
Borland"
. Turbo Debugger"

User's Guide

Borland
Turbo Debugger®
Version 4.0

Borland may have patents andbr pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1988, 1993 by Borland International. All rights reserved. All Borland products
are trademarks or registered trademarks of Borland International, Inc. Other brand and
product names are trademarks or registered trademarks of 'their respective holders.

Borland International, Inc.
100 Borland Way, P.O. BOX 660001, Scotts Valley, CA95067-0001

PRINTED IN THE UNITED STATES OF AMERICA

1EOR1093
9394959697·98765432
W1

Contents

Introduction 1 Setting command-line options with Turbo
New features and changes for version 4.0 .- 2 Debugger's icon properties 19
Hardware requirements 2 Setting command-line options from
Terminology in this manual 2 Borland's C++ integrated environment 20
Typographic and icon conventions 3 Running Turbo Debugger 20
Using this manual 4 Loading your program into the debugger 21

Where to now? ' 5 Searching for source code 23
First-time Turbo Debugger users 5 Specifying program arguments 23
Experienced Turbo Oebugger users 5 Restarting a debugging session 23

Contacting Borland 6 Controlling program execution 24

Chapter 1 Installing and configuring Turbo
The Run menu 25

Run 25
Debugger 7 Go to Cursor 25

Installing Turbo Debugger 7 Trace Into 25
Configuring Turbo Debugger 7

Turbo Debugger's configuration files 8
Step Over 26
Execute To 26

Searching for configuration files 8 Until Return 26
Setting up the video drivers 8 Animate 27
Dual-monitor debugging 9 Back Trace 27
The Options menu 9 Instruction Trace 27

The Language command 9
Display Options command 10
Path for Source command 11
Save Options command 12

Arguments 27
Program Reset 27
Next Pending Status 28
Wait for Child 28

Restore Options command 12
Debugging ObjectWindows 1.0 programs ... 12

Files installed with Turbo Debugger 13

Interrupting program execution 29
Stopping in Windows code 29

Reverse execution 30
Turbo Debugger's executable and support
files 13
Turbo Debugger's utilities 14

Specifying utility command-line options ... 14
Turbo Debugger's online text files 15
Turbo Debugger's example program 15

The Execution History window's
SpeedMenu 30

The Keystroke Recording pane 31
The Keystroke Recording pane's
SpeedMenu .' 32

Program termination .' 32

Chapter 2 Starting Turbo Debugger and running
your program 17

Resetting your program 32
Exiting Turbo Debugger: 33

Preparing programs for debugging 17 Chapter 3 Debugging with Turbo Debugger 35
Compiling from the integrated Debugging basics 35
environment 18
Compiling from the command line 18

Starting Turbo Debugger 18
Specifying Turbo Debugger's command-line

Discovering a bug 35
Isolating the bug 36
Finding the bug 36
Fixing the bug 37

options 19 What Turbo Debugger can do for you 37
Turbo Debugger's user interface 37

Working with menus , . 38 Running Simple Paint 56
Working with windows ,38 Compiling TDWDEMO 56

Selecting a window '. 38 Compiling TDWDEMO using DOS
Using window panes , 38 commands 57
Moving and resizing windows 39 Compiling TDWDEMO using the IDE 57
Closing and recovering windows 39 Debugging TDWDEMO 57

SpeedMenus 39 Running the buggy program 58
Turbo Debugger's windows 40 Stepping through program code 60

The View menu's windows 40 Fixing a bug 61
Breakpoints window : 40 Fixing warnings 61
Stack window 40 Stepping into the message loop 62
Log window 40 Setting breakpoints 63
Watches window 41 Creating a conditional breakpoint 64
Variables window 41 Setting watches and inspecting data
Module window 41 structures 66
File window 41 Setting watches 67
CPU window 41 Running to the cursor location 67
Dump window 41 Inspecting compound data structures 68
Registers window ' 42 Producing the bug in Turbo Debugger 69
Numeric Processor window 42 Resetting the program 70
Execution History window 42 Changing the values of variables 70
Hierarchy window 42
Windows Messages window 42
Clipboard window 43
Duplicating windows 43

Other windows 43
Inspector windows 43
User screen 44

Turbo Debugger's special features 44
Automatic name completion 44
Select by typing 45
Incremental matching 45
Keyboard macros 45

The Macros menu 45
The Clipboard 46

The Pick dialog box 46
The Clipboard window 47
The Clipboard window's SpeedMenu 48
Dynamic updating 48

The Get Info text box 49
The Attach command 50
The OS Shell command 52
Getting help 52

Online help 52
The status line ; 53

TD32's menu tree 54

Chapter 4 Debugging a simple example 55

Chapter 5 Setting and using breakpoints 73
Breakpoints defined 73

Breakpoint locations 73
Breakpoint conditions 74
Breakpoint actions 74

The Breakpoints window 74
The Breakpoints window's SpeedMenu 75

Breakpoint types 75
Setting simple breakpoints 75
Setting expression-true breakpoints 77
Setting changed-memory breakpoints 78
Setting global breakpoints 79

Global breakpoint shortcuts 80
Setting hardware breakpoints 80

Breakpoint actions 81
Break 81
Execute 81
Log 82
Enable group 82
Disable group 82

Setting breakpoint conditions and actions 82
Creating breakpoint condition sets 83
Creating breakpoint action sets 83
Multiple condition and action sets 84
The scope of breakpoint expressions 84

Breakpoint groups 84
The Simple Paint program 55 Creating breakpoint groups 85

Deleting breakpoint groups 85
E~abling and di~abling breakpoint groups ... 86

NavIgating to a breakpoint location 86
Enabling and disabling breakpoints 86
Removing breakpoints ~ 87
Setting breakpoints on C++ templates 87
Setting breakpoints on threads 88

. The Log window 88
The Log window's SpeedMenu 89

Chapter 6 Examining and modifying data 91
The Watches window 91

Creating watches 92
The Watches window's SpeedMenu 93

The Variables window 94
The Variable window's SpeedMenus 94
Viewing variables from the Stack window .,. 96

Inspector windows 96
Opening Inspector windows 96
Scalar Inspector windows 97
Pointer Inspector windows 97
Structure and Union Inspector windows 98
Array Inspector windows 99
Function Inspector windows 100
The Inspector window's SpeedMenu 100

The Stack window 101
The Stack window's SpeedMenu 102

The Evaluate/Modify command 102
Function Return command 104

Chapter 7 Evaluating expressions 105
Turbo Debugger's expression evaluator 105

Selecting an evaluator 105
Expression limitations 106

Types of expressions 106
Specifying hexadecimal values 106
Specifying memory addresses 107
Entering line numbers 107
Entering byte lists 107
Calling functions 108

Expressions with side effects 108
Format specifiers 108
Accessing symbols outside the current scope .. 109

How Turbo Debugger searches for symbols . 110
Implied scope for expression evaluation 110
Scope override syntax 110

Overriding scope in C, C++, and assembler
programs 111
Overriding scope in Pascal programs 112

iii

Scope and DLLs 113

Chapter 8 Examining disk files 115
Examining program source files 115

Loading source files 116
The Module window's SpeedMenu 116

Examining other disk files 119
The File window's SpeedMenu 120

Chapter 9 Assembly-level debugging 123
The CPU window 123

Opening the CPU window 125
The Code pane 125

Displaying source code 125
Setting breakpoints 126
The Code pane's SpeedMenu 126

The Registers pane 129
The Registers pane's SpeedMenu 129

The Flags pane 130
The Flags pane's SpeedMenu 130

The Dump pane 130
The Dump pane's SpeedMenu 131

The Stack pane 133
The Stack pane's SpeedMenu 133

The Selector pane 134
The Selector pane's SpeedMenu 135

The Dump window 135
The Registers window 136

Chapter 10 Windows debugging features 137
Monitoring window messages 137

Specifying a window to monitor 138
Deleting window selections. 139

Specifying the messages to track 140
SpeCifying a message class to track 140

Specifying the message action 142
Breaking on messages 142
L . oggmg messages 142
Deleting message class and action
settings 143

Message tracking tips 143
Debugging dynamic-link libraries 143

Stepping into DLL code 144
Returning from a DLL 144

Accessing DLLs and source-code·modules .. 144
Changing source modules 145
Changing executable files 145
Adding DLLs to the DLLs &
Programs list ·146

Stepping over DLLs 146

Debugging DLL startup code 146 Getting help (-h and -? options) 172
Debugging multithreaded programs 148 Session restart modes (-j options) 172

The Threads Information pane 148 Keystroke recording (-k) 173
The Threads List pane 149 Assembler-mode startup (-1) 173

Threads List pane's SpeedMenu 149 Mouse support (-p) 173
The Threads Detail pane 151 Remote debugging (-r options) 173

. Tracking operating-system exceptions 151 Source code handling (-s options) 173
Specifying user-defined exceptions ... , 152 Starting directory (-t) 174

Obtaining memory and module lists 153 Video hardware handling (-v options) 174
Listing the contents of the global heap 153 Windows crash message checJdng (-wc) 174
Listing the contents of the local heap 155 Windows DLL checking (-wd) 174
Listing the Windows modules 155 Command-line option summary 175

Converting memory handles to addresses 156
Appendix B Remote debugging 177

Chapter 11 Debugging object-oriented Hardware and software requirements 177
programs 157 Starting the remote debugging session 178

The Hierarchy window 157 Setting up the remote system 178
The Classes pane 158 Configuring and starting WREMOTE 178

The Classes pane's SpeedMenu .. ; 158 Serial configuration 179
The Hierarchy pane 158 LAN configuration 179

The Hierarchy pane's SpeedMenu 158 Saving the communication settings 180
The Parents pane 159 Starting WREMOTE 180

The Parent pane's SpeedMenu 159 WREMQTE command-line options 180
Class Inspector windows 159 Starting and configuring TDW 181

The Class Inspector window's SpeedMenus . 160 Serial configuration 181
Object Inspector windows 161 LAN configuration 182

The Object Inspector window's Initiating the remote link 182
SpeedMenus 161 AutOmatic file transfer 183

Exceptions 163 TDW's remote debugging command-line
C++ exception handling 163 options 183
C exception handling 164 Remote DOS debugging 185

Chapter 12 Debugging TSRs and device drivers 165
What's a TSR?- 165

Debugging a TSR 166
What's a device driver? 168

Differences between TDREMOTE and
WREMOTE 185
Transferring files to the remote system 186

Troubleshooting 186

Debugging a device driver : 169

Appendix A Command-line options 171
Command -line option details 171

.Attaching to a running process 171
Loading a specific configuration file (-c) 172

Appendix C Turbo Debugger error messages 187
TD, TDWi and TD32 messages 187
Status messages 198
TDREMOTE messages 199
WREMOTE messages 200

Display updating (-d options) .. , 172 Index 201

iv

Tables

1.1 Turbo Debugger's executable and support 9.1 CPU window panes 124
files 13 9.2 CPU window positioning 125

1.2 Turbo Debugger's utilities 14 9.3 Mixed command options 128
1.3 Turbo Debugger's online files 15 9.4 1/ a commands 129
1.4 Turbo Debugger's example program files ... 16 9.5 The CPU Flags 130
2.1 Turbo Debugger programs 19 9.6 Follow command options 132
2.2 Starting Turbo Debugger 19 9.7 Display As command options 133
3.1 Turbo Debugger's debugging functions 37 9.8 Block command options 133
3.2 Clipboard item types 47 10.1 Windows Messages window panes 138
3.3 TDW's System Information 49 10.2 Format of a global heap list 154
3.4 Windows NT System Information 50 10.3 Format of a local heap list 155
5.1 Breakpoint types 75 10.4 Format of a Windows module list 156
6.1 Evaluate/Modify dialog box fields 103 A.1 Turbo Debugger's command-line options. 175
7.1 Hexadecimal notation 107 B.1 WREMOTE command-line options 180
7.2 Segment:Offset address notation 107 B.2 TDW's remote debugging command-line
7.3 Byte lists 108 options 183
7.4 Expression format specifiers 109 B.3 TDREMOTE command-line options 185

v

Figures

1.1 The Display Options dialog box 10
2.1 The Load a New Program to Debug dialog

box 21
2.2 The Enter Program Name to Load dialog

box · 22
2.3 The Set Restart Options dialog box 24
2.4 The Execution History window 30
3.1 The Pick dialog box 46
3.2 The Clipboard window 47
3.3 The Get Info text box 49
3.4 The Attach to and Debug a Running Process

dialog box 51
3.5 The normal status line 53
3.6 The status line with Alt pressed 53
3.7 The status line with Ctrl pressed 53

. 3.8 The complete TD32.EXE menu tree 54
4.1 TDWDEMO loaded into Turbo Debugger .. 60
4.2 Breakpoints window with a conditional

breakpoint 65
4.3 Inspector and Watches windows 68
5.1 The Breakpoints window 74
5.2 The Breakpoint Options dialog box 77
5.3 The Conditions and Actions dialog box 78
5.4 The Edit Breakpoint Groups dialog box 85
5.5 The Log window 88
6.1 The Watches window '" 92
6.2 The Variables window 94
6.3 A C scalar Inspector window 97

6.4 A C pointer Inspector window 98
6.5 A C Structure and Union Inspector window .98
6.6 A C array Inspector window 99
6.7 A C function Inspector window 100
6.8 The Stack window 102
6.9 The Evaluate/Modify dialog box 103
8.1 The Module window 115
8.2 The File window 120
8.3 The File window showing hex data 120
9.1 The CPU window 124
9.2 The Dump window 136
9.3 The Registers window 136
10.1 The Windows Messages window 138
10.2 The Set Message Filter dialog box 140
10.3 The Load Module Source or DLL Symbols

dialog box 145
10.4 The Threads window 148
10.5 The Thread Options dialog box 149
10.6 The Specify Exception Handling dialog

box 152
10.7 TDW's Windows Information dialog box. 153
11.1 The Hierarchy window 157
11.2 A Class Inspector window 159
11.3 An ObjectInspector window 161
11.4 The Specify C and C++ Exception

Handling dialog box 163
B.1 WRSETUP main window and

Settings dialog box 179

vi

Introduction

Introduction

Turbo Debugger is a set of tools designed to help you debug the programs
you write with Borland's line of compilers. The Turbo Debugger package
consists of a set of executable files, utilities, online text files, example
programs, and this manual.

Turbo Debugger lets you debug the programs you're writing for Microsoft
Windows, Windows 32s, Windows NT, and DOS. When you load your
program into Turbo Debugger, you can use the debugger to control your
program's execution and to view the different aspects of your program
(including your program's output, source code, data structures, and
program values) as it runs. .

Turbo Debugger uses menus, multiple windows, dialog boxes, and online
context-sensitive help system to provide you with an easy-to-use,
interactive debugging environment. In addition, Turbo Debugger provides
a comprehensive set of debugging features:

• Full C, C++, Pascal, and assembler expression evaluation.

• Full program execution control, including program animation.

• Low-level access to the CPU registers and system memory.

• Complete data inspection capabilities.

• Powerful breakpoint and logging facilities.

• Windows message tracking, including breakpoints on window messages.

• Full object-oriented programming support, including class browsing and
object inspecting.

• Reverse execution.

• Remote debugging support.

• Macro recording of keystrokes to speed up repeated series of commands.

• Copying and pasting between windows and dialog boxes.

• Incremental matching, automatic name completion, and select-by-typing
(to minimize keyboard entries).

• Context-sensitive SpeedMenus throughout the product.

• Dialog boxes that let you customize the debugger's options.

New features and changes for version 4.0

Turbo Debugger 4.0 provides the following enhancements over version 3.x:

• Ability to debug both 16- and 32-bit Windows programs (provided with
the addition of TD32, the 32-bit debugger).

• Ability to debug larger programs.

• Support for remote debugging on Windows systems (described in
Appendix B).

• Operating-system exception handling (described in section "Tracking
operating-system exceptions" on page 151).

• C++ and C exception handling (described in section "Exceptions" on
page 163).

• Session-state saving (described in section "Restarting a debugging
session" on page 23).

• Thread support for multithreaded Windows NT programs (described in
section "Debugging multithreaded programs" on page 148).

• Ability to attach to processes that are already running in Windows NT
(described in section "The Attach command" on page 50).

• Ability to shell out to a selected editor while running Windows NT
(described in section 'IEdit" on page 119).

• Ability to choose a Windows international sort order for items displayed
in Turbo Debugger (use Turbo Debugger's configuration programs to
access this feature).

Hardware requirements

Turbo Debugger's hardware requirements are the same as those of your
Borland language compiler.

In addition, Turbo Debugger supports the following graphics modes and
adapters: CGA, EGA, VGA, Hercules monochrome-graphics, Super VGA
(SVGA), TIGA, and 8514. You can use standard drivers with everything
except SVGA, TIGA, and 8514.

Terminology in this manual

2

For convenience and brevity, several terms in this manual are used in
slightly more generic ways than usual:

Turbo Debugger User's Guide

argument The term argument is used interchangeably with parameter in this manual
and applies both to command-line arguments used to invoke a program to

, be debugged and to arguments passed to routines, functions, and
procedures.

module This term refers to what is usually called a module in C++ and assembler,
and also to what is called a unit in Pascal. Modules are executable files such
as .EXE files and .DLLs.

routine A routine, as used in this manual, refers to assembler and C++ functions,
and to Pascal functions, procedures, and object methods.

In this manual, the term "Turbo Debugger" r:efers to the two Turbo
Debugger programs: TDW.EXE and TD32.EXE. However, there are times
when the text refers to a specific Turbo Debugger program. In these cases,
the term "TDW" refers to TDW.EXE and the term "TD32" refers to
TD32.EXE.

Typographic and icon conventions

Boldface Boldface type indicates language keywords (such as char, switch/and
begin) and command-line options (such as -rn).

Italics Italic type indicates program variables and constants that appear in text.
This typeface is also used to emphasize certain words, such as new terms.

Monospace Monospace type represents text as it appears onscreen or in a program. It is
also used for anything you must type literally (such as TD32 to start up the
32-bit Turbo Debugger).

Key 1 This typeface indicates a key on your keyboard. For example, "Press Esc to
exit a menu."

Key1+Key2 Key combinations produced by holding down one or more keys
simultaneously are represented as Key1+Key2. For example, you can execute
the Program Reset command by holding down the Gtrl key and pressing F2
(which is represented as Gtrl+F2).

MenulCommand This command sequence represents a choice from the menu bar followed
by a menu choice. For example, the command "File I Open" represents the
Open command on the File menu.

.. This arrow icon indicates material you should take special notice of.

Screen shots Unless otherwise noted, all screen shots in this manual depict TD32 while
running under Windows NT.

Introduction 3

This manual also uses the following icons to indicate sections that pertain
to specific Window,s operating environments:

Windows3.x Windows 32s and NT

Windows 32s Windows NT

Using this manual

4

Here is a brief description of the chapters and appendixes in this manual:

Chapter 1: Installing and configuring Turbo Debugger describes the files
that are installed with the Turbo Debugger package and how to customize
Turbo Debugger once it is installed. ,/

Chapter 2: Starting Turbo Debugger and running your program describes
how to prepare your program for debugging, and how to run Turbo
Debugger and load your program. This chapter also discusses the different
ways to control your program's execution while you are running it in Turbo
Debugger.

Chapter 3: Debugging with Turbo Debugger introduces you to Turbo
Debugger's environment-its global and SpeedMenu system, dialog boxes,
and debugging windows. This chapter also discusses the basics of
debugging, and the special features that Turbo Debugger provides to make
your debugging session run smoothly.

Chapter 4: Debugging a simple example leads you through a sample
debugging session that demonstrates the capabilities of Turbo Debugger.

Chapter 5: Setting and using breakpoints describes Turbo Debugger's
breakpoint capability.

Chapter 7: Evaluating expressions describes the types of expressions that
Turbo Debugger accepts, how to specify a display format of the expression
results, and how to override the scope in expressions.

Chapter 6: Examining and modifying data explains the various ways you
can examine and modify the data used by your program.

Chapter 8: Examining disk files describes how to examine program source
files, and how to examine other disk files in either a .text or binary format.

Turbo Debugger User's Guide

Where to now?

First-time Turbo
Debugger users

Experienced Turbo
Debugger users

Introduction

Chapter 9: Assembly-level debugging describes Turbo Debugger's CPU
window. Additional information about this window and about assembler­
level debugging is in the file TD_ASM.TXT.

Chapter 10: Windows debugging features describes the Turbo Debugger
features you can use to debug Windows programs.

Chapter 11: Debugging C++ programs explains Turbo Debugger's special
features that let you examine C++ classes and objects.

Chapter 12: Debugging TSRs and device drivers describes how to use
TD.EXE to debug terminate and stay resident (TSR) programs and DOS
device drivers.

Appendix A: Command-line options describes all the command-line
options that are available with TDW and TD32.

Appendix B: Remote debugging describes the remote debugging
capabilities of Turbo Debugger.

Appendix C: Turbo Debuggers error messages lists all the error messages
and prompts generated by TDW and TD32. The list also gives suggestions
on how to respond to the prompts and error messages.

The following reading guidelines are proposed to help first-time and
experienced Turbo Debugger users:

New Turbo Debugger users should read the first four chapters of this
manual to get a basic understanding of how the debugger works. Once you
become familiar with the basics of Turbo Debugger, read Chapters 5,6, and
7 to become proficient with the debugger's most-often used features:
breakpoints, data inspection, and expression evaluation ..

The remaining chapters in the book provide information about specific
debugger features (such as the CPU window), and provide help when you
encounter problems debugging a specific area of your program (such a C++
class or a Windows DLL). Browse through these chapters to get an
overview of the more advanced debugger features.

If, while using Turbo Debugger, you have questions about a certain feature
or menu command, press F1 to access the debugger's context-sensitive help
system.

Users familiar with Turbo Debugger should read the "New features and
changes for version 4.0" section on page 2 to get an overview of items new
to this release. Experienced users should also read Chapter 2, "Installing
and configuring Turbo Debugger," which lists the files installed with Turbo

5

Debugger. Experienced users should also read "Turbo Debugger's special
features" on page 44, which describes the features that make Turbo
Debugger especially easy to use. Even experienced Turbo Debugger users
might be surprised at some of the features they've previously overlooked.

Contacting Borland

Borland offers a variety of services to help you with your questions. Be sure
to send in the registration card: registered owners are entitled to receive
technical support and information on upgrades and supplementary
products. North American customers can register by phone 24 hours a day
by calling 1-800-845-0147. Borland provides the following convenient
sources of technical information.

Service How to contact Available Cost Description

TechFax 1-800-822-4269 24 hours daily Free Sends technical information to your fax
(voice) machine. You can request up to 3

documents per call. Requires a Touch-
Tone phone.

Automated Support 1-800-524-8420 24 hours daily Free Provides answers to most common
(voice) or questions about Quattro Pro, dBASE V,
408-431-5250 The cost of and Paradox. Requires a Touch-Tone
(modem) the phone call phone or modem.

Online Services

Borland Download 408-439-9096 24 hours daily The cost of Sends sample files, applications, and
BBS the phone call technical information via your modem.

Requires a modem (up to 9600 baud);
no special setup required.

CompuServe online Type GO BORLAND. 24 hours daily; Your online Sends answers to technical questions
service Address messages to 1-working-day charges via your modem. Messages are public

Sysop or All. response time. unless sent by CompuServe's private
mail system.

BIX online Type JOIN BORLAND. 24 hours daily; Your online Sends answers to technical questions
service Address messages to 1-working-day charges via your modem. Messages are public

Sysop or All. response time. unless sent by BIXs private mail
system.

GEnie online Type BORLAND. 24 hours daily; Your online Sends answers to technical questions
service Address messages to 1-working-day charges via your modem. Messages are public

Sysop or All. response time. unless sent by GEnies private mail
system.

6 Turbo Debugger User's Guide

c H A p T E R

Installing and configuring Turbo
Debugger

This chapter describes how to install Turbo Debugger and how to
customize its default options and display settings. Also described in this
chapter are the many files that are installed with the debugger.

Installing Turbo Debugger

1

The INST ALL.EXE program supplied with your Borland compiler installs
the entire Turbo Debugger package, which includes executable files,
configuration files, utilities, online text files, and example programs. A
detailed listing of all files included with Turbo Debugger starts on page 13.

The install program creates icons for your Borland compiler and language
tools, and places them inside a new Windows program group. Directions
for using INST ALL.EXE can be found in the User's Guide of your Borland
language product.

For general installation information, refer to the README file on your
compiler's Installation disk. F9r a complete listing of the files installed by
INSTALL.EXE, refer to the FILELIST.DOC text file (this file is copied by the
installation program to your main language directory).

Configuring Turbo Debugger

You can configure Turbo Debugger's display options and program settings
with customized configuration files and with the debugger's Options menu.
Settings in the configuration files become effective when you load Turbo
Debugger. To change the debugger's settings after you've loaded it, use the
commands on the Options menu.

Chapter 1, Installing and configuring Turbo Debugger 7

Turbo Oebuggers
configuration files

Searching for
configuration files

8

Turbo Debugger uses the following configuration, initialization, and
session-state files when it starts:

• TDCONFIG.TD
• TDCONFIG.TDW
• TDCONFIG.TD2
.TDW.lNI
.XXXX.TR
.XXXX.TRW
.XXXX.TR2

The configuration files TDCONFIG.TD, TDCONFIG.TDW, and
TDCONFIG.TQ2 are created and used by TD, TDW, and TD32,
respectively. ~e settings in these files override the default configuration
settings of the debuggers. You can modify the configuration files using the
installation programs TDINST.EXE, TDWINST.EXE, and TD32INST.

TDW.lNI is the initialization 'file used by TDW.EXE and TD32.EXE. It
contains settings for the video driver used with Turbo Debugger, the
location of TDWINTH.DLL (the Windows-debugging DLL), and the remote
debugging settings you specify using WRSETUP .EXE.

The installation i program places a copy of TDW.lNI in the main Windows
directory. In this copy of TDW.lNI, the video. driver setting ([VideoDLL]) is
set to SVGA.DLL, and the DebuggerDLL setting indicates the path to
TDWINTH.DLL. Refer to the online file TD_HELP!.TXT for a complete
description of TDW.lNI.

Files ending with .TR, .TRW, and .TR2 extensions contain the session-state
settings for the debuggers. For information on session-state saving, refer to
"Restarting a debugging session" on page 23.

When you start Turbo Debugger, it looks for its configuration files in the
following order:

1. In the current directory.

2. In the directory specified in the Turbo Directory setting of Turbo
Debugger's installation program.

3. In the directory that contains the debugger's executable file.

If Turbo Debugger finds a configuration file, the settings in that file
override any built-in defaults. If you supply any command-line options
when you start Turbo Debugger, they override any corresponding default
options or values specified in the configuration file.

Turbo Debugger User's Guide

Setting up the
video drivers

Dual-monitor
debugging

The Options menu

TDW and TD32 use different video DLLs to support the available types of
video adapters and monitors. After you've installed Turbo Debugger, run
the utility program TDWINLEXE to help you select or modify the video
DLL that's used with the debuggers.

By default, TDW and TD32 use the SVGA.DLL video driver, which
supports most video adapters and monitors. For more information on the
available video DLLs, refer to the entries for DUAL8S14.DLL, STB.DLL,
SVGA,DLL, and TDWGULDLL in Table 1.1 (which appears later in this
chapter), and the online Help system provided with TDWINLEXE.

Turbo Debugger supports dual-monitor debugging with TD and TDW, and
with TD32 running on Windows 32s. To create a dual-monitor system, you
need a color monitor and video adapter, and a monochrome monitor and
video adapter. When you debug with two monitors, Turbo Debugger
appears on the monochrome monitor, and Windows and the program
you're debugging appears on the color monitor. The advantage of this
system setup is that you can see your program's output while you're
debugging it with Turbo Debugger.

Once your hardware setup is complete, use the -do ~ommand-line option
to load TD or TDW in dual-monitor mode. For more information on
command-line options, see Appendix A.

If you're running TD32 on Windows 32s, you must use Turbo Debugger's
SVGA.DLL video DLL to have access to dual-monitor debugging. On this
system, dual-monitor debugging is enabled when the following line is
inserted in the TDW.INI file, under the heading [VideoOptions 1 :

mono::yes

To properly setup your video driver, use the TDWINI.EXE utility.

The Options menu contains commands that let you set and adjust the
parameters that control the overall appearance of Turbo Debugger.

Language. • . Source
Macros ~
Display options •.•
Path for source ...
Save options •..
Restore options •••

Chapter 1, Installing and configuring Turbo Debugger 9

The Language
command

Display Options
command

Figure 1.1
The Display Options

dialog box

Display Swapping

10

Use the Options I Language command to select the programming language
evaluator that 'the debugger uses. Chapter 7 describes how to set the
expression evaluator and how it affects the way Turbo Debugger evaluates
expressions.

The Option I Display Options command opens the Display Options dialog
box. You use the settings in this dialog box to control the appearance of
Turbo Debugger's display. While TD, TDW, and TD32 share most display
options, TD32 has several additional options to provide support for the
Windows NT multitasking operating system.

, You can use the Display Swapping radio buttons to control the way Turbo
Debugger swaps your applications' screens with the debugger's windows.

None Found in TD32 only, this option specifies that no screen­
swapping is to take place. This option provides the fastest and
smoothest screen updating when you're single stepping through
a program. However, this option can cause your display to
become corrupted. If this happens, use the Repaint Desktop on
the System menu to repaint the screen.

Smart Turbo Debugger activates the user screen when it detects that
your program is going to display output and when you step
over routines.

Always Turbo Debugger activates the user screen every time your
program runs. Use this option if the Smart option isn't finding
all the times the program writes to the screen. If you choose this
option, the screen flickers every time you step through your
program because Turbo Debugger's screen is replaced for a short
time with the User screen.

Turbo Debugger User's Guide

Integer Format

Screen Lines

Tab Size

Background Delay

User Screen Delay

Path for Source
command

The Integer Format radio buttons let you choose the way integers are
displayed in Turbo Debugger.

Hex Shows integers as hexadecimal numbers, displayed in a format
appropriate to the current language evaluator.

Decimal Displays integers in decimal notation.

Both Displays integers in both decimal and hexadecimal notation (the
hexadecimal numbers are placed in parentheses after the
decimal value).

Use the Screen Lines radio buttons to select either a 25-line display or a 43-
or 50-line display available with EGA and VGA display adapters.

The Tab Size input box lets you set the number of columns each tab stop
occupies. To see more text in source files that use tab indents, reduce the
tab column width. You can set the tab column width from 1 to 32.

Found only in TD32.EXE, the Background Delay input box lets you specify
how often Turbo Debugger's screens getupdated. When you use this
setting in conjunction with the Run I Wait for Child command, you can
watch the effects of your program through Turbo Debugger's windows,
while your program is running.

Found only in TD32, User Screen Delay lets you specify how long your
program's screen is displayed when you press Alt+FS (the Window I User
Screen command). This command is useful when you're using TD32 in
full-screen mode, and you need to see your application's windows. By
setting the delay, you can specify how long your program'~ screens will be
displayed before Turbo Debugger regains control.

Use the Path for Source command to specify the directories that Turbo
Debugger searches for your program's source files. To enter multiple
directories, separate each directory with a semicolon. '

Although the Enter Source Directory Path input box holds a maximum of '
256 characters, you can use a response file to specify longer search paths. A
response file contains a single line that specifies the directories that should
be searched for source code. Each directory listed must be separated by a

Chapter 1, Installing and configuring Turbo Debugger 11

Save Options
command

Restore Options
command

Debugging
ObjectWindows
1.0 programs

12

semicolon. For example, a response file could contain the following line to
specify three different search directories: .

c:\my-proj\modl\sourceic:\my-proj\mod2\sourceic:\my-proj\mod3\source

To specify a response file in the Enter Source Directory Path input box,
enter an at-character (@) followed by the path and name of the response
file. For example, the following entry specifies the SRC_PATH.TXT
response file'

@C:\my-proj\src-path.txt

For more information on how Turbo Debugger conducts its search for
source code, refer to "Searching for source code" on page 23.

The Save Options command opens a dialog box that lets you save your
Option menu settings to a configuration file. You can save any or all of the
following options:

Options Saves all settings made in the Options menu.

Layout Saves the current window layout and pane formats.

Macrot; Saves the curreni-ly defined keyboard macros.

You can specify the name of the configuration file by using the Save To
input box. By default, TDW.EXE uses the file name TDCONFIG.TDW, and
TD32.EXE uses the file name TDCONFIG.TD2.

By creating different names for your configuration files, you can have a
different debugger setup for each programming project you're working on.
Each setup can specify unique macros, window layouts, source directories,
and so on.

The Restore Options command restores a configuration from a disk file.
The file loaded must be a configuration file that was created with the
Options I Save Options command or with Turbo Debugger's installation
program (TDWINST for TDW.EXE and TDINST32 for TD32.EXE).

If you're using TDW to debug a program that uses ObjectWindows 1.0x,
you must configure the debugger so that it recognizes the ObjectWindows
DDVT message dispatch system. To configure TDW:

1. Run TDWINST.

Turbo Debugger User's Guide

2. Choose Options I Source Debugging to access the Source Debugging
dialog box.

3. Check the OWL l.OX Window Messages check box.

4. Save the configuration and exit TDWINST.

Files installed with Turbo Debugger

Turbo Debuggers
executable and
support files

Table 1.1
Turbo Debugger's

executable and
support files

The following tables list all the files installed with Turbo Debugger,
arranged into the following categories:

• Turbo Debugger's executable and support files

• Turbo Debugger's utilities
• Turbo Debugger's online text files

• Turbo Debugger's demonstration program

Table 1.1 lists all the executable and support files needed to run TDW and
TD32.

File name

DUAL8514.DLL

STB.DLL

SVGA.DLL

TD.EXE.

TDDEBUG.386

TDHELP.TDH

TDKBDW16.DLL

TDKBDW32.DLL

TDREMOTE.EXE

TD32.EXE

TD32.ICO

TD32HELP.TDH

TDVIDW16.DLL

Description

Video DLL that supports dual-monitor debugging with 8514 monitors.

Video DLL that supports video adapters produced by STB.

Video driver that supports most adapters and monitors.

Executable program used to debug DOS applications.

TDW.EXE uses the device driver TDDEBUG.386 to access the special
debug registers of 80386 (and higher) processors. See page 80 for
.information on hardware debugging.

Help file for TD.EXE.

Support file used with Windows 32s. .

Support file used with Windows 32s.

Driver used on remote system to support DOS remote debugging.

Executable program used to debug 32-bit programs written for
Windows NT and Windows 32s.

Icon used with TD32.EXE.

Help file for TD32.EXE.

Support file used with Windows 32s.

Chapter 1, Installing and configuring Turbo Debugger 13

Turbo Oebuggers
utilities

14

Table 1.2
Turbo Debugger's

utilities

Table 1.1: Turbo Debuggers executable and support files (continued)

TDVIDW32.DLL Support file used with Windows 32s.

TDWEXE

TDWINI

TDWGUI.DLL

TDWHELP.TDH

TDWINTH.DLL

WREMOTE.EXE

Executable program used to debug 16-bit Windows programs.

Initialization file used by TDWEXE and TD32.EXE. This file is created by
the install program and placed in your main Windows directory.

Video DLL that places Turbo Debugger in a window while using TOW
under Windows 3.x or while using TD32 under Windows 32s.

Help file for TDWEXE.

Support DLL required by TDWEXE. TDWINI is set up to point to
TDWINTH.DLL.

Driver used on remote system to support Windows remote debugging.

The Turbo Debugger package includes utilities to help with the debugging
process. Table 1.2 lists all the utilities and gives a general description of
each one. For a more detailed description of these utilities, refer to the
online text file TD _ UTILS. TXT.

File name

TDINST.EXE

TDMEM.EXE

TDRF.EXE

TD32INST.EXE

TD32INST.lCO

TDSTRIP.EXE

TDSTRP32.EXE

TDUMP.EXE

. TDWINI.EXE

TDWINI.HLP

TDWINST.EXE

WRSETUP.EXE

Description

Creates and modifies TDs configuration file, TDCONFIG.TD.

Displays the current availability of your computer's memory, including
Expanded and Extended memory. Used for checking the programs and device
drivers that are loaded, and the addresses that they're loaded into.

File transfer utility used to transfer files to remote system.

Creates and modifies TD32's configuration file, TDCONFIG.TD2.

Icon used with TD32INST.EXE.

Strips Turbo Debuggers debugging information (the symbol table) from 16-bit
.EXEs and .DLLs, without relinking.

Strips Turbo Debuggers debugging information (the symbol table) from 32-bit
.EXEs and .DLLs, without relinking.

Displays the file structure of 16-bit and 32-bit .EXE, .DLL, and .OBJ files. Also
displays the contents of the symbolic debug information .

Lets you change and customize Turbo Debuggers video driver settings.

Windows help file for TDWINI.EXE.

Creates and modifies TOW's configuration file, TDCONFIG.TDW Configures
things like the display options and screen colors of TOW.

Configuration file used to configure WREMOTE, the remote driver used with
remote debugging.

Turbo Debugger User's Guide

Specifying utility
command-line
options

Turbo Debuggers
online text files

Table 1.3
Turbo Debuggers

online files

Turbo Debuggers
example program

Each Turbo Debugger utility can be started using special command-line
options. For a list of the command-line options available for the TDUMP,
TDUMP32, and TDSTRIP utility programs, type the program name at the
DOS command-line and press Enter. To see the command-line options for
TDWINST and TDINST32, type the program name followed by -?, then
press Enter. For example,

TDWINST -?

The installation program places several text files in the DOC subdirectory
of your main language directory.

Although you might not need to access all online files, it's important for
you to look at TD _RDME.TXT, which contains last-minute information not
available in the manual.

File name Description

This file contains information about debugging Turbo Assembler programs.
You might also find the information in this file helpful for debugging your in line
assembler code.

This file also contains information on using Turbo Debugger's Numeric
Processor window.

TD_HELP!.TXT Contains answers to commonly encountered problems. Among other things,
TD_HELP!.TXT discusses the syntactic and parsing differences between
Turbo Debugger and your language compiler, the TDW.INI file, debugging
multi-language programs, and common' questions and answers concerning
Turbo Debugger.

TD_HDWBP.TXT This file contains information on how to configure Turbo Debugger so that it
takes advantage of the hardware debugging registers.

TD_RDME.TXT Contains last-minute information not contained in the manual.

TO_UTI LS.TXT This file describes the command-line utilities included with Turbo Debugger:
TDSTRIP, TDUMP, TDWINST, TD32INST, TDSTRP32, TOM EM, TDMAP, and I

TDUMP32.

All of Turbo Debugger's online files are unformatted ASCII files, so you can
use your program editor to access them. .

Chapter 4, "Deb~gging a simple example," introduces Turbo Debugger by
showing how to debug a simple example program. The following table lists
the files used in the example debugging chapter.

Chapter 1, Installing and configuring Turbo Debugger 15

Table 1.4 File name Description Turbo Debuggers
example program MAKEFILE Makefile used with the buggy example program. files

TDWDEMO.BUG Buggy example program's source code.

TDWDEMO.H Header, file used by the example program.

TDWDEMO.ICO Example programs icon.

TDWDEMO.lDE IDE project file used with the example program.

TDWDEMO.RC Resource file used with the example program.

S_PAINT.C Example program's source code.

S_PAINT.EXE Example program.

16 Turbo Debugger User's Guide

c H A p T E

Starting Turbo Debugger ,and
running your program

R

A debugging session begins when you load your program into Turbo
Debugger. After you load your program, you can run it under the
debugger's control, pausing its execution at various places to look for
where things have gone wrong. Before you can load your program into
Turbo Debugger, however, you must prepare it for debugging.

This chapter describes:

• Preparing programs for debugging

• Starting Turbo Debugger
• Loading your program into the debugger
• Controlling program execution

• Interrupting program execution

• Reverse execution
• Program termination
• Exiting Turbo Debugger

Preparing programs for debugging

2

When you're developing a program, whether it's written in C, C++, Pascal,
or assembler, it's best to compile and link it with debug information.
Although debugging information adds to the size of your executable files, it
lets you see your program's source code and use its symbols to reference
values while you're in the debugger.

Unless you have a very large project, it's usually best to compile your entire
project with debug information turned on. With larger projects, you might
want to add debug information only to the modules you intend to load into
the debugger.

Chapter 2, Starting Turbo Debugger and running your program 17

Compiling from the
integrated
environment

Compiling from the
command line

While you're developing your program, compile your program without
compiler optimizations. Even though optimizations create efficient
programs, it can be confusing to debug the sections of code that have been
optimized by the compiler; the object code that the compiler produces
might not exactly match your program's source code. Because of this, you
should compile your program with optimizations turned on only after
you've fully debugged your program ..

Once your program is fully debugged and ready for distribution, compile
and link your program without debug information to reduce the size of
your final program files.

If you're compiling your program from within the Borland C++
environment, you must include symbolic debug information in both your
.OBI files and your final executable files.

To include debug information in your .OBI files:

1. Choose the Options I Project command to bring up the Style Sheet
notebook.

2. Choose Compiler I Debugging in the Topics list box to open the
Debugging check boxes.

3. Check the Debug Information in OBIs check box.

To include debug information in your final executable files:

1. Choose the Options I Project command to bring up the Style Sheet
notebook.

2. Choose Linker I General in the Topics list box to open the General check
boxes.

3. Check the Include Debug Information check box.

If you compile your programs with Borland's command-line compiler, use
the -v compiler directive to add debug information to each of your
modules. Be sure to use the -v linker switch to include the debug
information in your final executable files.

Starting Turbo Debugger

18

After you've compiled and linked your program with debug information,
you can begin the debugging process by starting Turbo Debugger and

Turbo Debugger User's Guide

Table 2.1
Turbo Debugger

programs

Table 2.2
Starting Turbo

Debugger

TD.EXE must be
started from the DOS

command line.

Specifying Turbo
Oebuggers
command-line
options

loading your program into the debugger. The following table describes the
appropriate debugger to use for the application you've built:

Turbo Debugger program

TD.EXE

TDW.EXE

TD32.EXE

Applications debugged

16-bit DOS applications

16-bit Windows applications

32-bit Windows applications

TDW and TD32 can be started from the Windows locations listed in the
following table:

Starting location

Windows

The compiler's integrated
environment

Windows' Program Manager
FilelRun dialog box

Windows File Manager

Procedure

Open your Borland compiler's group from the Program Manager,
and choose the TDW or TD32 icon.

Choose TooliTurbo Debugger to debug the program in the active
Edit window.

From the Command input box, type TDW or TD32, followed
by any command-line options.

Double-click either the TDW.EXE-or TD32.EXE executable file
icon from the directory containing Turbo Debugger.

Turbo Debugger uses command-line options to specify special start-up
parameters and debugging modes. The command-line options must be
specified before you start Turbo Debugger; you can't specify them once
Turbo Debugger is loaded.

The command-line syntax for starting Turbo Debugger is as follows:

TD I TDW I TD32 [options] [progname [progargs]]

The items enclosed in brackets are optional. The options are Turbo
Debugger command-line options, and are described in Appendix A. The
item progname refers to the name of the program you're debugging, and
progargs are optional arguments supplied to your program. When using
this syntax, be sure to supply a correct path for the program you're
debugging.

For example, the following command line starts TDW with the -jp
command-line option, and loads my-prog with the arguments mammal and
river:

TDW -jp my-prog mammal river

Chapter 2, Starting. Turbo Debugger and running your program 19

Setting command·
line options with
Turbo Debuggers
icon properties

Setting command·
line options from
Bor/ands c++
integrated
environment

Running Turbo
Debugger

20

If you start Turbo Debugger using the TDW or TD32 icons, you can specify
command-line options using the icon's Property dialog box. This is usually
the best way to specify command-line options because the options you
specify are saved with the icon's property settings.

You can also specify your program (and optional program arguments) in
the command you enter into the Properties dialog box. If you specify your
program it'll be loaded into Turbo Debugger when you double-click the
debugger's icon. This is the best way to load your program if you're
working on an ongoing project.

To specify an icon's Property settings, click the icon, then choose File I
Properties from the Windows Program Manager. In the Command Line
input box, type the executable name of the debugger, followed by the
desired command-line option(s). Click OK when you're done.

If you transfer to Turbo Debugger from Borland's C++ for Windows
integrated environment, you can specify Turbo Debugger's command-line
options using the following procedure:'

1. From the C++ integrated environment, choose Options I Tools to access
the Tools dialog box.

2. Select TDStartup from the Tools list box.

3. Click the Edit button to open the Tools Options dialog box.

4. In the Command Line input box, enter Turbo Debugger's command-line
options after the $TD transfer macro setting.

The $ARG transfer macro in the Command Line input box indicates the
arguments that are passed to your program when you transfer to Turbo
Debugger from the integrated environment. To specify program
arguments,

1. From the integrated environment, choose Options I Environment to
open the Environment Options dialog box.

2. Select Debugger in the Topics list box.

3. Enter the program arguments in Run Arguments list box.

When you run TDW (or TD32 under Windows 32s), the debugger opens in
full-screen character mode. However, unlike other applications, you cannot
access the Windows shortcut keys Alt+Esc and Ctrl+Esc from Turbo

, Debugger. Although you can access the Windows task list from your

Turbo Debugger User's Guide

program, you should not change tasks when Turbo Debugger is running
because of the special way the debugger uses system resources.

This is different from running TD32 under Windows NT. In this case,
Turbo Debugger activates in a command-prompt window, and it has all the
features of a normal Windows application.

Loading your program into the debug~~::er

Figure 2.1
The Load a New

Program to Debug
dialog box

You can load your program into Turbo Debugger using its command-line
syntax (which is described on page 19) or from within Turbo Debugger
once it has started.

To load a new program into Turbo Debugger (or to change the currently
loaded program), use the File I Open command. This command opens a
two-tiered set of dialog boxes, the first being the Load a New Program to
Debug dialog box.

TD and TDWs' Load a New Program to Debug dialog box contains an
additional button, Session, to support its remote debugging feature. For
more information on the Session button, see "Starting and configuring
TDW" on page 18I.

If you know the name of thE': program you want to load, enter the
executable name into the Program Name input box and press Enter.

To search through directorie:3 for your program, click the Browse button to
open the second dialog box (the .Enter Program Name to Load dialog box):

Chapter 2, Starting Turbo Debugger and running your program 21

Figure 2.2
The Enter Program

Name to Load dialog
box

Use the File Name
input box to change

disk drives.

The Files list box displays the files in the currently selected directory. By
entering a file mask into the File Name input box (such as,*.EXE), you can
specify which files should be listed.

To "walk" through disk directories, double-click the entries listed in the
Directories list box (the .. entry steps you back one directory level). Once
you've selected a directory, choose a file to load from the Files list box. To
quickly search for a file, type a file name into the Files list box. Turbo
Debugger's incremental matching feature moves the highlight bar to the file
that begins with the letters you type. Once you've selected a file, press OK.
This action returns you to the Load a New Program to Debug dialog box.

After you've specified a program in the Load aNew Program to Debug
dialog box, specify whether or not you want the debugger to run its startup
code. If you check the Execute Startup Code check box, Turbo Debugger
runs the program to main (or its equivalent) when you load the program. If
you leave this box unchecked, Turbo Debugger will not run any code when
you load the program.

To support remote debugging, TDW contains an extra set of radio buttons
in the Load a New Program to Debug dialog box. The Session radio buttons
specify whether or not the program you're debugging is on a local or
remote system. If it's located on a remote system, select the Remote
Windows radio button; if it's not on a remote system, select Local. See
Appendix B for complete instructions on remote debugging.

.. Before loading a program into the debugger, be sure to compile your source
code into an executable file (.EXE or .DLL) with full debugging informa­
tion. Although you can load programs that don't have debug information,
you will not be able to use the Module window to view the program's
source code. (The debugger cannot reference the source code of executable
modules that lack debug information. If you load a module that doesn't

22 Turbo Deb!lgger User's Guide

Searching for
source code

Specifying
program
arguments

Restarting a
debugging
session

contain debug information, Turbo Debugger opens the CPU window to
show the disassembled machine instructions of that module.)

When you run a program under the control of Turbo Debugger, the
program's executable files (including all.DLL files) and original source files
must be available. In addition, all.EXE and .DLL files for the application
must be located .in the same directory.

When you load a program or module into Turbo Debugger, the debugger
searches for the program's source code in the following order:

1. In the directory where the compiler found thesource files.

2. In the directory specified in the Options I Path for Source command.

3. In the current directory.

4. In the directory where the .EXE and .DLL files reside.

Directories specified with the -sd command-line option override any
directories set with the Options I Path for Source command.

Once your program is loaded into Turbo Debugger, you can use the Run I
Arguments command to set or change the arguments supplied to your
program. See page 27 for more information on this command.

If you load your program using Turbo Debugger's command-line syntax (as
described on page 19), you can supply arguments to the program you're
debugging by placing them after the program name in the command line.
For instance, the following command loads the program MyProg with the
command-line arguments a, b, and c:

myprog abc

When you exit Turbo Debugger, it saves to the current directory a session­
state file that contains information about the debugging session you're
leaving. When you reload your program from that directory, !Turbo
Debugger restores your settings from the last debugging ses'sion.

By default, all history lists, watch expressions, Clipboard items,
breakpoints, operating-system exception settings, and C++ and C exception
settings are saved to the session-state file. Session-state files are named
XXXX.TR, XXXX.TRW, and XXXX.TR2 by TD, TDW, and TD32,
respectively, where XXXX is the name of the program you're debugging. If
no program is loaded when you exit Turbo Debugger, then XXXX will be
the debugger's executable file name (TD, TDW, or TD32).

Chapter 2, Starting Turbo Debugger and running your program 23

Figure 2.3
The Set Restart

Options dialog box

The Options I Set Restart Options command opens the Restart Options
dialog box, from where you can customize how Turbo Debugger handles
the session-state files.

The Restore at Restart check boxes specify which debugger settings you
want saved to the session-state file, and the Use Restart Info radio buttons
specify when the session-state file should be loaded.

Because breakpoint line numbers and variable names can change when you
edit and recompile your source code, the Use Restart Info radio buttons
give you the following options for loading the session-state file:

These options can
also be specified Always Always use the session-state file.

using command-line
switches. Ignore if old Don't use the session-state file if you've recompiled your

program.

Prompt if old

Never

Turbo Debugger asks if you want to use the session-state
file if you've changed your program.

Do not use the session-state file.

Controlling program execution

24

The process of debugging usually entails alternating between times when
your program has control, and times when Turbo Debugger has control.
When the debugger has control, you can use its features to search through
your program's source code and data structures, looking for where things
have gone wrong. However, when your program has control, you can't
access the debugger's menus and windows; you must pause your program's
execution and allow the debugger to regain control. (TD32's Wait for Child
command, explained on page 28, is an exception to this rule.)

Using the debugger's execution control mechanisms, you can specify when
and where you want the execution of your program to pause. Turbo

Turbo Debugger User's Guide

The Run menu

Run

Go to Cursor

Trace Into

Debugger offers the following mechanisms to control your program's
execution:

• "Single Step" through machine instructions or source lines.

• Step over calls to functions.

• Run to a specified program location.

• Execute until the current function returns to its caller .

• " Animate" (perform continuous single stepping).

• Reverse program execution.

• Run until a breakpoint is encountered.

• Run until a specific Windows message is encountered.

• Pause when a C++ or C exception is thrown.

Except for breakpoints, Windows messages, and C++ exceptions, all
execution control mechanisms are located on the Run menu.

The Run menu has a number of options for executing different parts of
your program. Since these commands are frequently used, most are linked
to function keys.

The Run command runs your program at full speed. Control returns to
Turbo Debugger when one of the following events occurs:

• Your program terminates.

• A breakpoint with a break action is encountered.

• You interrupt execution with the program interrupt key.

• A program error halts execution.

• A c++ or C exception that you have marked is thrown.

The Go to Cursor command executes your program up to the line
containing the cursor in the current Module window or CPU Code pane. If
the current window is a Module window, the cursor must be on aline of
source code.

Known as single stepping, this command executes a single source line or
assembly-level instruction at a time.

If the current window is a Module window, a single line of source code is
executed; if it's a CPU window, a single machine instruction is executed. If
the current source line contains a function call, Turbo Debugger traces into
the function, providing that it was compiled with debug information. If the

Chapter 2, Starting Turbo Debugger and running your program 25

Step Over

Execute To

Until Return

26

current window is a CPU window, pressing F7 on a CALL instruction steps
to the called routine.

When you single step through machine instructions (using Trace Into in the
CPU wmdow or by pressing Alt+F7), Turbo Debugger treats certain sets of
machine instructions as a single instruction. This causes multiple assembly
instructions to be executed, even though you're single stepping through the
code.

\ Here is a list of the machine instructions that cause multiple instructions to
be executed when you are single stepping at the instruction level:

CALL
INT
LOOP

LOOPNZ
LOOPZ

Also stepped over are REP, REPNZ, or REPZ followed by CMPS, CMPS,
CMPSW, LOOSB, LOOSW, MOVS, MOVSB, MOVSW, SCAS, SCASB,
SCASW, STOS, STOSB, or STOSW.

Turbo Debugger treats a class member function just like any other function;
F7 traces into the source code if it's available.

The Step Over command,like the Trace Into command, executes a single
line of source code or machine instruction at a time. However, if you issue
the Step Over command when the instruction pointer is located at a
function call, Turbo Debugger executes that function at full speed, and
places you at the statement following the function call.

When you step over a source line that contains multiple statements, Turbo
Debugger treats any function calls in that line as part of the line-you don't
end up at the start of one of the functions. If the line contains a return
statement, Turbo Debugger returns you to the previously called routine.

The Run I Step Over command treats a call to a class member function like a
single statement, and steps over it like any other function call.

Executes your program until the address you specify in the Enter Code
Address to Execute To dialog box is reached. The address you specify
might never be reached if a breakpoint action is encountered first, or if you
interrupt execution.

Executes your program until the current function returns to its caller. This
is useful in two circumstances: when you've accidentally single stepped
into a ftinction that you don't need to debug, or when you've determined

Turbo Debugger User's Guide

Animate

Back Trace

Complete instructions
on the Execution

History window are
given on page 30.

Instruction Trace

Arguments

Program Reset

@!illillJ

that the current procedure works to your satisfaction, and you don't want
to slowly step through the rest of it.

Performs a continuous series of Trace Into commands, updating the screen
after each one. The animate command lets you watch your program's
execution in "slow motion," and see the values of variables as they change. '
Press any key to interrupt this command.

After you choose Run I Animate, Turbo Debugger prompts you for a time
delay between successive traces. The time delay is measured in tenths of a
second; the default is 3.

If you are tracing through your program using F7 or Alt+F7, you can use
Back Trace to reverse the direction of program execution. Reverse execution
is handy if you trace beyond the point where you think there might be a
bug, and you want to return to that point. .

Using the Back Trace command, you can back-trace a single step at a time
or back-trace to a specified point that's highlighted in the Execution History
window. Although reverse execution is always available in the CPU
window, you can execute source code in reverse only if Full History is
turned On in the Execution History window.

The Instruction Trace command executes a single machine instruction. Use
this command when you want to trace into an interrupt, or when you're in
a Module window and you want to trace into a procedure or function that
doesn't contain debug information (for example, a library routine).

Since you will no longer be at the start of a source line, issuing this
command usually places you inside a CPU window.

Use the Arguments command to set or change the command-line
arguments supplied to the program you're debugging. Enter new
arguments exactly as you would following the name of your program on
the command line.

Once you've entered the arguments, Turbo Debugger asks if you want to
reload your program from disk. You should answer "Yes" because most
programs read the argument list only when the program is first loaded.

The Program Reset command terminates the program you're running and
reloads it from disk. You might use this command in the following
circumstances:

Chapter 2, Starting Turbo Debugger and running your program 27

Next Pending Status

Wait for Child

28

• When you've executed past the place where you think there is a bug.

• When your program has terminated and you want to run it again.

• If you've suspended your application with the program interrupt key,
and you want restart it from the beginning. Make sure, however, that you
don't interrupt the execution of your program within Windows kernel
code.

• If you want to debug a DLL that's already been loaded. To do so, set the
Debug Startup option in the Load Module Source or DLL Symbols dialog
box to Yes for the DLL you're interested in, and reset your program.

If you choose the Program Reset command while you're in a Module or
CPU window, the Turbo Debugger resets the Instruction Pointer to the
beginning of the program. However, the display is not changed from the
location where you issued the Program Reset command. This behavior
makes it easy for you to resume debugging from the position you were a.t
prior to issuing the Program Reset command.

For example, if you chose Program Reset because you executed a few
statements past a bug, press Ctrl+F2 to rest your program and reposition the
cursor up a few lines in your source file. Pressing F4 will then run to that
location.

The Next Pending Status command (available when you're debugging with
Windows NT) can be used when the Run I Wait for Child command is set to
No. When Wait for Child is set to No (and your program is running in the
background while you're accessing Turbo Debugger), you can use the Next
Pending Status command to retrieve a program status message. To indicate
that a status message has been sent, Turbo Debugger's activity indicator
displays PENDING. Status messages are sent on the occurrence of events such
as breakpoints and exceptions.

Wait for Child (used exclusively by TD32 for debugging Windows NT
programs) can be toggled to either Yes or No. When this option is set to No,

you can access Turbo Debugger while your program is running; you don't
have to wait for your program to hit a breakpoint or exception to access the
debugger's views and menus.

This command can be useful when you're debugging interactive programs.
For example, if your program reads a lot of information from the keyboard,
you can access the debugger while the program is waiting for input. You
can set breakpoints and examine your program's data, even though your
program has focus. Use the Refresh option in TD32INST to set the rate that
TD32 updates the information in its windows.

Turbo Debugger User's Guide

Interrupting program execution

Stopping in
Windows code

If your program is running, you can access Turbo Debugger by pressing the
program interrupt key. The program interrupt key you use depends on the
type of application you're debugging:

• Use Ctr/+AIt+SysRq when you're debugging a Windows 3.x program.

• Use Ctr/+AIt+F11 when you're debugging a Windows 32s program.

• Use F12 when you're debugging a Windows NT program.

• Use Ctr/+Break when you're debugging a DOS program.

Interrupting program execution is useful when you need to access Turbo
Debugger, but haven't set any breakpoints that will interrupt your
program's execution.

For example, if you single-step through a Windows application, you'll
eventually get caught in the message loop, waiting for a message to be sent
to your program. When this happens, you must press F9 to run the'
program past the message loop. Once the program is running, you can
press the program interrupt key to return to Turbo Debugger.

If, when you return to Turbo Debugger, you see a CPU window without
any instructions corresponding to your program, you're probably in
Windows kernel code. If this happens, return to Turbo Debugger and set a
breakpoint at a location you know your program will execute. Next, run
your program (F9) until it encounters the breakpoint. You are now out of
Windows code, and can resume debugging your program.

Even though you can access the Module window, set breakpoints, and do
other things inside Turbo Debugger, there are a few things that you should
not do while you're stopped in Windows code:

• Don't single-step through your program. Attempting to single-step
through Windows kernel code can produce unpredictable effects .

. • Don't terminate or reload your application or Turbo Debugger-this
might cause a system crash.

If you attempt to reload your application, Turbo Debugger displays a
prompt asking if you want to continue. Select No to return to Turbo
Debugger.

Chapter 2, Starting Turbo Debugger and running your program 29

- Reverse execution

30

Figure 2.4
The Execution

History window

Turbo Debugger's execution history keeps track of each instruction as it's
executed, provided that you're tracing into the code. Using the Execution
History window, you can examine the instructions you've executed and, if
you like, return to a point in the program where you think there might be a
bug. Turbo Debugger can record about 400 instructions.

The following rules apply to reverse execution:

• The execution history keeps track only of instructions that have been
executed with the Trace Into command (F7) or the Instruction Trace
command (Alt+F7). However, it will also track Step Over commands if the
instructions listed on page 26 (in the "Trace into" section) and page 31 (in
the Reverse Execute" section) aren't executed.

• The INT instruction causes the execution history to be thrown out. You
can't reverse back over this instruction, unless you press AIt+F7 to trace
into the interrupt.

• As soon as you use the Run command or execute past an interrupt, the
execution history is deleted. (It starts recording again when you resume
tracing.)

• If you step over a function call, you won't be able to trace back beyond
the instruction following the return.

• Tracing back-through a port-related instruction has no effect, because
you can't undo reads and writes.

• Turbo Debugger cannot execute in reverse any Windows code called by
your program, unless you are in the CPU window and the code is in a
DLL you've selected for debugging.

Although reverse execution is always available in a CPU window, you can
only execute source code in reverse if Full History is On. (Full History is
found on the Execution History's SpeedMenu.)

Turbo Debugger User's Guide

The Execution
History windows
SpeedMenu

Inspect

Reverse Execute

[]IJ[EJ

Full History

The Keystroke
Recording pane

The SpeedMenu for the Execution History window contains the following
commands:

Inspect
Reverse execute
Full history

Takes you to the command highlighted in the Instructions pane. If it is a
line of source code, you are shown that line in the Module window. If there
is no source code, the CPU window opens with the instruction highlighted
in the Code pane.

Reverses program execution to the instruction highlighted in the window,
and activates the Code pane of the CPU window. If you selected aline of
source code, you are returned to the "Module window.

The following instructions don't cause the history to be thrown out, but
they cannot have their effects undone. Be prepared for unexpected side
effects if you back up over these instructions:

IN
OUT

INSB
INSW

OUTSB
OUTSW

Toggles from On to Off. If it's set to On, backtracing is enabled. If it's set to
Off, backtracing is disabled.

TD.EXE has an extra pane in the Execution History window that lets you
execute back to a given point in your program if you inadvertently destroy
your execution history.

The Keystroke Recording pane at the bottom of the Execution History
window becomes active when you have keystroke recording enabled. The -k
command-line option enables keystroke recording (refer to Appendix A,
page 173, for more information on the -k command-line option). You can
also use TDINST to set keystroke recording to On.

When Keystroke Recording is enabled, each line in the Keystroke
Recording pane shows how Turbo Debugger gained control from your
running program (breakpoint, trace, and so "forth) and the location of your
program at that time. The program location is followed by the
corresponding line of source code or disassembled machine instruction.

Keystroke recording works in conjunction with reverse execution to let you
return to a previous point in your debugging session. When keystroke

Chapter 2, Starting Turbo Debugger and running your program 31

The Keystroke
Recording panes
SpeedMenu

Inspect

Keystroke Restore

recording is turned on, Turbo Debugger keeps a record of all the keys that
you press, including the commands you issue to the debugger and the'keys
you press when you're interacting with the program you are debugging.
The keystrokes are recorded in a file named XXXX.TDK, where XXXX is
the name of the program you're debugging.

The local menu for the Keystroke Recording pane contains two commands:
Inspect and Keystroke Restore.

When you highlight a line in the Keystroke Recording pane and choose
Inspect from the SpeedMenu, Turbo Debugger activates either the Module
window or the CPU window with the cursor positioned on the line where
the keystroke occurred.

If you highlight a line in the Keystroke Recording pane, then choose
Keystroke Restore, Turbo Debugger reloads your program and runs it to
the highlighted line. This is especially useful after you execute a Turbo
Debugger command that deletes your execution history.

Program termination

Resetting your
program

32

When your program terminates, Turbo Debugger regains control and
displays a message indicating the exit code that your program returned.
After this, issuing any of the Run menu options causes Turbo Debugger to
reload your program.

The program segment registers and stack are usually incorrect after your
program has terminated, so don't examine or modify any program
variables after termination.

When you're'debugging a program, it's easy to accidentally step past the
cause of the problem. If you do, you can restart the debugging session by
choosing Run I Program Reset (Ctrl+F2) to reload your program from disk.
Resetting a program doesn't affect any debugging settings, such as
breakpoints and watches.

Reloading the program from disk is the safest way to restart a program
after it has terminated. Since many programs initialize variables from the
disk image of the program, some variables might contain incorrect data if
you restart the program without first resetting it.

Turbo Debugger User's Guide

Exiting Turbo Debugger

You can end your deb.ugging session and return to the Windows Program
Manager at any time (except when you're in a dialog box or when your
program has control) by pressing AIt+X. You can also choose File I Quit to
exit the debugger.

Chapter 2, Starting Turbo Debugger and running your program 33

34 Turbo Debugger User's Guide

c H A p T E R

Debugging with Turbo Debugger

Debugging is the process of finding and correcting errors ("bugs") in the
programs you write. Although debugging is not an exact science (the best
debugging tool is your own "feel" for where a program has gone wrong),
you can always profit from developing a systematic approach to finding
and correcting program bugs.

3

This chapter discusses the basic tasks involved in debugging a program
and describes how you can use Turbo Debugger to accomplish these tasks.
This chapter also provides an overview of Turbo Debugger, including a
section on the debugger's special features.

Debugging basics

The debugging process can be broadly' divided into four steps:

1. Discovering a bug

2. Isolating the bug

3. Finding the bug

4. Fixing the bug

These four steps offer a simplified model of an actual debugging session.
As a general rule, it's best to divide your program into discrete sections and
debug each section separately. By verifying the functionality of each section
before moving on, you can debug even the largest and most complicated
programs.

Regardless of your personal debugging approach, one thing remains
constant: testing and fixing source code is a part of producing software. As
your programming projects become more complex, you'll reduce the time
you spend debugging by developing a systematic method for testing your
software.

Chapter 3, Debugging with Turbo Debugger 35

~'

Discovering a bug

Isolating the bug

Finding the bug

36

The first debugging step can be painfully obvious. You run your program
and the computer freezes. However, the presence of a bug might not be so
obvious. Your program might seem to work fine, until you enter a negative
number or until you examine the output closely. Only then do you notice
that the result is off by a factor of .2 or that the middle initials are missing
in a list of names.

When you create a schedule for the production of your program, be sure to
schedule time for a systematic test of your finished product. Be aware that
if you don't thoroughly test your software, the users of your program will
discover the bugs for you.

The' second step can sometimes be the most difficult part of the debugging
process. Isolating the bug involves narrowing down your code to the
routine that contains the programming error.

Sometimes you'll be able to determine the general location of the error as
soon as you see the problem. Other times, the error might show up in one
place, and then in another. If you can reproduce the bug (find a consistent
series of steps that lead to the bug), you can usually identify the routine
that contains the problem.

If you can't reproduce the bug, you'll need to break your program up into
individual routines and debug and verify each routine separately. Turbo
Debugger is the perfect tool for this because you can check your program's
data values before you run a routine, and then recheck them after the
routine runs. If a routine's output is correct, then you can move on to the
next routine in your program. If the output doesn't seem correct, then it's
time to delve deeper into the workings of the routine.

Uncovering the cause of programming errors is the true test of software
engineers. Sometimes, just discovering the problem leads you to the error.
For example, if you find your name list is missing everyone's middle initial,
it's likely that the bug is in the line that prints the names.

Other bugs can spread themselves out through several routines, requiring
that you rethink the entire design of your program. In these cases, you
must trace through several functions, carefully scrutinizing the variables
and g.ata structures used in your program. This is where Turbo Debugger
can help the most. By studying a routine's behavior while it runs, you can
uncover the bugs that are hiding in your code.

Turbo Debugger User's Guide

Fixing the bug

What Turbo
Debugger can do
for you

Table 3.1
Turbo Debugger's

debugging functions

The final step is fixing the error. Even though Turbo Debugger can help
with finding the bug, you cannot use the debugger to fix your program.
Once you've found the bug, you must exit Turbo Debugger to fix the source
code, and then recompile your program for the fix to take effect. However,
you can use Turbo Debugger to test your theory of why things went wrong;
you don't need to recompile your program just to test a simple fix.

Turbo Debugger helps with the two hardest parts of the debugging process:
isolating the bug and finding the bug. By controlling your program's
execution, you can use Turbo Debugger to examine the state of your
program at any given spot. You can even test your "bug hypothesis" by
changing the values of variables to see how they affect your program .

. With Turbo Debugger, you can perform the following debugging functions:

Function

Tracing

Stepping

Viewing

Inspecting

Watching

Changing

Back tracing

Description

Executes your program one line at a time (single stepping).

Executes your program one line at a time, but steps over any routines or
function calls. If you're sure that a routine is error-free, stepping over it speeds
up debugging.

Opens special Turbo Debugger windows to see the state of your program from
various perspectives: variables and their values, breakpoints, the contents of the
stack, a data file, a source file, CPU code, memory, registers, numeric
coprocessor information, object or class hierarchies, execution history, or
program output.

Delves deeper into the workings of your program by examining the contents of
complex data structures (such as arrays).

Isolates program variables and keeps track of their changing values as the
program runs.

Replaces the current value of a variable, either globally or locally, with a value
you specify.

Traces backward through code that has already been executed.

Turbo Debuggers ,user interface

The Turbo Debugger environment consists of a series of menus, dialog
boxes, and special debugger windows. In addition, the debugger has many
special features that remain hidden to the casual user. To get the most out

Chapter 3, Debugging with Turbo Debugger 37

Working with
menus

Working with
windows

Selecting a window

38

of Turbo Debugger, you should become familiar with the features listed
here and in the section "Turbo Debugger's special features" on page 44.

Turbo Debugger's global menu system (called the menu bar), runs along the
top of the screen and lets you access the debugger's commands via menus.
The menu bar is always available, except when a dialog box is active. To
open Turbo Debugger's menus, use one of these methods:

• Press Ft 0, then use ~ or ~ to go to the desired menu and press Enter.

• Press FtO, then press the highlighted letter of any menu (press Spacebar
for the == (System) menu).

• Press Alt plus the highlighted letter of any menu. The == (System) menu
opens with Alt+Spacebar.

• Click the menu bar command with the mouse.

Once you access a menu, you can choose a command by pressing the
highlighted letter of the command.

Turbo Debugger uses a number of windows that provide information
about the program you're debugging. To make debugging easier, Turbo
Debugger provides many window-management commands that let you
arrange and move through the windows you open. The window­
management commands are located on the Window menu and on the
== (System) menu.

Each window that you open is numbered in the upper right corner to allow
quick access to that window. Usually, the Module window is window 1 and
the Watches window is window 2. The window you open next will be
window 3, and so on.

You can activate any of the first nine open windows by pressing Alt in
combination with the window number. For example, if you press Alt+2 to
make the Watches window active, any commands you choose will affect
that window and the items in it.

The bottom half of the Window menu lists the open windows. To activate a
specific window, open the Window menu and press the window number. If
you have more than nine windows open, the window list will include a
Window Pick command; choose it to open a menu of all the windows open
onscreen.

You can also cycle through the windows onscreen by pressing F6 (or
choosing Window I Next). This is handy if an open window's number is
covered up and you don't know which number to press to make it active.

Turbo Debugger User's Guide

Using window
panes

Moving and resizing
windows

Closing and
recovering windows

SpeedMenus

If a window has panes-areas of the window reserved for a specific types of
data----:-you can move from one pane to another by choosing Window I Next
Pane or pressing Tab or Shift+ Tab.

As you move from pane to pane, you'll notice that a blinking cursor
appears in some panes and a highlight bar appears in others. If a cursor
appears, you can move around the text using standard keypad commands.

When you open a new window in Turbo Debugger, it appears near the
current cursor location. If the size or the location of the window is
inconvenient, you can use the Window I Size/Move command to adjust it.
Once you give this command, use the arrow keys to move the window, or
use Shift and the arrow keys to resize the window.

If you want to enlarge or reduce a window quickly, choose Window I Zoom
(F5), or click the mouse on the minimize or maximize box in the upper right
corner of the window.

When you're through working with a window, you can close it by pressing
Alt+F3, by choosing Window I Close, or by clicking the close button in the
upper left corner of the window.

If you close a window by mistake, you can recover it by choosing Window I
Undo Close (AIt+F6). This works only for the last window you closed.

If your program has overwritten your environment screen with output,
(because you turned off screen swapping), you can clean it up again with
== (System) I Repaint Desktop. To restore Turbo Debugger's screen layout to
its opening setup, choo~e the == (System) I Restore Standard.

Each Turbo Debugger window has a special SpeedMenu that contains
commands specific to that window. In addition, individual panes within a
window can have unique SpeedMenus. To access a SpeedMenu in the
currently active window (or window pane), do one of the following:

• Press the right mouse button inside the active window (or window pane).

• Press Alt+F10 to open the currently active window's SpeedMenu.

• Press etrl and the highlighted letter of the SpeedMenu command to
choose that command (shortcut keys must be enabled for this to be
effective).

Chapter 3, Debugging with Turbo Debugger 39

Turbo Debuggers windows

The View menus
windows

Breakpoints window

Stack window

Log window

40

Turbo Debugger uses windows (or views) to display information relating
to the program you're debugging. The many different windows in Turbo
Debugger each display a different type of information.

Although most of Turbo Debugger's windows are opened from the View
menu, several windows are opened by other means. For example, the
Inspector window can be opened by choosing the Data I Inspect command,
or by pressing Ctrl+1 from the Module window:

The View menu provides the entry point to the majority of Turbo
Debugger's windows. A brief outline of each of the View menu's windows
is given in the following sections.

You use the Breakpoint window to set, modify, or delete breakpoints. A
breakpoint defines a location in your program where the debugger can
pause the execution of your program so you can examine its status.

The Breakpoint window contains two panes: the left pane lists all set
breakpoints and the right pane describes the conditions and actions of the
breakpoint highlighted in the left pane. See Chapter 5 for a complete
description of the Breakpoint window.

The Stack window displays the current state of the program stack. The first
function called is listed on the bottom of window, with each subsequently
called function layered on top.

You can bring up and examine the source code of any function listed in the
Stack window by highlighting it and pressing Ctrl+l. In addition, you can
open a Variables window that displays all local variables and function
arguments by highlighting a function in the Stack window and pressing
Ctrl+L. Chapter 6 provides detailed information on the Stack window.

The Log window displays the contents of the message log, which contains a
scrolling list of messages and information generated as you work in Turbo
Debugger. It tells you such things as why your program stopped, the
results of breakpoints, and the contents of windows you saved to the log.

You can also use the log window to obtain information about memory
usage, modules, and window messages for your Windows application. For
more information on the Log window, see Chapter 5.

Turbo Debugger User's Guide

Watches window

Variables window

Module window

File window

CPU window

Dump window

The Watches window displays the values of variables and expressions. By
entering expressions into the Watches window, you can track their values
as they change during the program execution. Watches can be easily added
to the Watches window by pressing Ctrl+Wwhen the cursor is on a variable
in the Module window. See Chapter 6 for more about the Watches window.

The Variables window displays all the variables within a given scope of
your program. The upper pane of the window lists global variables and the
lower pane shows any variables local to the current function.

This Variables window is helpful when you want to find a function or
symbol whose name you can't fully remember. By looking in the global
Symbol pane, you can quickly find what you want. Chapter 6 describes the
Variables window in more detail.

The Module window is perhaps the most important window in the
debugger, because it displays the source code for the program module
you're currently debugging (this includes any DLLs your program might
call). However, for the source code of a module to be displayed, the module
must be compiled with debug information. Chapter 8 describes the Module
window and its commands.

The File window displays the contents of any disk file; not just program
modules as with the Module window. You can view the.file either as raw
hex bytes or as ASCII text, and you can search for specific text or byte
sequences. Chapter 8 contains more information about the File window.

The CPU window (described in Chapter 9) displays the current state of the
central processing unit (CPU). This window has six panes showing: the
program's disassembled machine instructions, the contents of the Windows
selectors (in TDW.EXE only), data as hex bytes, the stack as hex words, the
CPU registers, and the CPU flags.

The CPU window is useful when you want to watch the exact sequence of
instructions that make up a line of source code, or the bytes that comprise a
data structure. This view is also used when you want to debug Assembler
programs.

The Dump window displays the raw hexadecimal contents of any area of
memory. (This window is the same as the Dump pane of a CPU window.)

Chapter 3, Debugging with Turbo Debugger 41

Registers window

Numeric Processor
window

Execution History
window

Hierarchy window

42

Using the Dump window, you can view memory as characters, hex bytes,
words, doublewords, or any floating-point format. In addition, the
SpeedMenu has commands to let you modify the displayed data and
manipulate blocks of memory. See Chapter 9 for more on the Dump
window.

The Registers window displays the contents of the CPU's registers and
flags. This window has two panes, a registers pane and a flags pane. You
can change the value of any of the registers or flags through this window's
SpeedMenu commands: Chapter 9 provides more information on the
Registers window.

The current state of the numeric coprocessor is displayed in the Numeric
Processor window. This window has three panes: one shows the contents
of the floating-point registers, one shows the values of the status flag
values, and one shows the values of the control flag. .

This window can help you diagnose problems in routines that use the
numeric coprocessor. To reap the benefits of this window, you must have a
good understanding of how the numeric coprocessor works. See the online
file TD _ASM.TXT for more information about the Numeric Processor
window.

The Execution Historywindow (described in Chapter 2) displays machine
instructions or program source lines up to the last line executed. You use
this view when you want to execute code in reverse order. The window
shows the following information:

• Whether you are tracing or stepping.

• The line of source code for the instruction about to be executed.

• The line number of the source code.

The Hierarchy window displays a hierarchy tree of all classes used by the
current module. The window has two panes: one for the class list, the other
for the class hierarchy tree. This window shows you the relationship of the
classes used by the current module. By using this window's SpeedMenu
commands, you can examine any class's data members and member
functions. See Chapter 11 for more information about using the Hierarchy
window.

Turbo Debugger User's Guide

Windows Messages
window

Clipboard window

Duplicating
windows

Other windows

Inspector windows

The Windows Messages window (described in Chapter 10) displays a list of
messages sent to the windows in your Windows program. The panes in this
window show the windows that you've set up for message tracking, the
type of messages you're tracking, and the messages being tracked.

Turbo Debugger's Clipboard is used for clipping and pasting items from
one debugger window to another. The Clipboard window shows the items
you have clipped and their item types. See page 46 for more information on
Turbo Debugger's Clipboard.

Use the View I Another command on the Views menu to duplicate the
following three windows: the Dump window, the File window, and the
Module window.

Using the Another command lets you keep track of different areas of
assembly code, different program files, or different areas of memory.

In addition to the windows listed on the Views menu, Turbo Debugger also
lets you access Inspector windows and the User Screen.

An Inspector window displays the current value of a selected variable.
Open it by choosing Data I Inspect or Inspect from a SpeedMenu. Usually,
you close this window by pressing Esc or clicking the close box with the
mouse. If you've opened more than one Inspector window in succession, as
often happens when you examine a complex data structure, you can .
remove all the Inspector windows by pressing AIt+F3 or using the Window I
Close command.

You can open an Inspector window to look at an array of items or to
examine the contents of a variable or expression. The number of panes in
the window depends on the nature of the data you are inspecting; Inspector
windows adapt to the type of data being displayed.

Inspectors display simple scalars (int, float, and so on), pointers, arrays,
structures, unions, classes and objects. Each type of data item is displayed
in a way that closely mimics the way you're used to seeing it in your
program's source code.

-.. You can create additional Inspector windows by choosing the Inspect
command from within an Inspector window.

Chapter 3, Debugging with Turbo Debugger 43

User screen

Alt+F5 is the hot key
that toggles between
the environment and

the User screen.

The User screen shows your program's full output screen. The screen you
see is exactly the same as the one you would see if your program was
running directly under Windows and not under Turbo Debugger.

You can use this screen to check that your program is at the place in your
code that yoU: expect it to be, and to verify that it's displaying what you
want on the screen. To switch to the User screen, choose Window I User
Screen. After viewing the User screen, press any key to return to the
debugger screen.

Turbo Oebuggers special features

Automatic name
completion

44

Turbo Debugger has many special features that make debugging easier. To
get the most out of your Turbo Debugger sessions, take the time to become
familiar with the following features:

• Automatic name completion

• Select by typing

• Incremental matching

• Keyboard macro capability

• The Clipboard

• The Get Info text box

• The Attach command (TD32 only)

• The as Shell command (TO and TD32 only)

• Comprehensive help

Whenever an input box prompts you for a symbol name, you can type in
just part of the symbol name and then press Ctrl+N to have Turbo
Debugger's automatic name completion fill in the rest of the name for you.

The following rules apply to automatic name completion:

• If you have typed enough of a name to uniquely identify it, Turbo
Debugger fills in the rest of it.

• If the name you have typed so far is not the beginning of any known
symbol name, nothing happens. '

• If you type something that matches the beginning of more than a single
symbol, a list of matching names is presented so you can choose the one
you need.

Turbo Debugger User's Guide

Select by typing

Incremental
matching.

Keyboard macros

The Macros menu

Create

If READY ... appears in the upper right corner of the screen, it means the
sym~ol table is being sorted. Ctrl+N won't work until the ellipsis disappears,
indicating that the symbol table is available for name completion.

A number of windows let you start typing a new value or search string
without first choosing a SpeedMenu command. Select by typing usually
applies to the most frequently usedSpeedMenu commands, like Goto in a
Mod ule window, Search in a File window, or Change in a Registers
window.

Turbo Debugger's incremental matching feature helps you find entries in
alphabetical lists. As you type each letter, the highlight bar moves to the
first item starting with the letters you've just typed. The position of the
cursor in the highlighted item indicates how much of the name you have
already typed.

Once an item is selected (highlighted) from a list, you can press AIt+F10 or
click the right mouse button to display the SpeedMenu and choose a
command relevant to the highlighted item. In many lists, you can also just
press Enter once you have selected an item. This acts as a hot key to one of
the commonly used local-menu commands.

Macros are simply hot keys that you define. You can assign any series of
commands and keystrokes to a single key, and use them whenever you
want.

The Macros command (located on the Options menu) displays a pop-up
menu that provides commands for defining new keystroke macros and
deleting ones that you no longer need. It has the following commands:
Create, Stop Recording, Remove, and Delete All.

When issued, the Create command starts recording keystrokes to an
assigned macro key. As an alternative, press the AIt+= (Alt+Equal) hot key
for Create.

When you choose Create to start recording, you are prompted for a key to
assign the macro to. Respond by typing in a keystroke or combination of
keys (for example, Shift+F9). The message RECORDING will be displayed in the
upper right corner of the screen while you record the macro.

Chapter 3, Debugging with Turbo Debugger 45

Stop Recording

Remove

Delete All

The Clipboard

The Pick dialog box

Figure 3.1
The Pick dialog box

46

The Stop Recording command terminates the macro recording session. Use
the Alt+- (A1t+Hyphen) hot key to issue this command or press the macro
keystroke that you are defining to stop recording.

Do not use the Options I Macro I Stop Recording menu selection to stop
recording your macro, because these keystrokes will then be added to your
macro!

Displays a dialog box listing all current macros. To delete a macro, select it
from the list and press Enter.

r

Removes all keystroke macro definitions and restores all keys to their
original meaning.

Turbo Debugger has an extensive copy and paste feature called the
Clipboard. With the Clipboard you can copy and paste between Turbo
Debugger windows and dialog boxes.

The items copied to the Clipboard are dynamic; if an item has an associated
value, the Clipboard updates the value as it changes during your program's
execution.

To copy an item into the Clipboard, position the cursor on the item (or
highlight it with the Ins and arrow keys), then press Shift+F3. To paste
something into a window or dialog box from the Clipboard, press Shift+F4
(or use the Clip button in the dialog box) to bring up the Clipboard's Pick
dialog box.

Pressing Shift+F4 (or a dialog box's Clip button) brings up the Pick dialog
box.

The Pick dialog box contains a list of the items in the Clipboard and a set of
radio buttons that lets you paste the items in different ways:

Turbo Debugger User's Guide

The Clipboard
window

Figure 3.2
The Clipboard

window

Table 3.2
Clipboard item types

String String pastes the Clipboard item.

Location Location pastes the address of the Clipboard item.

Contents Contents pastes the contents located at the address of the
Clipboard item.

To paste an item, highlight it, select how you want to paste it, and click
either OK or Paste, depending on whether or not you want to edit the entry:

• If you want to edit the entry, click OK to copy the Clipboard item to the
input box. Once the item is copied, you can edit the entry before pressing
Enter .

• If you don't need to edit the entry, click Paste to copy the Clipboard item
to the input box and to cause the dialog box to immediately perform its
function.

The Clipboard window (opened with the View I Clipboard command)
displays the entire contents of the Clipboard.

, ' "., .. ,', ,''-.'':.\~ <\ .F:"3 '. t < t;"~ ";" ',;:,':':; '}

Em __ .]ll

Each listing in the Clipboard window begins with the Clipboard item type.
The item type is followed with the Clipboard item, and (if the item is an
expression) the item's value. The following table shows Turbo Debugger's
Clipboard item types:

Type

Address

Control flag

Coprocessor

CPU code

CPU data

CPU flag

Description

An address without data or code attached

An 80x87 control flag value

An 80x87 numeric coprocessor register

An address and byte list of executable instructions from the Code pane of
the CPU window

An address and byte list of data in memory from the Dump pane of the CPU
window or the Dump window

A CPU flag value from the Flags pane of the CPU window

Chapter 3, Debugging with Turbo Debugger ,47

The Clipboard
windows
SpeedMenu

Dynamic updating

48

Table 3.2: Clipboard item types (continued)

CPU register A register name and value from the Register pane of the CPU window or the
Registers window

CPU stack A source position and stack frame from the Stack pane of the CPU window

Expression

File

Inspector

Module

Status flag

String

An expression from the Watches window

A position in a file (in the File window) that isn't a module in the program

One of the following:

.A variable name from an Inspector window

• A constant value from an Inspector or Watches window

• A register-based variable from an Inspector window

• A bit field from an Inspector window

A module context, including a source code position, like a variable from the
Module window '

An 80x87 status flag value

A text string, like a marked block from the File window

When pasting items, be careful to match the Clipboard item type with the
type that the input field is expecting.

The Clipboard window's SpeedMenu contains the commands Inspect,
Remove, Delete All, and Freeze.

The Inspect command positions the cursor in the window from which the
item was clipped.

Remove deletes the highlighted Clipboard item or items. Del is a shortcut
for the Remove command.

The Delete All command erases the contents of the Clipboard.

Freeze stops the Clipboard item's value from being dynamically updated.
When you freeze an item'~value, an asterisk (*) is displayed next to the
entry in the Clipboard window.

The Clipboard dynamically updates the values of any items that can be
evaluated, such as expressions from the Watches window. However, the
Freeze command on the Clipboard window's SpeedMenu lets you turn off
the dynamic updating for specific Clipboard items. This lets you use the
Clipboard as a large Watches window, where you can freeze and unfreeze
items as you like.

Turbo D~~ugger User's Guide

The Get Info text
box

Figure 3.3
The Get Info text box

Table 3.3
TDWs System

Information

The File I Get Info command opens the System Information text box, which
displays general system information. Once you've finished examining the
system information, close the text box by pressing Enter, Spacebar, or Esc.

The System Information text boxes display different sets of information,
depending on the operating system in use. The title bar of the System
Information text box lists the operating system: Windows, Windows 32s,
or Windows NT. Figure 3.3 shows the Get Info text box used with
Windows NT.

••• S,TD,TDWDEM32,TDWDEMO.EXE
Trace

\lindo\~sHT Vel'S ion : 3.10
Mefllol'Y load factor : 4:-:

Available Total

4345856 16449536
16211968 37822464

2134241280 2147352576

All System Information text boxes display the following general
information:

• The name of the program you're debugging.

• A status line that describes how Turbo Debugger gained control. (A
complete listing of Status line messages is given on page 198.)

• The DOS or Windows version number.

• The current date and time.

In addition to the general information previously listed, TDW's System
Information text box provides the following global memory information:

Field

Mode

Banked

Not banked

Description

Memory modes can be large-frame EMS, small-frame EMS, and non-EMS
(extended memory).

The amount in kilobytes of memory above the EMS bank line (eligible to be
swapped to expanded memory if the system is using it).

The amount in kilobytes of memory below the EMS bank line (not eligible to
be swapped to expanded memory).

Chapter 3, Debugging with Turbo Debugger 49

Table 3.4
Windows NT System

Information

The Attach
command

50

Table 3.3: TOWs System Information (continued)

Largest The largest contiguous free block of memory, in kilobytes.

Symbols The amount of RAM used to load you program's symbol table.

TDW's System Information text box contains an additional field located
under the Global Memory information. The Hardware field displays either
Hardware or Software, depending on whether or not the TDDEBUG.386
device driver has been installed. For information on hardware debugging,
see page 80.

The System Information text box for Windows 32s provides the same
information as TDW's, with the exception of the two fields Symbols and
Hardware.

In addition to the general information previously listed, the Windows NT
System Information text box displays the following memory statistics:

Field Description

Memory Load Displays the percentage of used RAM.
Factor

Physical

Page file

Virtual

Displays the available and total amounts of your system's RAM.

Displays the size of the current page file, and the files maximum size.

Displays the available and total amounts of virtual memory.

The File I Attach command lets you connect TD32 to a process that's already
running under Windows NT. This command is useful when you know
where a program encounters problems, but are having difficulties
reproducing the problem when the program runs under the debugger. By
running your program up to the point of difficulty, and then attaching to it,
you can start your debugging session at the point where things begin to go
wrong.

When you issue the File I Attach command, the Attach to and Debug a
Running Process dialog box opens.

Turbo Debugger User's Guide

Figure 3.4
The Attach to and
Debug a Running

Process dialog box

To attach to a running process:

1. Run the process you want to debug.

2. Start TD32.

3. Choose File I Change Dir to change to the directory of the running
process.

4. Choose File I Attach to open the Attach to and Debug a Running Process
dialog box.

5. Check or clear the Stop on Attach check box according to the following
criteria:

• Check the Stop on Attach check box if you want Turbo Debugger to
pause the process' execution when you attach to it.

• Clear the Stop on Attach check box if you don't want to pause the
process when you attach to it.

6. Choose a process from the Processes list box (or enter a process
identification number into the Process ID input box), and click OK.

If the process contains debug information, and Turbo Debugger can find
the source code, then the Module window opens with the cursor
positioned at the instruction pointer, otherwise the CPU window opens.
However, if the process is executing Windows code when you attach to
it, then the cursor is positioned at the beginning of the program.

Once you attach to a running process, you cc}n access Turbo Debugger and
debug the process as you normally would.

If you disconnect Turbo Debugger from the running process while it's
running (by either resetting the program (Ctr/+F2), exiting Turbo Debugger,
or loading a new program), the process terminates.

Chapter 3, Debugging with Turbo Debugger 51

The OS Shell
command

Getting help

Online help

52

Tbe File I as Shell command, found in TD32, works with the Windows NT
oFerating system. When you issue this command, Turbo Debugger opens a
command prompt. To return to the debugger from the command prompt
shell, type Exit.

Turbo Debugger offers several ways to obtain help while you're in the
middle of a debugging session:

• You can access an extensive context-sensitive help system by pressing F1.
Press F1 again to bring up an index of help topics from which you can
select what you need .

• An activity indicator in the upper right corner always displays the
current activity. For example, if your cursor is in a window, the activity
indicator reads READY; if there's a menu visible, it reads MENU; if you're in a
dialog box, it reads PROMPT. Other activity indicator modes are SIZE/MOVE,
MOVE, ERROR, RECORDING, REMOTE, WAIT, RUNNING, HELP, STATUS, and PLAYBACK .

• The status line at the bottom of the screen always offers a quick reference
summary of keystroke commands. The line changes as the context
changes and as you press Aft or etr!. Whenever you are in the menu
system, the status line offers a one-line synopsis of the current menu
command.

Turbo Debugger offers context-sensitive help at the touch of a key. Help is
available anytime you're in a menu or window, or when an error message
or prompt is displayed.

Press F1 to bring up a Help screen showing information pertinent to the
current context (window or menu). If you have a mouse, you can also bring
up help by clicking FI on the status line. Some Help screens contain
highlighted keywords that let you get additional help on that topic. Use the
arrow keys to move to any keyword and then press Enter to get to its screen.
Use the Home and End keys to go to the first and last keywords on the
screen, respectively.

You can also access the onscreen help feature by choosing Help from the
menu bar (Alt+H).

To return to a previous Help screen, press Alt+F1 or choose Previous Topic
from the Help menu. From within the Help system, use PgUp to scroll back
through up to 20 linked help screens. (pgDn works only when you're in a
group of related screens.) To access the Help Index, press Shift+F1 (or F1

/ Turbo Debugger User's Guide

The status line

Figure 3.5

. from within the Help system), or choose Index from the Help menu. To get
help on Help, choose Help I Help on Help. To exit from Help, press Esc.

Whenever you're in Turbo Debugger, a quick-reference help line appears at
the bottom of the screen. This status line always provides help for the
current context.

When you're in a window, the status line shows the commands performed
by the function keys:

The normal status IFf.·:'He1p· F2-Bkpt F3-ModF4-HeJ:'e F5-Zool1i F6-Ne)(t F7-TJ:'ace FB-Step F9-Run F10-t1enul
line

Figure 3.6

If you hold down the Alt key, the commands performed by the Alt-key
combinations are displayed:

The status line with IAlt : FZ-Bkpt at F3-:-C losell4-Back FS-Use);' lib-Undo F?-Instl' FH-Rtn F9-To F10-SHenul
Alt pressed

Figure 3.7

If you hold down the Ctr! key, the commands performed by the CtrI-key
combinations are displayed on the status line. Because this status line
shows the keystroke equivalents of the current SpeedMenu commands, it
changes to reflect the current window and pane. If there are more
SpeedMenu commands than can be described on the status line, only the
first keys are shown. .

The status line with ICbl!' ,.I-Inspect \J-:-\~atch' T-ThJ:'ead M-t1odule'F-File, P-PJ:'euiousL-Line·S-SeaJ:'ch
Ctrl pressed

Whenever you're in a menu or dialog box, the status line displays an
. explanation of the current item. For example, if you have highlighted

View I Registers, the status line says Open a CPU registers window.

Chapter 3, Debugging with Turbo Debugger 53

T032's menu tree

Figure 3.8: The complete TD32.EXE menu tree

I II IUD mm IIUB .. 1:&3,1,111191 I!EI mlll'h~1 IIDImmII ImiIII
I L- ~ I 1

- (System) Run Options

Repaint desktop Run F9 Language .•• Source
Res tore s tanda rd Go to cursor F4 Macros ~I--

Trace into F7 Display options ...
About. .. Step over F8 Path for source ••.

Execute to •.. Alt+F9 Set restart options ...
Unti 1 return Al t+F8 Save options •••

I
Animate ..• Restore options •.•
Back trace Alt+F4

Fil e Instruction trace Al t+F7
I

Open ••. Arguments •.. Create .•• Alt =

Attach Program reset Ctrl+F2 Stop recording Alt -
Change dir ... Remove •..
Get info ... Next pending status Delete all
OS Shell Wait for chi 1 d Yes

Quit Alt+X I
Window

I Zoom F5
Next F6

1 Breakpoints Next pane Tab
Size/move Ctrl+F5

Edit Toggle F2 Iconi ze/restore
At ... A It+F2 Close Al t+F3

Copy Shft-F3 Changed memory gl oba 1 •.. Undo close Alt+F6
Paste Shft-F4 Expression true global ..•
Copy to log Hardware breakpoint .•• User screen Al t+F5
Dump pane to log Delete all 1 (First open window)

(2-9 open wi ndows)
Window pick ..•

I I I
View Data Help

Breakpoints Inspect. •• Index Shft-Fl
Stack Eva 1 uate/modify ..• Ctrl+F4 Previ ous topi c Al t+F1
Log Add watch." .• Ctrl+F7 Help on help
Watches Funct i on return
Variables
Module •.. F3
File ..•
CPU
Dump
Regi sters
Numeric processor
Executi on hi story
Hierarchy
Threads
Wi ndows messages I-rI Mod"le •••
Clipboard Dump
Another ~ File ...

54 Turbo Debugger User's Guide

c H A p T E R 4

Debugging a simple example

This chapter introduces you to Turbo Debugger's basic features by guiding
you through a simple debugging session. After completing the example
debugging session, you'll be able to:

• Start Turbo Debugger and load your program into the debugger.

• Run the program.

• Single step through source code.

• Set breakpoints to pause your program's execution.

• Set conditional breakpoints.

• Set watches on program variables.

• Examine the values of arrays and data structures.

II Change the value of variables.

• Test bug fixes.

The Simple Paint program

The example program, titled "Simple Paint," is a Windows program that
lets you draw rectangles, lines, and ellipses. To install the example program
~~ .

1. Run the Borland C++ 4.0 installation program.

2. Click the Customize BC 4.0 Installation butt~n to open the Customize
BC 4.0 Installation dialog box.

3. Click the Example Files button to open the Borland C++ Example
Options dialog box.

4. Check the Misc. Windows Examples check box.

5. Click the Install button to install the example program files into the \
BC4 \ EXAMPLES\ WINDOWS \ TDW directory.

The Simple Paint program consists of the source-code file S_P AINT.C and
the executable program S_P AINT.EXE. In addition to these two files, the

Chapter 4, Debugging a simple example 55

Running Simple
Paint

example program also contains all the files you'll need to create a buggy
version of the program for the sample debugging session: MAKEFILE,
TDWDEMO.H, TDWDEMO.RC, TDWDEMO.ICO, TDWDEMO.IDE, and
TDWDEMO.BUG.

Although the example program is not particularly useful, it effectively
demonstrates how to debug a program using Turbo Debugger. In addition,
this chapter shows you how to overcome some of the obstacles you might
encounter while debugging Windows programs.

Before you begin debugging the example program, run the working
version of the program (S_P AINT.EXE) to get an idea of what the program
does:

1. Choose File I Run from the Windows Program Manager.

2. Type \BC4 \EXAMPLES\WINDOWS\ TDW\S_PAINT into the Command Line input
box.

3. Click OK.

When you run the program, it displays a blank window titled "Simple
Paint." Experiment with the program by dragging the mouse to draw lines,
rectangles, and ellipses using the three available colors and three different
pen sizes. Notice that when you resize or minimize the Simple Paint
window, the figures you've drawn are remembered and correctly redrawn
by the program. When you've finished experimenting with the program,
click the Qui t menu item to exit the program.

Once you have an idea of what the program does, examine S_P AINT.C in
Borland's C++ Integrated Development Environment (or your favorite
program editor) to see how the program works.

The beginning of the program contains the prototypes of several user­
defined functions. The functions that do most of the work in Simple Paint
are DoLButtonDown (which does the preparation work when you press the
left mouse button to begin drawing), DoMouseMove (which draws the
shapes as you move the mouse), and DoLButtonUp (which cleans up when
you've finished drawing a shape).

Compiling TDWDEMO

56

Now that you're familiar with the working version of the program, you can
compile the buggy version of the program and begin the example
debugging session. First, make a working copy of the buggy program by

Turbo Debugger User's Guide

Compiling
TDWDEMO using
DOS commands

Compiling
TDWDEMO using
the IDE

copying TDWDEMO.BUG to TDWDEMO.C using the following DOS
commands:

cd \bc4\examp1es\windows\tdw
copy tdwdemo.bug tdwdemo.c

Now compile the example program using either DOS commands or
Borland's C++ Integrated Development Environment (IDE).

To compile the example program from a DOS command line, issue the
following DOS command from the \ BC4 \ EXAMPLES\ WINDOWS\ TOW
directory:

make -DWIN16 -DDEBUG

To make a 32-bit version of the example program, substitute the make
switch -DWIN32 for -DWIN16.

Follow these steps to compile the example program using Borland's C++
IDE:

1. Load the IDE by double-clicking the Borland C++ icon in the Borland
C++ 4.0 program group.

2. Choose Project I Open Project to access the Open Project File dialog box.

3. In the Directories list box, navigate to the directory \BC4\EXAMPLES\
WINDOWS \ TOW.

4. Double-click the file TDWDEMO.IDE in the File Name list box.

The Project window opens at the bottom of the IDE.

5. Choose Project I Build All to compile the example program.

6. Click OK when the project finishes building to close the Compile Status
dialog box.

Debugging TDWDEMO

When you compile the example program for the first time, the compilation
ends with a couple of warnings and a string of error messages. Although
the compiler will generate an executable file if your program has warnings,
it will not create an executable file if your program has errors.

The first error message reported is:

Error TDWDEMO.C 171: Statement missing i

Chapter 4, Debugging a simple example 57

Running the
buggy program

58

You have now stumbled across the first bug, a program syntax error-the
program source cod~ doesn't conform to the syntax of your language
compiler. .

Syntax errors are the easiest program bugs to find because your language
compiler flags each syntax error with an error message. Each error message
displays the source file containing the error (in this case, TDWDEMO.C),
the line number on which the error occurs (in this case,line 171), and the
reason why the compilation failed (in this case, a semicolon is missing).
Although the compiler might not find the exact cause or location of the
program error, the error message u~ually gives enough information to help
you find the bug in the program's source code. Because of this, you don't
need Turbo Debugger to find or fix syntax errors.

To fix the first syntax error,

1. Load TDWDEMO.C into your program editor and navigate to line 17l.
(If you're using the IDE, double-click on the first error message in the
Message window.) ,

When you arrive at line 171, you'll find that it cannot contain the error;
line 171 contains only a closing brace. However, because the compiler
could not get past this point during compilation, you can deduce that
the error must be located in one of the preceding lines of code.

If you examine line 170, you'll see a call to the function LineTo that is
missing the statement-closing semicolon.

2. Insert a semicolon after the LineTo function call to fix the first program
bug.

3. Save the change to the TDWDEMO.C file.

4. If you're not using the IDE, exit your program editor.

5. Recompile the program using the steps given in the "Compiling
TDWDEMO" section on page 56.

The program now compiles without any errors and the executable file
TDWDEMO.EXE is created. This bug fix demonstrates two things:

• A single syntax error can generate several compiler errors .
• Syntax errors usually cause the compiler to fail on the line immediately

following the one that contains the error. .

Now that you've corrected the syntax error, you have an executable
. program that can be run under Windows. Use one of the following two

methods to run TDWDEMO (but be careful when you do because this
version the program might hang your system):

Turbo D~bugger User's Guide

• Run the program through Windows' Program Manager:

1. Choose File I Run from the Program Manager.

2. Type \BC4\EXAMPLES\WINDOWS\TDW\TDWDEMO into the Command ~ine input
box.

3. Click OK •

• Create a program icon for TDWDEMO:

1. Open the Borland C++ 4.0 program group in Windows.

2. Choose File I New from the Windows Program Manager.

3. Choose the Program Item radio button and click OK.

4. Enter Simple Paint into the Description input box.

5. Press Tab.

6. Type \BC4 \ EXAMPLES \WINDOWS \TDW\TDWDEMO into the Command Line input
box.

7. Click OK.

The Simple Paint icon is added to the Borland C++ program group.

8. Double-click the Simple Paint icon to run the program.

When you run this version of the program, the Simple Paint window comes
up but nothing else happens. You can't draw any shapes/you can't access
any program menus, and you can't close the window. In fact, you'll have to
reboot your system to terminate the program. .

This is a bug that Turbo Debugger can help you resolve. After restarting
your system, run Turbo Debugger (as described in the "Starting Turbo
Debugger" section on page 18) and load TDWDEMO.EXE (using the
method described in "Loading the program into the debugger" on page 21).

When you load TDWDEMO.EXE into Turbo Debugger, the debugger
activates the Module windows and places the cursor at the WinMain
function, as shown in Figure 4.1. .

Chapter 4, Debugging a simple example 59

Figure 4.1
TDWDEMO loaded

into Turbo Debugger

Stepping through
program code

60

Now you're ready to begin debugging the program. However, you don't
want to start by running the program because you know that this would
hang your system. Instead, you must try to find this error by stepping
through the program code:

1. Press F7 (or choose the Run I Trace Into command) to execute the first
line of code.

This command positions the instruction pointer at the next line of
executable code (marked with a bullet in the left column of the Module
window), which contains the statement if (!hPrevInstance). This line
begins the block of code that initializes and registers the window class
of the application's parent window.

2. Press F7 twelve times to step through the program to the line of code
containing the CreateWindow call. '(Make sure the program finishes
each step before you press F7to execute the next step.)

Executing this series of steps confirms that the window is registered
correctly.

3. Press F7 three more times to create the window, display the window
onscreen, and validate the window.

The cursor now rests on the line that contains the while statement that
marks the beginning of the message loop (the lines of code where the
program receives and dispatches window messages).

4. Press F7 twice to execute the calls to GetMessage and
TranslateMessage.

At this point, the instruction pointer returns to the while statement
containing the GetMessage call.

Turbo Debugger User's Guide

Fixing a bug

The "Compiling
TDWDEMO using the
IDE" section on page

57 explains how to
open and compile a

project.

Fixing warnings

Careful examination reveals the problem: the previous received message
was never dispatched. Although the program receives messages from the
message queue, the call to DispatchMessage is outside the message loop
block. This bug causes the program to hang because it never gets a chance
to process the messages that are sent to it.

When you find a bug as serious as this one, you must fix it before you can
continue debugging. To fix this program bug:

1. Exit Turbo Debugger.

2. Load TDWDEMO.C into your program editor and navigate to line 93.

If you're using the IDE, open the TDWDEMO project and navigate to
line 93.

3. Restructure the message loop so it reads as follows:

while (GetMessage(&rnsg, NULL, 0, O)}
{

TranslateMessage(&rnsg}i
DispatchMessage(&rnsg} i

return 0 i

4. Save the new file.

5. If you're not using the IDE, exit the editor.

6. Recompile the program using the methods described in "Compiling
TDWDEMO" on page 56.

Compile the program again. This time, you don't receive any error
messages, but you still receive the warnings. In spite of the warnings, the
compiler generates the executable file TDWDEMO.EXE.

Now when you run the program (using the steps described in "Running
the buggy program" on page 58), it runs without hanging the system. You
can draw different colored lines, rectangles, and ellipses. However, you'll
soon discover a number of serious problems. In fact, there are so many
problems that it might be difficult to figure out which one to fix first.

In this case, the best place to start is with the compiler warning:

Warning tdwderno.c 164: Possibly incorrect assignment

Although you can sometimes ignore compiler warnings, you must first
know the cause of the warnings so you can determine if will affect the
behavior of your program. For example, the linker warning can be ignored
because it only notifies you of the absence of a .DEF file.

Chapter 4, Debugging a simple example 61

Stepping into the
message loop

62

To find the cause of the compiler warning, open TDWDEMO.C in your
program editor and navigate to line 164, where you'll find the following
code:

If (Slope = 1)

This code reveals a common C programming error: the assignment
operator (a single equal sign) was used where an equality operator (a
double equal sign) was needed. This programming error causes the
condition in the if statement to always evaluate true (the value 1 can always
be assigned to the variable Slope) and the else block of the if-then-else
statement never gets executed.

This warning cannot be ignored; you must fix the problem before
continuing:

1. Open TDWDEMO.C in your program editor and navigate to line 164 (if
you're using the IDE, double-click on the warning in the Message
window).

2. Modify the source code so the if statement reads as follows:

If (Slope == 1)

3. Save the program change.

4. Recompile the program.

The program now compiles without errors or warnings.

5. Run the program to see the effect of your latest fix.

Test the program again: you'll find that things work better, but the program
is still not perfect. The shapes that appear onscreen aren't the same shapes
you're drawing, but when you resize the window, the correct shapes
appear.

Again, you can use Turbo Debugger to find the cause of these problems:

1. Reload the program into Turbo Debugger (if you're in the IDE, you can
choose the Tool I TDW command to transfer to Turbo Debugger).

The following message appears: Restart info is old, use anyhow?

2. Click No to discard the old session-state information (for more
information on session-state files, see "Restarting a debugging session"
on page 23.) .

The scr~en shown in Figure 4.1 is displayed.

3. Step to the message loop on line 93 by pressing F7 sixteen times.

Now you're ready to see how the program handles the messages passed
to it.

Turbo Debugger User's Guide

Setting
breakpoints

4. Press F7 three times to execute the message loop functions
TranslateMessage and DispatchMessage.

The instruction pointer returns to the beginning of the message loop.

5. Press F7 three more times.

Again the instruction pointer is placed at the beginning of the message
loop.

At this point, you're trapped in the message loop. To get out of the loop,
you must run your program so that it will generate window messages that
can be processed by WndProc.

If you step into the message loop using F7 or FB, you'll be trapped in the
loop until you press F9 to run out of the loop. However, before pressing F9
to run the program, you must set execution controls so that Turbo Debugger
can regain control from the program after it starts running. Execution
controls consist of items such as breakpoints and messagepoints.

When you set a breakpoint in your code, it's best to position the breakpoint
just before the area where you think there's a bug. If you have an idea of
where your program runs into trouble, you can use a breakpoint to pause
your program's execution before it hits the trouble spot. When your
program pauses, control is given to Turbo Debugger and you can use its
features to monitor your program's behavior.

To figure out where to place a breakpoint in TDWDEMO.C, you must focus
on a single bug. With TDWDEMO, the most obvious bug shows itself as
soon as you move the mouse to draw a shape. By reviewing the source
code, you can see that the function DoMouseMove draws the shapes.
Knowing this(you can place a breakpoint on the DoMouseMove function so
that Turbo Debugger will gain control when this function is called:

1. With Turbo Debugger's Module window active, press Ctr/+S (or choose
the Search command from the Module window's SpeedMenu) to bring
up the Enter Search String input box.

2. Type DoMouseMove, and press Enter to search for the DoMouseMove
function definition.

The cursor moves to the DoMouseMove function call.

3. Press Ctr/+N (or choose the Next command from the Module window's
SpeedMenu) to repeat the search for the function definition.

The cursor moves to the comment section for the DoMouseMove
function.

4. Press Ctr/+N again to bring the cursor to the definition of DoMouseMove
(line 375 in TDWDEMO.C).

Chapter 4, Debugging a simple example 63

Creating a
conditional
breakpoint

64

Use one of the following methods to place a breakpoint at the beginning of
the DoMouseMove function:

• Press F2 .

• Choose Breakpoints I Toggle .

• Click in either of the two leftmost columns of the Module window.

When you set the breakpoint, the line containing the breakpoint changes
colors.

After setting the breakpoint, run the program by pressing F9. The Simple
Paint window is displayed.

Now as soon as you move the mouse, the breakpoint activates and the
progralu's execution pauses at the beginning of the DoMouseMove
function. However, this isn't exactly what you intended because you need
the breakpoint to pause the program just before the program gets into
trouble. In this case, you need Turbo Debugger to gain control just as you
begin to draw a shape.

To get the proper result from the breakpoint, you must modify it so that it
activates only when a shape is being drawn. You can do this by setting a
conditional breakpoint.

In the Simple Paint program, the static variable mouseDown is used to
indicate whether or not a shape is being drawn; when you're drawing a
shape, mouseDown equals 1.

With this information, you can create a conditional breakpoint that pauses
the program on DoMouseMove only when you're drawing a shape:

1. Open Turbo Debugger's Breakpoints window (View I Breakpoints).

2. If it's not already highlighted, highlight the breakpoint listed as
_DoMouseMove.

3. Press the right mouse button inside the left pane of the Breakpoints
window to open the Breakpoint window's SpeedMenu.

4. Choose Set Options to open the Breakpoint Options dialog box .

. 5. Click the Change button to open the Conditions and Actions dialog box.

6. Click the Expression True radio button and enter the following
expression into the Condition Expression list box:

mouseDown == 1

7. Click OK to exit the Conditions and Actions dialog box.

8. Click OK to exit the Breakpoint Options dialog box.

Turbo Debugger User's Guide

Figure 4.2
Breakpoints window

with a conditional
breakpoint

The Breakpoints window displays the newly created conditional
breakpoint, as shown in Figure 4.2.

9. Close the Breakpoints window by clicking the close button in the
window's upper-left corner.

Once you've set the conditional breakpoint, press F9 to run the program.

When you run the program this time, you can move the mouse freely
without pausing the program's execution. However, as soon as you press
the mouse button to draw a shape, the breakpoint activates and causes
Turbo Debugger to display the following message:

Breakpoint at _DoMouseMove "mouseDown == 1" true

Click OK to dismiss the message.

Turbo Debugger now gains control and you can begin stepping through the
DoMouseMove function:

1. Press F7 four times to bring the instruction pointer to the DrawShape
function call.

2. Press FB to I'step over" this function call.

Because you're not interested in examining the function DrawShape,
you can run this function without stepping into it by pressing FB.
However, if step into a function by accident (using Fl), you can run that
function to its end by choosing the Run I Until Return command. From
there, you can continue single stepping.

After stepping over the call to DrawShape, the instruction pointer is placed
at the following line of code:

Chapter 4, Debugging a simple example 65

Setting watches
and inspecting
data structures

66

oldy = LOWORD(lPararn) i

This line of code places the low-order word of the IParam argument into the
variable oldy to set the y starting coordinate for the shape. This line is
interesting because the program seems to be drawing the shape from the
wrong shirting position.

By tracing the IParam argument back to its origin, you can find that it was
passed to the program as part of the WM_MOUSEMOVE window message.
If you look up the definition of WM_MOUSEMOVE, you'll see that its IParam
argument represents x and y coordinates, divided into a low-order word
and a high-order word. However, the low-order word represents the x
coordinate, not the y coordinate as the program implies. In the program,
the variables oldy and oldx are incorrectly assigned each other's values.

This program bug causes the program to draw incorrect shapes every time
you move the mouse. To fix the bug, exit Turbo Debugger and use your
editor to modify lines 395 and 396 of TDWDEMO.C to read as follows:

oldx = LOWORD(lPararn) i

oldy = HIWORD(lPararn) i

After saving your program changes, recompile TDWDEMO.C.

The new bug fix lets you draw shapes, but there are still some problems
that prevent the program from working smoothly. When you experiment
with the program now, you'll find that extra lines appear when you release
the left mouse button after drawing a line. However, the extra lines
disappear when you resize the window.

Inspecting the source code reveals that the user-defined function
DoLButtonUp processes the program's WM_LBUTTONUP window
messages (these messages are sent to your program whenever you release
the left-mouse button after drawing a shape). Because of this, the
DoLButtonUp function might be a good place to find the next bug.

Run Turbo Debugger and load TDWDEMO.EXE to begin searching for this
bug. When you load the program, the following message is again displayed
by Turbo Debugger: '

Restart info is old, use anyhow?

This message pertains to the session-state file that contains the settings
from your last debugging session. In your last session, you created a
conditional breakpoint in the DoMouseMove function. Because you no
longer need this breakpoint, click the No button to close the message box
without loading this breakpoint setting.

Turbo Debugger User's Guide

Setting watches

Running to the
cursor location

Next, navigate to the DoLButtonUp function:

1. With the Module window active, press Ctrl+S (or cho,?se the Search
command from the Module window's SpeedMenu) to bring up the
Enter Search String input box.

2. Type DoLButtonUp and click OK.

The cursor moves to the DoLButtonUp function call.

3. Press Ctrl+N (or choose the Next command from the Module window's
SpeedMenu) two times to move the cursor to the DoLButtonUp function
definition on line 316 of TDWDEMO.C.

You can now set watches to monitor the oldx and oldy function variables: .

1. Press Ctrl+F7 (or choose Data I Add Watch) to open the Enter Expression
to Watch input box.

2. Type oldx and click OK to set the first watch.

3. Use the down-arrow key to move the cursor to line 361 of
TDWDEMO.C.

, This line contains the code oldy = -1 i •

4. Use the mouse to highlight the variable oldy.

5. Press Ctrl+W(or choose Watch from the Module window's SpeedMenu)
to add the variable oldy to the Watches window.

The Watches 'window at the bottom of your display now shows the watches
oldx and oldy, which both have a value of -1.

You're now ready to run the program and examine the workings of the
DoLButtonUp function. To pause the program's execution inside this
function, run the program to the cursor location:

1. Move the cursor to the SetRect function call on line 328 of
TDWDEMO.C.

2. Run the program to this location by choosing Run I Go To Cursor (or by
pressing F4).

When you run the program, its screen appears. To reproduce the bug
you're working on, draw a negatively-sloped line that star~s in the lower­
right corner of the screen and ends in the upper-left corner of the screen. As
soon as you release the left~mouse button, Turbo Debugger regains control
at the SetRect call, which is in the DoLButtonUp function.

Chapter 4, Debugging a simple example 67

Inspecting
compound data
structures

68

Figure 4.3
Inspector and

Watches windows

Because the DoLButtonUp function is called only after you've finished
drawing a shape, you can inspect the Shapes data structure to see how the
program stores the line you've just drawn:

1. Use the right-arrow key to place the cursor under the S in Shapes on the
line containing the cursor.

2. Press Ctrl+1 (or choose Inspect from the Modules window's SpeedMenu)
to open ~n Inspector window on the Shapes array.

The Inspector window opens and displays the contents of the array
Shapes. Each element in the Shapes array is a structure of the SSHAPE
data type.

3. Use the down-arrow key to highlight the first element in the array
(array element [01 holds the data pertaining to the line you've just
drawn).

4. Press Ctrl+D (or choose Descend from the Module window's SpeedMenu)
to replace the current Inspector window with an Inspector window that
displays the data structure of the first Shape array element.

. If the new Inspector window is covering the Watches window, uncover the
Watches window by moving the Inspector window to a different screen
location.

The Watches window shows the variables oldx and oldy, which correspond
to the x and y starting coordinates of your line. The ending point of your
line is contained in the Points data member of the SSHAPES data structure,
which can be seen by examining the Inspector window.

Now, you can watch the program's behavior by monitoring the Inspector
window:

Turbo Debugger User's Guide

Producing the
bug in Turbo
Debugger

1. Press F7 to step past the SetRect function call.

. The Points data member in the SSHAPES data structure has been
updated to contain the starting and ending points of the line you've just
drawn.

2. Press F7 two more times to execute the if statement and the statement
that follows it.

These two statements set the value of the Slope variable if the shape drawn
was a line. The second statement uses the ternary operator to set the Slope
variable to 1 if the slope of the line is positive, and to 0 if the slope of the
line is negative.

You can see the result of the operation by examining the Slope variable in
the Inspector window-the slope of the line has been set to 1. This setting
indicates a positively-sloped line. However, the line you drew was
negatively-sloped. You have just uncovered another bug in the program.

By examining the condition in the ternary expression, you can see that the
condition is correct, but the assignments at the end of the statement are
switched. The last line in the statement should read as follows:

HIWORD(lPararn)) ? 1 : 0;

Fix this bug by exiting Turbo Debugger and editing the source code on line
343 in TDWDEMO.C so that it matches the preceding line of code. After
saving your change, recompile the program.

Now when you run the program, things seem to work better. You can draw
lines that start from any corner of the screen and you can change colors and
line thicknesses. You can also draw ellipses and rectangles. However,
overlapping rectangles aren't drawn correctly and if you draw three shapes
and resize the screen, only two shapes get redrawn. Indeed, there's still one
more bug left in the code.

By closely watching the behavior of the program, you can find a place to
begin the next bug search. One part of the bug shows itself whenever the
program redraws the screen. In the program, the function DoPaint
processes the WM_PAINT messages, which in turn causes the program to
redraw the screen. When you inspect this function's code, you'll discover
that the for loop on line 242 does the actual drawing of the shapes.

However, the condition in the for loop looks a bit suspicious; it appears to
terminate the loop before the last shape is drawn. Because you can modify
the for loop during the execution of your program, you can use Turbo
Debugger to test your theory about why things are going wrong. To do

, Chapter 4, Debugging a simple example 69

Resetting the
program

Changing the
values of
variables

70

this, run the program once to demonstrate the bug and then run it a second
time to see if you can fix the problem:

1. Run Turbo Debugger and load TDWDEMO.C.

2. Click No to dismiss the Restart info is old, use anyhow? message.

3. Run the program by pressing F9.

4. Draw three shapes that overlap each other: a line, an ellipse, and a
rectangle.

5. Resize the window.

The bug should be now be apparent-only two of the original three
shapes are redrawn.

6. Click Qui t to exit the program.

Turbo Debugger displays the mes~age: Terminated, exit code O.

7. Click OK.

You can now test your fix by modifying the value of ShapeNumber to see if
that changes the behavior of the program. '

1. Press F9 to run the program.

Turbo Debugger issues the following message:

Program already terminated, reload?

2. Click Yes to reload the program from disk.

The Simple Paint window now opens, but everything seems tobe broken;
you can't draw any shapes. However, this behavior is a result of the way
that Windows interacts with Turbo Debugger. To fix this, press the Alt key.

When you reset a program (either after it terminates or after using the
Run I Program Reset command) and then run it, you must press the Aft key
before Windows resumes passing mouse messages to the program.

Click Quit to exit the program, then click OK to dismiss the Terminated, exit
code a message.

You're now ready to resume testing. Press Ctrl+F2 to reset the program.
Next, set a breakpoint that activates when the program processes a
WM_PAINT window message:

1. Navigate to the for in the DoPaint function (line 242 of TDWDEMO.C).

2. Press F2 to set a breakpoint on that line.

Turbo Debugger User's Guide

You now need to modify the breakpoint so that it activates after DoPaint
is called for the fourth time. This will pause the program just before you
resize the program's screen.

3. Choose View I Breakpoints to open the Breakpoints window.

4. If it's not already highlighted, highlight the breakpoint listed as
#TDWDEMO#242.

5. Choose Set Options on the Breakpoints window's SpeedMenu to open
the Breakpoint Options dialog box.

6. Press the Change button to open the Conditions and Actions dialog box.

7. Type 4 into the Pass Count input box, and click OK to return you to the
Breakpoint Options dialog box.

This sets the Pass Count to 4, which causes the breakpoint to activate
the fourth time it's encountered during the program's execution.

S. Press Enter two times to return you to the Module window.

Now run the program to test your theory of the bug.

9. Press F9 to run the program.

10. Press the Aft key to tell Windows to resume passing mouse messages to
your program.

11. Draw three overlapping shapes, a line, an ellipse, and a rectangle.

12. Resize the screen.

The breakpoint you set has now been encountered for the fourth time
and Turbo Debugger regains control. The Module window opens with
the cursor positioned on the for loop, and you're ready to modify the
value of ShapeNumber:

13. Use the mouse to highlight ShapeNumber in the for loop.

14. Choose Data I Evaluate/Modify to open the Evaluate/Modify dialog
box.

ShapeNumber is inserted onto the Expression input box.

15. Press the Eval button to evaluate the expression.

When you press the Eval button, the Result list box displays the current
value of the expression being evaluated. In this case, the Result list box
shows that the current value of ShapeNumber is 2.

To force the loop to draw all shapes, change the value of ShapeNumber to 3
using the Evaluate/Modify dialog box:

1. Enter 3 into the New Value input box in the Evaluate/Modify dialog
box.

2. Press the Modify button to have the change take effect.

Chapter 4, Debugging a simple example 71

72

The Result list box now shows the new value of ShapeNumber.

3. Close the Evaluate/Modify dialog box by clicking its close button in the
upper-left corner of the window.

4. Press F9 to resume running the program.

When the program's execution resumes, all three shapes are correctly
redrawn. Your bug fix worked perfectly. However, the patch you made to
the program works only for this one WM_PAINT message. The next time
you draw a shape or resize the window, the bug will show up again. To
correct this final program bug, you'll need to exit Turbo Debugger and fix
the source code.

This last bug is actually a common C programming mistake: the condition
in the for loop is off by one. You can fix this last bug by changing the for
loop on line 242 in TDWDEMO.C to read as follows:

for (i = 0; i <= ShapeNumber; ++i)

After you compile the program this time, you'll find it runs withou~ errors.

You've now complete the sample debugging session and should be able to
use Turbo Debugger's basic features. However, this chapter introduces only
some of the more powerful features of the debugger. To get the most out of
Turbo Debugger, skim the rest of the book to get a general idea of the other
features that you can use while debugging your programs.

Turbo Debugger User's Guide

c H A p T E R

. Setting and using breakpoints

Breakpoints are tools that you use to control the execution of your
program. By setting break

5

points in the areas of your program that you want to examine, you can run
your program at full speed, knowing that its execution will pause when the
breakpoints are encountered. Once your program's execution is paused,
you can use Turbo Debugger's features to examine the state of your
program.

In this chapter, you'll learn how to set the following types of breakpoints:

• Simple breakpoints
• Expression-true breakpoints
• Changed-memory breakpoints
• Global breakpoints
• Hardware breakpoints

This chapter also describes the Log window (see page 88), which lets you
"take notes" during your debugging session.

Breakpoints defined

Breakpoint
locations

Turbo Debugger defines a breakpoint in three ways:

• The location in the program where the breakpoint is set.
• The condition that allows the breakpoint to activate.
• The action that takes place when the breakpoint activates.

A breakpoint is usually set on a specific source line or machine instruction
in your program. When set at a specific location, Turbo Debugger evaluates
the breakpoint when your program's execution encounters the code
containing the breakpoint.

However, a breakpoint can also be global in context. Turbo Debugger
evalu~tes global breakpoints after the execution of each line of source code

Chapter 5, Setting and using breakpoints 73

Breakpoint
conditions

Breakpoint
actions

or machine instruction. Global breakpoints let you pinpoint where in your
program a variable or pointer gets modified.

When your program's execution encounters a breakpoint, Turbo Debugger
checks the breakpoint's condition to see if the breakpoint should activate. If
the condition evaluates to true, the breakpoint activates, and its actions are
carried out.

The condition of a breakpoint can be any of the following:

• Always activate when the breakpoint is encountered.
• Activate when an expression evaluates to true.
• Activate when a data object changes value.

In addition to the breakpoint condition, a pass count can be specified,
requiring that a breakpoint be encountered a designated number of times
before it activates.

When you're debugging programs written for Windows NT, you can also
set breakpoints that relate to specific program threads. For mor'e on setting
breakpoints on program threads, see the section "Setting breakpoints on
threads" on page 88.

When a breakpoint activates, it performs a specified action. A breakpoint's
action can be any of the following:

• Pause the program's execution.
• Log the value of an expression.
• -Execute an expression.
• E~able a group of breakpoints.
• Disable a group of breakpoints.

The Breakpoints window

74

Figure 5.1
The Breakpoints

window

The Breakpoints window, opened with the View I Breakpoints command,
lists all currently set breakpoints.

Breakpoints List pane BreakpOints Detail pane

Turbo Debugger User's Guide

The Breakpoints
windows
SpeedMenu

The Breakpoints window has two panes. The List pane (on the left) lists the
addresses of all currently set breakpoints. The Detail pane (on the right)
displays the condition and action settings of the breakpoint that's
highlighted in the List pane. (Although a breakpoint can have several sets
of conditions and actions, the Detail pane displays only its first set of
details.)

You access the SpeedMenu of the Breakpoints window through the List
pane. The commands in this menu let you add new breakpoints, delete
existing ones, and change a breakpoint's settings.

Breakpoint types

Table 5.1
Breakpoint types

Setting simple
breakpoints

In Turbo Debugger, you can create the following types of breakpoints:

Breakpoint type

Simple breakpoints

Expression-true breakpoints

Changed-memory breakpoints

Global breakpoints

Hardware breakpoints

Definition

Always pause your program's execution when they're
encountered.

Pause your program when an expression you enter evaluates
to true (nonzero).

Pause your program when an specific location in memory
changes value.

Expression-true or changed-memory breakpoints that are
evaluated after the execution of each source line or machine
instruction is executed.

Global changed-memory breakpoints that are hardware
assisted.

You can also set breakpoints on window messages. For a complete
description of message breakpoints, refer to Chapter 10, page 142.

When you first set a breakpoint, Turbo Debugger creates a simple breakpoint
by default. Simple breakpoints are set on specific lines of code and contain
a condition of "Always" and an action of "Break."

When you begin a debugging session, you can quickly reach the sections of
code you want to examine by setting simple breakpoints in the code. After
setting the breakpoints, run your program using F9; the program's '
execution will pause when it encounters the breakpoints.

Chapter 5, Setting and using breakpoints 75

76

Although there are several ways to set simple breakpoints, the Module
window and the Code pane of the CPU window offer the easiest methods:

• If you're using the keyboard, place the cursor on any executable line of
source code (or on any machine instruction in the Code pane of the CPU
window) and press F2. (In the Module window, executable lines of
source code are marked with a lie" in the leftmost column.) The
Breakpoint I Toggle command provides the same functionality.
Whenever you set a breakpoint, the line containing the breakpoint turns
red. Pressing F2 again removes the breakpoint.

.. Alternately, if you're using a mouse, click either of the two leftmost
columns of the line where you want the breakpoint set. (When you're in
the correct column, an asterisk (*) appears inside the mouse pointer.)
Clicking the line again removes the breakpoint.

• The Breakpoint I At command also sets a simple breakpoint on the
current line in the Module window or Code pane of the CPU window.
However, in addition to setting the breakpdint, the At command opens
the Breakpoint Options dialog box, giving you quick access to the
commands that let you customize the breakpoint The hot key for At is
Alt+F2.

In addition to setting breakpoints from the Module and CPU windows,
Turbo Debugger offers the following commands for setting simple
breakpoints:

• You can set breakpoints on the entry points of all the functions in the
currently loaded module, or on all member function in a class, using the
Breakpoints window's SpeedMenu Group command. For more
information on this command, see page 84.

• You can use the Add command on the Breakpoint window's SpeedMenu
to set breakpoints. This command opens the Breakpoint Options dialog
box and positions the cursor on an empty Address input box. Enter an
address or line number expression for which you'd like a breakpoint to
be set.

For example, if you'd like to set a breakpoint at line number 3201 in your
C source code, type #3201 in the input box. If the line of code is in a
module other than the one displayed in the Module window, type a
pound sign (#) followed by the module name, followed by another
pound sign and the line number. For example: #OTHERMOD#3201.

You can also a~cess the Add command by typing an address directly into
the Breakpoints window. After typing the first character of the address,
the Breakpoint Options dialog box opens with the Address input box
active.

Turbo Debugger User's Guide

Setting
expression-true
breakpoints

Figure 5.2
The Breakpoint

Options dialog box

Once you set a breakpoint, you can modify the action that it will take when
it activates. The default action is "Break"-Turbo Debugger pauses the
program's execution when the breakpoint is activated. For a list of possible
breakpoint actions, see page 81.

Expression-true breakpoints, like simple breakpoints, are set at specific
program locations. However, unlike simple breakpoints, expression-true
breakpoints have special conditions and actions added to their definitions.

Sometimes, you will not want a breakpoint to activate every time it's
encountered, espeCially if the line containing the breakpoint is executed
many times before the actual occurrence you're interested in. Likewise, you
might not always want a breakpoint to pause the program's execution.
With Turbo Debugger, you can specify when a breakpoint should activate
and the actions it should take when it does activate.

Expression-true breakpoints are essentially simple breakpoints that have
been customized. The following steps explain how to create an expression­
true breakpoint:

1. Set a simple breakpoint (as described in the previous section).

2. Open the Conditions and Actions dialog box:

a. Open the breakpoints window, and highlight the desired breakpoint
in the List pane.

b. Choose Set Options from the SpeedMenu to open the Breakpoint
Options dialog box.

The Breakpoint Options dialog box contains commands that let you
modify breakpoint settings. The Conditions and Actions list box
displays the current settings of the selected breakpoint.

c. To modify a breakpoint's condition and action settings, click the
Change button t~ open the Conditions and Actions dialog box.

Chapter 5, Setting and using breakpoints 77

Figure 5.3
The Conditions and

Actions dialog box

Breakpoint condition
sets are described on

page 83.

Setting changed­
memory
breakpoints

78

The Conditions and Actions dialog box lets you customize the
conditions under which a breakpoint is activated, and the actions that
take place once the conditions are met.

3. Select the Expression True radio button.

By default, the breakpoint's condition is set to Always-the breakpoint
will activate each time it is encountered by the program's execution.
Clicking the Expression True radio button specifies that the breakpoint
should activate when an expression you supply becomes true (nonzero).

4. Enter the expression you want evaluated each time the breakpoint is
encountered into the Condition Expression input box.

5. If needed, specify a pass count with the breakpoint settings.

The Pass Count input box lets you set the number of times the
breakpoint condition set must be met before the breakpoint is activated.
The default number is 1. The pass count is decremented only when the
entire condition set attached to the breakpoint is true; if you set a pass
count to n, the breakpoint is activated the nth time the entire condition
set evaluates to true.

6. If you want to change the breakpoint's default action, click the desired
Action radio button and enter any pertinent action expression into the
Action Expression input box. Page 81 lists the different actions that you
can associate with a breakpoint. For a list of possible breakpoint actions,
see page 81.

See page 82 for details on entering breakpoint condition and action sets.

7. Click OK or press Esc to exit the Conditions and Actions dialog box.

Changed-memory breakpoints (sometimes known as watchpoints) monitor
expressions that evaluate to a specific data object or memory location. Set
on specific lines of code, changed-memory breakpoints activate if a data
object or memory pointer has changed value.

Turbo Debugger User's Guide

Setting global
breakpoints

To set a changed-memory breakpoint, follow the same instructions for
setting an expressiqn-true breakpoint (described in the preceding section),
with two exceptions:

1. In the Conditions and Actions dialog box, click the Changed Memory
radio button instead of the Expression True radio button.

2. In the Condition Expression input box, enter an expression that
evaluates to a memory location (a data object or memory pointer).

.. When your program's execution encounters a line that contains a changed­
memory breakpoint, the condition expression is evaluated before the line of
code gets executed. Because of this, carefully consider the placement of
changed-memory breakpoints.

When entering an expression, you can also enter a count of the number of
objects you want monitored. The total number of bytes watched in memory
is the size of the object that the expression references times the object count.

For example, suppose you have declared the following C array~

int string[81]i

You can watch for a change in the first ten elements of this array by
entering the following item into the Condition Expression input box:

&string[O], 10

The area monitored is thus 20 bytes long-an int is 2 bytes and you
instructed Turbo Debugger to monitor ten of them.

Global breakpoints are essentially expression-true or changed-memory
breakpoints with the added characteristic that the breakpoint is monitored
continuously during your program's execution. Because Turbo Debugger
checks the breakpoint conditions after the execution of every line of source
code or machine instruction, global breakpoints are excellent tools for
pinpointing code that's corrupting data.

To create a global breakpoint, first set either a changed-memory or
expression-true breakpoint, as described in the previous sections. Then,
after you exit the Conditions and Actions dialog box, check the Global
check box in the Breakpoint Options dialog box to specify that the
breakpoint should be global.

When you create a global breakpoint, the Address input box in the
Breakpoint Options dialog box reads <not available>; global breakpoints
are not associated with specific program locations.

Chapter 5, Setting and using breakpoints 79

Global breakpoint
shortcuts

Setting hardware
breakpoints

80

Normally, Turbo Debugger checks a global breakpoint after the execution
of every line of source code. However, if you want Turbo Debugger to
check the breakpoint after every machine instruction, press F9 while the
CPU window is active.

Because Turbo Debugger evaluates global breakpoints after the execution
of every line of source code or machine instruction, these breakpoints
greatly slow the execution of your program. Be moderate with your use of
global breakpoints; use them only when you need to closely monitor the
behavior of your program.

Although it's possible to create a global breakpoint with a condition of
"Always," it's not recommended. Because the breakpoint condition is
evaIl.lated after the execution of each source line, a condition of" Always"
will cause the breakpoint to activate after the execution of each line of code.

The Breakpoints menu contains two commands that provide fast ways to
set global breakpoints: Changed Memory Global and Expression True
Global. When you set a breakpoint with either of these two commands, the
breakpoint action is set to "Break" by default.

Changed Memory Global sets a global breakpoint that's activated when an
area of memory changes value. When you issue this command, you're
prompted for an area of memory to watch with the Enter Memory Address,
Count input box. For information on valid expression types, see the
preceding "Setting changed-inemory breakpoints" section.

Expression True Global sets a global breakpoint that is activated when the
value of a supplied expression becomes true (nonzero). When you select
this command, you are prompted for the expression to evaluate with the
Enter Expression for Conditional Breakpoint input box.·

Hardware breakpoints, available with TDW and with TD32 when you debug
Windows NT programs, take advantage of the special debugging registers
of Intel 80386 (or higher) processors and certain hardware debugging
boards. Hardware breakpoints let your hardware monitor the global
breakpoints, so you don't have to use CPU-expensive software for that task.

Turbo Debugger User's Guide

Before you can set a hardware breakpoint in TDW, the TDDEBUG.386
device driver must be copied to your hard disk and loaded by your
CONFIG.5YS file. If you want, Turbo Debugger's installation program can
complete the installation process for you, or you can install it yourself by
following the directions in the online file TD_HDWBP.TXT. When
TDDEBUG.386 is properly installed, the Breakpoints field in TDW's File I
Get Info dialog box reads Hardware; otherwise it reads Software.

To set a hardware breakpoint, choose the Hardware Breakpoint command
from the Breakpoints menu. This command automatically checks the
Global check box in the Breakpoint Options dialog box, chooses the
Hardware radio button in the Conditions and Actions dialog box, and
opens the Hardware Breakpoint Options dialog box. This dialog box
contains all the hardware breakpoint settings, and is fully described in the
online text file TD_HDWBP.TXT.

You can also create a hardware breakpoint by modifying an existing
breakpoint:

1. Check the Global check box in the Breakpoint Options dialog box.

2. Open the Conditions and Actions dialog box and choose the Hardware
radio button.

3. Click the Hardware button in the Conditions and Actions dialog box to
access the Hardware Breakpoint Options dialog box.

4. Specify the hardware breakpoint settings and click OK.

5. If needed, specify the action settings in the Conditions and Actions
dialog box.

When you set a hardware breakpoint, its listing in the Breakpoint window's
List pane will have an asterisk (*) displayed next to it.

Breakpoint actions

Break

The Action radio buttons in the Conditions and Actions dialog box (Figure
5.3) specify the actions that you want a breakpoint to perform when it
activates. Each of the following actions can be applied.to any of the
breakpoints you set.

The Break button (default) pauses your program when the breakpoint is
activated. When your program pauses, Turbo Debugger becomes active,
and you can use its windows and commands to view your program's state.

Chapter 5, Setting and using breakpoints 81

Execute

Log

Enable group

Disable group

The Execute button executes an expression that you enter into the Action
Expression input box. For best results, use an expression that changes the
value of a variable or data object.

By "splicing in"- a piece of code before a given source line, you can
effectively test a simple bug fix; you don't have to go through the trouble of
compiling and linking your program just to test a minor change to a
routine. Keep in mind, however, that you cannot use this technique to
directly modify your compiled program.

The Log button writes the value of an expression to the Log window. Enter
the expression you want evaluated into the Action Expression input box.
(For more information on the Log window, see page 88.)

This command is handy when you want to output a value each time you
reach a specific place in your program (this technique is known as
instrumentation). By creating a breakpoint with a Log action, you can log
values each time the breakpoint activates.

For example, you can place a breakpoint at the beginning of a function and
set it to log the values of the function arguments. Then, after running the
program, you can determine where the function was called from, and if it
was called with erroneous arguments.

When you log expressions, be careful of expressions that unexpectedly
change the values of variables or data objects.

The Enable Group button causes a breakpoint to reactivate a group of
breakpoints that have been previously disabled. Supply the group integer
number to enable in the Action Expression input box. See page 84 for
information on breakpoint groups.

The Disable Group button lets you disable a group of breakpoints. When a
group of breakpoints is disabled, the breakpoints are not erased, they are
simply hidden from the debugging session. Supply the group integer
number to disable in the Action Expression input box.

Setting breakpoint, conditions and actions

82

You use the Conditions and Actions dialog box, shown in Figure 5.3, to
specify when a breakpoint should activate, and what it should do when it
does activate. Usually, you will enter a single condition or action expression

TUf:bo Debugger User's Guide

Creating
breakpoint
condition sets

Creating
breakpoint action

. sets

. for any given breakpoint. However, Turbo Debugger lets you create
condition and action sets that contain multiple expressions. In addition, a
single breakpoint can have several condition and actions sets associated
with it.

The following sections describe how to create complex breakpoint
condition and action sets.

When you create an expression-true or changed-memory breakpoint, you
must .provide a condition set so the debugger knows when to activate the
breakpoint. A condition set consists of one or more expressions. For the

. breakpoint to activate, every expression in the condition set must evaluate
to true. To create a condition set,

1. Choose either the Changed Memory or Expression True radio button.

2. Enter the condition expression into the Condition Expression input box.

3. Choose the Add button under the Condition Expression input box.

To enter more than one condition expression to a breakpoint's
definition, repeat steps 2 and 3 until all your expressions have been
added to the Condition Expression input box.

The Delete button located below the Condition Expression input box lets
you remove the currently highlighted expression from the Condition
Expression input box.

When you select eith~r an Execute, Log, Enable Group, or Disable Group
Action radio button, you must provide an action set so Turbo Debugger
knows what to do when the breakpoint activates. An action set is
composed of one or more expressions. To create an action set,

1. Choose either the Execute, Log, Enable Group, or Disable Group radio
button.

2. Enter the action into the Action Expression input box.

3. Choose the Add button under the Action Expression input box.

To execute more than one expression when the breakpoint activates,
repeat steps 1,2, and 3, until all expressions have been added to the
Action Expression input box.

-. If the Enable Group or Disable Group radio button is chosen, type the
breakpoint group number into the Action Expression input box to reference
the group of breakpoints you want enabled or disabled. .

Chapter 5, Setting and using breakpoints 83

Multiple condition
and action sets

The scope of
breakpoint
expressions

The Delete button located below the Action Expression input box lets you
remove the currently highlighted expression from the action set.

When you have finished entering actions, choose OK on the Conditions and
Actions dialog box.

A single breakpoint can have several condition and action sets associated
with it. To assign multiple condition and action sets to a single breakpoint,
choose OK on the Conditions and Actions dialog box after you have entered
the first series of conditions and actions. This closes the Conditions and
Actions dialog box and returns you to the Breakpoint Options dialog box.
From here, choose the Add button to enter a new set of conditions and
actions.

Each condition and action set is evaluated in the order in which it was
entered. If any condition set evaluates to true, then the actions associated
with those conditions are performed.

To delete a condition and action set from a breakpoint's definition, select
the Delete button on the Breakpoint Options dialog box.

Both the conditions and actions of a breakpoint are controlled by the
expressions you supply. Turbo Debugger evaluates breakpoint expressions
with regards to the scope of the breakpoint location, not the scope of the
location where you happen to be when you're entering the expressions.

Using scope-override syntax, you can access the values of any data objects
that are defined when the breakpoint is encountered. However, breakpoints
that reference data objects that are out of scope execute much slower than
breakpoints that use only local or global variables. For a complete
discussion of scopes and scope overrides, see" Accessing symbols outside
the current scope" on page 109.

To modify a breakpoint that's set in a module that isn't currently loaded,
you must use scope-overriding syntax to identify the module. However,
when setting and modifying breakpoints, it's easiest to access the desired
module using the View I Another I Module command.

Breakpoint groups

84

Turbo Debugger lets you group breakpoints together, allowing you to
enable, disable, or remove breakpoints with a single action. In addition,
you can set a group of breakpoints on all functions in a module or all
member functions in a class with a single command.

Turbo Debugger User's Guide

Figure 5.4
The Edit Breakpoint

Groups dialog box

Creating
breakpoint groups

The Group command on the Breakpoints window's SpeedMenu activates
the Edit Breakpoint Groups dialog box. Using this dialog box, you can
create and modify breakpoint groups.

A breakpoint group is identified by a positive integer, generated
automatically by Turbo Debugger or assigned by you. The debugger
automatically assigns a new group number to each breakpoint as it's
created. The group number generated is the lowest number not already in
use. Thus, if the numbers 1,2, and 5 are already used by groups, the next
breakpoint created is automatically given the group number 3.

Once a breakpoint is created, you can modify its group status with the
commands in the Edit Breakpoint Groups dialog box. You can also assign a

. breakpoint to a new or existing breakpoint group with the Group ID input
box on the Breakpoints window's Breakpoint Options dialog box.

The Add button on the Edit Breakpoint Groups dialog box activates the
Add Group dialog box. The Add Group dialog box contains one list box
and a set of radio buttons that let you add all functions in a single module,
or all member functions in a class, to a breakpoint group.

The Module/Class list box displays a list of the modules or classes
contained in the currently loaded program. Highlight the desired module
or class and press OK to set breakpoints on all functions in that module or
class. All breakpoints set in this manner are collected into a single
b~eakpoint group. \

Using the two radio buttons in the Add Group dialog box, you can select
the type of functions that are displayed in the Module/Class list box:

• The Modules radio button selects all modules contained in the current
program .

• The Classes radio button selects all the C++ classes contained in the
current program.

Chapter 5, Setting and using breakpoints 85

Deleting
breakpoint groups

Enabling and
disabling
breakpoint groups

The Delete button on the Edit Breakpoint Groups dialog box removes the
group currently highlighted in the Groups list box. Use this command with
caution; all breakpoints in the selected group, along with their settings, are
permanently erased by this command. ~

The Edit Breakpoint Groups dialog box contains two commands for
enabling and disabling breakpoint groups. The Enable button activates a
breakpoint group that has been previously disabled.

The Disable button temporarily masks the breakpoint group that is
currently highlighted in the Groups list box. Breakpoints that have been
disabled are not erased; they are merely set aside for the current debugging
session. Enabling the group reactivates all the settings for all the
~reakpoints in the group.

In addition to the two commands on the Edit Breakpoint Groups dialog
box, you can enable and disable breakpoint groups through the action
settings of breakpoints. For information on this feature, see page 82.

Navigating to a breakpoint location

The Inspect command on the breakpoint window's SpeedMenu opens the
Module or CPU window, and positions the display at the location of the
breakpoint that's highlighted in the List pane.

.. You can also invoke this command by pressing Enter once you have
highlighted the desired breakpoint in the List pane.

Enabling and disabling breakpoints

86

Checking the Disabled check box in the Breakpoint Options dialog box
masks the current breakpoint, hiding it until you want to reenable it by
unchecking this box. When the breakpoint is reenabled, all settings
previously made to the breakpoint become effective.

Disabling a breakpoint is useful when you have defined a complex
breakpoint that you don't need just now, but will need later. It saves you
from having to delete the breakpoint, and then reenter it along with its
complex conditions and actions.

Turbo Debugger User's Guide

Removing breakpoints

You can erase existing breakpoints from either the Breakpoints window's
SpeedMenu, or the Breakpoint menu.

The Remove command on the Breakpoint window's SpeedMenu erases the
breakpoint currently highlighted in the List pane. Del is the hot key for this
command.

The Delete All command, found on both the Breakpoint menu and the
Breakpoints window's SpeedMenu, removes all the currently set
breakpoints, including global breakpoints and those set at specific
addresses. Use this command with caution; its effects cannot be reversed.

Setting breakpoints on C++ templates

Turbo Debugger supports the placement of breakpoints on c++ templates,
function templates, and template class instances and objects.

The method you use to set template breakpoints affects the way the
breakpoints are set:

II If you set a breakpoint on a template by pressing F2while in the Module
window, breakpoints are set on all class instances of the template. This
lets you debug the overall template behavior .

• If you press AIt+F2 to set a template breakpoint, the Breakpoint Options
dialog box activates, and you can enter the address of a template into the
Address input box. A dialog box opens that lets you choose a specific
class instance for the breakpoint.

• You can set a breakpoint on a specific class instance of a template
through the CPU window. Position the cursor on a line of template code
in a single class instance and press F2 to set a breakpoint on that class
instance only. .

You remove template breakpoints just as you remove other breakpoints;
position the cursor on the breakpoint in the Module window and press F2.
All breakpoints on associated class instances are deleted.

You can remove specific template breakpoints by deleting them from the
CPU window. Position the cursor on the desired breakpoint in the CPU
window and press F2 to it.

Chapter 5, Setting and using breakpoints 87

Setting breakpoints on threads

Programs written for the Windows NT operating system consist of one or
more executable "threads." When debugging a Windows NT program, you
can set a breakpoint on a specific thread, even though the code at the
breakpoint location is shared by multiple threads.

When you set a breakpoint in a Windows NT program, by default, the
breakpoint is set for all program threads. To specify that the breakpoint
should be checked for a single thread only,

1. Highlight the desired breakpoint in the Breakpoints window's List pane.

2. Choose the List pane's Set Options SpeedMenu command.

3. Click the Change button in the Breakpoint Options dialog box to open
the Conditions and Actions dialog box. Set the breakpoint's conditions
and actions as needed.

By default, the All Threads check box is checked, indicating that the
breakpoint is set for all active threads.

4. Clear the All Threads check box; the Threads input box becomes
available.

5. Type the Windows NT thread number you want to monitor into the
Threads input box.

To obtain a Windows NT thread number, open the Threads window
with the View I Threads command. The Threads List pane displays all
currently active threads, listing them by the Windows NT thread
number and their given name.

6. Click OK t,o confirm your breakpoint settings.

For more information on debugging threads, see "Debugging multi­
threaded programs" on page 148.

The Log window

88

Figure 5.5
The Log window

The Log window keeps track of the significant events that oc~ur during
your debugging session. To open the Log window, choose View I Log.

Turbo Debugger User's Guide

The Log window's
SpeedMenu

Open Log File

By default, the Log window can list 50 lines of text. However, you can
change the default using TDWINST.EXE or TDINST32.EXE.

The following debugging actions are tracked by the Log window:

• Whenyour program pauses, the program location is recorded in the Log
window.

• When you use the Log window's Add Comment command, your
comment gets added to the Log window.

• When a b~eakpoint activates that logs an expression, the value of the
expression is written to the Log window.

• When you choose the Edit I Dump Pane to Log command, the contents of
a pane or window are recorded in the Log window.

• When you use the Display Windows Info command on the Log window's
SpeedMenu, the global or local heap information, or the list of program
modules is written to the Log window.

• When you set Send to Log Window to Yes from the Windows Messages
window, all window messages sent to that window are copied to the Log
window.

The commands in the Log window's SpeedMenu let you write the log to a
disk file, stop and start logging, add a comment to the log, clear the log,
and write information about a Windows program to the log.

Open log file •••
Close log file
Loggi ng Yes
Add COl1'J11ent •••
Erase log
Display Windows info •••

The Open Log File command causes all lines written to the Log window to
also be written to a disk file. When you choose this command, a dialog box
prompts you for the name of the disk file. By default, the log file's name is
the name of your program, followed by a .LOG extension.

When you open a log file, all the lines already displayed in the Log window
are written to the disk file. This lets you open a disk log file after you see
something interesting in the log that you want to record to disk.

If you want to start a disk log that doesn't contain the lines already
displayed in the Log window, choose Erase Log before choosing Open Log
File.

Chapter 5, Setting and using breakpoints 89

Close Log File

Logging

Add Comment

Erase Log

Display Windows
Info

90

The Close Log File command closes the log file that you opened with the
Open Log File command.

The Logging command enables· and disables the writing of events to the
Log window. Use this command to control when events are logged. When
logging is turned off, the Log window's title bar displays Paused.

Add Comment lets you insert comments into the Log window. When you
choose this command, a dialog box opens, prompting you for a comment.

Erase Log clears the Log window. This command affects only what's in
memory; the log disk file is not erased by this command.

The Display Windows Info command, available only with TDW, displays
the Windows Information dialog box. This dialog box lets you list global
heap information,local heap information, or the list of modules making up
your application. See page 153 in Chapter 10 for more information on this
feature.

Turbo Debugger User's Guide

c H A p T E R

Examining and modifying data

The data in your program consists of global variables, local variables, and
defined constants. Turbo Debugger provides the following ways to view
and modify the data that your program processes:

• The Watches window displays the current values of variables and
expressions.

• The Variables window displays your program's local and global
variables.

• The Inspector windows display the values of program data items,
including compound data objects.

• The Stack window displays the current functions located on the stack,
including their argument values.

• The Evaluate/Modify command evaluates expressions and lets you
assign new values to variables.

• The Function Return command displays the value that the currently
executing function is about to return.

The Watches window

6

The Watches window provides the easiest way to keep track of your
program's data items. In the Watches window, you list the program
variables and expressions whose values you want to track. Each time your
program's execution pauses, Turbo Debugger evaluates all the items listed
in the window and updates their displayed values.

With the Watches window, you can watch the value of both simple
variables (such as integers) and compound data objects (such as arrays). In
add~tion, you can watch the values of calculated expressions that do not
refer directly to memory locations. For example, you could watch the
expression x * y + 4.

Chapter 6, Examining and modifying data 91

Figure 6.1
The Watches window

Creating watches

See Chapter 7 for a
discussion of scope
and scope override

syntax.

92

Expressions that you enter as watches are listed on the left side of the
Watches window, and their corresponding data types and values appear on
the right. The values of items in compound data objects (such as arrays and
structures) appear with their values between braces ({ D. The Watches
window truncates any expressions or values that do not fit into the
window.

To create a watch, choose one of the following commands:

• The Data I Add Watch command
• The Module window's SpeedMenu Watch command
• The Variable window's SpeedMenu Watch command
• The Watches window's SpeedMenu Watch command

When you choose a command to create a watch, Turbo Debugger opens the
Enter Expression to Watch dialog box. Enter a variable name or expression,
and press Enterto add it to the Watches window.

If the cursor is on a variable in the Module window, that variable is
automatically added to the Watches window when you choose the
SpeedMenu Watch command. The same is true for expressions selected
using Ins and the arrow keys.

Unless you use scope override syntax, Turbo Debugger evaluates watch
expressions with regards to the current instruction pointer. If a watch
expression contains a symbol that isn't accessible from the currently active
scope, the value of the expression is undefined, and is displayed as four

. question marks (????).

When you enter expressions into the Watches window, you can use
variable names that aren't yet defined; Turbo Debugger lets you set up a
watch expression before its scope becomes active. This is the only situation

,in Turbo Debugger where you can enter an expression that can't be
immediately evaluated.

Be careful when you enter expressions into the Watches window. If you
mistype the name of a variable, Turbo Debugger W,on't detect the mistake
because it assumes the variable will become available at a later time during
program execution.

Turbo Debugger User's Guide

The Watches
window's
SpeedMenu

Watch

Edit

Remove

Delete All

Inspect

Change

When you're tracing inside a member function, you can add the this
pointer to the Watches window. Turbo Debugger knows about the scope
and presence of the this pointer. You can evaluate this and follow it with
format specifiers and quantifiers.

The Watches window's SpeedMenu contains all the commands needed to
manage the items in the window:

Watch •••
Edit. ..
Remove
Delete all

Inspect
Change •••

The Watch command prompts you for a variable name or expression to add
to the Watches window. Unless you explicitly enter a scope, Turbo
Debugger evaluates the expression with regards to the current cursor
location.

Edit opens the Edit Watch Expression dialog box, letting you modify the
expression currently highlighted in the Watches window. When you've
finished editing the expression, press Enter or click the OK button.

You can also invoke this command by pressing Enter after you've
highlighted the watch expression you want to change.

The Remove command removes the currently selected item from the
Watches window.

Delete All removes all expressions from the Watches window. This
command is useful if you move from one area of your program to another,
and the variables you were watching are no longer relevant.

The Inspect command opens an Inspector window that shows the details of
the currently highlighted watch. This command is useful when the watch
expression is a compound data object, or if the expression is too long to be
fully displayed in the Watches window.

Use the Change command to modify the value of the currently highlighted
variable in the Watches window. When you enter a new value into the
Enter New Value dialog box, Turbo Debugger performs any necessary type

Chapter 6, Examining and modifying data 93

conversion, exactly as if the assignment operator had been used to change
the variable.

The Variables window

Figure 6.2
The Variables

window

The Variable
windows
SpeedMenus

Inspect

94

The Variables window displays the names and values of all the local and
global variables accessible from the current program location. You can use
this view to examine and change the values of variables, and to view the
variables local to any function that has been called. To access this window,
choose View I Variables. .

Global pane

'-'::--4H-- Local pane

The Variables window has two panes:

.• The Global pane shows all the global symbols in your program .

• The Local pane shows all the static symbols in the module and all the
symbols local to the current function.

Both panes display the variable names on the left and their data types and
values on the right. If Turbo Debugger can't resolve a symbol's data type, it
displays four question marks (????).

Each pane of the Variables window has its own SpeedMenu. Both menus
contain Inspect, Change, and Watch commands; the Local pane also has the
Show command.

Inspect
Change •••
Watch
Show •••

The Inspect command opens an Inspector window that displays the
contents of the currently highlighted global, local, or static symbol.

Turbo Debugger User's Guide

Change

Watch

Show

If you inspect a global variable whose name matches a local variable's
name, Turbo Debugger displays the value of the global variable, not the
local variable. This behavior is slightly different from the usual behavior of
Inspector windows, which normally display values from the point of view
of your current program location. This difference gives you a convenient
way to look at global variables whose names are also used as local
variables.

If you issue the Inspect command on an entry that's a function name (in the
Global pane), Turbo Debugger activates the Module window and places the
cursor on the function's source code. If Turbo Debugger can't find the
source code, or if the file wasn't compiled with debug information, a CPU
window opens, showing the disassembled instructions.

The Change command opens the Change dialog box so you can modify the
value of the currently highlighted symbol. Turbo Debugger performs any
necessary data type conversion exactly as if the assignment operator for
your current language had been used to change the variable.

You can also access the Change dialog box by choosing the SpeedMenu
Inspect command and typing the new value into the Inspect window.

The Watch command opens a Watches window and adds the currently
highlighted symbol to that window.

The Watches window doesn't keep track of whether the variable is local or
global. If you insert a global variable using the Watch SpeedMenu
command, and later encounter a local variable by the same name, the local
variable takes precedence whenever you're in the local variable's block. The
Watches window always displays the value of a variable from the point of
view of your current program location.

The Local pane's Show command brings up the Local Display dialog box.
The radio buttons in this dialog box enable you to change the scope of the
variables displayed in the Local pane, and the module from which these
variables are selected:

Static

Auto

Both

Show only static variables.

Show only variables local to the current block.

Show both static and local variables (default).

Chapter 6, Examining and modifying data 95

Viewing variables
from the Stack .
window

Module Change the current module. This command brings up a dialog
box showing the list of modules for the program, from which
you can select a new program module.

Using the Stack window, you can examine the variables of any function
that's located on the stack, including the different version of a recursive
function. To do so, open the Stack window and highlight the function you
want to examine. Next, press Alt+Fl0, and choose Locals. The Static pane of
the Variables window opens, showing the argument values of the selected
function.

Inspector windows

Opening
Inspector
windows

96

Inspector windows are the best way to view data items because Turbo
Debugger automatically formats Inspector windows according to the type
of data being displayed. Inspector windows display data differently for
scalars (for example, char or int), pointers (char *), structures, arrays (long
x[4]), and functions. In addition, there are special Inspector windows for
C++ classes (for a description of class Inspector windows, see Chapter 11).
In the sections that follow, Inspector windows are described as they appear
when you inspect scalar, pointer, structure and union, array, and function
data types.

Inspector windows are especially useful when you want to examine
compound data objects, such as arrays and linked lists. Because you can
inspect individual items displayed in an Inspector window, you can "walk"
through compound data objects by opening an Inspector window on a
component of the compound object.

Inspector windows also offer a quick way to view the raw bytes of a data
item. To do so, choose View I Dump when an Inspector window is active.
The Dump window opens with the cursor positioned on the data displayed
in the Inspector window.

Although you cannot open Inspector windows from the View menu, you
can open them from the following debugger locations:

• The Data I Inspect command
• The Module window' SpeedMenu
• Watches window's SpeedMenu
• Variables window's SpeedMenu
• Inspector window's SpeedMenu

Turbo Debugger User's Guide

Scalar Inspector
windows

Figure 6.3
A C scalar Inspector

window

Pointer Inspector
windows

When you open an Inspector window, the Enter Variable to Inspect dialog
box prompts you for an expression to inspect. After entering a variable
name or expression, an Inspector window opens, displaying the value of
the expression entered.

If the cursor is on a program symbol when you'issue the Inspect command,
or if you select an expression using Ins and the arrow keys, Turbo Debugger
automatically places the symbol in the input box.

When you open an Inspector window, the title of the window contains the
expression that's being inspected. The first item listed in an Inspector
window is always the memory address of the data item that's detailed in
the rest of the window, unless the data item is a constant or is a variable
that has been optimized to a register.

Scalar Inspector windows show the values of simple data items, such as
char, int, long, and so on.

Scalar Inspector windows have two lines of information. The first line
contains the address of the variable. The second line displays the type of
the scalar on the left and the current value of the variable on the right. The
value can be displayed as decimal, hexadecimal, or both. Normally,
however, the value is displayed first in decimal, followed by the
hexadecimal value enclosed in parentheses.

~ r"~'v > ~.> [,.;-- L. ~. ~ ~ ,,' < ' ">'~ r~' '$: '~,,,<. ;,.~,:':.~,,'; \' t", '< ,4, ',\ 1 i

~;;~~~~~i»~Jj~;~~;~~~~:
If the variable being inspected is of type char, the equivalent character is
displayed to the left of the numeric values. If the present value doesn't have
a printing character equivalent, Turbo Debugger displays a backslash (\)
followed by the hexadecimal value that represents the character value.

Pointer Inspector windows show the values of variables that point to other
data items. Pointer Inspector windows have a top line that contains the
address of the variable, followed by detailed information regarding the
data pointed to. Pointer Inspector windows also have a lower pane
indicating the data type to which the pointer points.

Chapter 6, Examining and modifying data 97

Figure 6.4
A C pointer Inspector

window

Structure and
Union Inspector
windows

98

Figure 6.5
A C Structure and

Union Inspector
window

If the value pointed to is a compound data object (such as a structure or an
array), Turbo Debugger enClosed the values in braces ({ }) and displays as
much of the data as possible.

If the pointer appears to be pointing to a null-terminated character string,
Turbo Debugger displays the value of each item in the character array. The
left of each line displays the array index ([0], [1], [2], and so on), and the
values are displayed on the right. When you're inspecting character strings,
the entire string is displayed on the top line, along with the address of the
pointer variable and the address of the string that it points to.

In addition, you can use the Range command to cause the Inspector
window to display multiple lines of information. This is helpful for C
programmers who use pointers to point to arrays of data structures as well
as to single items. For example, suppose you have the following code:

int array [10] i

int *arrayp = array;

To see what arrayp points to, use the Range local command on arrayp, and
specify a starting index of a and a range of 10. If you had not done this, you
would have seen only the first item in the array.

Structure and Union Inspector windows show the values of members
contained in compound data objects.

Structure and Union Inspector windows have two panes:

• The top pane displays the address of the data object, followed by lines
listing the names and values of the data members contained in the object.

Turbo Debugger User's Guide

Array Inspector
windows

Figure 6.6
A C array Inspector

window

This pane contains as many lines as are necessary to show the entire data
object .

• The lower pane consists of one line. If you highlight the address of the
data object in the top pane, the lower pane displays the type of the data
object (either structure or union) along with its name. Otherwise, the
lower pane displays the data type of the object member highlighted in
the top pane. .

The Structure and Union Inspector window shown in Figure 6.5 was taken
from a program containing the following code:

struct linfo {
unsigned int count;
unsigned int firstletter;

letter info [26] i

Array Inspector windows show the values of the elements contained in
arrays. These windows contain a line for each element in the array. The left
side of each line shows the index of the array element, and the right side
shows the element's value. If the value is a compound data object, Turbo
Debugger displays as much of the object as possible.

As an example of using the Array Inspector window, suppose your pro­
gram contains the following statement:

MyCounter[TheGrade]++i

Pressing Ctrl+1 when the cursor is at MyCounter in the Module window
opens an Inspector window that displays the contents of the entire array.
However, if you press Ctrl+1 after selecting the entire array name and index
(using Ins and the arrow keys), Turbo Debugger opens an Inspector
window that displays only the single element of the array.

You can also use the Range SpeedMenu command to show any portion of
an array.

Chapter 6, Examining and modifying data 99

Function
Inspector
windows

Figure 6.7
A C function

Inspector window

The Inspector
windows
SpeedMenu

Range

Change

Inspect

100

Function Inspector windows show the memory address of the function,
followed by the arguments with which a function is called. To inspect a
function, use the function's name without parenthesis or arguments.

Function Inspector windows also give you information about the return
type and calling conventions of the function you're inspecting. The return
type is displayed in the lower pane.

The Inspector window's SpeedMenu offers a variety of commands:

Range •••
Change •••

Inspect
Descend
New expression •••
Type cast. ••

The Range command sets the starting element and number of elements that
you want to view in an array. Use this command when you have a large
array and you need to examine only a subset of its elements.

The Change command lets you change the value of the currently
highlighted item to the value you enter in the Enter New Value dialog box.
Turbo Debugger performs any necessary casting exactly as if an assignment
operator had been used to change the variable.

Inspect opens a new Inspector window listing the highlighted item in the
current Inspector window. Use this command if you're inspecting a
compound data object (such as a linked list), and you want to open a new
Inspector window on one of the items in the object. If the current Inspector
window is displaying a function, issuing the Inspect command activates the
Module window, and shows you the source code for that function.

You can also invoke this command by pressing Enter after highlighting the
item you want to inspect.

Turbo Debugger User's Guide

Descend

New Expression

Type Cast

To return to the previous Inspector window, press Esc. If you are through
inspecting a data structure and want to remove all the Inspector windows,
use the Window I Close command or its hot key, AIt+F3.

The Descend command works like the Inspect SpeedMenu command,
except that it replaces the current Inspector window with the new item you
want to examine. Using this command reduces the number of Inspector
windows onscreen.

When you use Descend to expand a data structure, you can't return to
previous views of the data like you can when you use the Inspect
command. Use Descend when you want to work your way through a
complicated data structure, and don't need to return to a previous view of
the data.

You can inspect a different expression by selecting the New Expression
command. The data in the current Inspector window is replaced with the
data relating to the new expression you enter.

The Type Cast command lets you specify a different data type (for example
int, char ., gh2fp, Ih2fp, and so on) for the item being inspected.
Typecasting is useful if the Inspector window contains a symbol for which
there is no type information, and when you want to explicitly set the type
for untyped pointers. Page 156 explains how to use the gh2fp and Ih2fp
data types.

The Stack window

The Stack window deciphers the call stack and lists all active functions and
their argument values in a readable format. The most recently called
function is displayed at the top of the list, followed by its caller, then by
that caller's caller, and so on. This display of called functions continues
down to the first function in the calling sequence, which is displayed at the
bottom of the list. Functions that have been called from DLLs and Windows
kernel code are also listed in the Stack window, even though they might
not have symbolic names associated with them.

The View I Stack command opens the Stack window:

Chapter 6, Examining and modifying data 101

Figure 6.8
The Stack window

The Stack
windows
SpeedMenu

Inspect

Locals

The Stack window also displays the names of member functions. Each
member function is prefixed with the name of the class that defines the
function; for example, .

shapes::acircle(174, 360, 75.0)

The Stack window's SpeedMenu contains the following commands:

The Inspect command opens a Module window and positions the cursor at
the active line in the currently highlighted function. If the highlighted
function is at the top of the call stack (the most recently called function), the
Module window shows the location of the current instruction pointer. If the
highlighted function is not at the top of the call stack, the cursor is
positioned on the line following the related function call.

You can also invoke this command by pressing Enter when the highlight bar
is positioned over the desired function.

The Local command opens a Variables window that shows the symbols
that are local to the current module and to the currently highlighted
function.

When a function calls itself recursively, the Stack windows shows multiple
instances of the function. By positioning the !tighlightbar on an instance of
that function, you can use the Locals command to look at the local variables
of a particular function call.

The Evaluate/Modify command

102

The Evaluate/Modify command on the Data menu opens the dialog box
shown in Figure 6.9. The Expression input box automatically contains the
text located at the cursor position, or the expression'that you have selected
using Ins and the arrow keys. When you choose the Eval button, the

Turbo Debugger User's Guide

Figure 6.9
The Evaluate/Modify

dialog box

Table 6.1
Evaluate/Modify
dialog box fields

expression in the E~pression input box is evaluated, and the result is placed
in the R~sult field.

The Evaluate/Modify dialog box contains the following three fields:

Field Description

Expression You enter expressions to evaluate into the Expression input box. This input box
contains a history list of all the expressions you enter.

Result The Result field displays the result of the expression evaluation.

Data strings that are longer than the width of the Result input box are terminated by
an arrow (~). You can see more of the string by scrolling to the right.

New Value The New Value input box is where you enter a new value for the expression
highlighted in the Evaluate input box. This entry takes effect when you choose the
Modify button.

If the expression can't be modified, this box reads <Not available>, and you
can't move your cursor into it. '

When you evaluate expressions, be careful of C expressions that cause side
effects. See "Expressions with side effects" on page 108 for more
information on side effects.

If you're debugging a C++ program, the Evaluate/Modify dialog box also
lets you display the members of a class instance; You can use any format
specifier with an instance that can be used in evaluating a record.

To call member functions from the Evaluate/Modify dialog box, type the
instance name followed by a dot, followed by the member function name,
followed by the actual parameters (or empty parentheses if there are no
parameters). You cannot, however, execute constructors or destructors from
the Evaluate window.

Chapter 6, Examining and modifying data 103

For example, suppose your program contains the following code:

class point {
public:

int x, y, visible;

point ();
-point();
int Show ();
int Hide();
void MoveTo(int NewX, int NewY);

} ;

point APoint;

You could then enter any of the following expressions in the Evaluate
window:

Expression

A Point. x
APoint.
A Point. Move To
A Point. Show
APoint.ShowO

Possible result

int 2 (Ox2)
class point {1,2,27489}
void 0 @6B61:0299
int 0 @6B61:0285
int 1 (Ox1)

Function Return command

104

The Function Return command, located on the Data menu, displays the
value that the currently executing function is about to return. You should
use this command only when the current function is about to return to its
caller.

The return value is displayed in an Inspector window, so you can easily
examine return values that are pointers to compound data objects. This
command saves you from having to use the CPU window to examine
return values that are placed in registers.

Turbo Debugger User's Guide

c H A p T E R 7

Evaluating expressions

An expression is a sequence of program symbols, constants, and language
operators that can be evaluated to produce a value. To be valid, an
expression must conform to the rules and syntax of the selected language.
Turbo Debugger's expression evaluator ensures that the expressions you
enter are valid, and it evaluates them to produce a value.

In this chapter, you'll learn how to select an expression evaluator, how to
formulate different types of expressions, and how to use scope override
syntax to explicitly reference a program symbol.

Turbo Oebuggers expression evaluator

Selecting an
evaluator

When you enter an expression into one of Turbo Debugger's input boxes,
the expression is passed to the selected expression evaluator. The evaluator
checks the expression's syntax and resolves the values of any symbols used
in the expression. If all the symbols can be resolved and the syntax of the
expression conforms to the syntax of the expression evaluator, then Turbo
Debugger evaluates the expression and returns its calculated value.

To select an expression evaluator, choose Options I Language to open the
Expression Language dialog box. The four radio buttons in this dialog box
let you choose an expression evaluator for your debugging session:

.. Source

.c
• Pascal
• Assembler

By default, Turbo Debugger selects the Source radio button, which
automatically determines which expression evaluator to use (either C,
Pascal, or Assembler) according to the source language of the current
module being debugged. If Turbo Debugger can't determine the module's
language, it uses the expression rules for inline assembler. .

Chapter 7, Evaluating expressions 105

Expression
limitations

j

Usually, you can let Turbo Debugger choose the expression evaluator.
Sometimes, however, you'll find it useful to explicitly set the evaluator. For
example, if you're debugging an assembler module that's called from
another language, you might want to override the default evaluator.

Also, by manually setting the expression evaluator, you can enter
expressions in the language of your choice. Turbo Debugger can
successfully resolve expressions that are not in your program's language;
the debugger retains information about the original source language and
handles the conversions appropriately.

For the most part, Turbo Debugger supports the full language syntax for C,
C++, Pascal, and assembler expressions. However, there are certain
language statements and expressions that are out of context while
debugging. F9r example, control structures such as if / then/ else statements
cannot be entered into the debugger. In addition, data and function
declarations, and expressions that attempt to assign values to more than a
single variable, will be flagged as errors. For complete details on language
syntax, refer to the User's Guide of your Borland language product.

Types of expressions

Specifying
hexadecimal
values

106

Although you'll usually use expressions to access the values of program
symbols,calculate values, and change the values of data items, you can also
use expressions to:

• Specify hexadecimal values
• Specify memory addresses
• Enter program line numbers
• Enter byte lists
• Call functions

While debugging, you might need to supply a hexadecimal value to Turbo
Debugger. For example, you'll need to use a hexadecimal address to specify
a memory location. The notation used to specify hexadecimal values
depends upon the expression evaluator you've selected, as shown in the
following table:

Turbo Debugger User's Guide

Table 7.1
Hexadecimal notation

Specifying
memory
addresses

Table 7.2
SegmentOffset

address notation

Entering line
numbers

Entering byte lists

Language 16·bit 32·bit

Assembler Onnnnh nnnnnnnnh
C Oxnnnn Oxnnnnnnnn
Pascal $nnnn $nnnnnnnn
In assembler, hexadecimal numbers starting with A to F must
be prefixed with a zero.

To specify a 16-bit offset or a 32-bit address, preface the hexadecimal
address location with the formats described in Table 7.1.

If you're debugging 16-bit code, you can use segment:offset notation to
specify an exact memory location. When doing so, use the hexadecimal
format of the expression evaluator you've selected. The following table
gives examples:

Language

Assembler
C
Pascal

Format

nnnnh
Oxnnnn
$nnnn

Example

1234h:OB010h
Ox1234:0x0010
$1234:$0010

In assembler, hexadecimal numbers starting with A to F mlJst be
prefixed with a zero.

If you're using the C or Assembler expression evaluator, you can use an
expression to specify a program line number. To do so, precede the decimal
line number with a cross hatch (#). For more information on this notation,
see "Overriding scope in C, C++, and assembler programs" on page 111.

In Turbo Debugger, several commands require that you enter a list of bytes.
For example, the Search command in the File window requires a byte list as
the search criteria when it's displaying a file in hexadecimal format.

A byte list can be any mixture of scalar (non-floating-point) numbers and
strings in the syntax of the current expression evaluator. Scalars are
converted into a corresponding byte sequence. For example, the C long
value 123456 becomes a 4-byte hex quantity 40 E2 01 00.

The following table gives an example of a byte list for each of the
expression evaluators:

Chapter 7, Evaluating expressions 107

Table 7.3
Syte lists

Calling functions

Language Byte list Hex data

Assembler 1234 "AS" 341241 42
C "ab" Ox04 "c" 61 620463
Pascal 'ab'$04'c' 61 620463

You can call functions from expressions exactly as you do in your source
code. Turbo Debugger executes your program code with the function
arguments that you supply. This can be a useful way to quickly test the
behavior of a function; simply call the function with different arguments
and check the return values after each call.

If you make specific calls to functions while debugging, be aware that
certain functions can have the side effect of changing program data values.
After calling such a function, you cannot count on your program behaving
normally during the rest of your debugging session. For more information
on side effects, see the following section.

Expressions with side effects

An expression is said to have a side effect when the evaluation of the
expression changes the value of a data item. Using expressions to change
the values of data items can be a powerful debugging technique. However,
there are times when you should avoid such expressions. For example,the
expressions you enter for breakpoint conditions must not contain side
effects.

Expressions that generate side effects are

• Expressions that use assignment operators (=, +=, and so on) .

• Expressions that use the C increment (++) and decrement (- -)
operators.

A more subtle type of side effect occurs when you call a function that
changes the value of a data item. Because you can't always tell which
functions change the values of program variables, all functions are
considered to generate side effects.

Format specifiers

108

When Turbo Debugger displays the value of an expression, it displays the
value in a format based on the value's data type. To change the default

Turbo Debugger User's Guide

Table 7.4
Expression format

specifiers

display format of an expression, follow the expression with a comma and
with one of the following format specifiers:

Character Format

c Displays a character or string expression as' raw characters. Normally, nonprinting
character values are displayed as some type of escape or numeric format. This
option forces the characters to be displayed using the 1ulllBM extended character
set.

d Displays an integer as a decimal number.

f[#] Displays the number in decimal notation. An integer following the specifier indicates
the number of digits to the right of the decimal point. If you don't supply this number,
as many digits as necessary are used to represent the number.

m Displays a memory-referencing expression as hex bytes.

md Displays a memory-referencing expression as decimal bytes.

p Displays a raw pointer value, showing segment as a register name if applicable.
Also shows the object pointed to. This is the default if no format control is specified.

s Displays an array or a pointer to an array of characters as a quoted character string.

x or h Displays a value as a hexadecimal number.

Turbo Debugger ignores any format specifier that cannot be applied to the
expression's data type.

_ In addition to a format specifier, you can supply a repeat count to indicate
that the expression relates to repeating data item such as an array or
pointer. To specify a repeat count, follow the expression with a comma, the
repeat count, another comma, and the format specifier.

Accessing symbols outside the current scope

The scope of a symbol is the area in your program in which the symbol can
be referenced. The current scope is the area in your program in which
defined symbols can be referenced. Usually, the current scope is defined
with regards to the location of the instruction pointer. This section
describes:

• How Turbo Debugger searches for symbols
• The implied scope for expression evaluation
• Scope override syntax
• Scope and DLLs

Chapter 7, Evaluating expressions 109

How Turbo
Debugger
searches for
symbols

Implied scope for
expression
evaluation

Scope override
syntax

110

When you enter an expression that contains symbols, Turbo Debugger tries
to resolve the symbols by searching the following locations in the order
shown: -

1. The symbols located in the current function's stack.

2. The symbols local to the module or unit containing the current function.

3. The global symbols for the entire program.

4. The global symbols of any loaded DLLs, starting with the earliest
loaded DLL.

However, using scope override syntax, you can access any program symbol
that has a defined value within the currently loaded executable module,
including symbols that are private to a function and symbols that have
conflicting names. By specifying an object module, a file within a module, a
routine name, or a line number, you can give explicit directions to where a
symbol can be found.

Whenever you enter an expression into Turbo Debugger, the expression is
evaluated according to the current scope. However, instead of using the
instruction pointer to define the current scope, Turbo Debugger uses the
current cursor position to determine the scope of an expression. Thus, you
can set the scope in which an expression will be evaluated by moving the
cursor to a specific line in the Module window. You can also change the
scope of evaluation by either moving through the Code pane of a CPU
window, moving the cursor to a routine in the Stack window, or moving
the cursor to a routine name in a Variables window.

If you change the scope from where Turbo Debugger paused your
program, you might get unexpected results when you evaluate expressions.
To ensure that expressions are evaluated relative to the current position of
your program, use the Origin command in the Module window to return to
the location of the instruction pointer.

Turbo Debugger uses different syntax to override the scope of a symbol,
depending on the language evaluator specified in the Options I Language
dialog box:

• With the C, C++, and Assembler evaluators, use a cross hatch (#) to
override scope. (The following section provides more information.)

• With the Pascal evaluator, use a period (.) to override scope. (See page
112 for more information.)

Turbo Debugger User's Guide

Overriding scope in
C, C++, and
assembler
programs

You can use either of the following two types of scope overriding syntax
with C, C++, and assembler expressions (items enclosed in brackets ([]) are
optional):

[#module[#filename.ext]]#linenumber[#symbolname]

[#module[#filename.ext]#] [functionname#]symbolname

The following rules also apply to the scope overrides:

• If you don't specify an object module, the currently loaded object module
is assumed.

• If you use a file name in a scope override statement, it must be preceded
by an object module name.

• If a file name has an extension (such as .ASM, .C, or .CPP), you must
specify it; Turbo Debugger doesn't determine extensions.

II If a function name is the first item in a scope override statement, it must
not have a # in front of it. If there's a #, Turbo Debugger interprets the
function name as a module name.

• Any variable you access through scope override syntax must be
initialized. Although an automatic variable doesn't have to be in scope, it
must be located on the stack and in the currently loaded executable
module.

• If you're trying to access an automatic variable that's no longer in scope,
you must use its function name as part of the scope override statement.

• You can't use scope override syntax to access the value. of a register
variable because once the scope changes, the register no'longer holds the
value of the variable.

• The scope of a template depends on the current location in the program.
The value of a template expression depends on the object that is currently
instantia ted.

Usually, you'll enter expressions that can be evaluated from the current
scope. However, scope overrides are useful when you want to specifically
reference a progra~ symbol. For example, you could set up two watches
for the variable nlines. By setting the watches at different program
locations, you can monitor how the variable changes value. The following
expressions could be used to set watches on nlines for both lines 51 and 72:

#51#nlines
#72#nlines

Chapter 7, Evaluating expressions 111

Scope override
examples using C

#123

Here are some examples of C and C++ expressions that use scope
overrides:

Line 123 in the current module.

#123#myvarl

#mymodule#123

#mymodule#filel.cpp#123

Symbol myvar1 accessible from line 123 of the current module.

Line 123 in module mymodule.

Line 123 in source file file1.cpp, which is part of the object module
mymodule.

#mymodule#filel.cpp#123#myvarl Symbol myvar1 accessible from line 123 in source file file1.cpp, which is
part of mymodule.

#myvar2

#mymodule#myfunc#myvar2

#mymodule#file2.c#myvar2

AnObject#AMemberVar

Symbol myvar in the current scope.

Symbol myvar2 accessible from routine myfunc in module mymodule.

Symbol myvar2 accessible from file2.c, which is defined in mymodule.

Data member AMemberVar accessible in object AnObject accessible in
the current scope.

AnObject#AMemberF Member function A MemberF accessible in object AnObject accessible in
the current scope.

#AModule#AnObject#AMemberVar Data member AMemberVar accessible in object AnObject accessible in
module AModule.

#AModule#AnObject#AClass::AMemberVar Data member AMemberVar of class AClass accessible in object AnObject
accessible in module AModule.

Overriding scope in
Pascal programs

112

To examine or call an overloaded member function, enter the name of the
function in the appropriate input box. Turbo Debugger opens the Pick a
Symbol Name dialog box, which shows a list box of all the functions of that
name with their arguments, enabling you to choose the specific function
you want.

You can use either of the following two types of scope overriding syntax
with the Pascal expression evaluator(items enclosed in brackets ([D are
optional):

[unit.] [procedurename.]symbolname

[unit.] [objecttype. lobjectinstance.] [method.]fieldname

The following additional rules apply to the Pascal scope override syntax:

• If you don't specify a unit, the current unit is assumed.

Turbo Debugger User's Guide

Scope and DLLs

When debugging, all
.EXE and .DLL files
must be located in

the same directory.

• If you're trying to access a local variable that's no longer in scope, you
must use its procedure or function name as part of the scope override
statement.

• You can't use a line number or a file name as part of a Pascal scope
override statement. If you want to use line number syntax, change the
expression evaluator to C with the Options I Language command.

When you step into a function that's located in a .DLL, Turbo Debugger
loads the symbol table for the .DLL, if it exists, over the currently loaded
symbol table. Because a DLL's symbol table will be overwritten when your
program makes a call to another executable file, you won't have immediate
access to variables that are located in an executable file that isn't currently
loaded.

If a variable has the same name in multiple .EXE or .DLL files, you can
access the desired symbol by loading the executable file in which the
symbol is located (press F3, and use the Load Modules and DLLs dialog
box to load the executable file containing the symbol). For more informa­
tion on symbol tables and .DLL files, see page 144.

Chapter 7, Evaluating expressions 113

114 Turbo Debugger User's Guide

c H A p T E R

Examining disk files

Turbo Debugger provides two ways to view source files, data files, and
other files that you have stored on disk:

• The Module window displays the source code relating to executable
modules that were compiled with debug information .

• The File window lets you view any disk file as either ASCII text or as
hexadecimal data.

8

Examining program source files

Figure 8.1
The Module window

The Module window is the most frequently used window in Turbo
Debugger. You can use this window to examine the executable source code
of any module that was compiled and linked with debug information.

When you open the Module window, the title bar displays the name of the
currently loaded module, the name of the current source file, and the line
number that the cursor is on. .

In the Module window, executable lines of code are marked with a bullet
(.) in the left column of the window. You can set breakpoints or step to any
of these lines of code. An arrow (~) in the first column of the wiildow
indicates the location of the instruction pointer. This always points to the
next statement to be executed.

Chapter 8, Examining disk files 115

Loading source
files

The Module
windows
SpeedMenu

116

As you step through your program, the Module window automatically
displays the source code relating to the current location of the instruction
pointer. By navigating to different source-code locations, you can set
breakpoints and watches, and inspect the values of different program
variables.

If the abbreviation opt appears after the file name in the title bar, the
program has been optimized by the c01!1piler. If you compiled your
program with optimizations, you might have trouble finding variables that
have been optimized away. In addition, compiler optimizations can place
variables in registers, meaning that they cannot be linked to memory
addresses. Because of this, it is recommended that you do not optimize
your program while you are in the debugging stage.

If the word modified appears after the file name in the title bar, the file has
been changed since it was last compiled. In this case, the line numbers in
the source file might not correspond to the line numbers in the executable's
debug information. If these line numbers don't match, the debugger will
not be able to show the correct program locations when you step through
your code. To correct this problem, recompile your program with symbol
debug information.

When you load a program into Turbo Debugger, the file containing the
entry point to the program automatically loads into the Module view.

If you want to change the source file that's currently displayed in the
Module window, choose one of the following two commands from the
Module window's SpeedMenu:

• The File command lets you change to another source file contained in the
current program module .

• The Module command lets you change the currently loaded program
module. .

The Module window's SpeedMenu provides commands that let you
navigate through the displayed file, inspect and watch data items, and load
new source code files. The SpeedMenu in TD32 also has the Thread and
Edit commands:

Turbo Debugger User's Guide

Inspect

Watch

Thread

Module

File

Inspect
Watch

Thread
Module .•.
File ...

Previous
Line •.•
Search ...
Next
Origin
Goto .••
Edit
Except ions •..

The Inspect command opens an Inspector window that shows the details of
the program variable at the current cursor position. If the cursor isn't on a
variable, you're prompted to enter an expression to inspect.

You can also use the arrow keys or your mouse to quickly select an
expression or string of text in the Module window. To use the keyboard,
press Ins, and use the left or right arrow keys to mark your selection. To use
the mouse, click and drag the mouse pointer over the section of text you
want to select. After selecting an expression, press Ctrl+1 to activate the
Inspector window.

Watch adds the variable at the current cursor position to the Watches
window. Putting a variable in the Watches window lets you monitor the
value of that variable as your program executes.

If you have selected an expression in the Module window, press Ctrl+W to
add the expression to the Watches window.

The Thread command, found only in TD32, opens the Pick a Thread dialog
box, from which you can pick a specific program thread to monitor. For
more information on threads, see page 148.

The Module command lets you load a different module into the debugger
by picking the module you want from the Load Module Source or DLL
Symbols dialog box.

The Load Module Source or DLL Symbols dialog box is fully described on
page 144.

File lets you examine another source file that's compiled into the module
you're currently viewing. This command opens the Pick a Source File
dialog box, which lists the source files that contain executable code. When

Chapter 8, Examining disk files 117

Previous

Line

Search

Next

Origin

118

you choose the source file you want to examine, that file replaces the
current file in the Module window.

To view different files simultaneously, use the View I Another I Module
command to open multiple Module windows.

Files that are included in your program with the #include directive are also
program source files. If an include file contains executable lines of code,
you can use the File command to load the file into the Module window.
However, if the include file doesn't contain executable code (such as many
C header files), you must use the File window to examine the file.

The Previous command returns you to the source location you were
viewing before you changed your position. For example, if you use the
Goto command to view the source code at a different address, the Previous
commal)d returns you to your original position.

Line positions you at a new line number in the file. The Enter New Line
Number dialog box prompts you for a decimal line number. If you enter a
line number after the last line in the file, you will be positioned at the end
of the file.

The Search command searches for a character string, starting at the current
cursor position. When you choose this command, the Enter Search String
dialog box prompts you for a search string. If the cursor is positioned over
something that looks like a variable name, the dialog box opens initialized
to that name.

If you mark a block in the file using Ins and the arrow keys, that block will
be used to initialize the Search String dialog box.

You can also search using simple wildcards: a question mark (?) indicates a
match on any single character and an asterisk (*) matches zero or more
characters.

The search does not wrap around from the end of the file to the beginning.
To search the entire file, first go to the beginning of the file by pressing
Ctrl+PgUp.

Next searches for the next instance of the character string you specified
with the Search command.

The Origin command positions the cursor at the module and line number
containing the current instruction pointer. If the module you are currently

Turbo Debugger User's Guide

Goto

Edit

Exceptions

viewing is not the module that contains the instruction pointer, the Module
window will change to show that module.

This command is useful when you have been examining various places in
your code, and you want to return to the location of the instruction pointer.

Goto opens the Enter Address to Position To dialog box, which enables you
to view any address location within your program. Enter the address you
want to examine as either a procedure name or a hexadecimal address. If
the address you enter doesn't have a corresponding source line, the CPU
window opens. See "Types of expressions" on page 106 for a description of
entering addresses.

.. You can also invoke this command by typing into the Module window.
This brings up the Enter Address to Position To dialog box, exactly as if
you had chosen the Goto command.

When you're debugging a Windows 32s program with TD32, you can
invoke the editor of your choice using the Edit command. This comp1.and is
useful if you've found the program bug, and you want to fix the source
code before leaving Turbo Debugger.

Before you can use this command, you must configure TD32 so it knows
where to find your editor:

1. Load the TDINST32.EXE installation program.

2. Choose Options I Directories to access the Directories dialog box.

3. Enter the absolute path and name of your editor into the Editor
Program Name input field.

4. Save the settings.

If you haye implemented C or C++ exception handling in your program,
. the Exception command becomes active. For complete details on this

command, see page 163.

Examining other disk files

You can use the File window to examine any disk file, including binary and
text files.

Chapter 8, Examining disk files 119

Figure 8.2
The File window

Figure 8.3
The File window

showing hex data

The File windows
SpeedMenu

When you choose View I File from the menu bar, Turbo Debugger displays
the Enter Name of File to View dialog box. You can type a specific file name
to load, or you can enter a file mask using wildcards characters to get a list
of files to choose from.

After you select a file name, the File window opens and displays the file
name and contents.

The File window displays files as either ASCII text or as hexadecimal bytes,
depending on the contents of the file. If Turbo Debugger determines that
the file contains text, it displays the file as ASCII; otherwise, the file is
displayed as hexadecimal. You can switch between an ASCII or
hexadecimal display using the Display As SpeedMenu command. If you're
viewing the file as ASCII, the current line number is also displayed in the
title bar.

The File window's SpeedMenu has commands for navigating through a
disk file and for changing the file's display format.

Goto •••
Search •••
Next

Display as Ascii
File ...

120 Turbo Debugger User's Guide

Goto

Search

Next

Display As

The Goto command positions the display at a new line number or" offset in
the file. If you are viewing the file as ASCII text, enter the new line number
to go to. If you are viewing the file as hexadecimal bytes, enter the offset
that you want to move to. If you enter a line number greater than the last
line in the file (or an offset beyond the end of the file), Turbo Debugger
displays the end of the file.

The Search command searches for a character string, starting at the current
cursor position. When you choose this command, the Enter Search String
dialog box prompts you for a search string. If the cursor is positioned over
something that looks like a variable name, the dialog box opens initialized
to that name.

If you mark a block in the file using Ins and the arrow keys, that block will
be used to initialize the Search String dialog box.

The search does not wrap around from the end of the file to the beginning.
To search the entire file, first go to the beginning of the file by pressing
Ctrl+PgUp.

If the file is displayed in ASCII, you can use DOS wildcards in your search
string: a question mark (?) indicates a match on any single character and an
asterisk (*) matches zero or more characters.

If the file is displayed as hexadecimal bytes, enter a byte list consisting of a
series of byte values or quoted character strings, using the syntax of the
selected expression evaluator. For example, if the language is C++, a byte
list consisting of the hex numbers 0408 would be entered as Ox0804. If the
language is Pascal, the same byte list is entered as $0804.

You can also invoke this command by typing the string that you want to
search for. This brings up the Search dialog box exactly as if you had
specified the Search command.

The Next command searches for the next instance of the character string
you specified with the Search command.

Display As toggles the display between the following two formats:

• ASCII displays the file using the printable ASCII character set.

• Hex displays the file in hexadecimal format. With this display, each line
starts with the offset from the beginning of the file (shown as a
hexadecimal number), followed by the hexadecimal representation of the
bytes in the file. The ASCII character for each byte in the file appears on

Chapter 8, Examining disk files 121

File

Edit

122

the right side of the display. The File window displays the entire 256 IBM
extended -character set.

The File command lets you change the file that's displayed in the File
window. This command lets you view different files without opening
duplicate File windows. If you want to view two different files (or two
parts of the same file) simultaneously, choose View I Another I File to open
another File window.

The Edit command is the same as the Module window's SpeedMenu Edit
command. For more information, refer to page 119.

Turbo Debugger User's Guide

c H A p T E R

Assembly-level debugging

When you're debugging a program, the high-level view of your source
code is often all you need. Sometimes, however, you might need to take a
closer look at your program. Viewing the assembly-level aspects of your
program can reveal details such as the machine code generated by your
compiler, the contents of the CPU registers and flags, and the items
contained on the call stack.

Turbo Debugger provides the following windows for examining the
assembly-level state of your program:

• The CPU window

• The Dump window
• The Registers window

• The Numeric Processor window

This chapter describes how to use these windows to view the assembly­
level aspects of your program. The online file TD _ASM.TXT contains
additional information on assembly-level debugging, including a section
describing the Numeric Processor-window.

The CPU window

9-

The CPU window uses various panes to describe the low-level state of your
program. A SpeedMenu in each pane provides commands specific to the
contents of that pane.

Among other things, you can use the CPU window to:

• Examine the machine code and disassembled assembly instructions
produced from your program's source code.

• Examine and modify the bytes that make up your program's data
structures.

• Use the built-in assembler in the Code pane to test bug fixes.

Chapter 9, Assembly-level debugging 123

Figure 9.1
The CPU window

Table 9.1
CPU window panes

The CPU window is shown in Figure 9.1. Table 9.1 gives brief a description
of each pane in the CPU window.

Pane

Code pane

Registers pane

Flags pane

Dump pane

Stack pane

Selector pane

Code pane Registers pane Flags pane

Dump pane Stack pane

Description

Shows the machine code and disassembled assembly instructions of your
executable program. Source code lines can also be displayed.

Shows the contents of the CPU registers.

Shows the state of the eight CPU flags.

Shows a hexadecimal dump of any memory area accessible by your program. A
variety of display formats is available.

Shows the hexadecimal contents of the program stack.

Available in TOW only, this pane shows and describes all Windows selectors.

From within the Code, Dump, or Stack pane, it's possible to scroll outside
the current protected-mode segment, even though the operating system
marks these as invalid addresses for your program. Because of this, the
CPU window displays question marks for any adc:lresses referenced outside
the current protected-mode segment.

.. In the Code, Dump, and Stack panes, press Gtr/+~ and Gtr/+--? to shift the
starting display address of the pane by 1 byte up or down. Using these
keystrokes is often faster than using the Goto command to make small
adjustments to the display.

124 Turbo Debugger User's Guide

Opening the CPU
window

Table 9.2
CPU window

positioning

The Code pane

To open the CPU window, choose View I CPU from the menu bar. Turbo
Debugger opens the CPU window automatically in the following cases:

• If it gains control when Windows code is being executed.

• If you enter a module that doesn't contain debug information.

• If your program stops on an instruction within a line of source code.

• If you trace through instructions using AIt+F7.

When you open the CPU window, Turbo Debugger positions the display at
the appropriate Code, Dump, or Stack pane, depending on the window that
was active when you opened the CPU window. The following table
describes where the cursor is positioned when you open the CPU window:

Current window

Module window
Breakpoint (nonglobal)
Variable window
Watches window
Inspector window
Stack window
Other area

CPU pane

Code
Code
Dump/Code
Dump/Code
Dump/Code
Stack
Code

Position

Address of item
Breakpoint address
Address of item
Address of item
Address of item
Top of stack frame for highlighted item
Current instruction pointer location

Once opened, the title bar of the CPU window displays your system's
processor type (8086, 80286, 80386, or 80486). In addition, if the highlighted
instruction in the Code pane references a memory location, the memory
address and its current contents are displayed in the title bar of the CPU
window. This lets you see both where an instruction operand points in
memory and the value that is about to be accessed.

The left side of the Code pane lists the address of each disassembled
instruction. If you're viewing I6-bit code, the addresses are shown in
segment:offset notation. Otherwise, addresses are displayed as 32-bit
addresses. An arrow (~) to the right of the memory address indicates the
location of the current instruction pointer. The instruction pointer always
points to the next instruction to be executed. To the right of this, the CPU
window displays the hexadecimal machine code, followed by its
disassembled assembly instruction.

When an assembly instruction contains an immediate operand, you can
infer its size from the number of digits in the operand: a I-byte immediate
has two digits, a I6-bit immediate has four digits, and a 32-bit immediate
has eight digits.

Chapter 9, Assembly-level debugging . 125

Displaying source
code

Setting breakpoints

The Code pane's
SpeedMenu

Goto

Origin

Follow

126

If you set the Mixed SpeedMenu command to Yes, the Code pane displays
the source code that relates to the displayed assembly instructions. If an
address corresponds to either a global symbol, static symbol, or line
number, the CPU window displays the original source code above the first
disassembled instruction relating to the source code. Also, if there is a line
of source code that corresponds to the symbol address, it is displayed after
the symbol.

Global symbols appear simply as the symbol name. Static symbols appear
as the module name, followed by a cross hatch (#), followed by the static
symbol name. Line numbers appear as the module name, followed by a
cross hatch (#), followed by the decimal line number.

You can set or remove breakpoints in the Code pane by highligh9-ng the
desired assembly instruction, and pressing F2. Also, clicking a line sets and
removes breakpoints on that line. Once a breakpoint is set, the line
containing the breakpoint turns red (default).

The SpeedMenu contains commands that let you navigate through the
Code pane, alter the pane's display, and assemble instructions that you
supply.

For the most part, the SpeedMenus for TOW and T032 contain the same
commands. However, TOW has the extra command I/O, and T032
contains the extra commands Thread and OS Exceptions.

When you choose the Goto command, the Enter Address to Position To
dialog box prompts you for an address to go to. You can examine any
address that your program can access, including addresses in the ROM
BIOS, inside ~OS, and in the Windows program.

The Origin command positions you at the location of the instruction
pointer. This command is useful when you have navigated through the
Code pane, and you want to return to the next instruction to be executed.

The Follow command positions the Code pane at the destination address of
the currently highlighted instruction. Use this command in conjunction
with instructions that cause a transfer of control (such as CALL, JMP, INT),
and with conditional jump instructions (JZ, JNE, LOOP, and so forth). For
conditional jumps, the address is shown as if the jump had occurred. Use
the Previous command to return to the origin of the jump.

Turbo Debugger User's Guide

Caller

Previous

Search

View Source'

Mixed

Caller positions you at the instruction that called the current interrupt or
subroutine. Be aware that if the current interrupt routine has pushed data
items onto the stack, Turbo Debugger might not be able to determine where
the routine was called from.

The Previous command restores the Code pane display to the position it
had before the last command that explicitly changed the display (such as
Previous, Caller, Origin, and Follow). The arrow keys do not affect this
command.

The Search command searches forward in the code for an expression or
byte list that you supply (see Chapter 7 for information on byte lists).

When you search for an expression in the Code pane, Turbo Debugger
assembles the expression that you're searching for, and searches for a
match in the resulting machine code. Because of this, care must be taken
when you specify the search expression; you should search only for
expressions that don't change the bytes they assemble to. For example, you
will not encounter problems if you search for the following expressions:

PUSH DX
POP [DI+4J
ADD AX/lOa

However, searching for these instructions can cause unpredictable results:

JE 123
CALL MYFUNC
LOOP 100

The View Source command activates the Module window, showing you the
source code that corresponds to the current disassembled instruction. If
there is no corresponding source code (for example, if you're examining
Windows kernel code), this command has no effect.

Mixed toggles between the three ways of displaying disassembled
instructions and related source code:

Chapter 9, Assembly-level debugging 127

Table 9.3
Mixed command

options

Thread

OS Exceptions

NewEIP

Assemble

128

Command Description

No Disassembled instructions are displayed without source code.

Yes Source code lines are listed before the first disassembled instruction relating to that
source line. This is the default mode for C and Pascal programs.

Both Source code lines replace disassembled lines for the lines that have corresponding
source code. If there is no source code, the disassembled instruction appears. This
is the default mode for assembly modules.

Use this mode when you're debugging an assembler module and you want to see
the original source code instead of the corresponding disassembled instructions.

The Thread command, found only in TD32, lets you choose the thread of
execution you want to debug. When selected, this command opens the Pick
a Thread dialog box, from which you can pick a specific program thread.
For more information on threads, see page 148.

The as Exceptions command, found only in TD32, lets you choose the
operating-system exceptions you want to handle. For more information on
operating-system exceptions, see page 151.

The New EIP command changes the location of the instruction pointer to
the currently highlighted line in the Code pane (in TDW, this command is
called New CS:IP). When you resume program execution, execution starts
at this address. This command is useful when you want to skip certain
machine instructions.

Use this command with extreme care; it is easy to place your system in an
unstable state when you skip over program instructions.

The Assemble command assembles an instruction, replacing the instruction
at the currently highlighted location. Use this command when you want to
test bug fixes by making minor changes to assembly instructions.

When you choose Assemble, the Enter Instruction to Assemble dialog box
opens~ prompting you for an expression to assemble. For more information
on assembling instructions, refer to "The Assembler" section in the online
file TD_ASM.TXT.

This command is invoked if you type into the Code pane.

Turbo Debugger User's Guide

vo

Table 9.4
liD commands

The Registers·
pane

The Registers
panes SpeedMenu

Increment

The I/O command, found only in TDW, reads or writes a value in the
CPU's I/O space, and lets you examine and write to the contents of special
I/O registers. This command gives you access to the I/O space of
peripheral device controllers such as serial cards, disk controllers, and
video adapters.

When you choose this command, a menu opens with the following
commands:

Command

In Byte

Out Byte

Read Word

Write Word

Description

Reads a byte from an liD port. You are prompted for the liD port whose value you
want to examine.

Writes a byte to an liD port. You are prompted for the liD port to write to and the
value you want to write.

Reads a word from an liD port.

Writes a word to an I/O port.

Some I/O devices perform an action (such as resetting a status bit or
loading a new data byte into the port) when their ports are read. Because of
this, you might disrupt the normal operation of the device with the use of
these commands.

The Registers pane displays the contents of the CPU registers. The display
varies, depending on whether you're using TDW or TD32. By default, TDW
displays the thirteen 16-bit registers. TD32 always displays the fifteen
registers found in the 80386 (and higher) processors.

Using the commands on the Register pane's SpeedMenu, you can modify
and clear the register values.

Increment
Decrement
Zero
Change ••.
Reg; sters 32-bit

Increment adds 1 to the value in the currently highlighted register. This lets
you test" off-by-one" bugs by making small adjustments to the register
values.

Chapter 9, Assembly-level debugging 129

Decrement

Zero

Change

Registers 32-bit

The Flags pane

Table 9.5
The CPU Flags

The Flags panes
SpeedMenu

The Dump pane

130

Decrement subtracts 1 from the value in the currently highlighted register.

The Zero command sets the value of the currently highlighted register to O.

Change lets you change the value of the currently highlighted register.
When you chose this command, the Enter New Value dialog box prompt~
you for a new value. You can make full use of the expression evaluator to
enter new values.

You can also invoke this command by typing the new register value into
the Registers pane.

The Registers 32-bit command, used only by TDW, toggles the register
display between 16-bit values and (on systems with 32-bit processors)
32-bit values.

TDW usually displays 16-bit registers, unless you use this command to set
the display to 32-bit registers. Toggle this command to Yes if you're
debugging a module that uses 32-bit addressing. Notice that all segment
registers will remain as 16-bit values, even when you toggle on the 32-bit
display.

The Flags pane shows the state of the eight CPU flags. The following table
lists the different flags and how they are shown in the Flags pane:

Letter in pane Flag name

c Carry
z Zero
s Sign
0 Overflow
p Parity
a Auxiliary carry
i Interrupt enable
d Direction

The Flags pane contains the Toggle command, which changes the value of
the currently highlighted flag between 0 and 1. You can also press Enter or
the Spacebar to toggle the value of a flag.

This pane shows a raw hexadecimal display of an area in memory. The
leftmost part of each line shows the starting address of that line, using

Turbo Debugger User's Guide

The Dump panes
SpeedMenu

Goto

Search

either 16-bit segment:offset notation or 32-bit flat addresses. With 16-bit
code, the address is displayed as either a hex segment and offset, or with
the segment value replaced with one of the register na~es if the segment
value is the same as that register. The Dump pane matches registers in the
following order: DS, ES, SS, CS.

To the right of the address, the value of one or more data items is
displayed. The format of this area depends on the display format selected
with the Display As SpeedMenu command. If you choose one of the
floating-point display formats .(Comp, Float, Real, Double, or Extended), a
single floating-point number is displayed on each line. Byte format displays
8 bytes per line, Word format displays 4 words per line, and Long format
displays 2 long words per line. .

When the data is displayed as bytes, the rightmost part of each line shows
the ASCII characters that correspond to the data byte values. Turbo
Debugger displays all byte values as their display equivalents, including
"nonprintable" characters and the characters from the IBM extended­
character set.

If you use the Goto command in the Dump pane to examine the contents of
the display memory, the ROM BIOS data area, or the vectors in low
memory, you will see the values of the program being debugged, not the
actual values that are in memory while Turbo Debugger is running. Turbo
Debugger detects when you're accessing areas of memory that it is using,
and displays the correct program values from where it stores them in
memory.

The Dump pane's SpeedMenu contains commands that let you navigate
through the pane, modify memory contents, follow near or far pointers,
format the display, and manipulate blocks of memory.

Goto prompts you for a new area of memory to display with the Enter
Address to Position To dialog box. Enter any expression that evaluates to a
memory location that your program can access ..

The Search command searches for a character string or byte list, starting
from the memory address indicated by the cursor.

Chapter 9, Assembly-level debugging 131

Next

Change

Follow

Table 9.6
Follow command

options

Previous

Display As

132

Next searches for the next instance of the item you previously specified in
the Search command.

The Change command lets you modify the bytes located at the current
cursor location. If the display is ASCII or if the hexadecimal format is Byte,
you're prompted for a byte list. Otherwise, you're prompted for an item of
the current display type.

You can invoke this command by typing into the Dump pane.

The Follow command opens a menu containing commands that let you
examine the data at near and far pointer addresses. The TD32 menu
contains only the commands that relate to 32-bit addressing.

Command

Near Code

Far Code

Offset to Data

SegmentOffset
to Data

Base Segment
to Data

Description

Interprets the word under the cursor in the Dump pane as an offset into the
segment specified by the CS register. This command activates the Code
pane, and positions it to the near address.

Interprets the doubleword under the cursor in the Dump pane as a far
address (segmentoffset). This command activates the Code pane, and
positions it to the far address.

Lets you follow word-pointer chains (near and offset only). The Dump pane is
set to the offset specified by the word at the current cursor location.

Lets you follow long pointer chains (far, segment, and offset). The Dump
pane is set to the offset specified by the two words at the current cursor
location.

Interprets the word under the cursor as a segment address and
positions the Dump pane to the start of that segment.

Previous restores the Dump pane position to the address before the last
command that explicitly changed the display address. The arrow keys do
not affect this command.

Turbo Debugger maintains a stack of the last five addresses accessed in the
Dump pane, so you can backtrack through multiple uses of the Follow
menu or Goto commands.

Use the Display As command to format the data that's listed in the Dump
pane. You can choose any of the following data formats:

Turbo Debugger User's Guide

Table 9.7
Display As command

options

Block

Table 9.8
Block command

options

The Stack pane

Command Description

Byte Hexadecimal bytes.

'Nord

Long

Camp

Float

Real

Double

Extended

2-byte hexadecimal numbers.

4-byte hexadecimal numbers.

8-byte decimal integers.

4-byte floating-point numbers in scientific notation.

6-byte floating-point numbers in scientific notation.

8-byte floating-point numbers in scientific notation.

10-byte floating-paint numbers in scientific notation.

This command brings up a menu that lets you move, clear, and set blocks of
memory. In addition, you can read and write memory blocks to and from
files. Use Ins and the arrow keys to quickly select the block of bytes that you
want to work with.

Command Description

. Clear Sets a contiguous block of memory to zero (0). You are prompted for the address
and the number of bytes to clear.

Move Copies a block of memory from one address to another. You are prompted for the
source address, the destination address, and how many bytes to copy.

Set Sets a contiguous block of memory to a specific byte value. You are prompted for
the address of the block, how many bytes to set, and the value to set them to.

Read Reads all or a portion of a file into a block of memory. You are prompted for the file
name to read from, for the address to read it into, and for how many bytes to read.

Write Writes a block of memory to a file. You are prompted for the file name to write to, for
the address of the block to write, and for how many bytes to write. '

The Stack pane shows the hexadecimal contents of the program stack. An
arrow (~) shows the location of the current stack pointer.

Although you might need to review the hexadecimal bytes that make up
the program stack, Turbo Debugger uses the Stack window to show the
contents of the stack in a more readable format. See page 101 for a
discussion on the Stack window.

Chapter 9, Assembly-level debugging 133

The Stack panes
SpeedMenu

Goto

Origin

Follow

Previous

Change

The Selector pane

134

The SpeedMenu of the Stack pane contains the following commands:

Goto
Origin
Follow
Previous
Change •••

Goto prompts you for an address to view with the Enter Address to
Position To dialog box. If you want, you can enter addresses outside your
program's stack, although it's usually easier to use the Dump pane to
examine arbitrary memory locations.

Origin positions you at the current stack location as indicated by the SS:SP
register pair.

The Follow command positions you at the location in the stack pointed to
by the currently highlighted word. This is useful for following stack-frame
threads back to the calling procedure.

The Previous command restores the Stack pane position to the address
before the last command that explicitly changed the display address (such
as Goto, Origin, and Follow). The arrow keys do not affect this command.

Change lets you enter a new word value for the currently highlighted stack
word with the Enter New Value for Unsigned Int dialog box.

You can invoke this command by typing the new value for the highlighted
stack item.

The Selector pane, found only in TDW, lists the Windows 3.x protected­
mode selectors. A selector can be either valid or invalid. If valid, the
selector points to a location in the protected-mode descriptor table
correspondirlg to a memory address. If invalid, the selector is unused.

If a selector is valid, the pane shows the following information:

• The contents of the selector segment (Data or Code).

• The status C?f the selector memory area: Loaded (present in memory) or
Unloaded (swapped out to disk).

• The length of the referenced memory segment in bytes.

Turbo Debugger User's Guide

The Selector panes
SpeedMenu

Selector

Examine

If the selector references a data segment, the pane displays additional
information on the access rights (Read/Write or Read Only), and the direction
in which the segment expands in memory (Up or DOwn).

You use the SpeedMenu of the Selector pane to go to a new selector or see
the contents of the currently highlighted selector. Turbo Debugger displays
selector contents in either the Code pane or the Dump pane, depending on
the nature of the data being displayed.

The Selector command opens the Enter New Selector dialog box, which
prompts you for a selector to display in the pane. You can use full
expression syntax to enter the selector. If you enter a numeric value, Turbo
Debugger assumes it is decimal, unless you use the syntax of the current
language to indicate that the value is hexadecimal.

For example, if the current language were C, you could type the
hexadecimal selector value 7F as Ox7F. For Pascal, you'd type it as $7F. You
can also type the decimal value 127 to go to selector 7F.

Another method of entering the selector value is to display the CPU
window and check the segment register values. If a register holds the
selector you're interested in, you can enter the name of the register
preceded by an underscore L). For example, you could type the data
segment register as _DS.

Examine displays the contents of the memory area referenced by the
currently highlighted selector. When this command is invoked, either the
Code pane or the Dump pane gains focus. If the selector points to a code
segment, the contents are displayed in the Code pane. If the selector
contents are data, they're displayed in the Dump pane.

The Dump window

The Dump window, opened with the View I Dump command, displays the
raw data that's located in any area of memory that can be accessed by your
program. The Dump window is identical in behavior to the Dump pane in
the CPU window, including all SpeedMenu commands (see page 130 for" a
description of this pane). The advantage of using the Dump window,
however, is that it can be resized.

Chapter 9, Assembly-level debugging 135

Figure 9.2
The Dump window

The Dump window is useful when you'r~ in an Inspector window and you
want to look at the raw bytes that make up the object you're inspecting.
Choosing the View I Dump command when an Inspector window is active
opens a Dump window that's positioned at the address of the data in the
Inspector window.

You can open several Dump windows simultaneously by choosing View I
Another I Dump.

The Registers window

136

Figure 9.3
The Registers

window

The Registers window is a combination of the Registers and Flags panes in
the CPU window (see page 129).

Registers pane Flags pane

You can perform the same functions from the SpeedMenu of the Registers
window as you can from the SpeedMenus of the Registers and the Flags
panes in the CPU window.

Turbo Debugger User's Guide

c H A p T E R 10

Windows debugging features

Programs written for the Windows operating system can be robust and
powerful. However, the added complexity of programming for Windows
opens up a new category of software bugs. Turbo Debugger provides the
following features to help you find the bugs in your Windows code:

• Windows message tracking and message breakpoints

• Dynamic-link library debugging

• Thread support (for Windows NT only)
• Operating-system exception support for Windows NT and Windows 32s

• Listings of your program's local heap, global heap, and program modules
(TDWonly)

• Expression typecasting from memory handles to near and far pointers
(TDWonly)

• A Selector pane in the CPU window of TDW lets you examine any
Windows 3.x protected-mode selector (see "The Selector pane" on page
134 for a description of this feature)

Monitoring window messages

The Windows Messages window provides commands for tracking and
examining the window messages received by your program. Using this
window, you can create message breakpoints (breakpoints that pause your
program's execution when a specific window message is received), and you
can log the messages that a particular window processes.

You open the Windows Messages window, shown in Figure 10.1, with the
View I Windows Messages command. Table 10.1 defines the three panes of

. the Windows Messages window.

Chapter 10, Windows debugging features 137

Figure 10.1
The Windows

Messages window

Table 10.1
Windows Messages

window panes

Specifying a
window to
monitor

138

Window Selection pane Message Class pane

Pane

Window Selector pane

Message Class pane

Message Log pane

Description

Message
Log
pane

Lists the windows that you've selected for messages tracking.

Lists the messages and message classes that you're tracking for the
highlighted window in the Window Selection pane.

Displays the window messages received by your program.

To track messages for a specific window, follow these steps:

1. Specify a window to monitor.

2. Specify the messages you want to track.

3. Specify the action that Turbo Debugger should take when the window
messages are received: Break or Log.

The first step in tracking window messages is to specify the window you
want to monitor. Although the procedure for specifying windows is similar
in both T032 and TOW, there are some differences.

To specify a window in T032, use the name of the window procedure that
processes the window's messages:

1. Open the Add Window Procedure to Watch dialog box by choosing
Add from the Window Selector pane's SpeedMenu, or typing directly
into the pane.

2. Type the name of the window procedure into the Window Identifier
input box, and press Enter.

You can repeat this procedure for each window whose messages you want
to monitor.

In TOW, you can specify a window by either its window handle or by the
window procedure that processes the window's messages. In either case,
you use the Add Window or Handle to Watch dialog box to select a

Turbo Debugger User's Guide

Specifying a
window procedure

Specifying a
window handle

Deleting window
selections

window. To access this dialog box, choose Add from the Window Selector
pane's SpeedMenu, or type directly into the pane.

In TDW's Add Window or Handle to Watch dialog box, the Identify By
radio buttons let you choose how you're going to specify the window
whose messages you're going to track:

Window Proc Choose this when you supply the name of the routine that
processes the window messages (for example WndProc).

Handle Choose this when you supply the name of the window's
handle.

If you select the Window Proc radio button, enter the name of the window
procedure that processes the window's messages in the Window Identifier
input box. This is usually the best way to specify a window because you
can enter the procedure name any time after you've loaded your program.

If you prefer to use the window's handle name, follow these steps to specify
the window's handle:

'1. Run your program past the line where the handle is initialized (Turbo
Debugger issues an error message if you try to specify a handle name
before it's assigned a value).

2. Open the Windows Messages window and choose Add from the
Window Selection pane's SpeedMenu.

3. Click the Handle radio button.

4. Type the name of the window handle into the Window Identifier input
'. box, and cast the handle to a UINT data type.

For example, the following entry would be used to specify the h Wnd
window handle: .

(UINT)hWnd

5. Complete the entry by pressing Enter.

If you enter a handle name but click the Window Proc radio button, Turbo
Debugger will accept your input, falsely assuming that the "window
procedure" will be defined later during your program's execution.

The Window Selection pane's SpeedMenu contains two menu commands
for deleting window selections: Remove and Delete All.

Chapter 10, Windows debugging features 139

Specifying the
messages to track

Figure 10.2
The Set Message

Filter dialog box

Specifying a
message class to
track

140

To delete a single window selection, highlight the desired window entry in
the Window selection pane, and press Ctrl+R (or choose Remove from the
pane's SpeedMenu). The Delete All command (Ctrl+D) erases allwindow
selections, which removes all existing window message tracking.

After you specify a window in the Window Selector pane, Turbo Debugger,
by default, lists all the WM_ messages sent to that window in the Message
Log pane. Because a single window can process many messages, you'll
probably want to narrow the focus by selecting the specific messages you're
interested in.

To change a window's message-tracking settings, use the Set Message Filter
dialog box, which is accessed with the Window Class pane's SpeedMenu
Add command. (You can also begin typing into the Window Class pane to
access the dialog box.) This dialog box lets you select window messages by
either message class or by individual message names.

Before you can access the Set Message Filter dialog box, you must first
specify a window in the Window Selection pane.

To track a specific message class for the highlighted window in the
Window Selection pane, open the Set Message Filter dialog box and choose
one of the following message classes from the Message Class radio buttons.

All Messages

Mouse

Window

All window messages.

Messages generated by a mouse event (for example,
WM_LBUTTONDOWN and WM_MOUSEMOVE).

Messages generated by the window manager (for
example, WM,-PAINT and WM_CREATE).

Turbo Debugger User's Guide

Input Messages generated by a keyboard event or by the user
accessing a System menu, scroll bar, or size box (for
example, WM_KEYDOWN).

System Messages generated by a system-wide change (for
example, WM_FONTCHANGE and
WM_SPOOLERSTATUS).

Initialization Messages generated when an application creates a
dialog box or a window (for example,
WM_INITDIALOG and WM_INITMENU).

Clipboard Messages generated when the user accesses the
Clipboard (for example, WM_DRA WCLIPBOARD 'and
WM_SIZECLIPBOARD).

DOE Dynamic Data Exchange messages, generated by
applications communicating with one another's
windows (for example, WM_DDE_INITIA TE and
WM_DDE_ACK).

Non-client Messages generated by Windows to maintain the non­
client area of an application window (for example,
WM_NCHITTEST and WM_NCCREATE).

Other Any messages that don't fall into the other message
categories, such as owner draw control messages and
multiple document interface messages.

Single Message Lets you specify a single message to track.

To track a single message, choose the Single Message radio button and
enter the message name or message number (an integer) into the Single
Message Name input box. Message names are case sensitive; be sure to
match their names exactly. -

Although you can set up a single window to track many different message
classes and message names, you can add only one message class or
message name at a time. If you want to track more than a single class or
message with a particular window,

1. Specify a single message class or message name.

2. Choose Add from the Message Class pane's SpeedMenu.

3. Append additional message classes or message names to the window's
message-tracking definition.

Chapter 10, Windows debugging features 141

Specifying the
message action

Breaking on
messages

Logging messages

142

After specifying a window and the messages to track, you must indicate the
action that you want to perform when the window messages are received.
Turbo Debugger provides the following two Action radio buttons in the Set
Message Filter dialog box:

Log

Pause program execution when the window receives one of the
specified messages.

List all specified messages in the Message Log pane of the
Windows Messages window (default).

If you want Turbo Debugger to gain control when a specific window
message is received by your program, choose Break as the message action.
This setting is known as a message breakpoint.

The following example shows how to set a message breakpoint on
WM_P AINT, which pauses your program every time the message is sent to
the window you've selected in the Window Selection pane:

1. Enter a window procedure name into the Window Selection pane.

2. Activate the Message Class pane (on the top right), and choose Add
from its SpeedMenu. This opens the Set Message Filter dialog box.

3. Click Single Message from the Message Class radio buttons, and enter
WM_PAINT in the Message Name input box.

,4. Click the Break radio button.
5. Press Enter.-

Figure 10.1 on page 138 shows how the Windows Messages window looks
after you have made these selections and a WM_P AINT message has been
received.

If you choose the Log radio button, Turbo Debugger lists the specified
window messages in the Message Log pane of the Windows Messages
window. This pane can list up to 200 messages.

If you're tracking many messages, you might want to write the messages to
a file so you don't overwrite the messages already sent to the Message Log
pane. To do so,

1. Set the Action radio button to Log.

Turbo Debugger User's Guide

Deleting message
class and action
settings

Message tracking
tips

2. Activate the Message Log pane, and set the Send to Log Window
SpeedMenu command to Yes.

3. Open the Log window, using the View I Log command.

4. Choose Open Log File from the Log window's SpeedMenu.

For details on logging messages to a file, see page 89.

To clear the Message Log pane, choose Erase Log from its SpeedMenu.
Messages already written to the Log window are not affected by this
command.

To delete a window's message and action settings, highlight the desired
item in the Message Class pane and choose Remove from the SpeedMenu.
You can also remove window settings by pressing either Delete or Ctrl+R. To
delete all window message and action settings, choose Delete All from the
SpeedMenu, or press Ctrl+D.

If you delete all message and action settings, the default setting (Log All
Messages) is automatically assigned to the window highlighted in the
Window Selection pane.

The following tips can be helpful when you track window messages:

• If you're tracking messages for more than a single window, don't log all
the messages. Instead, log specific messages or specific message classes
for each window. If you log all messages, the large number of messages
being transferred between Windows and Turbo Debugger might cause
your system to crash .

• When setting a message breakpoint on the Mouse message class, be
aware that a WM_MOUSEDOWN message IlJUst be followed by a
WM_MOUSEUP message before the keyboard becomes active again.
This restriction means that when you return to the application, you
might have to press the mouse button several times to get Windows to
receive a WM_MOUSEUP message. You'll know that Windows has
received the message when you see it displayed in the Message Log
pane.

Debugging dynamic-link libraries

A dynamic-link library (DLL) is a library of routines and resources that is
linked to your Windows application at run time rather than at compile
time. Windows links DLLs at run time to save memory by allowing
multiple applications to share a single copy of routines, data, or device

Chapter 10, Windows debugging features 143

Stepping into DLL
code

Returning from a
DLL

Accessing DLLs
and source .. code
modules

144

drivers. When an application needs to access a DLL, Windows checks to see
if the DLL is already loaded into memory. If the DLL is loaded, then there
is no need to load a second copy of the file.

DLLs can be loaded into memory by your program at two different times:

• When your program loads (DLLs are loaded at this time if you've
statically linked them using the IMPLIB utility)

• When your program issues a LoadLibrary call

When you single step into a DLL function, Turbo Debugger loads the DLL's
symbol,loads the source code of the DLL into the Module window, and
positions the cursor on the called routine.

However, before a DLL's source code can be loaded into the Module
window, the following conditions must be met:

• The DLL must be compiled with symbolic debug information.

• The .DLL file must be located in the same directory as your program's
.EXE file.

• The DLL's source code must be available.
Turbo Debugger searches for DLL source code the same way it searches
for the source code of your program's executable file, as described on
page 23.

If a DLL doesn't contain debug information, or if Turbo Debugger can't
find the DLL's source code, Turbo Debugger opens the CPU window and
displays the DLL's disassembled machine instructions.

If, when debugging a DLL function, you step past the return statement with
F7 or FB, your program might begin to run as though you had pressed F9.
This behavior is typical when you're debugging a DLL that was called from
a routine that doesn't contain symbolic debug information, or when the
DLL function returns through a Windows function call.

If you're debugging DLL startup code, set a breakpoint on the first line of
your program before you load the DLL to ensure that you program will
pause when you step past the DLL's return statement.

Although Turbo Debugger makes stepping into DLL functions transparent,
you might need to access a DLL before your program makes a call to it. For
example, you might need to access a DLL to set breakpoints or watches, or
to examine a function's source code.

Turbo Debugger User's Guide

Figure 10.3
The Load Module

Source or DLL
Symbols dialog box

To access an executable module other than the one that's currently loaded,
open the Load Module Source or DLL Symbols dialog box by choosing the
View I Modules command or by pressing F3.

The Source Modules list box displays all the source modules contained in
the currently loaded executable file. The DLLs & Programs list box displays
all the .DLL and .EXE files that are currently loaded by Windows. (If you're
running TDW, the list also displays all loaded .DRV and .FON files.)

A bullet (•) next to a DLL listing indicates that it can be loaded into Turbo
Debugger (as long as the DLL contains symbolic debug information and the
source code is available). An asterisk (*) next to a module indicates that the
module has been successfully loaded by Turbo Debugger.

.. Because your program might load DLL modules with the LoadLibrary call,
the DLLs & Programs list box might not display all of the .DLL files your
program uses.

Changing source
modules

Changing
executable files

If you need to access a different source code module in the currently loaded
executable file, highlight the desired module in the Source Modules list
box, and press the Load button (you can also double click the desired
module to load it). Turbo Debugger opens the Module window, which
displays the selected source code module.

To access an executable file that's not currently loaded:

1. Open the Load Module Source or DLL Symbols dialog box (press F3 or
choose View I Modules).

2. Highlight the desired file in the DLLs & Programs list box.

3. Choose the Symbol Load button.

Chapter 10, Windows debugging features 145

Adding DLLs to the
DLLs&
Programs list

Stepping over
DLLs

Turbo Oebugger opens the Module window, which displays the first source
code module found in the executable module. If you need to switch source
code modules, follow the directions in the preceding section.

To access a OLL through the Load Module Source or OLL Symbols dialog
box, the OLL must listed in the OLLs & Programs list box. However, if a
OLL is loaded with theOLoadLibrary call, the OLL might not yet be listed (a
OLL's name is listed only after it's been loaded).

To add a OLL to the OLLs & Programs list box:

1. Open the Load Module Source or OLL Symbols dialog box (press F3 or
choose View I Modules).

2. Activate the OLL Name input box, and enter the name of the desired
OLL (enter the full path if necessary).

3. Press the Add OLL button to add the OLL to the list.

Whenever you step into a function contained in a OLL, Turbo Oebugger
automatically loads in the symbol table and source code for that OLL
(providing that the source code is available and the OLL was compiled
with symbolic debug information). This includes OLLs that your program
loads with the LoadLibrary call.

Because it takes time to swap symbol tables and source code, you might
want to disable the swapping operation for the OLLs you don't need to
debug. To prevent Turbo Oebugger from loading a OLL's symbol tabJe and
source code,

1. Open the Load Module Source or OLL Symbols dialog box (press F3 or
choose View I Modules).

2. Highlight the desired OLL in the OLLs & Programs list box.

3. Choose the No radio button, and click OK

To re-enable the loading of a OLL's symbol table, choose the Yes radio
button in the Load Symbols group.

When you disable the loading of a OLL's symbol table, the bullet next to the
OLL listing in the OLLs & Programs list box disappears. Although Turbo
Oebugger will now automatically step over calls to the OLL, you can still
access the OLL through the Symbol Load button, as described in the
preceding section /I Accessing OLLs and source-code modules."

.. When you reload a program, the Load Symbols radio button is set to Yes for
all OLLs and modules, even for OLLs or modules that were previously set
to No.

146 Turbo Debugger User's Guide

Debugging Dll
startup code

When your application loads a DLL (when either the program is loaded or
when your program makes a LoadLibrary call), the DLL's startup code is
executed. By default, Turbo Debugger does not step through a DLL's
startup code. However, if you need to verify that a DLL is loading correctly,
then you'll need to debug the DLL's startup code.

Turbo Debugger lets you debug two types of DLL startup code:

• The initialization code immediately following LibMain (default mode) .

• The assembly-language code linked to the DLL. This code initializes the
startup procedures and contains the emulated math packages for the size
model of the DLL. (Select this debug mode by starting Turbo Debugger
with the -I command-line option.)

You set DLL startup code debugging with the Load Module Source or DLL
Symbols dialog box. However, if YQu try to run your application after
setting the startup debugging, Turbo Debugger might not behave as you
expect because some or all of the DLLs might already have been loaded.
Because of this, you must load your application, set the startup debugging
for selected DLLs, and then restart your application using the Run I
Program Reset command (Ctrl+F2).

With these preliminaries in mind, follow these steps to specify startup
debugging for one' or more DLLs:

1. Load your program into Turbo Debugger.

2. Bring up the Load Module Source or DLL Symbols dialog box (press F3
or choose View I Modules).

3. Highlight the DLL whose startup code you want to debug in the DLLs
& Programs list box.

4. Choose the Debug Startup Yes radio button.

If the needed DLL isn't on the list, add it using the method described in
the following section" Adding DLLs to the DLLs and Programs list."

When you specify startup debugging for a DLL, the DLL's entry in the
DLLs & Programs list box displays a double exclamation point (!!) next
to it.

5. Repeat steps 3 and 4 until you've set startup debugging for all desired
DLLs.

6. Choose Run I Program Reset or Ctrl+F2 to reload your application.

After you've set up startup 9-ebugging for DLLs, you're ready to run your
program. However, before you begin, keep the following in mind:

Chapter 10, Windows debugging features 147

• Be sure to run to the end of a DLL's startup code before reloading the current
applicatlon or loading a new one. If you don't, the partially executed DLL
startup code might cause Windows to hang, forcing you to reboot.

• Setting breakpoints on the first line of your application, or the first line
after a LoadLibrary call, guarantees that control returnS to Turbo
Debugger after the DLL's startup code executes.

• As your application loads each DLL, Turbo Debugger places you in
either the Module window at the DLL's LibMain function (the default), or
in the CPU window at the start of the assembly code for the startup
library.

• When you've finished debugging the startup code for a DLL, press F9 to
run through the end of the startup code and return to the application. If
you've specified any additional DLLs for startup code debugging, Turbo
Debugger displays startup code for them when your application loads
them.

Debugging multithreaded programs

Figure 10.4
The Threads window

The Threads
Information pane

148

The Threads window (opened with the View I Threads command) supports
the multithreaded environment of Windows NT.

Threads Detail pane Threads List pane

Threads
Information pane

The Threads Information pane, which lists general thread information,
consists of these fields:

The Last field lists the last thread that was executing before Turbo Debugger
regained control.

The Current field shows the thread whose values are displayed in Turbo.
Debugger's windows. You can change the thread you're debugging via the
Make Current SpeedMenu command.

The Total field indicates the total number of active program threads.

The Notify field displays either Yes or No, the Notify on Termination status of
all threads. Although you can set the Notify on Termination status for

Turbo Debugger User's Guide

The Threads List
pane

Threads List panes
SpeedMenu

Options

Figure 10.5
The Thread Options

dialog box

individual threads, the overall status is set through the All Threads
SpeedMenu command. Newly created threads are also assigned this status.

The Threads List pane lists all your program's active threads. Threads are
identified by a thread number (assigned by Windows NT) and a thread
name. Turbo Debugger generates a thread name when your program
creates a thread. The first thread created is named Thread 1, followed by
Thread 2, and so on. You can modify a thread's name using the Option
command on the List pane's SpeedMenu.

The Threads window contains a single SpeedMenu (which you activate
through the Threads List pane) which contains the Options, Make Current,
and All Threads commands.

The Options SpeedMenu command opens the Thread Options dialog box.
This dialog box lets you set options for individual program threads.

The Freeze check box lets you freeze and thaw individual threads. When you
freeze a thread by checking this box, the thread will not run. To thaw the
thread (which enables it to run), clear the check box. For your program to
run, there must be at least one thread that isn't frozen.

-. If you freeze the only thread in your program that processes window
messages, your program and the debugger will hang when you run the
program.

The Notify on Termination check box lets you specify whether Turbo
. Debugger should notify you when the currently highlighted thread
terminates. When this box is checked, Turbo Debugger generates a message
when the thread terminates, and activates a Module or CPU window that
displays the current program location. If you clear the Notify on
Termination check box, Turbo Debugger doesn't pause when the thread
terminates. To set the Notify on Termination status for all threads, use the
All Threads SpeedMenu command.

Chapter 10, Windows debugging features 149

Make current

Inspect

AI/threads

Step

150

The Thread Name input box lets you modify the thread name that's generated
by Turbo Debugger. If your program generates many threads, it can be
easier to keep track of them if you specify your own thread names.

The Make Current command lets you change the thread currently being
processed by Turbo Debugger. To change the current thread, highlight the
thread that you want to examine in the Threads List pane, and press Ctrl+M
(or choose the Make Current command). When you do so, the Thread
Information pane displays the thread number whose data values are
displayed in ,Turbo Debugger's windows, and all references tothe CPU
registers and stack data will now relate to this thread.

The Inspect command opens a Module or CPU window that shows the
current point of execution for the highlighted thread. Pressing Enterhas the
same effect as choosing Inspect from the SpeedMenu:

The All Threads command opens a menu whose commands relate to all
program threads. '

The Thaw command unfreezes any currently frozen threads. When you issue
this command, all threads in your program are able to run.

The Freeze command disables all thread execution. When you issue this
command, all threads in your program will be frozen and unable to run.
For your program to run, you must thaw at least one thread using the
Options SpeedMenu command (or use the Thaw command on the All
Threads menu to unfreeze all the threads).

The Enable Exit Notification command sets the notify-on-exit status for all
program threads, including threads that have yet to be created. Choosing
this command causes Turbo Debugger to issue a message when any thread
terminates. The status of notify-on-exit is displayed in the Notify 'field of
the Threads Information pane.

The Disable Exit Notification command turns off the notify-on-exit status. This
is Turbo Debugger's default setting.

The Step command toggles between All and Single:

When set to All (the default), all the threads in your program can run as
, you step through your program using F7 or FB. If you're debugging a '
thread with a low priority, other threads might execute several statements
before the thread you're debugging executes a single statement. (This can
sometimes make it difficult to watch the behavior of a single thread in your
program.)

Turbo Debugger User's Guide

The Threads
Detail pane

When the Step command is set to Single, only the thread located at the
current instruction pointer will run as you step. This is different from
freezing threads because different threads can be created and destroyed,
and you can step into these threads as your program's execution dictates.

The Thread Detail pane, shown in Figure 10.4, displays the details of the
thread that's highlighted in the Threads List pane.

The first line of the Thread Detail pane displays the status of the
highlighted thread (either suspended or runnable) and the thread's priority.
The priority, which is set by the operating system, can be one of five
different states:

...:..2 (lowest)
-1 (below normal)
o (normal)

1 (above normal)
2 (highest)

. The second line of the Thread Detail pane displays the current execution
point of the thread that's highlighted in the Threads List pane.

The third line, if present, indicates how Turbo Debugger gained control
from the running thread. A complete list of the messages that Turbo
Debugger can generate for this line is given in the "Status messages"
section on page ~98.

The fourth line of the Thread Detail pane, if present, lists the thread's
settings. Possible settings are Frozen and Notify on Termination.

Tracking operating-system exceptions

In TD32, the as Exceptions command (located on the SpeedMenu of the
CPU window's Code pane) opens the Specify Exception Handling dialog
box. This dialog box lets you specify how Turbo Debugger should handle
the operating-system exceptions that are generated by your program.

Chapter 10, Windows debugging features 151

Figure 10.6
The Specify

Exception Handling
dialog box

Specifying user­
defined
exceptions

152

The Exceptions list box displays all the operating-system exceptions that
can be handled by Turbo Debugger. For each exception in the list, you can
specify whether Turbo Debugger should handle the exception or whether
your program's exception-handling routine should take control.

By default, all exceptions generated by the operating system are handled by
Turbo Debugger. This means that whenever your program generates an
operating-system exception, Turbo. Debugger pauses your program and
activates the Module or CPU window with the cursor located on the line of
code that caused the exception.

To change the debugger's default exception handling behavior,

1. Open the Specify Exception Handling dialog box using the OS
Exceptions command on the SpeedMenu of the CPU window's Code
pane.

2. Highlight the exception you want your program to handle.

3. Click the User Program radio button.

When you specify that your program will handle an operating-system
exception, Turbo Debugger places a bullet (.) next to the exception listing
in the Exceptions list box.

If you want your program to handle all the operating-system exceptions,
click the User All button on the right side of the Specify Exception
Handling dialog box. To have Turbo Debugger pause on all operating­
system exceptions, click the Debugger All button (default).

Turbo Debugger supports user-defined operating-system exceptions with
the Range Low and Range High input boxes in the Specify Exception
Handling dialog box.

Turbo Debugger User's Guide

By default, Turbo Debugger sets both the Range Low and Range High
input boxes to O. This default state indicates that there are no user-defined
operating-system exceptions.

To have Turbo Debugger monitor a single user-defined operating-system
exception, enter the hexadecimal number generated by the exception into
the Range Low input box. The following line then appears at the bottom of
the Exception list box, where xxxxxxxx equals the hexadecimal value of the
exception:

Range: XXXXXXXX to XXXXXXXX

If you've defined more than one operating-system exception, enter the
lowest user-defined operating-exception number into the Range Low input
box, and the highest user-defined operating-exception number into the
Range High input box. The Range listing the Exceptions list box will then
indicate the range of user-defined operating-system exceptions that Turbo
Debugger ,will monitor.

Obtaining memory and module lists

Figure 10.7
TDWs Windows

Information dialog
box

Listing the
contents of the
global heap

In TDW, you can write either the contents of the global heap, the contents
of the local heap, or the list of modules used by your program to the Log
window. The Windows Information dialog box (accessed by choosing the
Display Windows Info command on the Log window's SpeedMenu) lets
you pick the type of list you want displayed, and where you want the list to
start.

The global heap is the global memory Windows makes available to all
applications. If you allocate resources like icons, bit maps, dialog boxes,
and fonts, or if you allocate memory using the GlobalAlloc function, your
application uses the global heap.

Chapter 10, Windows debugging features 153

To see a list of the data objects in the global heap, select the Global Heap
radio button in the Windows Information dialog box and click OK. The data
objects in the global heap are then listed in the Log window.

In addition to listing the global heap, the Start At radio buttons let you
choose whether to display the list from the top or bottom of the heap, or
from a location indicated by a starting handle.

A handle is the name of a global memory handle set in your application by
a call to a Windows memory allocation routine like GlobalAlloc. Picking a
handle causes Turbo Debugger to display the object at that handle and the
next four objects that follow it in the heap.

.. Because the global heap listing is likely to exceed the number of lines in the
Log window (the default is 50 lines), you should either write the contents to
a log file (using the Log window's Open Log File SpeedMenu command) or
increase the number of Log window lines (using TDWINST). The Log
window can hold a maximum of 200 lines.

The following line shows an example of a global heap listing. Table 10.2
gives an explanation of each field in the output.

053E (053D) 00002DCOb PDB (OF1D) DATA MOVEABLE LOCKED=OOOOl PGLOCKED=OOOl

Table 10.2
Format of a global

heap list
Field

053E

Description

Either a handle to the memory object, expressed as a 4-digit hex value,
or the word FREE, indicating a free memory block.

154

(053D)

00002DCOb

PDB

(OF1D)

DATA

MOVABLE

A memory selector pointing to an entry in the global descriptor table. The
selector isn't displayed if its the same value as the memory handle.

A hexadecimal number representing the length of the segment in bytes.

The allocator of the segment, usually an application or library module. A
PDB is a process descriptor block; it is also known as a program
segment prefix (PSP).

A handle indicating the owner of a PDB.

The type of memory object. Possible types are:

• DATA Data segment of an application or DLL.

II CODE Code segment of an application or DLL.

• PRIV Either a system object or global data for an application or DLL.

A memory allocation attribute. An object can be FIXED, MOVABLE, or
MOVABLE DISCARDABLE.

Turbo Debugger User's Guide

Listing the
contents of the'
local heap

Table 10.3
Format of a local

heap list

Listing the
Windows modules

Table 10.2: Format of a global heap list (continued)

LOCKED=00001 For a movable or movable-discardable object, this is the number of locks
on the object that have been set using either the GlobalLock or LockData
functions.

PGLOCKED=0001 For 386 Enhanced mode, the number of page locks on the object that
have been set using the GlobalPageLock function. With a page lock set
on a memory object, Windows can't swap to disk any of the object's
4-kilobyte pages.

The locai heap is a private memory area used by your program; it is not
accessible to other Windows applications, including other instances of the
same application.

A program doesn't necessarily have a local heap. Windows creates a local
heap only if the application uses the LocalAlloc function.

To see a list of the data objects in the local heap, select the Local Heap radio
button in the Windows Information dialog box, then choose OK. The local
heap data objects will be listed in the Log window.

The following line shows an example local heap listing. Table 10.3 gives an
explanation of each field in the output.

05CD: 0024 BUSY (lOAF)

Field

05CD:

0024b

BUSY

Description

The objects offset in the local data segment.

The length of the object in bytes.

The disposition of the memory object, as follows:

• FREE An unallocated block of memory .

• BUSY An allocated object.

(10AF) A local memory handle for the object.

To see a list of the tasks and DLL modules that have been loaded by
Windows, select the Module List radio button in the Windows Information
dialog box, then choose OK. The modules will be listed in the Log window.

Chapter 10, Windows debugging features 155

Table 10.4
Format of a Windows

module list

The following line shows an example module listing. Table 10.4 gives an
explanation of each field in the output.

OEFD TASK GENERIC C:\TPW\GENERIC.EXE

Field

OEFD

TASK

GENERIC

C:\TPW\GENERIC.EXE

Description

A handle for the memory segment, expressed as a 4-digit hex value.

The module type. A module can be either a task or a DLL.

The module name.

The path to the module's executable file.

Converting memory handles to addresses

156

In a Windows program, you reference a data object using a symbolic name
instead of using the object's physical address. This way, Windows can
perform its own memory management, and can change the physical
address of the object without creating conflicts with your program.

Turbo Debugger provides two special data types to help you obtain the
physical address of a data object that's referenced by a memory handle:
Ih2fp and gh2fp. If you need the actual address referred to by a memory
handle, use the typecast symbols Ih2fp to dereference a local handle and
gh2fp to dereference a global handle.

You use Turbo Debugger's special data types for typecasting, just as you
can use any of C's built-in data types. For example, you could cast the local
memory handle hLocalMemory using two methods:

• Use the Data I Inspect window to evaluate the expression
(lh2fp)hLocalMemory .

• Use the Type Cast command in the Inspector local window and enter
lh2fp as the type.

In either case, the expression evaluates to the first character of the memory
block pointed to by hLocalMemory.

You could also use either of these techniques to do a more complicated cast.
For example, a two-stage cast-from a handle into a character poil).ter into a
pointer to the data in memory-could read as follows:

(Mystruct far *) (lh2fp)hLocalMemory

Turbo Debugger User's Guide

c H A p T E

Debugging object-oriented
programs

R 11

Turbo Debugger supplies the following features to help you debug c++
object-oriented programs:

II The Hierarchy window

• Class Inspector windows

• Object inspector windows

• C++ and C exception handling

The Hierarchy window

Figure 11.1
The Hierarchy

window

The Hierarchy window, which is opened with the View I Hierarchy
command, provides a graphic display of the class hierarchies in your
program. \

Classes pane

Parents
pane

The Hierarchy window displays the heritage of C++ classes. The window is
composed of two or three panes, depending on whether or not your
program uses multiple inheritance.

Chapter 11, Debugging object-oriented programs 157

The Classes pane

The Classes pane's
SpeedMenu

Inspect

Tree

The Hierarchy
pane

The Hierarchy
-pane's SpeedMenu

Inspect

158

The Classes pane displays an alphabetical listing of the classes used by the
currently loaded module. The class that's highlighted in this pane is
detailed in the pane(s) on the window's right side.

The Classes pane uses incremental matching to help you quickly find the
class you're interested in. As you type the name of a class into the pane,
Turbo Debugger highlights the class whose name matches the keystrokes
you've pressed.

The Classes pane contains two SpeedMenu commands:

The Inspect command opens a Class Inspector window for the currently
highlighted class. Alternately, you can press Enter to open a Class Inspector
window for the highlighted class. For a description of Class Inspector
windows, see page 159.

The Tree command activates the Hierarchy pane, highlighting the currently
selected class.

The Hierarchy pane displays the loaded module's classes and their
hierarchies. Original base classes are placed at the left margin of the pane
with derived classes displayed beneath their base classes.

Classes that inherit from multiple base classes are marked with asterisks.
The first class in a group of multiply-inherited classes is marked with a '
double-asterisk (**); all other classes that are part of the same multiple­
inheritance group are marked with a single asterisk (*).

To locate a class in a complex hierarchy, use the Classes pane to find the
class, and choose that pane's Tree SpeedMenu command to' navigate to the
class in the Hierarchy pane.

The Hierarchy pane's SpeedMenu has one or two commands, depending on
whether or not your C++ program implements classes with multiple
inheritance ..

When you choose Inspect (or press Enter), a Class Inspector window opens
for the class that's highlighted in the pane;

Turbo Debugger User's Guide

Parents

The Parents pane

The Parent pane's
SpeedMenu

If you're debugging a C++ program that implements classes derived
through multiple inheritance, the Hierarchy pane's SpeedMenu also
contains the Parents command. The Parents command toggles on and off
the display of the Hierarchy window's Parents pane. The default for Parents
is Yes.

The Hierarchy window's Parents pane appears only if your program
contains classes that inherit from multiple base classes, and the Parents
command on the Hierarchy pane's SpeedMenu is set to Yes.

The Parents pane displays all base classes for the classes that are derived
through multiple inheritance. A class' display begins with the message
Parents of <ClassName>. Beneath this, the pane displays a reverse hierarchy
tree for each set of base classes, with lines indicating the base class and
derived class relationships.

The Parent pane, if displayed, contains a single SpeedMenu command:
Inspect. Choosing Inspect (or pressing Enter), opens an Class Inspector
window for the class highlighted in the pane.

Class Inspector windows

Figure 11.2
A Class Inspector

window

The Class Inspector window lets you inspect the details of C++ classes. To
open a Class Inspector window, activate the Hierarchy window (choose
View I Hierarchy), highlight a class, and press Enter.

,,,'.{;;';~~~~:-l\lH-- Data Member
pane

Member Function
pane

A Class Inspector window is divided horizontally into two panes. The top
pane lists the class' data members and type information, and the bottom
pane lists the class' member functions and their return types.

Chapter 11, Debugging object-oriented programs 159

The Class
Inspector
windows
SpeedMenus

Inspect

Hierarchy

Show Inherited

160

A Class Inspector window summarizes the data members and member
functions contained in a C++ class; it doesn't, however, reflect the data of
any particular instance. If you want to examine a member function's
arguments, highlight the member function and press Enter. A Function
Inspector window opens, displaying the code address for the object's
implementation of the function and the names and types of all its
arguments.

If the highlighted data member is a pointer to a class, pressing Enter opens
another Class Inspector window for the highlighted class. (This action is
identical to choosing Inspect in the SpeedMenu for this pane.) Using this
functionality, you can inspect complex, nested classes with a minimum of
keystrokes.

As with all Inspector windows, Esc closes the current Inspector window
and Alt+F3 closes them all.

The SpeedMenus in each pane of the Class Inspector window contain
identical commands, although they behave slightly differently in each
pane:

Inspect
Hierarchy
Show inherited Yes

The Data Member pane's Inspect command opens an Inspector window on
the highlighted data member. If the data member is a pointer to another
class, a Class Inspector window opens for that class.

The Member Function pane's Inspect command opens a Function Inspector
window on the highlighted member function. To display a member
function's source code, position the cursor over the address of the member
function in the Function Inspector window, and press Enter to activate the
Module window.

The Hierarchy command on each SpeedMenu opens the Hierarchy
window, displaying the currently inspected class. The Hierarchy window is
described on page 157.

The Show Inherited command toggles between Yes and No in each pane of
the Class Inspector window. The default value in each pane is Yes.

When Show Inherited is set to Yes, Turbo Debugger shows either all the
data members or all the member functions of the currently highlighted
class, including all the items that the class inherits. If the toggle is set to No,

Turbo Debugger User's Guide

Turbo Debugger displays only the data members or member functions
defined within the class being inspected.

Object Inspector windows

Figure 11.3
An Object Inspector

window

The Object
Inspector
windows
SpeedMenus

While Class Inspector windows provide information about the structure of
a class, they say nothing about the data contained in a particular class
instance. To view the structure and the values of a specific class instance,
use the Object Inspector window.

To open an Object Inspector window, place the cursor on an object name in
the Module window, and press Ctrl+l.

Data Member pane

Member Function pane

Type pane

An Object Inspector window contains three panes. The Data Member pane
displays the current values of the object's data members. The Member
Function pane shows the current values and code addresses of the object's
member functions. The Type pane displays the data type of the highlighted
data member or member function.

The Object Inspector window's Data Member and Member Function panes
both contain a SpeedMenu. Each menu contains identical commands,
except that the Data Member pane contains the additional Change
command.

Range •••
Change •••
Methods Yes
Show inherited Yes

Inspect
Descend
New express ion •••
Type cast
Hierarchy

Chapter 11, Debugging object-oriented programs 161

Range

Change

Methods

Show Inherited

Inspect

Descend

New Expression

Type Cast

162

The Range command lets you specify a range of array elements to be
displayed. If the currently highlighted item is not an array or a pointer, the
item cannot be accessed.

The Change command, available only from the Data Member pane, lets you
modify the value of the highlighted data member.

The Methods command can be toggled between Yes and No; Yes is the
default setting. When set to Yes, Turbo Debugger opens the middle pane of
the Object Inspector window, where member functions are summarized.
When Methods is set to No, the middle pane is not displayed. The Methods
setting is carried forward to the next opened Object Inspector window.

The Show Inherited command is also a Yes/No toggle. When it's set to Yes,

all data members and all member functions are shown, whether they are
defined within the class being inspected or inherited from a base class.
When the command is set to No, orily those data members and member
functions defined within the class being inspected are displayed.

The Inspect command (which can be opened from the SpeedMenu or by
pressing Enter) opens an Inspector window on the currently highlighted
data member or member function. Inspecting a member function opens the
Module view, with the cursor positioned on the code that defines the
member function.

The Descend command works like the Inspect SpeedMenu command,
except that it replaces the current Inspector window with the new item you
want to examine. Using this command reduces the number of Inspector
windows onscreen; however, you can't return to a previous Inspector
window as you could if you use the Inspect command.

Use the New Expression command to inspect a different expression. The
data in the current Inspector window is replaced with the data relating to
the new expression you enter.

The Type Cast command lets you specify a different data type for the
currently highlighted item. This. command is useful if your class, contains a
symbol for which there is no type information, as well as for explicitly
setting the type of pointers.

Turbo Debugger User's Guide

Hierarchy

Exceptions

Figure 11.4
The Specify C and

C++ Exception
Handling dialog box

c++ exception
handling

The Hierarchy command opens the Hierarchy window, displaying the
heritage of the class being inspected. The Hierarchy window is described
on page 157.

The Exceptions command is found on the SpeedMenu of the Module
window. If you have implemented C or C++ exception handling in your
program, the Exception command becomes active. Choosing this command
opens the Specify C and C++ Exception Handling dialog box:

If your program implements C++ exception handling using try, catch, and
throw statements, you can specify how you want Turbo Debugger to treat
the exceptions your program generates.

Using the C++ Exceptions radio buttons, specify the exception handling in
the following ways:

None

Types

Specifies that Turbo Debugger should not interfere with your
program's exception handling.

Lets you specify the exception data types you want to trap with
Turbo Debugger. Enter the data types of the exceptions you
want to trap into the Exception Types input box.

If you want Turbo Debugger to trap exceptions in classes
derived from the ones you enter into the Exception Types input
box, check the Derived Classes check box.

All Specifies that you want Turbo Debugger to trap all exceptions
generated by your program.

Chapter 11 J Debugging object-oriented programs 163

C exception
handling

164

If, for example, you specify that Turbo Debugger should trap char*
exceptions, then Turbo Debugger will pause whenever program execution
encounters a throw (char *) statement. Once your program has paused, you
can examine the Stack window and other views to determine why the
exception occurred.

If your C program implements C exception handling, you can control how
Turbo Debugger handles the exceptions that your program generates.

Using the c: Exceptions radio buttons, specify the C exception handling in
the following ways:

None

Values

All

Specifies that Turbo Debugger should not interfere with your
program's exception handling.

Lets you specify the exception values you want to trap with
Turbo Debugger. Enter the numbers of the exceptions you
want to trap into the Exception values input box.

Specifies that you want Turbo Debugger to trap all exceptions
generated by your program.

Turbo Debugger User's Guide

Whats a TSR?

c H A p T E R 12

Debugging TSRs and device drivers

Using TD.EXE, you can debug DOS terminate and stay resident (TSR)
, programs and DOS device drivers. Turbo Debugger has three commands

on the file menu that are specifically designed to be used for debugging
these types of programs: File I Resident, File I Symbol Load, and File I Table
Relocate.

This chapter gives a brief explanation of what TSRs and device drivers are
and it provides information on how to debug them with Turbo Debugger.

Terminate and stay resident programs (TSRs) are programs that stay in
RAM after you" exit" the program. Once you exit the program, you can
reinvoke the TSR via special hot keys or from programs that issue special
software interrupts. Borland's C and C++ compilers provide a function,
geninterrupt, that issues such software interrupts.

TSRs consist of two parts: a transient portion and a resident portion. The
transient portion is responsible for loading the resident portion into RAM
and for installing an interrupt handler that determines how the TSR is
invoked. If the TSR is to be invoked through a software interrupt, the
transient portion places the address of the resident portion of the code in
the appropriate interrupt vector. If the TSR is to be invoked through a hot
key, the resident portion must intercept the DOS interrupt handler for
keyboard presses.

When the transient portion is finished executing, it invokes a DOS function
that allows a portion of the .EXE file to stay resident in RAM after
execution is terminated-hence the phrase "terminate and stay resident."
The transient portion of the TSR knows the size of the resident portion as '
well as the resident portion's location in memory, and passes this
information along to DOS. DOS then leaves the specified block of memory
alone, but is free to overwrite the unprotected portion of memory. Thus the
resident portion stays in memory, while the transient portion can be
overwritten.

Chapter 12, Debugging TSRs and device drivers 165

Debugging a TSR

166

The trick to debugging TSRs is that you want to be able to debug the
resident portion as well as the transient portion. When the .EXE file
executes, the only code that is executed is the transient portion of the TSR.
Therefore, when you run a TSR under Turbo Debugger, the only code you
see executing is the transient portion as it installs the resident portion and
its interrupt handlers. To debug the resident portion of a TSR, you must set
a breakpoint in the resident code, and make Turbo Debugger itself go
resident.

Debugging the transient portion of a TSR is the same as debugging any
other file. It's only when you start to debug the resident portion of your
program that anything different happens.

If you're debugging the keyboard handler of your TSR (INT 9), use the
mouse to navigate through Turbo Debugger. This way, the keyboard
handler won't confuse which keys get trapped. If this doesn't work, try
using the remote debugging capabilities of Turbo Debugger.

Here's how you debug a TSR program:

1. Compile or assemble the TSR with symbolic debug information.

2. Run Turbo Debugger and load the TSR program.

3. Set a breakpoint at the beginning of the resident portion of the TSR.

4. Run the transient portion of your program by choosing Run I Run.

5. Debug the transient portion of the program using normal debugging
techniques.

6. After the transient portion is fully debugged, exit the TSR; the resident
portion of the TSR program remains installed in RAM.

7. Choose the File I Resident command to make Turbo Debugger go
resident.

This has nothing to do with making your TSR go memory-resident; the
TSR goes resident when you run it from Turbo Debugger. Once Turbo
Debugger is resident, you can return to DOS and invoke your TSR,
which makes its resident portion execute.

8. At the DOS command line, execute the resident portion of your TSR by
pressing its hot key (or by doing whatever is needed to invoke it), and
run through your program as usual.

9. Exit the TSR program.

The resident portion of the TSR now executes, causing Turbo Debugger
to encounter the breakpoint. When the breakpoint activates, Turbo
Debugger pauses the TSR at the beginning of the resident portion of the

Turbo Debugger User's Guide

program, and you can debug the resident code. (To reenter Turbo
Debugger from DOS, pres Ctrl+Break twice.)

A second method of debugging a TSR's resident portion involves executing
the TSR from the DOS command line and using Turbo Debugger's CPU
window to debug the area of RAM containing the TSR:

1. Compile your program with debug information.

2. Use TDSTRIP to strip the symbol table from the program and place it in
a .TDS file. .

The symbol table contains a set of symbols tied to relative memory
locations in your code. The symbols in the symbol table are all prefixed
by the characters #FILENAME#, where FILENAME is the name of your TSR
source file. For example, if your source file was called TSR.ASM and
contained a label Intr, the symbol # TSR# INTR marks a location in memory.

3. Execute your TSR from the DOS command line.

4. Run TDMEM (described in TD_UTILS.TXT) to obtain a memory map of
your computer. Note the segment address at which the resident portion
of your TSR is loaded.

5. Run Turbo Debugger and load your TSR's symbol table by choosing
File I Symbol Load and specifying the .TDS file you created with the
TDSTRIP utility.

6. Set a breakpoint at the beginning of the resident portion of the TSR.

7. Choose the File I Resident command to make Turbo Debugger go
resident.

S. At the DOS command line, execute the resident portion of your TSR by
pressing its hot key· and run through your program as usual.

When your program hits the breakpoint, Turbo Debugger activates with
your TSR paused at the beginning of the resident portion of the
program. However, to make things easier, synchronize the symbol table
with the code in memory.

The symbols in the symbol table are offset from each other by the
correct number of bytes, but the absolute location of the first symbol
isn't determined yet because DOS might have loaded your TSR at a
different absolute memory location than the one at which it was
assembled. For this reason, you must use the File I Table Relocate
command to explicitly locate the first symbol in memory.

9. Use File I Table Relocate to place the first symbol from the symbol table
at the proper location in memory. In this way, the symbolic information
present corresponds with your code. To do this, add 10 hex to the
segment address Seg of your TSR to account for the 256-byte program

Chapter 12, Debugging TSRs and device drivers 167

segment prefix (PSP). Use this number as the TSR segment address in
the Table Relocate command.

The disassembled statements from memory are synchronized with
information from the symbol table. If your source file is present, source
statements are printed on the same line as the information from the
symbol table.

10. Use the Goto command (Ctrl+G) in the CPU window to go to the segment
of RAM containing your TSR. Do this either by giving the segment
address of your TSR, followed by offset OOOOH, or by going to a specific
symbolic label in your code.

11. Debug the resident portion of your TSR.

Once you've finished debugging the TSR, exit the debugging session as
follows:

• If you loaded the TSR through Turbo Debugger, exit the debugger by
pressing AL T +X; the TSR will be unloaded automatically .

• If you're debugging a TSR that you loaded from DOS, run the TSR until
Turbo Debugger goes resident and press Ctrl+Break twice to bring up
Turbo Debugger. Press Alt+X to exit Turbo Debugger. This leaves the TSR
resident.

What's a device driver?

168

Device drivers are collections of routines used by DOS to control low-level
I/O functions. Installable device drivers (as opposed to those intrinsic to

, DOS) can be installed from your CONFIG.SYS using commands such as:

device = clock.sys

When DOS has to perform an I/O operation involving a single character, it
scans through a linked list of device headers looking for a device with the
appropriate logical name (for example, COMl). In the case of block device
drivers (such as disk drives), DOS keeps track of how many block devices
have been installed and designates each by a letter, with A for the first
block device driver installed, B for the second, and so on. When you make a
reference to drive C, for example, DOS knows to call the third block device
driver.

The linked list of device headers contains offsets to the two components of
. the device driver itself, the strategy routine and the interrupt routine.

When DOS determines that a given device driver needs to be invoked, it
calls the driver twice. The first time the driver is called, DOS talks to the

Turbo Debugger User's Guide

Debugging a
device driver

strategy routine and passes it a pointer to a memory buffer called the
request header. The request header contains information about what DOS
wants the device driver to do. The strategy routine simply stores this
pointer away for later use. On the second call to the device driver, DOS
invokes the interrupt routine, which does the actual work specified by DOS
in the request header, such as transferring characters in from a disk.

The request header specifies what the device driver is to do through a byte
in the request header called a command code. This specifies one of a
predefined set of operations all device drivers must perform. The set of
command codes is different for character device drivers than for block
device drivers.

The problem with debugging device drivers is that there is no .EXE file to
load into Turbo Debugger; drivers are installed when your computer boots
up and have extensions of .SYS, .COM or .BIN. To debug a device driver, it
must be resident in memory when you start Turbo Debugger. Hence the
functions to load and relocate symbol tables become very useful because
they can restore symbolic information to the disassembled segment of
memory where the device driver is loaded. The File I Resident command is
also very useful.

There are two approaches to debugging device drivers.· The first approach
is similar to the method shown on page 167 for debugging TSRs. Another
approach involves the remote debugging capabilities of Turbo Debugger.
To use this approach, read Appendix B for a description of remote
debugging, then debug your device driver using the following steps:

1. Compile the device driver with symbolic debug information.

2. Strip the symbolic debug information from the device driver using
TDSTRIP (described in TD_UTILS.TXT).

3. Copy the device driver to the remote system.

4. Modify your CONFIG.SYS file on the remote system so that it loads the
device driver when it boots up. Then, reboot the remote system to load
the device driver.

5. Run TDMEM on the remote system to obtain the memory location of
your device driver.

6. Load TDREMOTE on the remote system.

7. Load Turbo Debugger on the local system, connecting it to the remote
system.

8. Load in your device driver's symbol table into Turbo Debugger using
the File I Symbol Load command.

Chapter 12, Debugging TSRs and device drivers 169

170

9. Use the File I Table Relocate command to synchronize the first symbol of
the symbol table with the proper location in memory. In this way, the
symbolic information present will correspond with your code. To do
this, specify the segment address for your device driver (which you
determined using TDMEM) to the Table Relocate command prompt.

10. Set a breakpoint at the beginning of the device driver's code.

11. Choose the File I Resident command to make TDREMOTE go resident.

This has nothing todo with making your device driver memory
resident; it goes resident when you boot up the remote system. You
make TDREMOTE resident so you can return to DOS and do whatever
is necessary to invoke your device driver.

12. At the DOS command line on the remote system, perform a command
to activate your device driver. For example, send information to
whatever device it controls.

13. When your-program hits the breakpoint, Turbo Debugger displays the
device driver's source code at the appropriate point and you can begin
debugging your code. (To reenter Turbo Debugger while DOS is
running, press Ctrl+Break.)

Turbo Debugger User's Guide

A p p E N D x A

Command-line options

If you start Turbo Debugger from a command line (as described on page
19), you can use the following syntax to configure certain Turbo Debugger
options: .

TD I TDW I TD32 [options] [program_name [program_args]]

You can use this syntax to startTD.EXE, TDW.EXE, or TD32.EXE from a
command line. In the syntax; items enclosed in square brackets are
optional. The options item represents Turbo Debugger's command-line
options.

Command-line option details

Attaching to a
running process

All Turbo Debugger command-line options start with a hyphen (-) and
must be separated from other items in the command line by at least one
space. To explicitly tum a command-line option off, follow the option with
another hyphen. For example, -p- disables the mouse.

Any settings you specify using command-line options will take precedence
over the settings loaded from Turbo Debugger's configuration files.

The following sections describe Turbo Debugger's command-line options in
detail. Unless otherwise noted, all options work the same for TD, TDW, and
TD32. .

The -a options, used orily by TD32, lets you attach Turbo Debugger to a
process that's already running under Windows NT. See "The Attach
command" on page 50 for details on attaching to a running program.

-ar# The -ar option attaches TD32 to process identification number #.
The process will continue to run after the attachment is made.

-as# The -as option is the same as the -ar option, except that TD32
gains control when the attachment is made.

Appendix ~, Command-line options 171

Loading a specific
configuration file
(-c)

Display updating
(-d options)

Getting help (-h
and -? options)

Session restart
modes (-j options)

172

By default TD.EXE loads the configuration file TDCONFIG.TD, TDW.EXE
loads TDCONFIG.TDW, and TD32.EXE loads TDCONFIG.TD2, if the files
exist. The -cfilename option lets you load a different configuration file,
specified by filename. There must not be a space between -c and the file
name.

For example, the following command loads the configuration file
MYCONF.TDW and the program MYPROG:

TDW -cMYCFG.TDW MYPROG

The -d options, used by TD and TDW, affect the way Turbo Debugger
updates the display.

-do The -do option enables dual-monitor debugging. This lets you view
your program's screen on the primary display and Turbo
Debugger's on the secondary one. For more information on dual­
monitor debugging, see "Dual-monitor debugging" on page 9.

-dp The -dp option, used only with TD.EXE, enables screen flipping­
Turbo Debugger is displayed on one screen page and the program
you're debugging is displayed on a second screen page. Screen
flipping minimizes the time it takes to switch between the
debugger's screens and your program's. To use this mode, your
display adapter must support multiple screen pages and the
program you're debugging must not use screen paging .

..;..ds This option, known as screen swapping, maintains separate screen
images in memory for both the debugger and for the program
you're debugging. These images are then "swapped" back and
forth from memory as each program runs.

Although this technique is the most time-consuming method for
displaying the screens, it is the most reliable method. Because of
this, display swapping is turned on by default for all displays.

The -h and -? options display a help window that describes the
command-line syntax and command-line options that are available with
each debugger.

The -j options specify how Turbo Debugger should handle the session~state
files (described on page 23) when it starts. The options work as follows:

-ji Don't use the session-state file if you've recompiled your program.

Turbo Debugger User's Guide

Keystroke
recording (-k)

Assembler-mode
startup (-I)

Mouse support
(-p)

Remote
debugging (-r
options)

Source code
handling (-s
options)

The -sd option
doesn't change the

starting directory.

-jn Turn off session-state restoring (do not use the restart file).

-jp Prompt if the program has been recompiled since the session-state
file was created.

-ju Always use the session-state file, even if it's old.

The -k option, used only by TD.EXE, enables keystroke recording. When
keystroke recording is turned on, all keystrokes you type during a
debugging session will be recorded to a disk file, including the keys you
press in Turbo Debugger and the keys you press inside your program.
Keystroke recording lets you easily recover a previous point in your
debugging session. For more information on keystroke recording, see "The
Keystroke Recording pane" on page 31.

The -I (lowercase eli) option forces the debugger to start in assembler
mode. In this mode, Turbo Debugger does not execute your program's
startup code as it's loaded into the debugger (which it normally does). Use
this option when you want to debug your program's startup code, or the
startup code to a DLL.

The -p option enables mouse support. However, since the default for
mouse support is On, this option is normally used to turn mouse support
off (-p-).

If the mouse driver is disabled for Windows, it will also be disabled for
Turbo Debugger. In this case, the -p option has no effect.

The -r, -rnL;R, -rp#, and -rs# options, used by TD and TDW, are fully
described on page 183.

-sc

-sd

The -sc option causes Turbo Debugger to ignore the case when
you enter symbol names, even if your program was linked with
case sensitivity enabled.

Without the -sc option, Turbo Debugger ignores case only when
you've linked your program with the case ignore option enabled.

The -sd option lets you specify one or more directories that Turbo
Debugger should search through to find the source code for your
program. The syntax for this option is:

-sddirname[idirname ...]

Appendix A, Command-line options 173

Starting directory
(-t)

Video hardware
handling (-v
options)

Windows crash
message
checking (-wc)

Windows DLL
checking (-wd)

174

To specify multiple directories, separate each directory name with
a semicolon (;). TOW searches for directories in the order specified.
dirname can be a relative or absolute path and can include a disk
letter. If the configuration file specifies any directories, the ones
specified by the -sd option are added to the end of that list. See
page 23 for details on how Turbo Debugger searches for source
code.

The -tdirname option changes the directory where Turbo Debugger looks
for its configuration file and for .EXE files not specified with a full path.
There must not be a space between the option and the directory path name,
and only a single directory can be specified with this option.

All-v options, used only by TD.EXE, affect how Turbo Debugger handles
the video hardware.

-vg Saves complete graphics image of your program's screen. Enabling
this option uses an extra 8K of memory, but it lets you debug
programs that use certain graphic display modes. Try this mode if
your program's graphic screens become corrupted when you're
running under TD.EXE.

-vn Disables the 43/50-line display under TD.EXE. You can save some
memory by using this option when you know you won't be
switching to 43/50-line mode.

-vp Enables the EGA/VGA palette save. If your program alters the
EGA/VGA palette, use this option to have TD.EXE save your
program's palette to memory.

The -we option, used only by TOW, disables Turbo Debugger's system
crash checking, which is turned on by default.

If your program generates Turbo Debugger's System crash possible. Continue?
error message, you can use this option to turn the message off. Normally,
this error message is generated after you have paused your program's
execution with the system interrupt key and then begin to single step.
When you disable the system crash checking, Turbo Debugger issues the
message only once, and not as you continue to single step through your
program.

The -wd option, used only by TOW, enables DLL checking by Turbo
Debugger. When this option is turned on (the default setting), Turbo
Debugger makes a check when your program is loaded to see if all the

Turbo Debugger User's Guide

DLLs used by your program are available. By turning this option off, you
can disable the check for the DLLs.

Command-line option summary

Table A.llists all of Turbo Debugger's command-line options.

Table A.1
Turbo Debugger's

command-line
options

Option

-ar#
-as#

-cfilename

-do
-dp
-ds

-h,-?

-ji
-jn
-jp
-ju

-k

-I

-p

-r
-rnL;R
-rp#
-rs#

-sc

-sdditl;dir. ..]

-tdirectory

-vg
-vn
-vp

-wc
-wd

Appendix A, Command-line options·

Description

Attach to process id number # and continue running process.
Attach to process id number # and give control to Turbo Debugger.

Use filename configuration file.

Display TD.EXE or TDW.EXE on secondary display.
Enable page flipping for TD.EXE.
Swap Turbo Debugger and user screens to memory.

Display help screen listing all command-line options.

Ignore old saved-state information.
Don't use saved-state information.
Prompt if saved-state information is old (default).
Use saved-state information, even if old.

Enable keystroke recording for TD.EXE:

Assembler startup code debugging for applications and DLLs (this option
letter is a lowercase ell).

Enable/disable mouse (default is on).

Starts TD.EXE or TDW.EXE with default remote-debugging settings.
Remote debugging over a network.
Set port for remote serial debugging.
Set speed for remote serial debugging.

No case-checking of symbols for search strings.

Source-file search directories.

Set starting directory for loading configuration and executable files.

Save program graphics screen (TD.EXE only).
Disable 43/50 line display ability for TD.EXE.
Enable EGAlVGApaiette save for TD.EXE.

Enable/disable System Crash Possible error message (default is enabled).

Enable/disable checking for the presence of all your program's DLLs (default
is on).

175

176 Turbo Debugger User's Guide

A p p E N D x B

Remote debugging

TD and TDW support remote debugging, which lets you run Turbo
Debugger on one computer and the program you're debugging on another.
The two systems can be connected either through serial ports or through a
NETBIOS-compatible local area network (LAN).

Remote debugging is useful in several situations:

• If your program uses a lot of memory, and you can't run Turbo Debugger
and your program on the same computer.
If you receive any memory allocation errors while debugging your
program, try using two systems to debug your program. The remote
debugging drivers (TDREMOTE and WREMOTE) use far less memory
than does Turbo Debugger, so the program you're debugging will
behave more like it does when it's running without the debugger in the
background.

• If you need to debug a device driver.
• If your system has a single monitor, and you don't want to swap screens

between Turbo Debugger's character mode screens and your program's
graphics mode screens. (However, you might also want to try dual­
monitor debugging. For more information on this, see "Dual-monitor
debugging" on page 9.)

Hardware and software requirements

You can use either a serial connection or a LAN connection for the remote
session. Although the two setups use different hardware, both share the
following requirements:

• A development system with enough memory to load Windows and
Turbo Debugger. This is the local system.

• A second PC with enough memory to load Windows, the remote
debugging driver (TDREMOTE or WREMOTE), and the Windows
program you want to debug. This is the remote system.

Appendix 8, Remote debugging 177

For a serial connection, you'll need a null-modem cable to connect the serial
ports of the two systems; regular serial cables won't send and receive the
signals correctly. At the very least, the null-modem cable must swap the
transmit and receive lines (lines 2 and 3 on 9-pin and 2S-pin cables) of a
regular serial cable.

For a LAN connection, you'll need a LAN running Novell Netware­
compatible software (IPX and NETBIOS version 3.0 or later). NETBIOS
must be loaded onto both the local and remote systems before either Turbo
Debugger or the remote driver can be loaded.

Starting the remote debugging session.

"Remote DOS
debugging" on page

185 describes
debugging DOS

applications with a
remote connection.

Setting up the.
remote system

Configuring and
starting
WREMOTE

178

To initiate a remote debugging session, you must:

1. Set up the remote system.

2. Configure and start WREMOTE, the remote debugging driver.

3. Start and configure TDW on the local system.

4. Load the program for debugging.

Before you can begin a remote debugging session, the remote system must
contain the following files:

• The program you're debugging.
The setup on the remote system must include all program support files,
such as data input files, configuration files, help files, Windows DLL files,
and so on. Set up these files as you would in a normal debugging session.
For information on loading your program's .EXE file onto the remote
system, see" Automatic file transfer" on page 183.

• WREMOTE.EXE, the remote debugging driver.
• WRSETUP.EXE, the configuration program for WREMOTE.EXE.

Before you run WREMOTE, you must first run WRSETUP to establish the
communication settings. When you run WRSETUP (by clicking the Remote
Setup icon), a window opens displaying the commands File, Settings, and
Help. Choose Settings to access the Remote Driver Setting dialog box:

Turbo Debugger User's Guide

Figure B.1
WRSETUP main

window and
Settings dialog box

Serial configuration

LAN configuration

Remote Driver Settings

o i:~I~:~~~I~::~i.~~:~:I~!.~r.i.~~!~1
[8J quit when host quits

Starting !!.irectory:

Remote type

@.s.erial

o Network

Nl!twork {l!lIlote name:

IREMOTE

Baud rate

O~600

@192!!0

o 3.!1.400

011,5.000

Comm port

@COMI

OCOMl

OCOMl

OCOM~

If you're using a serial connection:

1. Click the Serial radio button.

2. Choose the rate of communications by clicking the appropriate Baud
Rate radio button. If you're using the higher transmission speeds (38,400
or 115,000 baud), click the Disable Clock Interrupts check box to help
TDW make a reliable connection with WREMOTE.

3. Choose the communications port that works for your hardware setup
by clicking the appropriate Comm Port radio button.

4. Enter the directory location of your program in the Starting Directory
input box.

5. If you want WREMOTE to return control to Windows when you
terminate Turbo Debugger on the local machine, click the Quit When
Host Quits check box.

By default, WREMOTE uses a link speed of 19,200 baud, with
communications over COM1.

If you're using a LAN connection:

1. Click the Network radio button.

2. Specify the remote system name in the Network Remote Name input
box.

Appendix B, Remote debugging 179

Saving the
communication
settings

Starting WREMOTE

WREMOTE
command-line
options

180

Table B.1
WREMOTE

command-line
options

By default, the remote system name is REMOTE. For information on
naming the local and remote systems, see "Local and remote system

. names" on page 184.

3. Enter the directory location of your program in the Starting Directory
input box.

4. If you want WREMOTE to return control to Windows when you
terminate Turbo Debugger on the local machine, check the Quit When
Host Quits check box.

After you've set your options and closed the WRSETUP window,
WRSETUP saves your settings to TDW.INI in your Windows directory. The
following excerpt from a TDW.INI file shows the WREMOTE settings when
you have chosen a serial connection at 19,200 baud on COM2 with clock
interrupts disabled and program control returning to Windows when
Turbo Debugger terminates:

[WRernote)
BaudRate=19200
Port=2
Quit=l
Clock=O
Directory=C:\MYPROJ
Type=l
RernoteNarne=REMOTE

Once WREMOTE is properly configured, you can load it by clicking the
Remote Debugging icon, by using the Windows File I Run command, or by
using the Windows File Manager. After starting WREMOTE, the mouse
cursor on the remote system displays an hourglass, indicating that it's
waiting for you to start TOW at the other end of the link. (To terminate .
WREMOTE while it's waiting to establish a connection with TDW, press
Ctrl+Break on the remote machine.)

If needed, you can use WREMOTE command-line options to override the
remote settings in the TDW.INI file. Start an option with either a hyphen (-)
or a slash (/), using the following syntax:

WREMOTE [options) [progname [progargs))

Option

-c<fiIename>

-d<dif>

Description

Uses <filename> as the configuration (.lNI) file

Uses <dil> as the startup directory

Turbo Debugger User's Guide

Starting and
configuring TOW

Serial configuration

Table B.1: WREMOTE command-line options (continued)

-h or -? Displays the help screen

-rcO
-rc1

-rn<remotename>

-rp1
-rp2
-rp3
-rp4

-rqO
-rq1

-rs1
-rs2
-rs3
-rs4

Enables clock interrupts
Disables clock interrupts

Uses remote LAN debugging

Uses port 1 (COM1); default
Uses port 2 (COM2)
Uses port 3 (COM3)
Uses port 4 (COM4)

Doesn't return to Windows when you exit Turbo Debugger
Returns to Windows when Turbo Debugger exits .

Uses slowest speed (9,600 baud)
Uses slow speed (19,200 baud); default
Uses medium speed (38,400 baud)
Uses fast speed (115,000 baud)

After you've started WREMOTE, you can start TDW. However, before
connecting TDW to WREMOTE, it must be configured for the remote
session.

The easiest way to configure TDW for the remote debugging session is
through the debugger's File I Open command. However, you can also use
TDWINST's Options I Miscellaneous command or TDW's command-line
options to configure the remote debugging session (for information on the

, command-line options, see "TDW's remote command-line options" on
page 183).

When you use a null modem cable to connect the local and remote systems,
you must specify both the communication rate and the serial port that
TDW will use for the connection. To initiate a serial remote debugging
session:

1. Start WREMOTE on the remote system (as previously described in this
chapter).

2. Start TDW, and choose File I Open to open the Load a New Program to
Debug dialog box.

3. Click the Session button to open the Set Session Parameters dialog box.

4. Click the Serial Remote radio button. (Click the Local radio button if
you're not using remote debugging.)

5. Choose the serial port of the local system by clicking the appropriate
Remote Link Port radio button.

Appendix B, Remote ,debugging 181

LAN configuration

Initiating the remote
link

182

6. Choose the serial communications speed by clicking the appropriate
Link Speed radio button.

7. Click OK to accept the serial communication settings and return you to
the Load a New Program to, Debug dialog box.

Although the local and remote systems can use different serial ports for the
remote link, the link speeds of the two systems must match for the serial
connection to work.

To configure TDW for a remote debugging session on a NETBIOS local area
network: I

1. Start WREMOTE on the remote system (as previously described in this
chapter).

2. Start TDW, and choose File I Open to open the Load a New Program to
Debug dialog box.

3. Click the Session button to open the Set Session Parameters dialog box.

4. Choose the Network Remote radio button.

5. Specify the local and remote system names:

By default, Turbo Debugger sets the local and remote system names to
LOCAL and REMOTE, respectively. However, if there is more than one
remote debugging session running over the same network, you'll have
to specify your own system names to uniquely identify the systems
you're using.

6. Click OK to accept the LAN communication settings and return you to
the Load a New Program to Debug dialog box.

Once you've configured TDW for the remote debugging session, load your
program using the Load a New Program to Debug dialog box (described on
page 21). When you load your program, TDWdisplays the copyright and
version information of TDW, and the following message:

Waiting for handshake from remote driver (Ctrl+Break to quit)

While waiting for a connection, an hourglass is displayed on the remote
system. If the link is successful, the hourglass disappears, and Turbo
Debugger's normal display appears on the local machine. (Press Ctrl+Break to
exit TDW if the link is not successful.)

Once you start TDW in remote mode, the Turbo Debugger commands
work exactly the same as they do on a single system; there is nothing new
to learn. If you access TDW's CPU window, the remote system's CPU type
is listed as part of the CPU window title with the word REMOTE before it.

Turbo Debugger User's Guide

Automatic file
transfer

TDWsremote
debugging
command-line
options

Table B.2
TDWs remote

debugging
command-line

options

Because the program you're debugging is actually running on the remote
system, any screen output or keyboard input to that program happens on
the remote system. The Window I User Screen command has no effect when
you're running on the remote link.

Once you make a remote connection and load a program into TDW, the
debugger automatically checks to see if your program needs to be sent to
the remote system.

TDW is smart about loading programs onto the remote system. First, a
check is made to see if the program exists in the working directory of the
remote system. If the program doesn't exist on the remote system, then it's
sent over the link right away. If the program does exist on the remote
system, Turbo Debugger checks the time stamp of the program on the local
system and compares this with the copy on the remote system. If the
program on the local system is later (newer) than the remote copy, Turbo
Debugger presumes you've recompiled or relinked the program, and sends
it over the link.

At the highest serial link speed (115,000 baud), file transfers move at a rate
of approximately 10K per second. Thus, a 60K program takes roughly six
seconds to transfer. To indicate that the system is working, the screen on
the remote system adds up the bytes of the file as Turbo Debugger
transfers it.

Automatic file transfer can save time and energy. However, TOW transfers
only .EXE files; Windows DLL files and other program support files are not
transferred to the remote system via automatic file transfer.

If you use TDWINST or TDW's command-line options to configure TDW,
you must do so before you load TDW. For instructions on using TDWINST,
see the online file TD_UTILS.TXT. For details on TOW's remote command­
line options, see Table B.2.

If you started TOW without first configuring it for remote debugging, use
TOW's File I Open command to configure the remote settings.

Option Description

-r Initiates remote debugging using the default settings.

-rnL;R Uses remote LAN debugging (see the following section titled "Local and Remote system

-rp1
-rp2
-rp3

names" for more information).

Uses port 1 (COM1); default
Uses port 2 (COM2)
Uses port 3 (COM3)

Appendix 8, Remote debugging 183

Local and remote
system names

Local and remote
system names can be
up to 16 characters in

length.

184

Table B.2: TDWs remote debugging command-line options (continued)

-rp4 Uses port 4 (COM4)

-rs1 Uses slowest speed (9,600 baud)
-rs2 Uses slow speed (19,200 baud); default
-rs3 Uses medium speed (38,400 baud)
-rs4 Uses high speed (115,000 baud)

Here's a typical TDW command to start a serial remote connection:

TDW -rs3 myprog

This command begins the link on the default serial port (usually COM1), at
the link speed of 38,400 baud. In addition, the program myprog is loaded for
debugging.

The -rnL;R command-line option takes two optional parameters: the local
system name and the remote system name, separated by a semicolon.

Since both parameters are optional, there are four ways to use the -rn
command-line option with Turbo Debugger. The following commands all
load Turbo Debugger, specify a remote LAN connection, and load the
program filename for debugging.

TDW -rn filename

TDW -rnLOCALl filename

TDW -rniREMOTEl filename

TDW -rnLOCALliREMOTEl filename

The first command uses default names for both the local and remote
systems, LOCAL and REMOTE respectively. The second command specifies
LOCALl as the local system name, but uses the default name (REMOTE) for the
remote system. The third command uses the default name for the local
system (LOCAL), but specifies REMOTEl as the remote system name. Finally, the
fourth command specifies both local and remote system names.

The need to specifically name local and remote systems arises only when
there are simultaneous remote debugging sessions running on a network. If
only one person on a network is using TDW's remote debugging feature,
then it isn't necessary to define special local and remote system names.

Turbo Debugger User's Guide

Remote DOS debugging

Differences
between
TDREMOTE and
WREMOTE

Table B.3
TDREMOTE

command-line
options

You can use TD to debug DOS applications over a remote link just as you
use TDW to debug Windows applications remotely. In fact, using TD over
a remote link is exactly the same as using TDW over a remote link except
that you use the remote driver TDREMOTE on the remote system instead
of using WREMOTE. Because of this, you can follow the instructions for
remote debugging a Windows application (starting on page 178 with
"Starting the remote debugging session") to debug a DOS application over
a remote lin~. To use the TDW instructions, substitute TD for TDW, and
TDREMOTE for WREMOTE.

Although the instructions for debugging a Windows application over a
remote link can be used for DOS applications, there is one difference:
TDREMOTE does not have a setup program (as does WREMOTE). Because
of this, you must use command-line options_Jo configure TDREMOTE
when you start it. Use the following to configure TDREMOTE:

TDREMOTE [options]

The following table summarizes TDREMOTE's command-line options:

Option

-h or-?

-rn<remotename>

-rp1
-rp2
-rp3
-rp4

-rs1
-rs2
-rs3
-rs4

Description

Displays the help screen

Uses remote LAN debugging

Uses port 1 (COM1); default
Uses port 2 (COM2)
Uses port 3 (COM3)
Uses port 4 (COM4)

Uses slowest speed (9,600 baud)
Uses slow speed (19,200 baud)
Uses medium speed (38,400 baud)
Uses fast speed (115,000 baud); ~efault

Each TDREMOTE command-line option must be prefixed with either a
hyphen (-) or a slash (/), and it must be separated by other options by a
space.

Before starting TDREMOTE, be sure the directory on the remote system is
set to the directory that contains the program files. This is essential because
TDREMOTE puts the program to be debugged into the directory that is '
current when you start Turbo Debugger.

Appendix B, Remote debugging 185

Transferring files
to the remote
system

When loaded, TDREMOTE signs on with a copyright message, then
indicates that it's waiting for you to start TD.EXE at the other end of the
link. To stop and return to DOS, press Ctrl+Break.

To transfer files to the remote DOS system, you can use either floppy disks
or TDRF.EXE, the remote file-transfer utility. (The online file
TD_UTILS.TXT describes TDRF.EXE) .

To send files over to the remote system while running Turbo Debugger,
choose File I as Shell to obtain a DOS prompt and use TDRF to transfer the
necessary files. To return to Turbo Debugger, type EXIT at the DOS prompt.

Troubleshooting

186

Here's a list of troubleshooting techniques you can try if you experience
problems with the remote setup:

• Check your cable hookups. This is the most common cause of problems.

• Check to make sure you're using the correct serial port settings (you
must use the same link speed on both the local and remote systems) or
that you're properly connected to the network.

• With serial connections, try successively slower baud rates until you find
a speed that works.

• Some hardware and cable combinations don't always work properly at
the highest speed. If the link works only at slower speeds, try a different
cable or, if possible, different computers.

• If you can't get the serial connection to work at any speed when you're
using TDW, use WRSETUP to Disable clock interrupts and try running the
link at 9,600 baud. If that works, try successively higher communication
speeds.

Turbo Debugger User's Guide

A p p E N D x c

Turbo Debugger error messages

Turbo Debugger can display a variety of messages while you're debugging
your program. This Appendix lists the following types of messages:

• Messages generated by TD, TDW, and TD32.

• Status messages listed in the Get Info dialog box and in the Thread Detail
pane of the Threads window (page 198).

• Messages generated by TDREMOTE (page 199).

• Messages generated by WREMOTE (page 200).

TO, TOW, and T032 messages

This section gives an alphabetical listing of the messages generated by
TDW and TD32. Following each message listing is a description that
suggests how to handle the message.

Messages can be either error messages (some of them fatal) or messages
that prompt you for information. You can easily distinguish an error
message from a prompt if you turn on Error Message Beeps in TDWINST
or TD32INST.

Fatal messages cause Turbo Debugger to exit to Windows. Although some
fatal errors occur when you start Turbo Debugger, others can occur while
you're in the middle of debugging your program. In either case, after
having solved the problem, your only remedy is to restart Turbo Debugger.

Turbo Debugger displays messages that prompt for information in a dialog
box. The title bar of the dialog box contains a description of the type of
information that's needed. In some cases, the dialog box will contain a
history list of the previous responses you've given.

You can respond to message prompts in one of two ways:

• Enter a response and press Enter.

• Press Esc to cancel the dialog box.

Appendix C, Turbo Debugger error messages 187

I)' expected
While evaluating an expression, Turbo Debugger found a left parenthesis without a matching right parenthesis.

I:' expected
While evaluating a C expression, a question mark (?) separating the first two expressions of the ternary operator (? :) was
encountered, but the colon (:) that separates the second and third expressions was not found.

']' expected
While evaluating an expression, Turbo Debugger found a left bracket ([) without a matching right bracket (]).

This error can also occur when entering an assembler instruction using the built-in assembler. In this case, a left bracket
was encountered that introduced a base or index register memory access, and there was no corresponding right bracket.

All threads frozen
You've tried to run or step your Windows NT program after freezing all program threads. For the program to be able to run,
you must unfreeze at least one thread using the Options command on the Threads window's SpeedMenu.

Already logging to a file
You issued an Open Log File command after having already issued the same command without an intervening Close Log
File command. If you want to log to a different file, first close the current log by issuing the Close Log File command.

Already recording, do you want to abort?
You're already recording a keystroke macro. You can't start recording another keystroke macro until you finish the current
one. Press Yto stop recording the macro, or press Nto continue recording.

Ambiguous symbol name
You used a symbol in an expression that does not uniquely identify a C++ member function. Before the expression can be
evaluated, you must pick a valid symbol from the list of member functions.

Bad configuration file
Turbo Oebuggers configuration file is corrupted.

Bad or missing configuration file
You have specified a nonexistent, corrupted, or outdated file name with the -c command-line option.

Can't do this when debugging an attached process
You cannot reset a program (Ctrl+F2) after you have attached to it using TD32's FilelAttach command.

Can't execute DOS command processor
You've issued the FilelOS Shell command, and Turbo Debugger cannot find COMMAND.COM. Either COMMAND.COM or
the COMSPEC environment variable is corrupted.

Can't find filename.DLL

188

This message is generated by Turbo De,bugger in two situations:

• You're attempting to load a program that requires one or more DLLs into Turbo Debugger, and the debugger can't locate
one of the .DLL files. The DLLs with symbol tables required by your executable must be in the same directory as the
program you're debugging .

• You are attempting to load TDW, and the program can't find TDWINTH.DLL. Either you have an invalid file name or path
in the DebuggerDLL e'ntry in TDW.INI, or TDW can't find TDW.IN!.

Either edit the DebuggerDLL entry in TDW.INI to reflect the correct path and file name, or if there is no TDW.INI, move
TDWINTH.INI to the main Windows directory.

Turbo Debugger User's Guide

Can't have more than one segment override
You attempted to assemble an instruction where both operands have a segment override. Only one operand can have a
segment override. For example,

moves: [bxl ,ds:l
should have been

moves: [bxl, 1

Can't load
You specified a bad DLL name in the TDW.INI file.

Can't run TOW on Windows NT
You must use TD32 to debug a 32-bit Windows NT program.

Can't set a breakpoint at this location
You tried to set a breakpoint in ROM or in segment O. The only way to view the execution of ROM code is to step though it
at the instruction level using AIt+F7.

Can't set any more hardware breakpoints
The hardware debugging registers have already been allocated by other hardware breakpoints. You can't set another
hardware breakpoint without first deleting one you have already set.

Can't set hardware condition on this breakpoint
You've attempted to set a hardware condition on a breakpoint that isn't a global breakpoint. Hardware conditions can only
be set on global breakpoints.

Can't set that sort of hardware breakpoint
The hardware device driver that you have installed in your CONFIG.SYS file can't do a hardware breakpoint with the
combination of cycle type, address match, and data match that you have specified.

Cannot access an inactive scope
The expression you entered contains a symbol that isn't contained in the current scope. See page 109 for information on
scope overrides.

Cannot be changed
You tried to change a symbol that can't be changed. The only symbols that can be changed directly are scalars (int, long,
and so forth) and pointers. If you want to change data in a structure or array, you must change the individual elements one
at a time.

Constructors and destructors cannot be called
This error message appears only if you're debugging a program that uses objects. You tried to evaluate a member function
thats either a constructor or a destructor; Turbo Debugger cannot evaluate expression that create or destroy objects.

Count value too large
In the Dump pane of the CPU window, you've entered too large a block length to one of the SpeedMenu Block commands.
The block length can't exceed FFFFFh.

Destination too far away
You attempted to assemble a conditional jump instruction where the target address is too far from the current address. The
target for a conditional jump instruction must be within -128 and 127 bytes of the instruction itself.

Device error - Retry?
An error has occurred while writing to a character device, such as the printer. This could be caused by the printer being
unplugged, offline, or out of paper. Correct the condition and then press Yto retry or Nto cancel the operation.

Appendix C, Turbo Debugger error messages 189

Disk error on drive _ - Retry?
A hardware error has occurred while accessing the indicated drive. This might mean you don't have a floppy disk in the
drive or, in the case of a hard disk, it might indicate an unreadable or unwriteable portion of the disk. You can press Y to
retry the disk read, or, press N to cancel the operation.

Display adapter not supported by filename
The video driver filename indicated in the VideoDLL entry in TDW.INI does not support your display adapter. For more
information on video DLL, see the section describing TDWINI,EXE in the online file TD_UTILS.TXT.

Divide by zero
You entered an expression using a divide (/, div) or modulus operator (mod, %) where the divisor evaluates to zero.

Dll already in list
In the ViewlModules dialog box, you tried to add a DLL to the DLLs & Programs list, but the DLL was already in the list.

Dll not loaded
You tried to load a DLLs symbol table before the DLL has been loaded by Turbo Debugger. Make sure that the DLL is
loaded before explicitly trying to load its symbol table.

Edit program not specified
You must first specify an editor using TD321NST before you can issue TO 32's Edit command.

Error ## loading _
Error number ## occurred when you attempted to load the DLL listed in the error message.

Error loading filename
Turbo Debugger was unable to load the video driver filename. The video driver could be an invalid driver file or it could be
corrupted. For more information on video drivers, refer to the section describing TDWINI,EXE in the online file
TO_UTI LS.TXT.

Error opening file _
Turbo Debugger couldn't open the file that you want to view in the File window. Check to ensure that the file name and path
are correct.

Error reading block into memory
The block you specified could not be read from the file into memory. You probably specified a byte count that exceeded the
number of bytes in the file.

Error saving configuration
Turbo Debugger couldn't write your configuration to disk. Make sure that your disk contains enough free space for the file.

Error writing block to disk
The block you specified couldn't be written to the disk file. You probably entered a count that exceeded the amount of free
space available on your disk.

Error writing log file _
An error occurred while writing from the Log window to the log file. The file name you supplied for the Open Log File
SpeedMenu command can't be opened because there's not enough room to create the file or because the disk, directory
path, or file name you specified is invalid. Either make room for the file by deleting some files from your disk, or supply a
correct disk, path, and file name.

Error writing to file

190

Turbo Debugger couldn't write your changes back to the disk. The file might be marked as read-only, or an error might have
occurred while writing to disk.

Turbo Debugger User's Guide

Expression too complex
The expression you supplied is too complicated; you must supply an expression that has fewer operators and operands.
You can have up to 64 operators and operands in an expression.

Expression with side effects not permitted
You have entered an expression that modifies a memory location when it gets evaluated. There are several places where
Turbo Debugger doesn't allow this type of expression; for example, in Inspector windows.

Extra input after expression
You entered an expression that was valid, but there was more text after the valid expression. This sometimes indicates that
you omitted an operator in your expression. You could also have entered a number in the wrong syntax for the language
you're using. For example, you might have entered OxFOOO instead of OFOOOh as an assembler expression.

Fatal memory error
The Windows memory manager reported a fatal error to Turbo Debugger.

Help file _ not found
You asked for help, but Turbo Debugger's help file couldn't be found. Make sure that the help file is in the same directory as
the debugger program.

Immediate operand out of range
You entered an instruction that had a byte-sized operand combined with an immediate operand that is too large to fit in a
byte. For example,

add BYTE PTR[bxl,300
should have been

add WORD PTR[bxl,300

Initialization not complete
You have attempted to access a variable in your program before the data segment has been set up properly by the
compiler's initialization code. You must let the compiler execute to the start of your source code before you can access most
program variables.

Invalid argument list
The expression you entered contains a function call that does not have a correctly formed argument list. An argument list
starts with a left parenthesis, has zero or more comma-separated expressions for arguments, and ends with a right
parenthesis.

Invalid character constant
The expression you entered contains a badly formed character constant. A character constant consists of a single quote
character (') followed by a single character, ending with another single quote character.

Invalid format string
You have entered an invalid format control string after an expression. See Chapter 7 for a description of format strings.

Invalid function parameter(s)
You entered an expression that calls a function, but you supplied incorrect arguments to the call.

Invalid instruction
You entered an instruction to assemble that had a valid instruction mnemonic, but the operand you supplied was invalid.

Invalid instruction mnemonic
When entering an instruction to be assembled, you failed to supply an instruction mnemonic. An instruction consists of an
instruction mnemonic followed by optional arguments. For example,

M,123

Appendix C, Turbo Debugger error messages 191

should have been
MOVax,123

Invalid number entered
You entered an invalid number in a dialog box. For example, in a File window, you typed an invalid number to go to. Here,
entries must be integers greater than zero.

Invalid operand(s)
The instruction you're trying to assemble has one or more operands that aren't allowed. For example, a MOV instruction
cannot have two operands that reference memory, and some instructions only work on word-sized operands. For example,

POP al
should have been

POP ax

Invalid operator/data combination
You've entered an expression where the operator can't perform its function with the type of operand supplied. For example,
you cannot multiply a constant by the address of a function.

Invalid pass count entered
You have entered a breakpoint pass count that is not between 1 and 65,535. Pass counts must be greater than 0; a pass
count of 1 means that the breakpoint can activate the first time its encountered.

Invalid register
You entered an invalid floating-point register as part of an instruction being assembled. A floating-point register consists of
the letters ST, optionally followed by a number between 0 and 7 within parentheses; for example, 8T or 8T(4).

Invalid register combination in address expression
When entering an instruction to assemble, you supplied an operand that did not contain one of the permitted combinations
of base and index registers. An address expression can contain a base register, an index register, or one of each. The base
registers are BX and BP, and the index registers are 81 and 01. Here are the valid address register combinations:

BX BX+S1
BP BP+S1
DI BX+DI
S1 BP+D1

Invalid register in address expression
You entered an instruction to assemble using an invalid register as part of a memory address expression between brackets
([D. You can only use the BX, BP, 81, and 01 registers in address expressions.

Invalid switch:
You supplied an invalid option switch on the command line. Appendix A discusses each command-line option in detail.

Invalid symbol in operand
When entering an instruction to assemble, you started an operand with a character that cannot be used to start an operand:
for example, the colon (:).

Invalid typecast

192

A correct typecast starts with a left parenthesis, contains a possibly complex data type declaration (excluding the variable
name), and ends with a right parenthesis. For example,

(x *)p

should have been
(struct x *)p

Turbo Debugger User's Guide

Invalid value entered
When prompted to enter a memory address, you supplied a floating-point value instead of an integer value.

Invalid window handle
In TOW, you tried to indicate a window using a window handle. The handle must be initialized before it can be used to
specify a window for message tracking. Run your program past the point where the handle is initialized.

Invalid _, missing _
This fatal error message occurs when you have written your own video or keyboard DLL to work with Turbo Debugger, but
have left out a section in the DLL. The name of the DLL is given in the first field, and the missing section is listed in the
second field.

Keyword not a symbol
The expression you entered contains a keyword where a variable name was expected. You can only use keywords as part
of typecast operations, with the exception of the sizeof special operator. For example,

floatval = char charval
should have been

floatval = char (charval)

Left side not a record, structure, or union
You entered an expression that used one of the C structure member selectors (. or -». This symbol, however, was not
preceded by a structure name, nor was it preceded by a pointer to a structure.

No C or C++ exception handler
You tried to access the Module window's SpeedMenu Exception command. To access this command, your program must
include exception-handling routines.

No coprocessor or emulator installed
You tried to open a Numeric Processor window using the ViewlNumeric Processor command, but there is no numeric
processor chip installed in your system, and the program you're debugging either doesn't use the software emulator or the
emulator has not been initialized.

No hardware debugging available
You have tried to set a hardware breakpoint, but you don't have the hardware debugging device driver installed. You can
also get this error if your hardware debugging device driver does not find the hardware it needs. See page 80 for more
information on hardware breakpoints.

No help for this context
You pressed F1 to get help, but Turbo Debugger could not find a relevant help screen. Please report this to Borland
Technical Support.

No modules have line number information
You issued the ViewlModule command, but Turbo Debugger can't find any modules with debug information. This message
usually occurs when you're debugging a program without a symbol table. See the "Program has no symbol table" error
message entry on page 195 for more information on symbol tables.

No network present
You have attempted to start Turbo Debugger using a remote network connection, but Turbo Debugger couldn't detect a
NETBIOS network connection.

No pending status from program being debugged
You've issued TD328 RunlNext Pending Status command, but your program has no events waiting in the operating system.

Appendix C, Turbo Debugger error messages 193

No previous search expression
You attempted to perform a Next command from the SpeedMenu of a text pane, but you had not previously issued a
Search command to specify what to search for.

No program loaded
You attempted to issue a command that requires a program to be loaded. For example, none of the commands in the Run
menu can be performed without first loading a program.

No type information for this symbol
You entered an expression that contains a symbol not found in the debug information. Check to ensure that you typed the
symbol name correctly.

Not a function name
You entered an expression that contains a call to a routine, but the routine cannot be found. Any time a pair of parentheses
immediately follows a symbol, the expression parser presumes that you intended to call a routine.

Not a record, structure, or union member
You entered an expression that used one of the C structure member selectors (. or -», but the symbol wasn't preceded by
a structure name or a pointer to a structure.

Not a 32·bit program
Youve tried to load a 16-bit program into TD32 running under Windows 32s or Windows NT. Exit TD32, and use TOW to
debug the 16~bit program.

Not a Windows program
You can only use TOW to debug Windows programs.

Not enough memory
Turbo Debugger ran out of working memory while loading.

Not enough memory for selected operation
Your system ran out of working memory while trying to open a new Turbo Debugger window. Try closing some other
windows before you reissue the command. . .

Not enough memory to load filename
Turbo Debugger ran out of working memory while loading the video driver filename.

Not enough memory to load program
Your program's symbol table has been successfully loaded into memory, but there is not enough memory left to load your
program.

Not enough memory to load symbol table
There is not enough room to load your program's symbol table into memory. When this message is issued, you must free

. enough memory to load both your program and its symbol table. Try making the symbol table smaller by generating debug
information for only the necessary source modules.

Old or invalid configuration file
Youve attempted to start Turbo Debugger using a configuration file from a previous version of the debugger.

Only one operand size allowed

194

You entered an instruction to assemble that had more than one size indicator. Once you have set the size of an operand,
you can't change it. For example,

mov WORD PTR BYTE PTR[bx],l
should have been

mov BYTE PTR[bx],l

Turbo Debugger User's Guide

Operand must be memory location
You entered an expression that contained a subexpression that should have referenced a memory location. Some things
that must reference memory include the assignment operator and the increment and decrement (++ and - -) operators.

Operand size unknown
You entered an instruction to assemble, but did not specify the size of the operand. Some instructions that can act on bytes
or words require you to specify which size to use if it cannot be deduced from the operands. For example,

add [bxl,l
should have been

add BYTE PTR[bxl,l

Overwrite ?
You tried to write to an already existing file. You can choose to overwrite the file, replacing its previous contents, or you can
cancel the command and leave the previous file intact.

Overwrite existing macro on selected key
You have pressed a key to record a macro, and that key already has a macro assigned to it. If you want to overwrite the
existing macro, press Y; otherwise, press N to cancel the command.

Path not found
You entered a drive and directory combination that does not exist. Check that you have specified the correct drive and that
the directory path is spelled correctly.

Path or file not found
You specified a nonexistent or invalid file name or path when prompted for a file name to load. If you do not know the exact
name of the file you want to load, you can pick the file name from a list by pressing Browse~

Press key to assign macro to
Press the key that you want to assign the macro to. Then, press the keys to do the command sequence that you want to
assign to the macro key. The command sequence will actually be performed as you type it. To end the macro recording
sequence, press the key you assigned the macro to, or press AIt+- (the Alt key plus the hyphen key).

Program already terminated, Reload?
You have attempted to run or step your program after it has already terminated. If you choose Y, your program will be
reloaded. If you choose N, your program will not be reloaded, and your run or step command will not be executed.

Program has invalid symbol table
The symbol table attached to your program has become corrupted. You must recompile your program with debug
information.

Program has no objects or classes
You've attempted to open a ViewlHierarchy window on a program that isn't object-oriented.

Program has no symbol table
The program you want to debug has been successfully loaded, but it doesn't contain symbolic debug information. You'll be
able to use the CPU view to debug your program, but you wont be able to use the program's source code or symbol names
while debugging .. Refer to Chapter 2 for information on compiling your program for debugging.

Program has no threads
You tried to open the Threads window in TD32 (using Ctr/+ 7) while running Windows 32s. Windows 32s doesn't support
process threads.

. Program is running
You issued a command to run your program inTD32 under Windows NT, but the program was already running.

Appendix C, Turbo Debugger error messages 195

Program linked with wrong linker version
You loaded a program with out-of-date debug information. Recompile your program using the latest version of the compiler.

Program not found
The program name you specified does not exist. Either supply the correct name or pick the program name from the file list.

Program out of date on remote, send over link?
When you start a remote debugging session, Turbo Debugger checks to see if the .EXE file on the remote system is the
latest version of the program. If the program on the local system is newer than the copy on the remote system, you will
receive this prompt. Enter Yif you want to send your program over the link, or N if you don't.

Register cannot be used with this operator
You have entered an instruction to assemble that attempts to use a base or index register as a negative displacement. You
can only use base and index registers as positive offsets. For example,

INC WORD PTR[12-BXj
should have been

INC WORD PTR[12+BXj

Register or displacement expected
The instruction you tried to assemble has a badly formed expression between brackets ([D. You can only put register
names or constant displacement values between the base-index brackets.

Remote link timeout
The connection to the remote system has been disrupted. Try rebooting both the systems and starting again. For details on

, remote debugging, see Appendix B.

Restart info is old, use anyhow?
When starting Turbo Debugger, it restores the settings of the previous debugging session. If the program has been
changed since you last loaded it into the debugger, you will receive the prompt. See page 23 for more information on
session-state saving.

Run out of space for keystroke macros
The macro you are recording has run out of space. You can record up to 256 keystrokes for all macros.

Search expression not found
The text or bytes that you specified could not be found. The search starts at the current location in the file, as indicated by
the cursor, and proceeds forward. If you want to search the entire file, press Ctrl+PgUp before issuing the search
command.

Source file not found
Turbo Debugger can't find the source file for the module you want to examine. See page 23 for more information on how
Turbo Debugger searches for source code.

Symbol not found
You entered an expression that contains an invalid variable name. Make sure that you correctly spelled the symbol name,
and that its in scope.

Symbol table file not found
The symbol table file that you have specified does not exist. You can specify either a .TDS or .EXE file for the symbol file.

Syntax error
You entered an expression that doesn't conform to the syntax of the selected language parser.

196 Turbo Debugger User's Guide

System crash possible, continue?
After pressing the program interrupt key, Turbo Debugger gained control while your program was executing Windows
kernel code. If you try to exit Turbo Debugger, or reset your program, this error message is generated. Exiting Turbo
Debugger or reloading your program while paused inside Windows kernel code will have unpredictable results, most likely
hanging the system and forcing a reboot. •

To remedy this situation, set a breakpoint in your code and run your program to that breakpoint. When the breakpoint
activates, you can either exit Turbo Debugger, or reset your program.

The -wc command-line option controls the generation of this error message.

Too many files match wildcard mask
You specified a wildcard file mask that specifies more files than can be handled. TDW can display up to 1,000 file names,
and TD32 can display up to 10,000 file names.

Unexpected end of line
While evaluating an expression, the end of your expression was encountered before a valid expression was recognized.

Unknown character
You entered an expression that contains an illegal character, such as a reverse single quote (').

Unknown record, structure, or union name
You have entered an expression that contains a typecast with an unknown record or enum name. (Note that assembler
structures have their own name space different from variables.)

Unknown symbol
You entered an expression that contained an invalid symbol name. Make sure the module name, symbol name, or line
number is correct.

Unterminated string
You entered a string that did not end with a closing quote ("). To enter a string with quote characters, you must precede
each quote with a backs lash N character.

Value must be between nn and nn
You have entered an invalid numeric value for an editor setting (such as the tab width) or printer setting (such as the
number of lines per page). The error message will tell you the allowed range of numbers.

Value must be between 1 and 32 tenths of a second
The value entered for the background screen updating must be an integer between 1 and 32.

Value out of range
You have entered a value for a variable'that is outside the range of allowed values.

Variable not available
The variable in question has been optimized away by the compiler and cannot be accessed by the debugger. For best
results, compile without optimizations while you're developing your program.

Video mode not available
You have attempted to switch to 43/50-line mode, but your display adapter does not support this mode; you can use
43/50-line mode only with EGA, VGA or SVGA video adapters.

Video mode not supported by filename
The video mode Windows is using isn't supported by the video DLL indicated in the VideoDLL entry in the TDW.INI file.
Refer to the description of TDWINI.EXE in the online file TD_UTILS.TXT for more information on video DLLs.

Appendix C, Turbo Debugger error messages 197

Video mode switched while flipping pages
Your program has changed the video display mode when Turbo Debugger is in page flipping mode. This means that the
contents of your programs screen might be lost. You can avoid this by using the -ds command-line option to turn on the
video swapping mode.

Waiting for remote driver. Press Esc to stop waiting
Youve configured TDW for remote debugging either through a serial or network connection, and it is now waiting to
connect to WREMOTE on the remote system. Press Esc to exit the debugger. See Appendix B for details on remote
debugging.

Wrong version of remote driver
TDW tried making a remote connection with WREMOTE, but the version of WREMOTE does not match that of TDW. Make
sure that TDW and WREMOTE are installed from the same Borland software package. .

You must run WREMOTE on remote system
Make sure that the remote system is running WREMOTE, and not a copy of TDREMOTE used with earlier versions of
Turbo Debugger.

Status messages

Here are the messages you'll see on the Status line of the Get Info text box
and in the Thread Detail pane of the Threads window. These messages
describe how Turbo Debugger gained control from your running process.

Breakpoint at _
Your program encountered a breakpoint that was set to pause your program. The text after "at" is the address of the
breakpoint.

Divide by zero
Your program has executed a divide instruction where the divisor is zero.

Exception _
A processor exception has occurred, which usually happens when your program attempts to execute an illegal instruction
opcode. The Intel processor documentation describes the exception codes in detail.

The most common exception to occur with a Windows program is Exception 13. This exception indicates that your program
has attempted to perform an invalid memory access. (Either the selector value in a segment register is invalid or the offset
portion of an address points beyond the end of the segment.) You must correct the invalid pointer causing the problem.

Global breakpoint _ at _
A global breakpoint has been activated. This status message includes the breakpoint number and the address where the
breakpoint occurred.

Interrupt
You pressed the program interrupt key to regain control.

Loaded
You either reset your program or loaded it without executing any startup code. Because no instructions have been executed
at this point (including those that set up your stack and segment registers), most of Turbo Debugger's windows show
incorrect data.

198 Turbo Debugger User's Guide

No program loaded
You started Turbo Debugger without loading a program. You cannot execute any code until you either load a program or
assemble some instructions using the Assemble Speed Menu command in the Code pane of a CPU window.

Step
You executed a single source line or machine instruction, skipping function calls, with FB (RunlStep Over).

Stopped at_
Your program stopped as the result of a completed RunlExecute To, RunlGo to Cursor, or RunlUntii Return command. This
status line message also appears when your program is first loaded, and the compiler startup code in your program has been
executed to place you at the start of your source code.

Terminated, exit code_
Your program has finished executing. The text after "code" is the numeric exit code returned to Windows by your program. If
your programdoes not explicitly return a value, a garbage value might be displayed. You cannot run your program until you
reload it with RunlProgram Reset.

Trace
You executed a single source line or machine instruction with F7 (RunITrace).

Window message breakpoint at _
Your program encountered a message breakpoint that paused your program. The text after "at" is the window procedure that
handles the message received.

TDREMOTE messages

Here's the list of error messages that can be generated by TDREMOTE.

Can't create file
TDREMOTE can't create a file on the remote system. This can happen if there isn't enough room on the remote disk to
transfer the executable program across the link.

Download failed, write error on disk
TDREMOTE can't write part of a received file to disk. This usually happens when the disk fills up. You must delete some files
before TDREMOTE can successfully download the file.

Interrupted
You pressed Ctrl+Breakwhile waiting for communications to be established with the other system.

Invalid command-line option
You gave an invalid command-line option when you started TDRF from the DOS command line.

Link broken
The program communicating with TDREMOTE has stopped and returned to DOS.

Program load failed, EXEC failure
DOS could not load the program into memory. This can happen if the program has become corrupted or truncated. Delete
the program file from the remote system's disk to force Turbo Debugger to send a new copy over the link. If this message
happens again after deleting the file, you should relink your program using TLiNK on the local system and try again.

. Appendix C, Turbo Debugger error messages 199

Program load failed; not enough memory
The remote system doesn't have enough free memory to load the program you want to debug.

Program load failed; program not found
TDREMOTE could not find the program on its disk. This should never happen because Turbo Debugger downloads the
program to the remote system if TDREMOTE can't find it.

Unknown request: message
TDREMOTE has received an invalid request from the local system (where you're running Turbo Debugger). If you get this
message, check that the link cable is in good working order. If you keep getting this error, try reducing the link speed (use the
-rs command-line option).

WREMOTE messages

Here's the list of error messages that can be generated by WREMOTE.

Can't find configuration file: _
The file you specified using the -c command-line option cannot be found. Check to ensure the path and file name are spelled
correctly.

Can't open COMx serial port
WREMOTE is trying to use a COM port that is either in use or doesn't exist.

Invalid switch
You specified an unknown option on the WREMOTE command line. Refer to Appendix B for a description of WREMOTE
command-line options.

No network present
WREMOTE is unable to detect a NETBIOS compatible network. Make sure you have loaded NETBIOS (version 3.0 or
greater), and are logged onto the network.

200 Turbo Debugger User's Guide

Index

???? (four question marks)
in CPU window 124
in Variables window 94
in Watches window 92

** (asterisks), in Hierarchy window 158
!! (exclamation points), in Load Module Source or

DLL Symbols dialog box 147
* (asterisk)

in Breakpoints window 81
in Clipboard window 48
in Hierarchy window 158
in Load Module Source or DLL Symbols dialog
box 145

• (bullet)
in Load Module Source or DLL Symbols dialog
box 145
in Module window 115
in Specify Exception Handling dialog box 152

-? command-line option 172
(cross hatch)

in CPU window 126
in expressions 107, 110

~ (arrow)
in CPU window 125, 133
in Module window 115

== menu (System) 38
80x87 processors 42

A
-a command-line options 171
Action Expression input box 82
Action radio buttons 78, 81-82
activity indicator 52

READY 44
RECORDING 45
REMOTE 182

adapters See video adapters
Add command '

breakpoint groups 85
Breakpoints window 76
Windows Messages window 138, 140

Add Comment command (Log window) 89, 90

Index

Add DLL button 146
Add Group dialog box 85
Add Watch command (Data menu) 92
Add Window or Handle to Watch dialog box 138
Add Window Procedure to Watch dialog box 138
Address input box 76, 79
addresses

expressions 107
navigating to 119, 126
running to specified 26
setting breakpoints 76, 79
shifting 124
viewing invalid (CPU window) 124

All Threads check box 88
All Threads command (Threads window) 150
alloca ting memory 49
Alt+key shortcuts See hot keys
Animate command (Run menu) 27
Another command (View menu) 43
arguments

calling function 40
command-line 27
defined 2
this 92

Arguments command (Run menu) 27
arrays

displaying character strings 109
.. inspecting 97, 99, See also Inspector windows

subranges 100
modifying 189

arrow keys, in CPU window 124
ASCII files, viewing 120
Assemble command (CPU window) 128
assembler

instructions See machine instructions
registers See CPU window, registers

assignment operator 108
At command (Breakpoints window) 76
Attach command (TD32's File menu) 50
Attach to and Debug a Running Process dialog box

50
automatic name completion 44

201

Back Trace command (Run menu) 27
Background Delay input box 11

. backward trace See reverse execution
Baud radio buttons 179
Block command (CPU window) 133
Borland, contacting 6
Breakpoint Options dialog box 77
breakpoints See also Breakpoints window

action sets 83
actions 74, 81-82
changed-memory 78
condition sets 83
conditions 74
CPU window 126
defined 73
disabling/ enabling 82, 86
expression-true 77
global 73, 79

Always action and 80
groups 82, 84-86
hardware 80

problems with 189, 193
inspecting source 86
instrumentation 82
line numbers and 24
location 73
logging values 82
modifying 77
pass counts 74, 78
reloading programs 32
removing 87
saving 23
scope of expressions 84
setting 75

in different modules 84
simple 75
templates and 87
threads and 88
TSR programs 166
types 75
window messages and 137, 142

Breakpoints window 40, 74-75
panes 74

bugs, finding 36
buttons 47
byte list expressions 107

/

202

c
C++ programs See also object-oriented programs

class instances, formatting 103
exceptions 163
multiple inheritance 158
stepping over 26
tracing into 26

-c command-line option 172
call stack See stack
Caller command (CPU window) 126
case sensitivity, overriding 173
casting See type conversion
central processing unit See CPU window
CGA See video adapters
Change command

Breakpoints window 77
CPU window 130, 132, 134
Inspector windows 100
Object Inspector window 162
Variables window 95
Watch window 93

Change dialog box 95
Changed Memory Global command (Breakpoints

menu) 80
character strings See strings
characters, nonprinting 109
Class Inspector window 159-161

SpeedMenu 160
classes See C++ programs; object-oriented

programs
Classes radio button 85
Clipboard command (View menu) 47
Clipboard window 43, 47

item types 47
saving 23

SpeedMenu 48
watching expressions 48

Close command (Window menu) 43
Close Log 'File command (Log window) 90
code See source code; startup code'
Comm Port radio buttons 179
command-line options 19, 171, See also specific

switch
changing 27
disabling 171
help with 172
integrated environment and 20

Turbo Debugger User's Guide

remote debugging 183
setting 27
TDREMOTE 185
utilities 14
WREMOTE 180

commands See also specific command
choosing 38
macros as 45
onscreen summary of 52
shortcuts See hot keys

compiler
directive (-v) 18
optimizations 116

compiling 17
integrated environment and 18
optimizations 17

Condition Expression input box 78
Condition radio buttons 78
conditional breakpoints See breakpoints
Conditions and Actions dialog box 77, 78
Conditions and Actions list box 77
configuration files 7-9

changing default name 12
directory paths 173
loading 172
overriding 8, 171
saving options to 12
searching for 8

control-key shortcuts See hot keys
conversion See type conversion
coprocessor, numeric 42
copying and pasting 46
CPU window 41

add~esses
navigating to 126
shifting display 124
viewing invalid 124

cursor 125
display format 127, 130, 131, 132
expressions, searching on 127
flags 130,. 136, See also Registers window
immediate operands 125
instruction pointer 125

navigating to 126
memory dump 130, See also Dump window
opening 125
panes 124

Index

registers 129, 136, See also Registers window
32-bit display 130
I/O 129
modifying 129

SpeedMenu 126-129
title bar display 125

Create command (Macros) 45
Ctrl+Alt+Fll (Windows 32s interrupt key) 29
Ctrl+Alt+SysRq (Windows 3.x interrupt key) 29
Ctrl-key shortcuts See hot keys
current activity, help with 52
cursor

CPU window 125
Module window 115
running programs to 25

customer service 6

D
-d command-line options 172
data See also Dump pane

examining raw bytes 96
inspecting 96, 136, See also Inspector windows
modifying 1 ~O, 132
monitoring 78
types See type conversion
viewing raw bytes 41
watching See Watches window

data objects See object-oriented programs
Debug Startup radio buttons 147
debugger boards 80
debugging

assembly code 15
assembly-level 123
defined 35
device drivers 169-170
DLLs See DLLs
dual-monitors 9, 172
execution control 25
features 1
functions 108
information 17

adding to files 18
adding to modules 18, 22

interactive programs and 28
memory use and 49
methodology 35-37
multi-language programs 15

203

multitasking and 28
multithread programs 148
object-oriented programs See object-oriented

programs
ObjectWindows programs 12
program termination 32
recursive functions 96, 102
remote See remote debugging
reproducing the bug 36
steps 17-18, 35
terminology 2
testing fixes 37, 82, 128
tools 37
TSR programs 165-168
tutorial 55-72
Windows programs 137

decimal numbers 11
Decrement command (CPU window) 129
default settings

overriding 8, See also TDWINST.EXE file
restoring 12

Delete All command
Breakpoints window 87
Macros menu 46
Watch window 93
Windows Message window 143

Derived Classes check box 163
Descend command

Inspector windows 101
Object Inspector window 162

device drivers 168-169
debugging 169-170

dialog boxes See also specific dialog box
responding to 187
status line help 53

directories
changing 22, 174
searching 173
WREMOTE and 181

Disable Clock Interrupts check box 179
Disabled check box 86
disk drives, changing 22
display See also screens

adapters See video adapters
CPU window 127, 131, 132

32-bit registers 130
expression formats 108

204

file formats 121
integer formats 10
modes, setting 10
starting addresses, shifting 124

Display As command
CPU window 132
File window 121

Display Options command (Options menu) 10
Display Options dialog box 10
Display Swapping radio buttons 10
Display Windows Info command (Log window)

90,153
displays 172
DLL Name input box 146
DLLs

checking at program load 174
debugging 28, 143

startup code 146
loading 144

problems with 188
returning from 144
running programs with 23

reverse execution and 30
scope 113
startup code types 147
stepping into 144
stepping over 146

DLLs & Programs list box 145
documentation 5

overview 4
printing conventions 3

DOS
interrupt handlers and TSR programs 165

DOS version 49
drives, changing 22
DUAL8S14.DLL 13
dual-monitor debugging 9, 172
Dump Pane to Log command (Log window) 89
Dump window 41, 135-136
dynamic link libraries See DLLs

E
Edit Breakpoint Groups dialog box 85
Edit command

File window 122
Module window 119
Watch window 93

Turbo Debugger User's Guide

Edit Watch Expression dialog box 93
EGA, line display 11
EMS, usage 49
Enter Address to Position To dialog box 119, 126,

131, 134
Enter Code Address to Execute To dialog box 26
Enter Expression for Conditional Breakpoint input

box 80
Enter Expression to Watch dialog box 92
Enter Instruction to Assemble dialog box 128
Enter Memory Address Count input box 80
Enter New Selector dialog box 135
Enter New Value dialog box 93, 100, 130
Enter New Value for Unsigned Int dialog box 134
Enter Program Name to Load dialog box 21
Enter Search String dialog box 118, 121
Enter Source Directory Path input box 11
Enter Variable to Inspect dialog box 97
Erase Log command

Log window 90
Window Messages window 143

error messages 187-198
fatal 187
memory 177
TDREMOTE 199-200
WREMOTE200

Evaluate/Modify dialog box 102-104
events, running to 28
Examine command (CPU window) 135
example program 16
Exception 13 198
Exception command (Module window) 163
exceptions

C and C++ 163
operating-system 128, lSI, 152

specifying 152
Exceptions list box 152
executable program files See files
Execute Startup Code check box 22
Execute To command (Run menu) 26
executing programs See programs, running
execution history See also reverse execution

deleting 30
recovering 32

Execution History window 30-32, 42
SpeedMenu 30

exit code, returned to Windows 199

Index

exiting Turbo Debugger 33
expression evaluators 105

selecting 105
Expression input box 103
Expression Language dialog box 105
expression-true breakpoints 77
Expression True Global command (Breakpoints

menu) 80
Expression True radio button 78
expressions 105-109

F

addresses 107
byte lists 107
current IP vs. current scope 110
defined 105
evaluating 102-104, 110
format specifiers 108
functions and 108
hexadecimal 106
inspecting 97, See also Inspector windows
language evaluators 105

selecting 105
line numbers 107
repeat counts 109
scope and 110, 111
side effects 103, 108
types 106
watching 48,91, See also Watches window

F12 (Windows NT interrupt key) 29
fatal errors 187
features, new 2
File command

File window 122
Module window 117
View menu 120

File window 41, 119-122
SpeedMenu 120-122

FILELIST.DOC 7
files See also File command; File window

configuration See configuration files
display format 121
example program 16
executable and support 13

changing 145
header 118
include statements and 118

205

loading a new module 117
moving to specific line number 118, 120
non-source 119
online 15
opening 21
response 11
searching through 118, 121
session-state 23, 172
source See source files
utility 14
viewing 41, 115, 117, 120

program address 119
flags, CPU 130, 136
floating-point numbers 42

displaying 109
Follow command (CPU window) 126, 132, 134
format specifie!s 108
Freeze check box 149
Full History command (Execution History

window)' 31
function keys See hot keys
Function Return command (Data menu) 104
functions

G

calling 108
inspecting 100, 102, See also Inspector windows
names, finding 41
recursive 96, 102
return values and 104
returning from 26
stepping over 26
viewing in stack 40, 101

Get Info command (File menu) 49
Get Info text box 49-50
gh2fp (type-cast symbol) 156
global breakpoints 73, 79, See also breakpoints

Always action and 80
Global check box 79
global memory, listing 153 ,
global menus 38, See also menus
global variables 94, See also variables
GlobalAlloc function 153
GlobalLock function 154
GlobalPageLock function 155
Go to Cursor command (Run menu) 25

206

Goto command
CPU window 126, 131, 134
File window 120
Module window 119

graphics adapters See video adapters
Group command (Breakpoints window) 84
Group ID input box 85

H
-h command-line option 172
handle

casting to far pointer 156
window messages and 139

hardware
adapters See video adapters
breakpoints 80
primary and secondary displays 172
requirements 2

Hardware Breakpoint Options dialog box 81
header files, viewing 118
heap 155

viewing 153
Help 52-53

Index 52
help

command-line options 172
current activity 52
online 52

Help menu 52
hexadecimal numbers 11

displaying 109
notating 106

Hierarchy command
Class Inspector window 160
Object Inspector window 162

Hierarchy window 42, 157-159
panes 157
SpeedMenu 158, 159

highlight bar 39
history lists See also execution history

saving 23
hot keys

AIt+= (Create Macros) 45
Alt+- (Stop Recording) 46
Alt+F2 (Breakpoints At) 76, 87
AIt+F4 (Back Trace) 27
Alt+F5 (User screen) 44

Turbo Debugger User's Guide

Alt+F6 (Undo Close) 39
Alt+F7 (Instruction trace) 26,27
Alt+F9 (Execute To) 26
Alt+H (Help) 52
Alt+X (Exit) 33
Ctrl+F2 (Program Reset) 27, 32

problems with 70
Ctrl+N (Text Entry) 44
F2 (Toggle Breakpoint) 76
F4 (Go to Cursor) 25
FS (Zoom) 39
F6 (Next Window) 38
F7 (Trace Into) 25
F8 (Step Over) 26
F8 (Until Return) 26
F9 (Run) 25
help with 53
macros as 45
Shift-F3 (Clip) 46
Shift-F4 (Paste) 46
SpeedMenus 53
Tab/Shift-Tab (Next Pane) 38

I/O command (CPU window) 129
icon conventions (documentation) 3
immediate operands and CPU window 125
include files 118
Increment command (CPU window) 129
incremental matching 45
Index command (Help window) 52
indicators See activity indicators
input boxes See also dialog boxes

entering text 44
Inspect command

Breakpoints window 86
Class Inspector window 160
Execution History window 31, 32
Hierarchy window 158, 159, 160
Inspector windows 100
Module window 117
Object Inspector window 162
Stack window 102
Threads window 150
Variables window 94
Watch window 93

Index

Inspector windows 43, 96-101
arrays 97, 99
character values in 97
class See Class Inspector window
closing 43, 101
compound data objects and 96, 101
entering expressions 97
functions 95, 100
global symbols and 94
member functions 159
object See Object Inspector window
opening 96
panes 98
pointers 97
scalars 97
selecting expressions 97
SpeedMenus 100-101
structures 98
types 96
unions 98
viewing memory contents 96

INSTALL.EXE 7
installation 7
instruction pointer 125

changing 128
location 115
navigating to 118, 126

Instruction Trace command (Run menu) 27
execution history and 30

instructions See maditine instructions
instrumentation (dehned) 82
Integer Format radio buttons 11
integers See also numbers

displaying 109
formatting 10

interrupting program execution 29
interrupts

J

machine instructions 126
program execution, reversing 30
tracing into 27
TSR programs and 167

-j command-line options 172
jump ulstructions 126

207

K
-k command-line option 173
keys See hot keys
keystroke recording 31, 173
Keystroke Restore command· 32
keystrokes

replaying 31
keystrokes, restoring from macro 46

L
-1 command-line option 173
labels, running to 26
Language command (Options menu) 9, 105
language evaluator, default 105

selecting 105
language syntax 106
Ih2fp (type-cast symbol) 156
LibMain function 148
Line command (Module window) 118
line numbers

CPU window and 125
expressions and 107
moving to specific 118, 120
resetting and 28

Link Speed radio buttons 181
list boxes See also dialog boxes

incremental matching in 45
lists, choosing items 45
Load a New Program to Debug dialog box 21
Load button 145
Load Module Source or DLL Symbols dialog box

117, 145
Load Symbols radio buttons 146
LoadLibrary function 146
Local Display dialog box 95
local memory, listing 155
Local radio button 181
local variables See variables
LocalAlloc function 155
Locals command (Stack window) 102
LockData function 154
Log window 40, 88-90

adding comments 89
logging window messages 142
SpeedMenu 89-90
writing to disk 89

208

Logging command (Log window) 90

M
machine instructions See also CPU window

back tracing into 31
inspecting 31, See also Inspector windows
interrupts 126
multiple treated as single 26
recording 31
replacing 128
stepping over 26
tracing into 25, 27
transferring control 126
viewing history 30
watching 41

macros 45
creating 45
removing 46
restoring keystrokes 46
saving 12

Macros command (Options menu) 45
Macros menu 45-46
MAKEFILE 16
manual

overview 4
printing conventions 3
using 5

math coprocessor See Numeric Processor window
member functions See also object-oriented

programs
evaluating 103

memory
allocation 49
changing values 79
dump 130, 135
error messages 177
expression format 109
global handles 154
global heap 153
local heap 155
modifying 133
monitoring 78
usage 49
viewing 41

menu bar 38
menus

activating 38

Turbo Debugger User's Guide

commands See commands
diagram of 54
global 38
Help 52
local See SpeedMenus
Macros 45-46
Options 9-12
Run 25-28

program termination and 32
System (=) 38
View 40-43
Window 38

message breakpoints
defined 137
setting 142

Message Class radio buttons 140
message classes 140

monitoring 140
removing window message actions 143

me~sage log 40, See also Windows Messages
window

messages See also Windows Messages window
error 187-198
Exception 13 198
status 198-199

Methods command (Object Inspector window) 162
Microsoft Windows See Windows
Mixed command (CPU window) 125, 127
Module/Class list box 85
Module command (Module window) 117
Module window 41, 115-119

incorrect source listing 116
opening 116
SpeedMenu 116-119

module's See also Module window
adding debug information 18, 22
changing 145
compiling 17
defined 3
listing 155
loading 116, 117
scope override and 111
setting breakpoints 84
tracing into 27
viewing 41

Modules radio button 85
monitors See hardware; screens

Index

mouse, disabling/ enabling 173
multi-language programs 15
multiple inheritance 159
multitasking and debugging 28
multithread programs, debugging 148, See also

threads

N
name completion (symbols), automatic 44
NETBIOS, remote debugging and 178
Network Remote Name input box 179
New CS:IP command (CPU window) 128
New EIP command (CPU window) 128
New Expression command

Inspector windows 101
Object Inspector window 162

Next command See also Search command
CPU window 132
File window 121
Module window 118

Next Pane command (Window menu) 39
Next Pending Status command (TD32's Run menu)

28
Next Window command (Window menu) 38
nonprinting characters, displaying 109
Notify on Termination check box 149
null-modem cable, remote debugging and 177
null-terminated character string 98
numbers

decimal 11
displaying 109
floating-point 42, 109
formatting 10
hexadecimal 11, 106, 109

numeric exit code 199
Numeric Processor window 42

o
Object Inspector window 161

panes 161 '
SpeedMenu 161

object-oriented programs 157
ancestor classes 162
constructors and destructors 103, 189
derived classes 159
evaluating member functions 103

209

formatting objects 103
inspecting

classes 159
data members 159
member functions 159

nested classes 160,
Object Inspector window 161
scope override 112
this pointer 92
viewing member functions 102

ObjectWindows 1.0x debugging 12
online files 15
online help See help
OOP See object-oriented programs
Open command (File menu) 21
Open Log File command (Log window) 89
operands (CPU window) 125
operating-system exceptions 128, 151

handling 152
specifying user-defined 152

operators, assignment and expressions .108
optimizations, compiler 17, 116
options See also Options menu

command-line See command-line options
restoring defaults 12
saving 12

Options menu 9- f 2
Origin command

CPU window 126, 134
Module window 118

OS Exceptions command (CPU window) 128
OS shell command (TD32's File menu) 52
output, verifying 44

. OWL 1.0x debugging 12

p
-p command-line option 173
panes See window panes
parameters 2, See also arguments
Parents command (Hierarchy window) 158
parsing differences 15
Pass Count input box 78
pass counts 74

setting 78
pasting and copying 46
Path for Source command (Options menu) 11
paths, directory See directories

210

. Pick a Source File dialog box 117
Pick a Thread dialog box 117, 128
Pick dialog box 46
pointers

displaying 109
inspecting 97
instruction See instruction pointer

ports, writing and reading 129
Previous command

CPU window 127, 132, 134
Help window 52
Module window 118

printing conventions (documentation) 3
program files See files
program interrupt key 29

Program Reset and 29
TSR programs and 167

Program Reset command (Run menu) 27, 32
problems with 70
program interrupt key and 29

programs
arguments 19

command-line syntax and 23
setting 27

C++ See C++ programs
compiling 17

integrated environment and 18
controlling execution 24-25
debugging See debugging
DLL files and 23
example 16
finding instruction pointer 118
information on 49
loading 21

without debug information 22
low-level view 123
memory usage 40
modified since compiled 116
multi-language 15
multitasking 28
multithread 148, See also threads
'object-oriented See object-oriented programs
output screen 44
reloading 27
resetting 27, 32

problems with 70
program interrupt key and 29

Turbo Debugger User's Guide

stack and 32
restarting 23
returning to Turbo Debugger 25
reverse execution 27,30-32
running 25-28, 189

controlling 24
to cursor 25
to an event 28
at full speed 25
interrupting 29
to labels 26
reversing 27, 30-32
in slow motion 27

scope See scope
termination 32
why paused 49
Windows See Windows

prompts, responding to 187
protected mode selectors 134

Q
Quit command (File menu) 33
Quit When Host Quits check box 179

R
-r command-line options 183
radio buttons See specific radio button
Range command

Inspector windows 98, 99, 100
Object Inspector window 161

read-only memory See ROM
READY indicator 44
RECORDING indicator 45
recursive functions 96, 102
registers See also CPU window; Registers window

32-bit display 130
I/O 129
modifying 129
termination and 32
valid address combinations 192
viewing 129, 136

Registers 32-bit command (CPU window) 130
Registers window 42, 136
reloading programs 27
Relocate Table command 169

Index

remote debugging
configuring 22
DOS applications 185
hardware and software requirements 177
loading programs 183
local and remote systems 177
NETBIOS and 178
network compatibility 178
null-modem cable 177
remote Windows driver 178
system names 184
troubleshooting 186
user screen and 182

REMOTE indicator 182
Remote Link Port radio buttons 181
Remove command

Breakpoints window 87
Macros menu 46
Watch window 93
Windows Message window 143

Repaint Desktop command (System menu) 39
resetting programs 27, 32

program interrupt key 29
Resident command 166
response file 11
Restart Options dialog box 24
Restore at Restart check boxes 24
Restore Options command (Options menu) 12
Restore Standard command (System menu) 39
Result input box 103
return values 104

breakpoints and 82
Reverse Execute command (Execution History

window) 31
reverse execution 27,30-32
ROM, program execution and 189
Run command (Run menu) 25

execution history and 30
Run menu 25-28

program termination and 32
running programs See programs, running

S
S_PAINT.C 16
S_PAINT.EXE 16
-s command-line options 173
Save Options command (Options menu) 12

211

Save To input box 12
scalars, inspecting 97
scope 109-113

breakpoint expressions 84
changing 110
DLLs and 113
inactive 189
overriding syntax 110
templates 111
watch expressions 92

Screen Lines radio buttons 11
screen shots 3
screens See also display; hardware

display swapping 172
dual-monitor debugging 9, 172
lines per, setting 11
problems with writing 10
restoring layout 39
screen flipping 172
scree~ swapping 172
swapping 10
user See user screen

-sd command-line option 23
Search command See also Next command

CPU window 127, 131
File window 121
Module window 118

secondary display See dual-monitor debugging
select by typing 45
selecting text 117
Selector command (CPU window) 135
selectors 134
Send to Log Window command (Windows

Messages window) 142
Session button 21, 181
Session radio buttons 22, 181
session-state files 23, 172
Set Message Filter dialog box 140
Set Options command (Breakpoints window) 77
Set Session Parameters dialog box 181
settings, default 8, 12
shortcuts See hot keys
Show command (Variables window) 95
Show Inherited command

Class Inspector window 160
Object Inspector window 162

side effects, expressions 103, 108

212

simple breakpoints 75
single stepping 25

continuous 27
into interrupts 27
in reverse 27

Size/Move command (Window menu) 39
source code

incorrect listing 116
inspecting 31, 86, See also Inspector windows
searching for 23
splicing with breakpoints 82
stepping over 26 '
stepping through See Step Over command
tracing into 25, See also Trace Into command
verifying position 44
viewing 115

program address 119
source files See also files

adding debug information 18
loading 116
viewing 117

Source Modules list box 145
Specify C and C++ Exception Handling dialog box

163
Specify Exception Handling dialog box 151
SpeedMenus

accessing 39
Class Inspector window 160
Clipboard 48 .
command shortcuts 45
CPU window 126-129
Execution History window 30
File window 120-122
Hierarchy window 158, 159
hot keys in 53
Inspector windows 100-101
Log window 89-90
Module window 116-119
Object Inspector window 161
Stack window 102
Threads window 149
Variables window 94-96
Watches window 93-94

splicing code 82
stack See also CPU window; Stack window

current state, 40
modifying 134

Turbo Debugger User's Guide

Stack window 40, 101-102
SpeedMenu 102
viewing local variables 96

starting directory, changing 174
Starting Directory input box 179
starting Turbo Debugger 18

assembler mode 173
command-line options See command-line
options

startup code
debugging 173

DLLs 146
running 22

state, saving 23
static symbols and CPU window 126
status line 52, 53
status messages 198-199
STB.DLL 13
Step command (Threads window) 150
Step Over command (Run Menu)

execution history and 30
Step Over command (Run menu) 26
Stop on Attach check box 51
Stop Recording command (Macros) 46
strings

displaying 109
inspecting 97
null-terminated 98
searching for 118, 121

next occurrence 118, 121
structures

inspecting 96, 97, 98, 101
modifying 189

SVGA.DLL 13
switches See command-line options
Symbol Load button 145 .
Symbol Load command 167
symbol tables

creating 17
DLLs and 144
sorting 44

symbols 44
accessing 109-113
scope 109
searching for 110

syntax, supported 106
Syntax errors 58

Index

System Information text box 49
System menu (=) 38

T
-t command-line option 174
Tab Size input box 11
Table Relocate command 167
tabs, setting 11
TD32.EXE 13
TD32.1CO 13
TD32HELP.TDH 13
TD32INST.EXE 14
TD32INST.lCO 14
TD _ASM.TXT 15
TD.EXE 13
TD_HDWBP.TXT 15,81
TD_HELPLTXT 15
TD_RDME.TXT 15
TD _UTILS.TXT 15
TDCONFIG.TD 8

overriding 8
TDCONFIG.TD2 8
TDCONFIG.TDW 8
TDDEBUG.386 13,81
TDHELP.TDH 13
TDINST.EXE 14
.TDK files 32
TDKBDW16.DLL 13
TDKBDW32.DLL 13
TDMEM 167
TDMEM.EXE 14
TDREMOTE.EXE 13

command-line options 185
error messages 199-200

TDRF.EXE 14, 186
TDSTRIP 167
TDSTRIP.EXE 14
TDSTRP32.EXE 14
TDUMP.EXE 14
TDVIDW16.DLL 13
TDVIDW32.DLL 14
TDW.EXE 14
TDW.lNI 8, 14
TDWDEMO.BUG 16
TDWDEMO.H 16
TDWDEMO.lCO 16
TDWDEMO.lDE 16

213

TDWDEMO.RC 16
TDWGUI.DLL 14
TDWHELP.TDH 14
TDWINI.EXE 9, 14
TDWINI.HLP 14
TDWINST.EXE 14
TDWINTH.DLL 14
technical support 6
templates

breakpoint behavior 87
scope of 111

text
searching 127
selecting 117

text files, viewing 120
text modes See display, modes
this pointer 92
Thread command

CPU window 128
Module window 117

Thread Name input box 149
Thread Options dialog box 149
threads See also Threads window

active 149
breakpoints and 88
current 150
debugging 148
emperor has no 195
execution point 151
freezing 149, 150
naming 149
priority 151
suspended and runnable 151
terminating 149, 150
thawing 150

Threads input box 88
Threads window 148

panes 148
SpeedMenu 149
thread numbers 149

Toggle command (Breakpoints window) 76
.TR2 files 23
.TR files 23
Trace Into command (Run menu) 25

execution history and 30
tracing See Trace Into command
Tree command (Hierarchy window) 158

214

.TRW files 23
TSR programs

debugging 165-168
defined 165

, resident portion 166
Turbo Debugger

command-line syntax 19
configuring 7-12
defined 1
icon settings 19
new features 2
running 20
running as resident 166
starting 18
utilities See utilities
windows overview 40-44

tutorial 55-72
Type Cast command

Inspector windows 101
Object Inspector window 162

type conversion
memory handle to far pointer 156

typographic conventions 3

u
Undo Close command (Window menu) 39
unions, inspecting 98
Until Return command (Run menu) 26
Use Restart Info radio buttons 24
user screen 10

remote debugging and 182
User Screen command (Window menu) 44
User Screen Delay input box 11
utilities 14

command-line options 14

v
_', -v compiler directive 18

-v command-line options 174
variables See also Variables window

adding watches 95
DLLs and 113
evaluating and modifying 95, 102-104
global 94

local vs. 94
modifying 95

Turbo Debugger User's Guide

in recursive routines 96
inspecting 94, See also Inspector windows
logging (breakpoints) 82
program termination and 32
scope override 112
viewing 94

in stack 40
watching 41, 91, See also Watches window

Variables command 94
Variables window 41, 94-96

modifying local display 95
panes 94
SpeedMenu 94-96

video adapters 2, 9
EGA and VGA 11

View menu 40-43
View Source command (CPU window) 127

w
-w command-line options 174
Wait for Child command (TD32's Run menu) 24,

28
Watch command

Module window 117
Variables window 95
Watch window 93

watches
creating 92
expressions

editing 93
scope 92

inspecting compound 93
freezing in Clipboard 48
global vs. local variables 95
modifying 93
reloading programs 32
saving 23
this pointer and 92

Watches window 41, 91-94
opening 92
SpeedMenu 93-94

watchpoints 78, See also breakpoints
wildcards, searching with 118, 121
Window menu 38
window messages

debugging tips 143
handles and 139

Index

logging 142
to a file 142

monitoring 137, 138
classes 140

processing 139
removing selected 139
setting breakpoints 142
tracking single 141, 143

window panes See also windows
highlight bar 39
moving between 38
Next Pane command 39

Window Pick command (Window menu) 38
Windows

crash checking, system 174
debugging programs 137

tips 29
Display Windows Info command 153
executing Windows code 29
messages 137

Exception 13 198
numeric exit code 199
returning to 33
shortcut keys 20
switching applications 20

windows 40-44
Breakpoints 40, 74-75
Class Inspector 159-161
Clipboard 43, 47
CPU 41
Dump 41, 135-136
duplicating 43
Execution History 30-32, 42
File 41, 119-122
Hierarchy 42, 157-159
Inspector 43, 96-101
layout, saving 12
Log 40, 88-90
managing 38
messages See window messages
Module 41, 115-119
moving/ resizing 39
Next Window command 38
numbering system 38
Numeric Processor 42
panes See window panes
recovering last closed 39

215

Registers 42, 136
savrng contents of 89
specifying 139
Stack 40, 101-102
status line 53
user screen 44
Variables 41, 94-96
Watches 41,91-94
Windows Messages 42

Windows 32s, support files 13
Windows Information dialog box 153

216

Windows Messages window 42, 137, See also
window messages
panes 137

WREMOTE.EXE 14
command-line options 180
configuring 178
error messages 200

WRSETUP.EXE 14

z
Zero command (CPU window) 130
Zoom command (Window menu) 39

Turbo Debugger User's Guide

Borland
Corporate Headquaners: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431-1000, Offices in: Australia, Belgium, Canada,
Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America, Malaysia, Netherlands, New Zealand, Singapore, Spain,
Sweden, Taiwan, and United Kingdom · Pan # BCPI240WW2 I 775 • BaR 6335

