
11II1II~1II1II1I"'111ll11II1ll1l ~~ ~ .~I

TURBO
GAMEWORKS

Owner's Handbook

Copyright ©1985 by

BORLAND INTERNATIONAL Inc.

4585 Scotts Valley Drive

Scotts Valley, CA 96066

U.S.A.

TABLE OF CONTENTS

INTRODUCTION ... 1
Shake Hands with Your Computer Opponent 2
What's Inside Turbo GameWorks? ... 2
Structure of this Manual ... 2
Typography ... 3
The Distribution Diskettes ... 3
Acknowledgments 3

Chapter 1. PLAYING GO-MOKlJ .. 7
How to Play Turbo Go-Moku ... 7

Chapter 2. PLAYING CHESS ... 9
How to Play Turbo Chess ... 10

Making Moves .. 11
The Opening Ubrary ... 12
How Turbo Chess Handles Errors, Checkmates, and Draw Games 12

Turbo Chess Commands ... 13
Newgame .. 13
Quit .. 13
Level .. 16
Clocks ... 17
Changing Sides and Terminating Search 17
Taking Back Bad Moves .. 18
Need a Hint? ... 18
Changing Colors and Setting Up Positions (The Chess Board Editor) 18
Setting Up a Board Using a Text Editor .. 18
Auto .. 19
MultiMove ... 19
SingleStep ... 19
Value Display ... 19

Chapter 3. PLAYING BRIDGE ... 21
How to Play Turbo Bridge .. 21

Options Menu .. 21
Bidding ... 22

The Bidding System ... 24
Table Talk with a Computer? Bidding Strategy 26

Trick or Treat: Playing the Cards ... 27

Chapter 4. ANATOMY OF A GAME .. 31
Types of Computer Games ~ .. 31
How to Recognize a Game When You See One 32

Data Structure .. 32
Evaluation ... 33

iii

User Interface
And They're Offl

.. 33
34

Chapter 5. GO-MOKU PROGRAM DESIGN 35
Go-Moku Rules of Thumb .. 35
Basic Playing Strategy .. 36
Evaluating Moves .. 37
Problem Analysis .. 38

Incremental Updating .. 40
Go-Moku Program Structure ... 40

The Data Structure .. 41
Go-Moku Procedures .. 42

MakeMove ... 42
And and Update .. 44
FindMove .. 45

Chapter 6. CHESS PROGRAM DESIGN ... 47
Evaluating Moves .. 48
The Essence of Chess: Looking Ahead .. 49

The Minimax Search ... 50
How Minimax Helps Turbo Chess Select a Move 50

Alpha-Beta Algorithm .. 52
Iterative Search Before Alpha-Beta .. 55
Tricks for Speedy Searches .. 55
Principal Variation Search ... 57
Sometimes Second Best is Good Enough: The Tolerance Search 58
Using Selection ... 59
Horizon Effect .. 60

Program Design: A Closer Look .. 61
Generating Moves ... 61
Chess Evaluation Function .. 64

Rules for the Evaluation Function: "Evaluation Spices" 67
Calculation Method .. 69
Advantages/Disadvantages to Piece Value Tables 69

Keeping Track of Time ... 70
Program Structure: The What, Not the How 71

CHESS.PAS ... 71
TIMEUB.CH .. 71
BOARD.CH 72
MOVGEN.CH ... 78
Move Generation Procedures 78
DISPIAY.CH .. 79
Print Procedures .. 80
INPUT.CH .. 81
EVALU.CH ... 82
SEARCH.CH .. 83
TALK.CH and SMAll.CH .. 86

Some Final Comments ... 87

iv Turbo GameWorks Owner's Handbook

Chapter 7. BRIDGE PROGRAM DESIGN .. 89
The Challenge of Bridge Program Design .. 89

The Easy Part: The Bidding Algorithm .. , 90
Determining the Bid Class .. 92

The Hard Part: The Play Algorithm 93
Simplifying the Problem .. 93
Playing a Card .. 95

Program Structure ... 96
BRIDGE ' 96

Data Types .. 96
Program Body .. 97

DISPIAY.BR ... 102
SCORE.BR .. 103
DEFAUL'fS.BR ... 104
INIT.BR ... 105
INPUT.BR ... 105
BID.BR ... 106

Normal Passes ... 108
Normal Bids ... 108
Normal Double .. 109
Finding and Making the Bid 109

PIAY.BR .. 110

APPENDICES
Appendix A. TIlE HISTORY OF COMPUTER CHESS 117

Appendix B. CHESS RlJLES .. 123
Introduction .. 123

The Chess Board and Its Arrangement 123
The Pieces and Their Arrangement .. 123
The Conduct of the Game ... 124
The General Definition of the Move ... 124
The Individual Moves of the Pieces .. 124
Completion of the Move .. 125
The Touched Piece ... 126
Illegal Positions .. 126
Check .. 126
The Won Game .. 127
The Drawn Game .. 127
Systems of Chess Notation ... 127

The Algebraic System ... 127
The Descriptive System .. 128

Appendix C. BASIC BRIDGE RlJLES AND STRATEGY 131

v

Appendix D. SUGGFSfED READING ... 135

Appendix E. GWSSARY ... 137

LIST OF FIGURES
1-1. Turbo Go-Moku Screen ... 7

2-1. Turbo Chess Screen ... 10

3-1. Turbo Bridge Screen During Play .. 22

5-1. An Open 4 and Two Open 3s ... 36
5-2. An X at D16 Makes Two Open 3s .. 37
5-3. Go-Moku Evaluator .. 38
5-4. Each Position is Part of 20 lines .. 39
5-5. How the MakeMove Procedure Works 42
5-6. How the FindMove Procedure Works ... :................................... 46

6-1. Searching for a Move ... 49
6-2. Sample Game Tree for the Opening Position 51
6-3. Sample Search Tree .. 52
6-4. Sample Alpha-Beta Search .. 53
6-5. Searching with Selection .. 60
6-6. The White Bishop is Captured ... 60
6-7. The Move Generator .. 62
6-8. Black Threatens Nc2 ... 63
6-9. Attack Values for White in the Starting Position 65
6-10. Piece Value Tables for White in the Starting Position .. 70
6-11. Representation of Squares .. 73
6-12. The Relation between Board and PieceTab 75
6-13. Sample Move Representation .. 76
6-14. How the Perform Procedure Works ... 77
6-15. The DISPIAYModule .. 79
6-16. Structure of the Search Procedure .. 84

7 -1. How BidClass and BidSystem Work .. 92
7-2. How the Analysis Algorithm Works ... 95
7-3. Distribution .. 98
7 -4. Data. .. 99
7-5. Info ... _ 100
7-6. Bids and Game .. 101
7-7. BidTyp ... 106
7-8. Select Lead and Select Card .. 110

A-I. The Turk ... 117
A-2. The Torres Machine .. 118

vi Turbo GameWorks Owner's Handbook

INTRODUCTION

INTRODUCTION

Welcome to the Turbo GameWorks package for the IBM PC and com
patible computers. The software and this manual can enhance your
understanding of how to design and program strategic games. The
games themselves are also a lot of fun. You can brush up on your
Turbo Pascal technique, learn game programming by example, or
just sit back and enjoy playing.

To get full benefit from the Turbo GameWorks package, you should
be familiar with the Pascal programming language (another program
ming language can be of help, too, but Pascal is best). Turbo Tutor
(available from Borland) can get you up to speed in Pascal in a hurry.
If your interest is only in playing the games, however, you don't need
to know anything about programming.

Computer game programs and what goes on inside them have been,
for the most part, the well-kept secret of hobbyists and professional
game designers. While we don't divulge any trade secrets here, we
do reveal some tricks of the trade for the aspiring game designer.

Turbo GameWorks contains well-commented Pascal source code for
three games: go-moku, chess and bridge. The manual walks you
through the programs that play each of these games, and provides
tips and comments for building computer games in general.

The algorithms and programming techniques in the Turbo Game
Works package have many potential applications in business and de
cision-making software. We hope that by revealing some of these
heretofore secret techniques, Borland will spur new developments
in productivity software.

1

Shake Hands
with Your
Computer
Opponent

What's Inside
Turbo
GameWorks?

Structure of
this Manual

2

What would a games development package be if you couldn't play?
The three games in Turbo GameWorks are all very playable. Each
game is introduced with a brief set of rules written by an expert on
each topic, followed by the playing instructions.

The games are provided in fully compiled .COM files, so that you
won't have to wait even the few seconds that Turbo Pascal would take
to compile each program. Turbo GameWorks also provides full
source code ready for you to examine, change, and analyze.

Turbo GameWorks takes three well-known games apart for you, to
show you what makes them work. We'll cover:

• Evaluating moves-How does a computer game know where to
move next? How does it assess your moves? The evaluator is the
heart of every computer game.

• Data structures-How does a game designer begin to think about
representing the playing field, the pieces and the moves of a stra
tegic game?

• Search strategy-The three fundamental search techniques that
help you speed the execution of your games, and the pros and
cons of each.

• User interjace-A game is no good if the computer has all the
fun! We'll look at Pascal procedures that trap user input, and the
aesthetics of screen layout and design.

The body of the manual is divided into two main parts:

• Section I -Playing Turbo Games provides specific instructions
for using each game program.

• Section II -Into the Source Code provides a guided tour of each
game program, beginning with a description of playing strategy
and how that translates into program design and the application
of the playing algorithms. Then, the Pascal procedures that affect
the play of each game are described.

• Appendix A provides a short history of computer chess.
• Appendix B contains the official rules of chess.
• Appendix C covers the rules of bridge.
• Appendix 0 gives a list of suggested books about chess, bridge

and Go-Moku.
• Appendix E is a glossary of terms you need to understand the

games and this manual.

Turbo GameWorks Owner's Handbook

Typography

The
Distribution
Diskettes

Acknowl
edgments

INTRODUCTION

Throughout the manual, design hints, programmer's tips and anec
dotes that might help your understanding or expand your game pro
gramming horizons are boxed or set apart in the margins separate
from the main text.

The body of this manual is printed in normal typeface. Special char
acters are used for the following special purposes:

Alternate An alternate typeface is used in program examples and procedure
and function declarationsO

Italics Italics are used to emphasize certain concepts and termi
nologv, such as predefined standard identifiers, parame
ters and other ::,yntax elements.

Boldface Boldface type is used to mark reserved words in
the text as well as in programming examples.

Please refer to the Turho Pascal Reference Manual for a complete
description of the syntax, special characters, and overall appearance'
of the Turbo Pascal language.

The Turbo GameWorks package is contained on two diskettes. Turbo
Go-Moku and Turbo Bridge are contained on one diskette, and Turbo
Chess on the other. Each game consists of .COM, .PAS, ,CH (for Turbo
Chess), .BR (for Turbo Bridge) and help files. Run the README.COM
program for a complete list of these files, and for any last minute
information not contained in this manual.

To fully benefit from Borland's update and support policy, please
complete and mail the license agreement at the front of this manual.

• Turbo Pascal, Turbo Tutor, and Turbo Graphix Toolbox are trade
marks of Borland International

• Pente is a trademark of Parker Brothers
• Zork is a trademark of Infocom

3

4

Section I

PLAYING TURBO GAMES

5

6

How to Play
Turbo Go-Moku

PLAYING GO-MOKU

Chapter 1
PLAYING GO-MOKU

Go-Moku is a simpler version of the ancient Japanese game of Go,
and it also closely resembles the contemporary game of Pente. The
two players (in this case, the human player and the computer) take
turns placing O's and X's on the intersections of a 19 x 19 line grid.
The object of the game is to line up five pieces in a row. Watch out
this game is deceptively simple. While Go-Moku isn't nearly as com
plex as Go, it's also not as easy as it first appears. For all its simplicity,
Go-Moku can be a real challenge.

ABC D E F G H I J K L M N 0 P Q R S
19r-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-119
18r-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-,18
17 r-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-,17
16r-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-,16
15r-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-,15
14 r-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-,14
13r-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-,13
12 r-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-,12
11 r-t-t-t-t-t-t-t-O-t-t-t-t-t-t-t-t-t-,ll
10 r-t-t-t-t-t-t-O-X-X-t-O-t-t-t-t-t-t-,l 0

9 r-t-t-t-t-t-t-t-O-O-X-t-t-t-t-t-t-t-, 9
8 r-t-t-t-t-t-t-t-t-X-t-X-t-t-t-t-t-t-, 8
7 r-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-, 7
6r-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-,6
5r-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-,5
4 r-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-, 4
3r-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-,3
2 r-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-t-, 2
1 I , • , I I I I I I , I , I I I I 1

ABC D E F G H I J K L M N 0 P Q R S

T U R B 0 - G 0 M 0 K U

Newgame Quit Auto Play Hint

U for Help

~
Last Move

Figure 1-1. Turbo Go-Moku Screen

On your distribution diskette is a file called GO-MOKU.COM which
will let you try your hand at Go-Moku. When you run GO-MOKU.COM
(by typing GO-MOKU on the DOS command line), the program dis
plays a playing board containing 19 x 19 squares, laheled from Al to
S19. A small cursor appears in the center of the board.

To begin the game, press QJ or the space bar after your piece is
situated where you want it. (Traditionally, the first player places his
or her piece on the center intersection, because this leaves plenty of
room for playing.) If you'd rather have the program make the first
move (note that the player who moves first has quite an advantage),
press m (for play). You and the computer alternate moves from
then on.

7

8

To make a move, use the arrow keys to move the cursor to the
intersection where you want to place your piece, and then press
G!J or the space bar. In addition, the I PGUP I, I PGDOWN I, I HOME I
and I END I keys move the cursor diagonally. You can also use the
following commands:

Newgame
Quit
Play

Hint
Auto

?

Starts a New game.
Quits the program and returns to DOS.
The program makes a move. Use this at the
beginning of the game to let the program go
first, or use it during the game to change sides
with the computer.
Gives you a Hint about where to move.
The program Automatically plays the rest of
the game against itself.
On-line help about whatever you're doing at
the moment. Scroll through the help text, then
press I ESC I to resume play.

To enter a command, press the key of the first letter in the command
name lKJ, @], W, [IJ, [EJ or OJ·
It's a good idea to try to set up two different rows of three pieces
each during the beginning of the game. The program will try to block
every row of three that you arrange, but it is possible to win by setting
up two of these threats simultaneously. The player who first gets four
pieces in a row with hoth ends open will (if vigilant!) automatically
win, because the program cannot block two places with one move.

That's all there is to playing Turbo Go-Moku. If you're interested in
learning how the game is designed and how to make modifications
to it, turn to Chapter 5.

Turbo Game Works Owner's Handbook

PLAYING CHESS

Chapter 2
PLAYING CHESS

According to an Indian legend, chess was originated by a philosopher
named Sassa. Sassa invented chess for his King, Shahram, in an at
tempt to devise a game that would rival backgammon in popularity.
The King was so pleased by the invention that he offered to give
Sassa anything he desired. Sassa asked for a seemingly modest re
ward-an arrangement of corn on the chessboard. He wanted one
kernel to be placed on the first square, two kernels on the second
square, four on the third square, and so on, doubling the number of
kernels on each successive square until all the squares were covered.
There is no record of what took place when the King discovered the
true nature of this request, but the total amount of corn required to
fill the entire chessboard would have been an astronomical
18,446,744,073,709,551,615 kernels!

Legend aside, it does appear that chess was actually invented in North
India sometime around the year 500 A.D. The game was apparently
supposed to symbolize two Indian armies going into battle. The chess
pieces (King, Minister, Elephant, Horse, Chariot, and Foot Soldier)
were realistic representatives of the members of the Indian army;
their respective moves depicted both the importance of that role and
the type of action it performed. For example, the foot soldier of the
Indian army filled a weak, menial role-he had to trudge forward
and attempt to kill or capture enemy soldiers; this was reflected in
the game. The more cautious, circumspect movements of the King
and Minister are also represented realistically. The actual method of
winning was also portrayed accurately-while it was preferable to
kill or capture the king, it was equally effective (although not as
glorious a victory) to destroy the army.

Over the next six centuries, chess spread throughout Asia. It made
its way to Persia, and then on to China, Korea and Japan. From the
Middle East and Northern Africa, it spread to Europe, where the game
entered the mainstream culture for the first time. Now, almost 1500
years after it" invention, chess continues to fascinate people all over
the world.

Popular games have always inspired new twists or variations; the in
tricacy of chess led people to dream of powerful machines that could
play the game (see Appendix A for the history of chess machines).
Such machines have intrigued people for centuries, but it is only
during the last twenty years that they have become sophisticated

9

How to Play
Turbo Chess

Most chess openings are
routine. Chess masters, in
fact, memorize openings
and responses. We've sup
plied Turbo Chess with a
library of traditional open
ings and responses in a file
called OPENING.LIB. Until
you see the analysis infor
mation on the screen
(depth, value, etc.), you'll
know that Turbo Chess is
playing from its opening
library.

10

enough to challenge a human chess champion. In fact, computer
chess is probably the on~v area of artificial intelligence in which the
computer can outdo human experts.

You should know how to play chess to get the most out of Turbo
Chess. If you don't know how to play, find a beginner's instruction
book at your library or bookstore. Consult Appendix D for a list of
recommended books. For your convenience, the rules of chess are
given in Appendix B.

The file CHESS.COM on your diskette contains the compiled CHESS
program file (the main source program is CHESS.PAS). Another file,
OPENING.LIB, contains a library of chess openings that the program
uses in the early game. Copy these two files to your working copy
and then put the distribution diskette away. (Make sure you place the
OPENING.LIB file in the same drive and directory as the CHESS.COM
file. If OPENING. LIB is not found when the chess program is loading,
an error message will be displayed before the game begins.) A script
of the games you play will be stored in a text file called CHESS.

When you run CHESS. COM (by typing CHESS on the DOS command
line), the program sets up the chessboard and presents you with a
control panel to the right of the board.

8

7

6

4

3

Search Depth and
Current Analyzed Move

Chess
Clocks

Last
Moves

~~~:Eg~;..------ Expected 

1824 N/sec: 

Main Menu 
Newgame Level Play 

Multi Auto 
Value Back 

Hint Edit 

Type move 
the arrow keys 

Help Message 

Figure 2-1. Turbo Chess Screen 

Continuation 
(Best Line) 

Number of 
Analyzed 
Positions 

Command Menu 

Turbo GameWorks Owner's Handbook 



Making Moves 

• Half Moue or Ply-one 
move by one player. 

• Full Malle-one turn 
each for both players. 

Non-queen pawn promo
tion is seldom used in 
practice, but including it in 
chess code makes for a far 
more sophisticated and 
flexible program. Like en 
passant, non-queen promo
tion takes time to imple
ment as a "special case." 
Perhaps a satisfactory chess 
program could be designed 
more simply without these 
moves, but the resulting 
game would arguably no 
longer be ch@ss. 

PLAYING CHESS 

There are three ways to move a chess piece in Turbo Chess: by use 
of the arrow keys, by algebraic notation, or by short notation. Turbo 
Chess does not use traditional chess notation (KN-KB3) because each 
position on the chessboard must be a discrete identifiable location 
in order for the program to know where each piece is. 

The easiest way to make moves is to use the arrow keys and the space 
bar to point to and move the pieces. To use the arrow keys, press 
any of the four arrow keys [IJ, [JJ, ~ and ~ on the 
numeric keypad (make sure the I NUMLOCK 1 key is off). Four blink
ing arrows will appear in the middle of the board. Use the arrow 
keys to point to the piece you wish to move and then press the space 
bar. Now, move the blinking arrows to the square of your choice and 
press the space bar again. Additionally, the 1 HOME I, 1 PGUP I, 1 END I 

and 1 PGDN 1 keys move the arrows diagonally. 

For instance, to move white's p-k4, do the following: 

1. Press the [JJ key three times. 

2. Press the space bar. 

3. Press the [I] key two times. 

4. Press the space bar. 

While using the arrow keys to make moves is easy, you might prefer 
to use algebraiC or short notation. In algebraiC notation, each square 
is labeled, from A1 to H8. You move by entering the square you are 
moving from followed by the square you are moving to. With short 
notation, you specify the piece to move and the destination, e.g., NF3. 
You can also specify a move by typing in the destination square (legal 
only for pawn moves). The program makes its move after you make 
yours. To make the program move first, type [IJ for play. 

Instead of entering a move when prompted, you can enter one of the 
other c()mmands listed in the Quick Reference Guide on pages 14 
and 15. Enter a command by typing the first letter of the name (in 
either upper or lowercase), followed by Q]. For example, for 
Newgame, type n, followed by @]. Each of the commands is de
scribed in detail beginning on page 13. 

Captures are entered just like any other move. 

En Pas"sant captures are handled by moving the pawn to the empty 
destination square; the captured pawn is removed automatically. An 
en passant capture is a special pawn move that the program some
times uses. Many novice chess players don't know of its existence. 
But be on guard: Turbo Chess does. 

Castling is accomplished by entering the king move only (e.g., KG 1). 

11 



The Opening 
Library 

How Turbo 
Chess Handles 
Errors, 
Checkmates, 
and Draw 
Games 

• Draw by stalemate: the 
player whose turn it is to 
move cannot do so with
out entering check 
(illegal). 

• Draw by third repetition: 
the same position appears 
three times with the same 
player having the move 
each of the three times. 

• Draw by 50 moves: a 
maximum of 50 moves 
can take place since last 
capture or pawn move. 

12 

Pawn promotion can be entered in two ways. If you use algebraic 
notation, the program automatically gives you a queen. If you use the 
short notation, you should enter the desired piece type as the moving 
piece (for example QE8 if you want a queen). The program generally 
chooses a queen for itself, but in some situations it may surprise you 
by taking a different piece. 

The opening library is a binary file named OPENING.LIB on the 
distribution diskette. During an opening situation, the number of 
moves a player can make is almost infinite, and the difference in 
value between them almost infinitesimal. We've supplied Turbo Chess 
with a library of traditional openings and responses. You will know 
that Turbo Chess is using this library when it displays the message 
"Using opening library" in the evaluation panel. When it has left the 
opening library, Turbo Chess will display its evaluation information 
(depth, value, etc.) in the evaluation panel. 

If you try to make an illegal or impossible move, or try to cheat, 
Turbo Chess notifies you of the error and prompts you for another 
move. You cannot enter an illegal move in Turbo Chess. 

The program also displays a message near the bottom of the control 
panel under the follOWing conditions: 

• If the program puts you in check 
• If you put the program in check 
• If the program resigns 
• If the program finds a forced mate (with number of moves to 

achieve mate) 
• If the game is a draw 

The program recognizes a draw by a stalemate, third repetition and 
the 50-move rule (see Appendix E for a definition of these terms). 
The program will resign when it is heavily behind in material (num
ber and value of remaining chess pieces), but it will not resign if it 
is being mated by you. When the program reSigns or the game is a 
draw, you can always choose to ignore this by making the next move, 
thus forcing the program to continue playing move by move. 

While the program is analyzing, it displays the best line found so far, 
as well as the evaluation of the position, the search depth in half 
moves, and the move that is currently being analyzed. The hest line 
is the series of moves that the program expects the game will follow. 
Afull moue is one turn for each player, while a half mOl'e or a p(l' is 
a single move made by one player. The search depth is the number 
of half moves that the program has looked ahead. The value indicator 

Turbo GameWorks Owner's Handbook 



• Best Line-the series of 
moves that the program 
expects the game will 
follow. 

• Search Depth-the num
ber of half moves that the 
program has looked 
ahead. 

Turbo Chess 
Commands 

Newgame 

Quit 

PLAYING CHESS 

on the control panel shows how the program rates its own position 
in the game. It measures the evaluation in numbers of pawns (for 
example, + 3.00 means that the program is three pawns ahead). A 
positive number indicates that the program believes it has the advan
tage; a negative number means the advantage is yours. 

During the search for a move, the program tells you the total number 
of analyzed nodes, as well as the number of analyzed nodes per 
second. A node is the point in computer logic where a number of 
potential moves diverge. The number of analyzed nodes is equivalent 
to the number of positions the program has analyzed. 

The program also creates a listing of the moves of the game. This 
listing is stored on the disk in a file called CHESS. Any number of 
games can be stored in this file; however, you should rename the 
CHESS file if you wish to permanent£v save any games, because the 
file will be overwritten the next time you run CHESS.COM. If you 
want a hard copy of the game you just played, you can print out the 
CHESS file. 

Sample Chess File Listing 
No Player Program Hint Value Level Nodes Time 

1. Pe2-e4 Pc7-c5 ( ) 0.00 0: 0 0 0.0 
2. Qdl-h5 Ng8-f6 (Qh5-e'5) 0.04 3:19 1250 34.0 
3. Qh5-f5 Pd7-d5 (3fl-b5) 0.05 2:12 997 33.0 

This is a sample listing of the information Turbo Chess stores in the 
CHESS file. The CHESS file is always stored in the current logged 
directory on the logged drive-not necessarily on the games disk. 

Enter the letter of the command that is highlighted on the menu 
followed by Q] (for example, to Play, enter W Q]. Also be 
aware that some letters are used twice (although in different menus) 
to indicate different actions. Thus, entering an OJ from the main 
menu will get you the Level menu, but if you are in the Edit menu, 
pressing OJ will load a previously saved board from disk. Consult 
the Quick Reference Guide on pages 14 and 15 for an easy-to-follow 
flowchart and summary of the commands. 

To terminate the current game and start another, use the Newgame 
command when prompted for a move. 

The Quit command stops the program and returns you to DOS. 

13 



'""" ~ 

t:i 
d-
O 
G) 
III 
3 
CD 

~ 

* C/.) 

o 
~ 
CD 
~ 
C/.)~ 

:t: 
III 
:::) 

§: 
o 
~ 

Chart of Turbo Chess Commands 

I MAIN MENU 

NewGame (N) Level (L) Play (P) Turn (T) 

I 
Resets board 

T 
Renews game 

I 
Automatic return 

Enter seconds 
per move 

Matches your 
playing speed 

Enter number of 
plies for search 

Returns to 
main menu 

Fulltime (F) 

Enter minutes for 
entire game 

Indefinite (I) 

Will exhaustively 
evaluate all nodes for 
best move until you 
interrupt by 
typing P 

MateSearch (M) 

Looks for checkmate 
solutions only 

MultiMove (M) Auto (A) 

Single steps through 
computer's move 
analysis (used only 
when computer is 
making a move) 



"1J 
s;: 
::s 
<: 
G) 

() 

~ 
C/) 

~ 
Vl 

MAIN MENU 
(cont.) 

Chart of Turbo Chess Commands continued 

Moves the piece that 
the program believes 
has the best next 
move, then moves 
piece back 

Removes all pieces 
from the board 

Loads a previously 
saved board from 
disk (enter file 
name) 

Returns to main menu 

(Note: the program will 
not let you exit to the 
main menu with an 
illegal board position) 

Save Board (S) 

Stores the current 
board on disk 
(enter file name) 



Level Turbo Chess takes, on average, 1'5 seconds to make a move. If you 
want to play at a different pace, you can set the level h(fore you start 
the game using the Level command. The Level menu is then dis
played. There are six different ways to set the levels: Normal, Full 
time, Demo, Infinite, Ply search and Mate search. 

Normal 
Full time 
Demo 
Infinite 
Ply search 
Mate search 
Quit 

Level Menu Options 

Enter seconds per move 
Enter minutes for whole game 
Plays at the same speed as you 
Analyzes until you interrupt 
Enter number of plies 
Looks for checkmate solutions 
Returns to main menu 

• For Normal level, specify the average response time per move in 
seconds. The program will maintain a time budget, so that it 
makes a certain number of moves within the time you specify. 
The program uses more time for complex moves and less for 
simple ones, but it averages out the time over a number of moves. 
If it uses a lot of time in its opening moves (i.e., if it doesn't use 
the opening library),,it will play more quickly later on. There is 
a time control after 40 moves and after each succeeding 20 moves. 
Thus, if you give the program 180 seconds (3 minutes) per move, 
it will play 40 moves in 2 hours, and then 20 moves per 1 hour 
the rest of the game. 

• For Full time level, specify the total time for the whole game in 
minutes. The program budgets its time as mentioned above but 
it will play the entire game within the specified time limit. Thus, 
if you want to play "blitz chess," give the program a total of 5 
minutes (and if you're going to play fair, don't use more than 
5 minutes yourself!). 

• Demo level plays at the same speed as you do, regardless of 
whether you play quickly or slowly. This level is used when you 
want a nice, quiet home-style chess game with no concern about 
time. 

• Infinite level exhaustively analyzes each possible move until you 
terminate the search by pressing IT], In other modes the program 
uses various algorithms to arrive at a move decision within a rea
sonable amount of time. You may use infinite level when you are 
playing chess by mail and can afford the time to let the program 
grind away undisturbed, or when you want to thoroughly analyze 

16 Turbo GameWorks Owner's Handbook 



Clocks 

Changing Sides 
and 
Terminating 
Search 

PLAYING CHESS 

a possible move. Note: Even at infinite level the program will use 
the opening library of moves, so to get an "infinite" analysis of 
traditional openings, temporarily move OPENING.LIB out of the 
current directory. 

• Ply search level analyzes to a fixed search depth, measured in 
plies (half moves). This comes in handy when you want to ex
periment after changing the program, or when you want the pro
gram to play at a high level. 

• Mate search looks for checkmate solutions. The program first tries 
to find a mate in 1 move, then a mate in 2, 3, 4, 5 ... moves. When 
the program finds a definite checkmate solution, it plays it. You 
can then enter a defensive move, after which the program will 
complete the mate. A good way to make use of Mate search is to 
load one of the ready-made chess problem files on your diskette 
(MATE.01, MATE.02 ... MATElO). Set the level to Mate search, quit 
level mode, and then press [I] to play. Or, you could set up a 
chess problem from one of the popular chess columns in most 
newspapers and see what Turbo Chess comes up with for a 
solution. 

The program has two internal chess clocks, one for each player. When 
you change the level during the game, the chess clocks are automat
ically reset. For normal level, the clocks are set to the average time 
per move, multiplied by the number of played moves. For other 
levels, the clocks are set to zero. Thus, if you play in a tournament 
in which the time limit is 2 hours for 40 moves, plus 30 minutes for 
the rest of the game, you should start by giving the program 180 
seconds per move, and then after 2 hours give the program 30 min
utes for the rest of the game. A limit of 180 seconds results in 2 hours 
for 40 moves (3 minutes x 40 moves). Setting total time for 30 minutes 
at that point gives a 21/2 hour tournament match. 

When you enter [I] (for play), the program makes a move. Thus, if 
you start the game with this command, the program will make a move 
for white, and you will then play the black pieces. If you also enter 
the Turn command, the program will turn the board around, so that 
the black pieces are at the bottom of the screen. 

If you enter the Play command while the program is "thinking," it 
immediately terminates the search and makes the move which at that 
moment it considers the best. You can do this to speed up moves in 
Autoplay mode. To prohibit the program from making ridiculous 
moves, you are not allowed to terminate the search until the program 
has finished a search one half-move (one ply) ahead. 

17 



Taking Back 
Bad Moves 

Need a Hint? 

Changing 
Colors and 
Setting Up 
Positions (The 
Chess Board 
Editor) 

Setting Up a 
Board Using a 
Text Editor 

18 

If you make a bad move-or any move, for that matter-you can 
take it back with the Back command. The Back command takes back 
the most recent one half-move. For instance, if the program captures 
your queen, you can recover it by taking back two half moves, one 
for the program and one for yourself. You can take back as many 
moves as you like, all the way to the beginning of the game. The 
Back command enables you to evaluate your previous moves and 
thus strengthen your game. Afterwards, you can enter Forward to 
march forward through the moves of the game again, and return to 
where you were before you started Back. 

Enter Hint, and Turbo Chess "advises" you by playing the best move 
on the board. You can use the Hint command both when it is your 
turn to move and while the program is analyzing. 

When you start experimenting with the program, you will probably 
want to set up a particular position or chess problem. You can do 
this with the editor, which is invoked with the Edit command. The 
edit menu will then appear. place white and black pieces on the board 
by entering the piece type followed by the square name (for example 
QD8 to place a queen on D8). You can use the arrow keys to specify 
the destination position and edit the board. Chess problems can be 
set up on a clear board, or you can enter the editor in the middle of 
your game and add or subtract pieces. You can clear the whole board 
with the Clear command. You can save chess positions you set up 
with the SaveBoard command, or load a position with the LoadBoard 
command. Turbo Chess comes with a number of chess problems 
already laid out; these programs are contained in the files MATE.OOl, 
MATE.002 .. MATE.OlO. 

You can change which color will move next with the White and Black 
commands. Remove a piece from the board by entering a space, 
followed by the square name. Leave the editor with the Quit com
mand. You must have a legal number and configuration of pieces on 
the board in order to quit the editor. When you leave the editor, the 
color next to move will be the same color as the last entered piece. 

The chess program allows you to save boards and reload them from 
disk files. Therefore, once you know the format of a saved board, you 
can easily set up a board position by using a text editor to enter the 
pieces and positions: 

Turbo GameWorks Owner's Handbook 



Auto 

Mu/tiMove 

SingleStep 

Value Display 

PLAYING CHESS 

WHITE to Play 
WHITE=Program 
WK H2 
WP G3 
BK C~ 

You can put comments here. Date match 
played: 22 OCT 1985 with Koltanowski. 

The first line indicates the color of the next piece to be played. The 
second line indicates which side the computer is playing. The lines 
that follow indicate which pieces are on the board; they are in the 
following format: 

[Color: W or B][Piece: P,N,B,R,Q,KJ [File: A-H][Rank: 1-8J 

For an example of a board saved to disk, please refer to one of the 
MATE files included on the diskette. 

Note that you can easily set up a game using the EDIT selection on 
the chess program's main menu (see section above). 

Auto causes the program to play against itself; this might result in a 
better game than if you play against the computer, and can thus help 
you improve your own game. When a game is finished, the program 
starts a new one. Stop the sequence of games by entering Auto again, 
or by entering [MJ for MultiMove. 

The MultiMove command permits you to enter moves for both you 
and the program (or play with another human friend). This feature 
is useful when you want to set up a particular opening position, or 
when you otherwise experiment with the program. To return the 
program to regular playing mode, use the MultiMove or Auto com
mands. 

The SingleStep command is used primarily for debugging the pro
gram or to take a look at how the program "thinks." In SingleStep 
mode, the program displays its analysis on the screen move by move, 
one move each time you press G2]. To turn off SingleStep mode, 
press [§J before you press G2]. 

The Value command is also used for debugging. Enter a color and a 
piece type (for example, WQ for white queen), and the program will 
print its evaluation of all moves for that piece on each of the 64 

19 



20 

squares. Leave the value mode with the Quit command. The evalua
tion function is described in detail in Chapter 6, Chess Program De
sign. 

You now know how to use the Turbo Chess program. We think you'll 
find it plays a good game. For a guided tour of the source code, turn 
to Chapter 6. For a look into the fascinating history of machine chess, 
turn to Appendix A. 

Turbo GameWorks Owner's Handbook 



How to Play 
Turbo Bridge 

Options Menu 

PLAYING BRIDGE 

Chapter 3 
PLAYING BRIDGE 

Bridge is one of the most popular card games in Europe and North 
America. In the United States it's even more popular than chess, prob
ably because of the social nature of the game and because it offers 
an ideal combination of fun and intellectual stimulation. 

You should already know how to play bridge to get the most out of 
Turbo Bridge. If you don't know how to play, find a beginner's in
struction book at your library or bookstore. Consult Appendix D for 
a list of recommended books. For your convenience, a brief descrip
tion of basic bridge rules and strategy is given in Appendix C. 

The file BRIDGE.COM on your diskette contains the compiled 
BRIDGE program file. When you run BRIDGE. COM (by typing 
BRIDGE on the DOS command line), the optiOns menu will appear. 

The options menu lets you select how you want to play. You can 
change any of the default settings described below or just press [}] 
to begin playing. To move the cursor (the two blinking arrows) 
around within the options menu, use the ~, ~, [JJ and 
[I] keys on the numeric keypad (make sure I NUMLOCK I is off). 

(Note that upper and lowercase letters are treated the same in Turbo 
Bridge; a capital P is equivalent to a lowercase p, and so on. Just use 
whichever is easier for you.) 

The default settings given in the opening menu are listed below. 

1. Select hands you wish to Play: NORTH EAST SOUTH WEST 
[default = SOUTH] 
To select the hand(s) you wish to play, position the cursor over 
the desired hand and press the space bar. All hands that you select 
to play will appear on the screen in reverse video. The program 
will play any hands you don't select. 

2. Display all 4 hands? 
[default = NO (only your hands are displayed)] 
Do you want the program to display all four hands or just the 
hand(s) you are playing? (Use the arrow keys to position the cursor 
over the answer and hit W for YES or O:IJ for NO, or simply 
press the space bar to toggle between YES or NO.) 

21 



Bidding 

22 

3. Should the program cheat and look at your cards? 
[default = NO J 

Do you want the program to cheat by looking at all hands on the 
table? Use the arrow keys to position the cursor over the answer 
and press the space bar to toggle between YES and NO. (Note: as 
with human players, the program will play a stronger game of 
bridge if you let it peek at your cards.) 

4. Play 
When you're ready to start playing, press IT] or position the cur
sor over the Play box and press the space bar. The bridge screen 
and bid menu (described in the next section) will then be dis
played. The bridge screen appears as a square bridge table; the 
bids and played cards for each trick will be placed on the table. 

Turbo Bridge uses the same bridge layout convention as most 
books and newspapers: East-West, North-South as partners (ab
breviated as E, W, N, S), with South at the bottom of the screen. 

Thinking! 

I 
I Declarer: ~~~ 

~ 3 - 1 
TURBO - BRIDGE ~ North 

~ AT 8 

West 

East 
A 
3 

9 
J 

~ Dummy A 9 6 
J 6 Opponent 

D
AQT76 ~East 

Q K Bridge 

Declarer---. South 7 + 1 

Q 5 3 2 
8 3 
K Q 9 2 

8 3 2 

Table 

Contract 

autOplay Newgame 
Score Hint 

Exit 

South West North South: 

2 7 6 
K 8 J , . 2 4 A Card ranks: 2 •. 9,T,J,Q,K,A 
2 4 A Last 4 tncks 

Figure 3-1. Turbo Bridge Screen During Play 

To prompt you for your bid option, the hand you are playing will 
appear on the screen (e.g., if you are playing South and it is your 
turn, the prompt "South" will appear). 

Turbo GameWorks Owner's Handbook 



PLAYING BRIDGE 

The program automatically bids and plays its own hands. The bids 
and the played cards are both shown on the bridge table and in the 
information window in the lower left part of the screen. 

To enter a bid, type the bid level (1-7) and the suit. The suits are 
entered as C,D,H,S and N for Club, Diamond, Heart, Spade and 
Notrump. Thus, one club is entered as lC (or Ie) and 7 notrump is 
entered as 7N (or 7n). 

If you make a syntactically correct bid that is illegal, for example, 
opening the bidding with Double, the computer will ring a bell and 
tell you that you have made an invalid bid. 

The bid menu options are described below. To select an option, press 
the key indicated by the highlighted letter on your screen. 

• [D ]ouble. Press [QJ to double the bonus for making a contract 
and the penalties for defeating the contract. 

• [R]edouble. If your opponent has doubled your bid, you can, if 
you wish, press [KJ to redouble the bid. 

• [P] lass. To pass during the bidding, press IT], 

Four other options are also available: 
• [C]lear Bids. Press W to clear all bids without re-dealing the 

cards. This is useful if you make a blunder when bidding and want 
to try again. 

• [N]ewDeal. If you don't like the hand you've been dealt, you can 
tell the computer to re-deal the cards by simply pressing []J. 
This option also clears the bids. You will be given the option of 
returning to the default menu before new cards are dealt. 

• [S]core. To view the current score, press W from within the bid 
or play menu (the play menu is discussed on page 27). The menu 
will be replaced by the score card. The score is accumulated until 
one of the teams wins a rubber (two out of three games). To 
return to the appropriate menu after viewing the score, press any 
key. 

• e[X]it. Press [J[J to end the game. Pertinent information about 
the game you just played will be stored in a text file named 
"BRIDGE." 

23 



The Bidding 
System 

24 

Bidding Quick Reference 

Bidding 
1 club 
1 diamond 
1 heart 
1 spade 
1 notrump 
Double 
Redouble 

lC 
10 
IH 
IS 
IN 
o 
R 

Pass P 
Other Options from Bid Menu 

Clear bids C 
New deal 
Current score 
eXit to DOS 

N 

S 
X 

(Remember that upper and lowercase letters can be used inter
changeably; for example, lC and lc both indicate 1 club.) 

Bidding ends when a bid is followed by three consecutive passes. 

The program uses a homemade bidding system called Simplified 
Goren with Modifications. As with any computer program, we must 
sometimes restrict input to a set of factors we can handle. We'll talk 
more about this in the Program Design section of this book. 

To get the most out of Turbo Bridge, you should conform to the 
Simplified Goren system detailed below. For more information, see 
Goren's books (some of which are listed in Appendix D, "Suggested 
Reading"). 

High-card points are counted as usual (ace 4, king 3, queen 2 and 
jack 1). Distribution points are 3 for void suit, 2 for singleton and 1 
for doubleton. The distribution points do not count in NT bids. 

Below you can see how many combined points you and your partner 
should have in order to bid game or slam: 

4 in Suit 26 points 3 NT 26 high card points 
5 in Suit 29 points 
6 in Suit 33 points 6NT 33 high card points 
7 in Suit 37 points 7NT 37 high card points 

Turbo GameWorks Owner's Handbook 



Bid 

Table 3-1. Bidding Conventions 

Example Bidding 
Sequence 

Requirements 
For Bid 

(Opening Bids) 
1 in suit 
2 in suit 
3 or more in suit 

(Notrump Bids) 
1 suit, NT 
1 NT 
1 suit, NT jump 
2 NT 
3 NT 

(1H) 
(2H) 

(lH, 2C, 2 NT) 
(1 NT) 
(1H, 2C, 3 NT) 
(2 NT) 
(3 NT) 

(Response to Opening 1 in Suit) 
Pass (1 H, Pass) 
2 in suit (1H, 2H) 
3 in suit (IH,3H) 
1 higher suit (1H, IS) 
2 lower suit (1H, 2C) 
1 NT (1H, 1 NT) 
2 NT (1H,2 NT) 

(Response to 1 NT) 
Pass 
2 in suit 
Stayman 
3 in suit 
2 NT 

(Response to Stayman) 
2H or S 
20 

(Response to 2 in Suit) 
Not 2 NT 
2 NT 

(Other bids) 
Opponent overcall 
Jump overcall 

Stayman 
Blackwood 
Double 
Redouble 

(Response to Blackwood) 
5C 
6C 
50 
60 
5H 
6H 
5S 
6S 
5 NT 
6 NT 

PLAYING BRIDGE 

(1 NT, Pass) 
(1 NT, 2H) 
(1 NT, 2C) 
(1 NT, 3H) 
(1 NT, 2 NT) 

(1 NT, 2C, 2H) 
(1 NT, 2C, 20) 

(2H, anything) 
(2H, 2 NT) 

(lH,2C) 
(lH,3C) 

(1 NT, 2C) 
(4 NT or 5 NT) 

13 to 23 points, 4 trumps 
24 or more points, 4 trump 
o to 11 high card points, 7 to 
13 trumps 

12 to 15 high card points 
16 to 18 high card points 
19 to 21 high card points 
22 to 24 high card points 
25 to 27 high card points 

4 to 5 points 
6 to 9 points, 4 trumps 
13 or more points, 4 trumps 
6 or more points, 4 trumps 
10 or more points, 4 trumps 
6 to 9 points 
12 to 15 points 

o to 7 high card points 
o to 5 high card points, 5 trumps 
6 or more high card points 
10 or more points, 4 trumps 
8 to 9 high card points 

4 trumps 
Anything else 

1 ace and 1 king 
Anything else 

8 high card points, '5 trumps 
o to 11 high card points, 
7 to 13 trumps 

Slam interest 
Always natural 
Always natural 

o aces 
o kings 
1 ace 
1 king 
2 aces 
2 kings 
3 aces 
3 kings 
4 aces 
4 kings 

25 



Table Talk With 
a Computer? 
Bidding 
Strategy 

26 

All four-card suits are biddable (even 5-4-3-2). There is no weak club 
bid. When choosing between four-card suits, the lowest ranking suit 
is bid first. If a five-card suit is available, the highest ranking such suit 
is bid. Thus, with a 3-4-4-2 distribution you open in diamonds, with 
a 4-1-4-4 distribution you open in clubs, and with a 5-5-2-1 distribution 
you open in spades. 

With notrump distribution (4-3-3-3, 4-4-3-2 and sometimes 5-3-3-2) 
you always bid NT, either immediately or in the second bid. Opening 
one in a suit followed by NT at the lowest possible level means 12-
15 high card points (hp), while opening one in a suit followed by 
jump in NT means 19-21 hp. 

With the modified Goren system you can exchange a lot of infor
mation without bidding very high. For example, opening one spade 
means either you hold five spades or the very rare 4-3-3-3 distribu
tion. With 3-4-4-2 distribution and 12-14 hp you open one diamond. 
If your partner has four hearts, slhe will bid them (unless of course 
slhe also has a five-card suit). Thus, if slhe does not bid one heart, 
you can assume that slhe does not have four hearts. So unless slhe 
bids hearts or diamonds, you will show your NT distribution in the 
second bid. If slhe bids one spade you bid one NT, and if slhe bids 
one NT or two clubs you bid two NT. 

One NT in response to opening one in a suit does not promise 
anything about the distribution. It just means that you cannot bid any 
of your four-card suits. Thus one NT in response to opening one 
diamond means no four-card suits in hearts or spades. 

Bidding two in a suit (other than clubs) in response to opening one 
NT is a very weak bid, which means that the player thinks two in the 
suit is better than one NT. The partner should always pass to this bid. 
Two clubs in response to one NT (or three clubs in response to two 
NT) is a special bid called the Stayman convention. It shows nothing 
about the club suit, but asks the partner to show four-card suits in 
hearts or spades. If the partner has any, slhe bids it, otherwise slhe 
bids diamonds. If the partner has four cards in both hearts and spades 
slhe bids hearts. 

Opening two in a suit is a strong bid, which always forces to game. 
Two NT in response is an "artificial bid." It shows a weak hand. Any 
response other than two NT means slam interest and suggests at least 
an ace and a king. 

The first four NT bid in a game is a special bid called the Blackwood 
convention. It is used to bid slams, and it asks the partner how many 
aces slhe has. The partner bids five clubs with no aces, five diamonds 
with one ace, etc. up to five NT with four aces. The first player can 
then ask for the number of kings by bidding five NT (this cannot be 
done if the partner has shown four aces). 

Turbo GameWorks Owner's Handbook 



Trick or Treat: 
Playing the 
Cards 

PLAYING BRIDGE 

Notice that doubles and redoubles are always natural. An overcall bid 
requires a five-card suit, and a shutout bid requires a seven-card suit. 

The play begins when the bidding is finished. The declarer is the 
partner of the pair winning the contract to first bid the contract suit. 
The dummy is the declarer's partner. The player to the left of the 
dummy (clockwise) plays the opening lead, Then the dummy's cards 
are revealed. After the opening lead, the screen picture is turned 
around, so that the declarer is placed at the bottom and the dummy 
at the top of the screen. 

The declaring side, the contract bid, and the current number of tricks 
won by each side are displayed in the upper right hand corner of the 
screen. When the computer is playing the current hand, this is indi
cated on the screen (e.g., "West to Play"). When it is your turn, the 
play menu will come up and you will be prompted with the hand 
you are to play (e.g., South). (If you are in AutoPlay mode, the mes
sage "Auto Play" is displayed.) 

Enter a card to play simply by entering the rank and suit. The values 
are entered as A,K,Q,J,T for Ace, King, Queen, Jack, Ten and 9-2 
for the low cards. Thus AS means ace of spades, TH means 10 of 
hearts and 2C means 2 of clubs. If just one suit is being played, just 
enter the value. If clubs have been led, A means ace of clubs. You 
must follow suit if possible; the program strictly enforces this rule. If 
only one card can be played, the program will play that card auto
matically without asking you to enter a card. If you press ~ the 
program will play the lowest card that can be legally played. Trumps 
are considered to have higher value than non-trump cards. If two 
cards have the same value, the card in the lowest suit will be played. 
For example, if clubs are led, press ~ to play the lowest club. If 
you have no clubs, press QJ to discard the card with lowest value. 

In addition to playing the cards, there are four other options available 
from the play menu: 

• [S]care. Press W to view the correct game score. 

• Aut[ 0 ]Play. Press [QJ to tell the computer to play out the hand 
for both bridge teams. This is useful if you have made the contract 
and you are not concerned with the outcome of the game. 

• [H]int. Press [ill to ask for a hint. The computer decides what 
card you should play and displays it on the command line. To 
play the suggested card, press ~. To clear the hint, press the 
I BACKSPACE I key. 

• [N]ewGame. Press [ill to cancel the current game; the score is 
unaffected. This is useful when you are learning how to bid and 
are unconcerned about playing the cards. 

27 



28 

• e[XJit. Press DO to end the game. Pertinent information about 
the game you just played will be stored in a text file named 
"BRIDGE." 

ace of spades 
Play Quick Reference 

AS 
king of hearts 
queen of diamonds 
jack of clubs 
jack of lead suit 

ten of spades 
9 of hearts 
2 of clubs 
Computer selects low 

KH 
QD 
JC 
J[;D 

TS 
9H 
2C 

card of current suit [;D 
Other Options from Play Menu 

Score S 
AutoPlay 0 
NewGame N 
eXit to DOS X 

(if suit has been led, you don't 
have to specify it) 

If you play an invalid card, the computer will ring a bell and tell you 
that you have made an invalid play. 

The bridge table displays the played cards for each trick. When a trick 
is completed, the number of won tricks will be updated and the cards 
will remain on the table for your analySiS until a key (any key) is 
pressed. 

When the game is finished, the score card is displayed with the game 
results. The score card remains on the screen until any key is pressed. 
Some typical game result comments are: "N/S made contract with one 
overtrick," which means that the declarer got an extra trick, and 
"EIW down 1," which means that the contract was missed by one 
trick. 

The score will be displayed until you hit any key to continue to the 
next game. You will then be asked if you want to reset the playing 
options before resuming play. 

The program creates a listing of all the deals. This listing is stored 
on the disk in a file called BRIDGE. For a hard copy of the games 
you have played, you can print out this file. This is useful when you 
experiment with the program. 

Turbo GameWorks Owner's Handbook 



Section II 

INTO THE SOURCE CODE 

29 



30 



Types of 
Computer 
Games 

Chapter 4 
ANATOMY OF A GAME 

This chapter introduces you to computer game design concepts that 
are taken for granted throughout Section II of this manual. In partic
ular, three fundamental parts of any strategic computer game are 
discussed: data structure, evaluation, and user interface. 

Three different game genres have emerged during the relatively brief 
history of the game-playing computer: 

• Strategy Games-board games and card games, or games played 
on a (sometimes imaginary) grid. All three games in the Turbo 
GameWorks package fit this category. These games are strategic 
because of the superiority of one position over another, calculated 
according to the rules of the game. Games like bridge and chess 
figure into the strategy category because players use an array of 
52 cards with different values, or an array of 64 squares and pieces 
with different values. 

• Hand/Eye Games-"shoot-'em-ups", driving games, and other 
video games that pit the speed and coordination of the human 
player against the processing power of the computer. These games 
generally use a highly detailed graphic screen display. Strategy 
here may be limited to hiding in the rocks or among the asteroids 
as you shoot. The displays for some of these games are extremely 
realistic. Turbo GameWorks does not deal with games of this type. 

• Adventure Games-you assume the identity of a character (an 
array of values, again) in a story-like puzzle that is often repre
sented textually as an underground maze of tunnels and rooms. 
Zork is one of the more well-known adventure games. The pro
gram translates your responses to different "events" into a better
or-worse position for solving the puzzle. Turbo GameWorks does 
not deal with role-playing games. 

These game genres emphasize different aspects of computer game 
playing: positional strategy, sophisticated graphics programming or 
puzzle-solving. Under the skin, though, they are all much more alike 
than they are different. Strategy games, hand/eye games and adventure 
games all share common elements, although we'll be concentrating 
on strategic games in Turbo GameWorks. 

Strategic games are a good place to start because people have been 
using board and card games for centuries; we are used to them. The 
procedures that display the board on the computer's screen are rel-

ANATOMY OF A GAME 31 



How to 
Recognize a 
Game When 
You See One 

Data Structure 

32 

atively easy to understand, and the data representation of the board 
and pieces makes good sense. 

For a hand/eye game, we'd have to take a lot of time to explain 
complex shape and animation routines that have little to do with the 
design of the game itself. In an adventure game, the data structure is 
more intricate, since part of the fun of these games is that the struc
ture of the puzzle is not immediately obvious. In both hand/eye and 
role-playing games, these complexities can distract from the real heart 
of any game: the evaluation procedure that selects the program's 
move and interprets your response. 

Every game has a data structure, a way to communicate with the user, 
and a procedure to evaluate which moves to make. These correspond 
to the aspects of a game as it is played; different games emphasize 
different parts of a program. An emphasized data structure may reflect 
position or strategy; a high amount of communication pushes the 
hand/eye coordination aspect; and puzzle-solving emphasizes the 
evaluation of the user's moves and the program's selection of its own 
moves. They are the same ingredients in all three instances-just 
mixed differently for the different types of games. 

The challenge to a game designer (or any programmer) is to create 
a data structure that accurately represents the field of play, moves, 
and program status, and that helps the program run smoothly with a 
minimum of code. 

The Go-Moku program, for example, builds up the variable Board 
from three simple elements: 

const 
N = 19; 

type 
Boardtype = (Empty, Cross, Nought); 
Indextype = 1 .. N; 

var 
Board: array[Indextype,IndextypeJ of Boardtype; 

Translated, this means the board is a 19 x 19 grid, where each square 
in the grid may hold the value called "Empty," "Cross" (X), or 
"Nought" (0). 

It takes a great deal of thought to design good data structures. In 
Turbo Bridge, for instance, we'll see that we have two problems to 
represent: the cards that the players actually have, and the cards they 
claim they have through their bids. 

Turbo GameWorks Owner's Handbook 



Evaluation 

User Interface 

Data structure is the logical organization of information about 
the board, playing pieces, the moves, and winning or losing. For 
example, in a chess game we might have a record variable for 
each square on a chess board, like this: 

Square = record 
Piece : boolean; 
King : boolean; 

end; 

Then we could create an array [1..64] of type Square, and be able 
to track whether any particular square holds a piece, and if that 
piece is a king. 

Depending on whether our program can make efficient use of 
this particular data structure, it might be a good way to organize 
a chess game. 

The heart of any strategic computer game is the evaluation function. 
This is the part of the program that examines possible moves, weighs 
them against a set of rules for good and bad moves, and selects from 
among them. 

The ability to look ahead, or search, is crucial to strategic computer 
games. Three different search techniques are used in Turbo 
GameWorks. 

• In the Go-Moku program, we use no search, and instead rely solely 
upon the evaluation function. This method is simple, but the eval
uation function must be very reliable for it to be effective. 

• In the Chess program, we use a brute force search, which means 
that we analyze all possible moves to a fixed depth. 

• In the Bridge program, a brute force search would be too time
consuming. We therefore use a selective search, which means that 
we analyze only some of the possible moves. Deciding which 
moves to analyze can be difficult; designing a reliable selective 
search can thus be a challenge. The Bridge program also shows 
how to handle unknown information (for example, when each 
player knows his or her own cards but not those of the opponent.) 

User interface is an element that every game designer must consider 
to make a game interesting to play. Admittedly, you can write a chess 
game that prints its moves out line by line on a printer-but it's far 
more entertaining to draw a board on the computer screen and move 
the chess pieces from square to square as you watch. A good user 

ANATOMY OF A GAME 33 



And They're 
Off! 

34 

interface will allow the user to concentrate on the game rather than 
on communicating with the program. 

The screen 110 in Turbo Gameworks is a compromise between the 
delightful and the expedient. You can display Turbo games on any 
IBM PC monitor, with either a monochrome or color card installed. 
Game pieces are represented as text characters instead of in graphics. 
This is especially apparent in the Turbo Chess game. 

Because of the nature of strategy games and the importance of the 
evaluator functions, Turbo Gameworks spends a minimum amount 
of time (and code) on 110. In every Turbo game program, however, 
110 is handled in an easily identifiable section of the program. If you 
want to modify Turbo Chess, for instance, to display graphic chess 
pieces, go right ahead. Turbo Graphix Toolbox may help you there. 

A game may be simple in concept and complicated in programming 
and execution; or it may be complicated in concept but elegantly 
simple in data structure and evaluation function. For a person who 
enjoys discovering the internal logic of games, Section II of this man
ual should help you understand more about what makes Turbo 
Games tick. For the person who just wants to play-you can simply 
read Section I and start playing! 

Turbo GameWorks Owner's Handbook 



Go-Moku Rules 
of Thumb 

1. Make 5 in a row if you 
can. 

2. Stop your opponent 
from making 5 in a row. 

3. If program has an open 
3 and can make an open 
4, do it. 

4. If opponent has an open 
3 and can make an open 
4, block it. 

5. If the program can make 
two different open 3's si
multaneously, do it. 

6. If opponent can make 
two different open 3's si
multaneously, block one. 

Chapter 5 
GO-MOKU PROGRAM DESIGN 

Let's take a look inside the Turbo Go-Moku program. Besides letting 
you in on our program design, this chapter will help you develop 
guidelines for creating your own Go-Moku game, and point you in 
the right direction if you'd like to modify the source code for Turbo 
Go-Moku. 

We start by developing rules of thumb for program design: how to 
get our program to evaluate and make moves. The last part of the 
chapter takes the Turbo Go-Moku program apart module by module. 

A computer program cannot real~v think on its own; you have to tell 
it exactly what to do. But you clearly cannot tell it what move to make 
from every possible board position; even in a deceptively simple 
game like GO-Moku, the first five moves can be made in 
5,962,870,725,840 (that's five trillion) different ways! So if each series 
of five moves were to take up, for example, twenty bytes of storage, 
we would need a 100 gigabyte machine for our program - more than 
the storage capacity of a mainframe computer. Clearly, we must give 
the program some general rules of thumb that can be used in every 
possible situation. Deducing the rules of thumb is the first step in 
good computer game design. 

What rules of thumb can we think of? To begin with, we know that 
the object of the game is to get five pieces in a row. Designing a 
program that checks for this condition is not a difficult task. Another 
rule is that if the opponent has four pieces in line, and the fifth grid 
intersection next to those four is empty, the program should place a 
piece on this open grid intersection. This prevents the opponent from 
winning on the next move. It appears that the first rule is the most 
important of the two, because it is better to win than to simply prevent 
the opponent from winning. 

What else can we think of? After you have played the game a number 
of times, you will probably notice the importance of an open 4. An 
open 4 is four pieces in line, with empty grid intersections on both 
ends. No matter where your opponent places the next piece, a 5-in
line is inevitable on the following move. Just as powerful, but occur
ring less frequently, is the combination of two different 4s, each with 
one available empty grid intersection. 

GO-MOKU PROGRAM DESIGN 35 



Basic Playing 
Strategy 

36 

We can make two new rules here: if the program has an open 3 and 
can make an open 4, then it should do so. If the opponent has an 
open 3 and can make an open 4, the program should block it. 

ABC D E F G 
19 t-j-j-j-j-j-j-

18 ~~+-+-+-+-+-
17 ~~+~+~-+-
16 ~~+-+~~-+-
15 ~~+-+-+~-+-
14 ~-+-+-+-+-+-+-
13 ~-+-+-+-+-+-+-

Figure 5-1. An Open 4 and Two Open 3s 

Another strategic technique to force your opponent into a corner is 
to make two different open 3s. The opponent can only block one of 
them, and on your next move you can expand the other to an open 
4. Thus, if the program can make two different open 3s, it should do 
so. If the opponent can make two different open 3s, at least one of 
them should be blocked. 

Can you see a pattern forming? It is never possible to foresee every 
move in every game. However, a good game designer tries to reduce 
the possible moves into categories of moves, or rules, which can be 
applied to a variety of situations by the game program. 

Let's see if we can make this into our initial playing strategy. First, try 
to make a 5-in-line. Secondly, if the opponent can make a 5-in-line, 
block it. If none of these rules apply, try to make as many 4s as 
possible. We can begin to "grade" possible moves by giving them 
relative values. For example, an open 4 should count as two 4s, since 
it can be expanded in two ways (a blocked 4 that cannot be expanded 
to a 5 should not count). Next, try to block as many of the opponent's 
potential 4s as possible. Then try to make as many 3s as possible. We 
will count a completely open 3 as four 3s, since it can be expanded 
in four different ways. Next, try to block as many potential 3s as 
possible. 

Turbo GameWorks Owner's Handbook 



Evaluating 
Moves 

ABC 0 E F G 
19 t-T-T-T-T-T-T-
18 ~~~~+-+-t-
17 ~~~-+-+-t-
16 ~~+-~-+-+-t-
15 ~~-+-+-+-+-t-
14 ~-+-+-+-+-+-t-
13 ~-+-+-+-+-+-t-

Figure 5-2. An X at 016 Makes Two Open 3s 

Now that we've come up with this first strategy, let's think through 
our rules and see what can go wrong. Remember: the computer will 
only do what we tell it, and no more; it will play blindly by any rules 
we give it. Take a look at Figure 5-2, assuming it is O's turn to move. 
According to our strategy, the program should expand its own 2 to a 
3 by placing an 0 at B15. The opponent will then be likely to make 
two open 3s by placing an X on D16. Next, the program will place a 
o on B14 and the opponent will block with an X on B13. The op
ponent then has two open 3s, and has won the game. What went 
wrong? 

In order to make a single 3 ourselves, we let the opponent make two 
open 3s, and that was a bad idea. If the program has two moves that 
make two open 3s, we would like it to choose the move that also 
makes some 2s. It looks like our first strategy doesn't really work. 
Let's build on what we've learned and create another. 

Instead of using our rules of thumb in the same order every time 
we make a move, let's decide which rule is most appropriate at a 
given time, for a given move. What if we assign a value to each rule, 
rate each possible move according to those rules, add all the values 
together and pick the move with the highest value? We can award an 
increasing number of points for making a 2, 3, 4 and 5-in-line play. 
A 2-in-line rates 5 points; a 3 rates 25; a 4 rates 125; and a 5 rates 625 
points. The points given for blocking the opponent's potential lines 
should be a bit lower-let's say 4,20,100 and 400 points respectively. 
What we've created is an evaluator that, given a move (and a board 
position), evaluates the value of that move. 

GO-MOKU PROGRAM DESIGN 37 



The evaluation strategy 
we've outlined here is one 
used by many expert sys
tems. The Turbo Go-Moku 
program only plays a game; 
but one of the distinguish
ing characteristics of an ex
pert system is that it can 
tell you which of its rules it 
is applying to a particular 
deciSion. When you are fa
miliar with the program, 
you may want to modify it 
to be an expert: tell you 
which rule it is applying to 
each move. 

Problem 
Analysis 

38 

Board 

.'" 
II •• 

Move 

2-in-line 
3-in-line 
4-in-line 
5-in-line 
(WINS) 

Scoring Points 
Making 

5 pts 
25 pts 

125 pts 
625 pts 

Move 

XD16 

Blocking 

4 pts 
20 pts 

100 pts 
400 pts 

~ Value 

t-t--t-+-+-t--t-t-t--t-+-+-1 711 EVALUATOR 1171""-+5-0-0 -for-X--', 

Figure 5-3. Go-Moku Evaluator 

The program now has several rules that are assigned different weights 
to help it choose its moves. To pick a move, the program assesses 
each possible move, using our rules of thumb to calculate a value for 
each move. This is called "evaluating the move." Then, it picks the 
move with the highest value. In short, we try all possibilities, calculate 
an evaluation for each, and pick the one with the highest score. All 
this is performed by a procedure called FindMove (described in 
greater detail later in this chapter). FindMove calculates the score for 
each unoccupied location on the board. 

The method used by FindMove is employed by many computer game 
programs. Hans Berliner used it in a backgammon program that beat 
the world champion in a match (Scientific American, June 1980). It 
has also been used in bridge, go, and poker game programs. With 
small modifications, it is one of the key decision-making methods 
used in artificial intelligence research. Some expert systems evaluate 
rules using this method. 

Let's review what we did in this section. We started out by analyzing 
the problem thoroughly, then set up a number of demands which 
our solution ought to meet. From the analysis and the demands, we 
reached an excellent solution-except that it didn't work. From this 
failure we got the idea for a much better solution, one that satisfied 

Turbo GameWorks Owner's Handbook 



Each position is part of up 
to 20 five-position lines. 
This is because a position 
can hold any of five spots 
along the line-beginning, 
middle or end-and sits 
along four possible line di
rections: up/down, right! 
left, and diagonals. 
(sx4=20). 

It's always the innermost 
loop that takes all the eval
uation time. If you cut the 
time taken by the inner
most loop, you can speed 
up the program 
accordingly. 

all the demands. This process is called problem ana~ysis, and is the 
most important part of any software development project. Unfortu
nately, some programmers skip it entirely, and the result is a lot of 
excellent programs that solve the wrong problems. 

The set of rules we've defined to make our decision is called an 
algorithm. The algorithm used by FindMove evaluates each possible 
move. There are a maximum of 361 possible moves if the playing 
board is empty (since 19 x 19 = 361 squares). (The FindMove pro
cedure does not evaluate a position unless it is empty.) Each position 
on the board is part of up to twenty potential 5-in-lines. FindMove 
checks to see how a move would affect each of these 5-in-lines. To 
do this, it must evaluate each of the other four positions in each line. 
This evaluation results in up to 361 x 20 x 4 = 28,880 checks to eval
uate one move. This would probably take about three seconds on an 
IBM PC-not an unreasonable amount of time. Still, the faster we 
can make our program, the better it will be. 

When loops are nested, it is always the innermost loop that takes up 
most of the execution time. In this case, the innermost loop checks 
the four positions in a line to see how a new piece in the fifth position 
would affect the line. There are only two possibilities. If the line 
contains only the program's pieces, placing a new piece would ex
pand the line. If the line contains only the opponent's pieces, placing 
a piece would block the line. Otherwise, the line is of no interest to 
the program's decision-making strategy. 

Figure 5-4. Each Position is Part of 20 Lines 

GO-MOKU PROGRAM DESIGN 39 



Incremental 
Updating 

Turbo Go-Moku avoids the 
use of labels; Turbo Chess 
and Bridge do not. Gener
ally, it is bad programming 
style to use a lot of la
bels-they disorganize the 
code and make it harder to 
read. A few labels, how
ever, may be permissible if 
they result in code that is 
more logical and easier to 
understand. 

Go-Moku 
Program 
Structure 

40 

Because of this, all our program needs to know is the number of O's 
and X's in the particular five-position line that contains the spot being 
evaluated. Instead of counting them again and again, why not keep 
the count in an array? There are 15 x 19 horizontal, 19 x 15 vertical 
and 2 x 15 x 15 diagonal lines, giving a total of 1020 possible five
pOSition lines on the board. Calculating the array from scratch re
quires five checks per line. Making a move affects only 20 of the 1020 
lines; the numbers for the rest of the lines remain unchanged. Instead 
of calculating the entire array from scratch every move, why not just 
update it each time a move is made? This very useful method is called 
incremental updating, and is used in many programs for which speed 
is essential. 

Even though incremental updating reduces the number of evaluations 
we must do (and speeds up the program!), we still need to do 20 
calculations to evaluate each of the 361 possible moves; that makes 
7220 calculations. What can we do to reduce that number? 

Each time we make a move, it only changes the values of the 32 grid 
intersections that belong to 1 of the 20 five-position lines attached to 
the square in this move. We can use incremental updating again to 
maintain a table showing the evaluation for each position. When we 
make a move, we change the numbers for the 20 possible five-pOSi
tion lines. For each of these lines we must change the evaluation for 
the four other positions in the line, each of which has its own set of 
20 five-position lines. In total, the program has 100 calculations to 
make each time a human opponent makes a move, plus 361 calcu
lations for each time the program moves. We have speeded up the 
program by 50 times using the trick of incremental updating-elim
inating the unnecessary calculations. These tightened evaluations are 
far more sophisticated; the other way, evaluating every move, is called 
"brute force." Brute force is sometimes the only way to get a result, 
but you should always look for a more elegant alternative. 

The Go-Moku program is contained on your distribution disk in the 
files named GO-MOKU.PAS and GO-HELP.INC. Use Turbo Pascal to 
modify and compile GO-MOKU, and use the Turbo Pascal editor to 
examine the source code. The first few lines tell you what the pro
gram does, who wrote it, and most important, when it was last edited. 
In the GO-MOKU.PAS program, the main body of the program takes 
care of communication with the user. 

Turbo GameWorks Owner's Handbook 



The Data 
Structure 

The main program consists of three parts (one for each label); 

• the initialization part initializes variables 
• the command part reads and performs commands (or moves) 
• the program move part finds and makes a move for the program 
• the help part is an on-line help system 

Procedure ResetGame sets variables to their default values and resets 
the game. Next, a command is read from the keyboard and carried 
out. If the input is a move, the program makes the move (and says 
"congratulations" if the game is won). Then, if the game isn't over, 
the program finds a move and makes it. 

The size of the board is contained in the constant N. If you change 
this constant, the whole program changes accordingly. Board con
tains the board position, Player contains code signifying the player 
who is next to move, and Line and Value contain the tables for in
cremental updating. TotalLines contains the number of empty lines 
left (the game is a draw when this number is 0). Weight is discussed 
under the Add procedure, and AttackFactor is discussed under the 
FindMove procedure later in this chapter. 

Below is the source code containing constant, type and variable dec
larations for the Go-Moku program. 

program Gomoku; 
const 

N 19; 
Esc = #27; 
CtrlC = #3; 
Return = #13; 
Space = #32; 
AttackFactor = ~; 

Weight array[o .. 6] of 

NormalColor 
BorderColor 
BoardColor 
HeadingColor : 

type 

integer = (0, 0, ~, 

integer = White; 
integer = Yellow; 
integer = Cyan; 
in teger = Brown; 

! Size of the board I 

! Importance of attack (1 .. 16) I 
! Value of having pieces in a row I 

20, 100, 500, 0); 

BoardType = (Empty, Cross, Nought) ; ! Contents of a square I 
! The two players I 

! Index to the board I 
! Number of pieces in a line I 

! Value of square for each player I 

ColorType = Cross .. Nought; 
IndexType = 1 .. N; 
NumberType 
LineType 

ValueType 
MaxString 

= 0 .. 5; 
= array [ColorType] of 

NumberType; 
= array[ColorType] of integer; 
= string[255]; ! Used only as a procedure parameter I 

GO-MOKU PROGRAM DESIGN 41 



Go-Moku 
Procedures 

MakeMove 

42 

var 
Board IndexType 1 of Board Type; I The board ) 
Player 
TotalLines : 

array [IndexType, 
ColorType; 
integer; 
boolean; 
boolean; 

I The player whose move is next ) 
I The number of empty lines left ) 

I Set if one of the players has won ) 
I Help file read? '" Help system .,. ) 

I Number of pieces in each of all possible lines ) 
array [0 .. 3, IndexType, IndexType 1 of LineType; 

GameWon 
File Read 

Line 

Value 
X, Y 
Command 
AutoPlay 

( Value of each square for each player ) 
: array[ IndexType, IndexType 1 of ValueType; 
: IndexType; ( Move coordinates ) 

I Command from keyboard ) 
( The program plays against itself ) 

: char; 
: boolean; 

This section covers all the procedures in the Go-Moku program. The 
procedures 5etup5creen, PrintMove and ResetGame do what their 
names imply: the first draws the initial screen display for a new game, 
Print Move places a move on that display, and ResetGame returns all 
variables to their original values. 

I DATA STRUCTURE I ~ II MakeMove II ~ I NEW DATA STRUCTURE I 

Figure 5-5. How the MakeMove Procedure Works 

MakeMove is the procedure responsible for incremental updating. A 
typical game situation would be that Player has made the move (x,y) , 
so that horizontal lines in Line and Value are updated. Line is organ
ized by the four possible directions (horizontal, vertical, right/left 
diagonal) and the starting point of each line. Horizontal lines go from 
left to right, so Line[O,l,lj contains the numbers for the line from A1 
to E1, and Line[O,15,8j the number for the line from 08 to 58. So if 
the move is, for instance, an X at 08, we should add 1 to the number 
of X's in the lines starting at K8 to 08 (the numbers found at 
Line[O,ll,8,Crossj to Line[0,15,8,Crossj). It takes the five lines one by 
one, calculates the starting point in (x1,y1), and adds 1 to 

Line[O,x1,x1,Playerj. Then it updates Value for each of the five grid 
intersections in the line (actually only the values for the empty grid 
intersections need to be updated because you won't be placing a 
piece on a grid intersection where a piece already exists). If the line 
starts at 08, we have to update the values for the squares from 08 
to 58, and the inner loop does that. 

Turbo GameWorks Owner's Handbook 



Here is the source code for the MakeMove procedure. 

begin 
LineCode : = -1 
Opponent := OpponentColor(Player}; 
Gamel/on := false: 
I Each square of the board is part of 20 different lines. 

The procedure adds one to the number of pieces in each 
of these lines. then it updates the value for each of the 5 
squares in each of the 20 lines. Finally board is updated, 
and the move is printed on the screen. I 

I MakeMove I 

for K := 0 to ~ do I Horizontal lines, from left to right I 
begin 

X1 := X - K; I Calculate starting point I 
Y1 := Y; 
if (1 (= X1) and (Xl (= N - ~) then Check starting point I 
begin 

Add(Line[O, X1, Y1, Playerl}; I Add one to line I 
if Gamel/on and (LineCode ( O) then 

LineCode : = 0; 
for L: = 0 to ~ do I Update value for the 5 squares in the line 

Update(Line[O, X1, nl, Value[Xl + L, nl}; 
end; 

end; I for I 
for K := 0 to ~ do I Diagonal lines, from lower left to upper right I 
begin 

Xl : = X - K; 
Y1 := Y - K; 
if (1 <= Xl) and (X1 <= N - ~) and 

(1 <= n) and (n <= N - ~) then 
begin 

Add(Line[l, X1, n, Player]}; 
if Gamel/on and (LineCode < O) then 

LineCode := 1; 
for L : = 0 to ~ do 

Update(Line[l, X1, nJ, Value[Xl + L, n + Ll}; 
end; 

end; I for I 
for K : = 0 to ~ do 
begin 

I Vertical lines, from down to up I 

X1 := X; 
Y1 := Y - K; 
if (1 <= n) and (Y1 <= N - ~) then 
begin 

Add(Line[2, X1, Y1, Playerl}; 
if Gamel/on and (LineCode < O) then 

LineCode := 2; 
for L : = 0 to ~ do 

Update(Line[2, X1, Y1l, Value[X1, Y1 + L]}; 
end; 

end; Ifor I 
for K : = 0 to ~ do I Diagonal lines, from lower right to upper left I 

GO-MOKU PROGRAM DESIGN 43 



Add and Update 

44 

begin 
XL := X + K; 
Y1 := Y - K; 
if (5 (= XL) and (XL (= N) and 

(1 (= Y1) and (Y1 (= N - ~) then 
begin 

Add(Line[3, X1, Y1, Playerl); 
if GameWon and (LineCode ( 0) then 

LineCode : = 3; 
for L : = 0 to ~ do 

Update(Line[ 3, XL, Y1l, ValuerX1 - L, Y1 + Ll); 
end; 

end; 
Board[X, Yl := Player; 
if GameWon then 

BlinkWinner(Player, X, Y, LineCode) 
else 
PrintMove(Player, X, Y); 

PIa yer : = Opponent; 
end; 

! for) 
! Place piece on board ) 

( Print move on screen ) 
The opponent is next to move ) 

! MakeMove ) 

Add adds 1 to the number of pieces in a line, and updates TotalLines 
and GameWon. Update is a bit more complicated. The value that 
results from expanding a line to N pieces or blocking a potential 
opponent line of N pieces is found in Weight[N]. As mentioned before, 
there are two cases. First, if the Opponent has no pieces on the line, 
then Valu[PlayerJ contains the value of expanding the line to 
Lin[PlayerJ pieces (since we have just added one to Lin[PlayerJ). We 
therefore have to update Valu[PlayerJ from Weight[Lin[PlayerJJ 
to Weight[Lin[PlayerJ+ 1]. Second, if the Opponent has pieces any
where along the five-position line, and it is the first piece that Player 
places on the five-position line, the line is no longer of value 
for the Opponent, and we update Valu[OpponentJ from 
Weight[Lin[OpponentJ + 1J to O. Once both players occupy positions 
in the same five-position line, neither can win with it-so the line is 
no longer of value to either of them. 

We've just examined a sophisticated game strategy contained in only 
a few lines of code. The rest is easy. After handling the possible 
horizontal lines, MakeMove does exactly the same with the vertical 
and diagonal lines. Finally, it places the piece on the board, prints 
the move on the screen, and changes Player to Opponent. Player and 
Opponent change places each move (the X's and O's change with 
them), so that the program can give a hint to the current player or 
make its own move by using the same code. Mter all, both program 
and human should pick the best spot for their next piece. Why not 
use the same logic? 

Turbo GameWorks Owner's Handbook 



FindMove 

Try experimenting with 
AttackFactor. A value of 4 
weights attacks 25% higher 
than defenses. A value of 
-16 would make the pro
gram ignore its own attacks 
and concentrate completely 
on blocking. If you give it a 
high value, the program 
will concentrate on its own 
attacks. The program uses 
AttackFactor to weight the 
balance between attack 
(making lines) and defense 
(blocking lines). Isolating 
this factor in a constant 
makes it easier for the 
game designer to deter
mine an optimal value for 
best play. 

You could try different val
ues here, and watch the ef
fect on the program's play
ing ability. You can even 
convert AttackFactor into a 
variable and set it from the 
keyboard when you start 
each game. 

Next, there is a short function called GameOver. You might wonder 
why we don't use a variable which is updated in MakeMove, as with 
GameWon and TotalLines. The reason is that the same information 
would be stored twice. Since execution time is not essential here, 
there is no reason to store information that is already available; it 
would just give us an extra variable to remember to update. This way, 
it is updated automatically. Remember this trick-we are going to 
use it again later on. 

FindMove determines which potential move has the highest evalua
tion. Note how the evaluation is calculated, using the values for Player 
(expanding lines) and Opponent (blocking lines). The value for ex
panding carries a greater weight than the values for blocking; exactly 
how much higher is determined by AttackFactor. The rest of the 
FindMove procedure handles input and output. 

Below is the source code for the FindMove procedure. 

procedure FindMove (var X, Y : IndexType); 
{ Finds a move X, Y for player, simply by 

picking the one with the highest value 
var 

Opponent : ColorType; 
I, J IndexType; 
Max, Valu : integer; 

begin { F indMove I 
Opponent := OpponentColor(Player); 
Max := -Maxlnt; 

[ If no square has a high value then pick the one in the middle I 
X : = (N + 1) DIV 2; 
Y : = (N + 1) DIV 2; 
if Board[X, Y] = Empty then Max := ~; 

[ The evaluation for a square is simply the value of the 
square for the player (attack points) plus the value for 
the opponent (defense points). Attack is more important 
than defense, since it is better to get S-in-line 
yourself than to block your opponent I s moves. 

for I : = 1 to N do { for all empty squares 
fo r J : = 1 to N do 

if Board[I, J] = Empty then 

end; 

begin 
Valu := ValueD, J, 

16 + ValueD, 
if Valu ) Max then 
begin 

X := I; 
Y := J; 
Max := Valu; 

end; 
end; 

[ Calculate evaluation 
Player] * (16 + AttackFactor) DIV 
J, Opponent] + Random( ~); 

[ Pick move with highest value 

[ if I 
FindMove I 

GO-MOKU PROGRAM DESIGN 45 



46 

Board 

Move List 

(i X 016 
X 015 

Find Move 

Best Move 

X016 

List. of Values 

~ 016500 
015200 

Figure 5-6. How The FindMove Procedure Works 

By now you should have a good understanding of what makes Go
Moku tick. It's a good program to start with-short and uncompli
cated. Yet it illustrates most of the principles all games must follow: 
an evaluation function, a data structure that represents the scope of 
play, and a stylistically adequate user interface so that playing the 
game itself is interesting. In addition, an on-line help module is in
cluded that retrieves and displays text from the ASCII file GO
MOKUHLP. All the statements in GO-MOKUPAS that support the help 
system are marked with the comment: ... Help system ... or are in the 
GO-HELP.INC include file. 

Turbo GameWorks Owner's Handbook 



Chapter 6 
CHESS PROGRAM DESIGN 

This chapter takes you on a procedure-by-procedure tour through 
the Turbo Chess program. We'll explain how the program evaluates 
and generates moves, and give you ideas about how to alter the Turbo 
Chess source code or write chess programs of your own. 

We begin by examining some of the principles used in developing a 
chess program-evaluating moves, searching, selecting and gener
ating moves, and keeping track of time. The last part of the chapter 
discusses each Turbo Chess module in detail. 

Turbo Chess can help you learn strategic game programming by ex
ample. It ranks as a "pretty good" program. You may find that other 
chess programs play more strongly or more quickly-but with Turbo 
Chess you have access to the source code and a guided tour of the 
techniques used. It's up to you to modify the program and make your 
version the best computer chess program in the galaxy! 

A faster program (Le., an assembler program) may play better chess 
because it can examine more potential moves in a given amount of 
time. ELO points are the scale used to measure playing strength of 
chess players. A difference of 100 ELO points between two players 
means that the better player should win two-thirds of the time. A 
factor of two in speed translates to about 60 ELO points in playing 
strength. A factor of ten (about the margin that hand-coded assembler 
programs have over Turbo Chess) means that an assembler program 
has a 200 ELO point edge. 

The first requirement of any strategic game-and especially chess
is to create a data structure that represents each position and move. 
We will need a procedure to calculate the possible moves from a 
given position for a given piece, a procedure to pbiy a move from a 
given position, and a number of other small procedures to handle 
I/O and other housekeeping details. A procedure that "understands" 
chess piece direction and legal moves, one that makes a legal move, 
and procedures that handle screen and disk I/O are pretty standard 
programming fare. The key to the Chess program-as it was with 
the Go-Moku program-is an evaluation function to decide which 
move is best in a given situation. 

CHESS PROGRAM DESIGN 47 



Evaluating 
Moves 

Piece Worth In Pawns 

Pawn 
Knight 
Bishop 
Rook 
Queen 

1 
3 
3 
5 
9 

The mobility factor might 
sound strange to you, since 
it is not normally consid
ered important in chess. 
However, many of the stan
dard maneuvers in chess 
(rooks on open or semi
open files, rooks on 7th 
rank, bishops on long 
diagonals, knights in the 
center, moving pawns for
ward to gain space) can ac
tually be seen as ways to 
improve mobility. 

48 

The evaluation function, which contains the program's "understand
ing" of the game, calculates the value of a given position and then 
determines the program's moves based on the values it computes. 
The results of its computations are displayed in the value box in the 
control panel area of the screen. By convention, a zero value means 
the human and computer players are even in score, while a positive 
value means that the program has an advantage. The most important 
factor in the evaluation function is material. Material is a list of the 
number and rank of chess pieces a player has at a given time. Pawns, 
knights, bishops, rooks and queens are roughly worth 1,3,3,5 and 9 
points, respectively. The material balance is normally weighted higher 
than any of the other parts of the evaluation function. Many programs, 
including this one, never sacrifice material to get a positional advan
tage. 

The positional part of the evaluation function decides the relative 
values of moves. Every programmer has his or her way of doing this; 
it is partly a matter of chess-playing style. Normally, you put in those 
things that you consider important when you play chess yourself. 

Three important factors that most chess programs include in the 
positional part of the evaluation function include: 

• Mobility-the number of squares each piece is able to attack. 
• Pawn structure-advancing pawns, control of board center, dou

bled or isolated pawns, connected pawns and passed pawns. 
• King attack/safety-pieces that can attack squares near the 

opponent's king or pawns around the king. 

In addition to these three important factors, there are a few other 
factors you can put in your program: a bonus for castling, a bonus 
for exchanging pieces when ahead, placing rooks behind passed 
pawns, moving the king to the center in the endgame, etc. Note that 
the evaluation is symmetric: if the program gets a bonus for attacking 
the opponent, it also gets a penalty if the opponent attacks the pro
gram. Each factor is given a weight, and all the different values for a 
position are added to produce a final evaluation of the position. It 
can be a big problem to determine all the different weights. In many 
programs, the weights depend on the game phase (for example, king 
safety is important in the middle of the game but not in the endgame, 
and passed pawns are normally not important until late in the game). 

The evaluation functions used in Turbo Chess are for the most part 
rather simple, at least compared with the playing strength of the best 
programs. Creating a good evaluation function is a very demanding 
task; making a uniformly good evaluation function is next to impos
sible. Yet it is with the evaluation function that the key to a better 
program lies. 

Turbo GameWorks Owner's Handbook 



The Essence of 
Chess: Looking 
Ahead 

Below is the source code for the Attack.;; function (part of the eval
uation code): 

function Attacks (AColor: ColorType; Square : SquareType) : boolean; 
I Calculates whether AColor attacks the square I 

var 
i : I ndexType; 

begin 
Attacks : = true; 
if PawnAttacks(AColor, Square) then ITrue if pawn attacks the passed in squarel 

Exit; 
IOther attacks: Try all pieces, starting with the smallest I 

for i := OfficerNo[AColorl downto 0 do 
with PieceTab[AColor, il do 
if IPiece () Empty then IPiece for the current board position I 

if PieceAttacks(IPiece, AColor, ISquare, Square) then 
Exit; 

Attacks : = False: 
end; I Attacks I 

In the more simple Go-Moku program, all we really needed was the 
evaluation function: we simply picked the move that resulted in the 
position with the highest value and lived in the present. In chess, 
however, it is essential that our program look ahead and consider 
what is likely to happen in the next few moves. It does not help to 
win the opponent's queen if you are mated one move later. Very 
often you will choose combination moves in which you sacrifice a 
piece, only to get it back "with interest" a few moves later. To perform 
evaluations like this, it is necessary to look ahead. How do we make 
a program do that? 

Figure 6-1. Searching for a Move 

CHESS PROGRAM DESIGN 49 



The Minimax 
Search 

How Minimax 
Helps Turbo 
Chess Select 
a Move 

50 

Let's start simply. On average, there are about forty possible legal 
moves for each chess position. After each of these forty moves, the 
opponent has about forty different moves to choose between. One 
approach is to try all the forty moves for the program, and for each 
of these moves try all the forty moves for the opponent. This is a 
one-move (or two-ply) lookahead. For each of its forty potential 
moves, the program looks for the one with the best evaluated value 
(remember that Turbo Chess evaluates factors such as position and 
material). Next, the program select" this best move and evaluates all 
of the opponent's potential forty moves. This time, however, it is 
looking for a condition in which the opponent gains very little (or 
even better: nothing or a negative value), even though it is the best 
available move. If the best move for the program results in an even 
better potential move for the opponent, the program selects its next 
best move, and evaluates the opponent's responses. Ideally, the pro
gram is searching for a move to make that will leave the opponent 
with the least satisfactory best move himself. This is called a Minimax 
search-it minimizes the opponent's advantage and maximizes the 
program's. We can also look more than two half-moves ahead, which 
would improve the game but take more time. 

The algorithm below (written in Pascal-like pseudocode) should give 
you an idea of how the search is performed: 

procedure Search; 
begin 
if final depth then 

evaluate position 
else 
for move:=all possible moves do 
begin 

Perform (move); 
Search; 
Take8ack (move) ; 

end; 
end; 

I If we I ve gone as many p lies ahead as we can, I 
{what is the evaluation? I 

IIf not, move each piece programmatically in I 
I succession, eval ua te the resulting position, I 

{and "take back" the move without telling I 
I the opponent until we I ve hit on the best I 

{move to make. I 

Below is a sample Minimax tree search. Each possible and resulting 
chess position is represented by a node (the dots), and each branch 
in the tree represents a possible move. We measure the depth of the 
tree in plies (half-moves). The lowest nodes are terminal nodes. 

Turbo GameWorks Owner's Handbook 



In position 4, black will play Nc6 or d6, and position 4 is thus worth 
1 point for white. Position 7 is worth 0 points, since black will play 
Bc4. In position 3, white will therefore play N/3 instead of Bc4, and 
position 3 is thus worth 1 point for white. In the same way we find 
that positions 10, 15, 23 and 29 are worth 4,4,0 and -4 points. Thus, 
positions 2 and 22 are worth 1 and 0 points (since black selects the 
lowest value). White should therefore play e4, which is worth 1 point. 
The expected continuation is e4, e5, Nt), Nc6 or e4, e5, N.r~, d6, both 
leading to a position worth 1 point. 

+1 +1 0 +3 +7 +4 +4 +19 -2 +1 -7 +4 +3 -4 +4 

Figure 6-2. Sample Game Tree for the Opening Position 

We can make a reasonable chess program by analyzing all possible 
moves to a depth of two to four plies (1-2 full moves). If there are 
pieces en prise (pieces that can be captured) at a terminal node, the 
program should take these pieces into consideration when deciding 
among moves. 

The Minimax search looks for a potential move (for example, move 
1 or move 2 in the diagram on page 52) that results in the lowest 
possible score for the opponent. In the diagram, move 1 produces a 
score of 6-but permits the opponent to make three possible moves, 
the best of which results in a possible score of 3. Move 2, on the 
other hand, only carries an evaluation of 3, but the best move the 
opponent could hope for carries a score of 1. 

CHESS PROGRAM DESIGN 51 



Alpha-Beta 
Algorithm 

52 

+1 

Figure 6-3. Sample Search Tree 

When using Minimax, we assume that the opponent will use all his 
or her logic and intuition and select the best possible move available. 
S/he may not, however. In the case of move 2, we would be even 
further ahead. We can extend the search beyond one move to two 
or more full moves. Theoretically, the search can play out the entire 
game to decide between possible moves, but this would mean that 
the tree would rapidly grow beyond the capability of the computer 
or program to manage it. A four-ply search in chess would result in 
about one million terminal nodes. 

The Minimax search is quite time consuming. Analyzing a chess po
sition to a depth of four plies gives 40 x 40 x 40 x 40 = 2,560,000 
terminal nodes-even when we ignore the capture search. Luckily 
there is a way to get around this, called the Alpha-Beta search. 

The algorithm gets its name from the variables Alpha and Beta that 
compare evaluations. Alpha is initialized to - 00 and Beta to + 00. In 
actual practice, Alpha and Beta would be initialized to arbitrarily high 
and low numbers. 

The Alpha-Beta algorithm prunes branches in a search tree as quickly 
as possible (evaluations permitting). It should give the same results 
as the more exhaustive Minimax search. 

The object of the algorithm is to maximize the value of Alpha (the 
score of the program's own moves) and minimize the value of Beta 
(the score of the opponent's response). We've arbitrarily assigned 

Turbo GameWorks Owner's Handbook 



Most programs use a quies
cence or capture search to 
analyze all captures to an 
unlimited depth. Thus, we 
first analyze all moves to a 
depth of 2-4 plies, then all 
captures until there are no 
more possible captures, 
and then evaluate the re
sulting terminal nodes with 
our evaluation function. 
This gives a good chess 
program. It is, in fact, how 
most chess programs work 
today. 

evaluation scores to the terminal nodes of the search (PYII through 
PXIV). 

Here's how the algorithm works: 

• The program evaluates the PYII score as 2. This is greater than 
the level 2 Alpha of - infinity. Alpha becomes 2. 

• The program wants to minimize Beta (the opponent). Because 2 
< + infinity, level 1 Beta becomes 2. Alpha at level 0 becomes 2. 

• PYIII scores 6. Level 2 Alpha then becomes 6 (6)2) ... but 6 fails 
to minimize the Beta at level 1. Move 0 fails (had there been 
succeeding moves, they too would have been ignored). 

• PIX evalutes to 1. Level 2 Alpha still stands at 2 (because the prior 
node failed). PIX does not maximize the level 2 Alpha. Neither 
does PX, which evaluates to - 3. 

• PXI evaluates to - 1 and PXII to 1. Neither of these will maximize 
the level 2 Alpha above 2. PXIII will, however-to 3. But the 
mission of the algorithm is also to minimize Beta. A 3 at level 1 
Beta is greater than the 2 already there. The search terminates at 
this point, and the program selects move A. 

The Alpha-Beta search can be speeded up still further if the terminal 
nodes are taken in descending order and checked out. That way, the 
best terminal chess position is checked first. 

p 
... --------Computers Move 

... ----- Human 
Player's Move 

~ Computer's 
J Move 

Figure 6-4. Sample Alpha-Beta Search 

The Alpha-Beta algorithm works best if the best moves are always 
analyzed first. In that case, a one-ply search results in 40 terminal 
nodes as usual, but a two-ply search begins with an analysis of the 
first move (40 end nodes), and then may cut off the other 39 moves 
(39 x 1 terminal nodes). This totals only 79 terminal nodes instead 
of 40 x 40 = 1600 end nodes. A four-ply search ends up with 
40 x 40 + 39 x 40 = 3160 terminal nodes instead of 2,560,000, a six
ply search 126,400 instead of 4,096,000,000 (that's over four trillion). 
In the Minimax search, each extra ply requires forty times more time. 

CHESS PROGRAM DESIGN 53 



54 

In the Alpha-Beta search an extra ply takes approximately six times 
as long. The Alpha-Beta method can save an enormous amount of 
time. 

Below is a short Pascal-like pseudocode function that shows how the 
Alpha-Beta algorithm is programmed. A four-ply search is performed 
with the call Search( - Maxlnt,Maxlnt,4). This function is not in Turbo 
Chess; it is an example. 

function Search (Alpha I Beta : integer; Ply : integer) : integer; 
var 

BestMove : MoveType; 
MaxVal integer; 

begin 
CaptureSearch := Ply (= 0; 
BestMove : = ZeroMove; 
MaxVal := -MaxInt; 
if CaptureSearch then 
begin 

MaxVal := evaluation; 
if Alpha ( MaxVal then 
begin 

Alpha : = MaxVal; 
if MaxVal )= Beta then 
begin 

Search := MaxVal; 
Exit 

end; 
end; 

end; 

repeat 
if CaptureSearch then 

Move := next capture 
else 

Move : = next move; 
if no more moves then 
begin 

Search := MaxVal; 
Exit 

end; 
PerformMove 
Value := -Search(-Beta,-Alpha,Ply-1); 
TakeBack (Move) ; 
if MaxVal ( Value then 
begin 

BestMove : = Move; 
MaxVal := Value; 

end; 

if Alpha ( MaxVal then 
begin 

Alpha := MaxVal; 

The best move 
Value of best move 

I Shorthand: (ply (=0) evaluates T or F) 

I Initialize variables) 

I Calculate evaluation) 

I Update alpha value 

I Check cut-off 

I Generate next move 

( Check cut-off 

( Perform and) 
analyze the move) 
Restore position) 

( Update variables) 

( Update alpha value) 

Turbo GameWorks Owner's Handbook 



Iterative Search 
Before Alpha
Beta 

Tricks for 
Speedy 
Searches 

if MaxVal )= beta then 
begin 

Search := MaxVal; 
Exit 

end; 
end; 

un til false; 
end; 

I Check cut-off I 

The best move should be analyzed first if possible, although in prac
tice it is enough that the first move analyzed be one of the best. One 
method of ordering best moves is the iterative search. A., we've seen, 
a two-ply search takes 79 terminal nodes if the moves are ordered 
right, but can take up to 1600 terminal nodes if they are not. One 
way to order the moves would be to make a one-ply search before 
the two-ply search. In general, we could first make a one-ply search, 
then a two-ply search, then a three- ply search etc., until there is no 
more time. (Programs designed for large computers store most of 
the tree search from iteration to iteration, which requires several 
megabytes, but all we store is the best line.) 

This method takes some extra time, but the time is saved again during 
the Alpha-Beta search because of better ordering. In addition, this 
method gives much better time control in tournament situations, be
cause the best move from the previous search is always available. You 
can thus stop the Alpha-Beta search at any time and play the best 
available move when there is no more time left. 

We have described some basic search methods-iterative search, 
Minimax, Alpha-Beta, etc. There are several other small, but very 
important, tricks that speed up searches Significantly. 

An Alpha-Beta Window is the range of values outside which there 
will be a cut-off in the search. In the Search function, the Alpha-Beta 
Window is between the values Alpha and Beta, exclusive. Remember 
that the Alpha value must be maximized and the Beta value mini
mized when selecting a move. The variables Alpha and Beta hold the 
current best values found thus far in a given search. They are initial
ized to - [00] and + [00] (usually - Maxlnt and + Maxlnt). A value 
higher than Beta causes a cut-off immediately. If the final value is 
lower than Alpha, it will cause a cut-off at a higher node in the tree. 

If you study the source code, you will see that the Search function 
returns a value whether or not a cut-off has occurred. If the value is 
in the range between Alpha and Beta, no-cut off has occurred and 

CHESS PROGRAM DESIGN 55 



Current programs are very 
good at finding combina
tion moves and playing ag
gressive chess, but they are 
generally weak at positional 
play. Positional play is the 
slow implementation of a 
chess strategy designed to 
give unquestioned domi
nance of the board and fo
restall attacks by the oppo
nent. Capturing pieces is 
not as crucial, and can wait 
until much later in the 
course of a strong posi
tional battle. This has not 
been a major problem until 
now, since most humans 
do not know how to play 
against a computer. Instead 
of playing calm positional 
chess, they try to wipe out 
the program with an attack. 
But if computers are to at
tain a level where they can 
play real matches in which 
players prepare before the 
games, they must gain a 
better understanding of the 
game through defined data 
structures and evaluation 
techniques. 

56 

the value returned can be used and processed. If the returned value 
is less than Alpha or greater than Beta, the value functions as a "flag" 
to tell the program that a cut off has occurred. If the returned value 
is higher or equal to Beta, this is called a high cut-off If the value is 
lower or equal to Alpha, this is called a low cut-off. High cut-offs are 
normally very fast (often only one move has to be analyzed) while 
low cut-offs are somewhat faster than calculating the true value. 

It is very important to analyze the best (or at least one of the best) 
moves first to speed up the Alpha-Beta search. We've seen how Turbo 
Chess tries to ensure this by generating the moves it will analyze in 
a particular order. It is essential to narrow the Alpha-Beta Window as 
much and as quickly as possible. We can also try to guess a window 
in advance. For example, once we have performed a three-ply search, 
it should be possible to guess quite accurately the evaluation for the 
four-ply search. Instead of initiating the search with Alpha and Beta 
equal to plus/minus MaxInt, we could start with a narrower window. 
If a move causes a high cut-off, we will have to analyze it again to get 
the exact value. If all moves cause low cut-offs, we will have to analyze 
all moves again to find a good move. The distance between the Alpha 
and Beta value is called the width of the window. The narrower the 
window, the faster the normal search will be, but when using this 
technique be aware that the risk of having to do recalculation is also 
larger. 

Below is an example Pascal-like pseudocode function (not used in 
Turbo Chess) that shows a search using an Alpha-Beta Window. Search 
refers to a typical Alpha-Beta search function (not shown). A 4-ply 
search with window is performed with the call WindowSearch 
(Alpha,Beta,4). 

function WindowSearch (Alpha, Beta : integer; 
ply : integer) integer; 

var 
BestMove MoveType; The best move 
MaxVal : integer; Value of best move 

begin 
repeat 

BestMove : = ZeroMove; 
MaxVal := -MaxInt; { Initialize variables 
OldAlpha := Alpha; 

repeat 
Move : = next move; { Generate next move 
if no more moves then 
begin 

Window Search : = MaxVal; 
Exit; 

end; 

Turbo GameWorks Owner's Handbook 



Principal 
Variation 
Search 

Perform (move); 
Value := -(Search(-Beta,-Alpha,Ply-l); 
if Value )= beta then 
Value := -(Search(-Maxlnt,-Value,Ply-l); 
TakeBack( Move) ; 
if MaxVal ( Value then 
begin 

BestMove : = Move; 
MaxVal : = Value; 

end; 

if Alpha ( MaxVal then 
Alpha := MaxVal; 

until false; 

if MaxVal (= OldAlpha then 
begin 

Alpha := -Maxlnt; 
Beta : = MaxVal; 

end; 
until MaxVal ) OldAlpha 

end; 

I Perform and 
I analyze the move 
I Analyze move again 

I Restore position 
I Update variables 

I Update alpha value 

I Analyze all moves 

I again IIhen 1011 

I cut-off occurs 

An Alpha-Beta Window with zero width leads to the Principal Vari
ation Search, which today is used by nearly all the best chess pro
grams, including Turbo Chess. This search algorithm starts byana
lyzing the prinCipal variation from the previous iteration. This line is 
searched with a full-width window. All other moves are searched with 
a zero-width window, since we assume that the principal variation is 
the best line. 

When you search with a zero-width window, you always get a cut
off. When you get a low cut-off, you skip the move as usual. If one 
of the moves causes a high cut-off, this move must be analyzed again 
with a wider window to get the correct value. This happens quite 
often, but the time spent re-searching is less than the time that would 
have been spent with full-width searches. The algorithm speeds up 
many programs substantially, and keeps the performance of the Al
pha-Beta search close to its theoretical minimum time (top perform
ance with optimal sorting). Most of the speed increase probably 
comes from the CaptureSearch (Principal Variation Search is de
scribed in detail in Relative Perjonnance oj the Alpha-Beta Search by 
T.A. Marsland, ICCA paper November 1982). 

Ken Thompson of Bell Laboratories believes that a move causing a 
high cut-off on the first ply should not be analYzed again; all you need 
to know is which move is the best, not me exact value of the move. 
Instead, you can continue the search with the same Alpha-Beta win
dow. If another move also causes high cut-off, however, you will have 
to analyze both moves again to determine which is best. Most com
mercial chess programmers do not use the practice of selecting a 

CHESS PROGRAM DESIGN 57 



Sometimes 
Second Best is 
Good Enough: 
The Tolerance 
Search 

58 

move without knowing its exact valuation (advocated by Thompson) 
because they want to be able to print out the evaluation and the 
expected continuation (the main line or principal variation) of the 
game. 

Turbo Chess uses an algorithm called Tolerance Search or the Neg
ative Alpha-Beta Window. The program does not always have to play 
the best move; we are satisfied as long as it plays one of the best 
moves. 

Consider a position from which two moves are equally good. There 
is a paradox here: the smaller the difference in value, the harder it 
is to determine which move is best. But when the difference is com
pletely insignificant, the calculation of relative value takes the longest 
time. Instead of finding the absolute best move, the program picks a 
move that might (or might not) be a bit weaker than the theoretical 
absolute best move. How much weaker is determined by the size of 
the tolerance (in Turbo Chess, set to 8 positional points, or 1132 of a 
pawn). 

Below is an example Pascal-like pseudocode function that shows the 
Principal Variation Search with Tolerance Search. A four-ply search is 
performed with the call PVS( 4). This function is not in Turbo Chess; 
it is an example. 

function PVS(Ply : integer) : integer; 
var 

BestMove : MoveType; 
MaxVal : integer; 

begin 
if Ply <= 0 then 
begin 

PVS := -Search(-Maxlnt,Maxlnt,Ply); 
Exit; 

end; 
BestMove := principal variation move; 
Perform (BestMove); 
MaxVal := PVS(Ply-1); 
if first ply then 

MaxVal := MaxVal + Tolerance; 
TakeBack (BestMove) ; 
repeat 

Move : = next move; 
if no more moves then 

{ The best move 
{ Value of best move 

{ CaptureSearch 

{ Start by analyzing 
{ principal variation 

{ Add tolerance 
{ at first ply 

{ Generate next move 
{ Exit when no more 

Turbo GameWorks Owner's Handbook 



begin 
PVS : = MaxVal; 
Exit ; 

end; 

Perform (Move) ; 
Value:= -Search(-MaxVal-J,-MaxVal,Ply-1); 
if Value > MaxVal then 

Value := -Search(-Maxlnt,-Value,Ply-1); 
TakeBack (Move) ; 
if MaxVal ( Value then 
begin 

BestMove := Move; 
MaxVal : = Value; 

end; 
until false; 

end; 

I Analyze the move 

I Analyze move again 

I Restore position 
I Update variables 

Using Selection When you play chess yourself, you can't consider all possible moves. 
Chess players normally consider no more than three to six different 
first moves, and although they do look ahead, they seldom look at 
more than 30 to 40 different positions (and even the best seldom 
look more than three to four moves ahead). Strangely enough, this 
goes for both weak and strong chess players. 

If you look at a normal chess position, there are many moves you 
would never consider making. First, about 20% of the possible moves 
are stupid sacrifices. Many other moves result in no gain or loss and 
have a net value of zero to the player making them. The theory goes 
that if we could avoid analyzing all these bad moves we could save 
much time. Instead of analyzing all forty moves at each node, we 
could double the search depth if we could restrict ourselves to ana
lyzing only ten moves at each node. This strategy is called Shannon-B. 

Turbo Chess, however, does not use Shannon-B. From practical ex
perience, our chess programmers found that move selectors had to 
be very complex to discern good and useful moves from legal but 
non-useful moves. As selectors become more complex, programs get 
slower. Current state-of-the-art technique is to use an evaluation 
method called brute force and try every move, good or bad, useful 
or useless. This results in a much simpler program and opens the 
way for other types of time-saving tricks. 

CHESS PROGRAM DESIGN 59 



Horizon Effect 

Figure 6-5. Searching with Selection 

In tournament games, the best programs for large computers typically 
do an eight-ply search, while the best microcomputer programs do 
five to six plies (the Turbo Chess program does four to five plies). 

While the theory of the move selector remains valid, a true move 
selector may have to wait for the advent of artificial intelligence. 

You may wish to add some selector-like variations to Turbo Chess, 
however. One suggestion is to search an extra ply each time one of 
the players checks. A five-ply search can find a mate in five moves if 
all the attacking moves are checks. 

abc d e f 9 h 

Figure 6-6. The White Bishop is Captured 

60 Turbo GameWorks Owner's Handbook 



Program 
Design: a 
Closer Look 

Generating 
Moves 

Consider the position above: it is white's turn to move. It appears that 
unless the white bishop on a4 is moved, it will be captured. With a 
three-ply search, the program will see that moving the bishop to b3 
attracts the black pawn to c4 and Bb3,c4 loses the bishop. Instead of 
giving it up, the program invents a foolish plan to save it by playing 
(e5,PxP,Nd5) white pawn to e5, black pawn on d6 takes white pawn, 
white knight (on c3) to d5. This plan seems acceptable to the pro
gram; it sees that if PxB then NxB, or if NxN then R:xN, PxB, RxB. The 
program believes it has saved the bishop, because the loss has been 
pushed beyond the three-ply search "horizon" (the program sees 
everything in the first three plies but nothing beyond three plies). 
In such a pOSition, the program needs a Six-ply search to come up 
with a reasonable plan-for instance, Bxc5, bxa4, e5, Nh5, BxP. This 
horizon effect is a very serious problem that pops up when working 
with multiple move strategy. There is also a positional horizon effect 
where no pieces are traded, in which a good positional move is 
completely ignored because it is pushed "beyond the horizon." 

We are now going to look more deeply into some of the algorithms 
introduced in the previous sections. We are also going to look at 
some of the special tricks we can use to speed up our program. 

Most chess programs spend their time generating moves and han
dling the housekeeping chores that those moves create (evaluation, 
changing the content of array variables, etc.). Turbo Chess spends 
about 75% of its time this way. Thus, it's very important to generate 
moves quickly-that is, determine which pieces attack which other 
pieces. Some programs maintain tables with this information, which 
are then updated incrementally. However, it is just as fast to generate 
the moves directly from a given position. Although tables don't 
change very much when you move a single piece, it is still rather 
time consuming to update and restore them. 

The chess move generator generates moves one at a time in an order 
that-logically-should result in finding the best moves first. At least 
it "plays the odds" in this regard. Remember that the evaluator uses 
an Alpha-Beta search technique to select the most advantageous chess 
move, and Alpha-Beta is conSiderably speeded by taking the potential 
moves in the best order we can provide for it. This list is an organized 
method designed to maximize the likelihood that a move we evaluate 
early will be the best move and thus halt the Alpha-Beta search 
quickly. 

CHESS PROGRAM DESIGN 61 



62 

8 

7 

6 

5 

4 

3 

2 

1 

Board 
Possible 
Moves 

i Bb5 - a4 
BxN 

-7 
.1., 

a b c d e f 9 h 

Figure 6-7. The Move Generator 

Turbo Chess generates its moves in the order given below. 

• Best move from previous iteration. The last time Turbo Chess 
made a move, the program projected the best moves that it 
and the opponent might make. This is the best place to start 
looking for the following best move, because we assume our 
opponent went through the same analysis as the program. 

• Capture of last moved piece. About 20% of all moves are sim
ple sacrifices. If this is the case with the opponent's last move, 
we take his piece and generate no further moves. 

• Killer Moves. All moves that fail to cover a recognized threat 
are bad. If the program is threatened, it will ignore moves that 
fail to cover a threat. Once the threat is covered, moves may 
be analyzed further. 

• Other captures. Captures of pieces other than the last moved 
piece. 

• Pawn promotions. Moving a pawn to the rearmost rank of the 
opponent and trading it for a queen or other piece. 

• Castling. Exchanging positions of rook and king. 
• Normal moves. All moves other than the others listed here. 
• En passant captures. 

As mentioned earlier, we use the iterative search method. We start 
by analyzing the best line from the previous iteration. Second, we try 
to capture the last piece moved by the opponent. Since about 20% of 

Turbo GameWorks Owner's Handbook 



the possible moves from a chess position are sacrifices, this very 
simple rule cuts off nearly 20% of the moves. In the remaining 80% 
of the moves, the moving piece can often not be captured. 

8 

7 

6 

5 

4 

3 

2 

1 

a b c d e 9 h 

Figure 6-8. Black Threatens Nc2 

Thirdly, we try something called killer moves. Consider a situation in 
which the opponent threatens our king and the rook on the next 
move with Nc2 (Figure 6-8). The program must cover the threat; all 
moves that don't cover the threat are bad. When we analyze the first 
move for the program (a3), we find that it does not cover the threat; 
instead it gives the opponent an opportunity to make a very good 
move (Nc2). Then, when we analyze the program's second move 
(a4), it makes sense to see whether the opponent can still make the 
first very good move. If s/he can, then there is no reason to analyze 
the move further. If s/he can't, the move apparently covers the threat, 
and is worth analyzing further. 

A move that is good from one position is very often also good from 
similar positions. When a move is found to be good in a pOSition, 
either because it is the best move from the position or because it 
causes a cut-off, it is stored as a killer move. We store two killer moves 
at each ply-depth of the tree. If we stored only one, threats would be 
"forgotten" each time there was a move that covered the threat. Moves 
found to be good at one depth are tried again on the same depth, 
but not at different depths. 

After killer moves, all other moves are generated. It is usually a good 
idea to start with captures; they must be analyzed during the capture 

CHESS PROGRAM DESIGN 63 



Chess 
Evaluation 
Function 

64 

search anyway. We'll try to capture the largest pieces first. Castlings 
are good moves when they are possible. Normal moves are the ma
jority of moves (not captures, killers, castling, etc.). They are gener
ated starting with pawn moves and ending with king moves. Some 
programs generate the pawn moves last, some generate moves from 
the center and out. The order here is not very important, since at 
this stage you will probably have to generate all the moves anyway. 
Finally, en passant captures are generated. 

In the early days when chess programs were written exclusively for 
large computers, people designed large and complicated evaluation 
functions. Today, very few programmers use more than twenty dif
ferent features. If evaluation functions get too large, they are too 
difficult to understand. The programmer must understand exactly 
what the evaluation function does, and that is impossible if the eval
uation function becomes too large. An evaluation function should be 
as general as possible, so that it encompasses every possible position 
or situation. 

The main provisions in the evaluation function in the Turbo Chess 
program are piece development (mobility) and pawn structure (their 
ability to guard and capture). For traditional reasons, a pawn is worth 
256 positional points. A bonus of 64 points is worth 114 pawn. 

Instead of weighting all squares equally when calculating mobility, 
each player and each square are assigned an attack value, which is 
the relative importance resulting from an attack on that square by 
that player. The attack value of a square depends on its closeness to 
the center of the board: 2 - 314 * (distance to center) and the rank 
(in early middlegame 0. 75, 1.5,3,3 points for 5th, 6th, 7th, 8th rank). 
In addition, the 8 squares around the opponent's king are assigned 
extra attack value (in the early middlegame 3 points). 

An attack on the opponent is highest in attack value in the early 
middlegame, and decreases to zero in the endgame. The attack value 
could depend on the opening (for example, giving queen side attacks 
is more valuable than king side attacks for black in the Sicilian De
fense). You could also let the program find the opponent's weak spots 
(weak pawns), and then give extra value for attacking those spots. 
This a good way to improve positional play. 

The positional value of a queen, rook, bishop or knight is the sum oj 
the attack values jor the squares which the piece attacks. For queens 
however, the sum is multiplied by 114 (since the queen otherwise 
becomes much too aggressive). The positional value for knights is 
the sum multiplied by 112, and 3 * (distance to center) is subtracted 
from the value. The positional value of a bishop is normally a bit 
higher than that for a knight. Indirect attacks (a rook attacking through 

Turbo GameWorks Owner's Handbook 



another rook) are counted as normal attacks, attacks through blocking 
pieces (a bishop attacking through a knight) are counted at half value. 

8 3 3 3 3 3 3 3 3 

7 3 3 3 3.1. 
2 

3.1 
2 3 3 3 

6 1.1. 
2 

1.1. 
2 2 21. 

4 
21. 

4 2 1.1 
2 

1.1 
2 

3 1.1 21. 21. 1.1 3 
4" 2 2 4 4 2 2 4" 5 

1 1.1. 2 2 1.1. 1 
2' 4 4 2" 4 

1 1.1. 1.1. 1 
2' 4 4 2" 3 

1 1 
2" 2" 2 

a b c d e 9 h 

Figure 6-9. Attack Values For White in the Starting Position 

The positional value of a pawn is equal to ((PawnRank [Rank) + 
(Rank + 1) * PawnFileFactor[File)). The PawnRank values are 0, 0, 2, 
4, 8, 30 for 2nd to 7th rank (Plus 0, 10, 20, 40, 60, 70 if the pawn is 
a passed pawn). The PawnFileFactors are 0, 0, 2, 5, 6, 2, 0, 0 for the 
a to h-file, respectively. Thus, a white pawn on e2 is worth 
0+ (2 + 1 )*6 = 18 points, while a pawn on e4 is worth 2 + ( 4 + 1)*6 
= 32 points. 

The value of the pawn structure is calculated as the sum of the in
dividual pawn values. An isolated pawn gets a penalty of 20 pOints, 
a double pawn a penalty of 8 points, and an isolated double pawn a 
total penalty of 68 points. The program shOUld also keep its pawns 
next to each other to build pawn chains. A pawn is given a bonus of 
6 points if another pawn is on one of its sides; otherwise, it is given 
a bonus of 3 points if it is being covered by a pawn. A pawn is also 
given a bonus of 3 points for each pawn it covers. A wise chess master 
once said that every pawn move weakens your game. Because of this, 
the program is given a penalty of 3 points for moving a pawn. Moving 
a pawn from e2 to e4 would decrease the pawn structure value of 
the pawn from 6 to - 3 points (6 for being next to another pawn, 
- 3 for having moved). 

CHESS PROGRAM DESIGN 65 



66 

Bonuses and Penalties in Positional Play 

Turbo Chess gives bonuses and deducts penalties to assess the 
value of a given positional arrangement. 

Positional Values 

Pawns-Worth 256 Positional Points 

RANK VAL. 

2nd 0 

3rd 0 

4th 2 

5th 4 

6th 8 

7th 30 

64 point bonus = 1/4 pawn 

Position in rank and file: 

IS 

COVERED 

PAWN BY DOES IF IN 

PASSED ON ONE ANOTHER COVER FILES 

+ PAWN? + SIDE? + PAWN? +ANOTHER?+ A,B,G,H + 

0 + t t 
10 I I I 
20 6 3 3 

40 6 3 3 

60 I I I 
70 + + + 

Penalties: 
Isolated pawn = - 20 
Double pawn = - 8 
Isolated double = - 68 
Moving any pawn = - 3 

0 

0 

0 

0 

0 

0 

IF IN 

FILES 

C,F + 

2 

2 

2 

2 

2 

2 

Pawn Structure = Sum of all pawn values 

Queen, Rooks, Bishops, Knights 

IF IN IF IN 

FILE FILE 

D + E 

5 6 

5 6 

5 6 

5 6 

5 6 

5 6 

Attack value of a square: 2 - (.75 *(distance to center)) + rank 
factor rank factors: 5th - 0.75 

6th - 1.5 
7th - 3.0 
8th - 3.0 

The eight squares around the opponent's king rate an extra 3 
points if they can be attacked. 

Positional value of Q,R,B,N = Sum of attack values for all squares 
the piece can attack, tempered by 
the following factors: 

Queens: attack value x .25 
Knights: attack value x .5 - (3 x distance to center) 

Turbo GameWorks Owner's Handbook 



Rules for the 
Evaluation 
Function: 
" Evaluation 
Spices" 

Every evaluation function must be tested thoroughly to see how it 
handles various game conditions. There are always a few special sit
uations that a program will not handle properly. These can be ade
quately dealt with using what we call evaluation spices. An evaluation 
spice is a special rule for handling special situations. These rules 
should be as narrow as possible (in contrast to the general rules) to 
make sure a rule does not affect situations other than those in the 
special group. A common problem results when a rule inserted to 
solve one situation causes completely unforeseen changes in other 
situations which the program handled well before the rule was 
inserted. 

Here are some evaluation spices that Turbo Chess uses. 

• Normally, we want Turbo Chess to castle short (to the king's side) 
early in the game. For this, we give a bonus of 32 points. We also 
want to give a small extra bonus for long castling (to the queen's 
side-4 points). Quite often however, because it occurs so early 
in the game, the castle move is found in the opening library. 

• When the program is ahead, it should exchange pieces (but not 
pawns) in order to reach a clearly won endgame; when the pro
gram is behind, it should not exchange pieces. There is a 32 point 
bonus for exchanging pieces when ahead. 

• In the endgame, the program should advance the king to the 
center of the board. Kings are usually given a positional value of 
zero, but in the endgame they are given a penalty of (2 * (distance 
to center)). 

• Placing a rook behind a passed pawn (either your pawn or an 
opponent's pawn) gives a 16 point bonus. 

• Although the program is fond of placing a bishop on d3 or e3 
(since it attacks a lot of squares from there), this is a bad idea if 
it blocks a center pawn on d2 or e2. This problem can be solved 
simply by giving a 20 point penalty for blocking a center pawn 
on d2 or e2 with a bishop on d3 or e3 (and the same for black). 
This problem is so common among chess programs that nearly 
all programs contain special programming to handle it. 

Below is the source code for an evaluation spice that handles castling: 

function CastlingMovGen : boolean; 
var 

CastDir : CastDirType; 
begin 

CastlingMovGen : = true: 
with MovTab [Depth 1 do 
begin 

Spe := true; 
MovPiece := King; 
Content := Empty; 
for CastDir := Short downto Long do 

I Castling moves } 

I Direction of castling } 

I Try castling on king-s side first } 

CHESS PROGRAM DESIGN 67 



68 

end; : 

with CastMove[Player. CastDirl do 
begin 

NewX : = CastNew; 
Old := CastOld; 
if KillMovGen (MovTab [Depth 1 ( then 

if LoopBody then Exit; 
end; : 

CastlingMovGen : = False; 
end; : 

{ Check the legality of the move } 
{ Exits function returning true } 

{ with} 
{ with} 

{ Which means that castling is a good move } 
{ CastlingMovGen } 

Sometimes the opponent does not resign when the program has a 
winning position. In such cases, the program must be able to go 
ahead and mate the opponent. The program should be able to per
form the set of basic mates (king and queen against king, king and 
rook against king, and king and two bishops against king). King, 
bishop and knight against king require both great search depth and 
some special programming not in the Turbo Chess program. The 
usual rules about piece development don't work for mating, because 
in a mate situation we're more concerned with restricting the op
ponent's possible moves than with taking pieces, dominating board 
center, maintaining pawn structure and the other strategies designed 
to get us to the endgame. A special mating evaluation function is 
included in the program, used only to mate the opponent. It centers 
around only three factors (apart from material), listed here in order 
of importance: 

• Opponent's king should be as far away from the center as possible 
(the object is to press him out to the corner). 

• The program's king should be close to the opponent's king. 
• If the program has 'passed pawns, the program tries to advance 

them. 

The program must also know something about draw. It should value 
a stalemate or a repetition at zero. In addition, a line causing an 
immediate repetition of a position-which also occurred four plies 
above in the tree-is also evaluated to zero. This allows the program 
to find some forced repetitions very quickly. The second repetition 
of a pOSition is given a bonus/penalty equal to one half the current 
evaluation of the position. Thus, if the program is four pawns ahead, 
a second repetition gives a penalty of two pawns. There is also a 
bonus/ penalty of one quarter of the evaluation if 10 full moves have 
been made without capturing a piece or moving a pawn. After 48 
full moves, the bonus/penalty increases to 3/4 of the evaluation. 

Turbo GameWorks Owner's Handbook 



Calcu lation 
Method 

About half the microcom
puter-based chess pro
grams-including Turbo 
Chess-are based on ta
bles, while the other half 
are based on fast incre
mental evaluations. One ad
vantage to tables is that you 
can use a very sophisti
cated and complicated eval
uation function, without 
worrying about how much 
time it takes. For details 
about how the tables are 
derived from the evaluation 
function, you can study 
procedure CaicPVfable in 
the EVALU.CH module on 
your distribution diskette. 

Advantages/ 
Disadvantages 
to Piece Value 
Tables 

Calculating the entire evaluation function for each new position can 
take a great deal of time; this was how it was done a few years ago, 
and still is done in some programs. One way to speed things up is 
to use incremental updating for most of the calculations. We've seen 
how incremental updating works in the Go-Moku program. When 
you move a pawn under incremental updating, you need only recal
culate the evaluation for that pawn and any pieces the pawn was 
blocking or now blocks. 

Another method for increasing speed-used by the Crqv Blitz pro
gram-stores parts of the evaluation in hash tables. A hash table is a 
special table that allows you to use an index to look up value? faster 
than in a binary tree. When, for example, the value of a specific pawn 
structure has been calculated, the value is stored in a hash table. If 
the same pawn structure is found in a different position, the value 
can simply be looked up in the table. Unfortunately, hash tables often 
take up a lot of RAM. 

The fastest method is to use Piece Value tables. This method was first 
used in the early 1980's. A Piece Value table gives the positional value 
for a given piece and player for a given square. For instance, the value 
of the move N/3 - e5 is simply the value of a knight on e5, minus the 
value of a knight on/3. The tables are calculated at the beginning of 
the search using the evaluation function described earlier. 

Piece Value tables are derived as a first-order approximation from 
the evaluation function. For instance, when the program calculates 
the values for rooks, it tries to place a rook on each of the 64 squares, 
and calculates the piece development value for the square; these 
values are then listed in the table. For instance, the piece development 
of a white rook is zero on the starting square, hi, but somewhat 
higher on h3. 

The only real problem with Piece Value tables is that they are not 
changed during a search, and can therefore be unreliable on espe
cially deep plies that are far away from the original (on-the-board
now) position. For instance, the program might decide that h2 - h4 
followed by Rh 1 - h3 is a good idea in the starting pOSition, since it 
has calculated that the rook is well developed on h3. 

If you invoke the Value command, the program displays the Piece 
Value tables on the screen (but divided by 2.56, so that a pawn is 
worth 100 points instead of 256 points). Figure 6-10 shows the Piece 
Value tables for white in the starting position. As you can see, the 
best move for white is N/3 - e5 with a value of 3 - ( - 5) = 8 points. 

CHESS PROGRAM DESIGN 69 



Keeping Track 
of Time 

70 

0 

0 

0 

0 

0 

0 

0 

0 

9 

4 

9 

8 

6 

4 

3 

0 

-2 

1 

5 

3 

0 

-3 

-5 

-7 

White King White Queen 

0 0 0 0 0 0 0 2 3 4 3 4 3 

0 0 0 0 0 0 0 2 3 4 4 4 4 

0 0 0 0 0 0 0 3 4 4 4 4 4 

0 0 0 0 0 0 0 3 3 4 4 4 4 

0 0 0 0 0 0 0 2 3 3 4 4 3 

0 0 0 0 0 0 0 2 2 2 3 3 2 

0 0 0 0 0 0 0 2 2 2 2 2 2 

0 0 0 0 0 0 0 0 0 0 0 0 0 

White Rook White Bishop 

9 11 10 11 9 9 9 2 3 4 4 4 4 

6 7 9 9 7 6 4 4 7 7 7 7 7 

10 10 11 11 10 10 9 3 5 6 6 6 6 

8 8 9 9 8 8 8 3 5 7 7 7 7 

6 5 6 6 5 6 6 4 5 6 8 8 6 

5 5 5 5 5 5 4 4 5 5 -2 -2 5 

4 4 6 6 4 4 3 5 5 5 3 3 5 

0 0 0 0 0 0 0 0 0 0 0 0 0 

White Knight White Pawn 

2 7 9 9 7 2 -2 

4 12 13 13 12 4 1 7 7 13 23 26 13 

11 18 19 19 18 11 5 -2 -2 4 12 15 4 

10 14 14 14 14 10 3 -3 -3 2 9 11 2 

5 8 9 9 8 5 0 -4 -4 0 6 8 0 

1 3 4 4 3 1 -3 -4 -4 0 4 6 0 

-3 -1 0 0 -1 -3 -5 -1 -1 1 5 6 1 

-5 -4 -2 -2 -4 -5 -7 

Figure 6-10. Piece Value Tables For White 
in the Starting Position 

3 2 

3 2 

4 3 

3 3 

3 2 

2 2 

2 2 

0 0 

3 2 

7 4 

5 3 

5 3 

5 4 

5 4 

5 5 

0 0 

7 7 

-2 -2 

-3 -3 

-4 -4 

-4 -4 

-1 -1 

Human chess players do not spend an equal amount of time on each 
move. Some simple moves are played immediately, while others are 
difficult and important and require more time. The time control 
method used by Turbo Chess is fairly simple. Before each move, the 
program calculates a desired response time; the actual time spent by 
the program seldom varies by more than 50% from the desired time. 

Turbo GameWorks Owner's Handbook 



Program 
Structure: The 
What, not the 
How. 

CHESS. PAS 

TIMELIB.CH 

Human players spend most time on the middlegame, and so does 
the program. In tournament games, it typically spends about six min
utes per move in the early middlegame, and three minutes per move 
later in the game. This seems to give more than three minutes on 
average, but the first moves are usually played from the opening 
library, and quite often the program saves time or responds imme
diately because it has analyzed during the opponent's time of reflec
tion. The program never exceeds the tournament or user-specified 
time limit even though it may not match its desired time, unless it 
does not have time to finish a I-ply search. 

Now let's turn to the source code itself. Please refer frequently to the 
CHESS code while you read the following sections. Study the program 
with the RUF method: read it, understand it, forget it. Read the com
ments first, followed by the code. Then make sure you understand 
how each procedure works. Then forget everything specific about 
that procedure except what it does. When you read the rest of the 
program, you have to know what the procedure does, not how it does 
it. Luckily, most of the procedures are not relevant to chess strategy
they cover user interface, housekeeping procedures and procedures 
that take care of VO details. These non-game procedures aren't cov
ered here. 

Turbo Chess consists of one main file (CHESS.PAS) and nine include 
files. The include files are placed in the CHESS.PAS program by the 
compiler in the following order: TIMELIB, BOARD, MOVGEN, 
DISPLAY, INPUT, SMALL, EVALU, SEARCH, and TALK. All include files 
have the extension . CH. 

The CHESS. PAS file contains a few global constants, types and vari
ables such as the opening library data structure. It also makes sure 
the include files are included in the correct order. It functions more 
or less as a table of contents for the complete program. 

The following sections describe each of the Turbo Chess include files. 

The TIMELIB file contains small procedures for measuring time. They 
are used for tournament play or other situations when you wish to 
place time limits on the program. They are completely independent 
of the rest of the program, so they can be used in other programs of 

CHESS PROGRAM DESIGN 71 



BOARD.CH 

Turbo Chess only roughly 
simulates the shape of the 
chess pieces on the screen. 
High resolution graphics 
would make the board dis
play more attractive, but 
causes headaches for pro
grammers working on 
computers that use differ
ent graphic techniques. By 
simplifying our screen VO, 
we can concentrate on the 
central issues of chess pro
grams without doubling the 
size of the program with 
graphics procedures. If you 
would like to "dress up" 
Turbo Chess, try the Turbo 
Graphix Toolbox. 

72 

your own making. The file contains a type, ClockType, and three 
procedures (InitTime, StartTime and Stop Time ), which take a variable 
of ClockType as a pararrieter. 

The clock works like a stopwatch that can be started, stopped and 
reset. Like a stopwatch, you can halt the hands at any point and restart 
them again; only reset brings the hands back to zero. Reset a clock 
to zero with InitTime. To measure a time interval, call StartTime and 
Stop Time. The field TotalTime (type real) in the clock contains the 
length of the time interval in seconds. If you call StartTime and 
Stop Time again, the new time interval is added to the old. Stoptime 
does not really stop the clock, it only updates it. Thus, if you call 
StartTime, followed by several StopTime calls, each call updates the 
clock (so you can use TotaITime), but at the end only the last call 
actually counts, as if no other calls than the last had been made. 

The BOARD file contains the data structures that represent the chess 
board and the procedures to manipulate these structures. 

The array Board contains the contents of each square. With this array 
alone, we would have to search the whole array to find, for instance, 
the position of the white king. Since it is important to save time, there 
is also an array PieceTab that contains the locations of the different 
pieces. These two arrays should always be updated together to ensure 
that they contain the same information. 

The squares on the chess board are not represented by two coordi
nates, or by a number from 0 to 63. Instead, we represent a square 
with a binary value in the range from 0 to 119 ($77 in hexadeCimal), 
where bits 4-6 represents the rank and bits 0-2 represents the file. 
The file numbers (a-h) and rank numbers (1-8) are represented 
with values from 0 to 7. Moves are generated for a piece by adding 
a direction value to the square where the piece is located. When 
generating king moves, there are eight direction values, which are 
added to the original square. The program must constantly check to 
see if a piece has reached the edge of the board. This would not be 
easy using values from 0 to 63. 

Turbo GameWorks Owner's Handbook 



CHESS PROGRAM DESIGN 

8 

7 

6 

5 

4 

3 

2 

7654320 

o Rari< (1-8) o Rle (a-h) 

$70 $71 $72 $73 $74 $75 $76 $77 

$60 $61 $62 $63 $64 $65 $66 $67 

$50 $51 $52 $53 $54 $55 $56 $57 

$40 $41 $42 $43 $44 $45 $46 $47 

$30 $31 $32 $33 $34 $35 $36 $37 

$20 $21 $22 $23 $24 $25 $26 $27 

$10 $11 $12 $13 $14 $15 $16 $17 

0 1 2 3 4 5 6 7 

abc d e 9 h 

Figure 6-11. Representation of Squares 

73 



74 

How Turbo Chess Represents the Board 

A one-byte binary value in the range 0 to 119 (OH to 77H) rep
resents each square. Within the byte, various bits act as indices 
to a square's rank and file. 

The rank and file numbers are represented by binary values from 
o to 7. Seven is the largest number that can be represented by 
three bits. 

RANK FILE BIT PATTERN 

1 A [QJ[Q]QJ 
2 B [QJ[QJ[TI 
3 C [QJ[TI[QJ 
4 D [QJ[TI[TI 
5 E [TI[QJ[QJ 
6 F [TI[QJ[TI 
7 G [TI[TIrnJ 
8 H [TI[TI[TI 

A square at position d6 would have the following bit pattern and 
value: 

I 0 11 1 0 11 1 0 1 0 11 11 I = $53H 
7 6 5 432 1 0 

Turbo Chess generates moves by adding a direction value (or a 
number of them, in the case of a piece with a complex pattern, 
such as a knight) to the value of the square on which the piece 
rests. The result is the value of the piece's new square. 

A piecetype can be a king, queen, rook, bishop, knight, pawn, or it 
can be empty. The color can be either White or Black. For each square, 
the Board array contains the piecetype, the color and an index to 
PieceTab. If the piecetype is empty (empty square), the other values 
are undefined. 

Turbo GameWorks Owner's Handbook 



8 

7 

6 

5 

4 

Board PieceTab 

Whne Black 

ft e3 * f6 

-~~--.*d6 

The program is organized 3 
in modules. A module is a 
set of data structures, along 
with procedures and/or 
functions that operate on 
the data structures. From 
outside a module, you can 
only access the data struc
tures through the proce
dures and functions. In fact, 
when you use the proce
dures, you do not have to 
know exactly what the data 
structures look like. 
Data structures in modules 
can be completely hidden 
from outside the module. 
The TIMELIB procedures 
are an example of a mod
ule. Since the data struc
tures can only be changed 
via the associated proce
dures, no other part of the 
program can inadvertently 
affect the data structure. 
Modules are very helpful 
for structuring large pro
grams. The best way to de
sign modules is to first find 
out what operations you 
will do with the data struc
ture, then design a data 
structure that fits your re
quirements. Try to keep 
the data structure as com
pact as possible, don't store 
the same information 
twice, and don't store data 
that can be calculated from 
other data. Finally, write 
the code for the proce
dures and functions. 

2 

abc d e g h 

~ d5 

~ e4 

Figure 6-12. The Relation between Board and PieceTab 

For each chess piece, the PieceTab array is indexed with the color 
and an index from 0 to 15; the array contains the piecetype and the 
square it occupies. Pieces are sorted by value, with the king at index 
0, and pawns at index 15. To speed things up, there are two indexes 
for each color, OfficerNo and PawnNo, which contain the indexes of 
the last officer and the last pawn. The officers (all pieces other than 
pawns) are placed from index 0 to OfficerNo, and the pawns are 
placed from index OfficerNo + 1 to PawnNo (because of the way 
pawn promotion is implemented, the officers might not always be 
strictly sorted, and there might even be pawns placed among the 
officers). 

We have just covered the twenty most important lines in our program. 
Now we must know which color is to move next. This color is con
tained in the variable Player, while Opponent contains the other 
player. To implement en passant capture, castling, three-fold repeti
tion and 50-move rule, we must know more about a chess piece than 
just its board position. It would help to be able to look back at past 
moves-and if necessary count them. 

Because Turbo Chess is a program, not a cutthroat tournament, a 
player should be able to backtrack through past moves, perhaps stop
ping five or ten moves back to playa game out differently. 

CHESS PROGRAM DESIGN 75 



The most flexible way to store the necessary information for castling, 
three-fold repetition or backtracking is to maintain a game history. 
The played game is stored in an array called MovTab, and the last 
played move is MovTab[Depthj. When you've asked for a hint, how
ever, MovTab[Depthj instead contains the next move to be played. In 
the same way Player sometimes contains the player who has just 
moved. This might appear inconsistent, but it happens in only a few 
places in the program. 

Moves are represented by a data structure called MoveType. A move 
consists of the Old (the square the piece is moving from) and New 
(the square the piece is moving to) squares. It is also useful to include 
the type of the moving piece (MovPiece) and the content of the new 
square (either empty or the type of the captured piece). All moves 
should thus be represented, including the three special moves (cas
tling, en passant captures and pawn promotions). We discussed these 
in the section on evaluation procedure "spices." A variable Spe indi
cates whether the move is a special move. Castlings, which always 
involve moving both king and rook, are represented by the king's 
move, and MovPiece carries the value of king. Because kings can only 
move one square at a time except when castling, New, Old, and Spe 
tell us the move was a castle. En passant captures are represented 
with the new square of the moving pawn, and MovPiece carries the 
value of pawn. Pawn promotions are represented by the pawn move, 
and MovPiece contains the new piecetype (queen to knight). 

Figure 6-13 shows an example for MoveType. 

MoveType ~ f3xeS 

New eS 

Old f3 

Spe false 

MovPiece ~ 
Content .! 

Figure 6-13. Sample Move Representation 

76 Turbo GameWorks Owner's Handbook 



There is a special move-the ZeroMol'e-that the move generator 
(MovGen) function produces to signal the program that it can pro
duce no more legal moves to evaluate. ZeroMol'e acts as an "end of 
file" character. 

The EqMove function checks whether two moves are identical. 

The next procedure is CalcPieceTah. To set up a position, place it in 
Board. Then CalcPieceTah automatically calculates PieceTab, so that 
Board and PieceTah contain the same position. 

Finally, the Perfonn procedure plays and takes back moves. The first 
parameter, Move, is the move. The second, Reset, is FALSE if the move 
is performed, and TRUE if the move is taken back. Performing and 
then immediately taking back a move results in exactly the same 
position. Inside Perform are four small subroutines, which change 
the board as follows: 

• MovePiece moves a piece from one square to another 
• DeletePiece removes a piece from the board 
• Insert Piece inserts it again 
• Change Type is used for pawn promotion 

With these procedures, it is easy to write the Perfonn procedure, 
although the three special moves (castling, en passant, and pawn 
promotion) require some special programming (as we've seen). 

Board Board 

8 ~ II Perform 11-7 8 
7 

/f\ : 6 

5 Move 5 

4 Nf3xe5 4 

3 

~ 
3 

2 2 

Perform 11~1 .. 
a b c d e f 9 h a b c d e f 9 h 

Figure 6-14. How the Perform Procedure Works 

Having read and understood this code, you can now forget it all. The 
important information about Turbo Chess is that Perfonn(Movejalse) 
performs a particular move, and Perfonn(Move,true) takes it back 
again. 

CHESS PROGRAM DESIGN 77 



MOVGEN.CH 

Instead of searching the 
whole table every time 
FiftyMoveCnt is called, we 
could maintain and update 
the value in a variable, and 
could do similar things 
with Ca/cCastling and Repe
tition (in fact, most other 
chess programs work that 
way. A lot of programmers 
use hash tables for han
dling repetition of moves). 
However, this would make 
the data structure more 
complicated than necessary 
and require variables to be 
updated constantly. Instead, 
we stay true to the princi
ple of not storing the same 
information twice. 

Move 
Generation 
Procedures 

78 

The MOVGEN file contains procedures and functions to: 

• generate moves 
• test which squares are attacked by which pieces 
• calculate information from the move table (castling status, 50-

move rule and three-fold repetition). 

The Direction arrays contain directions used in move generation. For 
example, DirTah contains the eight possible king and queen direc
tions (left, right, up, down, and diagonals). The attack functions are 
as follows: 

• Piece Attacks checks whether a square is attacked by a specific 
piece 

• PawnAttacks checks whether a square is attacked by an opponent's 
pawn 

• Attacks (which uses PieceAttacks and PawnAttacks) checks 
whether a square is attacked by the opponent 

It is extremely important that attack functions be as fast as possible. 
The program spends about 20% of its time in procedure Piece Attacks, 
which is only twenty lines of code (to optimize the chess program, 
this would be a good section of the program to code in assembly 
language). The constant array AttackTah is a table which-when in
dexed with the difference between two squares-gives the pieces 
able to attack the one square from the other (if the area between the 
squares is empty). This trick makes the Piece Attacks procedure very 
fast (since in most cases it can be determined immediately that the 
square cannot be attacked by the piece). Note that bit manipulations 
are used to handle the moves from square to square. 

Other procedures in MOVGEN are: 

• CalcCastling checks if castling is illegal because a player has 
moved his or her king or rook 

• FiftyMoveCnt counts the number of half moves since last capture 
or pawn move 

• Repetition counts the number of times the current position has 
occurred before 

The game is a draw if FiftyMoveCnt = 100 or Repetition = 3. The 3 
functions calculate the information by searching the move table 
(MovTah) each time they are called. This is time-consuming, but these 
functions are not called very often. 

The function KillMovGen checks whether a specific move is possible 
from the current position. The move must be a legal move-Le., 
there must be a position in which the piece can make the move. 
There are two nearly identical move generators in this program, since 

Turbo GameWorks Owner's Handbook 



DISPLAY.CH 

it is difficult to use the same move generator for searches and for 
other purposes. The one described here is the one not used in the 
search (look for the other one in SEARCH). By convention, a move 
generator generates moves one at the time. The move generator is 
called MovGen, and it returns the move in a global variable called 
Next. When all moves have been generated, it returns the ZeroMove. 
The move generator is a very important part of the program, and it 
is a good idea to study it carefully if you want to thoroughly under
stand the program. 

The easiest way to generate moves one by one is to cheat and gen
erate them all at once, then store them in a buffer. Procedure 
InitMovGen does just that. 

The Generate procedure places the next move in the buffer. The 
moves are generated starting with captures, followed by castlings, 
normal moves and en passant captures. CapMovGen generates cap
tures of a specific piece (on the New square). NonCapMovGen gen
erates non-capture moves for a specific piece (on the Old square). 

For simplicity, the program uses a static screen picture, with the 
screen divided into different fields, each with a specific function. The 
Message field is used for messages: all messages are written in this 
field, and the field is never used for anything else. One could, of 
course, make a system where different windows pop up with infor
mation and questions, allowing the user to change the colors and the 
screen display. 

Board 

8 

7 

6 

5 ~ II DISPLAY II ~ 
4 

3 

2 

1 

a b c d e f 9 h 

Figure 6-15. The DISPLAY Module 

CHESS PROGRAM DESIGN 79 



Print 
Procedures 

80 

The screen display consists of two parts: a chess board and an infor
mation window. By altering the source code, you can define the 
colors and fields of the information window. Changing any of these 
colors changes the appearance of the screen dramatically. 

Procedures that affect color are as follows: 

• NormalColor is the color used in the information window 
• BorderColor is the color of the border around the chess board 
• BoardColor is the colors of the white and black squares (default 

green and red) 
• PieceColor is the color of the white and black pieces (default white 

and black) 

The screen and pOSItiOn constants (NormaIColor, BorderColor, 
BoardC%r, etc. for color; HeadingPos, PlayerPos, LevelPos, etc. for 
position) define the color and position of one of the fields in the 
information window. In the rest of the program, these fields are only 
accessed through the GoToPos procedure, which sets the color and 
places the cursor at the specified point in the field. 

Next, there are a few small procedures, many of them only two or 
three statements. Small procedures are useful, not because they make 
the program smaller, but because they make it easier to change. 
Because of the string type used by Turbo Pascal, the procedures can 
be called with constant strings of different length. This is not possible 
in standard Pascal. 

• Message prints a message. 
• Error prints an error description. 
• Ask, Readlnput, ScanKeys and ReadCom handle most of the input. 

The input is always placed in a global string variable called Com
mand. 

• Ask asks a question (such as "Move:"). 

The print procedures are as follows: 

• ClearSquare clears a square on the screen. 
• Print Piece prints the specified piece on the empty square. Piece 

pictures are quite easy to change. 
• SetupScreen prints the screen display. 
• Print Board prints the chess position found in Board (but does it 

without printing the whole board every time). 
• MoveStr converts a chess move to a text string which can then be 

printed. 

The following procedures display information in the different fields 
in the information window: 

Turbo GameWorks Owner's Handbook 



INPUT.CH 

• PrintTime, Print MOlle and Print Nodes print the chess clocks, the 
previous move and the number of analyzed nodes. 

• PrintBestMol'e prints the main line (the best move found so far) 
and the evaluation. 

This module also includes several procedures to clear and display: 

• menus 
• messages 
• current player 
• current level 
• current mode (auto-play, multi-play or "normal") 

This module contains many routines that communicate with the user 
and control keyboard input. A global variable, CurMenu, keeps track 
of which menu is calling the input routines. This is necessary because 
duplicate one-letter commands exist on several of the menus CE" is 
back one move on the main menu, but changes the current color to 
black on the edit menu). 

Another variable of scalar type, CurOpt, keeps track of which com
mand option is currently selected (Back, Forward, Hint, etc.). This is 
needed so that commands can be checked in case statements (strings 
can't be used in case statements). 

Both of these scalar variables allow Turbo Chess to use case state
ments for evaluating input and options. 

INPUT routines are as follows: 

• ScanKeys scans the keyboard, and if a key is pressed, it reads the 
input; otherwise, it returns immediately without doing anything. 
This procedure makes it possible to do calculations and print 
information, and at the same time read information from the key
board. 

• ReadCom prompts the user, sets CurMenu and calls Readlnput. 
Upon returning from Readlnput, CurOpt is set according to the 
values of Command and CurMen. 

• Readlnput positions the cursor and calls GetCommand which 
then does the 110. 

• GetCommand takes input from the keyboard and updates the 
global variable Command. It utilizes a small army of procedures 
that enable the use of cursor control keys to make moves and edit 
pieces. 

• DisplayMove displays information about the search. Normally it 
prints the search depth and the move currently being analyzed. 
In SingleStep mode, the whole search is displayed, one position 
at a time. If you experiment with the program you will probably 

CHESS PROGRAM DESIGN 81 



EVALU.CH 

82 

find the Singlestep mode very useful. It is also a very good way 
to learn what really goes on inside the chess program. 

A large part of the INPUT module is made up of routines that are 
called to save the board when quitting the game or editing the board. 
One of these that may be of interest, Hscroll, reads a string in a one
line window and scrolls the input hOrizontally. 

The EVALU file contains the evaluation module. The evaluation func
tion and its parameters are described in detail on page 48. Most of 
the parameters (including the material value of each chess piece) are 
found in the top of the file, so it's easy to experiment with the eval
uation function. 

The module contains one major procedure and one major function: 

• The CalcPVTable procedure calculates the PVTable (piece value) 
based on the chess position; PVTable is declared in the CHESS 
file. CalcPVTable also places the evaluation of the chess position 
in RootValue. 

• StateValu function calculates the incremental static evaluation for 
a move using the PVTable. 

Except for the following three features, the entire evaluation function 
is handled by the Piece Value table: 

• Castling bonus 
• Bonus for exchanging pieces when ahead 
• Part of the pawn structure concerning isolated and doubled 

pawns; this part is calculated by incremental updating. The vari
able PawnBit represents the number of pawns of each color on 
each file. The function PawnStrVal uses PawnBit to calculate the 
value of the pawn structure for either color. PawnBit is updated 
by StateValu each time a pawn captures or is captured. 

CalcPVTable puts values into the Piece Value table, a rather complex 
task. It is contained in about 300 lines of complicated code. 

First the program calculates Material (material advantage for white), 
TotalMaterial (total material other than kings on the board), 
PawnTotalMaterial (total pawn material on the board), MaterialLevel 
(a measure of the material level of the game (early middlegame = 
45 - 32, endgame = 0)) and Mating (set if the special mating eval
uation should be used, in which case LosingColor contains the losing 
color). Then the program calculates AttackVal, which contains the 
attack value of the different squares for each player. AttackVal is used 
to calculate PVControl. For each color and square, PVControl contains 
the value resulting from rook or a bishop being on the square. This 
value is simply the sum of the attack values of the squares that a rook 

Turbo GameWorks Owner's Handbook 



SEARCH.CH 

The SEARCH module is 
filled with small details and 
at times seems a bit messy. 
Most other large pro
grams-for example, com
pilers- can be split very 
nicely into well-defined 
and well-structured parts, 
but this does not really 
work with chess programs. 

or a bishop can control from the square, as described in the Program 
Design section. PVControl is used to calculate the PVTable; for rooks 
and bishops, the values are simply copied from AttackVal to the Piece 
Value table, and the values for the other pieces are calculated. 

The next part of the code concerns pawn structure. First, PawnBit is 
initialized to the number of pawns of each color on each file. Then, 
the parts of the pawn structure handled by the Piece Value table are 
calculated-pawn chains, passed pawns, etc. There is also a penalty 
for blocking a center pawn with a bishop. Finally, the total evaluation 
for the position-its RootValue-is calculated. 

The StateValu function apportions the positional bonus points among 
pieces. It is relatively simple because the evaluation function has 
already been calculated and placed in the Piece Value table. For ex
ample, the evaluation for the move N/3 - e5 is the value of a knight 
on e5 minus the value of a knight on/3. The only complicated part 
of this function is updating PawnBit. StateValu also handles castling 
bonus and the bonus for exchanging pieces when ahead. 

The SEARCH module, found in the SEARCH file, is the largest, most 
important, and most complicated of the modules. 

At the bottom of the code is the FindMove procedure, which contains 
initialization data. FindMove calculates the Piece Value table and per
forms the iterative search loop with the Alpha-Beta window. If Level 

is equal to MateSearch, the program solves mate problems. MaxDepth 
contains the search depth of the current iteration, MainLine contains 
the best line found so far and MainValu contains the evaluation for 
the pOSition, which is usually the same as the evaluation of the 
Mainline. TimeUsed tests whether or not all the search time has been 
used. Call Search calls the Search function with the correct parameters. 

The Search function performs an analysis of the possible moves. 
We've covered this in the section on Alpha-Beta and the organized 
way moves are created and presented to the search. Search consists 
of: 

• a loop that handles moves one by one 
• a move generator that generates the moves one by one 
• some initialization and updating performed outside the loop 

Because of implementation details, the real Search function looks a 
bit different than our ideal. This is because it is difficult to write a 
move generator in Pascal that generates moves one by one. The body 
of the loop is contained in a separate local procedure, called 
LoopBody. The Search function calls the move generator (procedure 
SearchMovGen), which generates all the moves and calls the LOop
Body procedure for each move. The LoopBody procedure calls the 

CHESS PROGRAM DESIGN 83 



84 

Search function recursively. LoopBody can be regarded as the loop 
body of a loop in the Search function, and not as a separate proce
dure. When a cut-off occurs, the program jumps out of the move 
generation loop-from the LoopBody procedure to the surrounding 
Search function. 

Search 

SearchMovGen 

LoopBody 

I Update 

Search 

Figure 6-16. Structure of the Search Procedure 

On exit, Search returns the evaluation of the position. The parameters 
are Alpha, Beta and Ply (also described in the search algorithm sec
tion), an In! record, which provides some additional information 
about the evaluation and principal variation search, and BestLine, 
which on exit gets printed in the evaluation panel of the screen and 
contains the best line found in the search. Player contains the next 
player to move, Depth contains the depth of the position in the tree; 
in the first Search, call Depth is O. The moves generated by the move 
generator are placed in MovTab[Depthj. 

The body of the Search function first checks whether it should per
form a capture search or normal search, and initializes MaxVal. Then 
it performs the search loop, which we will look at in a moment. If 
no legal moves are found, it checks whether the player is in check 
in order to determine whether the position is a stalemate or a check
mate. Finally, the KillingMove table is updated with the best move 
found in the search, which is either the best move or a move that 
caused a cut-off. This updating is done by the UpdateKill procedure, 
found at the top of the Search function. The killing move algorithm 
is described in the Program Design section on page 63. 

The move generator (SearchMovGen) is nearly identical to the one 
in the MOVGEN module, except that it sorts the moves. (See the 
description for the MoveGenerator on page 61. 

Turbo GameWorks Owner's Handbook 



Even small changes to the 
update function can cause 
dramatic changes to the 
whole program. There is 
much disagreement among 
chess programmers about 
how a search should be 
controlled. and whether or 
not to use selection. If you 
want to experiment with 
the program, this is the 
best place to do it. The key 
to making good chess pro
grams lies somewhere 
within these two pages of 
code-all you have to do 
is find it! 

The idea of not counting 
some moves as a full ply 
can be expanded. You 
could count some moves as 
half a ply, but you should 
be very careful not to blow 
up the search. Much of the 
extra time used is often 
completely wasted. Since 
the program analyzes all 
possible moves, you can be 
absolutely sure that if there 
is a way to avoid making 
the right move, the pro
gram will find it. 

Now let's look at the LoopBody, starting with the body itself. Line is 
used to calculate BestLine. PrincipVar, ZeroWindow and the label 
RepeatSearch implement the Principal Variation Search (described in 
the search algorithm section on page 57). The Update function per
forms the move and updates various data structures, including the 
evaluation. If the move is illegal or if selection is implemented, Up
date determines that the move should not be analyzed. In that case, 
Update returns the value TRUE, and LoopBody skips the move and 
returns to the move generator. The Draw function checks whether 
the game is a draw because of third repetition, and calculates draw 
bonuses/penalties (as described in the evaluation function section on 
page 48). Next, there is a recursive call to Search. When Search re
turns, the move is taken back. 

The next part of the code scans the keyboard, communicates with 
the user and sometimes skips the search. The program analyzes dur
ing the opponent's time of reflection, so it must be able to read from 
the keyboard and communicate with the user while it is analyzing. 
Since parallel processing is impossible in Pascal, the program must 
simulate it by scanning the keyboard all the time, and if the user types 
something it must stop the search, communicate with the user and 
resume the search afterwards. Communicating with the user could 
involve skipping the search, entering a move, changing a position, 
etc. Sometimes the result of the communication is that the search 
must be skipped. The search is also skipped if too much time has 
been used. Finally, MaxVal and BestLine are updated, and cut-off is 
eventually performed. 

Now we have reached the heart of the program, the Update function. 
The Update function determines whether or not -and to what ex
tent-a move should be analyzed. It actually controls the whole 
search, and is therefore an extremely important function. 

Let's look at the Update function line by line. NextPly is the ply depth 
used in the next call to Search, usually equal to Ply -1. We'll skip the 
part about MateSearch, since it is only used for solving mate prob
lems. The next part of the code is about a special limited capture 
search that speeds up I-ply searches; this allows the program to play 
"blitz chess." Next, the static evaluation function is calculated using 
StateValu. This value is placed in Next. Value. Many programs contain 
a dynamic part of the evaluation function which is calculated for each 
position. For example, a bonus might be awarded for moves that 
threaten two or more of the opponent's pieces. This allows the pro
gram to find combination moves one ply earlier. The total evaluation 
for the position is then placed in Next.Evaluation. In this program, 
however, Next.Evaluation is always equal to Next. Value. 

CHESS PROGRAM DESIGN 85 



Although selection can 
speed up a program tre
mendously, it is very unre
liable. If you want reliable 
programs, don't use selec
tion. It is a good idea, 
though, to use some selec
tion in the capture search. 
A program spends most of 
its time on capture 
searches, and if you use 
singlestep mode, you'll see 
that most of the capture 
search is complete non
sense. It is possible to find 
algorithms that will avoid 
most of the nonsense 
moves in the capture 
search. 

TALK.CH and 
SMALL.CH 

86 

Next, Update determines whether the move is a check-that is, 
whether the moving piece is putting the opponent in check. Discov
ered checks are not considered checks. This information is placed in 
CheckTab[Depthj. Moves that give check are not counted as a ply in 
the search. This is implemented simply by setting NextPly equal to 
Ply. Next, the variable PassedPawn[Depthj is calculated. It contains 
the square of a pawn that may eventually reach seventh rank; this is 
used in the move generation. Moving a pawn to the seventh rank is 
not counted as a ply either. 

If you want to experiment with selection, this is the place to do it. A 
selective program is a program that performs selection at higher 
nodes in the tree. A small function called Cut makes the selection. 
The program estimates the highest possible evaluation of the position, 
and passes this estimate as a parameter to Cut. Cut updates MaxVal 
and returns TRUE if the highest possible evaluation is not high 
enough (lower or equal to Alpha). Since selection is performed only 
at endnodes, the highest possible evaluation is simply Next. Value. A 
variable Selection determines whether or not selection is performed. 
Selection is only performed at endnodes and in the capture search, 
and never at ply 1; selection at ply 1 would make it difficult to count 
the number of legal moves. So Turbo Chess is still a brute force 
program. 

Finally, the program makes a move and checks whether it is legal. 
LegalMoves counts the number of legal moves at ply one; if there is 
only one, the move can be played immediately. A random value of 
four positional points is used for some variation in the play. 

One of the major advances in modern interactive games is the com
puter's ability to analyze while the human player is preparing to 
move. Turbo Chess takes advantage of this optimization in the inter
action of its TALK and SMALL modules. 

The TALK module contains the main loop of the program, and uses 
the ThinkAwhile procedure to analyze the current game position and 
search for moves during the opponent's time of reflection. When a 
key is pressed, the SmallTalk procedure in the SMALL module is 
called. 

SmallTalk handles move entries. When SmallTalk is called, the global 
variable Command contains the keyboard entry. If the command is 
a move, SmallTalk checks to see if the move is legal, and if it is, makes 
the move and then sets Command to Play, which tells the TALK 
module to make the counter move. SmallTalk also handles the fol
lowing user options: Quit, MultiMove, SingleStep, AutoPlay and Hint 
commands. If Command contains one of these options, SmallTalk 
will handle the option and then Command. Otherwise, it does noth-

Turbo GameWorks Owner's Handbook 



Some Final 
Comments 

ing and Command is returned unchanged, and the command is han
dled by the TALK module. 

TALK handles the following options from the main menu: NewGame, 
Level, Hint, Back, Forward, Turn, Edit, Value and Play. These com
mands are executed by the TALK procedures that follow: 

• ReadMove gets the user input and calls SmallTalk to see if it can 
handle the command. 

• CheckMove handles the user commands not taken care of by 
SmallTalk. It updates the appropriate global information and 
prints the "new" board for the Back, Forward and Turn options. 

• The ProgramMove sub-program makes a move for the program 
by calling FindOpeningMove if the move is contained in the open
ing library. Otherwise, the FindMove procedure (in the SEARCH 
module) is called to make the move. ProgramMolJe executes the 
Play option. 

• The Edit procedure allows the user to modify the chess board by 
entering the positions of each piece or by loading the board from 
a disk file by using the Loadlt procedure. The current board can 
then be saved to a disk file with the Savelt procedure (in the 
INPUT module). The Edit procedure also handles the Edit option. 

• The Set Level procedure sets the game playing level any time dur
ing the game. It also handles the Level option. 

• DisplayPVTable displays the Piece Value table on the screen for 
the piece specified by the user. It also handles the Value option. 

• StartUp initializes game variables and opens the CHESS output 
file. 

• NewGame reinitializes variables necessary to start a new game 
and puts a new game header in the output file. It also handles the 
NewGame option. 

• ResetGame (called by NewGame and StartUp) starts the game and 
sets up the screen. 

• FindHintMove handles the Hint option. 

By now you know how a chess program works, and maybe you have 
even modified the program provided on your distribution disk and 
made it your own personal chess program. 

If you want to keep up with the latest in computer chess algorithms, 
you can become a member of ICCA (International Computer Chess 
Association). ICCA is an association for chess programmers and others 
interested in computer chess, and has about 500 members around 
the world. It publishes about four papers each year, written by its 
members. Most of the articles are about computer chess algorithms 
and computer chess events; there is little written about commercial 
chess computers. To become a member, send 15 U.S. dollars to: 

CHESS PROGRAM DESIGN 87 



88 

ICCA c/o Mr. W. Blanchard 
Mid-America Federal Saving Bank 
No. 271971560 
Naperville, IL 60540 
Account no. 600132099 

Readers from the rest of the world should write to: 

ICCA - Europe 
c/o Dr. H.J. van den Herik 
AMRO-Bank no. 450790878 
MekelwegiChristiaan Huygensweg 
Postbus 300, 2600 AH DELFT 
The Netherlands 
Postgiro account no. 460175 

Will a computer ever become world champion? Computers have al
ready shown that they can play chess as well as the best human 
players. Some people don't believe artificial intelligence can work 
because they don't believe computers can think. Computer chess has 
shown that computers can perform very complicated tasks without 
thinking -which is something we can say about many of us, too. 

Turbo GameWorks Owner's Handbook 



The Challenge 
of Bridge 
Program 
Design 

Chapter 7 
BRIDGE PROGRAM DESIGN 

This chapter leads you through the Turbo Bridge source code. We 
discuss the play algorithms and bidding system used by Turbo Bridge, 
so you'll be able to modify the source code or try your hand at your 
own bridge games. 

First, we investigate some of the issues involved in bridge program 
design: bidding, playing the cards, and evaluating both. In the last 
part of the chapter, we take a detailed look at each module in the 
Turbo Bridge program. 

It is assumed that you have some understanding of the game of 
bridge. If you need more information, see Appendix C, or refer to 
the books listed in Appendix D, "Suggested Reading." If you run 
across bridge terms you don't understand, check the Glossary in 
Appendix E. 

The algorithms used in the chess program are the result of more 
than ten years of research by computer experts, and are used today 
because they have proven to be the best algorithms available. The 
algorithms used in Turbo Bridge have no such pedigree. It is there
fore important that you consider them with some skepticism. They 
are very simple ideas; you may be able to improve the program 
substantially. 

Designing a good bridge program is much more difficult than de
signing a good chess program. In bridge, there is more unknown 
information (the hands of the other players), and you have to com
municate properly with your partner. Unknown information makes 
everything much more complicated. Communication isn't easy either; 
it is not enough to tell about your own hand-you also have to know 
what your partner knows about your hand. The worst problem is that 
you must look much further ahead in bridge than in chess. You can 
play good chess by looking only two to four half-moves ahead. Good 
human bridge players, however, always make a plan for the entire 
game at the outset; a good program should do the same. In chess, a 
simple full-width search gives good results. But if you want to look 
13 tricks ahead, a full-width search is out of the question. If you look 
only at the different possible leads (and ignore the problem of un
known information), there are 13 x 12 x 11 x ... x 2 x 1 
6,227,020,800 possibilities for tricks! 

BRIDGE PROGRAM DESIGN 89 



The Easy Part: 
the Bidding 
Algorithm 

The Turbo Bridge program 
is valuable to new or inex
perienced players. The pro
gram makes legal and gen
erally reasonable bids and 
plays, giving the user the 
opportunity to "play 
bridge" against real compe
tition without having to 
gather three other people. 
The format is easy to fol
low, and allows the user to 
start playing right away. 

Of interest to the experi
enced programmer or the 
better bridge player is the 
capability of modifying and 
improving the program. 
There has never been a 
bridge program written 
which plays at the expert 
level, and the ambitious 
user will enjoy tackling that 
challenge, with the format 
already structured in the 
program. 

Kit Woolsry 

90 

Programming a good bridge bidder is far easier than programming 
a good bridge player. For this reason, we simplify our approach in 
the Turbo Bridge program by keeping the routines that control bid
ding and playing the cards separate from each other. Most bids are 
predetermined by the rules of the bidding system (described later). 
There are a few situations for which the program will have to make 
a choice, but we can handle those situations. In nearly all bridge 
programs bidding is therefore much more consistent than the play. 

Simple algorithms do the bidding in Turbo Bridge. Because the bid
ding system is isolated from the rest of the program, and because it 
closely follows a defined set of bidding rules, you may wish to modify 
this part of the code. Changing the bidding system (or implementing 
a completely new one) should be relatively easy. 

Bidding consists of three tasks: 

• You must understand your partner's bids 
• You must understand what your opponents are up to 
• You must determine a bid yourself 

In most bidding systems, a bid usually reveals something about the 
length of a suit and the strength of the hand. Turbo Bridge is designed 
for this type of bidding. 

Based on a player's bid, the program stores the information the player 
has revealed about his or her hand. The stored information is the 
minimum length of each suit and the minimum and maximum num
ber of points. These are the only types of information the program 
is able to understand. The stored information is updated each time 
a player bids, and in this way, the program knows and understands 
what each player has revealed. The stored information is, of course, 
also known by all players (which also helps players keep track of 
what they have themselves revealed). 

Theoretically, determining what a bid reveals should be fairly simple. 
For example, an opening bid of one in a suit suggests that the bidder 
holds 13-23 points and at least four cards in the suit. In a real game 
of bridge, however, bidding is almost never this predictable (and is 
therefore a lot more interesting). . 

To further complicate the programming, most bidding systems rec
ognize different classes (or types) of bids. In the standard Goren 
bidding system, for instance, there are bid classes such as opening 
one in a suit, opening two in a suit, responses to opening one in a 
suit, etc. When determining what a certain bid reveals about a player's 
hand, the program first determines what bid class the bid belongs to 
(this depends on the previous bids). After that, it determines the 
meaning of the bid in the particular situation. 

Turbo GameWorks Owner's Handbook 



When you program the 
Bide/ass function, you must 
be very careful to think of 
every possible situation 
that can occur. You might 
tell the program that pass
ing to an opening twO in 
suit is an illegal bid. But if 
you forget to tell the pro
gram that this is not the 
case if the opponent over
calls, then the results can 
be disastrous. When hu
mans create bidding sys
tems, there are often some 
situations which they for
get. This is usually not cata
strophic, because the two 
players are able to under
stand each other reasona
bly well if such a situation 
occurs. But with bridge 
programs, you can be quite 
sure that the result will be 
a disaster (as you know, 
Murphy's law-"If anything 
can go wrong, it will go 
wrong"-is the most im
portant law in computer 
science, and especially in 
artificial intelligence). 

Turbo Bridge divides its bidding system (modified Goren) into 26 
different bid classes. The bidding classes are shown below. 

Turbo Bridge Bidding Classes 
Example 

Bid 
(Opening Bids) 
Pass 
1 in suit 
2 in suit 
Notrump bids 

Bidding Sequence 

Pass 
IH 
2H 
1 NT 

(Responses to Opening 1 in Suit) 
Pass IH, Pass 
Raise to 2 in partner's suit IH, 2H 
Raise to 3 in partner's suit IH, 3H 
New suit at 1 level IH, IS 
New suit at 2 level IH, 2C 
1 NT IH, 1 NT 
2 NT IH, 2 NT 

(Responses to Opening 2 in Suit) 
2 NT 2H, 2 NT 
Normal 2H, others 

(Conventions) 
Stayman 
Response to Stayman 
Blackwood 
Response to Blackwood 

(Other Bids) 
Response 2 in suit to 1 NT 
Opening 1 in suit, second 

bid NT 
Shutout bids 
Overcall bids from opponent 

(Normal Bids) 
Pass 
D 
R 
Natural bids 
Illegal bids 

1 NT, 2C 
2H 
4 NT 
5C 

1 NT, 2H 

IH, 2C, 2 NT 
IH, 2S or 3H 
IH, IS inclusive 

BRIDGE PROGRAM DESIGN 91 



Determining the 
Bid Class 

Using the same code for 
both making and under
standing the bid has a 
number of advantages: 
• the code is only written 

once 
• the code only appears 

once (so keyboard mis
takes are kept to a mini
mum and source code is 
smaller) 

• both the bidder and the 
partner (either machine 
or human) can use a con
sistent system 

Code takes up more mem
ory than parameter-passing 
in most cases. If a passed 
parameter can make one 
procedure stand for two
or more-procedures, it's 
a good way to design your 
program. 

92 

It is not difficult to determine the class of a given bid. A pass is an 
opening pass if neither the player nor the partner has bid anything 
other than pass. The opening bid and the partner's response usually 
belong to special classes, while most other bids are natural hids. The 
illegal hids are bids that -according to our bidding system -should 
not be made (such as passing to an opening bid of two in a suit), 
usually because they don't make sense in the context of the bids made 
so far. 

Determining the class of a bid is actually a kind of lexical analysis 
performed by our program. The program passes a bid value as a 
parameter to the BldClass function; BidClass then returns the class. 

Bid 

ITIl-711 BidClass 

Bid 

~ 
11-7 CI:SS -711 BidSystem 11-7~~_--, 

BidSystem 

Actual Hand 

.. AKJ98 

• 75 

• A92 

• 96 

Bid W Value 

[ill-7 II UNDERSTANDING 11-7 ~e:i~ing-7IIF'T EVALUATOR II -7[2QJ 

Figure 7-1. How Bide/ass and BidSystem Work 

When the class of the bid is determined, the exact meaning of the 
bid is calculated by the BidSystem procedure. Bid5.vstem consists of 
one case statement, with one entry for each bid class. For each bid 
class, BidSystem defines what the bid reveals (in terms of minimum 
length of suits, and minimum and maximum number of points). For 
example, a bid of the class opening 1 in suit suggest that the player 
holds between 13 and 23 pOints, and at least four cards in the suit. 
For most bid classes, determining what the bid reveals is a trivial 
problem, but for the more general classes like natural hids, BidClass 
must be more intelligent. Each time a bid is made, the meaning of 
the bid is calculated and used to update the information about what 
each player has revealed. 

Turbo GameWorks Owner's Handbook 



The Hard Part: 
the Play 
Algorithm 

Simplifying the 
Problem 

The second task of the bidding program is to find a bid for a player. 
To do this, the program uses BidClass and BidS)'stem again. Turbo 
Bridge needs only one representation of the bidding system (instead 
of two). In this way, the representation is never inconsistent, and it 
is therefore impossible for two program players to misunderstand 
each other (since the same piece of code makes and understands the 
bid). 

An evaluation function in BidSystem determines which bid to make, 
and evaluates how well the meaning of the bid fits with the player's 
hand. The function evaluates all possible bids, and chooses the one 
with the highest value. 

BidS:ystem, then, performs two different (but related) tasks: it calcu
lates the meaning of a bid, and evaluates how well a prospective bid 
fits with the hand a particular player holds. The complexity involved 
in evaluating bids comes from the information that a partner's bid 
carries about the cards in his or her hand. The evaluation of the 
second partner's next bid changes according to what the first partner 
bids. 

BidClass and BidSystem comprise only 200 lines of code. You can 
change bidding conventions or implement an entirely new bidding 
system by altering just these two procedures. 

The play algorithm for a bridge program is by far the toughest code 
to write. Theoretically, the program could use an evaluation proce
dure like the one in Go-Moku to determine which card a player 
should play during any particular trick. In practice, this is impractical, 
since the outcome of any trick affects how later tricks are played. As 

we said earlier, good human players make a plan for the entire game 
from the outset. 

To start with, let's assume we are going to play with open cards 
( double dummy). This partially avoids the problem of unknown in
formation (mentioned earlier in this chapter). Given open cards, the 
program can perform a full-width search 13 tricks ahead. A full-width 
search of a 13-trick hand would require between 1 and 100 million 
nodes. A typical PC can search 50 nodes per second. This approach 
is good only if we don't care about realtime responsiveness-not 
appropriate for an interactive game. 

Consequently, the program must restrict the search in some way; 
either by not searching all 13 tricks ahead or by searching selec
tively-not trying all the possibilities at each node. It is almost im
possible to program a reliable evaluation function. To make a reliable 
evaluation, we would have to settle on a rigid game plan at the outset, 

BRIDGE PROGRAM DESIGN 93 



94 

which wouldn't take into account changes in strategy later in the 
game. Selection is a far more promising strategy in this case. 

Assuming we can design a program to play well with open cards, how 
do we create a program that will work with hidden hands? 

Since we are in the play portion of the bridge game, we have some 
knowledge of card distribution obtained from bidding. But it is un
likely that the program will be able to locate every card of each suit 
from the bidding (if it can, then the program plays as though all the 
cards were open). There are a number of cards that the program 
cannot definitely place. 

We could tell the program to distribute the unknown cards system
atically in various hands, and then "silently" play hypothetical tricks 
for each of the possible distributions. For each card in each distri
bution, the program analyzes the result by playing the rest of the 
game with "open" cards. Then it plays the card that gives the best 
average result in the different distributions. The algorithm looks like 
this when written in Pascal-like "pseudocode": 

procedure FindCard; 
begin 

Value[all cardsl ;= 0; 
for DealNo ; = 1 to MaxDeal do 
begin 

DealCards; 
for Card: each possible card do 
begin 

PlayCard (Card) ; 
Value[Cardl ;= Value[Cardl + Analyze; (Analyze calculates points for number) 
TakeBackCard (Card) ; ( of tricks won and bonus for a made contract ) 

end; ( So we can try next possibility ) 
end; 

BestChoice ;= card with highest combined value; 
end; 

This algorithm is used in Turbo Bridge. If the number of different 
deals is large enough, and the analysis with open cards is reliable 
enough, this algorithm should automatically be able to perform safety 
plays, finesses, cross-ruffs, etc. 

No algorithm is perfect, however, and Turbo Bridge is meant to be 
taken apart and tinkered with. As it stands, the playing algorithm 
"expects" that all players can make a reasonable guess about the 

Turbo GameWorks Owner's Handbook 



Playing a Card 

I ANALVZER 

Resu.indeal1 

Result in deal 2 

Result in deal 3 

Total Resu. 

I.,A 

11 

10 

10 

South Hand 

• ., A 87 

• A J8752 
• A 86 

"7 .A .J 
11 11 9 

11 11 10 

10 11 10 

10-1 10% 11 9% 

PLAYED CARD 

[E] 

.2 .A .6 
9 10 10 

9 11 10 

10 10 10 

9~ 10-1 10 

DISTRIBUTION W RESULT 

I (JJ!J I -7 II ANALYZER II -7 110 tricks 1 

Figure 7-2. How the Analysis Algorithm Works 

unknown hands. But this is not always the case. Also, unlike human 
players, the algorithm will never try to fool the opponent by making 
illogical or deceptive card selections. Most importantly, if the playing 
algorithm can make a finesse in two different directions, it tends to 
postpone the finesse-because the next trick will tell it which way 
the finesse should have been made. 

To successfully implement the selective search, the program must 
have a procedure to select which cards should be tried in the search 
for the proper card to play. This procedure must be very reliable, 
since the program will make inept plays if the correct card isn't cho
sen. This means that much game status information must be taken 
into account and analyzed, which slows the procedure down consid
erably. The search must therefore be very narrow. 

Using a search tree, the program analyzes about 50 nodes (played 
cards) per second on a 5 MHz IBM Pc. Analyzing the opening lead 
in one deal with open cards, 13 tricks ahead, and without any branch
ing in the tree, requires 13*52 = 676 nodes. (Branching is the fol-

BRIDGE PROGRAM DESIGN 95 



The weighting between the 
search results and the heu
ristic selection is deter
mined by the constants 
SearchFac and HeurisFac. If 
you set SearchFac to 0, the 
program will perform no 
search at all, and will in
stead play entirely with the 
heuristics. 

Program 
Structure 

BRIDGE 

Data Types 

96 

lowing of alternate paths depending on unknown opponent factors.) 
There are 13 different possible opening leads, and each one must be 
analyzed 13 tricks or 52 cards ahead. The search therefore has to be 
extremely narrow. The program uses no branching at all in the tree, 
and it tries only three different random deals. This gives a maximum 
of 3*676 = 2028 nodes or about 40 seconds for calculating a lead. 
Search factors are controlled by two constants: MaxDeals determines 
the number of different deals, and BranchValue controls the branch
ing of the tree. A value of 0 for BranchValue (default) means no 
branching at all, while a value between. 1 and 20 results in some 
branching. If you change BranchValue to a higher value, the program 
will only use branching in the leads; for the other three cards in the 
trick, only one card is selected to be played. 

The traversal through the search tree is controlled by a special version 
of the Alpha-Beta algorithm. The result of an analysis is simply the 
number of tricks won by the declarer, with an extra bonus if s/he 
wins the contract. At the end, this algorithm chooses the card with 
the highest average result. If several different cards are equally good, 
heuristics is used to determine which card to play. 

The Turbo Bridge program consists of about 5000 lines of code. 
Please refer to the source code as we examine the program structure. 
The following sections describe the main BRIDGE file and the include 
files in the order they are included in the main program: DISPLAY, 
SCORE, DEFAULTS, INIT, INPUT, BID and PLAY. Include files have 
the extension .BR. 

BRIDGE. PAS contains the most important global data types, data struc
tures, the include modules, and the program body. 

At the top of the file are some constants for controlling the search 
(SearchFac and HeurisFac). Next are the data types that represent 
hands, cards, bids, etc. Because the type Hands is enumerated as 
North, East, South and West, the program can also refer to them using 
the values of 0 to 3. (For more information about enumerated data 
types, consult the Turbo Pascal or Turbo Tutor reference manuals.) 
A suit is enumerated as Club, Diamond, Heart or Spade, and a trump 
is either a suit or Nt (notrump). The card values are numbers between 
2 and 14 (14 being ace). The programmatic description of a card 
consists of a Suit and a Value plus two booleans, Known and Played, 
used when playing the cards. Played indicates whether the card has 
been played yet. Known indicates whether the card is known by the 

Turbo GameWorks Owner's Handbook 



Program Body 

current player (the one who should play the next card). Finally, a bid 
consists of a Trump suit and a Level, which is a number between 0 
and 7. The 0 level represents the three special bids, Pass, DBL and 
RDBL. 

After several initialization procedures, the play begins as outlined in 
the source code below, and continues until the user exits from the 
program. 

program Bridge; 

var 
BestBid : BidType; 
BestChoice : CardNoType; 
Redeal : boolean. 

begin 
InitDefaults; 

InitGames; 
InitBids; 
InitScore; 
NewScreen 
repeat 

end. 

ResetGame; 
while not DoneBidding( BestBid) do; 
CleanUpBids; 
if Contract. Level ) 0 then 
begin 

DummyMessage; 
StartPlay; 
P la y Cards (Best Choice, Redeal); 
ResetPartner; 
if not Redeal then 
begin 

PrintResul t; 
Calcula teScore; 

end; 
end; 
else 

ChangeDefaul ts; 
until false; 

I Chosen bid ) 
I Chosen card ) 

I Program body ) 
Default menu: hands played by user;) 
hands displayed;program to cheat ) 

I Screen initialization ) 

I Do bidding ) 
Get ready to play ) 

I Play for your partner the declarer? ) 

if you switched with declarer ) 
I if game not cancelled ) 

I if ) 
I Everyone passed l ) 

Redisplay defaults menu? ) 
Program terminates when user ) 

I selects eXit on the main menu ) 

BRIDGE PROGRAM DESIGN 97 



The BRIDGE file contains 
the main program (the top 
level of the program). It 
shows the structure of the 
program in 25 lines of 
code. In a way, the main 
program is a table oj con
tents to the rest of the pro
gram. Organizing programs 
in this way usually makes it 
a lot easier to understand 
the structure quickly. 

98 

How does the program represent a whole distribution of cards? Just 
as in the chess program, the optimal representation depends on what 
we want to do with the distribution. For evaluation and selection 
purposes, we want the program to be able to play and unplay cards 
quickly. For example, the program will often need information such 
as the highest card in a suit still in the player's hand, or the number 
of cards in a suit. But the program doesn't need information about 
which particular hand holds a particular card. Most importantly, we 
want a simple data structure so that the program will be easy to 
understand. 

The program represents a distribution as an array [HandType,O .. 12j 
of CardType. Each suit is sorted with the highest card first (this makes 
it faster to find the highest or lowest card in a suit). Global variables 
RDist and SDist hold the distribution. RDist always contains the actual 
distribution of the cards, while SDist contains the simulated distri
bution used in the search (in which unknown cards are distributed 
at random). 

Distribution 

North 

• T, • K, .0, .7, .0, .9, .T, +T, .4, .9, .4, .3 
East 

South 

West 

Figure 7-3. Distribution 

RData and SData contain additional information about the distribu
tion. For each hand, L[Suitj contains the length of the suit, while P 
contains the number of points (both high card points and distribution 
points that hand earns). When a card is played from the hand, the 
length of the suit, but not the number of pOints, is updated. Thus, P 

contains the number of points before any cards were played. 

Turbo GameWorks Owner's Handbook 



Data 

North 

L: 3-5-1-3 
P: 9 

East 

South 

West 

Figure 7-4. Data 

Info contains the information each player has revealed during bid
ding and play. Info is what the players know about each other's hands. 
All players have full access to the information in Info. For each hand, 
MinI[Suitj contains the minimum length of the suit, while MinP and 
MaxP contain the minimum and maximum number of points. Notice 
the correspondence between RData and Info. RData contains actual 
information, while Info contains information that the players have 
revealed. Just as with RData, MinI (but not MinP and MaxP) is up
dated when a card is played from the hand. If MinI of a suit is equal 
to -1, it means that the player has revealed a void suit in the play. If 
MinI of a suit is equal to 0, it means that the minimum length is 0, 
and players know nothing at all about the suit. 

BRIDGE PROGRAM DESIGN 99 



100 

Info 

North 

MinL: 0-4-0-4 
MinP: 6 
MaxP: 12 

East 

South 

West 

Figure 7-5. Info 

Apart from the distribution of the cards, the program must also keep 
track of bids and played cards. Bids is an array of BidType, and 
contains all the bids made. BidNo contains the number of bids made. 
Bids{BidNo-l} always contains the bid immediately before the current 
one. Dealer contains the first player to bid in the game. 

Contract contains the contract, Doubled contains the doubling status 
(undoubled, doubled or redoubled) and Dummy contains the part
ner of the declarer. 

The played cards are stored in the Game array. Round always contains 
the number of played cards, and thus Game{Round-l} always contains 
the most recently played card. Instead of containing the cards them
selves, Game contains the Hand and the number (No) of the card. 
The card itself is then found in RDist{Hand,Noj. 

Turbo GameWorks Owner's Handbook 



Bids 

N W S E 

Pass 1. 2. 2. 3. Pass 4. Pass 5. Pass Pass Obi 

Pass Pass Pass 

Figure 7-6. Bids and Game 

Turbo Bridge needs more information to store the full game status 
during play. The Ret and Sim records hold the current status of the 
game-the current round, the number of won tricks for each side, 
and the current trick. These records correspond to the actual and 
simulated games, just as RDist and SDist do. Round contains the num
ber of played cards. TrickNo contains the number of played tricks 
(equal to Round DIV 4). WonTricks contains the number of tricks 
won by the declarer. LeadHand contains the player who led the first 
card in the current trick, and LeadSuit contains the suit of that card. 
BestCard contains the best card in the current trick, and BestHand 
contains the hand which played the card. Finally, PtayingHand con
tains the hand which will play the next card. 

Turbo Bridge must store information to correctly keep the score. This 
data must be declared globally so that the score can be maintained 
between games and rubbers. The Games record contains the value 
of the current game (1..3) and the scores of both teams in each of 
the respective games. Below is the type and variable information used 
by the scoring routines. 

BRIDGE PROGRAM DESIGN 101 



DISPLAY.BR 

102 

type 
GameRecordType = array[l .. 3l of integer; 
ScoreType = record 

GamesWon, 
OverLine, 
Total : integer; 

{ Underline score for the 3 games } 
{ Holds team score } 

GameRecord: GameRecordType; 

{ Bonus points } 
{ Overall totals } 

{ Underline scores } 
end; 

GameTableType = record 

var 

CurGame : integer; 
LS, 
LW : ScoreType; 

end; 

Games : GameTableType; 

{ Current game 1 .. 3 } 
{ North/South team } 

{ East/West team } 

{ Holds the global scoring information } 

The DISPLAY module contains all the procedures for writing on the 
screen, writing messages to the user, etc. If you wish to try the pro
gram on a different computer or if you want to adapt the screen 
picture to a high-resolution graphics monitor that will show pictures 
of the cards, or use windowing or mouse-control, this is the part of 
the code you need to change. Borland's Turbo Craphix Toolbox will 
help you experiment with graphics displays. 

First the module defines the strings used to display HandNames, 
TrumpNames and ValueNames. TrumpSQS contains special characters 
for club, diamond, heart and spade. The IBM PC character set assigns 
special characters-among them the symbols for card suits-to the 
character numbers between 128 and 255. 

The procedure EqBQS checks whether two bids are equal. DistPoints 
calculates the number of distribution points for a hand (these two 
general functions are placed near the top of the Display procedure 
because they are used throughout the DISPLAY module but nowhere 
else in the program). 

BidStr and CardStr convert a bid or a card to a character string. Just 
as in the chess program, the program stores the played games on the 
disk. The program uses the special suit characters whenever it dis
plays a bid or a card on the screen. Not all printers are capable of 
producing these characters. Because of this, the program uses ASCII 
characters when storing to disk. To make this conversion, the pro
gram uses the functions AsciiBidStr and AsciiCardStr, which work like 
BidStr and CardStr. 

Frame is a small procedure that draws the frame around the bridge 
table in the middle of the screen. 

TopHand contains the hand placed at the top of the screen picture 
(north during bidding, and the dummy during play). Each hand is 
displayed in a separate "window" on the screen. The GoToHand 

Turbo GameWorks Owner's Handbook 



SCORE.BR 

procedure is very similar to the standard Turbo Pascal GoToXY pro
cedure, but is given a Hand as parameter and places the cursor within 
the "window" of the specified hand. Similarly GoToCardPos places 
the cursor at the card position on the bridge table in the middle of 
the screen. 

WindowHand contains the hand placed at the left column of the 
information window (at the lower left corner of the screen). This 
hand will belong to the dealer. 

PrintNames is given a Hand as parameter, resets the information 
window, and prints the hand names with the correct hand in the 
leftmost column. PrintIn/o is given a Hand and a string as parameters, 
and displays the string at the correct place both on the bridge table 
and in the information window. The rest of the program need not 
"worry" about the information window at all. OutputNames and 
Outputlnfo work in exactly the same way, but output the information 
to disk. 

All these procedures are used by Print Bid and PrintCard, which make 
sure that the bids and the played cards are printed and erased at the 
appropriate time and place. 

HandKnown checks whether a hand should be displayed on the 
screen. The program displays hands if you've requested it during 
initialization, or if a particular player becomes the dummy. Print
Screen sets up the screen picture with the specified hand at the top 
of the screen. 

BidMenu draws a menu of user commands during bidding, and 
PlayMenu draws a menu of user commands during playing. Error 
displays an error message and rings a bell. 

The DISPLAY module is structured with the name and color defini
tions at the top of the file, followed by a number of small procedures, 
each taking care of a subtask. This makes it a lot easier to add new 
features to the program. 

The SCORE module contains a number of procedures that calculate 
and display scoring. 

The InitScore procedure initializes the fields in the Games scoring 
record. (The Games scoring record is described in the Info section.) 

The DisplayScore procedure contains the routines that draw the game 
score board and fill the score. Below is a sample game board with 
scoring fields, with explanations set off in comments : 

BRIDGE PROGRAM DESIGN 103 



DEFAULTS.BR 

104 

BRIDGE SCORE 

{Teams} N/S EIW 
{Overline Totals} 270 400 

{Underline total game I} 120 20 

{Underline total game 2} 0 120 

{Underline total game 3} 0 0 

{Overall} Totals 390 540 

The CalculateScore procedure contains all of the constant values 
needed to keep score-the points necessary to win a game, the score 
for contracts made in each of the respective suits, the bonuses for a 
small and a grand slam, the bonus for winning a rubber in two games, 
etc. To make changes to the bridge scoring system (for example, to 
include honor points in the scoring), the CalculateScore procedure 
should be modified. 

CalculateScore uses the following routines : 

• CalculatePoints calculates the points for the current game and 
updates the team's total scores. 

• CalcVulnerabilityPnts determines the appropriate bonus points 
awarded to the winning team if it was vulnerable. 

• CalcGamePnts calculates the game winning bonuses if the team 
that is playing the contract wins enough points to win the current 
game. 

• CalcPenaltyPnts calculates the penalty points awarded to the team 
that lost the bid but prevented the declaring team from making 
the contract. 

The DEFAULTS module is called at the beginning of the program and 
allows the user to specify how the game is to be played. The user 
can choose to play 0 to 4 of the hands, allow all of the hands to be 
displayed openly, or allow the computer to cheat and look at all of 
the cards (including the opponents). 

This module is interesting as a programming example because it is 
basically a cursor control module. The GetDe!aults procedure calls a 
series of 110 routines that allow the user to move around the screen 
with the arrow keys and toggle a default selection on or off by hitting 
the space bar. 

Turbo GameWorks Owner's Handbook 



INIT.BR 

INPUT.BR 

The INIT module contains procedures to deal the cards and set up 
the screen picture. 

Dealing the cards is not difficult. Remember, however, that the pro
gram must update both the distribution and the data arrays. The 
program assumes that the cards are already distributed in some way, 
so all it must do to achieve random distribution is mix them a bit 
more. The E'xchange procedure mixes two cards, and updates SDist 
and SData accordingly. ChangeCard" moves cards around in such a 
way that the distribution corresponds with the information in b?/o 
afterwards. The Dea/Cards procedure mixes the unknown cards at 
random. Finally, the SortCard" procedure sorts a distribution (with 
the highest cards in each suit first). 

InitGames, called once at the beginning of the program, sets up a 
starting distribution in SDist and SData (so the procedures described 
in the paragraph above can be used to mix the cards later). StopGames 
closes the BRIDGE file and quits the program. PrintBidScreen and 
PrintPlayScreen set up the screen pictures for bidding and play, re
spectively. These procedures call the procedures from the DISPLAY 
module. ResetGame contains the initializations performed before 
every game. These include dealing the cards at random and setting 
up the screen for the bidding. NewDeal re-deals the current hand 
and clears the previous bidding information. C/earhids reinitializes 
bid information without re-dealing. StartPlay contains the initializa
tion performed when the bidding is finished. It prints the contract 
on the screen and calculates who should play the opening lead. 

The INPUT module handles most of the communication with the 
player. In the bidding portion of the game, when the bidder is not 
the program, the Answer procedure is called to get keyboard input. 
Answer gets the bid by calling Get Bid. GetBid reads the input by 
calling ReadBid and evaluates it by calling ParseBid. 

During bidding, the player may ask to redeal the hand if s/he was 
dealt a bad hand, or alternately clear all the bids without redealing. 
In either case, the boolean variable Restart is returned TRUE, which 
tells the BID module to reinitialize the bidding information and thus 
restart the bidding. 

If the hand currently being played belongs to a human player, Answer 
is called to get the play. The boolean variable Bidding is now FALSE, 
so Answer calls GetPlay to read the user option with ReadPlay and 
evaluates the play with ParsePlay. 

BRIDGE PROGRAM DESIGN 105 



B/D.BR 

106 

During either bidding or playing, the user can call up the score. This 
option is handled by the INPUT module and is thus transparent to 
the BID and PLAY modules. 

At the end of the game, after displaying the score, ChangeDefaults is 
called, which prompts the user to start a new game, reset the defaults 
(see the DEFAULTS module) or exit the program. GetResponse is then 
called to get the user's selection. 

The BID module contains all procedures and data used in bidding 
(also see the section on the bidding algorithm on page 90). 

First, the program defines all the bid classes. The BidTyp array fits 
closely with the Bids array, and contains the bid class of each of the 
previous Bids. The opening bid is placed in Bids[Oj and BidTyp[Oj. 
(As a small programming trick, both arrays start at index - 4, and 
from index - 4 to - 1 there are four opening passes. This simplifies 
the BidClass procedure somewhat, because an initial bid will only be 
added if it is a non pass bid. If all four players pass, no bids are 
updated and the game must be restarted.) 

BidTyp 

I 
N W S E 

Opening Opening Overcall Support 
Pass 1 in Suit 2 in Suit 

Normal Normal Normal Normal 
Bid Pass Bid Pass 

Normal Normal Normal Normal 
Bid Pass Pass ObI 

Normal Normal Normal 
Pass Pass Pass 

Figure 7-7. BidTyp 

The Jumps function counts the number of jumps represented by a 
bid. For example, bidding three clubs when the current contract is 
one spade is a single jump (jumps would return the value 1). The 
Number function counts the number of cards a player has of a given 
value. For example, Number (North, Ace) counts the number of aces 
that North's bidding indicates slhe has. 

Turbo GameWorks Owner's Handbook 



One improvement you may 
wish to make to the Turbo 
Bridge source code is an 
individualized bidding sys
tem. The reason Turbo 
Bridge uses a specialized 
system is because standard 
Goren is not very system
atic (and was developed 
way before computers). By 
implementing a system that 
you like and use regularly 
in your own playing, Turbo 
Bridge can become your 
own custom bridge 
program. 

The BidClass function calculates the bid class of a bid, and keeps 
track of all bids and responses. For example, if the partner's last bid 
was a Stayman bid, the current bid is a response to the Stayman bid. 

A pass may be an opening pass, a response pass to partner's opening 
one in a suit, or a normal pass, depending on the type of the partner's 
last bid. Four NT and five NT are usually Blackwood. If the partner's 
last bid was an opening in NT, then a bid in clubs at the next level 
is Stayman, while the response two in suit is the special weak two in 
suit response to one NT. If you change this routine, be careful to take 
all possible bids and responses into account. 

The BidSystem function determines the meaning of all possible bids. 
It can be called in two different ways. It can either calculate and 
update Info according to a Bid (when the computer does not know 
the hand), or it can evaluate how well a Bid fits together with the 
actual hand of the Player (when the computer does know the hand). 

InfoPlayer contains the updated version of Info[Playerj (and thus the 
meaning of the Bid). BidVal contains the evaluation of the Bid. If Test 
is set, BidVal is calculated by testing the Player's hand against 
InfoPlayer. MinTab contains the approximate number of points (high 
card points and distribution points for both the player and the part
ner) necessary to win a contract. 

BidSystem is a single case statement with one entry for each bid 
class. For most of the bid classes, the case statement simply deter
mines what each particular bid reveals in terms of minimum suit 
length (MinL) and minimum and maximum number of points (MinP 
and MaxP). For example, an opening of one in a suit suggests be
tween 13 and 23 pOints, and at least four trumps. The program cal
culates BidVal using this information. If the program determines that 
a bid falls within the conventions it understands, it will adjust BidVal 
directly. This makes it possible to make the conventional bids that 
cannot be calculated using MinP, MaxP and MinL (opening in NT is 
bad if the player has more than one doubleton, and responding with 
anything other than two NT to an opening of two in a suit suggests 
at least an ace and a king). 

All the bid classes are straightforward, except for the three general 
bid classes with normal bids (normal pass, normal bid and normal 
double). The code for these bids must contain some sort of decision
making intelligence, because these bids are not strictly mechanical. 
The final contract is determined by normal bids, because the contract 
is accepted by three passes. The code for these three bid classes is 
in the procedures NormalPass, NormalBid and NormalDBL. 

BRIDGE PROGRAM DESIGN 107 



Normal Passes 

Normal Bids 

Except for the Stayman and 
Blackwood conventions, all 
Turbo Bridge bids are "nat
ural." This means, for ex
ample, that a bid of 2 
hearts indicates an ability 
to make a 2 hearts contract 
and a Double indicates an 
ability to defeat the oppo
nents contract. 

108 

The Norma/Pass procedure contains the following rules. When a 
player passes, it means that slhe accepts the present bid as the final 
contract. You or the program should only pass if you believe the 
present contract is the best strategic move for you and your partner
whether or not you are declarer or defender. In general, passing 
means that you do not believe that you and your partner should bid 
any higher. If your partner has the present contract, passing below 
game means that you do not think there is any chance for game, 
while passing below slam means that you do not think there is any 
chance for slam (passing also means that you accept the present suit 
as trump). If the opponent to your right did not pass, you can pass 
and leave the initiative to your partner without any risk. Passing in 
this situation means that you have a weak hand. 

Normal bids are the most complicated bids. The MinPoints function 
calculates how many points are required to bid at a specific level. 
MinPoints follows these two rules: (1) a player should only bid the 
number of tricks slhe thinks slhe can win, and (2) if the player and 
partner have been bidding a trump suit, the player should not bid a 
different suit unless the partner can bid the trump suit again without 
going too high. 

If the opponent to the bidder's right did not pass, then making a 
normal bid (instead of pass) reveals three more points than the bid 
otherwise would. Bidding above game level means slam interest, and 
a jump always means game demand. The first bid in a suit shows a 
four-card suit, and each successive bid in the suit shows one extra 
card. If your partner has bid the suit, a support bid means that you 
and your partner have at least eight cards in the suit, and this deter
mines the suit as trump suit unless you can find a better suit. Bidding 
in NT shows no Singletons (except for three NT, often used as a 
chance bid when you have high cards distributed amongst more than 
one suit). 

The minimum and maximum number of points are determined by 
the MinPoints function. If you and your partner have found a fit in 
major, there is no reason to try to find any other suits. If your partner 
has used the Blackwood convention, you should let him decide the 
final contract and not take any initiative yourself. Three NT is a final 
contract bid; you should usually pass when your partner bids three 
NT (unless you want to bid a slam). 

Turbo GameWorks Owner's Handbook 



Normal Double 

Finding and 
Making the Bid 

NormalDBL doubles a contract only if it believes the contract will 
leave opponents at least two down. Every four high card points (both 
player and partner) above the first four count for one trick. If a player 
has four or more trumps, each card above the first three counts for 
one trick. The program will double a four spade contract with four 
trumps and sixteen high card points (including points shown by 
partner). 

After the bid is calculated using the functions and procedures de
scribed above, the new bidding information is added. If the task was 
to update Info, the bid is evaluated depending on how much new 
information it gives the partner. Otherwise, the bid is evaluated by 
comparing the information with the actual hand. A large penalty is 
given if they do not correspond. The different parameters were de
termined by trial and error. The values result in correct bids by the 
program in the standard situations. 

FindBid finds a bid to make. If it is the program's hand, the procedure 
evaluates all possible bids using the evaluation function in BidS:vstem 
and chooses the bid with highest evaluation. If it is the human player's 
hand, the program reads the bid from the keyboard. The MakeBid 
procedure performs the bid by updating the global variables (Info, 
Bids, Contract etc.), and then displays the bid on the screen. 

FindBid and MakeBid are called by DoneBidding until function 
ThreePass returns TRUE (i.e., there have been three consecutive 
passes and the contract is set). Below is the source code for the 
DoneBidding function. 

function DoneBidding (var BestBid : Bid Type): boolean; 
{ Successively finds and makes bid until the bidding stage of the 

game is completed by three consecutive passes or the user 
decides to restart the bidding I 

var 
Restart : boolean; 

begin 
Restart : = false; 
repeat 

FindBid(BestBid, Restart); 

DoneBidding := not Restart; 
if Restart then 

exit; 
MakeBid (BestBid) ; 

until ThreePass; 
ena; 

Restart is true if the user clears I 
{ the bids or asked a new deal I 

If it is the program I s turn to bid it finds 
the best bid else it gets the user I s bid 

{ We must exit routine and restart bidding 

Update bidding information and print the bid I 
I Bidding has completed normally I 

I DoneBidding I 

BRIDGE PROGRAM DESIGN 109 



PLAY.BR PLAY, the largest and most complicated module in Turbo Bridge, 
plays the cards (see the play algorithm section on page 93). FindHigh 
and FindLow find the highest and lowest card in a suit and return 
the Index to the card in sDist. These functions must never be used 
if the suit is void. Highest and Lowest do the same thing, but return 
the Value of the card (and also work in case of a void suit). 

The PlayCard procedure plays a card and updates the simulation data 
structures (sim, sDist, sData, etc.). The search uses this procedure. 
The corresponding take-back procedure is ResetTrick, which takes 
back a whole trick (and thus undoes four calls to PlayCard). The 
program does not need a procedure to take back a single card, since 
it only uses branching for the first card in each trick. 

Testsuit tests the strength of the suit by calculating the number of 
Top Tricks in the suit. The variable Winning is set if all the cards in 
the suit are top tricks. The function Top Trick also calculates the num
ber of top tricks, but returns a negative value if the opponent has top 
tricks. 

The heuristics for performing the card selection follow these pro
cedures. Select Lead is used to select the leads, while the other three 
cards in the trick are selected by selectCard. These functions work 
as move generators. Select Lead can be called several times in the 
same situation, and will give a new suggestion every time. It currently 
generates only one suggestion. If you change the BranchValue con
stant at the top of the program, Select Lead will generate up to two 
different suggestions. selectCard, however, supplies only one sugges
tion (and is therefore only called once). 

Select Lead 

DeclarerLeadEvalu 

OpponentLeadEvalu 

SuitEvalu 

I SuitTreatment 

:00;< SelectCard 

I :::::~:. 
DiscardCard 

Figure 7-8. Select Lead and Select Card 

110 Turbo GameWorks Owner's Handbook 



When Select Lead is called, it first evaluates the four different suits 
with a simple evaluation function. The evaluation function estimates 
how good a lead a card in a particular suit would be. The first sug
gestion is made in the suit with the highest evaluation, and the second 
suggestion in the suit with the second highest evaluation. The eval
uation function of the suits is found in the SelectSuit function. When 
the suit is determined, the SuitTreatment function determines which 
card in the suit should be played. 

The SelectSuit function is again divided into several functions. The 
most important rules are found in DeclarerLeadEvalu and 
OpponentLeadEvalu. If these rules do not apply, the second most 
important rules (found in SuitEvalu) are used. Ac:, a special rule, the 
program gives a high evaluation for leading the same suit as in the 
last lead (providing that the reason for leading the suit is still valid). 
This reduces the number of analyzed cards. If the suit played the last 
time the player or his or her partner led a suit can be led again, and 
the reason why it was played l~lSt time is still valid, then this suit is 
usually the only suit analyzed. 

The most important rules for the declarer occur in DeclarerLead
Evalu. First, the program tries to establish a ruff trick by playing a 
suit in which either the declarer or the dummy have few cards, and 
which cannot be ruffed by the opponents. Second, the program draws 
trumps until the opponents have no more trumps left. 

The most important rules for the opponents occur in Opponent
LeadEvalu. First, the program plays suits with top tricks. Second, it 
tries to establish a ruff trick by leading a singleton or a suit in which 
the partner is void or has a singleton. These rules apply only when 
the declarer and the dummy cannot ruff the suit. 

When the most important rules do not apply to a suit, the program 
uses the second most important rules found in SuitEvalu. The de
clarer first plays suits with top tricks, then long suits and finally 
trumps. The opponents first play trumps, a reasonable and safe move, 
then long suits. 

Once the suit is chosen by the above three procedures, the Suit
Treatment function determines which card in the suit is to be played. 
Normally the lowest card is played, although the highest card may be 
played if both opponents have singletons or void suits, if the partner's 
highest card is not high enough to take the trick, or if playing the 
highest card is necessary to make a finesse. However, if one of the 
opponents has the highest card singleton, the program always plays 
the lowest card. 

BRIDGE PROGRAM DESIGN 111 



112 

The SelectCard function determines which of these three functions 
is appropriate in the current situation: FollowSuit (used when the 
player can follow suit), SelectRulf (determines whether to ruff, and 
which trump to use) and DiscardCard (selects a card to discard). 

The FollowSuit function uses different rules for the second, third and 
fourth hand. If the highest card in the suit is lower than the best card 
in the trick, the program plays the lowest card. In the second hand, 
the program plays low, except when playing a high card will win the 
trick (and the partner cannot win it) or press the third hand. In the 
third hand the program plays high, unless the partner is sure to win 
the trick. In the fourth hand, the program plays high, unless the 
partner already has the trick. 

The SelectRulf function ruffs a trick if it will win the trick (and the 
partner cannot win it). In that case the program uses the lowest trump 
that will win the trick. 

The DiscardCard function first evaluates all the suits, and then dis
cards the lowest card in the least important suit. The evaluation func
tion gives penalties for discarding trumps or high cards, for leaving 
high cards unprotected, for discarding top tricks and for discarding 
cards that give the opponents extra top tricks. 

The heuristics are fairly simple, which is why they sometimes select 
the wrong card. You can study how the heuristics play alone by setting 
the SearchFac constant to 0 and allowing the program to cheat. If the 
heuristics were more sophisticated however, they would become 
much slower, and the overall strength of the program would probably 
not increase significantly. The only way to overcome these problems 
is to make the search much wider, which would reduce the impor
tance of the selection and slow down play (although if some fre
quently called functions were recoded in assembly language, play 
could be speeded up). 

The search for a card to play is performed by the Ana~yze procedure. 
When the analysis is finished, the number of tricks won by the de
clarer is placed in the Result variable. The Anaryze procedure uses 
the Alpha-Beta algorithm, but the implementation is somewhat dif
ferent from the usual one (for example, the two sides do not take 
turns as in chess- instead, the same side can lead several successive 
tricks). 

Turbo GameWorks Owner's Handbook 



The FindCard procedure finds the card to play. If this is the user's 
hand, the card is read from the keyboard. If the program plays the 
hand, the card is found by analying the different possibilities. Not 
analyzing all possible cards Significantly reduces the amount of time 
spent in this procedure. If two cards are equally high (for example, 
if the same player has both the queen and the king in a suit), the 
procedure analyzes only one of these cards. All cards below nine are 
considered equally high for the purposes of analysis. If the program 
discards a card or follows suit with a low card, it will always play the 
lowest card in a suit. Exactly which cards should be tried is deter
mined by the SelectT1J' procedure (part of the InitSearch procedure 
which initiates the search). 

The heuristic evaluation is calculated by distributing the cards and 
giving a bonus (equal to HeurisFac) to the card selected by the heu
ristic selection functions. The search evaluation distributes the cards 
and analyzes the result of playing each card by using the Ana~yze 
procedure. The number of won tricks (multiplied by SearchFac) is 
then added to the heuristic evaluation. Winning the contract gives an 
extra bonus (equal to two won tricks) to the declarer. The number 
of different distributions is determined by DealNo. Finally, the card 
with the highest evaluation is chosen. 

The last procedure in each play is MakeCard. This procedure plays 
the chosen card, displays it on the screen and updates the global 
variables (ReI, RDist, RData etc.). Below is the source code for 
MakeCard. 

procedure MakeCard (BestChoice: CardNoType); 
! Play the Card in the real situation: and update the Rel records 

var 
PlayHand : HandType; 
Card : CardType; 

begin 
CheckKBD; 
Sim := Rel; 
SDist := RDist; 
SData := RData; 
PlayHand := Sim. PlayingHand; 
Card := SDist[PlayHand,BestChoicel; 
with Sim,Card,Info[PlayHandl do 

BRIDGE PROGRAM DESIGN 

! PlayingHand ) 
! Played Card ) 

! Check for user abort ) 
! Copy the records which contain the real ) 

! situation into the simulation records ) 

! Card is the best choice ) 

113 



114 

begin 
if minl[suitl ) 0 then I Card played, update info 

MinL[Suitl := MinL[Suitl -1; 
if (Round AND 3 () D) AND (Suit () LeadSuit) then 

MinULeadSuitl := -1; I the current hand is out of cards in the lead suit ) 
CheckKBD; I Check for user abort ) 
PIa yCard (PIa yHand, BestChoice) ; I Play the Card ) 
ReI := Sim; Update the "REAL" records) 
RDist : = SDist; 
RData := SData; 
if Round = 1 then if first round then Setup screen ) 

PrintPlayScreen; 
PrintSuit(PlayHand, Card.suit); 
PrintCard(PlayHand, Card); 
if (Round AND 3) = 0 then 
begin 

PrintrlonTricks; 
ClearTblMsg; 
ClearTable; 

end; 
end; 

end; I MakeCard 

I Print the updated hand ) 
I Print the Card on the table ) 

I The trick is done ) 

The main procedure in the PLAY module, PlayCards, calls FindCard 
and MakeCard for each of the thirteen card tricks or until the player 
cancels the game. 

Turbo GameWorks Owner's Handbook 



APPENDICES 

115 



116 



Used by permission of the 
Cleveland Public Library, 
John G. White Collection of 
Folklore, Orientalia, and 
Chess. 

Appendix A 
THE HISTORY OF COMPUTER CHESS 

A little historical background will help you understand the fascinating 
subject of computer chess. 

Figure A-1. . The Turk 

The first and still the most famous chess machine was called The 
Turk. It was built about 1770 by Baron Von Kepelen. During the 18th 
century, it was exhibited at all the courts of Europe. Once it beat 
Napoleon, who was a much better general than he was a chess player. 

The Turk chess machine consisted of a large chest and a life- sized 
mannequin of a Turk. The Turk moved the pieces with its left hand, 
and played excellent chess. The reason it played so well was because 
of a very sophisticated system of drawers and doors that could be 
opened to show pulleys and cables, yet allowed a small man (a chess 
expert) to hide inside. Although many skeptics doubted that such a 
machine could play chess, the Turk and other machines like it con-

THE HISTORY OF COMPUTER CHESS 117 



Used by permission of the 
Cleveland Public Library, 
John G. White Collection of 
Folklore, Orientalia, and 
Chess. 

118 

tinued to amaze people up to the end of the 19th century. The Turk 
was destroyed in a fire in 1854, but by reading a number of articles 
written about it one can reconstruct the way it worked. Although the 
machine was only a trick, the fact that it was created shows that people 
have dreamed about machines playing chess for centuries. 

The first real chess machine was built in 1890 by a Spanish scientist, 
Leonardo Torres Y Quevedo. This machine could achieve mate with 
king and rook against king. Since this is a relatively simple way to 
win, it was possible to devise explicit rules and build them into a 
machine. 

Figure A-2. The Torres Machine 

Torres Y Quevedo built the machine to demonstrate his theories 
about automation. The machine was a very complex system of wires 
and switches (this was long before the transistor), and was one of 
the most sophisticated machines built at that time. It is probably still 
one of the most sophisticated computers ever built with wires and 
switches. It is still in good working order and can be seen in the 
museum at the Polytechnic in Madrid. 

In 1949, Claude Shannon from Bell Labs published a paper entitled 
Programming a Computer for Playing Chess. In this paper he de-

Turbo GameWorks Owner's Handbook 



Computer chess through 
the ages 
• 1770-The Turk 
• 1890-Torres Machine 
• 1951-Alan Turing's 

chess algorithms 
• 1956-Los Alamos 

program 
• 1958-Alex Bernstein 
• 1966-uS/USSR match 
• 1967-Machack-a real 

tournament 
victory 

• 1970-First computer 
chess tournament 
atACM 

• 1978-Sargon 
• 1985-Turbo Chess 

scribed how to write a program that could play chess. This was in 
the very early days when computers were still quite primitive, and 
he wrote the paper mostly to convince people that it was possible to 
program computers to perform tasks normally considered to require 
"intelligence." What is most extraordinary about the article is that 
even today, most chess programs are based on the algorithms pre
sented in this first paper on computer chess. 

The first actual chess program was probably written by Alan Turing 
in 1951. His algorithms were too complicated to be programmed on 
the computers available at that time, so he had to do all the calcula
tions by hand. 

The first chess program to run on a computer was probably the Los 
Alamos Program written in 1956 (some authors believe that the So
viets won this race with a slightly earlier program, but this is not very 
well documented). The computers were not very large in those days, 
so the programmers had to restrict the game and play it on a 6 x 6 
board, and omit the bishops. The program ran on a MANIAC com
puter with a speed of 11,000 instructions per second. (Today, an IBM 
PC performs about 500,000 instructions per second.) This program 
also became the first program to beat a human player. 

The first full chess program was probably the one written by Alex 
Bernstein in 1958. During the next few years, many programs ap
peared, and computers became faster and faster chess players. In 
1966, a match was arranged between a u.s. program and a Soviet 
program. The Soviet program smashed the opponent; the Russians 
have always been good at chess. The following year a program called 
MacHack by Richard Greenblatt became the first to beat a human 
(1510 ELO points) in a real tournament game. In 1970, the first com
puter chess tournament between four programs was held at the ACM 
conference. The winner was Chess 3.0 by David Slate and Larry Atkins. 
The ACM tournament has been held annually ever since, and is today 
the most important computer chess tournament for large computers. 

The 60's and 70's were the days of computer breakdowns, ridiculous 
and illegal moves, and extreme optimism among programmers. In 
1968, four computer experts made a bet of nearly $3000 against David 
Levy, an international chess master, that within ten years he would 
be unable to beat the best chess program in a match. Levy won his 
bet in 1978 against Chess 4.7, a successor to Chess 3.0, but at the same 
event he also became the first International Master to be defeated by 
a program. If you want to know more about the earliest days of 
computer chess, you can read Chess and Computers by David Levy, 
Computer Science Press, 1976. 

The best program written during the 70's was Chess 4.N. The program 
is still among the very best, but is now called Nuchess. Most of the 

THE HISTORY OF COMPUTER CHESS 119 



In October of 1985, the 
Cray Blitz program, run
ning on a Cray X-MP/48 su
percomputer, was defeated 
at the North American 
computer chess champion
ships by a computer chess 
machine called HiTech. 
HiTech was developed by a 
group (led by Hans Ber
liner) from the Computer 
Science department at 
Carnegie-Mellon University. 

The machine itself is a Sun 
minicomputer with custom
ized chips. It uses a pro
gram called Oracle to con
trol the search strategy; 
once the strategy is deter
mined, control passes to 
Searcher, a unit with 64 
microprocessors (one for 
every square on the chess
board). When a piece is 
placed on a square, the ap
propriate chip begins eval
uating probable outcomes. 

120 

best programs today-including the one in this book- are based 
on the ideas from Nuchess. On large computers, the increase in 
playing strength until now has mainly been caused by increased com
puter power rather than better programs. 

In 1980, Ken Thompson from Bell Labs built his customized Belle 
system, which has since won many chess championships. (Thompson 
developed the UNIX operating system, and he therefore has rather a 
free hand at Bell Labs.) Belle is a 130 pound box containing a com
puter and custom-built chess hardware. Because of the specialized 
hardware, it can analyze up to 100,000 chess positions per second. 
Belle became the first chess computer considered to be a threat to 
national security. When Thompson wanted to take it to a chess ex
hibition in Moscow, it was impounded at the airport, since U.S. au
thorities believed it could be of vital importance to the Soviet military. 

The best program today is probably either Belle or Cray Blitz by 
Robert Hyatt. Cray Blitz runs on a special experimental, superfast 16-
processor Cray computer. The playing strength of the best programs 
is about 2200 ELO. (Chess 4..5 and Belle are described in Chess Skill 
in Man and Machine, edited by Peter W.Frey, second edition, Spring
er-Verlag, 1983.) Not everyone has access to a Cray or free reign at 
Bell Labs, though. In the late 70's, attention turned to developing 
good chess programs for personal computers. 

In 1978, the first dedicated commercial chess microcomputer, Chess 
Challenger 10, was introduced in the United States. Although it did 
not play very well, it was a success, and it spawned an industry. A 
couple of companies in Hong Kong started to produce chess com
puters and today most dedicated chess computers are made in Hong 
Kong (although the best programs are still made in California!). The 
playing strength of microcomputer programs has increased 
dramatically. 

The increase in microcomputer playing strength has been due pri
marily to better programs. It is a very good example of how much 
you can get out of a microcomputer if you program it correctly. Most 
of the commercial chess computers still use the 6502 chip (also used 
in the Apple II, Commodore and Atari computers). The newer 16-
and 32-bit chips are faster for normal programs, but not necessarily 
for chess programs. For chess programs, a 4 MHz 6502 is as fast as 
an 8 MHz 68000! In the beginning, the microcomputer programs 
analyzed about 40 positions per second; today, the best commercial 
chess programs analyze up to 800 positions per second (running on 

Turbo GameWorks Owner's Handbook 



ACM-the A%ociation for 
Computing Machinery-is 
located at 11 West 42nd St., 
New York, New York 10036. 
Phone: (212)869-7440. 

a 4 MHz 6'502). In comparison, Crqv Blitz running on a Cray-l com
puter analyzes about 1 '5,000 positions per second, which is only 20 
times as many. The CHESS.PAS program analyzes about 50 positions 
per second on a '5 MHz IBM Pc. 

If you want to see some of the programs and meet the people behind 
them, you can visit one of the computer chess tournaments held every 
year. For large computers there is the ACM tournament held at the 
annual ACM conference in the United States. For microcomputers 
there is the annual microcomputer World Championship, usually held 
in Europe. These tournaments are where the old-timers meet, ex
change ideas, drink a few beers and have a good time-while the 
computers do all the hard brain work. In some ways, computer chess 
is much more fun than real chess. You can talk, discuss the game or 
even ask someone else to play while you go away for an hour. Most 
professional chess programmers are awful chess players anyway. In 
fact most of them cannot even beat their own programs! 

THE HISTORY OF COMPUTER CHESS 121 



Notes: 

122 
Turbo GameWorks Owner's s Handbook 



Introduction 

The Chess 
Board and its 
Arrangement 

The Pieces and 
Their 
Arrangement 

CHESS RULES 

Appendix B 
CHESS RULES 

Following are the official rules of chess, which were provided by 
George Koltanowski. 

The game of chess is a board game played by two opponents who 
maneuver their chess pieces in an attempt to checkmate the opposing 
king. 

1. The chess board is composed of 64 equal squares alternately light 
(the "white" squares) and dark (the "black" squares). 

2. The chess board is placed between the two players in a way so 
that the square at the right -hand corner to each player is white. 

3. The eight rows of squares, running from the edge of the chess 
board nearest one of the players to the edge of the board nearest 
the other player, are called files (vertical columns). 

4. The eight rows of squares, running from one edge of the chess 
board to the other at right angles to the files, are called ranks 
(horizontal columns). 

5. The straight rows of squares of one color, touching each other at 
the corners, are called diagonals. 

At the start of play, one player uses the 16 light-colored pieces 
("white" pieces), and the other player uses the 16 dark-colored pieces 
("black" pieces). 

These pieces are as follows: 

NAMES WH1TE BLACK 

A KING 0 * A QUEEN Q * TWO ROOKS Il I 
TWO BISHOPS ~ i 
TWO KNIGHTS t1 • -
EIGHT PAWNS it t -

123 



The Conduct of 
the Game 

The General 
Definition of 
the Move 

The Individual 
Moves of the 
Pieces 

124 

The initial position of the pieces upon the chess board is as shown 
in the following diagram: 

1. 

2. 

1. 

2. 

BLACK 

WHITE 

The two players must alternate in making one move at a time. The 
player with the white pieces begins the game. 

It is said that a player "has the move" when it is his or her turn 
to play. 

Except for castling, a move is the transferring of a piece from one 
square to another square, vacant or occupied only by an enemy 
piece. (An "enemy" piece is a piece of the opposite color.) 

No piece, except the rook in castling and the knight can move 
over a square occupied by another piece. 

3. A piece moved to a square occupied by an enemy piece captures 
this piece, which must be immediately removed from the chess 
board by the player who makes the capture. 

The King 

Except for castling, the king moves from his square to one of the 
contiguous squares not under attack by an enemy piece. 

A square is "under attack by an enemy piece" when that piece can 
move to the square on its next move. 

Castling is a transfer of the king, completed by the transfer of the 
rook, counting as a single move (of the king) and executed strictly 
as follows: 

The king moves from his initial square two squares to one side, then 
the rook from that side passes over the king to occupy the square 
the king has just passed over. 

Castling is definitely not allowed on either side if the king or rook 
has already moved. 

Castling is momentarily prevented: 

Turbo GameWorks Owner's Handbook 



Completion of 
the Move 

CHESS RULES 

a) if the initial square of the king or the square which the king must 
pass over or that which it will occupy is attacked by an enemy 
piece, or 

b) if there are any pieces between the king and the rook toward 
which the king must move. 

The Queen 

The queen moves along the length of the rank or file or diagonal 
upon which she stands. 

The Rook 

The rook moves along the length of the rank or file upon which it 
stands. 

The Bishop 

The bishop moves along the length of the diagonal upon which it 
stands. 

The Knight 

The knight moves either two squares on the rank and one on the 
file, or two on the file and one on the rank (an "L" shape). 

The Pawn 

The pawn moves as described below: 

a) From its initial square, it advances one or two vacant squares for
ward on its file. Thereafter, it moves only one vacant square on 
its file at a time. To capture, it advances to a square contiguous to 
its own upon the diagonal. 

b) A pawn attacking a square passed over by an enemy pawn, which 
has been advanced two squares in one move from its initial 
square, can capture but only in the move immediately following 
this enemy pawn, as if that pawn had only moved forward one 
square. This capture is called "taking in passing" ("prise en pas
sant''). 

c) Any pawn that reaches the last (eighth) rank must be changed 
immediately, as a part of the same move, into a queen, rook, 
bishop or knight of the same color, at the choice of the player and 
without reference to the other pieces remaining upon the chess 
board. This changing of a pawn is called "promotion." 

The completion of a move is achieved: 

a) in the transfer of a piece to a vacant square, when the player 
releases the piece. 

125 



The Touched 
Piece 

b) in a capture, when the captured piece has been removed from 
the chess board and the player, having placed it on its new square, 
has released it. 

c) in castling, when the player has released the rook upon the square 
passed over by the king; when the player has released the king, 
the move is not yet completed, but the player no longer has the 
right to make any move other than castling. 

d) in the promotion of a pawn, when the pawn has been removed 
from the chess board and the player has released the new piece, 
placed upon the square of promotion. If the player has released 
the pawn upon its arrival at the square of promotion, the move is 
not yet completed, but the player no longer has the right to move 
a pawn to another square. 

The player having the move can adjust one or several pieces after 
warning his or her oponent. 

Otherwise, if a player having the move touches one or several pieces, 
he or she must make a move using the first piece touched which can 
be moved or captured. 

Illegal Positions 1. If a move is made illegally and if one of the players states this fact 
before touching a piece, the illegality will be corrected applying 
the rules under the Touched Pieces section above. If the illegality 
is not stated, the game continues without correction. 

Check 

126 

2. If, in the course of a game, one or several pieces have been acci
dentally jarred and incorrectly replaced, or if, after an adjourn
ment, the position is incorrectly set-up and if one of the players 
states this fact before touching a piece, the irregularity can be 
corrected. If the irregularity is not caught before a player touches 
a piece, the game continues without correction. 

3. If during the game it is claimed that the initial position of the chess 
board was incorrect, the game will be annulled. 

1. The king is in check when his square is attacked by an enemy 
piece; it is said that this piece gives check to the king. 

2. Check must be parried by the move immediately following. If 
check cannot be parried, it is said to be "mate." 

3. A piece interposing to prevent check to the king of its own color 
can itself give check to the enemy king. 

Turbo Game Works Owner's Handbook 



The Won Game 

The Drawn 
Game 

Systems of 
Chess Notation 

The Algebraic 
System 

CHESS RULES 

1. The game is won by the player who gives mate to the enemy king. 

2. The game will be considered as won by the player whose oppo
nent resigns from the game. 

The game is a draw: 

1. When the king of the player who has the move is not in check but 
the player cannot make any move. It is said the king is "stale
mated." 

2. By agreement between the two players. 

3. Upon demand by one of the players when the same position ap
pears three times with the same player having the move each of 
the three times. The position is considered the same if the pieces 
of the same denomination and of the same color occupy the same 
squares. 

4. When a player who has the move demonstrates that at least fifty 
moves have been played by himself and opponent without the 
capture of any piece or the moving of any pawn. 

The two most widespread systems of notation are the algebraic system 
and the descriptive system. 

BLACK 
ABC 0 E F G H 

ABC 0 E F G H 
WHITE 

The pieces, except the pawns, are designated by their initials. The 
pawns are not specifically indicated. 

(In American usage knight i.'1 indicated hy Kt or N, since k indicates 
the king.) 

The eight files (from the first rank of the white pieces) are designated 
by the letters a to h. 

The eight ranks are numbered from 1 to 8 in counting from the first 
rank of the white pieces. 

127 



The Descriptive 
System 

128 

(In the original position, the white pieces are found upon the first 
and second rank, and the black pieces on the seventh and eighth 
ranks.) 

Each square is thus defined by the combination of a letter and a 
numeral. 

To the initial of each piece (except a pawn) one adds the square of 
departure and the square of arrival. In abbreviated notation, the 
square of departure is omitted. 

Thus Bc1-f4 means the bishop upon the square ci is moved to the 
square f4. In abridged notation: Bf4. 

In another example, e7 - e5 means the pawn upon the square e7 is 
moved to the square e5. In abridged notation: e5. 

When two pieces of the same denomination can be moved to the 
same square, the abridged notation is expanded in the following 
manner: If, for example, two knights are at gi and d2, the move 
Ktgi - f3 is written in abridged as Ktg - f3. If the knights were at gi 
and g5, the move Ktgi - f3 would be abridged as Kti - f3. 

0-0 
0-0-0 
: or x 
+ 
+ + 

ABBREVIATIONS 

Castling with the rook on hI or h8 (short castling) 
Castling with the rook on al or a8 (long castling) 

Capturing 

2 

Giving check 
Giving checkmate 
Well played 
Poorly played 

KB KN KR 

Q K KB KN KR 
WHITE 

6 

Turbo GameWorks Owner's Handbook 



CHESS RULES 

A'i in the algebraic system, the pieces, except the pawns, are desig
nated by their initials. The pawns are not specially indicated. 

(In American usage and notation the pawns are also indicated hy 
their initial; and the knight is indicated by Kt or N, since K is reserved 
to designate the king. ) 

One distinguishes the rook, knight and bishop of the king and the 
queen by the addition of the letters K and Q (KR or QR, etc.). 

The eight files (from left to right for the white pieces and right to 
left for the black pieces) are distinguished thus: 

File of the queen's rook (QR) 

File of the queen's knight (Qkt or QN) 

File of the queen's bishop (QB) 

File of the queen (Q) 

File of the king (K) 

File of the king's bishop (KB) 

File of the king's knight (KKt or KN) 

File of the king's rook (KR) 

The eight ranks are numbered from 1 to 8, in counting from the first 
rank, for the white and black pieces. 

The initial of the piece moved and the square to which it moves are 
indicated. 

Example: Q-KB4 means the queen is moved to the fourth square in 
the file of the king's bishop. 

When two pieces of the same denomination can move to the same 
square, the square of departure and the square of arrival are both 
indicated. Thus R(KKt4)-KKt2 means the one of the two rooks which 
is on the fourth square of the king's knight's file is moved to the 
second square of the same file. 

(In practice, the indication in ahridged form of R(Kt) or R( 4) is usually 
suffiCient, if the two rooks are not hoth on the Kt file or hath on the 
fourth rank.) 

0-0 
0-0-0 
: or x 

ch. or + 

ABBREVIATIONS 

Castling with the king's rook (short castling) 
Castling with the queen's rook (long castling) 
Capturing 
Giving check 
Well played 
Poorly played 

129 



Notes: 

130 Turbo GameWorks Owner's Handbook 



Appendix C 
BASIC BRIDGE RULES AND STRATEGY 

Following are the official rules of bridge, provided by Kit Woolsey. 

Bridge is a card game for four players, two pairs of partners. The 
partners sit across the table from one another, with an opponent on 
each side. For convenience, we will refer to the players as "North," 
"East," "South," and "West" to correspond with their geographical 
positions around the table. Thus North and South are partners, East 
and West are partners, and around the table clockwise are North, 
East, South, and West. 

Each player is dealt 13 cards. The object of the game is for one 
partnership to contract to win a certain number of tricks, while the 
opposing pair attempts to prevent this. A trick consists of four cards, 
one played by each player. Since each player has 13 cards, there are 
13 tricks available. 

The play to a trick is as follows: one player plays any card, and the 
other three players each playa card in turn, going clockwise around 
the table. A player must "follow suit," that is, playa card of the same 
suit as the first card of the trick if slhe is able to do so-if not, slhe 
may play any card. The winner of the trick is the player who plays 
the highest card of the suit led (ace is high, deuce is low), unless 
there is a trump suit (a special suit determined by the bidding) in 
which case the highest trump (if any) played wins the trick. The 
person who wins a trick plays first to the next trick, and play continues 
until all 13 tricks have been played. 

The determination of the trump suit and which pair contracts for how 
many tricks is done by an auction-the highest bidder gets the con
tract. The rank order of the suits is clubs (lowest), then diamonds, 
hearts, spades and notrump (highest). Notrump means what it sounds 
like-no trump suit. The smallest number of tricks one can contract 
for is seven. Six is added to the bid, and that is the number of tricks 
which the bidder is contracting to win. For example, "two spades" 
contracts to take eight tricks with spades as the trump suit; "three 
notrump" contracts to take nine tricks with no trump suit. 

If two bids contract for the same number of tricks, the one with the 
higher ranking suit is the higher bid (e.g., three hearts is higher than 
three diamonds), but a bid for more tricks always outranks a bid for 
fewer tricks (e.g., four clubs outranks three spades). You must con
tract for at least seven tricks if you bid, so the lowest possible bid is 

BASIC BRIDGE RULES AND STRATEGY 131 



132 

one club, and since there are only thirteen tricks available, the highest 
possible bid is seven notrump. If you bid, you must always make a 
higher ranking bid than the previous bid. 

The auction proceeds as follows: starting with the dealer, and going 
clockwise, each player has the option of either passing or making a 
bid higher than the last bid. In addition, if an opponent has made 
the last bid you have the option of doubling, and if an opponent has 
doubled your bid you have the option of redoubling. These doubles 
and redoubles increase both the rewards for making the contract and 
the penalties for defeating the contract. The bidding continues until 
there are three consecutive passes, unless the first three bids are 
passes-in which case the fourth player has a chance to bid. If he 
also passes, the hand is redealt. You are permitted to make a legiti
mate bid even if you have passed earlier in the auction. 

When the bidding has concluded, the pair which made the highest 
bid is the declaring side, and the player of that pair who first named 
the suit of the final contract is the declarer. For example, if the auction 
goes: 

North 
One spade 
Three hearts 

East 
Pass 
Pass 

South 
Two hearts 
Pass 

West 
Pass 
Pass 

then South is the declarer at three hearts, even though North made 
the final bid-South bid hearts first. To make the contract, South 
must take at least nine tricks with hearts as the trump suit. 

The play proceeds as follows: the player to the left of the declarer 
leads to the first trick. After this lead, declarer's partner (called the 
dummy) puts his or her cards face up on the table. The dummy has 
no further say in the proceedings-the declarer plays both dummy's 
cards and his or her own. Play to the first trick continues with declarer 
playing a card from dummy, then the player to declarer's right playing 
to the trick, and finally declarer playing the trick. The winner of the 
trick leads to the next trick, and play continues until all 13 tricks have 
been completed. If declarer has won at least the number of tricks 
contracted for, s/he has made the contract; if not, s/he has been de
feated. 

If the declaring side fulfills their contract, they score pOints, deter
mined by the number of tricks taken, the contract, and the trump 
suit. Only tricks taken over the sixth trick are counted. The lower 
suits (clubs and diamonds) are called minor suits, and the higher 
suits (hearts and spades) are called major suits. Each trick (over six) 
in a minor suit is worth 20 points, and each trick in a major suit is 
worth 30 points. In notrump, the first trick is worth 40 pOints, and 
all other tricks are worth 30 points. 

Turbo GameWorks Owner's Handbook 



There are two kinds of scores. Tricks that have been contracted for 
are scored "below the line"; extra tricks and other bonuses are all 
"above the line." For example, suppose the North-South pair bid two 
notrump and win ten tricks. Their score is 70 points below the line 
(40 for the first trick above six, 30 for the next) and 60 points above 
the line, since they only contracted for eight tricks. 

If a pair scores 100 or more points below the line, they have won a 
game. The first pair to win two games wins the rubber (two out of 
three games), and scores a bonus of 700 points if their opponents 
have not won a game that rubber, 500 points if their opponents have 
won a game. This is a large bonus, so it is important to contract for 
enough tricks to win a game (called bidding a game) if you think 
you can take them. You need 11 tricks for game in'a minor suit, 10 
tricks for game in a major suit and 9 tricks for game in notrump. If 
you contract for fewer tricks (called apart-score) and make the con
tract, your score below the line carries over to the next deal, but once 
either pair wins a game both pairs must start from scratch for the 100 
points. 

If the contract is defeated, the defenders score points. If the declaring 
side has not scored a game in the rubber (they are non-vulnerable) 
then the penalty is 50 points for each trick the contract failed by, 
while if they have scored a game (are vulnerable) the penalty is 100 
points for each trick. 

There is an additional bonus for contracting and making 12 tricks (a 
small slam) or all 13 tricks (a grand slam). The small slam bonus is 
500 points if non-vulnerable, 750 points if vulnerable. The grand slam 
bonus is 1000 points if non-vulnerable, 1500 points if vulnerable. 

Doubles and redoubles increase the scores and penalties. If the con
tract is made, each trick that is contracted for scores double, while 
each extra trick scores 100 points if non-vulnerable, and 200 points 
if vulnerable. In addition, there is a 50 point bonus for making a 
doubled or redoubled contract. If the contract is defeated, the defen
ders score 100 points for defeating the contract one trick, and 200 
points for each subsequent undertrick if declarer is non-vulnerable; 
200 points for the first undertrick and 300 points for each subsequent 
undertrick if vulnerable. Redoubles double all the doubled scores, 
except the 50 point bonus for making the contract remains the same. 

The primary goal in the bidding is to choose the final contract such 
that the partnership's best suit is trumps, and to contract for game if 
the partnership can win enough tricks. Since high cards win tricks, 
evaluation of the strength of a hand depends primarily upon the high 
card content. The evaluation technique used by almost all players 
today is as follows: 

BASIC BRIDGE RULES AND STRATEGY 133 



134 

ace 
king 
queen 
jack 

4 
3 
2 
1 

Notice that there are a total of 40 high card points, so an average 
hand contains 10 high card points. You usually want a hand to be at 
least one king above average, 13 or more pOints, to make the first 
bid, although this requirement can be relaxed when you have a long 
suit (5 or 6 cards), since long suits produce extra tricks in the play. 
Experience has shown that a partnership's combined total of 26 
points is usually sufficient to make a game in notrump (9 tricks) or 
in a major suit (10 tricks), but a minor suit game (11 tricks) usually 
needs 29 points. Consequently, if your partner opens the bidding and 
you have 13 or more points you should be sure to arrive at some 
game contract. A trump suit will be worth an extra trick or two in 
the play if you and your partner have at least eight trumps between 
the two hands. If no satisfactory trump suit can be found, then you 
should play in notrump. 

When declaring a contract, it is important to plan your line of play 
when the dummy's hand is placed on the table. Do not playa card 
from dummy until you know what you are going to do for the rest 
of the hand. Doing so is the single most common mistake in bridge. 

In a trump contract, determine the number of tricks you are likely 
to lose in each suit, and if this is more than you can afford to lose, 
attempt to avoid these losers, perhaps by trumping them in the 
dummy or discarding them on some of dummy's winners. It will 
usually be correct strategy to first lead trumps until the opponents 
have no more trumps-you don't want them trumping your aces and 
kings. Remember to take advantage of the clockwise order of play. 
For example, if you hold the king of a suit in your hand and your 
right hand opponent holds the ace, you will not win a trick with the 
king if you lead it, but if you lead the suit from dummy you can now 
play small if s/he plays the ace and play the king if s/he doesn't. 

If you are declaring a notrump contract, you should count the number 
of tricks you expect to win in each suit. If the total is not enough to 
make your contract, you must establish some more winners. This is 
usually done by playing the suit in which your hand and the dummy 
have the greatest combined length. Since there is no trump suit, a 
lowly deuce will win the trick if nobody has any more of the suit, so 
attack your long suits. Knock out your opponent's aces and kings, and 
your smaller cards will score tricks. Remember that the opponents 
will be trying to do the same thing. Notrump contracts are often a 
race to see which side can set up their long suit first. 

Turbo GameWorks Owner's Handbook 



Appendix D 
SUGGESTED READING 

Bridge 

Ewen, Robert B. Charles H. Goren Presents the Precision S)stem of 
Contract Bridge. Doubleday, 1971. 

Goren, Charles Henry. Goren's Bridge Complete. Doubleday, 1971. 

Goren, Charles Henry. New Contract Bridge in a Nut:-,'hell. Doubleday, 
1972. 

Goren, Charles Henry. Playas You Learn Bridge. Doubleday, 1979. 

Goren, Charles Henry and Olson, Jack. Bridge is my Game: Lessons 
of a Lifetime. Doubleday, 1965. 

Lawrence, Mike. How to Read Your Opponent's Card: The Bridge 
Expert's Way to Locate Missing High Cards. Prentice-Hall, 1973. 

Morehead, Albert Hodges. Morehead on Bidding. (Morehead's clas
sic book revised and modernized by Richard L. Frey.) Simon and 
Schuster, 1974. 

Chess 

Frey, Peter W., ed. Chess Skill in Man and Machine, 2nd edition. 
Springer-Verlag, 1983. 

Harkness, Kenneth. OffiCial Chess Rulebook. McKay, 1970. 

Levy, David. Chess and Computers. Computer Science Press, 1976. 

Reinfeld, Fred and Irving Chernev. Chess Strategy and Tactics. David 
McKay Company, Inc., 1946. 

Sunnucks, Anne, ed. The Encyclopedia of Chess. St. Martin's Press, 
1976. 

Go-Moku 

Lasker. Edward. Go and Go-Moku, The Oriental Board Games. Dover 
Publications, 1960. 

SUGGESTED READING 135 



136 



GLOSSARY 

Appendix E 
GLOSSARY 

Above the line: A bridge term referring to the scoring of extra 
tricks and other bonuses. 

Algebraic notation: Chess notation using ranks numbered from 1 
to 8 and files labeled from a to h. A particular square on the board 
can then be indicated as, e.g., D6. This is different from common 
chess notation; knight to king's bishop 3 would be noted algebraically 
asNKB3. 

Algorithm: Method of solving a particular problem; in program
ming, the plan for performing a calculation that the programming 
code itself will perform during program execution. 

Alpha-Beta search: A search algorithm designed to arrive at the 
same conclusion as the Minimax search, but without having to eval
uate all branches of the decision tree. See Minimax search. 

Alpha-Beta window: Rather than using infinity (or, more practically, 
negative and positive MaxInt) for alpha and beta, the Alpha-Beta win
dow attempts to cut off less productive branches of a decision tree 
from the search by narrowing the limits of the values applied to alpha 
and beta. 

Array: A list of like elements indexed by a value or group of values. 
Arrays have one, two or more dimensions. 

Attack value: In Turbo Chess, a value signifying the ability of a piece 
to attack another, used to calculate positional superiority of one side 
to the other. 

Below the line: A bridge term referring to the scoring of tricks that 
have been contracted for. 

Best line: In Turbo Chess, the series of moves the program expects 
the game to follow. 

Bid: In bridge, an offer to take a specific number of tricks of a certain 
number or suit. 

Bidding a game: A bridge term meaning to contract for enough 
tricks to win a game. 

Blackwood: In bridge, a method of asking your partner how many 
aces or kings s/he holds. Used for slam bidding only. See Slam. 

137 



138 

Blitz chess: Chess played with only seconds allowed to make a move, 
and no time to create deep plans and strategies (from WWII Blitz
krieg, lightning war). 

Brute Force: Any process conducted on a computer with no regard 
for saving time, effort or minimizing steps; exhaustive and thorough, 
but not elegant. 

Capture search: A search conducted in Turbo Chess to determine 
if there are any pieces to capture. 

Castling: In chess, a move in which the king and rook approximate 
changing places in a single move. Used to place the king in a more 
protected position. 

Contract: In bridge, the final bid. 

Cut off: In a tree search, a cut off prevents the search from traveling 
down less productive branches. 

Data structure: The organization of constants, types, and variables 
to best represent the data with which the programmer is working. 

Declarer: In bridge, the first of the pair winning the contract to bid 
the contract suit. 

Distribution: In bridge, the pattern or shape formed by the number 
of cards held-for example, 5-5-1-2 or 2-6-3-2. 

Doubleton: In bridge, when only two cards of a specific suit are 
held. 

Dummy: In bridge, partner of the declarer. 

ELO points: Scale used to measure the relative playing strength of 
chess players. A factor of two in speed translates to about 60 ELO 
points, while a factor of ten in speed equals about 200 ELO points. A 
difference of 100 ELO points between players means the better player 
should win 2/3 of the time. 

Endgame: In chess, the last part of the game, with few pieces re
maining on the board. 

Endless loop: See loop, endless. 

En passant capture: "In passing." In chess, a move in which one 
pawn passes an opposing pawn and captures it by moving to the 
square behind. 

En prise: "Taken." 

Evaluator: The procedure used by a game program to determine 
which of several potential moves is the best. 

Turbo GameWorks Owner's Handbook 



GLOSSARY 

Evaluation spice: Code added to the evaluation algorithm to handle 
special situations. 

Fifty move rule: In chess, a draw game resulting from the player 
who has the move demonstrating that at least 50 moves have been 
played by him/herself and the opponent without the capture of any 
piece or the moving of any pawn. 

Files: The vertical columns of a chess or checkerboard. 

Follow suit: In bridge, playing a card of the same suit as the first 
card of the trick. 

Heuristic: Problem-solving technique that uses rules of strategy; 
used by Turbo GameWorks to guide the tree search. 

Hint: What a game program may give you when it applies its com
puterized evaluation capability to your situation rather than its own. 

Horizon effect: An effect caused when a game evaluation procedure 
selects a supposedly sound move at the limit of its "lookahead" (say 
four plies), but on the move following that, the opponent captures 
the piece. (In this case, the four-ply "horizon" causes a less than ideal 
evaluation). 

Incremental updating: Intelligently updating only the part of a data 
structure representation that a move affects. 

Initialize: Provide the initial values for variables at the beginning of 
a procedure or program. 

Killer moves: Moves that the evaluation procedure has discovered 
an opponent can use against the program. The next time the program 
evaluates moves, the killer moves are checked first to make sure that 
the program has them blocked. Eliminates some search time. 

Loop, endless: See endless loop. 

Major suit: In bridge, spades or hearts. 

Material: The number of your pieces still on the board versus those 
the opponent has captured. 

Midgame: In chess, the longest period of play (between the opening 
and the endgame). 

Minimax search: Search algorithm that finds the best move, assum
ing that the opponent will play his or her best possible move. 

Minor suits: In bridge, clubs and diamonds. 

Move generator: A procedure that produces all the legitimate moves 
possible for all the (program's) pieces on the board. 

139 



140 

Nesting: Placing one loop or procedure inside another. For example, 
in: 

for i : = 1 to 100 do 
begin 

lIrite(i) ; 
fo r n : = 1 to 5 do 

write( 'Hello'); 
end; 

The n loop is nested within the i loop, and executes five times for 
each increment of i. 

Node: In a tree search, the point where multiple possible moves 
diverge. 

Non-vulnerable: In bridge, the side that has not yet scored a game 
in the current rubber. 

Normal move: As used by Turbo Chess, any move that is not a special 
move. See special move. 

Notrump: In bridge, no trump suit. 

Opening library: A list of opening chess moves. At the beginning 
of a chess game, the many possible moves with very minor differences 
in value can make searches lengthy. Turbo Chess solves this by using 
a list of pre-programmed openings and replies. 

Overtrick: In bridge, a trick that exceeds the contract. 

Part score: In bridge, contracting for fewer tricks than are required 
to win a game. 

Pawn structure: The arrangement of pawns on a chessboard as it 
relates to their ability to guard and capture. 

Ply: One half-move (the move of one person in a two-person game). 
A full move is when both players have had a turn. 

Positional play: A game strategy dependent on the placement of 
pieces on a playing board and the relative value of those pieces. 

Ranks: The horizontal rows of a chess or checkerboard. 

Rubber: In bridge, a series of hands that ends when either side 
scores two games. 

Ruff: In bridge, to playa trump on a side when you cannot follow 
suit. 

Search tree: In a two-person game, a "map" of the possible moves 
open to one player and the replies for each of those moves available 
to the other player. Each level of move is called a ply. 

Turbo GameWorks Owner's Handbook 



GLOSSARY 

Shannon B: An algorithm that restricts the number of moves 
searched at each node in order to conduct a deeper search. 

Side suit: In bridge, any suit except trump. 

Singleton: In bridge, when only one card of a specific suit is held. 

Slam: In bridge, a contract for twelve or thirteen tricks. 

Spaghetti code: A computer program so convoluted that trying to 
follow the flow of logic is like tracing one strand in a bowl of spa
ghetti. 

Stayman convention: A special bid in bridge (two clubs in response 
to one NT or three clubs in response to two NT) that shows nothing 
about the club suit, but asks the partner to show four-card suits in 
hearts or spades. 

Suit: In bridge, the thirteen cards that all have the same symbol 
(either clubs, diamonds, spades or hearts). 

Third repetition: In chess, a game drawn upon demand by one of 
the players when the same pOSition appears three times with the same 
player having the move each of the three times. The position is con
sidered the same if the pieces of the same denomination and of the 
same color occupy the same squares. 

Tolerance search: The smaller the difference in value between two 
good moves, the longer it takes a program to decide between them. 
To avoid this Situation, the program is satisfied if it finds one of the 
best moves, rather than the absolute best move. 

Top down programming: A program design practice of starting 
from the general and working towards the specific. 

Trick: In bridge, four cards played in a single round, one played by 
each player. 

Trump suit: In bridge, a special suit determined by the bidding that 
outranks all other suits for the duration of a hand. 

Void suit: In bridge, when no cards of a certain suit are held. 

Vulnerable: A bridge term referring to the side that has scored one 
game towards the current rubber. 

141 



142 



SUBJECT INDEX 

A 

Above the line score, in bridge, 133 
Algebraic system of chess 

notation, 10, 127-128 
Algorithms, 39 

Turbo Bridge 
Alpha-Beta, 96 
analysis, 94-95 
bidding, 90-93 
play, 93-96 

Turbo Chess 
Alpha-Beta, 52-55 

Turbo Go-Moku, 39 
Alpha-Beta algorithm 

in Turbo Bridge, 96 
in Turbo Chess, 52-55 

Alpha-Beta window, 55-57 

B 

Below the line score, in bridge, 133 
Best line, 12 
Bid classes, 91-93 
Bid menu, 23 
Bidding (see Bridge, bidding) 
Blackwood convention, 26, 107, 108 
Board arrangement in chess, 123-124 
Bridge (see also Turbo Bridge) 

above the line score, 133 
below the line score, 133 
bidding, 22-27, 131-132 

conventions, 25 
doubling, 23, 132, 133 
passing, 23 
quick reference, 24 
redoubling, 23, 132, 133 
strategy, 26-27, 133-134 
system, 24-26 

SUBJECT INDEX 

Blackwood convention, 26, 107, 
108 

declarer, 27, 132 
declaring side, 132 
distribution points, 24 
dummy, 27, 132, 134 
evaluation technique, 133-134 
grand slam, 133 
high card pOints, 24, 134 
major suits, 132 
minor suits, 132 
notrump, 24, 25, 26, 131 
part score, 133 
partners, 131 
playing, 21ff 
playing the cards, 27-28 
points, 24, 133 

distribution, 24 
high card points, 24 

quick reference 
bidding, 24 
playing, 28 

rubber, 133 
rules, 131ff 
small slam, 133 
Stayman convention, 26, 
strategy, 26, 27, 133-134 
tricks, 131 
trump suit, 131, 133, 134 
trumps, value of, 27 
Turbo Bridge program, (see 

Turbo Bridge) 
winning the game, 133 

BRIDGE.COM file, 21 
BRIDGE.PAS file, 96 
Brute force, 33, 59 

143 



c 

Captures, 11,63-64 
Castling, 64, 67, 124 
Check, 126 
Chess (see also Turbo Chess) 

board arrangement, 123 
captures, 11, 63-64 
castling, 11,63-64,67 
check, 126 
completion of moves in, 125-126 
computer, 9, 117ff 
drawn games, 12, 127 
en prise pieces, 51 
en passant captures, 11 
history, 9 
illegal positions in, 126 
International Computer Chess 

Association (lCCA), 87 
machines, 9 
notation, 

algebraic system, 10, 127-128 
short (descriptive), 11, 128-129 

pieces, 123-125 
playing, 10-13 
quick reference guide to moves, 

14-15 
rules 123ff 
touched pieces, 126 
Turbo Chess program (see 

Turbo Chess) 
winning the game, 127 

CHESS file, 10,13 
CHESS. COM file, 10 
CHESS.PAS file, 10 
Clocks in Turbo Chess, 17 
Color, in Turbo Chess, 18 
Commands, in Turbo Chess, 13-19 

quick reference guide, 14-15 
Computer chess, 9, 117ff 
Computer games, 

types, 31 
user interface in, 34 

144 

D 

Data structure, 32-33, 40-41 
Declarer, in bridge, 27, 132 
Descriptive (short) system of chess 

notation, 128-129 
Design concepts of computer 

games,31ff 
Distribution diskettes, 3 
Doubling, in bridge, 23, 132, 133 
Drawn games, chess, 12, 127 
Dummy, in bridge, 27, 132 

E 

Editor, Turbo Chess board, 18 
Eill points, in chess, 47 
En passant captures, in chess, 11 
En prise pieces, in chess, 51 
Error handling, Turbo Chess, 12 
Evaluation module, in chess, 82 
Evaluating moves, in chess, 37-38, 47 
Evaluation function in computer 

games,33,48,64-68 

F 

50-move rule, 12 
Full move in chess, 12, 68 
Full time level, in Turbo Chess, 13, 16 
Functions 

G 

Turbo Bridge 92ff 
Turbo Chess 71ff 
Turbo Go-Moku, 36 

GO-HELP.INC file, 40, 46 
Go-Moku, 7-8, 

commands,8 
object of game, 7 
open 3,36 
open 4,35 

Turbo GameWorks Owner's Handbook 



playing, 7-8 
strategy, 8 

GO-MOKlJ.COM file, 7 
GO-MOKU.HLP ASCII file, 46 
GO-MOKU.PAS file, 40 
Grand slam, bridge, 133 

H 

Half move, chess, 12 
Hash table, 69 
Help module, chess, 41 
Hints, Turbo Chess, 17 
History of computer chess, 117ff 
Horizon effect, in Turbo Chess, 60-61 

I 

Illegal moves in Turbo Chess, 12 
Incremental updating, 39, 69 
Information window in Turbo Bridge, 

22 
International Computer Chess 

Association (lCCA), 87 
Iterative search, in Turbo Chess, 55, 62 

K 

Killer moves, chess, 62-63 

L 

Levels of play, chess, 14-16 
Lookahead, in chess, 49 

M 

Machines, chess-playing, 9 
Major suits, in bridge, 132 
Material, in chess, 48 
Menus, bridge 

bid, 23-24 
option, 21-22 

SUBJECT INDEX 

Minimax search, 33, 50-52 
Minor suits, in bridge, 132 
Move generator, in Turbo Chess, 

61-62 
Moves, chess 

generating, 61-62 
illegal, 12 

N 

listing of, 13 
making, 10 
quick reference guide to, 14-15 
searching for, 49 
taking back, 17 

Negative Alpha-Beta window (see 
Tolerance Search) 

Nested loops, in chess, 39 
Notation in chess, 

algebraic system, 10, 127-128 
short (descriptive) system, 11, 128-

129 
Notrump, in bridge, 28,131 

o 

Opening library, in chess, 10, 12 
Open 3, in Go-Moku, 36 
Open 4, in Go-Moku, 35 
OPENING.UB file, in chess, 10 
Options menu, in bridge, 21-22 
Overall bid, 27 

p 

Part Score, in bridge, 133 
Pascal programming language, 1,3 
Passing in bridge, 23 
Pawn promotion, 11, 62 
Pawn structure, 64 
Pieces, in chess, 123-125 

arrangement of, 123 
development, 64 
moves of, 124-125 

145 



point value of, 48 
Piece Value Table, 33, 69-70 
Play algorithm, in Turbo Bridge, 93-95 
Ply Search level, chess, 16 
Principal Variation Search, 57-58 
Problem analysis, 38 
Procedures 

Q 

Turbo Bridge, 92ff 
Turbo Chess, 71ff 
Turbo Go-Moku, 41-46 

Quick reference guides 
Bridge 

R 

bidding, 24 
playing, 28 

Chess commands, 14-15 

README.COM program, 3 
Redoubling, in bridge, 23, 132, 133 
Repetition, in Turbo Chess, 68 
Rubber, in bridge, 133 
Rules 

s 

Bridge, 131ff 
Chess, 123ff 

Saving the games, 
Turbo Bridge, 28 
Turbo Chess, 13 

Score card, in bridge, 23, 28 
Screen layout convention, in 

Turbo bridge, 22 
Search tree, in bridge, 95 
Shannon-B strategy, 59 
Shutout bid, in bridge, 27 
Small slam, in bridge, 133 
Stalemate, in chess, 12,68 
Stayman convention, 26 

146 

T 

Text editor, used to set up chess 
board, 18-19 

Time, tracking in Turbo Chess, 70-71 
Third repetition rule, in chess, 12 
Tolerance search, 58 
Torres machine, 118 
Touched pieces in chess, 126 
Tree Search in Turbo Chess, 

50-51 
Tricks, in bridge, 131 
Trumps, 27, 131 
Turbo Bridge, 

Alpha-Beta algorithm, 96 
analysis algOrithm, 94-95 
bid 

classes, 91-93 
menu, 23-24 

bidding 
algOrithm, 90-93 
quick reference, 24 
system, 24 

BRIDGE.COM file, 21 
BRIDGE. PAS file, % 
bridge table, display of, 28 
data types in, 96-97 
functions, 92ff 
include modules, 102-114 

BID.BR, 106-109 
DEFAULTS.BR, 104 
DISPIAY.BR, 102-103 
INIT.BR, 105 
INPUf.BR, 105-106 
PIAYBR, 110-112 
SCORE.BR, 103-104 

menus, 
bid,23 
option, 21 

options menu, 21-22 
passes, 103 
playing,21ff 
play algorithm, 93-95 

Turbo GameWorks Owner's Handbook 



procedures, 92ff 
program design, 89ff 
score card, 28 
screen layout convention, 22 
Turbo Chess, 

Alpha-Beta algorithm, 55 
best line, 12-13 
captures, 11, 63-64 
castling, 64, 67, 124 
changing sides, 17 
chess board, 

editor, 17 
CHESS.COM file, 10 
CHESS.PAS file, 10 
clocks, internal, 17 
color, 

changing, 18 
commands, 5-6, 13-19 
en passant captures, 11 
functions, 71ff 
full move, 12 
full time level, 13, 16 
half move, 12 
hash tables, 69 
illegal moves, 12 
include modules 

BOARD.CH, 72-77 
DISPIAY.CH,79-81 
EVALU.CH, 82-83 
INPUf.CH, 81-82 
MOVGEN.CH,78-79 
SEARCH.CH 83-86 
SMAILCH, 86-87 
TALK.CH, 86-87 
TIMEUB.CH, 71-72 

incremental updating, 39, 69 
indefinite level, 15 
killer moves, 62-63 
level menu, 13, 16 
levels of play, 13, 16-17 

demo, 16 
full time, 16 
indefinite, 16 
mate search, 16-17 

SUBJECT INDEX 

normal, 16 
ply search, 16 

mates, basic, 68 
Minimax search, 50-52 
move generator, 61-62 
moves, 10-11 

generating, 61-62 
illegal, 12 
listing of, 13 
making, 10 
quick reference guide, 14-15 
searching for, 49 
taking back, 17 

negative Alpha-Beta window (see· 
tolerance search) 

normal level, 13, 16 
opening library, 10, 12 
OPENING.UB file, 10, 12 
pawn promotions, 62 
pawn structure, 48, 64 
piece development, 64 
Piece Value Table, 69-70 
ply search level, 13, 16 
principal variation search, 49-60 
procedures,71ff 
saving games, 13 
screen, 10 
search depth, 12 
searches, 

Alpha-Beta, 52-57 
iterative, 55, 62 
Minimax, 50-52 
principal variation, 57-58 
terminating, 17 
tolerance, 58 
tree, 58-59 

Shannon-B strategy, 59 
Sicilian defense, 64 
time, tracking, 70-71 

Turbo GameWorks 
diskettes, 3 
README.COM program, 4 

Turbo Go-Moku, 
algorithms, 38 

147 



commands,8 
decision making, 38 
data structure, 39 
evaluator, 37 
functions, 36 
GO-MOKlJ.COM file, 7 
GO-MOKU.PAS file, 40 
help module, on-line, 41 
incremental updating in, 40-41 
mainpro~,41 
moves, evaluating, 37-38 
nested loops, execution time of, 39 
problem analysis, 38 
procedures, 38,40,42-44 
screen, 7 

Turbo Pascal Reference Manua~ 3 
Turbo Pascal, use with Turbo 

Go-Moku,40 
Turbo Tutor, 1 
Turk, the, 117 

u 

User interface 
in computer games, 34 
in Turbo chess, 81-82 

148 Turbo GameWorks Owner's Handbook 



/~i G~ 
~W .. "~t.f. 
o"~f.~" 

~G\)~ CATALOG 
OF 

BORLAND 
PRODUCTS 

+ 
BORLAND 
INTERNATIONAL 

4585 Scotts Valley Drive 
Scotts Valley, CA 95066 

Available at better dealers nationwide. Call (800) 556-2283 for the dealer 
nearest you. To order by Credit Card call (800) 255-8008, CA (800) 742-1133 



® 

VERSION 1.5 
INFOWORLD'S 

SOFTWARE PRODUCT OF THE YEAR 
Whether you're running WordStar™, Lotus™, d8ase™, 
or any other program, SIDEKICK puts a/l these desktop 

accessories at your fingertips. Instantly. 

A full-screen WordStar-like Editor You may jot 
down notes and edit files up to 25 pages long. 

A Phone Directory for your names, addresses 
and telephone numbers. Finding a name or a 
number becomes a snap. 

An Autodialer for all your phone calls. It will 
look up and dial telephone numbers for you. 
(A modem is required to use this function.) 

All the SIDEKICK windows stacked up over Lotus 1-2-3. 
From bottom to top: SIDEKICK'S "Menu Window," ASCII 
Table, Notepad, Calculator, Datebook, Monthly Calendar and 
Phone Dialer. 

A Monthly Calendar functional from year 1901 
through year 2099. 

A Datebook to remind you of important 
meetings and appointments. 

A full-featured Calculator ideal for business use. 
It also performs decimal to hexadecimal to 
binary conversions. 

An ASCII Table for easy reference. 

Here's SIDEKICK running over Lotus 1-2-3. In the SIDEKICK 
Notepad you'll notice data that's been imported directly from 
the Lotus screen. In the upper right you can see the Calculator. 

The Critics' Choice 
"In a simple, beautiful implementation of WordStar'sTl. 
block copy commands, SIDEKICK can transport all or 
any part of the display screen (even an area overlaid by 
the notepad display) to the notepad." 

-Charles Petzold. PC MAGAZINE 

"SIDEKICK deserves a place in every PC." 
-Garry Ray. PC WEEK 

"SIDEKICK is by far the best we've seen. It is also the 
least expensive." -Ron Mansfield. ENTREPRENEUR 

"If you use a PC, get SIDEKICK. You'll soon become 
dependent on it." -Jerry Pournelle. BYTE 

SIDEKICK IS AN UNPARALLELED BARGAIN AT ONLY $54.95 (copy-protected) 

OR $84.95 (not copy-protected) 

Minimum System Configuration: SIDEKICK is available now for your IBM PC. XT. AT. PCjr .. and 100% compatible microcomputers. 
The IBM PC jr. will only accept the SIDEKICK not copy-protected version. Your computer must have at least 128K RAM. one disk 
drive and PC-DOS 2.0 or greater. A Hayes™ compatible modem. IBM PCjr.'M internal modem. or AT&T® Modem 4000 is required for 
the autodialer function. 

SideKick and SuperKey are registered trademarks of Bortand Internationat, Inc. dBase is a trademark of Ashton·Tate.IBM is a registered trademark and PC Ir. is a trademark of International Business 
Machines Corp AT&T is a registered trademark of American Telephone & Telegraph Company.lnfoworld is a trademark of Popular Computing, Inc, a subsidiary of CW Communications Inc. Lotus 1-2-3 is 

a trademark of Lotus Development Corp. WordStar is a trademark of Micropro International Corp. Hayes is a trademark of Hayes Microcomputer Products, Inc. 



INCREASE YOUR PRODUCTIVITY 
BY 500A, OR YOUR MONEY BACK 

SuperKey turns 1,000 keystrokes into 1! 
Yes, SuperKey can record lengthy keystroke sequences and play them back at the 
touch of a single key. Instantly. Like Magic. 
Say, for example, you want to add a column of figures in 1-2-3. Without SuperKey you'd 
have to type seven keystrokes just to get started. ["shift-@-s-u-m-shift-("]. With SuperKey 
you can turn those 7 keystrokes into 1. 

SuperKey keeps your 'confidential' files . .. CONFIDENTIAL! 
Time after time you've experienced it: anyone can walk up to your PC, and read your 
confidential files (tax returns, business plans, customer lists, personal letters ... ). 
With SuperKey you can encrypt any file, even while running another program. As long 
as you keep the password secret, only YOU can decode your file. SuperKey imple
ments the U.S. government Data Encryption Standard (DES). 

SuperKey helps protect your capital investment. 
SuperKey, at your convenience, will make your screen go blank after a predetermined 
time of screen/keyboard inactivity. You've paid hard-earned money for your PC. 
SuperKey will protect your monitor's precious phosphor ... and your investment. 

SuperKey protects your work from intruders while you take a break. 
Now you can lock your keyboard at any time. Prevent anyone from changing hours of 
work. Type in your secret password and everything comes back to life ... just as you left it. 

SUPERKEY is now available for an unbelievable $69.95 (not copy-protected). 

Minimum System Configuration: SUPERKEY is compatible with your IBM PC, XT, AT, PCjr. and 100% 
compatible microcomputers. Your computer must have at least 128K RAM, one disk drive and PC-DOS 2.0 
or greater. 

SideKick and SuperKey are registered trademarks of Borland International. Inc 
IBM and PC-DOS are trademarks of International Business Machines Corp_ Lolus 1-2-3 is a trademark of Lotus Development Corp_ 



REFLEX 
THE ANALYST'"' 

Rellex'· is the most amazing and easy to use database management 
system. And il you already use Lotus 1-2-3, dBASE or PFS File, you 

need Reflex-because it's a totally new way to look at your data. It shows 
you patterns and interrelationships you didn't know were there, because 

they were hidden in data and numbers. It's also the greatest 
report generator lor 1-2-3. 

REFLEX OPENS MULTIPLE WINDOWS WITH NEW VIEWS AND GRAPHIC INSIGHTS INTO YOUR DATA. 

"' urn ,,,,11& 
UiM U, .. Ult Prlntil'il. b .. I",., llit UIM Eihl pnntiflle IIlC::ordS 1wd'I F Gnllh '-

IIICTH:IIIII 

.If UtEs: S67 

SMH!ltMJ:SJJJ 

H ..... 
"-01 ..... 
"-01 ..... 

.J.\"es ... " "-01 ..... ... " ..... ..... 
F .... 

nIH 
"- ... 
"- 1~ 

"- c..,~ ..... 100. ... .. 1~ ..... c..,~ 

Pierre 100. 
'.tret I~ 

'!fI'et c..,~ 

lrtlO'lt 100. 
Tr .... 1 "" TrRr'lt c..,~ - 100. 

IIfSIlESSIl.!IU .. JIlISTU .. l 
S67 S333 stSI 
3t9 un ~1t2 

'"~ IU2 11'1 

'" UI7 1\97 

-i sue S68 ... ", 
S319 12~ 

'19 111J In , .. 111 I" 
'n 11~ .. 
'" I1N lOT 

IS' .. ", 
'"~ .... "., 

l
"UIoI~"h""fM"''''''I Iol~"'" _ ~ IOH":~-t5 

UIII: IIM'I 

1511 I PIIDfT:c.ril 

I" ~ : IJMnV:l36 

511 I I Ill£$:193 

• IllH: n • 

ForE«h: c.ril TU I,Q PNfIl:69 

~ -;;;;rlI PIIIU:.1trtt Z MIN: 35.75 
111_1 

The FORM VIEW lets you build and view your database The LIST VIEW lets you put data in tabular List form 
just like a spreadsheet. 

The GRAPH VIEW gives you instant interactive 
graphic representations 

The CROSSTAB VIEW gives you 
amazing "cross-referenced" 
pictures of the links and 
relationships hidden in your data. 

IIINf'lJ: H Filii!: nus 
fIIIItl 

1-
o w)rt 1.1 

,. "" ,.,. 
W 1m lJ66 

~ Pltret I. 

IrBlOl'lI 
611 191' 
Qi 1618 ... 1791 

The REPORT VIEW allows you to 
import and export to and from 

Reflex, 1-2-3, dBASE, PFS File and 
other applications and prints out 

information in the formats you want 

So Reflex shows you. Instant answers. Instant pictures. Instant analysis. Instant understanding. 

THE CRITICS' CHOICE: 

"The next generation of software has officially arrived." 
Peter Norton, PC WEEK 

"Reflex is one of the most powerful database programs on 
the market. Its multiple views, interactive windows and graphics, great 
report writer, pull-down menus and cross tabulation make this 
one of the best programs we have seen in a long time ... 

The program is easy to use and not intimidating to the novice ... 
Reflex not only handles the usual database functions such as sorting 
and searching, but also "what-if" and statistical analysis ... it can 
create interactive graphics with the graphics module. The separate 
report module is one of the best we've ever seen." 

Marc Stern, INFOWORLO 

Minimum System Requirements: Reflex runs on the IBM~ PC, Xl, AT Ind compatibles. 384K RAM minimum. IBM Color Graphics Adapter~, Hercules 
Monochrome Graphics Card", or equivalent. PC-DOS 2.0 or greater. Hard disk and mouse optional. Lotus 1-2-3, dBASE, or PfS File optional. 

Reflex is a trademark of BORLAND/Analytica Inc. Lotus is a registered trademark and Lotus 1-2-3 is a trademark of Lotus Development Corporation. dBASE is a registered 
trademark of Ashton-Tate. PFS is a registered trademark and PFS File is a trademark of Software Publishing Corporation. IBM PC, XT, AT. PC-DOS and IBM Color Graphics Adapter are 
registered trademarks of International Business Machines Corporation. Hercules Graphics Card is a trademark of Hercules Computer Technololgy. 



If you use an IBM PC, you need 

T U R B 0 

Lightning" 
Turbo LlghtnlngrM teams up 
with the Random House 
spelling Dlctlonary® to check 
your spelling as you Iype! 
Turbo Lightning, using the 
83,OOO-word Random House 
Dictionary, checks your spelling 
as you type. If you misspell a 
word, it alerts you with a 'beep'. 
At the toush of a key, Turbo 
Lightning opens a window on top 
of your application program and 
suggests the correct spelling. 
Just press ENTER and the 
misspelled word is instantly 
replaced with the correct word. 
It's that easy! 

Turbo Lightning works hand-in
hand with the Random House 
Thesaurus® to give you inslanl 
access to synonyms. 
Turbo Lightning lets you choose 
just the right word from a list of 
alternates, so you don't say the 
same thing the same way every 
time. Once Turbo Lightning opens 
the Thesaurus window, you see a 
list of alternate words, organized by 
parts of speech. You just select the 
word you want, press ENTER and 
your new word will instantly replace 
the original word. Pure magic! 

If you ever write a word, think 
a word, or say a word, you 
need Turbo Lightning. 

The Turbo Lightning Dictionary. 

The Turbo Lightning Thesaurus. 

~e~e~oCp~:ntZo~;~r~~~ ~~:~~:~:er:~ :~~~~~~~\r~fd~~~~:~~~:c~~~~~er~e~;it~~~~f gg:g }~lU~E 11;2;;e~,s~;ree~~:~~~~~~~~TI::h~~n~~~~ 
Microsoft IS a registered trademark of Microsoft Corporation SideKick IS a registered trademark and Turbo Lightning and Turbo Lightnmg 
Library are trademarks of Bortand tnternatlonal. Random House Dictionary and Random House Thesaurus are regisiered trademarks of 
Random House Inc. Reflex is a trademark of BORLAND/Anatytlca tnc. MultiMate IS a trademark of MultiMate tnternahonat Inc 

Turbo Lightning's Intelligence 
lets you teach It new words. 
The more you use Tutbo 
Lightning, the smarter it getsl 
You can also teach your new Turbo 
Lightning your name, business 
associates' names, street names, 
addresses, correct capitalizations, 
and any specialized words you use 
frequently. Teach Turbo Ughtning 
once, and it knows forever. 

Turbo Lightning™ is the 
engine that powers Borland's 
Tutbo Lightning LibratyTM. 
Turbo Lightning brings electronic 
power to the Random House 
Dictionary® and Random House 
Thesaurus®. They're at your 
fingertips -even while you're 
running other programs. Turbo 
Lightning will also 'drive' soon-to
be-released encyclopedias, 
extended thesauruses, specialized 
dictionaries, and many other 
popular reference works. You get 
a head start with this first volume 
in the Turbo Lightning Library. 
And because Turbo Lightning is a 
Borland product, you know you can 
rely on our quality, our 50-day 
money-back guarantee, and our 
eminently fair prices. 

Suggested Retail Price $99.95 
(not copy-protected) 

Minimum System Requirements: 
128K IBM PC® or 100% compatible computer. 
with 2 floppy disk drives and PC-DOS (MS-DOS) 
2.0 or greater 



® 

SideKick, the Macintosh Office Manager, brings 
information management, desktop organization and 
telecommunications to your Macintosh. Instantly, 

while running any other program. 

A lull-screen editor/mini-word processor 
lets you jot down notes and create or edit 
files. Your files can also be used by your 
favorite word processing program like 
MacWrite™ or MicroSoft® Word™. 

A complete telecommunication 
program sends or receives information 
from anyon-line network or electronic 
bulletin board while using any of your 
favorite application programs. A modem is 
required to use this feature. 

A lull-Ieatured linancial and scientilic 
calculator sends a paper-tape output to 
your screen or printer and comes complete 
with function keys for financial modeling 
purposes. 

A print spooler prints any text file while 
you run other programs. 
A versatile calendar lets you view your 
appointments for a day, a week or an entire 
month. You can easily print out your 
schedule for quick reference. 

A convenient "Things-to-Do" Iile 
reminds you of important tasks. 

A convenient alarm system alerts you to 
daily engagements. 

A phone log keeps a complete record of all 
your telephone activities. It even computes 
the cost of every call. Area code hook-up 
provides instant access to the state, region 
and time zone for all area codes. 

An expense account lile records your 
business and travel expenses. 

A credit card Iile keeps track of your 
credit card balances and credit limits. 

A report generator prints-out your mailing 
list labels, phone directory and weekly 
calendar in convenient sizes. 

A convenient analog clock with a 
sweeping second-hand can be displayed 
anywhere on your screen. 
On-line help is available for all of the 
powerful SIDEKICK features. 

Best 01 al/, everything runs 
concurrently. 
SIDEKICK, the software Macintosh 
owners have been waiting for. 

SideKick, Macintosh's Office Manager is available now lor 
$84.95 (not copy-protected). 

Minimum System Configuration: SIDEKICK is available now for your Macintosh microcomputer in a format that is not copy-protected. 
Your computer must have at least 128K RAM and one disk drive. Two disk drives are recommended if you wish to use other application 
programs. A Hayes-compatible modem is required for the telecommunications function. To use SIDEKICK'S autodialing capability you 
need the Borland phone-link interface. See inside for details. 

SIDEKICK is a registered trademark of Borland International, Inc. Macintosh is a trademark of Mcintosh Laboratory, Inc. MacWrite is a trademark of Apple 
Computer, Inc. IBM is a trademark of International Business Machines Corp. Microsoft is a registered trademark and 'MJrd is a trademark of MicroSoft Corp. 

Hayes is a trademark of Hayes Microcomputer Products, Inc. 



WITH COMMENTED SOIlRCE CODE / 

VERSION 3.0 

THE CRITICS' CHOICE: 
"Language deal of the century ... Turbo 
Pascal: it introduces a new programming 
environment and runs like magic." 

-J,g Dunt,mann, PC Magazin, 

"Most Pascal compilers barely fit on a disk, 
but Turbo Pascal packs an editor, compiler, 
linker, and run-time library into just 39K 
bytes of random-access memory." 

-Dav, Garland, Popular Computing 

"What I think the computer industry is 
headed for: well - documented, standard, 
plenty of good features, and a reasonable 
price." -Jerry Pournelle, BYTE 

LOOK AT TUR80 NOWI 
o More than 400,000 users worldwide. 

o TU RBO PASCAL is proclaimed as the 
de facto industry standard. 

o TURBO PASCAL PC MAGAZINE'S award 
for technical excellence. 

OPTIONS FOR 16-8/T SYSTEMS: 
8087 math co-processor support for intensive 
calculations. 

Binary Coded Decimals (BCD): Eliminates 
round-off error! A must for any serious business 
application. (No additional hardware required.) 

THE FEATURES: 
On,-St,p Compi/,: No hunting & fishing 
expeditions! Turbo finds the errors, takes you 
to them, lets you correct, then instantly 
recompiles. You're off and running in record 
time. 

Built-in IntBTactiv, Editor: WordStar-like easy 
editing lets you debug quickly. 

Automatic OVITlays: Fits big programs into 
small amounts of memory. 

Microcalc: A sample spreadsheet on your disk 
with ready-to-compile source code. 

IBM PC VERSION: Supports Turtle Graphics, 
Color, Sound, Full Tree Directories, Window 
Routines, Input/Output Redirection and much 
more. 

o TU RBO PASCAL named 'Most Significant 
Product of the Year' by PC WEEK. 

o TURBO PASCAL 3.0 - the FASTEST 
Pascal development environment on the 
planet, PERIOD. 

Turbo Pascal 3.0 is available now 
for $69.95. 

Options: Turbo Pascal with 8087 or BCD at a low 
$109.90. Turbo Pascal with both options (8087 
and BCD) priced at $124.95. 

M/N/MUM SYSTEM CONF/BURAT/ON: To use Turbo P,sCB/3.0 requires 64K RAM, ORB disk drive, 1-80, 8088/86, 80186 or 80286 
microprOCBssor running ei,her CP/M-80 2.2 or grIB'er, CP/M-86 1.1 or g",'er, MS-DOS 2.0 or ore,'er or PC-DOS 2.0 gre,'er, 
MS-DOS 2.0 Dr ore,'er Dr PC-DOS 2.0 or orIBter. A XEN/X version of Turbo P.SCB/ will soon be .nnDunced, .nd before 'he end of 
the yar, Turbo P.SCB/ will be running on most 68000 -b.sed microcomputers. 

Turbo Pascal is a registered trademark of Borland International. Inc 
CP 1M is registered trademark of Digital ResearCh. Inc 
IBM an PC-DOS are registered trademarks of International Business 
Machines Corp 
MS-DOS is a trademark of Microsoft Corp 
Z80 is a trademark of Zilog Corp 



LEARN PASCAL FROM THE FOLKS WHO INVENTED 
TURBO PASCAL ® AND TURBO DATABASE TOOLBOX®. 

Borland International proudly introduces Turbo Tutor®. The perfect 
complement to your Turbo Pascal compiler. Turbo Tutor is really for everyone

even if you've never programmed before. 

And if you're already profiCient, Turbo Tutor can sharpen up the fine points. The 300 
page manual and program disk divides your study of Pascal into three learning modules: 

FOR THE NOVICE: Gives you a concise history of Pascal, tells you how to write a simple program, and 
defines the basic programming terms you need to know. 

ADVANCED CONCEPTS: If you're an expert, you'll love the sections detailing subjects such as "how to 
use assembly language routines with your Turbo Pascal programs." 

PROGRAMMER'S GI1IOE: The heart of Turbo Pascal. This section covers the fine pOints of every aspect 
of Turbo Pascal programming: program structure, data types, control structures, procedures and 
functions, scalar types, arrays, strings, pointers, sets, files and records. 

A MI1ST. You'll find the source code for all the examples in the book on the accompanying disk ready to 
compile. 

Turbo Tutor may be the only reference on Pascal and programming you'll ever need! 

TURBO TUTOR-A REAL EDUCATION FOR ONLY $34.95. 
(not copy-protected) 

*Minimum System Configuration: TURBO TUTOR is available today for your computer running TURBO PASCAL for PC-DOS. MS-DOS, 
CP IM-BO. and CP IM-B6. Your computer must have at least 12BK RAM. one disk drive and PC-DOS 1.0 or greater. MS-DOS 1.0 or 
greater. CP/M-80 2.2 or greater. or CP/M-B6 1.1 or greater. 

Turbo Pascal and Turbo Tutor are registered trademarks and Turbo Database Toolbox is a trademark of Borland International. Inc., CP/M is a 
trademark of Digital Research, Inc., MS-DOS is a trademark of Microsoft Corp., PC-DOS is a trademark of International Business Machines Corp. 



TURBO GRAPHIX TOOLBOX™ 

HIGH RESOLUTION GRAPHICS AND GRAPHIC WINDOW MANAGEMENT 
FOR THE IBM PC 

o.zzling gfBphics .nd p.inless windows. 
The Turbo Graphix Toolbox™ will give even a beginning programmer the expert's edge. It's a 
complete library of Pascal procedures that include: 

• Full graphics window management. 
• Tools that allow you to draw and hatch pie charts, bar charts, circles, rectangles 

and a full range of geometric shapes. 

• Procedures that save and restore graphic images to and from disk. 

• Functions that allow you to precisely plot curves. 
• Tools that allow you to create animation or solve those difficult curve fitting 

problems. 

No SWBBt .nd no roy.lties. 
You can incorporate part, or all of these tools in your programs, and yet, we won't charge you 
any royalties. Best of all, these functions and procedures come complete with source code on 
disk ready to compile! 

John Marko" & P.ul Freiberger, syndic.ted columnists: 
"While most people only talk about low-cost personal computer software, Borland has been 
doing something about it. And Borland provides good technical support as part of the price." 

Turbo Graphix Toolbox-only $54.95 (not copy protected). 

Minimum System Configuration: Turbo Graphix Toolbox is available today for your computer running Turbo Pascal 2.0 or greater for 
PC-DOS, or truly compatible MS-DOS. Your computer must have at least 128K RAM. one disk drive and PC-DOS 2.0 or greater. Ind 
MS-DOS 2.0 or greater with IBM Graphics Adapter or Enhanced Graphics Adapter. IBM-compatible Graphics Adapter. or Hercules 
Graphics Card. 

Turbo Pascal is a registered trademark and Turbo Graphix Toolbox is a trademark of Borland International, Inc. 
IBM and PC· DOS are trademarks of International Business Machines Corp. MS· DOS is a trademark of Microsoft Corp 



Is The Perfect Complement To Turbo Pascal. 
It contains a complete library of Pascal procedures that allows you to sort 

and search your data and build powerful applications. It's another set of tools 
from Borland that will give even the beginning programmer 

the expert's edge. 

THE TOOLS YOU NEED! 
TUR80ACCESS Files Using 8+Trees- The best way to organize and search your data. 
Makes it possible to access records in a file using key words instead of numbers. Now 
available with complete source code on disk ready to be included in your programs. 

TUR80S0RT - The fastest way to sort data-and TURBOSORT is the method preferred by 
knowledgeable professional$. Includes source code. 

GINST (General Installation Program) - Gets your programs up and running on other ter
minals. This feature alone will save hours of work and research. Adds tremendous value 
to all your programs. 

GET STARTED RIGHT AWAY: FREE DATABASE! 
Included on every Toolbox disk is the source code to a working database which demon
strates the power and simplicity of our Turbo Access search system. Modify it to suit 
your individual needs or just compile it and run. Remember, no royalties! 

THE CRITICS' CHOICE! 
"The tools include a B+ tree search and a sorting system. I've seen stuff like this, but not 
as well thought out, sell for hundreds of dollars." 

-Jerry Pournelle, BYTE MAGAZINE 

"The Turbo Database Toolbox is solid enough and useful enough to come recommended." 
-Jeff Duntemann, PC TECH JOURNAL 

TURBO DATABASE TOOLBOX-ONLY $54.95 (not copy-protected). 

Minimum system configurations: 64K RAM and one disk drive. 16-bit systems: TURBO PASCAL 2.0 or greater for MS-DOS or PC-DOS 
2.0 or greater. TURBO PASCAL 2.1 or greater for CP /M-86 1.1 or greater. Eight-bit systems: TURBO PASCAL 2.0 or greater for 
CP/M-BO 2.2 or greater. 

Turbo Pascal is a registered trademark and Turbo Database Toolbox is a trademark of Borland International, Inc. CP 1M and CP IM-86 are registered trademarks of Digital Research, Inc. 
IBM and PC-DOS are registered trademarks of International Business Machines Corp. MS-DOS is a trademark of Microsofi Corp. 



B_7ta.BOX 
II's All You Need To Build Your Own Texl Edilor 

Or Word Processor. 
Build your own 11,,,tnln,-I.,t editor .nd Incor
po"te It Into your Turbo '.IC.' pro,,,m,. Turbo 
Editor ToolboxTlo1 gives you easy-to-install modules. 
Now you can integrate a fast and powerful editor into 
your own programs. You get the source code, the 
manual and the know how. 

ere.te your own word proce"or. We provide all 
the editing routines. You plug in the features you want. 
You could build a WordStar~-like editor with pull
down menus like Microsoft's~ Word, and make it work 
as fast as WordPerfect™. 

To demonstrate t"e tremendous power 01 Turbo Editor Toolbox, we give you t"e source code for two 
s.mple editors: 
Simple Editor A complete editor ready to include in your programs. With windows, block commands, and 

memory-mapped screen routines. 
MicroStar™ A full-blown text editor with a complete pull-down menu user interface, plus a lot more. 

Modify MicroStar's pull-down menu system and include it in your Turbo Pascal programs. 

The Turbo Editor Toolbox gives you all the 
standard features you would expect to find 
in any word processor: 

• Word wrap 
• UNDO last change 
• Auto indent 
• Find and Find/Replace with options 
• Set left and right margin 
• Block mark, move and copy. 
• Tab, insert and overstrike modes, 

centering, etc. MicroStar's pull-down menus. 

And Turbo Editor Toolbox has features that word processors selling for several hundred dollars can't begin to match. 
Just to name a few: 

@" RAM-based editor. You can edit very large 
files and yet editing is lightning fast. 

@" Memory-mapped screen routines. In
stant paging, scrolling and text display. 

@" Keyboard installation. Change control 
keys from WordStar-like commands to any that 
you prefer. 

@" Multiple windows. See and edit up to eight 
documents-or up to eight parts of the same 
document-all at the same time. 

@" Multi-Tasking. Automatically save your 
text. Plug in a digital clock ... an appointment 
alarm-see how it's done with MicroStar's 
"background" printing. 

Best of all, source code is included for everything in the Editor Toolbox. Use any of the Turbo Editor Toolbox's 
features in your programs. And pay no royalties. 
Minimum system conliguratlon: The Turbo Editor Toolbol requires an IBM PC, XT, AT, 3270, PClr or true compatible with a minimum 
1921 RAM, running PC-DOS (MS-DOS) 2.0 or greater. You must be using Turbo Pascal 3.0 lor IBM and compallbles. 

Suggested Retail Price $69.95 
(not copy-protected) 

Turbo Pascal is a registered trademark and Turbo Editor Toolbox and MicroStar are trademarks 01 Borland 
International. Inc. WordStar is a registered trademark 01 MicroPro International Corp. Microsoft and MS-DOS are 
registered trademarks 01 Microsoft Corp. WordPerfect is a trademark 01 Satellite Software International. IBM. 
IBM PC. XT. AT. PCjr. and PC-DOS are registered trademarks 01 International Business Machine Corp. 



----
I For The To Order I ' 
J Dealer I~o~' By Credit 11/ 
• II MONEY-BACK,. r1 I "earest , GUARANTEE I "an , r i 
I 

You, .... , Call , i 
Call (800) " I (800) 255-8008 / 

I 556-2283 In California (800) 742-113; ,/ 

1.. _______ " 



Notes: 



Notes: 



RAMtWORKs 
Secrets And Strategies Of The Masters Are 

Revealed For The First Time 
Explore the world of state-of-the-art computer games with Turbo GameWorksTl'. Using 

easy-to-understand examples, Turbo GameWorks teaches you techniques to quickly create 
your own computer games using Turbo Pascal@. Or, for instant excitement, play the three 

great computer games we've included on disk-compiled and ready-to-run. 

TURBO CHESS 

Test your chess-playing skills against your computer challenger. With Turbo GameWorks, you 're on your 
way to becoming a master chess player. Explore the complete Turbo Pascal source code and discover 
the secrets of Turbo Chess. 

"What impressed me the most was the fact that with this program you can become a computer 
chess analyst. You can add new variations to the program at any time and make the program play 
stronger and stronger chess. There's no limit to the fun and enjoyment of playing Turbo GameWorks' 
Chess, and most important of all, with this chess program there's no limit to how it can help you 
improve your game." -George Koltanowski, Dean of American Chess, former President of 

the United Chess Federation and syndicated chess columnist. 

TURBO BRIDGE 

Now play the world 's most popular card game-Bridge. Play one-on-one with your computer or against 
up to three other opponents. With Turbo Pascal source code, you can even program your own bidding 
or scoring conventions. 

"There has never been a bridge program written which plays at the expert level, and the ambitious 
user will enjoy tackling that challenge, with the format already structured in the program. And for the 
inexperienced player, the bridge program provides an easy-to-follow format that allows the user to start 
right out playing. The user can "play bridge" against real competition without having to gather three 
other people." 

-Kit Woolsey, writer and author of several articles and books 
and twice champion of the Blue Ribbon Pairs. 

TURBO GO-MOKU 

Prepare for battle when you challenge your com'puter to a game of Go-Moku-the exciting strategy 
game also know as "Pente"TM. In this battle of wits, you and the computer take turns placing X's and 
O's on a grid of 19X19 squares until five pieces are lined up in a row. Vary the game if you like using 
the source code available on your disk. 

Minimum system configuration: IBM PC, Xl, AT, Portable, 3270, PClr, and true compatibles with 192K system memory, running 
PC·DDS (MS· DOS) 2.0 or later. To edit and compile the Turbo PlScal source code, you must be using Turbo Pascal 3.0 lor IBM PC 
and compatibles. 

4585 Scotts Valley Drive 
Scotts Valley, CA 95066 

Turbo Pascal is a registeretl trademark and Turbo GameWorks is a trademark of 
Borland International. Inc. Pente is a registered trademark of Parker Brothers. 
IBM PC. Xl. AT. PCjr and PC·OOS are registered trademarks of International Business 
Machines Corporation. MS·OOS is a trademark of Microsoft Corporation. 

ISBN 0-87524-146-8 


