destructor 237 
error handling 243 
events and 238, 239, 241 
help context and 241 
inserting subviews 241 
iterator methods and 239, 240 
J.v\.:.r-J.un ,c,"1',c, 

reading from streams 155 
redrawing 242 
resizing 237 
streams and 155,237,243 
values 

reading 240 
setting 243 

windows as 92 
writing to streams 155 

Grow 
TRect method 83, 278 

395 



GrowMode 
constants 345 
TView field 98, 101,307 

GrowTo 
TView method 314 

H 
Handle 

TDosStream field 231 
TEmsStream field 232 

handle 
DOS file 231 
EMS 

current 339 
HandleEvent See also events, handling 

calling directly 129 
general layout 121 
inheriting 121 
overriding 121 
TButton method 214 
TCluster method 219 
TDeskTop method 227 
TDialog method 229 
TFrame method 234 
TGroup method 241 
THistoryViewer method 246 
TlnputLine method 251 
TLabel method 254 
TListViewer method 260 
TMenu View method 266 
TProgram method 271 
TScrollBar method 284 
TScroller method 287 
TStatusLine method 294 
TView method 85, 114, 121,309 
TWindow method 323 

hanging programs 
debugging 177 

hcNoContext constant 28, 130 
hcXXXX constants 346 
heap 

safety pool 131 
top of 367 

HELLO.PAS 12, 12-21 
constructor 20 
main block 19 

396 

Run method 20 
help context 130, 346 

focused view and 130 
groups and 241 
menu items 28 
menus and 266 
reserved 346 
status lines and 130, 293 
views and 307, 313 

HelpCtx 
TView field 307 

Hide 
TView method 314 

HideCursor 
TView method 314 

HideMouse procedure 346 
Hint 

TStatusLine method 294 
hints 

status lines and 294 
HiResScreen variable 347 
history lists 62, 76, 244 

appearance of 245 
constructor 245 
icon 245 
ID numbers 246 
input lines and 244 
viewers 245 

appearance of 246, 247 
behavior of 246 
constructor 246 
size of 247 
text 246 
windows and 247 

windows 247 
appearance of 248 
constructor 247 
viewers and 247 

HistoryAdd procedure 347 
HistoryBlock variable 347 
HistoryCount function 347 
HistoryID 

THistory field 244 
THistoryViewer field 246 

HistorySize variable 348 
HistoryStr function 348 
HistoryUsed variable 348 

Turbo Vision Guide 



HistoryWidth 
THistoryViewer method 247 

hot keys 
menus and 266 
phase and 118 

HotKey 
TMenu View method 266 

HScrollBar 
TListViewer field 258 
TScroller field 286 

1/ 0 See also streams 
ID numbers 

history lists 244 
objects 158 
stream 

reserved 160 
Idle 

TProgram method 124, 125,271 
idle time 

using 124, 125 
IndexOf 

TCollection method 225 
TSortedCollection method 289 

inheritance 2, 8, 17, 70, 73, 186 
streams and 156 

Init 
TApplication method 207 
TBackground method 208 
TBufStream method 210 
TButton method 213 
TCluster method 218 
TC'ol1prtion mpthoci ~~~ 

TDeskTop method 227 
TDialog method 229 
TDosStream method 231 
TEmsStream method 233 
TFrame method 234 
TGroup method 237 
THistory method 245 
THistoryViewer method 246 
THistoryWindow method 247 
TInputLine method 250 
TLabel method 253 
TListBox method 256 

Index 

TListViewer method 259 
TMenuBar method 262 
TMenuBox method 263 
TMenu View method 265 
TObject method 267 
TParamText method 268 
TProgram method 270 
TResourceFile method 280 
TScrollBar method 283 
TScroller method 287 
TStaticText method 291 
TStatusLine field 293 
TStatusLine method 293 
TStrListMaker method 301 
TIerminal method 303 
TView method 309 
TWindow method 322 

InitDeskTop 
TProgram method 272 

InitDeskTop procedure 25 
InitEvents procedure 348 
InitFrame 

TWindow method 324 
InitHistory procedure 349 
initialization See constructor 
InitMemory procedure 349 
InitMenuBar 

TProgram method 25,272 
InitScreen 

TProgram method 272 
InitStatusLine 

TProgram method 25,272 
InitSysError procedure 349 
InitVideo procedure 349 
Imtv lewer 

THistoryWindow method 248 
input lines 55, 76, 248 

appearance of 249,251,252 
behavior 56 
behavior of 251 
constructor 56, 250 
cursor 

position 249 
data 249 

size of 250 
destructor 250 
example 55 

397 



history lists and 244 
length 

maximum 249 
phase and 118 
selected 249, 250, 251 
streams and 250 
value 

setting 251,252 
Insert 

TCollection method 225 
TGroup method 33, 87, 241 
TSortedCollection method 290 

InsertBefore 
TGroup method 242 

insertion point See input lines, cursor 
instantiating objects 68 
interactive programming 12-21 

basic principles 13, 16 
error handling 131 

intermediary objects 126 
internationalization 173 

resources and 170 
Intersect 

TRect method 278 
IsSelected 

TListViewer method 260 
Items 

TCollection field 221 
items See also collections 

collections and 221 
list boxes and 255, 256 
list viewer 

number 259 
iterator methods 79, 141,223,224,225 

collections and 141 

K 

example 141, 142 
far local requirement 141, 142 
FirstThat 142 
ForEach 141 
groups and 239, 240 
LastThat 142 

kbXXXX constants 350 
KeyAt 

TResourceFile method 281 

398 

keyboard See also events, focused 
constants 350 
events 112, 315, 344 
scan codes 343 

KeyEvent 
TView method 315 

KeyOf 
TSortedCollection method 290 

keys 

L 

resources and 169,281 
sorted collections 290 

labels 55, 252 
appearance of 254 
behavior of 254 
binding to controls 55, 253 
constructor 253 

example 55 
selected 253 

Last 
TGroup field 236 

LastThat 
TCollection method 142, 225 

Light 
TLabel field 253 

Limit 
TCollection field 221 
TScroller field 287 

lines 
writing to screen 321 

Link 
THistory field 244 
TLabel field 253 

List 
TListBox field 255 

list boxes 61, 76,254 
appearance of 257 
collections and 76, 255 
constructor 256 
data 

size of 256 
items 255 

replacing 257 
retrieving 256 

Turbo Vision Guide 



value 
getting 256 
setting 257 

list viewers 61, 76, 257 
appearance of 258,260,261 
behavior of 260 
constructor 259 
items 

focused 259, 260 
number 259, 261 
retrieving 260 
selecting 261 
topmost 259 

resizing 260 
scroll bars and 258 
size of 258 

Load 
methods 156, 160, 166 

example 157 
TBackground method 208 
TButton method 213 
TCluster method 218 
TCollection method 222 
TGroup method 237 
THistory method 245 
TInputLine method 250 
TLabel method 253 
TListBox method 256 
TListViewer method 259 
TMenu View method 265 
TParamText method 268 
TScrollBar method 284 
TScroller method 287 
TStaticText method 291 
I'T"''''',. T· .~" ,...,...,.. 

J. uLULU"J.....lJ.U;;; J.Ut:ULUU. c..vv 

TStreamRec field 158 
TStringList method 300 
TView method 309 
TWindow method 323 
vs.Init 169 

Locate 
TView method 315 

Lock 
TGroup method 242 

LongDiv function 352 
LongMul function 352 

Index 

LongRec type 353 
look and feel 10 
LowMemory function 132,353 
LowMemSize variable 353 

M 
major consumers 135 
MakeDefault 

TButton method 214 
MakeFirst 

TView method 315 
MakeGlobal 

TView method 315 
MakeLocal 

TView method 315 
Mark 

TCheckBoxes method 216 
TCluster method 219 
TRadioButtons method 277 

masks 180 
bitmapped fields and 182 
events 341 

Max 
TScrollBar field 283 

MaxBufMem variable 353 
MaxCollectionSize variable 149, 354 
MaxLen 

TInputLine field 249 
MaxViewWidth constant 354 
mbXXXX constants 354 
MemAlloc function 354 
MemAllocSeg function 355 
memory 

allocation 131.354 
buffer 

assigning 343 
freeing 343 

EMS 
handle 339 
page 339 

errors 131, 133, 149 
major consumers of 135 
manager 338, 353 

initializing 349 
maximum 367 
safety pool 131,353 

399 



Menu 
TMenuView field 265 

menu bars 261 
appearance of 262, 263 
constructor 28, 262 

example 28, 29 
creation by application 272 
global variable 355 
help context and 28 
mouse and 263 

menu boxes 263 
appearance of 264 
constructor 263 
mouse and 264 

MenuBar variable 26, 355 
menus 75,261,264,377, See also menu boxes, 

See also menu bars 
appearance of 266,267 
behavior of 266 
components 11 
constructor 265 
creating 359 
disposing of 336 
help context and 266, 378 
hot keys and 28, 266, 378 
items 265, 266, 378 

creating 358 
disabling 378 
selected 265 
shortcuts 266 

lines 
creating 359 

links between 265 
operating 14 
shortcuts and 28, 266 
streams and 266 
submenus 

creating 361 
Message function 355 
messages 355 

events 112 
methods 

abstract 68, 69, 186, 328 
iterator See also iterator methods 
overriding 69, 70 
pseudo-abstract 70 
static 70 

400 

virtual 70, 186 
Min 

TScrollBar field 283 
Min WinSize variable 356 
modal 

dialog boxes 49, 97 
terminating 51 

views 97, 369 
applications as 98 
current 320 
events and 114 
executing 238,312 
scope and 97 
status line and 98 
terminating 238,312 

modeless dialog boxes See dialog boxes, 
modeless 

Modified 
TResourceFile field 280 

mouse 
buttons 330, 354, 356 
cursor 

showing 370 
driver 338, 364 
events 112, 315, 338, 344, 356, 362, 364 
hiding cursor 346 
location of 316,357 

MouseButtons variable 356 
MouseEvent 

TView method 315 
MouseEvents variable 356 
MouseIntFlag variable 357 
MouseIn View 

TView method 316 
MouseWhere variable 357 
Move 

TRect method 278 
MoveBuf procedure 357 
MoveChar procedure 41, 357 
MoveCStr procedure 358 
MovedTo 

TCluster method 219 
TRadioButtons method 277 

MoveStr procedure 41, 358 
MoveTo 

TView method 316 
multiple interiors 45 

Turbo Vision Guide 



mute objects 10 

N 
naming conventions 186 
New function 2 
NewBackground 

TDeskTop method 227 
NewItem function 28, 358 
NewLine function 28, 359 
NewList 

TListBox method 257 
New Menu function 28, 359 
NewSltem function 359 
NewStatusDef function 360 

help context and 130 
NewStatusKey function 360 
NewStr function 39, 360 
NewSubMenu function 28, 361 
Next 

TStreamRec field 158 
TView field 306 

NextLine 
TTerminal method 303 

NextView 
TView method 316 

nil objects 
streams and 160 

non-objects 
collections and 139 

NormalCursor 
TView method 316 

Number 
TWindow field 322 

TListViewer field 258 

o 
object-oriented programming 2, 65, 69, 186 
objects 

abstract 67, 72 
base 267 
deriving new 69, 156 
files and 152 
groups of 73 
hierarchy 65, 91 

Index 

base of 72 
vs. view trees 90, 91 

instantiating 68 
intermediary 126 
mute 10 
nil 

streams and 160 
non-visible 78 
persistent 152 
primitive 71 
reading from streams 155 
stream ID numbers 158 

reserved 158 
stream registration 153 
streams and 151, 153, 155, 156, 158 
visible See views 
writing to files 152 
writing to streams 155 

of XXX X constants 361, See also flags, Options 
operations 

atomic 131 
operators 

bitwise 181, 182 
Options 

flags 361 
phase 

dialog boxes 60 
TView field 98, 308 

Origin 
TView field 82, 306 

OutOfMemory 
TApplication method 133 
TProgram method 272 

Owner 

owner views 33,91,92,306 
streams and 164 
vs. ancestor views 91 

p 
Pack 

TCollection method 226 
page 

EMS 
current 339 

401 



PageCount 
TEmsStream field 232 

Palette 
TWindow field 322 

palettes 105, 379 
default 105 

overriding 107 
expanding 108 
GetColor and 106,313 
layout 105 
mapping 105 
nil 106 
string functions and 107 
windows 384 

PApplication See TApplication object 
ParamCount 

TParamText field 268 
ParamList 

TParamText field 268 
ParentMenu 

TMenu View field 265 
Pattern 

TBackground field 208 
PBackground See TBackground object 
PBufStream See TBufStream object 
PButton See TButton object 
PChar type 363 
PCheckBoxes See TCheckBoxes object 
PCluster See TCluster object 
PCollection See TCollection object 
PDeskTop See TDeskTop object 
PDialog See TDialog object 
PDosStream See TDosStream object 
peer views 165,314,317 
PEmsStream See TEmsStream object 
PFrame See TFrame object 
PGroup See TGroup object 
PgStep 

TScrollBar field 283 
Phase 60, See also phase 

TGroup field 118, 237 
phase 237 

postprocess 99, 117, 362 
preprocess 99, 117, 362 

PHistory See THistory object 
PHistoryViewer See THistoryViewer object 
PH;istoryWindow See THistoryWindow object 

402 

PInputLine See TInputLine object 
PLabel See TLabel object 
PListBox See TListBox object 
PListViewer See TListViewer object 
PMenuBar See TMenuBar object 
PMenuBox See TMenuBox object 
PMenuView See TMenuView object 
PObject See TObject object 
pointers to objects 2, 17 
points 269 
polymorphism 2, 17, 70, 138 

streams and 152 
porting applications to Turbo Vision 178 
Position 

TEmsStream field 232 
positional events See events, positional 
PositionalEvents variable 363 
postprocess See phase 
PParamText See TParamText object 
PProgram See TProgram object 
PRadioButtons See TRadioButtons object 
preprocess See phase 
PResourceCollection See TResourceCollection 

object 
PResourceFile See TResourceFile object 
Press 

TCheckBoxes method 216 
TCluster method 220 
TRadioButtons method 277 

Prev 
TView method 316 

PrevLines 
TTerminal method 304 

PrevView 
TView method 317 

PrintStr procedure 363 
PScrollBar See TScrollBar object 
PScroller See TScroller object 
pseudo-abstract methods 70 
PSortedCollection See TSortedCollection object 
PStaticText See TStaticText object 
PStatusLine See TStatusLine object 
PStream See TStream object 
PString type 363 
PStringCollection See TStringCollection object 
PStringList See TStringList object 
PStrListMaker See TStrListMaker object 

Turbo Vision Guide 



PTerminal See TTerminal object 
PTextDevice See TTextDevice object 
PtrRec type 364 
Put 

TResourceFile method 282 
TStream method 154, 155, 159, 297 
TStrListMaker method 302 

PutEvent 
TProgram method 273 
TView method 317 

PutInFrontOf 
TView method 317 

PutItem 
TCollection method 139, 226 
TStringCoUection method 299 

PutPeerViewPtr 
TView method 165, 317 

PutSubViewPtr 
example 165 
TGroup method 164, 242 

PView See TView object 
PWindow See TWindow object 

Q 
QueBack 

TTerminal field 302 
QueEmpty 

TTerminal method 304 
QueFront 

TTerminal field 302 

R 
radio buttons 75, 276 

U.!,,!,,\;"L'U.l~C UJ. c.., , 
constructor 53 
description 53 
example 54 
values 54 

reading 277 
setting 277 

Range 
TListViewer field 259 

Read 
TBufStream method 211 
TDosStream method 231 
TEmsStream method 233 

Index 

TStream method 160, 168, 297 
ReadStr 

TStream method 297 
rectangles 277 

comparing 278 
copying 278 
empty 279 
intersecting 278 
moving 278 
size of 

assigning 278 
changing 278 

Redraw 
TGroup method 242 

RegisterDialogs procedure 364 
RegisterType procedure 157, 364 
registration 

new types and 157 
record 

example 159 
records 157 

naming 158 
streams 78, 153, 157, 159 

RepeatDelay variable 364 
reserved 

commands 331 
help contexts 346 
stream ID numbers 158, 160, 364 

reserved commands 119 
Reset 

TStream method 297 
resources 79, 169 

collections and 170, 279 
creating 171 

CA"lll!"L\; I' I 

customization and 169, 170 
deleting 281 
file 279 

constructor 280 
destructor 281 
flushing 281 
size of 281 
streams and 280 

reading 172,.281 
example 172 

saving code with 169 
streams and 170 

403 



string lists and 173 
uses of 169 
vs. streams 167 
writing 282 

Run 
TProgram method 273 

5 
safe programming 131 

example 136 
safety pool 131, 132 

default size 132 
error checking and 133 
example 133 
LowMemory function and 132 
major consumers and 135 
size of 132, 353 
ValidViewand 133 
vs. traditional error checking 133 

SaveCtrlBreak variable 365 
sbXXXX constants 365 
scan codes 

keyboard 343 
scope 

modal views and 97 
screen 

buffer 366 
clearing 330 
high resolution 347 
mode 366,371,372 

setting 273 
size of 366, 367 
writing characters to 320 
writing draw buffer to 320 
writing lines to 321 
writing strings to 321 

ScreenBuffer variable 366 
ScreenHeight variable 366 
ScreenMode variable 366 
Screen Width variable 367 
scroll bars 77, 282 

appearance of 284, 286 
arrows 283 
behavior of 284 
constructor 283, 284 
list viewers and 258 

404 

paging 283 
parts 284, 365, 379 
phase and 117 
scrollers and 284, 286 
standard 324 
value 282, 284 

maximum 283 
setting 285 

minimum 283 
setting 285 

setting 285 
ScrollDraw 

TScrollBar method 284 
TScroller method 287 

scrollers 76, 286 
appearance of 287, 288 
behavior of 287 
constructor 44, 287 
Delta values 44, 286 

limits 287 
setting 288 

scroll bars and 284, 286 
size of 

changing 287 
ScrollStep 

TScrollBar method 284 
ScrollTo 

TScroller method 288 
Search 

TSortedCollection method 290 
Seek 

TBufStream method 211 
TDosStream method 231 
TEmsStream method 233 
TStream method 167, 297 

Sel 
TCluster field 217 

Select See also focused, views 
modes 367 
Options field and 99, 361 
TView method 96, 317 

SelectAlI 
TInputLine method 251 

SelectItem 
TListViewer method 261 

SelectMode type 367 

Turbo Vision Guide 



SelectNext 
TGroup method 243 

SelEnd 
TInputLine field 250 

SelStart 
TInputLine field 249 

SetBounds 
TView method 318 

SetCommands 
TView method 318 

SetCursor 
TView method 318 

SetData 
TCluster method 220 
TGroup method 243 
TInputLine method 252 
TListBox method 257 
TParamText method 269 
TRadioButtons method 277 
TView method 318 
TView procedure 57 

SetHelpCtx 
TView method 130 

SetLimit 
TCollection method 226 
TScroller method 288 

SetMemTop procedure 367 
SetParams 

TScrollBar method 285 
SetRange 

TListViewer method 261 
TScrollBar method 285 

SetScreenMode 
TProgram method 273 

'-'CL'-'LctLC 

overriding 104 
TButton method 214 
TCluster method 220 
TFrame method 235 
TGroup method 243 
TInputLine method 252 
TListViewer method 261 
TScroller method 288 
TView method 103, 318 
TWindow method 324 

SetStep 
TScrollBar method 285 

Index 

SetValue 
TScrollBar method 285 

SetVideoMode procedure 367 
sfXXXX constants 368 
sfXXXX state flag constants See also flags, state 
Shadow Attr variable 369 
shadows 

attributes 369 
size of 370 
views 368 

ShadowSize variable 370 
shortcut keys See hot keys 

localizing 60 
shortcuts 

conflicts 59 
dialog boxes 59 

Show 
TView method 319 

ShowCursor 
TView method 319 

ShowMarkers variable 370 
ShowMouse procedure 370 
Size 

TEmsStream field 232 
TView field 82, 307 

SizeLimits 
TView method 319 
TWindow method 324 
TWindow procedure 46 

smXxxx constants 371 
snow-checking 330 
Spacebar key 

dialog boxes and 52 
SpecialChars variable 371 . .- .. -
.:ILcUlUcUU.:IUUJ.1Vcl.1' 

TWindow method 324 
StartupMode variable 372 
State 

flags 314, 368 
TView field 98, 102, 308 

setting 103 
static 

methods 70 
text 77 

Status 
TStream field 156, 295 

status lines 78,292 

405 



appearance of 293, 294 
behavior of 294 
binding hot keys with 27 
commands 

binding 26, 120 
generating 119 

constructor 26, 293 
example 26, 27 

creation by application 272 
definitions 293, 379 

creating 360 
destructor 293 
global variable 372 
help context and 130,293 
hints 294 
items 293, 380 
keys 

creating 360 
modal views and 98 
positional events and 119 
streams and 293, 294 
updating 294 
usage 11 

Status Line variable 26, 372 
events and 119 

Store 
methods 156, 159, 166 

example 157 
TBackground method 209 
TButton method 214 
TCluster method 220 
TCollection method 226 
TGroup method 243 
THistory method 245 
TInputLine method 252 
TLabel method 254 
TListBox method 257 
TListViewer method 261 
TMenuView method 266 
TParamText method 269 
TScrollBar method 285 
TScroller method 288 
TStaticText method 291 
TStatusLine method 294 
TStreamRec field 158 
TStrListMaker method 302 
TView method 319 

406 

TWindow method 324 
Stream 

TResourceFile field 280 
StreamError variable 373 
streams 78, 151, 294 

access modes 372 
buffered 79, 154, 209, 372, See also buffers, 
streams 

constructor 210 
destructor 210 
position 210 

setting 211 
reading from 211 
size of 211 
truncating 211 
writing to 211 

constructor 154 
copying 167, 296 
defined 151 
designing 168 
destructor 156 
DOS 79, 154, 230, 372 

constructor 231 
destructor 231 
file handle 231 
position 231 
reading from 231 
size 231 
truncating 231 
writing to 232 

EMS 79, 154, 232 
constructor 233 
destructor 233 
handle 232 
position 232, 233 
reading from 233 
size 232, 233 
truncating 233 
writing to 233 

error codes 168, 295, 372 
error-handling 156, 295, 296, 297 
errors 373 
flushing 296 
groups and 155, 243 
indexed 154 
Load methods and 156 
mechanism 159 

Turbo Vision Guide 



nil objects and 160 
non-objects and 168 
object ID numbers 158 

reserved 158 
objects and 151, 153, 156 
overriding 168 
owner views and 164 
peer views and 165 
polymorphism and 152, 153 
position 167, 296 

seeking 297 
random access 153, 154, 167 

resources and 167 
reading from 155, 160, 296, 297 

strings 297 
registration 78, 153, 157, 159,364 

dialog boxes 364 
records 157, 381 

resetting 297 
resources and 170 
seeking position 167 
size of 167, 297 
status 295 
Store methods and 156 
storing desktop on 166 
subviews and 155, 164, 241, 242 
truncating 167, 298 
type checking and 153, 159, 160 
using 153 
virtual method tables and 153 
vs. files 151, 153 
vs. resources 167 
writing to 155, 159, 297, 298 

strings 298 
string lists 80, 173, 299 

adding strings to 302 
constructor 300, 301 
destructor 300, 301 
indexes 382 
makers 300 
making 174 
resource files and 173 
retrieving strings from 300 
uses of 173 

Strings 
TCluster field 217 

Index 

strings 
allocating 39, 360 
collections of 298 
disposing 39, 336 
dynamic 363 
file name 340 
formatting 341 
length 334 
lists of 379 
menu items 378 
moving into buffers 358 
streams and 297, 298 
window titles 383 
writing to screen 321 

StrRead 
TTerminal method 304 
TTextDevice method 305 

StrWrite 
TTerminal method 304 
TTextDevice method 305 

stXXXX constants 371 
subviews 33, 73, 82, 86, 92 

deleting 238 
disposing of 95 
events and 241 
first 239,315 
focused See views, focused 
inserting 241,242 
iterator methods and 239, 240 
last 236 
next 316 
order 315, 316,317 
previous 316, 317 
selected 236.243.317 
streams and 155, 164,241,242,317 

SwitchTo 
TResourceFile method 282 

SysColorAttr variable 373 
SysErrActive variable 373 
SysErrorFunc variable 374 
SysMonoAttr variable 374 
SystemError function 375 

T 
Tab key 

dialog boxes and 16, 52 

407 



focused control and 96 
Tab order 52, 53, 96, See also Z-order 
TApplication object 23, 74,206, See also 

applications 
TProgram vs. 207 

TBackground object 90, 208, See also 
background 

TBufStream object 79, 154, 209, See also 
streams, buffered 

TButton object 75,211, See also buttons 
TByteArray type 375 
TCheckBoxes object 215, See also check boxes 
TCluster object 75,216, See also clusters 
TCollection object 79, 137, 220, See also 

collections 
TCommandSet type 375 
TDeskTop object 74,226, See also desktop 
TDialog object 74, 228, See also dialog boxes 
TDosStream object 79, 154, 230, See also 

streams, DOS 
TDrawBuffer type 40, 376 
TEmsStream object 79, 154, 232, See also 

streams, EMS 
terminal views 75 
TEvent type 122, 376, See also event record 
Text 

TStaticText field 291 
text 

devices 77, 302, 304 
appearance of 303, 304, 305 
assigning 329 
constructor 303, 305 
destructor 303, 305 
lines 303, 304 
terminal buffer 302, 303, 382 

size of 302 
formatted 268 
history lists 246 
static 15,61, 77, 290 

appearance of 291, 292 
centering 291 
constructor 291 
destructor 291 

TFrame object 75, 92, 234, See also frames 
TGroup object 73, 235, See also groups 

fields 73 
THistory object 76, 244, See also history lists 

408 

THistoryViewer object 245, See also history 
lists, viewers 

THistoryWindow object 247, See also history 
lists, windows 

Tile 
TDeskTop·method 228 

TileError 
TDeskTop method 228 

tiling windows 35, 100, 228, 362 
errors 228 

TlnputLine object 76, 248, See also input lines 
TItemList type 377 
Title 

TButton field 212 
TWindow field 322 

title strings 
buttons 212 
windows 322, 323, 383 

TLabel object 252, See also labels 
TListBox object 76, 254, See also list boxes 
TListViewer object 76,257 
TMenu type 377 
TMenuBar object 261, See also menus 
TMenuBox object 263, See also menus 
TMenuItem type 378 
TMenuStr type 378 
TMenu View object 75, 264, See also menus 
TObject object 72,267, See also objects, base 
TopItem 

TListViewer field 259 
TopView 

TView method 320 
TPalette type 379 
TParamText object 268 
TPoint object 72, 82, 83, 269 
TProgram object 74,269, See also applications 
TRadioButtons object 276, See also radio 

buttons 
TRect object 72, 83, 277 
TResourceCollection object 80, 279, See also 

collections, resources 
TResourceFile object 79, 170, 279, See also 

resources 
Truncate 

TBufStream method 211 
TDosStream method 231 
TEmsStream method 233 

Turbo Vision Guide 



TStream method 167, 298 
TScrollBar object 77, 92, 282, See also scroll bars 
TScrollChars type 379 
TScroller object 76, 92, 286, See also scrollers 
TSItem type 379 
TSortedCollection object 80, 143, 288, See also 

collections, sorted 
TStaticText object 77, 290, See also text, static 
TStatusDef type 379 
TStatusItem type 380 
TStatusLine object 78, 292, See also status line 
TStream object 78, 154, 294, See also streams 

fields 78 
TStreamRec type 157, 381 
TStrIndex type 382 
TStrIndexRec type 382 
TStringCollection object 80, 139, 298, See also 

collections, string 
TStringList object 80, 173, 299, See also string 

lists 
TStrListMaker object 173, 300, See also string 

lists 
TSysErrorFunc type 382 
TIerminalobject 77, 302, See also text, devices 
TIerminalBuffer type 382 
TIextDevice object 77, 304, See also text, 

devices 
TIitleStr type 383 
Turbo Vision 

application design 179 
coordinate system 83, 84 
debugging in 175 
defined 7 
elements of 9 
extending 8 
inheritance with 8 
naming conventions 186 
object hierarchy 82 
object overview 67 
porting applications to 178 
using effectively 8 
virtual methods in 8 

TVideoBuf type 383 
TView object 305, See also views 

DrawView method 37 
TWindowobject 74, 321, See also windows 

fields 74 

Index 

TWordArray type 383 
type checking 

collections and 138 
files and 152 
streams and 153, 159, 160 

typecasting 
collections and 144 

u 
Union 

TRect method 278 
Unlock 

TGroup method 243 
Update 

TStatusLine method 294 

V 
Valid 

overriding 134 
example 134 

TDialog method 229 
TGroup method 243 
TView method 134, 135, 320 

ValidView 
. safety pool and 133 
TApplication method 133 
TProgram method 273 

Value 
TCltister field 217 
TScrollBar field 282 

video 
buffer 383 
hip"h rp~oltJtion 347 

m;nager 338 
initializing 349 

mode 366,371,372 
setting 367 

snow-checking 330 
view trees 34, 91, 92 

building 92 
program flow and 94 
pruning 95 
vs. object hierarchy 90, 91 

Viewer 
THistoryWindow field 247 

views 9, 72, 81, 305 

409 



appearance of 37, 73,81,82,84,311,313, 
314 
applications as 82, 86 
behavior of 121,309 
buffered 100 
centering 100, 101, 362 
color palettes 104, 313, 314 
communication between 126,355 
constructor 309 
data 

reading 313 
setting 318 
size of 311 

debugging 177 
destructor 309 
detecting 128 
disabled 369 
drag modes 307 
dragging 311,369 
enabled 369 
error-handling 320 
events and 82, 85, 121,309,320 
exposed 312 
focused 10, 95, 96, 97, 368 

events and 115 
framed 99, 362 
groups of 33, 86 
grow modes 307, 345 
help context 307, 313 
hiding 314 
inserting 33, 241, 242 
interior 35 

example 36 
framed 36 

location of 72, 82, 306, 312, 313,362 
changing 310,315,316 

maximum width 40 
messages between 127 
modal 312, 369, See modal, views 

current 320 
events and 114, 115 

option flags 308, 361 
overlapping 87 
owner See owner views 
peer 165,314,317 
position 

setting 318 

410 

resizing 101 
selectable 99, 361 
selected 95,236,243,317, 368 
shadowed 368, 369, 370 
size of 72, 82, 83, 307, 356 

changing 310,314 
limits 319 
maximum 354 

state flags 308 
subviews 33 
terminal 75,86 

events and 114 
topmost 

finding 129 
trees 34, See also view trees 
unhiding 319 
valid 320 
visible 319, 368 

virtual method tables 
files and 152 
streams and 158 

virtual methods 70 
VmtLink 

TStreamRec field 158 
VMTs See virtual method tables 
VScrollBar 

TListViewer field 258 
TScroller field 286 

w 
wfXXXX constants 383 
windows 74, 321 

active 95, 96, 368 
appearance of 37, 322, 323, 325, 384 
as groups 92 
behavior of 323 
cascading 227 
closing 34, 124, 323 

icon 384 
constructor 31, 322, 323, See also windows, 

opening 
parameters 33 

default 
appearance 35 
behavior 31, 34 

destructor 323 

Turbo Vision Guide 



disposing 34, 323 
elements 11 
flags 322, 383 
frames 35, 75, 92, 322 

active 96 
creating 324 

interior 
multiple 45 

example 45 
moveable 384 
numbering 33, 322, 384 
opening 

example 32 
resizing 384 
scroll bars and 324 
scrolling 42 

example 42 
selected 95 
size of 322 

limits 324 
minimum 356 

tiling 35, 362 
titles 322; 323, 383 
topmost 99 

finding 129 
writing in 38 
zooming 322, 325, 384 

wnNoNumber constant 384 
WordRec type 384 
wpXXXX constants 384 
Write 

TBufStream method 211 
TDosStream method 232 

Index 

TEmsStream: method 233 
TStream method 168, 298 
TStream procedure 159 

WriteBuf 
TView method 41, 320 

Write Char 
TView method 38, 320 

WriteLine 
TView method 41, 321 

WriteStr 
TStream method 298 
TView method 38, 321 

x 
X 

TPoint field 83, 269 

y 
y 

TPoint field 83, 269 

Z 
Z-order 87, 88, 114, 115, 129,361 

altering 242 
changing 315, 317 
defined 88 

Zoom 
TWindow method 325 

ZoomRect 
TWindow method 322 

411 



6.0 
TURBO 
VISION 
GUIDE 

B 0 R L A N D 

c.".,.t. H.~ .. r1If1: lloa Gr.n HIUI R .... P.O. 101 1100111 . Scotti ~"'.y. CA '5017-00111 . (401) 431-5300 
Ollie" I.: AlIltral"' . 0._1\. f ... , ..... Fraoc •• G~.y. Italy. J.,. •• 114 S ..... . Perl. llMM-PAS04-IO • lOR 1153 


