
TURBO Pascal
Reference Manual

Version 3.0

Copyright C> 1983, 1984, 1985 by

BORLAND INTERNATIONAL Inc.
1800 Green Hill Road

Scotts Valley, CA 95066

This edition produced by

ALPHA SYSTEMS CORPORATION
711 Chatsworth Place
San Jose, CA 95128

(408) 297-5594

Third edition, December 1988

Copyright C> 1983 Borland International, Inc. All Rights Reserved. This

product is not supported by Borland, and all technical questions and

other customer inquiries shall be directed solely to Alpha Systems

Corporation.

This CP/M-only edition of the TURBO Pascal reference manual was

typed from a copy of the Second edition by Shirley Welch and Bill

Lockwood of Home Word Shop, and corrected and typeset by David

A.J. McClone of Alpha Systems Corporation. Any errors in this edition

which were not present in the previous edition are the sole

responsibility of the editor, for which you have his apologies. Please

bring them to our attention, so that they can be corrected.

The transcription of this edition to disk was done on two Eagle II

compute:'s, using Spellbinder Word Processor. Editing was done on a

Micromint SB180FX with a Televideo 950 terminal, using Spellbinder

Word Processor. Typesetting was done with Magiclndex on a

Hewlett Packard Laser Jet Plus.

The sans-serif fonts used in this manual are MagicOelite from Computer

EdiType Systems. Special symbols such as 0 were selected from

MagicSymbol, also from CES. The italic font used is typeface 1003

from the Digi-Fonts typeface library.

Trademarks acknowledged: TURBO Pascal is a trademark of Borland

International Inc. Spellbinder Word Processor is a trademark of L/Tek,

Inc. SB180FX is a trademark of MICRO MINT INC. Magiclndex,
MagicDelite, MagicSymbol, CES are trademarks of Computer EdiType
Systems. CP 1M, CP IM-80, CP 1M Plus, CP /M-86, and MP 1M are
trademarks of Digital Research Inc. PC-DOS is a trademark of

International Business Machines. MS-DOS is a trademark of MicroSoft

Corporation. 0 S280, ZCPR, The Z-System are trademarks of Alpha

Systems Corporation. WordStar is a trademark of MicroPro
International Corporation. Z-80 is a trademark of Zilog. BCii is a

trademark of Plu·Perfect Systems.

T ABLE OF CONTENTS

INTRODUCTION - 1
THE PASCAL LANGUAGE - 1
TURBO PASCAL - 1
STRUCTURE OF THIS MANUAL - 2
TYPOGRAPHY - 2

Chapter 1. USING THE TURBO SYSTEM - 4
1.1. BEFORE USE - 4
1.2. IMPORTANT NOTE!!! - 4
1.3. FILES ON THE DISTRIBUTION DISK - 4
1.4. STARTING TURBO PASCAL - 5
1.5. INSTALLATION - 6
1.5. 1. INSTALLATION OF EDITING COMMANDS - 7
1.6. THE MENU - 8
1.6.1. LOGGED DRIVE SELECTION - 8
1.6.2. WORK FILE SelECTION - 9
1.6.3. MAIN FILE SELECTION - 10
1.6.4. EDIT COMMAND - 10
1.6.5. COMPILE COMMAND- 11
1.6.6. RUN COMMAND - 11
1.6.7. SAVE COMMAND - 11
1.6.8. DIRECTORY COMMAND - 11
1.6.9. QUIT COMMAND - 12
1.6.10. COMPILER OPTIONS - 12
1.7. THE TURBO EDITOR - 12
1.7.1. THE STATUS LINE - 13
1.7.2. EDITING COMMANDS - 13
1.7.3. A NOTE ON CONTROL CHARACTERS - 15
1.7.4. BEFORE YOU START: HOW TO GET OUT - 15
1.7.5. BASIC MOVEMENT COMMANDS - 16
1.7.6. EXTENDED MOVEMENT COMMANDS - 18
1.7.7. INSERT AND DELETE COMMANDS - 20
1.7.8. BLOCK COMMANDS - 21
1.7.9. MISCELLANEOUS EDITING COMMANDS - 23
1.8. THE TURBO EDITOR VS. WORDSTAR - 28
1.8.1. CURSOR MOVEMENT - 28
1.8.2. MARK SINGLE WORD - 28
1.8.3. END EDIT - 28
1.8.4. LINE RESTORE - 28
1.8.5. TABULATOR - 29

Page ii T ABLE OF CONTENTS

1.8.6. AUTO INDENTATION - 29

Chapter 2. BASIC LANGUAGE ELEMENTS - 30
2.1. BASIC SYMBOLS - 30
2.2. RESERVED WORDS - 30
2.3. STANDARD IDENTIFIERS - 31
2.4. DELIMITERS - 32
2.5. PROGRAM LINES - 32

Chapter 3. STANDARD .SCALAR TYPES - 33
3.1. INTEGER - 33
3.2. BYTE - 33
3.3. REAL - 33
3.4. BOOLEAN - 34
3.5. CHAR - 34

Chapter 4. USER-DEFINED LANGUAGE ELEMENTS - 3S
4.1. IDENTIFIERS - 35
4.2. NUMBERS - 35
4.3. STRINGS - 36
4.3.1. CONTROL CHARACTERS - 37
4.4. COMMENTS - 37
4.5. COMPILER DIRECTIVES - 38

Chapter S. PROGRAM HEADING AND PROGRAM BLOCK - 39
5.1. PROGRAM HEADING - 39
5.2. DECLARA TION PART - 39
5.2.1. LABEL DECLARATION PART - 40
5.2.2. CONSTANT DEFINITION PART - 40
5.2.3. TYPE DEFINITION PART - 41
5.2.4. VARIABLE DECLARATION PART - 41
5.2.5. PROCEDURE AND FUNCTION DECLARATION PART - 42
5.3. ST A TEMENT PART - 42

Chapter 6. EXPRESSIONS - 43
6.1. OPERATORS - 43
6.1.1. UNARY MINUS - 43
6.1.2. NOT OPERATOR - 44
6.1.3. MUL TIPL YING OPERA TORS - 44
6.1.4. ADDING OPERATORS - 45
6.1.5. RELATIONAL OPERATORS - 45

TABLE OF CONTENTS Page iii

6.2. FUNCTION DESIGNATORS - 46

Chapter 7. STATEMENTS - 47
7.1. SIMPLE STATEMENTS - 47
7.1.1. ASSIGNMENT STATEMENT - 47
7.1.2. PROCEDURE STATEMENT - 47
7.1.3. GO TO STATEMENT - .48
7.1.4. EMPTY STATEMENT - 48
7.2. STRUCTURED STATEMENTS - 49
7.2.1. COMPOUND STATEMENT - 49
7.2.2. CONDITIONAL STATEMENTS - 49
7.2.2.1. IF STATEMENT - 49
7.2.2.2. CASE STATEMENT - 50
7.2.3. REPETITIVE STATEMENTS - 51
7.2.3.1. FOR STATEMENT - 52
7.2.3.2. WHILE STATEMENT - 52
7.2.3.3. REPEA T STATEMENT - 53

Chapter 8. SCALAR AND SUBRANGE TYPES - 54
8.1. SCALAR TYPE - 54
8.2. SUBRANGE TYPE - 55
8.3. TYPE CONVERSION - 56
8.4. RANGE CHECKING - 56

Chapter 9. STRING TYPE - 58
9.1. STRING TYPE DEFINITION - 58
9.2. STRING EXPRESSIONS - 58
9.3. STRING ASSIGNMENT - 59
9.4. STRING PROCEDURES - 60
9.4.1. DELETE - 60
9.4.2. INSERT - 60
9.4.3. STR - 61
9.4.4. VAL - 61
9.5. STRING FUNCTIONS - 62
9.5.1. COpy - 62
9.5.2. CONCAT - 62
9.5.3. LENGTH - 63
9.5.4. POS - 63
9.6. STRINGS AND CHARACTERS - 63

Page iv T ABLE OF CONTENTS

Chapter 10. ARRAY TYPE - 65
10.1. ARRAY DEFINITION - 65
10.2. MULTIDIMENSIONAL ARRAYS - 66
10.3. CHARACTER ARRAYS - 67
10.4. PREDEFINED ARRAYS - 67

Chapter 11. RECORD TYPE - 68
11.1. RECORD DEFINITION - 68
11.2. WITH STATEMENT - 70
11.3. VARIANT RECORDS - 71

Chapter 12. SET TYPE - 73
12.1. SET TYPE DEFINITION - 73
12.2. SET EXPRESSIONS - 74
12.2.1. SET CONSTRUCTORS - 74
12.2.2. SET' OPERATORS - 75
12.3. SET ASSIGNMENTS - 76

Chapter 13. TYPED CONSTANTS - 77
13.1. UNSTRUCTURED TYPED CONSTANTS - 77
13.2. STRUCTURED TYPED CONSTANTS - 78
13.2.1. ARRAY CONSTANTS - 78
13.2.2. MULTI-DIMENSIONAL ARRA Y CONSTANTS - 79
13.2.3. RECORD CONSTANTS - 79
13.2.4. SET CONSTANTS - 80

Chapter 14. FILE TYPES - 81
14.1. FILE TYPE DEFINITION - 81
14.2. OPERA TIONS ON FILES - 82
14.2.1. ASSIGN - 82
14.2.2. REWRITE - 82
14.2.3. RESET - 82
14.2.4. READ - 83
14.2.5. WRITE - 83
14.2.6. SEEK - 83
14.2.7. FLUSH - 83
14.2.8. CLOSE - 84
14.2.9. ERASE - 84
14.2.10. RENAME - 84
14.3. FILE STANDARD FUNCTIONS - 85
14.3.1. EOF - 85

T ABLE OF CONTENTS Page v

14.3.2. FILEPOS - 85
14.3.3. FILESIZE - 85
14.4. USING FILES - 86
14.5. TEXT FILES - 88
14.5.1. OPERATIONS ON TEXT FILES - 88
14.5.1.1. READLN - 89
14.5.1.2. WRITELN - 89
14.5.1.3. EOLN - 89
14.5.1.4. SEEKEOLN - 89
14.5.1.5. SEEKEOF - 89
14.5.2. LOGICAL DEVICES - 91
14.5.3. ST ANDARD FILES - 92
14.6. TEXT INPUT AND OUTPUT - 95
14.6.1. READ PROCEDURE - 95
14.6.2. READLN PROCEDURE - 98
14.6.3. WRITE PROCEDURE - 98
14.6.3.1. WRITE PARAMETERS - 99
14.6.4. WRITELN PROCEDURE - 100
14.7. UNTYPED FILES - 101
14.7.1. BLOCKREAD AND BLOCKWRITE - 101
14.8. I/O CHECKING - 103

Chapter 15. POINTER TYPES - 105
15.1. DEFINING A POINTER VARIABLE - 105
15.2. ALLOCA TING VARIABLES (NEW) - 106
15.3. MARK AND RELEASE - 106
15.4. USING POINTERS - 107
15.5. DISPOSE - 109
15.6. GETMEM - 110
15.7. FREEMEM - 111
15.8. MAXAVAIL - 111
15.9. HINTS - 111

Chapter 16. PROCEDURES AND FUNCTIONS - 112
16.1. PARAMETERS - 112
16.1.1. RELAXATIONS ON PARAMETER TYPE CHECKING - 114
16.1.2. UNTYPED VARIABLE PARAMETER S - 115
16.2. PROCEDURES - 116
16.2.1. PROCEDURE DECLARATION - 116.
16.2.2. STANDARD PROCEDURES - 118
16.2.2.1. CLREOL - 118

Page vi T ABLE OF CONTENTS

16.2.2.2. CLRSCR - 118
16.2.2.3. CRTINIT - 119
16.2.2.4. CRTEXIT - 119
16.2.2.5. DELAY - 119
16.2.2.6. DELLINE - 119
16.2.2.7. INSLINE - 119
16.2.2.8. COTOXY - 120
16.2.2.9. EXIT - 120
16.2.2.10. HALT - 120
16.2.2.11. LOWVIDEO - 120
16.2.2.12. NORMVIDEO - 120
16.2.2.13. RANDOMIZE - 121
16.2.2.14. MOVE - 121
16.2.2.15. FILLCHAR - 121
16.3. FUNCTIONS - 121
16.3.1. FUNCTION DECLARATION - 121
16.3.2. ST ANDARD FUNCTIONS - 123
16.3.2.1. ARITHMETIC FUNCTIONS - 124
16.3.2.1.1. ABS - 124
16.3.2.1.2. ARCTAN - 124
16.3.2.1.3. COS - 124
16.3.2.1.4. EXP - 124
16.3.2.1.5. FRAC - 124
16.3.2.1.6. INT - 125
16.3.2.1.7. LN - 125
16.3.2.1.8. SIN - 125
16.3.2.1.9. SQR - 125
16.3.2.1.10. SQRT - 125
16.3.2.2. SCALAR FUNCTIONS - 126
16.3.2.2.1. PRED - 126
16.3.2.2.2. SUCC - 126
16.3.2.2.3. ODD - 126
16.3.2.3. TRANSFER FUNCTIONS - 126
16.3.2.3.1. CHR - 126
16.3.2.3.2. ORO - 126
16.3.2.3.3. ROUND - 127
16.3.2.3.4. TRUNC - 127
16.3.2.4. MISCELLANEOUS STANDARD FUNCTIONS - 127
16.3.2.4.1. HI - 127
16.3.2.4.2. KEYPRESSED - 127
16.3.2.4.3. LO - 128

TABLE OF CONTENTS Page vii

16.3.2.4.4. RANDOM - 128
16.3.2.4.5. RANDOM(NUM) - 128
16.3.2.4.6. PARAMCOUNT - 128
16.3.2.4.7. PARAMSTR - 128
16.3.2.4.8. SIZEOF - 129
16.3.2.4.9. SWAP - 129
16.3.2.4.10. UPCASE - 129
16.4. FORWARD REFERENCES - 129

Chapter 17. INCLUDING FilES - 132

Chapter 18. OVERLAY SYSTEM - 134
18.1. CREATING OVERLAYS - 137
18.2. NESTED OVERLAYS - 139
18.3. AUTOMATIC OVERLAY MANAGEMENT - 140
18.4. PLACING 0 VERLA Y FILES - 141
18.5. EFFICIENT USE OF OVERLAYS - 141
18.6. RESTRICTIONS IMPOSED ON OVERLAYS - 141
18.6.1. DATA AREA - 141
18.6.2. FORWARD DECLARATIONS - 142
18.6.3. RECURSION - 142
18.6.4. RUN-TIME ERRORS - 142

Chapter 19. IBM PC GOODIES - Omitted from this edition

Chapter 20. PC-DOS AND MS-DOS - Omitted from this edition

Chapter 21. CP /M-86 - Omitted from this edition

Chapter 22. CP/M-80 - 143
22.1. EXECUTE COMMAND - 143
22.2. COMPILER OPTIONS - 143
22.2.1. MEMORY ICOM FILE/CHN FILE - 144
22.2.2. ST ART ADDRESS - 145
22.2.3. END ADDRESS - 145
22.2.4. COMMAND LINE PARAMETERS - 145
22.2.5. FIND RUNTIME ERROR - 146
22.3. ST ANDARD IDENTIFIERS - 146
22.4. CHAIN AND EXECUTE - 146
22.5. OVERLAYS - 149
22.5.1. OVRDRIVE PROCEDURE - 149

Page viii T ABLE OF CONTENTS

22.6. FILES - 150
22.6.1. FILE NAMES - 150
22.6.2. TEXT FILES - 150
22.7. ABSOLUTE VARIABLES - 150
22.8. ADDR FUNCTION - 151
22.9. PREDEFINED ARRAYS - 152
22.9.1. MEM ARRAY - 152
22.9.2. PORT ARRAY - 152
22.10. ARRAY SUBSCRIPT OPTIMIZATION - 153
22.11. WITH STATEMENTS - 153
22.12. POINTER-RELATED ITEMS - 153
22.12.1. MEMAVAIL - 153
22.12.2. POINTERS AND INTEGERS - 153
22.13. CPIM FUNCTION CALLS - 154
22.13.1. BDOS PROCEDURE AND FUNCTION - 154
22.13.2. BDOSHL FUNCTION - 154
22.13.3. BIOS PROCEDURE AND FUNCTION - 154
22.13.4. BIOSHL FUNCTION - 155
22.14. USER-WRITTEN 1/0 DRIVERS - 155
22.15. - EXTERNAL SUBPROGRAMS - 156
22.16. IN-LINE MACHINE CODE - 157
22.17. INTERRUPT HANDLING - 158
22.18. INTERNAL DATA FORMATS - 159
22.18.1. BASIC DATA TYPES - 160
22.18.1.1. SCALARS - 160
22.18.1.2. REALS - 160
22.18.1.3. STRINGS - 161
22.18.1.4. SETS - 1.61
22.18.1.5. FILE INTERFACE BLOCKS - 162
22.18.1.6. POINTERS - 163
22.18.2. DATA STRUCTURES - 163
22.18.2.1. ARRAYS - 163
22.18.2.2. RECORDS - 164
22.18.2.3. DISK FILES - 164
22.18.2.3.1. RANDOM-ACCESS FILES - 164
22.18.2.3.2. TEXT FilES - 165
22.18.3. PARAMETERS - 165
22.18.3.1. VARIABLE PARAMETERS - 165
22;-18.3.2. VALUE PARAMETERS - 165
22.18.3.2.1. SCALARS - 165
22.18.3.2.2. REALS - 166

TABLE OF CONTENTS Page ix

22.18.3.2.3. STRINGS - 166
22.18.3.2.4. SETS - 166
22.18.3.2.5. POINTERS - 167
22.18.3.2.6. ARRAYS AND RECORDS - 167
22.18.4. FUNCTION RESULTS - 167
22.18.5. THE HEAP AND THE STACKS - 168
22.19. MEMORY MANAGEMENT - 169
22.19.1. MEMORY MAPS - 169
22.19.1.1. COMPILATION IN MEMORY - 170
22.19.1.2. COMPILATION TO DISK - 171
22.19.1.3. EXECUTION IN MEMORY - 172
22.19.1.4. EXECUTION OF A PROGRAM FILE - 173

Chapter 23. TURBO BCD PASCAL - Omitted from this edition

Chapter 24. TURBO-87 - Omitted from this edition

Appendix A. STANDARD PROCEDURES & FUNCTIONS - 175
A.1. INPUT/OUTPUT PROCEDURES AND FUNCTIONS - 175
A.2. ARITHMETIC FUNCTIONS - 176
A.3. SCALAR FUNCTIONS - 176
A.4. TRANSFER FUNCTIONS - 176
A.S. STRING PROCEDURES AND FUNCTIONS - 176
A.6. FILE-HANDLING ROUTINES - 177
A.7. HEAP-CONTROL PROCEDURES AND FUNCTIONS - 177
A.8. SCREEN-RELA TED PROCEDURES AND FUNCTIONS - 178
A.9. MISCELLANEOUS PROCEDURES AND FUNCTIONS - 178

Appendix B. SUMMARY OF OPERATORS - 180

Appendix C. SUMMARY OF COMPilER DIRECTIVES - 182
e.1. IMPORTANT NOTICE - 182
e.2. A - ABSOLUTE CODE - 182
e.3. B - 1/0 MODE SELECTION - 183
e.4. C - CTRL-C AND CTRL-S - 183
e.S. I - I/O ERROR HANDLING - 183
e.6. I - INCLUDE FILES - 183
C.7. R - INDEX RANGE CHECK - 184
e.8. U - USER INTERRUPT - 184
e.9. V - V AR-PARAMETER TYPE CHECKING - 184
e.10. W - NESTING OF WITH STATEMENTS - 184

Page x T ABLE OF CONTENTS

C.11. X - ARRAY OPTIMIZATION - 185

Appendix D. TURBO VS. STANDARD PASCAL - 186
0.1. DYNAMIC VARIABLES - 186
0.2. RECURSION - 186
0.3. GET AND PUT - 186
0.4. GOTO STATEMENTS -186
0.5. PAGE PROCEDURE - 186
0.6. PACKED VARIABLES - 187
0.7. PROCEDURAL PARAMETERS - 187

Appendix E. COMPILER ERROR MESSAGES - 188

Appendix F. RUN-TIME ERROR MESSAGES - 192

Appendix C. I/O ERROR MESSAGES - 193

Appendix H. TRANSLATING ERROR MESSAGES - 195
H.1. ERROR-MESSAGE FILE LISTING - 196

Appendix I. TURBO SYNTAX - 199

Appendix J. ASCII TABLE - 204

Appendix K. KEYBOARD RETURN CODES -
Omitted from this edition

Appendix l. INSTALLATION - 205
L.1. TERMINAL INSTALLATION - 205
L.2. EDITING COMMAND INST ALLA TION - 209

Appendix M. CP/M PRIMER - 214
M.1. HOW TO USE TURBO ON A CP/M SYSTEM - 214
M.2. COPYING YOUR TURBO DISK - 214
M.3. USING YOUR TURBO DISK - 215

Appendix N. HELPI!! - 216

INDEX - 222

T ABLE OF CONTENTS

UST OF FIGURES

1-1 Log-on Message - 5
1-2 Main Menu - 6
1-3 Installation Main Menu - 6
1-4 Main Menu - 8

1-5 Editor Status Line - 13

15-1 Using Dispose - 110

18-1 Principle of Overlay System - 134 '
18-2 Largest Overlay Subprogram Loaded - 135
18-3 Smaller Overlay Subprogram loaded - 136
18-4 Multiple Overlay Files - 139
18-5 Nested Overlay Files - 140

22-1 Options Menu - 144
22-2 Start and End Addresses - 144

22-3 Run-time Error Message - 146
22-4 Find Run-time Error - 146

22-5 Memory map during compilation in memory - 170

22-6 Memory map during compilation to a file - 171
22-7 Memory map during execution in direct mode - 172

22-8 Memory map during execution of a program file - 173

L -2 Terminal Installation Menu - 205

UST OF TABLES

1-1 Editing Command Overview - 14
14-1 Operation of Eoln and Eof - 92
L -1 Secondary Editing Commands - 211

Page xi

INTRODUCTION

This book is a reference manual for the TURBO Pascal system as
implemented for the CP/M-BO, Z-System, and compatible operating

systems. Although making thorough use of examples, it is not meant

as a Pascal tutorial or textbook, and at least a basic knowledge of

Pascal is assumed.

THEPASCAllANCUACE

Pascal is a general-purpose, high-level programming language originally
designed by Professor Niklaus Wirth of the Technical University of

Zurich, Switzerland and named in honor of Blaise Pascal, the famous

French Seventeenth Century philosopher and mathematician.

Professor Wirth's definition of the Pascal language, published in 1971,

was intended to aid the teaching of a systematic approach to

computer programming, specifically introducing structured programming.
Pascal has since been used to program almost any task on almost any

computer and it is today established as one of the foremost high-level

languages, whether the application is education, hobby, or profeSSional

programming.

TURBO PASCAL

TURBO Pascal is designed to meet the requirements of all categories

of users: it offers the student a friendly interactive environment which

greatly aids the learning process; and in the hands of a programmer it

becomes an extremely effective development tool providing both

compilation and execution times second to none.

TURBO Pascal closely follows the definition of Standard Pascal as

defined by K. Jensen and N. Wirth in the Pascal User Manual and
Re po ri. The few and minor differences are described in Appendix D.
In addition to the standard, a number of extensions are provided, such

as:

Absolute address variables

Bit/byte manipulation
Direct access to CPU memory and data ports

Dynamic strings

Free ordering of sections within declaration part

Page 2 INTRODUCTION

Full support of operating system facilities

In-line machine code generation

Include files

Logical operations on integers

Overlay system
Program chaining with common variables

Random access data files

Structured constants

Type conversion functions

Furthermore, many extra 'standard procedures and functions are

included to increase the versatility of TURBO Pascal.

STRUCTURE OF THIS MANUAL

The reader may be familiar with earlier editions of this manual, in which

the earlier sections covered features common to PC-DOS, MS-DOS,

CP/M-86 and CP/M-80 implementations of TURBO Pascal, and later

chapters dealt with items that differed among implementations. This

edition has been prepared by Alpha Systems Corporation to document

the CP/M-80 implementation only. Information on features specific to

implementations for incompatible operating systems such as MS-DO S,

PC-DO S, and CP IM-86 has been taken out of this edition. Alpha

Systems Corporation has a contract with Borland International to sell

and support the CP IM-80 version of TURBO Pascal only. For copies

of the software or the manual for operating systems incompatible with

CP/M, contact Borland directly.

TYPOCRAPHY

The body of this manual is printed in a normal typeface. Special

characters are used for the following special purposes:

Italics
Italics are used generally for the names of the TURBO editor

commands, as in the insert mode on/off command. Pre-defined

standard identifiers and elements in syntax descriptions (see

below) are printed in italics. The meaning of the use of italics

thus depends on the context.

INTRODUCTION Page 3

Boldface

Boldface is used to mark TURBO menu commands, as the

compiler Options command, and to denote other key

combinations, as Ctrl-K Y. It is also used to mark reserved

words, and to highlight particularly important passages in the
text.

Syntax Descriptions

The entire syntax of the Pascal language expressed as Backus
Naur Forms is collected in Appendix I, which also describes the
typography and special symbols used in these forms.

Where appropriate, syntax descriptions are also used more
specifically to show the syntax of single language elements, as
in the following syntax description of the function Concat:

Concat(Stl,St2(,StN)}

Reserved words are printed in boldface, identifiers used mixed

upper and lower case, and elements explained in the text are

printed in italics.

The text will explain that Stl, St2, and StN must be string
expressions. The syntax description shows that the word
Concat must be followed by two or more string expressions,
separated by commas and enclosed in parentheses. In other

words, the following examples are legal (assuming that Name is
a string variable):

Concat('TURBO',' Pascal')

Concat('TU','RBO',' Pascal'}

Concat('T','U','R' ,'B' ,'O',Name}

Chapter 1
USING THE TURBO SYSTEM

This chapter describes the installation and use of the TURBO Pascal

system, specifically the built-in editor.

1.1. BEFORE USE

Before using TURBO Pascal you should, for your own protection, make

a work copy of the distribution diskette and store the original safely

away. Remember that the User's license allows you to make as many

copies as you need for your own personal use and for backup

purposes only. Use a file-copy program to make the copy, and make

sure that all fil~s are successfully transferred.

1.2. IMPORTANT NOTE!!!

TURBO Pascal provides a number of compiler directives to

control special runtime facilities such as index checking,

recursion, etc. PLEASE NOTICE that the default settings of

these directives will optimize execution speed and minimize

code size. Thus, a number of run-time facilities (such as index

checking and recursion) are de-selected until explicitly selected

by the programmer. All compiler directives and their default

values are described in Appendix C.

1.3. FILES ON THE DISTRIBUTION DISK

The distribution disk contains the following files:

TURBO.COM

The TURBO Pascal program: compiler, editor, and all. When you
enter the command TURBO on your terminal, this file will load,

and TURBO will be up and running.

TURBO.OVR

Overlay file for TURBO.COM. Needs only be present on the

run-time disk if you want to execute .COM files from TURBO.

USINC THE TURBO SYSTEM Page 5

TURBO.MSG
Messages for the installation program. This file may be

translated into any language desired .

. PAS files

Sample Pascal programs.

READ.ME
If present, this file contains the latest corrections or suggestions

on the use of the system.

Only TURBO.COM must be on your run-time disk. A fully

operative TURBO Pascal thus requires only 30 K of disk space.

TURBO.OVR is required only if you want to be able to execute
programs from the TURBO menu. TURBO.MSG is needed only if

you want on-line compile-time error messages. The TINST files

are used only for the installation procedure. The example .PAS

files, of course, may be included on the run-time disk if so

desired, but they are not necessary.

1.4. STARTING TURBO PASCAL

When you have a copy of the system on your work disk, enter the

command TURBO at your terminal. The system will log on with the

following message:

TURBO Pascal system Version N.NNX
[System]

Copyright (c) 1983, 1984 by BORLAND Inc.

No terminal selected

Include error messages <YIN)? •

Figure 1-1: Log-on Message

N.NNX specifies your release number and [System] indicates the

operating environment (operating system and CPU), for example

CP/M-80, Z-80. The second line from last tells you which screen is

installed (at the moment, none -- but more about that later).

Page 6 USING THE TURBO SYSTEM

If you enter a Y in response to the error message question, the error

message file will be read into memory (if it is on the disk), briefly

displaying the message Loading TURBO.MSG. You may instead

answer N and save about 1.5 Kbytes of memory. Then the TURBO

main menu will appear:

Logged drive: A

Work file:

Main file:

Edit Compile Run Save

Oir Quit compiler Options

Text: 0 bytes

Free: 62903 bytes

Figure 1-2: Main Menu

The menu shows you the commands available, each of which will be

described in following sections. Each command is executed by

entering the associated capital letter (highlighted after terminal

installation, if your terminal has that feature). Don't press <RETURN>;

the command executes immediately. The values above for Logged

drive and memory use are for the sake of example only; the values

shown will be the actual values for your computer.

You may use TURBO without installation if you don't plan to use the

built-in editor. If you do, type Q now to leave TURBO for a minute to

perform the installation.

1.5. INSTALLATION

Type TINST to start the installation program. All TINST files and the

TURBO.COM file must be on the logged drive. This menu will appear:

TURBO Pascal installation menu.

Choose installation item from the following:

[S]creen installation I [C]ommand installation I [Q]uit

Enter S, C, or Q:

Figure 1-3: Installation Main Menu

USING THE TURBO SYSTEM Page 7

Now hit S to select Screen installation. A menu containing the names

of the most-used terminals will appear, and you may choose the one

that suits you by entering the appropriate number. If your terminal is

not on the menu, nor compatible with any of these (note: a lot of

terminals are compatible with an ADM-3A), then you must perform the

installation yourself. This is quite straightforward, but you will need to

consult the manual that came with your terminal to answer the

questions asked by the installation menu. See Appendix l for details.

When you have chosen a terminal, you are asked if you want to

modify it before installation. This can be used if you have, for

example, an ADM-3A-compatible terminal with some additional

features. Choose the ADM-3A and add the required commands to

activate the special features. If you answer Yes, you will be taken

through a series of questions as described in Appendix l.

Normally, you will answer No to this question, which means that you

are satisfied with the pre-defined terminal installation. Now you will

be asked the operating frequency of your microprocessor. Enter the
appropriate value (2, 4, 6, or 8, most probably 4).

After that, the main menu re-appears, and you may now continue with

the Command installation described in -the next section, or you may

terminate the installation at this point by entering Q for Quit.

1.5.1. INSTALLATION OF EDITING COMMANDS

The built-in editor responds to a number of commands which are used

to move the cursor around on the screen, delete and insert text, move
text, etc. Each of these functions may be activated by either a

primary of a secondary command. The secondary commands are

installed by Borland, and comply with the standard set by WordStar.

The primary commands are undefined for most systems, and may be

defined easily to suit your taste or your keyboard, using the installation

program.

Please turn to Appendix l for a full description of the editor command

installa ti on.

Page 8 USING THE TURBO SYSTEM

1.6. THE MENU

A fter installation, you activate TURBO Pascal again by typing the

command TURBO. Your screen should now clear and display the

menu, this time with the command letters highlighted. If not, check

your installation data.

Logged drive: A

Work file:

Main file:

Edit Compile Run Save

Dir Quit compiler Options

Text: 0 bytes·

Free: 62903 bytes

> -

Figure 1-4: Main Menu

By the way, whenever highlighting is mentioned here, it is assumed

that your screen has different video attributes to show text in

different intensities, reversed, underlined, or some other way. If not,

just disregard any mention of highlighting.

This menu shows you the commands available to you while working

with TURBO Pascal. A command is activated by pressing the
associated upper case (highlighted) letter. Don't press <RETURN>, the

command is executed immediately. The menu may very well disappear
from the screen when working with the system; it is easily restored by

entering an "illegal command", i.e., any key that does not activate a

command. <RETURN> or <SPACE> will do perfectly.

The following sections describe each command in detail.

1.6.1. LOGGED DRIVE SELECTION

The L command is used to change the currently logged drive. When

you press L, the prompt

New drive: -

USING THE TURBO SYSTEM Page 9

invites you to enter a new drive name, that is, a letter from A through

P, optionally followed by a colon and terminated with <RETURN>. If

you don't want to change the current value, just hit <RETURN>. The l
command performs a disk reset, even when you don't change the

drive, and should therefore be used whenever you change disks, to
avoid a fatal disk-write error.

The' new drive is not immediately shown on the menu, as it is not

automatically updated. Hit for example <SPACE> to display a fresh

menu, which will show the new logged drive.

1.6.2. WORK FILE SELECTION

The W command is used to select a work file, which is the file to be

used to Edit, Compile, Run, eXecute, and Save. The W command will

display this prompt:

Work file name: _

and you may respond with any legal file name (a name of one through

eigh~ characters, an optional period, and an optional file type of no
more-than three characters, for instance ALENAME.TYP>.

If you enter a file name without period and file type, the file type PAS
is automatically assumed and appended to the name. You may

explicitly specify a file name with no file type by entering a period

after the name, but omitting the type.

Examples:

PROGRAM

PROGRAM.

PROGRAM.FIL

becomes PROGRAM.PAS

is not changed

is not changed

File types .BAK, .CHN, and .COM should be avoided, as TURBO uses

these names for special purposes.

When the work file has been specified, the file is read from disk, if

present. If the files does not already exist, the message New File is
displayed. If you have edited another file which you have not saved,
the message

Page 10 USING THE TURBO SYSTEM

Workfile X:FILENAME.TYP not saved. Save <YIN)? •

warns you that you are about to load a new file into memory and

write over the one you have just worked on. Answer Y to save, or N

to skip.

The new work file name will show on the menu the next time it is

updated, like when you hit <SPACE>.

1.6.3. MAIN FILE SELECTION

The M command may be used to define a main file when working with

programs which use the compiler directive $1 to include a file. The

main file should be the file which contains the include directives. You

can then define the work file to be different from the main file, and

thus edit different include files while leaving the name of the main file

unchanged.

When a compilation is started, and the work file is different from the

main file, the current work file is automatically saved, and the main file

is loaded into memory. If an error is found during compilation, the file

containing the error <whether it is the main file or an include file),·

automatically becomes the work file, which may then be edited.

When the error has been corrected, and compilation is started again,

the corrected work file is automatically saved, and the main file is

reloaded.

The main file name is specified as described for the work file name in

the previous section.

1.6.4. EDIT COMMAND

The E command is used to invoke the built-in editor and edit the file

defined as the work file. If no work file is specified, you are first

asked to specify one. The menu disappears, and the editor is

activated. More about the use of the editor starting on page 12.

While you may use the TURBO system to compile and run programs

without installing a terminal, the use of the editor requires that your

terminal be installed. See page 6.

USINC THE TURBO SYSTEM Page 11

1.6.5. COMPILE COMMAND

The C command is used to activate the compiler. If no main file is
specified, the work file will be compiled, otherwise the main file will

be compiled. In the latter case, if the work file has been edited, you

will be asked whether to save it before the main file is loaded and

compiled. The compilation may be interrupted at any moment by

pressing a key.

The compilation may result either in a program residing in memory, in a

.COM file, or in a .CHN file. The choice is made on the compiler

Options menu described on page 143. The default is to have the

program residing in memory.

1.6.6. RUN COMMAND

The R command is used to activate a program residing in memory or, if

the C switch on the compiler Options menu is active, a TURBO object

code file (COM file). If a compiled program is already in memory, it
will be activated. If not, a compilation will automatically take place as
described above.

1.6.7. SAVE COMMAND

The S command is used to save the current work file on disk. The old
version of this file, if any, will be renamed to .BAK, and the new
version will be saved.

1.6.8. DIRECTORY COMMAND

The D command gives you a directory listing and information about
remaining space on the logged drive. When hitting D, you are
prompted thus:

Dir mask: -

You may enter a drive deSignator, or a drive deSignator followed by a

file name or a mask containing the usual wildcards * and? Or you may

just hit <RETURN> to get a full directory listing of the logged drive.

Page 12 USING THE TURBO SYSTEM

1.6.9. QUIT COMMAND

The Quit command is used to leave the TURBO system. If the work

file has been edited since it was loaded, you areasked whether you

want to save it before quitting.

1.6.10. COMPILER OPTIONS

The 0 command selects a menu on which you may view and change

some default values of the compiler. It also provides a helpful function

to find run-time errors in programs compiled into object code files.·

As these options vary between implementations, further discussion is

deferred to Chapter 22.

1.7. THE TURBO EDITOR

The built-in editor is a full-screen editor specifically designed for the

creation of program source text. If you are familiar with MicroPro's

WordStar, you need but little instruction in the use of the TURBO

editor, as all editor commands are exactly like the ones you know

from WordStar. There are a few minor differences, and the TURBO

editor has a few extensions; these are discussed on page 28. You

may install your own commands "on top" of the WordStar commands,

as described on page 7. The WordStar commands, however, may still

be used.

Using the TURBO editor is simple as can be. When you have defined

a work file and hit E, the menu disappears, and the editor is activated.

If the work file exists on the logged drive, it is loaded and the first

page of text is displayed. If it is a new file, the screen is blank apart

from the. status line at the top.

You leave the editor and return to the menu by pressing <CTRl>K D;

more about that later.

Text is entered on the keyboard just as if you were using a

typewriter. To terminate a line, press the <RETURN> key (or CR or

ENTER or whatever it is called on your keyboard>. When you have

entered enough lines to fill the screen, the top line will scroll off the

screen. Don't worry, it isn't lost. You may page back and forth in

your text with the editing commands described later.

USING THE TURBO SYSTEM Page 13

Let us first take a look at the meaning of the status line at the top of

the screen.

1.7.1. THE STATUS LINE

The top line on the screen is the status line containing the following

information:

Line n Col n Insert Indent X:FILENAME. TYP

Line n

Col n

Insert

Indent

Figure 1-5: Editor Status line

Shows the number of the line containing the cursor, counted

from the start of the file.

Shows the number of the column containing the cursor, counted

from the beginning of the line.

Indicates that characters entered on the keyboard will be

inserted at the cursor position. Existing text to the right of the

cursor will move to the right as you write new text. Using the

insert mode on/off command «CTRL>V by default> will instead

display the text Overwrite. Text entered on the keyboard will

then write over characters under the cursor, instead of being

inserted before them.

Indicates that auto-indent is in effect. It may be switched off

using the auto-indent on/off command «CTRL>Q I by default).

X:FILENAME. TYP

The drive, name, and type of the file being edited.

1.7.2. EDITING COMMANDS

As mentioned before, you use the editor almost as a typewriter, but

as this is a computerized text editor, it offers you a number of editing

facilities which make text manipulation, and in this case specifically

program writing, much easier than on paper.

Page 14 USING THE TURBO SYSTEM

The TURBO editor accepts a total of 45 editing commands to move
the cursor around, page through the text, find and replace text strings,

etc. These commands can be grouped into four categories, each of

which contains logically related commands which will be described

separately in following sections. The following table provides an
overview of the commands available:

CURSOR MOVEMENT COMMANDS:

Character left Scroll down
Character right Page up
Word left Page down

Word right

line up

line down

Scroll up

To top of screen

To bottom of screen

To top of file

To end of file.
To left on line

To right on line

To beginning of block

To end of block

To last cursor position

INSERT AND DELETE COMMANDS:

Insert mode on/off

Insert line
Delete to end Delete character under

of line cursor
Delete line Delete right word Delete left character

BLOCK COMMANDS:

Mark block begin

Mark block end

Mark single word

Copy block
Move block

Delete block

MISe. EDITING COMMANDS:

End edit

Tab

Auto tab on/off

Restore line

Find and replace

Read block from disk

Write block to disk

Hide/ display block

Repeat last find

Control character prefix

Table 1-1: Editing Command Overview

In a case like this, the best way of learning is by doing, so start

TURBO, specify one of the demo Pascal programs as your work file,

and enter E to start editing. Then use the commands as you read on.

USING THE TURBO SYSTEM Page 15

Hang on, even if you find it a bit hard in the beginning. It is not just by

chance that we have chosen to make the TURBO editor WordStar

compatible. The logic of these commands, once learned, quickly

becomes so much a part of you that the editor virtually turns into an

extension of your mind. Take it from one who has written megabytes

worth of text with that editor.

Each of the following descriptions consists of a heading defining the

command, followed by the default keystrokes used to activate the
command, with room in between to note which keys to use on your
terminal, if you use other keys. If you have arrow keys and dedicated
word processing keys «IN SERT>, <DELETE>, etc.> it might be

convenient to use these. Please refer to pages 7 pp. for installation
details.

The following descriptions of the commands assume the use of

the default WordStar-compatible keystrokes.

1.7.3. A NOTE ON CONTROL CHARACTERS

All commands are issued using control characters. A control character

is a special char~cter generated by your keyboard when you hold
down the <CONTROL> (or <CTRL» key on your keyboard and press

any key from A through Z, [, \,], or

The <CONTROL> keys works like the <SHIFT> key. If you hold down

the <SHIFT> key and press A, you get a capital A; if you hold down
the <CONTROL> key and press A, you will get a Control-A (Ctrl-A
for short).

1.7.4. BEFORE YOU START: HOW TO GET OUT

The command which takes you out of the editor is described on page

28, but you may find it useful to' know now that the Ctrl-K D

command (hold down the <CONTROL> It'ey and press K, then release

the <CONTROL> key and press D) exits the editor and returns you to

the menu. This command does not automatically save the file; that

must be done with the Save command from the menu.

Page 16 USING THE TURBO SYSTEM

1.7.5. BASIC MOVEMENT COMMANDS

The most basic thing to learn about an editor is how to move the

cursor around on the screen. The TURBO editor uses a special group

of control characters to do that, namely the control characters A, S,

0, F, E, R, X, and C.

Why these? Because they are conveniently located close to the

control key, so that your left little finger can rest on that while you

use the middle and index fingers to activate the commands.

Furthermore, the characters are arranged in such a way on the

keyboard as to logically indicate their use. Let's examine the basic

movements: cursor up, down, left, and right.

E
S 0
X

These four characters are placed so that it is logical to assume that
Ctrl-E moves the cursor up, Ctrl-X down, Ctrl-S to the left, and

Ctrl-O to the right. And that is exactly what they do. Try to move

the cursor around on the screen with these four commands. If your

keyboard has repeating keys, you may just hold down the control key

and one of these four keys, and the cursor will move rapidly across
the screen.

Now let us look at some extensions of those movements.

E R
A S 0 F

X C

the location of the Ctrl-R next to the Ctrl-E suggests that Ctrl-R

moves the cursor up, and so it does, only not one line at a time but a

whole page. Similarly, Ctrl-C moves the cursor down one page at a
time.

Likewise with Ctrl-A and Ctrl-F: Ctrl-A moves to the left like Ctrl

S, but a whole word at a time, while Ctrl-F moves one word to the
right.

USING THE TURBO SYSTEM Page 17

The two last basic movement commands do not move the cursor, but

scroll the entire screen up or down in the file:

W E R
A S 0 F
Z X C

Ctrl-W scrolls upwards in the file <the lines on the screen move

down), and Ctrl-Z scrolls downwards in the file <the lines on the

screen move up).

Character left Ctrl-S

Moves the cursor one character to the left non-destructively,

without affecting the character there. <BACKSPACE> may be

installed to have the same effect. This command does not work

across line breaks; when the cursor reaches the left edge of the

screen, it stops.

Character right Ctrl-D

Moves the cursor one character to the right non-destructively,

without affecting the character there. This command does not

work across line breaks, i.e., when the cursor reaches the right

end of the screen, the text starts scrolling horizontally until the

cursor reaches the extreme right of the line, in column 128,

where it stops.

Word left Ctrl-A

Moves the cursor to the beginning of the word to the left. A

word is defined as a sequence of characters delimited by a
space or one of the other following characters: < > , ; . () [] A. ,

* + - / $. This command works across line breaks.

Word right Ctrl-F

Moves the cursor to the beginning of the word to the right. See

the definition of a word, above. This command works across

line breaks.

line up Ctrl-E

Moves the cursor to the line above. If the cursor is on the top

line, the screen scrolls down one line.

Page 18 USING THE TURBO SYSTEM

Line down Ctrl-X
Moves the cursor to the line below. If the cursor is on the

second line from last, the screen scrolls up one line.

Scroll up Ctrl-W
Scrolls. up towards the beginning of the file, one line at a time

<the entire screen scrolls down). The cursor remains on its line

until it reaches the bottom of the screen.

Scroll down Ctrl-Z
Scrolls down towards the end of the file, one line at a time <the

entire screen scrolls up). The cursor remains on its line until it

reaches the top of the screen.

Page up Ctrl-R
Moves the cursor one page up with an overlap of one line; the

cursor moves one screenful, less one line, backwards in the text.

Page down Ctrl-C
Moves the cursor one page down with an overlap of one line;

the cursor moves one screenful, less one line, forwards in the

text.

1.7.6. EXTENDED MOVEMENT COMMANDS

The commands discussed above will let you move freely around in

your program text, and they are easy to learn and understand. Try to

use them all for a while and see how natural they feel.

Once you master them, you will probably sometimes want to move

more rapidly. The· TURBO editor provides six commands to move

rapidly to the extreme ends of lines, to the beginning and end of the

text, and to the last cursor pOSition.

These commands require two characters to be entered; first a Ctrl-Q I
then an S, 0, E, X, R, or C. They repeat the pattern from before:

E R
S 0

X C

USINC THE TURBO SYSTEM Page 19

Ctrl-Q S moves the cursor to the extreme left of the line, and Ctrl

Q 0 moves it to the extremely right of the line. Ctrl-Q E moves the

cursor to the top of the screen, and Ctrl-Q X moves 'it to the bottom

of the screen. Ctrl-Q R moves the cursor all the way up to the start

of the file, while Ctrl-Q C moves it all the way down to the end of

the file.

To left on line Ctrl-Q S

Moves the cursor all the way to the left edge of the screen, to

column one.

To right on line Ctrl-Q 0

Moves the cursor to the end of the line, to the position

following the last printable character on the line. Trailing blanks

are always removed from all lines to preserve space.

To top of screen Ctrl-Q E

Moves the cursor to the top of the screen.

To bottom of screen Ctrl-Q X

Moves the cursor to the bottom of the screen.

To top of file Ctrl-Q R

Moves to the first character of the text.

To end of file Ctrl-Q C

Moves to the last character of the text.

The Ctrl-Q prefix plus 8, K, or P allows you to jump far within the
file:

To beginning of block Ctrl-Q B

Moves the cursor to the position of the block begin marker set
with Ctrl-K B (hence the logic of Ctrl-Q 8). The command

works even if the block is not displayed (see hide/display block
later), or the block end marker is not set.

To end of block Ctrl-Q K

Moves the cursor to the position of the block end marker set

with Ctrl-K K (hence the logic of Ctrl-Q K). The command

works even if the block is not displayed (see hide/display block
la ter), or the block begin marker is not set.

Page 20 USING THE TURBO SYSTEM

To last cursor position Ctrl-Q P
Moves to the last position of the cursor. This command is

particularly useful to move back to the last position after a Save

operation, or after a find or find and replace operation.

1.7.7. INSERT AND DELETE COMMANDS

These commands let you insert and delete characters, words, and lines.

They can be divided into three groups: one command which controls

the text entry mode (insert or overwrite), a number of simple

commands, and one extended command.

Note: The TURBO editor provides a "regret" facility which lets you

undo changes as long as you have not left the line. This command (Ctrl

Q L) is described on page 28.

Insert mode onloff Ctrl-V

When you enter text, you may choose between two entry

modes: Insert and Overwrite. Insert mode is the default value

when the editor is invoked, and it lets you insert new text into

an existing text. The existing text to the right of the cursor

simply moves to the right while you enter the new text.

Overwrite mode may be chosen if you wish to replace old text

with new text. Characters entered then replace existing

characters under the cursor.

You switch between these modes with the insert mode on/off
command Ctrl-V, and the current mode is displayed in the status

line at the top of the screen.

Delete left character

Moves one character to the left and deletes the character there.

Any characters to the right of the cursor move one pOSition to

the left. The <BACKSPACE> key, which normally backspaces

non-destructively like Ctrl-S, may be installed to perform this

function if it is more conveniently located on your keyboard, or

if your keyboard lacks a <DELETE> key (sometimes labeled

, <RUBOUT>, or <RUB». This command works across line

breaks, and can be used to remove line breaks.

USING THE TURBO SYSTEM Page 21

Delete character under cursor Ctrl-C

Deletes the character under the cursor, and moves any

characters to the right of the cursor to the left. This command

does not work across line breaks.

Delete right word Ctrl-T

Deletes the word to the right of the cursor. A word is defined

as a sequence of characters delimited by the SPACE character,
or by one of < > , ; . (} [] " , * + - / $. This command works

across line breaks, and may be used to remove line breaks.

Insert line Ctrl-N

Inserts a line break at the cursor position. The cursor does not

move.

Delete line Ctrl-Y

Deletes the line containing the cursor and moves any lines below

it one line up. The cursor moves to the left edge of the screen.

No provision exists to restore a deleted line, so take care!

Delete to end of line Ctrl-Q Y

Deletes all text from the cursor position to the end of the line.

1.7.8. BLOCK COMMANDS

All block commands are extended commands (two characters each in

the standard command definition), and you may ignore them at first if

you feel a bit dazzled at this point. Later on, when you feel the need

to move, delete, or copy whole chunks of text, you should return to

this section.

For the persevering, we'll go on and discuss the use of blocks.

A block of text is simply any amount of text, from a single character

to several pages of text. A block is marked by placing a Begin block
marker at the first character and an End block marker at the last

character of the desired portion of the text. Thus marked, the block

may be copied, moved, deleted, or written to a file. A command is

available to read an external file into the text as a block, and a special

command conveniently marks a single word as a block.

Page 22 USING THE TURBO SYSTEM

Mark block begin Ctrl-K B
This command marks the beginning of a block. The marker itself

is not visible on the screen, and the block only becomes visibly
marked when the End block marker is set, and then only if the

screen is installed to show some sort of highlighting. But even if
the block is not visibly marked, it is internally marked and may be
manipulated.

Mark block end Ctrl-K K

This command marks the end of a block. As above, the marker
itself is not visible on the screen, and the block only becomes

visibly marked when the Begin block marker is also set.

Mark single word Ctrl-K T
This command marks a single word as a block, and thus replaces

the Begin block -- End block sequence which is a bit clumsy when
marking just one word. If the cursor is placed within a word,

then this word will be marked; if not, then the word to the left

of the cursor will be marked. A word is defined as a sequence
of characters delimited by either a space or one of < > , ; . () ,. ,

* + - / or $.

Hide/ display block Ctrl-K H
This command causes the visual marking of a block (dim text) to

be alternatively switched off and on. Block manipulation

commands (copy, move, delete, and write to a file) work only

when the block is displayed. Cursor movements for blocks (jump

to beginning/end of block> work whether the block is hidden or
displayed.

Copy block Ctrl-K C
This command places a copy of a previously marked block

starting at the cursor position. The original block is left

unchanged, and the markers are placed around the new copy of

the block. If no block is marked, the command performs no

operation, and no error message is issued.

Move block Ctrl-K V
This command moves a previously ~arked block from its original

position to the cursor position. The block disappears from its

original position and the markers remain around the block at its

USING THE TURBO SYSTEM Page 23

new position. If no block is marked, the command performs no

operation, and no error message is issued.

Delete block Ctrl-K Y

This command deletes the previously marked block. No provision

exists to restore a deleted block, so be careful!

Read block from disk Ctrl-K R

This command is used to read a file into the current text at the
cursor position, exactly as if it were a block that was moved or
copied. The block read in is marked as a block. When this
command is issued, you are prompted for the name of the file to
read. The file specified may be any legal file name. If no file

type is specified, .PAS is automatically assumed. A file without
type is specified as a name followed by a period.

Write block to disk Ctrl-K W

This command is used to write a previously marked block to a

file. The block is left unchanged, and the markers remain in place.
When this command is issued, you are prompted for the name of

the file to write to. If the file specified already exists, a

warning is issued before the existing file is written over. If no

block is marked, the command performs no operation, and no

error message is issued. The file specified may be any legal file
name. If no file type is specified, .PAS is automatically assumed.
A file name without a file type is specified as a name followed

by a period. Avoid the use of file types .BAK, .CHN, and .COM,

as they are used for special purposes by the TURBO system.

1.7.9. MISCELLANEOUS EDITING COMMANDS

This section collects a number of commands which do not logically fall

into any of the above categories. They are nonetheless important,

especially this first one:

End edit Ctrl-K 0

This command ends the edit and returns to the main menu. The

editing has been performed entirely in memory, and any

associated disk file is not affected. Saving the edited file on

disk is done explicitly with the Save command from the main

menu, or automatically, in connecti on with a compilation or

definition of a new work file.

Page 24 USINC THE TURBO SYSTEM

Tab <TAB> or Ctrl-I

There are no fixed tab positions in the TURBO editor. Instead,

tab positions are automatically set to the beginning of each

word on the line immediately above the cursor. This provides a

very convenient automatic tabbing fea ture especially useful in

program editing, where you often want to line up columns of

related items, such as variable declarations. Remember that

Pascal allows you to write extremely beautiful source texts. Do

it, not for the sake of the purists, but more importantly to keep

the program easy to understand, especially when you return to

make changes after some time.

Auto indent anI off Ctrl-Q I

The auto-indent feature provides automatic indenting of

successive lines. When active, the indent of the current line is

repeated on each following line. That is, when you hit

<RETURN>, the cursor does not return to column one, but to the

starting column of the line you just terminated. When you want

to change the indent, use any of the cursor right or left

commands to select the new column. When auto indent is

active, the message Indent is displayed in the status line, and

when passive, the message is removed. Auto indent is active

by default.

Restore line Ctrl-Q L

Find

This command lets you regret changes made to a line as long as
you have not left the line. The line is simply restored to its

original contents, regardless of what changes you have made,

but only as long as you remain on the line; the moment you leave

it, changes are there to stay. For this reason, the Delete line
(Ctrl-Y) command can only be regretted, not restored. Some

days you may find yourself continuously falling asleep on the

Ctrl-Y key, with vast consequences. A good long break usually

helps.

Ctrl-Q F

The Find command lets you search for any string of up to 30

characters. When you enter this command, the status line is

cleared, and you are prompted for a search string. Enter the

string you are looking for and terminated with <RETURN>. The

search string may contain any characters, even control

USING THE TURBO SYSTEM Page 25

characters. Control characters are entered into the search string

with the Ctrl-P prefix. For example, enter a Ctrl-A by holding

down the <CONTROL> key while pressing first P, then A. You

may thus include a line break in a search string by specifying

Ctrl-M Ctrl- J. Notice that Ctrl-A has a special meaning: it

matches any character, and may be used as a wildcard in search

strings.

Search strings may be edited with the Character Left, Character
Right, Word Left, and Word Right commands. Word Right recalls

the previous search string, which may then be edited. The

search operation may be aborted with the Abort command (Ctrl
U).

When the search string is specified, you are asked for search

options. The following options are available:

B Search backwards. Search from the current cursor position

towards the beginning of the text.
G Global search. Search the entire text, regardless of the

current cursor position.

n n· any number. Find the nth occurrence of the search

string, counted from the current cursor position.

U Ignore upper flower case. Regard upper and lower case

alphabeticals as identical.

W Search for whole words only. Skip matching patterns which

are embedded in other words.

Examples:
W search for whole words only. The search string "term" will

only match the word "term", not the string "term" in the
word "terminal".

BU search backwards and ignore upper flower case distinctions.

"Block" will match "blockhead", "BLOCKADE", etc.

125 Find the 125th occurrence of the search string.

Terminate the list of options (jf any) with <RETURN>, and the

search starts. If the text contains a target matching the search

string, the cursor is positioned at the end of the target. The

search operation may be repeated by the Repeat last find
command (Ctrl-U.

Page 26 USING THE TURBO SYSTEM

Find and replace Ctrl-Q A

The Find and replace command lets you search for any string of

up to 30 characters and replace it with any other string of up to

30 characters. When you enter this command, the status line is

cleared, and you are prompted for a search string. Enter the

string you are looking for and hit <RETURN>. The search string

may contain any characters, even control characters. Control

characters are entered into the search string with the Ctrl-P

prefix. For example, enter a Ctrl-A by holding down the

<CONTROL> key while pressing first P, then A. You may thus

include a line break in a search string by specifying Ctrl-M Ctrl

J. Notice that Ctrl-A has a special meaning: it matches any

character, and may be used as a wildcard in search strings.

Search strings may be edited with the Character Left, Character
Right, Word Left, and Word Right commands. Word Right recalls

the previous search string, which may then be edited. The

search operation may be aborted with the Abort command (Ctrl
U).

When the search string is specified, you are asked to enter the

string to replace the search string. Enter up to 30 characters;

entering control characters and editing is performed as above,

but Ctrl-A has no special meaning in the replace string. If you

just press <RETURN>, the target will be replaced with nothing, in

effect deleted.

Finally you are prompted for options. The search and replace

options are:

B Search and replace backwards. Search and replace from the

current cursor position towards the beginning of the text.

G Global search and replace. Search and replace in the entire

text, regardless of the current cursor position.

n n· any number. Find and replace n occurrences of the

search string, counted from the current cursor position.

N Replace without asking. Do not stop and ask Replace (YIN)
for each occurrence of the search string.

U Ignore upper flower case. Regard upper and lower case

alphabeticals as identical.

USING THE TURBO SYSTEM Page 27

W Search for whole words only. Skip matching patterns which

are embedded in other words.

Examples:

N 10 Find the next ten occur ences of the search string and

replace without asking.

GW Find and replace whole words in the entire text. Ignore

upper flower case distincti ons.

End the list of options, if any, with <RETURN>, and the

search and replace starts. Depending on the options

specified, the string may be found. When found, and if the

N option is not specified, the cursor is positioned at the end

of the target, and you are asked the question Replace
(YIN)? on the prompt line at the top of the screen. You

may abort the search and replace operation at this point

with the Abort command (Ctrl-U). The search and replace

operation may be repeated by the Repeat last find command
(Ctrl-U.

Repeat last find Ctrl-l

This command repeats the last Find or Find and replace operation

exactly as if all information had been re-entered.

Control character prefix Ctrl-P

The TURBO editor allows you to enter control characters into

the file by prefixing the desired control character with a Ctrl-P.

That is, first press Ctrl-P, then press the desired control

character. Control characters will appear as half-intensity capital

letters on the screen (or reverse video, depending on your

terminal).

Abort operation Ctrl-U

The Ctrl-U command lets you abort any command in process

whenever it pauses for input, as when Search and replace asks

Replace (YIN)?, or during entry of a search string or a file name.

Page 28 USING THE TURBO SYSTEM

1.8. THE TURBO EDITOR VS. WORDSTAR

Someone used to WordStar will notice that a few TURBO commands

work slightly differently. Also, although TURBO contains only a subset

of Word Star's commands, a number of special features not found in

WordStar have been added to enhance the editing of program source

code. These differences are:

1.8.1. CURSOR MOVEMENT

The cursor movement controls Ctrl-S, 0, E, and X move freely around

on the screen and do not jump to column one on empty lines. This

does not mean that the screen is full of blanks; on the contrary, all

trailing blanks are automatically deleted. This way of moving the

cursor is especially useful, for example, when matching indented begin

- end pairs.

Ctrl-S and Ctrl-D do not work across line breaks. To move from one

line to another you must use Ctrl-E, Ctrl-X, Ctrl-A, or Ctrl-F.

1.8.2. MARK SINGLE WORD

Ctrl-K Tis used to mark a single word as a block, which is more

convenient than the two-step process of marking the beginning and

the end of the word separately.

1.8.3. END EDIT

The Ctrl-K 0 command ends editing and returns you to the menu. As

editing in TURBO is done entirely in memory, this command does not

change the file on disk (as it does in WordStar). Updating the disk file

must be done explicitly with the Save command from the main menu,

or automatically in connection with a compilation or definition of a new

work file. TURBO's Ctrl-K 0 does not resemble WordStar's Ctrl-K

Q (quit edit) command either, as the changed text is not abandoned; it

is left in memory, ready to be Compiled or Saved.

1.8.4. LINE RESTORE
The Ctrl-Q L command restores a line to its contents before edit as
long as the cursor has not left the line.

USING THE TURBO SYSTEM Page 29

1.8.5. TABULATOR
No fixed tab settings are provided. Inst~ad, the automatic tab feature

sets tabs to the start of each word on the line immediately above the

cursor.

1.8.6. AUTO INDENTATION
The Ctrl-Q I command switches the auto indent feature on and off.

Chapter 2
BASIC LANGUAGE ELEMENTS

2.1. BASIC SYMBOLS

The basic vocabulary of TURBO Pascal consists of basic symbols

divided into letters, digits, and special symbols:

letters

A to Z, a to z, and (underscore)

Digits

o 1 2 3 4 5 6 789
Special symbols

+_*/_A>«)[]{}.,:;'#$

No distinction is made between upper and lower case letters. Certain

operators and delimiters are formed using two special symbols:

Assignment operator: .
Relational operators: <> <- >

Subrange delimiter: ..

Brackets: <. and,) may be used instead of [and]

Comments: (* and *) may be used instead of { and}

2.2. RESERVED WORDS

Reserved words are integral parts of TURBO Pascal. They cannot be

redefined, and therefore must not be used as user-defined identifiers.

• absolute • external nil • shl
and file not • shr
array forward • overlay • string
begin for of then
case function or type
const goto packed to
div • inline procedure until
do if program var
downto in record while
else label repeat with
end mod set • xor

BASIC LANCUACE ELEMENTS Page 31

Throughout this manual, reserved words are written in boldface. The

asterisks indicate reserved words not defined in standard Pascal.

2.3. ST ANDARD IDENTIFIERS

TURBO Pascal defines a number standard identifiers of predefined

types, constants, variables, procedures, and functions. Any of these
identifiers may be redefined, but it will mean the loss of the facility

offered by that particular identifier, and may lead to confusion. The

following standard identifiers are therefore best left to their special
purposes:

Addr Delay Length Release
ArcTan Delete Ln Rename
Assign EOF Lo Reset
Aux EOLN Low Video Rewrite
AuxInPtr Erase Lst Round
AuxOutPtr Execute LstOutPtr Seek
BlockRead Exit Mark Sin
Block Write Exp MaxInt SizeD!
Boolean False Mem Seek Eo!
BufLen FilePos MemAvail SeekEoln
Byte FileSize Move Sqr
Chain FillChar New Sqrt
Char Flush NormVideo Str
Chr Frac Odd Suec
Close GetMem Ord Swap
ClrEOL GotoXY Output Text
ClrScr Halt Pi Trm
Con HeapPtr Port True
ConInPtr Hi Pos Trunc
ConOutPtr IOresult Pred Up Case
Concat Input Ptr Usr
ConstPtr InsLine Random UsrInPtr
Copy Insert Randomize UsrOutPtr
Cos Int Read Val
CrtExit Integer ReadLn Write
CrtInit Kbd Real WriteLn
DelLine KeyPressed

Page 32 BASIC LANGUAGE ELEMENTS

Each TURBO Pascal implementation further contains a number of

dedicated standard identifiers. The dedicated standard identifiers for

CP IM-80 are listed in Chapter 22.

Throughout this manual, all identifiers, including standard identifiers, are

written in a combination of upper and lower case letters (see page

35>' In the text (as opposed to program examples), they are

furthermore in italics.

2.4. DELIMITERS

Language elements must be separated by at least one of the following

delimiters: a blank, an end of line, or a comment.

2.5. PROGRAM LINES

The maximum length of a program line is 127 characters; any character

beyond the 127th is ignored by the compiler. For this reason the

TURBO editor allows only 127 characters on a line, but source code

prepared with other editors may use longer lines. If such a text is

read into the TURBO editor, line breaks will be inserted automatically,

and a warning will be issued.

Chapter 3
ST ANDARD SCALAR TYPES

A data type defines the set of values a variable may assume. Every

variable in a program must be associated with one and only one data

type. Although data types in TURBO Pascal can be qUite

sophisticated, they are all built from simple (unstructured) types.

A simple type may either be defined by the programmer (it is then

called a declared scalar type), or be one of the standard scalar types:
integer, real, boolean, char, or byte. The following is a description

of these five standard scalar types:

3.1. INTECER

Integers are whole numbers. In TURBO Pascal, they are limited to a

range of from -32768 to 32767. Integers occupy two bytes in

memory.

Overflow of integer arithmetic operations is not detected. Notice in

particular that partial results in integer expressions must be kept within

the integer range. For instance, the expression 1000 • 100/50 will not

yield 2000, as the multiplication causes an overflow.

3.2. BYTE

The type Byte is a subrange of the type Integer, of the range 0 .. 255.

Bytes are therefore compatible with integers. Whenever a Byte value
is expected, an Integer value may be specified instead and vice versa,

except when passed as parameters. Furthermore, Bytes and Integers
may be mixed in expressions and Byte variables may be assigned

integer values. A variable of type Byte occupies one byte in memory,

3.3. REAL

The range of real numbers is 1E-38 through 1E+38 with a mantissa of

up to 11 Significant digits. Reals occupy 6 bytes in memory.

Overflow during an arithmetic operation involving reals causes the

program to halt, displaying an execution error. An underflow will

cause a result of zero.

Page 34 STANDARD SCALAR TYPES

Although the type Real is included here as a standard scalar type, the

following differences between reals and other scalar types should be

noticed:

1) The functions Pred and Suee cannot take real arguments.

2) Reals cannot be used in array indexing.

3) Reals cannot be used to define the base type of a set.

4) Reals cannot be used in controlling for and case statements.

5) Subranges of reals are not allowed.

3.4. BOOLEAN

A boolean value can assume either of the logical truth values denoted

by the standard identifiers True and False. These are defined such that

False < True. A Boolean variable occupies one byte in memory.

3.5. CHAR

A Char value is one character in the ASCII character set. Characters

are ordered according to their ASCII value, for example: 'A' < 'B'. The

ordinal (ASCII) values of characters range from 0 to 255. A Char
variable occupies one byte in memory.

Chapter 4
USER-DEFINED LANGUAGE ELEMENTS

4.1. IDENTIFIERS

Identifiers are used to denote labels, constants, types, variables,

procedures, and functions. An identifier consists of a letter or

underscore followed by any combination of letters, digits, or

underscores. An identifier is limited in length only by the line length of

127 characters, and all characters are Significant.

Examples:

TURBO

square
persons _ counted

BirthDate

3rdRoot

Two Words

illegal, starts with a digit

illegal, must not contain a space

As TURBO Pascal does not distinguish between upper and lower case

letters, the use of mixed upper and lower case as in BirthDate has no

functional meaning. It is nevertheless encouraged, as it leads to more

legible identifiers. VeryLongldentifier is easier to read for the human

reader than VERYLONGIDENTIFIER. This mixed mode will be used

for all identifiers throughout this manual.

4.2. NUMBERS

Numbers are constants of integer type or of real type. Integer

constants are whole numbers expressed in either decimal or

hexadecimal notation. Hexadecimal constants are identified by being

preceded by a dollar sign: $ABC is a .hexadecimal constant. The

decimal integer range is -32768 through 32767 and the hexadecimal

integer range is $0000 through $FFFF.

Examples:

1
12345
-1

$123

$ABC

Page 36

$123G

1.2345

USER-DEFINED LANGUAGE ELEMENTS

illegal, G is not a legal hexadecimal digit

illegal as an integer, contains a decimal part

The range of Real numbers is 1E-38 through 1E+38 with a mantissa of

up to 11 significant digits. Exponential notation may be used, with the
letter E preceding the scale factor meaning "times ten to the power

of". An integer constant is allowed anywhere a real constant is

allowed. Separators are not allowed within numbers.·

Examples:
1.0

1234.5678

-0.012

1E6
2E-5

-1.2345678901E+12

4.3. STRINGS

legal, but it is not a real, it is an integer

A string constant is a sequence of characters enclosed in single

quotes:

'This is a string constant '

A single quote may be contained in a string by writing two successive

single quotes. Strings containing only a single character are of the

standard type Char. A string is compatible with an array of Char of

the same length. All string constants are compatible with all string
types.

Examples:·

'TURBO'
'You"11 see'

, .' ,

As shown in examples 2 and 3, a single quote within a string is written

as two consecutive quotes. The four consecutive single quotes in

example 3 thus constitute a string containing one quote.

USER-DEFINED lANCUACE ELEMENTS Page 37

The last example - the quotes enclosing no characters, denoting an

empty string - is compatible only with string types.

4.3.1. CONTROL CHARACTERS

TURBO Pascal also allows control characters to be embedded in

strings. Two notations for control characters are supported:

1) The # symbol followed by an integer constant in the range 0 .. 255

denotes a character of the corresponding ASCII value, and
2) the A symbol followed by a character, denotes the corresponding

control character.

Examples:

#10 ASCII 10 decimal (Line Feed).

#$18 ASCII 1B hex (Escape).
Ag Control-C (Bell).

AL Control-L (Form Feed).

A[Control-[(Escape).

Sequences of control characters may be concatenated into strings by

writing them without separators between the individual characters:

#13#10

#27"U#20
"C"C"CAC

The above strings contain two, three, and four characters,

respectively. Control characters may also be mixed with text strings:

'Waiting for input! '''C''C''C' Please wake up'

#27'U'

'This is another line of text 'AM" J

These three strings contain 37, 3, and 31 characters, respectively.

4.4. COMMENTS

A comment may be inserted anywhere in the program where a

delimiter is legal. It is delimited by the curly braces { and }, which may

be replaced by the symbols (* and *).

Page 38

Examples:

{This is a comment}

(* and so is this *)

USER-DEFINED LANGUAGE ELEMENTS

Curly braces may not be nested within curly braces, and (* .. *) may not

be nested within (* .. *). However, curly braces may be nested within

(* .. *) and vice versa, thus allowing entire sections of source code to be

commented away, even if they contain comments.

4.5. COMPILER DIRECTIVES

A number of features of the TURBO Pascal compiler are controlled

through compiler directives. A compiler directive is introduced as a

comment with a special syntax, which means tha t whenever a

comment is allowed in a program, a compiler directive is also allowed.

A compiler directive consists of an opening brace immediately

followed by a dollar sign immediately followed by one compiler

directive letter or a list of compiler directive letters separated by

commas. The syntax of the directive or directive list depends upon

the directive(s) selected. A full description of each compiler directive

follows in the relevant sections, and a summary of compiler directives

is located in Appendix C. File inclusion is discussed in Chapter 17.

Examples:
{$I-}

{$I INCLUDE.FIU
{$R-,B+,V-}

(*$X-*)

Notice that no spaces are allowed before or after the dollar-sign.

Chapter 5
PROGRAM HEADING AND PROGRAM BLOCK

A Pascal program consists of a program heading followed bya

program block. The program block is further divided into a declaration

part, in which all objects local to the program are defined, and a

statement part, which specifies the actions to be executed upon these

ob jects. Each is described in detail in the following.

5.1. PROGRAM HEADING

In TURBO Pascal, the program heading is purely optional and of no

significance to the program. If present, it gives the program a name,

and optionally lists the parameters through which the program

communicates with the environment. The list consists of a sequence

of identifiers enclosed in parentheses and separated by commas.

Examples:

program Circles;

program Accountant (lnput,Output);

program Writer (lnput,Printer);

5.2. DECLARATION PART

The declaration part of a block declares all identifiers to be used within

the statement part of that block (and possibly other blocks within it).

The declaration part is divided into five different sections:

1) label declaration part

2) Constant definition part

3) Type definition part

4) Variable declaration part

5) Procedure and function declaration part

Whereas standard Pascal specifies that each section may only occur

zero or one time, and only in the above order, TURBO Pascal allows

each of these sections to occur any number of times in any order in
the declaration part.

Page 40 PROGRAM HEADING AND PROCRAM BLOCK

5.2.1. LABEL DECLARATION PART

Any statement in a program may be prefixed with a label, enabling

direct branching to that statement by a gata statement. A label

consists of a label name followed by a colon. Before use, the label
must be declared in a label declaration part. The reserved word label

heads this -part, and it is followed by a list of label identifiers

separated by commas and terminated by a semi-colon.

Example:

label 10, error, 999, Quit;

Whereas standard Pascal limits labels to numbers of no more than 4

digits, TURBO Pascal allows both numbers and identifiers to be used as
labels.

5.2.2. CONST ANT DEFINITION PART

The constant definition part introduces identifiers as synonyms for

constant values. The reserved word canst heads the constant

definition part, and is followed by a list of constant assignments

separated by semi-colons. Each constant assignment consists of an

identifier followed by an equal sign and a constant. Constants are

either strings or numbers, as defined on pages 35 and 36.

Example:

canst

Limit • 255;

Max • 1024;
PassWord • 'SESAM';
CursHome • My';

The following constants are predefined in TURBO Pascal, and may be
"referenced'9 (referred to or used) without previous definition:

Name Type and value:

Pi Real (3.1415926536E+00).
False Boolean (the truth value false).

True Boolean (the truth value true).
Maxint Integer (32767).

PROGRAM HEADING AND PROGRAM BLOCK Page 41

As described in Chapter 13, a constant definition part may also define

typed constants.

5.2.3. TYPE DEFINITION PART

A data type in Pascal may be either directly described in the variable

declaration part or referenced by a type identifier. Several standard

type identifiers are provided, and the programmer may create his own

types through the use of the type definition. The reserved word type

heads the type definition part, and it is followed by one or more type

assignments separated by semi-colons. Each type· assignment consists

of a type identifier followed by an equal sign and a type.

Example:

type

Number • Integer;

Day • (mon,tues,wed,thur,fri,sat,sun);

List • array[1 .. 10] of Real;

More examples of type definitions are found in subsequent sections.

5.2.4. VARIABLE DECLARATION PART

Every variable occurring in a program must be declared before use.

The declaration must textually precede any use of the variable so that

the variable is "known" to the compiler when it is used.

A variable declaration consists of the reserved word var followed by

one or more identifier(s), separated by commas, each followed by a

colon and a type. This creates a new variable of the specified type

and associates it with the specified identifier.

The "scope" of this identifier is the block in which it is defined, and

any block within that block. Note, however, that any such block within

another block may define another variable using the same identifier.

This variable is said to be local to the block in which it is declared (and

any blocks within that block) and the variable declared on the outer

level (the global variable) becomes inaccessible.

Page 42

Example:

var

PROGRAM HEADING AND PROGRAM BLOCK

Result, Intermediate, SubTotal: Real;

I, J, X, Y: Integer;

Accepted, Valid: Boolean;

Period: Day;

Buffer: array[O .. 127J of Byte;

5.2.5. PROCEDURE AND FUNCTION DECLARATION PART

A procedure declaration serves to define a procedure within the

current procedure or program (see page 116). A procedure is

activated from a procedure statement (see page 47>, and upon

completion, program execution continues with the sta tement

immediately following the calling statement.

A function declaration serves to define a program part which

computes and returns a value (see page 121). A function is activated

when its designator is met as part of an expression (see page 46).

5.3. ST A TEMENT PART

The statement part is the last part of a block. It specifies the actions

to be executed by the program. The statement part takes the form of

a compound statement followed by a period or a semi-colon. A
compound statement consists of the reserved word begin, followed

by a list of statements separated by semicolons, terminated by the

reserved word end.

Chapter 6
EXPRESSIONS

Expressions are algorithmic constructs specifying rules for the

computation of values. They consist of operands (variables, constants,

and function designators) combined by means of operators as defined

in the following.

This section describes how to form expressions from the standard

scalar types Integer, Real, Boolean, and Char. Expressions containing

declared scalar types, string types, and set types are described on

pages 54, 58, and 74, respectively.

6.1. OPERATORS

Operators fall into five categories, denoted by their order of

precedence:

1) Unary minus (minus with one operand only).

2) Not operato~.

3) Multiplying operators: *, I, diY, mod, and, shl, and shr.

4) Adding operators: +, -, or, and xor.

5) Relational operators: ., <>, <, >, <., >., and in.

Sequences of operators of the same precedence are evaluated from

left to right. Expressions within parentheses are evaluated first and

independently of preceding or succeeding operators.

If both of the operands of the multiplying and adding operators are of

type Integer, then the result is of type Integer. If one or both of the

operands is of type Real, then the result is also of type Real.

6.1.1. UNARY MINUS

The unary minus denotes a negation of its operand, which may be

either Real or Integer in type. A positive number so negated becomes

negative, while a negative number becomes positive.

Page 44 EXPRESSIONS

6.1.2. NOT OPERATOR

The not operator negates (inverses) the logical value of its Boolean

operand:

not True

not False
- False

- True

TURBO Pascal also allows the not operator to be applied to an Integer
operand, in which case bitwise negation takes place.

Examples:
not 0
not -15

not $2345

• -1

- 14
-$DCBA

6.1.3. MULTIPLYING OPERATORS

Operator Operation Operand type
multiplication Real
multiplic a tion Integer
multiplication Real, Integer

/ division Real, Integer

/ division Integer
/ division Real
div Integer division Integer
mod modulus Integer
and arithmetic and . Integer

and logical and . Boolean
shI shift left Integer
shr shift right Integer

Examples:

12 * 34 • 408
123/4 • 30.75
123 div 4 • 30
12 mod 5 - 2
True and False • False
12 and 22 ,. 4

2 shl 7 • 256
256 shr 7 ,. 2

Result type
Real
Integer

Real

Real

Real
Real

Integer

Integer

Integer

Boolean

Integer

Integer

EXPRESSIONS Page 45

6.1.4. ADDING OPERATORS

Operator Operation Operand type Result type
+ addition Real Real
+ addition Integer Integer
+ addition Real, Integer Real

subtraction Real Real

subtraction Integer Integer

subtraction Real, Integer Real

or arithmetic or Integer Integer

or logical or Boolean Boolean

xor arithmetic or Integer Integer

xor logical or Boolean Boolean

Examples:

123 + 456 • 579
456 - 123.0 • 333.0
True or False • True
12 or 22 • 30
True xor False • True
12 xor 22 • 26

6.1.5. RELATIONAL OPERATORS

The relational operators work on all standard scalar types: Real,
Integer, Boolean, Char, and Byte. Operands of type Integer, Real, and

Byte may be mixed. The type of the result is always Boolean, i.e. True
or False.

<>

>

<

Examples:

a • b
a <> b

a > b
a < b

equal to

not equal to

greater than

less than

greater than or equal to

less than or equal to

true if a is equal to b.

true if a is not equal to b.

true if a is greater than b.

true if a is less than b.

Page 46 EXPRESSIONS

true if a is greater than or equal to b.

true if a is less than or equal to b.

6.2. FUNCTION DESICNA TORS

A function designator is a function identifier optionally followed by a

parameter list, which is one or more variables or expressions

separated by commas and enclosed in parentheses. The occurrence of

a function designator causes the function with that name to be

activated. If the function is not one of the pre-defined standard

functions, it must be declared before activation.

,Examples:
Round(PlotPos)

Writeln{Pi * (Sqr(R)))

(Max(X, Y) < 25) and (Z > Sqrt(X * Y»

Volume<Radius ,Hei ght)

Chapter 7
STATEMENTS

The statement part defines the action to be carried out by the

program (or subprogram) as a sequence of statements, each specifying

one part of the action. In this sense Pascal is a sequential programming

language: statements are executed sequentially in time; never

simultaneously. The statement part is enclosed by the. reserved words

begin and end; within it, statements are separated by semi-colons.

Statements may be either simple or structured.

7.1. SIMPLE STATEMENTS

Simple statements are statements which contain no other statements.

These are the assignment statement, procedure statement, goto

statement, and empty statement.

7.1.1. ASSIGNMENT STATEMENT

The most fundamental of all statements is the assignment statement. It

is used to specify that a certain value is to be assigned to a certain

variable. The assignment consists of a variable identifier followed by

the assignment operator :- followed by an expression.

Assignment is possible to variables of any type (except files) as long

as the variable (or the function) and the expression are of the same

type. As an exception, if the variable is of type Real, the type of the

expression may be Integer.

Examples:

Angle :- Angle * Pi;

AccessOK :- False;

Entry :- Answer - PassWord;

Sphere Vol :- 4 * Pi * R * R;

7.1.2. PROCEDURE STATEMENT

A procedure statement serves to activate a previously defined user

defined procedure or a pre-defined standard procedure. The

statement consists of a procedure identifier, optionally followed by a
parameter list, which is a list of variables or expressions separated by

Page 48 STATEMENTS

commas and enclosed in parentheses. When the procedure statement

is encountered during program execution, control is transferred to the

named procedure, and the value (or the address) of possible

parameters are,transferred to the procedure. When the procedure

finishes, program execution continues from the statement following the

procedure statement.

Examples:

Find(Name ,Address);

Sort(A ddress);

UpperCase(T ext);

UpdateCustFile(CustRecord) ;

7.1.3. COTO STATEMENT

A goto statement consists of the reserv~d word goto followed by a

label identifier. It serves to transfer further processing to that point in

the program text which is marked by the label. The· following rules

should be observed when using goto statements:

1) Before use, labels must be declared. The declaration takes place in

a label declaration in the declaration part of the block in which the

label is used.

2) The scope of a label is the block in which it is declared. It is thus

not possible to jump into or out of procedures and functions.

7.1.4. EMPTY STATEMENT

An empty statement is a statement which consists of no symbols, and

which has no effect. It may occur whenever the syntax of Pascal

requires a statement but no action is to take place.

Examples:

begin end.
while Answer <> II do;

repeat until KeyPressed; {wait for any key to be hit}

STATEMENTS Page 49

7.2. STRUCTURED STATEMENTS

Structured statements are constructs composed of other statements

which are to be executed in sequence (compound statements),

conditionally <Conditional statements), or repeatedly (repetitive

statements). The discussion of the with statement is deferred to

pages 70 pp.

7.2.1. COMPOUND STATEMENT

A compound statement is used if more than one statement is to be

executed in a situation where the Pascal syntax allows only one

statement to be specified. It consists of any number of statements

separated by semi-colons and enclosed within the reserved words

begin and end, and specifies that the component statements are to be

executed in the sequence in which they are written.

Examples:

if Small > Big then

begin

Tmp :- Small;

Small :- Big;

Big :- Tmp;

end;

7.2.2. CONDITIONAL STATEMENTS

A conditional statement selects for execution a single one of its

component statements.

7.2.2.1. IF STATEMENT

The if statement specifies that a statement be executed only if a

certain condition <Boolean expression) is true. If it is false, then either

no statement or the statement following the reserved word else is to

be executed. Notice that else must not be preceded by a semicolon.

Page 50

The syntactic ambiguity arising from the construct:

if exprl then

if expr2 then

stmtl
else

stmt2

is resolved by interpreting the construct as follows:

if exprl then

begin

if expr2 then

stmtl
else

stmt2
end

STATEMENTS

The else clause belongs generally to the last if statement which has no

else clause.

Examples:

if Interest > 25 then

Usury :- True

else

TakeLoan :- OK;

if (Entry < 1) or (Entry> 100) then

begin

Write('Range is 1 to 100, please re-enter: ');

Read(Entry) ;

end

7.2.2.2. CASE ST A TEMENT

The case statement consists of an expression (the selector> and a list

of statements, each preceded by a case label of the same type as the

selector. It specifies that the one statement be executed whose case
label is equal to the current value of the selector. If none of the case

labels contain the value of the selector, then either no statement is

executed, or, optionally, the statements following the reserved word

else are executed. The else clause is an expansion of standard Pascal.

STATEMENTS Page 51

A case label consists of any number of constants or subranges

separated by commas followed by a colon. A subrange is written as

two constants separated by the subrange delimiter '.:. The type of

the constants must be the same as the type of the selector. The
statement following the case label is executed if the value of the

selector equals one of the constants or if it lies within one of the

subranges.

Valid selector types are all simple types, Le., all scalar types except

real.

Examples:

case Operator of
'.':

'.'.
'/':

end;

Result :- Answer + Result;

Result :- Answer - Result;

Result :- Answer * Result;

Result :- Answer / Result;

case Year of

Min .. 1939: begin

Time :- PreWorldWar2;

Writeln{'The world at peace .. .');

end;
1946 .. Max: begin

end;

Time :- PostWorldWar2;

Writeln{'Building a new world.');

end
else begin

Time :- WorldWar2;

Writeln{'We are at war');

end;

7.2.3. REPETITIVE ST A TEMENTS

Repetitive statements specify that certain statements are to be

executed repeatedly. If the number of repetitions is known before the

repetitions are started, the for statement is the appropriate construct

to express this situation. Otherwise the while or the repeat

statement should be used.

Page 52 STATEMENTS

7.2.3.1. FOR STATEMENT

The for statement indicates that the component statement is to be

repeatedly executed while a progression of values is assigned to a

variable which is called the control variable. The progression can be

ascending: to or descending: downto the final value.

The control variable, the initial value, and the final value must all be of

the same type. Valid types are all simple types, i.e., all scalar types

except real.

If the initial value is greater than the final value when using the to

clause, or if the initial value is less than the final value when using the

downto clause, the component statement is not executed at all.

Examples:

for I :- 2 to 100 do if Am > Max then Max :- A[J];
for I :- 1 to NoOflines do

begin

Readln<line) ;

if Length<Line) < limit then

ShortLines :- ShortLines + 1

else

LongLines :- Longlines + 1
end;

The component statement of a for statement must not contain

aSSignments to the control variable. If the repetition is to be

terminated before the final value is reached, a goto statement must be

used, although such constructs are not recommended -- it is better

programming practice to use a while or repeat statement instead.

Upon completion of a for statement, the control variable equals the

final value, unless the loop was not executed at all, in which case no

aSSignment is made to the control variable.

7.2.3.2. WHILE STATEMENT

The expression controlling the repetition of a while statement must be

of type Boolean. The statement is repeatedly executed as long as

expression is True. If its value is false at the beginning, the statement

is not executed at all.

STATEMENTS

Examples:
while Size> 1 do Size :- Sqrt(Size);

while ThisMonth do
begin

ThisMonth :- CurMonth • SampleMonth;
Process;

{process this sample by the Process procedure}
end;

7.2.3.3. REPEA T STATEMENT

Page 53

The expression controlling the repetition of a repeat statement must

be of type Boolean. The sequence of statements between the

reserved words repeat and until is executed repeatedly until the

expression becomes true. As opposed to the while statement, the

repeat statement is always executed at least once, as evaluation of

the condition takes place at the end of the loop.

Examples:

repeat

Write("'M, 'Delete this item? (YIN)');
Read(Answer);

until UpCase(Answer) in ['Y','N'];

Chapter 8
SCALAR AND SUBRANGE TYPES

The basic data types of Pascal are the scalar types. Scalar types
constitute a finite and linear ordered set of values. Although the
standard type Real is included as a scalar type, it does not conform to

this definition. Therefore, Reals may not always be used in the same

context as other scalar types.

8.1. SCALAR TYPE

Apart from the standard scalar types (Integer, Real, Boolean, Char, and

Byte), Pascal supports user-defined scalar types, also called declared

scalar types. The definition of a scalar type specifies, in order, all of

its possible values. The values of the new type will be represented by
identifiers, which will be the constants of the new type.

Examples:

type

Operator· <Plus,Minus,Multi,Divide);

Day • <Mon,Tues,Wed,Thur,Fri,Sat,Sun};
Month • (Jan,Feb,Mar ,Apr ,May ,Jun,

Jul,Aug,Sep,Oct,Nov,Ded;
Card • (Club,Diamond,Heart,Spade);

Variables of the above type Card can assume one of four values,

namely Club, Diamond, Heart, or Spade. You are already acquainted

with the standard scalar type Boolean, which is defined as:

type

Boolean - (False, True);

The relational operators ., <>, >, <, >., and <- can be applied to all

scalar types, as long as both operands are of the same type <rea Is and

integers may be mixed). The ordering of the scalar type is used as the

basis of the comparison, i.e., the order in which the values are

introduced in the type definition. F or the above type Card, the

following is true:

Club < Diamond < Heart < Spade

SCALAR AND SUBRANGE TYPES Page 55

The following standard functions can be used with arguments of scalar

type:

SucdDiamond)
Pred(Diamond)

Ord(Diamond)

The successor of Diamond (Heart).

The predecessor of Diamond (Club).
The ordinal valu.e of Diamond (1).

The result type of Succ and Pred is the same as the argument type.

The result type of Ord is Integer. The ordinal value of the first value

of a scalar type is O.

8.2. SUBRANCE TYPE

A type may be defined as a subrange of another already defined
scalar type. Such types are called subranges. The definition of a

subrange simply specifies the least and the largest value in the

subrange. The first constant specifies the lower bound and must not
be greater than the second constant, the upper bound. A subrange of

type Real is not allowed.

Examples:

type

Hemisphere

World

CompassRange

Upper
Lower

Degree

Wine

• (North, South, East, West);

• (East .. West)

• 0 .. 360;
• ' A' . .'Z';
• 'a' . .'z';
• (Celc, Fahr, Ream, Kelv);

• (Red, White, Rose, Sparkling);

The type World is a subrange of the scalar type Hemisphere (called the

associated scalar type). The associated scalar type of CompassRange is

Integer, and the associated scalar type of Upper and Lower is Char.

You already know the standard sub range type Byte, defined as:

type

Byte • 0 .. 255;

A subrange type retains all the properties of its associated scalar

type, being restricted only in its range of values.

Page 56 SCALAR AND SUBRANCE TYPES

The use of defined scalar types and subrange types is strongly

recommended, as it greatly improves the readability of programs.

Furthermore, run-time checks may be included in the program code

(see page 56) to verify the values assigned to defined scalar variables

and subrange variables. Another advantage of defined types and

subrange types is that they often save memory. TURBO Pascal

allocates only one byte of memory for variables of a defined scalar

type or a subrange type with a total number of elements less than 256.

Similarly, integer subrange variables, where lower and upper bounds

are both within the range 0 through 255, occupy only one byte of
memory.

8.3. TYPE CONVERSION

The Ord function may be used to convert scalar types into values of
type integer. Standard Pascal does not provide a way to reverse this
process, i.e., a way of converting an integer into a scalar value.

In TURBO Pascal, a value of a scalar type may be converted into a
value of another scalar type, with the same ordinal value, by means of

the Retype facility. Retyping is achieved by using the type identifier

of the desired type as a function designator followed by one
parameter enclosed in· parentheses. The parameter ma y be a value of

any scalar type except Real. Assuming the type definitions on pages
54 and 55, then:

Integer(Heart) • 2
Month(10) • Nov
HemiSphere(2) • East
Upped 14) ·'0'
Degree(3) • Kelv
Char(78) • 'N'
Integer('7') • 55

8.4. RANCE CHECKINC

The generation of code to perform run-time range checks on scalar

and subrange variables is controlled with the R compiler directive. The

default setting is {$R-}, i.e., no checking is performed. When an

aSSignment is made to a scalar or a subrange v ari able while this

directive is active ({$R+}), aSSignment values are checked to be within

SCALAR AND SUBRANCE TYPES Page 57

range. It is recommended to use this setting as long as a program is

not fully debugged.

Examples:

program Rangecheck;

type

Digit - 0 .. 9;
Var

Dig 1,Dig2,Dig3: digit;

begin

Dig 1 :- 5; {valid}

Dig2 :- Dig1 + 3 {valid as Dig1 + 3 < - 9}

Dig3 :- 47; {invalid but causes no error}

{$R+} Dig3 :- 55; {invalid and causes a run time error}

{$R-} Dig3 :- 167;{invalid but causes no error}

end.

Chapter 9
STRING TYPE

TURBO Pascal offers the convenience of string types for processing

of character strings, i.e., sequences of characters. String types are

structured types, and in many ways are similar to array types (see

Chapter 10). There is, however, one major difference between them.

The number of characters in a string (j.e., the length of the string) may

vary dynamically between 0 and a specified upper limit, whereas the

number of elements in an array is fixed.

9.1. STRING TYPE DEFINITION

The definition of a string type must specify the maximum number of

characters it can contain, i.e., the maximum length of strings of that

type. The definition consists of the reserved word string followed by

the maximum length enclosed in square brackets. The length is

specified by an integer constant in the range 1 through 255. Notice

that strings do not have a default length; the length must always be

specified.

Example:

type

FileName • string[14J;

Screenline • string[80];

String variables occupy the defined maximum length in memory plus

one byte which contains the current length of the variable. The

individual characters within a string are indexed from 1 through the
length of the string.

9.2. STRING EXPRESSIONS

Strings are manipulated by the use of string expressions. String

expressions consist of string constants, string variables, function

designators, and operators.

The plus sign may be used to concatenate strings. The Concat function
(see page 62) performs the same function, but the + operator is often

more convenient. If the length of the result is greater than 255, a run

time error occurs.

STRING TYPE

Example:

'TURBO ' + 'Pascal'
'123' + '.' + '456'
'A ' + 'B' + ' C ' + '0 '

Page S9

- 'TURBO Pascal'

- '123.456'
- 'ABCO'

The relational operators -, <>, >, <, >-, and <- are lower in precedence

than the concatenation operator. When applied to string operands,
the result is a Boolean value (True or False>. When comparing two

strings, single characters are compared from left to right according to

their ASCII values. If the strings are of different length, but identical

up to and including the last character of the shorter string, then the

shorter string is considered the smaller. Strings are equal only if their

lengths as well as their contents are identical.

Examples:

'A' < 'B'
'A' > 'b'

'2' < '12'
'TURBO' - 'TURBO'

'TURBO' - 'TURBO'

is true

is false

is false

is true

is false
'Pascal Compiler' < 'Pascal compiler' is true

9.3. STRING ASSIGNMENT

The assignment operator is used to assign the value of a string

expression to a string variable.

Example:

Age :- 'fiftieth';

line :- 'Many happy returns on your ' + Age + ' birthday:

If the maximum length of a string variable is exceeded (by assigning
too many characters to the variable), the excess characters are

truncated. E.g., if the variable Age above was declared to be of type
string[S], then after the assignment, the variable will only contain the
five leftmost characters: 'fifth'.

Page 60 STRING TYPE

9.4. STRING PROCEDURES

The following standard string procedures are available in TURBO

Pascal:

9.4.1. DELETE

Syntax: Delete (St, Pos, Num);

Delete removes a substring containing N um characters from St starting

at position Pos. St is a string variable and both Pos and Num are

integer expressions. If Pos is greater than Length(St), no characters

are removed. If an attempt is made to delete characters beyond the

end of the string (j.e., Pos + Num exceeds the length of the string),

only characters within the string are deleted. If Pos is outside the

range 1 .. 255, a run time error occurs.

If St has the value ' ABCDEFG' then:

Delete (St, 2, 4) will give St the value' AFG'.

Delete (St, 2, 10) will give St the value' A'.

9.4.2. INSERT

Syntax: Insert (Obi, Target, Pos);

Insert inserts the string Obi into th_e string Target at the position Pos.
Obi is a string expression, Target is a string variable, and Pos is an

integer expression. If Pos is greater than Length(Target), then Obi is

concatenated to Target. If the result is longer than the maximum

length of Target, then excess characters will be truncated and Target
will only contain the leftmost characters. If Pos is outside the range

1 .. 255, a run-time error occurs.

If St has the value ' ABCDEFG' then:

Insert('XX' ,St,3) will give St the value ' ABXXCDEFG'

STRING TYPE Page 61

9.4.3. STR

Syntax: Str(Value,St);

The Str procedure converts the numeric value of Value into a string

and stores the result in St. Value is a write parameter of type integer
or of type real, and Stis a string variable. Write parameters are

expressions with special formatting commands (see page 98).

If I has the value 1234 then:

Str <I:5,St) gives St the value' 1234'.

If X has the value 2.5E4 then:

Str(X: 10:0,St) gives St the value' 2500'.

A function using the Str procedure must never be called by an

expression in a Write or Writeln statement.

9.4.4. VAL

Syntax: Val(St, Var,Code);

Val converts the string expression St to an integer or a real value

(depending on the type of Var) and stores this value in Var. St must

be a string expressing a numeric value according to the rules applying

to numeric constants (see page 35). Neither leading nor trailing spaces

are allowed. Var must be an Integer or a Real variable and Code must

be an integer variable. If no errors are detected, the variable Code is

set to O. Otherwise Code is set to the position of the first character
in error, and the value of Var is undefined.

If St has the value '234' then:

Val (St,I,Result) gives I the value 234 and Result the value O.

If St has the value '12x' then:

Val (St,I,Result) gives I an undefined value and Result the value 3.

If St has the value '2.5E4', and X is a Real variable, then:

Val (St,X,Result) gives X the value 2500 and Result the value O.

Page 62 STRING TYPE

A function using the Var procedure must never be called by an

expression in a Write or Writeln statement.

9.5. STRING FUNCTIONS

The following standard string functions are available in TURBO Pascal:

9.5.1. COpy

Syntax: Copy(St,Pos,Num);

Copy returns a substring containing Num characters from St starting at

position Pos. St is a string expression and both Pos and Num are

integer expressi ons. If Pos exceeds the length of the string, th.e

empty string is returned. If an attempt is made to get characters

beyond the end of the string (j.e., Pos + Num exceeds the length of

the string), only the characters within the string are returned. If Pos is

outside the range 1 .. 255, a run-time error occurs.

If St has the value' ABCDEFG' then:

Copy(St,3,2) returns the value 'CD'

Copy(St,4,10) returns the value 'DEFG'

Copy(St,4,2) returns the value 'DE'

9.5.2. CONCA T

Syntax: Concat(Stl,St2{,StN});

The Concat function returns a string which is the concatenation of its

arguments in the order in which they are specified. The arguments

may be any number of string expressions separated by commas (Stl,
St2 .. StN). If the length of the result is greater than 255, a run-time

error occurs. As explained on page 58, the + operator can be used to

obtain the same result, often more conveniently. Concat is included

only to maintain compatibility with other Pascal compilers.

If Stl has the value 'TURBO' and St2 the value 'is fastest' then

Concat (St 1,' PASCAL " St2)

returns the value 'TURBO PASCAL is fastest'.

STRING TYPE Page 63

9.5.3. LENGTH

Syntax: Length(St);

Returns the length of the string expression St, i.e., the number of

characters in St. The type of the result is integer.

If St has the value '123456789' then:

Length(St) returns the value 9

9.5.4. pas

Syntax: Pos(Obj,Target);

The Pos function scans the string Target to find the first occurrence of

Obj within Target. Obj and Target are string expressions, and the type

of the result is integer. The result is an integer denoting the position

within Target of the first character of the matched pattern. The

position of the first character in a string is 1. If the pattern is not

found, Pos returns O.

If ST has the value ' ABCDEFG' then
Pos('DE',St) returns the value 4

Pos('H',St) returns the value 0

9.6. STRINGS AND CHARACTERS

String types and the standard scalar type Char are compatible. Thus,

whenever a string value is expected, a char value may be specified
instead and vice versa. Furthermore, strings and characters may be

mixed in expressions. When a character is assigned a string value, the

length of the string must be exactly one; otherwise a run-time error

occurs.

The characters of a string variable may be accessed individually

through string indexing. This is achieved by appending an index

expression of type integer, enclosed in square brackets, to the string

variable.

Page 64

Examples:
Buffer[S]

Line[Length(Line)-1]

Ord(Line[O])

STRING TYPE

As the· first character of the string (at index 0) contains the length of

the string, Length (String) is the same as Ord(String[O]). If assignment

is made to the length indicator, it is the responsibility of the

programmer to check that it is less than the maximum length of the

string variable. When the range check compiler directive R is active
({$R+}), code is genera'ted which insures that the value of a string

index expression does not exceed the maximum length of the string

variable. It is, however, still possible to index a string beyond its

current dynamic length. The characters thus read are random, and

assignments beyond the current length will not affect the actual value

of the string variable.

Chapter 10
ARRAY TYPE

An array is a structured type consisting of a fixed number of

components which are all of the same type, called the component type
or the base type. Each component can be explicitly accessed by indices

into the array. Indices are expressions of any scalar type placed in

square brackets suffixed to the array identifier, and their type is called

the index type.

1 0.1. ARRAY DEFINITION

The definition of an array consists of the reserved word array

followed by the index type, enclosed in square brackets, followed by

the reserved word of, followed by the component type.

Examples:

type

Day • (Mon, Tue, Wed, Thu, Fri, Sat, Sun)
var

WorkHour

Week

type
Players
Hand

LegalBid
Bid

var

Player

Pot

array[1 .. 8] of Integer;

array[1 . .7] of Day;

• (Player 1,Player2,Player3,Player4);

• (One,Two,Pair, TwoPair, Three,Straight,

Flush,FuliHouse ,Four ,StraightFlush,R SF);

• 1 .. 200;
• array[Players] of legalBid;

: array[Players] of Hand;

: Bid;

An array component is accessed by suffixing an index enclosed in

square brackets to the array variable identifier.

Player[Player3]

Pot[Player3]

Player[Player4]
Pot[Player4]

:- FullHouse;

:- 100;
:- Flush;
:- 50;

Page 66 ARRAY TYPE

As assignment is allowed between any two variables of identical type,

entire arrays can be copied with a single assignment statement.

The R compiler directive controls the generation of code which will

perform range checks on array index expressions at run time. The

default mode is passive, i.e., {$R-}, and the {$R+} setting causes all

index expressions to be checked against the limits of their index type.

10.2. MULTIDIMENSIONAL ARRAYS

The component type of an array may be any data type, i.e., the

component type may be another array. Such a structure is called a

multid imensional array.

Example:

type

Card

Suit

AIiCards

var

Deck: AIiCards;

- (Two,Three, Four, Five,Six,Seven,Eight,

Nine, Ten, Knight, Queen, King, Ace);

• (Heart, Spade, Clubs, Diamonds);
• array[Suit] of array[1 .. 13] of Card;

A multi-dimensional array may be defined more conveniently by

specifying the multiple indices thus:

type

AIiCards • array[Suit, 1 .. 13] of Card;

A similar abbreviation may be used when selectng an array component:

Deck[Hearts,10] is equivalent to' Deck[Hearts][10]

It is, of course, possible to define multi-dimensional arrays in terms of

previously defined array types.

Example:

type

Pupils

Class

• string[20];

= array[1 .. 30] of Pupils;

ARRAY TYPE

School

var

J,P,Vacant

ClassA,

ClassB

NewT own School

Page 67

- array[1 .. 100] of Class;

: Integer

: Class;

: School;

After these definitions, all of the following assignments are legal:

ClassA[J] :- 'Peter';

NewTownSchool[S][21] :- 'Peter Brown';

{Pupil no. J changes class:}

NewTownSchool[8,J] :- NewTownSchool[7,J);

<Pupil no. P changes class and number:}
ClassA[Vacant] :- ClassB[P];

10.3. CHARACTER ARRAYS

Character arrays are arrays with one index and components of the

standard scalar type Char. Character arrays may be thought of as

strings with a constant length.

In TURBO Pascal, character arrays may participate in string
expressions, in which case the array is converted into a string of the

length of the array. Thus, arrays may be compared and manipulated in

the same way as strings, and string constants may be assigned to

character arrays, as long as they are of the same length. String

variables and values computed from string expressions cannot be

assigned to character arrays.

10.4. PREDEFINED ARRAYS

TURBO Pascal offers two predefined arrays of type Byte, called Mem
and Port, which are used to access CPU memory and data ports.

These are discussed in Chapter 22.

Chapter 11
RECORD TYPE

A record is a structure consisting of a fixed number of components,

called fields. Fields may be of different types. Each field is given a

name, the field identifier, which is used to select it.

11.1. RECORD DEFINITION

The definition of a record type consists of the reserved word record

succeeded by a field list and terminated by the reserved word end.

The field list is a sequence of record sections separated by semi-colons,

each consistng of one or more identifiers separated by commas,

followed by a colon and either a type identifier or a type descriptor.
Each record section thus specifies the identifier and type of one or

more fields.

Example:

type

DaysOfMonth • 1 .. 31;

Date • record

Var

Day:

Month:

Year:
end

Birth: Date;

DaysOfMonth;

(Jan,Feb,Mar ,Apr ,May ,Jun,
Jul,Aug,Sep,Oct,Nov,Dec);

1900 .. 1999;

WorkDay: array[1 .. 5J of Date;

Day, Month, and Year are field identifiers. A field identifier must be

unique only within the record in which. it is defined. A field is
referenced by the variable indentifier and the field identifier separated
by a period.

Examples:

Birth.Month :- Jun;

Birth.Year :- 1950;
WorkDay[Current] :- WorkDay[Current-1];

RECORD TYPE Page 69

As with array types, assignment is allowed between entire records of

identical types. Since record components may be of any type,
constructs like the following "record of records of records" are

possible:

type

Name • record
FamilyName: string[32J;

ChristianNames: array[1 .. 3] of string[16J;

end;

Rate • record
NormalRate, Overtime,

NightTime, Weekend: Integer

end;

Date • record
Day: 1 .. 31;

Month: (Jan, Feb, Mar, Apr, May, Jun,

July, Aug, Sep, Oct, Nov, Oed;

Year: 1900 .. 1999;

end;

Person • record
10: Name;

Time: Date;

end;
Wages· record

Individual: Person;

Cost: Rate;

end

Var Salary, Fee: Wages;

Assuming these definitions, the following assignments are legal:

Salary :- Fee;

Salary.Cost.Overtime :- 950;

Salary.lndividual.Time := Fee.lndividual.Time;

Salary.lndividual.lD.FamilyName :- 'Smith'

Page 70 RECORD TYPE

11.2. WITH STATEMENT

The use of records as described above does sometimes result in rather

lengthy statements; it would often be easier if we could access

individual fields in a record as if they were simple variables. This is the

function of the with statement: it "opens up" a record so that field

identifiers may be used as variable identifiers.

A with statement consists of the reseved word with followed by a

list of record variables separated by commas followed by the
reserved word do and finally a statement.

Within a with statement, a field is deSignated only by its field

identifier, i.e., without the record variable identifier:

with Salary do

begin

Individual .- NewEmployee;

Cost .- StandardRates;
end;

Records may be nested within with statements, i.e., records of records
may be "opened" as shown here:

with Salary, Individual, 10 do

begin

FamilyName :- 'Smith';

ChristianNames[1J :- 'James';

end

This is equivalent to:

with Salary do with Individual do with 10 do ...

The maximum "depth" of this nesting of with sentences, i.e., the

maximum number of records which may be "opened" within one block,

depends on your implementation and is discussed in Chapter 22.

RECORD TYPE Page 71

11.3. VARIANT RECORDS

The syntax of a record type also provides for a variant part, i.e.,

alternative record structures. The variant part allows fields of a

record to consist of a different number of different types of

components, usually depending on the value of a tag field.

A variant part consists of a tag field of a previously defined type,

whose values determine the variant, followed by labels corresponding

to each possible value of the tag field. Each label heads a field list
which defines the type of the variant corresponding to the label.

Assuming the existence of the type:

Origin • (Citizen,Alien);

and of the types Name and Date, the following record allows the field

CitizenShip to have different structures depending on whether the

value of the field is Citizen or Alien:

type

Person • record

PersonNameName;

BirthDate: Date;

case CitizenShip: Origin of

Citizen: (BirthPlace: Name);

Alien: (Country of Origin: Name;

end

DateOfEntry: Date;

PermitedUntil: Date;

PortOfEntry: Name);

In this variant record definition, the tag field is an explicit field which

may be selected and updated like any other field. Thus, if Passenger is

a variable of type Person, statements like the following are perfectly

legal:

Passenger.CitizenShip :- Citizen;

with Passenger, PersonName do

if CitizenShip • Alien then Writeln(FamilyName);

Page 72 RECORD TYPE

The fixed part of a record, i.e., the part containing the common fields,

must always precede the variant part. In the above example, the

fields PersonName and BirthDate are the fixed fields. A record can

only have one variant part. In a variant, the parentheses must be

present, even if they will enclose nothing.

The maintenance of tag-field values is the responsibility of the

programmer and not of TURBO Pascal. Thus, in the Person type

above, the field DateOfEntry can be accessed even if the value of the

tag field CitizenShip is not Alien. Actually, the tag-field identifier may

be omitted altogether, leaving only the type identifier. Such record
variants are known as free unions, as opposed to record variants with

tag fields, which are called discriminated unions. The use of free
uni ons is infrequent and should only be practiced by experienced
programmers.

Chapter 12
SET TYPE

A set is a collection of related objects which may be thought of as a

whole. Each object in such a set is caled a member or an element of

the set. Examples of sets could be:

1) All integers between 0 and 100

2) The letters of the alphabet

3) The consonants of the alphabet

Two sets are equal if and only if their elements are the same. There is

no ordering involved, so the sets [1,3,5], [5,3,1] and [3,5,1] are all

equal. If the members of one set are also members of another set,

then the first set is said to be included in the second. In the examples

above, the third set is included in the second one.

There are three operations involving sets, similar to the addition,

multiplication and subtraction operations on numbers:

The union (or sum) of two sets A and B (written A + B) is the set

whose members are members of either A or B. For instance, the union

of [1,3,5,7] and [2,3,4] is [1,2,3,4,5,7].

The intersection (or product) of two sets A and B (written A * B) is

the set whose members are the members of both A and B. Thus, the

intersection of [1,3,4,5,7] and [2,3,4] is [3,4].

The relative complement of B with respect to A (written A - B) is the

set whose members are members of A but not of B; e.g., [1,3,5,7] -
[2,3,4] is [1,5,7].

12.1. SET TYPE DEFINITION

Although in mathematics there are no restrictions on the objects which

may be members of a set, Pascal only offers a restricted form of sets.

The members of a set must all be of the same type, called the base
type, and the base type must be a simple type, i.e., any scalar type

except real. A set type is introduced by the reserved words set of

followed by a simple type.

Page 74

Examples:
type

DaysOfMonth • set of 0 .. 31;

WordWeek • set of Mon .. Fri;

Letter • set of ' A' . .'Z';

AdditiveColors • set of (Red,Green,Blue);

Characters • set of Char;

SET TYPE

In TURBO Pascal, the maximum number of elements in a set is 256, and

the ordinal values of the base type must be within the range 0 through
255.

12.2. SET EXPRESSIONS

Set values may be computed from other set values through set

expressions. Set expressions consist of set constants, set variables,

set constructors, and set operators.

12.2.1. SET CONSTRUCTORS

A set constructor consists of one or more element specifications,

separated by commas, and enclosed in square brackets. An element
specification is an expression of the same type as the base type of

the set, or a range expressed as two such expressions separated by
two consecutive periods (..>.

Examples:
['T','U','R' ,'B' ,'0']
[X,Y]
[X .. Y]

[1 .. 5]

[' A' . .'Z','a' . .'z','0' . .'9']
[1,33 .. 10,12]
[]

The last example shows the empty set, which, as it contains no

expressions to indicate its base type, is compatible with a" set types.
The set [1 .. 5] is equivalent to the set [1,2,3,4,5]. If X > Y then [X .. Y]

denotes the empty set.

SET TYPE Page 75

12.2.2. SET OPERATORS

The rules of composition specify set operator precedency according

to the following three classes of operators:

1) * Set intersection.

2) + Set union.

Set difference.

3) - Test on equality.

<> Test on inequality.

>- True if all members of the second operand are included in

the first operand.

<- True if all members of the first operand are included in

the second operand.

in Test on set membership. The second operand is of a set

type, and the first operand is an expression of the same

type as the base type of the set. The result is true if the

first operand is a member of the second operand,

otherwise it is false.

Set disjunction (when two sets contain no common members) may be

expressed as:

A * B - [];

that is, the intersection between the two sets is the empty set. Set
expressions are often useful to clarify complicated tests. For instance,
the test:

if (Ch-'T') or (Ch-'U') or (Ch-'R') or (Ch-'B') or (Ch-'O')

can be expressed much more clearly as:

Ch in ['T','U','R','B','O']

And the test:

if (Ch >- '0') and (Ch <- '9') then ...

Page 76 SET TYPE

is better expressed as:

if Ch in ['0'.:9'] then ...

12.3. SET ASSIGNMENTS

Values resulting from set expressions are assigned to set variables

using the assignment operator :-.

Examples:

type

ASCII • set of 0 .. 127;
var

NoPrint,Print,AIIChars: ASCII;

begin
AIiChars :- [0 .. 127];
NoPrint :- [0 .. 31,127];

Print :- AIiChars - NoPrint;

end.

Chapter 13
TYPED CONSTANTS

Typed constants are a TURBO specialty. A typed constant may be

used exactly like a variable of the same type. Typed constants may

thus be used as "initialized variables", because the value of a typed

constant is defined, whereas the value of a variable is undefined until

an aSSignment is made. Care should be taken, of course, not to assign

values to typed constants whose values are actually meant to be
constant.

The use of a typed constant saves code if the constant is used often

in a program, because a typed constant is included in the program

code only once, whereas an untyped constant is included every time it

is used.

Typed constants are defined like untyped constants (see page 40),

except that the definition specifies not only the value of the constant

but also the type. In the definition the typed constant identifier is

succeeded by a colon and a type identifier, which is then followed by

an equal sign and the actual constant.

13.1. UNSTRUCTURED TYPED CONSTANTS

An unstructured typed constant is a constant defined as one of the

scalar types:

const

NumberOfCars: Integer· 1267;

Interest: Real· 12.67;

Heading: string[7]· 'SECTION';

Xon: Char· "Q;

Contrary to untyped constants, a typed constant may be used in place

of a variable as a variable parameter to a procedure or a function. As

a typed constant is actually a variable with a constant value, it cannot

be used in the definition of other constants or types. Thus, as Min and

Max are typed constants, the following construct is illegal:

Page 78

const

Min: Integer· 0;

Max: Integer· 50;

type

TYPED CONSTANTS

Range: arra y[Min .. Max] of integer

13.2. STRUCTURED TYPED CONSTANTS

Structured constants comprise array constants, record constants, and set
constants. They are often used to provide initialized tables and sets

for tests, conversions, mapping functions, etc. The following sections

describe each type in detail.

13.2.1. ARRAY CONSTANTS

The definition of an array constant consists of the constant identifier

succeeded by a colon and the type identifier of a previously defined

array type followed by an equal sign and the constant value expressed

as a set of constants separated by commas and enclosed in

parentheses.

Examples:

type

Status

StringRep

const

• (Active,Passive, Waiting);
• array[Status] of string[7];

Stat: StringRep· ('-active','passive','waiting');

The example defines the array constant Stat, which may be used to

convert values of the scalar type Status into their corresponding string

representations. The components of Stat are:

Stat[Active]

Stat[Passive]

Stat[Waiting]

• 'active'

• 'passive'

• 'waiting'

The component type of an array constant may be any type except

File types and Pointer types. Character array constants may be

specified both as single characters and as strings. Thus, the definition:

TYPED CaNST ANTS Page 79

const
Digits: array[0 .. 9] of Char •
('0',' l' ,'2' ,'3',' 4' ,'5' ,'6' ,'7' ,'8' ,'9');

may be expressed more conveniently as:

const
Digits: array[0 .. 9] of Char • '0123456789';

13.2.2. MULTI-DIMENSIONAL ARRAY CONSTANTS

Multi-dimensional array constants are defined by enclosing the

constants of each dimension in separate sets of parentheses,

separated by commas. The innermost constants correspond to the
rightmost dimensions.

Examples:

type

Cube • array[0 .. 1,O .. 1,O .. 1] of integer;
const

Maze: Cube· «(0,1),(2,3»,«4,5),(6,7»);

begin

Writeln(Maze[O,O,O],' • 0');

Writeln(Maze[O,O,1],' • 1');

Writeln(Maze[O,1,O],' • 2');
Writeln(Maze[O,1,1],' • 3');

Writeln(Maze[1,O,0],' • 4');
Writeln(Maze[1,O,1],' • 5');
Writeln(Maze[1,1,0],' • 6');
Writeln(Maze[1, 1, 1],' • 7');

end.

13.2.3. RECORD CONSTANTS

The definition of a record constant consists of the constant identifier
succeeded by a colon and the type identifier of a previously defined

record type followed by an equal sign and the constant value

expressed as a list of field constants separated by semi-colons and
enclosed in parentheses.

Page 80

Examples:

type
Point

OS

UI

Computer

canst

TYPED CONSTANTS

• record
X,Y,Z: integer;

end;
• (CPM,CPMPlus,ZSystem,OS280);

• (CCP,ZCPR,BGii,VFiler,VMenu);

• record
OperatingSystems: array[1 . .4] of OS;

Userlnterface: Ut;

end;

Origo: Point • (X:O; Y:O; Z:O);

SuperComp: Computer •
(OperatingSystems: (CPM,CPMPlus,ZSystem,O S280);
Userlnterface: VMenu);

Plane: array[1 .. 3] of Point •
«X: 1;Y:4;Z:S),(X: 10;Y:-78;Z:4S),(X: 100;Y: 10;Z:-7»;

The field constants must be specified in the same order as they appear

in the definition of the record type. If a record contains fields of file

types or pointer types, then constants of that record type cannot be

specified. If a record constant contains a variant, then it is the

responsibility of the programmer to specify only the fields of the valid

variant. If the variant contains a tag field, then its value must be

specified.

13.2.4. SET CONSTANTS

A set constant consists of one or more element specifications
separated by commas, and enclosed in square brackets. An element

specificati on must be a constant or a range expression consisting of
two constants separated by two consecutive periods C'>.

Example:

type

Up • set of ' A'.:Z'j
low • set of 'a' . .'z';

canst

UpperCase

Vowels

Delimiter

Up • [' A'.:Z']i
low • ['a','e','i','o','u','y'];
set of Char· [' ' . .'1', ':' . .'?', '[' . .''', '{' . .' '];

Chapter 14
FILE TYPES

Files provide a program with channels through which it can pass data.
A file can either be a disk file, in which case data is written to and

read from a magnetic device of some type, or a logical device, such as

the predefined files Input and Output which refer to the computer's

standard I/O channels; the keyboard and the screen.

A file consists of a sequence of components of equal type. The

number of components in a file (the size of the file> is not determined

by the definition of the file; instead the Pascal system keeps track of

file accesses through a file pointer, and each time a component is

written to or read from a file, the file pointer of that file is advanced

to the next component. As all components of a file are of equal

length, the pOSition of a specific component can be calculated. Thus,

the file pointer can be moved to any component in the file, providing

random access to any element of the file.

14.1. FILE TYPE DEFINITION

A file type is defined by the reserved words file of followed by the

type of the components of the file, and a file identifier is declared by
the same words followed by the definition of a previously defined file

type.

Examples:

type

ProductName • string[80];

Product • file of record

var

Name: ProductName;

ItemNumber: Real;

In Stock: Real;
MinStock: Real;

Supplier: Integer;

end

ProductFile: Product;

ProductNames: file of ProductName;

Page 82 FILE TYPES

The component type of a file may be any type, except a file type;

that is, with reference to the example above, file of Product is not

allowed. File variables may appear in neither assignments nor
expressions.

14.2. OPERATIONS ON FILES

The following sections describe the procedures available for file

handling. The identifier FilVar used throughout denotes a file variable
identifier declared as described above.

14.2.1. ASSIGN

Syntax: Assign(FilVar,Str);

Str is a string expression yielding any legal file name. This file name is

assigned to the file variable FilVar, and all further operation on FilVar
will operate on the disk file Str. Assign should never be used on a file
which is in use.

14.2.2. REWRITE

Syntax: Rewrite(FilVar);

A new disk file of the name assigned to the file variable FilVar is

created and prepared for processing, and the file pointer is set to the

beginning of the file, i.e., component number O. Any previously

existing file with the same name is erased. A disk file created by

rewrite is initially empty, i.e., it contains no elements.

14.2.3. RESET

Syntax: Reset(FilVar);

The disk file of the name assigned to the file variable FilVar is

prepared for processing, and the file pointer is set to the beginning of

the file, i.e., component number O. FilVar must name an existing file,

otherwise an I/O error occurs.

FILE TYPES Page 83

14.2.4. READ

Syntax: Read(FilVar, Var);

Var denotes one or more variables of the component type of FilVar,
separated by commas. Each variable is read from the disk file, and

following each read operation, the file pointer is advanced to the next
component.

14.2.5. WRITE

Syntax: Write(FilVar, Var);

Var denotes one or more variables of the component type of FilVar,
separated by commas. Each variable is written to the disk file, and

following each write operation, the file pointer is advanced to the
next component.

14.2.6. SEEK

Syntax: Seek(FiIVar,n);

Seek moves the file pointer to the nth component of the file denoted

by FilVar. n is an integer expression. The position of the first

component is O. Note that in order to expand a file it is possible to

seek one component beyond the last component. The statement

Seek<FiIVar, FileSize(FiIVar»;

thus places the file pointer at the end of the file. FileSize returns the

number of components in the file, and as the components are numbered

from zero, the returned number is one greater than the number of the

last component.

14.2.7. FLUSH

Syntax: Flush(FilVar);

Flush empties the internal sector buffer of the disk file FilVar, and thus

assures tha t the sector buffer is written to the disk if any write

operations have taken place since the last disk update. Flush also

Page 84 FILE TYPES

insures that the next read operation will actually perform a physical

read from the disk file. Flush should never be used on a closed file.

14.2.8. CLOSE

Syntax: Close(FilVar)i

The disk file associated with FilVar is closed, and the disk directory is

updated to reflect the new status of the file. Notice that it is

necessary to Close a file, even it it has only been read from - you

would otherwise quickly run out of file handles.

14.2.9. ERASE

Syntax: Erase(FilVar)i

The disk file associated with FilVar is erased. If the file is open, i.e., if

the file has been reset or rewritten but not closed, it is good

programming practice to close the file before erasing it.

14.2.10. RENAME

Syntax: Rename(FilVar,Sfr)i

The name of the disk file associated with FilVar is changed to a new

name given by the string expression Sfr. The disk directory is updated

to show the new name of the file, and further operations on FilVar
will operate on the file with the new name. Rename should never be
used on an open file.

Note: It is the programmer's responsibility to assure that the file

named by Sfr does not already exist. If it does, multiple occurrences

of the same name may result. The following function returns True if

the file name passed as a parameter exists, otherwise it returns False:

FILE TYPES

type

Name-string[66 J;

function Exist(FileName: Name): boolean;

var

Fil: file;

begin

Assign(Fil, FileName);
{$I-}

Reset(FiD;
{$I+}

Exist :- (JOresult • 0)

end;

14.3. FILE STANDARD FUNCTIONS

The following standard functions are applicable to files:

14.3.1. EOF

Syntax: EOF(FilVar);

Page 85

A Boolean function which returns True if the file pointer is positioned

at the end of the disk file, i.e., beyond the last component of the file.

If not, EOF returns False.

14.3.2. FILEPOS

Syntax: FilePos(FilVar);

An integer function which returns the current position of the file

pointer. The first component of a file is O.

14.3.3. FILESIZE

Syntax: FileSize(FiIVar);

An integer function which returns the size of the disk file, expressed

as the number of components in the file. If FileSize(FilVar) is zero, the

file is empty.

Page 86 FILE TYPES

14.4. USING FILES

Before using a file, the Assign procedure must be called to assign the

file name to a file variable. Before input and/or output operations are

performed, the file must be opened with a call to Rewrite or Reset.
This call will set the file pointer to point to the first component of the

disk file, i.e., FilePos(FilVar) • O. After Rewrite, FileSize(FilVar) is O.

A disk file can be expanded only by adding components to the end of

the existing file. The file pOinter can be moved to the end of the file

by executing the following sentence:

Seek(FilVar, FileSize(FilVar»;

When a program has finished its input/output operations on a file, it

should always call the Close procedure. Failure to do so may result in

loss of data, as the disk directory is not properly updated.

The program below creates a disk file called PRODUCTS.DT A, and
writes ·100 records of the type Product to the file. This initializes the

file for subsequent random access, so that records may be read and

written. anywhere in the file).

program InitProductFile;
canst

MaxNumberOfProducts • 100;

type

ProductName • string[20J;

Product •

var

record
Name: ProductName;

ItemNumber: Integer;

In Stock: Real;

Supplier: Integer;
end;

ProductFile: file of Product;

ProductRec: Product;

I: Integer;
begin

Assign(ProductFile, 'PRODUCT.oT A');

Rewrite(ProductFile); {open the file and delete any data}

FILE TYPES

with ProductRec do

begin

Name :- "; In Stock :- 0; Supplier :- 0;

for I :- 1 to MaxNumberOfProducts do

begin

ItemNumber :- I;

Write(ProductFile,ProductRec);

end;

end;

Close{ProductFile) ;

end.

Page 87

The following program demonstrates the use of Seek on random files.

The program is used to update the ProductFile created by the program
in the previous example.

program UpDateProductFile;
const

MaxNumberOfProducts - 100;
type

ProductName - string[20];

Product • record

var

Name: ProductName;

ItemNumber: Integer;

InStock: Real;

Supplier: Integer;
end;

ProductFile: file of Product;
ProductRec: Product;

I, Pnr: Integer;
begin

Assign{ProductFile,'PRODUCT.DT A'); Reset(ProductFile);
ClrScr;

Write{'Enter product number (0 - stop) '); Readln(Pnr);

while Pnr in [1 .. MaxNumberOfProducts] do

begin

Seek<ProductFile ,Pnr-1); Read<ProductFile ,ProductRec);
with ProductRec do

begin
Write{'Enter name of product (' ,Name:20,') ');

Page 88 FILE TYPES

Readln(Name) ;

Write('Enter number in stock (',lnStock:20:0,') ');

Readln<ln Stock);

Write('Enter supplier number (',Supplier:20,') ');

Readln(Supplier);

ItemNumber :- Pnr;

end;

Seek(ProductFile,Pnr-1) ;

Write(ProductFile,ProductReC>;

ClrScr; Writeln;

Write{'Enter product number (Q • stop) '); Readln{Pnd;

end;

Close(ProductFile) ;

end.

14.5. TEXT FILES

Unlike all other file types, text files are not simply sequences of values

of some type. Although the basic components of a text file are

characters, they are structured into lines, each line being terminated by

an end-of-line marker (a CR/LF sequence). The file is further ended by

an end-of-file marker (a Ctrl-Z). As the length of lines may vary, the

position of a given line in a file cannot be calculated. Text files can

therefore only be processed sequentially. Furthermore, input and

output cannot be performed simultaneously to a text file.

14.5.1. OPERATIONS ON TEXT FILES

A text file variable is declared by referring to the standard type

identifier Text. Subsequent file operations must be preceded by a call

to Assign and a call to Reset or Rewrite must furthermore precede

input or output operations.

Rewrite is used to create a new text file, and the only operation then

allowed on the file is the appending of new components to the end of

the· file. Reset is used to open an existing file for reading, and the only

operation allowed on the file is sequential reading. When a new text

file is closed, an end-of-file mark is appended to the file automatically.

Character input and output on text files is made with the standard

procedu~es Read and Write. Lines are processed with the special text

file operators Readln, Writeln, and EoIn:

FILE TYPES Page 89

14.5.1.1. READLN

Syntax: Readln(FilVar);

Skips to the beginning of the next line, i.e., skips all characters up to

and including the next CR/LF sequence.

14.5.1.2. WRITELN

Syntax: Writeln(FilVar);

Writes a line marker (a CR/LF sequence) to the text file.

14.5.1.3. EOLN

Syntax: Eoln(FilVar);

A Boolean function which returns True if the end of the current line has

been reached, i.e., if the file pointer is positioned at the CR character

of the CR/LF line marker. If EOf(FilVar) is true, Eoln(FilVar) is also

true.

14.5.1.4. SEEKEOLN

Syntax: SeekEoln(FilVar);

Similar to Eoln, except that it skips blanks and tabs before it tests for

an end-of-Iine marker. The type of the result is boolean.

14.5.1.5. SEEKEOF

Syntax: SeekEof(FilVar);

Similar to EOF, except that it skips blanks, tabs, and end-of-Iine

markers (CR/LF sequences) before it tests for an end-of-file marker.

The type of the result is boolean.

When applied to a text file, the EOF function returns the value True if
the file pointer is pOSitioned at the end-of-file mark <the CTRL/Z

character ending the file). The Seek and Flush procedures and the

FilePos and FileSize functions are not applicable to text files.

Page 90 FILE TYPES

The following sample program reads a text file from disk and prints it

on the pre-defined device Lst, which is the printer. Words surrounded

by Ctrl-S in the file are printed underlined by this program.

program TextFileDemo;

var

FilVar: Text;

Line,

ExtraLine: string[255];

I: Integer;
Underline: Boolean;

string[14]; FileName:

begin

Underline :- False;

Write{'Enter name of file to list: ');

Readln(FileName);

Assign(FilVar ,FileName);
Reset(FiIVar) ;

while not Eof(FiIVar) do

begin

Readln{FilVar ,Line);

I :- 1; ExtraLine :- ";

for I :- 1 to Length{Line) do

begin
if Line[J] <>""S [then

begin

Write{Lst,Line[l]);

if Underline then ExtraLine :- ExtraLine + ' ,

else ExtraLine :- ExtraLine + ' ';

end

else Underline :- not Underline;

end;

Write{Lst, AM); Writeln{Lst ,ExtraLine);

end; {while not Eof}

end.

Further extensions of the procedures Read and Write, which facilitate

convenient handling of formatted input and output, are· described on
page 95.

FILE TYPES Page 91

14.5.2. LOGICAL DEVICES

In TURBO Pascal, external devices such as terminals, printers, and

modems are regarded as logical devices which are treated like text

files. The following logical devices are available:

CON: The console device. Output is sent to the operating system's

console output device, usually the CRT, and input is obtained

from the console input device, usually the keyboard. Contrary

to the TRM: device (see below), the CON: device provides

buffered input. Each Read or Readln from a text file assigned

to the CON: device will input an entire line into a line buffer,

and the operator is provided with a set of editing facilities

during line input. For more details on console input, please

refer to pages 92 and 95.

TRM:

KBD:

lST:

The terminal device. Output is sent to the operating system's

console output device, usually the CRT, and input is obtained

from the console input device, usually the keyboard. Input
characters are echoed, unless they are control characters.
The only control character echoed is a carriage return (CR),

which is echoed as CR/LF.

The keyboard device (input only). Input is obtained from the
operating system's console input device, usually the keyboard.
Input is not echoed.

The list device (output only). Output is sent to the operating
system's list device, typically the line printer.

AUX: The auxiliary device. In CP 1M, this is RDR: and PUN:.

USR: The user device. Output is sent to the user output routine,
and input is obtained from the user input routine. For further

details on user input and output, please refer to page 155.

These .ogical devices may be accessed through the pre-assigned files

discussed on page 92, or they may be assigned to file variables,

exactly like a disk file. There is no difference between Rewrite and

Reset on a file assigned to a logical device. Close on a file assigned to

a logical device performs no function, and an attempt to Erase such a
file will cause an 1/0 error.

Page 92 FILE TYPES

The standard functions Eo! and Eoln operate differently on logical

devices than on disk files. On a disk file, Eo! returns True when the

next character in the file is a Ctrl-Z, or when physical EOF is

encountered, and Eoln returns True when the next character is a CR or

a Ctrl-Z. Thus,. Eo! and Eoln are in fact "look ahead" routines.

As you cannot look ahead on a logical device, Eoln and Eo! operate on

the last character read instead of on the next character. In effect, Eo!
returns True when the last character read was a C trl-Z, and Eoln
returns True when the last character read was a CR or a Ctrl-Z. The

following table provides an overview of the operation of Eoln and

Eo!:

Eoln is true if

Eof is true if

On Files

next character is

CR or Ctrl-Z, or if

EOF is true

next ,character is

Ctrl-Z, or if physical

EOF is met

'On Logical Devices

current character

is CR or Ctrl-Z

current character

is Ctrl-Z

Table 14-1: Operation o! Eoln and Eo!

Similarly, the ReadIn procedure works differently on logical devices

than on disk files. On a disk file, ReadIn reads all characters up to and

including the CR/LF sequence, whereas on a logical device it only

reads up to and including the first CR. The reason for this is again the

inability to "look ahead" on logical devices, which means that the

system has no way of knowing what character will follow the CR.

14.5.3. STANDARD FILES

As an alternative to assigning text files to logical devices as described

above, TURBO Pascal offers a number of pre-declared text files which

have already been assigned to specific logical devices and prepared

for processing. Thus, the programmer is saved the resetlrewrite and

close processes, and the use of .these standard files further saves
code:

FILE TYPES Page 93

Input

Output

Con
Trm
Kbd
Lst
Aux
Usr

The primary input file. This file is assigned to either the
CON: device or to the TRM: device (see below for further

detail).

The primary output file. This file is assigned to either the
CON: device or to the TRM: device (see below for further

detail).

Assigned to the console device (CON:).

Assigned to the terminal device (TRM:).

Assigned to the keyboard device (KBD:).

Assigned to the list device (LST:).
Assigned to the auxiliary device (AUX:).

Assigned to the user device (USR:).

The use of Assign, Reset, Rewrite, and Close on these files is illegal.

When the Read procedure is used without specifying a file identifier, it

always inputs a line, even if some characters still remain to be read

from the line buffer, and it ignores Ctrl-Z, forcing the operator to

terminate the line with <RETURN>. The terminating <RETURN> is not

echoed, and internally the line is stored with a Ctrl-Z appended to the

end of it. Thus, when fewer values are specified on the input line than

there are parameters in the parameter list, any Char variables in excess

will be set to Ctrl-Z, strings will be empty, and numeric variables will

remain unaltered.

The B compiler directive is used to control the "forced read" feature

above. The default state is {SB+}. In this state, read statements

without a file variable will always cause a line to be input from the
console. If a {$B-} compiler directive is placed at the beginning of the

program (before the declaration part), the shortened version of read

will act as if the input standard file has been specified, Le.:

Read(vl,v2 ... ,vn) equals Real(input,'l11,v2, .. vn)

In this case, lines are only input when the line buffer has been emptied.
The {$B-} state follows the definition of Standard Pascal 110, whereas

the default {SB+} state, not confirming to the standard in all aspects,

provides better control of input operations.

If you don't want input echoed to the screen, you should read from

the standard file Kbd:

Page 94 FILE TYPES

Read(Kbd, Var}

As the standard files Input and Output are used very frequently, they

are chosen by default if no file identifier is stated. The following list

shows the abbreviated text file operations and their equivalents:

Write (Ch)
Read(Ch)
Writeln
Readlin
Eof
Eoln

Write(Output,Ch)
Read (1 nput ,Ch)
Writeln(Output)
Readln(1 nput)
Eof(1nput)
Eoln(1nput)

The following program shows the use of the standard file Lst to list

the file ProductFile (see page 86) on the printer:

program listProductFile;

const

MaxNumberOfProducts • 100;
type

ProductName • string[20];

Product • record

var

Name: ProductName;

ItemNumber: Integer;

InStock: Real;

Supplier: Integer;

end;

ProductFile: file of Product;
ProductRec: Product;

I: Integer;

begin

Assign(ProductFile ,'PR 0 DUCT.DT A'}; Reset(ProductFile};

for 1 :- 1 to MaxNumberOfProducts do

begin

Read<ProductFile ,ProductReC>;

with ProductRec do

begin

if Name <> " then

Writeln(Lst,'ltem: ',ltemNumber:5,' I, Name:20,
, From: I, Supplier:5,

FILE TYPES

end;

end;

Close<ProductFile) ;

end.

• Now in stock: ',lnStock:O:O);

14.6. TEXT INPUT AND OUTPUT

Page 95

Input and output of data in readable form is done through text files, as

described on page 88. A text file may be assigned to any device, i.e.,

a disk file or one of the standard I/O devices. Input and output on

text files is done with the standard procedures Read, Readln, Write,
and Writein, which use a special syntax for their parameter lists to

facilitate maximum flexibility of input and output.

In particular, parameters may be of different types, in which case the

I/O procedures provide automatic data conversation to and from the

basic Char type of text files.

If the first parameter of an I/O procedure is a variable identifier

representing a text file, then I/O will act on that file. If not, I/O will

act on the standard files Input and Output. See page 92 for more

detail.

14.6.1. READ PROCEDURE

The Read procedure provides input of characters, strings, and numeric

data. The syntax of the Read statement is:

Read(Var 1, Var 2, ... , YarN)

or

Read(FilVar, Var1, Var2, ... , YarN)

where Var1, Var2, ... ,VarN are variables of type Char, String, Integer or

Real. In the first case, the variables are input from the standard file

Input, usually the keyboard. In the second case, the variables are input

from the text file which is previously aSSigned to FilVar and prepared

for reading.

With a variable of type Char, Read reads one character from the file

and assigns that character to the variable. If the file is a disk file, Eoln

Page 96 FILE TYPES

is true if the next character is a CR or a Ctrl-Z, and Eot is true if the

next character is a Ctrl-Z, or the physical end-of-file is met. If the file

is a logical device (including the standard files Input and Output), Eoin
is true if the character read was a CR or if Eot is True, and Eot is true

if the character read was a Ctrl-Z.

With a variable of type string, Read reads as many characters as

allowed by the defined maximum length of the string, unless Eoin or

Eot is reached first. Eoln is true if the character read was a CR or if

Eot is True, and Eot is true if the last character read is a Ctrl-Z, or the
actual end of the file is met.

With a numeric variable (Integer or ReaD, Read expects a string of

characters which complies with the format of a numeric constant of

the relevant type as defined on page 35. Any blanks, tabs, CRs, or

LFs preceding the string are skipped. The string must be no longer

than 30 characters, and it must be followed by a blank, a tab, a CR, or

a Ctrl-Z. If the string does not conform to the expected format, an

1/0 error occurs. Otherwise the numeric string is converted to a

value of the appropriate type and assigned to the variable. When

reading from a disk file, if the input string ends with a blank or a tab,

the next Read or Readin will start with the character immediately

following that blank or tab. For both disk files and logical devices, Eoln
is true if the string ends with a CR or a Ctrl-Z, and Eot is true if the
string ends with a Ctrl-Z.

A special case of numeric input is when Eoin or Eot is true at the

beginning of the Read (e.g., if input from the keyboard is only a CR). In

that case no new value is assigned to the variable, and the variable
retains its former value.

If the input file is assigned to the console device (CON:), or if the

standard file Input is used in the {$B-} mode (default), special rules

apply to the reading of variables. On a call to Read or ReadIn, a line is

input from the console and stored into a buffer, and the reading of

variables then uses this buffer as the input source. This allows for

editing during entry. The following editing facilities are available:

BACKSPACE or DEL
Backspaces one character position and deletes the character

there. BACKSPACE is usually generated by pressing the key

FILE TYPES Page 97

marked BS or BACKSPACE or by pressing Ctrl-H. DEL is usually

generated by the key thus marked, or in some cases RUB or

RUBOUT.

ESCAPE and Ctrl-X

Backspaces to the beginning of the line and erases all characters

input.

Ctrl-D

Recalls one character from the last input line.

Ctrl-R
Recalls the last input line.

RETURN or Ctrl-M

Terminates the input line and stores an end-of-Iine marker (a

CR/LF sequence) in the line buffer. This code is generated by

pressing the key marked RETURN or ENTER. The CR/LF is not

echoed to the screen.

Ctrl-Z
Terminates the input line and stores an end-of-file marker (a

Ctrl-Z character> in the line buffer.

The input line is stored internally with a Ctrl':'Z appended to the end of

it. Thus, if fewer values are specified on the input line than the number

of variables in Read's parameter list, any Char variables in excess will

be set to Ctrl-Z, any String will be empty, and numeric variables will
remain unchanged.

The maximum number of characters th"at can be entered on an input line

from the console is 127 by default. However, you may lower this limit

by assigning an integer in the range 0 through 127 to the predefined
variable ButLen.

Example:

Write('File name (max. 14 chars): ');

BufLen ;- 14;

Read(FileName);

Page 98 FILE TYPES

Assignments to BulLen affect only the immediately following Read.
After that, BulLen is r~stored to 127.

14.6.2. READLN PROCEDURE

The Readln procedure is identical to the Read procedure, except that

after the last variable has been read, the remainder of the line is

skipped, i.e., all characters up to and including the next CR/lF

sequence (or the next CR on a logical device) are skipped. The syntax

of the procedure statement is:

Readln(Var1, Var2, ... , YarN)

or

Readln(FiIVar, Var 1, Var2, ... , YarN)

A fter a Readln, the following Read or Readln- will read from the

beginning of the next line. Readln may also be called without

parameters:

Readln

or

Readln(FiIVar>

in which case the remaining of the line is skipped. When Readln is

reading from the console <standard file Input or a file assigned to

CON:), the terminating CR is echoed to the screen as a CR/lF

sequence, as opposed to Read.

14.6.3. WRITE PROCEDURE

The Write procedure provides output of characters, strings, boolean

values, and numeric values. The syntax of a Write statement is:

Write(Var1, Var2, ... , YarN)

or

Write(FiIVar, Var 1, Var2, ... , YarN)

where Varl, Var2, ... , YarN <the write parameters) are variables of type

Char, String, Boolean, Integer or Real, optionally followed by a colon

and an integer expression defining the width of the output field. In the

first case, the .variables are output to the standard file Output, usually

FilE TYPES Page 99

the screen. In the second case, the variables are output to the text

file which is previously aSSigned to FilVar.

The format of a write parameter depends on the type of the variable.

In the following descriptions of the different formats and their effects,
the symbols:

I, m, n
R
Ch
S
B

denote Integer expressions,

denotes a Real expression,

denotes a Char expression,

denotes a String expression, and

denotes a Boolean expression.

14.6.3.1. WRITE PARAMETERS

Ch The character Ch is output.

Ch:n The character Ch is output right-adjusted in a field which is n
characters wide, i.e., Ch is preceded by n-1 blanks.

S The string S is output. Arrays of characters may also be

output, as they are compatible with strings.

S:n The string S is output right-adjusted in a field which is n
characters wide, i.e., S is preceded by n - Length(S) blanks.

B Depending on the value of B, either the word TRUE or the

word FALSE is output right-adjusted in a field which is n
characters wide.

I The decimal representation of the value of I is output.

I:n The decimal representation of the value of I is right-adjusted
and output in a field which is n characters wide.

R The decimal representation of the value of R is right

adjusted and output in a field which is 18 characters wide,

using floating point format. For R >- 0.0, the format is:

OO#.##########E*##

Page 100 FILE TYPES

For R < 0.0, the format is:

D-#.##########P##

where D represents a blank, # represents a digit, and *
represents either plus or minus.

R:n The decimal representation of the value of R is right

adjusted and output in a field n characters wide, using

floating point format. For R >- 0.0:

R:n:m

blanks#. di gi tsP # #

For R < 0.0:

blanks-#.digitsPEE

where blanks represent zero or more blanks, digits
represents from one to ten digits, # represents a digit, and *
represents either plus or minus. As at least one digit is

output after the decimal point, the field width is at minimum
7 characters (8 for R < 0.0>.

The decimal representation of the value of R is right

adjusted and output in a field n characters wide, using fixed

point format with m digits after the decimal point. No

decimal part, and no decimal point, is output if m is O. m
must be in the range 0 through 24; otherwise floating point

format is used. The number is preceded by an appropriate

number of blanks to make the field width n.

14.6.4. WRITELN PROCEDURE

The Writeln procedure is identical to the Write procedure, except that

a CR/LF sequence is output after the last value. The syntax of the
Writeln statement is:

Writeln(Varl, Var2, ... , VarN)
or

Writeln(FilVar, Varl, Var2, ... , YarN)

FILE TYPES Page 101

A Writeln with no write parameters outputs an empty line consisting

of a CR/LF sequence:

Writeln or Writeln(FilVar)

14.7. UNTYPED FILES

Untyped files are low-level I/O channels primarily used for direct

access to any disk file using a record size of 128 bytes.

In input and output operations to untyped files, data is transferred

directly between the disk file and the variable, thus saving the space
required by the sector buffer required by typed files. An untyped file

variable therefore occupies less memory than other file variables. As
an untyped file is furthermore compatible with any file, the use of an

untyped file is therefore to be preferred if a file variable is required

only for Erase, Rename or other operations not requiring input/output.

An untyped file is declared with the reserved word file:

var

DataFile: file;

14.7.1. BLOCKREAD AND BLOCKWRITE

All standard file-handling procedures and functions except Read, Write,
and Flush are allowed on untyped files. Read and Write are replaced

by two special high-speed transfer procedures: BlockRead and
Block Write. The syntax of a call to these procedures is:

or

BlockRead(FilVar, Var ,Rees)
BlockWrite(FilVar,Var,Recs)

BlockRead(FilVar, Var IRees ,Result)
Block Writ e (F ilV ar I Var ,Rees IRe suit)

where FilVar is the variable identifier of an untyped file, Var is any

variable, and Recs is an integer expression defining the number of 128-
byte records to be transferred between the disk file and the variable.

The optional parameter Result returns the number of records actually
transferred.

Page 102 FILE TYPES

The transfer starts with the first byte occupied by the variable Var.
The programmer must insure that the variable Var occupies enough

space to accommodate the entire data transfer. A call to BlockRead
or BlockWrite also advances the file pointer Recs records.

A file to be operated on by BlockRead or BlockWrite must first be

prepared by Assign and Rewrite or Reset. Rewrite creates and opens a

new file, and Reset opens an existing file. After processing, Close
should be used to ensure proper termination.

The standard function EOF works as with typed files. So do standard

functions FilePos and FileSize and standard procedure Seek, using a

component size of 128 bytes (the record size used by BlockRead and
Block Write.

The following program uses untyped files to copy files of any type.

Notice the use of the optional fourth parameter on BlockRead to check

the number of records actually read from the source file.

program FileCopy;

canst

RecSize

BufSize

var

Source, Dest: File;

SourceName,

DestName:

Buffer:

RecsRead:

begin

• 128;
• 200;

string[14];

array[1 .. RecSize;1 .. BufSize] of Byte;

Integer;

Write('Copy from: ');

Readln(SourceName);

Assign(Source, SourceName);
Reset(Source);

Write(' To: ');

Readln(DestName) ;

Assign(Dest, DestName);
Rewrite(Dest);

repeat

BlockRead{Source,Buffer ,BufSize,RecsRead);

BlockWrite{Dest ,Buffer ,RecsRead);

FILE TYPES

until RecsRead - Oi

Close{Source)i Close{Oest)i

end.

14.8. I/O CHECKING

Page 103

The I compiler directive is used to control generation of run-time I/O

error checking code. The default state is active, i.e., {$I+}, which

causes calls to an I/O check routine after each I/O operation. I/O

errors then cause the program to terminate, and an error message

indicating the type of error is displayed.

If I/O checking is passive, i.e., {$I-}, no run-time checks are performed.

An I/O error thus does not cause the program to stop, but suspends
any further I/O until the standard function IOresult is called. When this

is done, the error condition is reset and I/O may be performed again.

It is now the programmer's responsibility to take proper action

according to the type of I/O error. A zero returned by IOresult
indicates a successful operation, anything else means that an error

occurred during the last I/O operation. Appendix G lists all error

messages and their numbers. Notice that as the error condition is

reset when 10resuit is called, subsequent calls to 10resuit will return

zero until the next I/O error occurs.

The IOresult function is very convenient in situations where a program

halt is an unacceptable result of an I/O error, as in the following

example. This procedure continues to ask for a file name until the

attempt to reset the file is successful (j.e., until an existing file name is
entered):

procedure OpenlnFilei

begin

repeat

Write{'Enter name of input file ')i

Readln(JnFileName);

Assign(JnFile, InFileName);
{$I-} Reset(JnFile) {$I+} ;

OK :- (IOresult - 0);

if not 0 K then

Writeln{'Cannot find file ',lnFileName);

until OK;

Page 104 FILE TYPES

end;

When the I directive is passive ({$I-}), the following standard

procedures should be followed by a check of IOresult to ensure proper

error handling:

Assign Close Read Rewrite

BlockRead Erase Readln Seek

BlockWrite Execute Rename Write

Chain Flush Reset Writeln

Chapter 15
POINTER TYPES

Variables discussed up to now have been static, i.e., their form and

size is pre-determined, and they exist throughout the entire execution

of the block in which they are declared. Programs, however,

frequently need the use of a data structure which varies in form and

size during execution. Dynamic variables serve this purpose, as they

are generated as the need arises and may be discarded after use.

Such dynamic variables are not declared in an explicit variable

declaration like static variables, and they cannot be referenced directly

by identifiers. Instead, a special variable containing the memory

address of the variable is used to point to the variable. This special

variable is called a pointer variable.

15.1. DEFINING A POINTER VARIABLE

A pointer type is defined by the pointer symbol" succeeded by the
type identifier of the dynamic variables which may be referenced by

pointer variables of this type.

The following shows how to declare a record with associated
pointers. The type PersonPointer is declared as a pointer to variables

of type PersonRecord:

type

PersonPointer • "PersonRecord;

PersonRecord •

var

record
Name: string[SO];

Job: string[SOJ;

Next: PersonPointer;
end;

FirstPerson, lastPerson, NewPerson: PersonPointer;

The variables FirstPerson, LastPerson and N ewPerson are thus pointer
variables which can point at records of type PersonRecord. As shown
above, the type identifier in a pointer type definition may refer to an

identifier which is not yet defined.

Page 106 POINTER TYPES

15.2. ALLOCATING VARIABLES (NEW)

Before it makes any sense to use any of these pointer variables we

must, of course, have some variables to point at. New variables of

any type are allocated with the standard procedure New. The

procedure has one parameter which must be a pointer to variables of

the type we want to create.

A new variable of type PersonRecord can thus be created by the

statement:

New(FirstPerson) ;

which has the effect of having FirstPerson point at a dynamically

allocated record of type PersonRecord.

Assignments between pointer variables can be made as long as both

pointers are of identical type. Pointers of identical type may also be

compared using the relational operators • and <>, returning a Boolean
result <True or False}.

The pointer value nil is compatible with all pointer types. nil points to

no dynamic variable, and may be assigned to pointer variables to

indicate the absence of a usable pointer.' nil may also be used in

comparisons.

Variables created by the standard procedure New are stored in a

stack-like structure called the heap. The TURBO Pascal system

controls the heap by maintaining a heap pointer which at the beginning

of the program is initialized to the address of the first free byte in

memory. On each call to New, the heap pointer is moved towards the

top of free memory the number of bytes corresponding to the size of

the new dynamic variable.

15.3. MARK AND RELEASE

When a dynamic variable is no longer required by the program, the

standard procedures Mark and Release are used to reclaim the memory

allocated to these variables. The Mark procedure assigns the value of

the heap pointer to a variable. The syntax of a call to Mark is:

POINTER TYPES Page 107

Mark(Var); .

where Var is a pointer variable. The Release procedure sets the heap

pointer to the address contained i~ its argument. The syntax is:

Release(Var)i

where Var is a pointer variable, previously set by Mark. Release thus

discards all dynamic variables above this address, and cannot release

the space used by variables in the middle of the heap. If you want to

do that, you should use Dispose (see page 109) instead of Mark and

Release.

The standard function MemAvail is available to determine the available

space on the heap at any given time. Further discussion is deferred to

Chapter 22.

15.4. USING POINTERS

Suppose we have used the New procedure to create a series of

records of type PersonRecord (as in the example on the following

page) and that the field Next in each record points at the next

PersonRecord created. Then the following statements will go through

the list and write the contents of each record (FirstPerson points to

the first person in the list):

while FirstPerson <> nil do
with FirstPerson do
begin

Writeln(Name,' is a ',Job);

FirstPerson :- Next;

end;

FirstPerson A Name may be read as FirstPerson'sName, i.e., the field

Name in the record pointed to by FirstPerson.

The following demonstrates the use of pointers to maintain a list of

names and related job desires. Names and job desires will be read in

until a blank name is entered. Then the entire list is printed. Finally, the

memory used by the list is released for other use. The pointer variable

HeapTop is used only for the purpose of recording and storing the

Page 108 POINTER TYPES

initial value of the heap pointer. Its definition as a Integer <pointer to

integer) is thus totally arbitrary.

procedure Jobs;

type

PersonPointer - "'PersonRecord;

PersonRecord - record

var

Name: string[SO];

Job: string[SO];

Next: PersonPointer;
end;

HeapTop: Integer;

FirstPerson, lastPerson, NewPerson: PersonPointer;

Name: string[SO];

begin

FirstPerson :- nil;

Mark{Heap Top);

repeat

Write{'Enter name: ');

Readln<Name);

if Name <> " then

begin
New{NewPerson) ;

NewPerson Name :- Name;

Write{'Enter profession: ');

Readln<NewPerson Job);

Writeln;

if FirstPerson • nil then
FirstPerson :- NewPerson

else

end;

lastPerson".Next :- NewPerson;

lastPerson :- NewPerson;
lastPersonA.Next :- nil;

until Name - ";

Writeln;

while FirstPerson <> nil do

with FirstPersonA do

begin

Writeln{Name,' is a ',Job);

POINTER TYPES

FirstPerson :- Next;

end;

Release(Heap Top);

end.

15.5. DISPOSE

Page 109

Instead of Mark and Release, standard Pascal's Dispose procedure may

be used to reclaim space on the heap.

NOTE: Dispose and Mark/Release use entirely different approaches to

heap management - and never the twain shall meet! Anyone

program uses either Dispose or Markl Release to manage the heap.

Mixing them will produce unpredictable results.

The syntax is:

Dispose(Var);

f where Var is a pOinter variable.

Dispose allows dynamic memory used by a specific pointer variable to

be reclaimed for use, as opposed to Mark and Release which releases

the entire heap from the specified pointer variable upward.

Suppose you have a number of variables which have been allocated on

the heap. The following figure illustrates the contents of the heap and

the effect of Dispose(Var3) and Mark (Var3)IRelease(Var3):

Page 110

HiMem

Heap

Var1

Var2

Var3

After

Dispose

Var1

Var2

Var4 Var4

Var5 Var5

Var6 Var6

Var7 Var7

POINTER TYPES

After
Marlc/Release

Var1

Var2

Figure 15-1: Using Dispose

After Disposing a pointer variable, the heap may thus consist of a

number of memory areas in use interspersed with a number of free

areas. Subsequent calls to New will use these if the new pointer

variable fits into the space.

15.6. CETMEM

The standard procedure GetMem is used to allocate space on the heap.

Unlike New, which allocates as much space as required by the type

pointed to by its argument, GetMem allows the programmer to control

the amount of space allocated. GetMem is called with two
parameters:

GetMem<PVar, D

where PVar is any painter variable, and I is an integer expression

giving the number of bytes to be allocated.

POINTER TYPES Page 111

15.7. FREEMEM

Syntax: FreeMem;

The FreeMem standard procedure is used to reclaim an entire block of

space on the heap. It is thus the counterpart of GetMem. FreeMem is

called with two parameters:

FreeMem(PVar, I);

where PVar is any pointer variable, and I is an integer expressing

giving the number of bytes to be reclaimmed, which must be exactly

the number of bytes previously allocated to that variable by GetMem.

15.8. MAXA V AIL

Syn1ax: MaxA vail;

The MaxAvail standard function returns the size of the largest

consecutive block of free space on the heap. On 8-bit systems this

space is in bytes. The result is an Integer, and if more than 32767

bytes are available, MaxAvail returns a negative number. The correct
number of free bytes is then calculated as 65536.0 + MaxAvail. Notice
the use of a real constant to generate a Real result, because the result

is greater than Maxlnt.

15.9. HINTS

No range checking is done on pointers. It is the responsibility of the

programmer to ensure that a pOinter points to a legal address.

If you have difficulties using pointers, a drawing of what you are

attempting to do often clears things up.

Chapter 16
PROCEDURES AND FUNCTIONS

A Pascal program consists of one or more blocks, each of which may

again consist of blocks, etc. One such block is a procedure, another is
a function (in common called subprograms). Thus, a procedure is a

separate part of a program, and it is activated from elsewhere in the

program by a procedurestatemen't (see page 47}.A function is rather

similar, but it computes and returns a value when its identifier, or

designator, is encountered during execution (see page 46).

16.1. PARAMETERS

Values may be passed to procedures and functions through parameters.
Parameters provide a substitution mechanism which allows the logic of

the subprogram to be used with different initial values, thus producing

different results.

The procedure statement or function designator which invokes the

subprogram may contain a list of parameters, called the actual
parameters. These are passed to the formal parameters specified in the

subprogram heading. The order of parameter passing is the order of

appearance in the parameter lists. Pascal supports two different
methods of parameter passing: by value and by reference, which

determines the effect that changes of the formal parameters have on

the actual parameters.

When parameters are passed by value, the formal parameter
represents a local variable in the subprogram, and changes of the
formal parameters have no effect on the actual parameter. The actual

parameter may be any expression, including a variable, with the same

type as the corresponding formal parameter. Such parameters are

called value parameters and are declared in the subprogram heading as
in the following example. This and the following examples show

procedure headings; see page 121 for a description of function

headings.

procedure Example(Num1,Num2: Number; Str1,Str2: Txt};

Number and Txt are previously defined types (e.g., Integer and

string[255]), and Numl, Num2, Strl, and Str2 are the formal parameters

PROCEDURES AND FUNCTIONS Page 113

to which the value of the actual parameters are passed. The types of
the formal and the actual parameters must correspond.

Notice that the type of the parameters in the parameter part must be

specified as a previously defined type identifier. Thus, the construct:

procedure Select(Model: array[1 .. 500] of Integed;

is not allowed. Instead, the desired type should be defined in the

type definition of the block, and the type identifier should then be used

in the parameter declaration:

type

Range • array[1 .. 500] of Integer;

procedure Select<Model: Range);

When a parameter is passed by reference, the formal parameter in fact

represents the actual parameter throughout the execution of the
i subprogram. Any changes made to the formal parameter is thus made

to the actual parameter, which must therefore be a variable.
Parameters passed by reference are called variable parameters, and are

declared as follows:

procedure Example(var Num1,Num2: Number)

Value parameters and variable parameters may be mixed in the same

procedure as in the following example:

procedure Example(var Num1,Num2: Number; Str1,Str2: Txt);

in which Numl and Num2 are variable parameters and Strl andStr2 are
value parameters.

All address calculations are done at the time of the procedure call.

Thus, if a variable is a component of an array, its index expression(s)
are evaluated when the subprogram is called.

Notice that file parameters must always be declared as variable
parameters.

Page 114 PROCEDURES AND FUNCTIONS

When a large data structure, such as an array ,is to be passed to a

subprogram as a parameter, the use of a variable parameter will save·

both time and storage space, as the only information then passed on

to the subprogram is the address of the actual parameter. A value

parameter would require storage for an extra copy of the entire data

structure, and the time involved in copying it.

16.1.1. RELAXATIONS ON PARAMETER TYPE CHECKING

Normally, when using variable parameters, the formal and the actual

parameters must match exactly. This means that subprograms

employing variable parameters of type String will accept only strings

of the exact length defined in the subprogram. This restriction may be

overridden by the V compiler directive. The default active state

{$V+} indicates strict type checking, whereas the passive state {$V-}

relaxes the type checking and allows actual parameters of any string

length to be passed, regardless of the length of the formal parameters.

Example:

program Encoder;
{$V-}

type

Work String - string(255];
var

line 1: string(SO];

line2: string(100];

.procedure Encode(var lineToEncode: Work String);
var I: Integer;
begin

for I :- 1 to Length(lineToEncode) do

end;

begin

line ToEncode(l] :- Chr(Ord(line ToEncode(l])-30);

line1 :- 'This is a secret message';
Encode(line 1);

line2 :- 'Here is another (longer) secret message';
Endcode(line2);

end.

PROCEDURES AND FUNCTIONS Page 115

16.1.2. UNTYPED VARIABLE PARAMETERS

If the type of a formal parameter is not defined, i.e., the type

definition is omitted from the parameter section of the subprogram

heading, then that parameter is said to be untyped. Thus, the

corresponding actual parameter may be any type.

The untyped formal parameter itself is incompatible with all types, and

may be used only in contexts where the data type is of no

Significance, .for example as a parameter to Addr, BlockRead,
BlockWrite, FillCar, or Move, or as the address specification of

absolute variables.

The SwitchVar procedure in the following example demonstrates the

use of untyped parameters. It moves the contents of the variable Al
to A2 and the contents of A2 to Ai

procedure SwitchVar(var A 1p,A2p; Size:. Integer);

type

A • array[1 .. Maxlnt] of Byte;
var

A 1: A absolute A 1p;

A2: A absolute A2pi

Tmp: Byte;

Count: Integer;
begin

for Count :- 1 to Size do

begin

Tmp :- A 1[Count];

A 1[Count] :- A2[Count]i

A2[Count] :- Tmpi

end;

end;

Assuming the declarations:

type

Matrix • array[1..50,1..25] of Real;
var

T estMatrix,BestMatrix: Matrix;

Page 116 PROCEDURES AND FUNCTIONS

then SwitchVar may be used to switch values between the two

matric~s:

Switch VadT estMatrix,BestMatrix, SizeO f(Matrix»;

16.2. PROCEDURES

A procedure may be either pre-declared (or "standard") or user

declared, i.e., declared by the programmer. Pre-declared procedures
are parts of the TURBO Pascal system and may be called with no
further declaration. A user-declared procedure may be given the name

of a standard procedure; but that standard procedure then becomes

inaccessible within the scope of the user-declared procedure.

16.2.1. PROCEDURE DECLARATION

A procedure declaration consists of a procedure heading followed by

a block which consists of a declaration part and a statement part.

The procedure heading consists of the reserved word procedure

followed by an identifier which becomes the name of the procedure,

optionally followed by a formal parameter list as described on page

112.

Examples:

procedure LogOn;

procedure Position(X, Y: Integer>;

procedure Compute(var Data:, Matrix; Scale: Rea!);

The declaration part of a procedure has the same form as that of a

program. All identifiers declared in the formal parameter list and the

declaration part are local to that procedure, and any procedures within

it. This is called the scope of an identifier, outside which they are not

known. A procedure may reference any constant, type, variable,

procedure, or function defined in an outer block.

The statement part specifies the action to be executed when the

procedure is invoked, and it takes the form of a compound statement

(see page 49). If the procedure identifier is used within the statement
part of the procedure itself, the procedure will execute recursively.
(Note: the A compiler directive must be passive {$A-} when recursion
is used (see Appendix C')

PROCEDURES AND FUNCTIONS Page 117

The next example shows a program which uses a procedure and

passes a parameter to this procedure. As the actual parameter passed

to the procedure is in some instances a constant (a simple expression),

the formal parameter must be a value parameter.

program Box;

var

I: Integer;

procedure DrawBox(X1,Y1,X2,Y2: Integed;

var I: Integer;
begin

GotoXY(X1,Y1);
for I :- X 1 to X2 do write ('_');

for I :- Y1+1 to Y2 do
begin

GotoXY(X1,J); Write(/!/);

GotoXY(X2,J); Write(/!/);

end;
GotoXY(X1,Y2);
for I :- X 1 to X2 do Write(/-/)i

end; {of procedure DrawBox}

begin
ClrScr;

for I :- 1 to 5 do DrawBoxO*4,1*2,10*1,4*1);
DrawBox(1, 1,80,23);

end.

Often the changes made to the formal parameters in the procedure

should also affect the actual parameters. In such cases variable
parameters are used, as in the following example:

procedure Switch(var A,B: Integed;

var Tmp: Integer;
begin

Tmp :- A; A :- B; B :- Tmp;

end;

When this procedure is called by the statement:

SwitchO,J);

Page 118 PROCEDURES AND FUNCTIONS

the values of I and J will be switched. If the procedure heading in

Switch was declared as:

procedure Switch(A,B: Integed;

i.e., with a value parameter, then the statement Switch<l,J) would not

change I and J.

16.2.2. STANDARD PROCEDURES

TURBO Pascal contains a number of standard procedures. These are:

1) string-handling procedures (described on page 60 pp),

2) file-handling procedures <described on pages 82, 88, and
101),

3) procedures for allocation of dynamic variables (described on

pages 106 and 111), and

4) input and output procedures (described on pages 95 pp).

In addition to these, the following standard procedures are available,

provided that the associated commands have been installed for your
terminal (see pages 6 pp):

16.2.2.1. ClREOl

Syntax: ClrEol;

Clears all characters from the cursor position to the end of the line
without moving the cursor.

16.2.2.2. ClRSCR

Syntax: ClrScr;

Clears the screen and places the cursor in the upper left-hand corner.

Beware that some screens also reset the video attributes when

clearing the screen, possibly disturbing any user-set attributes.

PROCEDURES AND FUNCTIONS Page 119

16.2.2.3. CRTINIT

Syntax: Crtlnit;

Sends the Terminal Initialization String defined in the installation
procedure to the screen.

16.2.2.4. CRTEXIT

Syntax: CrtExi!;

Sends the Terminal Reset String defined in the installation procedure to

the screen.

16.2.2.5. DELAY

Syntax: Delay(Time);

The Delay procedure creates a loop which runs for approximately as

many milliseconds as defined by its argument Time, which must be an

integer. The exact time may vary somewhat in different operating

environments.

16.2.2.6. DELLINE

Syntax: Delline;

Deletes the line containing the cursor and moves all lines below one
line up.

16.2.2.7. INSLINE

Syntax: InsLine;

Inserts an empty line at the cursor position. All lines below are moved

one line down and the bottom line scrolls off the screen.

Page 120 PROCEDURES AND FUNCTIONS

16.2.2.8. COTOXY

Syntax: CotoXY(Xpos,Ypos);

Moves the cursor to the position on the screen specified by the
integer expressions Xpos (horizontal value, or row) and Ypos (vertical
value, or column). The upper left corner (home position) is (1,1).

16.2.2.9. EXIT

Syntax: Exit;

Exits the current block. When Exit is executed in a subroutine, it

causes the subroutine to return. When it is executed in the statement

part of a program, it causes the program to terminate. A call to Exit
may be compared to a gata statement addressing a label just before

the end of a block.

16.2.2.10. HALT

Syntax: Halt;

Stops progr~m execution and returns to the operating system.

16.2.2.11. LOWVIDEO

Syntax: LowVideo;

Sets the screen to the video attribute defined as "Start of Low

Video", i.e., "dim" characters, in the installation procedure.

16.2.2.12. NORMVIDEO

Syntax: NormVideo;

Sets the screen to the video attribute defined as "Start of Normal

Video" in the installation procedure, i.e., the "normal" screen mode.

PROCEDURES AND FUNCTIONS Page 121

16.2.2.13. RANDOMIZE

Syntax: Randomize;

Initializes the random-number generator with a random value.

16.2.2.14. MOVE

Syntax: Move(varl,var2,Num);

Does a mass copy directly in memory of a specified number of bytes.

varl and var2 are two variables of any type, and Num is an integer

expression. The procedure copies a block of Num bytes, starting at

the first byte occupied by varl, to the block starting at the first byte
occupied by var2. You may notice the absence of explicit "moveright"
and "moveleft" procedures. This is because Move automatically

handles possible overlap during the move process.

16.2.2.15. FILLCHAR

Syntax: FiIiChar(Var,Num,Value);

Fills a range of memory with a given value. VaT is a variable of any

type, Num is an integer expression; and Value is an expression of type

Byte or ChaT. Num bytes, starting at the first byte occupied by VaT,
are filled with the value Value.

16.3. FUNCTIONS

Like procedures, functions are either· standard <pre-declared) or

declared by the programmer.

16.3.1. FUNCTION DECLARATION

A function declaration consists of a function heading and a block, which

is a declaration part followed by a statement part.

The function heading is equivalent to the procedure header, except

that the header must define the type of the function result. This is

done by adding a colon and a type to the header as shown here:

Page 122 PROCEDURES AND FUNCTIONS

function KeyHit: Boolean;

function Compute(var Value: Sample): Real;

function Power(X, Y: Real): Real;

The result type of a function must be a scalar type (j.e., Integer, Real,
Boolean, Char, declared scalar or subrange), a string type, or a pOinter

type.

The declaration part of a function is the same as that of a procedure.

The statement part of a function is a compound statement as

described on page 49. Within the statement part at least one

statement assigning a value to the function identifier must occur. The

last assignment executed determines the result of the function. If the

function deSignator appears in the statement part of the function itself,

the function will be invoked recursively. Note: the A compiler

directive must be passive {$A-} when recursion is used (see Appendix
C')

The following example shows the use of a function to compute the

sum of a row of integers from I to J.

function RowSum(I,J: Integer): Integer;

function SimpleRowSum(S: Integer): Integer;

begin

SimpleRowSum :- S*(S+1) div 2;

end;

begin

RowSum :- SimpleRowSum(J) - SimpleRowSum(J-1);

end;

The function SimpleRowSum is nested within the function RowSum.
SimpleR ow Sum is therefore only available within the scope of RowSum.

The following program is the classical demonstration of the use of a

recursive function to calculate the factorial of an integer number:

{$A-} {A- directive allows recursion in 8-bit version}

program Factorial;

var Number: Integer;

function Factorial(Value: Integer): Real;

PROCEDURES AND FUNCTIONS

begin

if Value • 0 then Factorial :- 1
else Factorial :- Value * Factorial{Value-1);

end;

begin

Read{Number) ;

Writeln{"'M,Number,'! - ' ,Factorial{Number»;

end.

Page 123

The type used)n the definition of a function type must be previously

specified as a type declaration. Thus, the construct:

function LowCase{line: UserLine): string[80];

is not allowed. Instead, a type identifier should be associated with
the type string[80], and that type identifier should then be used to

define the function result type, for example:

type

Str80 - string[80J;

function LowCase{Line: UserLine): Str80;

Because of the implementation of the standard procedures Write and
Write In, a function using any of the standard procedures Read, Readln,
Write, or Writeln must never be called by an expression within a Write
or Writeln statement. In 8-bit systems this is also true for the

standard procedures Sfr and Val.

16.3.2. STANDARD FUNCTIONS

The following standard (pre-declared) functions are implemented in

TURBO Pascal:

1) string-handling functions (described on pages 62 pp).

2) file-handling functions (described on pages 85 and 88),

3) pointer-related functions (described on pages 106 and 111).

Page 124 PROCEDURES AND FUNCTI0NS

16.3.2.1. ARITHMETIC FUNCTIONS

16.3.2.1.1. ABS

Syntax: Abs(Num);

Returns the absolute value of Num. The argument Num must be either

Real or Integer, and the result is of the same type as the argument.

16.3.2.1.2. ARCTAN

Syntax: ArcTan(Num);

Returns the angle, in radians, whose tangent is Num. The argument

Num must be either Real or Integer, and the result is Real.

16.3.2.1.3. COS

Syntax: Cos(Num);

Returns the cosine of Num. The argument Num is expressed in

radians, and its type must be either Real or Integer. The result is of

type Real.

16.3.2.1.4. EXP

Syntax: Exp(Num);

Returns the exponential of Num, i.e., eNum. The argument Num must

be either Real or Integer, and the result is Real.

16.3.2.1.5. FRAC

Syntax: FradNum);

Returns the fractional part of Num, i.e., FradNum) • Num - Int(Num).
The argument Num must be either Real or Integer, and the result is
Real.

•

PROCEDURES AND FUNCTIONS Page 125

16.3.2.1.6. INT

Syntax: Int(Num);

Returns the integer part of Num, i.e., the greatest integer number less

than or equal to Num, if Num >- 0, or the smallest integer number

greater than or equal to Num~ if Num < O. The argument Num must be

either Real or Integer, and the result is Integer.

16.3.2.1.7. IN

Syntax: Ln(Num);

Returns the natural logarithm of Num. The argument Num must be

either Real or Integer, and the result is Real.

16.3.2.1.8. SIN

Syntax: Sin(Num);

Returns the sine of Num. The argument Num is expressed in radians,

and its type must be either Real or Integer. The result is of type Real.

16.3.2.1.9. SQR

Syntax: Sqr(Num);

Returns the square of Num, i.e., Num It Num. The argument Num must
be either Real or Integer, and the result is of the same type as the
argument.

16.3.2.1.10. SQRT

Syntax: Sqrt(Num);

Returns the square root of Num. The argument Num must be either

Real or Integer, and the result is Real.

Page 126 PROCEDURES AND FUNCTIONS

16.3.2.2. SCALAR FUNCTIONS

16.3.2.2.1. PRED

Syntax: Pred(Num)i

Returns the predecessor of Num (jf it exists). Num is of any scalar

type.

16.3.2.2.2. SUCC

Syntax: SucdNum)i

Returns the successor of Num (if it exists). Num is of any scalar type.

16.3.2.2.3. ODD

Syntax: Odd(Num)i

Returns boolean True if Num is an odd number, and False if Num is

even. Num must be of type Integer.

16.3.2.3. TRANSFER FUNCTIONS

The transfer functions are used to convert values of one scalar type

to that of another scalar type. In addition to the following functions,

the retype facility described on page 56 serves this purpose.

16.3.2.3.1. CHR

Syntax: Chr(Num)i

Returns the character with the ordinal value given by the integer

expression Num. Example: Chr(65) returns the character "A".

16.3.2.3.2. ORO

Syntax: Ord(Var)i

Returns the ordinal number of the value Var in the set defined by the

type Var. Ord(Var) is equivalent to Integer(Var) (see Type

PROCEDURES AND FUNCTIONS Page 127

Conversion on page 56). VaT may be of any scalar type, except Real,
and the result is of type Integer.

16.3.2.3.3. ROUND

Syntax: Round(Num);

Returns the value of Num rounded to the nearest integer as follows: if

Num >- 0, then Round(Num) = Trunc(Num + 0.5). If Num < 0, then

Round(Num) = !runc(Num - 0.5). Num must be of type Real, and the

result is of type Integer.

16.3.2.3.4. TRUNC

Syntax: TrundNum);

Returns the greatest integer less than or equal to Num, if Num >- 0, or

the smallest integer greater than or equal to Num, if Num < O. Num
must be of type Real, and the result is of type Integer.

16.3.2.4. MISCELLANEOUS STANDARD FUNCTIONS

16.3.2.4.1. HI

Syntax: HiU);

The low order byte of the result contains the high order byte of the

value of the integer expression I. The high order byte of the result is

zero. The type of the result is Integer.

16.3.2.4.2. KEYPRE SSED

Syntax: KeyPressed;

Returns boolean True if a key has been pressed at the console, and

False if no key has been pressed. The result is obtained by calling the

operating system console status routine.

Page 128 PROCEDURES AND FUNCTIONS

16.3.2.4.3. LO

Syntax: LoU};

Returns the low order byte of the value of the integer expression I

with the high order byte forced to zero. The type of the result is

Integer.

16.3.2.4.4. RANDOM

Syntax: Random;

Returns a random number greater than or equal to zero and less than

one. The type is Real.

16.3.2.4.5. RANDOM(NUM)

Syntax: Random(Num);

Returns a random number greater than or equal to zero and less than

Num. Num and the random number are both Integers.

16.3.2.4.6. P ARAMCOUNT

Syntax: ParamCount;

This integer function returns the number of parameters passed to the

program in the command-line buffer. Space and tab characters serve

as separators.

16.3.2.4.7. P ARAMSTR

Syntax: ParamStr(N};

This string function returns the Nth parameter from the command-line

buffer.

PROCEDURES AND FUNCTIONS Page 129

16.3.2.4.8. SIZEOF

Syntax: SizeOf(Name);

Returns the number of bytes occupied in memory by the variable or

type Name. The result is of type Integer.

16.3.2.4.9. SWAP

Syntax: Swap(Num);

The Swap function exchanges the high and low order bytes of its

integer argument Num and returns the resulting value as an integer.

Example:
Swap($1234) returns $3412 (values in hex for clarity).

16.3.2.4.10. UPCASE

Syntax: UpCase(ch)i

Returns the upper-case equivalent of its argument ch, which must be of

type Char. If no upper-case equivalent exists, the argument is
returned unchanged.

16.4. FORWARD REFERENCES

A subprogram is forward declared by specifying its header separately

from the block. This separate subprogram header is exactly like the

normal header, except that it ends with the reserved word forward.

The block follows late within the same declaration part. Notice that

the block is initiated by a copy of the ,header, specifying only the name

and no parameters, types, etc.

Page 130 PROCEDURES AND FUNCTIONS

Example:

program Catch 22;

var

X: Integer;

function Up(Var I: Integer): Integer; forward;

function Down(Var I: Integer>: Integer;

begin
I :- I div 2; Writeln(l);

if I <> 1 then I :- Up(J);

end;

function Up;

begin

while I mod 2 <> 0 do

begin
I :- 1*3+1; Writeln(J);

end;
I :- Down(l);

end;

begin
Write{'Enter any integer: ');
Readln(X);
X :- Up(X);

Write('Ok. Program stopped again.');
end.

When the program is executed, if you enter 6, it returns:

3
10
5
16
8
4
2
1
Ok. Program stopped again.

The above program is actually a more complicated version of the
following program:

PROCEDURES AND FUNCTIONS

program Catch 222;

var
X: Integer;

begin

Write{'Enter any integer: ');
Readln{X);

while X <> 1 do
begin

Page 131

if X mod 2 • 0 then X :- X div 2 else X :- X*3+1;

Wrlteln(X);

end;

Write('Ok. Program stopped again.');

end.

It may interest you to know that it cannot be proved whether this

small and very simple program actually will stop for any integer!

Chapter 17
INCLUDING FILES

The fact that the TURBO editor performs editing only within memory

limits the size of source code handled by the editor. The I compiler
directive can be used to circumvent this restriction, as it provides the

ability to split the source code into smaller "lumps" and put it back

together at compilation time. The include facility also aids program

clarity, as commonly used subprograms, once tested and debugged,
may be kept as a "library·· of files from which the necessary files can

be included in any other program.

The syntax for the I compiler directive is:

{$I filename}

Where filename is any legal file name. leading spaces are ignored and

lower case letters are translated to upper case. If no file type is

specified, the default type .PAS is assumed. This directive must be

specified on a line by itself.

Examples:
{$Ifirst.pas}

{$I COMPUTE.MOD}
{$iStdProc }

A space must be left between the file name and the closing brace if

the file does not have a three-letter extension; otherwise the brace

will be taken as part of the name.

To demonstrate the use of the include facility, let us assume that in

your "library·· of commonly used procedures and functions you have a

file called STUPCASE.FUN. It contains the file StUpCase which is called
with a character or a string as parameter and returns the value of this

parameter with any lower case letters set to upper case.

File STUPCASE.FUN:

function StUpCase(St: AnyString): AnyString;
var I: Integer;

begin

INCLUDING FILES

for I :- 1 to Length(St} do

St[l] :- UpCase(St[l]};

StUpCase :- St

end;

Page 133

In any future program you write which requires this function to convert

strings to upper case letters, you need only include the file at
compilation time instead of duplicating it into the source code:

program Include Demo;
type

InData - string[80];

AnyString - string[255];
var

Answer: InData;
{$I STUPCASE.FUN}

begin
ReadLn(Answer};

Writeln(StUpCase(Answer)};
end.

This method is not only easier and saves space; it also makes program

updating quicker and safer, as any change to a "library" routine will

automatically affect all programs including this routine.

Since TURBO Pascal allows free ordering, and even multiple

occurrences, of the individual sections of the declaration part, you may

have, for example, a number of files containing various commonly used

type definitions in your "library" and include the ones required by
different programs.

All compiler directives except Band C are local to the file in which

they appear. That is, if a compiler directive is set to a different value

in an ,included file, it is reset to its original value upon return to the

including file. Band C directives are always global. Compiler
directives are described in Appendix C.

Include files cannot be nested, i.e., one include file cannot include yet
another file and then continue processing.

Chapter 18
OVERLA Y SYSTEM

The overlay system lets you create programs much larger than can be

accommodated by the computer's memory. The technique is to collect

a number of subprograms (procedures and functions) in one or more

files separate from the main program file, which will then be loaded

automatically one at a time into the same area in memory.

The following drawing shows a program using one overlay file with

five overlay subprograms collected into one overlay group, thus

sharing the same memory space in the main program:

Main program Overlay file

Main program code Overlay procedure 1

Overlay area Overlay procedure 2

Overlay procedure 3

Overlay procedure 4

Main program code Overlay procedure 5

Figure 18-1: Principle of Overlay System

OVERLAY SYSTEM Page 135

When an overlay procedure is called, it is automatically loaded into

the overlay area reserved in the main program. This "gap" is large

enough to accommodate the largest of the overlays in the group. The

space required by the main program is thus reduced by roughly the sum

of all subprograms in the group less the largest of them.

In the example above, overlay procedure 2 is the largest of the five

procedures and thus determines the size of the overlay area in the

main code. When it is loaded into memory, it occupies the entire

overlay area:

Main program Overlay file

Main program code Overlay procedure 1

i
{:-}: ::::: ::::::::::::::: ::::

:})

::::::::::: :. ,::::::::,::'.::::::::::::::::::::

iiim:i:
:::::: :: ::?:.I;!n::::::::!!!
:::::: .. t:::!::f>::, ~::: ::'::::.'

« .::::'::

Overlay procedure 3

Overlay procedure 4

Main program code Overlay procedure 5

Figure 18-2: Largest Overlay Subprogram Loaded

Page 136 OVERLA Y SYSTEM

The smaller subprograms are loaded into the same area of memory,

each startin.g at the first address of the overlay area. Obviously they

occupy only part of the overlay area; the remainder is unused:

Main program Overlay file

Main program code Overlay procedure 1

Overlay area Overlay procedure 2

Overlay procedure 4

Main program code Overlay procedure 5

Figure 18-3: Smaller Overlay Subprogram Loaded

As procedures 1, 3, 4, and 5 execute in the same space as used by

procedure 2, it is clear that they require no additional space in the main

program. It is also clear that none of these procedures must ever call

each other, as they are never present in memory simultaneously.

There could be many more overlay procedures in this group of

overlays; in fact the total size of the overlay procedures could

substantially exceed the size of the main program. And they would

still require only the space occupied by the largest of them.

The tradeoff for this extra room for program code is the addition of

disk access time each time a procedure is read in from the disk. With

good planning, as discussed on page 141, this time is negligible.

OVER LA Y SYSTEM Page 137

18.1. CREATING OVERLAYS

Overlay subprograms are created automatically, simply by adding the

reserved word overlay to the declaration of any procedure or file:

overlay procedure Initalize;

and

overlay function TimeOfDay: Time;

When the compiler meets such a declaration, code is no longer output

to the main program file, but to a separate overlay file. The name of

this file will be the same as that of the main program, and the type will

be a number designating the overlay group, ranging from 000 through

099.

Consecutive overlay subprograms will be grouped together, i.e., as

long as overlay subprograms are not separated by any other

declaration, they belong to the same group and are placed in the same

overlay file.

Example 1:
overlay procedure One;
begin

end;

overlay procedure Two;
begin

end;

overlay procedure Three;
begin

end;

These three overlay procedures will be grouped together and placed

in the same overlay file. If they are the first group of overlay
subprograms in a program, the· overlay file will be number 000.

Page 138 OVERLA Y SYSTEM

The three overlay procedures in the following example will be placed

in consecutive overlay files, .000 and .001, because of the declaration

of a non-overlay procedure Count separating overlay procedures Two
and Three .

. The separating declaration may be any declaration, for example a

dummy type declaration, if you want to force a separation of overlay

areas.

Example 2:

overlay procedure One;
begin

end;

overlay procedure Two;
begin

end;

procedure Count;
begin

end;

overlay procedure Three;
begin

end;

OVERLAY SYSTEM Page 139

A separate overlay area is reserved in the main program code for

each overlay group, and the following files will be created:

Main program Overlay files

file .000
Main program ~ode

Overlay procedure One

Overlay area 0 Overlay procedure Two

procedure Count file .001

Overlay area 1 Overlay procedure Thre

Main program code

Figure 18-4: Multiple Overlay Files

18.2. NESTED OVERLAYS

Overlay subprograms may be nested, i.e., an overlay subprogram may
itself contain overlay subprograms which may contain overlay
subprograms, etc.

Example 3:
program OverlayDemo;

overlay procedure One;

begin

end;

Page 140 OVERlA Y SYSTEM

overlay procedure Two;

overlay procedure Three;

begin

end;

begin

end;

In this example, two overlay files will be created. File .000 contains

overlay procedures One and Two, and an overlay area is reserved in

the main program to accommodate the larger of these. Overlay file

.001 contains overlay procedure Three, which is local to overlay

procedure Two, and an overlay area is created in the code of overlay

procedure Two:

Main program Overlay files

Main program code file .000

Overlay procedure One

Overlay area
file .001

Overlay procedure Two

Overlay area

Ov. proc. 3
Main program code Procedure code

Figure 18-5: Nested Overlay Files

18.3. AUTOMATIC OVERLAY MANAGEMENT

An overlay subprogram is loaded into memory only when called. On

each call to an overlay subprogram, a check is first made to see
whether that subprogram is already present in the overlay area. If not,

it will automatically be read in from the appropriate overlay file.

OVERLAY SYSTEM Page 141

18.4. PLACING OVERLAY FILES

During compilation, overlay files will be placed on the logged drive,

i.e., on the same drive as the main program file tCOM file).

During execution, the system normally expects to find its overlay files
on the logged drive. This may be changed as described on page 149.

18.5. EFFICIENT USE OF OVERLAYS

The overlay technique adds overhead to a program by adding some
extra code to manage the overlays, and by requiring disk reads during

execution. Overlays, therefore, should be carefully planned.

To avoid slowing down execution too much, an overlay subprogram

should not be called too often. If one is called often, it should at least

be called without intervening calls to other subprograms in the same

overlay file, to keep disk access to a minimum. The added time will of

course vary greatly, depending on the actual disk configuration. A 5~"

floppy will add much to the running time, a hard disk much less, and a

RAM disk, as used by many, very little.

To save as much space as possible in the main program, one group of

overlays should contain as many individual subprograms as possible.

Purely from the point of view of saving space, the more subprograms

you can put into a single overlay file, the better. The overlay space

used in the main program need only accommodate the largest of these

subprograms; the rest have a free ride in the same area of memory.

This must be weighed against the time considerations discussed above.

18.6. RESTRICTIONS IMPOSED ON OVERLAYS

18.6.1. DATA AREA

Overlay subprograms in the same group share the same area in

memory and thus cannot be present simultaneously. Therefore, they

~ must not call each other. Consequently, they may share the same data

area which further adds to the space saved when using overlays.

In example 1 on page 134, none of the procedures may call each

other. In example 2, however, overlay procedures One and Two may

Page 142 OVERLA Y SYSTEM

call overlay procedure Three, and overlay procedure Three may call
each of the other two, because they are in separate files and

consequently in separate overlay areas in the main program.

18.6.2. FORWARD DECLARATIONS

Overlay subprograms may not be forward declared. This restriction is

easily circumvented, however, by forward declaring an ordinary

subprogram which then in turn calls the overlay subprogram.

18.6.3. RECURSION

Overlay subprograms cannot be recursive. This restriction may be

circumvented by declaring an ordinary recursive subprogram which then

calls the overlay subprogram.

18.6.4. RUN-TIME ERRORS

Run-time errors occurring in overlays are found as usual, and an

address is issued by the error handling system. This address, however,
is an address within the overlay area, and there is no way of knowing

which overlay subprogram was actually active when the error
occurred.

For this reason, run-time errors in overlays can't be found readily with

the Options menu's "Find run-time error" facility. What 4'Find run-time

error" will point out is the first occurrence of code at the specified

address. This rna y be the place of the error, but the error might just

as easily occur in a subsequent subprogram within the same overlay
group.

This is not a serious limitation, however, because the type of error and

the way it occurs will most often indicate in which subprogram the

error happened. The way to locate the error precisely is then to place

the suspected subprogram as the first subprogram of the overlay

group. "Find run-time error" will then work.

The best thing to do is not to place subprograms in overlays

until they have been fully debugged!

Chapter 22
CP/M~80

This chapter describes features of TURBO Pascal specific to the 8-bit

CP IM-80 implementation. It presents two kinds of information:

1) Things you should know to make efficient use of TURBO

Pascal. Pages 143 through 155.

2) The rest of the chapter describes things which are only of

interest to experienced programmers, such as machine
language routines, technical aspects of the compiler, etc.

22.1. EXECUTE COMMAND

You will find an additional command on the main TURBO menu in the

CP IM-80 version: eXecute. It lets you run other programs from within

TURBO Pascal, for example copying programs, word processors - in

fact anything that you can run from your operating system. When
entering X, you are prompted:

Command: •

You may now enter the name of any program, which will then load and
run normally. Upon exit from the program, control is transferred back
to TURBO Pascal, and you return to the TURBO prompt > .

22.2. COMPILER OPTIONS

The 0 command selects the following menu, on which you may view

and change some default values of the compiler. It also provides a

helpful function to find run-time errors in programs compiled into object
code files.

Page 144

compile Memory

Com-:-file
cI-ln-file

command line Parameter:

Find run-time error Quit

Figure 22-1: Options Menu

22.2.1. MEMORY/COM FILE/CHN FILE

CP/M-BO

The three commands Mi, C, and H select the compiler mode, i.e., where

to put the code which results from the compilation.

Memory is the default mode. When active, code is produced in

memory and resides there ready to be activated by a Run command.

Com-file is selected by pressing C. The arrow moves to point to this

line. When active, code is written to a file with the same name as the

Work file (or Main file, if specified) and the file type .COM. This file

contains- the program code and Pascal run-time library, and may be

activated by typing its name at the console. Programs compiled this
way may be larger than programs· compiled in memory, as the program
code itself does not take up memory during compilation, and as

program code starts at a lower address.

cHain-file is selected by pressing H The arrow moves to point to this
line. When active, code is written to a file with the same name as the
Work file (or Main file, if specified) and the file type .CHN. This file

contains the program code but no Pascal library and must be activated

from another TURBO Pascal program with the Chain procedure (see
page 146).

When Com or cHn mode is selected, the menu is expanded with the

following two lines:

Start address: XXXX (min YYYY)

End address: XXXX (max YYYY)

Figure 22-2: Start and End Addresses

CP/M-BO Page 145

22.2.2. ST ART ADDRESS

The Start address specifies the address (in hexadecimal> of the first

byte of the code. This is normally the end address of the Pascal

library plus one, but may be changed to a higher address if you want

to set space aside, e.g., for absolute variables to be shared by a series

of chained programs.

When you enter an S, you are prompted to enter a new Start address.

If you just hit <RETURN>, the minimum value is assumed. Don't set the

Start address to anything less than the minimum value, as the code will

then overwrite part of the Pascal library.

22.2.3. END ADDRESS

The End address specifies the highest address available to the program

(in hexadecimal>. The value in parentheses indicates the top of the

TP A on your computer, i.e., BOO S minus one. The default setting is

700 to 1000 bytes less to allow space for the loader, which resides
just below the BOOS when executing programs from TURBO.

If compiled programs are to run in a different environment, the End

address may be changed to suit the TP A size of the system. If you
anticipate your programs to run on a range of different computers, it
will be wise to set this value relatively low, e.g., C 100 (48K), or even
A 100 (40K) if the program is to run under MP 1M.

When you enter an E, you are prompted to enter an End address. If
you just hit <RETURN>, the default value is assumed (i.e., top of TPA

less 700 to 1000 bytes). If you set the End address higher than this,

the resulting programs cannot be executed from TURBO, as they will

overwrite the TURBO loader; and if you set it higher than the top of

TPA, the resulting programs will overwrite part of your BOO S if run
on yur machine.

22.2.4. COMMAND LINE PARAMETERS

The P command lets you enter one or more parameters which are

passed to your program when running it in Memory mode, just as if

they had been entered on the command line. These parameters may

be accessed through the ParamCount and ParamStr functions.

Page 146 CP/M-80

22.2.5. FIND RUNTIME ERROR

When you run a program compiled in memory, and a run-time error

occurs, the editor is invoked, and the error is automatically pointed

out. This, of course, is not possible if the program is in a .COM file or

a .CHN file. When a run-time error is found, TURBO prints out the

error code and the value of the program counter at the time of the

error, e.g.:

Run-time error 01, PC-1 B56

Program aborted

Figure 22-3: Run-time Error Message

To find the place in the source text where the error occurred, enter

the F command on the Options menu. When prompted for the

address, enter the address given by the error message:

Enter PC: 1 B 56

Figure 22-4: Find Run-time Error

The place in the source text is now found and pointed out exactly as

if the error had occurred while running the program in memory.

22.3. ST ANDARD IDENTIFIERS

The following standard identifiers are unique to the CP/M-80
implementation:

Bios
BiosHl

Bdos
BdosHl

RecurPtr

StackPtr

22.4. CHAIN AND EXECUTE

TURBO Pascal provides two standard procedures, Chain and Execute,
which allow you to activate other programs from a TURBO program.

The syntax of these procedure calls is:

CP/M-8D

Chain(FiIVar)

Execute(FilVar)

Page 147

where FilVar is a file variable ef any type, previeusly assigned to. a

disk file with the standard precedure Assign. If the file exists, it is

leaded into. memery and executed.

The Chain precedure is used enly to activate special TURBO Pascal

.CHN files, i.e., files cempiled with the cI-ln-file eptien selected en the

Optiens menu (see page 144). Such a file centains only pregram cede,

no. Pascal library. It is leaded into. memery and executed at the start

address ef the current pregram, i.e., the address specified when the

current pregram was cempiled. It then uses the Pascal library already

present in memery. Thus, the current pregram and the chained

pregram must use the same start address.

The Execute precedure may be used to. execute any .COM file, i.e., any

file containing executable cede. This ceuld be a file created by

TURBO Pascal with the Cem-eptien selected en the Optiens menu

(see page 144). The file is leaded and executed at address $100, as

specified by the CP/M standard.

If the disk file dees net exist, an I/O errer eccurs. This errer is

treated as described en page 103. If the I cempiler directive is

passive ({$I-}), pre gram executien centinues with the statement

fellewing the failed Chain er Execute statement, and the IOresult
functien must be called prier to. further I/O.

Data can be transferred frem the current pregram to the chained

program either by shared global variables or by absolute address
variable s.

To ensure overlapping, shared global variables should be declared as
the very first variables in both pregrams, and they must be listed in the

same erder in both declaratiens. Furthermere, beth programs must be

compiled to. the same memory size (see page 145). When these
conditions are satisfied, the variables will be placed at the same

address in memory by beth programs, and as TURBO Pascal dees net

autematically initialize its variables, they may be shared.

Page 148 CP/M-80

Example:

Program MAIN COM:

program Main;

var
Txt: string[80];

CntPrg: file;
begin

Write{'Enter any text: '); Readln(Txt);

Assign(CntPrg, 'ChrCount.Chn');
Chain(CntPrg);

end.

Program CHRCOUNT.CHN:

program ChrCount;

var

Txt: string[80];

NoOfChar, NoOfUpc, I: 'Integer;
begin

NoOfUpc :- 0;

NoOfChar :- Length<Txt);

for I :- 1 to length(Txt) do

if Txt[l] in ['A' .. 'Z'] then NoOfUpc .

Succ{NoOfUpc);

Write('No of characters in entry: '; NoOfChar);

Writeln('. No of upper-case characters: " NoOfUpc, '.';

end.

If you want a TURBO program to determine whether it was invoked

by eXecute or directly from the command line, you should use an

absolute vwriable at address $80. This is the command line length

byte, and when a program is called from CP/M, it contains a value

between 0 and 127. When eXecuting a program, therefore, the

calling program should set this variable to s,omething higher than 127.

When you then check the variable in the called program, a value

between 0 and 127 indicates that the program was called from CP 1M,
a higher value that it was called from another TURBO program.

Note: neither Chain nor Execute can be used in direct mode, i.e., from

a program run with the compiler options switch in position Memory
(page 144).

CP/M-80 Page 149

22.5. OVERLAYS

During execution, the system normally expects to find its overlay files

on the logged drive. The OvrDrive procedure may be used to change
this default value.

22.5.1. OVRDRIVE PROCEDURE

Syntax OvrDrive(Drive)

where Drive is an integer expression specifying a drive (0 • the

logged drive, 1 • A:, 2 • B:, etc.). On subsequent calls to overlay
files, the files will be. expected on the specified drive. Once an

overlay file has been opened on one drive, future calls to the same file

will look the same drive.

Example:

program OvrT est;

overlay procedure ProcA;

begin

Writeln('Overlay A');

end;

overlay procedure ProcB;

begin

Writeln('Overlay B')i

end;

procedure DummYi
begin

{Dummy procedure to separate the overlays
into two groups}

end;

overlay procedure ProcCi
begin

Writeln('Overlay C');
end;

Page 150

begin
OvrDrive(2);

ProcA;
OvrDrive(O);

ProcC;
OvrDrive(2);

ProcB;
end;

CP/M-80

The first call to OvrDrive specifies overlays to be sought on the B:
drive. The call to ProcA therefore causes the first overlay file
(containing the two overlay porcedures ProcA and ProcH> to be

opened here.

Next, the OvrDrive(O) statement specifies that following overlays are

to be found on the logged drive. The call to Proce opens the second

overlay file here.

The following ProcB statement calls an overlay procedure in the first

overlay file; and to ensure that it is sought on the B: drive, the

OvrDrive(2) statement must be executed before the call.

22.6. FILES

22.6.1. FILE NAMES

A file name in CP 1M consists of one through eight letters or digits,

optionally followed by a period and a file type of one through three

letters or digits:

Drive:Name.Type

22.6.2. TEXT FILES

The Seek and Flush procedures and the FilePos and FileSize functions

are not applicable to CP 1M text files.

22.7. ABSOLUTE VARIABLES

Variables may be declared to reside at specific memory addresses,
and are then called absolute. This is done by adding the reserved

CP/M-BO Page 151

word absolute and an address expressed by an integer constant to
the variable declaration.

Example:

var

IObyte: Byte absolute $0003;
CmdLine: string[127] absolute $80;

Absolute may also be used to declare a variable "on top" of another
variable, i.e., that a variable should start at the same address as
another variable. When absolute is followed by the variable (or

parameter) identifier, the new variable will start at the address of that
variable (or parameter>.

Example:

var

Str: string[32];

StrLen: Byte absolute Str;

~ The above declaration specifies that the variable StrLen should start at
the same address as the variable Str, and since the first byte of a

string variable gives the length of the string, StrLen will contain the

length of Str. Notice that only one identifier may be specified in an

absolute declaration, so the construct:

Identl, Ident2: Integer absolute $8000

is illegal. Further details on space allocation for variables are given on·
pages 159 and 169.

22.B. ADDR FUNCTION

Syntax: Addr(Name);

Returns the address in memory of the first byte of the type, varialbe,

procedure, or function with the identifier Name. If Name is an array, it

may be subscripted, and if Name is a record, specific fields may be

selected. The value returned is of type Integer.

Page 152 CP/M-80

22.9. PREDEFINED ARRAYS

TURBO Pascal offers two predefined arrays of type Byte, called Mem
and Port, which are used to access CPU memory and data ports

directly.

22.9.1. MEM ARRAY

The predeclared array Mem is used to access memory. Each

component of the array is a Byte, and indexes correspond to
addresses in memory. The index type is Integer. When a value is

assigned to a component of Mem, it is stored at the address given by

the index expression. When the Mem array is used in an expression,

the byte at the address specified by the index is used.

Examples:
Mem[WsCursor] :- 2;

Mem[WsCursor+1] :- $1B;

Mem[WsCursor+2] :- Ord{' '};
IObyte :- Mem[3];
Mem[Addr+Offset] :- Mem[Addr];

22.9.2. PORTARRA Y

The Port array is used to access the data ports of the Z-80 CPU.

Each element of the array represents a data port w,ith indexes

corresponding to port numbers. As data ports are selected by 8-bit

addresses, the index type is Byte. When a value is assigned to a

component of Port, it is output to the port specified. When a
component of Port is referenced in an expression, its value is input

from the port specified.

The use of the port array is restricted to assignment and reference in

expressions only, i.e., components of Port cannot function as variable

parameters to procedures and functions. Furthermore, operations

referring to the entire Port array {reference without index} are not
allowed.

CP/M-80 Page 153

22.10. ARRAY SUBSCRIPT OPTIMIZATION

The X compiler directive allows the programmer to select whether

array subscription should be optimized with regard to execution speed

or to code size. The default mode is active, i.e., {$X+}, which causes

execution speed optimization. When passive, i.e., {$X-}, the code

size is minimized.

22.11. WITH STATEMENTS

The default "depthtt of nesting of With statements is 2, but the W

directive may be used to change this value to between 0 and 9. For

each block, With statements require two bytes of storage for each

nesting level allowed. Keeping the nesting to a minimum may thus
greatly affect the size of the data area in programs with many

subprograms.

22.12. POINTER-RELATED ITEMS

22.12.1. MEMAVAIL

The standard function MemAvail is available to determine the available

space on the heap at any given time. The result is an Integer, and if

more than 32767 bytes are available, MemAvail returns a negative
number. The correct number of free bytes is then calculated as

65536.0 + MemAvail. Notice the use of a real constant to generate a

Real result, as the result is greater than MaxInt. Memory management

is discussed in futher detail on page 169.

22.12.2. POINTERS AND INTEGERS

The standard functions Ord and Ptr provide direct control of the

address contained in a pointer. Ord returns the address contained in

its pointer argument as an Integer, and Ptr converts its Integer
argument into a pointer which is compatible with all pointer types.

I These functions are extremely valuable in the hands of an experienced

programmer as they allow a pointer to point to anywhere in memory.
If used carelessly, however, they are very dangerous, as a dynamic

variable may be made to overwrite other variables, or even program

code.

Page 154 CP/M-BO

22.13. CP/M FUNCTION CALLS

For the purpose of calJingCP/M BOOS and BIOS routines, TURBO

Pascal introduces two standard procedures, Bdos and Bios, and four

standard functions Bdos, BdosHL, Bios, and BiosHL.

Details on BOOS and BIOS routines are found in the CP/M Operating
System Manual published by Digital Research.

22.13.1. BDOS PROCEDURE AND FUNCTION

Syntax: Bdos(Func{,Param});

The Bdos procedure is used to invoke CP 1M BOO S routines. Func and

Param are integer expressions. Func denotes the number of the called

routine, and is loaded into the C register. Param is optional, and

denotes a parameter which is loaded into the DE register pair. A call

to address 5 then invokes the BOOS.

The Bdos function is called like the procedure, and returns an Integer
result which is the value returned by the BOOS in the A register.·

22.13.2. BDOSHL FUNCTION

Syntax: BdosHUFunc{,Param});

This function is exactly similar to the Bdos function above, except that
the result is the value returned in the HL register pair.

22.13.3. BIOS PROCEDURE AND FUNCTION

Syntax: Bios(Func{,Param});

The Bios procedure is used to invoke BI,OS routines. Func and Param
are integer expressions. Func denotes the number of the called
routine, with 0 meaning the WBOOT routine, 1 the CONST routine,

etc. That is, the address of the called routine is Func*3 plus the

WBOOT address contained in addresses 1 and 2. Param is optional
and denotes a parameter which is loaded into the Be register pair

before the call.

CP/M-80 Page 155

The Bios function is called like the procedure and returns an integer

result which is the value returned by the BIOS in the A register.

22.13.4. BIOSHl FUNCTION

Syntax: BiosHL<Func{,Param});

This function is exactly similar to the Bios function above, except that

the result is the value returned in the HL register pair.

22.14. USER-WRITTEN 1/0 DRIVERS

For some applications it is practical for a programmer to define his

own input and output drivers, i.e., routines which perform input and
output of characters to and from external devices. The following

drivers are part of the TURBO environment, and used by the standard

I/O drivers (although they are not available as standard procedures or
functions):

function

function

procedure

procedure

procedure

function

procedure

function

ConSt: boolean;

ConIn: Char;

ConOut(Ch: Char);

LstOut(Ch: Char>;

AuxOut(Ch: Char);

AuxI n: Char;

UsrOut(Ch: Char);

UsrIn: Char;

The ConSt routine is called by the function KeyPressed, the ConIn and
ConOut routines are used by the CON:, TRM:, and KBD: devices, the

LstOut routine is used by the LST: device, the AuxOut and AuxIn
routines are used by the AUX: device, and the UsrOut and UsrIn
routines are used by the USR: device.

By default, these drivers use the corresponding BIO S entry points of

the CP 1M operating system, i.e., ConSt uses CONST, Conln uses

CONIN, ConOut uses CONOUT, LstOut uses LIST, AuxOut uses

PUNCH, AuxIn uses READER, UsrOut uses CONOUT, and UsrIn uses

CONIN. This, however, may be changed by the programmer by
assigning the address of a driver procedure or function defined by the

programmer to one of the following standard variables:

Page 156

Variable

ConStPtr
ConInPtr
ConOutPtr
LstOutPtr
AuxOutPtr
AuxInPtr
UsrOutPtr
UsrInPtr

Contains the address of the

ConSt function

ConIn function

ConOut procedure

LstOut procedure
AuxOut procedure

AuxIn function

UsrOut procedure
Usrl n function

CP/M-80

A user-defined driver procedure or driver function must match the

definitions given above. That is, a ConSt driver must be a Boolean
function, a ConIndriver must be a Char function, etc.

22.15. EXTERNAL SUBPROGRAMS

The reserved word external is used to declare external procedures

and functions, typically procedures and functions written in machine
code.

An external subprogram has no block, i.e., no declaration part and no

statement part. Only the subprogram heading is specified, immediately

followed by the reserved word external and an integer constant

defining the memory address of the subprogram:

procedure OiskReset; external $ECOO;

function IOstatus: boolean; external $0123

Parameters may be passed to external subprograms, and the syntax is

exactly the same as that of calls to ordinary procedures and functions:

procedure Plot(X,Y: Integer); external $F003;
procedure QuickSort(var list: PartNo); external S 1COO;

Parameter passing to external subprograms is discussed further on
page 165.

CP/M-80 Page 157

22.16. IN-LINE MACHINE CODE

TURBO Pascal features the inline statement as a very convenient way

of inserting machine-code instructions directly into the program text.

An inline statement consists of the reserved word inline followed by

one or more code elements separated by slashes and enclosed in

parentheses.

A code element is built from one or more data elements, separated by

plus (+) or minus (-) signs. A data element'is either an integer constant,

a variable identifier, a procedure identifier, a function identifier, or a

location counter reference. A location counter reference is written as

an asterisk (*).

Example:
inline (10/$2345/count+ 1/sort-*+2);

Each code element generates one byte or one word (two bytes) of

code. The value of the byte or the word is calculated by adding or

subtracting the values of the data elements according to the signs that

separate them. The value of a variable identifier is the address (or

offset) of the variable. The value of a procedure or function identifier

is the address (or offset) of the procedure or function. The value of a

location counter reference is the address (or offset) of the location

counter, i.e., the address at which to generate the next byte of code.

A code element will generate one byte of code if it consists of

integer constants only, and if its value is within the 8-bit range

(0 .. 255). If the value is outside the 8-bit range, or if the code element

refers to variable, procedure, or function identifiers, or if the code

element contains a location counter reference, one word of code is

generated (least Significant byte first).

The '<' and '>' characters may be used to override the automatic size

selecti on described above. If a code element starts with a '<'

character, only the least significant byte of the value is coded, even if

it is a 16-bit value. If a code element starts with a '>' character, a

word is always coded, even though the most Significant byte is zero.

Example:

inline~ «$1234/>$44);

Page 158 CP/M-80

This inline statement generates three bytes of code: $34, $44, $00.

The following example of an inline statement generates machine code

that will convert all characters in its string arugment to upper case.

procedure UpperCase (var Strg: Str); {Str is type string[255]}
{$A+}

begin
inline ($2A/Strgl { lO Hl,(Strg) }

$461 { lO B,(HU }

$041 { INC B }

$051 { l1: DEC B }

$CA/*+201 { jp Z, l2 }

$231 { INC Hl }

$7EI { lO A,(HU }

$FE/$611 { CP 'a' }

$OA/*-91 { jp C,l1 }

$FE/$7BI { CP 'z'+1 }

$02/*-141 { jp NC,l1 }

$06/$20/ { SUB 20H }

$771 { lO (HU,A }

$C3/*-2Q); { jp l1 }

{ l2: EQU $ }

end;

Inline statements may be freely mixed with other statements

throughout the statement part of a block, and inline statements may

use all CPU registers. Note, however, that the contents of the stack

pointer register (SP) must be the same on exit as on entry.

22.17. INTERRUPT HANDLING

The TURBO Pascal run-time package and the code generated by the
compiler are both fully interruptable. Interrupt service routines must
preserve all, registers used.

If required, interrupt service procedures may be written in Pascal.
Such procedures should always be compiled with the A compiler
directive active ({$A+}), they must not have parameters, and they

must themselves insure that all registers used are preserved; This is
done by placing an inline statement with the necessary PUSH

CP/M-BO Page 159

instructions at the very beginning of the procedure, and another inline

statement with the corresponding POP instructions at the very end of
the procedure. The last instruction of the ending inline statement

I should be an EI instruction (SFB) to enable further interrupts. If daisy

chained interrupts are used, the inline statement may also specify a
RETI instruction (SED, S40), which will override the RET instruction

generated by the compiler.

The general rules for register usage are that integer operations use

only the AF, BC, DE, and HL registers <other operations may use IX
and IY), and real operations use the alternate registers.

An interrupt service procedure should not employ any I/O operations

using the standard procedures and functions of TURBO Pascal, as

these routines are not re-entrant. Also note that BOO S calls <and in
some instances BIO S calls, depending on the specific CP 1M

implementaion) should not be performed from interrupt handlers, as

these routines are not re-entrant.

I The programmer may disable and enable interrupts throughout a

program using 01 and EI instructions generated by inline statements.

If mode 0 (1M 0) or mode 1 (1M 1) interrupts are employed, it is the

responsibility of the programmer to initialize the restart locations in the

base page (note that RST 0 cannot be used, as CP 1M uses locations 0
through 7).

If mode 2 (1M 2) interrupts are employed, the programmer should

generate an initialized jump table (an array of integers) at an absolute
address, and initialize the I register through a inline statement at the

beginning of the program.

22.1B. INTERNAL DATA FORMA TS-

In the following descriptions, the symbol @ denotes the address of the

first byte occupied by a variable of the given type. The standard

I function Addr may be used to obtain this value for any variable.

Page 160 CP/M-BO

22.1B.1. BASIC DATA TYPES

The basic data types may be grouped into structures (arrays, records,

and disk files), but this structuring will not affect their internal formats.

22.1B.1.1. SCALARS

The following scalars are all stored in a single byte: Integer subranges
with both bounds in the range 0 .. 255, Booleans,Chars, and declared
scalars with less than 256 possible values. This byte contains the

ordinal value of the variable.

The following scalars are all stored in two bytes: Integers, Integer
subranges with one or both bounds not within the range 0 .. 255, and

declared scalars with more than 256 possible values. These bytes
contain a 2's complement 16-bit value with the least significant byte

stored first.

22.1B.1.2. REAlS

Reals occupy 6 bytes, giVing a floating point value with a 40-bit

mantissa and an 8-bit 2's exponent. The exponent is stored in the first

byte and the mantissa in the next five bytes with the least significant

byte first:

@ Exponent
@ + 1 LSB of mantissa

@ + 5 MSB of mantissa

The exponent uses binary format with an offset of $80. Hence, an

exponent of $84 indicates that the value of the mantissa is to be

multiplied by 2"($84-$80) • 2"4 • 16. If the exponent is zero, the

floating point value is considered to be zero.

The value of the mantissa is obtained by dividing the 40-bit unsigned

integer by 2"40. The mantissa is always normalized, i.e., the most

significant bit (bit 7 of the fifth byte) should be interpreted as a 1. The

sign of the mantissa is stored in this bit, a 1 indicating that the number

is negative, and a 0 indicating that the number is positive.

CP/M-BO Page 161

22.1B.1.3. STRINGS

A string occupies the number of bytes corresponding to one plus the

maximum length of the string. The first byte contains the current

length of the string. The following bytes contain the actual characters,

with the first character stored at the lowest address. In the table

shown below, L denotes the current length of the string, and Max
denotes the maximum length:

@

@ + 1
@+2

@ + L
@ + L + 1

@ + Max

22.1B.1.4. SETS

Current length(L)

First character
Second character

Last character

Unused

Unused

An element in a set occupies one bit, and as the maximum number of
elements in a set is 256, a set variable will never occupy more than 32
bytes (256/8).

If a set contains less than 256 elements, some of the bits are bound to

be zero at all times and need therefore not be stored. In terms of

memory efficiency, the best way to store a set variable of a given

type would then be to "cut off" all insignificant bits, and rotate the
remaining bits so that the first element of the set would occupy the
first bit of the first byte. Such rotate operations, however, are quite

slow, and TURBO therefore employs a compromise: only bytes which
are statically zero (j.e., bytes of which no bits are used) are not

stored. This method of compression is very fast and in most cases as

memory-efficient as the rotation method.

The number of bytes occupied by a set variable is calculated as (Max
div 8) - (Min div 8) + 1, where Max and Min are the upper and lower

bounds of the base type of that set. The memory address of a

specific element E is:

Page 162

MemAddress • @ + (E div 8) - (Mill div 8)

and the bit address within the byte at MemAddress is:

BitAddress • E mod 8

where E denotes the ordinal value of the element.

22.1B.1.5. FILE INTERFACE BLOCKS

The table below shows the format of a file interface block:

@+O Flags byte.
@ + 1 Character buffer.
@+2 Sector buffer pointer (LSB).
@ + 3 Sector buffer pointer (MSB).
@+4 Number of records (L SB).
@ + 5 Number of records (MSB).
@+6 Record length (LSB).
@+7 Record length (M SB).
@+8 Current record (LSB).
@+9 Current record (MSB).
@+ 10 Unused.
@+ 11 Unused.
@+ 12 First byte of CP/M FCB.

@ + 47 Last byte of CP/M FeB.
@ + 48 First byte of sector buffer.

@ + 175 Last byte of sector buffer.

The format of the flags byte at @ + 0 is:

Bit 0 .. 3
Bit 4

Bit 5

Bit 6

Bit 7

File type.
Read semaphore.

Write semaphore.

Output flag.

Input flag.

CP/M-BO

File type 0 denotes a disk file, and 1 through 5 denote the TURBO

Pascal logical I/O devices (CON:, KBD:, LST:, AUX:, and USR:). For

CP/M-80 Page 163

typed files, bit 4 is set if the contents of the sector buffer are

undefined, and bit 5 is set if data has been written to the sector

buffer. For text files, bit 5 is set if the character buffer contains a

pre-read character. Bit 6 is set if output is allowed, and bit 7 is set if

input is allowed.

The sector buffer pointer stores an offset (0 .. 127) in the sector buffer

at @ + 48. For typed and untyped files, the three words from @ + 4 to

@ + 9 store the number of records in the file, the record length in

bytes, and the current record number. The FIB of an untyped file has

no sector buffer, and so the sector buffer ponter is not used.

When a text file is assigned to a logical device, only the flag's byte

and the character buffer are used.

22.18.1.6. POINTERS

A pointer consists of two bytes containing a 16-bit memory address,

and it is stored in memory using the byte-reversed format, i.e., the
least significant byte is stored first. The value nil corresponds to a
zero word.

22.18.2. DATA STRUCTURES

Data structures are built from the basic data types using various
struc turing methods. Three different structuring methods exist:

arrays, records, and disk files. The structuring of data does not in any

way affect the internal formats of the basic data types.

22.18.2.1. ARRAYS

The components with the lowest index values are stored at the

lowest memory address. A multi-dimensional array is stored with the
rightmost dimension increasing first, e.g., given the array

Board: array[1 .. 8, 1 .. 8] of Square

you have the following memory layout of its components:

Page 164

Lowest address:

Highest address:

22.1B.2.2. RECORDS

Board [1,1]

Board [1,2]

Board [1,8]

Board [2,1]
Board [2,2]

Board [8,8]

CP/M-BO

The first field of a record is stored at the lowest memory address. If

the record contains no variant parts, the length is given by the sum of

the lengths of the individual fields. If a record contains a variant, the
total number of bytes occupied by the record is given by the length of
the fixed part plus the length of the largest of its variant parts. Each

variant starts at the same memory address.

22.18.2.3. DISK FILES

Disk files are different from other data structures in that data is not

stored in internal memory but in a file on an external device. A disk
file is controlled through a file interface block (FIB) as described on
page 162. In general there are two different types of disk files:

random-access files and text files.

22.1B.2.3.1. RANDOM-ACCESS FILES

A random-access file consists of a sequence of records, all of the

same length and same internal format .. To optimize the file-storage

capacity ,the records of a file are totally contiguous. The first four

bytes of the first sector of a file contains the number of records in the

file and the length of each record in bytes. The record of the file is

stored starting at the fourth byte.

sector 0, byte 0: Number of records (LSB)

sector 0, byte 1: Number of records (MSB)

sector 0, byte 2: Record length (LSB)

sector 0, byte 3: Record length (MSB)

CP/M-BO Page 165

22.1B.2.3.2. TEXT FILES

The basic components of a text file are characters, but a text file is

subdivided into lines. Each line consists of any number of characters

ended by a CR/LF sequence (ASCII $OO/$OA). The file is terminated
by a Ctrl-Z (ASCII $1A).

22.1B.3. PARAMETERS

Parameters are transferred to procedures and functions via the Z-BO
stack. Normally, this is of no interest to the programmer, as the

machine code generated by TURBO Pascal will automatically PUSH

parameters onto the stack before a call, and POP them at the

beginning of the subprogram. However, if the programmer wishes to

use external subprograms, these must POP the parameters from the
stack themselves.

On entry to an external subroutine, the top of the stack always

contains the return address (a word). The parameters, if any, are

located below the return address, i.e., at higher addresses on the

stack. Therefore, to access the parameters, the subroutine must first

POP off the return address, then all the parameters, and finally it must

restore the return address by PUSHing it back onto the stack.

22.1B.3.1. VARIABLE PARAMETERS

With a variable {var> parameter, a word is transferred on the stack

giving the absolute memory address of the first byte occupied by the
actual parameter.

22.1B.3.2. VALUE PARAMETERS

With value parameters, the data transferred on the stack depends

upon the type of the· parameter, as described in the following sections.

22.1B.3.2.1. SCALARS

Integers, Booleans, Chars and declared scalars are transferred on the

stack as a word. If the variable occupies only one byte when it is

stored, the most significant byte of the parameter is zero. Normally, a

word is popped from the stack using an instruction like POP HL.

Page 166 CP/M-BO

22.1B.3.2.2. REAlS

A real is transferred on the stack using six bytes. If these bytes are

popped using the instruction sequence:

POP HL

POP DE

POP BC

then L will contain the exponent, H the fifth <least significant) byte of
the mantissa, E the fourth byte, 0 the third byte, C the second byte,

and B the first (most significant) byte.

22.1B.3.2.3. STRINGS

When a string is at the top of the stack, the byte pointed to by SP
contains the length of the string. The bytes at addresses SP + 1

through SP + Ii (where n is the length of the string) contain the string,

with the first character stored at the lowest address. The following

machine-code instructions may be used to pop the string at the top of
the stack and store it in StrBu/:

LO OE,StrBuf
LO HL,O
LO B,H
ADD HL,SP

LO C,(HL)

INC BC
LOIR
LO SP,HL

22.1B.3.2.4. SETS

A set always occupies 32 bytes on the stack (set compression only

applies to the loading and storing of sets). The following machine

code instruction may be used to pop the set at the top of the stack

and store it in SetBu/:

CP/M-BO Page 167

LD DE,SetBuf

LD HL,O

ADD HL,SP

LD BC,32

LDIR

LD SP,HL

This will store the least significant byte of the set at the lowest

address in SetBuf.

22.18.3.2.5. POINTERS

A pointer value is transferred on the stack as a word containing the

memory address of a dynamic variable. The value nil corresponds to a

zero word.

22.18.3.2.6. ARRAYS AND RECORDS

Even when used as value parameters, Array and Record parameters
are not actually pushed onto the stack. Instead, a word containing the

address of the first byte of the parameter is transferred. It is then the

responsibility of the subroutine to pop this word, and use it as the

source address in a block copy operation.

22.18.4. FUNCTION RESULTS

User-written external functions must return their results exactly as

specified in the following:

Values of scalar types must be returned in the HL register pair. If the

type of the result is expressed in one byte, then it must be returned in

L, and H must be zero .

Reals must be returned in the BC, DE, and HL register pairs. B, C, D, E,

and H must contain the mantissa (most significant byte in B), and L must

contain the exponent.

Strings and sets must be returned on the top of the stack in the

formats described on page 166.

Pointer values must be returned in the HL register pair.

Page 168 CP/M-80

22.18.5. THE HEAP AND THE STACKS

As indicated by the memory maps in previous sections, three stack-like

structures are maintained during execution of a program: The heap,
the CPU stack, and the recursion stack.

The heap is used to store dynamic variables, and is controlled with the

standard procedures New, Mark, and Release. At the beginning of a

program, the heap pointer H eapPtr is set to the address of the bottom

of free memory, Le., the first free byte after the object code.

The CPU stack is used to store intermediate results during evaluation

of expressions and to transfer parameters to procedures and functions.

An active for statement also uses the CPU stack, and occupies one

word. At the beginning of a program, the CPU-stack pointer StackPtr
is set to the address of the top of free memory.

The recursion stack is used only by recursive procedures and function,

i.e., procedures and functions compiled with the passive ({$A-}) A

compiler directive. On entry to a recursive subprogram it copies its

work space onto the recursion stack, and on exit the entire work

space is restored to its original state. The default initial value of
RecurPtr at the beginning of a program is 1K ($400) bytes below the
CPU-stack pointer.

Because of this technique, variables local to a subprogram must not be

used as var parameters in recursive calls.

The pre-defined variables

HeapPtr:
RecurPtr:
StackPtr:

The heap pointer,
The recursion-stack pointer, and

The CPU-stack pointer

allow the programmer to control the position of the heap and the
stacks.

The type of these variables is Integer. HeapPtr and RecurPtr may be
used in the same context as any other Integer variable, but StackPtr
may only be used in assignments and expressions.

CP/M-BO Page 169

When these variables are manipulated, always make sure that they

point to addresses within free memory, and that:

HeapPtr < RecurPtr < StackPtr

Failure to adhere to these rules will cause unpredi~table, perhaps fatal,

results.

Needless to say, assignments to the heap and stack' pointers must

never occur once the stacks or the heap are in use.

On each call to the procedure New, and on entering a recursive

procedure or function, the system checks for collision between the

heap and the recursion stack, i.e., checks whether HeapPtr is less than

RecurPtr. If not, a collision has occurred, which results in an execution

error.

Note that no checks are made at any time to insure that the CPU

stack does not overflow into the bottom of the recursion stack. For

this to happen, a recursive subroutine must call itself some 300-400

times, which must be considered a rare situation. If, however, a

program requires such nesting, the following statement executed at

the beginning of the program block will move the recursion stack

pointer downwards to create a larger CPU stack:

RecurPtr :- StackPtr - 2 • MaxDepth - 512;

where MaxDepth is the maximum required depth of calls to the

recursive subprogram(s). The extra approximately 512 bytes are

needed as a margin to make room for parameter transfers and

intermediate results during the evaluation of expressions.

22.19. MEMORY MANAGEMENT

22.19.1. MEMORY MAPS

The following diagrams illustrate the contents of memory at different

stages of working with the TURBO system. Solid lines indicate fixed

boundaries (j.e., determined by amount of memory, size of your CP 1M,
version of TURBO, etc.>, whereas dotted lines indicate boundaries

which are determined at run-time (e.g., by the size of the source text,

Page 170 CP/M-BO

and by possible user manipulation of various pointers, etc.>. The sizes

of the segments in the diagrams do not necessarily reflect the amounts

of memory actually consumed.

22.19.1.1. COMPILATION IN MEMORY

During compilation of a program in memory (Memory-mode on compiler

Options menu, see page 143), the memory is mapped as follows:

- - - - - - - - - - - - - - - - -,

0000

CP /M and run-time workspace

Pascal Library

TURBO interface, editor,

and compiler

Error messages, optional

Source text

Object code growing upward

t--__________ -+_t Symbol table growing downward

CPU stack growing downward

CP/M

HighMem

Figure 22-5: Memory map during compilation in memory

If the error-message file is not loaded when starting TURBO, the

source text starts that much lower in memory. When the compiler is

invoked, it generates object code working upwards from the end of
the source text.

CP/M-BO Page 171

The CPU stack works downwards from the logical top of memory, and

the compiler's symbol table works downwards from an address 1K

($400 bytes) below the logical top of memory.

22.19.1.2. COMPILATION TO DISK

During compilation to a .COM or .CHN file (Com-mode or cHn-mode

on compiler Options menu, see page 143), the memory looks much as
during compilation in memory (see preceding section) except that

generated object code does not reside in memory but is written to a
disk file. Also, the code starts at a higher address (right after the

Pascal library instead of after the source text). Compilation of much

larger programs is thus possible in this mode.

0000

CP /M and run-time workspace

Pascal Library

TURBO interface, editor,
and compiler

Error messages, optional

Source text

Symbol table growing downward

CPU stack growing downward

CP/M

HighMem

Figure 22-6: Memory map during compilation to a file

Page 172 CP/M-80

22.19.1.3. EXECUTION IN MEMORY

When a program is executed in direct, or memory mode (j.e., the

Memory-mode on compiler Options menu is selected, see page 143),

the memory is mapped as follows:

- - - - - - - - - - - - - - - - -.
_________________ t

_________________ t

0000
CP /M and run-time workspace

Pascal Library

TURBO interface, editor,

and compiler

Error messages, optional

Source text

Object code

Default initial value of HeapPtr
Heap growing upward

Recursion stack growing downward
Default initial value of RecurPtr
CPU stack growing downward
Default initial state of StackPtr

Program var.s growing downward
CP/M

HighMem

Figure 22-7: Memory map during execution in direct mode

When a program is compiled, the end of the object code is known.

The heap pointer HeapPtr is set to this value by default, and the heap

grows from here and upwards in memory towards the recursion stack.

The maximum memory size is BOOS minus one (indicated on the

compiler Options menu).. Program variables are stored from this
address and downwards.

CP/M-BO Page 173

The end of the variables is the "top of free memory", which is the

initial value of the CPU stack pointer StackPtr. The CPU stack grows
downwards from here towards the position of the recursion stack

pointer RecurPtr, $400 bytes lower than StackPtr. The recursion stack

grows from here downwards towards the heap.

22.19.1.4. EXECUTION OF A PROCRAM FILE

When a program file is executed <either by the Run command with the

Memory mode on the compiler Options menu selected, by an eXecute

command, or directly from CP/M), the memory is mapped as follows:

- - - - - - - - - -- - - - - - -~

_________________ t

_________________ t

_________________ t

Loader

0000

CP /M and run-time workspace

Pascal Library

Default program start address

Object code

Default initial value of H eapPtr
Heap growing upward

Recursion stack growing downward
Default initial value of RecurPtr
CPU stack growing downward
Default initial state of StackPtr

Program vars. growing downward
Default end address
Maximum memory size

CP/M
HighMem

Figure 22-8: Memory map during execution of a program file

Page 174 CP/M-80

This map resembles the previous, exept for the absence of the TURBO

interface, editor, and compiler <and possible error messages) and of

the source text. The default program start address (shown on the

compiler Options menu) is the first free byte after the Pascal runtime

library. This value may be manipulated with the Start address command

of the compiler Options menu, e.g., to create space for absolute

variables and/or external procedures between the library and the

code. The maximum memory size is BOO S minus one; and the default

value is determined by the BOO S location on the computer in use.

If programs are to translated for other systems, care should be taken

to avoid collision with the BOOS. The maximum memory may be

manipulated with the End address command of the compiler Options

menu. Notice that the default end address setting is approximately 700
to 1000 bytes lower than maximum memory. This is to allow space
for the loader, which resides just below BOOS when .COM files are

Run or eXecuted from the TURBO system. This loader restores the

TURBO editor, compiler, and possible error messages when the
program finishes, and thus returns control to the TURBO system.

Appendix A
ST ANDARD PROCEDURES AND FUNCTIONS

This appendix lists all standard procedures and functions available in

TURBO Pascal and describes their application, syntax, parameters, and

type. The following symbols are used to denote elements of various

types:

type
string
file
scalar
pointer

any type

any string type

any file type

any scalar type

any pointer type

Where parameter type specification is not present, it means that the

procedure or function accepts variable parameters of any type.

A.1. INPUT/OUTPUT PROCEDURES AND FUNCTIONS

The following procedures use a non-standard syntax in their parameter

list:

procedure

Read (var F: file of type; var V: type);
Read (var F: text; var I:lnteged;

Read (var F: text; var R: Real);

Read (var F: text; var C: Char);

Read (var F: text; var 5: string);
Readln (var F: text);

Write (var F: file of type; var V: type);
Write (var F: text; I: Integer);

Write (var F: text; R: Real);

Write (var F: text; B: Boolean);

Write (var F: text; C: Char);

Write (var F: text; i: string);
Writeln (var F: text);

Page 176 STANDARD PROCEDURES AND FUNCTIONS

,A.2. ARITHMETIC FUNCTIONS

function

Abs (I: Integer): Integer;

Abs (R: ReaD: Real;

ArcTan (R: ReaD: Real;

Cos (R: Real): Real;

Exp (R: Real): Real;

Frac (R: ReaD: Real;

Int (R: Real): Real;

Ln (R: ReaD: Real;

Sin (R: Real): Real;

Sqr <I: Integer): Integer;

Sqr (R: ReaD: Real;

Sqrt (R: Real): Real;

A.3. SCALAR FUNCTIONS

function

Odd (I: Integer>: Boolean;

Pred (X: scalar>: scalar;

Succ (X: scalar>: scalar;

A.4. TRANSFER FUNCTIONS

function

Chr (I: Integer>: Char;

Ord (X: scalar>: Integer;

Round (R: ReaD: Integer;

Trunc (R: Real): Integer;

A.S. STRING PROCEDURES AND FUNCTIONS

The Str procedure uses a non-standard syntax for its numeric

parameter.

procedure

Delete (var S: string; Pos, Len: Integer>;

Insert (S: string; var D: string; Pas: Integer);

Str (I: Integer; var S: string>;

Str (R: Real; var S: string);

STANDARD PROCEDURES AND FUNCTIONS

Val (S: string; var R: Real; var P: Integed;

Val (S: string; var I, P: Integer);

function

Concat (S 1, S2, ... , Sn: string): string;

Copy (S: string; Pos, Len: Integer): string;

Length (S: string): Integer;

Pos (Pattern, Source: string): Integer;

A.6. FILE-HANDLING ROUTINES

procedure

Append (var F: file; Name: string);

Assign (var F: file; Name: string);

Page 177

BlockRead (var F: file; var Dest: Type; Num: Integer);

BlockWrite (var F: file; var Dest: Type; Num: Integed;

Chain (var F: file);

Close (var F: file);
Erase (var F: file);
Execute (var F: file);

Rename (var F: file; Name: string);
Reset (var F: file);

Rewrite (var F: file);

Seek (var F: file of type; Pos: Integer>;

function

Eof (var F: file): Boolean;

Eoln (var F: Text): Boolean;

FilePos (var F: file of type): Integer;
FilePos (var F: file): Integer;

FileSize (var F: file of type): Integer;

FileSize (var F: file): Integer;
SeekEof (var F: file): Boolean;

SeekEoln (var F: Text): Boolean;

1\.7. HEAP-CONTROL PROCEDURES AND FUNCTIONS

procedure
Dispose (var P: pointer);

FreeMem (var P: pointer, I: Integer);

GetMem (var P: pointer, I: Integer>;

Page 178 ST ANDARD PROCEDURES AND FUNCTIONS

Mark (var P: pointer);

New (var P: pointer);

Release (var P: pointer>;

function

MaxAvail: Integer;

MemA vail: Integer;

Ord (P: pointer): Integer;

Ptr (I: Integer): pointer;

A.8. SCREEN-RELA TED PROCEDURES AND FUNCTIONS

procedure

CrtExit;

Crtlnit;

ClrEol;

ClrScr;

Delline;

GotoXY (X, Y: Integer);

Insline;

LowVideo;

NormVideo;

A.9. MISCELLANEOUS PROCEDURES AND FUNCTIONS

procedure

Bdos (Func,Param: Integer>;

Bios (Func,Param: Integer>;

Delay (mS: Integer>;
FillChar (var Dest,Length: Integer; Data: Char);

FiIIChar (var Dest,Length: Integer; Data: Byte);

Halt;

Move (var Source,Dest: type; Length: Integer);

Randomize;

function

Addr (var Variable): Integer;

Addr «function identifier»: Integer;

Addr «procedure identifier»: Integer;

Bdos (Func, Param: Integer>: Byte;

BdosHL (Func, Par am: Integer>: Integer;

ST ANDARD PROCEDURES AND FUNCTIONS

Bios (Func,Param: Integer): Byte;

BiosHL (Func,Param: Integer): Integer;

Hi <I: Integer): Integer;

IOresult: Boolean;

KeyPressed: Boolean;
Lo (I: Integer): Integer;

ParamCount: Integer;

ParamStr (N: Integer): string;

Random (Range: Integer): Integer;

Random: Real;
SizeOf (var Variable): Integer;

SizeOf «type identifier>): Integer;

Swap <I: Integer}: Integer;

UpCase (Ch: Char): Char;

Page 179

Appendix B
SUMMARY OF OPERATORS

The following table summarizes all operators of TURBO Pascal. The

operators are grouped in order of descending precedence. Where
Type of operand(s) is indicated as Integer, Real, the result is as follows:

Operands

Integer, Integer

Real, Real

Real, Integer

Result

Integer

Real

Real

Operator Operation

+ unary

- unary

not

/
div

mod

and

shl

shr

+

or

xor

sign identity

sign inversion

negation

multiplication

set intersection

division

Integer division

modulus

arithmetical and

logical and

shift left

shift right

addition

concatenati on

set union

subtraction

set difference

arithmetical or

logical or

arithmetical xor

logical xor

Type of Type of
operano(s) result

Integer, Real as operand

Integer, Real as operand

Integer, Boolean as operand

Integer, Real Integer, Real

any set type as operand

Integer, Real Real

Integer Integer

Integer Integer

Integer Integer

Boolean Boolean

Integer ' Integer

Integer Integer

Integer, Real Integer ,Real

string string

any set type as operand

Integer, Real Integer, Real

any set type as operand

Integer Integer

Boolean Boolean

Integer Integer
Boolean Boolean

SUMMARY OF OPERATORS

Operator

<>

>

<

in

Operation

equality

equality
equality

equality

inequality

inequality
inequality

inequality

greater or equal
greater or equal

set inclusion

less or equal

less or equal
set inclusion

greater than

greater than

less than

less than

set membership

Type of
operand(s)

any scalar type

string
any set type

any pointer type

any scalar type

string
any set type

any pointer type

any scalar type
string

any set type

any scalar type

string

any set type

any scalar type

string.

any scalar type

string

see below

Page 181

Type of
result

Boolean

Boolean
Boolean
Boolean

Boolean

Boolean
Boolean
Boolean

Boolean

Boolean
Boolean

Boolean

Boolean
Boolean

Boolean

Boolean

Boolean

Boolean

Boolean

The first operand of the in operator may be of any scalar type, and

the second operand must be a set of that type.

Appendix C
SUMMARY OF COMPILER DIRECTIVES

A number of features of the TURBO Pascal compiler are controlled

through compiler directives. A compiler directive is introduced as a

comment with a special syntax. Whenever a comment is allowed in a

program, a compiler directive is also allowed.

A compiler directive consists of an opening bracket immediately

followed by a dollar sign immediately followed by one compiler

directive letter or a list of compiler directive letters separated by

commas, ultimately terminated by a closing bracket.

Examples:
{$I-}

{$I INCLUDE.FIU
{$B-,R+,V-}

(*$U+*)

Notice that no spaces are allowed before or after the dollar sign. A
plus sign after a directive indicates that the associated compiler

feature is enabled (active), and a minus sign indicates that is disabled
(passive).

C.1. IMPORTANT NOTICE

All compiler directives have default values. These have been

chosen to optimize execution speed and minimize code size.

For example, code generation for recursive procedures and

index checking has been disabled. Check below to make sure

that your programs include the required compiler directive
settings!

C.2. A - ABSOLUTE CODE

Default: A+

The A directive controls generation of absolute, i.e., non-recursive,

code. When active, {$A+}, absolute code is generated. When

passive, {$A-}, the compiler generates code which allows recursive

calls. This code requires more memory and executes more slowly.

SUMMARY OF COMPILER DIRECTIVES Page 183

C.3. B - 1/0 MODE SELECTION

Default: 8+

The B directive controls input/output mode selection. When active,
{$B+}, the CON: device is assigned to the standard files Input and

Output, i.e., the default input/output channel. The TRM: device is used

when the directive is passive, {$B-}. This directive is global to an

entire program block and cannot be re-defined locally. See pages

92 and 95 for further details.

C.4. C - CTRL -C AND CTRL-S

Default: C+

The C directive controls interpretation of control characters during

console I/O. When active, {$C+}, a Ctrl-C entered in response to a

Read or Readln statement will interrupt program execution, and a Ctrl

S will toggle screen output off and on. When passive, {$C-}, control
characters are not interpreted. The active state slows screen output

somewhat, so if screen output speed is iroperative, you should switch

off this directive. This directive is global to an entire progam

blOCK and cannot be redefined locally.

C.s. 1- 1/0 ERROR HANDLING

Default: 1+

The I directive controls I/O error handling. When active, {$I+}, all I/O
operations are checked for errors. When paSSive, {$I-}, it is the

responsibility of the programmer to check I/O errors through the
standard function I Oresult. See page 103 for further details.

C.6. I - INCLUDE FILES

The I directive followed by a file name instructs the compiler to include

the file with the specified name in the compilation. Include files are

discussed in detail in Chapter 17.

Page 184 SUMMARY OF COMPILER DIRECTIVES

C.7. R - INDEX RANGE CHECK

Default: R-

The R directive controls run-time index checks. When active, {$R+},

all array-indexing operations are checked to be within the defined

bounds, and all assignments to scalar and subrange variables are
checked to be within range. When passive, {$R-}., no checks are

performed, and index errors may well cause a program to go haywire.

It is a good idea to activate this directive while developing a program.

Once debugged, execution will be speeded up by setting it passive
(the default state).

C.B. U - USER INTERRUPT

Default: u-

The U directive controls user interrupts. When active, {$U+}, the user

may interrupt the progam any time during execution by entering a Ctrl
C. When passive, {$U-}, this has no effect. Activating this directive

will slow down execution speed significantly.

C.9. V - VAR-PARAMETER TYPE CHECKING

Default: V+

The V compiler directive controls type checking on strings passed as
var parameters. When active, {$V+}, strict type checking is

performed, i.e., the lengths of actual and formal parameters must
match. When passive, {$V-}" the compiler allows passing of actual

parameters which do not match the length of the formal parameters.
See page 150 for further details.

C.10. W - NESTING OF WITH STATEMENTS

Default: W2

The W directive controls the level of nesting of With statements, i.e.,
the number of records which may be "opened" within one block. The

W must be immediately followed by a digit between 1 and 9. For
further details, please refer to page 70.

SUMMARY OF COMPILER DIRECTIVES Page 185

C.11. X - ARRAY OPTIMIZATION

Default: X+

The X directive controls array optimization. When active, {$X+},

code generation for arrays is optimized for maximum speed. When

passive, {$X-}, the compiler minimizes the code size instead. This is

discussed further on page 65.

Appendix'D
TURBO VS. STANDARD PASCAL

The TURBO Pascal language follows the Standard Pascal defined by

Jensen and Wirth in their User Manual and Report, with only minor

differences introduced for the sheer purpose of efficiency. These

differences are described in the following. Notice that the extensions
offered by TURBO Pascal are discussed.

0.1. DYNAMIC VARIABLES

The procedure New will not accept variant record specifications. This

restriction, however, is easily circumvented by using the standard

procedure GetMem.

0.2. RECURSION

Because of the way local variables are handled during recursion, a

variable local to a subprogram must not be passed as a var parameter

in recursive calls.

0.3. GET AND PUT

The standard procedures Get and Put are not implemented. Instead,

the Read and Write procedures have been extended to handle all I/O

needs. There are thre'e reasons for this: First, Read and Write give

much faster I/O; second, variable-space overhead is reduced as file

buffer variables are not required; and third, the Read and Write
procedures are far more versatile and easier to understand than Get
and Put.

0.4. GOTO ST A TEMENTS

A goto statement must not leave the current block.

0.5. PAGE PROCEDURE

The standard procedure Page is not implemented, as the CP/M

operating system does not define a form-feed character.

TURBO VS. STANDARD PASCAL Page 187

D.6. PACKED VARIABLES

The reserved word packed has no effect in TURBO Pascal, but it is

still allowed. This is because packing occurs automatically whenever

possible. For the same reason, standard procedures Pack and Unpack
are not implemented.

D.7. PROCEDURAL PARAMETERS

Procedures and functions cannot be passed as parameters.

Appendix E
COMPILER ERROR MESSAGES

The 'following is a listing of error messages you may get from the

compiler. When encountering an error, the compiler will always print

the error number on the screen. Explanatory texts will only be issued

if you have included error messages (answer Y to the first question

when you start TURBO).

Many error messages are totally self-explanatory, but some need a

little elaboration as provided in the following.

01 ';' expected

02 ':' expected
03 ',' expected
04 '(' expected

05 ')' expected

06 '.' expected

07 ':-' expected

08 '[' expected

09 ')' expected

10 '.' expected

11 '.: expected
12 BEGIN expected

13 DO expected

14 END expected

15 OF expected

16 PROCEDURE or FUNCTION expected
17 THEN expected

18 TO or DOWNTO expected
20 Boolean expression expected
21 File variable expected

22 Integer constant expected
23 Integer expression expected
24 Integer variable expected

25 Integer or real constant expected

26 Integer or real expression expected

27 Integer or real variable expected

28 Pointer variable expected
29 Record variable expected

COMPILER ERROR MESSAGES Page 189

30 Simple type expected

Simple types are all scalar type, except real.
31 Simple expression expected

32 String constant expected

33 String expression expected
34 String variable expected

35 T extfile expected

36 Type identifier expected

37 Untyped file expected
40 Undefined label

A statement references an undefined label.
41 Unknown identifier or syntax error

Unknown label, constant, type, variable, or field identifier,

or syntax error in statement.
42 Undefined pointer type in preceding type definitions

A preceding pointer type definition contains a reference

to an unknown type identifier.

43 Duplicate identifier or label

This identifier or label has already been used within the

current block.

44 Type mismatch

1) Incompatible types of the variable and the expression in

an assignment statement. 2) Incompatible types of the

actual and the formal parameters in a call to a subprogram.

3) Expression type incompatible with index type in array

assignment. 4) Types of operands in an expression are not

compatible.
45 Constant out of range

46 Constant and CASE selector type does not match

47 Operand type(s) does not match operator

Example: 'A' div '2'

48 Invalid result type

Valid types are all scalar types, string types, and pointer

types.
49 Invalid string length

The length of a string must be in the range 1 .. 255.
50 String constant length does not match type

51 Invalid subrange base type

Valid base types are all scalar types, except real.

Page 190 COMPILER ERROR MESSAGES

52 lower bound > upper bound

The ordinal value of the upper bound must be greater than

or equal to the ordinal value of the lower bound.

53 Reserved word

These may not be used as identifiers.

54 Illegal assignment

55 String constant exceeds line

String constants must not span Jines.

56 Error in integer constant

An Integer constant does not conform to the syntax
described in page 35, or it is not within the Integer range

-32768 .. 32767. Whole Real numbers should be followed

by. a decimal point and a zero, e.g., 123456789.0.
57 Error in real constant

The syntax of Real constants is defined on page 35.
58 Illegal character in identifier

60 Constants are not allowed here

61 Files and pointers are not allowed here

62 Structured variables are not allowed here

63 T extfiles are not allowed here

64 T extfiles and untyped files are not allowed here

65 Untyped files are not allowed here

66 1/0 not allowed here

Variables of this type cannot be input or output.
67 Files must be V AR parameters

68 File components may not be files

file of file constructs are not allowed.

69 Invalid ordering of fields

70 Set base type out of range

The base type of a $et must be a scalar with no more than

256 possible values or a subrange with bounds in the range

0 .. 255.
71 Invalid GOTO

A goto cannot reference a label within a for loop from

outside that for loop.

72 label not within current block

A goto statement cannot reference a label outside the

current block.

COMPILER ERROR MESSAGES Page 191

73 Undefined FORWARD procedure(s)

A subprogram has been forward declared, but the body

never occurred.

74 INLINE error

75 Illegal use of ABSOLUTE
1) Only one identifier may appear before the colon in an

absolute variable declaration. 2) The absolute clause

may not be used in a record.

76 Overlays can not be forwarded

The forward specification cannot not be used in

connection with overlays.

77 Overlays not allowed in direct mode

Overlays can only be used from programs compiled to a

file.
90 File not found

The specified include file does not exist.

91 Unexpected end of source

Your program cannot end the way it does. The program

probably has more begins than ends.

92 Unable to create overlay file

93 Invalid compiler directive

97 Too many nested WITHs

Use the W compiler directive to increase the maximum

number of nested WITH statements. Default is 2.
98 Memory overflow

You are trying to allocate more storage for variables than

is available.

99 Compiler overflow
There is not enough memory to compile the program. This
error may occur even if free memory seems to exist; it is,

however, used by the stack and the symbol table during

compilation. Break your source text into smaller segments
and use include files.

Appendix F
RUN-TIME ERROR MESSACES

Fatal errors at run time halt a program and display:

Run-time err·or NN, PC-addr

Program aborted

where NN is the run-time error number, and addr is the address in the

program code where the error occured. In the following explanations

of all run-time error numbers, notice that the numbers are hexadecimal!

01 Floating point overflow.

02 Division by zero attempted.

03 Sqrt argument error.

The argument passed to the Sqrt functiion was negative.

04 In argument error.

The argument passed to the Ln function was zero or

negative.

10 String length error.

1) A string concatenation resulted in a string of more than

255 characters. 2) Only strings of length 1 can be

converted to a character.

11 Invalid string index.

Index expression is not within 1 .. 255 with Copy, Delete, or

Insert procedure calls.

90 Index out of range.

The index expression of an array subscript was out of

range.

91 Scalar or subrange out of range.

The value assigned to a scalar or a subrange variable was

out of range.

92 Out of integer range.

The real value passed to Trunc or Round was not within

the Integer range -32768 .. 32767.

FO Overlay file not found.

FF Heap/stack collision.

A call was made to the standard procedure New or to a

recursive subprogram, and there is insuffici~nt free
memory between the heap pointer (HeapPtr) and the

recursion stack pointer (Recurptr).

Appendix C
I/O ERROR MESSACES

An error in an input or output operation at run time causes in an I/O
error. If I/O checking is active (I compiler directive active), an I/O

error causes the program to halt and the following error message is

displayed:

I/O error NN, PC-addr
Program aborted

Where NN is the I/O error number, and addr is the address in the

program code where the error occured.

If I/O-error checking is passive ({$I-}), an I/O error will not cause the

program to halt. Instead, all further I/O is suspended until the result of

the I/O operation has been examined with the standard function

IOresult. If I/O is attempted before IOresult is called after an error, a

new error occurs, possibly hanging the program.

In the following explanations of all run-time error numbers, notice that

the numbers are hexidecimal!

01 File does not exist.

The file name used with Reset, Erase, Rename, Execute, or

Chain does not specify an existng file.

02 File not open for input.

1) You are trying to read (with Read or Readln) from a file

without a previous Reset or Rewrite. 2) You are trying to

read from a text file which was prepared with Rewrite
(and thus is empty). 3) You are trying to read from the

logical device LST:, which is only for output.

03 File not open for output.

1) You are trying to write (with Write or Writeln) to a file

without a previous Reset or Rewrite. 2) You are trying to

read from a text file which was prepared with Reset. 3)
You are trying to write to the logical device KBD:, which

is an input-only device.

04 File not open.

You are trying to access (with BlockRead or BlockWrite) a

file without a previous Reset or Rewrite.

Page. 194 I/O ERROR MESSAGES

10 Error in numeric format.

The string read from a text file into a numeric variable

does not conform to the proper numeric format (see page
35).

20 Operation not allowed on a logical device.

You are trying to Erase, Rename, Execute, or Chain a file

assigned to a logical device.

21 Not allowed in direct mode.

Programs cannot be Executed or Chained from a program

running in direct mode (j.e. a program activated with a Run
command while the Memory compiler option is set).

22 Assign to std files not allowed.

90 Record length mismatch.

The record length of a file variable does not match the file

you are trying to associate it with.

91 Seek beyond end-of-file.

99 Unexpected end-of-file.

1) Physical end-of-file encountered before EOF character

(Ctrl-Z) when reading from a text file. 2) An attempt was

made to read beyond end-of-file on a defined file. 3) A

Read or BlockRead is unable to read the next sector of a

defined file. Something may be wrong with the file, or (in

the case of BlockRead) you may be trying to read past

physical EOF.
FO Disk write error.

Disk full while attempting to expand a file. This may occur

with the output operations Write, Writeln, BlockWrite, and

Flush, but also Read, Readln, and Close may cause this

error, as they cause the write buffer to be flushed.
F1 Directory is full.

You are trying to Rewrite a file, and there is no more room

in the disk directory.

F2 File size overflow.

You are trying to Write a record beyond 65535 to a

defined file.

F3 Too many open files.

FF File disappeared.

An attempt was made to Close a file which was no longer

present in the disk directory, e.g., because of an

unexpected disk change.

Appendix H
TRANSLA TING ERROR MESSAGES

The compiler error messages are collected in the file TURBOMSG.
These messages are in English, but may be translated into any other

language easily, as described in the following.

The first 24 lines of this file define a number of text constants for

subsequent inclusion in the error-message lines; a technique which

drastically reduces the disk and memory requirements of the error

messages. Each constant is identified by a control character, denoted

by a A character in the following listng. The value of each constant is

anything that follows on the same line. All characters are Significant,

also leading and trailing blanks.

The remaining lines each contain one error message, starting with the

error number and immediately followed by the message text. The

message text may consist of any characters and may include

previously defined constant identifiers <control character>. Appendix E

lists the resulting messages in full.

When you translate the error message, the relation between constants

and error messages will probably be quite different from the English

version listed here. Start therefore with writing each error message in

full, disregarding the use of constants. You may use these error

messages, but they will require excessive space. When all messages

are translated, you should find as many common denominators as

possible. Then define these as constants at the top of the file and

include only the constant identifiers in subsequent message texts. You

may define as few or as many constants as you need, the restriction

being only the number of control characters.

As a good example of the use of constants, consider errors 25, 26,

and 27. These are defined exclusively by constant identifiers, 15

total, but would require 101 characters if written in clear text.

The TURBO editor may be used to edit the TURBOMSG file. Control

characters are entered with the Ctrl-P prefix, i.e., to enter a Ctrl-A

(" A) into the file, hold down the <CONTROL> key and press first P,

then A. Control characters appear dim on the TURBO editor screen (if

your terminal has that video attribute).

Page 196 TRANSLATING ERROR MESSAGES

Notice that the TURBO editor deletes all trailing blanks. The original

message therefore does not use trailing blanks in any messages.

H.1. ERROR-MESSAGE FilE LISTING

"A are not allowed

"B can not be

"C constant

"D does not

"E 'expression

"F identifier

"'Gfile

"H here

"Klnteger

"lFile
"Nlllegal

"'0 or

"PUndefined

"Q match

"R real

"SString
"TTextfile

"U out of range

"V variable
"Woverflow

"X expected
"'y type

"[Invalid

"] pointer

01'i""X
02';""X

03','''X
04'(''''X
OS')'''X

06'·''''X
07';·' X
08'[''''X

09']''''X

1 0':"'" X

11' . .''''X

12BEGIN"'X

TRANSLATING ERROR MESSAGES

1300"'X
14ENO"'X
1S0F"'X
16PROCEOURE"'O FUNCTION"'X
17THEN"'X
18TO"'O OOWNTO"'X
20Boolean"E X
21 L "'V"" X
22 ... K C X
23 K"'E X

24"K"'V"X
2S K O"R C X

26 K O"R"'E"X
27 ... K"'O"R V X
28Pointer V X
29Record V X

30Simple"Y"X
31 Simple E"X
32 ... S"C X
33 S"'E X
34 ... S V X

3S"'T"'X
36Type F"X

37Untyped"G X

40"'P label
41Unknown F"'O syntax error
42 P] ... Y in preceding"'Y definitions
430uplicate ... F O label

44Type mismatch
4S C"'U

46"'C .and CASE selector"Y O O
470perand Y(s) "'0"'0 operator
48"'[result Y

49"'['" S length
SO""S"'C length O O y
S1 [subrange base Y

S2Lower bound > upper bound
S3Reserved word
S4 N assignment

S5"'S"'C exceeds line
S6Error in integer C

Page 197

Page 198

S7Error in"R"C
S8""N character in"F
60""Cs"A""H
61 Ls and"]s"A"'H

, 62Structured"Vs"" A ""H

63""Ts"'A"'H

64"'Ts and untyped"Gs"A"H
6SUntyped"Gs" A "H

661/0 not allowed"H
67 Ls must be V parameters

68 L components"B"Gs
69 ["Ordering of fields
70Set base y U

71 [COTO

72Label not within current block
73 P FORWARD procedure(s)

741NLlNE error

7S""N use of ABSOLUTE

760verlays B forwarded

TRANSLATING ERROR MESSAGES

770verlays not allowed in direct mode
90"L not found

91Unexpected end of source

92Unable to create overlay file

93"[compiler directive

97T 00 many nested WITHs
98Memory"W

99Compiler""W

Appendix I
TURBO SYNTAX

The syntax of the TURBO Pascal language is presented here using the

formalism known as the Backus-Naur Form. The following symbols are

not symbols of the TURBO Pascal language, but meta-symbols

belonging to the BNF formalism:

..• Means "is defined as".

I Means "or".

{} Enclose items which may be repeated zero or more times.

In the following, symbols and words which are part of the language

are printed in this typeface. Reserved words are printed in this

typeface, but in boldface, e.g.: array and for. Syntactic construc"ts

are printed in italics, e.g., block and case-element.

actual-parameter ::= expression I variable
adding-operator ::= + I - I or I xor

array-constant ::= (structured-constant{,structured-constant»
array-type ::= array{ index-type{,index-type}] of component-type
array-variable ::= variable
assignment-statement ::= variable := expression

function-identifier := expression
base-type ::= simple-type
block ::= declaration-part statement-part
case-element ::= case-list: statement
case-label ::= constant
case-label-list ::= case-label{,case-label}
case-list ::= case-list-elementLcase-list-elementl
case-list~element ::= constant I constant .. constant
case-statement ::= case expression of case-

Page 200 TURBO SYNTAX

element{;case-element} end

case expression of case-element{;case-element}
else statement{;statement} end

complemented-factor ::= signed-factor I not signed-factor
component-type ::= type
component-variable ::= indexed-variable I field-designator
component-statement ::= begin statement{;statement} end

conditional-statement ::= if-statement I case-statement
constant ::= unsigned-number I sign unsigned-number I

constant-identifier I sign constant-identifier I string
constant-definition-part ::= canst constant-definition

{;constant-definition} ;
constant-definition ::= untyped-constant-definition

typed-constant-definition
constant-identifier ::= identifier
control-character ::= # unSigned-integer Acharacter
control-variable ::= variable-identifier
declaration-part ::= {declaration-section}
declaration-section ::= label-declaration-part I constant-definition-part

type-definition-part I variable-declaration-part
procedure-and-function-declaration-part

digit ::= 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9
digit-sequence ::= digit {digit}
empty ::=
empty-statement ::= empty
entire-variable ::= variable-identifier I typed-constant-identifier
expression ::= simple-expression {relational-operator simple-expression}
factor ::= variable I unsigned-constant I (expression) I

function-designator I set
field-designator ::= record-variable . field-identifier
field-identifier ::= identifier
field-list ::= fixed part I fixed-part; variant-part I variant-part
file-identifier ::= identifier
file-identifier-list ::= empty I (file-identifier {, file-identifier}
filetype ::= file of type
final-value ::= expression
fixed-part ::= record-section {; record-section}
for-list ::= initial-value to final-value I initial-value downto final-value
for-statement ::= for control-variable:= for-list do statement
formal-parameter-section ::= parameter-group I var parameter-

TURBO SYNTAX

group
function-declaration ::= function-heading block;

I function-designator ::= function-identifier I function-identifier
(actual-parameter (, a~tual-parameter})

function-heading ::= function identifier: result-type; I

function identifier
(formal-parameter-section
(, formal-parameter-section}): result-type;

function-identifier ::= identifier
goto-statement ::= goto label
hexdigit ::= digit I A I B I C I DIE I F
hexdigit-sequence ::= hexdigit {hexdigit}
identifier ::= letter {letter-or-digit}
identifier-list ::= identifier {, identifier}
if-statement ::= if expression then statement {else statement}
index-type ::= simple-type
indexed-variable ::= array-variable [expression {, expression}]
initial-value ::= expression
inline-list-element ::= unsigned-integer I constant-identifier I

variable-identifier I location-counter-reference
inline-statement ::= inline inline-list-element

{,inl ine-list-e lement}
label ::= letter-or-d igit {letter-or-d igit}
label-declaration-part ::= label label {, label};

Page 201

letter ::= A I B I C I DIE I FIG I H I I I J I K I LIM I
NIOIPIQIRISITIUIVIWIXIYIZI
alblcldlelflglhlilj Ikillmi
nlolplqlrlsltlulvlwlxlylzl_

letter-or-digit ::= letter I digit
location-counter-reference ::= It I .. sign constant
multiplying-operator ::= It I / I div I mod I and I shl I shr

parameter-group ::= identifier-list: type-identifier
pointer-type ::= A type-identifier
pointer-variable ::= variable
procedure-and-function-declaration-part ::=

{proced ure-or-fu nction-dec laration}
procedure-declaration ::= procedure-heading block;
procedure-heading ::= procedure identifier; I procedure identifier

(formal-parameter-section
{, formal-parameter-section});

procedure-or-function-declaration ::= procedure-declaration

Page 202 TURBO SYNTAX

function-d ec lara tion
procedure-statement ::= procedure-identifier I procedure-identifier

(actual-parameter {, actual-parameter})
program-heading ::= empty program program-identifier

file-ide ntifier-lis t
program ::= program-heading block
program-identifier ::= identifier
record-constant ::= (record~constant-element

{; record-constant-element})
record-contant-element ::= field-identifier: structured-constant
record-type ::= record field-list end

record-variable ::= variable
record-variable-list ::= record-variable {, record-variable}
referenced-variable ::= pointer-variable ...
relational-operator ::= = I <> I <= I)= I < I) I in

repeat-statement ::= repeat statement {; statement} until expression
repetitive-statement ::= while-statement I repeat-statement I for-statement
result-type ::= type-identifier
scalar-type ::= (identifier {, identifier})
scale-factor ::= digit-sequence I sign digit-sequence
set ::= [{set-element{]
set-constant ::= [{set-constant-element}}
set-constant-element ::= constant I constant .. constant
set-element ::= expression I expression .. expression
set-type ::= set of base-type
sign ::= + I -
signed-factor ::= factor I sign factor
simple-expression ::= term {adding-operator term}
simple-statement ::= assignment-statement I procedure-statement

goto-statement I inline-statement I empty-statement
simple-type ::= scalar-type I subrange-type I type-identifier
statement ::= simple-statement I structured-statement
statement-part ::= compound-statement
string ::= {string-element}
string-element ::= text-string I control-character
string-type ::= string [constant}
structured-constant ::= constant I array-constant I record-constant I

set-constant
structured-constant-definition ::= identifier: type = structured-constant
structured-statement ::= compound-statement I conditional-statement I

repetitive-statement I with-statement

TURBO SYNTAX

structured-type ::= unpacked-structured-type
packed unpacked-structured-type

I subrange-type ::= constant .. constant
, tag-field ::= empty I field-identifier:

Page 203

term ::= complemented-factor {multiplying-operator complemented-factor}
text-string ::= '{character}'
type-definition ::= identifier = type
type-definition-part ::= type type-definition{;type-definition};
type-identifier ::= identifier
unpacked-structured-type ::= string-type I array-type I record-type

set-type I file-type
unsigned-constant ::= unsigned-number I string I constant-identifier I nil
unsigned-integer ::= digit-sequence I $ hexdigit-sequence
unsigned-number ::= unsigned-integer I unsigned-real
unsigned-real ::= digit-sequence .digit-sequence I

digit-sequence .digit-sequence E scale-factor
digit-sequence E scale-factor

untyped-constant-definition ::= identifier = constant
variable ::= entire-variable I component-variable I referenced-variable
variable-declaration ::= identifier-list: type I

identifier-list: type absolute constant
variable-declaration-part ::= var variable-declaration

{i variable-declaration}i
variable-identifier ::= identifier
variant ::= empty I case-label list: (field-list>
variant-part ::= case tag-field type-identifier of variant {i variant}
while-statement ::= while expression do statement
with-statement ::= with record-variable-list do statement

o 00 "@ NUL

1 01 "A SOH
2 02 "B STX
3 03 "C ETX
4 04 "D EOT
5 05 "E ENQ
6 06 F ACK
7 07 C BEL
8 08 H BS
9 09 1 HT

10 OA J LF
11 OB K VT

12 OC L FF
13 OD M CR

14 OE N SO
15 OF 0 SI
16 10 p DLE

17 11 "Q DC1
18 12 "R DC2
19 13 "S DC3
20 14 T DC4
21 15 U NAK
22 16 v SYN
23 17 W ETB

24 18 "X CAN
25 19 Y EM
26 1A Z SUB
27 1B "[ESC
28 1C \ FS
29 1D "] CS
30 1E RS
31 1F.... US

Appendix J
ASCII TABLE

32 20 SP
33 21
34 22
35 23 #
36 24 $

37 25 %
38 26 &

39 27
40 28
41 29
42 2A *
43 2B +

44 2C ,
45 2D -
46 2E
47 2F I
48 30 0
49 31 1
50 32 2
51 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 3A
59 3B
60 3C <

61 3D •
62 3E >

63 3F ?

64 40 @

65 41 A
66 42 B
67 43 C
68 44 D
69 45 E
70 46 F
71 47 C
72 48 H
73 49
74 4A
75 4B K
76 4C L
77 4D M
78 4E N
79 4F 0
80 50 P
81 51 Q
82 52 R
83 53 S
84 34 T
85 55 U
86 56 V
87 57 W
88 58 X
89 59 Y
90 SA Z
91 5B [

92 5C \
93 5D]
94 5E
95 SF

96 60 '
97 61 a
98 62 b
99 63 c

100 64 d
101 65 e
102 66 f
103 67 g

104 68 h
105 69
106 6A j

107 6B k

108 6C I
109 6D m
110 6E n
111 6F 0

112 70 P
113 71 q
114 72 r

115 73 s
116 74 t

117 75 u

118 76 v

119 77 w
120 78 x
121 79 Y
122 7A z
123 7B {

124 7C I
125 7D}

126 7E -
127 7F DEL

Appendix L
INST ALLA TION

L.1. TERMINAL INST ALLA TION

Before you use TURBO Pascal, it must be installed for your particular
terminal, i.e., provided with information regarding control characters

required for certain functions. This installation is easily performed using

the program TINST which is described in this chapter.

After making a work copy, please store your distribution diskette

safely away and work only on the copy.

Now start the installation by typing TINST at your terminal. Select
Screen installation from the main menu. A menu listing a number of

popular terminals will appear, inviting you to choose one by entering
its number:

Choose one of the following terminals:

1) ADDS 20/25/30 15) Lear-Siegler ADM-31
2) ADDS 40/60 16) liberty

3) ADDS Viewpoint-1A 17) Morrow MDT-20
4) ADM 3A 18) Otrona Attache

5) Ampex 080 19) Qume
6) ANSI 20> Soroc IQ-120
7) Applel graphics 21) Sorcc new models
8) Hazeltine 1500 22) Teletext 3000
9) Hazeltine Esprit 23) Televideo 912/920/925

10) IBM PC CCP/M blw 24) Visual 200
11) IBM PC CCP 1M color 25) Wyse WY-100/200/300
12) Kaypro 10 26) Zenith
13) Kaypro II and 4 27) None of the above
14) lear-Siegler ADM-20 28) Delete a definition

Which terminal? (Enter no. or AX to exit):

Figure L-2: Terminal Installation Menu

Page 206 INST ALLA liON

If your terminal is mentioned, just enter the corresponding number, and

the installation is complete. Before installation is actually performed,

you are asked the question:

Do you want to modify the definition before installation?

This allows you to modify one or more of the values being installed as '

described in the following. If you do not want to modify the terminal

definition, just type N, and the installation completes by asking you the

operating frequency of your CPU (see last item in this appendix).

If your terminal is not on the menu, however, you must define the

required values yourself. The values can most probably be found in the

manual supplied with your terminal.

Enter the number corresponding to None of the above and answer

the questions one by one as they appear on the screen.

In the following, each command you may install is described in detail.

Your terminal may not support all the commands that can be installed.

If so, just pass the command not needed by typing RETURN in

response to the prompt. If Delete line, Insert line, or Erase to end of
line is not installed, these functions will be emulated in software,

slowing screen performance somewhat.

Commands may be entered either simply by pressing the appropriate

keys or by entering the decimal or hexadecimal ASCII value of the

command. If a commnd requires the two charaacters 'ESCAPE' and '-',
you may:

either: press first the Esc key, then the -. The entry will be echoed

with appropriate labels, i.e., <ESC> -.

or: enter the decimal or hexadecimal vallues separated by spaces.

Hexadecimal values must be preceded by a dollar-Sign. For example,

you could enter 27 61, or $1B 61, or $1B $3D, which are all

equivalent.

The two methods cannot be mixed. Once you have entered a non

numeric character, the rest of that command must be defined in that

mode, and vice versa.

INSTAllATION Page 207

A hyphen entered as the very first character is used to delete a

command, and echoes the next Nothing.

l Terminal type:

Enter the name of the terminal you are about to install. When
you complete TINST, the values will be stored, and the terminal

name will appear on the initial list of terminals. If you later need

to reinstall TURBO Pascal to this terminal, you can do that by

choosing it from the list.

Send an initialization string to the terminal?

If you want to initialize your terminal when TURBO Pascal starts

(e.g., to download commands to programmable function keys),

you answer Y for yes to this question. If not, just hit RETURN.

Send a reset string to the terminal?

Define a string to be sent to the terminal when TURBO Pascal

terminates. The description of the initialization command above

applies here.

CURSOR LEAD-IN command:

Cursor Lead-in is a special sequence of characters which tells

your terminal that the following characters are an addres·s on the

screen on which the cursor should be placed.

When you define this command, you are asked the following

supplemental questions:

CURSOR POSITIONING COMMAND to send between line
and column:

Some terminals need a command between the two numbers

defining the row and column cursor address.

CURSOR POSITIONING COMMAND to send after line and

column:

Some terminals need a command after the two numbers

defining the row and column cursor address.

Column first?

Most terminals require the ROW of the address first, then

the COLUMN. If this is the case on your terminal, answer N.

Page 208 INST ALLA TION

If your terminal wants COLUMN first, then ROW, then

answer Y.

OFFSET to add to LINE

Enter the number to add to the LINE (RO W) address.

OFFSET to add to COLUMN

Enter the number to add to the COLUMN address.

Binary address?

Most terminals need the cursor address sent in binary form. If

that is true for your terminal, enter Y. If your terminal

expects the cursor address as ASCII digits, enter N. If so,

you are asked the supplementary question:

2 or 3 ASCII digits?

Enter the number of digits in the cursor address for your

terminal.

CLEAR SCREEN command:
Enter the command that will clear the entire contents of your

screen, both foreground and background, if applicable.

Does CLEAR SCREEN also HOME cursor?
This is normally the case; if it is not so on your terminal,

enter N, and define·. the cursor HOME command.

DELETE LINE command:

Enter the command that deletes the entire line at the cursor
position.

INSERT LINE command:

Enter the command that inserts· a line at the cursor position.

ERASE TO END OF LINE command:

Enter the command that erases the line at the cursor position

from the cursor position through, the right end of the line.

START OF 'LOW VIDEO' command:

If your terminal supports different video intensities, then

define the command that initiates the dim video here. If this

command is defined, the following question is asked:

INST ALLA TION Page 209

START OF 'NORMAL VIDEO' command:

Define the command that sets the screen to show

characters in 'normal' video.

Number of rows (lines) on your screen:

Enter the number of horizontal lines on your screen.

Number of columns on your screen:

Enter the number of vertical column positions on your screen.

Delay after CURSOR ADDRESS (0-255 ms):

Delay after CLEAR, DELETE, and INSERT (0-255 ms):

Delay after ERASE TO END OF LINE and HIGHLIGHT

On/Off (0-255 ms):

Enter the delay in milliseconds required after the functions

specified. RETURN means 0 (no delay).

Is this definition correct?

If you have made any errors in the definitions, enter N. You

will then return to the terminal selection menu. The

installation data you have just entered will be included in the

installation data file and appear on the terminal selection

menu, but installation will not be performed. When you

enter Y in response to this question, you are asked:

Operating frequency of your microprocessor in MHz
(for delays):

As the delays specified earlier depend on the operating
frequency of your CPU, you must define this value.

The installation is finished, installation data is written to TURBO Pascal,

and you returned to the outer menu. Installation data is also saved in

the installation data file, and the new terminal will appear on the

terminal selection list when you run TINST in future.

L.2. EDITING COMMAND INST ALLA TION

The built-in editor responds to a number of commands which are used

to move the cursor around on the screen, delete and insert text, move

text, etc. Each of these functions may be activated by either a

primary command or a secondary command. The secondary commands

Page 210 INST ALLA TION

are installed by Borland, and comply with the standard set by

WordStar. The primary commands are undefined for most systems,

and may easily be defined to fit your taste or your keyboard, using the
installation program.

When you hit C for Command installation, the first command appears:

CURSOR MOVEMENTS:

1: Character left Nothing -> •

This means that no primary command has been installed to move the

cursor one character left. If you want to install a primary command (in

addition to the secondary WordStar-like Ctrl-S, which is not shown

here), you may enter the desired command following the -> prompt in
either of two ways:

1) Simply press the key you want to use. It could be a function key

(for example a left-arrow-key, if you have it) or any other key

or sequence of keys that you choose (to a maximum of 4). The

installation program responds with a mnemonic for each

character it receives. If you have a left-arrow-key that

transmits an <ESCAPE> character followed by a lower case a,

and you press this key in the situation above, your screen will

look like this:

CURSOR MOVEMENTS:

1: Character left Nothing -> <ESC> a •

2) Instead of preSSing the actual key you want to use, you may
enter the ASCII value(s) of the character(s) in the command. The
values of multiple characters are entered separated by spaces.
Decimal values are just entered: 27; hexadecimal values are
prefixed by a dollar-sign: $1B. This may be useful to install

commands which are not presently available on your keyboard,

for example if you want to install the values of a new terminal

while still using the old one.

INST ALLA TION Page 211'

This facility has just been provided for very few and rare
instances, because there is really no idea in defining a command

that cannot be generated by pressing a key. But it's there for

those who wish to use it.

In both cases, end your input by pressing <RETURN>. Notice that the

two methods cannot be mixed within one command. If you have

started defining a command sequence by pressing keys, you must
define all characters in that command by pressing keys and vice versa.

You may enter a - (minus) to remove a command from the list, or a B

to back through the list one item at a time.

The editor accepts a total of 45 commands, and they may all be

installed to your specification. If you make an error in the installation,

like defining the same command for two different purposes, a self

explanatory error message is issued, and you must correct the error

before terminating the installation. A primary command, however, may

conflict with one of the WordStar-like secondary commands; that will
just render the secondary command inaccessible.

The following table lists the secondary commands, and allows you to

mark any primary commands installed by yourself.

CURSOR MOVEMENTS:
1: Character left Ctrl-S
2: Alternative Ctrl-H

3: Character right Ctrl-D
4: Word left Ctrl-A
5: Word right Ctrl-F
6: Line up Ctrl-E
7: Line down Ctrl-X
8: Scroll up Ctrl-W
9: Scroll down Ctrl-Z

10: Page up . Ctrl-R

11: Page down Ctrl-C
12: To left on line Ctrl-Q Ctrl-S
13: To right of line Ctrl-Q Ctrl-D
14: To top of page Ctrl-Q Ctrl-E
15: To bottom of page Ctrl-Q Ctrl-X
16: To top of file Ctrl-Q Ctrl-R

Page 212 INST AllA TION

17: To end of file Ctrl-Q Ctrl-C

18: To beginning of block Ctrl-Q Ctrl-B

19: To end of block Ctrl-Q Ctrl-B

20: To last cursor position Ctrl-Q Ctrl-P

INSERT & DELETE:
21: Insert mode on/off Ctrl-V

22: Insert line Ctrl-N

23: Delete line Ctrl-Y
24: Delete to end of line Ctrl-Q Ctrl-Y
25: Delete right word Ctrl-T
26: Delete character under cursor Ctrl-G
27: Delete left character

28: Alternative: Nothing

BLOCK COMMANDS:

29: Mark block begin Ctrl-K Ctrl-B

30: Mark block end Ctrl-K Ctrl-K

31: Mark single word Ctrl-K Ctrl-T

32: Hide/display block Ctrl-K Ctrl-H

33: Copy block Ctrl-K Ctrl-C

34: Move block Ctrl-K Ctrl-V
35: Delete block Ctrl-K Ctrl-Y

36: Read block from disk Ctrl-K Ctrl-R
37: Write block to disk Ctrl-K Ctrl-W

MISe. EDITING COMMANDS:
38: End edit Ctrl-K Ctrl-D

39: Tab Ctrl-I
40: Auto tab on/off Ctrl-Q Ctrl-I
41: Restore line Ctrl-Q Ctrl-L
42: Find Ctrl-Q Ctrl-F
43: Find & replace Ctrl-Q Ctrl-A
44: Repeat last find Ctrl-L
45: Control character prefix Ctrl-P

Table L-l: Secondary Editing Commands

INST ALLA TION Page 213

Items 2 and 28 let you define alternative commands to Character Left
and Delete left Character commands. Normally <85> is the alternative

. to Ctrl-S, and there is no defined alternative to . You may install

primary commands to suit your keyboard, for example to use the <85>

as an alternative to if the <85> key is more conveniently

located. Of course, the two alternative commands must be

unambiguous like all other commands.

Appendix M
CP/M PRIMER

M.1. HOW TO USE TURBO ON A CP/M SYSTEM

When you turn on your computer, it reads the first couple of tracks on

your CPIM diskette and loads a copy of the CPIM operating system

into memory. Each time you re-boot your computer, CPIM also

creates a list of the disk space available for each disk drive.

Whenever you try to save a file to the disk, CPIM checks to make
sure that the diskettes have not been changed. If you have changed

the diskette in Drive A without rebooting, for example, CP 1M will

generate the following error message when a disk write is attempted:

BDO S ERROR ON A: RIO

Control will return to the operating system and your work was NOT

saved! This can make copying a diskette a little confusing for the

beginner. If you are new to CPIM, follow these instructions:

M.2. COPYING YOUR TURBO DISK

To make a working copy of your TURBO MASTER DISK, do the
following:

1. Make a blank diskette and put a copy of CP 1M on it (see your

CP /M manual for details>. This will be your TURBO work disk.

2. Place this disk in Drive A:. Place a CP 1M diskette with a copy

of PIP.COM in Drive B (PIP.COM is CP/M's file copy program,

and should be on your CP/M diskette. See your CP 1M manual for

details>.

3. Re-boot the computer. Type B:PIP and then press <RETURN>

4. Remove the diskette from Drive B: and insert your TURBO
MASTER DISK.

5. Now type: A:-B:*.*[V] and then press <RETURN>

CP/M PRIMER Page 215

You have instructed PIP to copy all the files from the diskette in

Drive B: onto the diskette in Drive A:. Consult your CP 1M

manual if any errors occur.

The last few lines on your screen should look like this:

A> B:PIP

* A:-B:*. *[V]

COPYING -

FIRSTFILE

LASTFILE

6. Press <RETURN>, and the PIP program will end.

M.3. USING YOUR TURBO DISK

Store your TURBO MASTER DISK in a safe place. To use TURBO

Pascal, place your new TURBO worle: disle: in drive A: and re-boot the
system. Unless your TURBO came pre-installed for your computer and

terminal, you should install TURBO (see Chapter 1). When done, type

TURBO

and TURBO Pascal will start.

If you have trouble copying your diskette, please consult your CPIM
user manual or contact your hardware vendor for CP 1M support.

Appendix N
HELP!!!

This appendix lists a number of most commonly asked questions and

their answers. If you don't find the answer to your question here, you
can either call Alpha's technical support staff, or you can access

CompuServe's Consumer Information 24 hours a day and "talk"" to the

Borland Special Interest Group.

Q: How do I use the system?

A: Please read the manual, specifically Chapter 1. If you must get

started immediately, do the following:

1) Boot up your operating system.

2) Run TINST to install TURBO for your equipment.
3) Run TURBO.

4) Start programming!

Q: I am having trouble installing my terminal!

A: If your terminal is not on the installation menu, you must define it
to TIN ST. All terminals come with a manual containing
information on codes that control video I/O. You must answer

the questions in the installation program according to the

information in your hardware manual. The terminology we use is

the closest we could find to a standard. Note: most terminals

do not require an initialization string or reset string. These are

usually used to access enhanced features of a particular terminal;

for example, on some terminals you can send an initialization

string to make the keypad act as a cursor pad. You can put up

to 13 characters into the initialization or reset strings.

Q: I am having disk problems. How do I copy my disks?

A: Most disk problems do not mean you have a defective disk.

Specifically, if you are using a CP IM-80 system you may want
to refer to Appendix M (Z-System computers don't issue a

BOO S error in that situation). If you can get a directory of your

distribution disk, then chances are that it is a good disk.

Q: Do I need an 8087 chip to use TURBO-87?

A: Yes, and ina d d i t ion, T U R B 0 - 8 7 0 n I y w 0 r k son C P I M -

incompatible 16-bit systems running MS-DO S, PC-DO S, or
CP/M-86.

HELP!!! Page 217

Q: Do I need any special equipment to use TURBO-BCD?

A: No, but the BCD rea I spa c k age 0 n I y w 0 r k son 16 - bit

implementations of TURBO that are not compatible with CP/M

or the Z-System.

Q: Do I need TURBO to run programs I developed in TURBO?

A: No, TURBO can make .COM files.

Q: How do I make .COM files?
A: Type 0 from the main menu for compiler Options. In the

compiler Options menu, select C for .COM files.

Q: What are the limits on the compiler as far as code and data?
A: The compiler can handle up to 64K of code, 64K of data, 64K of

stack and unlimited heap. The object code, however, cannot

exceed 64K.

Q: What are the limits of the editor as far as space?

A: The editor can edit as much as 64K at a time. If this is not
enough, you can split your source into more than one file using

the $1 compiler directive. This is explained in Chapter 17.

Q: What do I do when I get error 99 (Compiler overflow)?

A: You can do two things: break your code into smaller segments
and use the $1 compiler directive (explained in Chapter 17) or

compile to a .COM file.

Q: What do I do if my object code is going to be larger than 64K?

A: Either use the chain facility (see Chapter 22) or use overlays
(Chapters 18 and 22).

Q: How do I read from the keyboard without having to hit return

(duplicate BASIC's INKEY$ function)?

A: Like this: Read(Kbd,Ch) where Ch:Char.

Q: How can I get output to go to the printer?

A: You can use the following program. If you wish to have a listing

that underlines or highlights reserved words, puts in page breaks,

and lists all include files, there is one included free (including

source) on the TURBO Tutor diskette.

Page 218

program T extFileDemo;

var
TextFile : Text;

Scratch : String[128];

begin

Write('File to print: '};

Readln(Scra tch};

Assign{T extFile, Scratch};
{$I-}

Reset(TextFile};
{$I+}

if IOresult <> 0 then

Writeln{'Cannot find " Scratch};

else

begin

while not Eof(TextFile} do

begin

{ Get file name

{ Open the file

{ File not found

{ Print the file ..

HELP!!!

}

}

}

}

Readln(TextFile, Scratch); { Read a line }

Writeln(Lst, Scratch} { Print a line }

end; { while }

Writeln(Lst} { Flush printer buffer }
end { else}

end.

Q: How do I get output and input from COM1:?

A: Try: Writeln(AUX, .. J after setting up the port using an ASSIGN

type program from CP/M. To read try: Read(AUX, .. J. You

must remember that there is no buffer set up automatically when

reading from AUX.

Q: How do I read a function key?

A: Function keys generate escape sequences (ESCAPE followed by

one or more characters> or control characters, depending on

what terminal you are using. There is no way to tell whether a

given escape sequence or control character was generated by

pressing a function key or was typed by the user.

Programs that depend on a particular set of function keys tend

to make a program less general. It is better to define functions

HELP!!! Page 219

in your program that are independent of a particular input, and

then provide a separate program that prompts the user for the

input he wants to stand for that function. In that way the user

can easily customize your program for his preferences and his

equipment. TURBO's TINST program is an example of this
approach (see Appendix U.

Q: I am having trouble with file handling. What is the correct order

of instructions to open a file?

A: The correct manner to handle files is as follows:

To create a new file:

Assign(File Var ,'NameO f.Fil');

Rewrite(File Var)i

Close(File Var) i

To open an existing file:

Assign(File Var ,'NameO f .Fil') i
Reset{FileVar)i

Close(FileVar);

Q: Why don't my recursive procedures work?
A: Set the A compiler directive off: {SA-}

Q: How can I use EOF and EOlN without a file variable as a
parameter?

A: Turn off buffered input: {$B-}

Q: How do I find if a file exists on the disk?
A: Use {$I-} and {I+}. The following function returns True if the file

name passed as a parameter exists, otherwise it returns False:

Page 22()

type
Name • string[66];

function Exist(FileName: Name): Boolean;

var

Fil: file;

begin
Assign(FiI,FileName);
{$I-}

Reset(FiD;
{$I+}

Exist :- (lOresult • Q)

end;

Q: How do I disable CTRL-C?
A: Set its compiler directive off: {$C-}.

HELP!!!

Q: I get a "type mismatchn error when passing a string to a function

or procedure as a parameter.

A: Turn off type checking of variable parameters: {$V-}.

Q: I get a "file not foundn error on my include file when I compile

my program, even. though the file is in the directory.
A: When using the include compiler directive {$I filename.ext} there

must be a space separating the file name from the terminating

brace, if the extension is not three letters long: {$ISample.F }.

Otherwise the brace will be interpreted as part of the file name.

Q: Why does my program behave differently when I run it several

times in a row?

A: If you are running programs in Memory mode and use typed

constants as initialized variables, 'these constants will only be

initialized right after a compilation, not each time you run the

program, because they reside in the code segment. With .COM

files, this problem does not exist, but if you still experience

different results when using arrays and sets, turn on range
checking {$R+}.

HELP!!! Page 221

Q: I don't get the results I think I should when using Reals and

I ntegers in the same expression.

I A: When assigning an Integer expression to a Real variable, the

expression is converted to Real. However, the expression itself

is calculated as an integer, and you should therefore be aware of
possible integer overflow in the expression. This can lead to

surprising results. Take for instance:

RealVar :- 40 * 1000;

First, the compiler multiplies integers 40 and 1000, resulting in
40,000 which gives integer overflow. It will actually come out
to -25536 as Integers wrap around. Now it will be aSSigned to

the RealVar as -25536. To prevent this, use either:

RealVar :- 40.0 * 1000;

or

RealVar :- 1.0 * IntVar1 * IntVar2;

to insure that the expression is calculated as a Real.

Q: How do I get disk directory from my TURBO program?

A: Sample procedures for accessing the directory are included in

the TURBO Tutor package (order the TURBO Tutor from
Borland).

37

$ 35, 38

, 36

(* 37

* 44, 75, 157

*) 37

+ 45, 58, 75, 157

- 43,45,75, 157

51

I 44

'. 47

< 45, 157

<- 45, 75

<> 45, 75, 1 06

- 45, 75, 106

> 45, 157

>- 45, 75

-A-

A compiler directive 116, 122,
158, 182

Abort operation 27
Abs 124

INDEX

Absolute 150

Absolute code 182

Absolute value 124
Absolute variables 150

Actual parameters 112
Adding operators 45

Addition 45

Addr 151

Address in memory 151
Allocating variables 106
And 44

ArcTan 124
Arctangent 124
Arithmetic and 44
Arithmetic functions 124
Arithmetic or 45
Array 65
Array constants 78
Array definition 65
Array identifier 65
Array optimization 153, 185
ASCII table 204
Assign 82
Assignment statement 47
Auto indent onloff 24, 29
Automatic overlay management

140
Aux 93
AUX: 91
Auxiliary device 91
Auxin 155
AuxlnPtr 156
AuxOut 155
AuxOutPtr 156

-8-

B compiler directive 93, 183
Backspace 96

Backus-Naur Form 199

INDEX

. BAK files 9

Base type 65, 73

Basic movement commands 16
Basic symbols 30

Bdos 154
BOOS error 214
BdosHL 154
Before you start 4, 214

Begin 42, 49
Bios 154
BiosHL 155
Bitwise negation 44

Block commands 21

Blockread and block write 101
Boolean 34
BufLen 97, 98
Byte 33, 55

Byte manipulation 127, 128,
129

-c-

C command 11
C compiler directive 183
Case 50
Case statement 50
Chain 147
Chain and execute 146
Chaining 144
Char 34

Character arrays 67
Character left 17
Character right 17
Chr 126

. CHN files 9, 144, 147
Close 84
ClrEol 118

ClrScr 118
. COM files 9, 144, 147, 217
COM1: 218
Command line 148

Page 223

Command-line parameters 145
Command-line buffer 128

Comments 37
Nesting 38

Comparing pointers 106
Comparing strings 59
Compile command 11

Compiler directives 4, 38, 182
A 116, 122, 158, 182

B 93, 183
C 183
Default values 182

I 103, 132, 147, 183

R 56, 64, 66, 184
Scope 133
U 184
V 114, 184
W 153, 184
X 153, 185

Compiler error messages 188

Translating 195
Compiler options 12, 143
Component type 65
Compound statement 49
Con 93
CON: 91
Concat 62
Concatenation 58, 62
Conditional statements 49
Conln 155

ConlnPtr 156
ConOut 155

ConOutPtr 156
Console device 91

Console status 127

ConSt 40, 155
Constant definition part 40
ConStPtr 156
Control character prefix 27
Control characters 15, 37

Copy 62

Page 224

Copy block 22
Copying your TURBO disk 214
Cos 124

Cosine 124

CP 1M 143, 214
Function calls 154

CPU stack 168
Creating overlays 137

CrtExit 119

Crtlnit 119
Ctrl-A 17

In search & replace strings 26

In search strings 25

Ctrl-C 18, 183, 184, 220
Ctrl-D 17, 97
Ctrl-E 17
Ctrl-F 17

Ctrl-C 20

Ctrl-H 97
Ctrl-I 24
Ctrl-K B 21
Ctrl-K C 22
Ctrl-K D 23
Ctrl-K H 22
Ctrl-K K 22
Ctrl-K R 23
Ctrl-K T 22
Ctrl-K V 22
Ctrl-K W 23
Ctrl-K Y 23
Ctrl-L 27
Ctrl-M 97
Ctrl-N 21
Ctrl-P 27
Ctrl-Q A 26
Ctrl-Q B 19
Ctrl-Q C 19
Ctrl-Q D 19
Ctrl-Q E 19
Ctrl-Q F 24
Ctrl-Q I 24

Ctrl-Q K 19
Ctrl-Q L 24

Ctrl-Q P 20

Ctrl-Q R 19

Ctrl-Q S 19
Ctrl-Q X 19

Ctrl-Q Y 21

Ctrl-R 18, 97

Ctrl-S 17, 183
Ctrl-T 21
Ctrl-U 27
Ctrl-V 20

Ctrl-W 18

Ctrl-X 17, 97
Ctrl-Y 21

Ctrl-Z 18, 88, 97

Cursor movement 28

-D-

D command 11
Data area 141
Data entry

Editing during 96
Data structures 163
Declaration part 39

INDEX

Declared scalar type 33, 54
Defining a pointer variable 105
DEL 96
Delay 119
Delete 60
Delete block 23
Detete character under cursor

20
Delete left character 20
Delete line 21
Delete right word 21
Delete to end of line 21
Delimiters 32
Delline 119
Directory command 11

INDEX

Discriminated unions 72

Disk problems 216
Dispose 109
Div 44

Division 44

Do 52, 53, 70
Dollar sign 38

Downto 52

- E -

E 36
E command 10
Edit command 10
Editing commands 13

Installation 7, 209
Editing during data entry 96
Editor 12

Status line 13
Col n 13
File name 13

Indent 13
Insert 13

line n 13
Efficient use of overlays 141
Element 73
Else 49

Empty set 74
Empty statement 48
Empty string 37

End 42, 49, 68
End address 145

End edit 23, 28

End of file marker 88

See also EOF, SeekEof

End of line marker 88

See also Eoln, SeekEoln
EOF 85, 219

On logical devices 92

When a CR is entered 96
EOlN 89, 219

Page 225

On logical devices 92
When a CR is entered 96

Equal to 45.

Erase 84

Error messages

Compiler 188
Translating 195

I/O 193
Run-time 192

ESCAPE 97

Execute 147
Execute command 143

Exit 120
Exp 124
Exponential 124
Exponential notation 36
Expressions 43

Extended movement commands
18

Extensions in TURBO Pascal 1,
186

External 156, 165, 167

-F-

False 34, 40
Field identifier 68
Field list 68
Fields 68
File exists (sample function)

219
File handling 219

File interface blocks 162
File name 9

File names 150
File not found 220

File of 81
File pointer 81
File standard functions 85
File type definition 81

FilePos 85

Page 226-

Files 150
Files on the distribution disk 4
FileSize 85
FiIIChar 121
Find 24
Find and replace 26
Find runtime error 146
Flush 83
For statement 52
Formal parameters 112
Forward 129
Forward declarations 142
Forward references 129
Frac 124
Fractional part of a number

124
Free unions 72
FreeMem 111
Function 122
Function declaration 121
Function designators 46
Function keys 218
Function results 167
Functions 121

-G-

Get 186
GetMem 110, 186
Goto 48
Goto statement 48, 186
GotoXY 120
Greater than 45
Greater than or equal to 45

-H-

Halt 120
Heap 106, 168
HeapPtr 168
HELP!!! 216

INDEX

Hexadecimal notation 35
Hi 127
Hide/ display block 22
High order byte 127
Highlighting 8

- I -

I compiler directive 103, 132,
147, 183

I/O checking 103
I/O error handling 183
I/O error messages 193
I/O mode selection 183
Identifiers 35
If statement 49
In 75
In-line machine code 157
Include files 132, 183
Inconsistent behavior when a

program is run repeatedly

220
Index type 65
Inline 157
Input 93
Input line length 97
Insert 60
Insert and delete commands 20
Insert line 21
Insert mode on/off 20
Insline 119
Installation 6, 205, 216

Editing commands 7
Int 125
Integer 33
Integer division 44
Integer part of a number 125
Internal data formats 159

Arrays 163
Basic data types 160
File interface blocks 162

INDEX

Files
Random-access 164

Text 165
Pointers 163
Reals 160
Records 164
Scalars 160

Sets 161
Strings 161

Interrupt handling 158
Intersection 73
IOresult 103

Kbd 93

KBD: 91

-K-

Keyboard device 91

KeyPressed 127

-L

L command 8
Label 40, 48
Label declaration part 40
Length 63
Less than 45

Less than or equal to 45
Line down 17
Line restore 28

Line up 17

List device 91
Ln 125
Lo 128

Logged drive and overlays

See OvrDrive procedure

Logged drive selection 8
Logical and 44
Logical devices 91
Logical or 45
Low order byte 128

LowVideo 120
Lst 93

LST: 91
LstOut 155
LstOutPtr 156

-M-

M command 10

Page 227

Main file selection 10
Mark 106
Mark block begin 21
Mark block end 22

Mark single word 22, 28
MaxAvail 111

Maxint 40

Mem 67, 152

MemAvail 107, 153
Member 73
Memory management 169

Memory/Com file/cHn file 144
Menu 8

C command 11

o command 11
E command 10

L command 8
M command 10
o command 12, 143 .

C option 144
F option 146

H option 144

M option 144

P option 145
Q command 12
R command 11

S command 11
W command 9

X command 143
Misc. editing commands 23
Misc. standard functions 127
Mod 44

Page 228

Modulus 44

Most commonly asked questions
and their answers 216

Move 121

Move block 22
MP/M 145

Multidimensional array

constants 79

Multidimensional arrays 66

Multiplication 44
Multiplying operators 44

-N-

Natural logarithm 125

Nesting

Comments 38

Include files 133

Overlays 139
Records in with

statements 70

With statements 184

New 106, 186

Nil 106

NormVideo 120

Not equal to 45

Not operator 44

Numbers 35

-0-

o command 12

Odd 126

Of 65

Operations on files 82

Operations on text files 88

Operators 43
Summary 180

Or 45

Ord 55, 56, 126, 153
Output 93

INDEX

Output to the printer 217
Overflow 33, 217

CPU stack 169

Overlay 137

Overlay system 134
Overlays 149

OvrDrive 149

- p -

Pack 187

Packed 187

Page 186

Page down 18

Page up 18

ParamCount 128, 145

Parameters 112, 128, 165

ParamStr 128, 145

. PAS files 5
Pascal language 1

Pi 40

Placing overlay files 141

Plus sign 58

Pointer symbol 105

Pointer types 105

Pointer variable 105

Pointers and integers 153

Pointers

Comparison 106

Range checking 111

Port 67, 152

Pos 63

Pred 55, 126

Predecessor 126

Predefined arrays 67, 152

Procedure 116

Procedure and function
declaration part 42

Procedure declaration 116

Procedure statement 47
Procedures 116

INDEX

Procedures and functions 112

Program 39

Program heading 39

Program libraries 132

Program lines 32

Program name 39

Ptr 153

PUN: 91

Put 186

-Q-

Q command 12

Quit command 12

- R -

R command 11

R compiler directive 56, 64,
66, 184

Random 128

Randomize 121

Range checking 56

Pointers 111
RDR: 91

Read 83

Read block from disk 23
Read from the keyboard 217
Read procedure 95
READ.ME 5
Readln 89

Readln procedure 98
Real 33

Record 68

Record constants 79

Record definition 68

Record nesting

In with statements 70
Record section 68

Record type 68
RecurPtr 168

Page 229

Recursion 142, 186, 219

Recursion stack 168

Reference parameters 113

Regret 24

Relational operators 45, 59

With scalar types 54

Relative complement 73

Relaxations on parameter type

checking 114

Release 106
Rename 84

Repeat last find 27

Repeat statement 53

Repetitive statements 51

Reserved words 30

Reset 82

Restore line 24

Restrictions on overlays

Data area 141

Forward declarations 142

Recursion 142

Run-time errors 142

RETURN 97

Retyping 56
Rewrite 82
Round 127

Rounding a number 127
Run command 11
Run-time error messages 192
Run-time errors 142
Run-time index checks 184

-5-

S command 11

Save command 11

Scalar functions 126

Scalar type 54
Scroll down 1~

Scroll up 18

Seek 83

Page 230

SeekEof 89

SeekEoln 89

Set assignments 76

Set constants 80

Set constructors 74
Set expressions 74

Set of 73

Set operators 75
Set type 73

Set type definition 73
Shift left 44
Shift right 44

Shl 44
Shr 44
Simple statements 47

Sin 125

Sine 125

Single quote 36

SizeOf 129
Sqr 125

Sqrt 125

Square 125

Square brackets 58
Square root 125
StackPtr 168
Stacks

CPU 168

Recursion 168
Standard files 92

Standard functions 123

Summary 175

Standard identifiers 31, 146

Standard procedures 118

Summary 175

Standard scalar type 33

Start address 145

Starting TURBO Pascal 5

See also Before you start

Statement part 42

Statements 47

Status line 13

Str 61

String assignment 59

String comparison 59

INDEX

String concatenation 58, 62

String expressions 58
String functions 62

String length 64, 151

String procedures 60
String type definition 58

Strings 36
Strings and characters 63
Structured statements 49

Structured typed constants 78

Subprograms 112
Subrange delimiter 51

Subrange type 55

Subtraction 45

Succ 55, 126

Successor 126
Swap 129

Syntax of TURBO Pascal 199

-T-

Tab 24

Tabulator 29

Tag field 71

Technical support 216
Terminal device 91
Terminal installation 205, 216

Text files 88, 150

Text input and output 95

TINST 6, 205

To 52
To beginning of block 19

To bottom of screen 19

To end of block 19

To end of file 19

To last cursor position 20

To left on line 19

To right on line 19

INDEX

To top of file 19
To top of screen 19
Transfer functions 126

Translating error messages 195
Trm 93
TRM: 91

True 34, 40
Trunc 127
Truncating a number 127
TURBO-87 216
TURBO BCD 217
TURBO.COM 4
TURBO.MSG 5, 195
TURBO.OVR 4
Type 41
Type conversion 56
Type definition part 41

Type mismatch 220
Typed constants 77

-u-

U compiler directive 184
Unary minus 43
Underflow 33

Union 73

Unpack 187

Unstructured typed constants
77

Until 53

Untyped files 101

Untyped variable parameters
115

UpCase 129

Upper and lower case 35

Upper-case equivalent 129
User device 91

User interrupts 184
User-defined scalar types 54
User-written I/O drivers 155
Using files 86

Using pointers 107
Usr 93

USR: 91
Usrln 155
UsrlnPtr 156
UsrOut 155

UsrOutPtr 156

-v-

Page 231

V compiler directive 114, 184
Val 61

Value parameters 112, 118,
165

Arrays 167
Pointers 167
Reals 166

Records 167
Scalars 165
Sets 166

Strings 166

Var 41, 113
Var-parameter type checking

184
Variable declaration part 41

Variable parameters 117, 165
See also Reference

Parameters
Variant records 71

-w -

W command 9
W compiler directive 153, 184
While statement 52

With 70
With statement 70, 153

Nesting 184
Word left 17
Word right 17

WordStar compatibility 12, 28

Page 232

Work file selection 9
Write 83
Write block to disk 23

Write parameters 99

Write procedure 98
Writeln 89

Writeln procedure 100

-x-
X compiler directive 153, 185

INDEX

Xor 45

[58

] 58

" 37, 105

{ 37

} 37

WORD
LEFT

DELETE

EDITOR QUICK REFEREnCE

I BCJIIIIJ
CCtfj?J)

LINE UP

. ~
CCfIXS)~ . ~cetrfffi
CHARACTER _ n ~ CHARACTER

LEFT ~ RIGHT

CWfXX)
LINE

DOWN

CCWXJ)
PAGE
DOWN

FInD

WORD
RIGHT

BLOCI-:
(Ci;1G' ---. DELET[CHARACTER I\. Ctrl' Q FA FI NO I~""'~
(Ctrl T DELETE WORD ,I, Ctrl Q A A FINO & CHANGE I MARK BEGINNUC; MARK END ---(Ctrl Y DELETE LINE I (Ctrl It'"L REPEAT LAST FINO I

Ctrl K T MARK WORD

OPTIOIS: U -UPPER/LOWER CASE" Ctrl K C COPY BLOCK
W-WHOLE WORDS ONLY (Ctrl K \J MOVE BLOCK
B -BACKWARDS (Ctrl K y
G -GLOB.ttL DELETE BLOCK
N -NO QUESTION

(Ctrl I K I D 4 END EDIT

