
..

BORLAND

6.0
PROGRAMMfR'S
GUIDf

Turbo Pasca~
Version 6.0

Programmeris· Guide

BORLAND INTERNATIONAL INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, SCOTTS VALLEY, CA 95067-0001

R2

Copyright © 1983, 1990 by Borland International. All rights
reserved. All Borland products are trademarks or registered
trademarks of Borland International, Inc. Other brand and
product names are trademarks or registered trademarks of their
respective holders.

PRINTED IN THE USA.
10 9 8 7 6 5 4 3 2 1

c o N T

Introduction 1
What's in this manual 1

Part 1 The Turbo Pascal standard

Chapter 1 Tokens and constants 5
Special symbols and reserved words 5
Identifiers .. 7
Labels 8
Numbers 9
Character strings .. 10
Constant declarations 12
Comments 13
Program lines 13

Chapter 2 Blocks, locality, and
scope 15

Syntax 15
Rules of scope 17
Scope of interface and standard
identifiers .. 18

Chapter 3 Types 21
Simple types 22

Ordinal types .. 22
Integer types 23
Boolean types 24
Char type 24
Enumerated types 25
Subrange types 25

Real types .. 26
Software floating point 27
8087 floating point 27

String types 27
Structured types 28

Array types 29
Record types 30

E N T s

Object types .. 32
Components and scope 35
Methods 35
Virtual methods 36
Instantiating objects 36

Set types .. 38
File types 39

Pointer types 39
Procedural types 40
Identical and compatible types 41

Type identity 41
Type compatibility 42
Assignment compatibility 43

The type declaration part 44

Chapter 4 Variables 47
Variable declarations 47

The data segment 48
The stack segment 48
Absolute variables 49

Variable references 50
Qualifiers .. 50

Arrays, strings, and indexes 51
Records and field designators. 52
Object component designators 52
Pointers and dynamic variables 53

Variable typecasts 53

Chapter 5 Typed constants 57
Simple-type constants 58
String-type constants 59
Structured-type constants 59

Array-type constants 59
Record-type constants 60
Object-type constants 61
Set-type constants 62

Pointer-type constants 62

Procedural-type constants 63

Chapter 6 Expressions 65
Expression syntax 66
Operators 69

Arithmetic operators 69
Logical operators 70
Boolean operators 70
String operator 72
Set operators 72
Relational operators 72

Comparing simple types 73
Comparing strings 73
Comparing packed strings 74
Comparing pointers 74
Comparing sets 74
Testing set membership 74

The@operator 74
@ with a variable. 75
@ with a value parameter 75
@ with a variable parameter 75
@ with a procedure or function 76
@ with a method 76

Function calls 76
Set constructors .. 77
Value typecasts 78
Procedural types in expressions 79

Chapter 7 Statements 81
Simple statements. 81

Assignment statements 82
Object type assignments 82

Procedure statements 83
Method, constructor, and destructor
calls 83

Goto statements 84
Structured statements 85

Compound statements 85
Conditional statements 86

If statements 86
Case statements. 87

Repetitive statements 88
Repeat statements 88
While statements 89

ii

For statements 90
With statements 92

Chapter 8 Procedures and functions 95
Procedure declarations 95

Near and far declarations 97
Interrupt declarations 97
Forward declarations 98
External declarations 99
Assembler declarations 99
Inline declarations 99

Function declarations 100
Method declarations 102

Constructors and destructors 103
Parameters .. 105

Value parameters 106
Variable parameters 106

Objects 107
Untyped variable parameters 107

Procedural types 108
Procedural variables 108
Procedural-type parameters 111

Chapter 9 Programs and units 113
Program syntax. 113

The program heading 113
The uses clause 114

Unit syntax 114
The unit heading 115
The interface part 115
The implementation part 116
The initialization part. 117
Indirect unit references 117
Circular unit references 118

Sharing other declarations 120

Part 2 The standard libraries

Chapter 10 The System unit 125
Standard procedures and functions 125

Flow control procedures 125
Dynamic allocation procedures ... 125
Dynamic allocation functions 126
Transfer functions 126
Arithmetic functions 127

Ordinal procedures 127
Ordinal functions 127
String procedures 127
String functions 128
Pointer and address functions 128
Miscellaneous procedures 128
Miscellaneous functions 129

File input and output 129
An introduction to file I/O 129

I/O functions 130
I/O procedures 131

Text files .. 131
Procedures 132
Functions 132

Untyped files .. 133
Procedures 133

The FileMode variable 133
Devices in Turbo Pascal 134

DOS devices 134
The CON device 135
The LPT1, LPT2, and LPT3 devices. 135
The COM 1 and COM2 devices 135
The NUL device 136

Text file devices 136
Predeclared variables 136

Uninitialized variables 136
Initialized variables 137

Chapter 11 The Dos unit 141
Constants, types, and variables 141

Constants 141
Flag constants 141
File mode constants 142
File attribute constants 142

Types 143
File record types 143
The Registers type 143
The DateTime type 144
The SearchRec type 144
File-handling string types 144

Variables 145
The DosError variable 145

Procedures and functions 145
Date and time procedures 145

iii

Interrupt support procedures 146
Disk status functions 146
File-handling procedures 146
File-handling functions 146
Process-handling procedures 146
Process-handling functions 147
Environment-handling functions .. 147
Miscellaneous procedures 147
Miscellaneous functions 147

Chapter 12 The Graph unit 149
Drivers 149

IBM 8514 support 150
Coordinate system 151

Current pointer .. 152
Text 152
Figures and styles 153

Viewports and bit images 153
Paging and colors 154

Error handling. 154
Getting started 155

Heap management routines 156
Graph unit constants, types, and
variables .. 159

Constants .. 159
SetPalette and SetAIlPalette 160
SetRGBPalette 161
Line style constants 161
Font control constants 161
Justification constants 161
Clipping constants 162
Bar constants 162
Fill pattern constants 162
BitBlt operators 163
Palette constant 163

Types 163
Variables 165

Chapter 13 The Overlay unit 169
The overlay manager 170

Overlay buffer management 171
Constants and variables 173

OvrResult .. 174
OvrTrapCount 174

OvrLoadCount 174
OvrFileMode .. 174
OvrReadBuf 175
Result codes 177

Procedures and functions 177
OvrInit 177
OvrInitEMS .. 177
OvrSetBuf 178
OvrGetBuf 178
OvrClearBuf 178
OvrSetRetry .. 179
OvrGetRetry 179

Designing overlaid programs 179
Overlay code generation 180
The far call requirement 180
Initializing the overlay manager 181
Initialization sections 184
What not to overlay 185
Debugging overlays 185
External routines in overlays 185

Overlays in .EXE files 187

Chapter 14 Using the 8087 189
The 8087 data types 191
Extended range arithmetic 191
Comparing reals 193
The 8087 evaluation stack 193
Writing reals with the 8087 194
Units using the 8087 195

Detecting the 8087 195
Emulation in assembly language 197

Chapter 15 The Crt unit 199
The input and output files 199
Windows 200

Special characters 200
Line input 201

Constants, types, and variables 201
Constants 202

Crt mode constants. 202
Text color constants 202

Variables 203
CheckBreak 203
CheckEOF 203

iv

CheckSnow 203
DirectVideo 204
LastMode .. 204
TextAttr 204
WindMin and WindMax 205

Procedures and functions 205

Part 3 Inside Turbo Pascal

Chapter 16 Memory issues 209
The Turbo Pascal memory map 209
The heap manager 211

Disposal methods 212
The free list 215
The HeapError variable 217

Internal data formats 218
Integer types 218
Char types 218
Boolean types 218
Enumerated types. 218
Floating-point types 219

The Real type.. 219
The Single type 219
The Double type 220
The Extended type 220
The Comp type 220

Pointer types 221
String types 221
Set types .. 221
Array types 221
Record types 222
File types 222
Procedural types 223

Direct memory access 223

Chapter 17 Objects 225
Internal data format of objects 225

Virtual method tables 226
The SizeOf function 228
The TypeOf function 228
Virtual method calls 229

Method calling conventions 229
Constructors and destructors 230
Extensions to New and Dispose 231

Assembly language methods 232

Constructor error recovery 236

Chapter 18 Control issues 241
Calling conventions 241

Variable parameters 242
Value parameters 242
Function results 243
NEAR and FAR calls 243
Nested procedures and functions ... 244
Entry and exit code. 245
Register-saving conventions 246

Exit procedures .. 246
Interrupt handling 248

Writing interrupt procedures 248

Chapter 19 Input and output issues 251
Text file device drivers. 251

The Open function 252
The InOut function 253
The Flush function 253
The Close function 253

Direct port access 253

Chapter 20 Automatic
optimizations 255

Constant folding 255
Constant merging 256
Short-circuit evaluation 256
Order of evaluation 256
Range checking .. 257
Shift instead of multiply 257
Automatic word alignment. 257
Dead code removal. 258
Smart linking .. 258

Chapter 21 Compiler directives 261
Switch directives 262
Align data 262
Boolean evaluation 263
Debug information 264
Emulation 265
Force far calls .. 265
Generate 80286 code. 266
Input/output checking. 266
Local symbol information 267

v

Numeric processing 268
Overlay code generation 268
Range checking .. 269
Stack-overflow checking 269
Var-string checking 270
Extended syntax 270
Parameter directives 271
Include file .. 271
Link object file .. 271
Memory allocation sizes 272
Overlay unit name 272
Conditional compilation 273

Conditional symbols 274
The DEFINE directive 275
The UNDEF directive. 276
The IFDEF directive 276
The IFNDEF directive 276
The IFOPT directive 276
The ELSE directive 277
The ENDIF directive 277

Part 4 Using Turbo Pascal with
assembly language

Chapter 22 The inline assembler 281
The asm statement 282

Register use 283
Assembler statement syntax 283

Labels 283
Prefix opcodes 285
Instruction opcodes 285

RET instruction sizing 286
Automatic jump sizing 286

Assembler directives 287
Operands .. 289

Expressions .. 290
Differences between Pascal and
Assembler expressions 290
Expression elements 291

Constants .. 291
Numeric constants 291
String constants. 292

Registers .. 293
Sy:plbois 294

Expression classes 297
Expression types 298
Expression operators 300

Assembler procedures and functions .. 303

Chapter 23 Linking assembler code 307
Turbo Assembler and Turbo Pascal .. 308
Examples of assembly language
routines 309

Turbo Assembler example. 313
Inline machine code 314

Inline statements. 314
Inline directives. 316

vi

Part 5 Appendixes

Appendix A Error messages 321
Compiler error messages 321
Run-time errors .. 340

DOS errors .. 340
I/O errors 342
Critical errors 343
Fatal errors 344

Appendix B Reference materials 347
ASCII codes .. 347
Extended key codes 350
Keyboard scan codes 351

Index 353

T A B L E s

1.1: Turbo Pascal reserved words 7 12.1: Graph unit driver and mode
1.2: Turbo Pascal standard directives 7 constants 159
3.1: Predefined integer types 23 12.2: GraphResult error values 160
3.2: Real data types 27 12.3: Graph unit procedures 165
6.1: Precedence of operators 65 12.4: Graph unit functions 167
6.2: Binary arithmetic operations 69 13.1: OvrResult values 177
6.3: Unary arithmetic operations 69 22.1: Values, classes, and types of
6.4: Logical operations 70 symbols 295
6.5: Boolean operations 71 22.2: Predefined type symbols 300
6.6: String operation ... ' 72 22.3: Inline asssembler expression
6.7: Set operations 72 operators 300
6.8: Relational operations 73 B.1: ASCII table 348
6.9: Pointer operation 75 B.2: Extended key codes 350

B.3: Keyboard scan codes 352

vii

F G u R E s

12.1: Screen with xy-coordinates 151 16.4: Creating a 11lole" in the heap 214
13.1: Loading and disposing overlays ... 172 16.5: Enlarging the free block 214
16.1: Turbo Pascal memory map 210 16.6: Releasing the free block 215
16.2: Disposal method using mark and 17.1: Layouts of instances of Location, Point,

release 212 and Circle 226
16.3: Heap layout with Release(P) 17.2: Point and Circle's VMT layouts 228

executed 213

viii

N T R

The User's Guide provides an
oveNiew of the entire Turbo
Pascal documentation set.

Read the introduction in that
book for information on how

to most effectively use the
Turbo Pascal manuals.

o D u c T o N

This manual contains materials for the advanced programmer. If
you already know how to program well (whether in Pascal or
another language), this manual is for you. It provides a language
reference, information on the standard libraries, and program­
ming information on memory and control issues, objects, floating
point, overlays, video functions, assembly language interfacing,
and the run-time and compile-time error messages.

Read the User's Guide if

1. You have never programmed in any language.

2. You have programmed, but not in Pascal, and you would like
an introduction to the Pascal language.

3. You have programmed in Pascal but are not familiar with
Borland's IDE (integrated development environment).

4. You are looking for information on how to install Turbo
Pascal.

The User's Guide also contains reference information on Turbo
Pascal's IDE (including the editor), the project manager, and the
command-line compilers.

The Library Reference contains an alphabetical listing of all of
Turbo Pascal's procedures and functions.

What's in this manual

Introduction

This book is split into four parts: language grammar, the standard
libraries, advanced programming issues, and interfacing with
assembly language.

The first part of this manual, "The Turbo Pascal standard," offers
technical information on the following features of the language:

2

• Chapter 1: '7okens and constants"

• Chapter 2: "Blocks, locality, and scope"

• Chapter 3: '7ypes"

• Chapter 4: ''Variables''

• Chapter 5: '7yped constants"

• Chapter 6: "Expressions"

• Chapter 7: "Statements"

• Chapter 8: "Procedures and functions"

• Chapter 9: "Programs and units"

The second part contains information about all the standard
libraries: the System, Dos, Graph (in conjunction with the BGI),
Overlay, and Crt units, along with 8087 information.

The third part provides further technical information for
ad vanced users:

• Chapter 16: "Memory issues"

• Chapter 17: "Objects"

• Chapter 18: "Control issues"

• Chapter 19: "Input and output issues"

• Chapter 20: "Automatic optimizations"

• Chapter 21: "Compiler directives"

And the remaining fourth part discusses the issues involved with
using Turbo Pascal with assembly language.

The two appendixes provide reference materials and list all the
compiler and run-time error messages generated by Turbo Pascal.

Turbo Pascal Programmer's Guide

p A R T

1

The Turbo Pascal standard

3

4 Turbo Pascal Programmer's Guide

c H

Separators cannot be part of
tokens exceptm smng

constants.

A p T E R

1

Tokens and constants

Tokens are the smallest meaningful units of text in a Pascal
program, and they are categorized as special symbols, identifiers,
labels, numbers, and string constants.

A Pascal program is made up of tokens and separators, where a
separator is either a blank or a comment. Two adjacent tokens
must be separated by one or more separators if each token is a
reserved word, an identifier, a label, or a number.

Special symbols and reserved words

Turbo Pascal uses the following subsets of the ASCn character set:

ill Letters-the English alphabet, A through Z and a through z.

• Digits-the Arabic numerals 0 through 9.

• HeX/digits-the Arabic numerals 0 through 9, the letters A
through F, and the letters a through f.

• Blanks-the space character (ASCn 32) and all ASCn control
characters (ASCn 0 through 31), including the end-of-line or
return character (ASCn 13).

What follows are syntax diagrams for letter, digit, and hex digit. To
read a syntax diagram, follow the arrows. Alternative paths are
often possible; paths that begin at the left and end with an arrow
on the right are valid. A path traverses boxes that hold the names
of elements used to construct that portion of the syntax.

Chapter 7, Tokens and constants 5

6

The names in rectangular boxes stand for actual constructions.
Those in circular boxes-reserved words, operators, and
punctuation-are the actual terms to be used in the program.

letter ---'-$_." ¢---r-cp-----. ... ¢

digit --T¢-.. ----.. ¢

hex digit-.-----+I
'------'

Special symbols and reserved words are characters that have one
or more fixed meanings. These single characters are special
symbols:

+-*/=<>[].,():;"@{}$#

These character pairs are also special symbols:

<= >= := .. (* *) (. .)

Some special symbols are also operators. A left bracket ([) is
equivalent to the character pair of left parenthesis and a period­
(.. Similarly, a right bracket (]) is equivalent to the character pair of
a period and a right parenthesis-.).

Turbo Pascal Programmer's Guide

Table 1.1
Turbo Pascal reserved words

Table 1.2
Turbo Pascal standard

directives

Identifiers

Units are described in
Chapter 3 of the User's Guide

and Chapter 9 of this
manual.

Following are Turbo Pascal's reserved words:

and end nil shr
asm file not string
array for object then
begin function of to
case goto or type
const if packed unit
constructor implementation procedure until
destructor in program uses
div inline record var
do interface repeat while
downto label set with
else mod shl xor

Reserved words appear in lowercase boldface throughout this
manual. Turbo Pascal isn't case sensitive, however, so you can use
either uppercase or lowercase letters in your programs.

The following are Turbo Pascal's standard directives. Unlike
reserved words, these may be redefined by the user. However,
this is not advised.

absolute
assembler

external
far

forward
interrupt

Note that private is a reserved word only within objects.

Identifiers denote constants; types, variables, procedures,
functions, units, programs, and fields in records.

near
private
virtual

An identifier can be of any length, but only the first 63 characters
are significant. An identifier must begin with a letter or an under­
score character and cannot contain spaces. Letters, digits, and
underscore characters (ASCII $5F) are allowed after the first char­
acter. Like reserved words, identifiers are not case sensitive.

When several instances of the same identifier exist, you may need
to qualify the identifier by a unit identifier in order to select a
specific instance. For example, to qualify the identifier Ident by the
unit identifier UnitName, you would write UnitName.Ident. The
combined identifier is called a qualified identifier.

Chapter 7, Tokens and constants 7

Labels

8

identifier

underscore ~

program identifier,
unit identifier, --~JI identifier ~--
field identifier . .

qualified
identifier

unit identifier

Here are some examples of identifiers:

Writeln
Exit
Rea12String
System. MernAvail
Dos.Exec
Crt. Window

In this manual, standard and user-defined identifiers are italicized
when they are referred to in text.

A label is a digit sequence in the range 0 to 9999. Leading zeros are
not significant. Labels are used with goto statements.

Turbo Pascal Programmer's Guide

Numbers

label digit sequence

As an extension to standard Pascal, Turbo Pascal also allows
identifiers to function as labels.

Ordinary decimal notation is used for numbers that are constants
of type integer and real. A hexadecimal integer constant uses a
dollar sign ($) as a prefix. Engineering notation (E or e, followed
by an exponent) 'is read as "times ten to the power of" in real
types. For example, 7E-2 means 7 x 10-2; 12.25e+6 or 12.25e6 both
mean 12.25 x 10+6• Syntax diagrams for writing numbers follow:

hex digit sequence ~ hex digit T

digit sequence ~

unsigned integer -.,..---+1

hex digit sequence

Signw

Chapter 7, Tokens and constants 9

unsigned real

digit sequence digit sequence

scale factor~ I ~·I digit sequence I--
L&J~

unsigned number---r-~ unsigned integer I---r--

unsigned real 1---....

Signed number ---,r------r-+/ unsigned number

Numbers with decimals or exponents denote real-type constants.
Other decimal numbers denote integer-type constants; they must
be within the range -2,147,483,648 to 2,147,483,647.

Hexadecimal numbers denote integer-type constants; they must
be within the range $00000000 to $FFFFFFFF. The resulting value's
sign is implied by the hexadecimal notation.

Character strings

10

A character string is a sequence of zero or more characters from
the extended ASCII character set (Appendix B), written on one

Turbo Pascal Programmer's Guide

line in the program and enclosed by apostrophes. A character
string with nothing between the apostrophes is a null string. Two
sequential apostrophes in a character string denote a single char­
acter, an apostrophe. The length attribute of a character string is
the actual number of characters within the apostrophes.

As an extension to standard Pascal, Turbo Pascal allows control
characters to be embedded in character strings. The # character
followed by an unsigned integer constant in the range 0 to 255
denotes a character of the corresponding ASCII value. There must
be no separators between the # character and the integer constant.
Likewise, if several control characters are part of a character
string, there must be no separators between them.

character string --0 ~ . ~ · ()-
string character

string character -..,--+1 any character except ' or CR

A character string of length zero (the null string) is compatible
only with string types. A character string of length one is com­
patible with any Char and string type. A character string of length
N, where N is greater than or equal to 2, is compatible with any
string type and with packed arrays of N characters.

Here are some examples of character strings:

'TURBO'
'You"ll see'
""
';'
, ,
#13#10
'Line l'#13'Line2'
#7#7'Wake up!'#7#7

Chapter 7, Tokens and constants 11

Constant declarations

Wherever standard Pascal
allows only a simple con­

stant, Turbo Pascal allows a
constant expression.

12

For expression syntax, see
Chapter 6, "Expressions. N

A constant declaration declares an identifier that marks a constant
within the block containing the declaration. A constant identifier
cannot be included in its own declaration.

constant declaration r identifier ~I constant ~

constant ---+III expression """"I --..

As an extension to standard Pascal, Turbo Pascal allows use of
constant expressions. A constant expression is an expression that
can be evaluated by the compiler without actually executing the
program. Examples of constant expressions follow:

100
'A'
256 - 1
(2.5 + 1) / (2.5 - 1)
'Turbo' + ' , + 'Pascal'
Chr (32)
Ord('Z') - Ord('A') + 1

The simplest case of a constant expression is a simple constant,
such as 100 or 'A'.

Since the compiler has to be able to completely evaluate a
constant expression at compile time, the following constructs are
not allowed in constant expressions:

• references to variables and typed constants (except in constant
address expressions, as described in Chapter 5).

• function calls (except those noted in the following text)

• the address operator (@) (except in constant address
expressions, as described in Chapter 5)

Except for these restrictions, constant expressions follow the exact
syntactical rules as ordinary expressions.

Turbo Pascal Programmer's Guide

Comments

The compiler directives are
summarized in Chapter 21.

Program lines

The following standard functions are allowed in constant
expressions:

Abs
Chr
Hi

Length
Lo
Odd

Ord
Pred
Ptr

Round
SizeD!
Succ

Swap
Trunc

Here are some examples of the use of constant expressions in
constant declarations:

const
Min = 0;
Max = 100;
Center = (Max - Min) div 2;
Beta = Chr(225);
NumChars = Ord('Z') - Ord('A') + 1;
Message = 'Out of memory';
ErrStr = ' Error: ' + Message + '. ';
ErrPos = 80 - Length(ErrorStr) div 2;
Ln10 = 2.302585092994045684;
Ln10R = 1 / Ln10;
Numeric = ['0' .. '9'];
Alpha = ['A' .. 'Z', 'a' .. 'z'];
AlphaNum = Alpha + Numeric;

The following constructs are comments and are ignored by the
compiler:

{ Any text not containing right brace }
(* Any text not containing star/right parenthesis *)

A comment that contains a dollar sign ($) immediately after the
opening { or (* is a compiler directive. A mnemonic of the
compiler command follows the $ character.

Turbo Pascal program lines have a maximum length of 126
characters.

Chapter 7, Tokens and constants 13

14 Turbo Pascal Programmer's Guide

c H

Syntax

A p T E R

2

Blocksf localitYf and scope

A block is made up of declarations, which are written and
combined in any order, and statements. Each block is part of a
procedure declaration, a function declaration, or a program or
unit. All identifiers and labels declared in the declaration part are
local to the block.

The overall syntax of any block follows this format:

block ---1 declaration part H statement part I--

Chapter 2, Blocks, locality, and scope 15

16

declaration part

f--+ label declaration part :

f--+ constant declaration part :

f--+ type declaration part :

~ variable declaration part:

~ procedure/function declaration part

The label rJeclaration part is where labels that mark statements in
the corresponding statement part are declared. Each label muSt
mark only one statement.

label declaration part

The digit sequence used for a label must be in the range 0 to 9999.

The constant declaration part consists of constant declarations local
to the block.

constant declaration part

)-r--r~ constant declaration I----r--...--.....

typed constant declaration

The type declaration part includes all type declarations local to the
block.

type declaration part ~ type declaration ~

Turbo Pascal Programmer's Guide

Rules of scope

The variable declaration part is composed of variable declarations
local to the block.

variable declaration part -®--r' variable declaration r-r-
The procedure and function declaration part comprises procedure
and function declarations local to the block.

procedure/function declaration part

L.......,.--.-+I procedure declaration I---r--r-+

function declaration

constructor declaration

destructor declaration

The statement part defines the statements or algorithmic actions to
be executed by the block.

statement part -l compound statement ~

The presence of an identifier or label in a declaration defines the
identifier or label. Each time the identifier or label occurs again, it
must be within the scope of this declaration. The scope of an
identifier or label encompasses its declaration to the end of the
current block, including all blocks enclosed by the current block;
some exceptions follow:

• Redeclaration in an enclosed block: Suppose that Exterior is a
block that encloses another block, Interior. If Exterior and Interior
both have an identifier with the same name (for example, J)

Chapter 2, Blocks, locality, and scope 17

then Interior can only access the J it declared, and similarly
Exterior can only access the J it declared .

• Position of declaration within its block: Identifiers and labels
cannot be used until after they are declared. An identifier or
label's declaration must come before any occurrence of that
identifier or label in the program text, with one exception.

The base type of a pointer type can be an identifier that has not
yet been declared. However, the identifier must eventually be
declared in the same type declaration part that the pointer type
occurs in .

• Redeclaration within a block: An identifier or label can only be
declared once in the outer level of a given block. The only excep­
tion to this is when it is declared within a contained block or is
in a record's field list.

A record field identifier is declared within a record type and is
significant only in combination with a reference to a variable of
that record type. So, you can redeclare a field identifier (with
the same spelling) within the same block but not at the same
level within the same record type. However, an identifier that
has been declared can be redeclared as a field identifier in the
same block.

The scope of an object component's identifier extends over the
domain of the object type. See page 35 for further explanation.

Scope of interface and standard identifiers

18

Programs or units containing uses clauses have access to the
identifiers belonging to the interface parts of the units in those
uses clauses.

Each unit in a uses clause imposes a new scope that encloses the
remaining units used and the entire program. The first unit in a
uses clause represents the outermost-scope, and the last unit
represents the innermost scope. This implies that if two or more
units declare the same identifier, an unqualified reference to the
identifier will select the instance declared by the last unit in the
uses clause. However, by writing a qualified identifier, every
instance of the identifier can be selected.

The identifiers of Turbo Pascal's predefined constants, types,
variables, procedures, and functions act as if they were declared
in a block enclosing all used units and the entire program. In fact,

Turbo Pascal Programmer's Guide

these standard objects are defined in a unit called System, which is
used by any program or unit before the units named in the uses
clause. This suggests that any unit or program can redeclare the
standard identifiers, but a specific reference can still be made
through a qualified identifier, for example, System.Integer or
System. Writeln.

Chapter 2, Blocks, locality, and scope 19

20 Turbo Pascal Programmer's Guide

c H

Chapter 3, Types

A p T E R

3

Types

When you declare a variable, you must state its type. A variable's
type circumscribes the set of values it can have and the operations
that can be performed on it. A type declaration specifies the
identifier that denotes a type.

type declaration

type simple type I--...,r--+-

When an identifier occurs on the left side of a type declaration, it
is declared as a type identifier for the block in which the type
declaration occurs. A type identifier's scope does not include itself
except for pointer types.

21

Simple types

22

See Chapter 7 for how to
denote constant type

integer and real values.

Ordinal types

There are six major classes of types:

• simple types

• string types

• structured types

• pointer types

• procedural types

• object types

Each of these classes is described in the following sections.

Simple types define ordered sets of values.

simple type

real type -I real type identifier ~

A type real identifier is one of the standard identifiers: Real,
Single, Double, Extended, or Compo

Ordinal types are a subset of simple types. All simple types other
than real types are ordinal types, which are set off by four
characteristics:

• All possible values of a given ordinal type are an ordered set,
and each possible value is associated with an ordinality, which is
an integral value. Except for type Integer values, the first value
of every ordinal type has ordinality 0, the next has ordinality 1,
and so on for each value in that ordinal type. A type Integer
value's ordinality is the value itself. In any ordinal type, each

Turbo Pascal Programmer's Guide

value other than the first has a predecessor, and each value
other than the last has a successor based on the ordering of the
type.

• The standard function Ord can be applied to any ordinal-type
value to return the ordinality of the value.

• The standard function Pred can be applied to any ordinal-type
value to return the predecessor of the value. If applied to the
first value in the ordinal type, Pred produces an error.

• The standard function Succ can be applied to any ordinal-type
value to return the successor of the value. If applied to the last
value in the ordinal type, Succ produces an error.

The syntax of an ordinal type follows:

ordinal type subrange type fo--~r---+

Turbo Pascal has seven predefined ordinal types: Integer,
Shortint, Longint, Byte, Word, Boolean, and Char. In addition,
there are two other classes of user-defined ordinal types:
enumerated types and subrange types.

Integer types There are five predefined integer types: Shortint, Integer, Longint,
Byte, and Word. Each type denotes a specific subset of the whole
numbers, according to the following table:

Table 3.1
Predefined integer types

Chapter 3, Types

Type

Shortint
Integer
Longint
Byte
Word

Range

-128 .. 127
-32768 .. 32767

-2147483648 .. 2147483647
0 .. 255
0 .. 65535

Format

Signed 8-bit
Signed 16-bit
Signed 32-bit
Unsigned 8-bit
Unsigned 16-bit

23

24

Typecasting is described in
chapters 4 and 6.

Boolean types

Arithmetic operations with type Integer operands use 8-bit, 16-bit,
or 32-bit precision, according to the following rules:

• The type of an integer constant is the predefined integer type
with the smallest range that includes the value of the integer
constant.

• For a binary operator (an operator that takes two operands),
both operands are converted to their common type before the
operation. The common type is the predefined integer type with
the smallest range that includes all possible values of both
types. For instance, the common type of Integer and Byte is
Integer, and the common type of Integer and Word is Longint.
The operation is performed using the precision of the common
type, and the result type is the common type.

• The expression on the right of an assignment statement is
evaluated independently from the size or type of the variable
on the left.

• Any byte-sized operand is converted to an intermediate word­
sized operand that is compatible with both Integer and Word
before any arithmetic operation is performed ..

An Integer type value can be explicitly converted to another
integer type through typecasting.

Type Boolean values are denoted by the predefined constant
identifiers False and True. Because Boolean is an enumerated
type, these relationships hold:

• False < True
• Ord(False) = 0

• Ord(True) = 1
• Succ(False) = True

• Pred(True) = False

Char type This type's set of values are characters, ordered according to the
extended Ascn character set (Appendix B). The function call
Ord(Ch), where Ch is a Char value, returns Ch's ordinality.

A string constant of length 1 can denote a constant character
value. Any character value can be generated with the standard
function Chr.

Turbo Pascal Programmer's Guide

Enumerated types Enumerated types define ordered sets of values by enumerating
the identifiers that denote these values. Their ordering follows the
sequence in which the identifiers are enumerated.

enumerated type -CD--! identifier list ~

identifier list

When an identifier occurs within the identifier list of an
enumerated type, it is declared as a constant for the block in
which the enumerated type is declared. This constant's type is the
enumerated type being declared.

An enumerated constant's ordinality is determined by its position
in the identifier list in which it is declared. The enumerated type
in which it is declared becomes the constant's type. The first
enumerated constant in a list has an ordinality of zero.

An example of an enumerated type follows:

type
Suit = (Club, Diamond, Heart, Spade);

Given these declarations, Diamond is a constant of type Suit.

When the Ord function is applied to an enumerated type's value,
Ord returns an integer that shows where the value falls with
respect to the other values of the enumerated type. Given the
preceding declarations, Ord(Club) returns zero, Ord(Diamond)
returns 1, and so on.

Subrange types A subrange type is a range of values from an ordinal type called
the host type. The definition of a subrange type specifies the
smallest and the largest value in the subrange; its syntax follows:

subrange type -I constant r---o--1 constant r

Chapter 3, Types 25

Real types

26

Both constants must be of the same ordinal type. Subrange types
of the form A .. B require that A is less than or equal to B.

Exalnples of subrange types:

0 •. 99
-128 .. 127
Club .. Heart

A variable of a subrange type has all the properties of variables of
the host type, but its run-time value must be in the specified
interval.

One syntactic ambiguity arises from allowing constant expres­
sions where Standard Pascal only allows simple constants.
Consider the following declarations:

const
X = 50;
Y :: 10;

type
Color = (Red, Green, Blue);
Scale = (X - Y) * 2 .. (X + Y) * 2;

Standard Pascal syntax dictates that, if a type definition starts
with a parenthesis, it is an enumerated type, such as the color type
described previously. However, the intent of the declaration of
scale is to define a subrange type. The solution is to either
reorganize the first subrange expression so that it does not start
with a parenthesis, or to set another constant equal to the value of
the expression, and then use that constant in the type definition:

type
Scale:: 2 * (X - Y) .. (X + Y) * 2;

A real type has a set of values that is a subset of real numbers,
which can be represented in floating-point notation with a fixed
number of digits. A value's floating-point notation normally
comprises three values-M, B, and E-such that M x BE = N,
where B is always 2, and both M and E are integral values within
the real type's range. These M and E values further prescribe the
real type's range and precision.

There are five kinds of real types: Real, Single, Double, Extended,
andComp.

Turbo Pascal Programmer's Guide

Table 3.2
Real data types

The Comp type holds only
integral values within the

range _~3+ 7 to ~-7, which
is approximately-9.2 x 70 '8

to 9.2 X 70 '8.

Software floating point

8087 floating point

For further details on 8087
floating-point code

generation and software
emulation, refer to Chapter

74, "Using the 8087. H

String types

Type string operators are
described in "String

operator" and "Relational
operators' in Chapter 6.

Type string standard
procedures and functions

are described in "String
procedures and functions"

on page 727.

Chapter 3, Types

The real types differ in the range and precision of values they
hold (see the next table).

Significant Size in
Type Range digits bytes

Real 2.9 x 10-39 .. 1.7 X 1038 11-12 6
Single 1.5 x 10-45 .. 3.4 X 1038 7-8 4
Double 5.0 x 10-324 .. 1.7 X 10308 15-16 8
Extended 3.4 x 10-4932 .. 1.1 X 104932 19-20 10
Comp _263+ 1 .. 263_1 19-20 8

Turbo Pascal supports two models of code generation for
performing real-type operations: software floating point and 8087
floating point. The appropriate model is selected through the $N
compiler directive. If no 8087 is present, enabling the $E compiler
directive will provide full 8087 emulation in software.

In the {$N-} state, which is selected by default, the code generated
performs all real type calculations in software by calling run-time
library routines. For reasons of speed and code size, only
operations on variables of type real are allowed in this state. Any
attempt to compile statements that operate on the Single, Double,
Extended, and Comp types generates an error.

In the {$N+} state, the code generated performs all real type
calculations using 8087 instructions. This state permits the use of
all five real types.

Turbo Pascal includes a run-time library that will automatically
emulate an 8087 in software if one is not present; the $E compiler
directive is used to determine whether or not the 8087 emulator
should be included in a program.

A type string value is a sequence of characters with a dynamic
length attribute (depending on the actual character count during
program execution) and a constant size attribute from 1 to 255. A
string type declared without a size attribute is given the default
size attribute 255. The length attribute's current value is returned
by the standard function Length.

27

string type ~~'I'""-------------_-+I

lcD---1 unsigned integer ~
The ordering between any two string values is set by the ordering
relationship of the character values in corresponding positions. In
two strings of unequal length, each character in the longer string
without a corresponding character in the shorter string takes on a
higher or greater-than value; for example, 'xs' is greater than 'x'.
Null strings can only be equal to other null strings, and they hold
the least string values.

See the section "Arrays, Characters in a string can be accessed as components of an array.
strings, and indexes" in

Chapter 4.

Structured types

The maximum permitted size
of any structured type in

Turbo Pascal is 65,520 bytes.

28

A structured type, characterized by its structuring method and by
its component type(s), holds more than one value. If a component
type is structured, the resulting structured type has more than
one level of structuring. A structured type can have unlimited
levels of structuring.

structured type -r--------r---t-~

The word packed in a structured type's declaration tells the
compiler to compress data storage, even at the cost of diminished
access to a component of a variable of this type. The word packed
has no effect in Turbo Pascal; instead packing occurs automati­
cally whenever possible.

Turbo Pascal Programmer's Guide

Array types

Chapter 3, Types

Arrays have a fixed number of components of one type-the
component type. In the following syntax diagram, the component
type follows the word of.

array type

~ __ i_nd-1exwe ~
- 81+1-----1

index type -l ordinal type r
The index types, one for each dimension of the array, specify the
number of elements. Valid index types are all ordinal types except
Longint and sub ranges of Longint. The array can be indexed in
each dimension by all values of the corresponding index type; the
number of elements is therefore the number of values in each
index type. The number of dimensions is unlimited.

The following is an example of an array type:

array[l .. lOO] of Real

If an array type's component type is also an array, you can treat
the result as an array of arrays or as a single multidimensional
array. For instance,

array [Boolean] of array[l .. lO] of array[Size] of Real

is interpreted the same way by the compiler as

array[Boolean,l •. lO,Size] of Real

You can also express

packed array[l .. lO] of packed array[1 .. 8] of Boolean

as

packed array[1 .. lO,1 .. 8] of Boolean

29

30

See "Arrays, strings, and You access an array's components by supplying the array's
indexes" in Chapter 4. identifier with one or more indexes in brackets.

See "Identical and
compatible types" later in

this chapter.

Record types

An array type of the form

packed array[M .. N] of Char

where M is less than N is called a packed string type (the word
packed can be omitted because it has no effect in Turbo Pascal). A
packed string type has certain properties not shared by other
array types.

A record type comprises a set number of components, or fields,
that can be of different types. The record type declaration speci­
fies the type of each field and the identifier that names the field.

record type ~ .@--
Lj field list r-I

field list

~'fixed part ~ variant part P L0J '

fixed part ~ identifier list ~

The fixed part of a record type sets out the list of fixed fields,
giving an identifier and a type for each. Each field contains
information that is always retrieved in the same way.

The following is an example of a record type:

type
DateRec = record

Turbo Pascal Programmer's Guide

Chapter 3, Types

Year: Integer;
Month: 1 .. 12;
Day: 1. .31;

end;

The variant part shown in the syntax diagram of a record type
declaration distributes memory space for more than one list of
fields, so the information can be accessed in more ways than one.
Each list of fields is a variant. The variants overlay the same space
in memory, and all fields of all variants can be accessed at all
times.

variant part

l-r-------"Z"'+I tag field type

tag field type -I ordinal type identifier I--

varlant-rl~ I. ~ .CD-
L---o--J L..J field list r

You can see from the diagram that each variant is identified by at
least one constant. All constants must be distinct and of an ordinal
type compatible with the tag field type. Variant and fixed fields
are accessed the same way.

An optional identifier, the tag field identifier, can be placed in the
variant part. If a tag field identifier is present, it becomes the iden­
tifier of an additional fixed field-the tag field-of the record. The
program can use the tag field's value to show which variant is
active at a given time. Without a tag field, the program selects a
variant by another criterion.

Some record types with variants follow:

type
Person = record

31

Object types

32

FirstName, LastName: string[40];
BirthDate: Date;
case Citizen: Boolean of

end;

True: (BirthPlace: string[40));
False: (Country: string[20];

EntryPort: string(20);
EntryDate: Date;
ExitDate: Date);

Polygon = record
X, Y: Real;
case Kind: Figure of

end;

Rectangle: (Height, Width: Real);
Triangle: (Sizel, Side2, Angle: Real);
Circle: (Radius: Real);

An object type is a structure consisting of a fixed number of com­
ponents. Each component is either a field, which contains data of a
particular type, or a method, which performs an operation on the
object. Analogous to a variable declaration, the declaration of a
field specifies the data type of the field and an identifier that
names the field; and analogous to a procedure or function
declaration, the declaration of a method specifies a procedure,
function, constructor, or destructor heading.

An object type can inherit components from another object type. If
T2 inherits from TI, then T2 is a descendant of TI, and TI is an
ancestor of T2.

Inheritance is transitive, that is, if T3 inherits from T2, and T2
inherits from TI, then T3 also inherits from TI. The domain of an
object type consists of itself and all its descendants.

object type

}-.,.------r--+i component list

component list

Turbo Pascal Programmer's Guide

Chapter 3, Types

component list q field list ~ Lj method list ~ ,

heritage -0-1 object type identifier reD--

field list -r identifier list ~

method list ~~ethod heading I - 'Or
L ~~

method heading

destructor heading

The following code shows examples of object type declarations.
These declarations are referred to by other examples throughout
this chapter.

type
Point = object

X, Y: Integer;
end;

Rect = object
A, B: Point;
procedure Init(XA, YA, XB, YB: Integer);
procedure Copy(var R: Rect);
procedure Move (OX, OY: Integer);
procedure Grow(OX, OY: Integer);

33

34

procedure Intersect {var R: Rect);
procedure Union {var R: Rect);
function Contains{P: Point): Boolean;

end;

Stringptr = AString;

FieldPtr = AField;

Field = object
X, Y, Len: Integer;
Name: Stringptr;
constructor Copy {var F: Field);
constructor Init{FX, FY, FLen: Integer; FName: String);
destructor Done; virtual;
procedure Display; virtual;
procedure Edit; virtual;
function GetStr: String; virtual;
function PutStr{S: String): Boolean; virtual;

end;

StrFieldPtr = AStrField;

StrField = object (Field)
Value: Stringptr;
constructor Init{FX, FY, FLen: Integer; FName: String);
destructor Done; virtual;
function GetStr: String; virtual;
function PutStr{S: String): Boolean; virtual;
function Get: String;
procedure Put{S: String);

end;

NurnFieldPtr = ANurnField;

NurnField = object{Field)
Value, Min, Max: Longint;
constructor Init{FX, FY, FLen: Integer; FName: String;

FMin, FMax: Longint);
function GetStr: String; virtual;
function PutStr{S: String): Boolean; virtual;
function Get: Longint;
procedure Put{N: Longint);

end;

ZipFieldPtr = AZipFielJ;

ZipField = object{NurnField)
function GetStr: String; virtual;
function PutStr{S: String): Boolean; virtual;

end;

Turbo Pascal Programmer's Guide

Components and
scope

Contrary to other types, an object type can be declared only in a
type declaration part in the outermost scope of a program or unit.
Thus, an object type cannot be declared in a variable declaration
part or within a procedure, function, or method block.

The component type of a file type cannot be an object type, or any
structured type with an object type component.

The scope of a component identifier extends over the domain of
its object type. Furthermore, the scope of a component identifier
extends over procedure, function, constructor, and destructor
blocks that implement methods of the object type and its descen­
dants. For this reason, the spelling of a component identifier must
be unique within an object type and all its descendants and all its
methods.

The scope of a component identifier declared in the private
section of an object type declaration is restricted to the module
(program or unit) that contains the object type declaration. In
other words, private component identifiers act like normal public
component identifiers within the module that contains the object
type declaration, but outside the module, any private component
identifiers are unknown and inaccessible. By placing related
object types in the same module, these object types can gain
access to each others private components without making the
private components known to other's modules.

Methods The declaration of a method within an object type corresponds to
a forward declaration of that method. Thus, somewhere after the
object type declaration, and within the same scope as the object
type declaration, the method must be implemented by a defining
declaration.

Chapter 3, Types

When unique identification of a method is required, a qualified
method identifier is used. It consists of an object type identifier,
followed by a period (.), followed by a method identifier. Like any
other identifier, a qualified method identifier can be prefixed with
a unit identifier and a period if required.

Within an object type declaration, a method heading can specify
parameters of the object type being declared, even though the
declaration is not yet complete. This is illustrated by the Copy,
Intersect, and Union methods of the Rect type in the previous
example.

35

36

Virtual methods Methods are by default static, but can, with the exception of
constructor methods, be made virtual through the inclusion of a
virtual directive in the method declaration. The compiler resolves
calls to static methods at compile time, whereas calls to virtual
methods are resolved at run time. The latter is sometimes referred
to as late binding.

If an object type declares or inherits any virtual methods, then
variables of that type must be initialized through a constructor call
before any call to a virtual method. Thus, any object type that
declares or inherits any virtual methods must also declare or
inherit at least one constructor method.

An object type can override (redefine) ~ny of the methods it
inherits from its ancestors. If a method declaration in a descen­
dant specifies the same method identifier as a method declaration
in an ancestor, then the declaration in the descendant overrides
the declaration in the ancestor. The scope of an override method
extends over the domain of the descendant in which it is intro­
duced, or until the method identifier is again overridden.

An override of a static method is free to change the method
heading in any way it pleases. In contrast, an override of a virtual
method must match exactly the order, types, and names of the
parameters, and the type of the function result, if any. Further­
more, the override must again include a virtual directive.

Instantiating objects An object is instantiated, or created, through the declaration of a
variable or typed constant of an object type, or by applying the
New standard procedure to a pointer variable of an object type.
The resulting object is called an instance of the object type.

var
F: Field;
Z: ZipField;
FP: FieldPtr;
ZP: ZipFieldPtr;

Given these variable declarations, F is an instance of Field, and Z
is an instance of ZipField. Likewise, after applying New to FP and
ZP, FP points to an instance of Field, and ZP points to an instance
of ZipField.

Turbo Pascal Programmer's Guide

Chapter 3, Types

If an object type contains virtual methods, then instances of that
object type must be initialized through a constructor call before
any call to a virtual method. Here's an example:

var
S: StrField;

begin
S.Init(l, 1, 25, 'Firstname');
S.Put('Frank');
S.Display;

S.Done;
end;

If S.Init had not been called, then the call to S.Display would cause
this example to fail.

Important! Assignment to an instance of an object type does not entail
initialization of the instance.

The rule of required initialization also applies to instances that are
components of structured types. For example,

var
Comment: array[1 .. 5) of StrField;
I: Integer;

begin
for I := 1 to 5 do Comment[I).Init(l, I + 10, 40, 'Comment');

for I := 1 to 5 do Comment[I).Done;
end;

For dynamic instances, initialization is typically coupled with
allocation, and cleanup is typically coupled with deallocation,
using the extended syntax of the New and Dispose standard
procedures. Here's an example:

var
SP: StrFieldPtr;

begin
New (SP, Init(l, 1, 25, 'Firstnarne'));
SpA.Put('Frank');
SPA.Display;

Dispose(SP, Done);
end;

A pointer to an object type is assignment compatible with a
pointer to any ancestor object type, therefore during execution of

37

Set types

38

a program, a pointer to an object type might point to an instance
of that type, or to an instance of any descendant type.

For example, a pointer of type ZipFieldPtr can be assigned to
pointers of type ZipFieldPtr, NumFieldPtr, and FieldPtr, and during
execution of a program, a pointer of type FieldPtr might be either
nil or point to an instance of Field, StrField, NumField, or ZipField,
or any other instance of a descendant of Field.

These pointer assignment compatibility rules also apply to object
type variable parameters. For example, the Field.Copy method
might be passed an instance of Field, StrField, NumField, ZipField,
or any other instance of a descendant of Field.

A method is activated through a method designator of the form
Instance.Method, where Instance is an instance of an object type,
and Method is a method of that object type.

For static methods, the declared (compile-time) type of Instance
determines which method to activate. For example, the designa­
tors F.Init and FP/\.Init will always activate Field.Init, since the
declared type of F and FP/\ is Field.

For virtual methods, the actual (run-time) type of Instance governs
the selection. For example, the designator FP/\ . Edit might activate
Field.Edit, StrField.Edit, NumField.Edit, or ZipField.Edit, depending
on the actual type of the instance pointed to by FP.

In general, there is no way of determining which method will be
activated by a virtual method designator. You can develop a
routine (such as a forms editor input routine) that activates
FP/\ .Edit, and later, without modifying that routine, apply it to an
instance of a new, unforeseen descendant type of Field. When
extensibility of this sort is desired, you should employ an object
type with an open-ended set of descendant types, rather than a
record type with a closed set of variants.

A set type's range of values is the power set of a particular ordinal
type (the base type). Each possible value of a set type is a subset of
the possible values of the base type.

A variable of a set type can hold from none to all the values of the
set.

Turbo Pascal Programmer's Guide

Set-type operators are
described in the section

entitled "Set operators" in
Chapter 6. "Set constructors"

in the same chapter shows
how to construct set values.

File types

Pointer types

Chapter 3, Types

set type ~ ordinal type 1--+

The base type must not have more than 256 possible values, and
the ordinal values of the upper and lower bounds of the base type
must be within the range 0 to 255. For these reasons, the base type
of a set cannot be Shortint, Integer, Longint, or Word.

Every set type can hold the value [], which is called the empty set.

A file type consists of a linear sequence of components of the
component type, which can be of any type except a file type or
any structured type with a file-type component. The number of
components is not set by the file-type declaration.

file type

If the word of and the component type are omitted, the type
denotes an untyped file. Untyped files are low-level I/O channels
primarily used for direct access to any disk file regardless of its
internal format.

The standard file type text signifies a file containing characters
organized into lines. Text files use special input/output (I/O)
procedures, which are discussed in Chapter 19, "Input and output
issues."

A pointer type defines a set of values that point to dynamic
variables of a specified type called the base type. A type Pointer
variable contains the memory address of a dynamic variable.

pointer type -0-1 base type ~

39

See Chapter 4's section
entitled "Pointers and

dynamic variables' for the
syntax of referencing the

dynamic variable pointed to
by a pointer variable.

base type -I type identifier I-
If the base type is an undeclared identifier, it must be declared in
the same type declaration part as the pointer type.

You can assign a value to a pointer variable with the New proce­
dure, the @ operator, or the Ptr function. The New procedure
allocates a new memory area in the application heap for a
dynamic variable and stores the address of that area in the pointer
variable. The @ operator directs the pointer variable to the
memory area containing any existing variable, including variables
that already have identifiers. The Ptr function points the pointer
variable to a specific memory address.

The reserved word nil denotes a pointer-valued constant that does
not point to anything.

The predefined type Pointer denotes an untyped pointer, that is, a
pointer that does not point to any specific type. Variables of type
Pointer cannot be dereferenced; writing the poiriter symbol A after
such a variable is an error. Like the value denoted by the word nil,
values of type Pointer are compatible· with all other pointer types.

Procedural types

For a complete discussion of
procedural types, refer to the

"Procedural types' section
on page 108.

40

Standard Pascal regards procedures and functions strictly as
program parts that can be executed through procedure or
function calls. Turbo Pascal has a much broader view of proce­
dures and functions: It allows procedures and functions to be
treated as objects that can be assigned to variables and passed as
parameters. Such actions are made possible through procedural
types.

A procedural type declaration specifies the parameters and, for a
function, the result type.

Turbo Pascal Programmer's Guide

procedural type

formal parameter list

formal parameter list

In essence, the syntax for writing a procedural type declaration is
exactly the same as for writing a procedure or function header,
except that the identifier after the procedure or function keyword
is omitted. Some examples of procedural type declarations follow:

type
Proe = procedure;
SwapProe = procedure(var X, Y: Integer);
StrProc = procedure(S: string);
MathFune = function(X: Real): Real;
DevieeFunc = function(var F: text): Integer;
MaxFunc = function(A, B: Real; F: MathFunc): Real;

The parameter names in a procedural type declaration are purely
decorative-they have no effect on the meaning of the
declaration.

¢ Turbo Pascal does not let you declare functions that return proce­
dural type values; a function result value must be a string, Real,
Integer, Char, Boolean, Pointer, or a user-defined enumeration.

Identical and compatible types

Type identity

Chapter 3, Types

Two types may be the same, and this sameness (identity) is
mandatory in some contexts. At other times, the two types need
only be compatible or merely assignment-compatible. They are
identical when they are declared with, or their definitions stem
from, the same type identifier.

Type identity is required only between actual and formal variable
parameters in procedure and function calls.

41

42

Type
compatibility

Two types-say, TI and T2-are identical if one of the following
is true: TI and T2 are the same type identifier; TI is declared to be
equivalent to a type identical to T2.

The second condition connotes that TI does not have to be
declared directly to be equivalent to T2. The type declarations

Tl = Integer;
T2 = Tl;
T3 = Integer;
T4 = T2;

result in TI, T2, T3, T4, and Integer as identical types. The type
declarations

TS = set of Integer;
T6 = set of Integer;

don't make T5 and T6 identical, since set of Integer is not a type
identifier. Two variables declared in the same declaration, for
example,

Vl, V2: set of Integer;

are of identical types-unless the declarations are separate. The
declarations

Vl: set of Integer;
V2: set of Integer;
V3: Integer;
V4: Integer;

mean V3 and V 4 are of identical type, but not VI and V2.

Compatibility between two types is sometimes required, such as
in expressions or in relational operations. Type compatibility is
important, however, as a precondition of assignment
compatibility.

Type compatibility exists when at least one of the following
conditions is true:

• Both types are the same.

• Both types are real types.

• Both types are integer types.

• One type is a subrange of the other.

• Both types are subranges of the same host type.

Turbo Pascal Programmer's Guide

Assignment
compatibility

Chapter 3, Types

• Both types are set types with compatible base types.

• Both types are packed string types with an identical number of
components.

• One type is a string type and the other is a string type, packed
string type, or Char type.

• One type is Pointer and the other is any pointer type.

• Both types are procedural types with identical result types, an
identical number of parameters, and a one-to-one identity
between parameter types.

Assignment compatibility is necessary when a value is assigned to
something, such as in an assignment statement or in passing
value parameters.

A value of type T2 is assignment-compatible with a type T1 (that
is, T1 := T2 is allowed) if any of the following are true:

• T1 and T2 are identical types and neither is a file type or a
structured type that contains a file-type component at any level
of structuring.

:I T1 and T2 are compatible ordinal types, and the values of type
T 2 falls within the range of possible values of T l'

• T1 and T2 are real types, and the value of type T2 falls within the
range of possible values of T l'

• T1 is a real type, and T2 is an integer type.

• T1 and T2 are string types.

• T1 is a string type, and T 2 is a Char type.
II T1 is a string type, and T2 is a packed string type.

• T1 and T2 are compatible, packed string types.

• T1 and T2 are compatible set types, and all the members of the
value of type T 2 fall within the range of possible values of T l'

• T1 and T2 are compatible pointer types.

• T1 and T2 are compatible procedural types.

• T1 is a procedural type, and T2 is a procedure or function with
an identical result type, an identical number of parameters, and
a one-to-one identity between parameter types.

• An object type T2 is assignment compatible with an object type
T1 if T2 is in the domain of T1.

43

• A pointer type P2' pointing to an object type T2, is assignment
compatible with a pointer type PI' pointing to an object type T 11

if T2 is in the domain of T1•

A compile or run-time error occurs when assignment compati­
bility is necessary and none of the items in the preceding list are
true.

The type declaration part

44

Programs, procedures, and functions that declare types have a
type declaration part. An example of this follows:

type
Range = Integer;
Number = Integer;
Color = (Red, Green, Blue);
CharVal = Ord('A'} .. Ord('Z'};
TestIndex = 1 .. 100;
TestValue = -99 .. 99;
TestList = array[TestIndex] of TestValue;
TestListPtr = ATestList;
Date = object

Year: Integer;
Month: 1. .12;
Day: 1 .. 31;
procedure SetDate(D, M, Y: Integer};
function ShowDate: String;

end;
MeasureData = record

When: Date;
Count: TestIndex;
Data: TestListPtr;

end;
MeasureList = array[1 .. 50] of MeasureData;
Name = strinq[80];
Sex = (Male, Female);
Person = APersonData;
PersonData = record

Name, FirstName: Name;
Age: Integer;
Married: Boolean;
Father, Child, Sibling: Person;
case S: Sex of

Male: (Bearded: Boolean);
Female: (Pregnant: Boolean);

Turbo Pascal Programmer's Guide

Chapter 3, Types

end;
PersonBuf = array[O .. SizeOf(PersonData)-l] of Byte;
People = file of PersonData;

In the example, Range, Number, and Integer are identical types.
TestIndex is compatible and assignment-compatible with, but not
identical to, the types Number, Range, and Integer. Notice the use
of constant expressions in the declarations of CharVal and
PersonBuf·

45

46 Turbo Pascal Programmer's Guide

c H A p T E R

4

Variables

Variable .declarations

Chapter 4, Variables

A variable declaration embodies a list of identifiers that designate
new variables and their type.

variable declaration

identifier list

absolute clause

The type given for the variable(s) can be a type identifier
previously declared in a type declaration part in the same block,
in an enclosing block, or in a unit; it can also be a new type
definition.

When an identifier is specified within the identifier list of a
variable declaration, that identifier is a variable identifier for the
block in which the declaration occurs. The variable can then be
referred to throughout the block, unless the identifier is re­
declared in an enclosed block. Redeclaration causes a new vari­
able using the same identifier, without affecting the value of the
original variable.

An example of a variable declaration part follows:

47

48

The data
segment

For further details on this
subject, see "Pointers and

dynamic variables' on
page 53.

The stack

var
X, Y, Z: Real;
I, J, K: Integer;
Digit: 0 .. 9;
C: Color;
Done,Error: Boolean;
Operator: (Plus, Minus, Times);
Huel, Hue2: set of Color;
Today: Date;
Results: MeasureList;
Pl, P2: Person;
Matrix: array[l .. 10, 1 .. 10] of Real;

Variables declared outside procedures and functions are called
global variables, and reside in the data segment. Variables declared
within procedures and functions are called local variables, and
reside in the stack segment.

The maximum size of the data segment is 65,520 bytes. When a
program is linked (this happens automatically at the end of the
compilation of a program), the global variables of all units used
by the program, as well as the program's own global variables, are
placed in the data segment.

If you need more than 65,520 bytes of global data, you should
allocate the larger structures as dynamic variables.

segment The size of the stack segment is set through a $M compiler
directive-it can be anywhere from 1,024 to 65,520 bytes. The
default stack segment size is 16,384 bytes.

Each time a procedure or function is activated (called), it allocates
a set of local variables on the stack. On exit, the local variables are
disposed. At any time during the execution of a program, the total
size of the local variables allocated by the active procedures and
functions cannot exceed the size of the stack segment.

The $5 compiler directive is used to include stack overflow checks
in the code. In the default {$S+} state, code is generated to check
for stack overflow at the beginning of each procedure and
function. In the {$S-} state, no such checks are performed. A stack

Turbo Pascal Programmer's Guide

Absolute

overflow may very well cause a system crash, so don't turn off
stack checks unless you are absolutely sure that an overflow will
never occur.

variables Variables can be declared to reside at specific memory addresses,
and are then called absolute variables. The declaration of such
variables must include an absolute clause following the type:

Chapter 4, Variables

absolute clause

Note that the variable declaration's identifier list can only specify
one identifier when an absolute clause is present.

The first form of the absolute clause specifies the segment and
offset at which the variable is to reside:

CrtMode: Byte absolute $0040:$0049;

The first constant specifies the segment base, and the second
specifies the offset within that segment. Both constants must be
within the range $0000 to $FFFF (0 to 65,535).

The second form of the absolute clause is used to declare a
variable "on top" of another variable, meaning it declares a
variable that resides at the same memory address as another
variable.

var
Str: string [32] ;
StrLen: Byte absolute Str;

This declaration specifies that the variable StrLen should start at
the same address as the variable Str, and because the first byte of
a string variable contains the dynamic length of the string, StrLen
will contain the length of Str.

49

Variable references

Qualifiers

50

A variable reference signifies one of the following:

.a variable

• a component of a structured- or string-type variable

• a dynamic variable pointed to by a pointer-type variable

The syntax for a variable reference is

variable reference variable identifier I-----:l~r------'""'T"'-

function call

Note that the syntax for a variable reference allows a function call
to a pointer function. The resulting pointer is then dereferenced to
denote a dynamic variable.

A variable reference is a variable identifier with zero or more
qualifiers that modify the meaning of the variable reference.

qualifier

An array identifier with no qualifier, for example, references the
entire array:

Results

An array identifier followed by an index denotes a specific
component of the array-in this case a structured variable:

Results[Current + 1)

Turbo Pascal Programmer's Guide

Arrays, strings,
and indexes

Chapter 4, Variables

With a component that is a record or object, the index can be
followed by a field designator; here the variable access signifies a
specific field within a specific array component.

Results[Current + 1] .Data

The field designator in a pointer field can be followed by the
pointer symbol (a A) to differentiate between the pointer field and
the dynamic variable it points to.

Results[Current + 1] .DataA

If the variable being pointed to is an array, indexes can be added
to denote components of this array.

Results[Current + 1] .DataA[J]

A specific component of an array variable is denoted by a variable
reference that refers to the array variable, followed by an index
that specifies the component.

A specific character within a string variable is denoted by a
variable reference that refers to the string variable, followed by an
index that specifies the character position.

index -cD----C expression ~
a...-----iQI+oI -----II

The index expressions select components in each corresponding
dimension of the array. The number of expressions can't exceed
the number of index types in the array declaration. Furthermore,
each expression's type must be assignment-compatible with the
corresponding index type.

When indexing a multidimensional array, multiple indexes or
multiple expressions within an index can be used inter­
changeably. For example,

Matrix[I] [J]

is the same as

Matrix[I, J]

51

You can index a string variable with a single index expression,
whose value must be in the range O .. N, where N is the declared
size of the string. This accesses one character of the string value,
with the type Char given to that character value.

The first character of a string variable (at index 0) contains the
dynamic length of the string; that is, Length(S) is the same as
Ord(S[OJ). If a value is assigned to the length attribute, the
compiler does not check whether this value is less than the
declared size of the string. It is possible to index a string beyond
its current dynamic length. The characters thus read are random,
and assignments beyond the current length will not affect the
actual value of the string variable.

Records and field

52

designators A specific field of a record variable is denoted by a variable
reference that refers to the record variable, followed by a field
designator specifying the field.

Object compo­
nent designators

field designator -0-1 field identifier ~

Some examples of a field designator include the following:

Today.Year
Results[l].Count
Results[lJ .When.Month

In a statement within a with statement, a field designator doesn't
have to be preceded by a variable reference to its containing
record.

The format of an object component designator is the same as that
of a record field designator; that is, it consists of an instance (a
variable reference), followed by a period and a component identi­
fier. A component designator that designates a method is called a
method designator. A with statement can be applied to an instance
of an object type. In that case, the instance and the period can be
omitted in referencing components of the object type.

Turbo Pascal Programmer's Guide

Pointers and
dynamic
variables

The instance and the period can also be omitted within any
method block, and when they are, the effect is the same as if Self
and a period was written before the component reference.

The value of a pointer variable is either nil or the address of a
value that points to a dynamic variable.

The dynamic variable pointed to by a pointer variable is
referenced by writing the pointer symbol (I\) after the pointer
variable.

You create dynamic variables and their pointer values with the
standard procedures New and GetMem. You can use the @

(address-of) operator and the standard function Ptr to create
pointer values that are treated as pointers to dynamic variables.

nil does not point to any variable. The results are undefined if you
access a dynamic variable when the pointer's value is nil or
undefined.

Some examples of references to dynamic variables:

P1"
P1".Sibling"
Results [1] .Data"

Variable typecasts

Chapter 4, Variables

A variable reference of one type can be changed into a variable
reference of another type through a variable typecast.

variable typecast

Lj type identifier I-©-I variable reference ~

When a variable typecast is applied to a variable reference, the
variable reference is treated as an instance of the type specified by
the type identifier. The size of the variable (the number of bytes
occupied by the variable) must be the same as the size of the type
denoted by the type identifier. A variable typecast can be followed
by one or more qualifiers, as allowed by the specified type.

53

54

Some examples of variable typecasts follow:

type
ByteRec = record

Lo, Hi: Byte;
end;
WordRec = record

Low, High: Word;
end;
PtrRec = record

Ofs, Seg: Word;
end;
BytePtr = "Byte;

var
B: Byte;
W: Nord;
L: Longint;
P: Pointer;

begin
W := $1234;
B := ByteRec(W) .Lo;
ByteRec(W) .Hi := 0;
L := $01234567;
W := WordRec(L) .Lo;
B := ByteRec(WordRec(L) .Lo) .Hi;
B := BytePtr(L)";
p := Ptr($40,$49);
W := PtrRec(P) .Seg;
Inc (PtrRec (P) .Ofs, 4);

end.

Notice the use of the ByteRec type to access the low- and high­
order bytes of a word; this corresponds to the built-in functions Lo
and Hi, except that a variable typecast can also be used on the left
hand side of an assignment. Also, observe the use of the WordRec
and PtrRec types to access the low- and high-order words of a
long integer, and the offset and segment parts of a pointer.

Turbo Pascal fully supports variable typecasts involving
procedural types. For example, given the declarations

type
Func = function(X: Integer): Integer;

var
F: Func;
P: Pointer;
N: Integer;

you can construct the following assignments:

Turbo Pascal Programmer's Guide

Chapter 4, Variables

F := Func(P);
Func(P) := F;
@F := P;
P := @F;

N := F(N);
N := Func (P) (N);

{ Assign procedural value in P to F
{ Assign procedural value in F to P

{ Assign pointer value in P to F
{ Assign pointer value in F to P

{ Call function via F
{ Call function via P

In particular, notice that the address operator (@), when applied
to a procedural variable, can be used on the left-hand side of an
assignment. Also, notice the typecast on the last line to call a
function via a pointer variable.

55

56 Turbo Pascal Programmer's Guide

c H

See the section entitled
"Constant dec/arations· in

Chapter 1.

Chapter 5, Typed constants

A p T E R

5

Typed constants

Typed constants can be compared to initialized variables­
variables whose values are defined on entry to their block. Unlike
an untyped constant, the dedaration of a typed constant specifies
both the type and the value of the constant.

typed constant declaration

Lj identifier ~ typed constant r

typed constant -.,..-~
:=======-----.

Typed constants can be used exactly like variables of the same
type, and can appear on the left-hand side in an assignment state­
ment. Note that typed constants are initialized only once-at the
beginning of a program. Thus, for each entry to a procedure or
function, the locally declared typed constants are not reinitialized.

57

In addition to a normal constant expression, the value of a typed
constant may be specified using a constant address expression. A
constant address expression is an expression that involves taking
the address, offset, or segment of a global variable, a typed con­
stant, a procedure, or a function. Constant address expressions
cannot reference local variables or dynamic (heap based) vari­
ables, since their addresses cannot be computed at compile-time.

Simple-type constants

58

Declaring a typed constant as a simple type simply specifies the
value of the constant:

const
Maximum: Integer = 9999;
Factor: Real = -0.1;
Breakchar: Char = *3;

As mentioned earlier, the value of a typed constant may be
specified using a constant address expression, that is, an
expression that takes the address, offset, or segment of a global
variable, a typed constant, a procedure, or a function. For
example,

var
Buffer: array[0 .. 1023] of Byte;

const
BufferOfs: Word = Ofs(Buffer);
BufferSeg: Word = Seg(Buffer);

Because a typed constant is actually a variable with a constant
value, it cannot be interchanged with ordinary constants. For
instance, it cannot be used in the declaration of other constants or
types.

const
Min: Integer = 0;
Max: Integer = 99;

type
Vector = array[Min •. Max] of Integer;

The Vector declaration is invalid, because Min and Max are typed
constants.

Turbo Pascal Programmer's Guide

String-type constants

The declaration of a typed constant of a string type specifies the
maximum length of the string and its initial value:

const
Heading: string[7] = 'Section';
NewLine: string [2] = #13#10;
TrueStr: string [5] = 'Yes';
FalseStr: string[5] = 'No';

Structured-type constants

Array-type
constants

Chapter 5, Typed constants

The declaration of a structured-type constant specifies the value
of each of the structure's conlponents. Turbo Pascal supports the
declaration of type array, record, set, and pointer constants; type
file constants, and constants of array and record types that contain
type file components are not allowed.

The declaration of an array-type constant specifies, enclosed in
parentheses and separated by commas, the values of the
components.

array constant ~ typed constant ~
~---------~~~I------~

An example of an array-type constant follows:

type
Status = (Active, Passive, Waiting);
StatusMap = array[Status] of string[7];

const
StatStr: StatusMap = ('Active', 'Passive', 'Waiting');

This example defines the array constant StatStr, which can be
used to convert values of type Status into their corresponding
string representations. The components of StatStr are

59

60

Record-type
constants

StatStr[Active] = 'Active'
StatStr[Passive] = 'Passive'
StatStr[Waiting] = 'Waiting'

The component type of an array constant can be any type except a
file type. Packed string-type constants (character arrays) can be
specified both as single characters and as strings. The definition

const
Digits: array[0 .. 9] of Char = ('O', '1', '2', '3', '4', '5',

'6', '7', '8', , 9');

can be expressed more conveniently as

const
Digits: array[0 .. 9] of Char = '0123456789';

Multidimensional array constants are defined by enclosing the
constants of each dimension in separate sets of parentheses,
separated by commas. The innermost constants correspond to the
rightmost dimensions. The declaration

type
Cube = array[O .. l, 0 .. 1, 0 .. 1] of Integer;

const
Maze: Cube = ({{O, 1), (2,3)), ({4, 5), (6,7)));

provides an initialized array Maze with the following values:

Maze[O, 0, 0] = 0
Maze[O, 0, 1] = 1
Maze [0, 1, 0] = 2
Maze [0, 1, 1) = 3
Maze [1, 0, 0] = 4
Maze [1, 0, 1] = 5
Maze [1, 1, 0] = 6
Maze [1, 1, 1] = 7

The declaration of a record-type constant specifies the identifier
and value of each field, enclosed in parentheses and separated by
semicolons.

Turbo Pascal Programmer's Guide

Object-type
constants

Chapter 5, Typed constants

record constant

field identifier typed constant

Some examples of record constants follow:

type
Point = record

X, Y: Real;
end;
Vector = array[O .. l] of Point;
Month = (Jan, Feb, Mar, Apr, May, Jun, Jly, Aug, Sep, Oct,

Nov, Dec);
Date = record

D: 1. .31;
M: Month;
Y: 1900 .. 1999;

end;
const

Origin: Point = (X: 0.0; Y: 0.0);
Line: Vector = ((X: -3.1; Y: 1.5), (X: 5.8; Y: 3.0));
SomeDay: Date = (D: 2; M: Dec; Y: 1960);

The fields must be specified in the same order as they appear in
the definition of the record type. If a record contains fields of file
types, the constants of that record type cannot be declared. If a
record contains a variant, only fields of the selected variant can be
specified. If the variant contains a tag field, then its value must be
specified.

The declaration of an object-type constant uses the same syntax as
the declaration of a record-type constant. No value is, or can be,
specified for method components. Referring to the earlier object­
type declarations, here are some examples of object-type
constants:

61

Set-type
constants

const
ZeroPoint: Point = (X: 0; Y: 0);
ScreenRect: Rect = (A: (X: 0; Y: 0); B: (X: 80; Y: 25));
CountField: NumField = (X: 5; Y: 20; Len: 4; Name: nil;

Value: 0; Min: -999; Max: 999);

Constants of an object type that contains virtual methods need not
be initialized through a constructor call-this initialization is
handled automatically by the compiler.

Just like a simple-type constant, the declaration of a set-type
constant specifies the value of the set using a constant expression.
Some examples follow:

type
Digits = set of 0 .. 9;
Letters = set of 'A' .. 'Z';

const
EvenDigits: Digits = [0, 2, 4, 6, 8];
Vowels: Letters = ['A', 'E', 'I', '0', 'U', 'Y'];
HexDigits: set of 'O' .. 'z' = ['0' .. '9', 'A' .. 'F', 'a' ... f'];

Pointer-type constants

The declaration of a pointer-type constant typically uses a
constant address expression to specify the pointer value. Some
examples follow:

type
Direction = (Left, Right, Up, Down);
Stringptr = AString;
NodePtr = ANode;
Node = record

Next: NodePtr;
Symbol: Stringptr;
Value: Direction;

end;
const

S1: string [4] = 'DOWN';
S2: string [2] = 'UP';
S3: string [5] = 'RIGHT';
S4: string[4] = 'LEFT';
N1: Node = (Next: nil; Symbol: @S1; Value: Down);
N2: Node = (Next: @N1; Symbol: @S2; Value: Up);

62 Turbo Pascal Programmer's Guide

N3: Node = (Next: @N2; Symbol: @S3; Value: Right);
N4: Node = (Next: @N3; Symbol: @S4; Value: Left);
DirectionTable: Nodeptr = @N4;

Procedural-type constants

Chapter 5, Typed constants

A procedural-type constant must specify the identifier of a proce­
dure or function that is assignment compatible with the type of
the constant. An example follows:

type
ErrorProc = procedure(ErrorCode: Integer);

procedure DefaultError(ErrorCode: Integer); far;
begin

WriteLn(fError f f ErrorCodef f .f);

end;

const
ErrorHandler: ErrorProc = DefaultError;

63

64 Turbo Pascal Programmer's Guide

c H

Table 6.1
Precedence of operators

Chapter 6, Expressions

A p T E R

6

Expressions
Expressions are made up of operators and operands. Most Pascal
operators are binary, that is, they take two operands; the rest are
unary and take only one operand. Binary operators use the usual
algebraic form, for example, A + B. A unary operator always
precedes its operand, for example, -B.

In more complex expressions, rules of precedence clarify the order
in which operations are performed (see the following table).

Operators Precedence Categories

@,not first (high) unary operators

*,/, diY, mod, and, shl, shr second multiplying operators

+,-, or, xor third adding operators

=, <>, <, >, <=, >=, in fourth (low) relational operators

There are three basic rules of precedence:

1. An operand between two operators of different precedence is
bound to the operator with higher precedence.

2. An operand between two equal operators is bound to the one
on its left.

3. Expressions within parentheses are evaluated prior to being
treated as a single operand.

65

Operations with equal precedence are normally performed from
left to right, although the compiler may at times rearrange the
operands to generate optimum code.

Expression syntax

66

See "Function calls" on
page 76.

See "Set constructors· on
page 77.

See "Value typecasts" on
page7B.

The precedence rules follow from the syntax of expressions,
which are built from factors, terms, and simple expressions.

A factor's syntax follows:

factor --r-r------.,r----+I variable reference I---r--

function identifier

value typecast 1-----------.....

A function call activates a function and denotes the value
returned by the function.

A set constructor denotes a value of a set type.

A value typecast changes the type of a value.

An unsigned constant has the following syntax:

Turbo Pascal Programmer's Guide

Chapter 6, Expressions

unsigned constant unsigned number I----r

character string

Some examples of factors include the following:

x
@X
15
(X + Y + Z)
Sin(X / 2)
exit['O' .. '9', 'A' .. 'Z']
not Done
Char(Digit + 48)

{ Variable reference
Pointer to a variable

{ Unsigned constant
{ Subexpression
{ Function call
Set constructor

{ Negation of a Boolean
{ Value typecast

Terms apply the multiplying operators to factors:

term

Here are some examples of terms:

X * Y
Z / (1 - Z)

Done or Error
(X <= Y) and (Y < Z)

Simple expressions apply adding operators and signs to terms:

67

68

simple expression

Here are some examples of simple expressions:

x + Y
-x
Huel + Hue2
I * J + 1

An expression applies the relational operators to simple
expressions:

expression

simple expression i-...---------------z-.

\---..--.1 simple expression

Here are some examples of expressions:

x = 1.5
Done <> Error
(I < J) = (J < K)
C in Huel

Turbo Pascal Programmer's Guide

Operators

Arithmetic

The operators are classified as arithmetic operators, logical
operators, string operators, set operators, relational operators, and
the @ operator.

operators The following tables show the types of operands and results for
binary and unary arithmetic operations.

Table 6.2
Binary arithmetic operations

The + operator is a/so used as
a string or set operator, and

the +, -, and * operators are
a/so used as set operators.

Table 6.3
Unary arithmetic operations

See the section "Integer
types" in Chapter 3 for a

definition of common types.

Chapter 6, Expressions

Operator Operation Operand types R~sulttype

+ addition integer type integer type
real type real type

subtraction integer type integer type
real type real type

* multiplication integer type integer type
real type real type

I division integer type real type
real type real type

div integer division integer type integer type

mod remainder integer type iriteger type

Operator Operation Operand types Result type

+ sign identity integer type integer type
real type real type

sign negation integer type integer type
real type real type

Any operand whose type is a subrange of an ordinal type is
treated as if it were of the ordinal type.

If both operands of a +, -, *, div, or mod operator are of an integer
type, the result type is of the common type of the two operands.

If one or both operands of a +, -, or * operator are of a real type,
the type of the result is Real in the {$N-} state or Extended in the
{$N+l state.

If the operand of the sign identity or sign negation operator is of
an integer type, the result is of the same integer type. If the
operator is of a real type, the type of the result is Real or
Extended.

69

Logical operators

Table 6.4
Logical operations

The not operator is a unary
operator.

Boolean

The value of X / Y is always of type Real or Extended regardless
of the operand types. An error occurs if Y is zero.

The value of I div I is the mathematical quotient of I I I, rounded
in the direction of zero to an integer-type value. An error occurs if
lis zero .

. The mod operator returns the remainder obtained by dividing its
two operands, that is,

I mod J = I - (I div J) * J

The sign of the result of mod is the same as the sign of 1. An error
occurs if J is zero.

The types of operands and results for logical operations are
shown in Table 6.4.

Operator Operation Operand types Result type

not bitwise negation integer type integer type
and bitwise and integer type integer type
or bitwise or integer type integer type
xor bitwise xor integer type integer type
shl shift left integer type integer type
shr shift right integer type integer type

If the operand of the not operator is of an integer type, the result
is of the same integer type.

If both operands of an and, or, or xor operator are of an integer
type, the result type is the common type of the two operands.

The operations I shl I and I shr I shift the value of I to the left or to
the right by I bits. The type of the result is the same as the type of
1.

operators The types of operands and results for Boolean operations are
shown in Table 6.5.

70 Turbo Pascal Programmer's Guide

Table 6.5
Boolean operations

The not operator is a unary
operator.

Chapter 6, Expressions

Operator Operation Operand types Result type

not negation Boolean Boolean
and logical and Boolean Boolean
or logical or Boolean Boolean
xor logical xor Boolean Boolean

Normal Boolean logic governs the results of these operations. For
instance, A and B is True only if both A and B are True.

Turbo Pascal supports two different models of code generation
for the and and or operators: complete evaluation and short­
circuit (partial) evaluation.

Complete evaluation means that every operand of a Boolean
expression, built from the and and or operators, is guaranteed to
be evaluated, even when the result of the entire expression is
already known. This model is convenient when one or more
operands of an expression are functions with side effects that alter
the meaning of the program.

Short-circuit evaluation guarantees strict left-to-right evaluation
and that evaluation stops as soon as the result of the entire
expression becomes evident. This model is convenient in most
cases, since it guarantees minimum execution time, and usually
minimum code size. Short-circuit evaluation also makes possible
the evaluation of constructs that would not otherwise be legal; for
instance:

while (I <= Length(S)) and (S[I) <> ' ') do
Inc(I)i

while (P <> nil) and (pA.Value <> 5) do
p := pA .Nexti

In both cases, the second test is not evaluated if the first test is
False.

The evaluation model is controlled through the $8 compiler
directive. The default state is {$B-} (unless changed using the
Options I Compiler menu), and in this state short-circuit
evaluation code is generated. In the {$B+} state, complete
evaluation code is generated.

Since standard Pascal does not specify which model should be
used for Boolean expression evaluation, programs depending on
either model being in effect are not truly portable. However,
sacrificing portability is often worth gaining the execution speed
and simplicity provided by the short-circuit model.

71

String operator

Table 6.6
String operation

Set operators

Table 6.7
Set operations

Relational

The types of operands and results for string operation are shown
in Table 6.6.

Operator Operation

+ concatenation

Operand types

string type,
Char type, or
packed string type

Result type

string type

Turbo Pascal allows the + operator to be used to concatenate two
string operands. The result of the operation S + T, where Sand T
are of a string type, a Char type, or a packed sbing type, is the
concatenation of Sand T. The result is compatible with any string
type (but not with Char types and packed string types). If the
resulting string is longer than 255 characters, it is truncated after
character 255.

The types of operands for set operations are shown in Table 6.7.

Operator

+

*

Operation

union
difference
intersection

Operand types

compatible set types
compatible set types
compatible set types

The results of set operations conform to the rules of set logic:

• An ordinal valu~ C is in A + B only if C is in A or B.

• An ordinal value C is in A - B only if C is in A and not in B.

• An ordinal value C is in A * B only if C is in both A and B.

If the smallest ordinal value that is a member of the result of a set
operation is A and the largest is B, then the type of the result is set
of A .. B.

operators The types of operands and results for relational operations are
shown in Table 6.8.

72 Turbo Pascal Programmer's Guide

Table 6.8
Relational operations

Comparing simple
types

Comparing strings

Chapter 6, Expressions

Operator type Operation Operand types Result type

= equal compatible simple, Boolean
pointer, set, string,
or packed string types

<> not equal compatible simple, Boolean
pointer, set, string,
or packed string types

< less than compatible simple, Boolean
string, or packed
string types

> greater than compatible simple, Boolean
string, or packed
string types

<= less or equal compatible simple, Boolean
string, or packed
string types

>= greater or compatible simple, Boolean
equal string, or packed

string types

<= subset of 'compatible set types Boolean

>= superset of compatible set types Boolean

in member of left operand: any Boolean
ordinal type T;
right operand: set
whose base is
compatible with T.

When the operands of =, <>, <, >, >=, or <= are of simple types,
they must be compatible types; however, if one operand is of a
real type, the other can be of an integer type.

The relational operators =, <>, <, >, >=, and <= compare strings
according to the ordering of the extended ASCII character set.
Any two string values can be compared, because all string values
are compatible.

A character-type value is compatible with a string-type value, and
when the two are compared, the character-type value is treated as
a string-type value with length 1. When a packed string-type
value with N components is compared with a string-type value, it
is treated as a string-type value with length N.

73

Comparing packed
strings

Comparing pointers

Comparing sets

The relational operators =, <>, <, >, >=, and <= can also be used to
compare two packed string-type values if both have the same
number of components. If the number of components is N, then
the operation corresponds to comparing two strings, each of
lengthN.

The operators = and <> can be used on compatible pointer-type
operands. Two pointers are equal only if they point to the same
object.

When it compares pointers, Turbo Pascal simply compares the
segment and offset parts. Because of the segment mapping
scheme of the 80x86 processors, two logically different pointers
can in fact point to the same physical memory location. For
instance, Ptr($0040,$0049) and Ptr($OOOO,$0449) are two pointers
to the same physical address. Pointers returned by the standard
procedures New and GetMem are always normalized (offset part
in the range $0000 to $OOOF), and will therefore always compare
correctly. When creating pointers with the Ptr standard function,
special care must be taken if such pointers are to be compared.

If A and B are set operands, their comparisons produce these
results:

• A = B is True only if A and B contain exactly the same members;
otherwise, A <> B.

• A <= B is True only if every member of A is also a member of B.

• A >= B is True only if every member of B is also a member of A.

Testing set membership The in operator returns True when the value of the ordinal-type
operand is a member of the set-type operand; otherwise, it returns
False.

The @ operator

74

A pointer to a variable can be created with the @ operator. Table
6.9 shows the operand and result types.

Turbo Pascal Programmer's Guide

Table 6.9
Pointer operation

Special rules apply to use of
the @ operator with a

procedural variable. For
further details, see

"Procedural types' on
page 108.

@ with a variable

@ with a value
parameter

@ with a variable
parameter

Chapter 6, Expressions

Operator Operation

@ Pointer formation

Operand types

Variable reference
or procedure or
function identifier

Result type

Pointer (same
as nil)

@ is a unary operator that takes a variable reference or a
procedure or function identifier as its operand, and returns a
pointer to the operand. The type of the value is the same as the
type of nil, therefore it can be assigned to any pointer variable.

The use of @ with an ordinary variable (not a parameter) is
uncomplicated. Given the declarations

type
TwoChar = array[O .. l] of Char;

var
Int: Integer;
TwoCharPtr: ATwoChar;

then the statement

TwoCharPtr := @Int;

causes TwoCharPtr to point to Int. TwoCharPtr/\ becomes a re­
interpretation of the value of Int, as though it were an array [0 .• 1]
of Char.

Applying @ to a formal value parameter results in a pointer to the
stack location containing the actual value. Suppose Foo is a formal
value parameter in a procedure and FooPtr is a pointer variable. If
the procedure executes the statement

FooPtr := @FoOi

then FooPtr/\ references Foo's value. However, FooPtr/\ does not
reference Foo itself, rather it references the value that was taken
from Foo and stored on the stack.

Applying @ to a formal variable parameter results in a pointer to
the actual parameter (the pointer is taken from the stack). Sup­
pose One is a formal variable parameter of a procedure, Two is a
variable passed to the procedure as One's actual parameter, and
OnePtr is a pointer variable. If the procedure executes the
statement

75

@ with a procedure or
function

@ with a method

Function calls

76

OnePtr := @One;

then OnePtr is a pointer to Two, and OnePtr/\ is a reference to Two
itself.

You can apply @ to a procedure or a function to produce a
pointer to its entry point. Turbo Pascal does not give you a
mechanism for using such a pointer. The only use for a procedure
pointer is to pass it to an assembly language routine or to use it in
an inline statement. See "Turbo Assembler and Turbo Pascal" on
page 308 for information on interfacing Turbo Assembler and
Turbo Pascal.

You can apply @ to a qualified method identifier to produce a
pointer to the method's entry point.

A function call activates the function specified by the function
identifier. Any identifier declared to denote a function is a
function identifier.

The function call must have a list of actual parameters if the
corresponding function declaration contains a list of formal
parameters. Each parameter takes the place of the corresponding
formal parameter according to parameter rules set forth in
Chapter 19, "Input and output issues."

function call

function identifier

actual parameter list

actual parameter list ~ actual parLLam_et_e_r_~---I)

'------48·~ -

Turbo Pascal Programmer's Guide

A function can also be
invoked via a procedural

variable. For further details,
refer to the "Procedural

types' section on page 108.

See "Extended syntax' in
Chapter 21 for details.

Set constructors

Chapter 6, Expressions

actual parameter

Some examples of function calls follow:

Sum (A, 63)
Maximum (147, J)

Sin(X + Y)
Eof(F)
Volume(Radiu5, Height)

The syntax of a function call has been extended to allow a method
designator or a qualified method identifier denoting a function to
replace the function identifier.

The discussion of extensions to procedure statements in the
section, uProcedure statements" in Chapter 7 also applies to
function calls.

In the extended syntax ($X+) mode, function calls can be used as
statements; that is, the result of a function call can be discarded.

A set constructor denotes a set-type value, and is formed by
writing expressions within brackets ([D. Each expression denotes
a value of the set.

sel constructor --cD LI LJ -CD-
r -I member group I I
~----~~~.----~

member group -I expression

~ expression ~ •

77

Value typecasts

See "Variable typecasts" on
page 53.

78

The notation [] denotes the empty set, which is assignment­
compatible with every set type. Any member group X .. Y denotes
as set members all values in the range X .. Y. If X is greater than Y,
then X .. Y does not denote any members and [X .. Y] denotes the
empty set.

All expression values in member groups in a particular set
constructor must be of the same ordinal type.

Some examples of set constructors follow:

[red, C, green]
[1, 5, 10 .. K mod 12, 23]
['A' .. 'Z', 'a' .. 'z', Chr(Digit + 48)]

The type of an expression can be changed to another type through
a value typecast.

value typecast -l type identifier I--{D---I expression ~

The expression type and the specified type must both be either
ordinal types or pointer types. For ordinal types, the resulting
value is obtained by converting the expression. The conversion
may involve truncation or extension of the original value if the
size of the specified type is different from that of the expression.
In cases where the value is extended, the sign of the value is
always preserved; that is, the value is sign-extended.

The syntax of a value typecast is almost identical to that of a
variable typecast. However, value typecasts operate on values,
not on variables, and can therefore not participate in variable
references; that is, a value typecast may not be followed by
qualifiers. In particular, value typecasts cannot appear on the left­
hand side of an assignment statement.

Some examples of value typecasts include the following:

Integer (' A')
Char(48)
Boolean (0)
Color(2)

Turbo Pascal Programmer's Guide

Longint (@Buffer)
BytePtr(Ptr($40, $49))

Procedural types in expressions

Chapter 6, Expressions

In general, the use of a procedural variable in a statement or an
expression denotes a call of the procedure or function stored in
the variable. There is however one exception: When Turbo Pascal
sees a procedural variable on the left-hand side of an assignment
statement, it knows that the right-hand side has to represent a
procedural value. For example, consider the following program:

type
IntFunc = function: Integer;

var
F: IntFunc;
N: Integer;

function ReadInt: Integer; far;
var

I: Integer;
begin

Read(I);
ReadInt := I;

end;

begin
F := ReadInt;
N := ReadInt;

end.

{ Assign procedural value
{ Assign function result

The first statement in the main program assigns the procedural
value (address of) ReadInt to the procedural variable F, where the
second statement calls ReadInt, and assigns the returned value to
N. The distinction between getting the procedural value or calling
the function is made by the type of the variable being assigned (F
orN).

Unfortunately, there are situations where the compiler cannot
determine the desired action from the context. For example, in the
following statement, there is no obvious way the compiler can
know if it should compare the procedural value in F to the
procedural value of ReadInt, to determine if F currently points to
ReadInt, or whether it should call F and ReadInt, and then compare
the returned values.

79

if F = Readlnt then
WriteLn('Equal');

However, standard Pascal syntax specifies that the occurrence of a
function identifier in an expression denotes a call to that function,
so the effect of the preceding statement is to call F and Readlnt,
and then compare the returned values. To compare the
procedural value in F to the procedural value of Readlnt, the
following construct must be used:

if @F = @Readlnt then
Writeln('Equal');

When applied to a procedural variable or a procedure or function
identifier, the address (@) operator prevents the compiler from
calling the procedure, and at the same time converts the argument
into a pointer. Thus, @F converts F into an untyped pointer
variable that contains an address, and @Readlnt returns the
address of Readlnt; the two pointer values can then be compared
to determine if F currently refers to Readlnt.

¢ To get the memory address of a procedural variable, rather than
the address stored in it, a double address (@ @) operator must be
used. For example, where @P means convert P into an untyped
pointer variable, @@P means return the physical address of the
variable P.

80 Turbo Pascal Programmer's Guide

c H A p T E R

7

Statements

Statements describe algorithmic actions that can be executed.
Labels can prefix statements, and these labels can be referenced
by goto statements.

statement

simple statement

As you saw in Chapter I, a label is either a digit sequence in the
range 0 to 9999 or an identifier.

There are two main types of statements: simple statements and
structured statements.

Simple statements

Chapter 7, Statements

A simple statement is a statement that doesn't contain any other
statements.

81

Assignment
statements

simple statement

goto statement 10---....

Assignment statements either replace the current value of a
variable with a new value specified by an expression or specify an
expression whose value is to be returned by a function.

assignment statement

variable reference

function identifier

See the section "Type The expression must be assignment-compatible with the type of
compatibility" on page 42. the variable or the result type of the function.

Object type
assignments

Object types are discussed in
more detail in Chapter 5.

82

Some examples of assignment statements follow:

X ;= Y + Z;
Done ;= (I >= 1) and (I < 100);
Hue1 ;= [Blue, Succ(C)];
I ;= Sqr(J) - I * K;

The rules of object type assignment compatibility allow an
instance of an object type to be assigned an instance of any of its
descendant types. Such an assignment constitutes a projection of
the descendant onto the space spanned by its ancestor. For
example, given an instance F of type Field, and an instance Z of
type ZipField, the assignment F := Z will copy only the fields X, Y,
Len, and Name.

Assignment to an instance of an object type does not entail
initialization of the instance. Referring to the preceding example,
the assignment F := Z does not mean that a constructor call for F
can be omitted.

Turbo Pascal Programmer's Guide

Procedure
statements

A procedure can also be
invoked via a procedural

variable. For further details,
refer to the "Procedural

types"section on page 7 DB.

Method, constructor,
and destructor calls

Chapter 7, Statements

A procedure statement specifies the activation of the procedure
denoted by the procedure identifier. If the corresponding
procedure declaration contains a list of formal parameters, then
the procedure statement must have a matching list of actual
parameters (parameters listed in definitions are formal parameters;
in the calling statement, they are actual parameters). The actual
parameters are passed to the formal parameters as part of the call.

procedure statement

procedure identifier 1-..-----------__ _

actual parameter list

Some examples of procedure statements follow:

PrintHeading;
Transpose(A, N, M);
Find (Name, Address);

The syntax of a procedure statement has been extended to allow a
method designator denoting a procedure, constructor, or destruc­
tor to replace the procedure identifier.

The instance denoted by the method designator serves two pur­
poses. First, in the case of a virtual method, the actual (run time)
type of the instance determines which implementation of the
method is activated. Second, the instance itself becomes an
implicit actual parameter of the method; it corresponds to a
formal variable parameter named Self that possesses the type
corresponding to the activated method.

Within a method, a procedure statement allows a qualified
method identifier to denote activation of a specific method. The
object type given in the qualified identifier must be the same as
the method's object type, or an ancestor of it. This type of
activation is called a qualified activation.

The implicit Self parameter of a qualified activation becomes the
Self of the method containing the call. A qualified activation never

83

Gato statements

84

employs the virtual method dispatch mechanism-the call is
always static and always invokes the specified method.

A qualified activation is generally used within an override
method to activate the overridden method. Referring to the types
declared earlier, here are some examples of qualified activations:

constructor NumField.Init(FX, FY, FLen: Integer;
FName: String; FMin, FMax: Longint);

begin
Field. Init (FX, FY, FLen, FName);
Value := 0;
Min := FMin;
Max := FMax;

end;

function ZipField.PutStr(S: String): Boolean;
begin

PutStr := (Length(S) = 5) and NumField.PutStr(S);
end;

As these examples demonstrate, a qualified activation allows an
override method to "reuse" the code of the method it overrides.

A goto statement transfers program execution to the statement
prefixed by the label referenced in the goto statement. The syntax
diagram of a goto statement follows:

goto statement ~

The following rules should be observed when using goto
statements:

• The label referenced by a goto statement must be in the same
block as the goto statement. In other words, it is not possible to
jump into or out of a procedure or function .

• Jumping into a structured statement from outside that
structured statement (that is, jumping to a "deeper" level of
nesting) can have undefined effects, although the compiler will
not indicate an error.

Turbo Pascal Programmer's Guide

Structured statements

Compound
statements

Chapter 7, Statements

Structured statements are constructs composed of other
statements that are to be executed in sequence (compound and
with statements), conditionally (conditional statements), or
repeatedly (repetitive statements).

structured statement --r--+i compound statement

with statement 1-----

The compound statement specifies that its component statements
are to be executed in the same sequence as they are written. The
component statements are treated as one statement, crucial in
contexts where the Pascal syntax only allows one statement. begin
and end bracket the statements, which are separated by
semicolons.

compound statement

Here's an example of a compound statement:

begin
Z := X;
X := Y;
Y := Z;

end;

85

86

Conditional
statements A conditional statement selects for execution a single one (or

none) of its component statements.

conditional statement

If statements The syntax for an if statement reads like this:

if statement

The expression must yield a result of the standard type Boolean. If
the expression produces the value True, then the statement
following then is executed.

If the expression produces False and the else part is present, the
statement following else is executed; if the else part is not
present, nothing is executed.

The syntactic ambiguity arising from the construct

if e1 then if e2 then 51 else 52;

is resolved by interpreting the construct as follows:

if e1 then
begin

if e2 then
51

else
52

end;

In general, an else is associated with the closest if not already
associated with an else.

Turbo Pascal Programmer's Guide

Two examples of if statements follow:

if X < 1. 5 then
Z := X + Y

else
Z := 1.5;

if PI <> nil then
PI := PIA.Father;

Case statements The case statement consists of an expression (the selector) and a
list of statements, each prefixed with one or more constants
(called case constants) or with the word else. The selector must be
of a byte-sized or word-sized ordinal type. Thus, string types and
the integer type Longint are invalid selector types. All case con­
stants must be unique and of an ordinal type compatible with the
selector type.

Chapter 7, Statements

case statement

case

else part -.@---I statement ~

The case statement executes the statement prefixed by a case
constant equal to the value of the sele.ctor or a case range contain­
ing the value of the selector. If no such case constant of the case
range exists and an else part is present, the statement following
else is executed. If there is no else part, nothing is executed.

87

88

Repetitive
statements

Examples of case statements include

case Operator of
Plus: X := X + Y;
Minus: X := X - Y;
Times: X := X * Y;

end;

case I of
0, 2, 4, 6, 8: Writeln('Even digit');
1, 3, 5, 7, 9: Writeln('Odd digit');
10 .. 100: Writeln('Between 10 and 100');

else
Writeln('Negative or greater than 100');

end;

Repetitive statements specify certain statements to be executed
repeatedly.

repetitive statement

. for statement

If the number of repetitions is known beforehand, the for
stateme~t is the appropriate construct. Otherwise, the while or
repea,t statement should be used.

Repeat statements A rep~at statement contains an expression that controls the
repeated execution of a statement sequence within that repeat
statement.

repeat statement

The expression must produce a result of type Boolean. The
statements between the symbols repeat and until are executed in

Turbo Pascal Programmer's Guide

sequence until, at the end of a sequence, the expression yields
True. The sequence is executed at least once, because the expres­
sion is evaluated after the execution of each sequence.

Examples of repeat statements follow:

repeat
K := I mod J;
I := J;
J := K;

until J = 0;

repeat
Write ('Enter value (0 .• 9): ');
Readln(1);

until (I >= 0) and (I <= 9);

While statements A while statement contains an expression that controls the
repeated execution of a statement (which can be a compound
statement).

Chapter 7, Statements

while statement ~ expression ~ statement ~

The expression controlling the repetition must be of type Boolean.
It is evaluated before the contained statement is executed. The
contained statement is executed repeatedly as long as the expres­
sion is True. If the expression is False at the beginning, the state­
ment is not executed at all.

Examples of while statements includ~:

while Data[I] <> X do I := I + 1;

while I > 0 do
begin

if Odd (I) then Z := Z * X;
I := I div 2;
X := Sqr(X);

end;

while not Eof(InFile) do
begin

Readln(InFile, Line);
Process(Line);

end;

89

90

For statements The for statement causes a statement (which can be a compound
statement) to be repeatedly executed while a progression of
values is assigned to a control variable.

for statement

control variable -1 variable identifier r

initial value -1 expression r
final value -1 expression r
The control variable must be a variable identifier (without any
qualifier) that signifies a variable declared to be local to the block
containing the for statement. The control variable must be of an
ordinal type. The initial and final values must be of a type
assignment-compatible with the ordinal type.

When a for statement is entered, the initial and final values are
determined once for the remainder of the execution of the for
statement.

The statement contained by the for statement is executed once for
every value in the range initial value to final value. The control vari­
able always starts off at initial value. When a for statement uses to,
the value of the control variable is incremented by one for each
repetition. If initial value is greater than final value, the contained
statement is not executed. When a for statement uses downto, the
value of the control variable is decremented by one for each
repetition. If initial value value is less than final value, the contained
statement is not executed.

Turbo Pascal Programmer's Guide

Chapter 7, Statements

It's an error if the contained statement alters the value of the
control variable. After a for statement is executed, the value of the
control variable value is undefined, unless execution of the for
statement was interrupted by a goto from the for statement.

With these restrictions in mind, the for statement

for V := Exprl to Expr2 do Body;

is equivalent to

begin
Templ := Expr1;
Temp2 := Expr2;
if Templ <= Temp2 then
begin

V := Templ;
Body;
while V <> Temp2 do
begin

V := Succ(V);
Body;

end;
end;

end;

and the for statement

for V := Exprl downto Expr2 do Body;

is equivalent to

begin
Templ := Exprl;
Temp2 := Expr2;
if Templ >= Temp2 then
begin

V := Temp!;
Body;
while V <> Temp2 do
begin

V := Pred(V);

Body;
end;

end;
end;

where Templ and Temp2 are auxiliary variables of the host type of
the variable V and don't occur elsewhere in the program.

Examples of for statements follow:

91

With statements

92

for I := 2 to 63 do
if Data[I] > Max then

Max := Data[Ij

for I := 1 to 10 do
for J := 1 to 10 do
begin

X := 0;
for K := 1 to 10 do

X := X + Mat1[I, Kj * Mat2[K, J]:
Mat[I, J] := X:

end:

for C := Red to Blue do Check(C);

The with statement is shorthand for referencing the fields of a
record, and the fields, methods, constructor, and destructor of an
object. Within a with statement, the fields of one or more specific
record variables'can be referenced using their field identifiers
only. The syntax of a with statement follows:

with statement .-------....,

record or object -----1 . bl f L.­
variable reference ~I varia e re erence ~

Following is an example of a with statement:

with Date do
if Month = 12 then
begin

Month := 1;
Year := Year + 1

end
else

Month := Month + 1;

This is equivalent to

if Date.Month = 12 then
begin

Turbo Pascal Programmer's Guide

Chapter 7, Statements

Date.Month := Ii
Date.Year := Date.Year + 1

end
else •

Date.Month := Date.Month + Ii

Within a with statement, each variable reference is first checked to
see if it can be interpreted as a field of the record. If so, it is always
interpreted as such, even if a variable with the same name is also
accessible. Suppose the following declarations have been made:

type
Point = record

X, Y: Integer;
end;

var
X: Point;
Y: Integer;

In this case, both X and Y can refer to a variable or to a field of the
record. In the statement

with X do
begin

X := 10;
Y := 25;

end;

the X between with and do refers to the variable of type Point, but
in the compound statement, X and Y refer to X.X and X. Y.

The statement

with VI, V2, ... Vn do s;

is equivalent to

with VI do
with V2 do

with Vn do
s;

In both cases, if Vn is a field of both Vl and V2, it is interpreted as
V2.Vn, not Vl.Vn.

If the selection of a record variable involves indexing an array or
dereferencing a pointer, these actions are executed once before the
component statement is executed.

93

94 Turbo Pascal Programmer's Guide

c H A p T E R

8

Procedures and functions

Procedures and functions allow you to nest additional blocks in
the main program block. Each procedure or function declaration
has a heading followed by a block. A procedure is activated by a
procedure statement; a function is activated by the evaluation of
an expression that contains its call and returns a value to that
expression.

This chapter discusses the different types of procedure and
function declarations and their parameters.

Procedure declarations

A procedure declaration associates an identifier with a block as a
procedure; that procedure can then be activated by a procedure
statement.

procedure declaration

Lj procedure heading j-.O--/ procedure body ~

Chapter 8, Procedures and functions 95

The syntax for a formal
parameter list is shown in the

section "Parameters'" on
page 705.

96

procedure heading

formal parameter list

procedure body

The procedure heading names the procedure's identifier and
specifies the formal parameters (if any).

A procedure is activated by a procedure statement, which states
the procedure's identifier and any actual parameters required. The
statements to be executed on activation are noted in the statement
part of the procedure's block. If the procedure's identifier is used
in a procedure statement within the procedure's block, the
procedure is executed recursively (it calls itself while executing).

Here's an example of a procedure declaration:

procedure NumString(N: Integer; var S: string);
var

V: Integer;
begin

V := Abs (N);

S := ";
repeat

S := Chr(N mod 10 + Ord('O')) + S;
N := N div 10;

until N = 0;

if N < 0 then
S := ' -' + S;

end;

Turbo Pascal Programmer's Guide

Near and far
declarations

Near and for calls are
described in full in

Chapter 78, "Control issues."

Interrupt
declarations

Interrupt procedures are
described in full in

Chapter 78, "Control issues."

Turbo Pascal supports two procedure call models: near and far. In
terms of code size and execution speed, the near call model is the
more efficient, but it carries the restriction that near procedures
can only be called from within the module in which they are
declared. Far procedures, on the other hand, can be called from
any module, but the code for a far call is slightly less efficient.

Turbo Pascal will automatically select the correct call model based
on a procedure's declaration: Procedures declared in the interface
part of a unit use the far call model-they can be called from other
modules. Procedures declared in a program or in the implementa­
tion part of a unit use the near call model-they can only be called
from within that program or unit.

For some specific purposes, a procedure may be required to use
the far call model. For example, in an overlaid application, all
procedures and functions are generally required to be far;
likewise, if a procedure or function is to be assigned to a
procedural variable, it has to use the far call model. The $F
compiler directive can be used to override the compiler's
automatic call model selection. Procedures and functions
compiled in the {$F+} state always use the far call model; in the
{$F-} state, the compiler automatically selects the correct model.
The default state is {$F-}.

To force a specific call model, a procedure declaration can
optionally specify a near or far directive before the block-if such
a directive is present, it overrides the setting of the $F compiler
directive as well as the compiler's automatic call model selection.

A procedure declaration can optionally specify an interrupt
directive before the block, and the procedure is then considered
an interrupt procedure. For now, not~ that interrupt procedures
cannot be called from procedure statements, and that every
interrupt procedure must specify a parameter list exactly like the
following:

procedure MyInt(Flags, es, IP, AX, BX, ex, ox, SI, 01, os, ES,
BP: Word);

interrupt;

Chapter 8, Procedures and functions 97

Forward

Instead of the block in a procedure or function declaration, you
can write a forward, external, or inline declaration.

declarations A procedure declaration that specifies the directive forward
instead of a block is a forward declaration. Somewhere after this
declaration, the procedure must be defined by a defining
declaration-a procedure declaration that uses the same
procedure identifier but omits the formal parameter list and
includes a block. The forward declaration and the defining
declaration must appear in the same procedure and function
declaration part. Other procedures and functions can be declared
between them, and they can call the forward-declared procedure.
Mutual recursion is thus possible.

The forward declaration and the defining declaration constitute a
complete procedure declaration. The procedure is considered
declared at the forward declaration.

An example of a forward declaration follows:

procedure Walter(M, N: Integer); forward;

procedure Clara(X, Y: Real);
begin

Walter (4, 5);

end;

procedure Walter;
begin

Clara(8.3, 2.4);

end;

A procedure's defining declaration can be an external or
assembler declaration; however, it cannot be a near, far, or inline
declaration or another forward declaration. Likewise, the defining
declaration cannot specify a near, far, or interrupt directive.

-=:> No forward declarations are allowed in the interface part of a unit.

98 Turbo Pascal Programmer's Guide

External
declarations

For further details on linking
with assembly language,

refer to Chapter 23.

Assembler
declarations
For further details on

assembler procedures and
functions, refer to Chapter
22, "The inline assembler. N

Inline
declarations

Inline procedures are
described in full in Chapter
22, "The inline assembler. N

External declarations allow you to interface with separately
compiled procedures and functions written in assembly language.
The external code must be linked with the Pascal program or unit
through {$L filename} directives.

Examples of external procedure declarations follow:

procedure MoveWord(var Source, Dest; Count: Word}; external;
procedure MoveLong(var Source, Dest; Count: Word}; external;

procedure FillWord(var Dest; Data: Integer; Count: Word}; external;
procedure FillLong(var Dest; Data: Longint; Count: Word}; external;

{$L BLOCK.OBJ}

Assembler declarations let you write entire procedures and
functions in inline assembler.

asm block

declaration part asm statement

The inline directive permits you to write machine code
instructions instead of the block. When a normal procedure is
called, the compiler generates code that pushes the procedure's
parameters onto the stack, and then generates a CALL instruction
to call the procedure. When you "call" an inline procedure, the
compiler generates code from the inline directive instead of the
CALL. Thus, an inline procedure is "expanded" every time you
refer to it, just like a macro in assembly language. Here's a short
example of two inline procedures:

procedure Disablelnterrupts; inline($FA};
procedure Enablelnterrupts; inline($FB};

{ CLI
{ STI

Chapter 8, Procedures and functions 99

Function declarations

100

A function declaration defines a part of the program that
computes and returns a value.

function declaration

Y function heading ~ function body ~

function heading

formal parameter list

result type

function body

The function heading specifies the identifier for the function, the
formal parameters (if any), and the function result type.

A function is activated by the evaluation of a function call. The
function call gives the function's identifier and any actual

Turbo Pascal Programmer's Guide

parameters required by the function. A function call appears as an
operand in an expression. When the expression is evaluated, the
function is executed, and the value of the operand becomes the
value returned by the function.

The statement part of the function's block specifies the statements
to be executed lipon activation of the function. The block should
contain at least one assignment statement that assigns a value to
the function identifier. The result of the function is the last value
assigned. If no such assignment statement exists or if it is not
executed, the value returned by the function is unspecified.

If the function's identifier is used in a function call within the
function's block, the function is executed recursively.

Following are examples of function declarations:

function Max {A: Vector; N: Integer): Extended;
var

X: Extended;
I: Integer;

begin
X := All];
for I := 2 to N do

if X < All] then X := A[I];
Max := X;

end;

function Power{X: Extended; Y: Integer): Extended;
var

Z: Extended;
I: Integer;

begin
Z := 1.0; I := Y;
while I > 0 do
begin

if Odd (I) then Z := Z * X;
I := I div 2;
X := Sqr{X);

end;
Power := Z;

end;

Like procedures, functions can be declared as near, far, forward,
external, assembler, or inline; however, interrupt functions are not
allowed.

Chapter 8, Procedures and functions 101

Method declarations

102

The declaration of a method within an object type corresponds to
a forward declaration of that method. Thus, somewhere after the
object-type declaration and within the same scope as the object­
type declaration, the method must be implemented by a defining
declaration.

For procedure and function methods, the defining declaration
takes the form of a normal procedure or function declaration,
with the exception that the procedure or function identifier in this
case is a qualified method identifier.

For constructor methods and destructor methods, the defining
declaration takes the form of a procedure method declaration,
except that the procedure reserved word is replaced by a con­
structor or destructor reserved word.

A method's defining declaration can optionally repeat the formal
parameter list of the method heading in the object type. The
defining declaration's method heading must in that case match
exactly the order, types, and names of the parameters, and the
type of the function result, if any.

In the defining declaration of a method, there is always an impli­
cit parameter with the identifier Self, corresponding to a formal
variable parameter that possesses the object type. Within the
method block, Self represents the instance whose method compo­
nent was designated to activate the method. Thus, any changes
made to the values of the fields of Self are reflected in the instance.

The scope of a component identifier in an object type extends over
any procedure, function, constructor, or destructor block that
implements a method of the object type. The effect is the same as
if the entire method block was embedded in a with statement of
the form

with Self do begin ... end

For this reason, the spellings of component identifiers, formal
method parameters, Self, and any identifiers introduced in a
method implementation must be unique.

Turbo Pascal Programmer's Guide

Constructors and

Here are some examples of method implementations:

procedure Rect.Intersect(var R: Rect);
begin

if A.X < R.A.X then A.X := R.A.X;
if A.Y < R.A.Y then A.Y := R.A.Y;
if B.X > R.B.X then B.X :=R.B.X;
if B.Y > R.B.Y then B.Y := R.B.Y;
if (A.X >= B.X) or (A.Y >= B.Y) then Init(O, 0, 0, 0);

end;

procedure Field.Display;
begin

GotoXY(X, Y);
Write (Name A

, , " GetStr);
end;

function NumField.PutStr(S: String): Boolean;
var

E: Integer;
begin

Val(S, Value, E);
PutStr .- (E = 0) and (Value >= Min) and (Value <= Max);

end;

destructors Constructors and destructors are specialized forms of methods.
Used in connection with the extended syntax of the New and
Dispose standard procedures, constructors and destructors have
the ability to allocate and deallocate dynamic objects. In addition,
constructors have the ability to perform the required initialization
of objects that contain virtual methods. Like other methods, con­
structors and destructors can be inherited, and an object can have
any number of constructors and destructors.

Constructors are used to initialize newly instantiated objects.
Typically, the initialization is based on values passed as
parameters to the constructor. Constructors cannot be virtual,
because the virtual method dispatch mechanism depends on a
constructor first having initialized the object.

Here are some examples of constructors:

constructor Field.Copy(var F: Field);
begin

Self := Fi

end;

Chapter 8, Procedures and functions 103

Destructors can be virtual,
and often are. Destructors

seldom take any parameters.

104

constructor Field. Init (FX, FY, FLen: Integer; FName: String);
begin

X := FX;
Y := FY;
Len := FLen;
GetMem(Name, Length (FName) + 1);
Name" := FName;

end;

constructor StrField.Init(FX, FY, FLen: Integer; FName: String);
begin

Field.Init(FX, FY, FLen, FName);
GetMem(Value, Len);
Value" := ";

end;

The first action of a constructor of a descendant type, such as the
preceding StrField.lnit, is almost always to call its immediate
ancestor's corresponding constructor to initialize the inherited
fields of the object. Having done that, the constructor then ini­
tializes the fields of the object that were introduced in the
descendant.

Destructors are the counterparts of constructors, and are used to
clean up objects after their use. Typically, the cleanup consists of
disposing any pointer fields in the object.

Here are some examples of destructors:

destructor Field.Done;
begin

FreeMem(Name, Length (Name") + 1);
end;

destructor StrField.Done;
begin

FreeMem(Value, Len);
Field.Done;

end;

A destructor of a descendant type, such as the preceding
StrField.Done, typically first disposes the pointer fields introduced
in the descendant, and then, as its last action, calls the correspon­
ding destructor of its immediate ancestor to dispose any inherited
pointer fields of the object.

Turbo Pascal Programmer's Guide

Parameters

The declaration of a procedure or function specifies a formal
parameter list. Each parameter declared in a formal parameter list
is local to the procedure or function being declared, and can be
referred to by its identifier in the block associated with the
procedure or function.

formal parameter list

parameter declaration

I L@J ,Iidentifier list I '

var Lo-.J parameter type r-t

parameter type

There are three kinds of parameters: value, variable, and untyped
variable. They are characterized as follows:

• A parameter group without a preceding var and followed by a
type is a list of value parameters.

• A parameter group preceded by var and followed by a type is a
list of variable parameters.

• A parameter group preceded by var and not followed by a type
is a list of untyped variable parameters.

Chapter 8, Procedures and functions 105

Value parameters

106

Variable

A formal value parameter acts like a variable local to the proce­
dure or function, except that it gets its initial value from the cor­
responding actual parameter upon activation of the procedure or
function. Changes made to a formal value parameter do not affect
the value of the actual parameter.

A value parameter's corresponding actual parameter in a proce­
dure statement or function call must be an expression, and its
value must not be of file type or of any structured type that
contains a file type.

The actual parameter must be assignment-compatible with the
type of the formal value parameter. If the parameter type is string,
then the formal parameter is given a size attribute of 255.

parameters A variable parameter is employed when a value must be passed
from a procedure or function to the caller. The corresponding
actual parameter in a procedure statement or function call must
be a variable reference. The formal variable parameter represents
the actual variable during the activation of the procedure or
function, so any changes to the value of the formal variable
parameter are reflected in the actual parameter.

Within the procedure or function, any reference to the formal
variable parameter accesses the actual parameter itself. The type
of the actual parameter must be identical to the type of the formal
variable parameter (you can bypass this restriction through
untyped variable parameters). If the formal parameter type is
string, it is given the length attribute 255, and the actual variable
parameter must be a string type with a length attribute of 255.

File types can only be passed as variable parameters.

If referencing an actual variable parameter involves indexing an
array or finding the object of a pointer, these actions are executed
before the activation of the procedure or function.

Turbo Pascal Programmer's Guide

Objects

Untyped variable
parameters

The rules of object-type assignment compatibility also apply to
object-type variable parameters: For a formal parameter of type
TI, the actual parameter might be of type T2 if T2 is in the domain
of TI. For example, the Field.Copy method might be passed an
instance of Field, StrField, NumField, ZipField, or any other instance
of a descendant of Field.

When a formal parameter is an untyped variable parameter, the
corresponding actual parameter may be any variable reference,
regardless of its type.

Within the procedure or function, the untyped variable parameter
is typeless; that is, it is incompatible with variables of all other
types, unless it is given a specific type through a variable typecast.

An example of untyped variable parameters follows:

function Equal(var Source, Dest; Size: Word): Boolean;
type

Bytes = array[O .. MaxInt] of Byte;
var

N: Integer;
begin

N := 0;
while (N < Size) and (Bytes (Dest) [N] <> Bytes (Source) [N]) do

Inc(N) ;
Equal := N = Size;

end;

This function can be used to compare any two variables of any
size. For instance, given the declarations

type
Vector = array[l .. lO] of Integer;
Point = record

X, Y: Integer;
end;

var
Vecl, Vec2: Vector;
N: Integer;
P: Point;

then the function calls

Chapter 8, Procedures and functions 107

Equal (Vecl, Vec2, SizeOf(Vector))
Equal(Vecl, Vec2, SizeOf(Integer) * N)
Equal(Vec[l], Vecl[6], SizeOf(Integer) * 5)
Equal(Vecl[l], P, 4)

compare Vec1 to Vec2, compare the first N components of Vec1 to
the first N components of Vec2, compare the first five components
of Vec1 to the last five components of Vec1, and compare Vec1[l]
to P.X and Vec1[2] to P.Y.

Procedural types

Procedural types are defined
in Chapter 3, 'Types. N

As an extension to standard Pascal, Turbo Pascal allows
procedures and functions to be treated as objects that can be
assigned to variables and passed as parameters; procedural types
make this possible.

108

Procedural
variables Once a procedural type has been defined, it becomes possible to

declare variables of that type. Such variables are called procedural
variables. For example, given the preceding type declarations, the
following variables can be declared:

var
P: SwapProc;
F: MathFunc;

Like an integer variable that can be assigned an integer value, a
procedural variable can be assigned a procedural value. Such a
value can of course be another procedural variable, but it can also
be a procedure or a function identifier. In this context, a procedure
or function declaration can be viewed as a special kind of constant
declaration, the value of the constant being the procedure or
function. For example, given the following procedure and
function declarations,

procedure Swap(var A, B: Integer); far;
var

Temp: Integer;
begin

Temp := A;
A := B;
B := Temp;

end;

Turbo Pascal Programmer's Guide

function Tan(Angle: Real): Reali fari
begin

Tan := Sin (Angle) / Cos(Angle)i
endi

The variables P and F declared previously can now be assigned
values:

P := Swapi
F := Tani

Following these assignments, the call P (If J) is equivalent to
Swap (If J), and F (X) is equivalent to Tan (X).

As in any other assignment operation, the variable on the left and
the value on the right must be assignment-compatible. To be
considered assignment-compatible, procedural types must have
the same number of parameters, and parameters in corresponding
positions must be of identical types; finally, the result types of
functions must be identical. As mentioned previously, parameter
names are of no significance when it comes to procedural-type
compatibility.

In addition to being of a compatible type, a procedure or function
must satisfy the following requirements if it is to be assigned to a
procedural variable:

• It must be declared with a far directive or compiled in the {$F+}
state .

• It cannot be

• a standard procedure or function

• a nested procedure or function

• an inline procedure or function

• an interrupt procedure or function

Standard procedures and functions are the procedures and
functions declared by the System unit, such as Writeln, Readln, Chr,
and Ord. To use a standard procedure or function with a proce­
dural variable, you will have to write a "shell" around it. For
example, given the procedural type

type
IntProc = procedure(N: Integer)i

the following is an assignment-compatible procedure to write an
integer:

Chapter 8, Procedures and functions 109

110

procedure WriteInt(Number: Integer); far;
begin

Write (Number) ;
end;

Nested procedures and function cannot be used with procedural
variables. A procedure or function is nested when it is declared
within another procedure or function. In the following example,
Inner is nested within Outer, and Inner cannot therefore be
assigned to a procedural variable.

program Nested;
procedure Outer;
procedure Inner;
begin

Writeln('Inner is nested');
end;
begin

Inner;
end;
begin

Outer;
end.

The use of procedural types is not restricted to simple procedural
variables. Like any other type, a procedural type can participate
in the declaration of a structured type, as demonstrated by the
following declarations:

type
GotoProc = procedure(X, Y: Integer);
ProcList = array[1 .. 10] of GotoProc;
Windowptr = AWindowRec;
WindowRec = record

Next: Windowptr;
Header: string[31];
Top, Left, Bottom, Right: Integer;
SetCursor: GotoProc;

end;
var

P: ProcList;
W: WindowPtr;

Given the preceding declarations, the following statements are
valid procedure calls:

P[3](1,1);
WA.SetCursor(10, 10);

Turbo Pascal Programmer's Guide

Procedural-type
parameters

When a procedural value is assigned to a procedural variable,
what physically takes place is that the address of the procedure is
stored in the variable. In fact, a procedural variable is much like a
pointer variable, except that instead of pointing to data, it points
to a procedure or function. Like a pointer, a procedural variable
occupies 4 bytes (two words), containing a memory address. The
first word stores the offset part of the address, and the second
word stores the segment part.

Since procedural types are allowed in any context, it is possible to
declare procedures or functions that take procedures or functions
as parameters. The following program demonstrates the use of a
procedural-type parameter to output three tables of different
arithmetic functions:

program Tables;

type
Fune = function(X, Y: Integer): Integer;

function Add(X, Y: Integer): Integer; far;
begin

Add := X + Y;
end;

function Multiply (X, Y: Integer): Integer; far;
begin

Multiply := X * Y;
end;

function Funny(X, Y: Integer): Integer; far;
begin

Funny := (X + Y) * (X - Y);
end;

procedure PrintTable(W, H: Integer; Operation: Fune);
var

X, Y: Integer;
begin

for Y := 1 to H do
begin

for X := 1 to W do
Write (Operation (X, Y) :5);

Writeln;
end;
Writeln;

end;

Chapter 8, Procedures and functions 111

112

begin
PrintTable(10, 10, Add);
PrintTable(10, 10, Multiply);
PrintTable(10, 10, Funny);

end.

When run, the Tables program outputs three tables. The second
one looks like this:

2 3 5 6 8 9 10
2 4 6 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

Procedural-type parameters are particularly useful in situations
where a certain common action is to be carried out on a set of
procedures or functions. In this case, the PrintTable procedure
represents the common action to be carried out on the Add,
Multiply, and Funny functions.

If a procedure or function is to be passed as a parameter, it must
conform to the same type-compatibility rules as in an assignment.
Thus, such procedures and functions must be declared with a far
directive, they cannot be built-in routines, they cannot be nested,
and they cannot be declared with the inline or interrupt attributes.

Turbo Pascal Programmer's Guide

c H A p T E R

9

Programs and units

Program syntax

The program

A Turbo Pascal program takes the form of a procedure
declaration except for its heading and an optional uses clause.

program

program heading

uses clause

heading The program heading specifies the program's name and its
parameters.

program heading

program parameters

Chapter 9, Programs and units 113

The uses clause

See "The initialization part"
on page 777.

Unit syntax

114

program parameters -I identifier list I-
The program heading, if present, is purely decorative and is
ignored by the compiler.

The uses clause identifies all units used by the program,
including units used directly and units used by those units.

uses clause

The System unit is always used automatically. System implements
all low-level, run-time support routines to support such features
as file 1/0, string handling, floating point, dynamic memory
allocation, and others.

Apart from System, Turbo Pascal implements many standard
units, such as Printer, Dos, and Crt. These are not used
automatically; you must include them in your uses clause, for
instance,

uses Dos/Crt; { Can now access facilities in Dos and Crt

The order of the units listed in the uses clause determines the
order of their initialization.

Units are the basis of modular programming in Turbo Pascal.
They are used to create libraries that you can include in various
programs without making the source code available, and to
divide large programs into logically related modules.

Turbo Pascal Programmer's Guide

The unit heading

The interface part

unit

unit heading interface part implementation part

initialization part

The unit heading specifies the unit's name.

unit heading ~ unit identifier ~

The unit name is used when referring to the unit in a uses clause.
The name must be unique-two units with the same name cannot
be used at the same time.

The interface part declares constants, types, variables, procedures,
and functions that are public, that is, available to the host (the pro­
gram or unit using the unit). The host can access these entities as
if they were declared in a block that encloses the host.

interface part

uses clause

type declaration part

variable declaration part

procedure and function
heading part

Chapter 9, Programs and units 115

116

The
implementation

part

procedure and function
heading part

procedure heading

function heading inline directive

Unless a procedure or function is inline, the interface part only
lists the procedure or function heading. The block of the
procedure or function follows in the implementation part.

The implementation part defines the block of all public proce­
dures and functions. In addition, it declares constants, types, vari­
ables, procedures, and functions that are private, that is, not
available to the host.

implementation part

uses clause

label declaration part

'procedure and function
declaration part

In effect, the procedure and function declarations in the interface
part are like forward declarations, although the forward directive
is not specified. Therefore, these procedures and functions can be
defined and referenced in any sequence in the implementation
part.

Turbo Pascal Programmer's Guide

The initialization
part

Indirect unit
references

Procedure and function headings can be duplicated from the
interface part. You don't have to specify the formal parameter list,
but if you do, the compiler will issue a compile-time error if the
interface and implementation declarations don't match.

The initialization part is the last part of a unit. It consists either of
the reserved word end (in which case the unit has no initialization
code) or of a statement part to be executed in order to initialize
the unit.

initialization part

The initialization parts of units used by a program are executed in
the same order that the units appear in the uses clause.

Tlte uses clause in a module (program or unit) need only name
the units used directly by that module. Consider the following
example:

program Prog;
uses Unit2;
const a = b;
begin
end.

unit Unit2;
interface
uses Unit1;
const b = c;
implementation
end.

unit Unit1;
interface
const c = 1;
implementation
const d = 2;
end.

Chapter 9, Programs and units 117

118

Circular unit

In the previous example, Unit2 is directly dependent on Unitl,
and Prog is directly dependent on Unit2. Furthermore, Prog is
indirectly dependent on Unitl (through Unit2), even though none
of the identifiers declared in Unitl are available to Prog.

In order to compile a module, Turbo Pascal must be able to locate
all units upon which the module depends (directly or indirectly).
So, to compile Prog above, the compiler must be able to locate
both Unitl and Unit2, or else an error occurs.

When changes are made in the interface part of a unit, other units
using the unit must be recompiled. However, if changes are only
made to the implementation or the initialization part, other units
that use the unit need not be recompiled. In the previous example,
if the interface part of Unitl is changed (for example, c = 2) Unit2
must be recompiled; changing the implementation part (for
example, d = 1) doesn't require recompilation of Unit2.

When a unit is compiled, Turbo Pascal computes a unit version
number, which is basically a checksum of the interface part. In the
preceding example, when Unit2 is compiled, the current version
number of Unitl is saved in the compiled version of Unit2. When
Prog is compiled, the version number of Unitl is checked against
the version number stored in Unit2. If the version numbers do not
match, indicating that a change was made in the interface part of
Unitl since Unit2 was compiled, the compiler shows an error or
recompiles Unit2, depending on the mode of compilation.

references Placing a uses clause in the implementation section of a unit
allows you to further hide the inner details of the unit, since units
used in the implementation section are not visible to users of the
unit. More importantly, however, it also enables you to construct
mutually dependent units.

The following program demonstrates how two units can "use"
each other. The main program, Circular, uses a unit named
Display. Display contains one routine in its interface section,
WriteXY, which takes three parameters: an (x, y) coordinate pair
and a text message to display. If the (x, y) coordinates are
onscreen, WriteXY moves the cursor to (x, y) and displays the
message there; otherwise, it calls a simple error-handling routine.

So far, there's nothing fancy here-WriteXY is taking the place of
Write. Here's where the circular unit reference enters in: How is

Turbo Pascal Programmer's Guide

the error-handling routine going to display its error message? By
using WriteXYagain. Thus you have WriteXY, which calls the
error-handling routine Show Error, which in tum calls WriteXY to
put an error message onscreen. If your head is spinning in circles,
let's look at the source code to this example, so you can see that it's
really not that tricky.

The main program, Circular, clears the screen and makes three
calls to WriteXY:

program Circular;
{ Display text using WriteXY

uses
Crt, Display;

begin
ClrScr;
WriteXY(l, 1, 'Upper left corner of screen');
WriteXY(100, 100, 'Way off the screen');
WriteXY(81 - Length('Back to reality'), 15, 'Back to reality');

end.

Look at the (x, y) coordinates of the second call to WriteXY. It's
hard to display text at (100, 100) on an 80x25line screen. Next,
let's see how WriteXY works. Here's the source to the Display unit,
which contains the WriteXY procedure. If the (x, y) coordinates are
valid, it displays the message; otherwise, WriteXY displays an
error message:

Chapter 9, Programs and units

unit Display;
{ Contains a simple video display routine

interface

procedure WriteXY(X, Y: Integer; Message: String);

implementation
uses

Crt, Error;

procedure WriteXY(X, Y: Integer; Message: String);
begin

if (X in [1 .. 80]) and (Y in [1 .. 25]) then
begin

GoToXY(X, Y);
Write(Message);

end;

119

120

Sharing other
declarations

else
ShowError('Invalid WriteXY coordinates');

end;

end.

The ShowError procedure called by WriteXY is declared in the
following code in the Error unit. ShowError always displays its
error message on the 25th line of the screen:

unit Error;
{ Contains a simple error-reporting routine

interface

procedure ShowError(ErrMsg: String);

implementation

uses
Display;

procedure ShowError(ErrMsg: String);
begin

WriteXY(l, 25, 'Error: ' + ErrMsg);
end;

end.

Notice that the uses clause in the implementation sections of both
Display and Error refer to each other. These two units can refer to
each other in their implementation sections because Turbo Pascal
can compile complete interface sections for both. In other words,
the Turbo Pascal compiler will accept a reference to partially
compiled unit A in the implementation section of unit B, as long
as both A and B's interface sections do not depend upon each
other (and thus follow Pascal's strict rules for declaration order).

What if you want to modify WriteXY and Show Error to take an
additional parameter that specifies a rectangular window
onscreen:

procedure WriteXY(SomeWindow: WindRec; X, Y: Integer;
Message: String);

procedure ShowError(SomeWindow: WindRec; ErrMsg: String);

Remember these two procedures are in separate units. Even if you
declared WindData in the interface of one, there would be no legal
way to make that declaration available to the interface of the
other. The solution is to declare a third module that contains only
the definition of the window record:

Turbo Pascal Programmer's Guide

unit WindData;
interface
type

WindRec = record
Xl, Yl, X2, Y2: Integer;
ForeColor, BackColor: Byte;
Active: Boolean;

end;
implementation
end.

In addition to modifying the code to WriteXY and ShowError to
make use of the new parameter, the interface sections of both the
Display and Error units can now "use" WindData. This approach is
legal because unit WindData has no dependencies in its uses
clause, and units Display and Error refer to each other only in their
respective implementation sections.

Chapter 9, Programs and units 121

122 Turbo Pascal Programmer's Guide

p A R T

2

The standard libraries

123

124 Turbo Pascal Programmer's Guide

c H A p T E R

10

The System unit

The System unit is Turbo Pascal's run-time library. It implements
low-level, run-time support routines for all built-in features, such
as file I/O, string handling, 8087 emulation, floating point, over­
lay management, and dynamic memory allocation. The System
unit is used automatically by any unit or program, and need
never be referred to in a uses clause.

Standard procedures and functions

For more detailed
information, refer to Chapter

7 in the Library Reference.

Flow control
procedures

Chapter 70, The System unit

This section briefly describes all the standard (built-in) procedures
and functions in Turbo Pascal, except for the I/O procedures and
functions discussed in the next section beginning on page 129.

Standard procedures and functions are predeclared. Since all
predeclared entities act as if they were declared in a block sur­
rounding the program, no conflict arises from a declaration that
redefines the same identifier within the program.

Procedure

Exit

Halt

RunError

Description

Exits immediately from the current block.

Stops program execution and returns to the operating
system.

Stops program execution and generates a run-time
error.

125

126

Dynamic allocation
procedures

Dynamic allocation
functions

The dynamic allocation procedures and functions are used to
manage the heap-a memory area that occupies all or some of the
free memory left when a program is executed. Heap management
techniques are discussed in the section "The heap manager" of
Chapter 16, "Memory issues."

Procedure

Dispose

FreeMem

GetMem

Mark

New

Release

Function

MaxAvail

MemAvail

Description

Disposes a dynamic variable.

Disposes a dynamic variable of a given size.

Creates a new dynamic variable of a given size and sets
a pointer variable to point to it.

Records the state of the heap in a pointer variable.

Creates a new dynamic variable and sets a pointer
variable to point to it.

Returns the heap to a given state.

Description

Returns the size of the largest contiguous free block in
the heap, corresponding to the size of the largest
dynamic variable that can be allocated at the time of
the call to MaxAvail.

Returns the number of free bytes of heap storage
available.

Transfer functions The transfer procedures Pack and Unpack, as defined in standard
Pascal, are not implemented by Turbo Pascal.

Function

Chr

Ord

Round

Trunc

Description

Returns a character of a specified ordinal number.

Returns the ordinal number of an ordinal-type value.

Rounds a type Real value to a type Longint value.

Truncates a type Real value to a type Longint value.

Turbo Pascal Programmer's Guide

Arithmetic functions

When you're compiling in
numeric processing mode,
{$N+}, the return values of

the floating-point routines in
the System unit (Sqrt, Pi, Sin,

and so on) are of type
Extended instead of Real.

Ordinal procedures

Ordinal functions

String procedures

Chapter 10, The System unit

Function

Abs

ArcTan

Cos

Exp

Frac

Int

Ln

Pi

Sin

Sqr

Sqrt

Procedure

Dec

Inc

Function

Odd

Pred

Succ

Procedure

Delete

Insert

Str

Val

Description

Returns the absolute value of the argument.

Returns the arctangent of the argument.

Returns the cosine of the argument.

Returns the exponential of the argument.

Returns the fractional part of the argument.

Returns the integer part of the argument.

Returns the natural logarithm of the argument.

Returns the value of Pi (3.1415926535897932385).

Returns the sine of the argument.

Returns the square of the argument.

Returns the square root of the argument.

Description

Decrements a variable.

Increments a variable.

Description

Tests if the argument is an odd number.

Returns the predecessor of the argument.

Returns the successor of the argument.

Description

Deletes a substring from a string.

Inserts a substring into a string.

Converts a numeric value to its string representation.

Converts the string value to its numeric representation.

127

String functions
Function

Concat

Copy

Length

Pos

Pointer and address Function
functions

Addr

CSeg

DSeg

Dfs

Ptr

Seg

SPtr

SSeg

Miscellaneous Procedure
procedures

FillChar

Move

Randomize

128

Description

Concatenates a sequence of strings.

Returns a substring of a string.

Returns the dynamic length of a string.

Searches for a substring in a string.

Description

Returns the address of a specified object.

Returns the current value of the CS register.

Returns the current value of the DS register.

Returns the offset of a specified object.

Converts a segment base and an offset address to a
pointer-type value.

Returns the segment of a specified object.

Returns the current value of the SP register.

Returns the current value of the SS register.

Description

Fills a specified number of contiguous bytes with a
specified value.

Copies a specified number of contiguous bytes from a
source range to a destination range.

Initializes the built-in random generator with a random
value.

Turbo Pascal Programmer's Guide

Miscellaneous
functions

Function

Hi

Lo

ParamCount

ParamStr

Random

SizeD!

Swap

UpCase

Description

Returns the high-order byte of the argument.

Returns the low-order byte of the argument.

Returns the number of parameters passed to the
program on the command line.

Returns a specified command-line parameter.

Returns a random number.

Returns the number of bytes occupied by the
argument.

Swaps the high- and low-order bytes of the argument.

Converts a character to uppercase.

File input and output

An introduction to
file I/O

The syntax for writing file
types is given in the section

"Structured types· in
Chapter 3.

Chapter 70, The System unit

This section briefly describes the standard (or built-in) input and
output (I/O) procedures and functions of Turbo Pascal. For more
detailed information, refer to Chapter 19.

A Pascal file variable is any variable whose type is a file type.
There are three classes of Pascal files: typed, text, and untyped.

Before a file variable can be used, it must be associated with an
external file through a call to the Assign procedure. An external
file is typically a named disk file, but it can also be a device, such
as the keyboard or the display. The external fi~e stores the infor­
mation written to the file or supplies the information read from
the file.

Once the association with an external file is established, the file
variable must be "opened" to prepare it for input or output. An
existing file can be opened via the Reset procedure, and a new file
can be created and opened via the Rewrite procedure. Text files
opened with Reset are read-only, and text files opened with
Rewrite and Append are write-only. Typed files and untyped files
always allow both reading and writing regardless of whether they
were opened with Reset or Rewrite.

129

I/O functions

130

The standard text-file variables Input and Output are opened
automatically when program execution begins. Input is a read­
only file associated with the keyboard and Output is a write-only
file associated with the display.

Every file is a linear sequence of components, each of which has
the component type (or record type) of the file. Each component
has a component number. The first component of a file is con­
sidered to be component zero.

Files are normally accessed sequentially; that is, when a component
is read using the standard procedure Read or written using the
standard procedure Write, the current file position moves to the
next numerically-ordered file component. However, typed files
and untyped files can also be accessed randomly via the standard
procedure Seek, which moves the current file position to a speci­
fied component. The standard functions FilePos and FileSize can be
used to determine the current file position and the current file
size.

When a program completes processing a file, the file must be
closed using the standard procedure Close. After closing a file
completely, its associated external file is updated. The file variable
can then be associated with another external file.

By default, all calls to standard 1/ a procedures and functions are
automatically checked for errors: If an error occurs, the program
terminates, displaying a run-time error message. This automatic
checking can be turned on and off using the {$I+} and {$I-} com­
piler directives. When 1/ a checking is off-that is, when a proce­
dure or function call is compiled in the {$I-} state-an I/O error
does not cause the program to halt. To check the result of an I/O
operation, you must instead call the standard function IOResult.

Function

Eot
FilePos

FileSize

IOResuit

Description

Returns the end-of-file status of a file.

Returns the current file position of a file. Not used for
text files.

Returns the current size of a file. Not used for text files.

Returns an integer value that is the status of the last
I/O function performed.

Turbo Pascal Programmer's Guide

I/O procedures

Text files

Chapter 70, The System unit

Procedure

Assign

ChDir

Close

Erase

GetDir

MkDir

Rename

Reset

Rewrite

RmDir

Seek

Truncate

Description

Assigns the name of an external file to a file variable.

Changes the current directory.

Closes an open file.

Erases an external file.

Returns the current directory of a specified drive.

Creates a subdirectory.

Renames an external file.

Opens an existing file.

Creates and opens a new file.

Removes an empty subdirectory.

Moves the current position of a file to a specified
component. Not used with text files.

Truncates the file size at the current file position. Not
used with text files.

This section summarizes input and output using file variables of
the standard type Text. Note that in Turbo Pascal the type Text is
distinct from the type file of Char.

When a text file is opened, the external file is interpreted in a
special way: It is considered to represent a sequence of characters
formatted into lines, where each line is terminated by an end-of­
line marker (a carriage-return character, possibly followed by a
linefeed character).

For text files, there are special forms of Read and Write that allow
you to read and write values that are not of type Char. Such
values are automatically translated to and from their character
representation. For example, Read(F, 1), where I is a type Integer
variable, will read a sequence of digits, interpret that sequence as
a decimal integer, and store it in 1.

As noted previously there are two standard text-file variables,
Input and Output. The standard file variable Input is a read-only
file associated with the operating system's standard input file
(typically the keyboard), and the standard file variable Output is a
write-only file associated with the operating system's standard

131

Procedures

132

output file (typically the display). Input and Output are automati­
cally opened before a program begins execution, as if the follow­
ing statements were executed:

Assign (Input f ff);

Reset(Input);
Assign (Output f ff);

Rewrite(Output);

Likewise, Input and Output are automatically closed after a
program finishes executing.

If a program uses the Crt standard unit, Input and Output no
longer by default refer to the standard input and standard output
files.

Some of the standard procedures and functions listed in this
section need not have a file variable explicitly given as a
parameter. If the file parameter is omitted, Input or Output are
assumed by default, depending on whether the procedure or
function is input- or output-oriented. For instance, Read(X)
corresponds to Read(Input, X) and Write(X) corresponds to
Write(Output, X).

If you do specify a file when calling one of the procedures or
functions in this section, the file must have been associated with
an external file using Assign, and opened using Reset, Rewrite, or
Append. An error message is generated if you pass a file that was
opened with Reset to an output-oriented procedure or function.
Likewise, it's an error to pass a file that was opened with Rewrite
or Append to an input-oriented procedure or function.

Procedure

Append

Flush

Read

Readln

SetTextBuf

Write

Writeln

Description

Opens an existing file for appending.

Flushes the buffer of an output file.

Reads one or more values from a text file into one or
more variables.

Does what a Read does and then skips to the beginning
of the next line in the file.

Assigns an I/O buffer to a text file.

Writes one or more values to a text file.

Does the same as a Write, and then writes an end-of­
line marker to the file.

Turbo Pascal Programmer's Guide

Functions

Untyped files

Procedures

The FileMode

Function

Eoln

SeekEof

SeekEoln

Description

Returns the end-of-line status of a file.

Returns the end-of-file status of a file.

Returns the end-of-line status of a file.

Untyped files are low-level I/O channels primarily used for direct
access to any disk file regardless of type and structuring. An un­
typed file is declared with the word file and nothing more; for
example,

var
DataFile: file;

For untyped files, the Reset and Rewrite procedures allow an extra
parameter to specify the record size used in data transfers.

For historical reasons, the default record size is 128 bytes. The
preferred record size is 1, because that is the only value that
correctly reflects the exact size of any file (no partial records are
possible when the record size is 1).

Except for Read and Write, all typed file standard procedures and
functions are also allowed on untyped files. Instead of Read and
Write, two procedures called BlockRead and BlockWrite are used for
high-speed data transfers.

Procedure

BlockRead

Block Write

Description

Reads one or more records into a variable.

Writes one or more records from a variable.

variable The FileMode variable defined by the System unit determines the
access code to pass to DOS when typed and untyped files (not text
files) are opened using the Reset procedure.

Chapter 70, The System unit 133

New files created using
Rewrite are always opened

in Read/Write mode,
corresponding to

FileMode = 2.

The default FileMode is 2, which allows both reading and writing.
Assigning another value to FileMode causes all subsequent Resets
to use that mode.

The range of valid FileMode values depends on the version of DOS
in use. However, for all versions, the following modes are
defined:

0: Read only
1: Write only
2: Read/Write

DOS version 3.x defines additional modes, which are primarily
concerned with file-sharing on networks. (For further details on
these, refer to your DOS programmer's reference manual.)

Devices in Turbo Pascal

DOS devices

134

Turbo Pascal and the DOS operating system regard external
hardware, such as the keyboard, the display, and the printer, as
devices. From the programmer's point of view, a device is treated
as a file, and is operated on through the same standard proce­
dures and functions as files.

Turbo Pascal supports two kinds of devices: DOS devices and text
file devices.

DOS devices are implemented through reserved file names that
have a special meaning attached to them. DOS devices are com­
pletely transparent-in fact, Turbo Pascal is not even aware when
a file variable refers to a device instead of a disk file. For example,
the program

var
1st: Text;

begin
Assign (1st, , 1PT!') ;
Rewrite(1st);
Writeln(1st, 'Hello World ... ');
Close(1st);

end.

Turbo Pascal Programmer's Guide

writes the string Hello World ... on the printer, even though the
syntax for doing so is exactly the same as for a disk file.

The devices implemented by DOS are used for obtaining or
presenting legible input or output. Therefore, DOS devices are
normally used only in connection with text files. On rare occa­
sions, untyped files can also be useful for interfacing with DOS
devices.

Each of the DOS devices is described in the next section. Other
DOS implementations can provide additional devices, and still
others cannot provide all the ones described here.

The CON device CON refers to the CONsole device, in which output is sent to the
display, and input is obtained from the keyboard. The Input and
Output standard files and all files assigned an empty name refer to
the CON device when input or output is not redirected.

The LPTl, LPT2, and
LPT3 devices

Input from the CON device is line-oriented and uses the line­
editing facilities described in your DOS manual. Characters are
read from a line buffer, and when the buffer becomes empty, a
new line is input.

An end-of-file character is generated by pressing Ctrl-Z, after which
the EDt function will return True.

The line printer devices are the three possible printers you can
use. If only one printer is connected, it is usually referred to as
LPTl, for which the synonym PRN can also be used.

The line printer devices are output-only devices-an attempt to
Reset a file assigned to one of these generates an immediate end­
of-file.

¢ The standard unit Printer declares a text-file variable called Lst,
and makes it refer to the LPTI device. To easily write something
on the printer from one of your programs, include Printer in the
program's uses clause, and use Write(Lst, .. .) and Writeln(Lst, ...) to
produce your output.

The COM 1 and COM2 The communication port devices are the two serial communi­
devices cation ports. The synonym AUX can be used instead of COMl.

Chapter 10, The System unit 135

The NUL device The nul device ignores anything written to it, and generates an
immediate end-of-file when read from. You should use this when
you don't want to create a particular file, but the program
requires an input or output file name.

Text file devices

In addition to the CRT
device, Turbo Pascal allows

you to write your own text file
device drivers. A full

description of this is given in
the section "Text file device

drivers'" in Chapter 79, "Input
and output issues. '"

Text file devices are used to implement devices unsupported by
DOS or to make available another set of features other than those
provided by a similar DOS device. A good example of a text file
device is the CRT device implemented by the Crt standard unit.
Its main function is to provide an interface to the display and the
keyboard, just like the CON device in DOS. However, the CRT
device is much faster and supports such invaluable features as
color and windows.

Contrary to DOS devices, text file devices have no reserved file
names; in fact, they have no file names at all. Instead, a file is
associated with a text file device through a customized Assign
procedure. For instance, the Crt standard unit implements an
AssignCrt procedure that associates text files with the CRT device.

Predeclared variables

Uninitialized variables

136

Besides procedures and functions, the System unit provides a
number of predeclared variables.

Variable Type Description

Input Text Input standard file
Output Text Output standard file
SaveIntOO Pointer Saved interrupt $00
SaveInt02 Pointer Saved interrupt $02
SaveIntlB Pointer Saved interrupt $lB
SaveInt21 Pointer Saved interrupt $21
SaveInt23 Pointer Saved interrupt $23
SaveInt24 Poii-tter Saved interrupt $24
SaveInt34 Pointer Saved interrupt $34
SaveInt35 Pointer Saved interrupt $35
SaveInt36 Pointer Saved interrupt $36
SaveInt37 Pointer Saved interrupt $37
SaveInt38 Pointer Saved interrupt $38
SaveInt39 Pointer Saved interrupt $39

Turbo Pascal Programmer's Guide

Initialized variables

Chapter 70, The System unit

SaveInt3A Pointer Saved interrupt $3A
SaveInt3B Pointer Saved interrupt $3B
SaveInt3C Pointer Saved interrupt $3C
SaveInt3D Pointer Saved interrupt $3D
SaveInt3E Pointer Saved interrupt $3E
SaveInt3F Pointer Saved interrupt $3F
SaveInt7S Pointer Saved interrupt $75

Initial
Variable Type value Description

ErrorAddr Pointer nil Run-time error address
ExitCode Integer 0 Exit code
ExitProc Pointer nil Exit procedure
FileMode Byte 2 File open mode
FreeList Pointer nil Free heap block list
HeapEnd Pointer nil Heap end
HeapError Pointer nil Heap error function
HeapOrg Pointer nil Heap origin
HeapPtr Pointer nil Heap pointer
InOutRes Integer 0 I/O result buffer
OvrCodeList Word 0 Overlay code segment list
OvrDebugPtr Pointer nil Overlay debugger hook
OvrDosHandle Word 0 Overlay DOS handle
OvrEmsHandle Word 0 Overlay EMS handle
OvrHeapEnd Word 0 Overlay buffer end
OvrHeapOrg Word 0 Overlay buffer origin
OvrHeapPtr Word 0 Overlay buffer pointer
OvrHeapSize Word 0 Initial overlay buffer size
OvrLoadList Word 0 Loaded overlays list
PrefixSeg Word 0 Program segment prefix
RandSeed Longint 0 Random seed
StackLimit Word 0 Minimum stack pointer
Test8D87 Byte 0 8087 test result

The Overlay unit uses OvrCodeList, OvrHeapSize, OvrDebugPtr,
OvrHeapOrg, OvrHeapPtr, OvrHeapEnd, OvrLoadList,
OvrDosHandle, and OvrEmsHandle to implement Turbo Pascal's
overlay manager. The overlay buffer resides between the stack
segment and the heap, and OvrHeapOrg and OvrHeapEnd contain
its starting and ending segment addresses. The default size of the
overlay buffer corresponds to the size of the largest overlay in the
program; if the program has no overlays, the size of the overlay
buffer is zero. The size of the overlay buffer can be increased
through a call to the OvrSetBuf routine in the Overlay unit; in that
case, the size of the heap is decreased accordingly, by moving
HeapOrg upwards.

137

For further details, see
page 733.

For further details, refer to
Chapter 74, "Using the 8087. N

138

For further details, see
page 729.

The heap manager uses HeapOrg, HeapPtr, HeapEnd, FreeList, and
HeapError to implement Turbo Pascal's dynamic memory
allocation routines. The heap manager is described in full in
Chapter 16, "Memory issues."

The ExitProc, ExitCode, and Error Addr variables implement exit
procedures. This is also described in Chapter 18, "Control issues."

PrefixSeg is a Word variable containing the segment address of the
Program Segment Prefix (PSP) created by DOS when the program
was executed. For a complete description of the PSP, refer to your
DOS manual.

StackLimit contains the offset of the bottom of the stack in the
stack segment, corresponding to the lowest value the SP register
is allowed to assume before it is considered a stack overflow. By
default, StackLimit is zero, but in a program compiled with
{$N+,E+}, the 8087 emulator will set it to 224 to reserve workspace
at the bottom of the stack segment if no 8087 is present in the
system.

The built-in I/O routines use InOutRes to store the value that the
next call to the IOResult standard function will return.

RandSeed stores the built-in random number generator's seed. By
assigning a specific value to RandSeed, the Random function can be
made to generate a specific sequence of random numbers over
and over. This is useful is applications that deal with data
encryption, statistics, and simulations.

The FileMode variable allows you to change the access mode in
which typed and untyped files are opened (by the Reset standard
procedure).

Test8087 stores the result of the coprocessor autodetection logic,
which is executed at startup in a program compiled with {$N+}.

Input and Output are the standard I/O files required by every
Pascal implementation. By default, they refer to the standard
input and output files in DOS.

The System unit takes over several interrupt vectors. Before
installing its own interrupt handling routines, System stores the
old vectors in the SavelntXX variables.

Note that the System unit contains an INT 24 handler for trapping
critical errors. In a Turbo Pascal program, a DOS critical error is
treated like any other I/O error: In the {$I+} state, the program

Turbo Pascal Programmer's Guide

For more information, refer to
the entry on Swap Vectors in

Chapter 7 of the Ubrary
Reference.

Chapter 10, The System unit

halts with a run-time error, and, in the {$I-} state, IOResult returns
a nonzero value.

Here's a skeleton program that restores the original vector, and
thereby the original critical error-handling logic:

program Restore;
uses Dos;
begin

SetlntVec($24, Savelnt24);

end.

The SwapVectors routine in the Dos unit swaps the contents of the
SavelntXX variables with the current contents of the interrupt
vectors. Swap Vectors should be called just before and just after a
call to the Exec routine, to ensure that the Exec'd process does not
use any interrupt handlers installed by the current process, and
vice versa.

139

140 Turbo Pascal Programmer's Guide

c H A p T E R

1 1

The Dos unit

The Dos unit implements a number of very useful operating
system and file-handling routines. None of the routines in the Dos
unit are defined by standard Pascal, so they have been placed in
their own module.

For a complete description of DOS operations, refer to the IBM
DOS technical manual.

Constants, types, and variables

Constants

Each of the constants, types, and variables defined by the Dos unit
are briefly discussed in this section. For more detailed infor­
mation, see the descriptions of the procedures and functions that
depend on these objects in Chapter 1, "Run-time library," in the
Library Reference.

Flag constants The following constants test individual flag bits in the Flags
register after a call to Intr or MsDos:

Chapter 7 7, The Dos unit 141

Constants Value

FCarry $0001
FParity $0004
FAuxiliary $0010
FZero $0040
FSign $0080
FOverflow $0800

For instance, if R is a register record, the tests

R.Flags and FCarry <> 0
R.Flags and FZero = 0

are True respectively if the Carry flag is set and if the Zero flag is
clear.

File mode constants The file-handling procedures use these constants when opening
and closing disk files. The mode fields of Turbo Pascal's file vari­
ables will contain one of the values specified in the following:

Constant

fmClosed
fmlnput
fmOutput
fmlnOut

Value

$D7BO
$D7B1
$D7B2
$D7B3

File attribute constants These constants test, set, and clear file attribute bits in connection
with the GetFAttr, SetFAttr, FindFirst, and FindNext procedures:

142

Constant Value

ReadOnly $01
Hidden $02
SysFile $04
VolumeID $08
Directory $10
Archive $20
Any File $3F

The constants are additive, that is, the statement

FindFirst('*.*', ReadOnly + Directory, S);

will locate all normal files as well as read-only files and subdirec­
tories in the current directory. The AnyFile constant is simply the
sum of all attributes.

Turbo Pascal Programmer's Guide

Types

File record types The record definitions used internally by Turbo Pascal are also
declared in the Dos unit. FileRec is used for both typed and
untyped files, while TextRec is the internal format of a variable of
type text.

type
{ Typed and untyped files

FileRec = record
Handle: Word;
Mode: Word;
RecSize: Word;
Private: array[1 .. 26) of Byte;
UserData: array[1 .. 16) of Byte;
Name: array[O .. 79) of Char;

end;

Textfile record }
TextBuf = array[O .. 127) of Char;
TextRec = record

Handle: Word;
Mode: Word;
BufSize: Word;
Private: Word;
BufPos: Word;
BufEnd: Word;
BufPtr: ATextBuf;
OpenFunc: Pointer;
InOutFunc: Pointer;
FlushFunc: Pointer;
CloseFunc: Pointer;
UserData: array[l .. 16) of Byte;
Name: array[O .. 79) of Char;
Buffer: TextBuf;

end;

The Registers type The [ntr and MsDos procedures use variables of type Registers to
specify the input register contents and examine the output
register contents of a software interrupt.

Chapter 7 7, The Dos unit

type
Registers = record

case Integer of
0: (AX,BX,CX,DX,BP,SI,DI,DS,ES,Flags: Word);
1: (AL,AH,BL,BH,CL,CH,DL,DH: Byte);

143

144

end;

Notice the use of a variant record to map the 8-bit registers on top
of their 16-bit equivalents.

The DateTime type Variables of DateTime type are used in connection with the
UnpackTime and PackTime procedures to examine and construct
4-byte, packed date-and-time values for the GetFTime, SetFTime,
FindFirst, and FindNext procedures.

type
DateTime = record

Year,Month,Day, Hour,Min, Sec: Word;
end;

Valid ranges are Year 1980 .. 2099, Month 1 . .12, Day 1..31, Hour 0 .. 23,
Min 0 .. 59, and Sec 0 .. 59.

The SearchRec type The FindFirst and FindNext procedures use variables of type
SearchRec to scan directories.

File-handling string
types

type
SearchRec = record

Fill: array[1 .. 21] of Byte;
Attr: Byte;
Time: Longint;
Size: Longint;
Name: string[12];

end;

The information for each file found by one of these procedures is
reported back in a SearchRec. The Attr field contains the file's attri­
butes (constructed from file attribute constants), Time contains its
packed date and time (use UnpackTime to unpack), Size contains
its size in bytes, and Name contains its name. The Fill field is
reserved by DOS and should· never be modified.

These string types are are defined by the Dos unit to handle file
names and paths in connection with the string procedure FSplit:

ComStr = string[127];
PathStr = string[79];
DirStr = str;ng[67];
NameStr = string[8];
ExtStr = string[4];

{ Command-line string }
{ Full file path string }

{ Drive and directory string }
{ File-name string }

{ File-extension string }

Turbo Pascal Programmer's Guide

Variables

The DosError variable DosError is used by many of the routines in the Dos unit to report
errors.

var DosError: Integer;

The values stored in DosError are DOS error codes. A value of 0
indicates no error; other possible error codes include the
following:

DOS error code

2
3
5
6
8

10
11
18

Meaning

File not found
Path not found
Access denied
Invalid handle
Not enough memory
Invalid environment
Invalid format
No more files

Procedures and functions

Date and time
procedures

Chapter 7 7 I The Dos unit

Procedure

GetDate

GetFTime

GetTime

PackTime

SetDate

SetFTime

SetTime

UnpackTime

Description

Returns the current date set in the operating system.

Returns the date and time a file was last written.

Returns the current time set in the operating system.

Converts a DateTime record into a 4-byte, packed date­
and-time character Longint used by SetFTime. The
fields of the DateTime record are not range-checked.

Sets the current date in the operating system.

Sets the date and time a file was last written.

Sets the current time in the operating system.

Converts a 4-byte, packed date-and-time character
Longint returned by GetFTime, FindFirst, or FindNext
into an unpacked DateTime record.

145

Interrupt support
Procedure

procedures
GetIntVec

Intr

MsDos

SetIntVec

Disk status functions Function

DiskFree

DiskSize

File-handling
Procedure

procedures
FindFirst

FindNext

FSplit

GetFAttr

SetFAttr

File-handling functions Function

FExpand

FSearch

Process-handling Procedure
procedures

Exec

Keep

Swap Vectors

146

Description

Returns the address stored in a specified interrupt
vector.

Executes a specified software interrupt.

Executes a DOS function call.

Sets a specified interrupt vector to a specified address.

Description

Returns the number of free bytes of a specified disk
drive.

Returns the total size in bytes of a specified disk drive.

Description

Searches the specified (or current) directory for the first
entry matching the specified file name and set of
attributes.

Returns the next entry that matches the name and
attributes specified in a previous call to FindFirst.

Splits a file name into its three component parts
(directory, file name, and extension).

Returns the attributes of a file.

Sets the attributes of a file.

Description

Takes a file name and returns a fully qualified file name
(drive, directory, and extension).

Searches for a file in a list of directories.

Description

Executes a specified program with a specified
command line.

Keep (or Terminate Stay Resident) terminates the
program and makes it stay in memory.

Swaps all saved interrupt vectors with the current
vectors.

Turbo Pascal Programmer's Guide

Process-handling
Function

functions
DosExitCode

Environment-handling Function
functions

EnvCount

EnvStr

GetEnv

Miscellaneous Procedure
procedures

GetCBreak

GetVerify

SetCBreak

SetVerify

Miscellaneous Function
functions

Dos Version

Chapter 7 7, The Dos unit

Description

Returns the exit code of a subprocess.

Description

Returns the number of strings contained in the DOS
environment.

Returns a specified environment string.

Returns the value of a specified environment variable.

Description

Returns the state of etr/-Break checking in DOS.

Returns the state of the verify flag in DOS.

Sets the state of Ctr/-Break checking in DOS.

Sets the state of the verify flag in DOS.

Description

Returns the DOS version number.

147

148 Turbo Pascal Programmer's Guide

c H

Pursuant to the terms of the
license agreement, you can
distribute the .CHR and .BGI

files along with your
programs.

Drivers

Chapter 72, The Graph unit

A p T E R

12

The Graph unit

The Graph unit implements a complete library of more than 50
graphics routines that range from high-level calls, like
SetViewPort, Circle, Bar3D, and DrawPoly, to bit-oriented routines,
like GetImage and PutImage. Several fill and line styles are
supported, and there are several fonts that may be magnified,
justified, and oriented horizontally or vertically.

To compile a program that uses the Graph unit, you'll need your
program's source code, the compiler, and access to the standard
units in TURBO.TPL and the Graph unit in GRAPH.TPU. To run a
program that uses the Graph unit, in addition to your .EXE pro­
gram, you'll need one or more of the graphics drivers (.BGI files,
see the next section). In addition, if your program uses any
stroked fonts, you'll need one or more font (.CHR) files as well.

Graphics drivers are provided for the following graphics adapters
(and true compatibles):

.CGA
• MCGA
• EGA
.VGA

• Hercules
• AT&T 400 line
.3270 PC
• IBM 8514

Each driver contains code and data and is stored in a separate file
on disk. At run time, the InitGraph procedure identifies the

149

IBM 8514 support

150

graphics hardware, loads and initializes the appropriate graphics
driver, puts the system into graphics mode, and then returns
control to the calling routine. The Close Graph procedure unloads
the driver from memory and restores the previous video mode.
You can switch back and forth between text and graphics modes
using the RestoreCrtMode and SetGraphMode routines. To load the
driver files yourself or link them into your .EXE, refer to
RegisterBGldriver in Chapter 1 in the Library Reference.

Graph supports computers with dual monitors. When Graph is
initialized by calling InitGraph, the correct monitor will be selected
for the graphics driver and mode requested. When terminating a
graphics program, the previous video mode will be restored. If
auto detection of graphics hardware is requested on a dual moni­
tor system, InitGraph will select the monitor and graphics card
that will produce the highest quality graphics output.

Driver

ATI.BGI
eGA.BGI
EGAVGA.BGI
HERC.BGI
IBM8514.BGI
PC3270.BGI

Equipment

AT&T 6300 (400 line)
IBM eGA, MeGA
IBM EGA, VGA
Hercules monochrome
IBM 8514
IBM 3270 PC

Turbo Pascal supports the IBM 8514 graphics card, which is a
new, high-resolution graphics card capable of resolutions up to
1024 x 768 pixels, and a color palette of 256 colors from a list of
256K colors. The driver file name is IBM8514.BGI.

Turbo Pascal cannot properly auto detect the IBM 8514 graphics
card (the autodetection logic recognizes it as VGA). Therefore, to
use the IBM 8514 card, the GraphDriver variable must be assigned
the value IBM8514 (which is defined in the Graph unit) when
InitGraph is called. You should not use DetectGraph (or Detect with
InitGraph) with the iBM 8514 unless you want the emulated VGA
mode.

The supported modes of the IBM 8514 card are IBM8514LO
(640 x 480 pixels), and IBM8514HI (1024 x 768 pixels). Both mode
constants are defined in the interface for GRAPH.TPU.

The IBM 8514 uses three 6-bit values to define colors. There is a
6-bit Red, Green, and Blue component for each defined color. To

Turbo Pascal Programmer's Guide

Coordinate

allow you to define colors for the IBM 8514, a new routine was
added to the BGI library. The routine is defined in GRAPH.TPU
as follows:

procedure SetRGBPalette(ColorNum, Red, Green, Blue: Word);

The argument ColorNum defines the palette entry to be loaded.
ColorNum is an integer from 0 to 255 (decimal). The arguments
Red, Green, and Blue define the component colors of the palette
entry. Only the lower byte of these values is used, and out of this
byte, only the 6 most-significant bits are loaded in the palette.

The other palette manipulation routines of the graphics library
may not be used with the IBM 8514 driver (that is, SetAllPalette,
SetPalette, GetPalette).

For compatibility with the balance of the IBM graphics adapters,
the BGI driver defines the first 16 palette entries of the IBM 8514
to the default colors of the EGA/VGA. These values can be used
as is, or changed using the SetRGBPalette routine.

The FloodFill routine will not work with the IBM 8514 driver.

These same restrictions apply when also using the VGA in
256-color mode.

system By convention, the upper left corner of the graphics screen is (0,0).

Figure 12.1
Screen with xv-coordinates

Chapter 72, The Graph unit

The x values, or columns, increment to the right. The y values, or
rows, increment downward. Thus, in 320x200 mode on a eGA,
the screen coordinates for each of the four corners with a specified
point in the middle of the screen would look like this:

(O,O) (319,O)
~----------------~

.(159,99)

(O,199) (319,199)

151

Current pointer

Text

152

Many graphics systems support the notion of a current pointer
(CP). The CP is similar in concept to a text mode cursor except
that the CP is not visible.

Write (' ABC');

In text mode, the preceding Write statement will leave the cursor
in the column immediately following the letter C. If the C is writ­
ten in column 80, then the cursor will wrap around to column 1 of
the next line. If the C is written in column 80 on the 25th line, the
entire screen will scroll up one line, and the cursor will be in
column 1 of line 25.

MoveTo(O,O)
LineTo(20,20)

In graphics mode, the preceding LineTo statement will leave the
CP at the last point referenced (20,20). The actual line output
would be clipped to the current viewport if clipping is active.
Note that the CP is never clipped.

The MoveTo command is the equivalent of GoToXY. It's only
purpose is to move the CP. Only the commands that use the CP
move the CP: InitGraph, MoveTo, MoveRel, LineTo, LineRel, OutText,
SetGraphMode, GraphDefaults, ClearDevice, SetViewPort, and
ClearViewPort. The latter five commands move the CP to (0,0).

An 8x8 bit-mapped font and several Ustroked" fonts are included
for text output while in graphics mode. A bit-mapped character is
defined by an 8x8 matrix of pixels. A stroked font is defined by a
series of vectors that tell the graphics system how to draw the
font.

The advantage to using a stroked font is apparent when you start
to draw large characters. Since a stroked font is defined by
vectors, it will still retain good resolution and quality when the
font is enlarged.

When a bit-mapped font is enlarged, the matrix is multiplied by a
scaling factor and, as the scaling factors becomes larger, the char­
acters' resolution becomes coarser. For small characters, the bit-

Turbo Pascal Programmer's Guide

mapped font should be sufficient, but for larger text you will want
to select a "stroked" font.

The justification of graphics text is controlled by the SetTextJustify
procedure. Scaling and font selection is done with the SetTextStyle
procedure. Graphics text is output by calling either the OutText or
OutTextXY procedures. Inquiries about the current text settings
are made by calling the GetTextSettings procedure. The size of
stroked fonts can be customized by the SetUserCharSize
procedure.

Stroked fonts are each kept in a separate file on disk with a .CHR
file extension. Font files can be loaded from disk automatically by
the Graph unit at run time (as described), or they can also be
linked in or loaded by the user program and "registered" with the
Graph unit.

A special utility, BINOBJ.EXE, is provided that converts a font file
(or any binary data file, for that matter) to an .OBJ file that can be
linked into a unit or program using the {$L} compiler directive.
This makes it possible for a program to have all its font files built
into the .EXE file. (Read the comments at the beginning of the
BGILINK.P AS sample program on the distribution disks.)

Figures and styles

Viewports and bit

All kinds of support routines are provided for drawing and filling
figures, including points, lines, circles, arcs, ellipses, rectangles,
polygons, bars, 3-D bars, and pie slices. Use SetLineStyle to control
whether lines are thick or thin, or whether they are solid, dotted,
or built using your own pattern.

Use SetFillStyle and SetFillPattern, FillPoly and FloodFill to fill a
region or a polygon with cross-hatching or other intricate
patterns.

images The ViewPort procedure makes all output commands operate in a
rectangular region onscreen. Plots, lines, figures-all graphics
output-are viewport-relative until the viewport is changed.
Other routines are provided to clear a viewport and read the
current viewport definitions. If clipping is active, all graphics

Chapter 72, The Graph unit 153

output is clipped to the current port. Note that the CP is never
clipped.

GetPixel and PutPixel are provided for reading and plotting pixels.
Getlmage and PutImage can be used to save and restore rectan­
gular regions onscreen. They support the full complement of
BitBlt operations (copy, xor, or, and, not).

Paging and colors

Error handling

154

There are many other support routines, including support for
multiple graphic pages (EGA, VGA, and Hercules only; especially
useful for doing animation), palettes, colors, and so on.

Internal errors in the Graph unit are returned by the function
GraphResult. GraphResult returns an error code that reports the
status of the last graphics operation. The error return codes are
defined in Table 12.2 on page 160.

The following routines set GraphResult:

Bar ImageSize
Bar3D InitGraph
ClearViewPort InstallUserDriver
CloseGraph InstallUserFont
DetectGraph PieS lice
DrawPoly RegisterBGldriver
FillPoly RegisterBGlfont
FloodFill SetAllPalette
GetGraphMode

SetFillPattern
SetFillStyle
SetGraphBufSize
SetGraphMode
SetLineStyle
SetPalette
SetTextlustify
SetTextStyle

Note that GraphResult is reset to zero after it has been called.
Therefore, the user should store the value of GraphResult into a
temporary variable and then test it.

Turbo Pascal Programmer's Guide

Getting started

Here's a simple graphics program:

1 program GraphTest;
2 uses

Graph;
4 var
5 GraphDriver: Integer;

GraphMode: Integer;
7 ErrorCode: Integer;
8 begin
9 GraphDriver:= Detect; { Set flag: do detection }
10 InitGraph(GraphDriver, GraphMode, 'C:\DRIVERS'};
11 ErrorCode:= GraphResult;
12 if ErrorCode <> grOk then { Error?
13 begin
14 Writeln('Graphics error: " GraphErrorMsg(ErrorCode}};
15 Writeln('Prograrn aborted ... '};
16 Halt(1};
17 end;
18 Rectangle (0, 0, GetMaxX, GetMaxY};
19 SetTextJustify(CenterText, CenterText};
20 SetTextStyle(DefaultFont, HorizDir, 3};
21 OutTextXY(GetMaxX div 2, GetMaxY div 2,
22 'Borland Graphics Interface (BGI}');
23 Readln;
24 CloseGraph;
25 end. { GraphTest

Draw full screen box }
{ Center text }

Center of screen

The program begins with a call to InitGraph, which autodetects
the hardware and loads the appropriate graphics driver (located
in C: \ DRIVERS). If no graphics hardware is recognized or an
error occurs during initialization, an error message is displayed
and the program terminates. Otherwise, a box is drawn along the
edge of the screen and text is displayed in the center of the screen.

1111. Neither the AT&T 400 line card nor the IBM 8514 graphics
adapter is autodetected. You can still use these drivers by over­
riding autodection and passing InitGraph the driver code and a
valid graphics mode. To use the AT&T driver, for example,
replace lines 9 and 10 in the preceding example with the following
three lines of code:

Chapter 72, The Graph unit

GraphDriver := ATT400;
GraphMode := ATT400Hi;
InitGraph(GraphDriver, GraphMode, 'C:\DRIVERS'};

155

156

Heap
management

routines

This instructs the graphics system to load the AT&T 400 line
driver located in C: \DRIVERS and set the graphics mode to 640
by 400.

Here's another example that demonstrates how to switch back
and forth between graphics and text modes:

1 program GraphTest;
2 uses
3 Graph;
4 var
5 GraphDriver: Integer;
6 GraphMode: Integer;
7 ErrorCode: Integer;
8 begin
9 GraphDriver:= Detect; { Set flag: do detection }
10 InitGraph(GraphDriver, GraphMode, 'C:\DRIVERS');
11 ErrorCode:= GraphResult;
12 if ErrorCode <> grOk then { Error?
13 begin
14 Writeln('Graphics error: " GraphErrorMsg(ErrorCode));
15 Writeln('Program aborted ... ');
16 Halt(l);
17 end;
18 OutText('In Graphics mode. Press <RETURN>');
19 Readln;
20 RestoreCRTMode;
21 Write('Now in text mode. Press <RETURN>');
22 Readln;
23 SetGraphMode(GraphMode);
24 OutText('Back in Graphics mode. Press <RETURN>');
25 Readln;
26 CloseGraph;
27 end. { GraphTest

Note that the SetGraphMode call on line 23 resets all the graphics
parameters (palette, current pointer, foreground, and background
colors, and so on) to the default values.

The call to CloseGraph restores the video mode that was detected
initially by InitGraph and frees the heap memory that was used to
hold the graphics driver.

Two heap management routines are used by the Graph unit:
GraphGetMem and GraphFreeMem. GraphGetMem allocates
memory for graphics device drivers, stroked fonts, and a scan

Turbo Pascal Programmer's Guide

Chapter 72, The Graph unit

buffer. GraphFreeMem deallocate? the memory allocated to the
drivers. The standard routines take the following form:

procedure GraphGetMem(var P: Pointer; Size: Word);
{ Allocate memory for graphics }

procedure GraphFreeMem(var P: Pointer; Size: Word);
{ Deallocate memory for graphics }

Two pointers are defined by Graph that by default point to the
two standard routines described here. The pointers are defined as
follows:

var
GraphGetMemPtr: Pointer; {Pointer to memory allocation routine
GraphFreeMemPtr: Pointer {Pointer to memory deallocation routine

The heap management routines referenced by GraphGetMemPtr
and GraphFreeMemPtr are called by the Graph unit to allocate and
deallocate memory for three different purposes:

• a multi-purpose graphics buffer whose size can be set by a call
to SetGraphBufSize (default equals 4K)

• a device driver that is loaded by InitGraph (*.BGI files)

• a stroked font file that is loaded by SetTextStyle (*.CHR files)

The graphics buffer is always allocated on the heap. The device
driver is allocated on the heap unless your program loads or links
one in and calls RegisterBGldriver, and the font file is allocated on
the heap when you select a stroked font using SetTextStyle­
unless your program loads or links one in and calls
RegisterBGlfont.

Upon initialization of the Graph unit, these pointers point to the
standard graphics allocation and deallocation routines that are
defined in the implementation section of the Graph unit. You can
insert your own memory management routines by assigning these
pointers the address of your routines. The user-defined routines
must have the same parameter lists as the standard routines and
must be far procedures. The following is an example of user­
defined allocation and de allocation routines; notice the use of
MyExitProc to automatically call Close Graph when the program
termina tes:

program UserHeapManagement;
{ Illustrates how the user can steal the heap }
{ management routines used by the Graph unit. }

157

158

uses
Graph;

var
GraphDriver, GraphMode: Integer;
ErrorCode: Integer;
PreGraphExitProc: Pointer;

{ Stores GraphResult return code
{ Saves original exit proc

procedure MyGetMem(var P: Pointer; Size: Word); far;
{ Allocate memory for graphics device drivers, fonts, and scan buffer }
begin

GetMem(P, Size)
end; { MyGetMem }

procedure MyFreeMem(var P: Pointer; Size: Word); far;
{ Deallocate memory for graphics device drivers, fonts, and scan

buffer}
begin

if P <> nil then
begin

FreeMem(P, Size);
P := nil;

end;
end; { MyFreeMem

procedure MyExitProc; far;

{ Don't free nil pointers! }

{ Always gets called when program terminates
begin

ExitProc := PreGraphExitProc;
CloseGraph;

end; { MyExitProc }

begin
PreGraphExitProc := ExitProc;
ExitProc := @MyExitProc;

GraphGetMemPtr := @MyGetMem;
GraphFreeMemPtr := @MyFreeMem;

GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ");
ErrorCode := GraphResult;
if ErrorCode <> grOk then
begin

{ Restore original exit proc
{ Do heap clean up

{ Install clean-up routine }

{ Control memory allocation
Control memory deallocation

Writeln('Graphics error: " GraphErrorMsg(ErrorCode));
Readln;
Halt(1);

end;
Line(O, 0, GetMaxX, GetMaxY);
OutTextXY(1, 1, 'Press <Return>:');
Readln;

end. {UserHeapManagment}

Turbo Pascal Programmer's Guide

Graph unit constants, types, and variables

Constants
Use these driver and mode constants with InitGraph, DetectGraph,
and GetModeRange:

Table 12.1: Graph unit driver and mode constants

Constant Value

Detect 0
CGA 1
MCGA 2
EGA 3
EGA64 4
EGAMono 5
IBM8514 6
HercMono 7
AIT400 8
VGA 9
PC3270 10
CurrentDriver -128

AIT400CO 0
AIT400Cl 1
AIT400C2 2
AIT400C3 3
AIT400Med 4
AIT400Hi 5

CGACO 0
CGACI 1
CGAC2 2
CGAC3 3
CGAHi 4

EGALo 0
EGAHi 1
EGA64Lo 0
EGA64Hi 1
EGAMonoHi 3

HercMonoHi 0

IBM8514Lo 0
IBM8514Hi 1

MCGACO 0
MCGACI 1
MCGAC2 2
MCGAC3 3
MCGAMed 4

Chapter 72, The Graph unit

Meaning

Requests autodetection

Passed to GetModeRange

32Ox200 palette 0: LightGreen, LightRed, Yellow; 1 page
320x200 palette 1: LightCyan, LightMagenta, White; 1 page
320x200 palette 2: Green, Red, Brown; 1 page
320x200 palette 3: Cyan, Magenta, LightGray; 1 page
640x200 1 page
640x400 1 page

320x200 palette 0: LightGreen, LightRed, Yellow; 1 page
320x200 palette 1: LightCyan, LightMagenta, White; 1 page
320x200 palette 2: Green, Red, Brown; 1 page
320x200 palette 3: Cyan, Magenta, LightGray; 1 page
640x200 1 page

640x200 16 color 4 page
640x350 16 color 2 page
640x200 16 color 1 page
640x350 4 color 1 page
640x350 64K on card, 1 page; 256K ort card, 2 page

720x348 2 page

640x480 256 colors
1024x768 256 colors

320x200 palette 0: LightGreen, LightRed, Yellow; 1 page
320x200 palette 1: LightCyan, LightMagenta, White; 1 page
320x200 palette 2: Green, Red, Brown; 1 page
320x200 palette 3: Cyan, Magenta, LightGray; 1 page
640x200 1 page

159

Table 12.1: Graph unit driver and mode constants (continued)

MCGAHi 5

PC3270Hi 0

VGALo 0
VGAMed 1
VGAHi 2

Table 12.2
GraphResult error values

640x480 1 page

720x350 1 page

640x200 16 color 4 page
640x350 16 color 2 page
640x480 16 color 1 page

The error values returned by GraphResult are shown in the
following table:

Constant Value Description

grOk 0 No error
grNolnitGraph -1 (BCI) graphics not installed (use

InitGraph)
grNotDetected -2 Graphics hardware not detected
grFileNotFound -3 Device driver file not found
grlnvalidDriver -4 Invalid device driver file
grNoLoadMem -5 Not enough memory to load driver
grNoScanMem -6 Out of memory in scan fill
grNoFioodMem -7 Out of memory in flood fill
grFontNotfound -8 Font file not found
grNoFontMem -9 Not enough memory to load font
grlnvalidMode -10 Invalid graphics mode for selected

driver
grError -11 Graphics error (generic error)
grIOerror -12 Graphics I/O error
grlnvalidFont -13 Invalid font file
grlnvalidFontNum -14 Invalid font number

SetPalette and Use these color constants with SetPalette and SetAllPalette:
SetAIIPalette

Constant Value

Black 0
Blue 1
Green 2
Cyan 3
Red 4
Magenta 5
Brown 6
LightGray 7
DarkGray 8
LightBlue 9
LightGreen 10
LightCyan 11
LightRed 12
LightMagenta 13
Yellow 14
White 15

160 Turbo Pascal Programmer's Guide

SetRGBPalette These color constants can be used with SetRGBPalette to select the
standard EGA colors on an IBM 8514 graphics adapter:

Constant

EGABlack
EGABlue
EGAGreen
EGACyan
EGARed
EGAMagenta
EGABrown
EGALightGray

EGADarkGray
EGALightBlue
EGALightGreen
EGALightCyan
EGALightRed
EGALightMagenta
EGAYellow
EGA White

Value

o (dark colors)
1
2
3
4
5

20
7

56 (light colors)
57
58
59
60
61
62
63

Line style constants Use these constants with GetLineSettings and SetLineStyle:

Constant

SolidLn
DottedLn
CenterLn
DashedLn
UserBitLn

NonnWidth
ThickWidth

Value

o
1
2
3
4 (user-defined line style)

1
3

Font control constants Use these constants with GetTextSettings and SetTextStyle:

Chapter 72, The Graph unit

Constant

DefaultFont
TriplexFont
SmallFont
SansSerifFont
GothicFont

HorizDir
VertDir

UserCharSize

Value

o (8x8 bit mapped font)
1 ("stroked" fonts)
2
3
4

o (left to right)
1 (bottom to top)

o (user-defined Char size)

161

Justification constants These constants control horizontal and vertical justification for
SetTextJustify:

162

Constant

LeftText
CenterText
RightText

BottomText
CenterText
TopText

Value

o
1
2

o
1 (already defined)
2

Clipping constants Use these constants with SetViewPort to control clipping. With
clipping on, graphics output is clipped at the viewport
boundaries:

Constant

Clip On
ClipOff

Value

True
False

Bar constants These constants may be used with Bar3D to specify whether a 3-D
top should be drawn on top of the bar (allows for stacking bars
and only drawing a top on the topmost bar):

Constant

TopOn
TopOff

Value

True
False

Fill pattern constants These fill pattern constants are used by GetFillSettings and
SetFillStyle. Use SetFillPattern to define your own fill pattern, then
call SetFillStyle(UserFill, SomeColor) and make your fill pattern the
active style (shown in the following):

Constant

EmptyFili
SolidFill
LineFill
LtSlashFili
SlashFill
BkSlashFill
LtBkSlashFill
HatchFill
XHatchFill

Value

o (Fills area in background color)
1 (Fills area in solid fill color)
2 (-fill)
3 (/ / / fill)
4 (/ / / fill with thick lines)
5 (\ \ \ fill with thick lines)
6 (\ \ \ fill)
7 (Light hatch fill)
8 (Heavy cross hatch fill)

Turbo Pascal Programmer's Guide

InterleaveFill
WideDotFill
CloseDotFill
UserFill

9 (Interleaving line fill)
10 (Widely spaced dot fill)
11 (Closely spaced dot fill)
12 (User-defined fill)

BitBlt operators Use these BitBlt operators with both PutImage and Set WriteMode:

Constant

CopyPut
XORPut

Value

o (mov)
1 (xor)

These BitBlt operators are used by PutImage only:

OrPut 2(or)
AndPut 3 (and)
NotPut 4 (not)

Palette constant This constant is used by GetPalette, GetDe/aultPalette, SetAllPalette,
and defines the PaletteType record:

Types

Chapter 12, The Graph unit

Constant Value

MaxColors 15

This record is used by GetPalette, GetDe/aultPalette, and
SetAllPalette:

type
PaletteType = record

Size: Byte;
Colors: array[O .. MaxColorsj of Shortint;

end;

This record is used by by GetLineSettings:

type
LineSettingsType = record

LineStyle: Word;
Pattern: Word;
Thickness: Word;

end;

This record is used by by GetTextSettings:

type
TextSettingsType = record

Font: Word;

163

164

Direction: Word;
CharSize: Word;
Horiz: Word;
Vert: Word;

end;

This record is used by by GetFillSettings:

type
FillSettingsType = record

Pattern: Word;
Color: Word;

end;

This record is used by GetFillPattern and SetFillPattern:

type
FillPatternType = array[l .. 8) of Byte; {User-defined fill style

This type is defined for your convenience. Note that both fields
are of type Integer (not Word):

type
Point Type = record

X, Y: Integer;
end;

This record is used by GetViewSettings to report the status of the
current viewport:

type
ViewPortType = record

xl, yl, x2, y2: Integer;
Clip: Boolean;

end;

This record is used by by GetArcCoords and can be used to retrieve
information about the last call to Arc or Ellipse:

type
ArcCoordsType = record

X, Y: Integer;
Xstart, Ystart: Integer;
Xend, Yend: Integer;

end;

Turbo Pascal Programmer's Guide

Variables
These variables initially point to the Graph unit's heap
management routines. If your program does its own heap
management, assign the addresses of your allocation and
deallocation routines to GraphGetMemPtr and GraphFreeMemPtr,
respectively:

Variable

Graph GetMemPtr

GraphFreeMemPtr

Value

Pointer (steal heap allocation)

Pointer (steal heap deallocation)

Table 12.3: Graph unit procedures

Arc

Bar

Bar3D

Circle

ClearDevice

Clear ViewPort

Close Graph

DetectGraph

DrawPoly

Ellipse

FillEllipse

FillPoly

FloodFill

GetArcCoords

GetAspectRatio

GetFillPattern

GetFillSettings

GetImage

GetLineSettings

GetModeRange

GetPalette

Draws a circular arc from start angle to end angle, using (x,y) as the center point.

Draws a bar using the current fill style and color.

Draws a 3-D bar using the current fill style and color.

Draws a circle using (x,y) as the center point.

Clears the currently selected output device and homes the current pointer.

Clears the current viewport.

Shuts down the graphics system.

Checks the hardware and determines which graphics driver and mode to use.

Draws the outline of a polygon using the current line style and color.

Draws an elliptical arc from start angle to end angle, using (x,y) as the center point.

Draws a filled ellipse using (x,y) as a center point and XRadius and YRadius as the
horizontal and vertical axes.

Fills a polygon, using the scan converter.

Fills a bounded region using the current fill pattern and fill color.

Allows the user to inquire about the coordinates of the last Arc command.

Returns the effective resolution of the graphics screen from which the aspect ratio
(Xasp:Yasp) can be computed.

Returns the last fill pattern set by a call to SetFillPattern.

Allows the user to inquire about the current fill pattern and color as set by
SetFillStyle or SetFillPattern.

Saves a bit image of the specified region into a buffer.

Returns the current line style, line pattern, and line thickness as set by SetLineStyle.

Returns the lowest and highest valid graphics mode for a given driver.

Returns the current palette and its size.

Chapter 72, The Graph unit 165

Table 12.3: Graph unit procedures (continued)

GetTextSettings Returns the current text font, direction, size, and justification as set by SetTextStyle
and SetTextJustify.

GetViewSettings

Graph Defa u lts

InitGraph

Line

LineRel

LineTo

MoveRel

MoveTo

OutText

OutTextXY

PieSlice

PutImage

PutPixel

Rectangle

RestoreCrtMode

Sector

SetActivePage

SetAllPalette

SetAspectRatio

SetBkColor

SetColor

SetFillPattern

SetFillStyle

SetGraphBufSize

SetGraphMode

SetLineStyle

SetPalette

SetRGBPalette

SetTextJustify

SetTextStyle

SetUserCharSize

166

Allows the user to inquire about the current viewport and clipping parameters.

Homes the current pointer (CP) and resets the graphics system.

Initializes the graphics system and puts the hardware into graphics mode.

Draws a line from the (xl, yl) to (x2, y2).

Draws a line to a point that is a relative distance from the current pointer (CP).

Draws a line from the current pointer to (x,y).

Moves the current pointer (CP) a relative distance from its current position.

Moves the current graphics pointer (CP) to (x,y).

Sends a string to the output device at the current pointer.

Sends a string to the output device.

Draws and fills a pie slice, using (x,y) as the center point and drawing from start
angle to end angle.

Puts a bit image onto the screen.

Plots a pixel at (x,y).

Draws a rectangle using the current line style and color.

Restores the original screen mode before graphics is initialized.

Draws and fills an elliptical sector.

Set the active page for graphics output.

Changes all palette colors as specified.

Changes the default aspect ratio.

Sets the current background color using the palette.

Sets the current drawing color using the palette.

Selects a user-defined fill pattern.

Sets the fill pattern and color.

Lets you change the size of the buffer used for scan and flood fills.

Sets the system to graphics mode and clears the screen.

Sets the current line width and style.

Changes one palette color as specified by ColorNum and Color.

Lets you modify palette entries for the IBM 8514 and the VGA drivers.

Sets text justification values used by OutText and OutTextXY.

Sets the current text font, style, and character magnification factor.

Lets you change the character width and height for stroked fonts.

Turbo Pascal Programmer's Guide

Table 12.3: Graph unit procedures (continued)

Set ViewPort

Set VisualPage

Set WriteMode

Sets the current output viewport or window for graphics output.

Sets the visual graphics page number.

Sets the writing mode (copy or xor) for lines drawn by DrawPoly, Line, LineRel,
LineTo, and Rectangle.

Table 12.4: Graph unit functions

GetBkColor

GetColor

GetDefaultPalette

GetDriverName

GetGraphMode

GetMaxColor

GetMaxMode

GetMaxX

GetMaxY

GetModeName

GetPaletteSize

GetPixel

GetX

GetY

Graph ErrorMsg

GraphResult

ImageSize

InstallUserDriver

InstallUserFont

RegisterBGldriver

RegisterBGlfont

TextHeight

Text Width

Returns the current background color.

Returns the current drawing color.

Returns the default hardware palette in a record of PaletteType.

Returns a string containing the name of the current driver.

Returns the current graphics mode.

Returns the highest color that can be passed to SetColor.

Returns the maximum mode number for the currently loaded driver.

Returns the rightmost column (x resolution) of the current graphics driver and
mode.

Returns the bottommost row (y resolution) of the current graphics driver and mode.

Returns a string containing the name of the specified graphics mode.

Returns the size of the palette color lookup table.

Gets the pixel value at (x,y).

Returns the x-coordinate of the current position (CP).

Returns the y-coordinate of the current position (CP).

Returns an error message string for the specified ErrorCode.

Returns an error code for the last graphics operation.

Returns the number of bytes required to store a rectangular region of the screen.

Installs a vendor-added device driver to the BGI device driver table.

Installs a new font file that is not built into the BGI system.

Registers a valid BGI driver with the graphics system.

Registers a valid BGI font with the graphics system.

Returns the height of a string in pixels.

Returns the width of a string in pixels.

For a detailed description of each procedure or function, refer to
Chapter 1, "Run-time library," in the Library Reference.

Chapter 72, The Graph unit 167

168 Turbo Pascal Programmer's Guide

c H

Chapter 73, The Overlay unit

A p T E R

13

The Overlay unit

Overlays are parts of a program that share a common memory
area. Only the parts of the program that are required for a given
function reside in memory at the same time; they can overwrite
each other during execution.

Overlays can significantly reduce a program's total run-time
memory requirements. In fact, with overlays you can execute pro­
grams that are much larger than the total available memory, since
only parts of the program reside in m,emory at any given time.

Turbo Pascal manages overlays at the unit level; this is the
smallest part of a program that can be made into an overlay.
When an overlaid program is compiled, Turbo Pascal generates
an overlay file (extension .OVR) in addition to the executable file
(extension .EXE). The .EXE file contains the static (non-overlaid)
parts of the program, and the .OVR file contains all the overlaid
units that will be swapped in and out of memory during program
execution.

Except for a few programming rules, an overlaid unit is identical
to a non-overlaid unit. In fact, as long as you observe these rules,
you don't even need to recompile a unit to make it into an over­
lay. The decision of whether or not a unit is overlaid is made by
the program that uses the unit.

When an overlay is loaded into memory, it is placed in the over­
lay buffer, which resides in memory between the stack segment
and the heap. By default, the size of the overlay buffer is as small
as possible, but it may be easily increased at run time by

169

allocating additional space from the heap. Like the data segment
and the minimum heap size, the default overlay buffer size is
allocated when the .EXE is loaded. If enough memory isn't avail­
able, an error message will be displayed by DOS ("Program too
big to fit in memory") or by the IDE ("Not enough memory to run
program").

One very important option of the overlay manager is the ability to
load the overlay file into expanded memory when sufficient space
is available. Turbo Pascal supports version 3.2 or later of the
Lotus/Intel/Microsoft Expanded Memory Specification (EMS) for
this purpose. Once placed into EMS, the overlay file is closed, and
subsequent overlay loads are reduced to fast in-memory transfers.

The overlay manager

170

Turbo Pascal's overlay manager is implemented by the Overlay
standard unit. The buffer management techniques used by the
Overlay unit are very advanced, and always guarantee optimal
performance in the available memory. For example, the overlay
manager always keeps as many overlays as possible in the over­
lay buffer, to reduce the chance of having to read an overlay from
disk. Once an overlay is loaded, a call to one of its routines exe­
cutes just as fast as a call to a non-overlaid routine. Furthermore,
when the overlay manager needs to dispose of an overlay to make
room for another, it attempts to first dispose of overlays that are
inactive (ones that have no active routines at that point in time).

To implement its advanced overlay management techniques,
Turbo Pascal requires that you observe two important rules when
writing overlaid programs:

• All overlaid units must include a {$O+} directive, which causes
the compiler to ensure that the generated code can be overlaid .

• At any call to an overlaid procedure or function, you must
guarantee that all currently active procedures and functions use
the far call model.

Both rules are explained further in a section entitled "Designing
overlaid programs," beginning on page 179. For now, just note
that you can easily satisfy these requirements by placing a
{$O+,F+} compiler directive at the beginning of all overlaid units,
and a {$F+} compiler directive at the beginning of all other units
and the main program.

Turbo Pascal Programmer's Guide

Importonfl Failing to observe the FAR call requirement in an overlaid pro­
gram will cause unpredictable and possibly catastrophic results
when the program is executed.

The {SO unitname} compiler directive is used in a program to
indicate which units to overlay. This directive must be placed
after the program's uses clause, and the uses clause must name
the Overlay standard unit before any of the overlaid units. An
example follows:

program Editor;

{$F+} { Force FAR calls for all procedures & functions

uses
Overlay, Crt, Dos, EdlnOut, EdFormat, EdPrint, EdFind, EdMain;

{SO EdlnOut}
{SO EdFormat}
{$O EdPrint}
{SO EdFind}
{SO EdMain}

¢ The compiler reports an error if you attempt to overlay a unit that
wasn't compiled in the {$O+} state. Of the standard units, the only
one that can be overlaid is Dos; the other standard units, System,
Overlay, Crt, Graph, Turbo3, and Graph3, cannot be overlaid. In
addition, programs containing overlaid units must be compiled to
disk; the compiler reports an error if you attempt to compile such
programs to memory.

Overlay buffer
management The Turbo Pascal overlay buffer is best described as a ring buffer

that has a head pointer and a tail pointer. Overlays are always
loaded at the head of the buffer, pushing "older" ones toward the
tail. When the buffer becomes full (that is, when there is not
enough free space between the head and the tail), overlays are
disposed at the tail to make room for new ones.

Chapter 13, The Overlay unit

Since ordinary memory is not circular in nature, the actual imple­
mentation of the overlay buffer involves a few more steps in order
to make the buffer appear to be a ring. Figure 13.1 illustrates the
process. The figure shows a progression of overlays being loaded
into an initially empty overlay buffer. Overlay A is loaded first,
followed by B, then C, and finally D. Shaded areas indicate free
buffer space.

171

172

Figure 13.1
Loading and disposing

overlays

Head

Overlay B
Head

Overlay A

Tail--'---------J Tail--'---------J
Step 3 Step 4

Head Overlay C
Overlay C

Overlay B
Overlay B Tail-::J __ _

Head
Overlay A Overlay D

Tail---+''-----'

As you can see, a couple of interesting things happen in the
transition from step 3 to step 4. First, the head pointer wraps
around to the bottom of the overlay buffer, causing the overlay
manager to slide all loaded overlays (and the tail pointer)
upward. This sliding is required to always keep the free area
located between the head pointer and the tail pointer. Second, in
order to load overlay D, the overlay manager has to dispose over­
lay A from the tail of the buffer. Overlay A in this case is the least
recently loaded overlay, and therefore the best choice for disposal
when something has to go. The overlay manager continues to
dispose overlays at the tail to make room for new ones at the
head, and each time the head pointer wraps around, the sliding
operation is repeated.

This is the default mode of operation for Turbo PascaI6.0's over­
lay manager. However, Turbo Pascal also lets you make use of an
optional optimization of the overlay management algorithm.

Imagine that overlay A contains a number of frequently used
routines. Even though these routines are used all the time, A will
still occasionally be thrown out of the overlay buffer, only to be
reloaded again shortly thereafter. The problem here is that the
overlay manager knows nothing about the frequency of calls to

Turbo Pascal Programmer's Guide

routines in A-all it knows is that when a call is made to a routine
in A and A is not in memory, it has to load A. One solution to this
problem might be to trap every call to routines in A, and then at
each call move A to the head of the overlay buffer to reflect its
new status as the most recently used overlay. Such call inter­
ception is unfortunately very costly in terms of execution speed,
and may in some cases slow down the application even more than
the additional overlay load operations.

Turbo Pascal provides a compromise solution that incurs
practically no performance overhead and still maintains a high
degree of success in identifying frequently used overlays that
shouldn't be unloaded: When an overlay gets close to the tail of
the overlay buffer, it is put on "probation." If, during this proba­
tionary period, a call is made to a routine in the overlay, it is
"reprieved," and will not be disposed when it reaches the tail of
the overlay buffer. Instead, it is simply moved to the head of the
buffer, and thus gets another free ride around the overlay buffer
ring. If, on the other hand, no calls are made to an overlay during
its probationary period, indicating less frequent use, the overlay is
disposed of when it reaches the tail of the overlay buffer.

The net effect of the probation/ reprieval scheme is that frequently
used overlays are kept in the overlay buffer, at the cost of inter­
cepting just one call every time the overlay gets close to the tail of
the overlay buffer.

Two new overlay manager routines, OvrSetRetry and OvrGetRetry,
control the probation/reprieval mechanism. OvrSetRetry sets the
size of the area in the overlay buffer to keep on probation, and
OvrGetRetry returns the current setting. If an overlay falls within
the last OvrGetRetry bytes before the overlay buffer tail, it is
automatically put on probation. Any free space in the overlay
buffer is considered part of the probation area.

Constants and variables

Chapter 13, The Overlay unit

The constants and variables defined by the Overlay unit are briefly
discussed in this section.

173

OvrResult

OvrTrapCount

OvrLoadCount

OvrFileMode

174

Before returning, each of the procedures in the Overlay unit stores
a result code in the OvrResult variable.

var OvrResult: Integer;

The possible return codes are defined in the constant declaration
in the next section. In general, a value of zero indicates success.

The OvrResult variable resembles the IOResult standard function
except that OvrResult is not set to zero once it is accessed. Thus,
there is no need to copy OvrResult into a local variable before it is
examined.

var OvrTrapCount: Word;

Each time a call to an overlaid routine is intercepted by the over­
lay manager, either because the overlay is not in memory or
because the overlay is on probation, the OvrTrapCount variable is
incremented. The initial value of OvrTrapCount is o.

var OvrLoadCount: Word;

Each time an overlay is loaded, the OvrLoadCount variable is
incremented. The initial value of OvrLoadCount is zero.

By examining OvrTrapCount and OvrLoadCount (for example, in
the debugger's Watch window) over identical runs of an appli­
cation, you can monitor the effect of different probation area sizes
(set with OvrSetRetry) to find the optimal size for your particular
application.

var OvrFileMode: Byte;

The OvrFileMode variable determines the access code to pass to
DOS when the overlay file is opened. The default OvrFileMode is
0, corresponding to read-only access. By assigning a new value to
OvrFileMode before calling Ovrlnit, you can change the access
code; for example, to allow shared access on a network system.

Turbo Pascal Programmer's Guide

OvrReadBuf

Don't attempt to call any
overlaid routines from within
your overlay read function­

such calls will crash the
system.

Chapter 73, The Overlay unit

For further details on access code values, refer to your DOS
programmer's reference manual.

type
OvrReadFunc = function (OvrSeg: Word): Integer;

var
OvrReadBuf: OvrReadFunc;

The OvrReadBuf procedure variable lets you intercept overlay
load operations, for example, to implement error handling or to
check that a removable disk is present. Whenever the overlay
manager needs to read an overlay, it calls the function whose
address is stored in OvrReadBuf. If the function returns zero, the
overlay manager assumes that the operation was successful; if the
function result is nonzero, run-time error 209 is generated. The
OvrSeg parameter indicates what overlay to load, but as you'll see
later, you never need to access this information.

To install your own overlay read function, you must first save the
previous value of OvrReadBuf in a variable of type OvrReadFunc,
and then assign your overlay read function to OvrReadBuf. Within
your read function, you should call the saved read function to
perform the actual load operation. Any validations you want to
perform, such as checking that a removable disk is present,
should go before the call to the saved read function, and any error
checking should go after the call.

The code to install an overlay read function should go right after
the call to Ovrlnit; at this point, OvrReadBufwill contain the
address of the default disk read function.

If you also call OvrlnitEMS, it uses your read function to read
overlays from disk into EMS memory, and if no errors occur, it
stores the address of the default EMS read function in
OvrReadBuf. If you also wish to override the EMS read function,
simply repeat the installation process after the call to OvrInitEMS.

The default disk read function returns zero in case of success, or a
DOS error code in case of failure. Likewise, the default EMS read
function returns 0 in case of success, or an EMS error code
(ranging from $80 through $FF) in case of failure. For details on
DOS error codes, refer to the IIRun-time errors" section in
Appendix A of this book. For details on EMS error codes, refer to
your Expanded Memory Specification documentation.

175

176

The following code fragment demonstrates how to write and
install an overlay read function. The new overlay read function
repeatedly calls the saved overlay read function until no errors
occur. Any errors are passed to the DOSError or EMSError pro­
cedures (not shown here) so that they can present the error to the
user. Notice how the OvrSeg parameter is just passed on to the
saved overlay read function and never directly handled by the
new overlay read function.

uses Overlay;
var

SaveOvrRead: OvrReadFunc;
UsingEMS: Boolean;

function MyOvrRead(OvrSeg: Word): Integer; far;
var

E: Integer;

begin
repeat

E := SaveOvrRead(OvrSeg);
if E <> 0 then

if UsingEMS then
EMSError(E) else DOSError(E);

until E = 0;
MyOvrRead := 0;

end;

begin
OvrInit('MYPROG.OVR');
SaveOvrRead := OvrReadBuf;
OvrReadBuf := MyOvrRead;
UsingEMS := False;
OvrInitEMS;
if (OvrResult = OvrOK) then
begin

SaveOvrRead := OvrReadBuf;
OvrReadBuf := MyOvrRead;
UsingEMS := True;

end;

end.

Save disk default
{ Install ours

Save EMS default
{ Install ours

Turbo Pascal Programmer's Guide

Result codes

Table 13.1
OvrResult values

Errors in the Overlay unit are reported through the OvrResult
variable. The following result codes are defined as follows:

Constant

ovrOk
ovrError
ovrNotFound
ovrNoMemory

ovrIOError
ovrNoEMSDriver
ovrNoEMSMemory

Value Meaning

o
-1
-2
-3

-4
-5
-6

Success
Overlay manager error
Overlay file not found
Not enough memory for overlay
buffer
Overlay file I/O error
EMS driver not installed
Not enough EMS memory

Procedures and functions

Ovrlnit

The Ovrlnit procedure must
be cal/ed before any of the

other overlay manager
procedures.

OvrlnitEMS

Chapter 73, The Overlay unit

The Overlay unit defines the procedures Ovrlnit, OvrlnitEMS,
OvrSetBuf, OvrClearBuf, and OvrSetRetry, and the functions
OvrGetBuf and OvrGetRetry. Here's a brief description of each.

procedure OvrInit(FileName: string);

Initializes the overlay manager and opens the overlay file. If the
FileName parameter does not specify a drive or a subdirectory, the
overlay manager searches for the file in the current directory, in
the directory that contains the .EXE file (if running under DOS
3.x), and in the directories specified in the DOS PATH
environment variable. Possible error return codes are ovrError and
ovrNotFound. In case of error, the overlay manager remains
uninstalled, and an attempt to call an overlaid routine will
produce run-time error 208.

procedure OvrInitEMSi

If possible, loads the overlay file into EMS. If successful, the
overlay file is closed, and all subsequent overlay loads are
reduced to fast in-memory transfers. Possible error return codes
are ovrError, ovrIOError, ovrNoEMSDriver, and ovrNoEMSMemory.

177

178

The overlay manager will continue to function if OvrlnitEMS
returns an error, but overlays will be read from disk.

-=:> Using OvrlnitEMS to place the overlay file in EMS does not
eliminate the need for an overlay buffer. Overlays still have to be
copied from EMS into "normal" memory in the overlay buffer
before they can be executed. However, since such in-memory
transfers are significantly faster than disk reads, the need to
increase the size of the overlay buffer becomes less apparent.

OvrSetBuf

OvrGetBuf

procedure OvrSetBuf(Size: Longint);

Sets the size of the overlay buffer. The specified size must be
larger than or equal to the initial size of the overlay buffer, and
less than or equal to MemAvail plus the current size of the overlay
buffer. If the specified size is larger than the current size,
additional space is allocated from the beginning of the heap (thus
decreasing the size of the heap). Likewise, if the specified size is
less than the current size, excess space is returned to the heap.
OvrSetBuf requires that the heap be empty; an error is returned if
dynamic variables have already been allocated using New or
GetMem. Possible error return codes are ovrError and
ovrNoMemory. The overlay manager will continue to function if
OvrSetBuf returns an error, but the size of the overlay buffer will
remain unchanged.

function OvrGetBuf: Longint;

Returns the current size of the overlay buffer. Initially, the overlay
buffer is as small as possible, corresponding to the size of the
largest overlay. A buffer of this size is automatically allocated
when an overlaid program is executed.

¢ The initial buffer size may be larger than 64K, since it includes
both code and fix-up information for the largest overlay.

OvrClearBuf
procedure OvrClearBuf;

Clears the overlay buffer. All currently loaded overlays are
disposed from the overlay buffer, forcing subsequent calls to

Turbo Pascal Programmer's Guide

OvrSetRetry

OvrGetRetry

overlaid routines to reload the overlays from the overlay file (or
from EMS). If OvrClearBuf is called from an overlay, that overlay
will immediately be reloaded upon return from OvrClearBuf. The
overlay manager never requires you to call OvrClearBuf; in fact,
doing so will decrease performance of your application, since it
forces overlays to be reloaded. OvrClearBuf is solely intended for
special use, such as temporarily reclaiming the memory occupied
by the overlay buffer.

procedure OvrSetRetry(Size: Longint);

The OvrSetRetry procedure sets the size of the "probation area" in
the overlay buffer. If an overlay falls within the Size bytes before
the overlay buffer tail, it is automatically put on probation. Any
free space in the overlay buffer is considered part of the probation
area. For reasons of compatibility with earlier versions of the
overlay manager, the default probation area size is zero, which
effectively disables the probation/reprieval mechanism. Here's an
example of how to use OvrSetRetry:

Ovrlnit('MYPROG.OVR');
OvrSetBuf(BufferSize);
OvrSetRetry(BufferSize div 3);

There is no empirical formula for determining the optimal size of
the probationary area-however, experiments have shown that
values ranging from one-third to one-half of the overlay buffer
size pr<:>vide the best results.

function OvrGetRetry: Longint;

The OvrGetRetry function returns the current size of the probation
area, that is, the value last set with OvrSetRetry.

Designing overlaid programs

Chapter 13, The Overlay unit

This section provides some important information on designing
programs with overlays. Look it over carefully, since a number of
the issues discussed are vital to well-behaved overlaid
a pplica tions.

179

Overlay code
generation

The for call

Turbo Pascal only allows a unit to be overlaid if it was compiled
with {$O+}. In this state, the code generator takes special precau­
tions when passing string and set constant parameters from one
overlaid procedure or function to another. For example, if UnitA
contains a procedure with the following header:

procedure WriteStr(S: string};

and if UnitB contains the statement

WriteStr('Hello world ... '};

then Turbo Pascal places the string constant 'Hello world ... ' in
UnitB's code segment, and passes a pointer to it to the WriteStr
procedure. However, if both units are overlaid, this would not
work, since at the call to WriteStr, UnitB's code segment may be
overwritten by UnitA's, thus rendering the string pointer invalid.
The {$O+} directive is used to avoid such problems; whenever
Turbo Pascal detects a call from one unit compiled with {$O+} to
another unit compiled with {$O+}, the compiler makes sure to
copy all code-segment-based constants into stack temporaries
before passing pointers to them.

The use of {$O+} in a unit does not force you to overlay that unit.
It just instructs Turbo Pascal to ensure that the unit can be over­
laid, if so desired. If you develop units that you plan to use in
overlaid as well as non-overlaid "applications, then compiling
them with {$O+} ensures that you can indeed do both with just
one version of the unit.

requirement As mentioned previously, at any call to an overlaid procedure or
function in another module, you must guarantee that all currently
active procedures or functions use the far call model.

This is best illustrated by example: Assume that Ovr A is a
procedure in an overlaid unit, and that MainB and MainC are
procedures in the main program. If the main program calls
MainC, which calls MainB, which then calls OvrA, then at the call
to OvrA, MainB and MainC are active (they have not yet returned),
and are thus required to use the far call model. Being declared in
the main program, MainB and MainC would normally use the

180 Turbo Pascal Programmer's Guide

Initializing the
overlay manager

Chapter 73, The Overlay unit

near call model; in this case, though, a {$F+} compiler directive
must be used to force the far call model into effect.

The easiest way to satisfy the far call requirement is of course to
place a {$F+} directive at the beginning of the main program and
each unit. Alternatively, you can change the default $F setting to
{$F+} using a /$F+ command-line directive (TPC.EXE) or the Force
Far Calls check box in the Options I Compiler dialog box.
Compared to mixed near and far calls, the added cost of far calls
exclusively is usually quite limited: One extra word of stack space
per active procedure, and one extra byte per call.

Here we'll take a look at some examples of how to initialize the
overlay manager. The initialization code must be placed before
the first call to an overlaid routine, and would typically be done at
the beginning of the program's statement part.

The following piece of code shows just how little you need to
initialize the overlay manager:

begin
OvrInit('EDITOR.OVR');

end;

No error checks are made, so if there is not enough memory for
the overlay buffer or if the overlay file was not found, run-time
error 208 ("Overlay manager not installed") will occur when you
attempt to call an overlaid routine.

Here's another simple example that expands on the previous one:

begin
OvrInit('EDITOR.OVR');
OvrInitEMS;

end;

In this case, provided there is enough memory for the overlay
buffer and that the overlay file can be located, the overlay
manager checks to see if EMS memory is available and, if so,
loads the overlay file into EMS.

As mentioned previously, the initial overlay buffer size is as small
as possible, or rather, just big enough to contain the largest
overlay. This may prove adequate for some applications, but
imagine a situation where a particular function of a program is
implemented through two or more units, each of which are

181

182

overlaid. If the total size of those units is larger than the largest
overlay, a substantial amount of swapping will occur if the units
make frequent calls to each other.

Obviously, the solution is to increase the size of the overlay buffer
so that enough memory is available at any given time to contain
all overlays that make frequent calls to each other. The following
code demonstrates the use of OvrSetBuf to increase the overlay
buffer size:

const
OvrMaxSize = 80000;

begin
OvrInit('EDITOR.OVR');
OvrlnitEMS;
OvrSetBuf(OvrMaxSize);

end;

There is no general formula for determining the ideal overlay
buffer size. Only an intimate knowledge of the application and a
bit of experimenting will provide a suitable value.

¢ Using OvrlnitEMS to place the overlay file in EMS does not
eliminate the need for an overlay buffer. Overlays must still be
copied from EMS into "normal" memory in the overlay buffer
before they can be executed. However, since as such in-memory
transfers are significantly faster than disk reads, the need to
increase the size of the overlay buffer becomes less apparent.

Remember, OvrSetBuf will expand the overlay buffer by shrinking
the heap. Therefore, the heap must be empty or OvrSetBuf will
have no effect. If you are using the Graph unit, make sure you call
OvrSetBuf before you call InitGraph, which allocates memory on the
heap.

Here's a rather elaborate example of overlay manager initiali­
zation with full error-checking:

const
OvrMaxSize = 80000;

var
OvrName: string[79];
Size: Longint;

begin
OvrName := 'EDITOR.OVR';
repeat

OvrInit(OvrName) ;
if OvrResult = OvrNotFound then

Turbo Pascal Programmers Guide

Chapter 73, The Overlay unit

begin
WriteLn('Overlay file not found: " OvrName, '.')i
Write('Enter correct overlay file name: 'Ii
ReadLn(OvrName)i

end;
until OvrResult <> OvrNotFound;
if OvrResult <> OvrOk then
begin

WriteLn('Overlay manager error.')i
Halt (1) i

end;
OvrlnitEMS;
if OvrResult <> OvrOk then
begin

case OvrResult of
ovrIOError: Write('Overlay file I/O error')i
ovrNoEMSDriver: Write('EMS driver not installed')i
ovrNoEMSMemory: Write('Not enough EMS memory')i

end;
Write('. Press Enter ... ');
ReadLni

end;
OvrSetBuf(OvrMaxSize)i

end;

First, if the default overlay file name is not correct, the user is
repeatedly prompted for a correct file name.

Next, a check is made for other errors that might have occurred
during initialization. If an error is detected, the program halts,
since errors in Ovrlnit are fatal. (If they are ignored, a run-time
error will occur upon the first call to an overlaid routine.)

Assuming successful initialization, a call to OvrInitEMS is made
to load the overlay file into EMS if possible. In case of error, a
diagnostic message is displayed, but the program is not halted.
Instead, it will just continue to read overlays from disk.

Finally, OvrSetBuf is called to set the overlay buffer size to a
suitable value, determined through analysis and experimentation
with the particular application. Errors from OvrSetBuf are
ignored" although Ovr Result might return an error code of -3
(OvrNoMemory). If there is not enough memory, the overlay
manager will just continue to use the minimum buffer that was
allocated when the program started.

183

184

Initialization
sections Like static units, overlaid units may have an initialization section.

Although overlaid initialization code is no different from normal
overlaid code, the overlay manager must be initialized first so it
can load and execute overlaid units.

Referring to the earlier Editor program, assume that the EdlnOut
and EdMain units have initialization code. This requires that
OvrInit is called before EdlnOut's initialization code, and the only
way to do that is to create an additional non-overlaid unit, which
goes before EdlnOut and calls OvrInit in its initialization section:

unit Edlnit;
interface
implementation
uses Overlay;
const

OvrMaxSize = 80000;
begin

Ovrlnit('EOITOR.OVR');
OvrlnitEMS;
OvrSetBuf(OvrMaxSize);

end.

The EdInit unit must be listed in the program's uses clause before
any of the overlaid units:

program Editor;

{$F+}

uses Overlay, Crt, Dos, Edlnit, EdlnOut, EdFormat, EdPrint, EdFind,
EdMain;

{SO EdlnOut}
{$O EdForrnat}
{$O EdP rint}
{SO EdFind}
{SO EdMain}

In general, although initialization code in overlaid units is indeed
possible, it should be avoided for a number of reasons.

First, the initialization code, even though it is only executed once,
is a part of the overlay, and will occupy overlay buffer space
whenever the overlay is loaded. Second, if a number of overlaid
units have initialization code, each of them will have to be read
into memory when the program starts.

Turbo Pascal Programmer's Guide

What not to

A much better approach is to gather all the initialization code into
an overlaid initialization unit, which is called once at the begin­
ning of the program, and then never referenced again.

overlay Certain units cannot be overlaid. In particular, don't try to overlay
the following:

Debugging
overlays

External routines

• Units compiled in the {$O-} state. The compiler reports an error
if you attempt to overlay a unit that wasn't compiled with
{$O+}. Such non-overlay units include System, Overlay, Crt,
Graph, Turbo3, and Graph3.

• Units that contain interrupt handlers. Due to the non-reentrant
nature of the DOS operating system, units that implement
interrupt procedures should not be overlaid. An example of
such a unit is the Crt standard unit, which implements a Gtr/­
Break interrupt handler.

• BGI drivers or fonts registered with calls to RegisterBGldriver or
Regis terBGlfon t.

Calling overlaid routines via procedure pointers is fully sup­
ported by Turbo Pascal's overlay manager. Examples of the use of
procedure pointers include exit procedures and text file device
drivers.

Likewise, passing overlaid procedures and functions as
procedural parameters, and assigning overlaid procedures and
functions to procedural type variables is fully supported.

Most debuggers have very limited overlay debugging capabilities,
if any at all. Not so with Turbo Pascal and Turbo Debugger. The
integrated debugger fully supports single-stepping and break­
points in overlays in a manner completely transparent to you. By
using overlays, you can easily engineer and debug huge appli­
cations-all from inside the IDE or by using Turbo Debugger.

in overlays Like normal Pascal procedures and functions, external assembly
language routines must observe certain programming rules to
work correctly with the overlay manager.

Chapter 13, The Overlay unit 185

186

If an assembly language routine makes calls to any overlaid
procedures or functions, the assembly language routine must use
the far model, and it must set up a stack frame using the BP
register. For example, assuming that OtherProc is an overlaid
procedure in another unit, and that the assembly language
routine ExternProc calls it, then ExternProc must be far and set up
a stack frame as the following demonstrates:

ExternProc PROC FAR

push bp ;Save BP
mov bp,sp ;Set up stack frame
sub sp,LocalSize ;Allocate local variables

call OtherProc ;Call another overlaid unit

mov sp,bp ;Dispose local variables
pop bp ;Restore BP
ret ParamSize ; Return

ExternProc ENDP

where LocalSize is the size of the local variables, and ParamSize is
the size of the parameters. If LocalSize is zero, the two lines to
allocate and dispose local variables can be omitted.

These requirements are the same if ExternProc makes indirect
references to overlaid procedures or functions. For example, if
OtherProc makes calls to overlaid procedures or functions, but is
not itself overlaid, ExternProc must still use the far model and still
has to set up a stack frame.

In the case where an assembly language routine doesn't make any
direct or indirect references to overlaid procedures or functions,
there are no special requirements; the assembly language routine
is free to use the near model and it does not have to set up a stack
frame.

Overlaid assembly language routines should not create variables
in the code segment, since any modifications made to an overlaid
code segment are lost when the overlay is disposed. Likewise,
pointers to objects based in an overlaid code segment cannot be
expected to remain valid across calls to other overlays, since the
overlay manager freely moves around and disposes overlaid code
segments.

Turbo Pascal Programmer's Guide

Overlays in .EXE files

Chapter 73, The Overlay unit

Turbo Pascal allows you to store your overlays at the end of your
application's .EXE file rather than in a separate .OVR file. To
attach an .OVR file to the end of an .EXE file, use the DOS COpy
command with a IB command-line switch, for example,

COPY/B MYPROG.EXE + MYPROG.OVR

You must make sure that the .EXE file was compiled without
Turbo Debugger debug information. Thus in the IDE, make sure
that the Standalone option is checked in Options I Debugger. With
the command-line version of the compiler, make sure not to
specify a N switch.

To read overlays from the end of an .EXE file instead of from a
separate .OVR file, simply specify the .EXE file name in the call to
Ovrlnit. If you are running under DOS 3.x, you can use the
ParamStr standard function to obtain the name of the .EXE file, for
example,

Ovrlnit(ParamStr(O));

187

188 Turbo Pascal Programmer's Guide

c H

Chapter 74, Using the 8087

A p T E R

14

Using the 8087

There are two kinds of numbers you can work with in Turbo
Pascal: integers (Shortint, Integer, Longint, Byte, Word) and reals
(Real, Single, Double, Extended, Comp). Reals are also known as
floating-point numbers. The 8086 processor is designed to easily
handle integer values, but it takes considerably more time and
effort to handle reals. To improve floating-point performance, the
8086 family of processors has a corresponding family of math
coprocessors, the 8087s.

The 8087 is a special hardware numeric processor that can be
installed in your PC. It executes floating-point instructions very
quickly, so if you use floating point a lot, you'll probably want a
coprocessor.

Turbo Pascal provides optimal floating-point performance
whether or not you have an 8087 .

• For programs running on any PC, with or without an 8087,
Turbo Pascal provides the Real type and an associated library
of software routines that handle floating-point operations. The
Real type occupies 6 bytes of memory, providing a range of 2.9
x 10-39 to 1.7 X 1038 with 11 to 12 significant digits. The software
floating-point library is optimized for speed and size, trading in
some of the fancier features provided by the 8087 processor .

• If you need the added precision and flexibility of the 8087, you
can instruct Turbo Pascal to produce code that uses the 8087
chip. This gives you access to four additional real types (Single,
Double, Extended, and Comp), and an Extended floating-point

189

190

range of 3.4 x 10-4951 to 1.1 X 104932 with 19 to 20 significant
digits.

You switch between the two different models of floating-point
code generation using the $N compiler directive or the
8087/80287 check box in the Options I Compiler dialog box. The
default state is {$N-}, and in this state, the compiler uses the 6-byte
floating-point library, allowing you to operate only on variables of
type Real. In the {$N+} state, the compiler generates code for the
8087, giving you increased precision and access to the four
additional real types.

Important! When you're compiling in numeric processing mode, {$N+}, the
return values of the floating-point routines in the System unit
(Sqrt, Pi, Sin, and so on) are of type Extended instead of Real:

{$N+}
begin

Writeln(Pi);
end.

{$N-}
begin

Writeln (Pi)
end.

{ 3.14159265358979E+OOOO }

{ 3.1415926536E+OO }

Even if you don't have an 8087 in your machine, you can instruct
Turbo Pascal to include a run-time library that emulates the
numeric coprocessor. In that case, if an 8087 is present, it is used.
If it's not present, it is emulated by the run-time library, at the cost
of running somewhat slower.

The $E compiler directive and the Emulation check box in the
Options I Compiler dialog box are used to enable and disable 8087
emulation. The default state is {$E+}, and in this state, the full
8087 emulator is automatically included in programs that use the
8087. In the {$E-} state, a substantially smaller floating-point
library is used, and the final .EXE file can only be run on machines
with an 8087.

¢ The $E compiler directive has no effect if used in a unit; it only
applies to the compilation of a program. Furthermore, if the
program is compiled in the {$N-} state, and if all the units used by
the program were compiled with {$N-}, then an 8087 run-time
library is not required, and the $E compiler directive is ignored.

The remainder of this chapter discusses special issues concerning
Turbo Pascal programs that use the 8087 coprocessor.

Turbo Pascal Programmer's Guide

The 8087 data types

For programs that use the 8087, Turbo Pascal provides four
floating-point types in addition to the type Real.

• The Single type is the smallest format you can use with
floating-point numbers. It occupies· 4 bytes of memory,
providing a range of 1.5 x 10-45 to 3.4 X 1038 with 7 to 8
significant digits.

• The Double type occupies 8 bytes of memory, providing a range
of 5.0 x 10-324 to 1.7 X 10308 with 15 to 16 significant digits.

• The Extended type is the largest floating-point type supported
by the 8087. It occupies 10 bytes of memory, providing a range
of 3.4 x 10-4932 to 1.1 X 104932 with 19 to 20 significant digits. Any
arithmetic involving real-type values is performed with the
range and precision of the Extended type.

• The Camp type stores integral values in 8 bytes, providing a
range of -263+1 to 263-1, which is approximately -9.2 x 1018 to
9.2 X 1018. Camp may be compared to a double-precision
Longint, but it is considered a real type because all arithmetic
done with Camp uses the 8087 coprocessor. Camp is well suited
for representing monetary values as integral values of cents or
mils (thousandths) in business applications.

Whether or not you have an 8087, the 6-byte Real type is always
available, so you need not modify your source code when switch­
ing to the 8087, and you can still read data files generated by
programs that use software floating point.

Note, however, that 8087 floating-point calculations on variables
of type Real are slightly slower than on other types. This is
because the 8087 cannot directly process the Real format-instead,
calls must be made to library routines to convert Real values to
Extended before operating on them. If you are concerned with
optimum speed and never need to run on a system without an
8087, you may want to use theSingle, Double, Extended, and
Camp types exclusively.

Extended range arithmetic

Chapter 74, Using the 8087

The Extended type is the basis of all floating-point computations
with the 8087. Turbo Pascal uses the Extended format to store all

191

192

non-integer numeric constants and evaluates all non-integer
numeric expressions using extended precision. The entire right
side of the following assignment, for instance, will be computed
in extended before being converted to the type on the left side:

{$N+}
var

X ,A ,B ,C: Real;
begin

X := (B + Sqrt(B * B - A * Cll / A;
end;

With no special effort by the programmer, Turbo Pascal performs
computations using the precision and range of the Extended type.
The added precision means smaller round-off errors, and the
additional range means overflow and underflow are less
common.

You can go beyond Turbo Pascal's automatic extended capabilities.
For example, you can declare variables used for intermediate
results to be of type Extended. The following example computes a
sum of products:

var
Sum: Single;
X, Y: array[1 .. 100) of Single;
I: Integer;
T: Extended;

begin
T := 0.0;
for I := 1 to 100 do

T := T + XlI) * Y[I);
Sum := T;

end;

{ For intermediate results }

Had T been declared Single, the assignment to T would have
caused a round-off error at the limit of single precision at each
loop entry. But because T is Extended, all round-off errors are at
the limit of extended precision, except for the one resulting from
the assignment of T to Sum. Fewer round-off errors mean more
accurate results.

You can also declare formal value parameters and function results
to be of type Extended. This avoids unnecessary conversions
between numeric types, which can result in loss of accuracy. For
example,

Turbo Pascal Programmer's Guide

function Area{Radius: Extended): Extended;
begin

Area := Pi * Radius * Radius;
end;

Comparing reals

Because real-type values are approximations, the results of
comparing values of different real types are not always as
expected. For example, if X is a variable of type Single and Y is a
variable of type Double, then the following statements will output
False:

X := 1 / 3;
Y := 1 / 3;
Writeln{X = Y);

The reason is that X is accurate only to 7 to 8 digits, where Y is
accurate to 15 to 16 digits, and when both are converted to
Extended, they will differ after 7 to 8 digits. Similarly, the
statements

X := 1 / 3;
Writeln{X = 1 / 3);

will output False, since the result of 1/3 in the Writeln statement is
calculated with 20 significant digits.

The 8087 evaluation stack

Chapter 74, Using the 8087

The 8087 coprocessor has an internal evaluation stack that can be
up to eight levels deep. Accessing a value on the 8087 stack is
much faster than accessing a variable in memory; so to achieve
the best possible performance, Turbo Pascal uses the 8087's stack
for storing temporary results.

In theory, very complicated real-type expressions can cause an
8087 stack overflow. However, this is not likely to occur, since it
would require the expression to generate more than eight
temporary results.

A more tangible danger lies in recursive function calls. If such
constructs are not coded correctly, they can very well cause an
8087 stack overflow.

193

Consider the following procedure that calculates Fibonacci
numbers using recursion:

function Fib(N: Integer): Extended;
begin

if N = a then
Fib := 0.0

else
if N = 1 then

Fib := 1.0
else

Fib := Fib(N - 1) + Fib(N - 2);
end;

A call to this version of Fib will cause an 8087 stack overflow for
values of N larger than 8. The reason is that the calculation of the
last assignment requires a temporary on the 8087 stack to store
the result of Fib(N-1). Each recursive invocation allocates one such
temporary, causing an overflow the ninth time. The correct
construct in this case is

function Fib(N: Integer): Extended;
var

F1, F2: Extended;

begin
if N = a then

Fib := 0.0
else

end;

if N = 1 then
Fib := 1.0

else
begin

F1 := Fib(N - 1);
F2 := Fib(N - 2);
Fib := F1 + F2;

end;

The temporary results are now stored in variables allocated on the
8086 stack. (The 8086 stack can of course also overflow, but this
would typically require significantly more recursive calls.)

Writing reals with the 8087

194

In the {$N+} state, the Write and Writeln standard procedures
output four digits, not two, for the exponent in a floating-point

Turbo Pascal Programmer's Guide

decimal string to provide for the extended numeric range.
Likewise, the Str standard procedure returns a four-digit
exponent when floating-point format is selected.

Units using the 8087

Detecting the
8087

Chapter 74, Using the 8087

Units that use the 8087 can only be used by other units or
programs that are compiled in the {$N+} state.

The fact that a unit uses the 8087 is determined by whether it
contains 8087 instructions-not by the state of the $N compiler
directive at the time of its compilation. This makes the compiler
more forgiving in cases where you accidentally compile a unit
(that doesn't use the 8087) in the {$N+} state.

When you compile in numeric processing mode ({$N+}), the
return values of the floating-point routines in the System unit­
Sqrt, Pi, Sin, and so on-are of type Extended instead of Real.

The Turbo Pascal 8087 run-time library built into your program
(compiled with {$N+}) includes startup code that automatically
detects the presence of an 8087 chip. If an 8087 is available, then
the program will use it. If one is not present, the program will use
the emulation run-time library. If the program was compiled in
the {$E-} state, and an 8087 could not be detected at startup, the
program displays UNum eric coprocessor required," and
terminates.

There are some instances in which you might want to override
this default autodetection behavior. For example, your own
system may have an 8087, but you want to verify that your pro­
gram will work as intended on systems without a coprocessor. Or
your program may need to run on a PC-compatible system, but
that particular system returns incorrect information to the auto­
detection logic (saying that an 8087 is present when it's not, or
vice versa).

Turbo Pascal provides an option for overriding the startup code's
default auto detection logic; this option is the 87 environment
variable.

You set the 87 environment variable at the DOS prompt with the
SET command, like this:

195

196

SET 87 = y

or

SET 87 = N

Setting the 87 environment variable to N (for no) tells the startup
code that you do not want to use the 8087, even though it might
be present in the system. Conversely, setting the 87 environment
variable to Y (for yes) means that the coprocessor is there, and
you want the program to use it.

Beware! If you set 87 = Y when, in fact, there is no 8087 available, your
program will either crash or hang!

If the 87 environment variable has been defined (to any value) but
you want to undefine it, enter

SET 87 =

at the DOS prompt and then press Enterimmediately.

If an 87 = Y entry is present in the DOS environment, or if the
auto detection logic succeeds in detecting a coprocessor, the
startup code executes further checks to determine what kind of
coprocessor it is (8087, 80287, or 80387). This is required so that
Turbo Pascal can correctly handle certain incompatibilities that
exist between the different coprocessors.

The result of the auto detection and the coprocessor classification
is stored in the Test8D87 variable (which is declared by the System
unit). The following values are defined:

Value Definition

o No coprocessor detected
1 8087 detected
2 80287 detected
3 80387 detected

Your program may examine the Test8D87 variable to determine
the characteristics of the system it is running on. In particular,
Test8D87 may be examined to determine whether floating-point
instructions are being emulated or truly executed.

Turbo Pascal Programmer's Guide

Emulation in
assembly

language

Chapter 74, Using the 8087

When linking in object files using {$L filename} directives, make
sure that these object files were compiled with the 8087 emulation
enabled. For example, if you are using 8087 instructions in
assembly language external procedures, make sure to enable
emulation when you assemble the .ASM files into .OBJ files.
Otherwise, the 8087 instructions cannot be emulated on machines
without an 8087. Use Turbo Assembler's IE command-line switch
to enable emulation.

197

198 Turbo Pascal Programmer's Guide

c H A p T E R

15

The Crt unit

The Crt unit implements a range of powerful routines that give
you full control of your PC's features, such as screen mode
control, extended keyboard codes, colors, windows, and sound.
Crt can only be used in programs that run on IBM PCs, A Ts,
PS/2s, and true compatibles.

One of the major advantages to using Crt is the added speed and
flexibility of screen output operations. Programs that do not use
the Crt unit send their screen output through DOS, which adds a
lot of overhead. With the Crt unit, output is sent directly to the
BIOS or, for even faster operation, directly to video memory .

The input and output files

Chapter 75, The Crt unit

The initialization code of the Crt unit assigns the Input and Output
standard text files to refer to the CRT instead of to DOS's standard
input and output files. This corresponds to the following state­
ments being executed at the beginning of a program:

AssignCrt(Input); Reset(Input);
AssignCrt(Output); Rewrite(Output);

This means that 110 redirection of the Input and Output files is no
longer possible unless these files are explicitly assigned back to
standard input and output by executing

Assign(Input,"); Reset(Input);
Assign(Output,"); Rewrite(Output);

199

Windows

200

Special
characters

Crt supports a simple yet powerful form of windows. The Window
procedure lets you define a window anywhere on the screen.
When you write in such a window, the window behaves exactly
as if you were using the entire screen, leaving the rest of the
screen untouched. In other words, the screen outside the window
is not accessible. Inside the window, lines can be inserted and
deleted, the cursor wraps around at the right edge, and the text
scrolls when the cursor reaches the bottom line.

All screen coordinates, except the ones used to define a window,
are relative to the current window, and screen coordinates (1,1)
correspond to the upper left corner of the screen.

The default window is the entire screen.

Turbo Pascal also supports screen modes for EGA (43 line) and
VGA (50 line); see the TextMode description in Chapter 15.

When writing to Output or to a file that has been assigned to the
CRT, the following control characters have special meanings:

Character Name

#7 Bell

#8 Backspace

#10 Linefeed

#13 Carriage return

Description

Emits a beep from the internal
speaker.

Moves the cursor left one character.
If the cursor is already at the left
edge of the current window, nothing
happens.

Moves the cursor one line down. If
the cursor is already at the bottom
of the current window, the window
scrolls up one line.

Returns the cursor to the left edge of
the current window.

All other characters will appear onscreen when written.

Turbo Pascal Programmer's Guide

Line input
When reading from Input or from a text file that has been assigned
to Crt, text is input one line at a time. The line is stored in the text
file's internal buffer, and when variables are read, this buffer is
used as the input source. Whenever the buffer has been emptied,
a new line is input.

When entering lines, the following editing keys are available:

Editing key

Backspace

Esc

Enter

Ctrl-S

Ctrl-D

Ctrl-A

Ctrl-F

Ctrl-Z

Description

Deletes the last character entered.

Deletes the entire input line.

Terminates the input line and stores the end-of-line
marker (carriage return/line feed) in the buffer.

Same as BackSpace.

Recalls one character from the last input line.

Same as Esc.

Recalls the last input line.

Terminates the input line and generates an end-of-file
marker.

Ctrl-Z will only generate an end-of-file marker if the CheckEOF
variable has been set to True; it is False by default.

To test keyboard status and input single characters under
program control, use the KeyPressed and ReadKey functions.

Constants, types, and variables

Chapter 75, The Crt unit

Each of the constants, types, and variables defined by the Crt unit
are briefly discussed in this section.

201

Constants

Crt mode constants The following constants are used as parameters to the TextMode
procedure:

The C40 and C80 constants
are for compatibility with
Turbo Pascal version 3.0.

Text color constants

202

Constant

BW40
BW80
Mono
C040
C080
Font8x8
C40
C80

Value

o
2
7
1
3

256
C040
C080

Description

40x25 B /W on color adapter
80x25 B/W on color adapter
80x25 B /W on monochrome adapter
40x25 color on color adapter
80x25 color on color adapter
For EGA/VGA 43 and 50 line
For 3.0 compatibility
For 3.0 compatibility

BW40, C040, BWBO, and COBO represent the four color text modes
supported by the IBM PC Color/Graphics Adapter (CGA). The
Mono constant represents the single black-and-white text mode
supported by the IBM PC Monochrome Adapter. FontBxB repre­
sents EGA/VGA 43- and 50-line modes. LastMode returns to the
last active text mode after using graphics.

The following constants are used in connection with the TextColor
and TextBackground procedures:

Constant Value

Black 0
Blue 1
Green 2
Cyan 3
Red 4
Magenta 5
Brown 6
LightGray 7
DarkGray 8
LightBlue 9
LightGreen 10
LightCyan 11
LightRed 12
LightMagenta 13
Yellow 14
White 15
Blink 128

Turbo Pascal Programmer's Guide

Variables

Colors are represented by the numbers between 0 and 15; to easily
identify each color, you can use these constants instead of num­
bers. In the color text modes, the foreground of each character is
selectable from 16 colors, and the background from 8 colors. The
foreground of each character can also· be made to blink.

Here are the variables in Crt:

Variable Type

CheckBreak Boolean
CheckEo! Boolean
CheckSnow Boolean
DirectVideo Boolean
LastMode Word
TextAttr Byte
WindMin Word
WindMax Word

CheckBreak Enables and disables checks for Girl-Break.

var CheckBreak: Boolean;

When CheckBreak is True, pressing Girl-Break aborts the program
when it next writes to the display. When CheckBreak is False,
pressing Girl-Break has no effect. CheckBreak is True by default. (At
run time, Crt stores the old Girl-Break interrupt vector, $IB, in a
global pointer variable called SavelntlB.)

CheckEOF Enables and disables the end-of-file character:

var CheckEOF: Boolean;

When CheckEOF is True, an end-of-file character is generated if
you press Glrl-Z while reading from a file assigned to the screen.
When CheckEOF is False, pressing Gtrl-Zhas no effect. CheckEOF is
False by default.

CheckSnow Enables and disables "snow-checking" when storing characters
directly in video memory.

var CheckSnow: Boolean;

Chapter 75, The Crt unit 203

204

On most CGAs, interference will result if characters are stored in
video memory outside the horizontal retrace intervals. This does
not occur with Monochrome Adapters or EGAs.

When a color text mode is selected, CheckS now is set to True, and
direct video-memory writes will occur only during the horizontal
retrace intervals. If you are running on a newer CGA, you may
want to set CheckS now to False at the beginning of your program
and after each call to TextMode. This will disable snow-checking,
resulting in significantly higher output speeds.

CheckSnow has no effect when DirectVideo is False.

DirectVideo Enables and disables direct memory access for Write and Writeln
statements that output to the screen.

var DirectVideo: Boolean;

When DirectVideo is True, Writes and Writelns to files associated
with the CRT will store characters directly in video memory
instead of calling the BIOS to display them. When DirectVideo is
False, all characters are written through BIOS calls, which is a
significantly slower process.

DirectVideo always defaults to True. If, for some reason, you want
characters displayed through BIOS calls, set DirectVideo to False at
the beginning of your program and after each call to TextMode.

LastMode Each time TextMode is called, the current video mode is stored in
LastMode. In addition, LastMode is initialized at program startup
to the then-active video mode.

var LastMode: Word;

TextAttr Stores the currently selected text attributes.

var TextAttr: Byte;

The text attributes are normally set through calls to TextColor and
TextBackground. However, you can also set them by directly
storing a value in TextAttr. The color information is encoded in
TextAttr as follows:

bit - 7 6 5 4 3 2 1 0
Islblblblflflflfl

Turbo Pascal Programmer's Guide

where ffff is the 4-bit foreground color, bbb is the 3-bit background
color, and B is the blink-enable bit. If you use the color constants
for creating TextAttr values, note that the background color can
only be selected from the first 8 colors, and that it must be multi­
plied by 16 to get it into the correct bit positions. The following
assignment selects blinking yellow characters on a blue
background:

TextAttr := Yellow + Blue * 16 + Blink;

WindMin and WindMax Store the screen coordinates of the current window.

var WindMin, WindMax: Word;

These variables are set by calls to the Window procedure. WindMin
defines the upper left corner, and WindMax defines the lower right
corner. The x-coordinate is stored in the low byte, and the
y-coordinate is stored in the high byte. For example, Lo(WindMin)
produces the x-coordinate of the left edge, and Hi(WindMax)
produces the y-coordinate of the bottom edge. The upper left
corner of the screen corresponds to (x,y) = (010). Note, however,
that for coordinates passed to Window and GatoXY, the upper left
corner is at (1,1).

Procedures and functions

Chapter 15, The Crt unit

Function

KeyPressed

ReadKey

WhereX

WhereY

Procedure

AssignCrt

ClrEol

Description

Returns True if a key has been pressed on the
keyboard, and False otherwise.

Reads a character from the keyboard.

Returns the x-coordinate of the current cursor
position, relative to the current window. X is the
horizontal position.

Returns the y-coordinate of the current cursor
position, relative to the current window. Y is the
vertical position.

Description

Associates a text file with the CRT.

Clears all characters from the cursor position to the
end of the line without moving the cursor.

205

206

ClrSer

Delay

DelLine

GotoXY

High Video

Ins Line

LowVideo

Norm Video

NoSound

Sound

TextBaekground

TextColor

TextMode

Window

Clears the screen and places the cursor in the upper
left-hand corner.

Delays a specified number of milliseconds.

Deletes the line containing the cursor and moves all
lines below that line one line up. The bottom line is
cleared.

Positions the cursor. X is the horizontal position. Y is
the vertical position.

Selects high-intensity characters.

Inserts an empty line at the cursor position.

Selects low-intensity characters.

Selects normal characters.

Turns off the internal speaker.

Starts the internal speaker.

Selects the background color.

Selects the foreground character color.

Selects a specific text mode.

Defines a text window onscreen.

Turbo Pascal Programmer's Guide

p A R T

3

Inside Turbo Pascal

207

208 Turbo Pascal Programmer's Guide

c H A p T E R

16

Memory issues
This chapter describes in detail the ways Turbo Pascal programs
use memory. We'll look at the memory map of a Turbo Pascal
application, internal data formats, the heap manager, and direct
memory access.

The Turbo Pascal memory map

Chapter 76, Memory issues

Figure 16.1 depicts the memory map of a Turbo Pascal program.

The Program Segment Prefix (PSP) is a 256-byte area built by DOS
when the .EXE file is loaded. The segment address of PSP is
stored in the predeclared Word variable PrefixSeg.

Each module (which includes the main program and each unit)
has its own code segment. The main program occupies the first
code segment; the code segments that follow it are occupied by
the units (in reverse order from how they are listed in the uses
clause), and the last code segment is occupied by the run-time
library (the System unit). The size of a single code segment cannot
exceed 64K, but the total size of the code is limited only by the
available memory.

209

Figure 16.1
Turbo Pascal memory map

210

Top of DOS memory
HeapEnd~~----------------------~

Free memory

HeapPtr - - - - - - - - - - - - - - - - -r ---------------­
Heap (grows upward)

HeapOrg --.+-------------f.-OvrHeapEnd
Overlay buffer

1------------f.-OvrHeapOrg
Stack (grows downward)

1
88eg:8Ptr--. - - - -- - -- - - - -- - - - -- - - - -- - - - --- - - - - --

Free stack
88eg:0000--.l1-------------I

Global variables
--- ------ ---- -------- ---------------

Typed constants
D8eg:0000 --.11-------------1

System unit code segment

First unit code segment
---- .. ----------------------------------

Last unit code segment

Main program code segment

Program segment prefix (P8P)

Prefix8eg ~oL--__________ --------1
Low memory

Contents
of an

.EXE file
image

The data segment (addressed through D5) contains all typed
constants followed by all global variables. The D5 register is never
changed during program execution. The size of the data segment
cannot exceed 64K.

On entry to the program, the stack segment register (55) and the
stack pointer (5P) are loaded so that 55:5P points to the first byte
past the stack segment. The 55 register is never changed during

Turbo Pascal Programmer's Guide

program execution, but SP can move downward until it reaches
the bottom of the segment. The size of the stack segment cannot
exceed 64K; the default size is 16K, but this can be changed with a
$M compiler directive.

The overlay buffer is used by the Overlay standard unit to store
overlaid code. The default size of the overlay buffer corresponds
to the size of the largest overlay in the program; if the program
has no overlays, the size of the overlay buffer is zero. The size of
the overlay buffer can be increased through a call to the OvrSetBuf
routine in the Overlay unit; in that case, the size of the heap is
decreased accordingly, by moving ReapOrg upwards.

The heap stores dynamic variables, that is, variables allocated
through calls to the New and GetMem standard procedures. It
occupies all or some of the free memory left when a program is
executed. The actual size of the heap depends on the minimum
and maximum heap values, which can be set with the $M com­
piler directive. Its size is guaranteed to be at least the minimum
heap size and never more than the maximum heap size. If the
minimum amount of memory is not available, the program will
not execute. The default heap minimum is 0 bytes, and the default
heap maximum is 640K; this means that by default the heap will
occupy all remaining memory.

As you might expect, the heap manager (which is part of Turbo
Pascal's run-time library) manages the heap. It is described in
detail in the following section.

The heap manager

Chapter 76, Memory issues

The heap is a stack-like structure that grows from low memory in
the heap segment. The bottom of the heap is stored in the variable
ReapOrg, and the top of the heap, corresponding to the bottom of
free memory, is stored in the variable.ReapPtr. Each time a
dynamic variable is allocated on the heap (via New or GetMem),
the heap manager moves ReapPtr upward by the size of the
variable, in effect stacking the dynamic variables on top of each
other.

ReapPtr is always normalized after each operation, thus forcing
the offset part into the range $0000 to $OOOF. The maximum size of
a single variable that can be allocated on the heap is 65,519 bytes

211

Disposal methods

Figure 16.2

(corresponding to $10000 minus $OOOF), since every variable must
be completely contained in a single segment.

The dynamic variables stored on the heap are disposed of in one
of two ways: (1) through Dispose or FreeMem or (2) through Mark
and Release. The simplest scheme is that of Mark and Release; for
example, if the following statements are executed:

New(ptrl};
New(ptr2};
Mark(P};
New(Ptr3};
New(Ptr4};
New(Ptr5};

the layout of the heap will then look like the following figure:

Disposal method using mark HeapEnd
and release High

memory

Executing Release(HeapOrg)
completely disposes of the

entire heap because
HeapOrg points to the

bottom of the heap.

212

HeapPtr

Ptr5

Ptr4

Ptr3

Ptr2

Ptr1

Contents of PtrSA

Contents of Ptr4"

Contents of Ptr3A

Contents of Ptr2A

Contents of Ptr1 A Low
memory

The Mark(P) statement marks the state of the heap just before Ptr3
is allocated (by storing the current ReapPtr in P). If the statement
Release(P) is executed, the heap layout becomes like that of Figure
16.3, effectively disposing of all pointers allocated since the call to
Mark.

Turbo Pascal Programmer's Guide

Figure 16.3
Heap layout with Release(P)

executed HeapEnd-,-------------. High

Chapter 76, Memory issues

memory

HeapPtr-++-------------I
Contents of Ptr2"

Ptr2--*-------------1
Contents of Ptr1" Low

Ptr1 _--------------' memory

For applications that dispose of pointers in exactly the reverse
order of allocation, the Mark and Release procedures are very effi­
cient. Yet most programs tend to allocate and dispose of pointers
in a more random manner, requiring the more sophisticated
management technique implemented by Dispose and FreeMem.
These procedures allow an application to dispose of any pointer
at any time.

When a dynamic variable that is not the topmost variable on the
heap is disposed of through Dispose or FreeMem, the heap be­
comes fragmented. Assuming that the same statement sequence
has been executed, then after executing Dispose(Ptr3), a "hole" is
created in the middle of the heap (see Figure 16.4).

213

214

Figure 16.4
Creating a "hole" in the

heap

Figure 16.5

HeapEnd ------------., High
memory

HeapPtr.-t--------------i
Contents of Ptr5"

Ptr5.-t--------------i
Contents of Ptr4"

Ptr4

Contents of Ptr21\
Ptr2-.t--------------i

Contents of Ptr11\
Ptr1-.L------------.I

Low
memory

If New(Ptr3) had been executed now, it would again occupy the
same memory area. On the other hand, executing Dispose(Ptr4)
enlarges the free block, since Ptr3 and Ptr4 were neighboring
blocks (see Figure 16.5).

Enlarging the free block HeapEnd ~-----------____. High
memory

HeapPtr-+l---------------l
Contents of Ptr5"

Ptr5

Contents of Ptr21\
Pti2~-------------t

Contents of Ptr11\
Ptr1 --...----------------'

Low
memory

Finally, executing Dispose(Ptr5) first creates an even bigger free
block, and then lowers HeapPtr. This, in effect, releases the free
block, since the last valid pointer is now Ptr2 (see Figure 16.6).

Turbo Pascal Programmer's Guide

Figure 16.6
Releasing the free block

The free list

HeapEnd --+r-------------, High
memory

HeapPtr-+l-------------I
Contents of Ptr2/\

Ptr2-+1-------------I
Contents of Ptr1/\ Low

Ptr1 -.L------------' memory

The heap is now in the same state as it would be after executing
Release(P), as shown in Figure 16.3. However, the free blocks
created and destroyed in the process were tracked for possible
reuse.

The addresses and sizes of the free blocks generated by Dispose
and FreeMem operations are kept on a free list. Whenever a
dynamic variable is allocated, the free list is checked before the
heap is expanded. If a free block of adequate size (greater than or
equal to the size of the requested block size) exists, it is used.

¢ The Release procedure always clears the free list, thus causing the
heap manager to Uforget" about any free blocks that might exist
below the heap pointer. If you mix calls to Mark and Release with
calls to Dispose and FreeMem, you must ensure that no such free
blocks exist.

Chapter 76, Memory issues

The FreeList variable in the System unit points to the first free
block in the heap. This block contains a pointer to the next free
block, which contains a pointer to the- following free block, and so
on. The last free block contains a pointer to the top of the heap
(that is, to the location given by HeapPtr). If there are no free
blocks on the free list, FreeList will be equal to HeapPtr.

The format of the first 8 bytes of a free block are given by the
TFreeRec type as follows:

215

216

type
PFreeRec = ATFreeRec;
TFreeRec = record

Next: PFreeRec;
Size: Pointer;

end;

The Next field points to the next free block, or to the same location
as HeapPtr if the block is the last free block. The Size field encodes
the size of the free block. The value in Size is not a normal 32-bit
value; rather, it is a "normalized" pointer value with a count of
free paragraphs (16-byte blocks) in the high word, and a count of
free bytes (between 0 and 15) in the low word. The following
BlockSize function converts a Size field value to a normal Longint
value:

function BlockSize(Size: Pointer): Longint;
type

PtrRec = record Lo, Hi: Word end;
begin

BlockSize := Longint(PtrRec(Size) .Hi) * 16 + PtrRec(Size) .Lo;
end;

To guarantee that there will always be room for a TFreeRec at the
beginning of a free block, the heap manager rounds the size of
every block allocated by New or GetMem upwards tp an 8-byte
boundary. Thus, 8 bytes are allocated for blocks of size 1..8, 16
bytes are allocated for blocks of size 9 . .16, and so on. This may
seem an excessive waste of memory at first, and indeed it would
be if every block was just 1 byte in size. However, blocks are
typically larger, and so the relative size of the unused space is less.
Furthermore, and quite importantly, the 8-byte granularity factor
ensures that a number of random allocations and deallocations of
blocks of varying small sizes, such as would be typical for
variable-length line records in a text-processing program, do not
heavily fragment the heap. For example, say a 50-byte block is
allocated and disposed of, thus becOlrJng an entry on the free list.
The block would have been rounded to 56 bytes (7*8), and a later
request to allocate anywhere from 49 to 56 bytes would com­
pletely reuse the block, instead of leaving 1 to 7 bytes of free (but
most likely unusable) space, which would fragment the heap.

Turbo Pascal Programmer's Guide

The HeapError
variable The HeapError variable allows you to install a heap error function,

which gets called whenever the heap manager cannot complete an
allocation request. HeapError is a pointer that points to a function
with the following header:

fUnction HeapFunc(Size: Word): Integer; far;

Note that the far directive forces the heap error function to use the
FAR call model.

The heap error function is installed by assigning its address to the
HeapError variable:

HeapError := @HeapFunc;

The heap error function gets called whenever a call to New or
GetMem cannot complete the request. The Size parameter contains
the size of the block that could not be allocated, and the heap
error function should attempt to free a block of at least that size.

Depending on its success, the heap error function should return 0,
I, or 2. A return of 0 indicates failure, causing a run-time error to
occur immediately. A return of 1 also indicates failure, but instead
of a run-time error, it causes New or GetMem to return a nil
pointer. Finally, a return of 2 indicates success and causes a retry
(which could also cause another call to the heap error function).

The standard heap error function always returns 0, thus causing a
run-time error whenever a call to New or GetMem cannot be
completed. However, for many applications, the simple heap
error function that follows is more appropriate:

function HeapFunc(Size: Word): Integer; far;
begin

HeapFunc := 1;
end;

When installed, this function causes New or GetMem to return nil
when they cannot complete the request, instead of aborting the
program.

¢ A call to the heap error function with a Size parameter of 0
indicates that to satisfy an allocation request the heap manager
has just expanded the heap by moving ReapPtr upwards. This
occurs whenever there are no free blocks on the free list, or when
all free blocks are too small for the allocation request. A call with

Chapter 76, Memory issues 217

a Size of 0 does not indicate an error condition, since there was
still adequate room for expansion between HeapPtr and
HeapEnd-rather, the call serves as a notification that the unused
area above HeapPtr has shrunk, and the heap manager ignores the
return value from a call of this type.

Internal data formats

Integer types

Char types

Boolean types

Enumerated

The format selected to represent an integer-type variable depends
on its minimum and maximum bounds:

• If both bounds are within the range -128 . .127 (Shortint), the
variable is stored as a signed byte.

• If both bounds are within the range 0 .. 255 (byte), the variable is
stored as an unsigned byte.

• If both bounds are within the range -32768 .. 32767 (Integer), the
variable is stored as a signed word.

• If both bounds are within the range 0 .. 65535 (Word), the
variable is stored as an unsigned word.

• Otherwise, the variable is stored as a signed double word
(Longint).

A Char, or a subrange of a Char type, is stored as an unsigned
byte.

A Boolean type is stored as a byte that can assume the value of 0
(False) or 1 (True).

types An enumerated type is stored as an unsigned byte if the
enumeration has 256 or fewer values; otherwise, it is stored as an
unsigned word.

218 Turbo Pascal Programmer's Guide

Floating-point
types The floating-point types (Real, Single, Double, Extended, and

Camp) store the binary representations of a sign (+ or -), an
exponent, and a significand. A represented number has the value

+ / - significand x 2exponent

where the significand has a single bit to the left of the binary
decimal point (that is, 0 <= significand < 2).

¢ In the figures that follow, msb means most significant bit, and lsb
means least significant bit. The leftmost items are stored at the
highest addresses. For example, for a real-type value, e is stored in
the first byte, f in the following five bytes, and s in the most
significant bit of the last byte.

The Real type A 6-byte (48-bit) Real number is divided into three fields:

width in bits
1

lsi
msb

39

The value v of the number is determined by

if ° < e <= 255, then v = (-1)5 * 2 (e-129) * (1.f).

if e = 0, then v = 0.

Isbmsb

8

e

¢ The Real type cannot store denormals, NaNs, and infinities.

19b

Denormals become zero when stored in a Real, and NaNs and
infinities produce an overflow error if an attempt is made to store
them in a Real.

The Single type A 4-byte (32-bit) Single number is divided into three fields:

width in bits
1 8 23

lsi e
msb Isbmsb 19b

Chapter 76, Memory issues 219

220

The value v of the number is determined by

if ° < e < 255, then v = (-1)5 * 2 (e-127) * (1.f).

if e = 0 and f <> 0, then v = (_1)5 * 2(-126) * (O.f).

if e = 0 . and f = 0, then v = (-1)5 * O.
if e = 255 and f = 0, then v = (-1)5 * Inf.
if e = 255 and f <> 0, then v is a NaN.

The Double type An 8-byte (64-bit) Double number is divided into three fields:

width in bits
1 11 52

msb Isbmsb

The value v of the number is determined by

if ° < e < 2047, then v = (-1) 5 * 2 (e-1023) * (1. f) •

if e = 0 and f <> 0, then v = (-1)5 * 2(-1022) * (O.f).

if e = ° and f = 0, then v = (-1)5 * O.
if e = 2047 and f = 0, then v = (-1)5 * Inf.
if e = 2047 and f <> 0, then v is a NaN.

Isb

The Extended type A lO-byte (80-bit) Extended number is divided into four fields:

width in bits
1 15 63

e

msb 19b msb

The value v of the number is determined by

if 0 <= e < 32767, then v = (-1)5 * 2 (e-16383) * (Lf).

if e = 32767 and f = 0, then v = (-1)5 * Inf.
if e = 32767 and f <> 0, then v is a NaN.

The Camp type An 8-byte (64-bit) Camp number is divided into two fields:

width in bits
1

msb

63

d

19b

19b

Turbo Pascal Programmer's Guide

Pointer types

String types

Set types

Array types

Chapter 76, Memory issues

The value v of the number is determined by

if s = 1 and d = 0, then v is a NaN

Otherwise, v is the two's complement 64-bit value.

A Pointer type is stored as a double word, with the offset part in
the low word and the segment part in the high word. The pointer
value nil is stored as a double-word zero.

A string occupies as many bytes as its maximum length plus one.
The first byte contains the current dynamic length of the string,
and the following bytes contain the characters of the string. The
length byte and the characters are considered unsigned values.
Maximum string length is 255 characters plus a length byte
(string[255]).

A set is a bit array, where each bit indicates whether an element is
in the set or not. The maximum number of elements in a set is 256,
so a set never occupies more than 32 bytes. The number of bytes
occupied by a particular set is calculated as

ByteSize = (Max div 8) - (Min div 8) + 1

where Min and Max are the lower and upper bounds of the base
type of that set. The byte number of a specific element E is

ByteNumber = (E div 8) - (Min div 8)

and the bit number within that byte is

BitNumber = E mod 8

where E denotes the ordinal value of the element.

An array is stored as a contiguous sequence of variables of the
component type of the array. The components with the lowest
indexes are stored at the lowest memory addresses. A multi­
dimensional array is stored with the rightmost dimension
increasing first.

221

Record types

File types

222

The fields of a record are stored as a contiguous sequence of
variables. The first field is stored at the lowest memory address. If
the record contains variant parts, then each variant starts at the
same memory address.

File types are represented as records. Typed files and untyped
files occupy 128 bytes, which are laid out as follows:

type
FileRec = record

Handle: Word;
Mode: Word;
RecSize: Word;
Private: array[1 .. 26] of Byte;
UserData: array[1 .. 16] of Byte;
Name: array[O .. 79] of Char;

end;

Text files occupy 256 bytes, which are laid out as follows:

type
TextBuf = array[O .. 127] of Char;
TextRec = record

Handle: Word;
Mode: Word;
BufSize: Word;
Private: Word;
BufPos: Word;
BufEnd: Word;
BufPtr: ATextBuf;
OpenFunc: Pointer;
InOutFunc: Pointer;
FlushFunc: Pointer;
CloseFunc: Pointer;
UserData: array[1 .. 16] of Byte;
Name: array[O .. 79] of Chari

Buffer: TextBufi
end;

Handle contains the file's handle (when open) as returned by DOS.

Turbo Pascal Programmer's Guide

Procedural types

The Mode field can assume one of the following "magic" values:

const
fmClosed = $D7BO;
fmlnput = $D7Bl;
fmOutput =$D7B2;
fmlnOut = $D7B3;

fmClosed indicates that the file is closed. fmlnput and fmOutput
indicate that the file is a text file that has been reset (fmlnput) or
rewritten (fmOutput). fmlnOut indicates that the file variable is a
typed or an untyped file that has been reset or rewritten. Any
other value indicates that the file variable has not been assigned
(and thereby not initialized).

The UserData field is never accessed by Turbo Pascal, and is free
for user-written routines to store data in.

Name contains the file name, which is a sequence of characters
terminated by a null character (#0).

For typed files and untyped files, RecSize contains the record
length in bytes, and the Private field is unused but reserved.

For text files, BufPtr is a pointer to a buffer of BufSize bytes, BufPos
is the index of the next character in the buffer to read or write,
and BufEnd is a count of valid characters in the buffer. OpenFunc,
InOutFunc, FlushFunc, and CloseFunc are pointers to the I/O
routines that control the file. The section entitled "Text file device
drivers" in Chapter 19 provides information on that subject.

A procedural type is stored as a double word, with the offset part
of the referenced procedure in the low word and the segment part
in the high word.

Direct memory access

Chapter 16, Memory issues

Turbo Pascal implements three predefined arrays, Mem, Mem W,
and MemL, which are used to directly access memory. Each com­
ponent of Mem is a byte, each component of Mem W is a Word, and
each component of MemL is a Longint.

The Mem arrays use a special syntax for indexes: Two expressions
of the integer type Word, separated by a colon, are used to specify

223

224

the segment base and offset of the memory location to access.
Some examples include

Mem[$0040: $0049] := 7;
Data := MemW[Seg(V) :Ofs (V)];
MemLong := MemL[64:3*4];

The first statement stores the value 7 in the byte at $0040:$0049.
The second statement moves the Word value stored in the first 2
bytes of the variable V into the variable Data. The third statement
moves the Longint value stored at $0040:$000C into the variable
MemLong.

Turbo Pascal Programmer's Guide

c H A p T E R

17

Objects

Internal data format of objects

Chapter 77, Objects

The internal data format of an object resembles that of a record.
The fields of an object are stored in order of declaration, as a
contiguous sequence of variables. Any fields inherited from an
ancestor type are stored before the new fields defined in the
descendant type.

If an object type defines virtual methods, constructors, or destruc­
tors, the conlpiler allocates an extra field in the object type. This
16-bit field, called the virtual method table (VMT) field, is used to
store the offset of the object type's VMT in the data segment. The
VMT field immediately follows after the ordinary fields in the
object type. When an object type inherits virtual methods, con­
structors, or destructors, it also inherits a VMT field, so an addi­
tional one is not allocated.

Initialization of the VMT field of an instance is handled by the
object type's constructor(s). A program never explicitly initializes
or accesses the VMT field.

The following examples illustrate the internal data formats of
object types:

type
LocationPtr = ALocation;
Location = object

X, Y: Integer;

225

Figure 17.1
Layouts of instances of

Location, Point, and Circle

226

Virtual method
tables

procedure Init(PX, PY: Integer);
function GetX: Integer;
function GetY: Integer;

end;

Pointptr = APoint;
Point = object (Location)

Color: Integer;
constructor Init(PX, PY, PColor: Integer);
destructor Done; virtual;
procedure Show; virtual;
procedure Hide; virtual;
procedure MoveTo(PX, PY: Integer); virtual;

end;

Circleptr = ACircle;
Circle = object{Point)

Radius: Integer;
constructor Init(PX, PY, PColor, PRadius: Integer);
procedure Show; virtual;
procedure Hide; virtual;
procedure Fill; virtual;

end;

Figure 17.1 shows layouts of instances of Location, Point, and
Circle; each box corresponds to one word of storage.

Location Point Circle

B x x
y y
Color Color'
VMT VMT

1-------1
Radius

Because Point is the first type in the hierarchy that introduces
virtual methods, the VMT field is allocated right after the Color
field.

Each object type that contains or inherits virtual methods, con­
structors, or destructors has a VMT associated with it, which is
stored in the initialized part of the program's data segment. There
is only one VMT per object type (not one per instance), but two
distinct object types never share a VMT, no matter how identical
they appear to be. VMTs are built automatically by the compiler,
and are never directly manipulated by a program. Likewise,

Turbo Pascal Programmer's Guide

pointers to VMTs are automatically stored in object type instances
by the object type's constructor(s) and are never directly
manipulated by a program.

The first word of a VMT contains the size of instances of the
associated object type; this information is used by constructors
and destructors to determine how many bytes to allocate or
dispose of, using the extended syntax of the New and Dispose
standard procedures.

The second word of a VMT contains the negative size of instances
of the associated object type; this information is used by the
virtual method call validation mechanism to detect uninitialized
objects (instances for which no constructor call has been made),
and to check the consistency of the vMT. When virtual call
validation is enabled (using the ($R+} compiler directive, which
has been expanded to include virtual method checking), the
compiler generates a call to a VMT validation routine before each
virtual call. The VMT validation routine checks that the first word
of the VMT is not zero, and that the sum of the first and the
second word is zero. If either check fails, run-time error 210 is
generated.

¢ Enabling range-checking and virtual method call checking slows
down your program and makes it somewhat larger, so use the
(R+} state only when debugging, and switch to the ($R-} state for
the final version of the program.

Finally, starting at offset 4 in the VMT, comes a list of 32-bit
method pointers, one per virtual method in the object type, in
order of declaration. Each slot contains the address of the
corresponding virtual method's entry point.

Figure 17.2 shows the layouts of the VMTs of the Point and Circle
types (the Location type has no VMT, since it contains no virtual
methods, constructors, or destructors); each small box corre­
sponds to one word of storage, and each large box corresponds to
two words of storage.

Chapter 17, Objects 227

228

Figure 17.2
Point and Circle's VMT

layouts

The SizeOf
function

The TypeOf
function

Point VMT Circle VMT
$0008 $OOOA
$FFF8 $FFF6

@ Point.Done @Point.Done

@ Point.Show @Circle.Show

@ Point.Hide @Circle.Hide

@Point.MoveTo @Point.MoveTo

@Circle.FiII

Notice how Circle inherits the Done and MoveTo methods from
Point, and how it overrides the Show and Hide methods.

As mentioned already, an object type's constructors contain
special code that stores the offset of the object type's VMT in the
instance being initialized. For example, given an instance P of
type Point, and an instance C of type Circle, a call to P.Init will
automatically store the offset of Point's VMT in P's VMT field, and
a call to C.Init will likewise store the offset of Circle's VMT in C's
VMT field. This automatic initialization is part of a constructor's
entry code, so when control arrives at the begin of the construc­
tor's statement part, the VMT field Sel!will already have been set
up. Thus, if the need arises, a constructor can make calls to virtual
methods.

When applied to an instance of an object type that has a VMT,
SizeD! returns the size stored in the VMT. Thus, for object types
that have a VMT, SizeD! always returns the actual size of the
instance, rather than the declared size.

Turbo Pascal's new standard function TypeD! returns a pointer to
an object type's VMT. TypeD! takes a single parameter, which can
be either an object type identifier or an object type instance. In
both cases, the result, which is of type Pointer, is a pointer to the

Turbo Pascal Programmer's Guide

Virtual method

object type's VMT. TypeD! can be applied only to object types that
have a VMT -all other types result in an error.

The TypeDf function can be used to test the actual type of an
instance. For example,

if TypeOf{Self) ~ TypeOf{Point) then ...

calls To call a virtual method, the compiler generates code that picks
up the VMT address from the VMT field in the object, and then
calls via the slot associated with the method. For example, given a
variable PP of type PointPtr, the call PPI\.Show generates the
following code:

les di,Pp ;Load PP into ES:DI
push es ;Pass as Self parameter
push di
mov di,es: [di+6] ;Pick up VMT offset ~rom vMT field
call DWORD PTR [di+8] ;Call VMT entry for Show

The type compatibility rules of object types allow PP to point at a
Point or a Circle, or at any other descendant of Point. And if you
examine the VMTs shown here, you'll see that for a Point, the
entry at offset 8 in the VMT points to Point. Show; whereas for a
Circle, it points to Circle. Show. Thus, depending upon the actual
run-time type of PP, the CALL instruction calls Point.Show or
Circle. Show, or the Show method of any other descendant of Point.

If Show had been a static method, this code would have been
generated for the call to PPI\.Show:

les di,Pp ;Load PP into ES:DI
push es ;Pass as Self parameter
push di
call Point.Show ;Directly call Point.Show

Here, no matter what PP points to, the code will always call the
Point.Show method.

Method calling conventions

Chapter 77, Objects

Methods use the same calling conventions as ordinary procedures
and functions, except that every method has an additional
implicit parameter, Self, that corresponds to a var parameter of the

229

Constructors and
destructors

same type as the method's object type. The Self parameter is
always passed as the last parameter, and always takes the form of
a 32-bit pointer to the instance through which the method is
called. For example, given a variable PP of type PointPtr as
defined earlier, the call PP'''.MoveTo(10, 20) is coded as follows:

mov ax,lO ;Load 10 into AX
push ax ;Pass as PX parameter
mov ax,20 ;Load 20 into AX
push ax ;Pass as PY parameter
les di,PP ;Load PP into ES:DI
push es ;Pass as Self parameter
push di
mov di,es: [di+6] ;Pick up VMT offset from VMT field
call DWORD PTR [di+16] ;Call VMT entry for MoveTo

Upon returning, a method must remove the Self parameter from
the stack, just as it must remove any normal parameters.

Methods always use the far call model, regardless of the setting of
the $F compiler directive.

Constructors and destructors use the same calling conventions as
normal methods, except that an additional word-sized parameter,
called the VMT parameter, is passed on the stack just before the
Self parameter.

For constructors, the VMT parameter contains the VMT offset to
store in Selfs VMT field in order to initialize Self.

Furthermore, when a constructor is called to allocate a dynamic
object, using the extended syntax of the New standard procedure,
a nil pointer is passed in the Self parameter. This causes the con­
structor to allocate a new dynamic object, the address of which is
passed back to the caller in DX:AX when the constructor returns.

See "Constructor error If the constructor could not allocate the object, a nil pointer is
recovery" on page 236. returned in DX:AX.

230

Finally, when a constructor is called using a qualified method
identifier (that is, an object type identifier), followed by a period
and a method identifier, a value of zero is passed in the VMT
parameter. This indicates to the constructor that it should not
initialize the VMT field of Self.

For destructors, a 0 in the VMT parameter indicates a normal call,
and a nonzero value indicates that the destructor was called using

Turbo Pascal Programmer's Guide

Extensions to New
and Dispose

Chapter 77, Objects

the extended syntax of the Dispose standard procedure. This
causes the destructor to deallocate Self just before returning (the
size of Self is found by looking at the first word of Selfs VMT).

The New and Dispose standard procedures have been extended to
allow a constructor call or destructor call as a second parameter
for allocating or disposing a dynamic object type variable. The
syntax is

New(P, Construct)

and

Dispose(P, Destruct)

where P is a pointer variable, pointing to an object type, and
Construct and Destruct are calls to constructors and destructors of
that object type. For New, the effect of the extended syntax is the
same as executing

New(P);
P" .Construct;

And for Dispose, the effect of the extended syntax is the san1e as
executing

P".Destruct;
Dispose(P);

Without the extended syntax, occurrences of such "pairs" of a call
to New followed by a constructor call, and a destructor call
followed by a call to Dispose would be very common. The
extended syntax improves readability, and also generates shorter
and more efficient code.

The following illustrates the use of the extended New and Dispose
syntax:

var
SP: StrFieldPtr:
ZP: ZipFieldPtr;

begin
New (SP, Init(1, 1, 25, 'Firstname')):
New (ZP, Init (1, 2, 5, 'Zip code', 0, 99999)):
SP" .Edit;
ZP" .Edit:

Dispose (ZP, Done);

231

Dispose (SP, Done);
end;

An additional extension allows New to be used as a /Unction,
which allocates and returns a dynamic variable of a specified
type. The syntax is

New(T)

or

New(T, Construct)

In the first form, T can be any pointer type. In the second form, T
must point to an object type, and Construct must be a call to a con­
structor of that object type. In both cases, the type of the function
result is T~

Here's an example:

var
F1, F2: FieldPtr;

begin
F1 := New(StrFieldPtr,
F2 := New(ZipFieldPtr,

WriteLn(F1 A .GetStr);
writeLn(F2 A .GetStr);

Dispose(F2, Done);
Dispose (F1, Done);

end;

Init(l, 1, 25, 'Firstname'));
Init (1, 2, 5, 'Zip code', 0, 99999));

{ Calls StrField.GetStr }
{ Calls ZipField.GetStr }

{ Calls Field.Done }
{ Calls StrField.Done }

Notice that even though Fl and F2 are of type FieldPtr, the
extended pointer assignment compatibility rules allow Fl and F2
to be assigned a pointer to any descendant of Field; and since
GetStr and Done are virtual methods, the virtual method dispatch
mechanism correctly calls StrField.GetStr, ZipField.GetStr,
Field.Done, and StrField.Done, respectively.

Assembly language methods

232

Method implementations written in assembly language can be
linked with Turbo Pascal programs using the $L compiler
directive and the external reserved word. The declaration of an
external method in an object type is no different than that of a

Turbo Pascal Programmer's Guide

normal method; however, the implementation of the method lists
only the method header followed by the reserved word external.

In an assembly language source text, an @ is used instead of a
period (.) to write qualified identifiers (the period already has a
different meaning in assembly language and cannot be part of an
identifier). For example, the Pascal identifier Reet.lnit is written as
Reet@Init in assembly language. The @ syntax can be used to
declare both PUBLIC and EXTRN identifiers.

As an example of assembly language methods, we've imple­
mented a simple Reet object.

type
Rect = object

Xl, Yl, X2, Y2: Integer;
procedure Init(XA, YA, XB, YB: Integer);
procedure Union (var R: Rect);
function Contains (X, Y: Integer): Boolean;

end;

A Reet represents a rectangle bounded by four coordinates, Xl,
Yl, X2, and Y2. The upper left corner of a rectangle is defined by
Xl and Yl, and the lower right corner is defined by X2 and Y2.
The Init method assigns values to the rectangle's coordinates; the
Union method calculates the smallest rectangle that contains both
the rectangle itself and another rectangle; and the Contains
method returns True if a given point is within the rectangle, or
False if not. Other methods, such as moving, resizing, calculating
intersections, and testing for equality, could easily be imple­
mented to make Reet a more useful object.

The Pascal implementations of Rect's methods list only the
method header followed by an external reserved word.

{$L RECT}

procedure Rect.Init(XA, YA, XB, YB: Integer); external;
procedure Rect.Union(var R: Rect); external;
function Rect.Contains(X, Y: Integer): Boolean; external;

There is, of course, no requirement that all methods be imple­
mented as externals. Each individual method can be implemented
in either Pascal or in assembly language, as desired.

The assembly language source file, RECT.ASM, that implements
the three external methods is listed here.

TITLE Rect
LOCALS @@

Chapter 77, Objects 233

234

i Rect structure

Rect STRUC
Xl DW
Y1 DW
X2 DW
Y2 DW
Rect ENDS

Code SEGMENT BYTE PUBLIC

ASSUME cs:code

Procedure Rect.Init(XA, YA, XB, YB: Integer)

PUBLIC Rect@Init

Rect@Init PROC FAR

@XA EQU (WORD PTR [bp+16))
@YA EQU (WORD PTR [bp+14])
@XB EQU (WORD PTR [bp+12))
@YB EQU (WORD PTR [bp+lO))
@Self EQU (DWORD PTR [bp+6))

push bp iSave bp
mov bp,sp iSet up stack frame
les di,@Self iLoad Self into ES:DI
cld iMove forwards
mov ax,@XA iXl := XA
stosw
mov ax,@YA iY1 := YA
stosw
mov ax,@XB iX2 := XB
stosw
mov ax,@YB iY2 := YB

stosw
pop bp iRestore BP
ret 12 iPOP parameters and return

Rect@Init ENDP

Procedure Rect.Union(var R: Rect)

PUBLIC Rect@Union

Rect@Union PROC FAR

@R EQU (DWORD PTR [bp+lO))
@Self EQU (DWORD PTR [bp+6])

push bp iSave BP
mov bp,sp ;Set up stack frame
push ds iSave OS
Ids si,@R iLoad R into DS:SI
les di,@Self iLoad Self into ES:DI

Turbo Pascal Programmer's Guide

cld iMove forward
ledsw iIf R.X1 >= Xl gote @@1
scasw
jge @@1
dec di iX1 := R.X1
dec di
stosw

@@1: lodsw iIf R.Y1 >= Y1 goto @@2
scasw
jge @@2
dec di iYl := R. yl

dec di
stosw

@@2: lodsw ;If R.X2 <= X2 goto @@3
scasw
jle @@3
dec di iX2 := R.X2
dec di
stosw

@@3: lodsw iIf R.Y2 <= Y2 goto @@4
scasw
jle @@4
dec di iY2 := R.Y2
dec di
stosw

@@4: pop ds iRestore DS
pop bp iRestore BP
ret 8 iPOP parameters and return

Rect@Union ENDP

Function Rect.Contains(X, Y: Integer): Boolean

PUBLIC Rect@Contains

Rect@Contains PROC FAR

@X EQU (WORD PTR [bp+12])
@Y EQU (WORD PTR [bp+10])
@Self EQU (DWORD PTR [bp+6])

push bp iSave BP
mov bp,sp iSet up stack frame
les di,@Self iLoad Self into ES:DI
mev al,O iReturn false
mov dx,@X iIf (X < Xl) or (X > X2) gote @@1
cmp dx,es: [diJ.X1
jl @@1
cmp dx, es: [di] .X2
jg @@1
mov dx,@Y iIf (Y < Y1) or (Y > Y2) goto @@2
cmp <lX, es: [diJ. yl

Chapter 77, Objects 235

jl
cmp
jg
inc

@@l: pop
ret

@@l
dx, es: [diJ. Y2
@@l
ax
bp
8

Rect@Contains ENDP

Code ENDS

END

;Return true
;Restore BP
;Pop parameters and return

Constructor error recovery

236

There ~ a new standard
procedure called Fail.

As described in Chapter 16, Turbo Pascal allows you to install a
heap error function through the HeapError variable in the System
unit. This functionality is still supported in Turbo Pascal, but now
it also affects the way object type constructors work.

By default, when there is not enough memory to allocate a
dynamic instance of an object type, a constructor call using the
extended syntax of the New standard procedure generates run­
time error 203. If you install a heap error function that returns 1
rather than the standard function result of 0, a constructor call
through New will return nil when it cannot complete the request
(instead of aborting the program).

The code that performs allocation and VMT field initialization of a
dynamic instance is part of a constructor's entry sequence: When
control arrives at the begin of the constructor's statement part, the
instance will already have been allocated and initialized. If alloca­
tion fails, and if the heap error function returns I, the constructor
skips execution of the statement part and returns a nil pointer;
thus, the pointer specified in the New construct that called the
constructor is set to nil.

Once control arrives at the begin of a constructor's statement part,
the object type instance is guaranteed to have been allocated and
initialized successfully. However, the constructor itself might
attempt to allocate dynamic variables, in order to initialize pointer
fields in the instance, and these allocations might in turn fail. If
that happens, a well-behaved constructor should reverse any
successful allocations, and finally deallocate the object type
instance so that the net result becomes a nil pointer. To make such
"backing out" possible, Turbo Pascal implements a new standard

Turbo Pascal Programmer's Guide

Chapter 77, Objects

procedure called Fail, which takes no parameters and can be
called only from within a constructor. A call to Fail causes a con­
structor to deallocate the dynamic instance that was allocated
upon entry to the constructor, and causes the return of a nil
pointer to indicate its failure.

When dynamic instances are allocated through the extended
syntax of New, a resulting value of nil in the specified pointer
variable indicates that the operation failed. Unfortunately, there is
no such pointer variable to inspect after the construction of a
static instance or when an inherited constructor is called. Instead,
Turbo Pascal allows a constructor to be used as a Boolean func­
tion in an expression: A return value of True indicates success,
and a return value of False indicates failure due to a call to Fail
within the constructor.

The following program implements two simple object types that
contain pointers. This first version of the program does not imple­
ment constructor error recovery.

type
LinePtr :::; "Line;
Line:::; string[79];

BasePtr :::; "Base;
Base = object

L1, L2: Lineptr;
constructor Init(81, 82: Line);
destructor Done; virtual;
procedure Dump; virtual;

end;

DerivedPtr :::; "Derived;
Derived:::; object(Base)

L3, L4: LinePtr;
constructor Init(S1, S2, S3, S4: Line);
destructor Done; virtual;
procedure Dump; virtual;

end;

var
BP: BasePtr;
DP: DerivedPtr;

constructor Base. Init (81, 82: Line);
begin

New(L1);
New(L2);
L1" ::::; 81;
L2" ::::; 82;

237

238

end;

destructor Base.Done;
begin

Dispose(L2);
Dispose(L1);

end;

procedure Base.Dump;
begin

WriteLn('B:', L1",',', L2", '.');
end;

constructor Derived. Init (S1, S2, S3, S4: Line);
begin

Base.lnit(Sl, S2);
New(L3);
New(L4);
13" := S3;
L4" := S4;

end;

destructor Derived.Done;
begin

Dispose(L4);
Dispose(L3);
Base.Done;

end;

procedure Derived.Dump;
begin

WriteLn('D: " L1", " " L2", " " L3", " " L4", , .');
end;

begin
New (BP, Init ('Turbo', 'Pascal'));
New (DP, Init('North', 'East', 'South', 'West'));
BP" .Dump;
DP".Dump;
Dispose (DP, Done);
Dispose(BP, Done);

end.

The next example demonstrates how the previous one can be
rewritten to implement error recovery. The type and variable
declarations are not repeated, because they remain the same.

constructor Base. Init (S1, 82: Line);
begin

New(Ll);
New(L2);
if (L1 = nil) or (L2 = nil) then

Turbo Pascal Programmer's Guide

Chapter 7 7, Objects

begin
Base.Done;
Fail;

end;
L1" := S1;
L2" := S2;

end;

destructor Base.Done;
begin

if L2 <> nil then Dispose(L2);
if L1 <> nil then Dispose(L1);

end;

constructor Derived. Init (81, 82, S3, 84: Line);
begin

if not Base. Init (S1, 82) then Fail;
New(L3);
New(L4);
if (L3 = nil) or (L4 = nil) then
begin

Derived.Done;
Fail;

end;
L3" := 53;
L4" := S4;

end;

destructor Derived.Done;
begin

if L4 <> nil then Dispose(L4);
if L3 <> nil then Dispose(L3);
Base.Done;

end;

{$F+}
function HeapFunc(8ize: Word): Integer;
begin

HeapFunc := 1;
end;
{$F-}

begin
HeapError := @HeapFunc; { Install heap error handler
New (BP, Init (' Turbo', 'Pascal'));
New (DP, Init('North', 'East', 'South', 'West'));
if (BP = nil) or (DP = nil) then

WriteLn('Allocation error')
else
begin

BP".Dump;

239

240

DP".Dump;
end;
if DP <> nil then Dispose(DP, Done);
if BP <> nil then Dispose (BP, Done);

end.

Notice how the corresponding destructors in Base.Init and
Derivedlnit are used to reverse any successful allocations before
Fail is called to finally fail the operation. Also notice that in
Derivedlnit, the call to Base.lnit is coded within an expression so
that the success of the inherited constructor can be tested.

Turbo Pascal Programmer's Guide

c H A p T E R

18

Control issues
This chapter describes in detail the various ways that Turbo
Pascal implements program control. Included are calling
conventions, exit procedures, interrupt handling and error
handling.

Calling conventions

Chapter 78, Control issues

Parameters are transferred to procedures and functions via the
stack. Before calling a procedure or function, the parameters are
pushed onto the stack in their order of declaration. Before return­
ing, the procedure or function removes all parameters from the
stack.

The skeleton code for a procedure or function call looks like this:

PUSH Paraml
PUSH Param2

PUSH ParamX
CALL ProcOrFunc

Parameters are passed either by reference or by value. When a
parameter is passed by reference, a pointer that points to the
actual storage location is pushed onto the stack. When a param­
eter is passed by value, the actual value is pushed onto the stack.

241

Variable
parameters Variable parameters (var parameters) are always passed by

reference-a pointer points to the actual storage location.

Value parameters
Value parameters are passed by value or by reference depending
on the type and size of the parameter. In general, if the value
parameter occupies 1,2, or 4 bytes, the value is pushed directly
onto the stack. Otherwise a pointer to the value is pushed, and the
procedure or function then copies the value into a local storage
location.

¢ The 8086 does not support byte-sized PUSH and POP instructions,
so byte-sized parameters are always transferred onto the stack as
words. The low-order byte of the word contains the value, and
the high-order byte is unused (and undefined).

An integer type or parameter is passed as a byte, a word, or a
double word, using the same format as an integer-type variable.
(For double words, the high-order word is pushed before the
low-order word so that the low-order word ends up at the lowest
address.)

A Char-type parameter is passed as an unsigned byte.

A Boolean-type parameter is passed as a byte with the value 0 or
1.

An enumerated-type parameter is passed as an unsigned byte if
the enumeration has 256 or fewer values; otherwise, it is passed as
an unsigned word.

A Real-type parameter (type ReaD is passed as 6 bytes on the
stack, thus being an exception to the rule that only 1-,2-, and
4-byte values are passed directly on the stack.

A floating-point type parameter (Real, Single, Double, Extended,
and Comp) is passed as 4, 6, 8, or 10 bytes on the stack, thus being
an exception to the rule that only 1-, 2-, and 4-byte values are
passed directly on the stack.

¢ Version 4.0 of Turbo Pascal passed 8087 -type parameters (Single,
Double, Extended, and Comp) on the internal stack of the 8087
numeric coprocessor. For reasons of compatibility with other

242 Turbo Pascal Programmer's Guide

Function results

NEAR and FAR

languages, and to avoid 8087 stack overflows, this version uses
the 8086 stack.

A pointer-type parameter is passed as a double word (the
segment part is pushed before the offset part so that the offset
part ends up at the lowest address).

A string-type parameter is passed as a pointer to the value.

A set-type parameter is passed as a pointer to an "unpacked" set
that occupies 32 bytes.

Arrays and records with 1, 2, or 4 bytes are passed directly onto
the stack. Other arrays and records are passed as pointers to the
value.

Ordinal-type function results (Integer, Char, Boolean, and enu­
meration types) are returned in the CPU registers: Bytes are
returned in AL, words are returned in AX, and double words are
returned in DX:AX (high-order word in DX, low-order word in
AX).

Real-type function results (type Real) are returned in the
DX:BX:AX registers (high-order word in DX, middle word in BX,
low-order word in AX).

8087-type function results (type Single, Double, Extended, and
Comp) are returned in the 8087 coprocessor's top-of-stack register
(ST(O».

Pointer-type function results are returned in DX:AX (segment part
in DX, offset part in AX).

For a string-type function result, the caller pushes a pointer to a
temporary storage location before pushing any parameters, and
the function returns a string value in that temporary location. The
function must not remove the pointer.

calls The 8086 CPU supports two kinds of call and return instructions:
near and far. The near instructions transfer control to another
location within the same code segment, and the far instructions
allow a change of code segment.

Chapter 78, Control issues 243

Nested
procedures and

functions

244

A NEAR CALL instruction pushes a 16-bit return address (offset
only) onto the stack, and a FAR CALL instruction pushes a 32-bit
return address (both segment and offset). The corresponding RET
instructions pop only an offset or both an offset and a segment.

Turbo Pascal will automatically select the correct call model based
on the procedure's declaration. Procedures declared in the inter­
face section of a unit are far-they can be called from other units.
Procedures declared in a program or ~n the implementation
section of a unit are near-they can only be called from within
that program or unit.

For some specific purposes, a procedure may be required to be far.
For example, in an overlaid application, all procedures and
functions are generally required to be far; likewise, if a procedure
or function is to be assigned to a procedural variable, it has to be
far. The $F compiler directive is used to override the compiler's
automatic call model selection. Procedures and functions com­
piled in the {$F+} state are always far; in the {$F-} state, Turbo
Pascal automatically selects the correct model. The default state is
{$F-}.

A procedure or function is said to be nested when it is declared
within another procedure or function. By default, nested proce­
dures and functions always use the near call model, since they are
only "visible" within a specific procedure or function in the same
code segment. However, in an overlaid application, a {$F+} direc­
tive is generally used to force all procedures and functions to be
far, including those that are nested.

When calling a nested procedure or function, the compiler
generates a PUSH BP instruction just before the CALL, in effect
passing the caller's BP as an additional parameter. Once the called
procedure has set up its own BP, the caller's BP is accessible as a
word stored at [BP + 4], or at [BP + 6] if the procedure is far. Using
this link at [BP + 4] or [BP + 6], the called procedure can access the
local variables in the caller's stack frame. If the caller itself is also a
nested procedure, it also has a link at [BP + 4] or [BP + 6], and so
on. The following example demonstrates how to access local
variables from an inline statement in a nested procedure:

Turbo Pascal Programmer's Guide

Nested procedures and
functions cannot be

declared with the extemal
directive, anq they cannot
be procedural parameters.

Entry and exit
code

Chapter 78, Control issues

procedure PA; near;
var

IntA: Integer;

procedure B; far;
var

IntB: Integer;

procedure C; near;
var

IntC: Integer;
begin

inline{
{ MOV AX, [BP + IntC] ;AX = IntC } $8B/$46/<IntC/

$8B/$5E/$04/ { MOV BX, [BP + 4] ;BX = B's stack
frame }

{ MOV AX,SS: [BX + IntB] ;AX = IntB } $36/$8B/$47/<IntB/
$8B/$5E/$04/ { MOV BX, [BP + 4] ;BX = B's stack

frame }
$36/$8B/$5F/$06/ { MOV BX,SS:[BX + 6] ;BX = A's stack

$36/$8B/$47/<IntA);
end;

begin end;

begin end;

{ MOV
frame }

AX,SS: [aX + IntA] ;AX = IntA }

Each Pascal procedure and function begins and ends with
standard entry and exit code that creates and removes its
activation.

The standard entry code is

push bp
mov bp, sp
sub sp, Localsize

;Save BP
;Set up stack frame
;Allocate local variables

where LocalSize is the size of the local variables. The SUB instruc­
tion is only present if LocalSize is not O. If the procedure's call
model is near, the parameters start at BP + 4; if it is far, they start
atBP+6. .

The standard exit code is

mov sp, bp
pop bp
ret ParamSize

;Deallocate local variables
;Restore BP
;Remove parameters and return

245

Register-saving
conventions

Exit procedures

246

where ParamSize is the size of the parameters. The RET instruction
is either a near or a far return, depending on the procedure's call
model.

Procedures and functions should preserve the BP, SP, 55, and DS
registers. All other registers may be modified.

By installing an exit procedure, you can gain control over a
program's termination process. This is useful when you want to
make sure specific actions are carried out before a program
terminates; a typical example is updating and closing files.

The ExitProc pointer variable allows you to install an exit
procedure. The exit procedure always gets called as a part of a
program's termination, whether it is a normal termination, a
termination through a call to Halt, or a termination due to a run­
time error.

An exit procedure takes no parameters, and must be compiled in
the {$F+} state to force it to use the far call model.

When implemented properly, an exit procedure actually becomes
part of a chain of exit procedures. This chain makes it possible for
units as well as programs to install exit procedures. Some units
install an exit procedure as part of their initialization code, and
then rely on that specific procedure to be called to clean up after
the unit; for instance, to close files or to restore interrupt vectors.
The procedures on the exit chain get executed in reverse order of
installation. This ensures that the exit code of one unit does not
get executed before the exit code of any units that depend upon it.

To keep the exit chain intact, you must save the current contents
of ExitProc before changing it to the address of your own exit
procedure. Furthermore, the first statement in your exit procedure
must reinstall the saved value of ExitProc. The following program
demonstrates a skeleton method of implementing an exit
procedure:

program Testexit;
var

ExitSave: Pointer;

Turbo Pascal Programmer's Guide

Chapter 78, Control issues

procedure MyExit; far;
begin

ExitProc := ExitSave;

end;

begin
ExitSave := ExitProc;
ExitProc := @MyExit;

end.

{ Always restore old vector first }

On entry, the program saves the contents of ExitProc in ExitSave,
and then installs the MyExit exit procedure. After having been
called as part of the termination process, the first thing MyExit
does is reinstall the previous exit procedure.

The termination routine in the run-time library keeps calling exit
procedures until ExitProc becomes nil. To avoid infinite loops,
ExitProc is set to nil before every call, so the next exit procedure is
called only if the current exit procedure assigns an address to
ExitProc. If an error occurs in an exit procedure, it will not be
called again.

An exit procedure may learn the cause of termination by
examining the ExitCode integer variable and the Error Addr pointer
variable.

In case of normal termination, ExitCode is zero and Error Addr is
nil. In case of termination through a call to Halt, ExitCode contains
the value passed to Halt and ErrorAddr is nil. Finally, in case of
termination due to a run-time error, ExitCode contains the error
code and Error Addr contains the address of the statement in error.

The last exit procedure (the one installed by the run-time library)
closes the Input and Output files, and restores the interrupt vectors
that were captured by Turbo Pascal. In addition, if ErrorAddr is
not nil, it outputs a run-time error message.

If you wish to present run-time error messages yourself, install an
exit procedure that examines ErrorAddr and outputs a message if
it is not nil. In addition, before returning, make sure to set
ErrorAddr to nil, so that the error is not reported again by other
exit procedures.

Once the run-time library has called all exit procedures, it returns
to DOS, passing as a return code the value stored in ExitCode.

247

Interrupt handling

248

Writing interrLJpt
, procedures

The Turbo Pascal run-time library and the code generated by the
compiler are fully interruptible. Also, most of the run-time library
is reentrant, which allows you to write interrupt service routines
in Turbo Pascal.

Interrupt procedures are declared with the interrupt directive.
Every interrupt procedure must specify the following procedure
header (or a subset of it, as explained later):

procedure IntHandler(Flags, es, IP, AX, BX, ex, ox, SI, 01, os, ES,
BP: Word);

interrupt;
begin

end;

As you can see, all the registers are passed as pseudo-parameters
so you can use and modify them in your code. You can omit some
or all of the parameters, starting with Flags and moving towards
BP. It is an error to declare more parameters thanare listed in the
preceding example or to omit a specific parameter without also
omitting the ones before it (although no error is reported). For
example,

procedure IntHandler(DI, ES, BP: Word)";
procedure IntHandler(SI, 01, DS, ES, BP: Word);

{ Invalid call
{ Valid call

On entry, an interrupt procedure automatically saves all registers
(regardless of the procedure header) and initializes the DS
register:

push ax
push bx
push GX
push dx
push si
push di
push ds
push es
push bp
mov bp,sp
sub sp,LocalSize

Turbo Pascal Programmer's Guide

Chapter 18, Control issues

rnov aX,SEG DATA
rnov ds,ax

Notice the lack of a STI instruction to enable further interrupts.
You should code this yourself (if required) using an inline
statement. The exit code restores the registers and executes an
interrupt-return instruction:

rnov sp, bp
pop bp
pop es
pop ds
pop di
pop si
pop dx
pop ex
pop bx
pop ax
iret

An interrupt procedure can modify its parameters. Changing the
declared parameters will modify the corresponding register when
the interrupt handler returns. This can be useful when you are
using an interrupt handler as a user service, much like the DOS
!NT 21H services.

Interrupt procedures that handle hardware-generated interrupts
should refrain from using any of Turbo Pascal's input and output
or dynamic memory allocation routines, because they are not
reentrant. Likewise, no DOS functions can be used because DOS is
not reentrant.

249

250 Turbo Pascal Programmer's Guide

c H A p T E R

19

Input and output issues

Text file device drivers

As mentioned in Chapter 10, ''The System unit," Turbo Pascal
allows you to define your own text file device drivers. A text file
device driver is a set of four functions that completely implement
an interface between Turbo Pascal's file system and some device.

The four functions that define each device driver are Open, InOut,
Flush, and Close. The function header of each function is

function DeviceFunc(var F: TextRec): Integer;

where TextRec is the text file record type defined in the earlier
section, "File types," in Chapter 3. Each function must be
compiled in the {$F+} state to force it to use the far call model. The
return value of a device interface function becomes the value
returned by IOResult. The return value of 0 indicates a successful
operation.

To associate the device interface functions with a specific file, you
must write a customized Assign procedure (like the AssignCrt
procedure in the Crt unit). The Assign procedure must assign the
addresses of the four device interface functions to the four func­
tion pointers in the text file variable. In addition, it should store
the fmClosed "magic" constant in the Mode field, store the size of
the text file buffer in But Size, store a pointer to the text file buffer
in BufPtr, and clear the Name string.

Chapter 79, Input and output issues 251

252

The Open
function

Assuming, for example, that the four device interface functions
are called DevOpen, DevlnOut, DevFlush, and DevClose, the Assign
procedure might look like this:

procedure AssignDev(var F: Text);
begin

with TextRec(F) do
begin

Mode := frnClosed;
BufSize := SizeOf(Buffer);
BufPtr := @Buffer;
OpenFunc := @DevOpen;
InOutFunc := @DevlnOut;
FlushFunc := @DevFlush;
CloseFunc := @DevClose;
Name [0] := #0;

end;
end;

The device interface functions can use the UserData field in the file
record to store private information. This field is not modified by
the Turbo Pascal file system at any time.

The Open function is called by the Reset, Rewrite, and Append
standard procedures to open a text file associated with a device.
On entry, the Mode field contains fmlnput, fmOutput, or fmlnOut to
indicate whether the Open function was called from Reset, Rewrite,
or Append.

The Open function prepares the file for input or output, according
to the Mode value. If Mode specified fmlnOut (indicating that Open
was caned from Append), it must be changed Lo fmOutput before
Open returns.

Open is always called before any of the other device interface
functions. For that reason, Assign only initializes the OpenFunc
field, leaving initialization of the remaining vectors up to Open.
Based on Mode, Open can then install pointers to either input- or
output-oriented functions. This saves the InOut, Flush, and Close
functions from determining the current mode.

Turbo Pascal Programmer's Guide

The InOut
function The InOut function is called by the Read, Readln, Write, Writeln,

The Flush function

The Close

Eof, Eoln, SeekEof, SeekEoln, and Close standard procedures and
functions whenever input or output from the device is required.

When Mode is fmlnput, the InOut function reads up to BufSize
characters into BufPtrA , and returns the number of characters read·
in BufEnd. In addition, it stores 0 in BufPos. If the InOut function
returns 0 in BufEnd as a result of an input request, Eofbecomes
True for the file.

When Mode is fmOutput, the InOut function writes BufPos
characters from BufPtrA , and returns 0 in BufPos.

The Flush function is called at the end of each Read, Readln, Write,
and Writeln. It can optionally flush the text file buffer.

If Mode is fmlnput, the Flush function can store 0 in BufPos and
BufEnd to flush the remaining (un-read) characters in the buffer.
This feature is seldom used. ' ,

If Mode is fmOutput, the Flush function can write the contents of
the ~uffer, exactly like the InOut function, which ensures that text
written to the device appears on the device immediately. If Flush
does nothing, the text will not appear on the device until the
buffer becomes full or the file is closed. .

function The Close function is called by the Close standard procedure to
close a text file associated with a device. (The Reset, Rewrite; and
Append procedures also call Close if the file they are opening is
already open.) If Mode is fmOutput, then before calling Close,
Turbo Pascal's file system calls InOut to ensure that all characters
have been written to the device.

Direct port access

For access to the 80x86 CPU data ports, Turbo Pascal implements
two predefined arrays, Port and Port W. Both are one-dimensional

Chapter 79, Input and output issues 253

254

arrays, and each element represents a data port, whose port
address corresponds to its index. The index type is the integer
type Word. Components of the Port array are of type byte, and
components of the Port W array are of type Word.

When a value is assigned to a component of Port or Port W, the
value is output to the selected port. When a component of Port or
Port W is referenced in an expression, its value is input from the
selected port. Some examples include:

Port [$20] := $20;
Port [Base] := Port [Base] xor Mask;
while Port[$B2] and $80 = 0 do {Wait};

Use of the Port and PortWarrays is restricted to assignment and
reference in expressions only, that is, components of Port and
Port W cannot be used as variable parameters. Furthermore,
references to the entire Port or Port W array (reference without
index) are not allowed.

Turbo Pascal Programmer's Guide

c H A p T E R

20

Automatic optimizations

Turbo Pascal performs several different types of code optimi­
zations, ranging from constant folding and short-circuit Boolean
expression evaluation all the way up to smart linking. The
following sections describe some of the types of optimizations
performed.

Constant folding

If the operand(s) of an operator are constants, Turbo Pascal
evaluates the expression at compile time. For example,

x := 3 + 4 * 2

generates the same code as X : = 11, and

S := 'In' + 'Out'

generates the same code as S : = I InOut I •

Likewise, if an operand of an Abs, Chr, Hi, Length, Lo, Odd, Ord,
Pred, Ptr, Round, Succ, Swap, or Trunc function call is a constant,
the function is evaluated at compile time.

If an array index expression is a constant, the address of the
component is evaluated at compile time. For example, accessing
Data[5, 5] is just as efficient as accessing a simple variable.

Chapter 20, Automatic optimizations 255

Constant merging

Using the same string constant two or more times in a statement
part generates only one copy of the constant. For example, two or
more Write ('Done') statements in the same statement part will
reference the same copy of the string constant 'Done'.

Short-circuit evaluation

Turbo Pascal implements short-circuit Boolean evaluation, which
means that evaluation of a Boolean expression stops as soon as
the result of the entire expression becomes evident. This guaran­
tees minimum execution time, and usually minimum code size.
Short-circuit evaluation also makes possible the evaluation of
constructs that would not otherwise be legal; for instance:

while (I <= Length(S)) and (5[1] <> ' ') do
Inc(I);

while (P <> nil) and (pA.Value <> 5) do
P := PA.Next;

In both cases, the second test is not evaluated if the first test is
False.

The opposite of short-circuit evaluation is complete evaluation,
which is selected through a {$B+} compiler directive. In this state,
every operand of a Boolean expression is guaranteed to be
evaluated.

Order of evaluation

256

As permitted by the Pascal standards, operands of an expression
are frequently evaluated differently from the left to right order in
which they are written. For example, the statement

I := F(J) div G(J);

where F and G are functions of type Integer, causes G to be
evaluated before F, since this enables the compiler to produce
better code. Because of this, it is important that an expression
never depend on any specific order of evaluation of the

Turbo Pascal Programmer's Guide

embedded functions. Referring to the previous example, if F must
be called before G, use a temporary variable:

T := F(J);

I :=TdivG(J);

¢ As an exception to this rule, when short-circuit evaluation is
enabled (the {$B-} state), Boolean operands grouped with and or
or are always evaluated from left to right.

Range checking

Assignment of a constant to a variable and use of a constant as a
value parameter is range-checked at compile time; no run-time
range-check code is generated. For example, X := 999, where X is
of type Byte, causes a compile-time error.

Shift instead of multiply

The operation X * C, where C is a constant and a power of 2, is
coded using a SHL instruction.

Likewise, when the size of an array's components is a power of 2,
a SHL instruction (not a MUL instruction) is used to scale the
index expression.

Automatic word alignment

For further details, refer to
Chapter 21, "Compiler

directives. N

By default, Turbo Pascal aligns all variables and typed constants
larger than 1 byte on a machine-word boundary. On all 16-bit
80x86 CPUs, word alignment means faster execution, since word­
sized items on even addresses are accessed faster than words on
odd addresses.

Data alignment is controlled through the $A compiler directive. In
the default {$A+} state, variables and typed constants are aligned
as described above. In the {$A-} state, no alignment measures are
taken.

Chapter 20, Automatic optimizations 257

Dead code removal

Smart linking

When compiling to memory,
Turbo Pascal's smart linker is
disabled. This explains why

some programs become
smaller when compiled to

disk.

258

Statements that are known never to execute do not generate any
code. For example, these constructs don't generate any code:

if False then
statement

while False do
statement

Turbo Pascal's built-in linker automatically removes unused code
and data when building an .EXE file. Procedures, functions, vari­
ables, and typed constants that are part of the compilation, but
never get referenced, are removed from the .EXE file. The removal
of unused code takes place on a per procedure basis; the removal
of unused data takes place on a per declaration section basis.

Consider the following program:

program Smart Link;

const
H: array[O .. 15) of Char = '0123456789ABCDEF';

var
I, J: Integer;
X, Y: Real;

var
S: string[79);

var
A: array[l .. lOOOO) of Integer;

procedure P1;
begin

A[1) := 1;
end;

procedure P2;

begin
I := 1;

end;

Turbo Pascal Programmer's Guide

procedure P 3;
begin

S := 'Turbo Pascal';
P2;

end;

begin
P3;

end.

The main program calls P3, which calls P2, so both P2 and P3 are
included in the .EXE file; and since P2 references the first var
declaration section, and P3 references the second var declaration,
I, I, X, Y, and 5 are also included in the .EXE file. However, no
references are made to Pl, and none of the included procedures
reference H and A, so these objects are removed.

Smart linking is especially valuable in connection with units that
implement procedure/ function libraries. An example of such a
unit is the Dos standard unit: It contains a number of procedures
and functions, all of which are seldom used by the same program.
If a program uses only one or two procedures from Dos, then only
these procedures are included in the final .EXE file, and the re­
maining ones are removed, greatly reducing the size of the .EXE
file.

Chapter 20, Automatic optimizations 259

260 Turbo Pascal Programmer's Guide

c H A p T E R

21

Compiler directives

Some of the Turbo Pascal compiler's features are controlled
through compiler directives. A compiler directive is a comment
with a special syntax. Turbo Pascal allows compiler directives
wherever comments are allowed.

A compiler directive starts with a $ as the first character after the
opening comment delimiter, and is immediately followed by a
name (one or more letters) that designates the particular directive.
There are three types of directives:

• Switch directives. These directives tum particular compiler
features on or off by specifying + or - immediately after the
directive name.

• Parameter directives. These directives specify parameters that
affect the compilation, such as file names and memory sizes.

• Conditional directives. These directives control conditional
compilation of parts of the source text, based on user-definable
conditional symbols.

All directives, except switch directives, must have at least one
blank between the directive name and the parameters. Here are
some examples of compiler directives:

{$B+}
{$R- Turn off range checking}
{$I TYPES. INC}
{$O EdFormat}
{$M 65520,8192,655360}
{$DEFINE Debug}

Chapter 27, Compiler directives 261

{$IFDEF Debug}
{$ENDIF}

You can put compiler directives directly into your source code.
You can also change the default directives for both the
command-line compiler (TPC.EXE) and the IDE (TURBO.EXE).
The Options I Compiler menu contains all the compiler directives;
any changes you make to the settings there will affect all subse­
quent compilations. When using the command-line compiler, you
can specify compiler directives on the command line (for
example, TPC /$R+MYPROG), or you can place directives in a
configuration file (TPC.CFG-see Chapter 9 of the User's Guide for
information). Compiler directives in the source code always
override the default values in both the command-line compiler
and the IDE.

Switch directives

Align data

Switch directives are either global or local. Global directives affect
the entire compilation, whereas local directives affect only the
part of the compilation that extends from the directive until the
next occurrence of the same directive.

Global directives must appear before the declaration part of the
program or the unit being compiled, that is, before the first uses,
label, const, type, procedure, function, or begin keyword. Local
directives, on the other hand, can appear anywhere in the
program or unit.

Multiple switch directives can be grouped in a single compiler
directive comment by separating them with commas; for example,

{$B+,R-,S-}

There can be no spaces between the directives in this case.

Syntax {$A+} or {$A-}

Default { $A+ }

Type Global

Menu equivalent Options I Compiler I Word Align Data

262 Turbo Pascal Programmer's Guide

Align data

Command-line The command-line compiler equivalent is the I$A option.

Remarks The $A directive switches between byte and word alignment of variables
and typed constants. Word alignment has no effect on the 8088 CPU.
However, on a1l80x86 CPUs, word alignment means faster execution,
since word-sized items on even addresses are accessed in one memory
cycle, in comparison to two memory cycles for words on odd addresses.

In the {$A+} state, all variables and typed constants larger than one byte
are aligned on a machine-word boundary (an even-numbered address). If
required, unused bytes are inserted between variables to achieve word
alignment. The {$A+} directive does not affect byte-sized variables; neither
does it affect fields of record structures and elements of arrays. A field in a
record will align on word boundary only if the total size of all fields
before it is even. Likewise, for every element of an array to align on a
word boundary, the size of the elements must be even.

In the {$A-} state, no alignment measures are taken. Variables and typed
constants are simply placed at the next available address, regt;lrdless of
their size. If you are recompiling programs using the Turbo Pascal Editor
Toolbox, make sure to compile all programs that use the toolbox with
{$A-}.

¢ Regardless of the state of the $A directive, each global var and canst
declaration section always starts at a word boundary. Likewise, the
compiler always attempts to keep the stack pointer (SP) word aligned, by
allocating an extra unused byte in a procedure's stack frame if required.

Boolean evaluation

Syntax {$B+} or {$B-}

Default {$B- }

Type Local

Menu equivalent Options I Compiler I Complete Boolean Eval

Remarks The $B directive switches between the two different models of code
generation for the and and or Boolean operators.

In the {$B+} state, the compiler generates code for complete Boolean
expression evaluation. This means that every operand of a Boolean
expression, built from the and and or operators, is guaranteed to be
evaluated, even when the result of the entire expression is already known.

Chapter 27, Compiler directives 263

Boolean evaluation

In the {$B-} state, the compiler generates code for short-circuit Boolean
expression evaluation, which means that evaluation stops as soon as the
result of the entire expression becomes evident.

For further details, refer to the section "Boolean operators" in Chapter 6,
"Expressions."

Debug information

Syntax {$Ot} or {$O-}

Default {$Ot }

Type Global

Menu equivalent Options I Compiler I Debug Information

Remarks The $D directive enables or disables the generation of debug information.
This information consists of a line-number table for each procedure,
which maps object code addresses into source text line numbers.

When the Debug Information option is checked for a given program or
unit, Turbo Pascal's integrated debugger allows you to single-step and set
breakpoints in that module. Furthermore, when a run-time error occurs in
a program or unit compiled with {$D+}, Turbo Pascal can automatically
take you to the statement that caused the error with Search I Find Error.

The Debugging (Options I Debugger) and Map File (Options I Linker)
options produce complete information for a given module only if you've
compiled that module in the {$D+} state.

For units, the debug information is recorded in the .TPU file along with
the unit's object code. Debug information increases the size of .TPU files,
and takes up additional room when compiling programs that use the unit,
but it does not affect the size or speed of the executable program.

The $D switch is usually used in conjunction with the $L switch, which
enables and disables the generation of local symbol information for
debugging.

¢ If you want to use the Turbo Debugger to debug your program, set
Compile I Destination to Disk and check Standalone in Options I
Debugger I Debugging.

264 Turbo Pascal Programmer's Guide

Emulation

Emulation

Syntax {$Et} or {$E-}

Default { $Et }

Type Global

Menu equivalent Options I Compiler I Emulation

Remarks The $E directive enables or disables linking with a run-time library that
will emulate the 8087 numeric coprocessor if it is not present.

When you compile a program in the {$N+,E+} state, Turbo Pascal links
with the full 8087 emulator. The resulting .EXE file can be used on any
machine, regardless of whether an 8087 is present. If one is found, Turbo
Pascal will use it; otherwise, the run-time library emulates it.

In the {$N+,E-} state, Turbo Pascal links with a substantially smaller
floating-point library, which can only be used if an 8087 is present.

The 8087 emulation switch has no effect if used in a unit; it applies only to
the compilation of a program. Furthermore, if the program is compiled in
the {$N-} state, and if all the units used by the program were compiled
with {$N-}, then an 8087 run-time library is not required, and the 8087
emulation switch is ignored.

Force for calls

Syntax {$Ft} or {$F-}

Default {$F- }

Type Local

Menu equivalent Options I Compiler I Force Far Calls

Remarks The $F directive controls which call model to use for subsequently com­
piled procedures and functions. Procedures and functions compiled in the
{$F+} state always use the far call model. In the {$F-} state, Turbo Pascal
automatically selects the appropriate model: far if the procedure or
function is declared in the interface section of a unit; near otherwise.

The near and far call models are described in full in Chapter 18, "Control
issues."

Chapter 27, Compiler directives 265

Force far calls

¢ For programs that use overlays, we suggest that you place a {$F+} direc­
tive at the beginning of the program and each unit, in order to satisfy the
far call requirement. For more discussion, see Chapter 13, "The Overlay
unit." For programs that use procedural variables, all such procedures
must use the far code model. For more discussion, see "Procedural
variables" in Chapter 8.

Generate 80286 code

Syntax {$G+} or {$G-}

Default { $ G- }

Type Local

Menu equivalent Options I Compiler I 286 instructions

The $G directive enables or disables 80286 code generation. In the {$G-}
state, only generic 8086 instructions are generated, and programs com­
piled in this state can run on any 80x86 family processor. In the {$G+}
state, the compiler uses the additional instructions of the 80286 to improve
code generation, but programs compiled in this state cannot run on 8088
and 8086 processors. Additional instructions used in the {$G+} state
include ENTER, LEAVE, PUSH immediate, extended IMUL, and extended
SHL and SHR.

Input/output checking

Syntax { $ It} or {$ 1- }

Default {$1 +}

Type Local

Menu equivalent Options I Compiler 11/ 0 Checking

Remarks The $1 directive enables or disables the automatic code generation that
checks the result of a call to an I/O procedure. I/O procedures are
described in Chapter 19, "Input and output issues." If an I/O procedure
returns a nonzero I/O result when this switch is on, the program termi­
nates, displaying a run-time error message. When this switch is off, you
must check for I/O errors by using the IOResult function.

266 Turbo Pascal Programmer's Guide

Local symbol information

Local symbol information

Syntax {$L+} or {$L-}

Default {$L+ }

Type Global

Menu equivalent Options I Compiler I Local Symbols

Remarks The $L directive enables or disables the generation of local symbol
information. Local symbol information consists of the names and types of
all local variables and constants in a module, that is, the symbols in the
module's implementation part, and the symbols within the module's
procedures and functions.

When local symbols are on for a given program or unit, Turbo Pascal's
integrated debugger allows you to examine and modify the module's local
variables. Furthermore, calls to the module's procedures and functions can
be examined via the Window I Call Stack window.

Object method implementations written in assembly language can be
linked with Turbo Pascal programs using the $L compiler directive and
the external keyword. For more information, see Chapter 23, "Linking
assembler code."

The Map File (Options I Linker) and Debugging (Options I Debugger)
options produce local symbol information for a given module only if that
module was compiled in the {$L+} state.

For units, the local symbol information is recorded in the .TPU file along
with the unit's object code. Local symbol information increases the size of
.TPU files, and takes up additional room when compiling programs that
use the unit, but it does not affect the size or speed of the executable
program.

The $L switch is usually used in conjunction with the $0 switch, which
enables and disables the generation of line-number tables for debugging.
Note that the $L directive is ignored if Debug Information is unchecked
{$D-}.

Chapter 2 7 I Compiler directives 267

Numeric processing

Numeric processing

Syntax { $N+} or {$N-}

Default { $N- }

Type Global

Menu equivalent Options I Compiler I 8087/80287

Remarks The $N directive switches between the two different models of floating­
point code generation supported by Turbo Pascal. In the {$N-} state, code
is generated to perform all real-type calculations in software by calling
run-time library routines. In the {$N+} state, code is generated to perform
all Real-type calculations using the 8087 numeric coprocessor.

Note that you can also use the {$E+} directive to emulate the 8087. This
gives you access to the IEEE floating-point types without requiring that
you install an 8087 chip.

Overlay code generation

Syntax {$O+} or {$O-}

Default { $0- }

Type Global

Menu equivalents Options I Compiler I Overlays Allowed

268

The $0 directive enables or disables overlay code generation. Turbo
Pascal allows a unit to be overlaid only if it was compiled with {$O+}. In
this state, the code generator takes special precautions 'when passing
string and set constant parameters from one overlaid procedure or
function to another.

The use of {$O+} in a unit does not force you to overlay that unit. It just
instructs Turbo Pascal to ensure that the unit can be overlaid, if so desired.
If you develop units that you plan to use in overlaid as well as non­
overlaid applications, then compiling them with {$O+} ensures that you
can indeed do both with just one version of the unit.

-=:> A {$O+} compiler directive is almost always used in conjunction with a
{$F+} directive to satisfy the overlay manager's far call requirement.

For further details on overlay code generation, refer to Chapter 13, "The
Overlay unit."

Turbo Pascal Programmer's Guide

Range checking

Range checking

Syntax {$R+} or {$R-}

Default {$R-}

Type Local

Menu equivalent· Options I Compiler I Range Checking

Remarks The $R directive enables or disables the generation of range-checking
code. In the {$R+} state, all array and string-indexing expressions are
verified as being within the defined bounds, and all assignments to scalar
and subrange variables are checked to be within range. If a range check
fails, the program terminates and displays a run-time error message.
Enabling range checking slows down your program and makes it larger.
Use this option when debugging, then turn it off once the program is bug
free.

If $R is switched on, all calls to virtual methods are checked for the
initialization status of the object instance making the call. If the instance
making the call has not been initialized by its constructor, a range check
run-time error occurs.

Enabling range checking and virtual method call checking slows down
your program and makes it somewhat larger, so use the {$R+} only for
debugging.

Stack-overflow checking

Syntax {$8+} or {$8-}

Default { $ 8+ }

Type Local

Menu equivalent Options I Compiler I Stack Checking

Remarks The $S directive enables or disables the generation of stack-overflow
checking code. In the {$S+} state, the compiler generates code at the
beginning of each procedure or function that checks whether there is
sufficient stack space for the local variables and other temporary storage.
When there is not enough stack space, a call to a procedure or function
compiled with {$S+} causes the program to terminate and display a run­
time error message. In the {$S-} state, such a call is most likely to cause a
system crash.

Chapter 2 7, Compiler directives 269

Var-string checking

Var-string checking

Syntax { $V+} or {$V-}

Default {$V+ }

Type Local

Menu equivalent Options I Compiler I Strict Var-Strings

Remarks The $V directive controls type checking on strings passed as variable
parameters. In the {$V+} state, strict type checking is performed, requiring
the formal and actual parameters to be of identical string types. In the {$V-}
(relaxed) state, any string type variable is allowed as an actual parameter,
even if the declared maximum length is not the same as that of the formal
parameter.

Extended syntax

Syntax {$X+} or {$X-}

Default {$X-}

Type Global

Menu equivalent Options I Compiler I Extended Syntax

270

The $X compiler directive enables or disables Turbo Pascal's extended
syntax. In the {$X+} mode, function calls can be used as statements; that is,
the result of a function call can be discarded. Generally, the computations
performed by a function are represented through its result, so discarding
the result makes little sense. However, in certain cases a function can carry
out multiple operations based on its parameters, and some of those cases
may not produce a sensible result-in such cases, the {$X+} extensions
allow the function to be treated as a procedure.

1111" The {$X+} directive does not apply to built-in functions (that is, functions
defined in the System unit).

In the default state, {$X-}, this extension is disabled and attempting to use
it will cause an error.

Turbo Pascal Programmer's Guide

Include file

Parameter directives

Include file

Syntax

Type

Menu equivalent

Remarks

{$I filename}

Local

Options I Directories I Include Directories
The $1 directive instructs the compiler to include the named file in the
compilation. In effect, the file is inserted in the compiled text right after
the {$I filename} directive. The default extension for filename is .P AS. If
filename does not specify a directory, then, in addition to searching for the
file in the current directory, Turbo Pascal searches in the directories
specified in the Options I Directories I Include Directories input box (or in
the directories specified in the n option on the TPC command line).

You can nest Include files up to 15 levels deep.

There is one restriction to the use of Include files: An Include file cannot
be specified in the middle of a statement part. In fact, all statements
between the begin and end of a statement part must reside in the same
source file.

Link object file

Syntax {$L filename}

Type Local

Menu equivalent Options I Directories I Object Directories

Remarks The Link object file directive instructs the compiler to link the named file
with the program or unit being compiled. The $L directive is used to link
with code written in assembly language for subprograms declared to be
external. The named file must be an intel relocatable object file (.OBI file).
The default extension for filename is .OBJ. If filename does not specify a
directory, then, in addition to searching for the file in the current
directory, Turbo Pascal searches in the directories specified in the
Options I Directories I Object Directories input box (or in the directories
specified in the /0 option on the TPC command line). For further details

Chapter 2 7, Compiler directives 271

Memory allocation sizes

about linking with assembly language, see Chapter 23, "Linking
assembler code."

Memory allocation sizes

Syntax {$M stacksize,heapmin,heapmax}

Default {$M 16384,0, 655360}

Type Global

Menu equivalent Options I Memory Sizes

Remarks The Memory allocation sizes directive specifies a program's memory
allocation parameters. stacksize must be an integer number in the range
1,024 to 65,520, which specifies the size of the stack segment. heapmin must
be in the range 0 to 655,360, and heapmax must be in the range heapmin to
655,360. heapmin and heapmizx specify the minimum and maximum sizes of
the heap, respectively.

The stack segment and the heap are further discussed in Chapter 4,
"Variables," and Chapter 16, "Memory issues."

r::::> The $M directive has no effect when used in a unit.

Overlay unit name

Syntax {$O unitname}

Type Local

Menu equivalent None

272

Remarks The Overlay unit name directive turns a unit into an overlay.

The {$O unitname} directive has no effect if used in a unit; when compiling
a program, it specifies which of the units used by the program should be
placed in an .OVR file instead of in the .EXE file.

{$O unitname} directives must be placed after the program's uses clause.
Turbo Pascal reports an error if you. attempt to overlay a unit that wasn't
compiled in the {$O+} state. Any unit named in a {$O unitname} directive
must have been compiled with Overlays Allowed set to On in the IDE (the
equivalent of the {$O+} compiler directive).

For further details on overlays, refer to Chapter 13, liThe Overlay unit."

Turbo Pascal Programmer's Guide

Conditional compilation

Turbo Pascal's conditional compilation directives allow you to
produce different code from the same source text, based on
conditional symbols.

There are two basic conditional compilation constructs, which
closely resemble Pascal's if statement. The first construct

{$IFxxx} ... {$ENDIF}

causes the source text between {$IFxxx} and {$ENDIF} to be
compiled only if the condition specified in {$IFxxx} is True; if the
condition is False, the source text between the two directives is
ignored.

The second conditional compilation construct

{$IFxxx} ... {$ELSE} ... {$ENDIF}

causes either the source text between {$IFxxx} and {$ELSE} or the
source text between {$ELSE} and {$ENDIF} to be compiled, based
on the condition specified by the {$IFxxx}.

Here are some examples of conditional compilation constructs:

{$IFDEF Debug}
Writeln('X = " X);

{$ENDIF}

{$IFDEF CPU8?}
{$N+}
type

Real = Double;
{$ELSE}

{$N-}
type

Single = Real;
Double = Reali
Extended = Real;
Comp = Real;

{$ENDIF}

You can nest conditional compilation constructs up 16 levels
deep. For every {$IFxxx}, the corresponding {$ENDIF} must be
found within the same source file-which means there must be an
equal number of {$IFxxx}'s and ($ENDIF}'s in every source file.

Chapter 2 7, Compiler directives 273

274

Conditional
symbols Conditional compilation is based on the evaluation of conditional

symbols. Conditional symbols are defined and undefined
(forgotten) using the directives

{$DEFINE name}
{$UNDEF name}

You can also use the 10 switch in the command-line compiler (or
place it in the Conditional Defines input box from within
Options I Compiler of the IDE).

Conditional symbols are best compared to Boolean variables:
They are either True (defined) or False (undefined). The
{$OEFINE} directive sets a given symbol to True, and the
{$UNOEF} directive sets it to False.

Conditional symbols follow the exact same rules as Pascal identi­
fiers: They must start with a letter, followed by any combination
of letters, digits, and underscores. They can be of any length, but
only the first 63 characters are significant.

Importanfl Conditional symbols and Pascal identifiers have no correlation
whatsoever. Conditional symbols cannot be referenced in the
actual program, and the program's identifiers cannot be
referenced in conditional directives. For example, the construct

const
Debug = True;

begin
{$IFDEF Debug}
Writeln('Debug is on');

{$ENDIF}
end;

will not compile the Write1n statement. Likewise, the construct

{$DEFINE Debug}
begin
if Debug then
Writeln('Debug is on');

end;

will result in an unknown identifier error in the if statement.

Turbo Pascal defines the following standard conditional symbols:

Turbo Pascal Programmer's Guide

VER60 Always defined, indicating that this is version 6 .. 0 of
Turbo Pascal. Other versions (starting with 4.0) define
their corresponding version symbol; for instance,
VER40 for version 4.0, and so on.

MSDOS Always defined, indicating that the operating system is
MS-DOS or PC-DOS. Versions of Turbo Pascal for
other operating systems will instead define a symbolic
name for that particular operating system.

CPU86 Always defined, indicating that the CPU belongs to the
80x86 family of processors. Versions of Turbo Pascal
for other CPUs will instead define a symbolic name for
that particular CPU.

CPU87 Defined if an 80x87 numeric coprocessor is present at
compile time. If the construct

{$IFDEF CPU87} {$N+} {$ELSE} {$N-} {$ENDIF}

appears at the beginning of a compilation, Turbo
Pascal automatically selects the appropriate model of
floating-point code generation for that particular
computer.

Other conditional symbols can be defined before a compilation by
using the Conditional Defines input box (Options I Compiler), or
the 10 command-line option if you are using TPC.

The DEFINE directive

Syntax {$DEFINE name}

Remarks Defines a conditional symbol of name. The symbol is recognized for the
remainder of the compilation of the current module in which the symbol
is dedared, or until it appears in an {$UNOEF name} directive. The
{$DEFINE name} directive has no effect if name is already defined.

Chapter 2 7, Compiler directives 275

The UNDEF directive

The UNDEF directive

Syntax {$UNDEF name}

Remarks Undefines a previously defined conditional symbol. The symbol is
forgotten for the remainder of the compilation or until it reappears in a
{$DEFINE name} directive. The {$UNDEF name} directive has no effect if
name is already undefined.

The IFDEF directive

Syntax { $ IFDEF name}

Remarks Compiles the source text that follows it if name is defined.

The IFNDEF directive

Syntax {$IFNDEF name}

Remarks Compiles the source text that follows it if name is not defined.

The IFOPT directive

276

Syntax {$IFOPT switch}

Remarks Compiles the source text that follows it if switch is currently in the
specified state. switch consists of the name of a switch option, followed by
a + or a - symbol. For example, the construct

{$IFOPT Nt}
type Real = Extended;

{$ENDIF}

will compile the type declaration if the $N option is currently active.

Turbo Pascal Programmer's Guide

The ELSE directive

The ELSE directive

Syntax { $ELSE}

Remarks Switches between compiling and ignoring the source text delimited by the
last ($IFxxx} and the next ($ENDIF}.

The ENDIF directive

Syntax {$ENDIF}

Remarks Ends the conditional compilation initiated by the last {$IFxxx} directive.

Chapter 27, Compiler directives 277

278 Turbo Pascal Programmer's Guide

p A R T

4

Using Turbo Pascal with assembly
language

279

280 Turbo Pascal Programmer's Guide

c H A p T E R

22

The inline assembler

Turbo Pascal's inline assembler allows you to write 8086/8087 and
80286/80287 assembler code directly inside your Pascal programs.
Of course, you can still convert assembler instructions to machine
code manually for use in inline statements, or link in .OBI files
that contain external procedures and functions when you want to
mix Pascal and assembler.

The inline assembler implements a large subset of the syntax
supported by Turbo Assembler and Microsoft's Macro Assembler.
The inline assembler supports all 8086/8087 and 80286/80287
opcodes, and all but a few of Turbo Assembler's expression
operators.

Except for DB, OW, and DO (define byte, word, and double word),
none of Turbo Assembler's directives, such as EQU, PROC,
STRUC, SEGMENT, and MACRO, are supported by the inline
assembler. Operations implemented through Turbo Assembler
directives, however, are largely matched by corresponding Turbo
Pascal constructs. For example, most EQU directives correspond
to const, var, and type declarations in Turbo Pascal, the PROC
directive corresponds to procedure and function declarations, and
the STRUC directive corresponds to Turbo Pascal record types. In
fact, Turbo Pascal's inline assembler can be thought of as an
assembler language compiler that uses Pascal syntax for all
declarations.

Chapter 22, The inline assembler 281

The asm statement

282

The inline assembler is accessed through 8sm statements. The
syntax of an 8sm statement is

asm AsmStatement < Separator AsmStatement > end

where AsmStatement is an assembler statement, and Separator is a
semicolon, a new-line, or a Pascal comment. Here are some
examples of 8sm statements:

if EnableInts then
asm

sti
end
else
asm

cli
end;

asm
mov ax, Left; xchg ax, Right; mov Left,ax;

end;

asm
mov ah,O { Read keyboard function code }
int 16H { Call PC BIOS to read key }
mov CharCode,al { Save ASCII code }
mov ScanCode,ah { Save scan code }

end;

asm
push ds { Save OS }
Ids si,Source Load source pointer }

Ies di,Oest Load destination pointer }

mov cx,Count { Load block size }

cid { Move forwards }

rep movsb { Copy block }
pop ds { Restore OS }

end;

Notice that multiple assembler statements can be placed on one
line if they are separated by semicolons. Also notice that a semi­
colon is not required between two assembler statements if the
statements are on separate lines. Finally, notice that a semicolon
does not indicate that the rest of the line is a comment-comments
must be written in Pascal style using { and} or (* and *).

Turbo Pascal Programmer's Guide

Register use
The rules of register use in an asm statement are in general the
same as those of an external procedure or function. An asm state­
ment must preserve the BP, 5P, 55, and D5 registers, but can
freely modify the AX, BX, CX, DX, 51, D1, E5, and Flags registers.
On entry to an asm statement, BP points to the current stack
frame, 5P points to the top of the stack, 55 contains the segment
address of the stack segment, and D5 contains the segment
address of the data segment. Except for BP, SP, 55, and D5, an
asm statement can assume nothing about register contents on
entry to the statement.

Assembler statement syntax

Labels

The syntax of an assembler statement is

[Label ":" 1 < Prefix> [Opeode [Operand < "," Operand> 1

where Label is a label identifier, Prefix is an assembler prefix
opcode (operation code), Opcode is an assembler instruction
opcode or directive, and Operand is an assembler expression.

Comments are allowed between assembler statements, but not
within them. For example, this is allowed:

asm
mov ax,l {Initial value}
mov ex,100 {Count}

end;

but this is an error:

asm
mov {Initial value} ax,l;
mov ex, {Count} 100

end;

Labels are defined in assembler just as in Pascal, by writing a label
identifier and a colon before a statement; and just as in Pascal,
labels defined in assembler must be declared in a label declaration
part in the block containing the asm statement. There is however
one exception to this rule: local labels.

Chapter 22, The inline assembler 283

284

Local labels are labels that start with an at-sign (@). Since an at­
sign cannot be part of a Pascal identifier, such local labels are
automatically restricted to use within asm statements. A local
label is known only within the asm statement that defines it (that
is, the scope of a local label extends from the asm keyword to the
end keyword of the asm statement that contains it).

¢ Unlike a normal label, a local label does not have to be declared in
a label declaration part before it is used.

The exact composition of a local label identifier is an at-sign (@)
followed by one or more letters (A .. Z), digits (0 .. 9), underscores
(_), or at-signs. As with all labels, the identifier is followed by a
colon (:).

The following program fragment demonstrates use of normal and
local labels in asm statements:

label Start, Stop;

begin
asm

Start:

jz Stop
@l:

loop @l
end;
asm

@l:

jc @2

jrnp @l
@2:

end;
goto Start;
Stop:

end;

Notice that a normal label can be defined within an asm
statement and referenced outside an asm statement and vice

Turbo Pascal Programmer's Guide

Prefix opcodes

Instruction

versa. Also, notice that the same local label name can be used in
different asm statements.

The inline assembler supports the following prefix opcodes:

LOCK
REP
REPE/REPZ
REPNE/REPNZ
SEGCS
SEGDS
SEGES
SEGSS

Bus lock
Repeat string operation
Repeat string operation while equal! zero
Repeat string operation while not equal/zero
C5 (code segment) override
D5 (data segment) override
E5 (extra segment) override
55 (stack segment) override

Zero or more of these can prefix an assembler instruction. For
example,

asm
rep movsb
SEGES lodsw
SEGCS mov ax, [bx]
SEGES
mov WORD PTR [01],0

end;

{ Move CX bytes from DS:S1 to ES:D1
{ Load word from ES:S1 }
{ Same as MOV AX,CS:[BX] }
{ Affects next assembler statement
{ Becomes MOV WORD PTR ES:[D1],O }

Notice that a prefix opcode can be specified without an
instruction opcode in the same statement-in that case, the prefix
opcode affects the instruction opcode in the following assembler
statement.

An instruction opcode seldom, if ever, has more than one prefix
opcode, and at most no more than three prefix opcodes can make
sense (a LOCK, followed by a SEGxx, followed by a REPxx). Be
careful about using multiple prefix opcodes-ordering is impor­
tant, and some 80x86 processors do not handle all combinations
correctly. For example, an 8086 or 8088 "remembers" only the
REP xx prefix if an interrupt occurs in the middle of a repeated
string instruction, so a LOCK or SEGxx prefix cannot safely be
coded before a REPxx string instruction.

opcodes The inline assembler supports all 8086/8087 and 80286/80287
instruction opcodes. 8087 opcodes are available only in the {$N+}
state (numeric processor enabled), 80286 opcodes are available

Chapter 22, The inline assembler 285

only in the {$G+} state (80286 code generation enabled), and 80287
opcodes are available only in the {$G+,N+} state.

For a complete description of each instruction, refer to your 80x86
and 80x87 reference manuals.

RET instruction sizing The RET instruction opcode generates a near return or a far return
machine code instruction depending on the call model of the
current procedure or function.

procedure NearProc; near;
begin

asm
ret {Generates a near return }

end;
end;

procedure FarProc; far;
begin

a8m

ret {Generates a far return }
end;

end;

The RETN and RETF instructions on the other hand always
generate a near return and a far return, regardless of the call
model of the current procedure or function.

Automatic jump sizing Unless otherwise directed, the inline assembler optimizes jump
instructions by automatically selecting the shortest, and therefore
most efficient form of a jump instruction. This automatic jump
sizing applies to the unconditional jump instruction (JMP), and all
conditional jump instructions, when the target is a label (not a
procedure or function).

For an unconditional jump instruction (JMP), the inline assembler
generates a short jump (one byte opcode followed by a one byte
displacement) if the distance to the target label is within -128 to
127 bytes; otherwise a near jump (one byte opcode followed by a
two byte displacement) is generated.

For a conditional jump instruction, a short jump (1 byte opcode
followed by a 1 byte displacement) is generated if the distance to
the target label is within -128 to 127 bytes; otherwise, the inline
assembler generates a short jump with the inverse condition,
which jumps over a near jump to the target label (5 bytes in total).
For example, the assembler statement

286 Turbo Pascal Programmer's Guide

Assembler

JC Stop

where Stop is not within reach of a short jump is converted to a
machine code sequence that corresponds to

jnc Skip
jrnp Stop
Skip:

Jumps to the entry points of procedures and functions are always
either near or far, but never short, and conditional jumps to
procedures and functions are not allowed. You can force the
inline assembler to generate an unconditional near jump or far
jump to a label by using a NEAR PTR or FAR PTR construct. For
example, the assembler statements

jrnp NEAR PTR Stop
jrnp FAR PTR Stop

will always generate a near jump and a far jump, respectively,
even if Stop is a label within reach of a short jump.

directives Turbo Pascal's inline assembler supports three assembler
directives: DB (define byte), DW (define word), and DD (define
double word). They each generate data corresponding to the
comma-separated operands that follow the directive.

The DB directive generates a sequence of bytes. Each operand
may be a constant expression with a value between -128 and 255,
or a character string of any length. Constant expressions generate
one byte of code, and strings generate a sequence of bytes with
values corresponding to the ASCII code of each character.

The DW directive generates a sequence of words. Each operand
may be a constant expression with a value between -32,768 and
65,535, or an address expression. For an address expression, the
inline assembler generates a near pointer, that is, a word that
contains the offset part of the address.

The DD directive generates a sequence of double words. Each
operand may be a constant expression with a value between
-2,147,483,648 and 4,294,967,295, or an address expression. For an
address expression, the inline assembler generates a far pointer,
that is, a word that contains the offset part of the address,
followed by a word that contains the segment part of the address.

Chapter 22, The inline assembler 287

288

The data generated by the DB, OW, and 00 directives is always
stored in the code segment, just like the code generated by other
inline assembler statements. To generate uninitialized or initial­
ized data in the data segment, you should use normal Pascal var
or canst declarations.

Some examples of DB, OW, and DO directives follow:

asm
DB OFFH { One byte
DB 0,99 { Two bytes
DB 'A' { Ord('A')
DB 'Hello world ... ' ,ODH,OAH String followed by CR/LF }
DB 12,"Turbo Pascal" { Pascal style string }
DW OFFFFH { One word }
DW 0,9999 { Two words }

DW 'A' Same as DB 'A' ,0 }

DW 'BA' Same as DB 'A','B' }

DW MyVar { Offset of MyVar }

DW MyProc { Offset of MyProc }

DD OFFFFFFFFH { One double-word }
DD 0,999999999 { Two double-words }
DD 'A' Same as DB 'A' ,0,0,0
DD 'DCBA' Same as DB 'A' ,'B' ,'C' ,'D'
DD MyVar { Pointer to MyVar
DD MyProc { Pointer to MyProc

end;

¢ In Turbo Assembler, when an identifier precedes a DB, OW, or 00
directive, it causes declaration of a byte, word, or double-word
sized variable at the location of the directive. For example, Turbo
Assembler allows the following:

ByteVar DB
WordVar DW

mov al,ByteVar
mov bx,WordVar

The inline assembler does not support such variable declarations.
In Turbo Pascal, the only kind of symbol that can be defined in an
inline assembler statement is a label. All variables must be
declared using Pascal syntax, and the preceding construct
corresponds to

var
ByteVar: Byte;
WordVar: Word;

}

}

}

}

Turbo Pascal Programmer's Guide

Operands

asm
mov al,ByteVar
mov bx,WordVar

end;

Inline assembler operands are expressions, which consist of a
combination of constants, registers, symbols, and operators.
Although inline assembler expressions are built using the same
basic principles as Pascal expressions, there are a number of
important differences, as will be explained in a following section.

Within operands, the following reserved words have a predefined
meaning to the inline assembler:

AH CL
AL CS
AND CX
AX DH
BH DI
BL DL
BP DS
BX DWORD
BYTE DX
CH ES

FAR
HIGH
LOW
MOD
NEAR
NOT
OFFSET
OR
PTR
QWORD

SEG
5HL
5HR
51
5P
55
ST
TBYTE
TYPE
WORD
XOR

The reserved words always take precedence over user-defined
identifiers. For instance, the code fragment

var
ch: Char;

asm
mov ch, 1

end;

will load 1 into the CH register, not into the CH variable. To access
a user-defined symbol with the same name as a reserved word,
you must use the ampersand (&) identifier override operator:

asm
mov

end;
&ch, 1

Chapter 22, The inline assembler 289

Expressions

Differences
between Pascal

and Assembler
expressions

290

It is strongly suggested that you avoid user-defined identifiers
with the same names as inline assembler reserved words, since
such name confusion can easily lead to very obscure and hard-to­
find bugs.

The inline assembler evaluates all expressions as 32-bit integer
values; it does not support floating-point and string values, except
string constants.

Inline assembler expressions are built from expression elements and
operators, and each expression has an associated expression class
and expression type. These concepts are explained in the following
sections.

The most important difference between Pascal expressions and
inline assembler expressions is that all inline assembler expres­
sions must resolve to a constant value, in other words a value that
can be computed at compile time. For example, given the
declarations

const
X = 10;
Y = 20;

var
Z: Integer;

the following is a valid inline assembler statement:

asm
rnov Z,X+Y

end;

Since both X and Yare constants, the expression X + Y is merely a
more convenient way of writing the constant 3D, and the resulting
instruction becomes a move immediate of the value 30 into the
word-sized variable Z. But if you change X and Y to be variables,

var
x, Y: Integer;

Turbo Pascal Programmer's Guide

Expression
elements

Constants

the inline assembler can no longer compute the value of X + Yat
compile time. The correct inline assembler construct to move the
sum of X and Y into Z now becomes

asm
mov ax,X
add ax,Y
mov Z,ax

end;

Another important difference between Pascal and inline
assembler expressions is the way variables are interpreted. In a
Pascal expression, a reference to a variable is interpreted as the
contents of the variable, but in an inline assembler expression, a
variable reference denotes the address of the variable. For example,
in Pascal, the expression X + 4, where X is a variable, means the
contents of X plus 4, whereas in the inline assembler it means the
contents of the word at an address four bytes higher than the
address of X. So, even though you're allowed to write

asm
mov ax,X+4

end;

the code does not load the value of X plus 4 into AX, but rather it
loads the value of a word stored four bytes beyond X. The correct
way to add 4 to the contents of X is:

asm
MOV AX,X
ADD AX,4

end;

The basic elements of an expression are constants, registers, and
symbols.

The inline assembler supports two types of constants: numeric
constants and string constants.

Numeric constants

Numeric constants must be integers, and their values must be
between -2,147,483,648 and 4,294,967,295.

Chapter 22, The inline assembler 291

292

Numeric constants by default use decimal (base 10) notation, but
the inline assembler supports binary (base 2), octal (base 8), and
hexadecimal (base 16) notations as well. Binary notation is se­
lected by writing a B after the number, octal notation is selected
by writing a letter 0 after the number, and hexadecimal notation
is selected by writing an H after the number or a $ before the
number.

¢ The B, 0, and H suffixes are not supported in Pascal expressions.
Pascal expressions allow only decimal notation (the default) and
hexadecimal notation (using a $ prefix).

Numeric constants must start with one of the digits 0 through 9 or
a $ character; thus, when you write a hexadecimal constant using
the H suffix, an extra zero in front of the number is required if the
first significant digit is one of the hexadecimal digits A through F.
For example, OBAD4H and $BAD4 are hexadecimal constants, but
BAD4H is an identifier since it starts with a letter and not a digit.

String constants

String constants must be enclosed in single or double quotes. Two
consecutive quotes of the same type as the enclosing quotes count
as only one character. Here are some examples of string constants:

'Z'
'Turbo Pascal'
"Thafs all folks"
"'That"s all folks," he said.'
'100'
""
"'"

Notice in the fourth string the use of two consecutive single
quotes to denote one single quote character.

String constants of any length are allowed in DB directives, and
cause allocation of a sequence of bytes containing the ASCII
values of the characters in the string. in all other cases, a string
constant can be no longer than four characters, and denotes a
numeric value which can participate in an expression. The
numeric value of a string constant is calculated as

Ord(Ch1) + Ord(Ch2) shl 8 + Ord(Ch3) shl 16 + Ord(Ch4) shl 24

where Ch1 is the rightmost (last) character and Ch4 is the leftmost
(first) character. If the string is shorter than four characters, the

Turbo Pascal Programmer's Guide

Registers

leftmost (first) character(s) are assumed to be zero. Some
examples of string constants and their corresponding numeric
values follow:

'a' 00000061H
'ba' 00006261H
'cba' 00636261H
'dcba' 64636261H
'a ' 00006120H
, a' 20202061H
'a'*2 000000E2H
'a' -'A' 00000020H
not 'a' FFFFFF9EH

The following reserved symbols denote CPU registers:

16-bit general purpose AX BX CX OX
8-bit low registers AL BL CL OL
8-bit high registers AH BH CH OH
16-bit pointer or index SP BP 51 01
16-bit segment registers CS OS 55 ES
8087 register stack ST

When an operand consists solely of a register name, it is called a
register operand. All registers can be used as'register operands. In
addition, some registers can be used in other contexts.

The base registers (BX and BP) and the index registers (51 and on
can be written within square brackets to indicate indexing. Valid
base/index register combinations are [BX], [BP], [51], [01],
[BX+SI], [BX+OI], [BP+SI], and [BP+OI].

The segment registers (ES, CS, 55, and OS) can be used in
conjunction with the colon (:) segment override operator to
indicate a different segment than the one the processor selects by
default.

The symbol ST denotes the topmost register on the 8087 floating­
point register stack. Each of the eight floating-point registers can
be referred to using ST{x), where x is a constant between 0 and 7
indicating the distance from the top of the register stack.

Chapter 22, The inline assembler 293

294

Symbols The inline assembler allows you to access almost all Pascal
symbols in assembler expressions, including labels, constants,
types, variables, procedures, and functions. In addition, the inline
assembler implements the following special symbols:

@Code @Data @Result

The @Code and @Data symbols represent the current code and
data segments. They should only be used in conjunction with the
SEG operator:

asm
mov aX,SEG @Data
mov ds,ax

end;

The @Result symbol represents the function result variable within
the statement part of a function. For example, in the function

function Sum (X, Y: Integer): Integer;
begin

Sum := X+ Y;
end;

the statement that assigns a function result value to Sum would
use the @Result variable if it was written in inline assembler:

function Sum(X, Y: Integer): Integer;
begin

asm
mov ax,X
add ax,Y
mov @Result,AX

end;
end;

The following symbols cannot be used in inline assembler
expressions:

• Standard procedures and functions (for example, WriteLn, Chr).

• The Mem, Mem W, MemL, Port, and Port W special arrays.

• String, floating-point, and set constants.

• Procedures and functions declared with the inline directive.

• Labels that aren't declared in the current block.

• The @Result symbol outside a function.

Turbo Pascal Programmer~ Guide

Table 22.1
Values, classes, and

types of symbols

Table 22.1 summarizes the value, class, and type of the different
kinds of symbols that can be used in inline assembler expressions.
(Expression classes and types are described in a following
section.)

Symbol Value Class Type

Label Address of label Memory SHORT
Constant Value of constant Immediate 0
Type 0 Memory Size of type
Field Offset of field Memory Size of type
Variable Address of variable Memory Size of type
Procedure Address of procedure Memory NEAR or FAR
Function Address of function Memory NEAR or FAR
Unit 0 Immediate 0
@Code Code segment address Memory OFFFOH
@Data Data segment address Memory OFFFOH
@Result Result var offset Memory Size of type

Local variables (variables declared in procedures and functions)
are always allocated ori the stack and accessed relative to SS:BP,
and the value of a local variable symbol is its signed offset from
SS:BP. The assembler automatically adds [BPJ in references to
local variables. For example, given the declarations

procedure Test;
var

Count: Integer;

the instruction

asm
mov ax/Count

end;

assembles into MOV AX, [BP-2].

The inline assembler always treats a var parameter as a 32-bit
pointer, and the size of a var parameter is always 4 (the size of a
32-bit pointer). In Pascal, the syntax for accessing a var parameter
and a value parameter is the same-this is not the case in inline
assembler. Since var parameters are really pointers, you have to
treat them as such in inline assembler. So, to access the contents of
a var parameter, you first have to load the 32-bit pointer and then
access the location it points to. For example, if the X and Y param­
eters of the above function Sum were var parameters, the code
would look like this:

Chapter 22, The inline assembler 295

296

function Sum(var X, Y: Integer): Integer;
begin

asm
les bx,X
mov ax,es:[bx]
les bx,Y
add ax, es: [bx]
mov @Result,ax

end;
end;

Some symbols, such as record types and variables, have a scope
which can be accessed using the period (.) structure member
selector operator. For example, given the declarations

type
Point = record

X, Y: Integer;
end;
Rect = record

A, B: Point;
end;

var
P: Point;
R: Rect;

the following constructs can be used to access fields in the P and R
variables:

asm
mov ax,P.X
mov dx,P.Y
mov cx,R.A.X
mov bx,R.B.Y

end;

A type identifier can be used to construct variables "on the fly".
Each of the instructions below generate the same machine code,
which loads the contents of ES:[DI+4] into AX.

asm
mov ax, (Rect PTR es: [dill .B.X
mov ax, Rect (es: [dill .B.X
mov ax,es:Rect[di].B.X
mov ax, Rect [es:di] .B.X
mov aX,es: [di] .Rect.B.X

end;

Turbo Pascal Programmer's Guide

Expression classes

A scope is provided by type, field, and variable symbols of a
record or object type. In addition, a unit identifier opens the scope
of a particular unit, just like a fully qualified identifier in Pascal.

The inline assembler divides expressions into three classes:
registers, memory references, and immediate values.

An expression that consists solely of a register name is a register
expression. Examples of register expressions are AX, CL, DI, and
ES. Used as operands, register expressions direct the assembler to
generate instructions that operate on the CPU registers.

Expressions that denote memory locations are memory
references; Pascal's labels, variables, typed constants, procedures,
and functions belong to this category.

Expressions that aren't registers and aren't associated with
memory locations are immediate values; this group includes
Pascal's untyped constants and type identifiers.

Immediate values and memory references cause different code to
be generated when used as operands. For example,

const
Start = 10;

var
Count: Integer;

asm
mov aX,Start
mov bx,Count
mov ex, [Start]
mov dX,OFFSET Count

end;

{ MOV l-:i.,xxxx }
{ MOV BX, [xxxx]
{ MOV CX, [xxxx]
{ MOV DX,xxxx }

Since Start is an immediate value, the first MOV is assembled into
a move immediate instruction. The second MOV, however, is
translated into a move memory instruction, as Count is a memory
reference. In the third MOV, the square brackets operator is used
to convert Start into a memory reference (in this case, the word at
offset 10 in the data segment), and in the fourth MOV, the OFFSET
operator is used to convert Count into an immediate value (the
offset of Count in the data segment).

Chapter 22, The inline assembler 297

Expression types

298

As you can see, the square brackets and the OFFSET operators
complement each other. In terms of the resulting machine code,
the following asm statement is identical to the first two lines of
the previous asm statement:

asm
rnov aX,OFFSET [Start]
rnov bx, [OFFSET Count]

end;

Memory references and immediate values are further classified as
either re10catable expressions or absolute expressions. A relocatable
expression denotes a value that requires relocation at link time,
and an absolute expression denotes a value that requires no such
relocation. Typically, an expression that refers to a label, variable,
procedure, or function is relocatable, and an expression that
operates solely on constants is absolute.

Relocation is the process by'which the linker assigns absolute
addresses to symbols. At compile time, the compiler does not
know the final address of a label, variable, procedure, or function;
it does not become known until link time, when the linker assigns
a specific absolute address to the symbol.

The inline assembler allows you to carry out any operation on an
absolute value, but it restricts operations on relocatable values to
addition and subtraction of constants.

Every inline assembler expression has an associated type-or
more correctly, an associated size, since the inline assembler
regards the type of an expression simply as the size of its memory
location. For example, the type (size) of an Integer variable is two,
since it occupies 2 bytes.

The inline assembler performs type checking whenever possible,
so in the instructions

var
QuitFlag: Boolean;
OutBufPtr: Word;

asm
rnov
rnov

end;

al,QuitFlag
bx,OutBufPtr

Turbo Pascal Programmer's Guide

the inline assembler checks that the size of QuitFlag is one (a byte),
and that the size of OutBufPtr is two (a word). An error results if
the type check fails; for example, the following is not allowed:

asm
mov dl,OutBufPtr

end;

since DL is a byte-sized register and OutBufPtr is a word. The type
of a memory reference can be changed through a typecast; correct
ways of writing the previous instruction are

asm
mov dl,BYTE PTR OutBufPtr
mov dl,Byte(OutBufPtr)
mov dl,OutBufPtr.Byte

end;

all of which refer to the first (least significant) byte of the
OutBufPtr variable.

In some cases, a memory reference is untyped, that is, it has no
associated type. One example is an immediate value enclosed in
square brackets:

asm
mov al, [lOOH]
mov bx, [lOOH]

end;

The inline assembler permits both of these instructions, since the
expression [lOOH] has no associated type-it just means "the
contents of address lOOH in the data segment," and the type can
be determined from the first operand (byte for AL, word for BX).
In cases where the type cannot be determined from another
operand, the inline assembler requires an explicit typecast:

asm
inc BYTE PTR [lOOH]
imul WORD PTR [lOOH]

end;

Table 22.2 summarizes the predefined type symbols that the inline
assembler provides in addition to any currently declared Pascal
types.

Chapter 22, The inline assembler 299

Table 22.2
Predefined type

symbols

Expression
operators

Table 22.3
Inllne asssembler

expression
operators

Inline assembler operator
precedence is different from

Pascal. For example, in an
inline assembler expression,
the AND operator has lower

precedence than the plus
(+) and minus (-) operators,

whereas in a Pascal
expression, it has higher

precedence.

300

Symbol

BYTE
WORD
DWORD
aWORD
TBYTE
NEAR
FAR

Type

1
2
4
8
10
OFFFEH
OFFFFH

Notice in particular the NEAR and FAR pseudo-types, which are
used by procedure and function symbols to indicate their call
model. You can use NEAR and FAR in typecasts just like other
symbols. For example, if FarProc is a FAR procedure,

procedure FarProc; far;

and if you are writing inline assembler code in the same module
as FarProc, you can use the more efficient NEAR call instruction to
call it:

asm
push cs
call NEAR PTR FarProc

end;

The inline assembler provides a variety of operators, divided into
12 classes of precedence. Table 22.3 lists the inline assembler's
expression operators in decreasing order of precedence.

Operator(s) Comments

& Identifier override operator

0, [], • Structure member selector

HIGH, LOW

+,- Unary operators

Segment override operator

OFFSET, SEG, TYPE, PTR,
*,1, MOD, SHL, SHR

+-, Binary addition/ subtraction
operators

NOT, AND, OR, XOR Bitwise operators

Turbo Pascal Programmer's Guide

& Identifier override. The identifier immediately
following the ampersand is treated as a user-defined
symbol, even if the spelling is the same as an inline
assembler reserved symbol.

(...) Subexpression. Expressions within parentheses are
evaluated completely prior to being treated as a single
expression element. Another expression may option­
ally precede the expression within the parentheses; the
result in this case becomes the sum of the values of the
two expressions, with the type of the first expression.

[...] Memory reference. The expression within brackets is
evaluated completely prior to being treated as a single
expression element. The expression within brackets
may be combined with the BX, BP, 51, or DI registers
using the plus (+) operator, to indicate CPU register
indexing. Another expression may optionally precede
the expression within the brackets; the result in this
case becomes the sum of the values of the two expres­
sions, with the type of the first expression. The result
is always a memory reference.

HIGH

LOW

+

Chapter 22, The inline assembler

Structure member selector. The result is the sum of
the expression before the period and the expression
after the period, with the type of the expression after
the period. Symbols belonging to the scope identified
by the expression before the period can be accessed in
the expression after the period.

Returns the high-order 8 bits of the word-sized
expression following the operator. The expression
must be an absolute immediate value.

Returns the low-order 8 bits of the word-sized
expression following the operator. The expression
must be an absolute immediate value.

Unary plus. Returns the expression following the plus
with no changes. The expression must be an absolute
immediate value.

Unary minus. Returns the negated value of the expres­
sion following the minus. The expression must be an
absolute immediate value.

301

OFFSET

SEG

TYPE

PTR

*

I

MOD

SHL

SHR

+

302

Segment override. Instructs the assembler that the
expression after the colon belongs to the segment
given by the segment reg~ster name (CS, DS, 55, or ES)
before the colon. The result is a memory reference
with the value of the expression after the colon. When
a segment override is used in an instruction operand,
the instruction will be prefixed by an appropriate
segment override prefix instruction to ensure that the
indicated segment is selected.

Returns the offset part (low-order word) of the
expression following the operator. The result is an
immediate value.

Returns the segment part (high-order word) of the
expression following the operator. The result is an
immediate value.

Returns the type (size in bytes) of the expression
following the operator. The type of an immediate
value is O.

Typecast operator. The result is a memory reference
with the value of the expression following the
operator and the type of the expression in front of the
operator.

Multiplication. Both expressions must be absolute
immediate values, and the result is an absolute
immediate value.

Integer division. Both expressions must be absolute
immediate values, and the result is an absolute
immediate value.

Remainder after integer division. Both expressions
must be absolute immediate values, and the result is
an absolute immediate value.

Logical shift left. Both expressions must be absolute
immediate values, and the result is an absolute
immediate value.

Logical shift right. Both expressions must be absolute
immediate values, and the result is an absolute
immediate value.

Addition. The expressions can be immediate values or
memory references, but only one of the expressions

Turbo Pascal Programmer's Guide

can be a relocatable value. If one of the expressions is a
relocatable value, the result is also a relocatable value.
If either of the expressions are memory references, the
result is also a memory reference.

Subtraction. The first expression can have any class,
but the second expression must be an absolute
immediate value. The result has the same class as the
first expression.

NOT Bitwise negation. The expression must be an absolute
immediate value, and the result is an absolute
immediate value.

AND Bitwise AND. Both expressions must be absolute
immediate values, and the result is an absolute
immediate value.

OR Bitwise OR. Both expressions must be absolute
immediate values, and the result is an absolute
immediate value.

XOR Bitwise exclusive OR. Both expressions must be
absolute immediate values, and the result is an
absolute immediate value.

Assembler procedures and functions

So far, every asm ... end construct you've seen has been a
statement within a normal begin ... end statement part. Turbo
Pascal's assembler directive allows you to write complete
procedures and functions in inline assembler, without the need
for a begin ... end statement part. Here's an example of an
assembler function:

function LongMul(X, Y: Integer): Longint; assembler;
asm

rnov ax,X
irnul Y

end;

The assembler directive causes Turbo Pascal to perform a number
of code generation optimizations:

• The compiler doesn't generate code to copy value parameters
into local variables. This affects all string-type value param-

Chapter 22, The inline assembler 303

304

eters, and other value parameters whose size is not 1, 2, or 4
bytes. Within the procedure or function, such parameters must
be treated as if they were var parameters.

• The compiler doesn't allocate a function result variable, and a
reference to the @Result symbol is an error. String functions,
however, are an exception to this rule-they always have a
@Result pointer which gets allocated by the caller.

• The compiler generates no stack frame for procedures and
functions that have no parameters and no local variables.

• The automatically generated entry and exit code for an
assembler procedure or function looks like this:

push bp iPresent if Locals <> 0 or Params <> 0
mov bp,sp iPresent if Locals <> 0 or Params <> 0
sub sp,Locals iPresent if Locals <> 0

mov sp,bp iPresent if Locals <> 0
pop bp iPresent if Locals <> 0 or Params <> 0
ret Params iAlways present

where Locals is the size of the local variables, and Params is the
size of the parameters. If both Locals and Params are zero, there
is no entry code, and the exit code consists simply of a RET
instruction.

Functions using the assembler directive must return their results
as follows:

• Ordinal-type function results (Integer, Char, Boolean, and
enumerated types) are returned in AL (8-bit values), AX (16-bit
values), or DX:AX (32-bit values).

• Real-type function results (type Real) are returned in
DX:BX:AX.

• 8087-type function results (type Single, Double, Extended, and
Comp) are returned in ST(O) on the 8087 coprocessor's register
stack.

• Pointer-type function results are returned in DX:AX.

• String-type function results are returned in the temporary
location pointed to by the @Result function result symbol.

The assembler directive is in many ways comparable to the
external directive, and assembler procedures and functions must
obey the same rules as external procedures and functions. The
following examples demonstrate some of the differences between
asm statements in normal functions and assembler functions. The

Turbo Pascal Programmer's Guide

first example uses an asm statement in a normal function to con­
vert a string to upper case. Notice that the value parameter Str in
this case refers to a local variable, since the compiler automati­
cally generates entry code that copies the actual parameter into
local storage.

function UpperCase (Str: String): String;
begin

asm
cld
lea si,Str
les di,@Result
SEGSS lodsb
stosb
xor ah,ah
xchg ax,cx
jcxz @3

@l:
SEGSS lodsb
cmp al,'a'
jb @2
crop al,'z'
ja @2
sub al,20H

@2:
stosb
loop @l

@3:
end:

end;

The second example is an assembler version of the UpperCase
function. In this case, Str is not copied into local storage, and the
function must treat Str as a var parameter.

function UpperCase(S: String): String; assembler:
asm

push ds
cld
lds si, Str
les di,@Result
lodsb
stosb
xor ah,ah
xchg ax,cx
jcxz @3

@l:
lodsb

Chapter 22, The inline assembler 305

cmp al, 'a'
jb @2
cmp al,'z'
ja @2
sub al,20H

@2:
stosb
loop @1

@3:
pop ds

end;

306 Turbo Pascal Programmer's Guide

c H A p T E R

23

Linking ass.embler code

Procedures and functions written in assembly language can be
linked with Turbo Pascal programs or units using the $L compiler
directive. The assembly language source file must be assembled
into an object file (extension .OBJ) using an assembler like Turbo
Assembler. Multiple object files can be linked with a program or
unit through multiple $L directives.

Procedures and functions written in assembly language must be
declared as external in the Pascal program or unit, for example,

function LoCase(Ch: Char): Char; external;

In the corresponding assembly language source file, all
procedures and functions must be placed in a segment named
"CODE" or "CSEG", or in a segment whose name ends in _TEXT,
and the names of the external procedures and functions must
appear in PUBLIC directives.

You must ensure that an assembly language procedure or
function matches its Pascal definition with respect to call model
(near or far), number of parameters, types of parameters, and
result type.

An assembly language source file can declare initialized variables
in a segment named CaNST or in a segment whose name ends in
_DATA, and uninitialized variables in a segment named DATA or
DSEG, or in a segment whose name ends in _BSS. Such variables
are private to the assembly language source file and cannot be
referenced from the Pascal program or unit. However, they reside

Chapter 23, Linking assembler code 307

Turbo Assembler
and Turbo Pascal

308

in the same segment as the Pascal globals, and can be accessed
through the D5 segment register.

All procedures, functions, and variabies declared in the Pascal
program or unit, and the ones declared in the interface section of
the used units, can be referenced from the assembly language
source file through EXTRN directives. Again, it is up to you to
supply the correct type in the EXTRN definition.

When an object file appears in a $L directive, Turbo Pascal
converts the file from the Intel relocatable object module format
(.OB]) to its own internal relocatable format. This conversion is
possible only if certain rules are observed:

• All procedures and functions must be placed in a segment
named CODE or CSEG, or in a segment with a name that ends
in _TEXT. All initialized private variables must be placed in a
segment named CONST, or in a segment with a name that ends
in _DATA. All uninitialized private variables must be placed in
a segment named DATA or DSEG, or in a segment with a name
that ends in _BSS. All other segments are ignored, and so are
GROUP directives. The segment definitions can specify BYTE or
WORD alignment, but when linked, code segments are always
byte aligned, and data segments are always word aligned. The
segment definitions can optionally specify PUBLIC and a class
name, both of which are ignored.

• Turbo Pascal ignores any data for segments other than the code
segment (CODE, CSEG, or xxxx_ TEXT) and the initialized data
segment (CONST or xxxx_DATA). So, when declaring variables
in the uninitialized data segment (DATA, DSEG, or xxxx_BSS),
always use a question mark (?) to specify the value, for
instance:

Count DW ?
Buffer DB 128 DUP(?)

• Byte-sized references to EXTRN symbols are not allowed. For
example, this means that the assembly language HIGH and LOW
operators cannot be used with EXTRN symbols.

Turbo Assembler (TA5M) makes it easy to program routines in
assembly language and interface them into your Turbo Pascal
programs. Turbo Assembler provides simplified segmentation,

Turbo Pascal Programmer's Guide

Examples of
assembly

language
routines

memory model, and language support for Turbo Pascal
programmers.

Using TPAseAL with the .MODEL directive sets up Pascal calling
conventions, defines the segment names, does the PUSH BP and
MOV BP,SP, and it also sets up the return with POP BP and RET N
(where N is the number of parameter bytes).

The PROe directive lets you define your parameters in the salTIe
order as they are defined in your Pascal program. If you are
defining a function that returns a string, notice that the PRoe
directive has a RETURNS option that lets you access the tempo­
rary string pointer on the stack without affecting the number of
parameter bytes added to the RET statement.

Here's an example coded to use the .MODEL and PROe directives:

.MODEL TPASCAL

. CODE
MyProc PROC FAR I : BYTE, J : BYTE RETURNS Result : DWORD

PUBLIC MyProc
les 01, Result
mov AL, I
mov BL, J

ret

;get address of temporary string
;get first parameter I
;get second parameter J

The Pascal function definition would look like this:

function MyProc(I, J : Char) : string; external;

The following code is an example of a unit that imple~ents two
assembly language string-handling routines. The UpperCase
function converts all characters in a string to uppercase, and the
StringOf function returns a string of cha:racters of a specified
length.

unit Strings;
interface
function UpperCase(S: String): String;
function StringOf(Ch: Char; Count: Byte): String;
implementation
{$L STRS}
function UpperCase; external;

Chapter 23, Linking assembler code 309

310

function StringOf; external;
end.

The assembly language file that implements the UpperCase and
StringOf routines is shown next. It must be assembled into a file
called STRS.OBJ before the Strings unit can be compiled. Note that
the routines use the far call model because they are declared in
the interface section of the unit.

CODE SEGMENT BYTE PUBLIC
ASSUME CS:COOE
PUBLIC UpperCase, StringOf ;Make them known

function UpperCase(S: String): Stri~g

UpperRes
UpperStr

UpperCase

push
mov
push
Ids
les
cld
lodsb
stosb
mov
xor
jcxz

Ul: lodsb
cmp
jb
cmp
ja
sub

U2: stosb
loop

U3: pop
pop
ret

UpperCase

EQU
EQU

OWORD PTR [BP + 10]
OWORO PTR [BP + 6]

PROC FAR

bp ;Save BP
bp, sp ;Set up stack frame
ds iSave OS
si, Upperstr iLoad string address
di, Upperres ;Load result address

iForward string-ops
;Load string length
;Copy to result

cl, al ;String length to CX
ch, ch
U3 ;Skip if empty string

;Load character
al, 'a' ;Skip if not 'a' .. 'z'
U2
aI, ' z'
U2
aI, 'a'-'a' ;Convert to uppercase

:Store in result
Ul ;Loop for all characters
ds ;Restore OS
bp ;Restore BP
4 ;Remove parameter and return

ENDP

; procedure StringOf(var S: String: Ch: Char; Count: Byte)

StrOfS EQU OWORO PTR [BP + 10]
StrOfChar EQU BYTE PTR [BP + 8]
StrOfCount EQU BYTE PTR [BP + 6]
StringOf PROC FAR

push bp ;Save BP

Turbo Pascal Programmer's Guide

mov bp, sp iSet up stack frame
les di, StrOfRes iLoad result address
mov aI, StrOfCount iLoad count
cld iForward string-ops
stosb iStore length
mov cl, al iCount to CX
xor ch, ch
mov aI, StrOfChar iLoad character
rep STOSB iStore string of characters
pop bp iRestore BP
ret 8 iRemove parameters and return

StringOf ENDP
CODE ENDS

END

To assemble the example and compile the unit, use the following
commands:

TASM STRS
TPC strings

The next example shows how an assembly language routine can
refer to Pascal routines and variables. The Numbers program reads
up to 100 Integer values, and then calls an assembly language
procedure to check the range of each of these values. If a value is
out of range, the assembly language procedure calls a Pascal
procedure to print it.

program Numbers;
{$L CHECK}
var

Buffer: array[1 .. 100] of Integeri
Count: Integeri

procedure RangeError(N: Integer);
begin

Writeln('Range error: ',N);
end;

procedure CheckRange(Min, Max: Integer)i external;
begin

Count := Oi
while not Eof and (Count < 100) do
begin
{ Ends when you type Ctrl-Z or after 100 iterations

Count := Count + 1;
Readln(Buffer[Count]);

endi
CheckRange(-10, 10)i

end.

Chapter 23, Linking assembler code 311

312

The assembly language file that implements the CheckRange
procedure is shown next. It must be assembled into a file called
CHECK. OBI before the Numbers program can be compiled. Note
that the procedure uses the near call model because it is declared
in a program.

OATA SEGMENT WORD PUBLIC
EXTRN Buffer : WORD, Count WORD ;Pascal variables

OATA ENDS
CODE SEGMENT BYTE PUBLIC

ASSUME CS : COOE, OS : Buffer
EXTRN RangeError : NEAR ;Implemented in Pascal
PUBLIC CheckRange ; Implemented here

CheckRange PRoe NEAR

mov bx,sp ;Get parameters pointer
mov ax, ss: [BX + 4] ;Load Min
mov dx, ss: [BX + 2] ;Load Max
xor bx, bx ;Clear Oata index
mov cx, count ;Load Count
jcxz S04 ;Skip if zero

SOl: cmp Buffer [BX] , AX ;Too small?
jl S02 ;Yes, jump
cmp Buffer [BX] , OX ;Too large?
jle S03 ;No, jump

S02: push ax ;Save registers
push bx
push cx
push dx
push Buffer [BX] ;Pass offending value to

; Pascal
call RangeError ;Call Pascal procedure
pop dx ;Restore registers
pop cx
pop bx
pop ax

S03: inc bx ;Point to next element
inc bx
loop SOl ;Loop for each item

S04: ret 4 ;Clean stack and return

CheckRange ENOP
CODE ENOS

ENO

Turbo Pascal Programmer's Guide

Turbo Assembler
example

Here's a Turbo Assembler version of the previous assembly
language example that takes advantage of T ASM's support for
Turbo Pascal:

.MODEL TPASCAL iTurbo Pascal code model
LOCALS @@ iDefine local labels

i prefix
. DATA iData segment
EXTRN Buffer WORD, Count WORD

iPascal variables

.CODE iCode segment
EXTRN RangeError : NEAR iImplemented in Pascal
PUBLIC CheckRange iImplemented here

CheckRange PROC NEAR Min : WORD, Max : WORD

mov ax, Min iKeep Min in AX
mov dx, Max iKeep Max in DX
xor bx, BX iClear Buffer index
mov cx, Count iLoad Count
jcxz @@4 i Skip if zero

@@l: cmp ax, Buffer [BX] iToo small?
jg @@2 iYes, go to CR2
cmp dx, Buffer [BX] iToo large?
jge @@3 ;No, go to CR3

@@2: push ax ;Save registers
push bx
push cx
push dx
push Buffer [BX] ;Pass offending value to

; Pascal
call RangeError ;Call Pascal procedure
pop dx ;Restore registers
pop cx
pop bx
pop ax

@@3: inc bx ;Point to next element
inc bx
loop @@l iLoop for each item

@@4: ret iDone

CheckRange ENDP
END

Notice that with .MODEL TPASCAL Turbo Assembler automati­
cally generates entry code before the first instruction, and
generates exit code upon seeing the RET.

Chapter 23, Linking assembler code 313

Inline machine code

Inline statements

314

For very short assembly language subroutines, Turbo Pascal's
inline statements and directives are very convenient. They let you
insert machine code instructions directly into the program or unit
text instead of through an object file.

An inline statement consists of the reserved word inline followed
by one or more inline elements, separated by slashes and enclosed
in parentheses:

inline(lO/$2345/Count + l/Data - Offset);

Here's the syntax of an inline statement:

inline statement

Each inline element consists of an optional size specifier, < or >,
and a constant or a variable identifier, followed by zero or more
offset specifiers (see the syntax that follows). An offset specifier
consists of a + or a - followed by a constant.

inline element

Each inline element generates 1 byte or one word of code. The
value is computed from the value of the first constant or the offset
of the variable identifier, to which is added or subtracted the
value of each of the constants that follow it.

Turbo Pascal Programmer's Guide

Registers BP, SP, SS, and OS
must be preseNed by inline

statements; all other registers
can be modified.

An inline element generates 1 byte of code if it consists of con­
stants only and if its value is within the 8-bit range (0 .. 255). If the
value is outside the 8-bit range or if the inline element refers to a
variable, one word of code is generated (least-significant byte
first).

The < and> operators can be used to override the automatic size
selection we described earlier. If an inline element starts with a <
operator, only the least-significant byte of the value is coded, even
if it is a 16-bit value. If an inline element starts with a > operator, a
word is always coded, even though the most-significant byte is O.
For example, the statement

inline«$1234/>$44);

generates 3 bytes of code: $34, $44, $00.

The value of a variable identifier in an inline element is the offset
address of the variable within its base segment. The base segment
of global variables-variables declared at the outermost level in a
program or a unit-and typed constants is the data segment,
which is accessible through the DS register. The base segment of
local variables-variables declared within the current subpro­
gram-is the stack segment. In this case the variable offset is
relative to the BP register, which automatically causes the stack
segment to be selected.

The following example of an inline statement generates machine
code for storing a specified number of words of data in a specified
variable. When called, procedure Fill Word stores Count words of
the value Data in memory, starting at the first byte occupied by
Dest.

procedure FillWord(var Dest;
begin

inline(
$C4/$BE/Dest/
$8B/$8E/Count/
$8B/ $8 6/Data/
$FC/
$F3/$AB);

end;

Count, Data: Word);

{ LES DI,Dest [BP] }
{ MOV CX,Count[BP] }
{ MOV AX,Data[BP] }
{ CLD }
{ REP STOSW }

Inline statements can be freely mixed with other statements
throughout the statement part of a block.

Chapter 23, Linking assembler code 315

Inline directives

316

Inline directives let you write procedures and functions that
expand into a given sequence of machine code instructions
whenever they are called. These are comparable to macros in
assembly language. The syntax for an inline directive is the same
as that of an inline statement:

inline directive ---1 inline statement I

When a normal procedure or function is called (including one that
contains inline statements), the compiler generates code that
pushes the parameters (if any) onto the stack, and then generates
a CALL instruction to call the procedure or function. However,
when you call an inline procedure or function, the compiler
generates code from the inline directive instead of the CALL.
Here's a short example of two inline procedures:

procedure Oisablelnterrupts; inline($FA);
procedure Enablelnterrupts; inline($FB);

{ eLI }
{ STI }

When Disablelnterrupts is called, it generates 1 byte of code-a CLI
instruction.

Procedures and functions declared with inline directives can have
parameters; however, the parameters cannot be referred to sym­
bolically in the inline directive (other variables can, though). Also,
because such procedures and functions are in fact macros, there is
no automatic entry and exit code, nor should there be any return
instruction.

The following function multiplies two Integer values, producing a
Longint result:

function LongMul(X,
inline(

$5A/
$58/
$F7/$EA) ;

Y: Integer): Longint;

{ POP AX ;Pop X }
{ POP OX ;Pop Y }
{ lMUL OX ;OX : AX = X * Y }

Note the lack of entry and exit code and the missing return
instruction. These are not required, because the 4 bytes are
inserted into the instruction stream when LongMul is called.

Turbo Pascal Programmer's Guide

Inline directives are intended for very short (less than 10 bytes)
procedures and functions only.

Because of the macro-like nature of inline procedures and func­
tions, they cannot be used as arguments to the @ operator and the
Addr, Ofs, and Seg functions.

Chapter 23, Linking assembler code 317

I

318 Turbo Pascal Programmer's Guide

p A R T

5

Appendixes

319

320 Turbo Pascal Programmer's Guide

A p p E N D x

A

Error messages

Compiler error messages

Appendix A, Error messages

The following lists the possible error messages you can get from
the compiler during program development. Whenever possible,
the compiler will display additional diagnostic information in the
form of an identifier or a file name. For example,

Error 15: Fil e not found (WINDOW. TPU) •

When an error is detected, Turbo Pascal (in the IDE) automatically
loads the source file and places the cursor at the error. The
command-line compiler displays the error message and number
and the source line, and uses a caret (A) to indicate where the
error occurred. Note, however, that some errors are not detected
until a little later in the source text. For example, a type mismatch
in an assignment statement cannot be detected until the entire
expression after the := has been evaluated. In such cases, look for
the error to the left of or above the cursor.

1 Out of memory.

This error occurs when the compiler has run out of memory.
There are a number of possible solutions to this problem:

• If Compile I Destination is set to Memory, set it to Disk in the
integrated environment .

• If the Memory radio button is chosen (0 I L I Link Buffer) in the
integrated environment, toggle·it to Disk. Use the lL option to
link to disk in the command-line compiler.

321

322

• If you are using any memory-resident utilities, such as SideKick
and SuperKey, remove them from memory .

• If you are using TURBO.EXE, try using TPC.EXE instead-it
takes up less memory.

If none of these suggestions help, your program or unit may
simply be too large to compile in the amount of memory avail­
able, and you may have to break it into two or more smaller units.

2 Identifier expected.

An identifier was expected at this point. You may be trying to
redec1are a reserved word.

3 Unknown identifier.

This identifier has not been declared, or may not be visible within
the current scope.

4 Duplicate identifier.

The identifier has already been used within the current block.

5 Syntax error.

An illegal character was found in the source text. You may have
forgotten the quotes around a string constant.

6 Error in real constant.

The syntax of real-type constants is defined in Chapter 1, "Tokens
and constants."

7 Error in integer constant.

The syntax of integer-type constants is defined in Chapter 1,
"Tokens and constants." Note that whole real numbers outside
the maximum integer range must be followed by a decimal point
and a zero; for example, 12,345,678,912.0.

8 String constant exceeds line.

You have most likely forgotten the ending quote in a string
constant.

Turbo Pascal Programmer's Guide

Appendix A, Error messages

9 Too many nested files.

The compiler allows no more than 15 nested source files. Most
likely you have more than four nested Include files.

10 Unexpected end of file.
You might have gotten this error message because of one of the
following:

• Your source file ends before the final end of the main statement
part. Most likely, your begins and ends are unbalanced.

• An Include file ends in the middle of a statement part. Every
statement part must be entirely contained in one file.

• You didn't close a comment.

11 Line too long.

The maximum line length is 126 characters.

12 Type identifier expected.

The identifier does not denote a type as it should.

13 Too many open files.

If this error occurs, your CONFIG.SYS file does not include a
FILES=xx entry or the entry specifies too few files. Increase the
number to some suitable value, for instance, 20.

14 Invalid file name.

The file name is invalid or specifies a nonexistent path.

15 File not found.

The file could not be found in the current directory or in any of
the search directories that apply to this type of file.

16 Disk full.

Delete some files or use a new disk.

17 Invalid compiler directive.

323

324

The compiler directive letter is unknown, one of the compiler
directive parameters is invalid, or you are using a global compiler
directive when compilation of the body of the program has
begun.

18 Too many files.

There are too many files involved in the compilation of the
program or unit. Try not to use that many files, for instance, by
merging Include files or making the file names shorter.

19 Undefined type in pointer definition.

The type was referenced in a pointer-type declaration previously,
but it was never declared.

20 Variable identifier expected.

The identifier does not denote a variable as it should.

21 Error in type.

This symbol cannot start a type definition.

22 Structure too large.

The maximum allowable size of a structured type is 65,520 bytes.

23 Set base type out of range.

The base type of a set must be a subrange with bounds in the
range 0 .. 255 or an enumerated type with no more than 256
possible values.

24 File components may not be files or objects.

file of file and file of object constructs are not allowed; nor is any
structured type that includes an object type or file type.

25 Invalid string length.

The declared maximum length of a string must be in the range
1 .. 255.

26 Type mismatch.

Turbo Pascal Programmer's Guide

Appendix A, Error messages

This is due to one of the following:

• incompatible types of the variable and the expression in an
assignment statement

• incompatible types of the actual and formal parameter in a call
to a procedure or function

• an expression type that is incompatible with index type in array
indexing

• incompatible types of operands in an expression

27 Invalid subrange base type.

All ordinal types are valid base types.

28 Lower bound greater than upper bound.

The declaration of a subrange type specifies a lower bound
greater than the upper bound.

29 Ordinal type expected.

Real types, string types, structured types, and pointer types are
not allowed here.

30 Integer constant expected.

31 Constant expected.

32 Integer or real constant expected.

33 Pointer type identifier expected.

The identifier does not denote a pointer type as it should.

34 Invalid function result type.

Valid function result types are all simple types, string types, and
pointer types.

35 Label identifier expected.

The identifier does not denote a label as it should.

325

326

36 BEGIN expected.

A begin is expected here, or there is an error in the block structure
of the unit or program.

37 END expected.

An end is expected here, or there is an error in the block structure
of the unit or program.

38 Integer expression expected.

The preceding expression must be of an integer type.

39 Ordinal expression expected.

The preceding expression must be of an ordinal type.

40 Boolean expression expected.

The preceding expression must be of type boolean.

41 Operand types do not match operator.

The operator cannot be applied to operands of this type, for
example, 'A' div '2'.

42 Error in expression.

This symbol cannot participate in an expression in the way it
does. You may have forgotten to write an operator between two
operands.

43 Illegal assignment.

• Files and untyped variables cannot be assigned values .
• A function identifier can only be assigned values within the

statement part of the function.

44 Field identifier expected.

The identifier does not denote a field in the preceding record
variable.

45 Object file too large.

Turbo Pascal Programmer's Guide

Appendix A, Error messages

Turbo Pascal cannot link in .OBI files larger than 64K.

46 Undefined external.

The external procedure or function did not have a matching
PUBLIC definition in an object file. Make sure you have specified
all object files in {$L filename} directives, and check the spelling of
the procedure or function identifier in the .ASM file.

47 Invalid object file record.

The .OBI file contains an invalid object record; make sure the file
is in fact an .OBI file.

48 Code segment too large.

The maximum size of the code of a program or unit is 65,520
bytes. If you are compiling a program, move some procedures or
functions into a unit. If you are compiling a unit, break it into two
or more units.

49 Data segment too large.

The maximum size of a program's data segment is 65,520 bytes,
including data declared by the used units. If you need more
global data than this, declare the larger structures as pointers, and
allocate them dynamically using the New procedure.

50 DO expected.

The reserved word do does not appear where it should.

51 Invalid PUBLIC definition.

• Two or more PUBLIC directives in assembly language define
the same identifier.

• The .OBI file defines PUBLIC symbols that do not reside in the
CODE segment.

52 Invalid EXTRN definition.

• The identifier was referred to through an EXTRN directive in
assembly language, but it is not declared in the Pascal program
or unit, nor in the interface part of any of the used units.

327

328

• The identifier denotes an absolute variable.

• The identifier denotes an in line procedure or function.

53 Too many EXTRN definitions.

Turbo Pascal cannot handle .OBI files with more than 256 EXTRN
definitions.

54 OF expected.

The reserved word of does not appear where it should.

55 INTERFACE expected.

The reserved word interface does not appear where it should.

56 Invalid relocatable reference.

• The .OBI file contains data and relocatable references in
segments other than CODE. For example, you are attempting to
declare initialized variables in the DATA segment.

• The .OBI file contains byte-sized references to relocatable
symbols. This error occurs if you use the HIGH and LOW
operators with relocatable symbols or if you refer to relocatable
symbols in DB directives.

• An operand refers to a relocatable symbol that was not defined
in the CODE segment or in the DATA segment.

• An operand refers to an EXTRN procedure or function with an
offset, for example, CALL SortProc+8.

57 THEN expected.

The reserved word then does not appear where it should.

58 TO or DOWNTO expected.

The reserved word to or downto does not appear where it should.

59 Undefined forward.

• The procedure or function was declared in the interface part of
a unit, but its definition never occurred in the implementation
part.

Turbo Pascal Programmer's Guide

Appendix A, Error messages

• The procedure or function was declared with forward, but its
definition was never found.

60 Too many procedures.

Turbo Pascal does not allow more than 512 procedures or
functions per module. If you are compiling a program, move
some procedures or functions into a unit. If you are compiling a
unit, break it into two or more units.

61 Invalid typecast.

• The sizes of the variable reference and the destination type
differ in a variable typecast.

• You are attempting to typecast an expression where only a
variable reference is allowed.

62 Division by zero.

The preceding operand attempts to divide by zero.

63 Invalid file type.

The file type is not supported by the file-handling procedure; for
example, Readln with a typed file or Seek with a text file.

64 Cannot Read or Write variables of this type.

• Read and Readln can input variables of Char, integer, real, and
string types.

• Write and Writeln can output variables of Char, integer, real,
string, and Boolean types.

65 Pointer variable expected.

The preceding variable must be of a pointer type.

66 String variable expected.

The preceding variable must be of a string type.

67 String expression expected.

The preceding expression must be of a string type.

329

330

68 Circular unit reference.

Two units are not allowed to use each other:

unit Ul;

uses U2;
unit U2;
uses Ul;

In this example, doing a Make on either unit generates error 68.

69 Unit name mismatch.

The name of the unit found in the .TPU file does not match the
name specified in the uses clause.

70 Unit version mismatch.

One or more of the units used by this unit have been changed
since the unit was compiled. Use Compile I Make or Compile I
Build in the IDE and 1M or IB options in the command-line
compiler to automatically compile units that need recompilation.

71 Duplicate unit name.

You have already named this unit in the uses clause.

72 Unit file format error.

The. TPU file is somehow invalid; make sure it is in fact a . TPU
file.

73 IMPLEMENTATION expected.

The reserved word implementation does not appear where it
should.

74 Constant and case types do not match.

The type of the case constant is incompatible with the case
statement's selector expression.

75 Record variable expected.

The preceding variable must be of a record type.

76 Constant out of range.

Turbo Pascal Programmer's Guide

Appendix A, Error messages

You are trying to

• index an array with an out-of-range constant

• assign an out-of-range constant to a variable
• pass an out-of-range constant as a parameter to a procedure or

function

77 File variable expected.

The preceding variable must be of a file type.

78 Pointer expression expected.

The preceding expression must be of a pointer type.

79 Integer or real expression expected.

The preceding expression must be of an integer or a real type.

80 Label not within current block.

A goto statement cannot reference a label outside the current
block.

81 Label already defined.

The label already marks a statement.

82 Undefined label in preceding statement part.

The label was declared and referenced in the preceding statement
part, but it was never defined.

83 Invalid @ argument.

Valid arguments are variable references and procedure or
function identifiers.

84 UNIT expected.

The reserved word unit does not appear where it should.

85 u;" expected.

A semicolon does not appear where it should.

331

332

86 ":" expected.

A colon does not appear where it should.

87 "," expected.

A comma does not appear where it should.

88 U(U expected.

An opening parenthesis does not appear where it should.

89 ")" expected.

A closing parenthesis does not appear where it should.

90 "=" expected.

An equal sign does not appear where it should.

91 ":=" expected.

An assignment operator does not appear where it should.

92 U[" or U(." expected.

A left bracket does not appear where it should.

93 ul" or ".)" expected.

A right bracket does not appear where it should.

94 "." expected.

A period does not appear where it should.

95 " .. " expected.

A subrange does not appear where it should.

96 Too many variables .

• The total size of the global variables declared within a program
or unit cannot exceed 64K.

Turbo Pascal Programmer's Guide

Appendix A, Error messages

• The total size of the local variables declared within a procedure
or function cannot exceed 64K.

97 Invalid FOR control variable.

The for statement control variable must be a simple variable
defined in the declaration part of the current subprogram.

98 Integer variable expected.

The preceding variable must be of an integer type.

99 File and procedure types are not allowed here.

A typed constant cannot be of a file or procedural type.

100 String length mismatch.

The length of the string constant does not match the number of
components in the character array.

101 Invalid ordering of fields.

The fields of a record-type constant must be written in the order
of declaration.

102 String constant expected.

A string constant does not appear where it should.

103 Integer or real variable expected.

The preceding variable must be of an integer or real type.

104 Ordinal variable expected.

The preceding variable must be of an ordinal type.

105 INLINE error.

The < operator is not allowed in conjunction with relocatable
references to variables-such references are always word-sized.

106 Character expression expected.

333

334

The preceding expression must be of a Char type.

107 Too many relocation items.

The size of the relocation table part of the .EXE file exceeds 64K,
which is Turbo Pascal's upper limit. If you encounter this error,
your program is simply too big for Turbo Pascal's linker to
handle. It is probably also too big for DOS to execute. You will
have to split the program into a "main" part that executes two or
more "subprogram" parts using the Exec procedure in the Dos
unit.

112 CASE constant out of range.

For integer type case statements, the constants must be within the
range -32,768 .. 32,767.

113 Error in statement.

This symbol cannot start a statement.

114 Cannot call an interrupt procedure.

You cannot directly call an interrupt procedure.

116 Must be in 8087 mode to compile this.

This construct can only be compiled in the {$N+} state. Operations
on the 8087 real types (Single, Double, Extended, and Comp) are
not allowed in the {$N-} state.

117 Target address not found.

The Search I Find Error command in the IDE or the IF option in
the command-line version could not locate a statement that
corresponds to the specified address.

118 Include files are not allowed here.

Every statement part must be entirely contained in one file.

120 NIL expected.

Typed constants of pointer types may only be initialized to the
value nil.

Turbo Pascal Programmer's Guide

Appendix A, Error messages

121 Invalid qualifier.

You are trying to do one of the following:

• index a variable that is not an array

• specify fields in a variable that is not a record

• dereference a variable that is not a pointer

122 Invalid variable reference.

The preceding construct follows the syntax of a variable reference,
but it does not denote a memory location. Most likely, you are
calling a pointer function, but forgetting to dereference the result.

123 Too many symbols.

The program or unit declares more than 64K of symbols. If you
are compiling with {$D+}, try turning it off-note, however, that
this will prevent you from finding run-time errors in that module.
Otherwise, you could try moving some declarations into a
separate unit.

124 Statement part too large.

Turbo Pascal limits the size of a statement part to about 24K. If
you encounter this error, move sections of the statement part into
one or more procedures. In any case, with a statement part of that
size, it's worth the effort to clarify the·structure of your program.

126 Files must be var parameters.

You are attempting to declare a file-type value parameter. File­
type parameters must be var parameters.

127 Too many conditional symbols.

There is not enough room to define further conditional symbols.
Try to eliminate some symbols, or shorten some of the symbolic
names.

128 Misplaced conditional directive.

The compiler encountered an {$ELSE} or {$ENDIF} directive
without a matching {$IFDEF}, {$IFNDEF}, or {$IFOPT} directive.

335

336

129 ENDIF directive missing.

The source file ended within a conditional compilation construct.
There must be an equal number of {$IFxxx}s and {$ENDIF}s in a
source file.

130 Error in initial conditional defines.

The initial conditional symbols specified in Options I Compiler I
Conditional Defines (in the IDE) or in a ID directive (with the
command-line compiler) are invalid. Turbo Pascal expects zero or
more identifiers separated by blanks, commas, or semicolons.

131 Header does not match previous definition.

The procedure or function header specified in the interface part or
forward declaration does not match this header.

132 Critical disk error.

A critical error occurred during compilation (for example, drive
not ready error).

133 Cannot evaluate this expression.

You are attempting to use a non-supported feature in a constant
expression or in a debug expression. For example, you're attemp­
ting to use the Sin function in a const declaration, or you are
attempting to call a user-defined function in a debug expression.
For a description of the allowed syntax of constant expressions,
refer to Chapter 1, "Tokens and constants." For a description of
the allowed syntax of debug expressions, refer to Chapter 5 in the
User's Guide, "Debugging Turbo Pascal programs."

134 Expression incorrectly terminated.

Turbo Pascal expects either an operator or the end of the
expression at this point, but neither was found.

135 Invalid format specifier.

You are using an invalid format specifier, or the numeric
argument of a format specifier is out of range. For a list of valid
format specifiers, refer to Chapter 5 in the User's Guide,
IIDebugging Turbo Pascal programs."

Turbo Pascal Programmer's Guide

Appendix A, Error messages

136 Invalid indirect reference.

The statement attempts to make an invalid indirect reference. For
example, you are using an absolute variable whose base variable
is not known in the current module, or you are using an inline
routine that references a variable not known in the current
module.

137 Structured variables are not allowed here.

You are attempting to perform a non-supported operation on a
structured variable. For example, you are trying to multiply two
records.

138 Cannot evaluate without System unit.

Your TURBO.TPL library must contain the System unit for the
debugger to be able to evaluate expressions.

139 Cannot access this symbol.

A program's entire set of symbols is available as soon as you have
compiled the program. However, certain symbols, such as
variables, cannot be accessed until you actually run the program.

140 Invalid floating-point operation.

An operation on two real type values produced an overflow or a
division by zero.

141 Cannot compile overlays to memory.

A program that uses overlays must be compiled to disk.

142 Procedural or function variable expected.

In this context, the address operator (@) can only be used with a
procedural or function variable.

143 Invalid procedure or function reference .

• You are attempting to call a procedure in an expression .

• If you are going to assign a procedure or function to a
procedural variable, it must be compiled in the {$F+} state and
cannot be declared with inline or interrupt.

337

338

144 Cannot overlay this unit

You are attempting to overlay a unit that wasn't compiled in the
{$O+} state.

147 Object type expected.

The identifier does not denote an object type.

148 Local object types are not allowed.

Object types can be defined only in the outermost scope of a
program or unit. Object-type definitions within procedures and
functions are not allowed.

149 VIRTUAL expected.

The reserved word virtual is missing.

150 Method identifier expected.

The identifier does not denote a method.

151 Virtual constructors are not allowed.

A constructor method must be static.

152 Constructor identifier expected.

The identifier does not denote a constructor.

153 Destructor identifier expected.

The identifier does not denote a destructor.

154 Fail only allowed within constructors.

The Fail standard procedure can be used only within constructors.

155 Invalid combination of opcode and operands.

The assembler opcode does not accept this combination of
operands. Possible causes are:

• There are too many or too few operands for this assembler
opcode; for example, INC AX,BX or MOV AX.

Turbo Pascal Programmer's Guide

• The number of operands is correct, but their types or order do
not match the opcode; for example, DEC 1, MOV AX,CL or
MOV 1,AX.

156 Memory reference expected.

The assembler operand is not a memory reference, which is
required here. Most likely you have forgotten to put square
brackets around an index register operand, for example,
MOV AX,BX+SI instead of MOV AX,[BX+SI].

157 Cannot add or subtract relocatable symbols.

The only arithmetic operation that can be performed on a
relocatable symbol in an assembler operand is addition or
subtraction of a constant. Variables, procedures, functions, and
labels are relocatable symbols. Assuming that Var is a variable
and Const is a constant, then the instructions MOV AX, Const+Const
and MOV AX, Var+Const are valid, but MOV AX, VartVar is not.

158 Invalid register combination.

Valid index register combinations are [BX], [BP], [SI], [01],
[BX+SI], [BX+OI], [BP+SI], and [BP+DI]. Other index register
combinations (such as [AX], [BP+BX], and [SI+DX]) are not
allowed.

1111. Local variables (variables declared in procedures and functions)
are always allocated on the stack and accessed via the BP register.
The assembler automatically adds [BP] in references to such vari­
ables, so even though a construct like LocaJ[BX] (where Local is a
local variable) appears valid, it is not since the final operand
would become Local[BP+BX].

Appendix A, Error messages

159 286/287 instructions are not enabled.

Use a {$G+} compiler directive to enable 286/287 opcodes, but be
aware that the resulting code cannot be run on 8086 and 8088-
based machines.

160 Invalid symbol reference.

This symbol cannot be accessed in an assembler operand. Possible
causes follow:

339

Run-time errors

DOS errors

340

• You are attempting to access a standard procedure, a standard
function, or the Mem, Mem W, MemL, Port, or Port W special
arrays in an assembler operand.

• You are attempting to access a string, floating-point, or set
constant in an assembler operand.

• You are attempting to access an inline procedure or function in
an assembler operand.

• You are attempting to access the @Result special symbol outside
a function.

• You are attempting to generate a short JMP instruction that
jumps to something other than a label.

161 Code generation error.

The preceding statement part contains a LOOPNE, LOOPE, LOOP,
or JCXZ instruction that cannot reach its target label.

162 ASM expected.

Certain errors at run time cause the program to display an error
message and terminate:

Run-time error nnn at xxxx:yyyy

where nnn is the run-time error number, and xxxx:yyyy is the
run-time error address <segment and offset).

The run-time errors are divided into four categories: DOS errors 1
through 99; I/O errors, 100 through 149; critical errors, 150
through 199; and fatal errors,200 through 255.

1 Invalid function number.

You made a call to a nonexistent DOS function.

2 File not found.

Turbo Pascal Programmer's Guide

Appendix A, Error messages

Reported by Reset, Append, Rename, or Erase if the name assigned
to the file variable does not specify an existing file.

3 Path not found.

• Reported by Reset, Rewrite, Append, Rename, or Erase if the name
assigned to the file variable is invalid or specifies a nonexistent
subdirectory.

• Reported by ChDir, MkDir, or RmDir if the path is invalid or
specifies a nonexistent subdirectory.

4 Too many open files.

Reported by Reset, Rewrite, or Append if the program has too many
open files. DOS never allows more than 15 open files per process.
If you get this error with less than 15 open files, it may indicate
that the CONFIG.SYS file does not include a FILES=xx entry or
that the entry specifies too few files. Increase the number to some
suitable value, for instance, 20.

5 File access denied.

• Reported by Reset or Append if FileMode allows writing and the
name assigned to the file variable specifies a directory or a
read-only file.

• Reported by Rewrite if the directory is full or if the name
assigned to the file variable specifies a directory or an existing
read-only file.

• Reported by Rename if the name assigned to the file variable
specifies a directory or if the new name specifies an existing file.

• Reported by Erase if the name assigned to the file variable
specifies a directory or a read-only file.

• Reported by MkDir if a file with the same name exists in the
parent directory, if there is no room in the parent directory, or if
the path specifies a device.

• Reported by RmDir if the directory isn't empty, if the path
doesn't specify a directory, or if the path specifies the root
directory.

• Reported by Read or BlockRead on a typed or untyped file if the
file is not open for reading.

• Reported by Write or Block Write on a typed or untyped file if the
file is not open for writing.

341

I/O errors

342

6 Invalid file handle.

This error is reported if an invalid file handle is passed to a DOS
system call. It should :n~ver occur; if it does, it is an indication that
the file variable is somehow trashed.

12 Invalid file access code.

Reported by Reset or Append on a typed or untyped file if the
value of FileMode is invalid.

15 Invalid drive number.

Reported by GetDir or ChDir if the drive number is invalid.

16 Cannot remove current directory.

Reported by RmDir if the path specifies the current directory.

17 Cannot rename across drives.

Reported by Rename if both names are not on the same drive.

These errors cause termination if the particular statement was
compiled in the {$I+} state. In the {$I-} state, the program
continues to execute, and the error is reported by the IOResult
function.

100 Disk read error.

Reported by Read on a typed file if you attempt to read past the
end of the file.

101 Disk write error.

Reported by Close, Write, Writeln, Flush, or Page if the disk
becomes full.

102 File not assigned.

Reported by Reset, Rewrite, Append, Rename, and Erase if the file
variable has not been assigned a name through a call to Assign.

103 File not open.

Turbo Pascal Programmer's Guide

Critical errors

Appendix A, Error messages

Reported by Close, Read, Write, Seek, Eof, FilePos, FileSize, Flush,
BlockRead, or BlockWrite if the file is not open.

104 File not open for input.

Reported by Read, Readln, Eof, Eoln, SeekEof, or SeekEoln on a text
file if the file is not open for input.

105 File not open for output.

Reported by Write and Writeln on a text file if the file is not open
for output.

106 Invalid numeric format.

Reported by Read or Readln if a numeric value read from a text file
does not conform to the proper numeric format.

150 Disk is write-protected.

151 Unknown unit.

152 Drive not ready.

153 Unknown command.

154 CRC error in data.

155 Bad drive request structure length.

156 Disk seek error.

157 Unknown media type.

158 Sector not found.

159 Printer out of paper.

160 Device write fault.

161 Device read fault.

162 Hardware failure.

Refer to your DOS programmer's reference manual for more
information about critical errors.

343

Fatal errors

344

These errors always immediately terminate the program.

200 Division by zero.

The program attempted to divide a number by zero during a /,
mod, or div operation.

201 Range check error.

This error is reported by statements compiled in the {$R+} state
when one of the following situations arises:

• The index expression of an array qualifier was out of range.

• You attempted to assign an out-of-range value to a variable.

• You attempted to assign an out-of-range value as a parameter
to a procedure or function.

202 Stack overflow error.

This error is reported on entry to a procedure or function com­
piled in the {$S+} state when there is not enough stack space to
allocate the subprogram's local variables. Increase the size of the
stack by using the $M compiler directive.

This error may also be caused by infinite recursion, or by an
assembly language procedure that does not maintain the stack
project.

203 Heap overflow error.

This error is reported by New or GetMem when there is not
enough free space in the heap to allocate a block of the requested
size.

For a complete discussion of the heap manager, see Chapter 16,
''Memory issues."

204 Invalid pointer operation.

This error is reported by Dispose or FreeMem if the pointer is nil or
points to a location outside the heap, or if the free list cannot be
expanded due to a full free list or to HeapPtr being too close to the
bottom of the free list.

Turbo Pascal Programmer's Guide

Appendix A, Error messages

205 Floating point overflow.

A floating-point operation produced a number too large for Turbo
Pascal or the numeric coprocessor (if any) to handle.

206 Floating point underflow

A floating-point operation produced an underflow. This error is
only reported if you are using the 8087 numeric coprocessor with
a control word that unmasks underflow exceptions. By default, an
underflow causes a result of zero to be returned.

207 Invalid floating point operation

• The real value passed to Trunc or Round could not be converted
to an integer within the Longint range (-2,147,483,648 to
2,147,483,647).

• The argument passed to the Sqrt function was negative.

• The argument passed to the Ln function was zero or negative.

• An 8087 stack overflow occurred. For further details on
correctly programming the 8087, refer to Chapter 14, "Using the
8087."

208 Overlay manager not installed

Your program is calling an overlaid procedure or function, but the
overlay manager is not installed. Most likely, you are not calling
Ovrlnit, or the call to Ovrlnit failed. Note that, if you have initiali­
zation code in any of your overlaid units, you must create an
additional non-overlaid unit which calls Ovrlnit, and use that unit
before any of the overlaid units. For a complete description of the
overlay manager, refer to Chapter 13, "The Overlay unit."

209 Overlay file read error

A read error occurred when the overlay manager tried to read an
overlay from the overlay file.

210 Object not initialized

With range-checking on, you made a call to an object's virtual
method, before the object had been initialized via a constructor
call.

345

346

211 Call to abstract method.

This error is generated by the Abstract procedure in the Objects
unit; it indicates that your program tried to execute an abstract
virtual method. When an object type contains one or more
abstract methods it is called an abstract object type. It is an error to
instantiate objects of an abstract type-abstract object types exist
only so that you can inherit from them and override the abstract
methods.

For example, the Compare method of the TSortedCollection type in
the Objects unit is abstract, indicating that to implement a sorted
collection you must create an object type that inherits from
TSortedCollection and overrides the Compare method.

212 Stream registration error.

This error is generated by the RegisterType procedure in the
Objects unit indicating that one of the following errors have
occurred:

• The stream registration record does not reside in the data
segment.

• The ObjType field of the stream registration record is zero.

• The type has already been registered.

• Another type with the same ObjType value already exists.

213 Collection index out of range.

The index passed to a method of a TColIection is out of range.

214 Collection overflow error.

The error is reported by a TCollection if an attempt is made to add
an element when the collection cannot be expanded.

Turbo Pascal Programmer's Guide

A p p

ASCII codes

E N D x

B

Reference materials

This appendix is devoted to certain reference materials: an ASCII
table, keyboard scan codes, and extended codes.

The American Standard Code for Information Interchange
(ASCII) is a code that translates alphabetic and numeric characters
and symbols and control instructions into 7 -bit binary code. Table
B.1 shows both printable characters and control characters.

Appendix 8, Reference materials 347

Table 8.1
ASCII table

The caret in A@ means to
press the Gtrl key and type @.

348

Dec Hex Char Dec Hex Char

o 0 A@ NUL 32 20
1 1 g SOH

2 2 • STX

3 3 • ETX

4 4 • EaT

5 5 '" ENQ
6 6 ... ACK

7 7 • BEL
8 8 C BS
9 9 0 TAB

10 A II LF
11 B 0' VT

12 C ~ FF
13 D)I CR

14 E ~ SO
15 F () SI
16 10 ~ OLE

17 11 ... DC1

18 12 * OC2
19 13 l! OC3
20 14 , DC4

21 15 § NAK

22 16 • SYN

23 17 t ETB
24 18 t CAN

25 19 + EM
26 1A -+ SUB

27 1B ~ ESC
28 1C L FS

29 1D & GS

30 1E A RS

31 1F ... US

33 21

34 22

35 23

36 24
37 25
38 26

39 27

40 28

41 29

$

&

(
)

42 2A *
43 2B +
44 2C

45 20

46 2E

47 2F /
48 30 0
49 31 1
50 32 2
51 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 3A

59 3B
60 3C <
61 3D

62 3E >

63 3F ?

Dec Hex Char

64 40 @

65 41

66 42

67 43
68 44

69 45
70 46
71 47

72 48

73 49

74 4A

75 4B

76 4C

77 40
78 4E

79 4F
80 50

81 51

82 52

83 53
84 54

85 55

86 56
87 57

88 58
89 59
90 SA

91 5B

92 5C
93 50

94 5E
95 5F

A
B
C
D
E
F
G
H
I
J
K
L
M
N
o
p

Q
R
S
T
U
V
W
X
Y
Z
[

\
]

Dec Hex Char

96 60
97 61

98 62

99 63
100 64

101 65
102 66
103 67

104 68

105 69
106 6A

107 6B

108 6C

109 60

110 6E
111 6F
112 70

113 71
114 72

115 73

116 74

117 75

118 76
119 77

120 78
121 79
122 7A

123 7B

124 7C
125 70

126 7E

a
b
c
d
e
f
9
h

j

k

m
n
o
p
q
r
5

t
u
v
w
x
y
z

127 7F Cl

Turbo Pascal Programmer's Guide

Table B.1: ASCII table (continued)

Dec Hex Char

128 80

129 81

130 82

131 83

132 84

133 85

134 86

135 87

136 88

137 89

138 8A

139 8B

140 8C

141 80

142 8E

143 8F

144 90

145 91

146 92
147 93

148 94

149 95

150 96

151 97

152 98

153 99

154 9A

155 9B

156 9C

157 90

158 9E

159 9F

Appendix B, Reference materials

9
u
e
a
a
a
A
c;
e
e
e
;'
i
1
A
A
E
if

If.
o
o
o
a
a
y
o
o
¢

£
¥
PI

f

Dec Hex Char

160 AO

161 Al

162 A2

163 A3

164 A4

165 AS

166 A6

167 A7

168 A8

169 A9

170 AA

171 AB

172 AC

173 AD

174 AE

175 AF

176 BO

177 B1

178 B2
179 B3

180 B4

181 B5

182 B6

183 B7

184 B8

185 B9

186 BA

187 BB

188 BC

189 BO

190 BE

191 BF

a
i
6
(j

n
N
a

o

1.

«

11

"I

~I
II
i1
:!J

11

d

1

Dec Hex Char

192 CO

193 Cl

194 C2

195 C3

196 C4

197 C5

198 C6

199 C7

200 C8

201 C9

202 CA

203 CB

204 CC

205 CO

206 CE

207 CF

208 00

209 01

210 02

211 D3

212 D4

213 D5

214 D6

215 D7

216 D8

217 D9

218 OA

219 DB

220 DC

221 DO

222 DE

223 DF

L

1.

T

~

+
F
I~
I!:

Ii'
:!!:

'if

I~

JL
lr
::!:
1l

T
1T
11

b

F
If

* +
J

r
I
•
I
I
•

Dec Hex Char

224 EO

225 E1

226 E2

227 E3

228 E4

229 E5

230 E6

231 E7

232 E8

233 E9

234 EA

235 EB

236 EC

237 EO

238 EE

239 EF

240 FO

241 F1

242 F2

243 F3

244 F4

245 FS

246 F6

247 F7

248 F8

249 F9

250 FA

251 FB

252 FC

253 FD

254 FE

255 FF

a
B
r
n
I
o
JJ
"C

cI>

()

n
o
00

ifJ
E

n

±

r
J

o

•

n
2

•

349

Extended key codes

350

Table B.2
Extended key

codes

Extended key codes are returned by those keys or key combi­
nations that cannot be represented by the standard ASCII codes
listed in Table B.1. (See ReadKey in Chapter 1 of the Library
Reference for a description about how to determine if an extended
key has been pressed.)

Table B.2 shows the second code and what it means.

Second code

3
15
16-25
30-38
44-50
59-68
71
72
73
75
77
79
80
81
82
83
84-93
94-103
104-113
114
115
116
117
118
119
120-131
132
133
134
135
136
137
138
139
140

Meaning

NUL (null character)
Shift Tab (-<vv)
Alt-Q/ W / E/ R/ T / Y / U /1/ 0/ P
Alt-A/S/D/F/G/H/ 1/ J/K/L
Aft-Z/ X/ C/ V / B/ N/ M
Keys F1-F10 (disabled as softkeys)
Home
t
PgUp

~

End
J,
PgDn
Ins
Del
F11-F20 (Shift-F1 to Shift-F10)
F21-F30 (Ctrl-F1 through F10)
F31-F40 (Alt-F1 through F10)
Ctrl-PrtSc
Ctrl+-
Ctr/~
Ctrl-End
Ctrl-PgDn
Ctrl-Home
Aft-1 /2/3/ 4/ 5/6/7/8/9/0/ -/=
Ctrl-PgUp
F11
F12
Shift-F11
Shift-F12
Ctrl-F11
Ctrl-F12
Aft-F11
Aft-F12

Turbo Pascal Programmer's Guide

Keyboard scan codes

Keyboard scan codes are the codes returned from the keys on the
IBM PC keyboard, as they are seen by Turbo Pascal. These keys
are useful when you're working at the assembly language level.
Note that the keyboard scan codes displayed in Table B.3 are in
hexadecimal values.

Appendix B, Reference materials 351

Table B.3
Keyboard scan Scan Code Scan Code

codes Key in Hex Key in Hex

Esc 01 (;-/--'; OF
! 1 02 Q 10
@2 03 W 11
#3 04 E 12
$4 05 R 13
%5 06 T 14
"6 07 Y 15
&7 08 U 16
*8 09 I 17
(9 OA 0 18
)0 OB P 19

OC {[1A
+= OD }] 1B
Backspace OE Return 1C
Ctrl 1D II 2B
A 1E Z 2C
S 1F X 2D
0 20 C 2E
F 21 V 2F
G 22 B 30
H 23 N 31
J 24 M 32
K 25 <, 33
L 26 > .. 34 .. 27 ?/ 35 . ,
lSI 28 --,;Shift 36
-I 29 PrtSc" 37
(;-Shift 2A Alt 38
Spacebar 39 7 Home 47
Caps Lock 3A 8f 48
F1 3B 9PgUp 49
F2 3C Minus sign 4A
F3 3D 4(;- 4B
F4 3E 5 4C
F5 3F 6--,; 4D
F6 40 + 4E
F7 41 1 End 4F
F8 42 2J, 50
F9 43 3PgOn 51
F1D 44 Dins 52
F11 D9 Del 53
F12 DA NumLock 45
Scroll Lock 46

352 Turbo Pascal Programmer's Guide

N

$ See compiler, directives
8087/80287/80387 coprocessor See numeric

coprocessor
8087/80287 option 268
80286 code generation compiler switch 266
256-color mode 151
286 Instructions option 266
@ (address-of) operator See address-of (@)

operator
A (pointer) symbol 39, 40, 53
(pound) character 11

A
$A compiler directive 257, 262
Abs function 127, 255
absolute clause 49
activation, qualified 83
actual parameters 76, 83
Addr function 128
address functions 128
address-of (@) operator 40, 53, 74, 80

double 80
with method designators 76

aligning data 262
ancestors 32
and operator 71, 154
Append procedure 129, 132
Arc procedure 164, 165
ArcTan function 127
arithmetic

functions 127
operators 69

array-type constants 59
arrays 29,51,59

types 29, 221
variables 51

ASCII codes 347
.ASM files 197

Index

D E

assembly language 271, 307
8087 emulation and 197
examples 309
inline

directives 316
statements 314

interfacing program routines with 308
routines, overlays and 185

Assign procedure 129, 131,251
AssignCrt procedure 205, 251
assignment

compatibility 38,82
statements 82

automatic
call model selection, overriding 244
word alignment 257

AX register 243, 316

B
$B compiler directive 263
Bar3D procedure 149, 162, 165
Bar procedure 165
.BGI files 149
binding

late 36
BIOS 199, 204
bit images 153
bit-mapped fonts 152
bit-oriented routines 149
BitBlt

operations 154
operators 163

bitwise operators 70
BlockRead procedure 133
blocks, program 15
BlockWrite procedure 133
Boolean

evaluation, compiler switch 263

x

353

operators 70
type 24, 218
values 24

Boolean Evaluation command 263
BP register 186,246,248,315
brackets, in expressions 77
buffers

overlay 171
loading and freeing up 172
optimization algorithm 172
probationary area 173

BX register 243, 248
Byte data type 23

c
calling conventions 241

constructors and destructors 230
methods 83, 230

case statements 87
CGA 149,202

CheckSnow and 203
Char data type 24,218
characters

special 200
strings 10

ChDir procedure 131
CheckBreak variable 203
CheckEOF variable 203
CheckSnow variable 203
.CHR files 149
Chr function 126, 255
Circle procedure 149, 165
circular unit references 118
ClearDevice procedure 165
ClearViewPort procedure 165
Close function 253
Close procedure 131,251
CloseGraph procedure 149, 165
ClrEol procedure 205
ClrScr procedure 205
CODE 307
COM devices 135
command-line parameters 129
comments

inline assembler 282, 283
program 13

common type 24

354

Comp floating-point type 191,220
comparing values of real types 193
compatibility

assignment 38, 82
parameter type 107

compilation, conditional 273
compiler

directives 13, 26.1-277
$A257, 262
$B263
Boolean evaluation 263
conditional 261, 273-277
$D264
$DEFINE 274, 275
$E 190,265
$ELSE277
$ENDIF277
$F 97, 181,244,265
$G266
$1 130, 139, 266, 271
$IFDEF 276
$IFNDEF 276
$IFOPT 276
$L 267, 271,307
$L 233
local symbol 267
$M 48,211,272
$N 27, 190, 195, 268
$0 180, 268, 272

non-overlay units and 185
parameter 261, 271-272
$R227,269
$S 48,269
switch 261, 262-270
$UNDEF 274, 276
$V 270
$X270

error messages 321
Complete Boolean Eval option 263
compound statements 85
CON device 135
Concat function 128
concatenation 72
conditional

compilation 273
statements 86
symbols 274

Turbo Pascal Programmer's Guide

CONST307
constant expressions 12

restrictions 12
type definition 26

constants 141
array-type 59
Crt mode 202
declaration part 16
declarations 12
defined by Overlay unit 173
file attribute 142
folding 255
Graph unit 159
inIine assembler 291,297
merging 256
pointer-type 62
procedural-type 63
record-type 60
set-type 62
simple 12
simple-type 58
string-type 59
structured-type 59
text color 202
typed 57

object type 61
constructors

calling conventions 230
declaring 102
defined 103
error recovery 236
implementation 102
inherited 36
virtual methods and 37, 103
VMTP and 225, 228

control characters 11,347
Copy function 128
Cos function 127
CPU symbols 275
critical errors

messages 343
trapping 138

Crt unit 132, 136, 199
constants 201
functions 205
line input 201
mode constants 202

Index

procedures 205
special characters 200
text color 202
variables 203

CS register 248
CSEG 307
CSeg function 128
current pointer 152
ex register 248

D
$D compiler directive 264
DATA 307
data

alignment 262
encryption 138
ports 253
segment 48
types See types

date and time procedures 145
DateTime type 144
dead code removal 258
Debug Information

command 264
option 264

debugging
information switch 264
overlays 185
range-checking switch 269
run-time error messages 340
stack overflow switch 269

Dec procedure 127
decimal notation 9
declaration

constructors 102
destructors 102
methods 35, 102
object types 33
part

block 15
$DEFINE compiler directive 274, 275
Delay procedure 206
Delete procedure 127
DelLine procedure 206
descendants 32
designators

field 52

355

method 38, 52
@ (address operator) with 76

destructors 103
calling conventions 230
declaring 102
defined 103
implementation 102

DetectGraph procedure 159, 165
devices 134

drivers 251
handlers 248, 249

DI register 248
direct memory 223
directives 7, See compiler, directives

external 99
far 97
forward 98
inline 99
inline assembler 281,303,304
interrupt 97
near 97
private 7

directories
scan procedures for 144

DirectVideo variable 204
DiskFree function 146
disks

status functions 146
DiskSize function 146
Dispose procedure 126,212,213,215

extended syntax 227, 231
constructor passed as parameter 103, 231

div operator 69
domain, object 32
DOS

device handling 249
devices 134
environment 209
error level 247
exit code 246
operating system routines 141
registers and 143

Dos unit 141
constants 141
date and time procedures 145
disk status functions 146
DosError in 145

356

environment-handling functions 147
file-handling procedures and functions 146
interrupt support procedures 146
miscellaneous functions 147
miscellaneous procedures 147
process-handling procedures and functions
146, 147
types 143

DosError variable 145
DosExitCode function 147
Dos Version function 147
Double floating-point type 191,220
DrawPoly procedure 149, 165
drivers

graphics 149
DS register 246, 248,308,315
DSEG307
DSeg function 128
DX register 243, 248
dynamic

memory allocation 125
functions 125

variables 39,48,53,211
dynamic object instances

allocation and disposal 103, 230

E
$E compiler directive 190, 265
EGA, CheckSnow and 203
Ellipse procedure 164, 165
$ELSE compiler directive 277
empty set 39
EMS memory, overlay files and 170, 181
emulating numeric coprocessor (8087) 27

compiler switch 265
Emulation

command 265
option 265

end of file
error messages 323

$ENDIF compiler directive 277
entry code, procedures and functions 245
enumerated type 25, 218
EnvCount function 147
EnvStr function 147
Eof function 130
Eoln function 133

Turbo Pascal Programmer's Guide

Erase procedure 131
error checking

dynamic object allocation 236
virtual method calls 227

ErrorAddr variable 138, 247
errors

critical 343
fatal, in OvrInit 183
handling 154
messages 321

critical 343
fatal 344

range 269
reporting 246
run-time See run-time, errors

ES register 248
.EXE files 169

building 258
Exec procedure 146
exit

functions 245
procedures 245, 246

implementing 138
Exit procedure 125
ExitCode variable 138,247
exiting a program 246
ExitProc variable 138, 246
Exp function 127
Expanded Memory Specification See EMS

memory
exponents 219
expressions 65

constant 12
address 57

examples 68
inline assembler 290

classes 297-298
elements of 291-297

Extended
floating-point type 191,220
range arithmetic 191

extended
key codes 199, 350
memory support See EMS memory
syntax 270

Extended Syntax option 270
extensibility 38

Index

external
declarations 99,271,307
procedure errors 327

external (reserved word) 233
ExternProc 186
EXTRN definition errors 308, 327

F
$F compiler directive 181,244,265
factor (syntax) 66
Fail procedure 237
far

directives 97
FAR calls 243

model 180
forcing use of 246

requirement 170
far calls

model
forcing use of 265

fatal run-time errors 344
FExpand function 146
Fibonacci numbers 194
field

designators 52
list (of records) 30
record 52

fields, object 32
designators 52
scope 35, 102

file-handling functions 146
file-handling procedures 146
FileMode variable 133, 138
FilePos function 130
FileRec 143, 222
files

access, read-only 133
access-denied error 341
.ASM 197
attributes

constants 142
.BGI149
buffer 223
.CHR 149
.EXE 169

building 258
functions for 130

357

handles 222
I/O 125,199
modes 222

constants 142
.OBJ 307

linking with 271
.OVR 169
procedures for 131
record types 143
text 131
typed 138, 222
types 39, 222
untyped 133, 138,222

FileSize function 130
FillChar procedure 128
FillEllipse procedure 165
FillPoly procedure 153, 165
FindFirst procedure 142, 146

SearchRec and 144
FindNext procedure 142, 146

SearchRec and 144
fixed part (of records) 30
flags constants 141
floating-point

calculations, type Real and 191
code generation, switching 190
errors 345
numbers 189
numeric coprocessor (8087) 27
parameters 242
routines 125
software 27
types See types, floating-point

FloodFill procedure 151, 153, 165
Flush function 252, 253
Flush procedure 132
Font8x8 variable 202
fonts

files 157
for statements, syntax 90
Force Far Calls

command 181,265
option 265

force far calls compiler switch 265
formal parameters 83, 105
forward declarations 98
Frac function 127

358

free list 215
FreeList variable 137
FreeMem procedure 126,212,213,215
FSearch function 146
FSplit procedure 146
functions 95

address 128
arithmetic 127
body 100
calls 76, 241
Crt unit 205
declarations 100
disk status 146
dynamic allocation 126
entry / exit code

inline assembler 304
extended syntax 77, 270
file-handling 146
Graph unit 167
headings 100
heap error 236
inline assembler 303-306
methods denoting 77
nested 110
ordinal 127
OvrGetRetry 173, 179
parameters

inline assembler 303
pointer 128
results 243

discarding 77, 270
returns

inline assembler 304
SizeOf 228
stack frame

inline assembler 304
standard 125
string 128
transfer 126
TypeOf229

G
$G compiler directive 266
GetArcCoords procedure 164, 165
GetAspectRatio procedure 165
GetBkColor function 167
GetCBreak procedure 147

Turbo Pascal Programmer's Guide

GetColor function 167
GetDate procedure 145
GetDefaultPalette function 163, 167
GetDir procedure 131
GetDriverName function 167
GetEnv function 147
GetF Attr procedure 142, 146
GetFillPattern procedure 164, 165
GetFillSettings procedure 162, 164, 165
GetFTime procedure 145
GetGraphMode function 167
GetImage procedure 149, 165
GetIntVec procedure 146
GetLineSettings procedure 161, 163, 165
GetMaxColor function 167
GetMaxMode function 167
GetMaxX function 167
GetMaxY function 167
GetMem procedure 126,217
GetModeN arne function 167
GetModeRange procedure 159, 165
GetPalette procedure 163, 165
GetPaletteSize function 167
GetPixel function 154, 167
GetTextSettings procedure 153, 161, 163, 166
GetTime procedure 145
GetVerify procedure 147
GetViewSettings procedure 164, 166
GetX function 167
GetY function 167
goto statements 84
GotoXY procedure 206
GRAPH.TPU 150
Graph unit 149, 182

bit images in 153
colors 154
constants 159
error handling 154
figures and styles in 153
functions 167
heap management routines 156
paging 154
procedures 165
sample program 155, 156
text in 152
types 163
variables 165

Index

viewports in 153
GraphDefaults procedure 166
GraphDriver variable

IBM 8514 and 150
GraphErrorMsg function 167
GraphFreeMem procedure 156
GraphFreeMemPtr variable 165
GraphGetMem procedure 156
GraphGetMemPtr variable 165
graphics

CloseGraph 149
current pointer in 152
drivers 149
figures and styles 153
InitGraph in 149
sample program 155, 156

GraphResult function 154, 160, 167

H
Halt procedure 125, 246
handles

file 222
hardware, interrupts 248
heap error function 236
heap management 211

allocating 211, 212, 215, 217
deallocating 212
dynamic memory allocation 137
fragmenting 211
free list 215
map 210
pointers 210
routines 156
sizes 272

HeapEnd variable 137
HeapError variable 137, 217
HeapOrg variable 137, 211,212
HeapPtr variable 137, 211
hexadecimal constants 9
Hi function 129, 255
high

resolution graphics 150
High Video procedure 206
host type 25

359

$1 compiler directive 130, 139, 266, 271
I/O 129

devices 251
error-checking 130, 266
errors 342
files 125, 199

standard 138
redirection 199
variables 129

1/ 0 Checking
command 266
option 266

IBM 8514 149
driver support 150-151
GraphDriver variable and 150
InitGraph procedure and 150
SetRGBPalette and 151

IBM8514.BG1150
IBM8514HI mode 150
IBM8514LO mode 150
identifiers 7
if statements 86
$IFDEF compiler directive 276
$IFNDEF compiler directive 276
$IFOPT compiler directive 276
ImageSize function 167
implementation

constructors 102
destructors 102
methods 35, 102
part (program) 116, 244
sections 120

in operator 73, 74
Inc procedure 127
Include Directories command 271
include directories command-line option 271
Include files 271

nesting 271
index expressions 51
indirect unit references 117
inheritance 32
lnitGraph procedure 149, 159, 166
initializa tion part (program) 117
initialized variables 57
inline

declarations 99

360

directives 316
machine code 314
statements 314

inline assembler
asm statement 282
assembler directive 303
comments 282, 283
constants 291-293

numeric 291
string 292-293
untyped 297

directives 281, 287-289
assembler

external versus 304
expressions 290-303

classes 297-298
elements of 291-297
immediate values 297
operators 300-303
Pascal expressions versus 290
registers 297
types 298-300

labels 283-285
memory references 297
opcodes

instruction 285-287
sizing 286-287

prefix 285
operands 289-290
operator precedence 300
procedures and functions 303-306
registers 293

use 282
relocation 298
reserved words 289
separators 282
symbols 294-297

invalid 294
scope access 296
special 294

syntax 283
InOut function 253
InOutRes variable 138
input

files 129, 138
Input standard file 138
Insert procedure 127

Turbo Pascal Programmer's Guide

InsLine procedure 206
InstallUserDriver function 167
InstallUserFont function 167
instances

dynamic objects 37
object 36

!NT 24 handler 138
Int function 127
Integer data type 23, 218
interface section (program) 115, 121, 244, 308
interfacing Turbo Pascal with Turbo Assembler

308
internal data formats 218
interrupt

directives 97
handlers 248

units and 185
handling routines 138,248
service routines (ISRs) 248
support procedures 146
vectors 138, 139

Intr procedure 146
registers and 143

invalid typecasting errors 329
IOResult function 130, 138
IP flag 248
ISRs (interrupt service routines) 248

K
Keep procedure 146
key codes 350
keyboard

scan codes 351
status 201

KeyPressed function 201, 205

L
$L compiler directive 233, 267, 271, 307
labels 8

declaration part 16
local 284

LastMode variable 204
late binding 36
Length function 128, 255
line

input, Crt 201

Index

Line procedure 166
LineRel procedure 166
LineTo procedure 166
linking

assembly language 307
object files 271
smart 258

Ln function 127
Lo function 129, 255
Local labels 283
local symbol information switch 267
Local Symbols

command 267
option 267

logical operators 70
Longint data type 23
LowVideo procedure 206
LPT devices 135

M
$M compiler directive 48,211,272
machine code 314
macros, inline 316
Mark procedure 126,212
math coprocessor See numeric coprocessor
MaxAvail function 126
Mem array 223
MemAvail function 126
MemL array 223
memory

allocation 182
compiler directive 272

DirectVideo and 204
error messages 321
inline assembler references 297
map 210
size 272

Memory Sizes command 272
MemW array 223
methods

activation, qualified 83
assembly language 233
calling

as functions or procedures 77, 83
conventions 83, 230

declaring 102
defined 32

361

designators 38, 52
@ (address operator) with 76

external 233
identifiers, qualified 35

accessing object fields 52
in method calls 38, 83
in method declarations 102

implementation 35, 102
overridden, calling 84
overriding inherited 36
parameters

Self 83, 84, 102
defined 230

type compatibility 107
qualified activation 83
static 36

calling 38
virtual 36

calling 38, 83, 229
error checking 227

methods. declaring 35
MkDir procedure 131
mod operator 70
.MODEL directive

setting up calling conventions with 309
modular programming 114
monochrome adapters, CheckSnow and 203
Move procedure 128
MoveRel procedure 166
MoveTo procedure 166
MsDos procedure 146
MSDOS symbol 275

N
$N compiler directive 27, 190, 195, 268
near

directives 97
NEAR calls 243
nesting

files 271
proced ures and functions 244

network file access, read-only 133
New procedure 40, 126,211,217

extended syntax 227
constructor passed as parameter 103, 230,
231

used as function 232

362

nil 40,53
Norm Video procedure 206
NoSound procedure 206
not operator 71, 154
NUL device 136
null strings 10, 28
numbers, counting 9,218
numeric coprocessor

compiler switch 268
detecting 195
emulating 27, 125, 190

assembly language and 197
evaluation stack 193
floating-point 27
mode 334
numeric processing option 27
using 189-197

Numeric Processing command 268

o
$0 compiler directive 180, 268, 272

non-overlay units and 185
.OBI files 307

linking with 271
object

directories, compiler directive 271
files 307

linking with 271
Object Directories command 271
objects

ancestor 32
constructors

declaring 102
defined 103
error recovery 236
implementation 102
inherited 36
virtual methods and 37, 103
VMTP and 225, 228

descendant 32
destructors 103

declaring 102
defined 103
implementation 102

domain 32
dynamic

instances 37

Turbo Pascal Programmer's Guide

dynamic instances
allocation and disposal 103, 230

fields 32
designators 52
private

scope 35
scope 35, 102

inheritance 32
instances 36
internal data format 225
methods

private
scope 35

pointers to 37
polymorphic 38, 82, 107'
typed constants of type 61
types 32

declaring 33
virtual method table 227

pointer 225
initialization 228

virtual methods
call error checking 227
calling 229

Odd function 127, 255
Ofs function 128
opcodes 314

inline assembler 285-287
Open function 252
operands 65
operators 6, 65, 69

@ (address-of) 40, 53
address-of (@) 80
and 71, 154
arithmetic 69
BitBlt 163
bitwise 70
Boolean 70
div69
logical 70
mod 70
not 71, 154
or 71, 154
precedence

inline assembler 300
precedence of 65, 69
relational 72

Index

set 72
shl70
shr 70
string 72
xor 71, 154

optimization of code 255
or operator 71, 154
Ord function 23, 25, 126, 255
order of evaluation 256
ordinal

functions 127
procedures 127
types 22

out-of-memory errors 321
output

files 129, 138
Output standard file 138
OutText procedure 153, 166
OutTextXY procedure 153, 166
overlaid

code, storing 211
initialization code 184
programs

designing 179
writing 170

routines, calling via procedure pointers 185
Overlay unit 137, 170

name option 272
OvrClearBuf procedure 178
OvrGetBuf function 178
OvrInit procedure 177
OvrInitEMS procedure 177
OvrResult variable 174
OvrSetBuf procedure 178
procedures and functions 173

overlays 169, 169-186
assembly language routines and 185
BP register and 185
buffer 171

loading and freeing up 172
optimization algorithm 172
probationary area 173

buffers
clearing 178
size

default 211
increasing 137

363

with OvrSetBuf 211
returning 178
setting 178

cautions 185
code generation, compiler switch 268
debugging 185
files

loading into EMS 181
in .EXE fIles 187
load operations, customizing 175
loading

into EMS 177
into memory 169

manager 125
implementing 137
initializing 177, 181, 184

Overlays Allowed
command 268
option 268

overridden methods, calling 84
overriding inherited methods 36
.OVR files 169
OvrClearBuf procedure 178
OvrCodeList variable 137
OvrDebugPtr variable 137
OvrDosHandle variable 137
OvrEmsHandle variable 137
OvrFileMode variable 174
OvrGetBuf function 178
OvrGetRetry function 173, 179
OvrHeapEnd variable 137
OvrHeapOrg variable 137
OvrHeapPtr variable 137
OvrHeapSize variable 137
OvrInit procedure 177
OvrInitEMS procedure 177, 182
OvrLoadCount variable 174
OvrLoadList variable 137
OvrReadBuf variable 175
OvrResult variable 174
OvrSetBufprocedure 137, 178, 182

increasing size of overlay buffer with 211
OvrSetRetry procedure 173, 179
OvrTrapCount variable 174

p
Pack procedure 126

364

packed (reserved word) 28
PackTime procedure 145

DateTime and 144
palette

manipulation routines 151
ParamCount function 129
parameter directives See compiler, directives,

parameter
parameters

actual 83
command-line 129
floating-point 242
formal 83, 105
passing 83, 241
procedural-type 111
Self 83, 84, 102

defined 230
type compatibility 107
value 106, 242
variable 106

untyped 107
VMT 230

ParamStr function 129
Pi function 127
PieSlice procedure 166
pointer (I\) symbol 39, 40, 53
pointer and address functions 128
pointer-type constants 62
pointers

assignment compatibility 38
comparing 74
to objects 37
types 39,221
values 53
variables 53, 75

polymorphism
object instance assighment 82
parameter type compatibility 107
pointer assignment 38

Port array 253
PortW array 253
Pos function 128
pound (#) character 11
precedence of operators 65, 69
Pred function 23, 127, 255
PreFixSeg variable 209
PrefixSeg variable 138

Turbo Pascal Programmer's Guide

printer devices 135
private

fields
scope 35

methods
scope 35

PRN 135
probationary area, overlay buffer 173
PROC directive, defining parameters with 309
procedural

types 40, 108, 108-112
declarations 40
in expressions 79
in statements 79
variable declaration 108
variable typecasts and 54

values, assigning 108
variables 108

restrictions 109
using standard procedures and functions
with 109

procedural-type constants 63
procedural-type parameters 111
procedure and function declaration part

(program) 17
procedure call models 97
procedures 95

body 96
declarations 95
Dispose

extended syntax 227, 231
constructor passed as parameter 103,
231

dynamic allocation 125
entry / exit code

inline assembler 304
Exit 125
Fail 237
file-handling 146
Graph unit 165
Halt 125
headings 96
inline assembler 303-306
methods denoting

calls to 83
nesting 110, 244

Index

New
extended syntax 227

constructor passed as parameter 103,
230,231

used as function 232
ordinal 127
OvrSetRetry 173, 179
parameters

inline assembler 303
pointers, calling overlaid routines 185
stack frame

inline assembler 304
standard 125
statements 83
string 127

process-handling routines 146, 147
Program Segment Prefix (PSP) 138, 209
programs

headings 113
lines 13
parameters 113
syntax 113
termination 246

Ptr function 40, 128, 255
PUBLIC 307

definition errors 327
PutImage procedure 149, 154, 163, 166
PutPixel procedure 154, 166

Q
qualified

R

activation 83, 84
identifiers 7, 18
method identifiers 35

accessing object fields 52
in method calls 38, 83
in method declarations 102

$R compiler directive 269
virtual method checking 227

Random function 129, 138
random number generator 138
Randomize procedure 128
RandSeed function 138

365

Range Checking
command 269
option 269

range checking
compile time 257
compiler switch 269

read-only file access 133
Read procedure

text files 130, 132
ReadKey function 201, 205
Readln procedure 132
real

numbers 26, 189,219
types 26

record-type constants 60
records 30, 52, 60, 222

fields 52
Rectangle procedure 166
redeclaration 17, 47
redirection 199
reentrant code 248, 249
referencing errors 335
register-saving conventions 246
RegisterBGldriver function 150, 157, 167, 185
RegisterBGIfont function 157, 167, 185
registers

AX 243, 316
BP 246, 248,315

overlays and 185
BX243,248
CS248
CX248
DI248
DS 246, 248, 308, 315
DX243,248
ES248
inline assembler 297
inline assembler use 282
S1248
SP 138,246
SS246
using 243, 246, 248, 315

Registers type 143
relational operators 72
relaxed string parameter checking 270
Release procedure 126,212
relocatable reference errors 328

366

relocation
inline assembler 298

Rename procedure 131
repeat statements 88
repetitive statements 88
reserved words 6, 7

external 233
inline assembler 289
virtual 36
with 52

Reset procedure 129, 131, 138
RestoreCrtMode procedure 150, 166
result codes 177
results

functions
discarding 77, 270

Rewrite procedure 129, 131
RmDir procedure 131
Round function 126, 255
round-off errors, minimizing 192
routines, operating system 146, 147
rules, scope 17
run-time

5

errors 246, 340
fatal 344

support routines 125

$S compiler directive 48, 269
SavelnitXX variables 138
Savelnt24 139
scale factor 10
scan codes, keyboard 351
scope

object 35
of declaration 17

screen
mode control 199
output operations 199

SearchRec type 144
Sector procedure 166
Seek procedure 130, 131
SeekEof function 133
SeekEoln function 133
Self parameter 83, 84, 102

defined 230
Seq function 128

Turbo Pascal Programmer's Guide

set-type constants 62
set types 38, 221
SetActivePage procedure 166
SetAllPalette procedure 160, 163, 166
SetAspectRatio procedure 166
SetBkColor procedure 166
SetCBreak procedure 147
SetColor procedure 166
SetDate procedure 145
SetFAttr procedure 142, 146
SetFillPattem procedure 153, 162, 164, 166
SetFillStyle procedure 153, 162, 166
SetFTime procedure 145
SetGraphBufSize procedure 157, 166
SetGraphMode procedure 150, 166
SetIntVec procedure 146
SetLineStyle procedure 153, 161, 166
SetPalette procedure 160, 166
SetRGBPalette procedure 151, 161, 166

IBM 8514 and 151
sets

comparing 74
constructors 66, 77
membership 74
operators 72

SetTextBuf procedure 132
SetTextJustify procedure 153, 161, 166
SetTextStyle procedure 153, 161, 166
SetTime procedure 145
SetUserCharSize procedure 153, 166
SetVerify procedure 147
SetViewPort procedure 149, 162, 167
SetVisualPage procedure 167
SetWriteMode procedure 163, 167
shl operator 70
short-circuit Boolean evaluation 256, 263
Shortint data type 23
shr operator 70
SI register 248
signed number (syntax) 10
significand 219
simple

statements 81
types 22

simple-type constants 58
Sin function 127
Single floating-point type 191,219

Index

SizeOf function 129, 228
smart linking 258
snow-checking 203
software

floating-point 27
interrupts 248
numeric processing See numeric coprocessor,
emulating

sound operations
NoSound206
Sound 206

Sound procedure 206
source debugging compiler switch 264
SP register 138,246,315
space characters 5
SPtr function 128
Sqr function 127
Sqrt function 127
SS register 246,315
SSeg function 128
stack

8087 193
checking switch directive 269
overflow 48

switch directive 269
segment 48
size 272

Stack Checking
command 269
option 269

stack frame
inline assembler use of 304

StackLimit variable 138
standard

functions, constant expressions and 13
units See units, standard

statement part (program) 17
statements 81

assignment 82
case 87
compound 85
conditional 86
for 90
goto 84
if 86
procedure 83
repeat 88

367

repetitive 88
simple 81
structured 85
uses 114
while 89
with 52,92

static methods 36
calling 38

storing overlaid code 211
Str procedure 127
Strict Var-Strings

command 270
option 270

string-type constants 59
strings 59

character 10
comparing 73, 74
concatenation 72
functions 128
handling 125
length byte 221
maximum length 221
null 28
operators 72
procedures 127
relaxed parameter checking 270
types 27, 221
variables 51

stroked fonts 149, 152
structured

statements 85
types 28

declaring 110
structured-type constants 59
subrange type 25
Succ function 23, 127, 255
Swap function 129,255
SwapVectors procedure 139, 146
switch compiler directives 261, 262-270
symbols 5

conditional 274
CPU 275
inline assembler 294-297
local information 267
scope access

inline assembler 296

368

syntax
extended 270
inline assembler 283

syntax diagrams, reading 5
System unit 114, 125, 195

floating-point routines 190

T

interrupt vectors and 138
trapping critical errors 138
variables in 125-139

tag field (of records) 31
terminating a program 246
terms (syntax) 67
Test8087 variable 138
text 152

color constants 202
files 131

devices 136
drivers 251

records 223
TextAttr variable 204
TextBackground procedure 202, 206
TextColor procedure 202, 206
TextHeight function 167
TextMode procedure 202, 206
TextRec records 143,222,251
TextWidth function 167
tokens 5
transfer functions 126
trapping

critical errors 138
critical errors, System unit and 138
1/ 0 errors 266
interrupts 248

Trunc function 126,255
Truncate procedure 131
Turbo Assembler 307, 308

8087 emulation and 197
example program 313

Turbo Pascal
Editor Toolbox 263

type checking, strings and 270
typecasting, invalid 329
typed

constants 57
object type 61

Turbo Pascal Programmer's Guide

files 138, 222
TypeOf function 229
types 21

U

array 29, 221
Boolean 24, 218
Byte 23
Char 24,218
common 24
compatibility 42
declaration 21

part 16,44
definition, constant expressions and 26
enumerated 25, 218
file 39
floating-point 191,219

Comp 26, 191,220
comparing values of 193
Double 26, 191,220
Extended 26, 191,220
Single 26, 191,219

Graph unit 163
host 25
identity 41
Integer 23,218
Longint 23
mismatches, error messages 324
object 32

declaring 33
ordinal 22
Pointer 39, 22 i
procedural 40, 79, 108
real 26
real numbers 219
record 3D, 222
set 38,221
Shortint 23
simple 22
string 27, 221
structured 28
subrange 25
Word 23

$UNDEF compiler directive 274, 276
units

8087 coprocessor and 195
circular references 118

Index

heading 115
identifiers 7
indirect references 117
initialization code 184
non-overlay 185
scope of 18
standard

Crt 132, 136, 199
Dos 141
Graph 149
Overlay 170
overlays and 171
System 125
system 114

syntax 114
version

mismatch errors 330
number 118

Unpack procedure 126
UnpackTime procedure 145

DateTime and 144
unsigned

constant 66
integer 9
number 10
real 10

untyped
files 133, 138, 222
var parameters 107

Upease function 129
uses statement 114

v
$V compiler directive 270
Val procedure 127
value

parameters 106, 242
typecasts 78

var
declaration section 259
parameters 106, 242

untyped 107
string checking, compiler switch 270

variables 47
absolute 49
arrays 51
CheckBreak 203

369

CheckEOF 203
CheckSnow 203
Crt 203
declara tion part 16
declarations 47
defined by Overlay unit 173
DirectVideo 204
DosError 145
dynamic 39,53,211
FileMode 133
global 48
Graph unit 165
I/O 129
initializing 57
LastMode 204
local 48
parameters 242
pointer 53, 75
procedural 108

restrictions 109
record 52
references 50
strings 51
TextAttr 204
typecasts 53, 54
Wind Max 205
WindMin205

variant part (syntax) 31
VERSO symbol 275
VGA

modes
emulated 150

video
memory 199

viewports 153
virtual (reserved word) 36
virtual method table 227

pointer 225
initialization 228

370

virtual methods 36
calling 38, 83, 229

error checking 227
VMT parameter 230

W
WhereX function 205
Where Y function 205
while statements (syntax) 89
WindMax variable 205
WindMin variable 205
Window procedure 200, 206

current coordinates 205
windows 200
with (reserved word)

statement 52
with statements 92
Word

data type 23
word

alignment
automatic 257

Word Align Data command 262
write

procedures 129
statements

8087 coprocessor and 194
BIOS 204
DirectVideo and 204

Write procedure 132
Writeln procedure 132

x

8087 coprocessor and 194
DirectVideo and 204

$X compiler directive 270
xor operator 71, 154

Turbo Pascal Programmer's Guide

6.0
PROGRAMMER'S
GUIDE

B o R L A N D

Corporal. Hlldqu.rllJI: 1100 Gre.n Hilli Rold, P.O. 101 se0001 , ScoHI VllII.y, CA 95011·0001 , (401) 43a·5300
OHlcli In: Australl. , D.nm.n, Engl.nd, Fr.nce, GIfIJ\.ny, it.ly, J.p.n .nd S •• d.n - P.rI. llMN·PAS05·aO - lOR 1151

,

