

Turbo Database Toolbox

Owner's Handbook

Copyright (C) 1985 by

BORLAND INTERNATIONAL Inc;
4585 Scotts Valley Drive
Scotts Valley, CA 95066

TABLE OF CONTENTS
INTRODUCTION ... 1

What Can You Do With the Database Toolbox? 1
The Turbo Access System. 1
The Turbo Sort System 2
GINST -General Installation System 2

Structure of This Manual 2
Typography.. 3
The Distribution Diskette 4
Acknowledgments ... 4

Chapter 1. A TOOLBOX PRIMER 5
What's Turbo Access Good For? The Saga of Dr. Flossmore 5
Some Words You'll Want to Know 7

Data Files ... 7
Records... 8
Index Files .. 8
Keys.. 8
How Index Files and Data Files Relate 8

Chapter 2. GETTING STARTED. 11
Including Turbo Database Routines in Your Programs 11
Using Turbo Access .. 12

Data Files ... 16
Index Files. 17
Program Structure with Turbo Access. 17

Initializing the User Program 18
User Program Variables 18
Error Handling. 18
User Program Termination...... 20

Some Database Tasks: Quick Summary 20
Adding Data Records.... 20
Key Location .. 20
Deleting Data Records . 21
Key Change ... 21

TABLE OF CONTENTS iii

Reuse of Deleted Data Records 21
Duplicate Keys.. 22
Numeric Keys ... 22
Data File Splitting .. 23

Skeleton Program .. 24
Turbo Access Programming Examples. 25

Defining the Record .. 25
Creating the Program. 26
Opening a Data File .. 28
Adding Records. 29
Creating an Index .. 31
Rebuilding Index Files 34
Access to the Data ... 36
Indexed Access.. 37
Deleting Records . 40
Updating Records. 41
Conclusions ... 42
BTREE.PA5-A Customer Database 42

Using Turbo Sort 58
How Turbo Sort Works. 58

Data Item Size .. . 59
Use of Memory . 59
Maximum Sort Size 60

Turbo Sort Programming Examples 60
Example 1: Sorting A Customer Database on a Single Key 60

The Inp Procedure 61
The Less Function 62
The OutP Procedure. 63
The Main Program 64
Turbo Sort Termination 65
Program Listing ... 66

Example 2: Advanced Sorting 69
Sorting Different Data 69
Multiple Keys. 75
Program Listing ... 76

iv Turbo Database Toolbox Owner's Handbook

Chapter 3. TECHNICAL REFERENCE 83
Turbo Database Toolbox Files. 83

Turbo Access Files ... 83
Turbo Sort Files .. 84
GINST Files. 85

Turbo Access Constants, Types and Variables 85
MaxDataRecSize ... 86
MaxHeight .. 87
MaxKeyLen ... 88
Order... 88
PageSize .. 89
PageStackSize ... 90

Quick Reference Guide to Turbo Access Routines 92
Procedures and Functions . 93

AddKey [ADDKEY.BOX] 94
AddRec [ACCESS.BOX] 95
ClearKey [ACCESS.BOX] 97
CloseFile [ACCESS. BOX] 98
Closelndex [ACCESS.BOX] 99
DeleteKey [DELKEY.BOX] 100
DeleteRec [ACCESS.BOX] 102
FileLen [ACCESS.BOX] 103
FindKey [GETKEY.BOX] 104
GetRec [ACCESS. BOX] 106
Initlndex [ACCESS.BOX] 107
MakeFile [ACCESS.BOX] 108
Makelndex [ACCESS.BOX] 109
NextKey [GETKEY.BOX] 110
OpenFile [ACCESS.BOX] 112
Openlndex [ACCESS.BOX] 113
PrevKey [GETKEY.BOX] 115
PutRec [ACCESS.BOX] 117
SearchKey [GETKEY.BOX] 118
UsedRecs [ACCESS.BOX] ,..... 120

Chapter 4. GINST-Generallnstallation System................... 121
How GINST Works ... 121

TABLE OF CONTENTS v

Appendices
Appendix A. TIPS FOR TOOLBOX PROGRAMMERS 123

The Fundamentals of Program Design . 123
CONSTANTS.lNC .. 124
DECLARE.INC.. 124
ACCESS.80X, ADDKEY.80X, GETKEY.80X, DELKEY.80X 125
INPUT.INC . 125
ERROR.lNC .. 127
FILES.lNC ... 128
MAINT.INC, REPORTS.lNC, MENU.lNC 128
Designing Screen Output 128

Appendix B. B + TREE STRUCTURE 131
Trees: The Quickest Route is Not Always a Straight Line. 131
8 +tree Fundamentals .. 133

Elements of a 8 + tree 134
Keys.. 135
Items... 136
Pages '.' , 137
How Pages are Organized into 8 + Trees . 138
Finding the Data Reference 141

8 + tree Administration 142
Inserting Keys ... 143
Deleting Keys , ,. 144

Appendix C. ASCII TABLE....................................... 147

LIST OF FIGURES
8-1 A 8inary Tree. 132
8-2 A 8 + tree ... 133
8-3 An Item ... 137
8.-4 Structure of a Page in an Index File 138
8-5 The Page structure. 139
8-6 Diagram of a 8+tree of Order 2 140
8-7 Data File Showing Order of Insertion. 142
8-8 How a 8+tree Grows 144

vi Turbo Database Toolbox Owner's Handbook

INTRODUCTION

This book is a reference manual for the Turbo Database Toolbox
(formerly called the Turbo Toolbox), implemented for the CP/M-SO,
CP/M-S6 and MS-DOS operating systems. The Turbo Database Tool
box consists of a set of three programs (tools) that can help you
develop and streamline your Turbo Pascal programs.

This manual makes extensive use of Turbo Pascal programming ex
amples; a good working knowledge of Turbo Pascal is assumed. If
you need to brush up on your Pascal knowledge, refer to the Turbo
Pascal Reference Manual and/or the Turbo Tutor.

What Can You Do With the Database Toolbox?

The Turbo Database Toolbox gives you three tools that make for fast
and easy development of Turbo Pascal programs:

• The Turbo Access system

• The Turbo Sort system

• The GINST general installation system

These tools are provided in modular form, so they can be included as
needed in your Pascal programs for the benefit of your end users.

The Turbo Access System

The Turbo Access system is a way to efficiently store and retrieve
information contained in large data files. Turbo Access retrieves infor
mation either randomly by key (instead of just a number), or in sorted
sequence.

Turbo Access speeds up the typically slow, laborious record search
ing process by using key strings to form relationships between data
files and index files. The key strings are stored independently of the
data, and usually represent some important aspect bf the information
being stored or sought-for instance, a customer's name, or a prod
uct's stock number. Since your computer needn't search through the
whole database in sequential order, it's easy to quickly locate, insert,
or delete a data record when you need to.

INTRODUCTION 1

The method of. indexing used by the Turbo Access system is the
B+tree. More detailed information on B+treescan befound in Appendix
B. However, you don't need to understand B + trees to use the Database
Toolbox, and if you'd like to get right down to the nitty gritty of search
ing and sorting, you can turn directly to Chapter 2 and get started right
away.

The Turbo Sort System

The Turbo Sort system uses the popular Quicksort algorithm to
ensure fast and efficient sorting of your data files. With this tool, you
can sort any type of data either on a single item or on multiple keys.
You can also sort different data items in the same program. Turbo
Sort's virtual memory management automatically uses the disk to
expand sorting space if the file to be sorted is too big for your com
puter's RAM memory.

GINST -General Installation System

GINST solves one of the biggest problems facing programmers: how
to get programs up and running on different terminals. GINST lets
you develop an installation module identical to Turbo Pascal's, with
out having to worry about writing terminal-specific installation pro
grams yourself. By simply answering a few questions asked by the
GINST program, end users can easily install your programs for their
particular terminals.

Structure of This Manual

2

This manual is divided into six parts:

• Chapter 1 introduces you to the Database Toolbox. We'll define
the basic terms you need to know to understand this manual, and
give you a concrete example of how you might use the Database
Toolbox.

• Chapter 2 gets you started right away on using the Turbo Data
base Toolbox. This chapter includes Turbo Pascal program exam
ples for both basic and advanced applications. All the examples in
this chapter are included on your distribution diskette.

Turbo Database Toolbox Owner's Handbook

• Chapter 3 is the technical reference part of the manual. All the
constants, procedures and functions contained in the Turbo Ac
cess system are described in alphabetical order, with parameters,
function, restrictions and examples.

• Chapter 4 tells you how to use GINST-the General Installation
system-to develop installation modules for your programs.

• Appendix A, Tips for Toolbox Programmers, contains some
handy suggestions for writing good Turbo Access programs.

• Appendix B describes the B + tree structure used by the Turbo Ac
cess system. Although you don't need to understand B + trees to use
the Database Toolbox, if you are an experienced programmer you
may be interested in knowing more about how Turbo Access
works.

• Appendix C provides an ASCII conversion table for quick
reference.

If you want to get your application program up and running as
quickly as possible, read the tutorial and examples in Chapter 2, and
ignore the subtleties of B+trees.lfyou are an expert programmer and
want to know exactly how Turbo Access works so you can "tune" it
for maximum efficiency for your application, read Appendix B.

Typography

The body of this manual is printed in normal typeface. Special charac
ters are used for the following special purposes:

Alternate

Italics

Boldface

Al ternate characters are used in program examples and pro
cedure and function declarations.

Italics are used to emphasize certain concepts and
terminology, such as predefined standard identifiers,
parameters, and other syntax elements.

Boldface type is used to mark reserved words, in the
text as well as in program examples.

Refer to the Turbo Pascal Reference Manual for a complete descrip
tion of the syntax, special characters and overall appearance of the
Pascal language.

INTRODUCTION 3

The Distribution Diskette

The Turbo Database Toolbox distribution diskette contains several
files related to each tool. The file names belonging to each tool are
provided in Chapter 3. Your diskette contains:

• A sample database, BTREE.PAS, that utilizes the Turbo Access
system

• Source code for Turbo Access and Turbo Sort

• The SETCONST.PAS program for helping you set Turbo Access
constants

• The TBDEMO.PAS Toolbox demonstration program

• The GINST (General Installation) program

• Files containing all procedures and functions

• All the commented program examples in the manual

See the READ.ME file on your distribution diskette for a complete
listing of the files in the Turbo Database Toolbox package.

The distribution diskette is your only source for the Turbo Database
Toolbox files. The first thing you should do upon receiving the disk
ette is to complete and mail the License Agreement at the front of this
manual. You should then make a copy of the distribution diskette. Put
the original diskette in a safe place, and use only the copy for doing
your work. You should never use the distribution diskette, since there
is a charge for a replacement copy.

Acknowledgments

In this manual, references are made to several products:

• SideKick is a registered trademark of Borland International

• Turbo Pascal is a registered trademark of Borland International

• WordStar is a registered trademark of MicroPro International

• CP/M is a registered trademark of Digital Research

• MS-DOS is a trademark of Microsoft

4 Turbo Database Toolbox Owner's Handbook

Chapter 1
A TOOLBOX PRIMER

The Turbo Database Toolbox is extremely easy to use. As long as you
know something about writing Turbo Pascal programs, you can pop
the Database Toolbox diskette into your computer and start
streamlining your application programs immediately, without having
to know anything about the inner, workings of the program.

There are, however, a few terms and concepts used throughout this
manual that you need to know to understand the Turbo Access part of
the Toolbox. This chapter defines those terms and concepts. And in
case you're a little fuzzy about just how the Toolbox can help you with
the programming and database management tasks you're up
against, we open this chapter with a real-life example of how you
might put the Toolbox to work for you.

What's Turbo Access Good For? The Saga of
Dr. Flossmore

A dentist, Dr. U. Flossmore, has a small dental practice. He has an IBM
PC with 128K, two 360K disk drives and a copy of Turbo Pascal. He
would like to use his computer to help keep track of his patients.

He had spent $695 on a well-known database program for this pur
pose, but since it turned out to be so much work to customize the
program to his particular needs, he decided it would be easier to write
a Turbo Pascal program from scratch.

Dr. Flossmore looked at the factors involved in writing his own pro
grams to keep track of his patients. For every patient, he needed to
keep track of name, address, telephone number, how much owed on
account, state of dental health, and a few other odds and ends. A
typical patient record might be:

John Smith
123 Plum Alley
Boston, Mass.
unlisted
root canal, tooth #19
check gums on tooth #2 next time

A TOOLBOX PRIMER 5

6

likes nitrous oxide
check on flossing next time
account paid up

In Dr. Flossmore's case, the total amount of information required for
each patient would never exceed 300 characters, so it could be put
into a record consisting of 300 bytes. The entire database for 1000
patients would thus require 300 x 1000 bytes, or 300K, neatly fitting on
one diskette.

How should all this data be organized on the disk? The simplest way
would be to store it sequentially, all in one big file. The first patient
typed in would occupy the first 300 bytes, the next patient the next 300
bytes, and so on. New patients would just be added to the end of the
file. This is very simple and easy to program in Turbo Pascal, but it
also makes accessing patient records very inefficient. Suppose, for
example, Mr. Smith calls to make an appointment. It is no big deal to
search through 300K of internal RAM memory for a given name, but it
will take about a minute for an IBM PC to search through a diskette for
a name. Knowing that Mr. Smith doesn't like to be kept waiting, Dr.
Flossmore needs a faster solution.

Another approach might be to write all the records out on index cards,
sort them in alphabetical order, and then enter them on the disk in
alphabetical order. A clever program could then be much more effi
cient about finding a given name on the disk, and could do it in about
five seconds. Besides the obvious nuisances of sorting the index
cards and writing the clever disk access program, this approach pro
vides no good way to handle new patients. If Dr. Flossmore has
patients named Smith and Smithy, they would be stored next to each
other on the disk and there would be no room in the alphabetical
sequence for a new patient named Smithson.

A more sophisticated approach would be to partition the disk in por
tions reserved for different alphabetical groups. For example, a big
block of disk space could be reserved for patients whose names begin
with the letter A, another block for the letter B, and so on. A strategy
like this would work for a while, but after a few months, it is likely that
the addition of new patients would cause certain letters like "5" to
"fill up"; the result would be no more room in the "5" block for
patients' names beginning with the letter "5."

The problem of organizing the patients' records on the disk is much
more complicated than it appears at first glance. Fortunately,
however, there is a nice solution to the problem: Turbo Access.

Turbo Database Toolbox Owner's Handbook

Here's how Dr. Flossmore can use Turbo Access to solve the problem
of cataloguing his patient records on his PC. All he has to do is define a
Turbo Pascal record that will be the structure for his 300-byte patient
records, and get his data into that format. Turbo Access does the rest.

Turbo Access stores records on disk in a very clever format using
B + trees. It then provides the three functions that Dr. Flossmore really
needs:

• Retrieves a patient record from the disk

• Adds a patient record to the disk

• Deletes a patient record from the disk

Turbo Access maintains a complicated set of tables on the disk that
allow for the efficient access of records. Each time a patient record is
added or deleted from the disk, these tables are automatically
updated so that the program continues to be efficient, both in terms of
memory usage and record access times. The result is that Dr. Floss
more can easily maintain his patient database of 1000 patients on his
diskette, and access a given patient's record in about two seconds.
Furthermore, he can add and delete thousands of patients, with no
significant change in performance.

Some Words You'll Want to Know

The following sections define the fundamental concepts you need to
know to read this manual and use Turbo Access. We're only giving
you the bare bones in this chapter; if you run across other terms you
don't understand as you read this manual, check Appendix B, "B + tree
Structure. "

Data Files

Data files are simply that-files that contain data. As a Turbo Data
base Toolbox user, the kinds of data files you are probably most
interested in are files that contain some kind of database-a set of
interrelated data, such as names and addresses of all the employees
in a company-that you want to access or sort alphabetically. In the
Turbo Database Toolbox, a data file is made up of up to 65,535
records.

A TOOLBOX PRIMER 7

Records

The separate, yet interrelated pieces of information that make up a
data file are records. For instance, in a database made up of custom
ers who have an account in a department store, one customer's name,
address, phone number, and account status would constitute one
record in the data file. Organizing a data file into separate units
records-makes it possible to perform the tasks that are routine to
managing a database: adding and deleting names from that data
base, finding a given customer's name to update his or her account
status, or keeping all the names in alphabetical order. The Turbo Data
base Toolbox lets you perform these tasks by way of keys contained in
index files.

Index Files

Index files are analogous to data files; they also are made up of
separate pieces of information. However, index files are not made up
of the data in your database; instead, they consist of up to 65,535
keys. Turbo Access uses the keys, stored in index files, to manage the
records contained in your data files.

Keys

Keys are what Turbo Access uses to unlock (access and operate on)
your database. A key is a string of characters that is related to one
record in the database. For easy reference, a key is usually based on
some important element (a field) in the record. For instance, a key for
a customer record in the department store database mentioned
above might be the customer's last name or account number.

How Index Files and Data Files Relate

B

Index files and data files are usually stored together on some storage
device-a hard or floppy disk-but they are entirely distinct from each
other. Turbo Access-via its B+tree structure----goes back and forth
between the two types of files, using a key string associated with a
data record. In addition, every data record is assigned a unique num
ber (the data reference) by Turbo Access, so that even if there are
duplicate keys (which is a common occurrence in a large database
that contains several people with identical last names), the correct
data record can still be located by Turbo Access.

Turbo Database Toolbox Owner's Handbook

It is possible for one record to be accessed by several keys. For
instance, one index file might be made up of keys relating to those
customers who spend more than $500 per month in the department
store; the keys would be based on numbers of 500 and greater (See
Chapter 2, page 21 for how to convert numeric keys to alphabetic
keys). These keys could be used to locate customers who the depart
ment store manager wants to target for a special "preferred cus
tomer" mailing. Another index file might consist of keys relating to
those customers who are behind on paying their accounts, to be
targeted for another, persuasive type of mailing. Another index file
could consist of keys based simply on the customers' last names. In
short, the exact relationship between a data file and its related index
file(s) is up to you; Turbo Access is designed so that you can work
flexibly with the information contained in your database.

You can see that Turbo Access is very much like a reference librarian:
when adding a new book to the library, the librarian must also add a
card in the catalogue. To find a book (record) that interests you, you
simply ask the librarian-Turbo Access-to look up the book (record)
in the card catalogue (index file), get the book's number (data refer
ence) and retrieve the book (record) for you.

As you can see, the concepts are simple. Now you're ready to move
on to doing some work with the Database Toolbox.

A TOOLBOX PRIMER 9

Notes:

10 Turbo Database Toolbox Owner's Handbook

Chapter 2
GETIING STARTED

This chapter gets you off to a quick start with the Turbo Database
Toolbox. Using commented program examples, we'll show you how
to wield each tool with ease and finesse, beginning with Turbo Ac
cess, followed by Turbo Sort. GINST, the general installation system,
is covered in Chapter 4.

This chapter begins with an overview of Turbo Access. Next, we pres
ent an example of how to use Turbo Access in a common program
ming situation-how to use it to add and delete data records and keys.
The example is based on the BTREE.PAS customer database included
on your distribution diskette. Finally, you'll learn how to use Turbo
Sort to sort your data on both single items and multiple keys.

All of the sample programs in this chapter are included on your distri
bution diskette, so you can try them out and experiment with the
calling parameters in the various procedures. Each sample program
is listed under a file name of the form FILENAME.PAS.

This chapter is designed as a basic tutorial. Technical details about the
Turbo Database Toolbox procedures and functions used in this chap
ter can be found in Chapter 3. Appendix B contains information about
the B+tree structure used by Turbo Access.

Including Turbo Database Routines in Your Programs

Both Turbo Access and Turbo Sort are supplied on the disk in
readable source code that you are free to use any way you like. You
can include the modules in your own Turbo Pascal programs, without
ever taking a look at the source code, and without worrying about
how it works. You can study the source code to learn from it, or you
can even make your own changes to it. But remember, if you alter the
source code, you are as much on your own as if you had written the
entire program yourself; our technical support staff will be unable to
help you should problems arise. Also, while you may distribute a
program that includes Turbo Access or Turbo Sort, you may not dis
tribute the modules themselves as standalone products.

GETTING STARTED 11

To use the Turbo Database Toolbox, you must first incorporate the
source file modules you need for your application program with the
Turbo Pascal include directive. The include directive is a comment
that tells the compiler to read the program contained in the specified
file. This directive starts with $1, followed by the file name and op
tional three-letter extension of the file to be included. To be under
stood by the Turbo Database compiler, the entire include directive
must be enclosed within braces, i.e., {$I filename. EXn. For more
information about the include directive, see Chapter 1 in the Turbo
Pascal Reference Manual.

Using Turbo Access

12

Turbo Access is a tool that allows you to quickly access, search, and
administer large data files used by Turbo Pascal programs. Turbo
Access uses keys--code words based on some important aspect of
your data-to quickly locate, add or delete data records, without
requiring a sequential search through the entire data file.

Every Turbo Database Toolbox program that uses Turbo Access must
include either the ACCESS2.BOX module (for Turbo Pascal 2.0) or
ACCESS3.BOX module (for Turbo Pascal 3.0), and it must be included
first. These files contain the basic data and index file setup and main
tenance routines; Turbo Pascal 3.0 handles file I/O somewhat differ
ently than Turbo Pascal 2.0. You should rename the module you are
using to ACCESS. BOX.

As explained, the ACCESS routines are different for Turbo Pascal
versions 2.0 and 3.0:

• Turbo Pascal 2.0: Run TURB02.BAT to install Turbo Database
Toolbox.

• Turbo Pascal 3.0: Use ACCESS.BOX on this version-no installa
tion is required.

Note: This information applies to 16-bit systems only. No special
installation is required for CP/M-80 Toolbox users and only one AC
CESS.BOX file is included on the distribution disk. CP/M-86 users
should rename ACCESS. BOX to ACCESS3.BOX and rename AC
CESS2. BOX to ACCESS. BOX.

Turbo Database Toolbox Owner's Handbook

Next, you must include the module(s) needed for your particular ap
plication. These modules can be included in any order, and you need
only include the modules you require. The modules can also be used
in program overlays. The modules are as follows:

• ACCESS. BOX contains the basic data and index file setup and
maintenance routines.

• GETKEY.BOX contains the Turbo Access search routines NextKey,
PrevKey, FindKey, and Search Key.

• ADDKEY.BOX contains the AddKey procedure used for inserting
keys into index files.

• DElKEY.BOX contains the DeleteKey procedure used for deleting
keys from index files.

Before including the ACCESS. BOX module, you must declare some
integer constants to determine the configuration of the B+tree
structure. The values of the constants affect search speed and the
amount of memory (RAM and index file) used by the Turbo Access
system.

A program, SETCONST.PAS, is provided on your distribution diskette
to help you set the values of these constants. To use it, load and
compile the program; then run the program and answer the ques
tions it asks you. You will be asked for the maximum size of your data
records, the maximum key length, and the maximum number of keys
you will be using. You can experiment with the values, and SET
CONST.PAS will show you how the values you specify affect other
values. When you have determined the values you want for the con
stants, you can output the result of your interaction with SET
CONST.PAS as a text file that will contain all your constant
declarations.

The SETCONST.PAS program is included in this Turbo Database Tool
box package to make it easy for you to set constant values without
having to know the nitty gritty details about B + trees. For those of you
who are interested in the technicalities of Toolbox constants, see
Chapter 3.

SETCONST requires you to enter five inputs:

• Data record size (MaxDataRecSize)

• Key length (MaxKeyLen)

• An estimate of the number of records that will be in the file

GETTING STARTED 13

14

• The page size in keys (PageSize)

• Page stack size in pages (PageStackSize)

Once given these values, SETCONST calculates several outputs; each
output is given three times, once each for a database that is 50%, 75%
and 100% full. The density of the database depends on how it's cre
ated (the order of insertion of new items), and tends to be about 75%.
The outputs are:

• Total index file pages-the number of index file pages necessary
to hold the index at the given density.

• Order--constant required by Turbo Access.

• MaxHeigh~onstant required by Turbo Access. This value
depends partly on density of the database. For safety, the highest
value listed for MaxHeight (automatically displayed by SET
CONST) should be used.

• Memory used for page stack-amount of RAM memory used by
the page stack.

• Index file page size-size, in bytes, of a single page in the index file
(how large individual reads and writes of the index will be).

• Index file sizer-approximate size of the entire index file.

• Data file sizer-approximate size of the entire data file.

• Average searches needed to find a key-average number of times
that the index file must be searched to locate a particular key.

• Average searches satisfied by page stack-when searching for a
key, some of the index pages needed for the search will be in the
page stack.

• Average disk searches needed to find a key-number of searches
that will remain after the page stack has been exhausted.

The first three inputs (data record size, key length, size of the data
base) should be known beforehand; the corresponding default values
for PageSize and PageStackSize are acceptable for most applications.
PageSize and PageStackSize should be varied to minimize the num
ber of (slow) disk searches needed to find a key, while not wasting too
much memory for the page stack. The significance of the four most
important outputs is as follows:

1) Memory used for page stack-as value increases, more memory
is used

2) Index file sizer-as value increases, more disk space is used

Turbo Database Toolbox Owner's Handbook

3) Data file siz&-as value increases, more disk space is used
4) Average disk searches needed to find a key-as value increases,

more time is used

Other constants are not important or are incorporated into these.

Increasing PageSize or PageStackSize will always increase #1 and #2
while decreasing #4. A balance must be found where the number of
disk searches needed is low, while the amount of memory used is also
low; the importance of memory and disk space depends on the appli
cation. #3 is affected only by the data record size and the size of the
database, so there is little that can be done to minimize it.

When you have decided on all the values, press Escape to end the
program. It will ask you whether to write the constants out to a file; if
you say yes, it will ask you for the file name, then write out the con
stants in this form:

canst
lIaxDataRecSize = 200;

lIaxKeyLen = 10;
PageSize = 24;
Order = 12;
PageStackSize = 10;
MaxHeight = 4;

Warning: Care must be taken when specifying the size of your keys,
records, and constants. You should never count the bytes manually.
Instead, use the SizeOffunction to determine the actual size of your
data structure and then type this value into your Toolbox program.
(See page 20 of the Owner's Handbook for more discussion.)

For example:

progru ShowSize;

type
KeyString = string[25J;
CustRec = record

end;

Name : KeyString;
Balance : real;

begin
Writeln(SizeOf('MaxKeyLen=' .SizeOf(KeyString)-l);
Writeln('MaxDataRecSize=' .SizeOf(CustRec));

end.

GETTING STARTED

{ CustRec }

15

If you were to count the bytes manually in this example, you would
incorrectly add 25 (your string length) to your 6-byte real number and
declare:

const
MaxOa taRecSize = 31;

MaxKeyLen = 25;

These sizes are incorrect! Turbo Pascal strings range from 0 to their
defined length. In the example above, Name is actually 26 bytes long.
Perhaps you are using the Turbo Pascal BCD or 8087 compiler-both
of which feature longer real numbers (10 and 8 bytes respectively).

To further avoid errors, your program should also pass SizeOf
(CustRec) to the MakeFile and OpenFile procedures instead of an
integer constant:

MakeFile(OataF, 'CUST.OTA', SizeOf(CustRec));

OpenFile(OataF, 'CUST.OTA', SizeOf(CustRec));

Data Files

16

A Turbo Access data file can contain up to 65,536 records. This in
cludes a reserved record and all deleted records. However, only one
system record (record 0) is reserved, and deleted records are reused
before the file is expanded. This effectively allows for 65,535 user
records.

The size of a data record, in theory, can be up to 64K bytes. However, a
record that large would allow only about 160 records to be stored on a
10 megabyte hard disk (with no index files). It is good practice to try to
minimize the size of the data record by using codes and abbrevia
tions. Though large records will not affect search times, they do tend
to fill up disks. The smallest data record allowed is 8 bytes, and the
data record size is fixed for any given data file.

In contrast to ordinary Turbo Pascal data files, the Turbo Access data
file variables are always declared using the DataFile type (in the AC
CESS.BOX module). The file record size is determined at run time by
parameters passed to the MakeFile or OpenFile procedure.

Turbo Database Toolbox Owner's Handbook

Index Files

The maximum number of entries in an index file is the same as the
number of records in a data file, 65,535. It is the user program's re
sponsibility to designate key information and to provide it and the
data record number to the index update routine AddKey.

One data file can be referenced by several index files. This allows one
set of data to be keyed using different aspects of the data record. In
addition, keys mayor may not be part of the actual data record.
However, we recommend that a key be a field in the actual data
record, or be computed from one or more fields in the record. If you
include the key elements in the data record, you can rebuild an index
that has been lost or corrupted.

For example, suppose your application program is designed to main
tain a mailing list. The keys stored in the index could be the last name
of each entry in the data file, converted to uppercase. If a search string
is also converted to uppercase, Turbo Access will find the appropriate
entry-regardless of whether it was entered using uppercase and
lowercase letters-but the data record will still retain the data exactly
as entered. In general, key values should always be duplicated in the
data file records unless you have a very limited amount of disk
storage.

The disk space used by an index file is determined by the key length
and the number of records that are indexed and the order of insertion.
Experiment with the SETCONST.PAS program (page setconst) to ob
tain the appropriate values for your application. If you want to mini
mize the size of index files, the best place to start is with the key
length.

Program Structure with Turbo Access

In most cases, your application program will use Turbo Access to
perform one or more of the following functions:

• Add data records

• Retrieve data records

• Update data records

• Delete data records

GETTING STARTED 17

In addition, prior to processing any data, an application program
must prepare (open) the necessary index and data files, and at ter
mination, close these files.

Initializing the User Program

The initialization phase consists of calling either MakeFile (for a new
file) or OpenFile (for an existing file) for each data file to be used, and
Makelndex (new) or Openlndex (existing) for each index file. In addi
tiori, Initlndex must be called to initialize the index file manager
routines. Initlndex tells Turbo Access that there are no open index
files, and clears the page stack buffer so that none of the information it
contains is written to the index files. Initlndex must only be called
once at the beginning of a program that uses index files; it must never
be called twice in the same program, since any currently open index
files would be corrupted.

User Program Variables

The Turbo Access modules contain a number of internal variables. To
avoid duplication of their names in your user programs, they all begin
with the characters "TA". This does not prevent you from using
variables that start with "TA", but can result in compiler error number
43: "Duplicate identifier or label" if you do use these variable names.

Error Handling

18

Turbo Access routines generate two types of errors: non-fatal errors
and fatal errors. Fatal errors cause the program to terminate, while
non-fatal errors are simply reported to the program through the
Boolean variable OK, which is automatically declared by the AC
CESS.BOX module. For instance, OpenFile returns FALSE in OK if the
specified file was not found and FindKey returns FALSE if the key
string was not found.

If a fatal error occurs, a routine called TalOcheck (in the ACCESS. BOX
module) is invoked. It displays an error code, a file name, and a record
number, and then terminates the program. The following is an exam
ple of an error display:

Turbo-file 1.0 error 10
File A:CUST.DAT Record 103
Program terminated

Turbo Database Toolbox Owner's Handbook

A Turbo Access fatal error is equivalent to a Turbo Pascal I/O error.
Possible error codes are therefore the same as those listed in the
Turbo Pascal Reference Manual. However, Turbo Access outputs the
error code in decimal, while Turbo Pascal outputs it in hexadeci'mal.

The following table converts the error numbers to the I/O listed in the
manual. (The last error described by this table actually applies to,
Turbo Pascal 3.0 users only.)

10result# Error message from Turbo Pascal manual

1
2
3
4
5
6
7
8
9

10
14
12
13
14
15
16
17
18

144
145
153
240
243

90
01
F1
04
02
03
99
FO
10
99
F2
99
FO
91
04
20
21
22
90
91
99
FO
F3

Record length mismatch
File does not exist
Directory is full
File not open
File not open for input
File not open for output
Unexpected end-of-file
Disk write error
Error in numeric format
Unexpected end-of-file
File size overflow
Unexpected end-of-file
Disk write error
Seek beyond end-of-file
File not open
Operation not allowed on a logical device
Not allowed in direct mode
Assign to std files not allowed
Record length mismatch
Seek beyond end-of-file
Unexpected end-of-file
Disk write error
Too many files open (Turbo Pascal 3.0 only)

In general, fatal errors occur only when a data and/or index file is
corrupted. A fatal error also occurs if you try to expand a data file or an
index file when there is insufficient disk space.

GETTING STARTED 19

User Program Termination

At termination, your program must call CloseFile for each data file in
use, and Closelndex for each index file. If a file is created but not
closed, or closed but has zero records, the file cannot be used until it is
deleted or rewritten.

Some Database Tasks: Quick Summary

The following sections give you a quick rundown on how to handle
some basic database tasks: adding and deleting records and keys,
locating key values, and handling numeric and duplicate keys. Com
plete program examples can be found later in this chapter.

Adding Data Records

To add a data record, first input the record, and then add it to the data
file with the AddRec procedure. AddRec returns a record number that
should be stored in a temporary variable'. Then choose a key value
from one or more fields of the data record. Now pass the key and the
record number to the AddKey routine. If your program maintains
more than one index, call AddKey for each index file, passing the
same record number each time. If your index file does not allow
duplicates, you should always check the status variable OK after each
call to AddKey (see page 21 for how Turbo Access handles duplicate
keys).

Key Location

20

To locate a key value, use the FindKey, SearchKey, NextKeyand Prev
Key routines to search the index (or indexes). Once the key has been
found, use GetRec to obtain the associated data record from the data
file. Note that the key field in the FindKeyand SearchKey procedures
is a variable parameter. If you search for a customer named Smith and
the key is not found, for example:

FindKey(IndexF, DataRef, Name);

the global variable OK will be set to FALSE and the value of Name will
have been destroyed (it is actually set to the value of the last key read
from the index file). Always use a scratch variable (or parameter) in
your search routine, as shown in the following example.

Turbo Database Toolbox Owner's Handbook

Wri te (I Enter name to find: I);

Read (Name) ;

Scratch: = Name; {Scratch is same type as Name}

FindKey(IndexF, DataRef, Scratch);

if not OK then
Writeln(I - Sorry: I cannot find I, Name);

Deleting Data Records

To delete a data record, first find its key with FindKey, SearchKey,
NextKey or PrevKey, as just described. Then call DeleteKey to delete
the record from the index file. If there is more than one index, read the
data record (GetRec), and derive from it the keys to be deleted from
the other index files. Finally, call DeleteRec to remove the data record
from the data file.

If your index file allows duplicates, you must also pass the data record
number of the key you want to delete by saving the record number
that is returned by FindKey, SearchKey, NextKey or PrevKey. Then,
when you call DeleteKey, pass it the key and the record number.

Key Change

Changes made to a data record may affect the key value(s). For exam
ple, a person might change his name from "Carroll" to "James." If
so, you must call DeleteKeyto delete the old key, then AddKeyto add
the new key. If there is more than one index file, this procedure must
be repeated for each file for which the key has changed. Finally, call
PutRec to update the record in the data file.

Reuse of Deleted Data Records

Turbo Access will automatically reuse previously deleted data
records before expanding a data file when new records are added.
Turbo Access maintains a linked list of deleted data records. When a
data record is deleted, its first two bytes form a pointer to the next
deleted record. Minus one (-1) indicates that the record is the last
record in the list. Since a zero pointer (two bytes of zero) never occurs,
you may reserve the first two bytes of each data record, and set them
to zero when you add a record to the file. This will enable you to
distinguish used records from deleted records if you process the file
without reference to an index (for example, when you reconstruct a
corrupted index file).

GETTING STARTED 21

Duplicate Keys

In some applications, there is no guarantee that key strings will be
unique. For instance, in an index based upon last names, duplicate
keys may occur. Turbo Access only allows duplicate keys if the Status
parameter in the call to Makelndexor Open Index is 1.

When Turbo Access adds duplicate keys to index files, equal keys are
ordered by their record number (data references), so that key entries
with low references appear first. Normally, this will correspond to the
order in which the keys are entered, since new data records are
usually added to the end of data files.

The search routines FindKeyand SearchKeyalways locate the first
key entry; that is, the key entry with the lowest data record number.

When you want to delete a key from an index file with duplicate keys,
it is not sufficient simply to specify the key string, since this string may
identify several entries. To select a specific entry, you must also
specify the data record number. The DeleteKey procedure will delete
the key entry only if the string and the data record number match the
values found in the index file.

Numeric Keys

22

If your application program requires numeric key values, you must
convert these numeric values to strings before passing them to Turbo
Access. There are two ways to do this.

The simplest approach is to convert the numeric value to its ASCII
string representation using the Turbo Pascal standard Str procedure
(refer to the Turbo Pascal Reference Manual: String Procedures). If
you use this method, the resulting strings must be right-justified
(appear to the far right of the field). This is easily accomplished by
specifying a field width in the call to Str. The main disadvantage to this
method is that the key length must be set to the maximum number of
digits that may occur as opposed to the number of bytes required to
store the number in its binary format.

The second approach takes advantage of the compactness of integers
in binary format. The routines shown here can be used to "pack" and
"unpack" integers to and from strings. IntToStrconverts an integer to
a string, and StrTolnt converts a string into an integer. The strings
returned by IntToStr are two characters long; the strings passed to
StrTolnt must likewise be two characters long.

Turbo Database Toolbox Owner's Handbook

type
string2=string[2] ;

function IntToStr (N : integer) : string2;

begin
N : = N + $8000;

IntToStr : = Chr(Hi(N)) + Chr(Lo(N));
end;

function StrTolnt(S : string2): integer;
begin

StrTolnt := Swap(Ord(S[l])) + Ord(S[2]) + $8000;
end;

The previous routines operate on signed integers (-32768 to 32767). If
the integers are to be interpreted as unsigned quantities, simply
remove the additions of $8000.

Data File Splitting

A Turbo Access index file must be contained in a single disk file. Data
files may, however, be spread over more than one disk file; the total
number of records must not exceed 65,536. The splitting of a data file
is quite simple to implement and best illustrated by an example.

Assume that each data file can hold 10,000 records and that we need
to store up to 30,000 records; we will require three data file disks.
When a record is added to the first file, the data record number is
entered directly into the index file. However, when records are added
to the second and third file, we add 10,000 or 20,000 to the record
number. Later, when the index file is read, record numbers can be
divided by 10,000 to determine in which files the records reside, and
the remainders from the divisions are the actual data record numbers.
Since the first record number in a data file is 1, you must subtract 1
before dividing and add 1 to the remainder to obtain the correct
results.

GETTING STARTED 23

Skeleton Program

24

A skeleton program that uses Turbo Access might look like this:

progru YourProgram;

const
MaxDataRecSize
MaxKeyLen
PageSize
Order
PageStackSize
MaxHeight

{$1 ACCESS.BOX}
{$1 ADDKEY. BOX}
{$1 DELKEY. BOX}
{$1 GETKEY. BOX}

type

= 132; { Maximum record size
25; { Maximum key length
24; { 24 items per page
12; { Half the PageSize
8; { Page buffer size
5; { Maximum Bttree Height

{ Needed for Turbo Access programs
{ Needed to add entries to index files
{ Needed to delete entries from index files}
{ Needed to search the B + tree }

MyDataRec = Record
DataStatus: integer;
Fieldl : string [50] ;
Field2 : string [78] ;

end:

var

2 bytes
51 bytes
79 bytes

{ 132 total bytes

MyData : DataFile;
My1ndx : 1ndexFile;

{ Any other variable and procedure declarations needed
by your program.

begin
1nitIndex; { Needed if index files are used

{ Here you could OpenFile or MakeFile for data files
{ and then Open1ndex or Make1ndex for index files

CloseFile;
Closelndex;

end.
{ The rest of your main program

Turbo Database Toolbox Owner's Handbook

Turbo Access Programming Examples

The examples in this section demonstrate some common operations
on a sample customer database. We'll show you how to generate a
database and accompanying index file, define records and keys, and
access and update the database. The techniques used in this example
are the same for more complex databases with larger records and
several index and data files.

This example is contained on your distribution diskette under the file
name TBDEMO.PAS. A more extensive and detailed example of a
customer database program can be found in the files BTREE.PAS and
BTREE.lNC.

Defining the Record

Suppose you wish to create a customer database so you can easily
find phone numbers and other pertinent information. The first thing
you must do is decide what information you want to store about each
customer. For example, let's say you need to store the following infor
mation:

Customer name
Company name
Customer code
Address
Phone Number
Other remarks

This list of information constitutes one data record. Each separate
piece of information is one or more fields in the record. In a program,
the record definition might look like this:

GETTING STARTED 25

type
CustRec = record

CustStatus : integer;
CustCode : string[15];
EntryDate : str1ng[8];
FirstName : string [15] ;
LastName : string[30];
Company : string [40] ;
Addr 1 : string [40] ;
Addr2 : string [40] ;
Phone : string [15] ;
PhoneExt : string[5];
Remarks1 : string[40];
Remarks2 : string [40] ;
Remarks3 : string [40] ;

end;

The CustStatus field is included in most Toolbox database records to
allow the program to distinguish between deleted and non-deleted
records, since the DeleteRec procedure uses the first two bytes of a
record for its own purposes. The remaining fields are derived from
the list of information you wish to store.

Creating the Program

26

Now that we've decided on an appropriate data structure, we can
build a program that will allow a user to input, access, update and
delete the desired information. When designing the program, we
should consider the appearance of the program to the user, since it
will define the way a user can access and manipulate the data. A '
well-defined user interface helps determine which Toolbox routines
we should include in the program, and which procedures we must
write.

The first thing that appears on the screen should tell the user what
options are available. A menu such as the following could be used to
list the functions of the program.

Turbo Database Toolbox Owner's Handbook

1) List Customer Records
2) Find a Record by Customer Code
3) Search on Partial Customer Code
4) Next Customer
5) Previous Customer
6) Add to Customer Database
7) Update a Customer Record
8) Delete a Customer Record
9) Rebuild Index files

10) Exit

This menu tells the user what he or she can do with customer records,
and that it is possible to rebuild an index file.

Before this menu can be displayed, the program must initialize files
and global variables. Our main program might look like this:

begin
Initlndex;
Finished : = False;
OpenDataFile(CustFile, 'CustFile. dat' ,SizeOf(CustRec));
OpenlndexFile.(Codelndx, 'Code File . Ndx' ,

SizeOf(Customer. CustCode)-1, NoDuplicates) ;
repeat

case menu of
'I' , 'L': ListCustomers (CustFile) ;
'2', 'F': FindCustomer(CustFile,Codelndx);
'3', 'S': SearchCustomer(CustFile,Codelndx);
'4', 'N': NextCustomer(CustFile,Codelndx);
'5', 'P': PreviousCustomer(CustFile,Codelndx);
'6' , 'A': AddCustomer (CustFile, Codelndx) ;
'7' , 'U': UpdateCustomer(CustFile, Codelndx);
'8', 'D': DeleteCustomer(CustFile,Codelndx);
'9', 'R': Rebuildlndex(CustFile,Codelndx);
'0', 'E': Finished := True;
else;

end:
until Finished;

Closelndex(Codelndx) ;
CloseFile (CustFile) ;
end.

GETTING STARTED 27

First, the program calls a routine to open or, if necessary, create a file
to hold the customer information. Next, an index file is opened so that
a data record can be located by customer code. Once initialization is
completed, the main program calls a procedure that displays a menu,
then returns the user's menu selection. When the user is finished with
the program, the index and data files are closed.

Note: Data and index files must be closed before terminating the
program, or the files will not be recorded correctly on disk. After
making any changes to these files, be sure that you close the file
properly with the Closelndex and CloseFile routines before you end
the program.

Opening a Data File

28

To initialize the program, we use OpenFile to open an existing file and
MakeFile to create a new data file. In the following example, these
routines are combined into a procedure that opens the file if it exists. If
the file does not exist, the procedure asks the user if the file should be
created.

procedure OpenDataFile(var CustFile : DataFile;
Fname : FilenameType;
Size : integer) ;

var
create: char;

begin
OpenFile (CustFile, fname, Size);
if not OK then
begin

Wri teIn(' The data file: ',fname,' was not found.');
Write ('Do you wish to create it? ');
Read(KBD, create); WriteIn;
if UpCase (create) = 'Y' then

MakeFile (CustFile, fname, Size) ;
else Stop;

end;
if not OK then Stop;

end; {OpenDataFile}

Both MakeFile and OpenFile take three arguments:

File variable of type DataFile

Name of the file

Size of the data record to be stored in the file

Turbo Database Toolbox Owner's Handbook

The DataFile type is declared in the Toolbox ACCESS. BOX module,
and the variable CustFile must be declared in our program. The
filename is a string following the operating system's normal file
naming conventions.

The SizeOffunction is the best way to pass the last parameter, since it
will always reflect the true record size at run time, even if the record
definition changes; a static constant will not. To use the previous
routine, pass the DataFile variable, the name of the disk file, and the
size of the data record to be stored. The call from the main program
looks like this:

OpenDataFile (CustFile, 'CustFile. dat' ,SizeOf(CustRec)) ;

After a call to OpenDataFile, either a data file is opened or the pro
gram has stopped. The global variable OK (declared in the AC
CESS.BOX module) reflects the result of the call to OpenFile or
MakeFile and is checked for success or failure. If the OpenFile call
fails, the user is asked if he or she wants to create the file. If the user
decides not to create the file or if an error occurred during file crea
tion, an error handling routine should be called. In the following ex
ample, the Stop procedure is a critical error handler that can be called
from anywhere. Stop displays an error message and stops the pro
gram.

procedure Stop;
begin

GotoXY(l,24) ;
ClrEol;
Writeln('Customer database program aborted. ');
Halt;

end; {Stop execution}

Adding Records

After calling the OpenDataFile routine, our program can add records
to the data file using the Toolbox AddRec procedure. AddRec takes
three parameters.

• DataFile variable

• Variable to receive a record number

• Database record

GETTING STARTED 29

30

The record number variable receives the location where the record
was stored, and is used for building and updating index files
(explained later in this tutorial). The last parameter is the record buffer
which holds the information to be written to disk.

The following example illustrates how to construct a database and
add records, with no index files. All that is required is a data input
routine and the Toolbox AddRec procedure. The example assumes
that OpenDataFile has already been called. The procedure repeats,
requesting user input, then storing that information in the data file.

procedure BuildDataFile (var CustFile : DataFile);
Vat

InputRec : CustRec;
RecordNumber : integer;
Response : char;

begin
repeat

InputInforma tion (InputRec) ;
AddRec (CustFile. RecordNumber. InputRec);
Write ('Would you like to enter another record? ');
Read (KBD . Response) ;
Wri teln (UpCase (Response)) ;

until UpCase(Response) <> 'Y';
end:

{ BuildDataFile }

AddRec takes the information obtained from the input routine and
appends it to the disk file represented by CustFile. The variable
RecordNumber must be passed to AddRec. After the call is made,
RecordNumber contains the physical location of the record that was
written to the disk.

Although BuildDataFile is an effective routine, it is not very safe. This
is because it ignores the fact that an index file is going to be used, and
would allow us to enter two records with the same customer code.
This would create a conflict when a customer code index file is cre
ated, since that would require that each customer have a unique cus
tomer code.

To solve this problem, we can incorporate the index routines when
records are added (see the next section). Right now, let's look at one
way to obtain user input.

Turbo Database Toolbox Owner's Handbook

We start by creating a simple data input routine:

procedure InputInformation(var Customer : CustRec);
beg1D

WriteIn(' Enter Customer Information ');
WriteIn;
11th Customer do
beg1D

CustStatus := 0;
Wri te ('Customer code: '); ReadIn(CustCode) ;
Write('Entry date : '); ReadIn(EntryDate);
Write ('First name :'); ReadIn(CustCode) ;

Write ('Remarks: '); ReadIn!Remarks3);
end;

end; { InputInformation }

Although Inputlnformation does what it sets out to do, it is very
simplistic, and is therefore error prone. For example, the standard
Turbo Pascal Readln procedure allows as many as 128 characters to
be entered. If fields are set up on the screen, a user could enter too
many characters and disturb the display. Or, if one of the fields re
quires an integer and the user enters an alphabetic character and a
carriage return, an I/O error would occur.

It is best to input data character-by-character, as suggested in Appen
dix A, "Tips for Toolbox Programmers." For a good example of a
"safe" data input routine, refer to the InputStr procedure in the
sample include file, BTREE.lNC.

Note that the CustStatus field is set to zero. This marks the record as a
valid, non-deleted record. In the next section, we shall see how to
distinguish between deleted and non-deleted records in the data
base.

Creating an Index

Now that we have a data file and a way to input information, we can
use an index file to build an efficient database. Index files are com
pletely separate from data files. This means that, if you make a change
to a data file, you must also make the corresponding change in the
associated index file. In addition, an index file must be opened ex
plicitly in much the same way as a data file.

GETTING STARTED 31

32

The nice thing about index files is that they allow you to key a
meaningful word or string to each record. In our example, a key could
be the customer's name, the company's name or the customer's code.
In some cases, each key will be unique, as when we assign a code
number to each customer; in other cases, duplicate keys will be used,
as when there is more than one customer with the same name.

All keys used by Database Toolbox routines must be strings. If you
choose a numeric field (real or integer) as a'key, you must convert it to
a string before passing it to the index routines.

Since index information is stored in a separate file, we must use
Toolbox routines to create the index file and then make entries into it
based on our data file. Before calling any index procedures, we must
call Initlndex to initialize the internal index structure. Makelndex
creates the index file, and AddKeyassociates a data record with a key.

We can take the same approach to opening the index file as we did
with the data file; that is, we first try to open the index file, and if it
does not exist, we create it. The following example shows a routine
for opening index files:

procedure OpenlndexFile (var Codelndx: IndexFile;
Fname : FilenameType;
KeySize,
Dups : integer);

var
crea te: char;

begin
Openlndex (Codelndx, Fname, KeySize, Dups) ;
if not OK then
begin

Writeln(' The index file: ',fname,' was not found,');
Write ('Do you wish to create it? '); <cr> Read(KBD, create);
if UpCase(create) = 'Y' then

Rebuildlndex (CustFile, Codelndx) ;
end:
if not OK then stop;

end; { OpenlndexFile }

Turbo Database Toolbox Owner's Handbook

The parameters passed to this routine are:

• Index file variable

• Name of the disk file

• Size of the key string to be used

• Value indicating if duplicate keys are allowed

These are the same parameters required by Openlndex and Makeln-
dex. .

The index file variable is of type IndexFile declared in the Database
Toolbox ACCESS. BOX module. The file name is a standard string.
Since the Toolbox routines must know the correct length of the key
string, use (SizeOf(KeyString)-1) when calling Makelndex or Openln
dex (-1 compensates for the first byte that holds the length of the
string). For example:

OpenlndexFile (CodelndexFile. 'CUSTCODE. NDX' •
SizeOf(Customer. CustCode)-1. NoDuplicates) ;

The Toolbox must know if the program allows duplicate keys. If du
plicates are not allowed, the Toolbox will inform your program when
it tries to enter a duplicate key. In the previous statement, NoDu
plicates is a constant set to zero. If duplicate keys are to be allowed, a
non-zero value is used.

Now let's look at how to use these subroutines to build an index file
keyed on customer code at the same time we are building a data file.
In the sample procedure BuildDataFile, customer information was
obtained and then inserted into the data file. This is the logical place to
also insert key information into an index file. The following example
modifies BuildDataFile to make it into a general routine for adding
customer records.

The major differences between the AddCustomer routine on the next
page and BuildDataFile are that the extra statements, AddKey and
FindKey, are added, and it is assumed that OpenlndexFile has been
called. AddCustomer makes sure that every time a record is added to
the database the index is also updated. In addition, it will not allow re
cords with duplicate customer codes to be entered into either the
index file or the data file.

GETTING STARTED 33

procedure AddCustomer(var CustFile : DataFile;

var Codelndx : IndexFile);

var

RecordNumber

Response

TempCode

begin
repeat

: integer;

: char;

: string! 15];

InputInformation(Customer);

FindKey (Codelndx, RecordNumber , TempCode) ;

if not OK then
begin

AddRec (CustFile, RecordNumber, Customer) ;

AddKey(Codelndx, RecordNumber, Customer. CustCode);

Write ('Add another record? ');

end
else Write ('Duplicate code exists. Try another code? ');

Read (KBD , Response); Wr ite In

Until UpCase(Response) <> 'Y';

end: { Add a Customer }

After the information is input, FindKey is called to see if there is
already a database entry with this key. If FindKey sets OK to TRUE, a
duplicate key message is displayed onscreen; otherwise, the record is
added to the data file. AddRec returns the location of the data record
in the file, which is passed along with the key to the AddKey proce
dure.

Rebuilding Index Files

34

Sometimes an index file is corrupted or lost while the corresponding
data file remains intact. This could occur if a program is stopped
before it closes the files-usually if the machine is turned off, or if
there is a power failure. In such cases, you need some way to rebuild
the index files. A similar situation occurs when you decide to add a
new index file to your database. For example, you may want a sepa
rate index keyed on customer name.

When building an index file from scratch, or rebuilding a corrupted
index file, the general method is as follows:

• Step through the database record-by-record

• Extract the key information from non-deleted records

• Pass the key and the location of the data record to the AddKey
procedure

Turbo Database Toolbox Owner's Handbook

This is why the CustStatus field was included in the earlier record
definition, and why it was set to zero in the example Inputlnformation
routine. As long as CustStatus is zero, the record is non-deleted. To
use this feature in rebuilding index files, simply test this field before
adding the key. For example:

if Customer, CustStatus = 0 then AddKey(,

In the previous example, OpenlndexFile, when the index file is cre
ated a call is made to Rebuildlndex. This is done in case the data file is
non-empty-for example, if the index file is missing but the data file
contained valid data. Rebuildlndex can also be called from the main
program if the user suspects a corrupted 'index.

The following sample procedure overwrites the old code index file
with a call to Makelndex. It obtains the number of records in the data
file with a call to FileLen (subtracting one to compensate for the sys
tem record). It thus steps through the entire data file looking for non
deleted records to add to the index file.

procedure RebuildIndex(var CustFile : DataFile;

var Code Index : IndexFile);

var

RecordNumber : integer;

begin
MakeIndex(CodeIndex, 'CodeFile,ndx',

SizeOf(Customer, CustCode)-l,NoDuplicates);

for RecordNumber : = 1 to FileLen(CustFile) - 1 do
'begin
GetRec (CustFile, RecordNumber, Customer) ;

if Customer, CustStatus = 0 then
AddKey (Code Index, RecordNumber ,Customer, CustCode) ;

end
end; { Rebuild Index }

Each record in the data file is read into memory with the Toolbox
GetRecfunction. Once in memory, the record can be checked to see if
it is a valid non-deleted record.

Since we know the data file was created using the previous AddCus
tomer procedure, we know there are no duplicate keys in the data file.
Upon completion, a new index file is created and the internal index
structure is reset.

GETTING STARTED 35

Access to the Data

36

Once the previous procedures have executed, you will have created a
file that contains information about your customers and an index file
keyed on customer code. Now what can you do with it?

You can access the data sequentially by using two Toolbox routines:

• FileLen to determine how many records you have

• GetRecto bring the records from disk into memory

For example, consider the following routine:

procedure ListCustomers(var CustFile : DataFile);

Vat

Numbe rO fRecords,

RecordNumber : integer;

Pause : char;

begin
NumberOfRecords := FileLen(CustFile);

Writeln(I Customers '); Writeln;

for RecordNumber : = 1 to NumberOfRecords - 1 do

begin
GetRec (CustFile, RecordNumber, Customer) ;

if Customer .CustStatus = 0 then DisplayCustomer(Customer);

end;
Wri teln;

Write (I Press any key to continue ... ');

Read(KBD,pause); Writeln;

end; { ListCustomers }

ListCustomers determines the number of records in the file with the
FileLen function call. FileLen returns the number of records in the file
(represented by CustFile) including the one system record and all
deleted records. To look at every record in the database, we set up a
for statement to loop (NumberOfRecords -1) times (-1 tells the pro
gram to ignore the system record).

Each iteration of the loop calls GetRecwith the file variable, the record
number, and a customer buffer to hold the information. Once the
record is brought into memory, it can be processed like any other
record structure in Pascal. Thus, a call to DisplayCustomer writes the
appropriate fields from the customer record to the screen.

Turbo Database Toolbox Owner's Handbook

procedure DisplayCustomer (Customer: CustRec);
begin

with Customer do

begin
Writeln;
WriteLn(' Code:' ,CustCode,' Date:' ,EntryDate);
Writeln(' Name:' ,FirstName,' ',LastName);

WriteLn ('Company: ',Company);

Writeln('Address: ',Addrl);

Writeln(' ',Addr2);
Writeln (' Phone:', Phone,' ext. ',PhoneExt);

WriteLn('Remarks: ',Remarksl);
Writeln(,
WriteLn(,

end;
Wri teln;

end;

',Remarks2) ;
, ,Remarks3) ;

{ Display Customer }

A more sophisticated way to display information on the screen would
be to locate each field with a GotoXY statement, use a Write state
ment (not Writeln), and then use the ClrEol statement to remove any
other characters on the line. This is the method used by the
BTREE.PAS customer database program; please refer to the OutCust
procedure in the BTREE.INC include file for more details.

The previous example is useful for accessing every record in the
database. However, it is not very effective for accessing one customer
record, or for listing the customer database in sorted order by key. To
be more efficient, we can create an index file keyed on a specific piece
of information.

Indexed Access

Given an index file and a search key, the Toolbox FindKey procedure
will search the index for a key that exactly matches the search key. If a
match is found, the OK flag is set to TRUE, and the location of the data
record in the data file is returned in the variable RecordNumber. If OK
returns TRUE, the next step is to use GetRec to read the record into
memory. If OK is set to FALSE, no exact match was found, and our
program should write a message to the screen telling the user the
record was not found.

The following sample procedure asks the user to enter a customer
code as a search key. (A more sophisticated procedure would allow
the user to edit or delete the record once it was found; for an example,
see th~ Find procedure in the sample include file, BTREE.INC.)

GETTING STARTED 37

38

procedure FindCustomer(var CustFile : DataFile;

var Codelndx : IndexFile);

var
RecordNumber : integer;

SearchCode : string [15] ;
Pause : char;

begin
Write ('Enter the Customer code: '); ReadLn(SearchCode);

FindKey(Codelndx, RecordNumber, SearchCode) ;

if OK then
begin

GetRec (CustFile, RecordNumber, Customer) ;

DisplayCustomer (Customer) ;

end
else Writeln('A record was not found for the key ',SearchCode);

Write ('Press any key to continue ... ');

Read (KBD , Pause) ;

end; { FindCustomer }

The Toolbox SearchKey procedure lets you search the database
using only a partial key. SearchKey takes the same parameters as
FindKey, but looks for any record with a key greater than or equal to
the key being sought. Thus, SearchKey sets OK to TRUE if a key is
found that is close to the key being sought. A procedure to implement
a partial key search is almost identical to the previous FindCustomer
procedure. Only the wording and the Toolbox call change:

procedure SearchCustomer(var CustFile : DataFile;

var Codelndx : IndexFile);

var
RecordNumber : integer;

SearchCode : string[15];
Pause : char;

begin
Write('Enter the Partial Customer code: '); ReadLn(SearchCode);

SearchKey (Codelndx, RecordNumber ,Search Code) ;

if OK then
begin

GetRec (CustFile, RecordNumber, Customer) ;

DisplayCustomer (Customer) ;

Turbo Database Toolbox Owner's Handbook

end
else
Wri teln('A record was not found greater than the key ',SearchCode);
Wri teln ('Press any key to continue . ') ;
Read (KBD , Pause) ;

end; { SearchCustomer }

After a call to SearchKey, FindKey, NextKey, or PrevKey, Turbo Access
remembers the last key that was accessed so that surrounding entries
can be found. The Toolbox PrevKey procedure can be used to find the
key before the last one accessed, and NextKey can be used to find the
key following the last accessed. These routines are quite similar to
FindKey, except that there is no need to prompt the user for a cus
tomer code, and the Toolbox call is changed to either NextKey or
PrevKey:

procedure NextCustomer(var CustFile : DataFile:
var Codelndx : IndexFile);

var
RecordNumber : integer;
SearchCode : string [15] ;

Pause : char;
begin

NextKey (Codelndx, RecordNumber, Search Code) ;
if OK then
begin

GetRec (CustFile, RecordNumber, Customer) ;
Write('The next customer is : ');
DisplayCustomer (Customer) ;

end
else

Writeln('The end of the database has been reached.');
Wri teln('Press any key to continue " ');
Read (KBD , Pause) ;

end; { Next Customer}

Now we can access any record in the customer database by code. The
same technique could be applied to build other index files that could
access customer records by other fields, such as name or company.

Note that the key field in the FindKeyand SearchKey procedures is a
variable parameter. (See page 20 of the Owner's Handbook for more
discussion.)

GETTING STARTED 39

Deleting Records

40

Deleting a customer record is quite similar to adding one. Rather than
obtaining data from the sample Inputlnformation procedure, the user
need only enter the customer code. For example:

Write (, Enter the Code of the customer to be deleted: ');
Readln (CustomerCode) ;

With this information, we can write a DeleteCustomer procedure. The
procedure must delete the customer record from the data file and
remove the appropriate key fields from any index files we are using.
The following example prompts the user for a customer number, and
then deletes it (if it exists) from the index file and the data file.

procedure DeleteCustomer(var CustFile : DataFile;
var Codelndx : IndexFile);

var
RecordNumber
Response
CustomerCode

: integer;
: char;
: string [15]; { Same as CustRec. CustCode field }

begin
repeat

Write (, Enter code of customer to be deleted: ');
Readln (CustomerCode) ;
FindKey(Codelndx, RecordNumber, Customer. CustCode);
if OK then
begin

DeleteKey (Codelndx, RecordNumber, Customer. CustCode) ;
DeleteRec (CustFile, RecordNumber) ;
Wri te ('Delete another record? ');

end
else

Wri te ('Customer code was not found. Try another code? ');
Read (KBD, Response) ;
Wri teln (Response) ;

until UpCase (Response) < > 'Y';
end; { Delete a Customer }

The DeleteCustomer procedure repeats, requesting a customer code
to be deleted, and then trying to find the key in the index file. If the key
is not found, it issues a "key not found" message. Otherwise, the key
is deleted from the index file with the DeleteKey procedure. DeleteKey
assigns the RecordNumber variable the location of the data in the

Turbo Database Toolbox Owner's Handbook

datafile. This is then passed to the DeleteRec procedure, which marks
the record as deleted.

Updating Records

Sometimes a customer may change his or her name or address. To
effectively implement an update procedure, we need some way to
display customer information in a record and allow the user to change
it.

For simplicity, let's use the DisplayCustomer and InputCustomer
procedures already developed. (We could also allow the user to edit
each field in the data record without having to retype the fields that
haven't changed. For an example of this technique, refer to the In
putStr, InputCust and Find procedures in the example include file,
BTREE.lNC.)

The update algorilhm first finds the record to be updated, then calls
the procedure that changes the record. When editing is complete, the
record is put back into the file by the Toolbox PutRec procedure. If any
of the fields used for keys were changed during editing, the index files
must be updated by deleting the old key entry and inserting the new
key. This means that all key fields should be saved in temporary
variables prior to editing. After the data record has been changed the
key fields can be tested to see if the index files need to be updated.

The following sample procedure prompts for a code, displays the
associated record, and allows you to re-enter it. The procedure then
puts the record back in the data file and checks the key field to see if
the index file needs to be changed.

procedure UpdateCustomer(var CustFile: DataFile;

var Codelndx: IndexFile);

var
RecordNumber : integer;

Response : char;

CustomerCode : string [15); { Same as CustRec. CustCode field }

begin
repeat

Write (I Enter code of customer to be updated: ');

Readln(CustomerCode) ;

FindKey(Codelndx, RecordNumber, CustomerCode);

if OK then
begin

GETTING STARTED 41

GetRec (CustFile, RecordNumber, Customer) ;

DisplayCustomer (Customer) ;

InputInformation(Customer) ;

PutRec(CustFile,RecordNumber, Customer);

if CustomerCode < > Customer. CustCode then
begin

DeleteKey(Codelndx,RecordNumber, CustomerCode);

AddKey(Codelndx, RecordNumber ,Customer. CustCode) ;

end;
Write ('Update another record? ');

end
else

Write ('Customer code was not found. Try another code? ');

Read (KBD , Response) ;

Wri teln (Response) ;

until UpCase(Response) <> 'Y';

end; { Update customer }

Note that the customer code is saved, and then later compared to the
code field in the customer record input from Inputlnformation. If the
two variables are not identical, the old key is removed from the index
file and the new key is inserted.

Conclusions

By now, it should be clear that a simple database program can be
quickly written and customized to a particular situation. The forego
ing procedures demonstrate the bare-bones coding necessary to set
up a working database. This code can be found on the disk in a file
called TBDEMO.PAS. Many of the enhancements you might want to
make tothese procedures can be found in the more detailed sample
program, BTREE.PAS.

BTREE.PAS-A Customer Database

42

The file BTREE.PAS on the distribution diskette is a complete source
code listing for a sample customer database. You can use this data
base and tailor it to your own applications as you see fit. When you
run BTREE.PAS, you will be presented with menus that will enable
you to manipulate and maintain the database using Turbo Access.
BTREE allows you to add, find, view, edit, delete and list customers of
a predefined type (see the CustRectype definition that follows).

Turbo Database Toolbox Owner's Handbook

BTREE maintains three files:

• A data file (CUST.DAT)

• A customer code index (CUST.IXC)

• A name index (CUST.IXN)

The customer code index does not allow duplicate keys, whereas the
name index does. When BTREE.PAS is run for the first time, it will
automatically create an empty database.

The Main Menu offers three functions: Update, List and Quit. Update
is used to add, find, view, edit and delete customers. List is used to list
customers, and Quit is used to terminate the program.

On the Update menu, the Add fu nction is used to add new customers.
Find is used to locate a customer, either by customer code or by last
(and first) name. To search for a specific customer code, simply enter
it when the cursor moves to the customer code field. If it is found, the
customer data is displayed and you may, if you wish, edit or delete it.
To search for a name, enter an empty customer code. Then enter the
last name and first name. Note that if a first name is specified, the first
15 characters of the last name must be entered in full. The scan will
locate the first customer of the specified name or the first customer
that follows the specified name if no exact match occurs. You can then
use Next and Previous to move forwards and backwards in alphabeti
cal order. Once you have located the desired customer, enter Quit.
You can then edit or delete the record shown on the screen, or simply
leave it unchanged.

List is used to list customers. Listings show the customer code, the
name anq the company. They may be output to the printer or to the
screen, and they may be unsorted or sorted by customer code or
name.

For further comments, read through the source code that follows.

Note: On systems with only 64K RAM, BTREE.PAS is too large to
compile in memory. You should select the Compiler option to
generate a .COM file(.CMD for CP/M-86), and then compile BTREE to
disk. To run the program, eXecute from the Turbo Pascal main menu,
or Quit the compiler and run BTREE.COM.

GETTING STARTED 43

44

BTREE.PAS / BTREE.INC Sample Source

**

prograa DataBase;
{$A+, C-,R-, V-}

{ ***}

Turbo-access version 1.00

DATABASE example

Copyright (C) 1984 by

BORLAND Int.

{ ***}

const

{ data record Size definition
CustRecSize = 342;

{ Turbo-file constants

MaxDa taRecSize
MaxKeyLen
PageSize

Order
PageStackSize
MaxHeight

var
NoOfRecs

CustRecSize;
25;
16;

8;

5;
5;

: integer;

{ include Turbo-file modules

{$I ACCESS. BOX}
{$I GETKEY. BOX}
{$I ADDKEY. BOX}

{$I DELKEY. BOX}

{ customer record Size }

max record Size
max key Size
page Size
half page Size

page buffer Size
f max B-tree height

Turbo Database Toolbox Owner's Handbook

type
Str5 string [5] ;
Strl0 string [10) ;
Str15 string [15) ;
Str25 string [25] ;
Str80 string [80) ;
AnyStr string [255] ;

{ character set type }
CharSet = set of char;

{ customer record de fini tion }

CustRec = record
CustStatus : integer;
CustCode : string [15 J;
EntryDate : strug[8];
FirstName : string [15] ;
LastName : string [30 J;
Company : string [40 J;
Addr 1 : string [40] ;
Addr2 : string [40 J;
Phone : string [15] ;
PhoneExt : string [5] ;
Remarksl : string [40] ;
Remarks2 : string [40] ;
Remarks3 : string [40 J;

end;

var
OatF : DataFile;
CodelndexFile.
NamelndexFile : IndexFile;
Ch : char;

function UpCaseStr(S : Str80) : Str80;
var

P : integer;
begin

for P := 1 to Length(S) do
S[P] : = UpCase(S[P]);

UpCaseStr : = S;
end;

{ ConstStr returns a string with
N characters of value C }

GETTING STARTED

CustStatus }
customer code }

entry date }
first name}
last name}

company}
Address 1 }
Address 2 }

Phone number }
extension }
remarks 1 }
remarks 2 }
remarks 3 }

45

46

function ConstStr (C : char; N : integer) : Str80;
var

S : str1ng[80];
begin

ifN<Othen
N := 0;

S[O] : = Chr(N);
FillChar(S[l] ,N,C);
ConstStr : = S;

end;

{ Beep sounds the terminal bell or beeper }

procedure Beep;
begin

Write ('G);

end;

procedure InputStr(var S

const
UnderScore

var
P : integer;
Ch : char;

begin

L,X,Y

Term

var TC

1 I. -,

: AnyStr;
: integer;

: CharSet;

: char);

{ define length of string }

string to edit}
maximum length and

x,y coordinates}
{ legal terminating

characters}
{ actual terminating

character}

GotoXY(X + 1,Y + 1); Write(S,ConstStr(UnderScore,L - Length(S)));
P := 0;

repeat
GotoXY(X + P + 1,Y + 1); Read(KBD,Ch);
case Ch of

#32 .. # 126 : if P < L then { legal characters }
begin
if Length(S) = L then {string full, remove

Delete(S,L,l) ;
P:=P+l;
Insert(Ch,S, P);
Write(Copy(S,P,L)) ;

end

char from end }

{ add new character }

Turbo Database Toolbox Owner's Handbook

else Beep;
:ifp>Othen

P := P - 1
else Beep;

: if P < Length(S) then
P := P + 1

else Beep;
: P := 0;
: P : = Length(S);

begin
Delete(S.P + 1.1);

{ cursor left }

{ cursor right }

{ beginning of string }
{ beginning of string }

Write(Copy(S. P + 1.Ll. UnderScore);
end;

"H. # 127 : if P > 0 then { delete previous char }
begin

Delete(S.P.l) ;
Write("H.Copy(S.P.L) . UnderScore) ;
P:=P-l;

end
else Beep;

"y : begin { delete entire string }
Write(ConstStr(UnderScore.Length(S) - P));
Delete(S.P + 1.L);

end;
else

if
end; {of case}

until Ch in Term;
P : = Length(S);
GotoXY(X + P + 1.Y + 1);

Write (" :L - P);
TC := Ch;

end;

procedure Select (Prompt: Str80;
Term : CharSet;

vat TC : char) ;
vat

Ch : char;

GETTING STARTED

{ erase leftover underscore
characters }

{ set terminating character
flag}

47

48

begin
GotoXY(1,23); Write(Prompt, '? '); ClrEol;

repeat
Read (KBD ,Ch);

TC : = UpCase(Ch);
if not (TC in Term) then

Beep;

until TC in Term;

Write(Ch);
end;

{ Clear Frame clears the display frame, i. e. Lines 3 to 20 }

procedure ClearFrame;
Val

I : integer;

begin
for I : = 3 to 20 do
begin

GotoXY(l,I + 1); ClrEol
end;

end;

{ OutForm displays the entry form on the screen }

procedure OutForm;
begin

GotoXY(7,5); Write('Code :');
GotoXY(29,5); Write('Date:');

GotoXY(1,7); Write('First name :');
GotoXY(29,7); Write('Last name :');

GotoXY(4,9); Write('Company:');
GotoXY(2,1O); Write('Address 1 :');

GotoXY(2,11); Write('Address 2 :');
GotoXY(6, 13); Write('Phone :');

GotoXY(29,13); Write('Extension :');
GotoXY(2,15); Write('Remarks 1 :');
GotoXY(2,16); Write('Remarks 2 :');

GotoXY(2,17); Write('Remarks 3 :');
end;

{ ClearForm clears all fields in the entry form }

Turbo Database Toolbox Owner's Handbook

procedure C1earForm;

begin
GotoXY(13,5); Write(" :15);

GotoXY(35,5); C1rEo1;

GotoXY(13,7); Write(" :15);

GotoXY(40, 7); C1rEo1;

GotoXY(13,9); C1rEo1;

GotoXY(13,lO); C1rEo1;

GotoXY(13,ll); C1rEo1;

GotoXY(13,13); Write(" :15);

GotoXY(40, 13) ; C1rEo1;

GotoXY(13, 15); C1rEol;

GotoXY(13,16); C1rEo1;

GotoXY(13, 17); C1rEo1;

end;

procedure 1nputCust (var Cust : CustRec);

const
Term: CharSet = ['E, '1, 'M, ·x, 'Zl;

var
L : integer;

TC : char;

begin
L := 1;

with Cust do
repeat

case L of

{ legal terminating characters:

'1 = <TAB>

'M = <RETURN> }

1 : 1nputStr(CustCode,15,12,4,Term,TC);

2 : 1nputStr(EntryDate,8,34,4, Term, TC);

3 : 1nputStr(FirstName,15,12,6,Term,TC);

4 : 1nputStr(LastName,30,39,6, Term, TC);

5 : 1nputStr(Company,40,12,8,Term,TC);
6 : InputStr(Addr1,30,12,9,Term,TC);

7 : 1nputStr(Addr2,30,12,lO,Term,TC);

8 : 1nputStr(Phone ,15,12,12, Term, TC);

9 :. 1nputStr(PhoneExt, 5,39,12, Term, TC);

10 : 1nputStr(Remarks1,40,12,14,Term,TC);

11 : InputStr(Remarks2,40,12,15,Term,TC);

12 : 1nputStr(Remarks3,40,12,16,Term,TC);

end;

GETTING STARTED 49

50

if TC in ["I. "II. "X] then
if L = 12 then L : = 1

elseL:=Ltl

else
if TC = "E then
if L = 1 then L := 12

else L := L - 1;

until (TC = "II) and (L = 1) or (TC = "Z);
end;

{ OutCust displays the customer data contained in Cust }

procedure OutCust (var Cust : CustRec);

begin
v1th Cust do
begin

GotoXY (13.5); Write (CustCode." : 15 - Length (CustCode)) ;

GotoXY(35.5); Write(EntryDate); C1rEol ;

GotoXY(13.7); Write (FirstName." : 15 - Length(FirstName)) ;

GotoXY(40.7); Write(LastName); C1rEo1;

GotoXY (13.9); Write (Company); ClrEo1;

GotoXY (13.10); Write (Addr 1); ClrEol;

GotoXY(13.11); Write(Add~2); ClrEol;

GotoXY(13.13); Write(Phone." :15 - Length(Phone));

GotoXY(40 .13); Write(PhoneExt); ClrEol;

GotoXY(13.15); Write (Remarks1); ClrEo1;

GotoXY(13.16); Write(Remarks2); ClrEol;

GotoXY(13.17); Write(Remarks3); ClrEol;

end;
end;

f~ct1on KeyFromName(LastNm : Strl5; FirstNm : Str10) : Str25;

const
Blanks = ,

begin
KeyFromName : = UpCaseStr(LastNm) t

Copy(Blanks.l.15 - Length(LastNm)) t

UpCaseStr(FirstNm) ;

end;

{ Update is used to update the database }

Turbo Database Toolbox Owner's Handbook

procedure Update;

vat

Ch : char;

{ Add is used to add customers }

procedure Add;

var
DataF : integer;

Ccode : string[15];
KeyN : string[25];
Cust : CustRec;

begin
with Cust do
begin

FillChar(Cust,SizeOf(Cust) ,0);
repeat
InputCust (Cust) ;

Ccode : = CustCode;

FindKey(CodelndexFile, DataF, Ccode) ;

if OK then
begin

GotoXY(6, 19) ;

Write('ERROR: Duplicate customer code');

Beep;

end;
until not OK;

AddRec (DatF, DataF, Cust); { add to data file }

AddKey(CodelndexFile, DataF,CustCode); {add to index file }

KeyN : = KeyFromName (LastName, FirstName) ;

AddKey(NamelndexFile, DataF,KeyN);

GotoXY(6,19); ClrEol;

end;
end;

{ add to index file }

{ Find is used to find, edit and delete customers }

GETTING STARTED 51

52

procedure Find;

var
D,L,1 : integer;

Ch,

TC : ehar;

Ceode,

PCode,

FirstNm : string[15];

KeyN,

PNm : string [25] ;

LastNm : string [30];

Cust : CustRee;

begin

if UsedRees(DatF) > 0 then

begin

Ceode : = ";

repeat
1nputStr(Ceode, 15, 12,4, ['M, 'Z], TC);

if Ceode < > " then

begin

FindKey(Code1ndexFile,D, Ceode);

if OK then

begin

GetRee(DatF,D, Cust);

OutCust (Cust) ;

end

else

begin

GotoXY(6, 19);

{ file empty? }

Write('ERROR: Customer eode not found'); Beep;

end;

end;

until OK or (Ceode = ");
GotoXY(6, 19) ; ClrEol;

if Ceode = " then

begin
L := 1;

FirstNm : = ";

LastNIil : = ";

repeat

case L of
1 : 1nputStr(FirstNm, 15, 12,6, ['I, 'M, 'z], TC);

2 : 1nputStr(LastNm,30,39,6,l'1, 'M, 'Z],TC);

Turbo Database Toolbox Owner's Handbook

end;
if TC in [' r. 'M) then

L := 3 - L;

until (TC = 'M) and (L = 1) or (TC = 'Z);

KeyN : = KeyFromName(LastNm.FirstNm);

SearehKey (NamelndexFile. D. KeyN) ;

if not OK then
PrevKey (NamelndexFile. D. KeyN) ;

repeat
GetRee(DatF. D. Cust);

OutCust (Cust) ;

Se1eet('Find: N)ext. P)revious. Q)uit'.['N'.'P'.'Q'J,Ch);

case Ch of
'N' : repeat NextKey (NamelndexFile. D. KeyN) until OK;

'P' : repeat PrevKey (NamelndexFile. D. KeyN) until OK;

end;
until Ch = 'Q';

end;
Seleet('Find: E)dit. D)elete. Q)uit'.['E'.'D'.'Q'J,Ch);

with Cust do
case Ch of

'E' : begin
PCode : = CustCode;

PNm : = KeyFromName (LastName. FirstName) ;

repeat
InputCust (Cust) ;

if CustCode = PCode then
OK : = false

else
begin

Ceode : = CustCode;

FindKey(CodelndexFile. I. Ceode);

if OK then Beep;

end;
until not OK;

PutRee(DatF.D.Cust); { update data file }

if CustCode <> PC ode then { key was edited; update

index file }

GETTING STARTED 53

54

begin
DeleteKey(CodelndexFile, D,PCode);

AddKey(CodelndexFile, D, CustCode) ;

end;
KeyN : = KeyFromName (LastName, FirstName) ;

if KeyN < > PNm then
begin

DeleteKey(NamelndexFile, D,PNm);

AddKey(NamelndexFile, D,KeyN);

end;
end;

'D' : begin

end;
end;

DeleteKey (CodelndexFile, D, CustCode) ;

KeyN := KeyFromName(LastName,FirstName);

DeleteKey (NamelndexFile, D, KeyN) ;

DeleteRec(DatF,D) ;

end { of UsedRecs(DatF) > 0 .. }

else Beep;

end;

begin {Update}

OutForm;

repeat
Select('Update: A)dd, F)ind, Q)uit',['A','F','Q').Ch);

case Ch of

'A' : Add;

'F' : Find;

end;
if Ch <> 'Q' then
begin

GotoXY(60,2); Write(UsedRecs(DatF) :5);

ClearForm;

end;
until Ch = 'Q';

end;

{ List is used to list customers }

Turbo Database Toolbox Owner's Handbook

procedure List;

label Escape;

vat

D,L,LD

Ch,CO,CS

Ccode
KeyN

Name

Cust

begin

: integer;
: char;

: string[I5];

: string[25];

: string[35];

: CustRec;

Select('Output device: P)rinter, S)creen',['P','S'].CO);

Select('Sort by: C)ode, N)ame, U)nsorted',['C','N','U'].CS);

GotoXY (I, 23); Write ('Press <Esc> to abort'); CirEoI;

CiearKey(CodelndexFile);

CiearKey (NamelndexFile) ;
D := 0;

LD := FileLen(DatF) - 1;

L := 3;

repeat
if KeyPressed then
begin

Read(KBD,Ch) ;

if Ch = #27 then

goto Escape;

end;

case CS of
'C' : NextKey (CodelndexFile, D, Ccode) ;

'N' : NextKey(NamelndexFile,D,KeyN);

'U' : begin

end;

OK : = false;

while (D < LD) and not OK do

begin
D := D + 1;

GetRec(DatF,D,Cust) ;

OK : = Cust. CustStatus = 0;
end;

end;

if OK then

with Cust do

begin

if CS <> 'U' then

GetRec(DatF,D,Cust) ;

Name : = LastName;

if FirstName < > " then

GETTING STARTED 55

56

Name : = Name +, ,+ FirstName;

if CO = 'P' then
begin

Wri te (Lst, CustCode, " : 16 - Length (CustCode)) ;
Write(Lst,Name," :36 - Length(Name));
Wri te1n(Lst, Copy(Company, 1, 25));

end
else

begin
if L = 21 then
begin

GotoXY(I,23) ;

Write ('Press <RETURN> to continue');
Write(' or <Esc> to abort');
C1rEo1;
repeat

Read(KBD,Ch)
until (Ch = 'M) or (Ch = #27);
if Ch = #27 then

goto Escape;
GotoXY(1 ,23);
Wri te ('Press <Esc> to abort'); ClrEol;
ClearFrame;
L := 3;

end;
GotoXY(I,L + 1); Write(CustCode);
GotoXY(17,L + 1); Write(Name);
GotoXY(53,L + 1); Write(Copy(Company, 1,25));
L := L + 1;

end; { of with Cust do ..
end; { of if OK " }

until not OK;
if CO = 'S' then
begin

GotoXY(1,23); Write ('Press <RETURN>'); ClrEo1;
repeat

Read(KBD,Ch)
until Ch = 'M;

end;
Escape :

end;

Turbo Database Toolbox Owner's Handbook

{ Main program }

begin
ClrScr ;
Writeln(ConstStr('-',79));
Writeln('Turbo-file Customer Database');
Writeln(ConstStr('-',79));
GotoXY(1, 22); Writeln(ConstStr('-' ,79));
Wri teln;
Write(ConstStr('-',79)); GotoXY(1,4);
InitIndex;

OpenFile(DatF, 'CUST.DAT' ,CustRecSize);
if OK then

OpenIndex (CodeIndexFile, 'CUST. IXC' , 15,0) ;
if OK then

Open Index (NameIndexFile, 'CUST. IXN' ,25,1) ;
if not OK then
begin

Select('Data files missing. Create new files (YIN)', ['Y','N'], Ch);
if Ch = 'Y' then
begin

MakeFile(DatF, 'CUST .DAT' ,CustRegSize);

MakeIndex (CodeIndexFile, 'CUST. IXC' , 15,0) ;
MakeIndex (NameIndexFile, 'CUST. IXN' ,25,1) ;

end
else
begin

ClrScr;

Halt;

end;
end;
GotoXY(60,2); Write (UsedRecs(DatF) :5,' Records in use');
repeat

Select('Select: U)pdate, L)ist, Q)uit', ['U', 'L', 'Q'], Ch);
case Ch of

'U' : Update;

'L' : List;
end;
if Ch < > i Q' then ClearFrame;

until UpCase(Ch) = 'Q';
CloseFile(DatF) ;

CloseIndex (CodeIndexFile)
Closelndex(NamelndexFile)

ClrScr;

end.

GETTING STARTED 57

Using Turbo Sort

Turbo Sort sorts any data quickly and efficiently, with a minimum of
coding on your part. Using the Quicksort algorithm, Turbo Sort's vir
tual memory management ensures that you are not limited to sorting
in memory; if your data requires more memory than is available fo~
sorting, the disk will automatically be used as an extension of
memory.

This part of the manual teaches you how to use Turbo Sort in your
own Turbo Pascal programs. It provides all the information you need
to sort single data items and to sort on multiple keys.

How Turbo Sort Works

58

Turbo Sort is a function of type integer. The Turbo Sort function is
called with one parameter, as follows:

SortResult := TurboSort(ItemSize);

where SortResult is an integer variable and ItemSize is an integer
expression giving the size (in bytes) of the data items to be sorted.

Turbo Sort divides its work into three phases:

• The input phase

• The sorting phase

• The output phase

Each phase is carried out by a routine that you must write, as
described below.

In the input phase, Turbo Sort calls the procedure Inp (which you
write). Inp usually consists of a repeat or while loop that passes ob
jects to the sort routine. Inp can generate these objects or retrieve
them from a disk file, the keyboard or some other device (see
SORT1.PAS for an example). Inp is called only once. When it finishes,
the sorting phase starts.

Turbo Database Toolbox Owner's Handbook

Since Turbo Sort knows nothing about the type of data being sorted,
it relies on the boolean function Less (which you write) to determine
which of two data items is the smaller. The Less function is called
repeatedly during. the sorting phase and, for this reason, you should
make it as fast as possible. When sorting is finished, Turbo Sort enters
the output phase.

In the output phase, Turbo Sort calls the procedure OutP (which you
also must write). OutP does exactly the opposite of Inp: after receiv
ing its. input from Turbo Sort, it retrieves a stream of sorted objects
and sends it to the screen, printer, data file, or wherever you specify.
OutPgets the sorted data one item at a time, allowing you to do with it
whatever you please; you can write it to a file, put it in memory for
further processing, print it, and so forth. Like Inp, OutP gives you
complete freedom in dealing with your data because it is a procedure
of your own design. OutP is called only once, and when it finishes,
Turbo Sort terminates.

When the Turbo Sort function terminates, it produces an integer value
that indicates whether sorting went well or aborted with an error.

Data Item Size

The parameter passed to Turbo Sort is the size (in number of bytes) of
the data item you want to sort. The Turbo Pascal standard function
SizeOf will give you this information, as shown in the following
example:

ItemSize := SizeOf(Dataltem);

where ItemSize is an integer variable and Dataltem is the variable you
want to sort (or the type of that variable).

Use of Memory

Turbo Sort automatically allocates space (MaxAvail minus 2K bytes
to ensure ample space on the stack for local variables and parame
ters) on the heap for sorting. If your Inp, Less, or OutP subprograms
require heap space, you must allocate space for them before calling
TurboSort by using the standard Turbo Pascal procedures New or
GetMem.

GETTING STARTED 59

The minimum size required for sorting is:

3 * /temSize

or

3 * 128 bytes

whichever is larger. If less space is available, Turbo Sort aborts and
returns the error value 3.

Turbo Sort will perform sorting entirely within memory if space al
lows. If there is insufficient space for internal sorting, Turbo Sort's
virtual memory management treats the disk as an extension of
memory.

Maximum Sort Size

Turbo Sort can handle up to 32,767 records (Max/nt). If more records
are passed to the sort routine, Turbo Sort aborts with error code 9.

Turbo Sort Programming Examples

The following program examples show you how to use Turbo Sort to
sort on single data items and on multiple keys. The examples build in
complexity, so it's a good idea to make sure you understand the
simpler examples before you move on to more advanced sorting
applications.

Example 1: Sorting A Customer Database
on a Single Key

60

The following program example is contained on the distribution disk
ette under the file name SORT1.PAS.

Suppose you have a file of customer names you want to sort. The
following example shows how you might write a sample program
that reads data from such a file, sorts it by customer number, and
outputs the sorted objects to the screen.

Turbo Database Toolbox Owner's Handbook

The file CUSTOMER.DTA on the distribution diskette contains 100
records of the type defined below, and is used by the example for
input.

Start your program as you would any other with the type definition
and the variable declaration:

type
NameString = string[25];

CustRec = record
Number: integer;
Name: NameString;
Addr: string [20] ;
City: string [12] ;

State: strlng[3] ;
Zip: strlng[5] ;

end:
CustFileType = file of CustRec;

var
CustFile : CustFileType;
Customer : CustRec;
Resul ts : integer;

{$I SORT.BOX}

CustRec is the data item to be read from the file, sorted and output to
the screen.

The include statement, {$I SORT.BOX}, causes the compiler to in
clude the file SORT.BOX during compilation. This file contains the
TurboSortfunction and related declarations.

After making these declarations, you are ready to write the three
simple subprograms Inp, Less and OutP. The following subsections
explain each of these.

The Inp Procedure

Because the Inp procedure is called from the TurboSort function in
the SORT. BOX file, it must be forward declared prior to the declara
tion of TurboSort. The SORT. BOX file contains the necessary declara
tion. Your Inp procedure should look like this:

GETTING STARTED 61

procedure Inp;
{ This procedure is forward declared in SORT. BOX. It sends a stream

of records to the sort routine.
}

vat

rec : integer; {counts the number of records read from data file
begin

rec : = 0;
Wri teln;
WrHeln('Input routine - sending " FileSize(CustFile),

, records to sort:');
repeat

rec : = rec + I;
Write(#13, rec:6);
Read(CustFile, Customer) ;

<incremental record count
{display record count, stay on same line}

SortRelease(Customer); {send records to TurboSort until EOF
until EOF(CustFile) ;
Wri teln;
Wri teln;
Wri teln('Done with input - sorting "

FileSize(CustFile), ' records . . .');
end; { Inp }

The Inp procedure is called only once from Turbosort. It first reads
records from the data file CustFile, and then passes them on for sor
ting with calls to the procedure SortRelease (which is also included in
the SORT.BOX file). This process is repeated until end-of-file is
reached. The parameter to SortRelease is untyped, which means that
you can pass data variables of any type to Sort Release.

You have now read all of your input data and passed it on for sorting.

The Less Function

62

Like Inp, the Less function is forward declared in the SORT.BOX file as
a boolean function with two untyped parameters X and Y. The type
and parameters must not be repeated in your declaration of Less,
which should look like this:

Turbo Database Toolbox Owner's Handbook

function Less;
{ This boolean function is forward declared in SORT .BOX and has

two parameters. X and Y. Because this function is called so
often. the number of statements in this function should be
kept to a minimum.

}

vat

FirstCust : CustRec absolute x;
SecondCust : CustRec absolute Y;

begin
Less := FirstCust.Number < SecondCust.Number; {define sort order}

end; { Less}

The Less function receives two memory addresses in the parameters
X and Y. These are the addresses of the first byte of the first two data
items TurboSort is to compare. You then declare two variables "on
top" of these data items by declaring the variables as absolute at
addresses X and Y. The variables then contain the data items to be
compared.

In this example, the customer numbers are compared-i.e., a cus
tomer number is the sorting key. We could sort on the Name, the Zip
code, or any other field in the record, or even on multiple keys by
comparing more fields. But let's keep this example simple.

Less is called by TurboSort whenever two data items are to be
compared. When TurboSort has finished sorting, the output proce
dure OutP is called.

The OutP Procedure

Like Inp, the OutP procedure is called from the TurboSort function
and is therefore forward declared in the SORT.BOX file.

GETTING STARTED 63

procedure OutP;
{ This procedure is forward declared in SORT. BOX. It

retrieves the sorted objects one-by-one.
}

var
i : integer;

begin
repeat

if KeyPressed then Halt; { Key touched? Stop program}
SortReturn(Customer) ; {Display records, one per line}
with Customer do
begin

Write(Number, ' ',Name,' 'I; {Pad with spaces}
for i := Length(Name) to 25 do Write(' 'I;
Write(Addr) ;

for i := Length(Addr) to 20 do Write(' 'I;
Write(City);
for i := Length(City) to 12 do Write(' 'I;
Writeln(State,, " Zip);

end: { with }

until SortEOS; {Until all sorted objects have been retrieved}
end: (* OutP *)

The OutP procedure is called only once from TurboSort. It calls the
SortReturn procedure, which is part of the SORT.BOX file. SortReturn
returns one untyped data item in its parameter, which can then be
output. The process is repeated until the SortEOS function (a boolean
function in the SORT.BOX file) returns a value of TRUE.

The with Customer do... statement writes the sorted customer
records to the screen, one record at a time, with each field I eft
justified. The output could instead be sent to a file, a printer or
anywhere else you wish to direct it.

The Main Program

64

In your main program, you must first prepare the input file for
reading with the Turbo Pascal Assign and Reset procedures. The sor
ting is then started with a call to the TurboSort function. In our exam
ple, this is done in an Assign statement, followed by a WriteLn
statement which prints the value of the TurboSort function on the
screen when sorting is over. This value tells you whether everything
went well, or whether sorting was aborted with an error.

Turbo Database Toolbox Owner's Handbook

begin
OpenFile (CustFile. I CUSTOIIER. DTA I) ;

Results : = TurboSort(SizeOf(CustRec));
DisplayResults (Results) ;

end.

{ program body }
{ open data file to sort }
{ sort the file of records }
{ display sort results }

As described earlier, the parameter to TurboSort is an integer expres
sion giving the size (in bytes) of the data item to be sorted. The stand
ard function SizeOf is convenient to use because it returns the size (in
bytes) of its argument.

Note: SizeOf takes a type or variable identifier as a parameter. For
more information about SizeOf, see the Turbo Pascal Reference
Manual.

Turbo Sort Termination

The value of the function TurboSort (printed by the sample program),
indicates certain error conditions, as follows:

o All went well.

3 Not enough memory available for sorting. The minimum size is
three times the size of the data item to be sorted, or 3 * 128 bytes,
whichever is larger.

8 Illegal item length. Item length must be > = 2.

9 More than Maxlnt records input for sort.

10 Write error during sorting. This means either a bad disk or the
disk is full.

11 Read error during sort. Probably due to a bad disk.

12 File creation error. The directory may be full, or you may be
trying to access a non-existing directory (MS-OOS/PC-OOS v. 2).

GETTING STARTED 65

Program Listing

66

The following complete example (described previously) is contained
in the file SORT1.PAS on the distribution diskette.

{SC-}

proqru SortAFile;
{

TURBO DATABASE TOOLBOX DEMONSTRATION PROGRAM:

Demonstrates how to sort a file of records.

Modified: 08/07/85

This program takes the CUSTOMER. DTA file, sorts the records by
the Number field, and displays the sorted records on the screen.

}

type
NameString = strlng[25];

CustRec = record
Number: integer;
Name: NameString;
Addr : strlng [20] ;
City: strlng[12];

State: strlng[3];
Zip: strlng[5];

end:
CustFileType = file of CustRec;

vat

CustFile : CustFileType;
Customer : CustRec;

Resul ts : integer;

{S! SORT. BOX }

Turbo Database Toolbox Owner's Handbook

procedure OpenFile(var f : CustFileType; Name: NameString);
{ Display welcome screen, open data file }
begin

ClrScr;
lIriteln('TURBO-SORT DEIIONSTRATION PROGRAM');
Iriteln;
Iriteln('Opening data file');
Assign(f, Name);
{SI-}

Reset(f);
{$I+ }

if IOresul t < > 0 then
begin

lIriteln('G, ' - Cannot find " Name);
Halt;

end;
end; (* OpenFile *)

procedure Inp;
{ This procedure is forward declared in SORT. BOX. It sends a stream

of records to the sort routine.
}

var

{ abort program }

rec : integer; { counts the number of records read from data file }
begin

rec : = 0;
lIriteln;
lIriteln(' Input routine - sending " FileSize(CustFile).

, records to sort:');
repeat

rec : = rec + 1;
lIrite(#13, rec:6);
Read(CustFile , Customer) ;
SortRelease (Customer) ;

1lIlt1l EOF(CustFile);
Writeln;
Writeln;
lIriteln('Done with input - sorting' ,

FileSize (CustFile), ' records . . .');
end;

GETTING STARTED

Hncremental record count}
{display record count, stay on same line}

{send records to TurboSort until EOF}

{ Inp }

67

68

function Less;

{ This boolean function is forward declared in SORT .BOX and has

two parameters, X and Y. Because this function is called so

often, the number of statements in this function should be

kept to a minimum.
}

var
FirstCust: CustRec absolute x;
SecondCust: CustRec absolute Y;

begin
Less : = FirstCust. Number < SecondCust. Number;

end:
{ define sort order

{ Less }

procedure OutP;

{ This procedure is forward declared in SORT. BOX. It
retr ieves the sorted obj ects one-by-one.

}

var
i : integer;

begin
repeat
if KeyPressed then Hal t;

SortReturn(Customer) ;

{ Key touched? Stop program }

1Iith Customer do
begin

Write (Number, ' " Name,' ');

for i := Length(Name) to 25 do Write(' ');

Write(Addr) ;

for i := Length(Addr) to 20 do Write(' ');

Write(City) ;

for i := Length(City) to 12 do Write(' ');

Writeln(State,, ',Zip);

end:
until SortEOS;

end:

{ with}

{ wi th }

{OutP }

Turbo Database Toolbox Owner's Handbook

procedure DisplayResults(results : integer);
begin

Writeln;
Wri teln;
case Resul ts of

o : Writeln('Done with sort and display. ');
3 : Writeln(' Error: not enough memory to sort');
8 : Writeln('Error: illegal item length.');
9: Writeln('Error: can only sort ',Maxlnt, ' records.');

10 : Writeln('Error: disk full or disk write error.');
11 : Wri teln('Error: disk error during read. ') ;
12 : Writeln(' Error: directory full or invalid path name');

end; (* case *)

end; (* DisplayResul ts *)

begin
OpenFile(CustFile, 'CUSTOMER.DTA');
Results : = TurboSort(SizeOf(CustRec));
DisplayResul ts (Resul ts) ;

end.

Example 2: Advanced Sorting

{ display sort resul ts

{ program body }
{ open data file to sort }
{ sort the file of records }
{ display sort results }

The example in this section (SORT2.PAS on the distribution disk)
shows you how to sort different kinds of data, and how to sort on
multiple keys.

Sorting Different Data

We will use the one-key example from the previous section as a basis
for a new program that can sort both the customer data we already
know, as well as items in a stock list. The first thing we must do is add
the definition of a new type to the program declaration, as follows:

GETTING STARTED 69

70

type
NameString = str1ng[25j;

CustRec = record
Number : integer;
Name : NameString;
Addr : str1ng[20];
City : string [12 j;

State : str1ng[3];

Zip : string [5] ;

end:
ItemRec = record

Number : integer;
Descrip : str1ng[30];

InStock : integer;
Price : real;

end:

The new type ItemRec defines a data record that will hold information
about items in the stock list. The file STOCK.DTA contains 100 records
of this type, and is used by our program as input.

We also must declare new variables for the stock list file, and for the
items in the stock list:

val

CustFile : file of CustRec;
Customer : CustRec;
StockFile : file of ItemRec;
Item : ItemRec;
Choice : char;
Results : integer;

{$I SORT.BOX }

The Choice variable is used in the main body of the program to let us
choose whether we want to sort the customer file or the stock file:

beg1n
FileOpen(Choice) ;

{ program body }
{ open data file to sort }

case Choice of { sort the file of records }
'c' : Results := TurboSort(SizeOf(CustRec)); {customer file}
's' : Results:= TurboSort(SizeOf(ItemRec)); {stock file }

end:
DisplayResul ts (Resul ts) ;

end.

{ case }
{ display sort results }

Turbo Database Toolbox Owner's Handbook

The program first prompts you to enter a C or an S, and then keeps
reading the choice until one of these characters is entered. Note that
the input is converted to uppercase, so your users can make their
entries in either upper or lowercase.

Based on the choice the user makes, the case statement prepares the
desired file for reading, calls TurboSort, and provides the size of the
applicable data type as the parameter.

The Inp procedure also uses the variable Choice in a case statement to
select the correct file for reading:

procedure Inp;
{ This procedure is forward declared in SORT. BOX. It sends

}

a stream of records to the sort routine. It also keeps the
user informed of how many records have been read.

var
rec : integer;

begin
rec : = 0;
Writeln;
case Choice of

'C': begin {sort customer file}
Writeln ('Input routine - sending '. FileSize (CustFile) .

, records to sort:');
repeat

rec : = rec + 1;
Write(#13. rec:6);
Read(CustFile.C

{incremental record count>
{display record count. stay on same line}

SortRelease (Customer) ; {send records to TurboSort until EOF}
until EOF (CustFile) ;
Writeln;
Writeln;
Writeln('Done with input - sorting '.

FileSize (CustFile) •
, records ... '. 'G);

end;

GETTING STARTED

{ ring bell }
{ C }

71

72

'S': begin {sort stock file}
Writeln('Input routine - sending', FileSize(StockFile),

, records to sort:');
repeat

rec : = rec + I; {incremental record count}
Write(#13, rec:6); {display record count, stay on same line}
Read (StockFile, Item) ;
SortRelease (Item) ; {send records to TurboSort until EOF}

end:
end:

until EOF(StockFile) ;
Writeln;
Writeln;
Writeln('Done with input - sorting',

FileSize (StockFile) ,
, records ... ', "G);

end:
{ ring bell }

{ S }

{ case }
{ Inp }

If the choice is C for customers, the customer file is read, and its data
passed on for sorting; if the choice is Sfor stock list, the stock list file is
read.

In the Less function, we must declare two new variables of type Item
Rec. Again, a case statement uses the variable Choice to determine
which variables should be used in the comparison:

function Less;
{ This boolean function specifies sort priority. It is

}

forward declared in SORT. BOX and has two parameters, X
and Y. Record X is sorted "lower" than Y based on a
comparison between the fields specified below (Name,
Customer number, etc.) . Because this function is
called many times, the number of statements in this
function should be kept to a minimum.

var
FirstCust: CustRec absolute x; {customer file }
SecondCust: CustRec absolute Y;
FirstItem: ItemRec absolute x; {stock file
SecondItem: ItemRec absolute Y;

begin
case Choice of { define sort priority }

'C': Less : = FirstCust. Number < SecondCust. Number;
'S': Less := FirstItem.Price < SecondItem.Price;

end:
end: { Less}

Turbo Database Toolbox Owner's Handbook

As you can see, we use the field Price as the key for sorting the stock
file.

The OutP procedure in this example is a little more elegant than the
one in SORT1.PAS. It keeps the column headings at the top of the
screen by deleting the topmost record each time it adds a new one.
Run the program-a picture is worth a thousand words. Note that
some terminals do not support line delete. If yours doesn't, substitute
a single Writeln statement in the body of Scroll.

The case statement is again used in the last procedure, OutP:

procedure OutP;
{ This procedure is forward declared in SORT. BOX. It

}

retrieves the sorted objects one-by-one and displays
them on the screen. NOTE: If your . terminal does not
provide support for deleting a line. you should
modify the Scroll procedure below.

vat

i. Line : integer;

procedure Scroll(Line : integer);
{ This procedure controls scrolling during output of records.

If your terminal does not support line delete. substitute a
single Writeln statement for the IF statement below.

}

begin
if Line > 20 then
begin

GoToXY(l. 5);
DelLine;
GoToXY(1. 24);

end
else GoTon U, Line + 4) ;

end; { Scroll }

GETTING STARTED

{ first line below header

{ last line on screen

73

74

begin
Write("G);
ClrEOS(5) ;
Line: = 1;
case Choice of

'C' : begin
repeat
if KeyPressed then Hal t;
Scroll (Line) ;
SortReturn(Customer);
with Customer do
begin

{ ring bell - finished with sort!
{ clear from line 5 to end of screen

{ ini tialize line count
{ retrieve records from sort & display

{ Key touched? Stop program

{display the records, one per line

Write(Line:3, Number:6, ' " Name,' ');
for i: = Length (Name) to 25 do Wri te (' '); {pad with spaces
Write(Addr) ;
for i : = Length (Addr) to 20 do Write (' ');
Write(City) ;
for i : = Length (City) to 12 do Write (' ');
Write(State,' " Zip);

end; { with }
Line : = Line + 1;

until SortEOS;
end; { C }

{ until all sorted objects have been retrieved

'S' : begin
repeat
if KeyPressed then Hal t;
SortReturn(Item) ;
Scroll (Line) ;
with Item do
begin

{ Key touched? Stop program
{ display the records, one per line

Write(Line:13, Number:6, ' " Descrip,' ');
for i := Length(Descrip) to 30 do Write(' ');
Write(InStock:5, Price:8:2);

{pad with spaces}

end;
Line : = Line + 1;

until SortEOS;
end; { S }

end; { case}
Scroll(25) ;
Scroll (25) ;
Scroll (25) ;

end; { OutP }

{until all sorted objects have been retrieved }

{ make room for results message

Turbo Database Toolbox Owner's Handbook

If your input, output and comparison routines become more com
plicated, it's a good idea to isolate each in a separate subprogram, and
then call these from the case statement, passing the necessary infor
mation as parameters.

Multiple Keys

Suppose you want to sort the stock data, not just on price as above,
but on two keys: primarilyon quantity in stock, and secondarily (if two
items have the same amount in stock) on price.

This is easy to do. Simply rewrite the comparison of First/tern and
Second/tern as follows:

function Less;
vat

Firsteust: eustRec absolute X; {customer file }
SecondCust: CustRec absolute y;
FirstItem: ItemRec absolute X; {stock file
SecondItem: ItemRec absolute Y;

begin
case Choice of { define sort priority }

'e': Less := FirstCust.Number < SecondCust.Number;
'S': Less := (FirstItem.lnStock < SecondItem.lnStock) or

((FirstItem.lnStock = SecondItem.lnStock) and
(FirstItem. Price < SecondItem. Price));

end:
end: { Less }

First compare the /nStock fields. If one is larger than the other, this
comparison determines which item is smaller; if they are equal, the
next comparison-between the Price fields-determines which data
item is smaller.

You could carry this scheme further, and sort on as many fields as you
wish.

GETT/NG STARTED 75

Program Listing

76

The following is a complete listing of the example described above,
contained in the file SORT2.PAS on your distribution diskette.

{$C-}

progm SortMul tipleFiles;
{

TURBO DATABASE TOOLBOX DEMONSTRATION PROGRAM:

How to write a sort routine that can select which file of records
to sort.

Modified: 08/07/85

This program takes the CUSTOMER.DTA and the STOCK.DTA files, sorts
the one requested by the user and displays the sorted records on the
screen.

type
NameString = string[25];

CustRec = record
Number: integer;
Name: NameString;
Addr : string [20] ;
City: string[12];
State: string [3] ;
Zip: string [5];

end;
ItemRec = record

var

Number: integer;
Descrip: string [30] ;
InStock: integer;
Price: real;

end;

CustFile : file of CustRec;
Customer : CustRec;
StockFile : file of ItemRec;

Item
Choice
Resul ts

ItemRec;
char;
integer;

{$I SORT.BOX }

Turbo Database Toolbox Owner's Handbook

procedure ClrEOS(Y : byte);
{ Clear the screen from row Y to 24, then place cursor

on column I, row Y.
}

var i : integer;
begin

for i : = Y to 24 do
begin

GoToXY (1, i);
ClrEOL;

end;
GoToXY(I, Y);

end; { ClrEOS }

procedure OpenFile(var Choice : char);

{ Set up screen, select which file to sort, open data file}

procedure Menu(var Choice: char);
{ Set up screen, select which file to sort.
begin

ClrScr;
WrHeln('TURBO-

SORT DEMONSTRATION PROGRAM' :56);
WrHeln;
Wri teln;

WrHeln;
WrHeln ('Turbo-

Sort is fast! This program will ring the');
Writeln('bell when the sort starts and then ring it again');

Wri teln('when the sort is finished.');
Writeln;

Writeln;
Wri teln('Sort');

WrHeln('-
');

WrHeln;
Writeln('Customer file');

WrHel.n('Stock File');
WrHeln;
Write ('Enter C or S: ');

repeat
Read(KBD, Choice);
if Choice in ['C, #27] then Halt;

Choice := UpCase(Choice);

GETTING STARTED

{ sort customer or stock file }

{ abort program if

{ ESC or CTRL C is typed

77

78

until Choice in [' C' , 'S' 1 ;
ClrEOS(3) ;

case Choice of { draw column headings

'C' : begin
Writeln(, No. Company Name Address' ,

City State Zip');

Writeln('
'---------');

Writeln;

end:
'S' : begin

Write In (, ':10,

{ C }

No. Description

end:
end:

begin

, Qty Price');

Wri teln (' ': 10,

'--'I;
Wri teln;

end:

Menu (Choice) ;
Writeln;

Writeln('Opening data file');

case Choice of
'C': begin

Assign(CustFile, 'CUSTOMER.DTA');
{$I-}

Reset (CustFile) ;

end:
'S': begin

end:
{$It}

Assign(StockFile, 'STOCK.DTA');
{$I-}

Reset (StockFile) ;

end:

if IOresul t < > 0 then
begin

Writeln (' - Cannot find data file.');

{ C }

{ case }
{ Menu }

{ OpenFiles

{case}

Turbo Database Toolbox Owner's Handbook

Halt;

end:
end:

procedure Inp;

{ abort program }

{ OpenFile }

{ This procedure is forward declared in SORT .BOX. It sends

}

a stream of records to the sort routine. It also keeps the
user informed of how many records have been read.

vat

rec : integer;
begin

rec : = 0;
Writeln;
case Choice of

'C': begin

{ counts the number of records read from data file

Writeln('Input routine - sending " FileSize(CustFile),
, records to sort:');

repeat
rec : = rec + I;
Write(#13, rec:6);
Read (CustFile, Customer);
SortRelease (Customer) ;

until EOF(CustFile) ;
Wri teln;
Writeln;
Writeln('Done with input - sorting "

FileSize (CustFile),

end:
'S': begin

, records ... ', 'G);

{ incremental record count
{ display record count, stay on same line

{ send records to TurboSort until EOF

ring bell }
{ C }

Writeln('Input routine - sending', FileSize(StockFile),
, records to sort:');

end:
end:

repeat
rec : = rec + I;
Write(#13, rec:6);
Read (StockFile, Item) ;
SortRelease (Item) ;

until EOF(StockFile);
Wri teln;
Writeln;
Writeln('Done with input - sorting',

FileSize(StockFile) ,
, records ... ', 'G);

end:

GETTING STARTED

{incremental record count}
{display record count, stay on same line}

{send records to TurboSort until EOF}

{ ring bell }
{ S }

{ case }
{ Inp }

79

function Less;
{ This boolean function specifies sort priority. It is

}

forward declared in SORT. BOX and has two parameters, X
and Y. Record X is sorted "lower" than Y based on a
comparison between the fields specified below (Name,
Customer number, etc.) . Because this function is
called many times, the number of statements in this
function should be kept to a minimum.

var
FirstCust: CustRec absolute X;
SecondCust: CustRec absolute Y;
FirstItem: ItemRec absolute X;
SecondItem: ItemRec absolute Y;

begin
case Choice of

'C': Less := FirstCust.Number < SecondCust.Number;
'S': Less := (FirstItem.InStock < SecondItem.InStock) or

((Fi rstI tem. InStock = SecondItem. InStock) and
(FirstItem. Price < SecondItem. Price)) ;

end;
end; { Less

procedure OutP;
{ This procedure is forward declared in SORT .BOX. It

}

retrieves the sorted obj ects one-by-one and displays
them on the screen. NOTE: If your terminal does not
provide support for deleting a line, you should
modify the Scroll procedure below.

var
i, Line integer;

customer file

stock file

{ define sort priority }

80 Turbo Database Toolbox Owner's Handbook

procedure Scroll(Line : integer);
{ This procedure controls scrolling during output of records.

}

If your terminal does not support line delete, substitute a
single Wri teln statement for the IF statement below.

begin
if Line > 20 then
begin

GoToXY (1, 5);
DelLine;
GoToXY (1, 24);

end
else
begin

GoToXY(I, Line + 4);
end:

end: { Scroll

begin
Write (AG);

ClrEOS(5) ;
Line : = 1;
case Choice of

'C' : begin
repeat

if KeyPressed then Hal t;
Scroll (Line) ;
SortReturn(Customer);
with Customer do
begin

{ delete first line below header }

{ add to 24th line on screen }

{ screen is not full yet }

{ ring bell - finished with sort!
{ clear from line 5 to end of screen

ini tialize line count
{ retrieve records from sort & display

{ Key touched? Stop program }

{ display the records, one per line }

Write(Line:3, Number:6, ' " Name,' ');
for i:= Length(Name) to 25 do Writer' ');
Write(Addr) ;
for i := Length(Addr) to 20 do Writer' ');
Write(City) ;
for i := Length(City) to 12 do Writer' ');
Wri te (State.' , Zip) ;

end:

{pad with spaces}

{ with}

Line : = Line + 1;
until SortEOS;

end:
{until all sorted objects have been retrieved}

{ C }

GETTING STARTED 81

B2

's' : begin
repeat

if KeyPressed then Hal t ;
SortReturn(Item) ;
Scroll(Line);
with Item do

begin
Write(Line:13. Number:6. ' '. Descrip.' ');

{ Key touched? Stop program }
{display the records. one per line}

for i : = Length (Descrip) to 30 do Write (, ,) ; {pad with spaces}
Write (InStock:5. Price:8:2);

end;
Line : = Line + 1;

until SortEOS; {until all sorted objects have b~en retrieved}
end;

end;
Scroll (25) ;
Scroll(25) ;
Scroll (25) ;

{ S }

{ case }
{ make room for results message }

end;

procedure DisplayResults(Results : integer);
beqin

case Resul ts of
o : Write('Done with sort and display. ');
3 : Write ('Error: not enough memory to sort');
8 : Write('Error: illegal item length. ');
9 : Write('Error: can only sort'. Maxlnt. ' records.');

10 : Write('Error: disk full or disk write error.');
11 : Write ('Error: disk error during read. ');
12 : Write ('Error: directory full or invalid path name');

end;
end;

begin { program body }
OpenFile (Choice) ;
case Choice of

'C' : Results := TurboSort(SizeOf(CustRec));
's' : Results:= TurboSort(SizeOf(ItemRec));

end;
DisplayResul ts (Resul ts) ;

end.

{ OutP }

{ display sort results }

{ case }
{ DisplayResul ts }

{ open data file to sort
{ sort the file of records }

{ customer file }
{ stock file }

{ case }
{ display sort resul ts }

Turbo Database Toolbox Owner's Handbook

Chapter 3
TECHNICAL REFERENCE

This chapter provides detailed information about a" the files con
tained in the Turbo Database Toolbox. The first section gives an over
view of the modular files you'" need to include in your application
programs. The following section defines and describes the constants
and types used by Turbo Access, the third section provides a quick
reference guide to Turbo Access routines, and the final section de
scribes a" the Turbo Access functions and procedures.

Turbo Database Toolbox Files

The Turbo Database TOQlbox is supplied on the distribution disk as an
assortment of Turbo Pascal source files that you will need to
"include" in your application program, using the {$I filename} in
clude directive to the Turbo compiler. These files are organized. as
modules to allow you to choose only the files you need for compila
tion into your final program.

On your distribution diskette, a" files for the Turbo Access and Turbo
Sort systems have the extension .BOX. A" sample programs have the
extension .PAS or .INC.

Turbo Access Files

The following files belong to the Turbo Access system:

ACCESS. BOX Basic data and index file setup and maintenance
routines.

GETKEY.BOX Search routines: NextKey, PrevKey, FindKeyand
SearchKey.

ADDKEY.BOX The AddKey procedure used for inserting keys
into index files.

DELKEY.BOX The DeleteKey procedure used for deleting keys
from index files.

TECHNICAL REFERENCE B3

TBDEMO.PAS Turbo Access sample program

BTREE.PAS Sample customer database

BTREE.lNC Include file for BTREE.PAS

SETCONST.PAS Program to help determine correct access constants
for your database programs.

The ACCESS. BOX module must always be included in a program that
uses Turbo Access and it must always be the first module included.
GETKEY.BOX, ADDKEY.BOX and DELKEY.BOX, however, may be in
cluded or omitted as required, and their order is of no importance. It is
also possible to use the modules in program overlays.

Most Turbo Access routines return a status value by using a boolean
variable called OK, which is automatically declared by Turbo Access.
For example, the OpenFile procedure sets OKto TRUE if the file to be
opened was found, and sets it to FALSE if it was not found. In case of
severe or unrecoverable errors, a procedure called TalOcheck (in the
ACCESS. BOX module) gains control. TalOcheck outputs the name of
the file, the record number and the error code, and terminates the
program.

Turbo Sort Files

84

The following files belong to the Turbo Sort system:

SORT. BOX

SORT1.PAS

SORT2.PAS

The TurboSort function and related procedures and
functions.

Sample Turbo Pascal program using Turbo Sort.
Sorts data from the CUSTOMER.DTA file.

Sample Turbo Pascal program using Turbo Sort.
Sorts data from the CUSTOMER.DTA file on a single
key and from the STOCK.DTA files on multiple keys.

CUSTOMER.DTA Data for SORT1 and SORT2 above.

STOCK.DTA Data for SORT2 above.

Turbo Database Toolbox Owner's Handbook

GINSTFiles

The following files belong to the GINST system:

GINST.COM The GINST program. (.CMD in the CP/M-86 version)

GINST.COD Object code for the generated installation program.
Must be present when you run GINST.

GINST.MSG Messages for GINST. These messages are also used
to generate the .MSG file for your own installation
program and must be present on the disk when you
run GINST.

GINST.DTA Terminal installation data, used for generating the
.DTA file for your own installation program. May be
omitted if you create an installation program for an
IBM PC.

I N STALL. DOC Documentation for the use of the installation pro
gram produced by GINST. You may include this text
in your own manuals.

Turbo Access Constants, Types and Variables

The ACCESS.BOX module defines the following global types and
variables:

DataFile

IndexFile

OK

This type identifier is used to declare the data file
variables. All Turbo Access data files are declared
with this identifier, even though their data records
are not of the same type and size.

This type identifier is used to declare index file
variables.

A boolean variable used to return the status of some
Tu rbo Access routi nes.

TECHNICAL REFERENCE 85

The following sections define and describe, in alphabetical order, the
constants used by the Turbo Access system; all constants are con
tained in the ACCESS. BOX module. Varying the values of these con
stants will vary search speed and the amount of RAM used by Turbo
Access. As explained in Chapter 2, you can use the SETCONST.PAS
program to help you set values for constants; the information given
here is of a more technical nature, and assumes some understanding
of B+tree structure. More in'formation about B+trees can be found in
Appendix B.

MaxDataRecSize

Declaration

Purpose

Remarks

B6

const MaxDataRecSize = (an integer. 8 ... 65.535. giving
maximum data record size)

MaxDataRecSize specifies the maximum record
length, and should be set to the size (in bytes) of the
largest data record your program will process. For
example, if your program processes two data files
with record sizes of 72 and 140 bytes, Max
DataRecSize should be set to 140.

The surest way to determine the size of your data
records is to write a small program to print out the
SizeOfeach data record. For example:

type
MyRec = record

end;
begin

Status: integer;
Fieldl: str1ng[40J; (Note: 41 bytes)
Field2: str1ng[80]; (Note: 81 bytes)

Writeln{'The size of MyRec is I .SizeOf(MyRec);
end.

In this case, the number written is 124; the record
size is 124 bytes. Use this technique with each data
record your program will process to determine the
MaxDataRecSize. When creating or opening a data
file (using the MakeFile or OpenFile procedure), you
can use SizeOf(YourRecord) as the parameter to the
routines that need this information.

Turbo Database Toolbox Owner's Handbook

MaxHeight

Declaration

Purpose

MaxKeyLen and MaxDataRecSize are set to the larg
est possible values for each type because the same
internal structures are used to process each of the
different index and data files. Thus, the internal
structure must be large enough for the biggest key
and record.

const MaxHeight = (an integer. depends; see text);

MaxHeight determines the maximum height of the
B+tree structure. This constant applies to all index
files to be processed by your program. It does not
affect the actual 8 + tree structure, but applies to each
index file variable. MaxHeight is primarily used for
sequential (forward and backward) searches of the
B+tree. For calculation of MaxHeight, see below.

There are several equations that allow you to predict
the size and efficiency of a particular B+tree; you can
also estimate the disk space that will be used by an
index file.

The maximum number of pages, K, to be searched
to find a specific key in an index file with E keys is
approximately:

K = Log(E) / Log(PageSize*O.5)

Thus, as PageSize gets larger, the number of
searches (K) gets smaller. Large pages require fewer
disk accesses, and therefore less time. The time re
quired to perform a search within the page, once it
has been read into memory, is of no significance
compared to the time it takes to read the page from
the disk.

TECHNICAL REFERENCE 87

MaxKeyLen

Decla ration

Purpose

Remarks

Order

Declaration

Purpose

B8

The MaxHeight parameter required by AC
CESS.BOX corresponds to the integer part of K plus
1 (Le., trunc(K) + 1). Therefore, when you have estab
lished the PageSize and the maximum number of
data records in your database, compute MaxHeight
as follows:

MaxHeight = Int(Log(E) / Log(PageSize*0.5)) + 1

Note that larger values of MaxHeight require very
little extra memory (4 bytes for each increment of
MaxHeight). It is therefore recommended that you
add 2 or 3, instead of 1, to be on the safe side.

const MaxKeyLen = (an integer. 1 ... 255);

MaxKeyLen determines maximum key length. Max
KeyLen should be set to the largest maximum key
length of the index file your program is going to
process. For example, if your program will process
three index files with maximum key lengths of 16,10
and 25, MaxKeyLen should be set to 25. (Note that if
a string is declared as string [25], its maximum
length is 25 not 26, since we are concerned with
length rather than size.)

MaxKeyLen and MaxDataRecSize are set to the larg
est possible values for each type because the same
internal structures are used to process each of the
different index and data files. Thus, the internal
structure must be large enough for the biggest key
and record.

const Order = (an integer. 2 ... 127 = PageSize/2);

Order is half the value of PageSize, and represents
the minimum number of items permissible on a
B + tree page, except the root page (see Appendix B for
information about page types).

Turbo Database Toolbox Owner's Handbook

PageSize

Declaration

Purpose

Remarks

const PageSize = (an even integer, 4 ... 254);

PageSize determines the maximum number of key
entries allowed in each B+tree page. PageSize must
be the same for all index files processed by your
program, and must be an even number between 4
and 254.

The number of bytes, N, occupied by each page in
an index file is found as follows, where KeySize is
the key length for the index file:

N = (KeySize + 5) * PageSize + 3

The maximum number of bytes, D, occupied by an
index file is:

D = N * E / (PageSize*0.5)

where E is the number of index entries.

By combining the above two equations, it can be
seen that the major determinant of index file size is
the KeySize:

D = 2 * E * (KeySize + 5) + ((6 * E) / PageSize)

The above equation shows that an index file will be
about (2 x KeySize) x the number of records that are
indexed.

The previous two equations apply to a case in which
all pages are only half full. In the average case,
PageSize would have a multiplication factor of 0.75
(Le., three-quarters full). This yields the following:

D = 1.5 * E * (KeySize + 5) + ((4 * E) / PageSize)

TECHNICAL REFERENCE B9

PageStackSize

Declaration

Purpose

Remarks

90

const PageStackSize = (an integer. 3 ... 254);

PageStackSize determines the page buffer size-the
maximum number of B+tree pages that can be kept
within memory at one time; the minimum number
is three.

In general, increasing PageStackSize speeds up the
system, because the probability that a needed page
will be in memory increases. Usually, Page
StackSize should be between 16 and 32; however,
your system resources may require other values.

The number of bytes, M, occupied in memory by the
Turbo Access page buffer is:

M = ((MaxKeyLen + 5) * PageSize + 10) * Page
StackSize

where MaxKeyLen is the largest key length used by
the index file to be processed, and PageStackSize is
the maximum number of pages that may be kept
within memory at the same time (note that this must
be at least three).

Turbo Database Toolbox Owner's Handbook

It is difficult to devise a general method for calculating the optimum
values for PageSize and PageStackSize. PageSize usually lies be
tween 16 and 32, depending on the maximum key size and the num
ber of keys in the index. Smaller values will result in poor
performance due to slow search times, and larger values will require
too much memory for the page buffer stack.

The minimum reasonable value for PageStackSize is the value of
MaxHeight. If PageStackSize is less than MaxHeight, the same page
will need to be read several times to traverse the B + tree sequentially. In
general, PageStackSize should be as large as possible (Le., as
memory resources permit). Specifically, if PageStackSize is much
larger than MaxHeight, Turbo Access may store the root page and the
entire first level of the B+tree within memory, thus reducing by at least
one the disk accesses required to look up a key.

The values for PageSize and PageStackSize depend on the value of E,
the total number of items in the tree. If there are E items in the tree,
there will be K tree pages to be searched, where K = Log (E) / Log
(PageSize*0.5). For example, if E is equal to 100,000 and PageSize =
16, K=5. This means that, when searching, a maximum of 5 pages will
be read into memory. During insertion, additional pages may be
needed due to page splitting, and a value greater than K is needed.

The amount of free memory your system has is another factor in
determining values for PageSize and PageStackSize. Since a page is
approximately 550 bytes for a PageSize of 16, with a key string of 26
bytes, the page stack will take about 5600 bytes, if the PageStackSize
is 10, i.e., (550 bytes per page + 10 bytes overhead) * 10 pages.

The Toolbox SETCONST program allows you to vary PageSize and
PageStackSize to see the effects on memory usage and search effi
ciency. For more information, see page 13.

TECHNICAL REFERENCE 91

Quick Reference Guide to Turbo Access Routines

92

In the following list, Turbo Access routines are grouped by function
into five categories: Data File Initialization, Data File Update, Index
File Initialization, Index File Update, and Index File Search. The
declaration for each routine is listed, followed by its page number in
the look-up section that follows.

Data File Initialization

procedure MakeFile (DatF: DataFile; FileN:string [14] ;RecLen: integer); 107
procedure OpenFile(DatF:DatFile;FileN:string[14] ;RecLen: integer); 110
procedure CloseFile(DatF:DataFile); ... 98

Data File Update

procedure AddRec (DatF: DataFile; DataRef: integer; Buffer); ... 95
procedure DeleteRec(DatF:DataFile;DataRef:integer); .. 101
procedure GetRec(DatF:DataFile;DataRef:integer;Buffer); ... 105
procedure PutRec (DatF:OataFile; DataRef: integer; Buffer); ... 113
function FileLen(DatF:DataFile); .. 102
function UsedRecs (OatF: OataFile); .. 116

Index File Initialization

procedure Ini tlndex; .. 106
procedure Makelndex(IndexF: IndexFile;FileN:string[14] ;KeyLen.

Status: integer); ... , , 108
procedure Openlndex (IndexF: IndexFile; FileN: string [14] ; KeyLen.

Status: integer); .. 111
procedure Closelndex (IndexF: IndexFile) ; 99

Index File Update

procedure AddKey(IndexF: IndexFile;OataRef: integer;Key) ; 94
procedure OeleteKey(IndexF: IndexFile;OataRef: integer;Key); 100

Index File Search

procedure FindKey (IndexF: IndexFile; OataRe f: integer; Key); 103
procedure SearchKey(IndexF: IndexFile;DataRef: integer;Key); 114
procedure NextKey (IndexF: IndexFile; OataRe f: integer; Key); .. 109
procedure PrevKey (IndexF: IndexFile; Da taRef: integer; Key); .. 112
procedure ClearKey (IndexF: IndexFile); .. 97

Turbo Database Toolbox Owner's Handbook

Procedures and Functions

This section defines and describes, in alphabetical order, all the
procedures and functions contained in the Turbo Access part of the
Database Toolbox. Sample usage for each procedure or function is
given, followed by a detailed description of its function. Remarks,
restrictions and examples are given where appropriate, as well as
cross-referencing to related procedures and functions. The Turbo
Database file that contains the procedure or function is given in brack
ets next to the name of the procedure or function.

TECHNICAL REFERENCE 93

AddKey [ADDKEY.BOXj

Declaration

Usage

Parameters

Function

Restrictions

See Also

Example

94

procedure AddKey(var IndexF:IndexFile;
var DataRef: integer;
var Key);

Add Key(l ndexF,DataRef,Key) ;

IndexF : index file to which key is to be added

DataRef : data record number to be associated with
the key

Key : key string

AddKeyadds a key string to an index file. DataRefis
usually a data file record number returned by Add
Rec. On exit, the OK flag is set to TRUE if the key
string was added successfully. OK returns FALSE if
you try to add a duplicate key when such keys are
not allowed (i.e., when the Status parameter in the
call to Openlndex or Makelndex is 0).

Since Key is an untyped parameter, you can pass
string variables of any string type to AddKey. It is,
however, up to you to ensure that the parameter is
the correct string type; constants and string expres
sions are not allowed. If the Key parameter is longer
than the maximum key length for IndexF, it will be
truncated to the maximum length.

AddRec
DeleteKey
Makelndex
Openlndex

This code inserts the customer code string and the
record number into the index file Codelndex:
var

Code Index : IndexFile;
RecordNumber : integer
CustCodeStr : string [40] ;

begin
. { Code to open IndexFile and Add a Customer Record }

AddKey(Codelndex, RecordNumber, CustCodeStr) ;
end;

Turbo Database Toolbox Owner's Handbook

AddRec [ACCESS.BOX]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

procedure AddRec(var OatF :OataFile;
Vat OataRef : integer;
var Buffer) ;

Add Rec(DatF,Data Ref,Buffer) ;

DatF : data file variable to which a record is
added

DataRef: data record number

Buffer : variable containing the data record to be
added

AddRec adds a new record to a Turbo Access data
file. This procedure returns the data record number
of the newly allocated data record using the variable
parameter DataRef. DataRefshould be passed to the
AddKey procedure when you enter a key value for
the data record.

Since Buffer is an untyped parameter, AddRec will
accept any variable in its place. It is up to you to
make sure that the variable passed is of the proper
type.

AddRec does not return a status value; it returns
only if the data record is added to the file success
fully. If an liD error occurs, TalOcheck will gain con
trol and terminate the program. We suggest that
you call FileLen before calling AddRec to make sure
that there is enough space on the disk.

If any previously deleted records are available, they
are automatically reused before the disk file is
expanded.

DatF must be of type DataFile.

Add Key
DeleteRec
GetRec
FileLen

TECHNICAL REFERENCE 95

Example

96

This code stores CustomerRecord into file Cus
tomerFile; and returns record location in
RecordNumber.
var

CustomerFile : DataFile;
RecordNumber : integer;
CustomerRecord : Record

begin
end;

status : integer;
Name : string [80] ;
Address: string [80] ;
Company : string [50] ;

code to open customer file and input
information

AddRec (CustomerFile, RecordNumber, CustomerRecord) ;
end;

Turbo Database Toolbox Owner's Handbook

ClearKey [ACCESS.BOX]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procedure ClearKey (vat IndexF: IndexFile) ;

ClearKey(lndexF);

IndexF : index file that is prepared for sequential
processing starting at the beginning or
end

ClearKey sets the index file pointer to the beginning
or end of IndexF.

Following a call to ClearKey, a call to NextKey will
return the first entry in the index file, and a call to
PrevKeywili return the last entry in the index file.

When Turbo Access index files are processed se
quentially, a circular pattern is followed. When the
index file pointer is at the end of the sequence, a
request to read the next entry will return the first
entry in the file. Likewise, when the index file pointer
is at the beginning of the sequence, a request to read
the preceding entry will return the last entry in the
file.

None

NextKey
PrevKey

This code sets the search pointer to the first or last
customer code in Codelndex:

var
Code Index : IndexFile;

begin
{ini tialization code}
ClearKey (Code Index) ;

end;

TECHNICAL REFERENCE 97

CloseFile [A CCESS. BOX]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

98

procedure CloseFile(var DatF:DataFile);

CloseFile(DatF) ;

DatF: data file to be closed

CloseFile closes a data file.

If you make any changes to a data file, always call
CloseFile for that file before terminating your pro
gram. Failure to do so may cause data to be lost.

It is good practice to close the file even if it has not
been modified. This is required under certain im
plementations of Turbo Pascal (e.g., version 3.0 for
MS-DOS or PC-DOS).

DatF must be of type DataFile.

MakeFile
OpenFile

This code closes the customer data file, Cus
tomerFile:

var
CustomerFile : DataFile

begin
{ main program code}
CloseFile (CustomerFil e) ;

end:

Turbo Database Toolbox Owner's Handbook

Closelndex [ACCESS. BOX]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procedure CloseIndex(var IndexF: IndexFile);

Closelndex(lndexF) ;

IndexF : index file to be closed

Closelndex closes a Turbo Access index file.

If you make any changes to an index file, always call
Closelndex for that file before terminating your pro
gram. Failure to do so may cause data to be lost or
may corrupt the index file structure.

It is good practice to close the file even if it has not
been modified. This is required under certain im
plementations of Turbo Pascal (e.g., version 3.0 for
MS-DOS or PC-DOS).

IndexF must be of type IndexFile.

Openlndex

This code closes the customer code index file,
Codelndex:

var
Code Index : IndexFile;

begin
{ main program code}
Close Index (Codelndex) ;

end:

TECHNICAL REFERENCE 99

DeleteKey [DELKEY.BOX]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

100

procedure DeleteKey(var IndexF : IndexFile;
Vat DataRef : integer ;
Vat Key);

DeleteKey(lndexF,DataRef,Key) ;

/ndexF : index file the key will be removed from

DataRef: data record number associated with the
key to be deleted

Key : key to be deleted

De/eteKey removes a key from a Turbo Access index
file. On exit, OK is set to TRUE if the key was
removed successfully. OK returns FALSE if the key
was not found. If duplicate keys are allowed, OKwili
be FALSE if a matching data record number was not
found, even though the key string existed.

If duplicate keys are not allowed in the index file,
DataRef need not be initialized. If duplicate keys are
allowed, however, De/eteKey needs the data record
to distinguish the keys from each other. To deter
mine the data record number, you may, for example,
use SearchKey in conjunction with NextKey and
PrevKey. DataRef always returns the data record
number of the deleted key.

The Key parameter must be a string variable. If it is
longer than the maximum key length for /ndexF, it
will be truncated to the maximum length.

DeleteRec
N ext Key
PrevKey
Sea rch Key

Turbo Database Too/box Owner's Handbook

Example This code removes the customer code from the
Codelndex index file:

var
Codelndex : IndexFile;
RecordNumber : integer;
CustCodeStr : string[80j;

begin
{ code to get key to be deleted
DeleteKey(Codelndex, ReqordNumber, CustCodeStr);
{ possible code to delete record from data file }

end;

TECHNICAL REFERENCE 101

DeleteRec [ACCESS. BOX]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

102

procedure DeleteRec(var DatF:DataFile;
DataRef: integer) ;

DeleteRec(DatF,DataRef) ;

DatF : data file the record will be deleted from

DataRef : data record number

DeleteRec removes a data record from a Turbo Ac
cess data file.

The record number, DataRef, should be obtained
from one of the following routines: Deletekey,
NextKey, PrevKey, SearchKey, or FindKey.

The record is entered into the deleted data record
list, so it may be reused by AddRec before the data
file is expanded.

DatF must be of type DataFile.

Warning: Do not attempt to delete an already
deleted record, or you may corrupt the linked list of
deleted records.

AddRec
DeleteKey

This code removes the customer record with num
ber RecordNumber from the customer data file,
CustomerFile:

Vat

CustomerFile
RecordNumber
CodeFile
CustCodeStr

begin

DataFile;
integer;
IndexFile;
string [801 ;

DeleteKey (CodeFile, RecordNumber , CustCodeStr) ;
DeleteRec (CustomerFile, RecordNumber) ;

end:

Turbo Database Toolbox Owner's Handbook

FileLen [ACCESS.BOX]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

function FileLen(var DatF:DataFile): integer;

FileLen(DatF) ;

DatF data file from which the number of
records is found

FileLen returns the number of data records allocated
to the data file given by DatF.

The length returned by FileLen includes the re
served record at the beginning of the file (record 0)
as well as all deleted records.

DatFmust be of type DataFile

UsedRecs, AddRec

This code sets NumOfRecs to the total number of
records in the CustomerFile:

var
CustomerFile : DataFile;
CustomerRecord : Record

Status : integer;
Name : string;

end;
begin

Write('The customer datafile contains');
Wri te (FileLen (CustomerFile) *SizeOf(CustomerRecord)) ;
WrHeIn(' bytes.');

end:

TECHNICAL REFERENCE 103

FindKey [GETKEY.BOX]

Declaration

Usage

Parameters

Function

Remarks

104

procedure FindKey(var IndexF : IndexFile;
var DataRef: integer;
var Key);

Fi ndKey(l ndexF,DataRef,Key);

IndexF : index file to be searched

DataRef: data reference associated with found key

Key : key string to search for

FindKey returns the data record number associated
with a key.

FindKey locates the entry in the index file that ex
actly matches the string passed as the Key parame
ter. If the index file contains duplicate keys, FindKey
always locates the first key.

On exit, OKis set to TRUE if a matching key is found.
Otherwise, OK is set to FALSE.

The key field of FindKey is a variable parameter. If
you search for a customer named Smith and the
index is not found:

SearchKey(IndexF,DataRef, Name);

The global variable OK is set to FALSE and the value
of Name is destroyed (it is actually set to the value of
the last key read from the index file). Always use a
scratch variable in your search routine if you don't
want it changed.

For example:

Write ('Enter name to find: ');
Read (Name) ;
Scratch : = Name; { Scratch is same type as Name }
SearchKey(IndexF. DataRef. Scratch);
if not OK then

Wri teln(' - Sorry: I cannot find '. Name);

Turbo Database Toolbox Owner's Handbook

Restrictions

See Also

Example

The Key parameter must be a string variable. If it is
longer than the maximum key length for IndexF, it
will be truncated to the MaxKeyLen.

NextKey
PrevKey
Search Key

This code sets RecordNumberto the record indexed
by CustCodeStr.

vat

Code Index : IndexFile;

RecordNumber : integer;

CustCodeStr : string[80j;

CustRecord : CustRecordType;

begin
w1th CustRecord do

CustCodeStr : = LastName + FirstName;

FindKey (Code Index. RecordNumb&r. CustCodeStr) ;

{ code to process the date record accessed by record number }

end;

TECHNICAL REFERENCE 105

GetRec [ACCESS.BOX]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

106

procedure GetRec (var OatF : OataFile;
OataRef: integer;

far Buffer) ;

GetRec(DatF,DataRef,Buffer) ;

DatF : data file the record is read from

DataRef : data record number

Buffer : variable to read the data into

GetRec reads a specified data record into memory.

Since Buffer is an untyped parameter, GetRec will
accept any variable in its place. It is up to you to
make sure that the variable passed is of the proper
type.

Warning: Buffer is of a type smaller than the record
size of DatF, other variables or code could be
overwritten.

AddRec
DeleteRec
PutRec

This code loads CustomerRecord with data from
CustomerFile:

far

CustomerFile : OataFile;
RecordNumber : integer;
CustomerRecord : Record

begin

Status : integer;
Name
Address: string [80] ;
Company: string [40] ;

{ code to determine desired record number }
GetRec (CustomerFile ,RecordNumber ,CustRec)

end;

Turbo Database Toolbox Owner's Handbook

Initlndex [ACCESS. BOX]

Declaration

Usage

Function

Remarks

Restrictions

See Also

Example

procedure Ini tIndex;

Initlndex;

Initlndex initializes the table used by Turbo Access
index file routines.

Initlndex must be called before other index file
routines. Only one call is required, usually at the
very beginning of the application program.

Initlndex will corrupt index files if it is called when
index files are open. It must only be called when
there are no open index files and prior to calls made
to Makelndex or Openlndex.

Makelndex
Openlndex

This code sets internal structure of customer in
dexes:

var
Code Index : IndexFile;

begin
InitIndex;
{ code to open index files }

end;

TECHNICAL REFERENCE 107

MakeFile [ACCESS.BOX]

Declaration

Usage

Parameters

Function

Restrictions

See Also

Example

108

procedure MakeFile(var DatF : DataFile;
FileN : string [14] ;
RecLen : integer);

MakeFile(DatF,FileN,RecLen) ;

DatF : data file to be prepared for access

FileN : string expression specifying the name of
the new disk file

ReeLen : record length in bytes

MakeFile creates a new data file and prepares it for
processing.

On exit, OK is TRUE if the file was successfully cre
ated. If OK is FALSE, there is not enough space on
the disk or in the directory for a new file, or there is
already a read-only file with that name.

DatFmust be of type DataFile. FileN can be up to 14
characters long. The minimum record length for
ReeL en is 8 bytes. Use SizeOf (your record variable)
when passing to the ReeLen parameter.

CloseFile
OpenFile

This code creates a customer data file to store a
record of type and size CustomerReeord:

var
CustomerFile : DataFile;
CustomerRecord : CustRecType;

begin
{ code to determine if a new datafile should be created }
MakeFile(CustomerFile, 'CUSTFILE.DAT' ,SizeOf(CustomerRecord);

end;

Turbo Database Toolbox Owner's Handbook

Makelndex [A CCESS. BOX]

Declaration

Usage

Parameters

Function

Restrictions

See Also

Example

procedure MakeIndex(var IndexF
FileN

: IndexFile;
: string [14] ;

KeyLen,Status : integer);

Makelndex(I ndexF,FileN,KeyLen,Status);

IndexF : index file to be prepared for access

FileN : string expression specifying the index file
name

KeyLen maximum length of key strings to be
stored in this file

Status 0 indicates that duplicate keys are not
allowed; 1 means that duplicate keys are
allowed

Makelndex creates a new index file and prepares it
for processing. On exit, OK is set to TRUE if the file
was created successfully. If OK is FALSE, there is no
space on the disk for a new file, or the disc or file
name is write-protected.

IndexF must be of type IndexFile. FileN may be up to
14 characters long. At the beginning of your pro
gram, a call must be made to Initlndex (once only)
before calling Makelndex.

Closelndex
Initlndex
Openlndex

This code creates index file Codelndex with no du
plicates allowed, where NoDuplicates is a constant
set to zero:

canst
NoDuplicates=O;

vat

Code Index : IndexFile;
CodeString : string [20];

begin
MakeIndex (Code Index, I CODEFILE. NOX I ,SizeOf (CodeString)
NoDuplicates) ;

end:

TECHNICAL REFERENCE 109

NextKey [GETKEY.BOXj

Declaration

Usage

Parameters

Function

Restrictions

See Also

110

procedure NextKey(var IndexF : IndexFile;
var DataRef: integer;
Vat Key);

NextKey(l ndexF,Data Ref,Key);

IndexF : index file that has been prepared for se
quential processing by a call to FindKey,
Search Key, or ClearKey

DataRef : data reference associated with the key

Key : key read from the next index entry

NextKey returns the data reference associated with
the next key in an index file. NextKey also returns
the key value in the Key parameter.

On exit, OKis setto TRUE unless no next index entry
exists. In that case, OK is set to FALSE. When OK
returns FALSE (that is, when the pointer is at the end
of the index), NextKey returns the first entry in the
index if it is called again.

Before the first call to NextKeyfor a given index file
or after the index file is updated with AddKey or
DeleteKey, one of the other index search functions
(except PrevKey) must be called. The search func
tions establish the internal pointer used by NextKey
and PrevKeyfor sequential processing.

Add Key
ClearKey
DeleteKey
FindKey
PrevKey
SearchKey

Turbo Database Toolbox Owner's Handbook

Example This code returns the record number and key of the
next key in the search sequence:

var
Code Index : IndexFile;
RecordNumber : integer;
CustCodeStr : string [20];

begin
{ code to set index pointer, i. e., ClearKey}
NextKey(Code Index ,RecordNumber, CustCodeStr) ;

end:

TECHNICAL REFERENCE 111

OpenFile [ACCESS.BOX]

Declaration

Usage

Parameters

Function

Restrictions

See Also

Example

112

procedure OpenFile(var DatF : DataFile;
FileN : string [14] ;
RecLen : integer);

OpenFile(DatF,FileN,RecLen);

DatF : data file to be prepared to access

FileN : string expression specifying the name of
an existing disk file

ReeL en : record length in bytes

OpenFile opens an existing data file and prepares it
for processing by Turbo Access routines.

On exit, OKis TRUE if the file was found and opened
successfully. Otherwise, OK is FALSE.

DatF must be of type DataFile. File may be up to 14
characters long. ReeL en must be the same length as
when the file was created.

CloseFile
MakeFile

This code opens a customer data file to store a
record of type and size CustomerReeord:

var
CustomerFile : DataFile;
CustomerRecord : CustRecType;

begin
OpenFile(CustomerFile. 'CUSTFILE. DAT' .SizeOf(CustomerRecord));
if OK then {process the file}

end;

Turbo Database Toolbox Owner's Handbook

Openlndex [ACCESS. BOX]

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure Openlndex(var IndexF : IndexFile;
FileN : str1ng(14);
KeyLen : integer;
Status : integer);

Openlndex(lndexF,FileN,KeyLen,Status);

IndexF : index file to be prepared for access

FileN : string expression specifying the disk file
name

KeyLen maximum length of key strings to be
stored in this file

Status 0 indicates that duplicate keys are not
allowed; 1 means duplicate keys are
allowed

Openlndex opens an existing index file and
prepares it for processing.

On exit, the OK flag is set to TRUE if the file was
created successfully. If OK is FALSE, there was no
space on the disk for a new file.

IndexFmust be of type IndexFile. FileN may be up to
14 characters long. At the beginning of your pro
gram, a call must be made to Initlndex (once only)
before calling Openlndex.

Closelndex
Initlndex
Makelndex

TECHNICAL REFERENCE 113

Example

114

This code opens index file Codelndex with no du
plicates allowed, where NoDuplicates is a constant
set to zero:

const
NoDuplicates=O;

var
CodeIndex : IndexFile;
CodeString : str1ng[80j;

begin
OpenIndex (Code Index • I CODEFILE. NOX I • SizeO f (CodeSt ring)
NoDuplicates) ;

end:

Turbo Database Toolbox Owner's Handbook

PrevKey [GETKEY.BOXj

Declaration

Usage

Parameters

Function

Restrictions

See Also

procedure PrevKey(var IndexF : IndexFile;
var DataRef: integer;
far Key);

PrevKey(lndexF,DataRef,Key);

IndexF : index file that has been prepared for se
quential processing by a call to FindKey,
SearchKeyor ClearKey

DataRef: returns the data reference associated with
the key

Key : returns the key from the preceding index
entry

PrevKey returns the data reference associated with
the preceding entry in an index file. PrevKey also
returns the key value in the Key parameter.

On exit, OKis set to TRUE unless no preceding index
entry exists. In that case, OK is set to FALSE. When
OK returns FALSE (that is, when the pointer is at the
beginning of the index), PrevKey returns the last
entry in the index if it is called again.

Before the first call to PrevKey for a given index file
or after the index file is updated with AddKeyor
DeleteKey, one of the other index search functions
(except NextKey) must be called. The search func
tions establish the internal pointer used by NextKey
and PrevKeyfor sequential processing.

ClearKey
FindKey
NextKey
SearchKey

TECHNICAL REFERENCE 115

Example

116

This code returns the record number and key of the
previous key in the search sequence:

var
Code Index : IndexFile;
RecordNumber : integer;
CustCodeStr : str1ng[20 I;

begin
{ code to set index pointer. i. e.. ClearKey }
PrevKey (Code Index. RecordNumber. CustCodeStr) ;

end;

Turbo Database Toolbox Owner's Handbook

PutRec [ACCESS.BOX]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

procedure PutRec(var DatF : DataFile;
DataRef : integer;

Vat Buffer) ;

PutRec(DatF,DataRef,Buffer) ;

DatF : data file to which record is written

DataRef : data record number

Buffer : variable data is written from

PutRecwrites a data record to a specified position in
a data file.

Since Buffer is an untyped parameter, PutRec will
accept any variable in its place. It is up to you to
make sure that the variable passed is of the proper
type. Buffer 3 is passed as a variable parameter to
save memory.

DatFmust be of type DataFile

AddRec
DeleteRec
GetRec

This code writes the CustomerRecord to the speci
fied location in the CustomerFile:

Vat

CustomerFile : DataFile;
RecordNumber : integer;
CustomerRecord : CustRectype;

begin
{ code to get and modify a data record }
PutRec (CustomerFile. RecordNumber. CustomerRecord) ;

end;

TECHNICAL REFERENCE 117

SearchKey [GETKEY.BOX]

Declaration

Usage

Parameters

Function

Remarks

118

procedure SearchKey(var IndexF : IndexFile;
var OataRef: integer;
var Key);

Search Key (I ndexF,DataRef,Key);

IndexF : index file in which to search

DataRef: data reference associated with found key

Key : key string to search for

SearchKey returns the data record number associ
ated with the first entry in an index file that is equal
to or greater than a specific key value.

OKis always set to TRUE on exit, unless no keys are
greater than or equal to the search key. In that case,
OK is set to FALSE.

SearchKeycan be used to locate an entry in an index
file when only the first part of the key value is known.
If the index file contains duplicate keys, SearchKey
always locates the first key.

The key field of SearchKey is a variable parameter. If
you search for a customer named Smith and the key
is not found:

SearchKey(IndexF, OataRef, Name);

The global variable OK is set to FALSE and the value
of Name is destroyed (it is actually set to the value of
the last key read from the index file). Always use a
scratch variable (or parameter) in your search
routine if you don't want the variable changed.

Turbo Database Toolbox Owner's Handbook

Restrictions

See Also

Example

For example:

Write('Enter name to find: ');
Read (Name) ;
Scratch : = Name; {Scratch is same type as Name }
SearchKey(IndexF. DataRef. Scratch);
if not OK then

Writeln(' - Sorry: I cannot find'. Name);

Key must be a string variable. If it is longer than the
maximum key length for IndexF, it will be truncated
to the maximum length.

Add Key
ClearKey
DeleteKey
FindKey
N ext Key
PrevKey

This code returns the record number of the cus
tomer whose code is greater than or equal to the
customer code:

vat

Code Index : IndexFile;
RecordNumber : integer;
CodeString : string [20);

begin
{ code to get search string }
SearchKey(Codelndex. RecordNumber. CodeString) ;

end;

TECHNICAL REFERENCE 119

UsedRecs [ACCESS.BOX]

Declaration

Usage

Parameters

Function

Remarks

Restrictions

See Also

Example

120

function UsedRecs (var DatF : DataFile) : integer;

UsedRecs(DatF) ;

DatF data file from which the number of
records is found

UsedRecs returns the number of records in DatFthat
contain valid data.

In contrast to FileLen, this function does not include
reserved and deleted records.

None

AddRec
DeleteRec
FileLen
GetRec
PutRec

var
CustomerFile : DataFile;

begin
{ code to ini tialize data file }
Write('There are');
Wri te(UsedRecs(CustomerFile) : 1);
Writeln(' in the database');

end;

Turbo Database Toolbox Owner's Handbook

Chapter 4
GINST -General Installation System

This chapter explains how to use the GINST (General Installation)
program to generate installation routines for your Turbo Pascal
programs.

How GINST Works

GINST creates installation programs that allow your customers to
install your programs for their particular terminal(s). You may freely
distribute the generated installation programs with any program you
develop with Turbo Pascal.

GINST is not an installation program in itself; it is a program that
generates installation programs, which will then install Turbo Pascal
programs. GINST lets you create your application program on the
computer of your choice, without worrying about where it's going to
wind up after you've sold it to your end users. As long as you and your
customers use the same operating system, and as long as their com
puters run Turbo Pascal, GINST will make sure your program gets up
and running on the target system.

There are four operating systems under which you can run Turbo
Pascal: MS-DOS, PC-DOS, CP/M-S6, and CP/M-SO. There are only three
GINST installation programs, since the MS-DOS and PC-DOS ver
sions are identical. The GINST-generated installation program can tell
if the program it is installing was compiled for MS-DOS or PC-DOS
and acts accordingly. However, GINST cannot convert a Turbo Pascal
program compiled by PC-DOS to run under generic MS-DOS and vice
versa.

When you load GINST, it first asks you to enter the name of the pro
gram to be installed:

Turbo Pascal
Installation Program Generator

Copyright (C) 1984 by Borland International

Enter name of program to install: MYPROG

GINST-GENERAL INSTALLATION SYSTEM 121

122

You can enter any legal file name-for example, MYPROG. If you
don't enter an extension, COM is assumed (or CMD in the CP/M-S6
version).

Next, you must enter the first (up to eight characters) name you want
to use for the generated installation program files:

Enter first name for installation files: MYINST

As an example, let's run the installation program for the Turbo Pascal
program MYPROG to produce the installation program MYINST.
GINST produces the following message:

Creating MYINST. COM

Crea ting MYINST. MSG

Creating MYINST. DTA

Installation program for MYPROG. COM created

That's all there is to generating an installation program. When your
end users run the installation program MYINST, they will be pre
sented with a menu asking them to choose their terminal (or monitor,
in the case of the IBM PC) from a list GINST provides; GINST will then
put in the correct terminal control sequences for your application
program.

Refer to the Turbo Pascal Reference Manual: Installation for an expla
nation of how to install your program; the procedure is identical to
installing Turbo Pascal itself. A text file called INSTALL.DOC is in
cluded on your distribution disk and contains installation documenta
tion that you may distribute to users of your program.

Note: As a condition under which you purchased the Turbo Database
Toolbox, you may copy or paraphrase only the "Installation" section
of the Turbo Pascal Reference Manual and include this information in
your own documentation for your Turbo Pascal programs. Any other
reproduction of the Turbo Pascal Reference Manual is a violation of
the Borland license agreement.

Turbo Database Toolbox Owner's Handbook

Appendix A
TIPS FOR TOOLBOX PROGRAMMERS

The information in this appendix will help you design your Turbo
Access programs. The general guidelines given here apply to any
Toolbox program you write, regardless of complexity.

The Fundamentals of Program Design

Before performing the" real work" of database management, a good
database program must control keyboard input as well as output to
the screen, printer and disk drives. You should structure your pro
gram in a way that makes it easier to manage all these tasks: organize
these "housekeeping" routines into modules and then put them in
separate include files. Your main program will then look something
like a table of contents. For example:

progru DataBaseSystem; {Revised: 07/25/85 by Ace Coder }

{This program is a sample database system.

Hardware requirements: 64K RAM

Operating System: Any PC-DOS, MS-DOS, CP/M-80 or

CP/M-86 machine that can run Turbo

Pascal.

Data files used: CUST.DTA, TX.DTA

Index files used: CUST.NDX, ZIP.NDX, TX.NDX,
}

{$I CONSTANTS. INC }

{$I DECLARE. INC }

fSI ACCESS. BOX

{$I ADDKEY. BOX

{$I GETKEY.BOX

{$I DELKEY. BOX

{$I INPUT. INC

{$I ERROR. INC

{ ACCESS constants }

{ other declarations }

{ ACCESS routines

{ ACCESS routines

{ ACCESS routines

{ ACCESS routines

{ input routines

{ error handling

TIPS FOR TOOLBOX PROGRAMMERS 123

{$I FILES. INC
{$I MAINT. INC
{$I REPORTS. INC
{$I MENU. INC

begin
OpenSystem;
Menu;
CloseSystem;

end.

{ open. close system }
{ entry & edit}
{ print reports }
{ main menu

{ program body }

Each of the include files in this sample program is described in the
following sections.

CONSTANTS.lNC

You should be very methodical when you specify the values for Turbo
Access constants, since they determine how efficiently your program
uses memory. When set correctly, the constants MaxKeyLen and
MaxDataRecSize optimize search and access speeds and help your
program conserve memory. Incorrect constant values could lead to
mysterious bugs and program crashes. Use the SETCONST.PAS pro
gram (on the distribution disk) to determine the best declarations for
your application; see page 13 for an example of SETCONST.PAS.

DECLARE. INC

124

Put your type declarations in a separate module, then write a small
program that includes this module and displays the size of the keys
and records that will be stored and retrieved by Turbo Access
routines. Given the following definitions in DECLARE.lNC:

type
CustName = string [25) ;
CustZip = str1Dg[9);
CustRec = record

Name : CustName;

ZipCode : CustZip;
end;
TxRec = record

end;

{ key for CUST.NDX file }
{ key for ZIP .NDX file }

{ customer record }

{ transaction record }

Turbo Database Toolbox Owner's Handbook

your SizeOfutility program will look something like this:

progm DetermineConstantSizes;

{$I DECLARE. INC include database declarations }

begin
Wri teln ('Largest = MaxKeyLen');
Wri teln (, - - - - - - - - - - ,) ;
Writeln('Customer name key: '. SizeOf(CustName)-l);
Writeln('Zip code key: '. SizeOf(CustZip)-l);
Writeln;
Writeln('Largest = MaxDataRecSize');
Writeln (, - - - - - - - - - - ,) ;
Wri teln('Customer record: '. SizeOf(CustRec));
Writeln('Transaction record: '. SizeOf(TxRec)) ;

end.

{ program body }

The length of the longest key is the value you should use for Max
KeyLen. Similarly, set MaxDataRecSize to the size of the largest
record. Then determine the maximum number of records and keys
that your program will be likely to use. Finally, using the SET
CONST.PAS program, plug in the above values and compute the op
timum values for your data structures. As in any well-structured
program, use constants, avoid global variables and pass parameters
to procedures whenever possible.

ACCESS.BOX, ADDKEY.BOX, GETKEY.BOX,
DELKEY.BOX

A good database program should have only one procedure that
reads, one that writes and one that deletes records from disk files. The
ACCESS. BOX, ADDKEY.BOX, GETKEY.BOX, and DELKEY.BOX mod
ules contain all the data management routines that your program will
need, and can be called from many different places in your program.

INPUT.INC

Similarly, you should have only one statement in your entire program
that receives input from the user. This read statement should read a
character variable from the keyboard:

TIPS FOR TOOLBOX PROGRAMMERS 125

126

Read(KBD, ch); { ch : char }

For a good example of a string input routine, refer to procedure
InputStr in the BTREE.PAS sample program on your distribution disk.

The same routine should be used to input both integer and real num
bers. First, call your integer or real number input procedure and pass
it two numeric parameters: the first is the integer or real number to be
read, the second is the maximum number of digits (including minus
signs and decimal point). This routine will then call the string input
procedure. Next, use the Turbo Pascal Val procedure to convert the
string to a number. Finally, test to see if the input is valid and proceed
accordingly:

procedure InputStr(var s : MaxString; MaxLen : integer);
{ reads up to MaxLen characters into s }

procedure Reject(Spaces : integer);
{ beeps and backspaces over invalid input }

procedure StripLeadingSpaces(var s : MaxString);
{ deletes blanks until first non-blank character }

procedure InputInteger(var ReadMe: integer;
MaxLen : integer);

var
TempString : MaxString;
Valid, TempLength : integer;

begin
repeat

InputStr (TempString, MaxLen);
TempLength: =Length(TempString);
Val(TempString, ReadMe, Valid);
StripLeadingSpaces (TempString) ;
if Valid < > 0 then

Reject(TempLength)) ;
until Valid = 0;

end; { InputInteger }

Turbo Database Toolbox Owner's Handbook

A similar procedure can be used to input real numbers. You can cus
tomize your string input routine to "know" when numbers are being
entered and ignore non-numeric characters or decimal points on in
teger reads. Do this by passing a set of characters as a parameter that
specifies characters that are legal to enter:

Integers: ['0'.. '~', '-']
Beals: ['0' •• '~', '_I, '.']
All others: [' , •• '''''] (non-numeric entry)

ERROR. INC

Every program should have a set of error handling procedures. The
standard Turbo procedures Exit (version 3.0 and later) and Halt are
powerful tools to use in your error routines. If a fatal error occurs in
your program, you should pass an error message to an abort routine
that displays the message and then exits the program:

procedure Abort (Message : MaxString);

begin
GoToXY(l. 24);

Wri teln;

Writeln(Message.' Program aborting. ');

Halt;

end; { Abort }

You might need a more sophisticated routine that can optionally
close data or index files under certain circumstances. Error handling
for a good database system is one of the most important features and
requires careful planning.

Note: If you are using Turbo Pascal 3.0, you can write your own
routine to handle liD errors. See the Turbo Pascal Reference Manual
and/or the READ.ME file on the Turbo Pascal distribution disk.

TIPS FOR TOOLBOX PROGRAMMERS 127

FILES. INC

This module contains routines that open and close the system. To
open ACCESS data files, call the OpenFile or MakeFile procedures.
When specifying the size of the record in this procedure call, be sure
to use the SizeOffunction:

OpenFile(DataFile, 'CUST.DTA', SizeOf(CustRec));
if OK then ... { always check OK after Turbo Access I/O operations }

If the size of the record in this statement is larger than MaxDataRec
(or different from the record size of the data file), your program may
be afflicted with a wide variety of seemingly inexplicable errors. If no
error occurs and the file is saved, the data file will probably be cor
rupted. Therefore, you should inspect the constant declarations and
the MakeFile and OpenFile statements to verify that the numbers
correspond.

MAINT.INC, REPORTS.INC, MENU.lNC

These modules are examples of routines common to many database
programs and constitute "the real work" of the system. In this case,
MAINT.lNC contains all the routines to enter and edit data,
REPORTS.lNC has all the routines to print data on the printer, and
MENU.INC controls the menu procedure that calls the other routines.

Designing Screen Output

128

Designing readable screen output is a very important part of your
program development and deserves special mention here. From the
"welcome" screen to the "good-bye" message, you should plan ex
actly what the user will see while your program is running.

Some of the most important considerations from the user's point of
view are:

• Your screens must be uncluttered, logically organized and easy to
read.

• The cursor should always be easy to locate, and its position
should show the user exactly what type of input is required.

Turbo Database Toolbox Owner's Handbook

• Special areas of the screen should be set aside for helpful hints
and error messages.

• Different screen displays should share the same style and con
ventions (boxes, wording, colors and highlighting).

• One special keystroke-for example, ESC-should abort the cur
rent process and return the user to the main menu.

• Online help should be available whenever possible.

Important considerations from a programmer's perspective are:

• You should be able to quickly write a routine that displays data on
the screen by modifying an existing "template" routine.

• Colors, highlighting and screen coordinates for all special areas
(help areas, error messages, menu entry fields) should all be
declared as an array of records in the typed constant section of
your program:

type
Posi tionRec = record

x. y: byte;
HighLighting : boolean;
end;

Positions = (CommandPos. HelpPos. ErrorPos);
Posi tionArray =

array [CommandPos .. ErrorPos 1 of PositionRec;

const
Posi tionChart : Posi tionArray =

((x: 60; y: 23;

Highlighting : True).
(x: 1; y: 24;

Highlighting : False).
(x: 1; y: 1;

Highlighting : True));

screen coordinates }
or specify colors
Posi tionRec

{ CommandPos }

{ HelpPos

{ ErrorPos

This type of program structure makes it easy to modify all screen
displays in midstream. In addition, this code is very readable and can
be easily modified for another system. It is best to place it in the
declaration module or in a separate module of output routines.

TIPS FOR TOOLBOX PROGRAMMERS 129

130

• Designate a set of characters as special abort keys and declare
them as a typed constant in your program:

const
AbortSet : set of char = [. [. 'Cj; { ESC. Ctrl-C }

• Scan the keyboard during time-consuming operations (printouts,
long computations, etc.) and. look for these characters. When
typed on the keyboard, one of these characters should abort the
program, while another should simply return control to the main
menu routine.

• If there is a lot of help text to be displayed, you might consider
storing the text in a disk file. You can pass the help procedure a
parameter that specifies what part of the file should be displayed
at a given time.

By taking the time to design and implement a well-structured data
base program, you will ultimately save time in the debugging and
modification stages of program development. In addition; this type of
system can be easily changed to function as a "front end" for a com
pletely different database manager. Consider these suggestions and
refer to them when you are designing your program.

Turbo Database Toolbox Owner's Handbook

Appendix B
B + TREE STRUCTURE

This appendix provides an overview of the B+tree structure used by
Turbo Access. Since Turbo Access handles the creation and mainte
nance of B + trees automatically, it isn't necessary for you to understand
(or even read) the material in this appendix. However, if you are an
experienced programmer, a deeper understanding of B + trees will
enable you to fine-tune the Turbo Access system for your application
programs. The information in this appendix can also help you set
values for the constants used by Turbo Access (see Chapter 3).

A general discussion of tree structures is presented, followed by a
discussion of B + trees in particular and how they are used by the Turbo
Access system. Concepts such as roots, nodes, pages, leaves, items,
and keys are also explained.

Trees: The Quickest Route is Not Always
a Straight Line

Suppose you have a database consisting of customer names, tele
phone numbers, addresses, and billing status. When you ask your
computer to find the telephone number of a customer, unless it is
equipped with Turbo Access or something similar, it will search se
quentially through each record one at a time. If that customer's tele
phone number happens to be at the bottom of the database file, it will
take a gbod deal of time to find it.

8 + TREE STRUCTURE 131

132

Trees provide a way to search through lengthy data files quickly with
out looking at every record in the file. A tree is simply a way to orga
nize data. Each piece of data can be represented by a node in the tree.
There are three types of nodes: a root node, internal nodes, and leaf
nodes. In a binary tree, each node can have zero, one, or two children.
A child node is a node pointed to by a parent node, which is either a
root node or an internal nodeF. A leaf node is a node that has no
children. Thus, a tree is made up of nodes and pointers that connect
the nodes (see Figure 8-1).

Root node ------••

Internal or middle nodes ~

Terminal or leaf nodes -----..

Figure 8-1. A 8inary Tree

To find a particular piece of data in the tree, the tree is searched one
node at a time starting at the root node. At each node, there are four
possibilities:

• The current node contains the data being sought.

• The data being sought is less than the current node, in which case
the left child is the next node to be searched.

• The data being sought is greater than the current node, in which
case the right child will be searched next.

• The current node does not contain the sought data and the node is
a leaf; this means that the sought data is not in the binary tree.

Thus, when searching a binary tree, a decision is made at each node
to discard or retain it, thereby eliminating half of the nodes under
consideration. This makes tree searching efficient.

Turbo Database Toolbox Owner's' Handbook

B + tree Fundamentals

Binary trees are efficient data structures for many purposes, but there
are other, more efficient, data structures to handle large amounts of
data. The Turbo Access system uses one such data structure called
the 8 + tree. (The 8 stands for R. Bayer, the inventor.)

The main difference between a B + tree and a binary tree is that more
than two children are allowed at each level.

A B + tree's pages are analogous to a binary tree's nodes: There is a root
page, internal pages, and leaf pages. Each page can contain several
items. Each item holds an abbreviation of the data record. There are
typically 16 items on a page.

Each root page and each internal page has one child page for each
item on the page, plus one extra child page. Leaf pages have no
children.

Root page ----+-

Internal pages ~

Figure 8-2. A 8 + tree

A sample B + tree is shown in Figure B-2. The items in the B + tree are
represented by letters and arranged alphabetically. There are two
items on each page, and each page has three children. The items on
each page are in alphabetical order (for example, R comes after I in the
root page). The children are also ordered in that for each page, its first
item is after every item on its first child page, and its second item is
after every item on its second child page but before every item on the
third child page. (For example, C is after A and B, and F is after D and E
but before G and H.)

8 + TREE STRUCTURE 133

Searching a tree ordered in this manner can be very efficient. Similar
to a binary tree, you start at the root, proceeding down the tree by
making comparisons against the items within each page.

B + trees are used to manage disk-stored databases too large to put in
RAM. With Turbo Access, the data file is just one big array of records.
Typica"y, there might be 5,000 records, with each record being 300
bytes. A separate file called an index file is used to organize the data
into a B + tree structure.

Manipulating entire data items is somewhat cumbersome; thus, in
the index file each data record is abbreviated into a key and a data
reference. A key is usually a portion of a data record that is sufficient
to determine the ordering of the data records. A data reference is a
pointer that indicates where the complete data record is stored.
(These concepts are explained more fully in later sections.)

Turbo Access provides procedures for accessing, inserting, and delet
ing data records. Because it uses B+trees, each operation involves a
very small number of disk accesses and is very efficient.

Elements of a 8 + tree

134

Trees are most efficient if the items are distributed fairly evenly
throughout the tree; therefore, B + trees are defined to ensure balance.
Turbo Access routines automatically maintain these properties of
B+trees.

A B+tree of order n is a tree that satisfies the following constraints:

• Excluding the root, a" pages have at least n items.

• Each page has, at most, 2n items.

• A page is either a leaf with no active page references, or it has one
page reference for each item plus one extra page reference.

• All leaf pages must be on the same level.

• Items on a page do not contain any data; they contain only keys
and references to other pages and data records.

These constraints provide several advantages. First, they ensure that
all parts ofthe B + tree have a minimum information density; that is, at
least 50 percent of the B + tree consists of items. Secondly, most of the
items have the same search-path length, which is the number of
levels in the tree that a search would have to go through if it started at
the root. The remainder of items have shorter paths.

Turbo Database Toolbox Owner's Handbook

Adding items to or deleting items from a B + tree may cause the tree to
become temporarily unbalanced. However, Turbo Access uses
balancing algorithms to ensure that the previously described con
straints are always satisfied.

With a B + tree, a very large number of items can be put in a tree with a
very small number of levels. For example, the maximum number of
keys in the Turbo Access system is 65,535, or approximately 2 * Max
Int. If the B + tree has order 16, then it will have, at most, four levels.
Without the constraints on the B + tree structure, the search path length
would depend upon the history of key insertion and could become
unacceptably large.

Keys

Each item of the B + tree holds a key. A key is a user-defined character
string of 255 characters or less that is used to store and retrieve a
record in a data file. A key can be formed from any word or code that is
relevant to the data record the key is associated with. In most cases, a
key is chosen from one or more of the fields in the data record. For
example, to form a key for a customer database, the customer's first
and last name could be concatenated to form a key of, say, length 25:

Fields

First name
Last name
Company
Etc.

Key #1
Key #2

Data record #1

'Jon'
'Jones'
'Acme Supply'

1 2
1234567890123456789012345
'Jones Jon
Washington George

Data record #2

'George'
'Washington'
'U.S. Government'

A string uses an ordering system that makes use of the relational
operators ">", "=" and "<". (For a discussion of this ordering sys
tem, refer to the Turbo Pascal Reference Manual: String Type.) Since
each key has a relative rank (according to its length and ASCII value) in
the tree, the order of a given set of keys is fixed. In the previous
example, two key strings might be identical and thus have the same
rank. The Turbo Access system determines the rank of identical keys
in one of two ways, depending on how the index file is created.

B + TREE STRUCTURE 135

If the index file is created with a status of no duplicate keys allowed,
then the system will warn the user program when an attempt is being
made to add a duplicate key. The user program can then take appro
priate action.

If the index file is created with a status of duplicate keys allowed, then
adding two identical keys will cause the entries to be ordered by
physical record number (which is always unique). In this case, if an
attempt is made to delete a key, the system checks both the key itself
and the record number associated with it to ensure that the correct
key is deleted.

Both the RAM space required by B +tree procedures and the disk space
used by index files grow with increasing key lengths. The key must be
long enough to allow for a sufficient number of key variations to
separate all entries in the index file. In many cases, abbreviating the
original key information will serve the purpose.

For example:

Henry Smith, Plumber could be 'PlumSmitH'

Items

136

The fundamental unit of a B + tree is a record data type called an item.
An item represents the connection between a key string and a physi
cal data record (see Figure B-3), and is made up of a key string, a data
reference, and a page reference.

The key string is used by Turbo Access to search the B+tree, the data
reference points to the location in the data file where the data record
associated with the key is found, and the page reference forms the link
in the B+tree by pointing to a page where all keys are greater than the
current item's key string.

The key string and the data reference are generated by the user pro
gram (that is, the key string from record fields and the data reference
returned by the AddRec routine). The page reference is generated
internally by the AddKey procedure.

Turbo Database Toolbox Owner's Handbook

Pages

Key String

Page
Reference

Data
Reference

Figure 8-3. An Item

A unit or record of an index file is called a page. A page is a record
containing three structures: an array of items, an extra page refer
ence, and a count (see Figure B-4). In the Turbo Access system, the
array has room for a fixed number of the items described in the previ
ous section. This number is called the page size, and is exactly twice
the order ofthe B + tree. It may be any even number between 4 and 254.

The number of items actually in a page can be anything between page
size/2 and page size items. Since this number varies, each page must
keep track of how many items it holds using the count field, which
contains the number of items currently on the page. The count field
always points to the last valid item in the array.

Since there is one page reference for each item, and the number of
page references is one more than the number of items, there must be
an extra page reference. The extra page reference is used to find keys
with values that are less than any key on the current page.

For example, if a page contains items with keys X, Y, and Z, then the
page reference associated with X points to a page with keys greater
than X but less than Y. Likewise, the page reference associated with Y
points to a page with keys greater than Y but less than Z, and the page
reference associated with Z points to a page with keys greater than Z.
The extra page reference points to a page with keys less than X.

8 + TREE STRUCTURE 137

Count

Extra
Page Ref.

"
Item [1] Item [2] I I Item [Count] I .. : .. 1 Item [PageSizej

Last Valid Item Last Possible Item

Figure 8-4. Structure of a Page in an Index File

There are three distinct types of pages: the root page, the internal
pages and the leaf pages.

The first page ofthe B + tree is called the root page, and may contain as
little as one item. All other pages ofthe B + tree must be at least halffull.
This means that there are, at most, page size items and, at least, page
size/2 items on all pages except the root page.

The internal pages always have between (page size + 1) and (page size/2
+ 1) pointers to other pages. This keeps the B + tree balanced.

The leaf pages are at the bottom of the tree, and contain no active
page references (that is, they do not have pointers to other pages).

How Pages are Organized into 8 + Trees

138

8 + trees are constructed of pages. As shown in Figure 8-5, each item
holds a possible page reference for each key. In a 8 + tree, the page to
which the page reference points contains additional items with keys.
All of these keys are larger than the key associated with the page
reference.

Turbo Database Toolbox Owner's Handbook

A search for a given key in a 8 + tree follows a path that starts at the root
page and jumps to a child page by following a page reference if the
key is not on the page. The page references on each page are ordered
so that the appropriate child page can be found by comparing the
given key to the other keys on the page.

Page Number

Count

Extra
Page Ref

Key String
..

Data ! Page
Ref ! Ref

Key String
.................... ,.

Data ! Page
Ref I Ref

Key String
...

Data l Page
Ref I Ref

Key String
.................... "'

Page
Ref

This page's page reference.

Last valid item on this page.

Pointer to page with keys less
than this page.

Item number one. (Note that each
item contains a key string, a data
reference, and a page reference)

Item number two .

Item number three .

Item number four .

Figure 8-S. The Page Structure

All paths in a 8+tree start at the root page, and a jump can be made to a
page with either larger or smaller keys. Keys are ordered in a 8 +tree so
that each page in the tree can be reached by one-and only one
path. The number of jumps in a path is called the level of the page,
with the root page being level one; the leaf pages have a level equal to
the height of the 8 + tree.

For example, if an item contains the key M, (see root page in Figure
8-6), that item's page reference will point to a page where all the items
contain keys greater than M (for instance, R and \I). Thus, consecutive
jumps from a page item to that item's page reference follow a path of
increasing keys. The path stops at the leaf page where there are no
active page references. These jump decisions are always made by the
Turbo Access system.

8 + TREE STRUCTURE 139

140

If a jump is made from an item's page reference, the search key must
be larger than that item's key but smaller than the next item's key.
After the jump is made, the search key could be smaller than all the
keys on the new page. In this situation, the extra page reference is
used. It points to another page where all the keys are smaller than that
page's keys (for example, see pages 1 and 2 in Figure 8-6).

Thus, you could move from one page to another in such a way that
any key in the second page is smaller than any key in the first page.
When starting at the root, the single path made from only extra page
references will end at the leaf page with the smallest key in the 8 + tree.
In Figure 8-6, this is page 1, since it contains the key Aand has no extra
page reference.

Root Page Middle Pages Leaf Pages

Page 7

2

'1.4'

1 ! 8

o ! 0

o ! 0

~
Page 2

2 ~page1
1

'C' Page 9

2O! 91-----.. 4
'H' o

11! 6 '0'

24! 0

'I' 'E'
"iT"'o'

'J' 'F'

16! 0 '22,!,"'O'
'K' 'G'

"'4"T"0" "'4'j""O"
'L'

"9"\'0'"

3

'R'

8! 41-----+1
'W'

o ! 0 'X'

',i!,,"'o"
o ! 0 'Y'

'A'

2'T"'o'
'6'

6 ! 0

Page 3

Figure 8-6. Diagram of a 8 + tree of Order 2

Turbo Database Toolbox Owner's Handbook

Finding the Data Reference

Turbo Access locates a data record by using a specified key. The page
with the data reference is found by following a path starting at the root
page. If all keys on the page are larger than the key being sought, the
next page to be investigated is referenced by the extra page refer
ence. If this is not the case, the reference to the next page is found in
the item with the largest key that is less than the key being sought. The
search continues until the key is found, or until a leaf page is reached
with no result.

The root page could be searched for a key with an ordinary search
routine, however, Turbo Access uses a binary search. If the item is
found, the associated data record can be read into memory with one
disk access. If the key is not found on the root, the search continues on
the page pointed to by the item's key closest to (but less than) the
search key.

For example, if the root page contains the key entry M (see Figure B-6)
and the search key is N, the page search will fail after the first compari
son because the count variable will terminate the search. At this point,
the search will continue on the page referenced by key M (see page 8
in Figure B-6). Since this page contains all keys greater than the
search key, the next page to search is referenced by the extra page
reference (see page 3 in Figure B-6). Searching this page yields the
desired key; thus, the entire B + tree search is successful. The data
record pointed to by the data reference in the item with key N (data
record #13 in Figure B-7) can then be read into memory.

8 + TREE STRUCTURE 141

Data
Reference

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

#11

#12

#13

#14

#15

#16

#17

#18

#19

#20

#21

#22

#23

#24

#25

#26

Information

Information for key 'M'

Information for key 'A'

Information for key 'Z'

Information for key 'K'

Information for key 'P'

Information for key 'B'

Information for key'S'

Information for key 'R'

Information for key 'L'

Information for key '0'

Information for key 'H'

Information for key or
Information for key W'

Information for key 'G'

Information for key 'N'

Information for key 'J'

Information for key 'X'

Information for key 'U'

Information for key 'Y'

Information for key 'c'
Information for key 'I'

Information for key 'F'

Information for key 'Q'

Information for key '0'

Information for key 'V'

Information for key 'E'

Figure 8-7. Data File Showing Order of Insertion

B + tree Administration

142

When data records are inserted or deleted from the data file, the cor
responding keys must be inserted or deleted from the index file and
the page items must be rearranged by the Turbo Access system. The
following are examples of how Turbo Access inserts and deletes keys.

Turbo Database Toolbox Owner's Handbook

Inserting Keys

When a key is presented to the B + tree for insertion, the tree is checked
to determine whether or not the key is already present. If the key is
new or if duplicate keys are allowed, the search stops at a leaf page. If
the leaf page is not full, the key is inserted into the page so that the
page remains sorted. If the leaf page is full (that is, it already contains
2n items), a new page is added.

This process of adding new pages is called page splitting. The 2n+ 1
keys are redistributed. The n largest items are moved to the new page,
the n smallest items stay on the old page, and the middle item (n+ 1) is
moved to an ancestral page where it is associated with a reference to
the new page. This scheme preserves the order of items in the B + tree.

If the ancestral page is full, it must be split to accept the item moved
from the leaf level. In this way, page splitting propagates recursively
from the leaves all the way to the root. If the root page is split, a new
root is created and the B + tree grows in height byone. Splitting the root
page is the only way a B + tree can grow in height.

Figure B-8 shows an example of how a B + tree grows by repeated
insertions. The B + tree has order one in this case. Note that the proper
ties of B + trees and the ordering of items with the tree are maintained
after each insertion. (The order of a Turbo Access B + tree is always at
least two; this example is for illustrative purposes only.)

8 + TREE STRUCTURE 143

Add M ~

AddJ ~

Add P &
...

Add Q

~
AddR ~

mrnrn
..

AddK ~

rnrnrn

Figure 8-8. How a 8 + tree Grows

Deleting Keys

144

When a key is to be deleted, Turbo Access finds its location in the tree.
If the key is on a leaf page, it is simply removed. If the key is situated
elsewhere in the tree, the process of deletion becomes more com
plicated. In this case it is necessary to replace the key with another key
at the leaf level in the tree, while keeping the page reference associ
ated with the deleted key.

Turbo Database Toolbox Owner's Handbook

Fortunately, it is always possible to find a suitable key that will not
destroy the key order. The smallest key that is larger than the one to be
deleted is always on a leaf page. Likewise, the largest key that is
smaller than the one to be deleted is also always on a leaf page. One of
these can be used to replace the deleted key without affecting key
order.

It is possible that removing a key from a leaf page will leave the page
with too few items (that is, less than n where n is the order of the B +
tree). In this case, Turbo Access uses a rebalancing method to
redistribute the items. In simpler cases, an item is simply borrowed
from an adjacent page. In more complicated cases, a process called
page merging (analogous to page splitting) is used to merge pages. In
an extreme case, page merging can propagate all the way to the root,
reducing the number of levels in the B + tree by one.

For more information on tree structures, refer to the following
sources:

• Chaturvedi, Atindra. "Tree Structures," Parts 1, 2. PC Tech Jour
nal, (Feb. and Mar. 1985).

• Horowitz, E., et al. Fundamentals of Data Structure. Pitman (1976).

• Knuth, Donald E. The Art of Computer Programming, Addison
Wesley. Vol. 3 (1976).

• Wirth, Niklaus. Algorithms + Data Structures = Programs. Prentice
Hall (1976).

8 + TREE STRUCTURE 145

Notes:

146 Turbo Database Toolbox Owner's Handbook

Appendix C
ASCII TABLE

DEC HEX CHAR DEC HEX CHAR

0 00 A@NUL 32 20 SPC
1 01 AA SOH 33 21
2 02 AB STX 34 22 II

3 03 AC ETX 35 23 #
4 04 AD EOT 36 24 $
5 05 AE ENQ 37 25 %
6 06 AF ACK 38 26 &
7 07 AGBEL 39 27 I

8 08
A
HBS 40 28

9 09 AI HT 41 29
10 OA AJ LF 42 2A *
II OB

A
KVT 43 2B +

12 OC AL FF 44 2C
13 00 AM CR 45 20 -
14 OE AN SO 46 2E
15 OF AO SI 47 2F /
16 10 Ap OLE 48 30 0
17 II AQ OC1 49 31 1
18 12

A
ROC2 50 32 2

19 13 AS OC3 51 33 3
20 14

A
TOC4 52 34 4

21 15
A
UNAK 53 35 5

22 16 AV SYN 54 36 6
23 17

A
WET8 55 37 7

24 18 AX CAN 56 38 8
25 19 AYEM 57 39 9
26 lA AZ SUB 58 3A
27 IB A [ESC 59 38
28 lC AI FS 60 3C <
29 10 A] GS 61 3D
30 IE

AA

RS 62 3E <
31 IF A-1JS 63 3F ?

ASCII TABLE

DEC HEX CHAR DEC HEX CHAR

64 40 @ 96 60 I

65 41 A 97 61 a
66 42 B 98 62 b
67 43 C 99 63 c
68 44 0 100 64 d
69 45 E 101 65 e
70 46 F 102 66 f
71 47 G 103 67 g
72 48 H 104 68 h
73 49 I 105 69
74 4A J 106 6A j
75 4B ·K 107 68 k
76 4C L 108 6C
77 40 M 109 60 m
78 4E N llO 6E n
79 4F 0 III 6F 0

80 50 P ll2 70 P
81 51 Q 113 71 q
82 52 R 114 72 r
83 53 S 115 73 5

84 54 T 116 74 t
85 55 U 117 75 u
86 56 V 118 76 v
87 57 W 119 77 w
88 58 X 120 78 x
89 59 Y 121 79 y
90 5A Z 122 7A z
91 58 [123 78 {

92 5C \ 124 7C
93 50] 125 7D
94 5E 126 7E ...
95 5F 1277F DEL

147

Notes:

148 Turbo Database Toolbox Owner's Handbook

SUBJECT INDEX

A
ACCESS.BOX, 12, 13,83,85, 125
AddKey procedure, 17,20,32,33,

35,83,94
and duplicate keys, 94

ADDKEY.BOX, 13, 83, 125
AddRec procedure, 20,29,30,95
ASCII table, 147
Assign procedure, 65

B
B+tree,131ff
BTREE.PAS,41ff

C
ClearKey procedure, 97
CloseFile procedure, 28, 98
Closelndex procedure, 28, 99
Constants, 13, 85ff, 124
CUST.DAT, 42
CUST.IXC,42
CUST.IXN, 42
CUSTOMER.DTA, 61ff, 84

D
Data file

closing, 28, 98
creating, 28, 108
defined, 7
large, 23
length, 103
opening, 28, 112
record, see record
routi nes, 95, 98, 102, 103, 106,

108, 112, 117, 120
splitting, 23

DataFile type, 29,85
Data item size, 60
Data reference

defined, 16

SUBJECT INDEX

search, 137
Deleted data records, 40

reuse, 21
DeleteKey procedure, 21, 39, 83,

100
DeleteRec procedure, 20, 24, 102
DELKEY.BOX, 13, 83, 125
Duplicate keys, 22

E

and AddKey, 94
and DeleteKey, 100
and SearchKey, 118

Error handling, 18-19,30,65, 127
ERROR.lNC,127

F
FileLen function, 35, 36, 103
FILES.lNC, 128
FindKey procedure, 20-21, 33-34,

37,104

G
GETKEY.BOX, 13,83, 125
GetMem procedure, 59-60
GetRec function, 20-21, 36, 38, 106
GINST

general description, 2, 121ff
routines, 85

GINST.COD,85
GINST.COM, 85
GINST.DTA, 85
GINST.MSG, 85

Include statement, 12
Including modules in program, 83
Index file

closing, 28, 99
corrupted, 34

149

creating, 34, 107, 109
defined, 8, 16
initializing, 107
opening, 32, 112
rebuilding, 34
routines, 94, 97, 99-100, 104,

107,109-110,115-119
IndexFile type, 33, 89
Initlndex procedure, 18,32,35, 107
Inp procedure, 61
INPUT.INC, 125
Installation,

Turbo Pascal programs, 121
IntToStr function, 21
Item, 136

K
Key,

o adding, 19,32,94, 143
changing, 21, 40
defined, 8

L

deleting, 20, 39, 100, 136
duplicate, 8, 19,22,33, 141
finding, 20, 33, 37, 104, 118
generating, 138-139
inserting, 135
length, 15,33, 135-136
multiple, 9, 75
numeric, 21, 32,135-136
ordering, 135-136
search, 114, 137
sorting, 60ft
updating, 40

Leaf page, 133
Less function, 62
Level

of page, 133
Local variables, 60

M
MAINT.lNC, 128
MakeFile procedure, 16, 18,28,

108, 128
Makelndex procedure, 18,21,32,

35, 109

MaxDataRecSize constant, 86
MaxHeight constant, 87
MaxKeyLen constant, 88
Memory management, 61
MENU.INC,128

N
NextKey procedure, 20, 39, 110

o
OK, 89
OpenFile procedure, 16-17,28,

112, 124
Openlndex procedure, 17, 21,32,

113
Order, 88
OutP procedure, 63
Overlays, 84

p
Page, 137ft

balancing after deletion, 144-145
leaf, 133
level, 137
reference, 138
root, 133

PageSize constant, 89
PageStackSize constant, 90
Parameters, 60

untyped, 63, 65
PrevKey procedure, 20, 39, 115
Procedures and functions, 93ft
Program design, 123ft

initialization, 27
termination, 20
user interface, 26, 37, 128

Prog ram overlays, 84
PutRec procedure, 21,41,117

Q
Quick Reference Guide to Turbo

Access Routines, 92
Quicksort, 2, 58

150 Turbo Database Toolbox Owner's Handbook

R
Record

adding, 19,29,33,94-95
defined, 8
defining, 25
deleted, 21, 35
deleting, 20, 39, 102
size, 16
size of, 29
updating, 41

REPORTS.lNC, 128
Reset procedure, 65
Root page, 133

S
SearchKey procedure, 20-21,38,

118,147
and duplicate keys, 118

SETCONST.PAS, 13, 124
SizeOffunction, 15,29,33,60,127
SORT.BOX, 60ft, 85
SORT1.PAS, 60ft, 85
SORT2.PAS, 69ft, 85
Sorting, 58ft

multiple keys, 75
STOCK.DTA, 69ft, 85
Str procedure, 22, 135-136
StrTolnt function, 22

T
TaIOcheck,18,85,95
Terminal page

see Leaf page
Terminating user program, 20
Turbo Access files

ACCESS.BOX, 83
ADDKEY.BOX, 83
DELKEY.BOX,83
GETKEY.BOX,83

Turbo Access programs,
see Program design

Turbo Access, 5ft
B+trees,131ft
constants,85ff
initialization, 18
program structure, 17ft

SUBJECT INDEX

Turbo Pascal 3.0, 12, 16
Turbo Sort, 2, 58ff

memory management, 61
memory requirements, 60
routi nes, 84

TurboSort function, 84
Type

DataFile, 29, 85
IndexFile, 33, 85
of keys, 135

Types, 85

U
Untyped parameter, 63, 66
UsedRecs function, 120
User program

see Program design

V
Variable

OK, 85
system, 18

Virtual memory, 61

151

Borland
Software

4585 Scotts Valley Drive Scotts Valley, CA 95066

Available at better dealers nationwide.
Th order by Credit Card call (800) 255-8008, CA (800) 742-1133

®

VERSION 1.5
INFOWORLD'S

SOFTWARE PRODUCT OF THE YEAR
Whether you're running WordStar™, Lotus™, dBase™,
or any other program, SIDEKICK puts all these desktop

accessories at your fingertips. Instantly.

A full-screen WordStIT-lik. Editor You may jot
down notes and edit files up to 25 pages long.

A Phon. Directory for your names, addresses
and telephone numbers. Finding a name or a
number becomes a snap.

An Autodl./er for all your phone calls. It will
look up and dial telephone numbers for you.
(A modem is required to use this function.)

All the SIDEKICK windows stacked up over Lotus 1-2-3.
From bottom to top: SIDEKICK'S "Menu Window," ASCII
Table, Notepad, Calculator, Datebook, Monthly Calendar and
Phone Dialer.

A Monthly C./.ndIT functional from year 1901
through year 2099.

A D.t.book to remind you of important
meetings and appointments.

A full-fBBtured C,/cu/.tor ideal for business use.
It also performs decimal to hexadecimal to
binary conversions.

An ASCII r.bl. for easy reference.

Here's SIDEKICK running over Lotus 1-2-3. In the SIDEKICK
Notepad you'll notice data that's been imported directly from
the Lotus screen. In the upper right you can see the Calculator.

The Critics' Choice
"In a simple, beautiful implementation of WordStar'sT"
block copy commands, SIDEKICK can transport all or
any part of the display screen (even an area overlaid by
the notepad display) to the notepad."

-Charles Petzold, PC MAGAZINE

"SIDEKICK deserves a place in every PC."
-Garry Ray. PC WEEK

"SIDEKICK is by far the best we've seen. It is also the
least expensive." -Ron Mansfield. ENTREPRENEUR

"If you use a PC, get SIDEKICK. You'll soon become
dependent on it." -Jerry Pournelle. BYTE

SIDEKICK IS AN UNPARALLELED BARGAIN AT ONLY $54.95 (copy-protected)

OR $84.95 (not copy-protected)

Minimum System Configuration: SIDEKICK Is available now for your IBM PC. Xl, AT. PClr .• and 100% compatible microcomputers.
The IBM PC Ir. will only accept the SIDEKICK not copy-protected version. Your computer must hive at lelst 128K RAM. one disk
drive and PC-DOS 2.0 or greater. A HayesT

" compatible modem. IBM PClr,''' Internll modem. or AT&T® Modem 4000 Is required for
the lutodlaler function.

SideKick and SuperKey are registered trademarks of Borland International. inc. dBase is a trademark of Ashton·Tate.IBM is a registered trademark and PC ir. is a trademark of International Business
Machines Corp AT&T is a registered trademark 01 American Telephone & Telegraph Company.lnfoworld is a trademark of Popular Computing. Inc .. a subsidiary 01 CW Communications Inc. Lotus t·2·3 is

a trademark of Lotus Development Corp. WordStar is a trademark of Micropro International Corp. Hayes is a trademark of Hayes Microcomputer Products. Inc.

The Organizer For The Computer Age!
Traveling SideKick is both a binder you take with you when you travel and a

software program - which includes a Report Generator - that generates and
prints out all the information you'll need to take with you.

Information like your phone list, your client list,
your address book, your calendar and your
appointments. The appointment or calendar files
you're already using in your SideKick~ are
automatically used by your Traveling SideKickT~
You don't waste time and effort reentering
information that's already there.

One keystroke generates and prints out a form like
your address book. No need to change printer

What's inside Traveling SideKick

paper, you simply punch three holes, fold and clip
the form into your Traveling SideKick binder and
you're on your way. Because SideKick is CAD
(Computer-Age Designed), you don't fool around
with low-tech tools like scissors, tape or staples.
And because Traveling SideKick is electronic, it
works this year, next year and all the "next years"
after that. Old-fashioned daytime organizers are
history in 365 days.

I LOG AND
CARD

What the soltware program and
its Report Generator do lor you
before you go - and when you
get back.

Before you go:
• Prints out your calendar,

appointments, addresses, phone
directory and whatever other
information you need from your
data files

YEARLY. MONTHLY. WEEKLY AND D.AJLY
CALENDAA WITH APPOINTMENT
SCHEDULER

When you return:
• Lets you quickly and easily

enter all the new names you
obtained while you were away
- into your SideKick data files

A PRINT
AND UPDATE ALL INFORMATION

Traveling SideKick is only $69.95 - Or get BOTH
Traveling SideKick and SideKick lor only $125.00 -
you save $29.90 (not copy-protected).

It can also:
• Sort your address book by

contact, ZIP code or company
name

• Print mailing labels
• Print information selectivel)
• Search files for existing

addresses or calendar
engagements

Minimum System Configuration: IBM PC, XT, AT, Portable, 3270 or true compatibles. PC·DOS (MS·DOS) 2.0 or later.
128K and SideKick software.

SideKick is a registered trademark and Traveling SideKick is a trademark of Borland International,
Inc. IBM PC, XT, AT, PCjr and PC-DDS are registered trademarks of International Business
Machines Corp. MS-DOS is a trademark of Microsoft Corp.

INCREASE YOUR PRODUCTIVITY
BY 500.,1, OR YOUR MONEY BACK

SuperKey turns 1,000 keystrokes :l1to 1!
Yes, SuperKey can record lenci.hy keystroke sequences and play them back at the
touch of a single key. Instantly. Like Magic.
Say, for example, you want LO add a column of figures in 1-': 3. Without SuperKey you'd
have to type seven keystrokes just to get started. ["shiTt-@-)-u-m-shift-('l '''lith SuperKey
you can turn those 7 keystrokes into 1.

SuperKey keeps your tonfidential' files . .. CONFIDENTIAL!
Time after time you've experienced it: anyone can walk up to your PC, and read your
confidential files (tax returns, business plans, customer lists, personal letters .. :).
With SuperKey you can encrypt any file, even while running another program. As long
as you keep the password secret, only YOU can decode your file. SuperKey imple
ments the U.S. government Data Encryption Standard (DES).

SuperKey helps protect your capital investment.
SuperKey, at your convenience, will make your screen go blank after a predetermined
time of screen/keyboard inactivity. You've paid hard-earned money for your PC.
SuperKey will protect your monitor's precious phosphor ... and your investment.

SuperKey protects your work from intruders while you take a break.
Now you can lock your keyboard at any time. Prevent anyone from changing hours of
work. Type in your secret password and everything comes back to life ... just as you left it.

SUPERKEY is now available for an unbelievable $69.95 {not copy-protected}.

Minimum System Configuration: SUPERKEY is compatible with your IBM PC. XT. AT. PCtr. and 100%
compatible microcomputers. Your computer must have at least 128K RAM. one disk drive and PC-DOS 2.0
or greater.

SideKick and SuperKey are registered trademarks of Bo~and International, Inc.
IBM and PC-DOS are trademarks of International Business Machines Corp. Lotus 1-2-3 is a trademark of Lotus Devetopment Corp.

REFLEX
THE ANALYST'"'

Reilex'· is the most amazing and easy to use database management
system. And if you already use Lotus 1-2-3, dBASE or PFS File, you

need Reflex-because it's a totally new way to look at your data. It ShDWS
you patterns and interrelationships you didn't know were there, because

they were hidden in data and numbers. It's also the greatest
report generator for 1-2-3.

REFLEX OPENS MULTIPLE WINDOWS WITH NEW VIEWS AND GRAPHIC INSIGHTS INTO YOUR DATA.

i,II'''' (,...,

,M' ,"llIlil"''''III'''''~II_
I~'M ldlt 'nnl~ll. Giri IWdi lilt 1M It lnll'

II' ,WIElII :';;....

1!11D'f":- =::~~

I

1D1 U.l: 1281

IJIIIIV[1II1MI:S5J

Ii II1U, _ .. -

.... so
ClwD,at..,

H " .. .11> ..
.11> ...
.11> ...
.11> ..

• .11> ..
.11> ...
.11> ...
.11> ...
.11>."
.11> ...
.11> ... ,

- iiIII - 'UI - c.,. !Do 'UI -. '"'" !Do
PI,ret 'UI

'"'" c.,. ,_, !Do ,_,
'UI ,_, -. - !Do

..
'" "" I~'
lit sm 1m
,~ hi! '1'1
'" Ill? 1t97

...; II. 161 ... '" Slit 12 ..

'" Itu In , . 111 '" ,~ lIu ...
lJI liN III

'" ... '" "I ... Ill!

I
""lJ'II ... _,' II ... , _ i

,.. '.' ,. '

''''N~ " " \0 I
.,!;., -;;:.~''''' lIJI_I

S,I_iIIr:M

IQITII:JII"

STili:*""
fIIDUl':c.r,
IJafl'nv:2a

"'11: ..

The FORM VIEW lets you build and view your database The LIST VIEW lets you put data in tabular List form
just like a spreadsheet.

The GRAPH VIEW gives you instant interactive
graphic representations.

The CROSSTAB VIEW gives you
amazing "cross-referenced"
pictures of the links and
relationships hidden in your data.

S!lNl"!l:~FI.ld:liEf

PIIIIW

1-
~s.

o.L -
"" ,., ,.
1191

.... ""
IIJ "" 11M 1911
Qi 1618

" .. ""

~-------:

The REPORT VIEW allows you to
import and export to and from

Reflex, 1-2-3, dBASE, PFS File and
other applications and prints out

information in the formats you want.

So Reflex shows you. Inltant anlwerl. Instant plcturel. Inltant analYlls. Instant understanding.

THE CRITICS' CHOICE:

"The next generation of software has officially arrived."
P,tll Norton, PC WEEK

"Reflex is one of the most powerful database programs on
the market. Its multiple views, interactive windows and graphics, great
report writer, pull-down menus and cross tabulation make this
one of the best programs we have seen in a long time ...

The program is easy to use and not intimidating to the novice ...
Reflex not only handles the usual database functions such as sorting
and searching, but also "what-if" and statistical analysis ... it can
create interactive graphics with the graphics module. The separate
report module is one of the best we've ever seen."

Marc Starn, INFOWORLD

Minimum Sy.tem Requirement.: Relle. run. on the lIMe PC, Xl. AT Ind compltlble •. 3841 RAM minimum. 11M Color Graphic. Adlptere, Hercule.
Monochrome Graphic. Clrd'", Dr equivalent. PC-DOS 2.0 Dr llrelter. Hlrd dl.1e Ind mou.e DptlDn11. Lotu. 1·2·3, dBASE, or PFS Fill optional.

Suggested Retail Price $99.95 (not copy-protected)

Reflex is a trademark of BORLAND/Analytica Inc. Lotus is a registered trademark and Lotus 1-2-3 is a trademark of Lotus Development Corporation. dBASE is a registered
trademark of Ashton-Tate. PFS is a registered trademark and PFS File is a trademark of Software Publishing Corporation. tBM PC. Xl, AT, PC-DOS and tBM Color Graphics Adapter are
registered trademarks of International Business Machines Corporation. Hercules Graphics Card is a trademark of Hercules Computer Technololgy.

If you use an IBM PC, you need

T U R B 0

Lightning"
Turbo Lightning™ teams up
with the Random House
spelling Dictionary® to check
your spelling as you Iypel
Turbo Lightning, using the
83,OOO-word Random House
Dictionary, checks your spelling
as you type. If you misspell a
word, it alerts you with a 'beep'.
At the tout.:h of a key, Turbo
Lightning opens a window on top
of your application program and
suggests the correct spelling.
Just press ENTER and the
misspelled word is instantly
replaced with the correct word.
It's that easy!

Turbo Lightning works hand-in
hand with the Random House
Thesaurus® to give you inslanl
access to synonyms.
Turbo Lightning lets you choose
just the right word from a list of
alternates, so you don't say the
same thing the same way every
time. Once Turbo Lightning opens
the Thesaurus window, you see a
list of alternate words, organized by
parts of speech. You just select the
word you want, press ENTER and
your new word will instantly replace
the original word. Pure magic!

II you ever write a word, think
a word, or say a word, you
need Turbo Lightning.

The Turbo Lightning Dictionary.

The Turbo Lightning Thesaurus.

~e~~oCp~:ntZo~;~r~~~ ~~{~~:~~er;~ ~~~~:!~Str~d~~~~:~~~:c~~~~~e~~e~;itr~~~f gg{g }3~~E 1i~2;~e~is~:~~~~~rJ~~~~~TI::h~~n~~~~
Microsoft is a registered trademark of Microsoft Corporation. SideKick is a registered trademark and Turbo Lightning and Turbo Lightning
Library are trademarks of Bortand International. Random House Dictionary and Random House Thesaurus are registered trademarks of
Random House Inc. Reflex is a 1rademark of BORLAND/Analytica Inc. MultiMate is a trademark of MultiMate International Inc.

Turbo Lightning's intelligence
lets you teach it new words.
The more you use Turbo
Lightning, the smarter it gets!
You can also teach your new Turbo
Lightning your name, business
associates' names, street names,
addresses, correct capitalizations,
and any specialized words you use
frequently. Teach Turbo Lightning
once, and it knows forever.

Turbo Lightning™ is the
engine that powers Borland's
Turbo Lightning LibraryTM.
Turbo Lightning brings electronic
power to the Random House
Dictionary® and Random House
Thesaurus®. They're at your
fingertips -even while you're
running other programs. Turbo
Lightning will also 'drive' soon-to
be-released encyclopedias,
extended thesauruses, specialized
dictionaries, and many other
popular reference works. You get
a head start with this first volume
in the Turbo Lightning Library.
And because Turbo Lightning is a
Borland product, you know you can
rely on our quality, our 60-day
money-back guarantee, and our
eminently fair prices.

Suggested Retail Price $99.95·
(not copy-protected)

~l~~~~~ ~~~eo~ ro~,/~I~~~~~~~I~ com uter,
with 2 floppy disk drives and PC-~OS (M~-OOS)
2.0 or greater.

SideKick, the Macintosh Office Manager, brings
information management, desktop organization and
telecommunications to your Macintosh. Instantly,

while running any other program.

A full-screen editor/mini-word processor
lets you jot down notes and create or edit
files. Your files can also be used by your
favorite word processing program like
MacWrite™ or MicroSoft® Word.
A complete telecommunication
program sends or receives information
from anyon-line network or electronic
bulletin board while using any of your
favorite application programs. A modem is
required to use this feature.
A full-featured financial and scientific
calculator sends a paper-tape output to
your screen or printer and comes complete
with function keys for financial modeling
purposes.
A print spooler prints any text file while
you run other programs.
A versatile calendar lets you view your
appointments for a day, a week or an entire
month. You can easily print out your
schedule for quick reference.
A convenient "Things-to-Do" file
reminds you of important tasks.

A convenient alarm system alerts you to
daily engagements.
A phone log keeps a complete record of all
your telephone activities. It even computes
the cost of every call. Area code hook-up
provides instant access to the state, region
and time zone for all area codes.
An expense account file records your
business and travel expenses.
A credit card file keeps track of your
credit card balances and credit limits.
A report generator prints-out your mailing
list labels, phone directory and weekly
calendar in convenient sizes.
A convenient analog clock with a
sweeping second-hand can be displayed
anywhere on your screen.
On-line help is available for all of the
powerful SIDEKICK features.
Best of all, everything runs
concurrently.
SIDEKICK, the software Macintosh
owners have been waiting for.

SideKick, Macintosh's Office Manager is available now for
$84.95 (not copy-protected).

Minimum Systlm Conllgul'ltlon: SIDEKICK Is IVllllbl1 now for your Mlclntosh microcomputer In I formatthlt Is not copy-protlcted.
Your computlr must hive It lust 128K RAM Ind one disk drivi. Two disk drlvIslrl rlcommlnded If you wish to use othlr Ipplicatlon
progrlms. A Hlyes-compltlbll modlm Is requlrld for thetilicommunlcitions function. To use SIDEKICK'S lutodliling capability you
nlld thl Borllnd phoni-link Intlrllci . • ~~

SIDEKICK is a registered trademark of Borland International, Inc. Macintosh is a trademark of Mcintosh Laboratory, Inc. MacWrite is trademark of Apple
Computer, Inc. IBM is a trademark of International Business Machines Corp. Microsoft is a registered trademark of MicroSoft Corp.

Hayes is a trademark of Hayes Microcomputer Products. Inc.

WITH COMMENTED SOURCE CODE I

VERSION 3.0

THE CRITICS' CHOICE:
"Language deal of the century ... Turbo
Pascal: it introduces a new programming
environment and runs like magic."

-Jeff Duntemann. PC Magazine

"Most Pascal compilers barely fit on a disk,
but Turbo Pascal packs an editor, compiler,
linker, and run-time library into just 39K
bytes of random-access memory."

-Dave Garland. Popular Computing

"What I think the computer industry is
headed for: well - documented, standard,
plenty of good features, and a reasonable
price." -Jsrry Pournel/e. BYTE

LOOK AT TUR80 NOWI
o More than 400,000 users worldwide.

o TU RBO PASCAL is proclaimed as the
de facto industry standard.

o TU RBO PASCAL PC MAGAZI N E'S award
for technical exc~lIence.

OPTIONS FOR 16-81T SYSTEMS:
8087 math co-processor support for intensive
calculations.

Binary Coded Decimals (BCD): Eliminates
round-off error! A must for any serious business
application. (No additional hardware required.)

THE FEATURES:
one-Step Compile: No hunting & fishing
expeditions! Turbo finds the errors, takes you
to them, lets you correct, then instantly
recompiles. You're off and running in record
time.

Buill-in IntsrBctivB Editor: WordStar-like easy
editing lets you debug quickly.

Automatic Ovsrlays: Fits big programs into
small amounts of memory.

Microcalc: A sample spreadsheet on your disk
with ready-to-compile source code.

IBM PC VERSION: Supports Turtle Graphics,
Color, Sound, Full Tree Directories, Window
Routines, Input/Output Redirection and much
more.

o TU RBO PASCAL named 'Most Significant
Product of the Year' by PC WEEK.

o TU RBO PASCAL 3.0 - the FASTEST
Pascal development environment on the
planet, PERIOD.

Turbo Pascal 3.0 is available now
lor $69.95.

Options: Turbo Pascal with 8087 or BCD at a low
$109.90. Turbo Pascal with both options {8087
and BCD} priced at $124.95.

MINIMUM SYSTEM CONFI6URATlON: To USB Turbo PasCB13.0 requires 64K RAM, on. disk drl"., 1-80, 8088/86, 80186 or 80286
microprocessor running .lIher CP/M-80 2.2 or gra,er, CP/M-86 1.1 or gre,'er, MS-DOS 2.0 or gra'er or PC-DOS 2.0 gre,'er,
MS-DOS 2.0 or gra'er or PC-DOS 2.0 or gre,'er. A XENIX "erslon of Turbo P,sCBI will soon b. ,nnounc.d, ,nd b.fore 'h •• nd of
'h. y.", Turbo P,sCBI will b. running on mos' 68000-bas.d microcompu'ers.

Turbo Pascal is a registered trademark of Borland International, Inc
CP/M is registered trademark of Digital Research, Inc
IBM an PC-DOS are registered trademarks of International Business
Machines Corp
MS-DOS is a trademark of Microsoft Corp
Z80 is a trademark of Zirog Corp

LEARN PASCAL FROM THE FOLKS WHO INVENTED
TURBO PASCAL ® AND TURBO DATABASE TOOLBOX®.

Borland International proudly introduces Turbo Tutor®~ The perfect
complement to your Turbo Pascal compiler. Turbo Tutor is really for everyone

even if you've never programmed before.

And if you're already proficient, Turbo Tutor can sharpen up the fine points. The 300
page manual and program disk divides your study of Pascal into three learning modules:

FOR THE NOVICE: Gives you a concise history of Pascal, tells you how to write a simple program, and
defines the basic programming terms you need to know.

ADVANCED CONCEPTS: If you're an expert, you'll love the sections detailing subjects such as "how to
use assembly language routines with your Turbo Pascal programs."

PR06RAMMER'S 6UIDE: The heart of Turbo Pascal. This section covers the fine points of every aspect
of Turbo Pascal programming: program structure, data types, control structures, procedures and
functions, scalar types, arrays, strings, pointers, sets, files and records.

A MUST. You'll find the source code for all the examples in the book on the accompanying disk ready to
compile.

Turbo Tutor may be the only reference on Pascal and programming you'll ever need!

TURBO TUTOR-A REAL EDUCATION FOR ONLY $34.95.
(nol copy-prolll:'lII}

*Mlnlmum Systlm Configuration: TURBO TUTOR Is InUlbl1 todlY for your compullr running TURBO PASCAL,for PC-~OS, MS·DOS,
CP/M-80, Ind CP/M-8B. Your campullr musl hlVllt Inst 128K RAM, ani disk drivi Ind PC-DOS 1.0 or grnllr, MS-DOS 1.0 or
grnllr, CP /M-80 2.2 or grnllr, or CP /M-86 1.1 or grnllr . • ~

Turbo Pascal and Turbo Tutor are registered trademarks and Turbo Database Toolbox is a trademark of Borland International, Inc .. CP/M isa
trademark of Digital Research, Inc" MS-DOS is a trademark of Microsoft Corp., PC-DOS is a trademark of International Business Machines Corp.

GuPillX200t TM

HIGH RESOLUTION GRAPHICS AND GRAPHIC WINDOW MANAGEMENT
FOR THE IBM PC

O.zz/Ing g"phlcs .nd p.ln/88s windows.
The Turbo Graphix ToolboxTIo1 will give even a beginning programmer the expert's edge. It's a
complete library of Pascal procedures that include:

• Full graphics window management.

• Tools that allow you to draw and hatch pie charts, bar charts, circles, rectangles
and a full range of geometric shapes.

• Procedures that save and restore graphic images to and from disk.

• Functions that allow you to precisely plot curves.

• Tools that allow you to create animation or solve those difficult curve fitting
problems.

No SW8Bt .nd no roy./ti88.
You can incorporate part, or all of these tools in your programs, and yet, we won't charge you
any royalties. Best of all, these functions and procedures come complete with source code on
disk ready to compile!

John Marko" & P.u/ Freiberger, syndlClted columnists:
"While most people only talk about low-cost personal computer software, Borland has been
doing something about it. And Borland provides good technical support as part of the price."

Turbo Graphix Toolbox-only $54.95 (nDI CDPY protected).

Minimum System Conflgurltlon: Turbo Grlphlx Toolbox Is IVlllibie today for your computer running Turbo Plscal 2.0 or greater for
PC-DOS. or truly compatible MS-DOS. Your computer must have ItillSt 128K RAM. one disk drive Ind PC-DOS 2.0 or grllter. Ind
MS-DOS 2.0 or grelter with IBM Grlphlcs Adapter or Enhlnced Graphics Adapter. IBM-compatible Graphics Adapter. or Hercules
Graphics Card.

Turbo Pascal is a registered trademark and Turbo Graphix Toolbox is a trademark of Borland International, Inc.
IBM and PC-DOS are trademarks of International Business Machines Corp MS-DOS is a trademark of Microsoft Corp

.Em0i2totsoxm

It's All You Need To Build Your Own Text Editor
Or Word Processor.

Build your own lightning-fast editor and incor
porate it into your Turbo Pascal programs. Turbo
Editor ToolboxTM gives you easy-to-install modules.
Now you can integrate a fast and powerful editor into
your own programs. You get the source code, the
manual and the know how.

Create your own word processor. We provide all
the editing routines. You plug in the features you want.
You could build a WordStar@-like editor with pull
down menus like Microsoft's@ Word, and make itwork
as fast as WordPerfect™.

To demonstrate the tremendous power of Turbo Editor Toolbox, we give you the source code for two
sample editors:
Simple Editor A complete editor ready to include in your programs. With windows, block commands, and

memory-mapped screen routines.
MicroStar™ A full-blown text editor with a complete pull-down menu user interface, plus a lot more.

Modify MicroStar's pull-down menu system and include it in your Turbo Pascal programs.

The Turbo Editor Toolbox gives you all the
standard features you would expect to find
in any word processor:

• Word wrap
• UNDO last change
• Auto indent
• Find and Find/Replace with options
• Set left and right margin
• Block mark, move and copy.
• Tab, insert and overstrike modes,

centering, etc. MicroStar's pull-down menus.

And Turbo Editor Toolbox has features that word processors selling for several hundred dollars can't begin to match.
Just to name a few:

[!1 RAM-based editor. You can edit very large
files and yet editing is lightning fast.

[!1 Memory-mapped screen routines. In
stant paging, scrolling and text display.

[!1 Keyboard installation. Change control
keys from WordStar -like commands to any that
you prefer.

[!1 Multiple windows. See and edit up to eight
documents-or up to eight parts of the same
document-all at the same time.

[!1 Multi-Tasking. Automatically save your
text. Plug in a digital clock ... an appointment
alarm-see how it's done with MicroStar's
"background" printing.

Best of all, source code is included for everything in the Editor Toolbol. Use any of the Turbo Editor Toolbox'S
features in your programs. And pay no royalties.
Minimum system configuration: The Turbo Editor Toolbox requires an IBM PC, XT, AT, 3270, PCjr or true compatible with a minimum
192K RAM, running PC-DOS (MS-DOS) 2.0 or greater. You must be using Turbo Pascal 3.0 for IBM and compatibles.

Suggested Retail Price $69.95
(not copy-protected)

Turbo Pascal is a registered trademark and Turbo Editor Toolbox and MicroStar are trademarks of Borland
International, Inc. WordStar is a registered trademark of MicroPro International Corp. Microsoft and MS-DOS are
registered trademarks of Microsoft Corp. WordPerfect is a trademark of Satellite Software International. IBM,
IBM PC, Xl A l PCjr and PC-DOS are registered trademarks of International Business Machine Corp.

Secrets And Strategies Of The Masters Are
Revealed For The First Time

Explore the world of state-of-the-art computer games with Turbo GameWorksTM. Using
easy-to-understand examples, Turbo GameWorks teaches you techniques to quickly create
your own computer games using Turbo Pascal@. Or, for instant excitement, play the three

great computer games we've included on disk-compiled and ready-to-run.

TURBO CHESS

Test your chess-playing skills against your computer challenger. With Turbo GameWorks, you're on your
way to becoming a master chess player. Explore the complete Turbo Pascal source code and discover
the secrets of Turbo Chess.

"What impressed me the most was the fact that with this program you can become a computer
chess analyst. You can add new variations to the program at any time and make the program play
stronger and stronger chess. There's no limit to the fun and enjoyment of playing Turbo GameWorks'
Chess, and most important of all, with this chess program there's no limit to how it can help you
improve your game." -George follanowski, Dean of American Chess, former President of

the United Chess Federation and syndicated chess columnist.

TURBO BRIDGE

Now play the world's most popular card game-Bridge. Play one-on-one with your computer or against
up to three other opponents. With Turbo Pascal source code, you can even program your own bidding
or scoring conventions.

"There has never been a bridge program written which plays at the expert level, and the ambitious
user will enjoy tackling that challenge, with the format already structured in the program. And forthe
inexperienced player, the bridge program provides an easy-to-follow format that allows the user to start
right out playing. The user can "play bridge" against real competition without having to gather three
other people."

-Kit Woolsey, writer and author of several articles and books
and twice champion of the Blue Ribbon Pairs.

TURBO GO·MOKU

Prepare for battle when you challenge your computer to a game of Go-Moku-the exciting strategy
game also know as "Pente"TIl. In this battle of wits, you and the computer take turns placing X's and
D's on a grid of 19X19 squares until five pieces are lined up in a row. Vary the game if you like using
the source code available on your disk.

Minimum system configuration: IBM PC, Xl, AT, Portable, 3270, PClr, and true compatlbles.lth 1921 system memory, running
PC· DOS (MS·DOS) 2.0 or later. To edit and compile the Turbo Pascal source code, you must be using Turbo Pascal 3.0 for IBM PC
and compatibles.

Suggested Retail Price: $69.95 (not copy~protected)

•
BORLAND Turbo Pascal is a registered trademark and Turbo GameWorks is a trademark of

Borland International, Inc. Pente is a registered trademark of Parker Brothers.
IBM PC, Xl, AT, PCjr and PC·DOS are registered trademarks of International Business

I N T ERN A T ION A L Machines Corporation. MS·DOS is a trademark of Microsoft Corporation.

lloW!bBuy
.Borland
Software

------~vlca I ---- .t~ ~I
I + BORLAND ~.,o"Ortcrtb i
J INTERNATIONAL i

J To Order 4JII' ... In r, i
I By Credit I ~~1\1:tt: 'California , I'

I Card, ' ... ,1 call i

I Call (800)
I (800) 742-1133 I'

I 255-8008 i
1.. _______ I'

I

I

Is The Perfect Complement To Turbo Pascal.®
It contains a complete library of Pascal procedures that

allows you to sort and search your data and build powerful database
applications. It's another set of tools from Borland that will give

even the beginning programmer the expert's edge.

THE TOOLS YOU NEED!
TURBO ACCESS Using B+ trees: The best way to organize and search your data. Makes it
possible to access records is a file using key words instead of numbers. Now available with
complete source code on disk, ready to be included in your programs.

TURBO SORT: The fastest way to sort data using the QUICKSORT algorithm- the method
preferred by knowledgeable professionals. Includes source code.

GINST (General Installation Program): Gets your programs up and running on other
terminals. This feature alone will save hours of work and research. Adds tremendous value to
all your programs.

GET STARTED RIGHT AWAY: FREE DATABASE!
Included on every Toolbox diskette is the source code to a working database which
demonstrates the power and simplicity of our Turbo Access search system. Modify it to suit
your individual needs or just compile it and run. Remember, no royalties!

THE CRITICS' CHOICE!
"The tools include a B+ tree search and a sorting system. I've seen stuff like this, but not as
well thought out, sell for hundreds of dollars."

-Jerry Pournell, BYTE MAGAZINE

"The Turbo DataBase Toolbox is solid enough and useful enough to come recommended."

-Jeff Duntemann, PC TECH JOURNAL

Minimum system configuration: 64K RAM and one disk drive. 16-bit systems: TURBO PASCAL 2.0 or
greater for MS-DOS or PC-ODS 2.0 or greater. TURBO PASCAL 2.1 or greater for CP/M-a6 1.1 or
greater. a-bit systems: TURBO PASCAL 2.0 or greater for CP/M-aD 2.2 or greater.

4585 SCOTTS VALLEY DRIVE
SCOTTS VALLEY, CALIFORNIA 95066

Turbo Pascal IS a reglslered trademark and Turbo DataBase Toolbox IS a Irademark of Borland
Inlernallonallnc CPIM IS reglslered trademark 01 Digital Research. Inc MS·DOS is a reglslered
Irademark of Microsoft Corp ISBN 0-87524-005- 4

