TURBO
DEBUGGER

TURBO DEBUGGER®

USER'S GUIDE

(=]
&=
A
-
(=4
o
[==]

ORLAND

Turbo Debugger®

Version 2.5

User’s Guide

BORLAND INTERNATIONAL, INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, SCOTTS VALLEY, CA 95067-0001

R1

Copyright ® 1988, 1991 by Borland International. All rights
reserved. All Borland products are trademarks or registered
trademarks of Borland Infernational, Inc. Other brand and
product names are trademarks or registered trademarks of their
respective holders. Windows, as used in this manual, shall refer to
Microsoft’s implementation of a windows system.

PRINTED IN THE USA.
10987654

Introduction 1
New features and changes for version 2.5 . 2
Hardware and software requirements ... 2
A note on terminology 3
What’sinthemanual 3
How to contact Borland 6
Recommended reading 7
Books on Turbo Debugger and Tools .. 7
Books on Microsoft Windows 8
Chapter 1 Getting started 9
The distribution disks 10
The READMEfile 10
The HELPME!LDOCfile 10
Turbo Debugger utilities 11
Installing Turbo Debugger 12
Unzipping example files 12
LCD and B/W monitors 13
Hardware debugging 13
Wheretonow?ooviiinn 14
Programmers learning a Turbo
language ... 14
Programmers already using a Turbo
languagel 14
Chapter 2 Debugging and Turbo
Debugger 15
What is debugging? 15
Isthereabug? 16
Whereisit? 16
Whatisit? o 16
T 16
What Turbo Debugger can do for you... 17
What Turbo Debugger won'tdo 18
How Turbo Debugger does it 19
The Turbo Debugger advantage 19

Menus and dialog boxes 20

Using themenus 20
Dialogboxes 22
Knowing where youare 23
Localmenusoevvunnn. 24
History lessons 25
Automatic name completion 26
Incremental matching 27
Making macros 27
Window shopping 27
Windows from the View menu 28
Module window 28
Watches window 28
Breakpoints window 28
Stack window 29
Logwindow 29
Variables window 29
Filewindow 29
CPUWINdOW . .oovviiee e 30
Dump window 30
Registers window 30
Numeric Processor window 31
Execution History window 31
Hierarchy window 31
Windows Messages window 32
Duplicate windows 32
Userscreencceeeeee.. 32
Inspector windows 32
The active window 33
Whatsinawindow 33
Working with windows 35
Window hopping 35
Moving and resizing windows ... 36
Closing and recovering windows . 37
Saving your window layout 38
Gettinghelp 38
Onlinehelp 38

Thestatusline 40
Inawindow................... 40

In a menu or dialogbox 41
Chapter 3 A quick example 43
The demo programs 43
Using Turbo Debugger 45
Themenus 45
Thestatusline 45
Thewindows 46
Using the C demo program 48
Setting breakpoints 49
Usingwatches 50
Examining simple C data objects 51
Examining compound C data objects . 53
Changing Cdatavalues 53
Using the Pascal sample program 55
Setting breakpoints 56
Usingwatches 57

Examining simple Pascal data objects . 58
Examining compound Pascal data

objects ...t 60
Changing Pascal data values 61
Chapter 4 Starting Turbo Debugger 63
Preparing programs for debugging 63

Preparing Borland C++ programs 64
Preparing Turbo Pascal programs 64
Preparing Turbo Assembler programs . 65

Preparing Microsoft programs 65
Running Turbo Debugger 65
Command-line options 66

Loading the configuration file (-c) 66

Display updating (-d) 67

Getting help -hand-?) 67

Process ID switching (-i) 67

Keystroke recording (-k) 67

Assembler-mode startup (-1) 68

Setting heap size (m) 68

Mouse support (-p)oooviiii.n 69

Remote debugging (-r) 69

Source code handling (-s) 69

Video hardware (-v) 70

Remote Microsoft Windows debugging (-

W) ettt ittt i e 70
Overlay pool size (-y) 70
Configurationfiles 71
The Optionsmenu 72
The Language command 72
The Macrosmenu 72
Createccoviiiiiinnnnn. 72
StopRecording 72
Remove 73
Delete AlooLt 73
Display Options command 73
Display Swapping 73
Integer Format 74
ScreenLines 74
TabSizeccooiiiiiil 74
Path for Source command 74
Save Options command 74
Restore Options command 75
Running DOS in Turbo Debugger 75
ReturningtoDOS 76
Chapter 5 Controlling program
execution 77
Examining the current program state ... 78
The Variables window 78
The Global pane local menu 79
Inspect ...l 79
Changeccoviinnnn, 80
Watchoooiil, 80
The Static/Local pane local menu 80
InspectLl 81
Changecoovvvven.. 81
Watchoiviiiae, 81
Showovvviviiiiiia, 81
The Stack window 82
The Stack window local menu 82
InspectoilLll, 82
Localsoooviiiitt, 83
The Origin local menu command 83
The Get Info command 83
DOSformatcoovvvvvnn. 83
Windows format 85

Status line messages 86

Global memory information 88
TheRunmenu....................... 88
Run ... 88
GotoCursorcoooen.... 89
TraceInto oL 89
StepOveroooiiiiiiii, 89
ExecuteTo...oouil. 90
UntilReturn 90
BackTrace 90
Instruction Trace 91
Arguments... ...l 91
ProgramReset 91
The Execution History window 92
The Instructions pane 92
The Instructions pane local menu .. 93
Inspectl 93
Reverse Execute 93
FullHistory 94
The Keystroke Recording pane 94
The Keystroke Recording pane local
111 41 94
Inspectl 94
Keystroke Restore 95
Interrupting program execution 95
Ctrl-Breakoooiiniit, 95
Program termination 96
Restarting a debugging session 96
Reloading your program 96
Keystroke macro recording and
playbackl 97
Opening a new program to debug 98
Changing the program arguments 98
Chapter 6 Examining and modifying
data 101
TheDatamenu 102
Inspect...l 102
Evaluate/Modify... 102
AddWatch........................ 105
FunctionReturn 105
Pointing at data objects in source files .. 105
The Watches window 106
The Watches window local menu ... 107

Watch... ..., 107
Edit... oo 107
Remove 107
Delete Allooiinnal. 107
Inspect ...l 107
Changeccoovviinnnnn 107
Inspector windows 108
C data Inspector windows 108
Scalarso, 108
Pointers, 109
Structures and unions 110
Arrays.........oeiiiiiiiiiinn, 110
Functions 111
Pascal data Inspector windows 111
Scalars...................ll 111
Pointers 112
Arrays........oiiiiiiiiiiiaa, 113
Records.........oooiiuunnnnn.. 113
Procedures and functions 114
Assembler data Inspector windows .. 114
Scalars..........ooviiiiiiiia 114
Pointers 114
Arrays.......coviiiiiiiiinin, 115
Structures and unions 116

The Inspector window local menu 116
Range...cooiiiiiniiiinnn, 117
Change...covvveiniinnnennenn 117
Inspect ...l 117
Descendcoivviiiiinnnnn. 118
New Expression... 118
TypeCast...ooiiinilt, 118
Chapter 7 Breakpoints 119
The Breakpointsmenu 120
Togglecovviiii 121
At oo 121
Changed Memory Global... 121
Expression True Global... 121
Hardware Breakpoint... 121
Delete Alcoovvvvn.tn. 121
Scope of breakpoint expressions 122
The Breakpoints window 122

The Breakpoints window local menu . 123
Set Options... 123

Hardware Options... 125
Add... ... 126
Removeol 126
Delete Alloiivin.. 126
Inspectoiiiliil 126
The Logwindowcovvun 126
The Log window local menu 127
OpenlogkFile... 127
CloseLogFile 128
Logging 128
Add Comment... 128
EraseLogcovvuvnnn 128
Display Windows Info 128
Simple breakpoints 128
Conditional breakpoints and pass
counts ...l 129
Global breakpoints 130
Breaking for changed data objects 131
Logging variable values 131
Executing expressions 132

Chapter 8 Examining and modifying

files 133
Examining program source files 133
The Module window 134
The Module window localmenu 135
Inspectl 135
Watcht 136
Module... ..., 136
File... ... 136
Previousc.ciiiiinnn. 136
Line... ..covviinniiiiinnn... 136
Search... ...covviiiiiiiii .. 137
Next covvviiiiii i, 137
Origin ...l 137
Goto... v 137
Editcoiviiiiii 138
Examining other disk files 138
The Filewindow 138
The File window local menu 139
Goto .. 139
Searchcoviiiiiiia... 139
Next coviiiiii it 140

Display Asccovvinivenn.. 140
File... ... 140
Editiiiiiiiiii, 140
Chapter 9 Expressions 141
Choosing the language for expression
evaluationo 142
Code addresses, data addresses, and line
numbersoiiiiiiiiiiiie... 143
Accessing symbols outside the current
SCOPE v e vttt tii e 143
Scope override syntax 144
Implied scope for expression
evaluation 146
Bytelists ...l 147
Cexpressionscoovuen. 147
Csymbolscoiin, 147
C register pseudovariables 148
C constants and number formats 149
Escape sequences 149
C operators precedence 150
Executing C functions in your pro-
GraMoiiiiii i 151
C expressions with side effects 152
C reserved words and type
CONMVEISION ...t vvveiviiineennnn.. 152
Pascal expressions 153
Pascal symbols 153
Pascal constants and number formats . 154
Pascalstrings 154
Pascal operators and operator
precedencel 154
Calling Pascal functions and
proceduresl 155
Assembler expressions............... 155
Assembler symbols 155
Assembler constants 156
Assembler operators 156
Formatcontrol 157
Chapter 10 C++ and object-oriented
Pascal debugging 159
The Hierarchy window 159
The Object Type Listpane 160

The Object Type/Class List pane local

MENU .« . toeetieetiierennnens 160
Inspectl 160
Tree ooovviiiiiiiiiiii. 161

The Hierarchy Tree pane 161

The Hierarchy Tree pane local

MENU(S) «evvvrrrrmnneennnannnn 161

The Parent Tree pane local menu .. 162
Object type/class Inspector windows .. 162

The object type/class Inspector window

localmenus 163
The Object Data Field (top) pane .. 163
Inspectl 163
Hierarchy 163
Show Inherited 163

The Object Method (bottom) pane . 163
InspectcccoiiiiilL 164
Hierarchy 164
Show Inherited 164

Object instance Inspector windows 164
The object/class instance Inspector

window localmenus 165
Range... 165
Change...covvvviiinnnn.. 166
Methods 166
Show Inherited 166
Inspect ...l 166
Descendcovvvivninnn... 166
New Expression... 166
TypeCast...L. 166
Hierarchy 167

The middle and bottom panes 167

Chapter 11 Assembler-level

debugging 169
When source debugging isn’t enough .. 169
The CPUwindow 170
TheCodepane 172

The disassembler 172

The Code pane local menu 173
Goto ..o 173
Origincoviin.. 173
Followoooiait, 173
Callercovviiiinn... 174

Previouscciiia... 174

Searchcoiviivnien... 174
Mixedcovviiiiiii i 175
NewCSIPovviiiiian.. 175
Assemble... 175
I/O e 176
InByteoooiiiil 176
OutByteooo.L. 176
ReadWordcovvvvvvennn. i76
WriteWord 176

The Register and Flags panes 177
The Register pane local menu 177
Increment 177
Decrement 177
ZEIO vttt e 177
Change...cooviiiiiinnnn.. 177
Registers 32-bit 178
The Flags pane local menu 178
Toggleooiiiiiiiia, 178
TheDatapane 178
The Data pane localmenu 179
GOtO v iviiii ittt 179
Search .. .vvviiii it i 179
NeXt oottt iiiinnnann 180
Change...cooiiiinn... 180
Followoviieiinenennnnnnn. 180
NearCodec.cvvvunn.. 180
FarCodecoovivvnnn. 180
OffsettoData 180
Segment:Offset to Data 180
Base Segment:0 toData 181
Previouscoiiiii, 181
Display Asoooiiiiiin... 181
Byte ...ooiiiii 181
Wordcoiiiiiiiiiii. 181
Longooovviiiiiiiiit, 181
Compovvvvvevviniiinnnn, 181
Floatccoivvvviiinno... 182
Realcciiiiiiiiiann, 182
Doublecocvvivun... 182
Extended 182
Block ... 182
Clearovviiiieiinennnnn, 182

Set ... 183
Readcoovviinint. 183
Write ... 183
The Stackpane 183
The Stack pane local menu 183
Goto .. 183
Originoooviiiiiiiiit 184
Follow ...t 184
Previous 184
Change L. 184
Theassembler 184
Operand address size overrides 185
Memory and immediate operands . 185
Operand data size overrides 186
String instructions 186
The Dump window 186
The Registers window 187
Borland C++ code generation 187
Chapter 12 The 80x87 coprocessor
chip and emulator 189
The 80x87 chip vs. the emulator 189
The Numeric Processor window 190
The Registerpane 190
The 80-bit floating-point registers . 190
The Register pane local menu 191
ZeIO oo iviiiiii 191
Emptyoooviiiiiiiii, 191
Change 191
The Controlpane 191
The controlbits 191
The Control pane local menu 191
Toggleooiiint. 192
The Statuspane 192
The statusbits 192
The Status pane local menu 192
Toggle ...l 192
Chapter 13 Command reference 193
Hotkeys ... 194
Commands from the menubar 195
The = (System)menu 196
The Filemenu 196
The Viewmenu 196

Vi

TheRunmenu.................... 197
The Breakpoints menu 197
TheDatamenu 197
The Optionsmenu 198
The Windowmenu 198
TheHelpMenu 198
The local menu commands 199
Breakpoints window 199
The CPU window menus 200
Codepane 200
Datapane...................... 200
Flagspane 201
Registerpane 202
Stackpane 202
Dump window 202
The Execution History window
INENUS « ot vv v viieeiieeerrnennns 202
Instructionspane 202
Keystroke Recording pane 202
Filewindow 203
Log windowmenu 203
Module window 204
Windows Messages window 204
Window Selection pane 204
Message Class pane 205
Messagespane 205
Numeric Processor window 205
Registerpane 205
Statuspane 206
Controlpane 206
Hierarchy window 206
Object Type/Class List pane 206
Hierarchy Treepane............. 206
Parent Treepane 207
Registers window menu 207
Stackwindow 207
Variables window 207
Global Symbol pane 207
Local Symbol pane 207
Watches window 208
Inspector window 208
Object Type/Class Inspector
window ..o, 209

Object/class instance Inspector

window
Textpanesoiin.
ListpanesooooialL
Commands in input and history list
boxeso
Window movement commands
Wildcard search templates

M Avnanl Al sam qame s fn s
LOMPICE IICTU UEE . .o v v v vvi e e

Chapter 14 How to debug a
program
When things dontwork
Debugging style
Run the whole thing
Incremental testing
Types of bugs
Generalbugs
Hiddeneffects
Assuming initialized data
Not cleaning up
Fenceposterrors
C-specificbugs
Using uninitialized autovariables .
Confusing=and ==
Confusing operator precedence . ..
Bad pointer arithmetic
Unexpected sign extension
Unexpected truncation
Misplaced semicolons
Macros with side effects
Repeated autovariable names
Misuse of autovariables
Undefined function return value ..
Misuse of break keyword
Codehasnoeffect...............
Pascal-specificbugs
Uninitialized variables
Dangling pointers
Scope confusion
Superfluous semicolons
Undefined function return value ..
Decrementing Word or Byte
variables

Ignoring boundary or special cases . 228

Rangeerrors 229
Assembler-specificbugs 230
Forgetting to returnto DOS 230
Forgetting a RET instruction 230
Generating the wrong type of
return ..., 231
Reversing operands 231
Torgetting the stack or reserving a too-
smallstack 231
Calling a subroutine that wipes out
registersl 231
Using the wrong sense for a conditional
JUMP ..o 232
Forgetting about REP string
OVEITUI . ot teeerreenanannnnn 232
Relying on a zero CX to cover a whole
segment 232
Using incorrect direction flag
settings ...l 232
Using the wrong sense for a repeated
string comparison 233
Forgetting about string segment
defaults.............c.ooonnin.. 233
Converting incorrectly from byte to
word operations 233
Using multiple prefixes 233
Relying on the operand(s) to a string
instruction 233
Wiping out a register with
multiplication 233

Forgetting that string instructions alter
several registers 234
Expecting certain instructions to alter
thecarryflag 234
Waiting too long to use flags
Confusing memory and immediate

operandscoiinn... 234
Causing segment wraparound 234
Failing to preserve everything in an

interrupt handler 234
Forgetting group overrides in operands
and datatables 235

Accuracy testing oLl 235

Testing boundary conditions 235
Invalid datainput 235
Empty datainput 236
Debugging as part of program design .. 236
The sample debugging session 236
C debugging session 237
Looking forerrors 237
Deciding your plan of attack 238
Starting Turbo Debugger 238
Inspecting 239
Breakpoints 239
The Watches window 240
The Evaluate/Modify dialog box 240
Eureka!l 240
Pascal debugging session 242
Looking forerrors 242
Deciding your plan of attack 243
Starting Turbo Debugger 244
Moving through the program 244
The Evaluate/Modify dialog box 245
Inspectingo.all 246
Watchesooiill 247
Just onemorebug... 248

Chapter 15 Virtual debugging on the

80386 processor 251
Equipment required for virtual
debuggingl 252
Installing the virtual debugger device
drivero, 252
Starting the virtual debugger 252
Differences between normal and virtual
debuggingoi 254
Troubleshooting tips 255
TD386 error messages 256
TDH386.SYS error messages 257
Chapter 16 Protected-mode debugging

with TD286 259
Equipment required for the protected-mode
debuggerol 259
Installing the protected-mode
debuggerl 260
Starting the protected-mode debugger . 260

viii

Differences between Turbo Debugger and

protected-mode 260
Debugging programs that use extended
MEMOTY + v vveerneernnneeennnenenns 261
Running TD286 on different machines . 261
Chapter 17 Turbo Debugger for
Windows (TDW) 263
Requirements for running TDW 263
Installing TDW 264
ConfiguringTDW 265
Using TDW command-line options .. 265
Using TDINST with TDW 266
UsingTDWoooviiiiiiiinin... 266
Logging window messages 268
Selecting awindow 268
Adding a window selection 268
Deleting a window selection 269
Specifying a message class and
action ool 269
Adding a messageclass 269
Deleting a message class 272
Viewing messages 272
Obtaining memory and module lists . 272
Listing the contents of the global
heapoiilil 273
Listing the contents of the local
heapl 275
Obtaining a list of modules 275
Debugging dynamic link libraries
(DLLS) viiriiiiiiiiiianes 276
Using the Load Modules or DLLs
dialogboxl 277
Changing source modules 277
Working with DLLs and
ProOgramsoeeveeennn 277
Adding a DLL to the DLLs & Programs
list ooooeenniiii 279

Setting debug optionsina DLL ... 279
Controlling TDW' loading of DLL

symboltables................... 280
Debugging DLL startup code 280
Converting memory handles to
addressesiiiiiiiinnn, 282

Debugging tips 282

TDW error messages 283
Chapter 18 Debugging a Windows
application 285
The sample programs 285
Compiling and linking the demo
Programsooiiunnnn 286
Debugging BCWDEMOA 286
Deciding whattodo 287
Terminating BCWDEMOA 287
Logging messages 288
Analyzing the messagelog 289
Finding thebug 289
Stepping through the program 290
Analyzing DoPaint 292
Fixing thebug 293
Terminating BCWDEMOA 293
Debugging BCWDEMOB 294
Switching out of the program 294
Testing the program 295
Deciding whattodo 295
Comparing global memory lists 296
Finding the bug, a functional
approach 297
Choosing menu items 297
Drawingashape 297
Pressing the left mouse button .. 297
Moving themouse 298
Drawing the shape (and finding the
bug) ...l 298
Releasing the left button 298
Painting the screen 299
Postmortem 299
Chapter 19 Debugging TSRs and
device drivers 301
WhatsaTSR?cccoovinn... 301
Debugginga TSR 302
What’s a device driver? 305
Debugging a device driver 306
Terminating the debugging session 309

Appendix A Summary of command-line

options 311
Appendix B Technical notes 313
Changed load address and free
MEMOTY . ttteeeennereennannnnnnnn 313
Crashing the system 314
Tracing through DOS and process ID
switching 314
Using the 8087/80287 math coprocessor and
emulator 314
Interrupts used by Turbo Debugger ... 315
Debugging using INT 3 and INT1 315
Display-saving and mode-switching ... 316
Memory consumption 316
EMSsupport ...t 316

Interrupt vector saving and restoring .. 317

Appendix C Inline assembler

keywords 319

Appendix D Customizing Turbo
Debugger 323
Running TDINST 324
Setting the screen colors 324
Customizing screen colors 324
Windows ..., 324
Dialogboxesooovvnnn. 325
Menus.........ooovvviiinn. 326
Screen 326
The defaultcolors 326

Setting Turbo Debugger display

parameters 327
Display Swapping 327
Integer Format 328
Beginning Display 328
ScreenLines...................... 328
TabSize ..., 328
Maximum Tiled Watch 328
Fast Screen Update 329
Permit43/50Lines 329
Full Graphics Saving 329
User Screen Updating 329
LogListLength 330

Turbo Debugger options 330

Directories...coovvii.L. 330
Input and Prompting... 331
History List Length 331
InterruptKey 331
SetKeyoooiiiiiii 331
Mouse Enabled 331
BeeponError 331
Keystroke Recording 332
Control Key Shortcuts 332
Source Debugging... 332
Language 332
Ignore Symbol Case 333
Miscellaneous Options... 333
NMI Intercept 333
Use Expanded Memory 334
Change ProcessID 334
DOS Shell Swap Size 334
Spare Symbol Memory 334
Remote Debugging 334
Remote Link Port 334
LinkSpeed 334
Setting the mode for display 334
Default 335
Color......ooovviiiiiniini., 335
Black and White 335
Monochrome 335
LCD ...t 335
Command-line options and installation
equivalents.................. ... 335
When you're through... 337
Saving changes 337
Save Configuration File 337
Modify TD.EXEcouvunn. 337
Exiting TDINST 337

Appendix E Remote debugging 339
Setting up a remote debugging system . 340
Debugging remote DOS applications .. 341

Installing TDREMOTE 341
Configuring TDREMOTE: the command-

lineoptions 341
Starting the DOS remote link 342

Starting Turbo Debugger on the local
machinel 343

About loading the program to the

remotesystem 343
Remote DOS debugging sessions 344
TDREMOTE messages 344
Troubleshooting TDREMOTE connection
problemsl 346

Debugging remote Windows

applicationsl 347
Hardware requirements 347
Installing WREMOTE 347
Configuring WREMOTE 348

WREMOTE command-line options .. 349
Starting the Windows remote link ... 349

Running Turbo Debugger 350
Turbo Debugger command-line
optionsiiial, 350
Starting Turbo Debugger on the local
machine 350
About loading the program to the
remotesystem 351
Remote Windows debugging
SESSIONSiiiiiiiiiiiii 351
WREMOTE messages 352
Troubleshooting WREMOTE connection
problemsl 352
Appendix F Dialog boxes and error
messages 353
Dialogboxesoouu... 353
Errormessages 360
Fatalerrors....................... 360
Other error messages 361
Information messages 379

Appendix G Using Turbo Debugger
with different

languages 381
Borland C++tipso. 381
Compiler code optimizing 381
Accessing pointerdata 382
Stepping through complex
exXpressions000.... 382
Turbo Assembler tips 383
Looking at raw hexdata 383

Source-level debugging 383
Examining and changing registers ... 383
Turbo Pascal tips 384
Stepping through initialization code . 384
Stepping through exit procedures ... 384
Constantsovne 384

Xi

String and set temporaries on the

stack ...l 385
Clever typecasting 385
CPU window tips for Pascal 386
Glossary 387
Index 391

2.1: What goes in a dialogbox 22
13.1: The function key and hot key

commandsoiiiiiiiiia 194
13.2: Text pane key commands 210
13.3: List pane key commands 211
13.4: Dialog box key commands 211
13.5: Window movement key

commands 0000 212
17.1: Windows message classes 270
17.2: Format of a global heap list 274
17.3: Format of a local heap list 275

17.4: Format of a Windows module list . .276
17.5: DLLs & Programs list dialog box
buttons

Xii

A.1: Turbo Debugger command-line
options
C.1: 8086/80186/80286 instruction

INNEMONICS « oo v e e ennnan.

C.2: 80386 instruction mnemonics
C.3: 80486 instruction mnemonics

C.4:80386 registers
C5:CPUregistersooovvinnnn

C.6: Special keywords
C.7: 8087 /80287 numeric coprocessor
instruction mnemonics
C.8: 80387 instruction mnemonics
D.1: Turbo Debugger command-line
options

.......................

o e e

..............

oo

.......................

21:Global vs. localmenus 24 5.5: The Windows Get Info textbox 86
2.2: A history list in an inputbox 26 5.6: The Execution History window 92
2.3: Can you spot the active window?33 5.7: The Load Program dialog box 98
24: A typicalwindow 34 6.1: The Evaluate/Modify dialog box ...103
2.5: The normal status line 40 6.2: The Watches window 106
2.6: The status line with Alt pressed 40 6.3: A C scalar Inspector window 109
2.7: The status line with Ctrl pressed 40 6.4: A C pointer Inspector window 110
3.1: The startup screen showing 6.5: A C structure or union Inspector
TCDEMO.........ooooiiiiiiiinn. 44 window ...l 110
32: Themenubar 45 6.6: A C array Inspector window 111
3.3: Thestatusline 45 6.7: A C function Inspector window111
3.4: The Module and Watches windows, 6.8: A Pascal scalar Inspector window ..112
tiled ... 47 6.9: A Pascal pointer Inspector window .112
3.5: Program stops on return from function 6.10: A Pascal array Inspector window ..113
showargsooonll 49 6.11: A Pascal record Inspector window .113
3.6: Abreakpointatline44 50 6.12: A Pascal procedure Inspector
3.7: A C variable in the Watches window .51 window ...l 114
3.8: An Inspector window 52 6.13: An assembler scalar Inspector
3.9: Inspecting a structure 53 windowl 114
3.10: The Change dialogbox 54 6.14: An assembler pointer Inspector
3.11: The Evaluate/Modify dialog box ...55 windowo oo 115
3.12: The program stops after returning from 6.15: An assembler array Inspector
aprocedureiiunn. 56 windowo o 116
3.13: A breakpoint atline 121 57 6.16: An assembler structure Inspector
3.14: A Pascal variable in the Watches windowl 116
window ... 58 7.1: The Breakpoints window 122
3.15: An Inspector window 59 7.2: The Breakpoint Options dialog box .123
3.16: Inspecting arecord 60 7.3: The Log window 126
3.17: The Change dialogbox 61 8.1: The Module window 134
3.18: The Evaluate/Modify dialog box ...62 8.2: The Filewindow 138
4.1: The Display Options dialog box 73 8.3: The File window showing hex data .138
4.2: The Save Options dialogbox 75 10.1: The Hierarchy window 160
5.1: The Variables window 78 10.2: An object type/class Inspector
5.2: The Local Display dialog box 82 window ..., 162
5.3: The Stack window 82 10.3: An object/class instance Inspector
5.4: The DOS Get Info textbox 84 window ...l 165

xiii

11.1: The CPU window 170 D.1: Customizing colors for windows . ..325
11.2: The Dump window 186 D.2: Customizing colors for dialog

11.3: The Registers window 187 boxesooiiiiiiiiiit 326
12.1: The Numeric Processor window . ..190 D.3: The Display Options dialog box327
13.1: The Turbo Debugger menu tree213 D.4: The User Input and Prompting dialog

17.1: The Windows Messages window . .268 box ..o 331

17.2: The Add Window dialog box 268 D.5: The Source Debugging dialog box . .332

17.3: The Set Message Filter dialog box . .270 D.6: The Miscellaneous Options dialog

17.4: The Windows Information dialog box ..ol 333
box ... 272 E.1: WRSETUP main window and Settings

17.5: The Load Modules or DLLs dialog dialogboxl 348
box ... 277

Xiv

Infroduction

NN

Turbo Debugger is a state-of-the-art, source-level debugger
designed for Borland Turbo language programmers and pro-

grammers using other compilers who want a more powerful
debugging environment.

Multiple, overlapping windows, a combination of pull-down and
pop-up menus, and mouse support provide a fast, interactive
environment. An online context-sensitive help system provides
you with help during all phases of operation.

Here are just some of Turbo Debugger’ features:

m uses the expanded memory specification (EMS) for debugging
large programs

m full C, Pascal, and assembler expression evaluation

m reconfigurable screen layout

m assembler/CPU access when needed

m powerful breakpoint and logging facility

m keystroke recording (macros)

mback tracing

m remote system for debugging large programs

m support for 80386 and other vendors’ debugging hardware

m full support for object-oriented programming in Turbo Pascal
5.5 and later

m full support for C++ in Borland’s line of C++ compilers
m TSR and device driver debugging
m debugging of Microsoft Windows applications

New features and changes for version 2.5

With Turbo Debugger 2.5, you can debug Microsoft Windows
applications. The icon on the left indicates a feature used only
with Windows. The following additions and changes have been
made to Turbo Debugger to support this new capability:

m A new version of Turbo Debugger, called Turbo Debugger for
Windows (TDW), supports debugging on a single machine.
This program is described in Chapter 17.

m A new version of TDREMOTE, called WREMOTE, supports
remote debugging.

m The —rs command-line option for Turbo Debugger and
TDREMOTE has changed to support more baud rates, and a
new option, -w, has been added for Turbo Debugger. See page
341 for a description of the TDREMOTE command-line options
and page 350 for a description of Turbo Debugger remote
command-line options.

m An additional command on the View menu, Windows Info, lets
you view several types of information about a Windows
application: messages passed between windows, global and
local heap contents, and a list of modules making up the
application.

Hardware and software requirements

&8

Turbo Debugger runs on the IBM PC family of computers,
including the XT and AT, the PS/2 series, and all true IBM
compatibles. DOS 2.0 or higher is required and at least 384K of
RAM. It runs on any 80-column monitor, either color or mono-
chrome. We recommend a hard disk. If you want to run Turbo
Debugger on a two-floppy system, you must use high-density
disks. You can also use 3.5-inch, 720K disks; INSTALL won't

install Turbo Debugger on these, so you will have to copy the files
over yourself.

Turbo Debugger does not require an 8087 math coprocessor chip.

Turbo Debugger works with the following Borland products:
Turbo C 2.0, Borland’s line of C++ compilers, Turbo Pascal 5.0 or
later, and Turbo Assembler 1.0 or later. To use Turbo Debugger on

Turbo Debugger User’s Guide

a program, it must be an executable (.EXE file) that you compiled
with full debugging information turned on.

When you run Turbo Debugger, you'll need both the .EXE file and
the original source files. Turbo Debugger searches for source files
first in the directory where the compiler found them when it
compiled, second in the directory specified in the Options/Path
for Source command, third in the current directory, and fourth in
the directory the .EXE file is in.

A note on terminology

Module

Function

Argument

For convenience and brevity, we use a couple of terms in this
manual in slightly more generic ways than usual. These terms are
module, function, and argument.

Refers to what is usually called a module in C and in assembler,
but also to what is called a unit in Pascal.

Refers to both a C function and to what is known in Pascal as a
subprogram (or routine), which encompasses functions, procedures,
and object methods. In C, a function can return a value (like a
Pascal function) or not (like a Pascal procedure). (When a C
function doesn’t return a value, it’s called a void function.) In the
interest of brevity, we often use function in a generic way to stand
for both C functions and Pascal functions and procedures—
except, of course, in the language-specific areas of the manual.

Is used interchangeably with parameter in this manual. This
applies to references to command-line arguments (or parameters),
as well as to arguments (or parameters) passed to procedures and
functions.

What's in the manual

Infroduction

Here is a brief synopsis of the chapters and appendixes in this
manual:

Chapter 1: Getting started describes the contents of the distri-
bution disk and tells you how to load Turbo Debugger files into
your system. It also gives you advice on which chapter to go to
next, depending on your level of expertise.

Chapter 2: Debugging and Turbo Debugger explains the Turbo
Debugger environment, menus, and windows, and shows you
how to respond to prompts and error messages.

Chapter 3: A quick example leads you through a sample session—
using either a Pascal or C program—that demonstrates many of
the powerful capabilities of Turbo Debugger.

Chapter 4: Starting Turbo Debugger shows how to run the
debugger from the DOS prompt, when to use command-line
options, and how to record commonly used settings in
configuration files.

Chapter 5: Controlling program execution demonstrates the
various ways of starting and stopping your program, as well as
how to restart a session or replay the last session.

Chapter 6: Examining and modifying data explains the unique
capabilities Turbo Debugger has for examining and changing data
inside your program.

Chapter 7: Breakpoints introduces the concept of actions, and
how they encompass the behavior of what are sometimes referred
to as breakpoints, watchpoints, and tracepoints. Both conditional
and unconditional actions are explained, as well as the various
things that can happen when an action is triggered.

Chapter 8: Examining and modifying files describes how to
examine and change program source files, as well as how to
examine and modify arbitrary disk files, either as text or binary
data.

Chapter 9: Expressions describes the syntax of C, Pascal, and
assembler expressions accepted by the debugger, as well as the
format control characters used to modify how an expression’s
value is displayed.

Chapter 10: C++ and object-oriented Pascal debugging explains
the debugger’s special features that let you examine objects (in
programs written using Turbo Pascal 5.5 or later) and classes (in
programs written using one of Borland’s C++ compilers).

Chapter 11: Assembler-level debugging explains how to view
and change memory as raw hex data, how to use the built-in
assembler and disassembler, and how to examine or modify the
CPU registers and flags.

Turbo Debugger User's Guide

Infroduction

Chapter 12: The 80x87 coprocessor chip and emulator discusses
how to examine and modify the contents of the floating-point
hardware or emulator.

Chapter 13: Command reference is a complete listing of all main
menu commands and all local menu commands for each window

type.

Chapter 14: How to debug a program is an introduction to
strategies for effective debugging of your programs.

Chapter 15: Virtual debugging on the 80386 processor describes
how you can take advantage of the extended memory and power
of an 80386 computer by letting the program you're debugging

use the full address space below 640K, as if no debugger were
loaded.

Chapter 16: Protected-mode debugging with TD286 tells you how
to use TD286 to run Turbo Debugger in protected mode, freeing
up memory for debugging large programs.

Chapter 17: Turbo Debugger for Windows (TDW) describes how
to run TDW and how to use its special features.

Chapter 18: Debugging Windows applications leads you through
a debugging session on a sample Windows program.

Chapter 19: Debugging TSRs and device drivers explains how to
debug terminate and stay resident programs and programs that
become resident at startup time with Turbo Debugger, and how to
load a symbol table manually.

Appendix A: Summary of command-line options is a summary of
all the command-line options that are completely described in
Chapter 4.

Appendix B: Technical notes is for experienced programmers. It
describes implementation details of Turbo Debugger that explain
how it interacts with both your program and with DOS.

Appendix C: Inline assembler keywords lists all instruction
mnemonics and other special words used for entering inline
8086/80286/80386 and 8087 /80287 /80837 instructions.

Appendix D: Customizing Turbo Debugger explains how to use
the installation program (TDINST) to customize screen colors and
change default options.

Appendix E: Remote debugging explains how to use the
WREMOTE utility for remote debugging of Windows
applications and the TDREMOTE utility for remote debugging of
DOS (non-windows) applications. These utilities enable you to
run Turbo Debugger on one machine and the program you are
debugging on another.

Appendix F: Dialog boxes and error messages lists all the Turbo
Debugger prompts and error messages that can occur, with
suggestions on how to respond to them.

Appendix G: Using Turbo Debugger with different languages
provides several tips when you're debugging programs written in
C, assembler, or Pascal.

Glossary is an alphabetical list of commonly used terms in this
manual, with short definitions.

How to contact Borland

The best way to contact Borland is to log on to Borland’s Forum
on CompusServe: Type GO BOR from the main CompuServe menu
and choose “Borland Programming Forum B (Turbo Prolog,
Turbo Assembler, Turbo Debugger, & Turbo C)” from the Borland
main menu. Leave your questions or comments there for the
support staff to process.

If you prefer, write a letter with your comments and send it to

Borland International

Technical Support Department — Turbo Debugger
1800 Green Hills Road

P.O. Box 660001

Scotts Valley, CA 95067-0001, USA

408-438-5300 You can also telephone our Technical Support department. Please
have the following information handy before you call:

1. Product name and serial number on your original distribution
disk. Please have your serial number ready, or we won't be
able to process your call.

2. Product version number. The version number for Turbo
Debugger is displayed when you first load the program and

6 Turbo Debugger User's Guide

before you press any keys. If you are in Turbo Debugger,
choose About from the = (System) menu.

3. Computer brand, model, and the brands and model numbers
of any additional hardware.

4. Operating system and version number. (The version number
can be determined by typing VER at the MS-DOS prompt.)
5. Contents of your AUTOEXEC.BAT file.

e~

. Contents of your CONFIG.5YS file.

[o}¥

Recommended reading

Books on Turbo
Debugger and

Infroduction

Tools

Many leading publishers support Borland products with a wide
range of excellent books, serving everyone from beginning
programmers to advanced users. In addition, there are books on
other topics, such as programming for Windows, that are
required reading.

Here are a few titles that offer additional information on Turbo
Debugger and Tools:

Ackerman, Charles. Turbo Debugger and Tools: A Self-Teaching
Guide, John Wiley and Sons (New York: 1990).

Swan, Tom. Mastering Turbo Assembler, Howard W. Sams and Co.
(Carmel, IN: 1989).

Swan, Tom. Mastering Turbo Debugger and Tools, Howard W. Sams
and Co. (Carmel, IN: 1990).

Syck, Gary. The Waite Group’s Turbo Assembler Bible, Howard W.
Sams and Co. (Carmel, IN: 1990).

Books on
Microsoft The following books provide information on writing Windows
Windows application programs:
Microsoft staff. Microsoft Windows Software Development Kit, Guide
to Programming, Microsoft Corporation. (Redmond, WA: 1990).

Microsoft staff. Microsoft Windows Software Development Kit
Reference, Vols. 1 and 2, Microsoft Corporation. (Redmond, WA:
1990).

Microsoft staff. Microsoft Windows Software Development Kit, Tools,
Microsoft Corporation. (Redmond, WA: 1990).

Petzold, Charles. Programming Windows, Microsoft Press.
(Redmond, WA: 1990).

Turbo Debugger User’s Guide

Chapter 1, Getting started

Gefting started

Your Turbo Debugger package consists of a set of distribution
disks and the Turbo Debugger User’s Guide (this manual). The
distribution disks contain all the programs, files, and utilities
needed to debug programs written in Turbo C, Turbo Assembler,
Turbo Pascal, Microsoft C, and Microsoft Assembler. In the
README, the HELPME!LDOC, the MANUAL.DOC, and the
HELPME.DOC files, the Turbo Debugger package also contains
documentation on subjects not covered in this manual.

The Turbo Debugger User’s Guide provides a subject-by-subject
introduction of Turbo Debugger’s capabilities and a complete
command reference.

Before you get started using Turbo Debugger, you should make a
complete working copy of the distribution disks, then store the
original disks in a safe place. Use the original distribution disks as
your backup only, and run Turbo Debugger off of the copy you've
just made—the distribution disks are your only backup in case
anything happens to your working files.

If you are not familiar with Borland’s no-nonsense license state-
ment, now’s the time to read the agreement. Mail your filled-in
product registration card, so you'll be notified about updates and
new products as they become available.

The distribution disks

The README file

When you install Turbo Debugger on your system, files from the
distribution disks are copied to your working floppies or to your
hard disk. Just run INSTALL.EXE, the easy-to-use installation
program on your distribution disks. The distribution disks are
formatted for double-sided, double-density disk drives and can be
read by IBM PCs and close compatibles.

For a list of the files on your distribution disks, see the README
file on the Installation disk.

>

It is very important that you take the time to look at the README
file on the Installation disk before you do anything else with
Turbo Debugger. This file contains last-minute information that
may not be in the manual. It also lists every file on the distri-
bution disks, with a brief description of each.

To access the README file, insert the Installation disk in drive A,
switch to drive A by typing A: and pressing Enter, then type README
and press Enter again. Once you are in README, use the T and {
keys to scroll through the file. Press Esc to exit.

The HELPME!.DOC file

10

Your Installation disk also contains a file called HELPME!.DOC,
which contains answers to problems that users commonly run
into. Consult it if you find yourself having difficulties. Among
other things, the HELPME!.DOC file deals with:

m Screen output for graphics and text-based programs

m Executing other programs while you are still using the
debugger

Turbo Debugger User’s Guide

m Breaking out of a program

m The syntactic and parsing differences between Turbo Debugger
and the Turbo languages

m Debugging multi-language programs with Turbo Debugger

m Tandy 1000, IBM PC convertible, or NEC MultiSpeed, and other
computers that use the NMI (nonmaskable interrupt)

Turbo Debugger utilities

Chapter 1, Getting started

Your Turbo Debugger package comes with several utility pro-
grams. Detailed information on these utilities is available on your
distribution disks. See the README file for how to access this
disk-based documentation.

Here is a brief description of each of the Turbo Debugger utilities:

m The CodeView to Turbo Debugger utility, TDCONVRT.EXE,
lets you debug C and assembler programs developed with
Microsoft compilers.

m The remote file transfer utility, TDRF.EXE, works in conjunction
with remote debugging and lets you issue basic file-
maintenance commands to a remote system.

m The symbol table stripping utility, TDSTRIP.EXE, lets you strip
the debugging information (the “symbol table”) from your pro-
grams without relinking.

m TDPACK.EXE lets you pack the debugging information.

m TDMAP.EXE appends to an .EXE file debugging information
from the corresponding .MAP file, allowing you to debug an
executable program that you compiled with a non-Borland
compiler and linker.

m TDDEV.EXE displays a table showing information about all
device drivers.

m TDMEM.EXE displays a table showing current memory use
and availability, including expanded and extended memory.

m Finally, TDUMP.EXE is a generic object module and .EXE file
disassembler.

m Additionally, we give you a small TSR program, TDNMI.COM
that resets the breakout-switch latch if you are using a
Periscope I board.

1

>

For a list of all the command-line options available for
TDCONVRT.EXE, TDRF.EXE, TDSTRIP.EXE, TDPACK.EXE,
TDMAP .EXE, or TDUMP.EXE, just type the program name and
press Enter. For example, to see the command-line options for
TDMAP.EXE, you would type

TDMAP

Installing Turbo Debugger

12

>

Unzipping
example files

The Installation disks contain a program called INSTALL.EXE
that will assist you with the installation of Turbo Debugger 2.5.

To start the installation, change your current drive to the one that
has the INSTALL program on it and enter INSTALL. You are given
instructions in a box at the bottom of the screen for each prompt.

INSTALL copies all Turbo Debugger files onto your hard disk and
puts them into subdirectories. The default subdirectories are

Turbo Debugger directory: C:\TD
Example subdirectory: CA\TD

By default, all files from the distribution disks are placed in the
Turbo Debugger directory. If you would rather separate the demo
programs into their own subdirectory as well, edit the default
example files path before selecting START INSTALLATION.

You should read the README file to get further information
about Turbo Debugger after you install Turbo Debugger.

For a list of all the command-line options available for
INSTALL.EXE, enter the program name followed by -h:

INSTALL -h

The Turbo Debugger distribution disks contain a file with a .ZIP
file name extension: TDEXAMPL.ZIP.

These files contain several other files that have been compressed
and placed inside an archive. You can de-archive them yourself
by using the UNZIP.EXE utility.

Turbo Debugger User’s Guide

LCD and B/W
monitors

For example, entering

UNZIP TDEXAMPL

unpacks all the files stored in the TDEXAMPL.ZIP archive into
the current directory.

INSTALL gives you a choice of copying the .ZIP files intact or de-
archiving and copying all of the individual files onto your hard
disk during the installation process.

If you have difficulty reading the text displayed by the INSTALL
utility, it accepts an optional /B command-line parameter that
forces it to use black-and-white (BW80) mode:

A:INSTALL /B

Specifying the /B parameter may be necessary if you are using an
LCD screen or a system that has a color graphics adapter and a
monochrome or composite monitor.

Hardware debugging

Chapter 1, Getting started

If you're using an 80386 system, you can install the TDH386.5YS
device driver supplied with Turbo Debugger. This device driver
will vastly speed up breakpoints that watch for changed memory
areas and I/O port accesses.

Copiy this file to the directory where you keep your device drivers
and put a line in your CONFIG.SYS file that loads the driver, such
as

DEVICE = \SYS\TDH386.SYS

The next time you boot up your system, Turbo Debugger will be
able to find and use this device driver.

See the disk-based documentation on the hardware debugger
interface for complete information on this device driver interface.

If you have a hardware debugging board (such as Atron,
Periscope, Purart Trapper, and so on), you may be able to use the
board with Turbo Debugger. Check with the vendor of your
board for its compatibility with Turbo Debugger.

13

Where to now?

Programmers
learning a Turbo
language

Programmers
already using a
Turbo language

14

Now that you've loaded all the files, you can start learning about
Turbo Debugger. Since this User’s Guide is written for two types of
users, different chapters of the manual may appeal to you. The
following roadmap will guide you.

If you are just starting to learn one of the languages in the Turbo
family, you will want to be able to create small programs using it
before you learn about the debugger. What better way to learn
how to use the debugger than to have a real live problem of your
own to debug! After you have gained a working knowledge of the
language, work your way through Chapter 3, “A quick example,”
for a speedy tour of the major functions of Turbo Debugger. There
you’ll learn enough about the features you need to debug your
first program; you'll find out about the debugger’s more
sophisticated capabilities in later chapters.

If you are an experienced Turbo family programmer, you can
learn about the exciting new features of the Turbo Debugger
environment by reading Chapter 2, “Debugging and Turbo
Debugger.” If it suits your style, you can then work through the
tutorial or, if you prefer, move straight on to Chapter 4, “Starting
Turbo Debugger.” For a complete rundown of all commands, turn
to Chapter 13, “Command reference.”

Turbo Debugger User's Guide

Debugging and Turbo Debugger

The simple truth is that no one’s perfect; we all make mistakes.
Whether it’s with simple things like walking or complicated
things like programming, we all stumble sometimes.

If you're a programmer, stumbling is a way of life. You hardly
ever write an error-free program the first time out the gate. That’s
nothing to be ashamed of. Stumbling also implies picking yourself
up off the floor and trying again, and again, and maybe again. In
programming parlance, that’s debugging.

What is debugging?

Debugging is the process of finding and correcting errors (“bugs”)
in your programs. It’s not unusual to spend more time on finding
and fixing bugs in your program than on writing the program in
the first place. Debugging is not an exact science; the best debug-
ging tool you have is your own “feel” for where a program has
gone wrong. Nonetheless, you can always profit from a syste-
matic method of debugging.

Chapter 2, Debugging and Turbo Debugger 15

16

Is there a bug?

Where is it?

What is it?

Fixing it

The debugging process can be broadly divided into four steps:

1. Realizing you have an error
2. Finding where the error is

3. Finding the cause of the error
4. Fixing the error

The first step can be really obvious. The computer freezes up (or
hangs) whenever you run it. Or perhaps it crashes in a shower of
meaningless characters. Sometimes, however, the presence of a
bug is not so obvious. The program might work fine until you
enter a certain number (like 0 or a negative number) or until you
examine the output closely. Only then do you notice that the
result is off by a factor of .2 or that the middle initials in a list of
names are wrong.

The second step is sometimes the hardest: isolating where the
error occurs. Let’s face it, you simply can’t keep the entire pro-
gram in your head at one time (unless it’s a very small program
indeed). Your best approach is to divide and conquer—break up
the program into parts and debug them separately. Structured
programming is perfect for this type of debugging.

The third step, finding the cause of the error, is probably the
second-hardest part of debugging. Once you've discovered where
the bug is, it’s usually somewhat easier to find out why the pro-
gram is misbehaving. For example, if you've determined the error
is in a procedure called PrintNames, you have only to examine the
lines of that procedure instead of the entire program. Even so, the
error can be elusive and you might need to experiment a bit
before you succeed in tracking it down.

The final step is fixing the error. Armed with your knowledge of
the program language and knowing where the error is, you can

Turbo Debugger User's Guide

See Chapter 14 for a more
detailed discussion of the
debugging process.

squash the bug. Now you run the program again, wait for the
next error to show up, and start the debugging process again.

Many times this four-step process is accomplished when you are
writing the program itself. Syntax errors, for example, prevent
your programs from compiling until they’re corrected. The
Borland language products have built-in syntax checkers that
inform you of these errors and let you fix them on the spot.

But other errors are more insidious and subtle, They lie in wait

until you enter a negative number, or they’re so elusive you're
stymied. That’s where Turbo Debugger comes in.

What Turbo Debugger can do for you

Adding a full-feature
debugger to the compiler
itself would make it foo big.

You must use a conversion
utility that we supply before
you debug a program
wriften in a Microsoft
language.

With the standalone Turbo Debugger, you have access to a much
more powerful debugger than exists in your language compiler.

You can use Turbo Debugger with any program written using one
of Borland’s C compilers, Turbo Pascal, Turbo Assembler,
Microsoft C, or MASM. If CodeView information is present, you
must use the TDCONVRT utility described in the documentation
on Turbo Debugger utilities on your distribution disks.

Turbo Debugger helps with the two hardest parts of the debug-
ging process: finding where the error is and finding the cause of
the error. It does this by slowing down program execution so you
can examine the state of the program at any given spot. You can
even test new values in variables to see how they affect your pro-
gram. With Turbo Debugger, you can perform tracing, stepping,
viewing, inspecting, changing, and watching.

Tracing You can execute your program one line at a time.

Back tracing You can step backward through your executed
code, reversing the execution as you go.

Stepping You can execute your program one line at a time
but step over any procedure or function calls. If
you're sure your procedures and functions are
error-free, stepping over them speeds up
debugging.

Viewing You can have Turbo Debugger open a special
window to show you the state of your program
from various perspectives: variables, their values,

Chapter 2, Debugging and Turbo Debugger 17

18

What Turbo
Debugger won't
do

breakpoints, the contents of the stack, a log, a
data file, a source file, CPU code, memory, regis-
ters, numeric coprocessor information, object or
class hierarchies, execution history, or program
output.

Inspecting You can have Turbo Debugger delve deeper into
the workings of your program and show you the
contents of complicated data structures like

arrays.

Changing You can replace the current value of a variable,
either globally or locally, with a value you
specify.

Watching You can isolate program variables and keep track

of their changing values as the program runs.

You can use these powerful tools to dissect your program into
discrete chunks, confirming that one chunk works before moving
to the next. In this way, you can burrow through the program, no
matter how large or complicated, until you find where that bug is
hiding. Maybe you’ll find there’s a function that inadvertently
reassigns a value to a variable, or maybe the program gets stuck
in an endless loop, or maybe it gets pulled into an unfortunate
recursion. Whatever the problem, Turbo Debugger helps you find
where it is and what'’ at fault.

Turbo Debugger, version 2.0 and later, enables you to debug C++
and object-oriented Pascal programs. It is smart about objects and
classes, and it correctly handles late binding of virtual methods or
member functions so that it always executes and displays the
correct code.

With all the features built into Turbo Debugger, you might be
thinking that it’s got it all. In truth, there are at least three things
Turbo Debugger won’t do for you.

m Turbo Debugger does not have a built-in editor to change your
source code. Most programmers have their favorite editor and
are comfortable with it. You can, however, easily transfer con-
trol to your text editor by choosing the local Edit command
from a File window (more on local commands in a minute).
Turbo Debugger uses the editor you specified with the TDINST

Turbo Debugger User's Guide

installation program. Better still, if you have one of Borland’s
C++ compilers, you can use the Transfer feature to run Turbo
Debugger from inside the Turbo language’s integrated
environment.

m Turbo Debugger cannot recompile your program for you. You
need the original program compiler (like Turbo Pascal or
Borland C++) to do that.

m Turbo Debugger does not take the place of thinking. When
you're debugging a program, your greatest asset is simple
thought. Turbo Debugger is a powerful tool, but if you use it
mindlessly, its unlikely to save you time or effort.

How Turbo

Debugger does it Here’s the really good news: Turbo Debugger gives you all this
power and sophistication, and at the same time it’s easy—dare we
say intuitive—to use.

Turbo Debugger accomplishes this artful blend of power and ease

by offering an exciting environment. The next section examines
the advantages of Turbo Debugger’s revolutionary environment.

The Turbo Debugger advantage

Once you start using Turbo Debugger, we think you’ll be unable
to get along without it. Turbo Debugger has been especially
designed to be as easy and convenient as possible. To this end,
Turbo Debugger offers you these powerful features:

m Convenient and logical global menus.

m Context-sensitive local menus throughout the product, which
practically do away with memorizing and typing commands.

m Dialog boxes in which you can choose, set, and toggle options
and type in information.

m When you need to type, Turbo Debugger keeps a history list of
the text you've typed in similar situations. You can choose text
from the history list, edit the text, or type in new text.

m Full macro control to speed up series of commands and
keystrokes.

m Convenient, complete window management.
m Mouse support.

Chapter 2, Debugging and Turbo Debugger 19

20

Menus and
dialog boxes

Using the menus
Getting in

LY

Gefting around

m Access to several types of online help.
m Session recording and reverse execution.

The rest of this chapter discusses these features of the Turbo
Debugger environment.

As with many Borland products, Turbo Debugger has a
convenient global menu system accessible from a menu bar
running along the top of the screen. This menu system is always
available, no matter which of the debugger windows is active (that
is, has a cursor in it).

A pull-down menu is available for each item on the menu bar.

Through the pull-down menus, you can

m execute a command.

m open a pop-up menu. Pop-up menus appear when you choose a
menu item that is followed by a menu icon (»).

m open a dialog box. Dialog boxes appear when you choose a
menu item that is followed by a dialog box icon (...).

There are four ways you can open the menus on the menu bar:

m Press F10, use — or « to go to the desired menu, and press
Enter.

m Press F10, then press the first letter of the menu name (Spacebar,
F/ VIHIBIDIOIW’m'

m Press Alt plus the first letter of any menu bar command
(Spacebar, F, V, R, B, D, O, W, H). For example, wherever you are
in the system, Alt-F takes you to the File menu. The = (System)
menu opens with Alf-Spacebar.

m Click the menu bar command with the mouse.

Once you are in the global menu system, here is how you move
around in it:

m Use — and ¢ to move from one pull-down menu to another.
(For example, when you are in the File menu, pressing — takes
you to the View menu.)

mUse T and | to scroll through the commands in a specific menu.

m Use Home and End to go to the first and last menu items,
respectively.

Turbo Debugger User's Guide

Getting out

m Highlight a menu command and press Enter to move to a
lower-level (pop-up) menu or dialog box.

m Click the mouse on a command to move to a lower-level (pop-
up) menu or dialog box.

This is how you get out of a menu or the menu system:

m Press Esc to exit a lower-level menu and return to the previous
menu.

m Press Esc in a pull-down menu to leave the menu system and
return to the active window.

m Press F10 at any menu level (but not in a dialog box) to leave the
menu system and return to the active window.

m Click the active window with the mouse to leave the menu
system and return to the active window.

Some menu commands have a shortcut hot key that you press to
execute them. The hot key appears in the menu to the right of
these commands.

Figure 13.1 in Chapter 13 shows the complete pull-down menu
tree for Turbo Debugger. Table 13.1 on page 194 lists all the hot
keys. For a summary of all the commands available in Turbo
Debugger, refer to Chapter 13.

Chapter 2, Debugging and Turbo Debugger 21

Dialog boxes

Table 2.1
What goes in a dialog box

The hot key for the OK button

is Alt-K.

[x]

L]

THISFILE.EXE
THATFILE.EXE
TOTHERFL.EXE

&

22

Many of Turbo Debugger’s command options are available to you
in dialog boxes. A dialog box contains one or more of the following

items:
Item What it looks like, what it does
Buttons Buttons are “shadowed” text (on monochrome systems

Check boxes

Radio buttons

Input boxes

List boxes

they appear in reverse video). If you choose a button,
Turbo Debugger carries out the related action imme-
diately. Get out of a dialog box by pressing the button
marked OK to confirm your choices, or Cancel to cancel
them. Dialog boxes also contain a Help button that
brings up online help.

A check box is an on/off toggle. Choose it to turn the
option on or off. When a check box option is turned on,
an X appears in brackets: [X].

Radio buttons offer a set of toggles, but the choices are
mutually exclusive: you can choose only one radio
button in a set at a time. When you do, a bullet appears
between the parentheses, as follows: (e).

An input box prompts you to type in a string (the name
of a file, for example). An input box often has a history
list associated with it (see the section “History lessons”
for more on these).

A list box contains a list of items from which you can
choose (for example, a list of possible files to open).

You navigate around dialog boxes by pressing Tab and Shift-Tab.
Within sets of radio buttons, use the arrow keys to change the
settings. To choose a button, tab to it and press Enter.

If you have a mouse, it is even easier to get around in a dialog
box. Just click the item you want to choose. To close the dialog
box, click the close box in the upper left corner.

You can also choose items in a dialog box by pressing their hot
key, the highlighted letter in each command.

Turbo Debugger User’s Guide

Knowing where

YOU Aré In addition to the convenient system of Borland pull-down
menus, the Turbo Debugger advantage consists of a powerful
feature that lessens confusion by actually reducing the number of
menus.

To understand this feature, you must realize that first and fore-
most, Turbo Debugger is context-sensitive. That means it keeps
tabs on exactly which window you have open, what text is
selected, and which subdivision, or pane, of the window your
cursor is in. In other words, it knows precisely what you're look-
ing at and where the cursor is when you choose a command. And
it uses this information when it responds. Let’s take an example to
illustrate.

Suppose your Pascal program has a line like this:

MyCounter [TheGrade] := MyCounter[TheGrade] + 1;

As you’ll discover when you work with Turbo Debugger, getting
information on data structures is easy; all you do is press Ctrl-l, the
hot key that opens an Inspector window, to inspect it. When the
cursor is at MyCounter, Turbo Debugger shows you information
on the contents of the entire array variable. But if you were to
select (that is, highlight) the whole array name and the index and
then press Ctrl-l, Turbo Debugger knows that you want to inspect
one member and shows you only that member.

You can tunnel down to finer and finer program detail in this
way. Pressing Ctrl-l while you're already inspecting an array gives
you a look at a particular member.

This sort of context-sensitivity makes Turbo Debugger extremely
easy to use. It saves you the trouble of memorizing and typing
complicated strings of menu commands or arcane command-line
switches. You simply move to the item you want to examine (or
select it using the Ins key or drag over it with the mouse), and then
invoke the command (Ciri for Inspect, for example). Turbo
Debugger always does its best on delivering the goods for the
particular item.

This context-sensitivity, which makes life easy for the user, also
makes the task of documenting commands difficult. This is
because Cir-|, for example, in Turbo Debugger does not have a

Chapter 2, Debugging and Turbo Debugger 23

24

single result; instead, the outcome of a command depends on where
your cursor is or what text is selected.

Local menus Another aspect of Turbo Debugger’s context-sensitivity is in its
use of local menus specific to different windows or panes within
windows.

Local menus in Turbo Debugger are tailored to the particular
window or pane you are in. It's important not to confuse them
with global menus. Here is a composite screen shot of both kinds
of menus (when you're actually working in Turbo Debugger,
however, you could never have both types of menus showing at
the same time):

Figure 2.1
Global vs. local menus

0g
watches
uariab]es

odule...

| umeric processor

HIl| i3xecution history
R ﬁierarchy |
another >

e

Compare the following two lists:
Globalmenus m Global menus are those that you access by pressing F10 and
using the arrow keys or typing the first letter of the menu name.

m The global menus are always available from the menu bar,
visible at the top of the screen.

m Their contents never change.
m Some of the menu commands have hot key shortcuts that are
available from any part of Turbo Debugger.
Localmenus mYou call up a local menu by pressing Alt-F10 or Ctrl-F10, or by
clicking the right button on your mouse.

u The placement and contents of the menu depends on which
window or pane you are in and where your cursor is.

Turbo Debugger User's Guide

History lessons

m Contents can vary from one local menu to another. (Even so,
many of the local commands appear in almost all of the local
menus, so that there’s a predictable core of commands from one
to another.) The results of like-named commands can be
different, however, depending on the context.

m Every command on a local menu has a hot key shortcut
consisting of Ctrl plus the highlighted letter in the command.
Because of this arrangement, a hot key, say Cf-S, might mean
one thing in one context but quite another in a different context.
(A core of commands, however, is still consistent across the
local menus. For example, the Goto command and the Search
command always do the same thing, even when they are
invoked from different panes.)

From a user’s standpoint, local menus are a great convenience. All
possible command choices relevant to the moment are laid out at
a glance. This prevents you from trying to choose inappropriate
commands and keeps the menus small and uncluttered.

Menus and context-sensitivity comprise just two aspects of the
convenient environment of Turbo Debugger. Another habit-
forming feature is the history list.

Conforming to the philosophy that the user shouldn’t have to
type more than absolutely necessary, Turbo Debugger remembers
whatever you enter into input boxes and displays that text when-
ever you call up the box again.

For example, to search for the function called MyPercentage, you
have to type in all or part of that word. Then suppose you search
for a variable called ReturnOnlnvestment. When you see the dialog
box this time, you'll notice that ReturnOnlnvestment appears in the
input box. When you search for another text string, both pre-
viously entered strings appear in the input box. The list keeps
growing as you continue to use the Search command.

Chapter 2, Debugging and Turbo Debugger 25

Figure 2.2
A history list in an input box

The first item in a search list is
always the word the cursor is

26

on in the Module window.

Automatic name
completion

Warning!

The search input box might look like this:

—=[#]=Module: TPD
end;
Writeln;
end; { ParmsOnHeap }

» begin { program }
Init;

Buffer := Getline;
while Buffer <> '' do
begin

ProcessLine(Buffer);
Buffer := n]=—=Enter search string
end;

ShowResults; ||l GetLine
ParmsOnHeap; || Numletters
d. IslLetter
Numlines
Getline

Enter item prompted for in dialog title

You can use this history list as a shortcut to typing by using the
arrow keys to select any previous entry then pressing Enter to start
the search. If you have a mouse, you can also use the scroll bar to
scroll to the entry you want. If you use an unaltered entry from
the history list, that entry is copied to the top of the list.

You can also edit entries (use the arrow keys to insert the cursor
in the highlighted text, then edit as usual, using Del or Backspace).
For example, you can select MyPercentage and change it to
HisPercentage, instead of typing in the entire text. If you start to
type a new item when an entry is highlighted, you will overwrite
the highlighted item.

A history list lists the last five responses unless you tell it other-
wise. (You can change its size using the TDINST program.)

Turbo Debugger keeps a separate history list for most input
boxes. That way, the text you enter to do a search does not clutter
up the box for, say, going to a particular label or line number.

Whenever you are prompted for text entry in an input box, you
can type in just part of a symbol name in your program, then
press Ctrl-N.

When the word READY. .. appears in the upper right corner of the
screen with three dots after it, it means the symbol table is being
sorted. Ctrl-N won’t work until the three dots go away, indicating
that the symbol table is available for name completion.

Turbo Debugger User's Guide

(C)(N)

Incremental
matching

Making macros

Whenever you find yourself
repeating a series of steps,
say fo yourself, "Shouldn’t |
be using a macro for this?”

Create Alt=
Stop recording Alt-
Remove

Delete all

Window shopping

m If you have typed enough of a name to uniquely identify it,
Turbo Debugger simply fills in the rest of it.

m If the name you have typed so far is not the beginning of any
known symbol name, nothing happens.

m If what you have typed matches the beginning of more than
one symbol name, a list of matching names is presented for you
to pick the one you want.

Turbo Debugger also lets you use incremental matching to find
entries in a dialog box list of file and directory names. Start typing
the name of the file or directory; if the file is available from the list
box, the highlight bar moves to the name as soon as you have
typed enough characters to identify it uniquely. Then all you have
to do is choose the OK button.

Macros are simply hot keys that you define.

You can assign any series of Turbo Debugger commands and
keystrokes to a single key, for playback whenever you want.

To create a macro, choose Options | Macros. At this point, you
have a choice of four commands: Create, Stop Recording,
Remove, and Delete All. Choose Create; Turbo Debugger prompts
you for a key to save the upcoming macro to. Press a little-used or
easily remembered key or key combination (for example, Shift-F1
for rerunning a program). Now go through all the steps and com-
mands you want to save to that key.

To end the macro recording session, do one of these things:

m Choose Options | Macros | Stop Recording.
m Press the newly defined macro key (Shift-F1 in this example).
m Press Alt - (hold down Alfand press the hyphen or minus sign).

Lots of programs do windows these days, but Turbo Debugger
does them better. Turbo Debugger displays all information and
data in menus (local and global), dialog boxes (which you use to
set options and enter information), and windows. There are many

Chapter 2, Debugging and Turbo Debugger 27

Windows from the View

menu

Breakpoints

Stack

Log

Watches

Variables

Module... F3
File...

CcPU

Dump

Registers

Numeric processor
Execution history
Hierarchy

Windows info
Another >

Chapter 8 details the Module
window and its commands.

See Chapter 6 for more

about the Watches window.

See Chapter 7 for a

complete description of this

28

fype of window and how

breakpoints work.

types of windows; a window’s type depends on what sort of
information it holds. You open and close all windows using menu
commands (or hot key shortcuts for those commands). Most of
Turbo Debugger’s windows come from the View menu, which
lists fourteen types of windows. Another class of window, called
the Inspector window, is opened by choosing either Data | Inspect
or Inspect from a local menu.

Here’s a list of the fourteen types of windows you can open from
the View menu:

Once you have opened one or more of these windows, you can
move, resize, close, and otherwise manage them with commands
from the Window and = (System) menus, which are discussed in
the section “Working with windows.”

Module window

Displays the program code that you’re debugging. You can move
around inside the module and examine data and code by posi-
tioning the cursor on program variable names and issuing the
appropriate local menu command.

You will probably spend more time in Module windows than in
any other type, so take the time to learn about all the various local
menu commands for this type of window.

You can also press F3 to open a Module window.

Watches window

Displays variables and their changing values. You can add a
variable to the window by pressing Ctrl-W when the cursor is on
the variable in the Module window.

Breakpoints window

Displays the breakpoints you have set. A breakpoint defines a
location in your program where execution stops so you can
examine the program’s status. The left pane lists the position of
every breakpoint (or indicates that it is global), and the right pane
indicates the conditions under which the currently highlighted
breakpoint executes.

Use this window to modify, delete, or add breakpoints.

Turbo Debugger User’s Guide

Chapter 5 provides more
information on the Stack
window.

Chapter 7 tells you more
about the Log window.

Chapter 5 describes the
Variables window in more
detail.

You can learn more about
the File window in Chapter 8.

Stack window

Displays the current state of the stack, with the function called
first on the bottom (in C programs, this is function main) and all
subsequently called functions on top, in the order they were
called.

You can bring up and examine the source code of any function in
the stack by highlighting it and pressing Cirl-l.

By highlighting a function name in the stack and pressing Ctrl-L,
you open a Variables window displaying variables global to the
program, variables local to the function, and the arguments with
which the function was called.

Log window

Displays the contents of the message log. The log contains a
scrolling list of messages and information generated as you work
in Turbo Debugger. It tells you such things as why your program
stopped, the results of breakpoints, and the contents of windows
you saved in the log.

You can also use the log window to obtain information about
memory usage and modules for a Microsoft Windows
application.

This window lets you look back into the past and see what led up
to the current state of affairs.

Variables window

Displays all the variables accessible from a given spot in your pro-
gram. The upper pane has global variables; the lower pane shows
variables local to the current function or module, if any.

This window is helpful when you want to find a function or
variable that you know begins with, say, “abc,” and you can’t
remember its exact name. You can look in the global Symbol pane
and quickly find what you want.

File window

Displays the contents of a disk file. You can view the file either as
raw hex bytes or as ASCII text. You can search for specific text or

Chapter 2, Debugging and Turbo Debugger 29

Chapter 11 discusses the

CPU window and assembler-

level debugging.

See Chapter 11, which
discusses assembler

debugging, for more on this

window.

Chapter 11, which discusses

30

assembler debugging, has
more information on this
window.

byte sequences, as well as directly patching any part of the file on
disk.

This is handy if you are debugging a program that uses disk files
and you want to alter the program’s behavior by changing the
contents of one of its files. You can also correct a mistake in the
contents of a file, or examine a file produced by a program to
make sure the contents are correct.

CPU window

Displays the current state of the central processing unit (CPU).
This window has five panes: one that contains disassembled
machine instructions, one that shows hex data bytes, one that
displays a raw stack of hex words, one that lists the contents of
the CPU registers, and one that indicates the state of the CPU
flags.

The CPU window is useful when you want to watch the exact
sequence of instructions that make up a line of source code or the
bytes that comprise a data structure. If you know assembler code,
this can help locate subtle bugs. You do not need to use this
window to debug the majority of programs.

Turbo Debugger sometimes opens a CPU window automatically,
if your program stops on an instruction in the middle of a line of
source code.

Dump window

Displays a raw display of an area of memory. (This window is the
same as the Data pane of a CPU window.) You can view the data
as characters, hex bytes, words, double words, or any floating-
point format. You can use this window to look at some raw data
when you don’t need to see the rest of the CPU state. The local
menu has commands to let you modify the displayed data,
change the format in which you view the data, and manipulate
blocks of data.

Registers window

Displays the contents of the CPU registers and flags. This window
has two panes, which are the same as the registers pane and flags

pane, respectively, of a CPU window. Use this window when you
want to look at the contents of the registers but don’t need to see

Turbo Debugger User's Guide

the rest of the CPU state. You can change the value of any of the
registers or flags through commands in the local menu.

Numeric Processor window

__See Chapter 12 formore Displays the current state of the math coprocessor. This window
information about using e a5 three panes: one pane that shows the contents of the floating-
Numeric Processor window. - .
point registers, one that shows the status flag values, and one that
shows the control flag values.

This window can help you diagnose problems in programs that
use floating-point numbers. You need to have a fair understand-
ing of the inner workings of the math coprocessor in order to
really reap the benefits of this window.

Execution History window

_ See Chapter5 formore Displays assembly code and source lines for your program, up to
information oZiZ?j E’;‘;ﬁgg?: the last line executed. The upper pane contains the assembly code
v " that has been executed, so you can reverse back through it; the
lower pane displays

1. whether you are tracing or stepping
2. the line of source code for the instruction about to be executed
3. the line number of the source code

You can examine it or use it to rerun your program to a particular
spot.

Hierarchy window

Lists and displays a hierarchy tree of all object or class types used
by the current module. The window has two panes: one for the
object/class type list, the other for the object/class hierarchy tree.
(If you're debugging a C++ program with multiple inheritance, a
third pane also opens, showing the parents of the highlighted
class type.)

__See Chapter 10 formore This window shows you the relationship of the objects or classes
inf omahzr;;g g‘,’f lﬁ%%g;,e used by the current module. It also makes it possible for you to
Y " examine any object or class type, as well as its component data
fields or members, and its methods or member functions, via its
local menus.

Chapter 2, Debugging and Turbo Debugger 31

Chapter 17 explains how to
use the Windows Messages

32

feature.

Modu
Dump
File

le...

cee

User screen

Al-F5 is the hot key that
toggles between the
environment and the User

screen.

Inspector windows

[78

Windows Messages window

Displays a list of messages passed between the windows in your
Microsoft Windows application. This window has three panes:

m The left pane shows which procedures or handles you're
tracking messages for.

m The right pane shows the type of messages you're tracking.
m The bottom pane displays the messages.

Duplicate windows

You can also open duplicates of three types of windows—Dump,
File, and Module—by choosing View | Another. This lets you keep
track of several separate areas of assembly code, different files the
program uses or generates, or several distinct program modules
at once.

Don’t be alarmed if Turbo Debugger opens one of these windows
all by itself. It will do this in some cases in response to a com-
mand.

The User screen shows your program’s full output screen. The
screen you see is exactly the same as the one you would see if
your program was running directly from DOS and not under

Turbo Debugger.

You can use this screen to check that your program is at the place
in your code that you expect it to be, as well as to verify that it is
displaying what you want on the screen. To switch to the User
screen, choose Window | User Screen. After viewing the User
screen, press any key to go back to the debugger screen.

An Inspector window displays the current value of a selected
variable. Open it by choosing Data | Inspect or Inspect from a local
menu. Usually, you close this window by pressing Esc or clicking
the close box with the mouse. If you've opened more than one
Inspector window in succession, as often happens when you
examine a complex data structure, you can remove all the Inspec-
tor windows by pressing Al-F3 or using the Window | Close
command.

You can open an Inspector window to look at an array of items or
at the contents of a variable or expression. The number of panes in
the window depends on the nature of the data you are inspecting.

Turbo Debugger User’s Guide

An Inspector window adapts to the type of data being displayed.
It can display not only simple scalars (int, float, and so on), but
also pointers, arrays, records, structures, and unions. Each type of
data item is displayed in a way that closely mimics the way you
are used to seeing it in your program’s source code.

C> You create additional Inspector windows simply by choosing the
Inspect command, whereas you can create additional Module,
File, or CPU windows only by choosing View | Another.

The active window Even though you can have many windows open in Turbo Debug-
ger at the same time, only one window can be active. You can spot
the active window by the following criteria:

m The active window has a double outline around it, not a single
line.

m The active window contains the cursor or highlight bar.

m If your windows are overlapping, the active window is the
topmost one.

When you issue commands, enter text, or scroll, you affect only
the active window, not any other windows that are open.

Figure 2.3
. [5 | [iew [un [ireakpoints [ata J#ptions [indow [elp [N\
Can you spot the active | IFIR o I 1
window? Tail : 3

end;
Writeln;
end; { ParmsOnH

> begin { progra

nit;
Buffer :=
while =[a]=Dump:
begin ds:0000 CD 20 00 AO 00 9A F
Procf ds:0008 A4 02 D3 01 C5 41 9

Buff| ds:0010 C5 41 8D 02 DE 3B D
end; ds:0018 01 01 01 00 03 FF F
ShowRe

ParmsOnHeap;
end.

What's in a window A window always has most or all of the following features, which
give you information about it or let you do things to it:

Chapter 2, Debugging and Turbo Debugger 33

34

Figure 2.4 Vindow oom_and
i i ndow conize
Atypical window ofe box Im, number boxes

Voo
—[n]=Module: TCDEMO File: tcdemo.c (modified) 31 1=[t]1[+]
static void showargs(int argc, char »argv[]);

/* program entry point
*

> int main(int argc, char *xargv) {
unsigned int nlines, nwords, wordcount;
unsigned long totalcharacters;

nlines = 0;

nwords = 0;

totalcharacters = 0;

showargs(argc, argv);

while ?reada]ine() 1= 0) {

wordcount = makeintowords (buffer);

& « scroll bar

i ‘ t
Scroll bar Resize box

m An outline (double if the window is active, single otherwise).
m A title, located at the left top.

@2 ®Ascrollbar or bars on the right or bottom if the window opens
on more information than it can hold at one time. You operate
the scroll bars with the mouse:

e Click the direction arrows at the ends of the bar to move one
line or one character in the indicated direction.

o Click the gray area in the middle of the bar to move one
window size in the indicated direction.

o Drag the scroll box to move as much as you want in the
direction you want.

@2 " Aresize box in the lower right corner. Drag it with your mouse
to make the window larger or smaller. If no scroll bar is present
on the bottom or right side of a window, that side of the
window border also activates window resizing.

m A window number in the upper right, reflecting the order in
which the window was opened.

@2 ¥ A zoombox and iconize box in the upper right corner. The one
on the left contains the zoom icon, the one on the right the
iconize icon. Click these with your mouse to expand the
window to full screen size, restore it to its original size, or
iconize it. (When a window is zoomed to full size, only the
iconize box is available, and when it is iconized, only the zoom
box is available.)

@2 " Aclosebox in the upper left corner. Click it with your mouse to
close the window.

Turbo Debugger User’s Guide

Working with windows With all these different windows to work with, you will probably
have several open onscreen at a time. Turbo Debugger makes it
easy for you to move from one window to another, move them
around, pile them on top of one another, shrink them to get them
out of your way, expand them to work in them more easily, and
close them when you are through.

Press Alt-Spacebar to open the Most of the window-management commands are in the Windows
= menu, or AitWto open the menu. You'll find a few more commands in the = (System) menu,
Windows menu. e menu marked with the = icon at the far left of the menu bar.

Window hopping

Each window that you open is numbered in the upper right
corner. Usually, the Module window is window 1 and the
Watches window is window 2. Whatever window you open after
that will be window 3, and so on.

This numbering system gives you a quick, easy means of moving
from one window to another. You can make any of the first nine
open windows the active window by pressing Alf in combination
with the window number. If you press Alt-2, for example, to make
the Watches window active, any commands you choose will affect
that window and the items in it.

F6is the hot key forthe You can also cycle through the windows onscreen by choosing

Window [Next Window. window | Next or pressing F6. This is handy if an open window’s
number is covered up so you don’t know which number to press
to make it active.

@2 If youhave a mouse, you can also activate a window by clicking
it.

To see a list of all open windows, choose Window from the menu
bar. The bottom half of the Window menu lists up to nine open
windows from which you can make a selection. Just press the
number of a window to make it the active one.

If you have more than nine windows open, the window list will
include a Window Pick command; choose it to open a pop-up
menu of all the windows open onscreen.

Tab and Shift-Tab are the hot If a window has panes—areas of the window reserved for a
keys for Window | Next Pane. g ecific type of data—you can move from one pane to another by
choosing Window | Next Pane or pressing Tab or Shift-Tab.

Chapter 2, Debugging and Turbo Debugger 35

36

You can also click the pane with the mouse.

The most pane-full window in Turbo Debugger is the CPU
window, which has five panes.

As you hop from pane to pane, you'll notice that a blinking cursor
appears in some panes, and a highlight bar appears in others. If a
cursor appears, you move around the text using standard keypad
commands. (PgUp, Ctrl-Home, and Ctrl-PgUp, for example, move the
cursor up one screen, to the top of pane, or to the top of the list,
respectively.) You can also use WordStar-like hot keys for moving
around in the pane. Refer to Chapter 13 for a table of keystroke
commands in panes.

If there’s a highlight bar in a pane instead of a cursor, you can still
use standard cursor-movement keys to get around, but a couple
of special keystrokes also apply. In alphabetical lists, for example,
you can select by typing. As you type each letter, the highlight bar
moves to the first item starting with the letters you've just typed.
The position of the cursor in the highlighted item indicates how
much of the name you have already typed. Once the highlight bar
is on the desired item, your search is complete. This incremental
matching or select by typing minimizes the number of characters
you must type in order to choose an item from a list.

Once an item is selected (highlighted) from a list, press Al-F10 or
Ctrl-F10 to choose a command relevant to it from its local menu. In
many lists, you can also just press Enter once you have selected an
item. This acts as a hot key to one of the commonly used local
menu commands. The exact function of the Enter key in these cases
is described in the reference section starting on page 199.

Finally, a number of panes let you start typing a new value or
search string without choosing a command first. This usually
applies to the most frequently used local menu command in a
pane or window—Ilike Goto in a Module window, Search in a File
window, or Change in a Registers window.

Moving and resizing windows

When you open a new window in Turbo Debugger, it appears
near the current cursor location and has a default size suitable for
the kind of window it is. If you find either the size or the location
of the window inconvenient, you can use the Window | Size/
Move command to adjust the size or location of the window.

Turbo Debugger User’s Guide

Ctr-F5 is the hot key for the . When you move or resize a window, your active window border
Window | Size/ Moxge changes to a single-line border. You can then use the arrow keys
commang. 5 move the window around or Shift with the arrow keys to
change the size of the window onscreen. Press Enter when you're
satisfied.

@2 Ifyouhave amouse, moving and resizing a window is even
easier:

m Drag the resize box in the iower right corner to change the size
of the window.

m Drag the title bar or any edge (but not the scroll bars) to move
the window around.

 F5isthe hotkey forthe If you want to enlarge or reduce a window quickly, choose
WindowZoom command. \yindow | Zoom, or click the mouse on the zoom box or the iconize
box in the upper right corner.

Finally, if you want to get a window out of the way temporarily
but don’t want to close it, make the window active, then choose
Window | Iconize/Restore. The window will shrink to a tiny box
(icon) with only its name, close box, and zoom box visible. To
restore the window to its original form, make it active and choose
Window | Iconize/Restore again, or click your mouse on the zoom
box.

Closing and recovering windows

Alt-F3 is the hot key for When you are through working in a window, you can close it by
Window|Close. choosing Window | Close, or pressing Alt-F3, the hot key for this
command.

@2 Ifyouhave amouse, you can also click the close box in the upper
left corner of the window.

Alt-F6 is the hot key for - If you close a window by mistake, you can recover it by choosing
Window IUndo Close. window | Undo Close or by pressing Alt-F6. This works only for the
last window you closed.

You can also restore your Turbo Debugger screen to the layout it
had when you first entered the program. Just choose = (System)|
Restore Standard.

Finally, if your program has overwritten your environment screen
with output (because you turned off screen swapping), you can
clean it up again with = (System) | Repaint Desktop.

Chapter 2, Debugging and Turbo Debugger 37

38

Getting help

EREADY

Saving your window layout

Use the Options | Save Options command to save a specific
window configuration once you have the screen arranged the way
you like. In the Save Configuration dialog box, tab to Layout and
press Spacebar to toggle it on. If you save your configuration to a
file called TDCONFIG.TD, the screen will then appear with your
chosen layout each time you start Turbo Debugger from DOS.
This is the only configuration file that is loaded automatically
when Turbo Debugger is loaded. Other configurations can be
loaded by using the Options | Restore Options command, if they
have been saved to configuration files with a different name.

As you've seen, Turbo Debugger goes out of its way to make
debugging easy for you. It doesn’t require you to remember
obscure commands; it keeps lists of what you type, in case you
want to repeat it; it lets you define macros; and it offers incredible
control of windows. Even so, Turbo Debugger is a sophisticated
program with lots of features and commands. To avoid potential
confusion, Turbo Debugger offers the following help features:

m An activity indicator in the upper right corner always displays
the current activity. For example, if your cursor is in a window,
the activity indicator reads READY; if there’s a menu visible, it
reads MENU; if you're in a dialog box, it reads PROMPT. If you ever
get confused about what’s happening in Turbo Debugger, look
at the activity indicator for help. (Other activity indicator
modes are SIZE/MOVE, MOVE, ERROR, RECORDING, WAIT, RUNNING, MENU,
HELP, STATUS, and PLAYBACK.)

m The active window is always topmost and has a double line
around it.

m You can access an extensive context-sensitive help system by
pressing F1. Press F1 again to bring up an index of help topics
from which you can select what you need.

m The status line at the bottom of the screen always offers a quick
reference summary of keystroke commands. The line changes
as the context changes and as you press Alt or Ctrl. Whenever
you are in the menu system, the status line offers a one-line
synopsis of the current menu command.

For more information on the last two avenues for help, read the
following two sections.

Turbo Debugger User’s Guide

Online help

Index Shift-F1
Previous topic Alt-F1
Help on help

You can get online help for
reserved words via
THELP.COM.

Turbo Debugger, like other Borland products, gives context-
sensitive onscreen help at the touch of a single key. Help is
available anytime you’re within a menu or window, as well as
when an error message or prompt is displayed.

Press F1 to bring up a Help screen showing information pertinent
to the current context (window or menu). If you have a mouse,
you can also bring up help by clicking F1 in the status line. Some
Help screens contain highlighted keywords that let you get addi-
tional help on that topic. Use Tab and Shift-Tab to move to any key-
word and then press Enter to get to its screen. Use the Home and
Endkeys to go to the first and last keywords on the screen,

respectively.

You can also access the onscreen help feature by choosing Help
from the menu bar (Al-H).

If you want to return to a previous Help screen, press Alt-F1 or
choose Previous Topic from the Help menu. From within the
Help system, use PgUp to scroll back through the last 20 help
screens. (PgDn only works when you're in a group of related
screens.) To access the Help Index, press Shift-F1 (or F1 from within
the Help system), or choose Index from the Help menu. To get
help on Help, choose Help | Help on Help. To exit from Help, press
Esc.

If you are using Turbo Pascal, Turbo Assembler, or one of
Borland’s C++ compilers and you want help on language-specific
reserved words and functions, you can get it by using a RAM-
resident utility called THELP.COM that comes with these
compilers. To use THELP.COM,

1. Make sure that both THELP.COM and the help file for the
language you are using (TURBO.HLP for Turbo Pascal,
TASM.TAH for Turbo Assembler, TCHELP.TCH for Borland’s
C and C++ compilers) are copied into your Turbo Debugger
directory or a directory on your path.

2. Type THELP and press Enter.
. Go into Turbo Debugger.

W

4. To open a Help screen on any reserved word or function,
position the cursor under the word you want help on, then
press 5 on the numeric keypad. (THELP won't work if you use
the 5 on your keyboard.)

Chapter 2, Debugging and Turbo Debugger 39

£

The status line

Figure 2.5
The normal status line

Figure 2.6
The status line with Alt
pressed

Figure 2.7
The status line with Cirl
pressed

o

40

5. You can then use the help just as you would in the integrated
debugger, paging through related screens, using Alt-F1 to
return to previous screens, and pressing Enter to bring up a
screen on a selected keyword.

6. To exit the Help screen, press Esc.

For more information on THELP, consult the THELP.DOC file for
the Turbo language you are using.

Wherever you're in Turbo Debugger, a quick-reference help line
appears at the bottom of the screen. This status line provides at-
a-glance keystroke or menu command help for your current
context.

In a window

The normal status line shows the commands performed by the
function keys and looks like this:

BTTeT> r-kpt o0 L Tere JEe- Zoon [Re-Next [t Trace gL LoD B Run BT ent

If you hold down the Altkey for a second or two, the commands
performed by the Alt keys are displayed.

TR oot ot R C 05 B back (Be-User JRi-Undo Jga- NSt e -Rin [E-T0 [gh oca]

If you hold down the Ctrl key for a second or two, the commands
performed by the Cirl letter keys are displayed. This status line
changes depending on the current window and current pane, and
it shows the single-keystroke equivalents for the current local
menu. If there are more local menu commands than can be
described on the status line, only the first keys are shown. You
can view all the available commands on a local menu by pressing
Alt-F10 or Ctrl-F10 to pop up the entire menu.

(WA M- Inspect -Watch Z-Module -Line N-Search I-Next

If you have a mouse, all you have to do to execute an Alf- or Cir-
key command is click the command in the status line.

Turbo Debugger User’s Guide

In a menu or dialog box

Whenever you are in a menu or a dialog box, the status line
displays a one-line explanation of what the current item does. For
example, if you have highlighted View | Registers, the status line
says Open a CPU registers window.

The status line gives you menu help whether you are in a global
menu or a local menu.

Chapter 2, Debugging and Turbo Debugger 41

42

Turbo Debugger User's Guide

A quick example

If you are itching to use Turbo Debugger and aren’t the sort of
person to work through the whole manual first, this chapter gives
you enough knowledge to debug your first program. Once you've
learned the basic concepts described here, the well-integrated,
intuitive environment and context-sensitive help system let you
learn as you go along.

This chapter leads you through all Turbo Debugger’ basic fea-
tures. After describing the demo programs—one in C and one in
Pascal—provided on the distribution disks, it shows you how to
m run and stop program execution

m examine the contents of program variables

m look at complex data objects, like arrays and structures

m change the value of variables

The demo programs

Chapter 3, A quick example

The demo programs (TCDEMO.C for C and TPDEMO.PAS for
Pascal) introduce you to the two main things you need to know to
debug a program: how to stop and start your program, and how
to examine your program’s variables and data structures. The
programs themselves are not meant to be terribly useful: Some of
their code and data structures exist solely to show you Turbo
Debugger’ capabilities.

Each demo program lets you type in some lines of text or the
name of a data file, then counts the number of words and letters
that you entered or that it reads from the file. At the end of the
program, each displays some statistics about the text, including
the average number of words per line and the frequency of each
letter.

C,> Make sure that your current directory contains the two files
needed for each tutorial: TCDEMO.C and TCDEMO.EXE for the
C example, TPDEMO.PAS and TPDEMO.EXE for the Pascal
example.

Gettingin To start the C program, type
TD TCDEMO
To start the Pascal program, type
TD TPDEMO

Turbo Debugger loads the demo program, displays the startup
screen overlaid by the About program information box, and
positions the cursor at the start of the program. To get rid of the
About box, press Enter or choose OK.

Figure 3.1
. .H iew fun [reakpoints Mata Jptions [i !
The startup screen showing (IR N TCTM-CN ICET AT TEMOEE 11
TCDEMO static void showargs(int argc, char *argv[]);

/*/program entry point
*

» int main(int argc, char **argv) {
unsigned int nlines, nwords, wordcount;
unsigned long totalcharacters;

nlines = 0;
nwords = 0;
totalcharacters = 0;
showargs (argc, argv);
while %readaline(g 1=0) {
wordcount = makeintowords(buffer);

nwords += wordcount;

totalcharacters += analyzewords(buffer);
nlines++;

The startup screen consists of the menu bar, the Module and
Watches windows, and the status line.

Getting out To exit from the tutorial at any time and return to DOS, press Alt-X.
If you get hopelessly lost following the tutorial, press Ctrl-F2 to
reload the program and start at the beginning. However, Ctr-F2
doesn’t clear breakpoints or watches; you'll have to use Al-F O to

44 Turbo Debugger User’s Guide

Gelting help

do that. (Alt-B D deletes all breakpoints too, of course, but some-
times it’s faster to reload with Alt-F O.)

Press F1 whenever you need help with the current window, menu
command, dialog box, or error message. You can learn a lot by
working your way through the menu system and pressing F1 at
each command to get a summary of what it does.

Using Turbo Debugger

The menus

Figure 3.2
The menu bar

r

Esc

The status line

Figure 3.3
The status line

Chapter 3, A quick example

The top line of the screen shows the menu bar. To pull down a
menu from it, press F10, use «— or — to highlight your selection,
and press Enter, or else press Altin combination with the first letter
of one of the menu names.

| § Gile {Jiew [lun [ireakpoints [Data JAptions

Press F10 now. Notice that the cursor disappears from the Module
window, and the = command on the menu bar becomes high-
lighted. The bottom line of the screen also changes to indicate
what sort of commands the = menu performs.

Use the arrow keys to move around the menu system. Press | to
pull down the menu for the highlighted item on the menu bar.

You can also open a menu by clicking an item in the menu bar
with your mouse.

Press Esc to move back through the levels of the menu system.
When just one menu item on the menu bar is highlighted, pres-
sing Esc returns you to the Module window, with the menu bar
no longer active.

The status line at the bottom of the screen shows relevant function
keys and what they do.

gi-Help [z2-8kot [&-Mod [&-Here [K-Zoom JE-Next [gj-Trace [Ei-Step -Run [gh-Menu |

46

&L

The windows

This line changes depending on what you are entering (menu
commands, data in a dialog box, and so on). Hold Altdown for a
second or two, for example. Notice that the status line changes to
show you the function keys you can use with Alf.

Now press Ctrl for a second. The commands shown on the status
line are the hot keys to the local menu commands for the current
pane (area of the window). They change depending on which sort
of window and which pane you are in. More about these later.

As soon as you enter the menu system, the status line changes
again to show you what the currently highlighted menu option
does. Press F10 to go to the menu bar, and press — to highlight the
File option. The status line now reads, “File oriented functions.”
Use { to scroll through the options on the File menu, and watch
the message change. Press Esc or click the Module window with
your mouse to leave the menu system.

The window area takes up most of the screen. This is where you
examine various parts of your program through the different
windows.

The display starts up with two windows: a Module window and
the Watches window. Until you open more windows or adjust
these two, they remain tiled. This means they fill the entire screen
without overlapping. New windows automatically overlap
existing windows until you move them.

Turbo Debugger User’s Guide

Figure 3.4 -
The Module and Watches .E[E

. . =Modu!e: DONUTHIN FiTe: DONUTHIN PAS 3
windows, tiled

program DoNuthin;

» begin
end.

This is the Module window

-

Notice that the Module window has a double-line border and a
highlighted title. This means it is the active window. You use the
cursor keys (the arrow keys, Home, End, PgUp, and so on) to move

around inside the active window. Now press F6 to switch to
another window. The Watches window becomes active, with a
double-line border and a highlighted title.

You use commands from the View menu to create new windows.
For example, choose View | Stack to open a Stack window. The
Stack window pops up on top of the Module window.

Now press Alt-F3 to remove the active window. The Stack window
disappears.

Turbo Debugger stores the last-closed window so you can recover

it if you need to. If you accidentally close a window, choose

Window | Undo Close. The Stack window reappears. You can also
Alt press Alt-F6 to recover the last-closed window.

The Window menu contains the commands that let you adjust the
appearance of the windows you already have onscreen. You can
both move the window around the screen and change its size.
(You can use Cirl-F5 to do this too.)

Choose Window | Size/Move and use the arrow keys to reposition
the active window (the Stack window) on the screen. Next, hold
Shift down and use the arrow keys to adjust the size of the
window. Press Enter when you have defined a new size and
position that you like.

Chapter 3, A quick example 47

Now, to prepare for the next section, remove the Stack window by
pressing Alt-F3. Depending on whether you've loaded the C or
Pascal demo program, either continue with the next section (for
the C sample) or move to the Pascal section on page 55.

Using the C demo program

Alt

48

The filled arrow (») in the left column of the Module window
shows where Turbo Debugger stopped your program. Since you
haven’t run your program yet, the arrow is on the first line of the
program. Press F7 to trace a single source line. The arrow and
cursor are now on the next executable line.

Look at the right margin of the Module window title. It shows the
line that the cursor is on. Move the cursor up and down with the
arrow keys and notice how the line number in the title changes.

As you can see from the Run menu, there are a number of ways to
control the execution of your program. Let’s say you want to
execute the program until it reaches line 39.

First, position the cursor on line 39, then press F4. This runs the
program up to (but not including) line 39. Now press F7, which
executes one line of source code at a time; in this case, it executes
line 39, a call to the function showargs. The cursor immediately
jumps to line 151, where the definition of showargs is found.

Continuing to press F7 would step you through the function
showargs and then return you to the line following the call—line
40. Instead, press Alt-F8, which causes showargs to execute and
then return, at which point the program stops. This command too,
returns you to line 40, and is very useful when you want to jump
past the end of a function.

If you had pressed F8instead of F7 on line 39, the cursor would
have gone directly to line 40 instead of into the function. F8is
similar to F7 in that it executes a procedure or source line, but it
skips any function calls.

Turbo Debugger User’s Guide

Figure 3.5
Program stops on return from
function showargs

Alt

Setting
breakpoints

=™

Chapter 3, A quick example

{.:[H=Mo§u I e: TCDE&O’

nwords = 0;

totalcharacters = 0;

showargs(argc, argv);

> while (readaline() != 0) {

wordcount = makeintowords (buffer);
nwords += wordcount;
totalcharacters += analyzewords(buffer);
nlines++;

ile: tcdemo.c 40

}
printstatistics(nlines, nwords, totalcharacters);
. return(0);

/* make the buffer into a 1ist of null-terminated words that end in
* in two nulls, squish out white space

*
static int makeintowords(char *bufp) {
unsigned int nwords;

To execute the program until a specific place is reached, you can
directly name the function or line number, without moving the
cursor to that line in a source file and then running to that point.
Press Alt-F9 to specify a label to run to. A dialog box appears. Type
readaline and press Enter. The program runs, then stops at the
beginning of function readaline (line 142).

Another way to control where your program stops running is to
set breakpoints. The simplest way to set a breakpoint is with the
F2 key. Move the cursor to line 44 and press F2. Turbo Debugger
highlights the line, indicating there is a breakpoint set on it.

You can also use the mouse to toggle breakpoints by clicking the
first two columns of the Module window.

49

Figure 3.6
A breakpoint at line 44

—=[®#]=Module: TCDEMO F
nwords = 03
totalcharacters = 0;
showargs (arge, argv);
while readaline(? 1= 0) {

wordcount = makeintowords (buffer);

nwords += wordcount;

totalcharacters += analyzewords (buffer);
> nlines++;

ile: tcdemo.c 44

}
printstatistics(nlines, nwords, totalcharacters);
return(0);

}

/* make the buffer into a list of null-terminated words that end in
* in two nulls, squish out white space

*
static int make;n%owords(ghar *bufp) {
A t a

Now press F9 to execute your program without interruption. The
screen switches to the program’s display. The demo program is
now running and waiting for you to enter a line of text. Type abc,
a space, def, and then press Enter. The display returns to the Turbo
Debugger screen with the arrow on line 44, where you set a break-
point that has stopped the program. Now press F2 again to toggle
it off.

See Chapter 7 for a complete description of breakpoints, including
conditional and global breakpoints.

Using watches

The Watches window at the bottom of the screen shows the value
Alt](F10] of variables you specify. For example, to watch the value of the
variable nwords, move the cursor to the variable name on line 42
and choose Watch from the Module window local menu (bring it
up with Alt-F10 or choose the shortcut, Ctrl-W, from the status line).

e Click Ctr-Win the status line with your mouse.

Turbo Debugger User’s Guide

Figure 3.7
A C variable in the Watches
window

Examining simple
C data objects

Chapter 3, A quick example

1ew :‘
[’ ule: TCDEMO File: tcdemo.c 44
nwords = 0;
totalcharacters = 0;
showargs (argc, argv);
while (reada]ine(g 1= 0) {
wordcount = makeintowords(buffer);
nwords += wordcount;
totalcharacters += analyzewords (buffer);
> nlines++;

}
printstatistics(nlines, nwords, totalcharacters);
return(0);

1
i

/* make the buffer into a list of null-terminated words that end in
* in two nulls, squish out white space

*
static int makeintowords(char *bufp) {
ioned i

|
|

m

nwords now appears in the Watches window at the bottom of the
screen, along with its type (unsigned int) and value. As you
execute the program, Turbo Debugger updates this value to
reflect the variable’s current value.

Once you have stopped your program, there are a number of
ways of looking at data using the Inspect command. This very
powerful facility lets you examine data structures in the same
way that you visualize them when you write a program.

The Inspect commands (in various local menus and in the Data
menu) let you examine any variable you specify. Suppose you
want to look at the value of the variable nlines. Move the cursor so
it is under one of the letters in nlines and choose Inspect from the
Module window local menu (press Cirl-). An Inspector window

pops up.

51

52

Figure 3.8
An Inspector window

T o T T I READY
——Module: TCDEMO F .C 44

nwords = 0;
totalcharacters = 0;
showargs (argc, argv);
while %readaline(g 1= 0) {

wordcount = makeintowords(buffer);
nwords += wordcount;
totalcharacters += analyzewords(buffer);
nlines++;
} [s]=Inspecting nlines=3=[*][+]
printstati||@793E:FFCO ers);
return{0) ; | (ERELELIE

|

/* make the buffer into a list of null-terminated words that end in
* in two nulls, squish out white space
*,
static int makeintowords(char *bufp) {
unsigned int nwords;

The title tells you the variable name; the next line shows you its
address in memory. The third line shows you what type of data is
stored in nlines (it’s a C unsigned int). To the right is the current
value of the variable.

Now, having examined the variable, press Esc to close the
Inspector window. You can also use Alt-F3 to remove the Inspector
window, just like any other window, or you can click the close
box with your mouse.

Let’s review what you actually did here. By pressing Cirl, you took
a shortcut to the local menu commands in the Module window.
Pressing I specified the Inspect command.

To examine a data item that is not conveniently displayed in the
Module window, choose Data | Inspect. A dialog box appears,
asking you to enter the variable to inspect. Type letterinfo and
press Enter. An Inspector window appears, showing the values of
the letterinfo array elements. The title of the Inspector window
shows the name of the data you are inspecting. The first line
under the title is the address in main memory of the first element
of the array letterinfo. Use the arrow keys to scroll through the 26
elements that make up the letterinfo array. The next section shows
you how to examine this compound data object.

Turbo Debugger User’s Guide

Examining

compound C a compound data object, such as an array or structure, contains
data objects multiple components. Move to the fourth element of the letterinfo
array (the one indicated by [3]). Press Alf-F10 to bring up the local
menu for the Inspector window, then press / to choose Inspect. A
new Inspector window appears, showing the contents of that
element in the array. This Inspector window shows the contents
of a structure of type linfo.

Figure 3.9
Inspecting a structure

nwords = 0;

totalcharacters = 0; —~—-Inspecting letterinfo-3-——- —

showargs (argc, argv); [6793E:0852
while (readaline(? 1= 0) Kl
wordcount = make
nwords += wordco
totalcharacters
> nlines++;

}
printstatistics(nlines,
return(0);

L)
/* make the buffer into a 1ist of [@793E:085E

*
static int makeintowords(char *buf
unsigned int nwords;

— ﬁ———~~ﬁf~2-~ﬁﬁa——1

E—

When you place the cursor over one of the member names, the
data type of that member appears in the bottom pane of the
Inspector window. If one of these members were in turn a com-
pound data object, you could issue an Inspect command and dig
down further into the data structure.

Press Alt-F3 to remove both Inspector windows and return to the
Module window. (Alt-F3is a convenient way of removing several
Inspector windows at once. If you had pressed Esc, only the latest
Inspector window would have been deleted.)

Changing C data

values So far, you've learned how to look at data in the program. Now,
let’s change the value of data items.

Use the arrow keys to go to line 38 in the source file. Place the
cursor at the variable totalcharacters and press Cirl-l to inspect its

Chapter 3, A quick example 83

54

Figure 3.10
The Change dialog box

value. With the Inspector window open, press Alt-F10 to bring up
the Inspector’s local menu, and choose the Change option. (You
could also have done this directly by pressing Cir/-C.) A dialog box
appears, asking for the new value.

i T

odule: TCDEMO File: tcdemo.c 38
static void showargs(int argc, char *argv[]);

/* program entry point
*,

int main(int argc,=[w]=Inspecting totalcharacters=3=[*][{]
unsigned 1i(|@78BE:FFC6
unsigned 1 i

nlines =[

nwords

totalch|ll totaicharacters + 4
showa

while ([OK Sl Cancel Sl Help

totalcharacters += analyzewords(buffer);
> nlines++;

At this point, you can enter any C expression that evaluates to a
number. Type totalcharacters + 4 and press Enter. The value in the
Inspector window now shows the new value, 10L (0za).

To change a data item that isn’t displayed in the Module window,
choose Data | Evaluate/Modify. A dialog box appears. Enter the
name of the variable to change in the first input box: Type argc
and press Enter. Then press Tab twice to move to the input box
labeled New Value. Type 123 and press Enter. The result (second
box) changes to int 123 (0x7B).

Turbo Debugger User's Guide

Figure 3.11
The Evaluate/Modify dialog
box

NN 'ata gptions (findow PROMPT
—Module: TCDEMO F11e tcdemo.c 3
static void showargs(int argc, char *argv[]).

/* program e —_———Fvaluate/modi f
Exjsression

*

int main(int{|ll argc
unsi
unsi

nlinj{@iR
nwor
tota
show

whil

That'’s a quick introduction to using the Turbo Debugger with a
program written using one of Borland’s C or C++ compilers.
Chapter 14 offers a more extensive debugging sample.

Using the Pascal sample program

Chapter 3, A quick example

The filled arrow (») in the left column of the Module window
shows where Turbo Debugger stopped your program. Since you
haven’t run your program yet, the arrow is on the first line of the
program. Press F7 to trace a single source line. The arrow and
cursor are now on the next executable line.

Look at the right margin of the Module window title. It shows the
line that the cursor is on. Move the cursor up and down with the
arrow keys and notice how the line number in the title changes.

To make the program execute until it reaches line 221, move the
cursor to that line and then press F4. TPDEMO prompts you to
enter a string. Type ABC, a space, DEF, and then press Enter. Now,
with the cursor still on line 221, press F7 twice to execute two
more lines of source code. Since the second line you executed is a
call to a different procedure, the arrow now appears on the first
line of the function ProcessLine. Continuing to press F7 would step
you through the function ProcessLine and then return you to the
line following the call—line 224. Instead, press Alf-F8 to make the
program stop when ProcessLine returns. This command is very

586

Figure 3.12
The program stops after

returning from a procedure

56

Alt

Setting
breakpoints

L~ 8

useful when you want to jump past the end of a function or
procedure.

If you had pressed F8instead of F7 on line 221, the cursor would
have gone directly to line 224 instead of into the function. F8is
similar to F7in that it executes functions, but it doesn’t step
through their source code.

while Buffer <> '' do
begin

ProcessLine(Buffer);
> Buffer := GetLine;

end;

ShowResults;

ParmsOnHeap;
end.

[{E-Next [F-Trace

To execute the program until a specific place is reached, you can
directly name the function or line number, without moving the
cursor to that line in a source file and then running to that point.
Press Alt-F9 to specify a label to run to. A dialog box appears. Type
GetLine and press Enter. The program runs, then stops at the
beginning of function GetLine.

Another way to control where your program stops running is to
set breakpoints. The simplest way to set a breakpoint is with the
F2 key. Move the cursor to line 121 and press F2. Turbo Debugger
highlights the line, indicating there is a breakpoint set on it.

You can also use the mouse to toggle breakpoints by clicking the
first two columns of the Module window.

Turbo Debugger User's Guide

Figure 3.13

A breakpoint at line 121 —H=Modu e APOERD FiTcs TPDENC.PAS-I21

i : Integer;
HordLen : Word;

begin { ProcesslLine }
» Inc(NumLines);

= 1;
while i <= Length(S) do
begin
(Skip non-letters }
wh}le((; <= Length(S)) and not IsLetter(S[i]) do
nc(i);

{ Find end of word, bump letter & word counters }
WordLen := 0;
zhlle (i <= Length(S)) and IsLetter(S[i]) do
egin
Inc(NumLetters);

U

Now press F9 to execute your program without interruption. The
screen switches to the program’s display. The demo program is
now running and waiting for you to enter a line of text. Type abc,
a space, def, and then press Enter. The display returns to the Turbo
Debugger screen with the arrow on line 121, where you set a
breakpoint that has stopped the program. Now press F2 again to
toggle it off.

See Chapter 7 for a complete description of breakpoints, including
conditional and global breakpoints.

Using watches

The Watches window at the bottom of the screen shows the value

of variables you specify. For example, to watch the value of the
variable NumWords, move the cursor to the variable name on line
144 and choose Watch from the Module window local menu
(bring it up with Alt-F10, or choose the shortcut, Ctr-W, from the
status line).

@2 Youcanalso click Ctr-Win the status line with your mouse.

Chapter 3, A quick example 57

Figure 3.14
A Pascal variable in the
Watches window

Examining simple

58

Pascal data
objects

hol
=[" =M0§u|e TPDEMO Flle TPDEMO.PAS 144

Inc(LetterTable[UpCase(S[i])].Count);
if WordLen = 0 then { bump counter }
Inc(LetterTab]e[UpCase(S[i])] FirstLetter);
Inc(i);
Inc wordLen).
end;

{ Bump word count info }
if WordLen > 0 then
begin

n
Inc(NumWords) ;
if WordLen <= MaxWordLen then
Inc(HordLenTable[wordLen]).
v
-

en
end; (while }
end; { ProcessLine }

NumWords now appears in the Watches window at the bottom of
the screen, along with its type (Word) and value. As you execute
the program, Turbo Debugger updates this value to reflect the
variable’s current value.

Once you have stopped your program, there are a number of
ways of looking at data using the Inspect command. This very
powerful facility lets you examine data structures in the same
way that you visualize them when you write a program.

The Inspect commands (in various local menus and in the Data
menu) let you examine any variable you specify. Suppose you
want to look at the value of the variable NumLines. Move the
cursor back to line 121 so it’s under one of the letters in NumLines
and press Ctrl-l. An Inspector window pops up.

Turbo Debugger User's Guide

Figure 3.15
An Inspector window

Chapter 3, A quick example

:vreakpoi nts Data
——™Module: TPDEMO File: TPDEMO.PAS 121
i : Integer;

WordLen : Word;

begin { ProcessLine }
> Inc(NumLines);

iz=1; [®]=Inspecting NumLines=3=[*][¢]
while i <||@77D1:003E
begin WORD 3
{ Skip
while (i <=
Inc(i);

engt not IsLetter(S[i]) do

{ Find end of word, bump letter & word counters }
WordLen := 0;
while (i <= Length(S)) and IsLetter(S[i]) do
begin
Inc(NumLetters);
Inc(LetterTable[UpCase(S[i])].Count);

{-———Watchesf—f-— —————————————————————————————————— 2

L'umwor-s 2 ($2) : WORD

[F1-Help [#1-Bkpt [Kl-Mod [Fl-Here [§§-Zoom [{& [@]-Trace [f-Step

The first line tells you the variable name; the second line shows its
address in memory. The third line tells you what type of data is
stored in NumLines (it’s a Pascal Word) and displays the current
value of the variable.

Now, having examined the variable, press Esc to close the
Inspector window. You can also use Alf-F3 to remove the Inspector
window, just like any other window, or you can click the close
box with your mouse.

Let’s review what you actually did here. By pressing Ctrl, you used
a hot key for the local menu commands in the Module window.
Pressing I specified the Inspect command.

To examine a data item that is not conveniently displayed in the
Module window, choose Data | Inspect. A dialog box appears,
asking you to enter the variable to inspect. Type LetterTable and
press Enter. An Inspector window appears, showing the value of
LetterTable. Use the arrow keys to scroll through the 26 elements
that make up LetterTable. The title of the Inspector window shows
the name of the data you are inspecting. The next section shows
you how to examine this compound data object.

59

Examining
compound
Pascal data
objects

Figure 3.16
Inspecting a record

A compound data object, such as an array or structure, contains
multiple components. Move to the fourth element of the
LetterTable array (the one indicated by ['D’]). Press Alf-F10 to bring
up the local menu for the Inspector window, then choose Inspect.
A new Inspector window appears, showing the contents of that
element in the array. This Inspector window shows the contents
of a record of type LInfoRec.

ll-w] Te D
——Module: TPDEMO File: TPDEMO. PAS 121

i : Integer;
NordLen : Word; ——-Inspecting LetterTable-3————
@77D1:005A

begin { ProcessLine }
» Inc(NumLines);
iz=1;
while i <= Length(S) do
begin

Inc(i);

{ Find end of wor
WordLen := 0;

ghi}e (i <= Length(S)) and IsLetter(S[i]) do
egin

InciNumLetter s);

Inc LetterTable[UpCase(S[1])] Count);

When you place the cursor over one of the member names, the
data type of that member appears in the bottom pane of the
Inspector window. If one of these members were in turn a
compound data object, you could issue an Inspect command and
dig down further into the data structure.

Press Al-F3 to remove both Inspector windows and return to the
Module window. (Alf-F3is a convenient way of removing several
Inspector windows at once. If you had pressed Esc, only the
topmost Inspector window would have been deleted.)

Turbo Debugger User's Guide

Changing Pascal

data values so far, you've learned how to look at data in the program. Now,
let’s change the value of data items.

Use the arrow keys to go to line 103 in the source file. Place the
cursor at the variable called NumLetters and press Clrl-l to inspect
its value. With the Inspector window open, press Alt-F10 to bring
up the Inspector window’s local menu. Choose the Change option.
(You could also have done this directly by pressing Cir-C.) A
dialog box appears, asking for the new value.

Figure 3.17
. | & | iew Qun [treakpoints [ata #ptions [Mindow [elp PROMPT
The Change dialog box —Mﬂogu!e: TPDEMO File: TPDEMO.PAS 103 1

procedure Init;

begin
NumLines := 0; NumWords := 0O; NumLetters := 0;
FillChar(LetterTable, SizeOf(Let=[m]=Inspecting NumLetters=3=[1][{]
Fil1Char(WordLenTable, SizeOf(Wo[/@77D1:0042
Writeln('Enter a string to proce|[NGTN

end; { Init }
NumLetters + 4

procedure ProcessLine(va

function Isletter(ch : C
begin | OK ol Cancel o Help g

IsLetter := UpCase(ch)
end; { IsLetter }

var
i : Integer;

——HMWatches—mm——-—m——m—m—ooniniid:iiiio-—— oo e ——
{Numwor-s

At this point, you can enter any Pascal expression that evaluates
to a number. Type NumlLetters + 4 and press Enter. The value in the
Inspector window now shows the new value, 10.

To change a data item that isn’t displayed in the Module window,
choose Data | Evaluate/Modify. A dialog box appears. Enter the
name of the variable to change. Type NumLines and press Enter. The
result is displayed in the middle pane. Press Tab twice, then type
123 and press Enter. This sets the variable NumlLines to 123.

Chapter 3, A quick example 61

Figure 3.18

The Evaluate/Modify dialog
box

62

IEIFEHIM
—Hodule: TPDEM

procedure Init;
[1]

begin
NumLines

end; { Init
procedure Pr|

function IsL

begin
Isletter :

end; { Islet

Expgression

FillChar$£ NumLines
Fil1Char(W
WriteIln('E

sreakpoints
File: TPDEMO.PAS 103:

valuate/modi f:

var

That wraps up our quick introduction to using Turbo Debugger
with a Turbo Pascal program. Chapter 14 offers a more extensive

debugging sample.

Turbo Debugger User's Guide

Starting Turbo Debugger

This chapter tells you how to prepare programs for debugging.
We show you how to start Turbo Debugger from the DOS com-
mand line, and how to tailor its many command-line options to
suit the program you are debugging. We explain how to make
these options permanent in a configuration file. You also learn
how to run a DOS command processor from within a Turbo
Debugger session and, finally, how to return to DOS when you
are done.

Preparing programs for debugging

When you compile and link with one of Borland’s Turbo
languages, you can tell the compiler to generate full debugging
information. If you have compiled your program’s object modules
without any debugging information, you must recompile all its
modules to have full source debugging capabilities throughout
your program. It is possible to generate debug information only
for specific modules (you might have to do this if you're debug-
ging a large program), but you will find it annoying later to enter
a module that doesn’t have any debug information available. We
suggest recompiling all modules.

Chapter 4, Starting Turbo Debugger 63

Preparing Borland
C++ programs

Preparing Turbo
Pascal programs

Just like this, with no spaces

64

If you're using the integrated environment of a Borland C or C++
compiler (TC or BC), open the Debugger dialog box (choose
Options | Debugger) and set the Source Debugging radio button to
Standalone before you compile your source modules. For Turbo C
2.0, set Debug | Source Debugging to Standalone.

If you're using the command-line compiler (TCC), specify the —v
command-line option.

If you're using TLINK as a standalone linker, you must use the /v
option to append debugging information at the end of the .EXE
file.

You also should make sure optimizing is disabled. Either don’t
use the —O option or specify —O— to turn off the ~O in your
TURBOC.CFG file. This eliminates the few occasions when Turbo
Debugger appears to skip over lines of source code when you're
stepping through a program.

First, make sure that you have version 5.0 or later of Turbo Pascal.
Earlier versions do not have the ability to bundle debugging
information into the .EXE file so that Turbo Debugger can use it.

If you're using the integrated environment (TURBO.EXE), go to
the Debug menu and change the Standalone Debugging setting to
On. Turn Options | Compiler | Debug Information On or use the
{$D+} compiler directive. If you want to be able to access local
symbols (any declared within procedures and functions), you
must either set Options | Compiler | Local Symbols to On or put
the following directive at the start of your program:

{S$L+}
You can then compile your program.

If you're using the command-line version (TPC.EXE), you must
compile using the /v command-line option. Debug information

and local symbols are, by default, generated. If you don’t want

them, you can use /$ command-line options to disable them.

Turbo Debugger User's Guide

Preparing Turbo
Assembler
programs

Preparing
Microsoft
programs

To debug a Turbo Assembler program, specify the /zi command-
line option to get full debugging information.

To link your program with TLINK, use the /v option to append
debugging information at the end of the .EXE file.

See the documentation on your distribution disks for information
about how to use the utility program TDCONVRT.EXE, which
converts CodeView executable programs to Turbo Debugger
format.

Running Turbo Debugger

To debug a program with Turbo Debugger, simply type TD at the
DOS prompt, followed by an optional set of command-line
arguments and the name of the program, and press Enter. Turbo
Debugger then loads your program, displaying its source code so
you can step through your program statement by statement.

The generic command-line format is
TD [options] [progname [progargs]]

The items enclosed in brackets are optional; if you include any,
type them without the brackets. Progname is the name of the pro-
gram to debug. You can follow a program name with arguments.
Here are some sample command lines:

Command Action

td -sc progl a b Starts the debugger with —sc option and loads pro-
gram progl with two command-line arguments, a
and b.

td prog2 -x Starts the debugger with default options and loads
program prog2 with one argument, —x.

If you simply type 1D Enter, Turbo Debugger loads and uses its
default options.

When you run a program in Turbo Debugger, you need to have
both its .EXE file and the original source files available. Turbo

Chapter 4, Starting Turbo Debugger 65

Debugger searches for source files first in the directory the
compiler found them in when it compiled, second in the directory
specified in the Options | Path for Source command, third in the
current directory, and fourth in the directory the .EXE file is in.

You must have already compiled your source code into an
executable (.EXE) file with full debugging information turned on
before debugging with Turbo Debugger.

Remember, Turbo Debugger works only with programs in Turbo
Pascal 5.0 or later, Turbo C 2.0, Borland’s line of C++ compilers, or
Turbo Assembler 1.0 or later.

If you're running your program from the DOS prompt and notice
abug, you have to exit from your program and load it under the
debugger before you can begin debugging.

Command-line options

Appendix A has an easy-fo-
use list of Turbo Debugger’s

command-line options.

Loading the

configuration file

66

-©

All Turbo Debugger command-line options start with a hyphen (-)
and are separated from the TD command and each other by at
least one space. You can explicitly turn a command-line option off
by following the option with another hyphen. For example, ~vg-
turns off a complete graphics save. You can do this if an option
has been permanently enabled in the configuration file. You can
modify the configuration file by using the TDINST configuration
program described in Appendix D.

The following sections describe all available command-line
options.

This option loads the specified configuration file. There must not
be a space between —¢ and the file name.

If the —¢ option isn’t included, TDCONFIG.TD is loaded if it
exists. Here’s an example:

TD -cMYCONF.TD TCDEMO

This loads the configuration file MYCONF.TD and the source
code for TCDEMO.

Turbo Debugger User’s Guide

Display updating
(-a)

Getting help (-h
and -?)

Process ID
switching (-i)

Keystroke
recording (-k)

All —d options affect the way in which display updating is
performed.

—-do Runs Turbo Debugger on your secondary display. View
your program’s screen on the primary display, and run
the debugger on the secondary one.

—dp Shows the debugger on one display page and the pro-
gram being debugged on another, minimizing the time it
takes to swap between the two screens (also called screen
Alipping). You can use this option only on a display that
has multiple display pages, a feature of many color
displays. You can’t use this option if the program you are
debugging uses multiple display pages itself.

—-ds The default option for all displays, it’s also called screen
swapping. Required for a monochrome display. Maintains
a separate screen image for the debugger and the pro-
gram being debugged by loading the entire screen from
memory each time your program is run or the debugger
is restarted. This technique is the most time-consuming
method of displaying the two screen images, but works
on any display hardware and with programs that do
unusual things to the display.

These options display a screenful of help that describes Turbo
Debugger’s command-line syntax and options.

This option enables process ID switching. Don’t use this option
when you are debugging inside DOS or when DOS system calls
are active. See Appendix B for more technical information on this
feature. You needn’t be concerned with this option to debug most
programs.

This option enables keystroke recording in the Keystroke
Recording pane of the Execution History window.

Chapter 4, Starting Turbo Debugger 67

Assembler-mode

startup (-

]

Setting heap size

68

(-m)

If you use this option, all keystrokes that you type during a
debugging session will be recorded to a disk file. Then you can
recover to a previous point in your debugging session by having
Turbo Debugger reload your program and play back the recorded
keystrokes. Turbo Debugger records both the keys you press
while you're in Turbo Debugger and the keys you press while
your program is running.

This option forces startup in assembler mode, showing the CPU
window. Turbo Debugger does not execute your program'’s
startup code, which usually executes automatically when you
load your program into the debugger. This means that you can
step through your startup code.

If you are using Turbo Debugger with the remote Windows
debugging program WREMOTE, using the -l option when you
start Turbo Debugger means also that you can debug the
assembly-language startup code for any dynamic link libraries
(DLLs) your application starts. See Chapter 17, page 280, for more
information.

This option sets the working heap used by Turbo Debugger to
NK, where the syntax is

-mN

and N is the number of kilobytes. A space must not exist between
the —m option and the size of the heap. Here’s an example:

TD -ml10 TCDEMO.EXE

The default heap size is 18K; the low boundary is 7K. If you need
memory, use this option to reduce the amount of heap Turbo
Debugger uses. Turbo Debugger stores transient information,
such as command history lists and breakpoints, in the heap.

If you specify a heap size of 0 (zero) with the -m command-line
option (-m0), Turbo Debugger uses the maximum that it’s able to
use, usually 18K.

Turbo Debugger User's Guide

Mouse support

(-P) This option enables mouse support. However, since the default
for mouse support in Turbo Debugger is On, you won’t have
much use for the —p option unless you use TDINST to change the
default to Off. If you want to disable the mouse, use —p—.

Remote

debugging (-r) All-r options affect the remote debugging link.

-r

-rpN

-rsN

Enables debugging on a remote system over the serial
link. Uses the default serial port (COM1) and speed (115
Kbaud), unless you have changed them with TDINST.

Sets the remote link port to port N. N can be 1 or 2 to
indicate COM1 or COM2, respectively.

Sets the remote link speed. N can be 1 for 9600 baud, 2 for
19,200 baud, 3 for 38,400 baud, or 4 for 115,000 baud.

Source code

hcmdling (-s) All-s options affect the way Turbo Debugger handles source
code and program identifiers.

This option does not affect —g¢
Pascal, because it is not case
sensitive.

This option does not change —sd
the starting directory.

Chapter 4, Starting Turbo Debugger

Ignores case when you enter symbol names, even if your
program has been linked with case sensitivity enabled.

Without the —sc option, Turbo Debugger ignores case
only if you've linked your program with the case ignore
option enabled.

Sets one or more source directories to scan for source files;
the syntax is

~-sddirname

To set multiple directories, use the ~sd option
repeatedly—only one directory name can be specified
with each —sd option. Directories are searched in the
order specified. dirname can be a relative or absolute path
and can include a disk letter. If the configuration file
specifies any directories, the ones specified by the —sd
option are added to the end of that list.

69

Video hardware
-v)

Remote Microsoft

Windows
debugging (-w)

Overlay pool size

70

-y)

-smN This option sets the symbol table reserved memory size.

Follow it with the number of kilobytes you want to
reserve, like this:

-smN

where N is the number of kilobytes. Use this option if you
want to load a symbol table manually with the

File | Symbol Load command. You may have to
experiment with the amount of memory to reserve.

All -v options affect how Turbo Debugger handles the video
hardware.

Saves complete graphics image on program screen.
Requires an extra 8K of memory, but can debug programs
that use certain graphics display modes. Try this option if
your program’s graphics screen becomes corrupted when
running under Turbo Debugger.

43/50-line display is not allowed. Specifying this option
saves some memory. Use this if you're running on an

EGA or VGA and know you won't switch into 43- or
50-line mode once Turbo Debugger is running.

Enables the EGA /VGA palette save.

-wW

Indicates that the remote debugging program is
WREMOTE, used to debug remote Microsoft Windows
applications.

The -y options are used to set the size of the overlay pool size,
either in main memory or in EMS memory.

...yN

This option sets the overlay pool size in main memory.
The syntax is as follows, where N is the number of
kilobytes you want to reserve:

_yN

Turbo Debugger User’s Guide

Use TDINST to set a
permanent overlay code
pool size.

-yeN

Configuration files

Normally, Turbo Debugger uses an 80K code pool size.
The smallest pool size that you can set is 20K, and the
largest is 200K.

Use this option if you do not have enough memory to
load your program under Turbo Debugger, or if you are
debugging small programs and want to improve Turbo
Debugger’s performance. The smaller the code pool size,
the more often Turbo Debugger loads program overlays
from disk, and the slower it responds. With a larger code
pool, there is less memory available for the program you
are debugging, but Turbo Debugger runs faster.

This option sets the overlay pool size in EMS memory.
Use this option if you need to free up some EMS memory
for the program you are debugging. The syntax is as
follows, where N is the number of 16K EMS pages you
want to reserve:

-yeN

For example, —ye4 sets the overlay pool to four pages. The
default is twelve 16K EMS pages.

Use —ye0 to disable the EMS overlay pool.

Chapter 17 describes on - Turbo Debugger uses a configuration file to override built-in

page 266 how to use TDINST
to create a configuration file

default values for command-line options. You can use TDINST to

for Turbo Debugger for set the options that Turbo Debugger will default to if there is no
Windows (TDW). configuration file. You can also use it to build configuration files.

Turbo Debugger looks for the configuration file TDCONFIG.TD
first in the current directory, next in the TURBO directory set up
with the TDINST installation program, and then in the directory
that contains TD.EXE. If you are running on DOS 2.x, Turbo De-
bugger won’t look for TDCONFIG.TD in the TD.EXE directory.

Appendix D describes how If Turbo Debugger finds a configuration file, the settings in that

to use the installation pro-
gram to create configuration

file override its built-in defaults. Any command-line options that

files. yousupply when you start Turbo Debugger from DOS override
those default options and any values in TDCONFIG.TD.

Chapter 4, Starting Turbo Debugger

71

The Options menu

Language... Source
Macros >
Display options...
Path for source...
Save options...
Restore options...

The Language
command

The Macros menu

72

Create Alt=
Stop recording Alt-
Remove

Delete all

Create

Stop Recording

The Options menu lets you set or adjust a number of parameters
that control the overall appearance and operation of Turbo
Debugger. The following sections describe each menu command
and refer you to other sections of the manual where you can find
more details.

Chapter 9 describes how to set the current expression language
and how it affects the way you enter expressions.

The Macros command displays another menu that lets you define
new keystroke macros or delete ones that you have already
assigned to a key. It has the following commands: Create, Stop
Recording, Remove, and Delete All

Starts recording keystrokes that you are assigning to a key (for
example, Alt-M). To begin a recording session, choose Options |
Macros | Create. You are prompted for the key you want to assign
the macro to. The message RECORDING is displayed in the upper
right-hand corner of the screen while the recording session is in
progress. Type the keystrokes you want to record. These key-
strokes are acted upon by Turbo Debugger exactly as if you were
not recording a macro.

Once you have finished recording keystrokes, issue the Options |
Macros | Stop Recording command or its hot key, Alt-Hyphen. You
can also press the key you assigned the macro to (Alf-M) once
more.

Alt = is the hot key for starting to record a macro.

Stops recording keystrokes that are assigned to a key. Use this
command after issuing the Options | Macros | Create command to
assign keystrokes to a key.

Alt-Hyphen is the hot key for ending a macro.

Turbo Debugger User’s Guide

Remove

Delete All Removes all keystroke macro definitions and restores all keys to
the meaning that they originally had.
Display Options
command This command opens a diaiog box in which you can set severai
options that control the appearance of the Turbo Debugger
display.
Figure 41 I Tew - qun freakpo! PROMPT
The Display Options dialog =HM: TPDEMO File: TPDEMO.PAS 217 L=
box end; N
Writeln;
end; { ParmsOnHeap }
[#]=———=————Display opti
» begin { program } Display swapping Integer format
nit; None
Buffer := GetlLine; e) Smart Decimal
while Buffer <> '' do () Always (e) Both
begin
ProcessLine(Buffer) || NIRRT Pab size
Buffer := GetLine; _
end;
ShowResults; | OK of | Help of
ParmsOnHeap;
end.
Accept current settings and proceed|
Display Swapping The Display Swapping radio buttons let you choose from three

Removes a macro assigned to a single key. You are prompted to
press the key of the macro you want to delete.

ways of controlling how the User screen gets swapped back and
forth with Turbo Debugger’s screen:

Chapter 4, Starting Turbo Debugger

None Don’t swap between the two screens. Use this option if
you're debugging a program that does not output to
the User screen.

Smart Swap to the User screen only when display output may

occur. Turbo Debugger swaps the screens any time that
you step over a routine, or if you execute an instruction
or source line that appears to read from or write to
video memory. This is the default option.

73

74

Integer Format

Screen Lines

Tab Size

Path for Source
command

Save Options
command

Always Swap to the User screen every time the user program
runs. Use this option if the Smart option is not catching
all the occurrences of your program writing to screen.
If you choose this option, the screen flickers every time
you step through your program, since Turbo De-
bugger’s screen is replaced for a short time with the
User screen.

These radio buttons let you choose from three display formats for
displaying integers:

Hex Shows integers as hexadecimal numbers, displayed in
a format appropriate to the current language.

Decimal Shows integers as ordinary decimal numbers.

Both Shows integers as both decimal numbers and as hex
numbers in parentheses after the decimal value.

These radio buttons are used to determine whether Turbo
Debugger’s screen uses the normal 25-line display or the 43- or
50-line display available on EGA and VGA display adapters.

This input box lets you set how many columns each tab stop
occupies. You can reduce the tab column width to see more text in
source files that have a lot of code indented with tabs. You can set
the tab column width from 1 to 32.

Sets the directories that Turbo Debugger searches for your source
files. See the discussion of the Module window in Chapter 8 for
more information.

This command opens a dialog box from which you can save your
current options to a configuration file on disk. These options are

W yOur macros
m the current window layout and pane formats
m all settings made in the Options menu

Turbo Debugger User's Guide

Figure 4.2

onsdi (T e Lo T Treoores Teoe Brow Lo o T0
The Save Options dialog box | E IR TET- I I E IO =05

end;
Writeln;
end; { ParmsOnHeap }

> begin { program }
nit;
Buffer := GetLine;

[#]==Save Configuration:

while Buffer <> '' do X] Options
begin Layout
ProcessLine(Buffer); Macros
Buffer := Getline; [R— %
end; Save To i
ShowResults; g &
ParmsOnHeap;
end.

ave all configuration information

Turbo Debugger lets you save your options in any or all of these
ways, depending on which of the Save Configuration check boxes
you turn on:

Options Saves all settings made in the Options menu.
Layout Saves only the windowing layout.
Macros Saves only the currently defined macros.

You can also use the Save To input box to change the name of the
configuration file to which you are saving the options.

Restore Options

command Restores your options from a disk file. You can have multiple
configuration files, containing different macros, window layouts,
and so forth. You must choose a configuration file that was
created by the Save Options command or with TDINST.

Running DOS in Turbo Debugger

When debugging a program, you sometimes need to use another
program or utility. Do this via File | DOS Shell.

When you start the DOS command processor, the program you
are debugging is swapped to disk if necessary. This lets you
perform DOS commands even while you are debugging a

Chapter 4, Starting Turbo Debugger v 75

Warning!

program that takes all the available memory. Of course, this
means that there may be a few seconds of delay while your pro-
gram is being swapped to and from the disk.

Do not load TSRs (terminate and stay resident programs) on top
of Turbo Debugger while you are shelled to DOS.

When you have finished issuing commands to DOS, type EXIT and
press Enter to return to your debugging session.

Returning to DOS

76

You can end your debugging session and return to DOS at any
time by pressing Alt-X, except when a dialog box is active (in that
case, first close the dialog box by pressing Esc). You can also
choose File | Quit.

All the memory initially allocated to the program being debugged
is freed. If the program you are debugging allocates memory via
the DOS block memory allocation routines, that memory is also
freed.

Turbo Debugger User's Guide

Conftrolling program executfion

When you debug a program, you usually execute portions of it
and check at a stopping point to see that it is behaving correctly.
Turbo Debugger gives you many ways to control your program’s
execution. You can

m execute single machine instructions or single source lines

m skip over calls to functions or procedures

B “animate” the debugger (perform continuous tracing)

m run until the current function or procedure returns to its caller
mrun to a specified location

m continue until a breakpoint is reached

m reverse program execution

A debugging session consists of alternating periods when either
your program or the debugger is running. When the debugger is
running, you can cause your program to run by choosing one of
the Run menu’s command options or pressing its hot key equiva-
lent. When your program is running, the debugger starts up again
when either the specified section of your program has been exe-

cuted, or you interrupt execution with a special key sequence, or
Turbo Debugger encounters a breakpoint.

This chapter shows you how to examine the state of your pro-
gram whenever Turbo Debugger is in control. You'll see various
ways to execute portions of your program, and also how to inter-
rupt your program while it’s running. Finally, you'll learn the

Chapter 5, Confrolling program execution 77

ways you can restart a debugging session, either with the same
program or with a different program.

Examining the current program state

The “state” of your program consists of the following elements:

mits DOS command-line arguments

m the stack of active functions or procedures

m the current location in the source code or machine code

m register values

m the contents of memory

m the reason the debugger stopped your program

m the value of your program data variables

The following sections explain how to use the Variables window,
the Stack window, the local menus of the Global and Static panes,
and the Origin and Get Info commands. See Chapter 6 for more

information on how to examine and change the values of your
program data variables.

The Variables

wiNndOW You open the Variables window by choosing View | Variables.
This window by default shows you all the variables (names and
values) that are accessible from the current location in your pro-
gram. Use it to find variables whose names you can’t remember.
You can then use the local menu commands to further examine or
change their values. You can also use this window to examine the
variables local to any function that has been called.

Figure 5.1 [a]=variabl porp 0;[__’?] [+]
The Variables window ©7129:0402
€7129:0486
©7129:05A6
©7129:0651
1 (51)

=
A

True
'ABC DEF'

1 (1)
28969 ($7129)

78 Turbo Debugger User's Guide

>

The Global pane local
menu

Inspect
Change
Watch

When you're debugging a Turbo Pascal program, the variables
won’t be arranged alphabetically.

You open a Variables window by choosing View | Variables. A
Variables window has two panes:

m The Global pane (top) shows all the global symbols in your
program.

m The Static/Local pane (bottom) by default shows all the static
symbols in the current module (the module containing the
current program location, CS:IP) and all the symbols local to the
current function.

Both panes show the name of the variable at the left margin and
its value at the right margin. If Turbo Debugger can’t find any
data type information for the symbol, it displays four question
marks (27??).

Press Alt-F10 or the right mouse button to pop up the Global pane’s
local menu. If you have enabled control-key shortcuts, you can
also press Ctrl with the first letter of the desired command to
access it.

If your program contains functions that perform recursive calls, or
if you want to view the variables local to a function that has been
called, you can examine the value of a specific instance of a func-
tion’s local data. First create a Stack window with View | Stack,
then move the highlight to the desired instance of the function
call. Next, bring up the Stack window local menu and choose
Locals. The Static/Local pane of the Variables window then
shows the values for that specific instance of the function.

This local menu consists of three commands: Inspect, Change, and
Watch.

Inspect

Opens an Inspector window that shows you the contents of the
currently highlighted global symbol.

If the variable you want to inspect is the name of a function,
Turbo Debugger shows you the source code for that function. If
there is no source file, the disassembled code appears in a CPU
window.

Chapter 5, Controlling program execution 79

See Chapter 6 for more

information on how Inspector

windows behave.

See Chapter 9 for more
information on assignment
and data type conversion.

See Chapter 6 for more

information on the Watches

window.

The Static/Local pane

80

local menu

Inspect
Change
Watch
Show

If the variable you inspect has a name that is superseded by a
local variable with the same name, you'll see the actual value of
the global variable, not the local one. This characteristic is
different from the usual behavior of Inspector windows, which
normally show you the value of a variable from the point of view
of your current program location (CS:IP). This difference gives
you a convenient way of looking at the value of global variables
whose names are also used as local variables.

Change

Changes the value of the currently selected (highlighted) global
symbol to the value you enter at the Change dialog box. Turbo
Debugger performs any necessary data type conversion exactly as
if the assignment operator for your current language had been
used to change the variable.

You can also change the value of the currently highlighted symbol
by opening the Inspector window and typing a new value. When
you do this, the same dialog box appears as if you had first
specified the Change command.

Watch

Opens a Watches window and puts the currently selected
(highlighted) global symbol in the window. This command
simply puts a character string in the Watches window.

The Watches window doesn’t keep track of whether the variable
is local or global. If you insert a global variable using the Watch
command and later encounter a local variable by the same name,
the local variable will take precedence as long as you are in the
local variable’s block. In other words the Watches window always
shows you the value of a variable from the point of view of your
current program location (CS:IP).

Either bring up the Static/Local pane’s local menu or, if control-
key shortcuts are enabled, use the Ctrl key with the first letter of
the desired command to access a command.

The Static/Local pane has the four local menu commands shown
in the box on the left.

Turbo Debugger User's Guide

See Chapter 6 for more
information on how Inspector
windows behave.

See Chapter 9 for more
information on assignment

Iololo Neloiie] h/r\e A 1ernr'r\r\
L1l Sl ypoC COnveioin,

See Chapter 6 for more
information on how Wafches
windows behave.

Inspect

The Inspect command opens an Inspector window that displays
the contents of the currently highlighted module’s local symbol.

Change

Changes the value of the currently selected (highlighted) local
symbol to the value you enter at the Change dialog box. Turbo
Debugger performs any data type conversion necessary, exactly as
if the assignment operator for your current language had been
used to change the variable.

You can also change the value of the currently highlighted symbol
by opening the Inspector window (see previous command) and
starting to type a new value. When you do this, the same dialog
box appears as if you had first specified the Change command.

Watch

The Watch command opens a Watches window and puts the
currently selected (highlighted) static or local symbol in the
window.

Show

Choosing the Show command brings up the Local Display dialog
box, which enables you to change both the scope of the variables
being shown (static, auto, or both) and the module from which
these variables are selected.

The following radio button selections appear in this dialog box:

Static Show only static variables.

Auto Show only variables local to the current block.
Both Show both types of variables (the default).

Module Change the current module. Brings up a dialog box

showing the list of modules for the program, from
which you can select a new module.

Chapter 5, Controlling program execution 81

Figure 5.2

The Local Display dialog box

The Stack window

Figure 5.3
The Stack window

The Stack window local

82

menu

Inspect
Locals

u] Local Displa;
Static | 0K g
Auto
st
— ¥ et

You create a Stack window by choosing View | Stack. The Stack
window lists all active functions or procedures. The most recently
called routine is displayed first, followed by its caller and the
previous caller, all the way back to the first function or procedure
in the program (the main program in Pascal; in C programs,
usually the function called main). For each procedure or function,
you see the value of each parameter it was called with.

[m]=Stack=——=——==s3=[%][{]
TPDEMO.PROCESSLINE. ISLETTER('A")
[TPDEMO. PROCESSLINE ('ABC

[TPDEMO

The Stack window likewise displays the names of object methods
or class member functions, prefixed with the name of the object or
class type that defines the method or member function:

SHAPES.ACIRCLE (174, 360, 75.0) {Turbo Pascal}

Press Alt-F10 to pop up the Stack window local menu, or press Cirl
with the first letter of the desired command to access it.

The Stack window local menu has two commands: Inspect and
Locals.

Inspect

Opens a Module window positioned at the active line in the
currently highlighted function. If the highlighted function is the
top (most recently called) function, the Module window shows
the current program location (CS:IP). If the highlighted function is
one of the functions that called the most recent function, the
cursor is positioned on the line in the function that will be
executed after the called function returns.

Turbo Debugger User’s Guide

You can also invoke this command by positioning the highlight
bar over a function, then pressing Enter.

Locals

Opens a Variables window that shows the symbols local to the
current module, as well as the symbols local to the currently high-
lighted function. If a function calls itself recursively, there are
muitiple instances of the function in the Stack window. By posi-
tioning the highlight bar on one instance of the function, you can
use this command to look at the local variables in that instance.

The Origin local

menu command Both the Module window and the Code pane of a CPU window
have an Origin command on their local menus. Origin positions
the cursor at the current code segment (CS:IP). This is very useful
when you have been looking at your code and want to get back to
where your program stopped.

The Get Info

command You can choose File | Get Info to look at memory use and to
determine why the debugger gained control. The command
produces a text box that disappears when you press Enter,
Spacebar, or Esc. The information in the text box varies depending
on whether you're debugging a DOS or a Windows program.

DOS format If you're debugging a DOS program, the following information
appears in the System Information box (see Figure 5.4):
m The name of the program you're debugging.
m A description of why your program stopped.

m The amount of memory used by DOS, Turbo Debugger, and
your program.

m If you have EMS memory, its use appears to the right of main
ImMemory use.

m A list of interrupts intercepted by the program you're
debugging.
m The DOS version you're running.

m Whether breakpoints are handled entirely in software or if they
have hardware assistance.

Chapter 5, Conftrolling program execution 83

84

Figure 5.4
The DOS Get Info text box

m The current date and time.

] System informatio
Program: ...D\PASCAL\EXAMPLES\EMS.EXE
Status : Step

—— Memory —- —— EM§ ——
DOS : 139Kb DOS

Debugger : 249Kb Debugger

Symbols : 1Kb Program

Program : 249Kb Available: 2016Kb
Available: OKb

User interrupts: 00h 1Bh 23h 24h
DOS version 1 4.00

Breakpoints : Hardware
1-9-1990 2:32pm

Here are the messages you'll see on the second (status) line,
describing why your program stopped:

Stopped at ___
Your program stopped as the result of a completed Run |
Execute To, Run | Go to Cursor, or Run | Until Return command.
This status line message also appears when your program is
first loaded, and the compiler startup code in your program
has been executed to put you at the start of your source code.

No program loaded v
You started Turbo Debugger without loading a program. You
cannot execute any code until you either load a program or
assemble some instructions using the Assemble local menu
command in the Code pane of a CPU window.

Control Break
You interrupted execution of your program with Ctr--Break.

Trace
You executed a single source line or machine instruction with
F7 (Run | Trace).

Breakpoint at __
Your program encountered a breakpoint that was set to stop
your program. The text after “at” is the address in your pro-
gram where the breakpoint occurred.

Terminated, exit code __
Your program has finished executing. The text after “code” is
the numeric exit code returned to DOS by your program. If
your program does not explicitly return a value, a garbage

Turbo Debugger User's Guide

value may be displayed. You cannot run your program until
you reload it with Run | Program Reset.

Loaded
You loaded Turbo Debugger and specified a program and the
option that prevents the compiler startup code from executing.
No instructions have been executed at this point, including
those that set up your stack and segment registers. This means
that if you try to examine certain data in your program, vou
may see incorrect values.

Step
You executed a single source line or machine instruction,
skipping function calls, with F8 (Run | Step Over).

Interrupt
You pressed the interrupt key (usually Ctr-Break) to regain
control. Your program was interrupted and control passed
back to the debugger.

Exception __
You were using TD386, and a processor exception has
occurred. This usually happens when your program attempts
to execute an illegal instruction opcode. The Intel processor
documentation describes each exception code in complete
detail.

Hardware device driver stuck
You were using a hardware debugger and set a hardware
breakpoint in a stack variable that is conflicting with Turbo
Debugger. You must remove the hardware breakpoint before
you proceed.

Divide by zero
Your program has executed a divide instruction where the
divisor is zero.

Global breakpoint __at __
A global breakpoint has been triggered. You are told the
breakpoint number and the location in your program where
the breakpoint occurred.

Windows format If you're debugging a Windows program, the following
information appears in the System Information box (see
Figure 5.5):

Chapter 5, Controlling program execution 85

86

Figure 5.5
The Windows Get Info text
box

m The name of the program you're debugging.

m A description of why your program stopped.

m Information about the global memory on your system.
m The DOS version you're running.

m The current date and time.

Program: C:\TDW\TCWDEMO.EXE
Status : Window message breakpoint at wndproc

—— Global Memory
Mode H Non-EMS

Banked H 0Kb
Not banked : 12006Kb

Largest H 177Kb

DOS version : 4.01
10-17-1990 5:04pm
[Ok g

Status line messages

Here are the messages you'll see on the second (status) line,
describing why your program stopped:

Stopped at __
Your program stopped as the result of a completed Run |
Execute To, Run | Go to Cursor, or Run | Until Return command.
This status line message also appears when your program is
first loaded, and the compiler startup code in your program
has been executed to put you at the start of your source code.

No program loaded
You started Turbo Debugger without loading a program. You
cannot execute any code until you either load a program or
assemble some instructions using the Assemble local menu
command in the Code pane of a CPU window.

Control Break
You interrupted execution of your program with Ctri-Alt-SysAg.

Trace
You executed a single source line or machine instruction with

F7 (Run | Trace).

Turbo Debugger User’s Guide

Breakpoint at __
Your program encountered a breakpoint that was set to stop
your program. The text after “at” is the address in your pro-
gram where the breakpoint occurred.

Window message breakpoint at __
Your program encountered a window message breakpoint that
was set to stop your program. The text after “at” is the window
procedure the message was destined for.

Terminated, exit code ___
Your program has finished executing. The text after “code” is
the numeric exit code returned to Windows by your program.
If your program does not explicitly return a value, a garbage
value might be displayed. You cannot run your program until
you reload it with Run | Program Reset.

Loaded .
You loaded Turbo Debugger and specified a program and the
option that prevents the compiler startup code from executing.
Because no instructions have been executed at this point,
including those that set up your stack and segment registers, if
you try to examine certain data in your program, you might see
incorrect values.

Step
You executed a single source line or machine instruction,
skipping function calls, with F8 (Run | Step Over).

Interrupt
You pressed the interrupt key (Ctrl-Alt-SysRg) to regain control.
Your program was interrupted and control passed back to the
debugger.

Exception __
A processor exception has occurred, which usually happens
when your program attempts to execute an illegal instruction
opcode. The Intel processor documentation describes each
exception code in complete detail.

Divide by zero
Your program has executed a divide instruction where the
divisor is zero.

Global breakpoint __at ___
A global breakpoint has been triggered. You are told the
breakpoint number and the location in your program where
the breakpoint occurred.

Chapter 5, Controlling program execution 87

The Run menu

Global memory information

TDW provides you with the following information about global

memory:

Mode Memory modes can be Large-frame EMS, Small-
frame EMS, and non-EMS (extended memory).

Banked The amount in kilobytes of memory above the

EMS bank line (eligible to be swapped to expanded
memory if the system is using it).

Not banked The amount in kilobytes of memory below the
EMS bank line (not eligible to be swapped to

expanded memory).

Largest The largest contiguous free block of memory, in

kilobytes.

Run

88

The Run menu has a number of options for executing different
parts of your program. Since you use these options frequently,

they are all available on function keys.

Run F9
Go to cursor F4
Trace into F7
Step over F8
Execute to... A1t-F9
Until return A1t-F8
Animate...

Back trace Alt-F4
Instruction trace Alt-F7
Arguments...

Program reset Ctr1-F2

Runs your program at full speed. Control returns to the debugger
when one of the following events occurs:

m Your program terminates.

m A breakpoint with a break action is encountered.

m You interrupt execution with Ctri-Break.

Turbo Debugger User's Guide

Go to Cursor

Trace Into

Step Over

Executes your program up to the line that the cursor is on in the
current Module window or CPU Code pane. If the current
window is a Module window, the cursor must be on a line of
source code.

Executes a single source line or assembly level instruction. If the
current window is a Module window, a single line of source code
is executed; if it's a CPU window, a single machine instruction. If
the current line contains any procedure or function calls, Turbo
Debugger traces into the routine. However, if the current window
is a CPU window, only a single machine instruction is executed.

Turbo Debugger treats object methods and class member func-
tions just like any other procedure or function. F7 traces into the
source code if it’s available.

Executes a single source line or machine instruction, skipping
over any procedure or function call(s). If the current window is a
Module window, this command usually executes a single source
line. However, if the current window is a CPU window, only a
single machine instruction is executed.

If you step over a single source line, Turbo Debugger treats any
function or procedure call(s) in that line as part of the line. You
don’t end up at the start of one of the functions. Instead, you end
up at the next line in the current routine or at the previous routine
that called the current one.

If you are in a CPU window, Turbo Debugger treats certain
instructions as a single instruction, even when they cause mul-
tiple assembly instructions to be executed. Here is a complete list
of the instructions Turbo Debugger treats as single instructions:

CALL Subroutine call, near, and far
INT Interrupt call

LOOP Loop control with CX counter
LOOPZ Loop control with CX counter
LOOPNZ Loop control with CX counter

Chapter 5, Conftrolling program execution 89

90

Execute To...
Until Return

Alt

Animate...

Back Trace

Alt

Also stepped over are REP, REPNZ, or REPZ followed by CMPS,
CMPS, CMPSW, LODSB, LODSW, MOVS, MOVSB, MOVSW,
SCAS, SCASB, SCASW, STOS, STOSB, or STOSW.

The Run | Step Over command treats a call to an object method or
a class member function like a single statement, and steps over it
like any other procedure or function call.

Executes your program until the address you specify in the dialog
box is reached. The address you specify may never be reached if a
breakpoint action is encountered first, or if you interrupt
execution.

Executes until the current function returns to its caller. This is
useful in two circumstances: When you have accidentally exe-
cuted into a function or procedure that you are not interested in
with Run | Trace instead of Run | Step, or when you have deter-
mined that the current function works to your satisfaction, and
you don’t want to slowly step through the rest of it.

Performs a continuous series of Trace Into commands, updating
the screen after each one. (The effect is to run your program in
slow motion.) You can watch the current location in your source
code and see the values of variables changing. You interrupt this
command by pressing any key.

After you choose Run | Animate, you will be prompted for a time
delay between successive traces. The time delay is measured in
tenths of a second; the default is 3.

If you are tracing (F7 or Alt-F7) through your program, reverses the
order of execution. This is handy if you trace beyond the point
where you think there may be a bug, and want to reverse
program execution back to that point. This lets you “undo” the
execution of your program by stepping backward through the
code, either a single step at a time or to a specified point

Turbo Debugger User’s Guide

highlighted in the Instructions pane of the Execution History
window.

Warningl Some restrictions apply. See the section, “The Instructions pane”
(page 92).

Instruction Trace
Executes a single machine instruction. Use this when you want to
trace into an interrupt, or when you're in a Module window and

you want to trace into a procedure or function that’s in a module
with no debug information (for example, a library routine).

Since you will no longer be at the start of a source line, this
command usually places you in a CPU window.

Arguments...
This command lets you set new command-line arguments for
your program. For a discussion of this command, see “Changing

the program arguments” on page 98.

Program Reset
Reloads from disk the program you're debugging. You might use
this command
m When you've executed past the place where you think there is a
bug
m When your program has terminated and you want to run it
again
m If you're in a Module or CPU window, you've suspended your
Windows application program with Ctr-Alt-SysRq, and you want
to terminate it and start over
m If you've already loaded your application, you've just set
startup debugging for one or more dynamic link libraries
(DLLs), and you now want to debug those DLLs

RNAN
RRJ

A

o

\

If you're in a Module or CPU window, the debugger will set the
current-line marker at the start of the program, but the display
will stay exactly where you were when you chose the Program
Reset command. This behavior makes it easier for you to set the
cursor near where you were and run the program to that line.

If you chose Program Reset because you just executed one source
statement more than you intended, you can position the cursor up

Chapter 5, Controlling program execution 91

a few lines in your source file and press F4 to run to that location.
Alternatively, if Full History had been on (local window of the
View | Execution History window), you could have chosen Run |
Back Trace to step back through previously executed code instead
of choosing Program Reset.

The Execution History window

The Execution History window

92

Figure 5.6

The Instructions
pane

>

Turbo Debugger has a special feature called the execution history
that keeps track of each instruction as it is executed (provided you
are tracing into the code), and also, if you want, records the key-
strokes you input to get to a given point in your program. You
can examine these instructions, and also undo them to return to a
point in the program where you think there might be a bug. If you
don’t have EMS memory, Turbo Debugger can record about 400
instructions. If you have EMS, it can record approximately 3000
instructions.

Trace TPDEM0.125: while (i <= Length(S)) an
Trace TPDEMO.PROCESSLINE.ISLETTER: begin

You can examine the execution history in the Execution History
window, which you open by choosing View | Execution History.

This window has two panes: the Instructions pane on top and the
Keystroke Recording pane on the bottom.

The Instructions pane shows instructions already executed that
you can examine or undo. Use the highlight bar to make your
selection.

The execution history only keeps track of instructions that have
been executed with the Trace Into command (F7) or the Instruction
Trace command (Alf-F7). It also tracks for Step Over, as long as you
don’t encounter one of the instructions listed on page 89. As soon
as you use the Run command or execute an interrupt, the
execution history is deleted. (It starts being recorded again as
soon as you go back to tracing.)

Turbo Debugger User's Guide

>
>

The Instructions pane
local menu

Inspect
Reverse execute

Full history

No

Alt

Warning!

Warning!

You cannot backtrace into an interrupt call.

If you step over a procedure or function call, you will not be able
to trace back beyond the instruction following the return.

Backtracing through a port-related instruction has no effect, since
you can’t undo reads and writes.

The local menu for the Instructions pane contains three
instructions:

Inspect

This command takes you to the command highlighted in the
Instructions pane. If it is a line of source code, you are shown that
line in the Module window; if there is no source code, the CPU
window opens, with the instruction highlighted in the Code pane.

Reverse Execute

This command reverses program execution to the location
highlighted in the Instructions pane. If you selected a line of
source code, you are returned to the Module window; otherwise,
the CPU window appears with the highlight bar of the Code pane

on the instruction.

You can never reverse back over a section of your program that
you didn’t trace through. For example, if you set a breakpoint and
then pressed F9 to run until the breakpoint was reached, all your
reverse execution history will be thrown away. In this case, if you
want to recover, you can use the keystroke replay facility of the
Execution History window to reload your program and run
forward to that point.

The INT instruction causes any previous execution history to be
thrown out. You can’t reverse back over this instruction, unless
you press Alf-F7 to trace into the interrupt.

The following instructions do not cause the history to be thrown
out, but they cannot have their effects undone. You should be on
the lookout for unexpected side effects if you back up over these
instructions:

IN INSB ouTsB
ouT INSW ouTsSwW

Chapter 5, Controlling program execution 93

Full History

This command is a toggle. If it is set to On, backtracing is enabled.
If it is Off, backtracing is disabled.

The Keystroke

Recording pane Even if you do inadvertently destroy your execution history, you
can quickly execute back to a given point in your program, if you
have keystroke recording enabled.

You can't use keystroke Keystroke recording works in conjunction with the reverse pro-

recording ;gr%gg oDufsb(L;gﬁ/e)‘.' gram execution capability to give you different ways of recover-
ing to a previous point in your debugging session. It keeps a
record of all the keys that you press, both when you're issuing
commands to Turbo Debugger and when you’re interacting with
the program you are debugging. The keystrokes are recorded in a
file named PROGNAME.TDK, where progname is the name of the
program you are debugging.

Use the bottom pane of the Execution History window to replay
keystrokes and recover to a previous point in your session. Each
line in the keystroke history list shows the reason that Turbo
Debugger gained control (breakpoint, trace, and so forth) and
your program’s current location at that time. If the location corre-
sponds to a line of source code, that line is displayed. Otherwise,
the instruction at that address is disassembled.

The —k command-line option enables keystroke recording. (See
page 67.) You can also use TDINST to set the default to On.

The Keystroke The local menu for the Keystroke Recording pane contains two
Recording pane local commands: Inspect and Keystroke Restore.
menu

Inspect

Inspect If you highlight a line in the Keystroke Recording pane, then
Keystroke restore choose Inspect from the local menu, the Module window comes
up with the cursor on the line of source code at which that key-
stroke occurred.

If this line does not correspond to a source code position, the CPU
window opens with the highlight positioned on the instruction.

94 Turbo Debugger User's Guide

Keystroke Restore

If you highlight a line in the Keystroke Recording pane, then
choose Keystroke Restore, Turbo Debugger reloads your program
and runs it to the highlighted context. This is especially useful if
you have executed a Turbo Debugger command that has deleted
your execution history.

interrupting program execution

Ctrl-Break

With interactive programs, the quickest way to get to a specific
place in your program is sometimes to simply run it, interact with
it until it gets to the desired part of the code, and then interrupt
execution. This is particularly true if the piece of code you want to
examine is called several times before the one time of particular
interest to you.

You may also want to interrupt program execution when, for
some unexpected reason, control does not return to the debugger.
This can happen when a piece of code contains an infinite loop:
You expect a piece of code to be executed, so you set a breakpoint,
but the breakpoint is never reached.

This key combination will almost always interrupt your program
and return control to the debugger. It takes effect as soon as you
press it, so you might sometimes appear to be in an unexpected
piece of code. This code could be in the ROM keyboard BIOS if
your program is waiting for a keystroke, or at any instruction in
the loop being executed.

Ctrl-Break is unable to override two conditions. If either of the
following conditions occurs, you will need to reboot your system:

m You are stuck in a loop with interrupts disabled.

m The system has crashed due to execution of erroneous code.

If you are debugging a program that needs to act upon the Ctri-
Break key combination itself, you can change the interrupt key.

Using the TDINST installation program, you can set the interrupt
key to be any key combination.

Chapter 5, Conftrolling program execution 95

Program termination

When your program terminates and exits back to DOS, Turbo
Debugger regains control. It displays a message showing the exit
code that your program returned to DOS. Once your program
terminates, you cannot use any of the Run menu options until you
reload the program with Run | Program Reset.

The segment registers and stack are usually not correct when your
program has terminated, so do not examine or modify any pro-
gram variables after termination.

Restarfing a debugging session

96

Reloading your
program

Turbo Debugger has several features that make restarting a de-
bugging session as painless as possible. When you're debugging a
program, it’s easy to go just a little too far and overshoot the real
cause of the problem. In that case, Turbo Debugger lets you
restart debugging but suspends execution before the last few com-
mands that caused you to miss the problem that you wanted to
observe.

Most debuggers force you to type in manually what could be a
very long sequence of commands to get back to the place where
the error occurred. Turbo Debugger has the powerful capability to
record the keystrokes that made up the last session and to replay
them on demand. It also lets you reload your last program from
disk, with its previous DOS command-line arguments.

To reload the program you were debugging, choose Run | Pro-
gram Reset. Turbo Debugger reloads the program from disk, with
any data you have added since you last saved to disk. This is the
safest way to restart a program. Restarting by executing at the
start of the program can be risky, since many programs expect
certain data to be initialized from the disk image of the program.

Note that Program Reset leaves breakpoints and watchpoints
intact.

Turbo Debugger User's Guide

Keystroke macro

recording and You can use the keystroke macro facility to record keystroke
playback sequences that you use frequently. During debugging, you often
repeat the same sequence of commands to get to a certain place in
your program. This can be very tedious.

To get around this problem, you can define a keystroke macro
that records all the keys you press, from when you first start
Turbo Debugger untii you have your program in the desired
state. At that point, you can stop recording keystrokes. If you
have to get back to the same place in your program, all you have
to do is replay the keystroke macro.

;> Youcan't use this utility to record keystrokes that must be typed
to your program. You can only record Turbo Debugger command
keystrokes.

The first thing you must do after starting Turbo Debugger from
DOS is define a keystroke macro. Choose Options | Macros | Create
to do this. You're prompted to press a key to assign the keystroke
macro to. Choose a key that hasn’t been assigned to a function
yet, such as Shift and one of the function keys, say Shiff-F1. Now
take your program to its point of crashing.

At that point, stop recording the keystroke macro by choosing
Options | Macros | Stop Recording. Save the macro to disk by
choosing the Options | Save Options command and turning on the
Macros option in the Save Configuration dialog box. Continue
running your program. After your program crashes and you have
reloaded it and Turbo Debugger, you can simply press Shift-F1 to
restart the program.

If your program requires you to type things to get to the next part
of the recorded command sequence, you still have to enter those
keystrokes manually. (You can do this while the macro is run-
ning.) For programs that do not require you to enter anything,
this keystroke recording mechanism can completely automate the
restarting procedure, saving many keystrokes.

E£y> When a macro is saved to a configuration file, the configuration of
the total environment is saved, including opened and zoomed
windows. Thus if you record a macro that opens a window and
don’t close the window before saving the macro, the next time
you restore that configuration file, the window will be open
automatically even though you haven’t executed the macro.

Chapter 5, Controlling program execution 97

Opening a new program to debug

You load a new program to debug by choosing File | Open to open
the Load Program dialog box.

Figure 5.7
The Load Program dialog
box

donu
dototal.exe
drwhappy .exe
echo.exe
hello.exe
little.exe
mytest.exe
pwrs.exe
reverse.exe
small.exe
tcdemo.exe

G: \NETFILES\DEBUG\PROGRAM* . EXE
BILDSP.EXE Feb 19, 1988 2:23pm 4592 bytes

You can enter a file name (extension .EXE) in the File Name input
box, or press Enter to active a list box of all the .EXE files in the
current directory. Move the highlight bar to the file you want to
load and press Enter.

If, instead, you type in the name of the file you want to load, the
highlight bar moves to the file that begins with the first letter(s)
you typed. When the bar is positioned on the file you want, press
Enter.

You can supply arguments to the program to debug by placing
them after the program name, exactly as you would at the DOS
prompt:

myprog a b ¢

This loads program MyProg with three command-line arguments,
a,b,and c.

Changing the program arguments

If you forgot to supply some necessary arguments to your pro-
gram when you loaded it, you can use the Run | Arguments
command to set or change the arguments. Enter new arguments
exactly as you would following the name of your program on the
DOS command line.

98 Turbo Debugger User's Guide

Once you have entered new arguments, Turbo Debugger asks you
if you want to reload your program from disk. You should
answer Yes, because for most programs, the new arguments will
only take effect if you reload the program first.

Chapter 5, Controlling program execution 99

100

Turbo Debugger User’s Guide

Examining and modifying data

Turbo Debugger provides a unique and intuitive way to examine
and even change your program’s data.

m Inspector windows let you look at your data as it appears in
your source file. You can “follow” pointers, scroll through
arrays, and see structures, records, and unions exactly as you
wrote them.

m You can also put variables and expressions into the Watches
window, where you can watch their values as your program
executes.

m The Evaluate/Modify dialog box shows you the contents of any
variable and lets you assign a new value to it.

This chapter assumes that you understand the various data types
that can be used in the language you're using (C, Pascal, or
assembler). If you are fairly new to a language and have not yet
explored all its data types (char, int, integer, Boolean, real, single-
and double-precision floating point, string, long integer, and so
on), this chapter can still give you valuable information about
them. When you have delved into the more complex data types
(arrays, pointers, records, structures, unions, and so on), return to
this chapter to learn more about looking at them with Turbo
Debugger.

For how to examine or In this chapter, we show you how to examine and modify vari-
mg’ﬁgg ;ﬁ’;ﬁ’gﬁfg’ﬁe‘f ables in your program. First, we explain the Data menu and its
see Chapter 11, options. We then discuss how you can modify program data by

evaluating expressions that have side effects, and show you how

Chapter 6, Examining and modifying data 101

The Data menu

to point directly at data items in your source modules. Finally, we
introduce the Watches window and describe the way that the data
types of each language appear in Inspector windows.

Inspect...

Add watch...

Evaluate/modify... Ctr1-F4

Function return

Ctr1-F7

Inspect...

>

Evaluate/Modify...

See Chapter 9 for a
complete discussion of

102

expressions.

The Data menu lets you choose how to examine and change pro-

gram data. You can evaluate an expression, change the value of a
variable, and open Inspector windows to display the contents of

your variables.

Prompts you for the variable that references the data you want to
inspect, then opens an Inspector window that shows the contents
of the program variable or expression. You can enter a simple
variable name or a complex expression.

If the cursor is on a variable in a text pane when you issue this
command, the dialog box automatically contains the variable at
the cursor, if any. If you select an expression in a text pane (using
Ins), the dialog box contains the selected expression.

Inspector windows really come into their own when you want to
examine a complicated data structure, such as an array of
structures or a linked list of items. Since you can inspect items
within an Inspector window, you can “walk” through your pro-
gram’s data objects as easily as you scroll through your source
code in the Module window.

See the “Inspector windows” section later in this chapter for a
complete description of how Inspector windows behave.

Opens the Evaluate/Modify dialog box (Figure 6.1), which
prompts you for an expression to evaluate, then evaluates it,
exactly as the compiler would during compilation when you
choose the Eval button.

If the cursor is in a text pane when you issue this command, the
dialog box automatically contains the variable at the cursor, if
any. If you select an expression (using Ins), the dialog box contains
the marked expression.

Turbo Debugger User’s Guide

Figure 6.1 Evaluate/modif;

The Evaluate/Modify dialog |/[fRPREISI
[Cancel g
[telp

desult

Not available>

INIREAT
Not available>

~ SeeChapter9fora Remember that you can add a format control string after the

discussion of format confrol. ey ression that you want to watch. Turbo Debugger displays the
result in a format suitable for the data type of the result. To
display the result in a different format, put a comma (,) separator,
then a format control string after the expression. This is useful
when you want to watch something but have it displayed in a
format other than Turbo Debugger’s default display format for the
data type.

The dialog box has three fields. You type the expression you want
to evaluate in the top one. This is the Evaluate input box, and it
has a history list just like any other input box. The middle field
displays the result of evaluating your expression. The bottom
field is an input box where you can enter a new value for the
expression. If the expression can’t be modified, this box reads

<Not available>, and you can’t move your cursor into it.

Your entry in the New Value input box takes effect when you
choose the Modify button.

Data strings too long to display in the Result input box are termi-
nated by an arrow (>). You can see more of the string by scrolling
to the right.

If you are debugging a C++ or object-oriented Pascal program, the
Evaluate/Modify dialog box also lets you display the fields of an
object instance or the members of a class instance. You can use
any format specifier with an instance that can be used in
evaluating a record.

When you're tracing inside a method or member function, Turbo
Debugger knows about the scope and presence of the Self/this
parameter. You can evaluate Self/this and follow it with format
specifiers and qualifiers.

Chapter 6, Examining and modifying data 103

104

You cannot execute
constructor or destructor
methods or member
functions in the Evaluate
window.

C programmers

Turbo Debugger also lets you call a method or member function
from inside the Evaluate/Modify dialog box. Just type the
instance name followed by a dot, followed by the method or
member function name, followed by the actual parameters (or
empty parentheses if there are no parameters). With these
declarations,

type
Point = object
X, Y . Integer;
Visible : Boolean;
constructor Init (InitX, InitY : Integer);
destructor Done; virtual;
procedure Show; virtual;
procedure Hide; virtual;
procedure MoveTo (NewX, NewY : Integer);
end;

var
APoint : Point;

you could enter any of these expressions in Turbo Debugger’s
Evaluate window:

Expression Result

APoint.X 5 ($5) : Integer
APoint (5,23,FALSE) : Point
APoint.MoveTo @6F4F : 00BE
APoint.MoveTo(10, 10) calls method MoveTo
APoint.Show() calls method Show

The C language has a feature called expressions with side effects that
can be powerful and convenient, as well as a source of surprises
and confusion.

An expression with side effects alters the value of one or more
variables or memory areas when it is evaluated. For example, the
C increment (++) and decrement (- -) operators and the assign-
ment operators (=, +=, and so on) have this effect. If you execute
functions in your program within a C expression (for example,
myfunc(2)), note that your function can have unexpected side
effects.

If you don’t intend to modify the value of any variable but merely
want to evaluate an expression containing some of your program

variables, don’t use any of the operators that have side effects. On
the other hand, side effects can be a quick and easy way to change

Turbo Debugger User’s Guide

Add Watch...

Function Return

the value of a variable or memory area. For example, to add 1 to
the value of your variable named count, evaluate the C expression
count++.

You can also use the Evaluate/Modify dialog box as a simple
calculator by typing in numbers as operands instead of program
variables.

Prompts you for an expression to watch, then places the expres-
sion or program variable on the list of variables displayed in the
Watches window when you press Enter or choose the OK button.

If the cursor is in a text pane when you issue this command, the
dialog box automatically contains the variable at the cursor, if
any. If you select an expression (using Ins), the dialog box contains
the selected expression.

Shows you the value the current function is about to return. Use
this command only when the function is about to return to its
caller.

The return value is displayed in an Inspector window, so you can
easily examine return values that are pointers to compound data
objects.

This command saves you having to switch to a CPU window to
examine the return value that is placed in the CPU registers. And
since it also knows the data type being returned and formats it
appropriately, it is much easier to use than a hex dump.

Poinfing at data objects in source files

See Chapter 8 for a full
discussion of using Module
windows.

Turbo Debugger has a powerful mechanism to relieve you from
always typing in the names of program variables that you want to
inspect. From within any Module window, you can place the
cursor anywhere within a variable name and use the local menu
Inspect command to create an Inspector window showing the
contents of that variable. You can also select an expression or
variable to inspect by pressing Ins and using the cursor keys to
highlight it before choosing the Inspect command.

Chapter 6, Examining and modifying data 105

The Watches window

Figure 6.2
The Watches window

See Chapter 9 for a
complete discussion of

scopes and when a variable

106

or parameter is valid.

Warning!

The Watches window lets you list variables and expressions in
your program whose values you want to track. You can watch the
value of both simple variables (such as integers) and complex
data objects (such as arrays). In addition, you can watch the value
of a calculated expression that does not refer directly to a memory
location (for example, x * y + 4).

[a]=Watch 2=[11[V]5
h A

0 ($00) : BYTE
,0),(2,2),(2,0), (2,0
12 (SC) : LONGINT

4 ($4) : WORD

Choose View | Watches to access the Watches window. It holds a
list of variables or expressions whose values you want to watch.
For each item, the variable name or expression appears on the left
and its data type and value on the right. Compound values like
arrays and structures appear with their values between braces ({ })
for C programs, and between parentheses for Pascal programs. If
there isn’t room to display the entire name or expression, it is
truncated.

When you enter an expression to be watched, feel free to use
variable names that are not yet valid because they are in a
function that has not yet been called. This lets you set up a watch
expression before its scope becomes active. This is the only
situation in Turbo Debugger where you can enter an expression
that cannot be immediately evaluated.

This means that if you mistype the name of a variable, the mistake
won’t be detected because Turbo Debugger assumes it is the name
of a variable that becomes available as your program executes.

Unless you use the scope-overriding mechanism discussed in
Chapter 9, Turbo Debugger evaluates expressions in the Watches
window in the scope of the current location where your program
is stopped. Hence an expression in the Watches window is
evaluated as if it appeared in your program at the place where the
program is stopped. If a watch expression contains a variable
name that is not accessible from the current scope—for example, if
it’s private to another module—the value of the expression is
undefined and is displayed as four question marks (22??).

When you're tracing inside an object method, you can add the
Self/this parameter to the Watches window.

Turbo Debugger User's Guide

The Watches
window local
menu

Waitch...

Edit...

Watch...
Edit...
Remove
Delete all

Inspect
Change

Remove

Delete All

Inspect

Change

See Chapter 9 for more
information on the
assignment operator and
type conversion (casting).

As with all local menus, press Alf-F10 to pop up the Watches
window local menu. If you have control-key shortcuts enabled,
press Ctrl with the first letter of the desired command to access it.

Prompts you for the variable name or expression to add to the
Watches window. It is added to the beginning of the list.

Opens a dialog box in which you can edit an expression in the
Watches window. You can change any watch expression that’s
there, or enter a new one.

You can also invoke this command by pressing Enter once you've
positioned the highlight bar over the watch expression you want
to change. Press Enter or choose the OK button to put the edited
expression into the Watches window.

Removes the currently selected item from the Watches window.

Removes all the items from the Watches window. This command
is useful if you move from one area of your program to another,
and the variables you were watching are no longer relevant.
(Then use the Watch command to enter more variables.)

Opens an Inspector window to show you the contents of the
currently highlighted item in the Watches window. If the item is a
compound object (array, record, or structure), this lets you view
all its elements, not just the ones that fit in the Watches window.
(The section “Inspector windows” on page 108 explains all about
Inspector windows.)

Changes the value of the currently highlighted item in the
Watches window to the value you enter in the dialog box. If the
current language you are using permits it, Turbo Debugger
performs any necessary type conversion exactly as if the
appropriate assignment operator (= or :=) had been used to
change the variable.

Chapter 6, Examining and modifying data 107

Inspector windows

C data Inspector

108

windows
Scalars

An Inspector window displays your program data appropriately,
depending on the data type you're inspecting. Inspector windows
behave differently for scalars (for example, char or int), pointers
(char * in C, A in Pascal), arrays (long x[4], array [1..10] of Word),
functions, structures, records, unions, and sets.

The Inspector window lists the items that make up the data object
being inspected. The title of the window shows the data type of
the inspected data and its name, if there is one.

The first item in an Inspector window is always the memory
address of the data item being inspected, expressed as a segment:
offset pair, unless it has been optimized to a register or is a
constant (for example, 3).

To examine the contents of an Inspector window as raw data
bytes, select the View | Dump command while you're in the
Inspector window. The Dump window comes up, with the cursor
positioned to the data displayed in the Inspector window. You
can return to the Inspector window by closing the window with
the Window | Close command (Alf-F3), or clicking the close box
with your mouse.

The following sections describe the different Inspector windows
that can appear for each of the languages supported by Turbo
Debugger: C, Pascal, and assembler. The programming language
used dictates the format of the information displayed in Inspector
windows. Data items and their values always appear in a format
similar to the one they were declared with in the source file.

Remember that you don’t have to do anything special to cause the
different Inspector windows to appear. The right one appears
automatically, depending on the data you're inspecting.

Scalar Inspector windows show you the value of simple data
items, such as

char x = 4;
unsigned long y = 123456L;

Turbo Debugger User’s Guide

Following the top line, these Inspector windows have only a
single line of information that gives the address of the variable. To
the left on the following line appears the type of the scalar
variable (char, unsigned long, and so forth), and to the right
appears its present value. The value can be displayed as decimal,
hex, or both. It’s usually displayed first in decimal, with the hex
values in parentheses (using the standard C hex prefix of 0x). Use
TDINST to change how the value is displayed.

If the variable being displayed is of type char, the equivalent
character is also displayed. If the present value does not have a
printing character equivalent, use the backslash (\) followed by a
hex value to display the character value. This character value
appears before the decimal or hex values.

Figure 6.3 [l]=§nspecti ng wordcount=3=[1][¢]
A C scalar Inspector window 762'FFC

Pointers Pointer Inspector windows show you the value of data items that
point to other data items, such as

char *p = "abc";

int *ip = 0;

int **ipp = &ip;
Pointer Inspector windows usually have a top line that contains
the address of the variable, followed by a single line of informa-
tion about the data pointed to. To the left appears [0], indicating
the first member of an array. To the right appears the value of the
item being pointed to. If the value is a complex data item, such as
a structure or an array, however, only as much of it as possible is
displayed with the values enclosed in braces ({ and }).

If the pointer is of type char and appears to be pointing to a null-
terminated character string, more information appears, showing
the value of each item in the character array. To the left in each
line appears the array index ([1], [2], and so on), and the value
appears to the right as it would in a scalar Inspector window. In
this case, the entire string is also displayed on the top line, along
with the address of the pointer variable and the address of the
string that it points to.

You also get multiple lines if you open the Inspector window and
then use the Range local menu command. This is an important
technique for C programmers who use pointers to point to arrays
of items as well as single items. For example, if you had the code

Chapter 6, Examining and modifying data 109

Figure 6.4
A C pointer Inspector
window

Structures and unions

110

Figure 6.5
A C structure or union
Inspector window

int array[10];
int *arrayp = array;

and you wanted to look at what arrayp pointed to, use the Range
local command on arrayp, specifying a start index of 0 and a range
of 10. If you had not done this, you would only have seen the first
item in the array.

[W]=Inspecting bufp=3=[1][{]=
@76B2:FFBE : ds:07D2 [#TCDEMO#a
0) 'a' 97 (0x61
'b' 98

‘c' 99
t3
'd' 100
'e' 101

Pointer Inspector windows also have a lower pane indicating the
data type to which the pointer points.

Structure and union Inspector windows show you the value of
the members in your structure and union data items. For
example,

struct linfo {
unsigned int count;
unsigned int firstletter;
} letterinfo [26];

union {
int small;
long large;
} holder;

These Inspector windows have another pane below the one that
shows the values of the members. This additional pane shows the
data type of the member highlighted in the top pane.

[#]=Inspecting letterinfo[n]=3=[1][¢]
©7937:0852

Structures and unions appear the same in Inspector windows. The
lower pane of the Inspector window tells you whether you are
looking at a structure or a union. These Inspector windows have
as many items after the address as there are members in the struc-
ture or union. Each item shows the name of the member on the
left and its value on the right, displayed in a format appropriate
to its C data type.

Turbo Debugger User's Guide

Arrays

Figure 6.6
A C array Inspector window

Functions

Figure 6.7
A C function Inspector
window

Pascal data
Inspector
windows

Scalars

Array Inspector windows show you the value of arrays of data
items, such as

long thread([3]([4][5];
char message[] = "eat these words";

There is a line for each member of the array. To the left on each
line appears the array index of the item. To the right appears the
value of the item. If the value is a complex data item such as a
structure or array, as much of it as possible is displayed.

You can use the Range local menu command to examine any
portion of an array. This is useful if the array has a lot of elements,
and you want to look at something in the middle of the array.

[=]=Inspecting letterinfo=3=[1][{]=
@76B2:0852 A
)

Function Inspector windows show each parameter with which a
function is called. The parameters are displayed below the
memory address at the top of the window.

[w]=Inspecting analyzewords=3=[1][]
lfmg:oznn

They also give you information about the calling parameters,
return data type, and calling conventions for a function. The
lower pane indicates the data type returned by the function.

Scalar Inspector windows show you the value of simple data
items, such as

Chapfter 6, Examining and modifying dafa 111

Figure 6.8
A Pascal scalar Inspector
window

Pointers

Figure 6.9

A Pascal pointer Inspector

112

window

var
X : Integer;
Y : Longint;

These Inspector windows have only a single line of information
following the top line that gives the address of the variable. To the
left appears the type of the scalar variable (Byte, Word, Integer,
Longint, and so forth), and to the right appears its present value.
The value can be displayed as decimal, hex, or both. It’s usually
displayed first in decimal, with the hex values in parentheses
(using the Turbo Pascal hex prefix $). You can use TDINST to
change how the value is displayed.

If the variable being displayed is of type Char, the character
equivalent is also displayed. If the present value does not have a
printing character equivalent, use a pound sign (#) followed by a
number to display the character value. This character value
appears before the decimal or hex values.

[w]=Inspecting WordLen=3=[1][+]
@8810:3EF0
WORD

Pointer Inspector windows in a Pascal program show you the
value of data items that point to other data items, such as

var
IP : “integer;
LP : ““pointer;

Pointer Inspector windows usually have only a single line of
information following the top line that gives the address of the
variable. To the left appears [1], indicating the first member of an
array. To the right appears the value of the item being pointed to.
If the value is a complex data item such as a record or an array,
however, only as much of it as possible is displayed, with the
values enclosed in parentheses.

You also get multiple lines if you open the Inspector window and
issue the Range local command, specifying a count greater than 1.

[a]=Inspecting Temp=3=[1][¢]
@8810:3EF4 : 8C10:0000
003:

Turbo Debugger User's Guide

Arrays

Figure 6.10
A Pascal array Inspector
window

Records

Figure 6.11
A Pascal record Inspector
window

Array Inspector windows in Pascal programs show you the value
of arrays of data items, such as

var
A : array(l1..10,1..20) of Integer;
B : array(l..50) of Boolean;

There is a line for each member of the array. To the left on each
line appears the array index of the item and to the right is its
present value. If the value is a complex data item such as a record
or an array, as much of it as possible is displayed, with the values
enclosed in parentheses.

You can use the Range command to examine any portion of an
array. This is useful if the array has a lot of elements, and you
want to look at something in the middle of the array.

[#]=Inspecting LetterTable=3=[t][v]=;
087D6:0058 A

Record Inspector windows in Pascal programs show you the
value of the fields in your records. For example,

record
year : Integer;
month : 1..12;
day : 1..31;
end

These Inspector windows have another pane below the one that
shows the values of the fields. This additional pane shows the
data type of the field highlighted in the top pane.

[@]=Inspecting LetterTable['A']=4=[t][¢]
@87D6:0058

Chapter 6, Examining and modifying data 113

Procedures and
functions

Figure 6.12
A Pascal procedure
Inspector window

Assembler data
Inspector
windows

Scalars

Figure 6.13
An assembler scalar
Inspector window

Pointers

114

In the upper pane, procedure and function Inspector windows in
Pascal programs give you information about calling parameters.
These windows have a second pane, in which the routine is
identified as a procedure or function, as well as the data type
returned by a function.

[w]=Inspecting ProcessLine=3=[1][+]
ll?8340 :04B6
S : BUFFERSTR

PROCEDURE

Scalar Inspector windows in assembly language programs show
you the value of simple data items, such as

VARL DW 99
MAGIC DT 4.608
BIGNUM DD 123456

These Inspector windows have only a single line of information
following the top line that gives the address of the variable. To the
left appears the type of the scalar variable (BYTE, WORD,
DWORD, QWORD, and so forth), and to the right appears its
present value. The value can be displayed as decimal, hex, or
both. It’s usually displayed first in decimal, with the hex values in
parentheses (using the standard assembler hex postfix H). You
can use TDINST to change how the value is displayed.

Pointer Inspector windows in assembler programs show you the
value of data items that point to other data items, such as

[#]=Inspecting Count=3=[*][¢]
72ED:0019

X oW 0
XPTR DW X
FARPTR DD X

Pointer Inspector windows usually have only a single line of
information following the top line that gives the address of the
variable. To the left appears [0], indicating the first member of an

Turbo Debugger User’s Guide

array. To the right appears the value of the item being pointed to.
If the value is a complex data item such as a STRUC or array,
however, only as much of it as possible is displayed, with the
values enclosed in braces ({ and }).

If the pointer is of type BYTE and appears to be pointing to a
null-terminated character string, more information appears,
showing the value of each item in the character array. To the left
in each line appears the array index ([1], [2], and so on), and the
value appears to the right as it would in a scalar Inspector win-
dow. In this case, the entire string is also displayed on the top
line, along with the address of the variable and the address of the
string that it points to.

You also get multiple lines if you open the Inspector window with
a Range local command and specify a count greater than 1.

Figure 6.14 [w]=Inspecting TextPtr=3=[1][{]=
An assembler pointer @2ED.0017 : ds.000Att#t]A
Inspector window

Arrays Array Inspector windows in assembler programs show you the
value of arrays of data items, such as

WARRAY DW 10 DUP (0)
MSG DB "Greetings",0

There is a line for each member of the array. To the left on each
line appears the array index of the item and to the right is its
present value. If the value is a complex data item such as a
STRUC, however, only as much of it as possible is displayed.

You can use the Range local command to examine a portion of an
array. This is useful if the array has a lot of elements, and you
want to look at something in the middle of the array.

Chapter 6, Examining and modifying data 115

Figure 6.15 [a]=Inspecting Text=3=[1][¢]
An assembler array Inspector €73E0:000 -
window ‘e’ 101 (65h) i
'1' 108 (6Ch)
"1' 108 (6Ch)

=
A

‘o' 111 (6Fh)
', 44 (2Ch)

Structures and unions Structure Inspector windows in assembler programs show you
the value of the fields in your STRUC and UNION data objects. For

example,
X STRUC
MEM1 DB ?
MEM2 2
X ENDS
ANX X <1,ANX>
Y UNION
ASBYTES DB 10 DUP (?)
ASFLT DT ?
Y ENDS
AY Y <?,1.0>

These Inspector windows have another pane below the one that
shows the values of the fields. This additional pane shows the
data type of the field highlighted in the top pane.

[»]=Inspecting Names=3=[][¢]
A Figure 6.16 ©72ED:001D
n assembler structure Firctname o "Carleton "

Inspector window lastname "Whitehall
age "#' 35 (23h)

sex 'M' 77 (4Dh)
income 0000 (7530h)

The Inspector window local menu

Range The commands in this menu give the Inspector window its real
Change. .. power. By choosing the Inspect local menu command, for
Inspect .example, you create another Inspector wi'ndow that lets you go
gescend) into your data objects. Other commands in the menu let you
T;;’:’;g;ﬁ?f}“' t inspect a range of values and inspect a new variable.

116 Turbo Debugger User's Guide

Range...

Sets the starting element and number of elements that you want
to display. Use this command when you are inspecting an array,
and you only want to look at a certain subrange of all the
members of the array.

If you have a long array and want to look at a few members near
the middle, use this command to open the Inspector window at
the array index that you want to examine.

This command is particularly useful in C where you often declare
a pointer to a data item—Ilike char *p—but what you really mean
is that p points to an array of characters, not just a single character.

Change...

Changes the value of the currently highlighted item to the value
you enter in the dialog box. If the current language permits it,
Turbo Debugger performs any necessary casting exactly as if the
appropriate assignment operator had been used to change the
variable. See Chapter 9 for more information on the assignment
operator and casting.

Inspect

Opens a new Inspector window that shows you the contents of
the currently highlighted item. This is useful if an item in the
Inspector window contains more items itself (like a structure or
array), and you want to see each of those items.

If the current Inspector window is inspecting a function, issuing
the Inspect command shows you the source code for that
function.

You can also invoke this command by pressing Enter after high-
lighting the item you want to inspect.

You can return to the previous Inspector window by pressing Esc
to close the new Inspector window. If you are through inspecting
a data structure and want to remove all the Inspector windows,

@ use the Window | Close command or its shortcut, Alf-F3, or click the
close box with your mouse.

Chapter 6, Examining and modifying data 117

Descend

New Expression...

118

Type Cast...

This command works like the Inspect local menu command
except that instead of opening a new Inspector window to show
the contents of the highlighted item, it puts the new item in the
current Inspector window. This is like a hybrid of the New
Expression and Inspect commands.

Once you have descended into a data structure like this, you can’t
go back to the previous unexpanded data structure. Use this
command when you want to work your way through a compli-
cated data structure or long linked list, but you don’t care about
returning to a previous level of data. This helps reduce the
number of Inspector windows onscreen.

Prompts you for a variable name or expression to inspect, without
creating another Inspector window. This lets you examine other
data without having to put more Inspector windows on the
screen. Use this command if you are no longer interested in the
data in the current Inspector window.

Inspector windows for Pascal objects and C++ classes are some-
what different from regular Inspector windows. See Chapter 10
for a description of object type/class Inspector windows.

Lets you specify a different data type (Byte, Word, Int, Char
pointer) for the item being inspected. This is useful if the
Inspector window contains a symbol for which there is no type
information, as well as for explicitly setting the type for untyped
pointers.

Turbo Debugger User’s Guide

Chapter 7, Breakpoints

Breakpoints

Turbo Debugger uses the single term “breakpoint” to refer to the
debugger functions usually called breakpoints, watchpoints, and
tracepoints.

Traditionally, breakpoints, watchpoints, and tracepoints are
defined like this: A breakpoint is a place in your program where
you want execution to stop so that you can examine program
variables and data structures. A watchpoint causes your program
to be executed one instruction or source line at a time, watching
for the value of an expression to become true. A tracepoint causes
your program to be executed one instruction or source line at a
time, watching for the value of certain program variables or
memory-referencing expressions to change.

Turbo Debugger unifies these three concepts by defining a
breakpoint in three parts:

m the location in the program where the breakpoint occurs
m the condition under which the breakpoint is triggered
m what happens when the breakpoint is triggered

The location can be at either a single or global location in your
program (if it is global, the breakpoint can occur at any source line
or instruction in your program).

The “condition” can be

m always
m when an expression is true
m when a data object changes value

119

A “pass count” can also be specified, which requires “condition”
to be true a certain number of times before the breakpoint can be
triggered.

The “what happens” can be one of these:

m stop program execution (a breakpoint)
m log the value of an expression
m execute an expression (splice code)

In this chapter, we’ll show you how Turbo Debugger breakpoints
give you more power and flexibility than traditional breakpoints,
watchpoints, and tracepoints. You'll learn about the Breakpoints
and Log windows; how to set simple breakpoints, conditional
breakpoints, and breakpoints that log the value of your program
variables; and how to set breakpoints that watch for the exact
moment when a program variable, expression, or data object
changes value.

Many times, you just want to set a few simple breakpoints, so that
if your program reaches any one of these locations, it stops. You
can set or clear a breakpoint at any location in your program by
simply placing the cursor on the source code line and pressing F2.
You can also set a breakpoint on any line of machine code by
pressing F2 when you are pointing at an instruction in the Code
pane of a CPU window. Or, if you have a mouse, just click either
of the leftmost two columns of the line where you want to set the
breakpoint. (If you're in the correct column, an asterisk (*)
appears in the position indicator.) There is no limit to the number
of breakpoints you can set.

The Breakpoints menu

120

You can access the Breakpoints menu at any time by pressing the
Alt-Bhot key.

Toggle F2
At... Alt-F2
Changed memory global...
Expression true global...
Hardware breakpoint...
Delete all

Turbo Debugger User's Guide

Toggle

At...

Changed
Memory Global...

Expression True-
Global...

Hardware
Breakpoint...

Warning!

Delete All

Chapter 7, Breakpoints

Sets or clears a breakpoint at the currently highlighted address in
a Module window or CPU window Code pane. The hot key is F2.

Lets you set a breakpoint at a specific location in your program. It
opens a dialog box in which you can set all breakpoint options.
Alt-F2 is the hot key.

Sets a breakpoint that’s triggered when an area of memory
changes value. You are prompted for the area of memory to
watch. For more information, see the Changed Memory command
in “The Breakpoints window local menu” section later in this
chapter.

Sets a breakpoint that is triggered when the value of an expres-
sion you supply becomes true. You are prompted for the expres-
sion. For more information, see the Condition Expression True
command in “The Breakpoints window local menu” section later
in this chapter.

Information on the hardware debugger interface is available in a
file on your distribution disks. Refer to the README file for how
to access this disk-based documentation.

You must have a hardware debugging board in order to use
hardware debugging.

Removes all the breakpoints you have set.

121

Scope of breakpoint expressions

Both the action that a breakpoint performs and the condition
under which it is triggered can be controlled by an expression you
supply. That expression is evaluated using the scope of the
address at which the breakpoint is set, not the scope of the current
location where the program is stopped. This means that your
breakpoint expression can use only variable names that are valid
at the address in your program where you set the breakpoint,
unless you use scope overrides. See Chapter 9 for a complete
discussion of scopes and scope overrides.

If you want to set a breakpoint for an expression in a module that
isn’t currently loaded and Turbo Debugger cannot find that
expression, you can use either a scope override to specify the file
that contains the expression or the View | Module command to
change modules.

If you use variables that are local to a routine as part of an expres-
sion, that breakpoint will execute much more slowly than a break-
point that uses only global or module local variables.

The Breakpoints window

122

Figure 7.1
The Breakpoints window

You open a Breakpoints window by choosing the View |
Breakpoints command. This gives you a way of looking at and
adjusting the conditions that trigger a breakpoint. You can use
this window to add new breakpoints, delete breakpoints, and
adjust existing breakpoints.

u]=Breakpoint 3=[1][{]
TPDEMO.220 Breakpoint
TPDEMO.225 Always

TPDEMO.226 Enabled

Breakpoints windows have two panes. The left pane (Breakpoint
List) shows a list of all the addresses at which breakpoints are set.
The right pane (Breakpoint Detail) shows the details of the cur-
rently highlighted breakpoint in the left pane. Only the break-
point list pane has a local menu, which you get to by pressing Alf-
F10. Its options affect whatever breakpoint is highlighted in the
Breakpoint List pane.

Turbo Debugger User’s Guide

The Breakpoints
window local
menu

Set Options...

Figure 7.2
The Breakpoint Options
dialog box

Chapter 7, Breakpoints

The commands in this menu let you add new breakpoints, delete
existing breakpoints, or change how a breakpoint behaves.

Set options...
Hardware options...

Add...
Remove
Delete all
Inspect

Alt-F10 pops up the Breakpoints window local menu. If you have
control-key shortcuts enabled, press Cirl with the first letter of the
desired command to access the command directly.

Opens the Breakpoint Options dialog box, which contains two
sets of radio buttons, four input boxes, and two check boxes. In
this dialog box, you can

m define what happens when the breakpoint highlighted in the
Breakpoints List pane is triggered.
m control the conditions under which the breakpoint is triggered.

m set the number of times an action is encountered before the
breakpoint triggers.

m enable or disable the breakpoint.
m set or change the breakpoint address.
m make the breakpoint global.

Condition
) Brea *) Always
*) Execute Changed memory
Log

Expression true
() Hardware

Acfiion expression Condition expression
_ Not available>
gass count

Breakpoint disabled

The Action radio buttons have three settings:

Break Causes your program to stop when the break-
point is triggered. The Turbo Debugger screen
reappears, and you can once again enter

123

124

Execute

Log

commands to look around at your program’s data
structures.

Causes an expression to be executed. Enter the
expression in the Action Expression input box.
The expression should have some side effect,
such as setting a variable to a value. This option
can act as a “code splice,” letting you insert an
expression that will execute before the code in
your program at the current line number.

Causes the value of an expression to be recorded
in the Log window. You are prompted for the
expression whose value you want to log. Be
careful that the expression doesn’t have any
unexpected side effects. See Chapter 9 for a
description of expressions and side effects.

The Condition radio buttons have four settings:

Always

Changed
Memory

Indicates that no additional conditions need be
true before the breakpoint is triggered.

Watches a memory variable or object and allows
the breakpoint to be triggered if the object
changes. Use the Condition Expression input box
to enter an expression reproducing the object you
want to watch, followed by the number of objects
to watch. The total number of bytes in the
memory area is the size of the object that the
expression references times the number of objects.
For example, if you used C to enter

(long)a,4

the area watched for change would be 16 bytes
long, since a long is 4 bytes and you said to watch
four of them.

If you attach this condition to a global breakpoint,
your program executes much more slowly
because the memory area will have to be checked
for change after every source line has been
executed. If you've installed a hardware debugger
device driver, changed memory breakpoints may
become much faster. If a changed memory break-
point has hardware assistance, an asterisk (*)
appears after the breakpoint name in the left

Turbo Debugger User’s Guide

pane. You can expect then that the breakpoint
will not slow down your program’s execution.

By setting this condition on a breakpoint at a
specific address, you do not incur the speed
penalty of the global breakpoint, and you can still
check the variable each time a specific line of code
is executed.

Expression Allows the breakpeint tc be triggered when an

True expression becomes true (nonzero). Use the
Condition Expression input box to enter an
expression to evaluate each time the action is

encountered.
See disk-based Hardware Causes the breakpoint to be triggered by the
documentation about fhe hardware-assisted device driver. Use this menu
hardware debugger . . d . he
interface and the options either if you have' a 38§ system and are using the
available under this menu. TDHB386.SYS device driver, or if you have a

hardware debugger board installed in your
system and the board vendor supplies a Turbo
Debugger device driver.

The Pass Count input box lets you set the number of times the
breakpoint action must occur before the breakpoint is triggered.
The default number is 1. The pass count is decremented only
when the condition attached to the breakpoint is true. This means
that if you set a pass count as well as a condition, it causes the
breakpoint to be triggered the nth time that the condition is true.

The Breakpoint Disabled check box lets you enable or disable the
currently highlighted breakpoint. A disabled breakpoint is
“invisible” until you enable it again; it behaves as if it had been
deleted.

This check box is useful if you have defined a complex breakpoint
that you don’t want to use just now, but will want to use again
later. It saves you from having to delete the breakpoint, and then
re-enter it along with its conditions and action.

Hardware Options... Refer to the disk-based documentation about the hardware
debugger interface for how to use this option.

Warning! You must have a hardware debugging board in order to use
hardware debugging.

Chapter 7, Breakpoints 125

Add...

Remove

Delete All

Inspect

Opens a dialog box like the Set Options dialog box. You must
enter an address in the Address input box.

You can also add a breakpoint by simply starting to type the
address at which you want to set it. A dialog box appears just as if
you had invoked the Add command.

Once you've added the breakpoint, you can use the other local
menu commands to modify its behavior. When you first add a
breakpoint, it has a pass count of 1, its condition is set to always
occur, and the action is to break (stop) your program.

Removes the currently highlighted breakpoint.

Removes all breakpoints, both global and those set at specific
addresses. You will have to set more breakpoints if you want your
program to stop on a breakpoint.

Shows you the source code line or assembler instruction that
corresponds to the currently highlighted breakpoint item. If the
breakpoint is set at an address that corresponds to a source line in
your program, a Module window is opened and set to that line.
Otherwise, a CPU window is opened, with the Code pane set to
show the instruction at which the breakpoint is set.

You can also invoke this command by pressing Enter once you
have the highlight bar positioned over a breakpoint.

The Log window

126

Figure 7.3
The Log window

You create a Log window by choosing the View | Log command.
This window lets you review a list of significant events that have
taken place in your debugging session.

w]=Log: 3=[t]1[{]1=
at TPDEMO0.220
Breakpoint at TPDEMO0.220
Breakpoint at TPDEM0.220
Breakpoint at TPDEMO0.225
Breakpoint at TPDEMO0.226

We are now entering procedure Params.

Log windows show a scrolling list of the lines output to the
window. If more than 50 lines have been written to the log, the

Turbo Debugger User's Guide

7
pZa

RN

el
e

RRJ

The Log window

local menu

Open log file...
Close log file
Logging Yes
Add comment...

Erase log

Display Windows info

Open Log File...

Chapter 7, Breakpoints

oldest lines are lost from the top of the scrolled list. If you want to
change the number of lines in the list, use the TDINST
customization program (described in Appendix D). You can also
preserve the entire log, continuously writing it to a disk file, by
using the Open Log File local menu command.

Here’s a list of what can cause lines to be written to the log:

m Your program stops at a location you specified. The location it

stops at is recorded in the log.

m You issue the Add Comment local menu command. You are
prompted for a comment to write to the log.

m A breakpoint is triggered that logs the value of an expression.
This value is put in the log.

m You use the Window | Dump Pane to Log command (from the
menu bar) to record the current contents of a pane in a window.

m You are debugging a Microsoft Windows application and use
the Display Windows Info command on the Log window local
menu to write global heap information, local heap information,
or the module list to the log.

m You are debugging a Microsoft Windows application, have
used the View | Windows Messages command to display the
Windows Messages window, and are now in the local menu of
the Messages pane of that window. You toggle Send to Log
Window to Yes so all messages coming to this window will also
go to the Log window.

The commands in this menu let you control writing the log to a
disk file, stopping and starting logging, adding a comment to the
log, clearing the log, and writing information about a Windows
program to the log.

Alt-F10 pops up the Log window local menu. If you have control-
key shortcuts enabled, pressing Ctrland the first letter of the
desired command accesses the command directly.

Causes all lines written to the log to be written to a disk file as
well. A dialog box appears that prompts you for the name of the
file to write the log to (or you can select a directory and file from
the list boxes).

127

When you open a log file, all the lines already displayed in the log
window’s scrolling list are written to the disk file. This lets you
open a disk log file after you see something interesting in the log
that you want to record to disk.

If you want to start a disk log that does not start with the lines
already in the Log window, first choose Erase Log before
choosing Open Log File.

Close Log File Stops writing lines to the log file specified in the Open Log File
local menu command, and the file is closed.

Logging Enables or disables the log, controlling whether anything is
actually written to the Log window.

Add Comment... Lets you insert a comment in the log. You are prompted for a line
of text that can contain any characters you desire.

Erase Log Clears the log list. The Log window will now be blank. This does
not affect writing the log to a disk file.

Display Windows Info Displays the Windows Information dialog box, which enables you
to list global heap information, local heap information, or the list
of modules making up your application. See Chapter 17 for an
explanation of how to use this feature.

Simple breakpoints

One of the most common things you’ll want to do during debug-
ging is cause your program to stop if certain pieces of code are
about to be executed.

There are a number of ways to set a breakpoint. Each one is
convenient in different circumstances:

m Move to the desired source line in a Module window and issue
the Breakpoints | Toggle command (or press F2 or click the line
with your mouse). Doing this on a line that already has a break-
point set causes that breakpoint to be deleted.

m Move to an instruction in the Code pane of a CPU window and
issue the Breakpoints | Toggle command (or press F2 or click the

128 Turbo Debugger User's Guide

line with your mouse). Doing this on a line that already has a
breakpoint set causes that breakpoint to be deleted.

m [ssue the Breakpoints | At command and enter a code address at
which to set a breakpoint. (A code address has the same format
as a pointer in the current language. See Chapter 9 about
expressions.)

m [ssue the Add local menu command from the Breakpoint List

pane of the Breakpoints window and enter a code address at
which to set a breakpoint.

Condifional breakpoints and pass counts

Chapter 7, Breakpoints

There are many occasions where you do not want a breakpoint to
be triggered every time a certain source statement is executed,
particularly if that line of code is executed many times before the
occurrence you are interested in. Turbo Debugger gives you two
ways to qualify when a breakpoint is actually triggered: pass
counts and conditions.

If you want to stop your program on the tenth call to a function,
you can set a breakpoint at the start of the function and use the
Pass Count input box in the Breakpoint Options dialog box to set
the number of times you want to skip the breakpoint before it is
actually triggered.

If you want to stop your program at a specific location but only
when a certain condition is true, you can specify an expression
using the Expression True radio button in the Breakpoint Options
dialog box. Each time the breakpoint is encountered, the expres-
sion will be evaluated, and if it is true (nonzero), the breakpoint
will be triggered. This can be used in combination with the pass
count to trigger a breakpoint only after the expression has been
true a certain number of times.

You can use the Changed Memory radio button to specify a
breakpoint that occurs only after a data item changes value. This
can be a lot more efficient than specifying a global breakpoint that
watches for exactly when something changes. If you only watch
for something to change when a specific source statement is
reached, it reduces the amount of processing Turbo Debugger
does in order to detect when the change occurred.

129

Global breakpoints

Warning!

130

If you want to have a breakpoint occur every time a source line or
instruction is encountered, use global breakpoints. There are a
number of ways to create a global breakpoint, each best-suited for
a particular situation:

m In the Breakpoint Options dialog box, turn on the Global check
box. Use this method when you want to set a qualifying condi-
tion or pass count, or when you want to do something other
than stop when the breakpoint is triggered.

m Choose the Breakpoints | Changed Memory Global command to
stop when a specific area of memory changes.

m Choose the Breakpoints | Expression True Global command to
stop execution when an expression becomes true.

When you set a global breakpoint, you usually use the local menu
in the Breakpoints window to modify the condition or the action;
otherwise, all you end up with is a breakpoint action that occurs
on every source line—just like using the Run | Trace Into main
menu command.

If you want to test your global breakpoints each time a source line
is about to be executed, make sure your current window is not a
CPU window, then restart your program with one of the Run
commands from the menu bar (or its function-key equivalents).

To test your global actions each time a single instruction is
executed, make sure your current window is a CPU window
when you restart your program.

A global action will occur on every source line or instruction. Use
a global breakpoint when you want to find out exactly when a
variable changes or when some condition becomes true.

Global breakpoints greatly slow the execution of your program.
However, they can be very convenient for finding where your
program is “bashing” data.

After adding the global breakpoint, you must set a condition that
will trigger it.

Turbo Debugger User's Guide

Breaking for changed data objects

When you want to find out where in your program a certain data
object is being changed, first set a global breakpoint using one of
the techniques outlined in the previous section. Then use the
Changed Memory radio button in the Breakpoint Options dialog
box. When the input box appears, enter an expression that refers
to the memorv area vou want to keep track of, along with an
optional count of the number of ob]ects to track.

Your program will execute slowly when you use this command.
You may want to localize the problem before using this technique
to find the exact location where a data item changes.

If you have installed a hardware device driver, Turbo Debugger
will try to set a hardware breakpoint to watch for a change in the
data area. Different hardware debuggers support different
numbers and types of hardware breakpoints. You can see if a
breakpoint has used the hardware by opening a Breakpoint
window with the View | Breakpoints command. Any breakpoint
that is hardware assisted will have an asterisk (*) beside it. These
breakpoints will be much faster than global breakpoints that are
not hardware assisted.

Logging variable values

You can only set one break-
point per address.

Chapter 7, Breakpoints

Sometimes, you may find it useful to log the value of certain
variables each time you reach a certain place in your program.
You can log the value of any expression, including, for example,
the values of the parameters a function is called with. By looking
at the log each time the function is called, you can determine
when it was called with erroneous parameters.

Choose the Log radio button from the Breakpoint Options dialog
box. You are prompted for the expression whose value is to be
logged each time the breakpoint is triggered. If you want to log
the value of multiple variables, you must set multiple break-
points.

131

Executing expressions

By executing an expression that has side effects each time a break-
point is triggered, you can effectively “splice in” new pieces of
code before a given source line. This is useful when you want to
alter the behavior of a routine to test a diagnosis or bug fix. This
saves you from going through the compile-and-link cycle just to
test a minor change to a routine.

Of course, this technique is limited to the insertion of an expres-
sion before an already existing line of code is executed; you can’t
use this technique to modify existing source lines directly.

132 Turbo Debugger User's Guide

Examining and modifying files

Turbo Debugger treats disk files as a natural extension of the
program you're debugging. You can examine and modify any file
on the disk, viewing it either as ASCII text or as hex data. You can
also make changes to text files using your favorite word processor
or text editor, all from within Turbo Debugger.

This chapter shows you how to examine and modify two sorts of
disk files: those that contain your program source code, and other
files on disk.

Examining program source files

Loading and debugging Program source files are your source files that are compiled and
Microsoft Windows DLL ¢, a¢ generate an object module (an .EXE file). You usually
modules is described in . . . :
Chapter 17 on page 276. €xamine them when you want to look at the behavior or design o:
a portion of your code. During debugging, you often need to look
at the source code for a function to verify either that its arguments

are valid or that it is returning a correct value.

As you step through your program, Turbo Debugger automati-
cally displays the source code for the current location in your
program.

Files that are included in a source file by a compiler directive and
generate line #s (like #include in C and INCLUDE in assembler)
are also considered to be program source files (that is, when you
choose View | Module, they appear in the Pick a Module list pane).

Chapter 8, Examining and modifying files 133

134

The Module
window

Figure 8.1
The Module window

You should always use a Module window to look at your
program source files because this informs Turbo Debugger that
the file is a source module. It can then let you do things like
setting breakpoints or examining program variables simply by
moving to the appropriate place in your file. These techniques
and others are described in the following sections.

You create a Module window by choosing the View | Module
command from the menu bar (or pressing the hot key, F3).

r—-[-]=Modzle: TPDEMO File: TPDEMO.PAS 217 1=[1]1[{]1=
end; A

Writein;
end; { ParmsOnHeap }

» begin { program }

Init;

Buffer := GetLine;

while Buffer <> '* do

begin
ProcessLine(Buffer);
Buffer := GetlLine;

end;

ShowResults;

ParmsOnHeap;

A dialog box appears in which you can enter the name of the
module you want to view.

If you are debugging a Windows application, this dialog box
shows one list for modules of the program and another list for
DLLs and .EXE files currently loaded by Windows. See page 277
for an explanantion of this dialog box.

Turbo Debugger will then load the source file for the module that
you select. It searches for the source file in the following places:

1. in the directory where the compiler found the source file

2. in the directories specified by the Options | Path for Source
command or the —sd command-line option

3. in the current directory

4. in the directory that contains the program you're debugging

Module windows show the contents of the source file for the
module you've selected. The title of the Module window shows
the name of the module you're viewing, along with the source file
name and the line number the cursor is on. An arrow (») in the

Turbo Debugger User’s Guide

The Module
window local
menu

Inspect
Watch

Module...
File...

Previous
Line...
Search...
Next
Origin
Goto...
Edit

Inspect

first column of the window shows the current program location
(Cs:IP).

Note that when you run Turbo Debugger, you'll need both the
.EXE file and the original source file. Turbo Debugger searches for
source files first in the directory the compiler found them in when
it compiled, second in the directory specified in the Options | Path
for Source command, third in the current directory, and fourth in
the directory the .EXE file is in.

If the word modified appears after the file name in the title, the file
has been changed since it was last compiled or linked to make the
program you are debugging. This means that the routines in the
updated source file may no longer have the same line numbers as
those in the version used to build the program you are debug-
ging. This can cause the arrow that shows the current program
location (CS:IP) to be displayed on the wrong line.

The Module window local menu provides a number of com-
mands that let you move around in the displayed module, point
at data items and examine them, and set the window to display a
new file or module.

You will probably use this menu more than any other menu in
Turbo Debugger, so you should become quite familiar with its
various options.

Use the Alf-F10 key combination to pop up the Module window
local menu or, if you have control-key shortcuts enabled, use the
Ctrlkey with the first letter of the desired command to access that
command (for example, Ctrl-S for Search).

Opens an Inspector window to show you the contents of the
program variable at the current cursor position. Before issuing
this command, you can place the cursor at the program variables
in the source file that you want to inspect, or you can enter it in
the input box of the dialog box that appears.

You can also use the Ins key to select (highlight) an expression to
inspect. This saves you from typing in an expression that is in
plain view in the source module.

Chapter 8, Examining and modifying files 135

136

Watch

Module...

File...

Previous

Line...

Because this command saves you from having to type in each
name you are interested in, you'll end up using it a lot to examine
the contents of your program variables.

Adds the variable at the current cursor position to the Watches
window. This is useful if you want to monitor the value of a
variable continuously as your program executes. Before issuing
this command, you can place the cursor at the program variables
in the source file that you want to inspect, or you can enter it in
the input box of the dialog box that appears.

You can also use the Ins key to mark an expression to watch. This
saves you from typing in an expression that is in plain view in the
source module.

Lets you view a different module by picking the one you want
from the list of modules displayed. This command is useful when
you are no longer interested in the current module, and you don’t
want to end up with more Module windows onscreen.

Lets you switch to view one of the other source files that makes
up the module you are viewing. Pick the file that you want to
view from the list of files presented. Most modules only have a
single source file that contains code. Other files included in a
module usually only define constants and data structures. Use
this command if your module has source code in more than one
file.

Use View | File to look at the first file. If you want to see more than
one, use View | Another | File to open subsequent File windows.

Returns you to the last source module location you were viewing.
You can also use this command to return to your previous
location after you've issued a command that changed your
position in the current module.

Positions you at a new line number in the file. Enter the new line
number to go to. If you enter a line number after the last line in
the file, you will be positioned at the last line in the file.

Turbo Debugger User's Guide

Search... Searches for a character string, starting at the current cursor
position. Enter the string to search for. If the cursor is positioned
over something that looks like a variable name, the search dialog
box will come up initialized to that name. Also, if you have
marked a block in the file using the Ins key, that block will be used
to initialize the search dialog box. This saves you from typing if
what you want to search for is a string that is already in the file
you are viewing.

You can search using simple wildcards, with ? indicating a match
on any single character, and * matching zero or more characters.
The search does not wrap around from the end of the file to the
beginning. To search the entire file, go to the first line by pressing
Ctrl-PgUp.

Next Searches for the next instance of the character string you specified
with the Search command; you can only use this after issuing a
Search command.

Sometimes, a search command matches an unexpected string
before reaching the one you really wanted to find. Next lets you
repeat the search without having to reenter what you want to
search for.

Origin Positions you at the module and line number that is the current
program location (CS:IP). If the module you are currently viewing
is not the module that contains the current program location, the
Module window will be switched to show that module. This com-
mand is useful after you have looked around in your code and
want to return to where your program is currently stopped.

Goto... Positions you at any location within your program. Enter the
address you want to examine; you can enter a function name or a
hex address. See Chapter 9 for a complete description of the ways
to enter an address.

You can also invoke this command by simply starting to type the
label to go to. This brings up a dialog box exactly as if you had
chosen the Goto command. Entering the label name is a handy
way to invoke this frequently used command.

Chapter 8, Examining and modifying files 137

Edit

Starts up your choice of an editor so that you can make changes to
the source file for the module you are viewing. You can specify
the command that starts your editor from the installation
program TDINST.

Examining other disk files

The File window

Figure 8.2
The File window

Figure 8.3

The File window showing hex

138

data

You can examine or modify any file on your system by using a
File window. You can view the file either as ASCII text or as hex
data bytes, using the Display As command described in a later
section of this chapter.

You create a File window by choosing the View | File command
from the menu bar. You can use DOS-style wildcards to get a list
of file choices, or you can type a specific file name to load.

[l]-Flle g: \netf11es\debug\program\tcde3-[f][#]-1
file <tcdemo.c>

* |
* Demonstration program to show off Turb
*/ Reads words from standard input, analyz
*

File windows show the contents of the file you've selected. The
name of the file you are viewing is displayed at the top of the
window, along with the line number the cursor is on if the file is
displayed as ASCII text.

When you first create a File window, the file will appear either as
ASCII text or as hexadecimal bytes, depending on whether the file
contains what Turbo Debugger thinks is ASCII text or binary
data. You can switch between ASCII and hex display at any time
using the Display As local menu command described later.

[I]—F1le g: \netf11es\debug\program}tcde3—[1][&]—1
: 2f 2a 09 66 69 6 0
00008: 3c 74 63 64 65 6d 6f 2e <tcdemo. u
00010: 63 3e Od 0a 20 2a 0d 0a c>Mi M
00018: 20 2a 09 44 65 6d 6f 6e xoDemon
00020: 73 74 72 61 74 69 6f 6e stration
00028: 20 70 72 6f 67 72 61 6d program
00030: 20 74 6f 20 73 68 6f 77 to show _}
|]

Turbo Debugger User’s Guide

The File window

local MeNnU The File window local menu has a number of commands for
moving around in a disk file, changing the way the contents of the
file are displayed, and making changes to the file.

Goto
Search
Next

Use the Alt-F10 key combination to pop up the File window local
menu or, if you have control-key shortcuts enabled, use the Ctrl
key with the first letter of the desired command to access it.

Goto Positions you at a new line number or offset in the file. If you are
viewing the file as ASCII text, enter the new line number to go to.
If you are viewing the file as hexadecimal bytes, enter the offset
from the start of the file at which to start displaying. You can use
the full expression parser for entering the offset. If you enter a line
number after the last line in the file or an offset beyond the end of
the file, you will be positioned at the end of the file.

Search Searches for a character string, starting at the current cursor
position. You are prompted to enter the string to search for. If the
cursor is positioned on something that looks like a symbol name,
the Search dialog box comes up initialized to that name. Also, if
you have marked a block in the file using the Ins key, that block
will be used to initialize the Search dialog box. This saves you
from typing if what you want to search for is a string that is
already in the file you are viewing. The format of the search string
depends on whether the file is displayed in ASCII or hex.

If the file is displayed in ASCII, you can use simple wildcards,
with ? indicating a match on any single character, and * matching
0 or more characters.

See Chapter 9 for complete If the file is displayed in hexadecimal bytes, enter a byte list

Information about byte lists. consisting of a series of byte values or quoted character strings,
using the syntax of whatever language you are using for
expressions.

Chapter 8, Examining and modifying files 139

Next

Display As

File...

Edit

Chapter 9 has a complete

140

description of byte lists.

The search does not wrap around from the end of the file to the
beginning. To search the entire file, go to the first line of the file by
pressing Cirl-PgUp.

You can also invoke this command by simply starting to type the
string that you want to search for. This brings up a dialog box
exactly as if you had specified the Search command.

Searches for the next instance of the character string you specified
with the Search command; you can only use this command after
first issuing a Search command.

This is useful when your Search command didn’t find the
instance of the string you wanted. You can keep issuing this
command until you find what you want.

Toggles between displaying the file as ASCII text or hexadecimal
bytes. When you select ASCII display, the file appears as you are
used to seeing it on the screen in an editor or word processor. If
you select Hex display, each line starts with the hex offset from the
beginning of the file for the bytes on the line. Eight bytes of data
are displayed on a line. To the right of the hex display of the
bytes, the display character for each byte appears. The full display
character set can be displayed, so byte values less than 32 or
greater than 127 appear as the corresponding display symbol.

Lets you switch to a different file. You can use DOS-style
wildcards to get a list of file choices, or you can type a specific file
name to load. This lets you view a different file without putting a
new File window onscreen. If you want to view two different files
or two parts of the same file simultaneously, issue the View |
Another | File command to make another File window.

If you are viewing the file as ASCII text, this command lets you
make changes to the file you are viewing by invoking the editor
you specified with the TDINST installation program.

If you are viewing the file as hex data bytes, the debugger does
not start your editor. Instead, you are prompted for the bytes to
replace those at the current cursor position. Enter a byte list, just
as if you were entering a list of bytes to search for.

Turbo Debugger User's Guide

Each language evaluates an
expression differently.

Chapter 9, Expressions

Expressions

Expressions can be a mixture of symbols from your program (that
is, variables and names of routines), and constants and operators
from one of the supported languages: C, Pascal, or assembler.

Turbo Debugger can evaluate expressions and tell you their value.
You can also use expressions to indicate a data item in memory
whose value you want to know. You can supply an expression in
any dialog box that asks for a value or an address in memory.

Use Data | Evaluate/Modify to open the Evaluate/Modify dialog
box, which tells you the value of an expression. (You can also use
this dialog box as a simple calculator.)

In this chapter, you’ll learn how Turbo Debugger chooses which
language to use for evaluating an expression, and how you can
make it use a specific language. We describe the components of
expressions that are common to all the languages, such as source-
line numbers and access to the processor registers. We then
describe the components that can make up an expression in each
language, including constants, program variables, strings, and
operators. For each language, we also list the operators that Turbo
Debugger supports and the syntax of expressions.

For a complete discussion of C, Pascal, and assembler expressions,
refer to the Getting Started and Programmer’s Guide for Borland’s C
or C++ compilers, the Turbo Pascal User’s Guide and Reference
Guide, or the Turbo Assembler Reference Guide.

141

Choosing the language for expression evaluation

142

Turbo Debugger normally determines which expression evaluator
and language to use from the language of the current module.
This is the module in which your program is stopped. You can
override this by using the Options | Language command to open
the Expression Language dialog box; in it you can set radio
buttons to Source, C, Pascal, or Assembler. If you choose Source,
expressions are evaluated in the manner of the module’s
language. (If Turbo Debugger can’t determine the module’s
language, it uses the expression rules for Turbo Assembler.)

Usually, you let Turbo Debugger choose which language to use.
Sometimes, however, you'll find it useful to set the language
explicitly; for example, when you are debugging an assembler
module that is called from one of the other languages. By expli-
citly setting expression evaluation to use a particular language,
you can access your data in the way you refer to it with that
language, even though your current module uses a different
language.

Sometimes it is convenient to treat expressions or variables as if
they had been written in a different language; for example, if you
are debugging a Pascal program, assembly language or C conven-
tions may offer an easier way to change the value of a byte stored
in a string.

So long as your initial choice of language is correct when you
enter Turbo Debugger, you should have no difficulty using other
language conventions. Turbo Debugger still retains information
about the original source language and will handle the conver-
sions and data storage appropriately. If the language seems ambi-
guous, Turbo Debugger defaults to assembly language.

Even if you deliberately choose the wrong language when you
enter Turbo Debugger, it will still be able to get some information
about the original source language from the symbol table and the
original source file. Under some circumstances, however, it may
be possible to confuse Turbo Debugger into storing data
incorrectly.

Turbo Debugger User’s Guide

Code addresses, data addresses, and line numbers

Normally, when you want to access a variable or the name of a
routine in your program, you simply type its name. However, you
can also type an expression that evalutes to a memory pointer, or
specify code addresses as source line numbers by preceding the
line number with a pound sign (#), like #123. The next section
describes how tc access symbols cutside the current scope.

Of course, you can also specify a regular segment:offset address,
using the hexadecimal syntax for the source code language of
your program:

Language Format Example

C Oxnnnn 0x1234:0x0010

Pascal $nnnn $1234:$0010

assembler nnnnh 1234h:0010h
1234h:0B234h

In assembler, hex numbers starting with A to F must be prefixed with a zero.

Accessing symbols outside the current scope

Chapter 9, Expressions

Where the debugger looks for a symbol is known as the scope of
that symbol. Accessing symbols outside of the current scope is an
advanced concept that you don’t really need to understand in
order to use Turbo Debugger in most situations.

Normally, Turbo Debugger looks for a symbol in an expression
the same way a compiler would. For example, C first looks in the
current function, then in the current module for a static (local)
symbol, then for a global symbol. Pascal first looks in the current
procedure or function, then in an “outer” subprogram (if the
active scope is nested inside another), then in the implementation
section of the current unit (if the current scope resides in a unit),
and then for a global symbol.

If Turbo Debugger doesn’t find a symbol using these techniques,
it searches through all the other modules to find a static symbol
that matches. This lets you reference identifiers in other modules
without having to explicitly mention the module name.

If you want to force Turbo Debugger to look elsewhere for a
symbol, you can exert total control over where to look for a

143

Scope override
syntax

symbol name by specifying a module, a file within a module, or a
routine to look inside. You can access any symbol in your pro-
gram that has a defined value, even symbols that are private to a
function or procedure and have names that conflict with other
symbols.

No matter what language you're using, you use the same method
to override the scope of a symbol name.

Normally, you use a pound sign (#) to separate the components of
the scope. If it's not ambiguous in the current language, you can
also use a period (.) instead of # and omit the initial pound sign.

The following syntax describes scope overriding; brackets ([])
indicate optional items:

[#module[#filename]]#linenumber|#variablename)

or
[#module[#filename]] [4 functionname)#variablename

If you don’t specify a module, the current module is assumed.
Here are some examples of valid symbol expressions with scope
overrides. There is one example for each of the legal combinations
of elements that you can use to override a scope.

The first six examples show various ways of using line numbers
to generate addresses and override scopes:

#123 Line 123 in the current module

#123#myvarl Symbol myvar1 accessible from line
123 of the current module

fmymodule#123 Line 123 in module mymodule

#mymodule#123#myvarl Symbol myvarl accessible from line
123 in module mymodule

#mymodule#file1#123 Line 123 in source file filel, which is
part of module mymodule

fmymodule#filel#1234myvarl ~ Symbol myvarl accessible from line
123 in source file filel, which is part
of mymodule

The next six examples show various ways of overriding the scope
of a variable by using a module, file, or function name:

Turbo Debugger User's Guide

#myvar2

#myfunc#myvar2

#mymodule#myvar2

#mymodule#my funcémyvar2

#mymodule#file2#myvar?

#mymodule#file2#myfunc
#myvar2

Same as myvar2 without the #
Variable myvar2 accessible from
routine myfunc

Variable myvar2 accessible from
module mymodule

Variable myvar2 accessible from
routine myfunc in module mymodule

Variable myvar2 accessible from
file2, which is included in mymodule

Variable myvar2 accessible from
myfunc defined in file file2, which is
included in mymodule

Turbo Debugger also supports Pascal’s unit-override syntax:

unitname.symbolname

Finally, Turbo Debugger lets you override scope by using object,
class, method, and member function names. Here are some

examples:

AnInstance

AnInstance.AField

AnObjectType.AMethod

AnInstance.AMethod

AUnit.AnInstance.AField

AUnit.AnObjectType.AMethod

Chapter 9, Expressions

Instance Anlnstance accessible in the
current scope.

Field AField accessible in instance
Anlnstance accessible in the current
scope

Method AMethod accessible in object

type AnObjectType accessible in the
current scope

Method AMethod accessible in
instance Anlnstance accessible in the
current scope

Field AField accessible in instance
Anlnstance accessible in unit AUnit

Method AMethod accessible in object
type AnObjectType accessible in unit
AlUnit

145

Implied scope for

146

expression
evaluation

AUnit.AnObjectType.AMethod. Local variable AVar accessible in
ANestedProc.AVar procedure ANestedProc accessible in
method AMethod accessible in object
type AnObjectType accessible in unit
Alnit

You can enter such qualified identifier expressions anywhere an
expression is valid, including in the Evaluate/Modify dialog box
and the Watches window, or when you're changing an expression
in an Inspector window or using the local menu in the Module
window to Goto a method, member function, or procedure
address in the source code.

If you are debugging a C++ program and want to examine a
function with an overloaded name, just enter the name of the
function in the appropriate input box. Turbo Debugger opens the
Pick a Symbol Name dialog box, which shows a list box of all the
functions of that name with their arguments, enabling you to
choose the one you want.

Whenever Turbo Debugger evaluates an expression, it must
decide where in your program the “current scope” is that is used
for any symbol names without an explicit scope override. Deter-
mining scope is important because in many languages you can
have symbols inside functions or procedures with the same name
as global symbols; Turbo Debugger must know which instance of
a symbol you mean.

Turbo Debugger usually uses the current cursor position as the
context for “deciding” about scope. Thus, you can set the scope
where an expression will be evaluated by moving the cursor to a
specific line in a Module window.

This means that if you have moved the cursor off the current line
where your program is stopped, you may get unexpected results
from evaluating expressions. If you want to be sure that expres-
sions are evaluated in your program'’s current scope, use the
Origin local menu command in the Module window to return to
the current location in the source code. You can also set the
expression scope by moving around inside the Code pane of a
CPU window, by cursoring to a routine in the Stack window, or
by cursoring to a routine name in a Variables window.

Turbo Debugger User’s Guide

Byte lists

C expressions

Several commands ask you to enter a list of bytes, including the
Search and Change local menu commands in the Data pane of the
CPU window, and the Search and Change local menu commands
of the File window when it’s displaying a file in hexadecimal
format.

A byte list can be any mixture of scaiar (non-fioating-point) num-
bers and strings in the syntax of the current language, determined
by the Options | Language command. Both strings and scalars use
the same syntax as expressions. Scalars are converted into a
corresponding byte sequence. For example, a Pascal Longint
value of 123456 becomes a 4-byte hex quantity 40 E2 01 00.

Language Byte list Hex data

C “ab” 0x04 “c” 61 62 04 63
Pascal ‘ab’#4’c’ 616204 63
Assembler 1234 “AB” 34124142

C symbols

Chapter 9, Expressions

Turbo Debugger supports the complete C expression syntax. A C
expression consists of a mixture of symbols, operators, strings,
variables, and constants. Each of these components is described in
one of the following sections.

A symbol is the name of a data object or routine in your program.
A symbol name must start with a letter (a-z, A-Z) or underscore
(). Subsequent characters can be any of these characters as well
as the digits 0 through 9. You can omit the beginning underscore
from symbol names; if you enter a symbol name without an
underscore and Turbo Debugger can’t find that name, it searches
for the name again with an underscore at the beginning. Because
the compiler automatically puts an underscore at the start of your
symbol names, you don’t have to remember to add one.

147

C register

pseudovariables Turbo Debugger lets you access the processor registers using the
same technique as one of Borland’s C or C++ compilers, namely
pseudovariables. A pseudovariable is a variable name that
corresponds to a given processor register.

148

Pseudovariable Type Register
_AX unsigned int AX
_AL unsigned char AL
_AH unsigned char AH
_BX unsigned int BX
_BL unsigned char BL
_BH unsigned char BH
_CX unsigned int CX
_CL unsigned char CL
_CH unsigned char CH
_DX unsigned int DX
_DL unsigned char DL
_DH unsigned char DH
_Cs unsigned int (]
_DS unsigned char DS
_SS unsigned char SS
_ES unsigned char ES
_SP unsigned int SP
_BP unsigned char BP
_DI unsigned char DI
_SI unsigned char SI
_IP unsigned int 1P

Turbo Debugger User’s Guide

C constants and
number formats

Escape
sequences

Chapter 9, Expressions

The following pseudovariables let you access the 80386 processor
registers:

Pseudovariable Type Register
_EAX unsigned long EAX
_EBX unsigned long EBX
_ECX unsigned long ECX
_EDX unsigned long EDX
_ESP unsigned long ESP
_EBP unsigned long EBP
_EDI unsigned long EDI
_ESI unsigned long ESI
_FS unsigned int ' FS
_GS unsigned int GS

Constants can be either floating point or integer.

An integer constant is specified in decimal, unless one of the C
conventions for overriding this is used:

Format Radix

digits decimal
Odigits octal
0Xdigits hexadecimal
Oxdigits hexadecimal

Constants are normally of type int (16 bits). If you want to define
a long (32-bit) constant, you must add an / or L at the end of the
number. For example, 123456L.

A floating-point constant contains a decimal point and can use
decimal or scientific notation. For example,

1.234 4.5et1l

A string is a sequence of characters enclosed in double quotes ("").

You can use the standard C backslash (\) as an escape character.

149

Sequence Value Character

\\ 0X5C Backslash

\a 0X07 Bell

\b 0X08 Backspace

\f 0XoC Formfeed

\n 0X0A Newline

\r 0X0D Carriage return
\t 0X09 Horizontal tab
\v 0X0B Vertical tab
\xnn nn Hex byte value
\nnn nnn Octal byte value

If you follow the backslash with any other character than those
listed here, that character is inserted into the string unchanged.

C operators

precedence Turbo Debugger uses the same operators as C, with the same
precedence. The debugger has one operator that is part of the C++
set of operators: the double colon (::). This operator has a higher
priority than any of the regular C operators. It is used to make a
constant far address out of the expression that precedes it and the
expression that follows it; for example,

0X1234::0X1000
_ES:: BX
The primary expression operators
I . — sizeof
have the highest priority, from left to right. The unary operators
* & -~ o+ -

are of a lower priority than the primary operators but a greater
priority than the binary operators, grouped from right to left. The
priority of the binary operators, in descending order, is as follows
(operators on the same line have the same priority):

180 Turbo Debugger User's Guide

Executing C
functions in your
program

Chapter 9, Expressions

lowest

The single ternary operator, ?:, has a priority below that of the
binary operators.

The assignment operators are below the ternary operator in
priority. They are all of equal priority, and group from right to
left:

= 4= —= *— /= °/0= >o= <L= &: A= |=

You can call functions from a C expression exactly as you do in
your source code. Turbo Debugger actually executes your pro-
gram code with the function arguments that you supply. This can
be a very useful way of quickly testing the behavior of a function
you've written. You can repeatedly call it with different argu-
ments and then check that the returned value is correct each time.

The following function raises one integer number to a power (x¥):

long power (int x, int y)
{
long temp = 1;
while (y--)
temp *= x;
return(temp) ;

}

The following table shows the result of calls to this function with
different function arguments:

C expression Resuit

power(3,2) * 2 18

25 + power(5,8) 390650

power(2) Error (missing argument)

161

C expressions with

side effects

C reserved words

152

and type
conversion

A side effect occurs when you evaluate a C expression that
changes the value of a data item in the process of being evaluated.
In some cases, you may want a side effect, using it to intentionally
modify the value of a program variable. At other times, you want
to be careful to avoid them, so it’s important to understand when
a side effect can occur.

The assignment operators (=, +=, and so on) change the value of
the data item on the left side of the operator. The increment and
decrement (++ and - —) operators change the value of the data
item that they precede or follow, depending on whether they are
used as prefix or postfix operators.

A more subtle type of side effect can occur if you execute a func-
tion that’s part of your program. For example, if you evaluate the
C expression

nmyfunc(1,2,3) + 7

your program may misbehave later if myfunc changed the value
of other variables in your program.

Turbo Debugger lets you perform type conversions on (cast)
pointers exactly as you would do in a C program. A type conver-
sion consists of a C data-type declaration between parentheses. It
must come before an expression that evaluates to a memory
pointer.

Type conversions are useful if you want to examine the contents
of a memory location pointed to by a far address you generated
using the double colon (::) operator, for example,

(long far *)0x3456::0

(char far *) ES:: BX
You can use a type conversion to access a program variable for
which there is no type information, which happens when you
compile a module without generating debugging-type informa-
tion. Rather than recompiling and relinking, if you know the data

type of a variable, you can simply put that in a type conversion
before the name of the variable.

Turbo Debugger User's Guide

RNAN
A

For example, if your variable iptr is a pointer to an integer, you
can examine the integer that it points to by evaluating the C
expression

*(int *)iptr
You can also use the Type Cast command in the Inspector
window local menu for this purpose.

Turbo Debugger provides two reserved words, Ih2fp and gh2fp,
for dereferencing memory handles used in Microsoft Windows
applications. See page 282 for an explanation of these two type
conversions.

Use the following C reserved words to perform type conversions
for Turbo Debugger:

char gh2fp near
double huge short
enum int struct

far Ih2fp union
float long unsigned

Pascal expressions

Pascal symbols

Chapter 9, Expressions

Turbo Debugger supports the Pascal expression syntax, with the
exception of string concatenation and set operators. A Pascal
expression consists of a mixture of symbols, operators, strings,
variables, and constants. The following sections describe each of
the components that make up an expression.

Symbols in Pascal are user-defined names for data items or rou-
tines in your program. A Pascal symbol name can start with a
letter (a-z, A-Z) or an underscore (_). Subsequent characters in the
name can contain the digits (0 to 9) and the underscore, as well as
letters.

Normally, a symbol obeys the Pascal scoping rules, with “nested”
local symbols overriding other symbols of the same name. You
can override this scoping if you want to access symbols in other
scopes. For more details, see the section “Accessing symbols
outside the current scope” on page 143.

183

Pascal constants

and NUMer Constants can be either real (floating-point) or integer constants.
formats Negative constants start with a minus sign (-). If the number
contains a decimal point or an e that introduces an exponent, it is
a real number. For example,

123.4 456e34 123.45e-5

Integer-type constants are normally decimal, unless they start
with a dollar sign ($) to indicate hexadecimal. Decimal integer
constants must be between -2,137,483,648 and 2,147,483,647.
Hexadecimal constants must be between $00000000 and
$FFFFFFFF.

Pascal strings

A string is simply a group of characters surrounded by single
quotes. For example,

' abc’

You can embed control characters in a string by preceding the
decimal control character value with a #. For example,

"def’ #7'xyz’

Pascal operators
and operator Turbo Debugger supports all the Pascal expression operators.

precedence The unary operators are of the highest precedence and are of

equal priority.
@ Takes address of an identifier
A Contents of pointer
not Bitwise complement

typeid Typecast
+ Unary plus, positive
- Unary minus, negative

The binary operators are of a lower precedence than the unary
operators. They are listed here in descending order (operators on
the same line have the same priority):

164 Turbo Debugger User's Guide

Calling Pascal
functions and
procedures

* / div mod and shl shr
in + - or xor
< <= > >= = <>

The assignment operator (:=) has the lowest precedence; it returns
avalue, as in C.

You can refer to Pascal functions and procedures in expressions.
For example, assume you have declared a function called
HalfFunc that divides an integer by 2:

function HalfFunc(i:Integer): Real;

You can then choose the Data | Evaluate/Modify command and
call HalfFunc as follows:

HalfFunc(3)
HalfFunc(10) = HalfFunc(10 div 2)

You can also call procedures, although not in an expression, of
course. When you enter a procedure or function name by itself,
Turbo Debugger reports its address and declaration. To call a
function or procedure that has no parameter, place a set of empty
parentheses after the symbol name. For example,

MyProc () Calls MyProc
MyProc Reports MyProc’s address, and so on
MyFunc = 5 Compares address of MyFunc to 5

MyFunc() =5 Calls MyFunc and compares returned value to 5

Assembler expressions

Assembler
symbols

Chapter 9, Expressions

Turbo Debugger supports the complete assembler expression
syntax. An assembler expression consists of a mixture of symbols,
operators, strings, variables, and constants. Each of these compo-
nents is described in this section.

Symbols are user-defined names for data items and routines in
your program. An assembler symbol name starts with a letter (a-z,
A-Z) or one of these symbols: @ ? _ $. Subsequent characters in
the symbol can contain the digits 0 to 9, as well as these

165

1686

Assembler
constants

Assembler
operators

characters. The period (.) can also be used as the first character of
a symbol name, but not within the name.

The special symbol § refers to your current program location as
indicated by the CS:IP register pair.

Constants can be either floating point or integer. A floating-point
constant contains a decimal point and may use decimal or scien-
tific notation. For example,

1.234 4.5e+11

Integer constants are hexadecimal unless you use one of the
assembler conventions for overriding the radix:

Format Radix
digitsH Hexadecimal
digitsO Octal
digitsQ Octal
digitsD Decimal
digitsB Binary

You must always start a hexadecimal number with one of the
digits 0 to 9. If you want to enter a number that starts with one of
the letters A to F, you must first precede it with a 0 (zero).

Turbo Debugger supports most of the assembler operators, listed
here in order of priority:

xxx PTR (BYTE PTR...)
. (structure member selector)
: (segment override)
OR XOR

AND

NOT

EQ NE LT LE GT GE
+ -

* / MOD SHR SHL
Unary + Unary -
OFFSET SEG

O Il

Turbo Debugger User’s Guide

Variables can be changed using the = assignment operator. For

example,

a = [BYTE PTR DS:4)

Format control

When you supply an expression to be displayed, Turbo Debugger
displays it in a format based on the type of data it is. Turbo
Debugger ignores a format control that is wrong for a particular

data type.

If you want to change the default display format for an expres-
sion, place a comma at the end of the expression and supply an
optional repeat count followed by an optional format letter. You
can only supply a repeat count for pointers or arrays.

Character

Format

C

f[#]

md

xorh

Displays a character or string expression as raw
characters. Normally, nonprinting character values are
displayed as some type of escape or numeric format. This
option forces the characters to be displayed using the full
IBM display character set.

Displays an integer as a decimal number.

Displays as floating-point format with the specified
number of digits. If you don’t supply a number of digits,
as many as necessary are used.

Displays a memory-referencing expression as hex bytes.

Displays a memory-referencing expression as decimal
bytes.

Displays a raw pointer value, showing segment as a
register name if applicable. Also shows the object pointed
to. This is the default if no format control is specified.

Displays an array or a pointer to an array of characters as
a quoted character string. The string is terminated with a
null character.

Displays an integer as a hexadecimal number.

Chapter 9, Expressions

157

158 Turbo Debugger User’s Guide

10

C++ and object-oriented Pascal
debugging

To meet the needs of the C++ and object-oriented Pascal
revolution, Turbo Debugger has been enhanced to support
object-oriented programming. To use these new features, you
must have version 5.5 or later of Turbo Pascal or a compiler in
Borland's line of C++ compilers, and version 2.0 or later of Turbo
Debugger.

Besides extensions that let you trace into object methods or class
member functions and examine objects or classes in the Evaluate/
Modify dialog box and the Watches window, Turbo Debugger 2.0
and later come equipped with a special set of windows and local
menus specifically designed for objects and classes.

The Hierarchy window

Turbo Debugger provides a special window for examining object
or class hierarchies. You can bring up the Hierarchy window by
choosing View | Hierarchy.

Chapter 10, C++ and object-oriented Pascal debugging 159

Figure 10.1
The Hierarchy window

Use Tab fo move between
the two panes.

The Object Type

Th

List pane

e Object Type/Class

List pane local menu

160

Inspect
Tree

#]=Class _Hierarchy————=—=-uo———=—-—3=[1][{

The Hierarchy window displays information on object or class
types rather than instances. The left pane lists in alphabetical order
the types used by the module being debugged. The right pane
(two panes if you are running a C++ program with multiple
inheritance) shows all objects or classes in their hierarchies, using
a line graphic that places the base type at the left margin of the
pane and displays descendants (also ancestors for classes with
multiple inheritance) beneath and to.the right of the base type,
with lines indicating ancestor and descendant relationships.

The left pane provides an alphabetical list of all object or class
types used by the current module. It supports an incremental
matching feature to eliminate the need to cursor through large
lists of types: When the highlight bar is in the left pane, simply
start typing the name of the object or class type you're looking for.
At each keypress, Turbo Debugger highlights the first type
matching all keys pressed up to that point.

Press Enter to open an object type/class Inspector window for the
highlighted type. Object type/class Inspector windows are
described on page 162.

Press Alt-F10 to display the local menu for the pane. You can use
the control-key shortcuts if you've enabled hot keys with TDINST.
This local menu contains two items: Inspect and Tree.

Inspect

Displays an object type/class Inspector window for the
highlighted type.

Turbo Debugger User’s Guide

Tree

Moves to the right pane of the window, in which the hierarchy
tree is displayed, and places the highlight bar on the type that was
highlighted in the left pane.

The Hierarchy

Tree pane The right pane displays the hierarchy tree for all objects or classes
used by the current module. Ancestor and descendant reiation-
ships are indicated by lines, with descendants to the right of and
below their ancestors.

To locate a single object or class type in a complex hierarchy tree,
go back to the left pane and use the incremental search feature;
then choose the Tree item from the local menu to move back into
the hierarchy tree. The matched type appears under the highlight
bar.

When you press Enter, an object type/class Inspector window
appears for the highlighted type.

Ly Ifyouhaveloaded a C++ program that uses classes with multiple
inheritance, a third pane, the Parent Tree pane, appears below the
Hierarchy Tree pane in the Hierarchy window. If the class you are
examining has multiple ancestors, and if the Parent command in
the Hierarchy Tree pane local menu is set to Yes, a reverse tree
appears in the Parent Tree pane with the message Parents of
Class at the left margin of the pane and the ancestors displayed
beneath and to the right, with lines indicating descendant and an-
cestor relationships.

You can open an object type/class Inspector window for any class
that appears in the Parent Tree pane, just as you can in the
Hierarchy Tree pane.

The Hierarchy Tree The Hierarchy Tree pane local menu (Al-F10in the right pane) has
pane local menu(s) only one item: Inspect. When you choose it, an object type/class
Inspector window appears for the highlighted type. However, a

faster and easier method is simply to press Enter when you want

to inspect the highlighted type.

Inspect If you have loaded a C++ program that uses classes with multiple
Parents Yes | inheritance, the Hierarchy Tree pane local menu contains a
second command, Parents. This is a toggle with which you can
control whether to show the ancestors of a class in the Parent Tree

Chapter 10, C++ and object-oriented Pascal debugging 161

The Parent Tree pane

local menu

pane. This is useful if a class you are examining has multiple
inheritance. The default for Parents is Yes.

Finally, the Parent Tree pane, if it exists, has a local menu of its
own, with a single command, Inspect. It works just the same as
the Inspect command in the Hierarchy Tree pane local menu: It
opens an Inspector window for the highlighted object type or
class.

Object type/class Inspector windows

162

Figure 10.2
An object type/class
Inspector window

Turbo Debugger provides a special type of Inspector window to
let you inspect the details of an object type: the object type/class
Inspector window. The window summarizes type information,
but does not reference any particular instance.

[#]=Class LinearGauge=4=[1] [&]—1
1nt Range: : Low

g :c
int Range: Getvalue()
int Range::GetlLow()
int Range::GetHigh()

The window is divided horizontally into two panes, with the top
pane listing the data fields or members of the type and the bottom
pane listing the method or member function names and (if the
selected item is a function rather than a procedure) the function
return type. Use the Tab key to move between the two panes of
the object type/class Inspector window.

If the highlighted data field is an object or class type, or a pointer
to an object or class type, pressing Enter opens another object
type/class Inspector window for the highlighted type. (This
action is identical to selecting the Inspect command in the local
menu for this pane.) In this way, complex nested structures of
objects or classes can be inspected quickly with a minimum of
keystrokes.

For brevity’s sake, method or member function parameters are not
shown in the object type/class Inspector window. To examine
parameters, highlight the method or member function and press
Enter. A method /member function Inspector window appears.
The top pane of the window displays the code address for the

Turbo Debugger User’s Guide

object or class type’s implementation of the selected method or
member function, and the names and types of all its parameters. If
your source program is in object-oriented Pascal, the bottom pane
of the window indicates whether the method is a procedure or a
function.

Pressing Enter from anywhere within the method /member func-
tion Inspector window brings the Module window to the fore-
ground, with the cursor at the code that implements the method
or member function being inspected.

As with standard inspectors, Esc closes the current Inspector
window and Alt-F3 closes them all.

The object

type/class Pressing Alt-F10 brings up the local menu for either pane. If
i control-key shortcuts are enabled (through TDINST), you can get
Inspe(l:;grq\llvrl:::r?r; to a local menu item by pressing Ctrl and the first letter of the item.

Inspect
Hierarchy
Show inherited Yes

The Object Data Field The Object Data Field pane local menu contains these items:
(top) pane

Inspect

If the highlighted field is an object or class type or a pointer to
one, a new object type/class Inspector window is opened for the
highlighted field.

Hierarchy

Opens an Hierarchy window for the object or class type being
inspected. The Hierarchy window is described on page 159.

Show Inherited

Yes is the default value of this toggle. When it is set to Yes, all data
fields or members are shown, whether they are defined within the
type of the inspected object or class or inherited from an ancestor
type. When it is set to No, only those fields/members defined
within the type being inspected are displayed.

Chapter 10, C++ and object-oriented Pascal debugging 163

The Object Method
(boftom) pane

The local menu commands for the bottom Object Method pane
are Inspect, Hierarchy, and Show Inherited.

Inspect

A method/member function Inspector window is opened for the
highlighted item. If you press Cir-/ when the cursor is positioned
over the address shown in the method/member function
Inspector window, the Module window is brought to the fore-
ground with the cursor at the code that implements what is being
inspected.

Hierarchy

Opens an Hierarchy window for the object or class type being
inspected. The Hierarchy window is described on page 159.

Show Inherited

Yes is the default value of this toggle. When it is set to Yes, all
methods or member functions are shown, whether they are
defined within the type being inspected or inherited from an
ancestor. When it is set to No, only those methods or member
functions are displayed that are defined within the object type
being inspected.

Object instance Inspector windows

164

Object type/class Inspector windows provide information about
object or class types, but say nothing about the data contained in a
particular object or class instance at a particular time during pro-
gram execution. Turbo Debugger provides an extended form of
the familiar record Inspector window specifically to inspect object
and class instances.

Bring up this window by placing your cursor on an object or class
instance in the Module window, then pressing Ctri-l.

Turbo Debugger User’s Guide

Figure 10.3

An object/class instance

Inspector window

The object/class

instance

Inspector window

local menus

Range...

Chapter 10, C++ and object-oriented Pascal debugging

[a]=Inspecting tw=3=[*][{]
@75C6:01E8 A

500 (Ox1F4) :
512 (0x200

VertVtoA @0000:0000

Screen::VertAtoV @0000:0000

"c]ass TextWindow u

Most Turbo Debugger data record Inspector windows have two
panes: a top pane summarizing the record’s field names/members
and their current values, and a bottom pane displaying the type of
the field or member highlighted in the top pane. An object/class
instance Inspector window provides both of those panes, and also
a third pane between them. This third pane summarizes the
instance’s methods or member functions, with the code address of
each. (The code address takes into account polymorphic objects
and the VMT.)

Each of the top two panes of the object/class instance Inspector
window has its own local menu, displayed by pressing Alf-F10in
that pane. Use the control-key shortcuts to get to individual menu
items if you've enabled hot keys with TDINST.

Range...

Change...

Methods Yes
Show inherited Yes

Inspect

Descend

New expression...
Type cast
Hierarchy

As with record Inspector windows, the bottom pane serves only
to display the type of the highlighted field and doesn’t have a
local menu.

The top pane, which summarizes the data fields or members for
the selected item, are described here.

This command is unchanged from earlier versions. It displays the
range of array items. If the inspected item is not an array or a
pointer, the item cannot be accessed.

165

Change... By choosing this command, you can load a new value into the
highlighted data field or member. This command is also
unchanged from earlier versions of Turbo Debugger.

Methods This command is a Yes/No toggle, with Yes as the default condi-
tion. When it is set to Yes, methods or member functions are sum-
marized in the middle pane. When it is set to No, the middle pane
does not appear. This toggle is remembered by the next Inspector
window to be opened.

Show Inherited This command is also a Yes/No toggle. When it is set to Yes, all
data fields or members and all methods or member functions are
shown, whether they are defined within the type being inspected
or inherited from an ancestor type. When it is set to No, only those
fields and methods defined within the type being inspected are
displayed.

Inspect As with earlier versions of Turbo Debugger, choosing this
command opens an Inspector window on the highlighted field or
member. Pressing Enter over a highlighted field or member does
the same thing.

Descend This command has not changed from earlier versions of Turbo
. Debugger. The highlighted item takes the place of the item in the
Use Descend to inspect a . . .
complex data structure current Inspector window. No new Inspector window is opened.
when you don't want to However, you cannot return to the previously inspected field, as

open a separate Inspector you could if you had used the Inspect option.
window for each item.

New Expression... No change from earlier versions. This command prompts you for
anew data item or expression to inspect. The new item replaces
the current one in the window; it doesn’t open another window.

Type Cast... Lets you specify a different data type (Byte, Word, Int, Char
pointer) for the item being inspected. This is useful if the
Inspector window contains a symbol for which there is no type
information, as well as for explicitly setting the type for untyped
pointers.

166 Turbo Debugger User’s Guide

Hierarchy When you choose this command, an Hierarchy window opens.
For a full description of this window, see page 159.

The middle and

boftom panes The middle pane summarizes the methods of an object or the
member functions of a class. The only difference between the
Object Method pane’s local menu and the local menu for the top
pane is the absence of the Change command. Unlike data fields
and members, methods and member functions cannot be changed
during execution, so there is no need for this command.

The bottom pane displays the type of the item highlighted in the
upper two windows.

Chapter 10, C++ and object-oriented Pascal debugging | 167

168 Turbo Debugger User’s Guide

You don‘t need fo use the
information in this chapter to
debug your programs—but
there are certain problems
that may be easier to find
using fechniques discussed in
this chapfter.

11

Assembler-level debugging

This chapter is for programmers who are familiar with pro-
gramming the 80x86 processor family in assembler.

We explain when you might want to use assembler-level debug-
ging and describe the CPU window with its built-in disassembler
and assembler. You then learn how to examine and modify raw
hex data bytes, how to peruse the function calling stack, how to
examine and modify the CPU registers, and finally how to
examine and modify the CPU flags.

When source debugging isn’t enough

When you are debugging a program, most of the time you refer to
data and code at the source level; you refer to symbol names
exactly as you typed them in your source code, and you proceed
through your program by executing pieces of source code.

Sometimes, however, you can gain insight into a problem by
looking at the exact instructions that the compiler generated, the
contents of the CPU registers, and the contents of the stack. To do
this, you need to be familiar with both the 80x86 family of proces-
sors and with how the compiler turns your source code into
machine instructions. Because many excellent books are available
about the internal workings of the CPU, we won't go into that in
detail here. You can quickly learn how the compiler turns your

Chapter 11, Assembler-level debugging 169

source code into machine instructions by looking at the
instructions generated for each line of source code.

C and Pascal, for example, let you write lines of source code that
perform many actions at once, and Turbo Debugger lets you step
one source line at a time, not one expression at a time. However,
you sometimes want to know the result of executing a small piece
of one source line. By stepping through your program one
machine instruction at a time, you can examine intermediate
results, although it does require some effort to figure out how the
compiler translated your source statements into machine code.

The CPU window

170

Figure 11.1
The CPU window

The CPU window shows you the entire state of the CPU. You can
examine and change the bits and bytes that make up your pro-
gram’s code and data. You can use the built-in assembler in the
Code pane to patch your program temporarily by entering
instructions exactly as you would type assembler source state-
ments. You can also access the underlying bytes of any data struc-
ture, display them in a number of formats, and change them.

—=[n]=CPU 80286 3=[1] '&]—]
TPDEM0.217: begin { program) 4 ax 0000 c=0
¢s:084E»9A00004B62 call 624B:0000 ® bx 0000 2=

cs:0853 9AAE164B62 call 624B:16AE cx 0000 |s=0
cs:0858 55 push P dx 0000 =0
¢s:0859 89E5 mov bp,sp si 0000 p=0
cs:0858 81EC0001 sub sp,0100 di 0000 |a=0|
TPDEMO0.218: Init; bp 0000 i=1
cs:085F EBAOFB call TPDEMO.INIT sp 3FFE |d=0
TPDEM0.219: Buffer := GetLine; ds 61AF
¢s:0862 8DBEQOFF lea di, [bp-0100] es 61AF
¢s:0866 16 push ss ss 668F
cs:0867 57 push di cs 61BF
cs:0868 E83BFD call TPDEMO.GETLINY ip 084E
5200 0 00 A0 FO F] $5:4004 0000
ds 0008 IB 02 B2 01 22 31 7C 01 «offo"l|e ss:4002 0000
ds:0010 22 31 88 02 52 2B E2 1D "1€eRtle $5:4000 0000
ds:0018 01 01 01 00 03 FF FF FF oo % ss:3FFE»0000

Open a CPU window by choosing View | CPU from the menu bar.
Depending on what you are viewing in the current window, the
new CPU window comes up positioned at the appropriate code,
data, or stack location. This provides a convenient method for
taking a “low-level” look at the code, data, or stack location your
cursor is currently on.

The following table shows where your cursor will be positioned
when you choose the CPU command:

Turbo Debugger User’s Guide

CPU

Current window window pane Position

Stack window Stack Current SS:SP

Module window Code Current CS:IP

Variable window Data* Address of item

Inspector window Data Address of item

Breakpoint Code Breakpoint address
(if not global)

*Code pane, if item in window is a routine

CPU windows have five panes. To go from one pane to the next,
press Tab or Shift-Tab, or click the pane with your mouse. The line
at the top of the CPU window shows what processor type you
have (8086, 80286, 80386, or 80486). The top left pane (Code pane)
shows the disassembled program code intermixed with the source
lines. The second top pane (Register pane) shows the contents of
the CPU registers. The right pane is the Flags pane, showing the
state of the eight CPU flags. The bottom left pane (Data pane)
shows a raw hex dump of any area of memory you choose. The
bottom right pane (Stack pane) shows the contents of the stack.

In the Code pane, an arrow (») shows the current program loca-
tion (CS:IP). In the Stack pane, an arrow (>) shows the current
stack pointer (SS:SP).

If the highlighted instruction in the Code pane references a
memory location, the memory address and its current contents
are displayed on the top line of the CPU window. This lets you
see both where an instruction operand points in memory and the
value that is about to be read or written over.

The Flags pane shows the value of each of the CPU flags.

As with all windows and panes, pressing Alt-F10 pops up the Code
pane local menu or, if control-key shortcuts are enabled, the Ctrl
key with the first letter of the desired command gets you to it.

In the Code, Data, and Stack panes, you can press Ctl{ and Ctrl T
to shift the starting display address of the pane by 1 byte up or
down. This is easier than using the Goto command if you just
want to adjust the display slightly.

Chapter 11, Assembler-level debugging 171

The Code pane

This pane shows the disassembled instructions at an address that
you choose.

The left part of each disassembled line shows the address of the
instruction. The address is displayed either as a hex segment and
offset, or with the segment value replaced with the CS register
name if the segment value is the same as the current CS register. If
the window is wide enough (zoomed or resized), the bytes that
make up the instruction are displayed. The disassembled instruc-
tion appears to the right.

The disassembler

The Code pane automatically disassembles and displays your
program instructions. If an address corresponds to either a global
symbol, static symbol, or a line number, the line before the dis-
assembled instruction displays the symbol if the Mixed display
mode is set to Yes. Also, if there is a line of source code that corre-
sponds to the symbol address, it is displayed after the symbol.

Global symbols appear simply as the symbol name. Static symbols
appear as the module name, followed by a pound sign (#) or a '
period (.), followed by the static symbol name. Line numbers
appear as the module name, followed by a pound sign (#) or a
period (.), followed by the decimal line number.

When an immediate operand is displayed, you can infer its size
from the number of digits: A byte immediate has 2 digits, and a
word immediate has 4 digits.

Turbo Debugger can detect an 8087, 80287, or 80387 numeric
coprocessor and disassemble those instructions if a floating-point
chip or emulator is present. :

The instruction mnemonic RETF indicates that this is a far return
instruction. The normal RET mnemonic indicates a near return.

Where possible, the target of JMP and CALL instructions is
displayed symbolically. If CS:IP is a JMP or conditional jump
instruction, an arrow (T or) that shows jump direction will be
displayed only if the executing instruction will cause the jump to
occur. Also, memory addresses used by MOV, ADD, and other
instructions display symbolic addresses.

172 Turbo Debugger User's Guide

The Code pane

local menu 1f you don’t come up in the Code pane, use Tab or Shift-Tab to get
there. Then press Alt-F10 to bring up the local menu.

Goto

Origin

Follow

Caller
Previous
Search

View source
Mixed Yes

New cs:ip
Assemble...
1/0 >

Goto After choosing this command, you're prompted for the new
address to go to. You can enter addresses that are outside of your
program, to examine code in the BIOS ROM, inside DOS, and in
resident utilities. See Chapter 9 for complete information on
entering addresses.

The Previous command restores the Code pane to the position it
had before the Goto command was issued.

Origin Positions you at the current program location as indicated by the
CS:IP register pair. This command is useful when you want to
return to where you started.

The Previous command restores the Code pane to the position it
had before the Origin command was issued.

Follow Positions you at the destination address of the currently high-
lighted instruction. The Code pane is repositioned to display the
code at the address where the currently highlighted instruction
will transfer control. For conditional jumps, the address is shown
as if the jump occurred.

This command can be used with the CALL, JMP, conditional jump
(JZ, JNE, LOOP, JCXZ, and so forth) and INT instructions.

The Previous command restores the Code pane to the position it
had before the Follow command was selected.

Chapter 11, Assembler-level debugging 173

174

Caller

Previous

Search

Positions you at the instruction that called the current interrupt or
subroutine.

This command won't always work. If the interrupt routine or
subroutine has pushed data items onto the stack, sometimes
Turbo Debugger can't figure out where the routine was called
from.

The Previous command restores the Code pane to the position it
had before the Caller command was selected.

Restores the Code pane position to the address before the last
command that explicitly changed the display address. Using the
arrow keys and PgUp and PgDn does not cause the position to be
remembered.

When you choose Previous, the Code pane position is remem-
bered, so that repeated use of the Previous command causes the
Code pane to switch back and forth between two addresses.

Lets you enter an instruction or byte list to search for. Enter an
instruction exactly as you would with the Assemble command.

Be careful which instructions you try to search for; you should
only search for instructions that don’t change the bytes they
assemble to, depending on their location in memory. For example,
searching for the following instructions is no problem:

PUSH DX
POP [DI+4]
ADD AX, 100

but searching for the following instructions can cause unpre-
dictable results:

JE 123
CALL MYFUNC
LOOP 100

You can also enter a byte list instead of an instruction. See
Chapter 9 for more on entering byte lists.

Turbo Debugger User's Guide

Mixed Toggles between the three ways of displaying disassembled
instructions and source code:

No No source code is displayed, only disassembled
instructions.

Yes Source code lines appear before the first disassembled
instruction for that source line. The pane is set to this
display mode if your current module is a high-level
language source module.

Both Source code lines replace disassembled lines for those
lines that have corresponding source code; otherwise, the
disassembled instruction appears. Use this mode when
you are debugging an assembler module, and you want
to see the original source code, instead of the correspond-
ing disassembled instruction. The pane is set to this
display mode if your current module is an assembler
source module.

New CS:IP Sets the program location counter (CS:IP registers) to the current-
ly highlighted address. When you rerun your program, execution
starts at this address. This is useful when you want to skip over a
piece of code without executing it.

> Use this command with extreme care. If you adjust the CS:IP to a
location where the stack is in a different state than at the current
CS:IP, you will almost certainly crash your program. Do not use
this command to set the CS:IP to an address outside of the current
routine.

Assemble... Assembles an instruction, replacing the one at the currently
highlighted location. You are prompted for the instruction to
assemble. See the section called “The assembler” in this chapter
(page 184) for more details.

You can also invoke this command by simply starting to type the
statement you want to assemble. When you do this, a dialog box
appears exactly as if you had specified Assemble.

Chapter 11, Assembler-level debugging 175

176

I/O Reads or writes a value in the CPU’s I/O space and lets you

In byte
Out byte
Read word
Write word

examine the contents of I/O registers on cards and write things to
them.

It pops up this menu.

In Byte

Reads a byte from an I/O port. You are prompted for the I/O port
whose value you want to examine. Use the Read Word option to
read from a word-sized 1/O port.

Out Byte

Writes a byte to an I/O port. You are prompted for the I/O port
to write to and the value you want to write. Use the Write Word
option to write to a word-sized I/O port.

Read Word

Reads a word from an I/O port. You are prompted for the I/O
port whose value you want to examine. Use the In Byte option to
read from a byte-sized I/O port.

Write Word

Writes a word to an I/O port. You are prompted for the I/O port
to write to and the value you want to write. Use the Out Byte
option to write to a byte-sized I/O port.

IN and OUT instructions access the I/O space where peripheral
device controllers (such as serial cards, disk controllers, and video
adapters) reside.

Be careful when you use these commands. Some I/O devices consider
reading their ports to be a significant event that causes the device
to perform some action, such as resetting status bits or loading a
new data byte into the port. You may disrupt the normal
operation of the program you are debugging or the device with
indiscriminate use of these commands.

Turbo Debugger User's Guide

The Register and Flags panes

The Register pane
local menu

Increment

Decrement
Zero

Change...

The Register pane, which is the top pane to the right of the Code
pane, shows the contents of the CPU registers.

The top right pane is the Flags pane, which shows the state of the
eight CPU flags. The following table lists the different flags and
how they are shown in the Flags pane:

Letter in pane Flag name

Carry

Zero

Sign

Overflow

Parity
Auxiliary carry
Interrupt enable
Direction

Q= eTmg o v NN

Press Alt-F10 to pop up the Register pane local menu. Or, if
control-key shortcuts are enabled, use the Cir/key with the first
letter of the desired command to access the command.

Increment

Decrement

Zero

Change...

Registers 32-bit No

Adds 1 to the value in the currently highlighted register. This is an
easy way to make small adjustments in the value of a register to
compensate for “off-by-one” bugs.

Subtracts 1 from the value in the currently highlighted register.
Sets the value of the currently highlighted register to 0.

Changes the value of the currently highlighted register. You are
prompted for the new value. You can make full use of the expres-
sion evaluator to enter a new value.

Chapter 11, Assembler-level debugging 177

You can also invoke this command by simply starting to type the
new value for the register. A dialog box appears exactly as if you
had specified the Change command.

Registers 32-bit On an 80386 processor, toggles between displaying the CPU
registers as 16-bit or 32-bit values. You will usually see 16-bit
registers, unless you use this command to set the display to 32-bit
registers. You really need to see 32-bit registers only if you're de-
bugging a program that uses the 32-bit addressing capabilities of
the 386 chip. If you are debugging an ordinary program that uses
only normal 16-bit addressing, use the 16-bit register display.

The Flags pane

local menu Press Alt-F10 to pop up the Flags pane local menu or, if control-key
shortcuts are enabled, use the Cirl key with the first letter of the

Toggle | jesired command to access the command.

Toggle Sets the value of the flag to 0 if it was 1, and to 1 if it was 0. The
value 0 corresponds to “clear,” and 1 indicates “set.” You can also
press Enter to toggle the value of the currently highlighted flag.

The Data pane

This pane shows a raw display of an area of memory you've
selected. The leftmost part of each line shows the address of the
data displayed in that line. The address is displayed either as a
hex segment and offset, or with the segment value replaced with
the DS register name if the segment value is the same as the
current DS register.

Next, the raw display of one or more data items is displayed. The
format of this area depends on the display format selected with
the Display As local menu command. If you choose one of the
floating-point display formats (Comp, Float, Real, Double,
Extended), a single floating-point number is displayed on each
line. Byte format displays 8 bytes per line, Word format displays
4 words per line, and Long format displays 2 long words per line.

When the data is displayed as bytes, the rightmost part of each
line shows the display characters that correspond to the data
bytes displayed. Turbo Debugger displays all byte values as their

178 Turbo Debugger User's Guide

The Data pane
local menu

Goto

Search

display equivalents, so don’t be surprised if you see funny
symbols displayed to the right of the hex dump area—these are
just the display equivalents of the hex byte values.

If you use the Data pane to examine the contents of the display
memory, the ROM BIOS data area, or the vectors in low memory,
you will see the values that are there when the program being
debugged runs, not the actual values in memory when Turbo
Debugger is running. These are not the same values that are in
these memory areas at the time you look at them. Turbo Debug-
ger detects when you're accessing areas of memory that it uses as
well, and it gets the correct data value from where it stores the
user program’s copy of these data areas.

Once you are positioned in the Data pane, press Alf-F10 to pop up
the local menu or, if control-key shortcuts are enabled, use the Ctrl
key with the first letter of the desired command to access it.

Goto
Search
Next

Change
Follow >
Previous
Display as »
Block >

Positions you at an address in your data. Enter the new address
you want to go to. You can enter addresses inside DOS, in resi-
dent utilities, or outside of your program, which lets you examine
data in the BIOS data area. See Chapter 9 for a complete
discussion of how to enter addresses.

Searches for a character string, starting at the current memory
address as indicated by the cursor position. Enter the byte list to
search for. The search does not wrap around from the end of the
segment to the beginning. See Chapter 9 for a complete discussion
of byte lists.

Chapter 11, Assembler-level debugging 179

180

Next

Change...

Follow

Near code
Far code

Offset to data
Segment:offset to data
Base segment:0 to data

Searches for the next instance of the byte list you previously
specified with the Search command.

Lets you change the bytes at the current cursor location. If you're
over an ASCII display or the format is Byte, you're prompted for
a byte list. Otherwise, you're prompted for an item of the current
display type. See Chapter 9 for a discussion of byte lists.

You can also invoke this command by simply starting to type the
new value or values. This brings up a dialog box exactly as if you
had chosen the Change command.

This command opens a menu that lets you follow near or far
pointer chains.

Near Code

This command interprets the word under the cursor in the Data
pane as an offset into the current code segment as specified by the
CS register. The Code pane becomes the current pane and is posi-
tioned to this address.

Far Code

This command interprets the doubleword under the cursor in the
Data pane as a far address (segment and offset). The Code pane
becomes the current pane and is positioned to this address.

Offset to Data

This command lets you follow word (near, offset only) pointer
chains. The Data pane is set to the offset specified by the word in
memory at the current cursor location.

Segment:Offset to Data

This command lets you follow long (far, segment, and offset)
pointer chains. The Data pane is set to the offset specified by the
two words in memory at the current cursor location.

Turbo Debugger User's Guide

Previous

Display As

Byte
Word
Long
Comp
Float
Real
Double
Extended

Base Segment:0 to Data

This command interprets the word under the cursor as a segment
address and positions the Data pane to the start of that segment.

Restores the Data pane address to the address before the last
command that explicitly changed the display address. Using the
arrow keys and PgUp and PgDn does not cause the position to be
remembered.

Turbo Debugger maintains a stack of the last five addresses, so
you can backtrack through multiple uses of the Follow menu or
Goto commands.

Lets you choose how data appears in the Data pane. You can
choose from any data format used by C, Pascal, and assembler.
The menu options are described here.

Byte

Sets the Data pane to display as hexadecimal bytes. This
corresponds to the C char data type and the Pascal Byte type.

Word

Sets the Data pane to display as word hexadecimal numbers. The
2-byte hexadecimal value is shown. This corresponds to the C int
data type and the Pascal Word type.

Long

Sets the Data pane to display as long hexadecimal integers. The
4-byte hex value is shown. This corresponds to the C long data
type and the Pascal Longint type.

Comp

Sets the Data pane to display 8-byte integers. The decimal value of
the integer is shown. This is the Pascal Comp (IEEE) data type.

Chapter 11, Assembler-level debugging 181

Block

Clear
Move
Set
Read
Write

182

Float

Sets the Data pane to display as short floating-point numbers. The
scientific notation floating-point value is shown. This is the same
as the C float data type and the Pascal Single (IEEE) type.

Real

Sets the Data pane to display Pascal’s 6-byte floating-point
numbers. The scientific notation floating-point value is shown.
This is the Pascal Real type.

Double

Sets the data pane to display 8-byte floating-point numbers. The
scientific notation floating-point value is shown. This is the same
as the C long double data type, the Pascal Double type, and the
assembler TBYTE type.

Extended

Sets the Data pane to display 10-byte floating-point numbers. The
scientific notation floating-point value is shown. This is the inter-
nal format used by the 80x87 coprocessor. It also corresponds to

the C long double data type and the Pascal Extended (IEEE) type.

Lets you manipulate blocks of memory. You can move, clear and
set memory blocks, and read and write memory blocks to and
from disk files. Block brings up the pop-up menu shown.

Clear

Sets a contiguous block of memory to zero (0). You are prompted
for the address and the number of bytes to clear.

Move

Copies a block of memory from one address to another. You are
prompted for the source address, the destination address, and
how many bytes to copy.

Turbo Debugger User’s Guide

The Stack pane

Set

Sets a contiguous block of memory to a specific byte value. You
are prompted for the address of the block, how many bytes to set,
and the value to set them to.

Read

Reads all or a portion of a file into a block of memory. You are
prompted first for the file name to read from, then for the address
to read it into, and finally for how many bytes to read.

Write

Writes a block of memory to a file. You are prompted first for the
file name to write to, then for the address of the block to write and
how many bytes to write.

The Stack pane
local menu

Goto

The Stack pane, in the lower right corner of the CPU window,
shows the contents of the stack.

At the Stack pane, press Alt-F10 to pop up the local menu or, if
control-key shortcuts are enabled, use the Cir/key with the first
letter of the desired command to access the command.

Goto
Origin
Follow
Previous
Change...

Positions you at an address in the stack. Enter the new stack
address. If you want, you can enter addresses outside your pro-
gram’ stack, although you would usually use the Data pane to
examine arbitrary data outside your program. See Chapter 9 for
information about how to enter addresses.

The Previous command restores the Stack pane to the position it
had before the Goto command was issued.

Chapter 11, Assembler-level debugging 183

Origin

Follow

Previous

Change

The assembler

Positions you at the current stack location as indicated by the
SS:SP register pair. This command is useful when you want to
return to where you started.

The Previous command restores the Stack pane to the position it
had before the Origin command was issued.

Positions you at the word in the stack pointed to by the currently
highlighted word. This is useful for following stack-frame threads
back to a calling function.

The Previous command restores the Stack pane to the position it
had before the Follow command was issued.

Restores the Stack pane position to the address before the last
command that explicitly changed the display address. Using the
arrow keys and PgUp and PgDn does not cause the position to be
remembered.

Repeated use of the Previous command causes the Stack pane to
switch back and forth between two addresses.

Lets you enter a new word value for the currently highlighted
stack word.

You can also invoke this command by simply starting to type the
new value for the highlighted stack item. A dialog box will
appear, exactly as if you had specified the Change command.

184

Via the Assemble command in the Code pane local menu, Turbo
Debugger lets you assemble instructions for the 8086, 80186,
80286, 80386, and 80486 processors, and also for the 8087, 80287,
and 80387 numeric coprocessors.

When you use Turbo Debugger’s built-in assembler to modify
your program, the changes you make are not permanent. If you
reload your program using the Run | Program Reset command, or
if you load another program using the File | Open command,
you'll lose any changes you've made.

Turbo Debugger User’s Guide

Normally you use the assembler to test an idea for fixing your
program. Once you've verified that the change works, you must
change your source code and recompile and link your program.

The following sections describes the differences between the
built-in assembler and the syntax accepted by Turbo Assembler.

Operand address

size overrides For the call (CALL), jump (JMP), and conditional jump (JNE, JL,
and so forth) instructions, the assembler automatically generates
the smallest instruction that can reach the destination address.
You can use the NEAR and FAR overrides before the destination
address to assemble the instruction with a specific size. For
example,

CALL FAR XYZ
JMP NEAR Al

Memory and When you use a symbol from your program as an instruction
immediate operands operand, you must tell the built-in assembler whether you mean

the contents of the symbol or the address of the symbol. If you use
just the symbol name, the assembler treats it as an address, exact-
ly as if you had used the assembler OFFSET operator before it. If
you put the symbol inside brackets ([]), it becomes a memory
reference. For example, if your program contains the data
definition

A DW4
then [A] references the area of memory where A is stored.

When you assemble an instruction or evaluate an assembler
expression to refer to the contents of a variable, use the name of
the variable alone or between brackets:

mov dx,a
mov ax, [a]

To refer to the address of the variable, use the OFFSET operator:

mov ax,offset a

Chapter 11, Assembler-level debugging 185

Operand data

size overrides For some instructions, you must specify the operand size using
one of the following expressions before the operand:

BYTE PTR
WORD PTR

Here are examples of instructions using these overrides:

add BYTE PTR[si], 10
mov WORD PTR[bp+10],99

In addition to these size overrides, you can use the following
overrides to assemble 8087 /80287 /80387 numeric coprocessor
instructions:

DWORD PTR
QWORD PTR
TBYTE PTR

Here are some examples using these overrides:

£ild QWORD PTR[bx]
stp TBYTE PTR[bp+4]

String instructions

When you assemble a string instruction, you must include the
size (byte or word) as part of the instruction mnemonic. The
assembler does not accept the form of the string instructions that
uses a sizeless mnemonic with an operand that specifies the size.
For example, use STOSW rather than STOS WORD PTR[di].

The Dump window

The Dump window shows you a raw data dump of any area of
memory. It works exactly like the Data pane in the CPU window.

[u]=Dump-
ds:0000 CD
ds:0008 1B
gs:001o 22

Figure 11.2
The Dump window

186 Turbo Debugger User's Guide

See “The Data pane local menu” section earlier in this chapter
(page 179) for a description of the contents and local menu for this
window.

Typically, you'd use this window when you're debugging an

assembler program at the source level, and you want to take a
low-level look at some data areas. Use View | Dump to open a

Dump window.

and you want to look at the raw bytes that make up the object you
are inspecting. Use View | Dump to get a Dump window that’s
positioned to the data in the Inspector window.

Yo can also nige this window if ynn'rp in an Tncppr‘h‘\r window
S window 1if you're i an Inspector window,

The Registers window

Figure 11.3
The Registers window

You can shrink the size of
your Module window and
put up a Registers window
alongside it.

The Registers window shows you the contents of the CPU
registers and flags. It works like a combination of the Registers
and Flags panes in the CPU window.

—=[m]=Regs=3=[{]=
ax 0000
bx 0000
cx 0000
dx 0000
si 0000
di 0000
bp 0000
sp 3FFE
ds 61AF
es 61AF
ss 668F
cs 61BF
ip 084E

0
n

Womomouowonu
OO O0OCOCOO0O

Q-0 T O WnN

See “The Register pane local menu” (page 177) and “The Flags
pane local menu” (page 178) sections earlier in this chapter for a
description of the contents and local menus for this window.

Use this window when you're debugging an assembler program
at the source level and want to look at the register values.

Borland C++ code generation

Borland’s C and C++ compilers do a number of predictable things
when they generate machine code. Once you become familiar
with your compiler, you'll quickly see exactly how the machine
instructions correspond to your source code.

Chapter 11, Assembler-level debugging 187

188

Function return values are placed in the following registers:

Return type Register(s)
int AX

long DX:AX
float ST(0)
double ST(0)

long double ST(0)
near* AX

far * DX:AX

The compiler places heavily used int and near pointers into regis-
ters, using first the SI register, then the DI register.

Your autovariables and function-calling parameters are accessed
from SS:BP.

The AX, BX, CX, and DX registers are not necessarily preserved
across function calls.

Registers are always used as word registers, not as byte registers,
even if you use char data types.

Switch statements can be compiled into one of three forms,
depending on which will produce the most efficient code:

m conditional jumps as if the switch were an if...else chain
m a jump table of code addresses
m a jump table of switch values and code addresses

Refer to the manuals for your Borland C or C++ compiler for
more information on how it generates code.

Turbo Debugger User’s Guide

12

The 80x8/ coprocessor chip and
emulator

This chapter is for pro- If your program uses floating-point numbers, Turbo Debugger
M 'S'h;g,;i r’; %’?’fl,’%’ lets you examine and change the state of the numeric coprocessor
80x87 ma:l‘:l)w coprocessor. OF software emulator. You don’t need to use the capabilities
described in this chapter to debug programs that use floating-
point numbers, although some very subtle bugs may be easier to

find.

In this chapter, we discuss the differences between the 80x87 chip
and the software emulator. We also describe the Numeric
Processor window and show you how to examine and modify the
floating-point registers, the status bits, and the control bits.

The 80x87 chip vs. the emulator

Turbo Debugger automatically detects whether your program is
using the math chip or the emulator and adjusts its behavior
accordingly.

Note that most programs use either the emulator or the math
chip, not both within the same program. If you have written
special assembler code that uses both, Turbo Debugger won’t be
able to show you the status of the math chip; it will report on the
emulator only.

Chapter 12, The 80x87 coprocessor chip and emulator 189

The Numeric Processor window

Figure 12.1
The Numeric Processor
window

The Register pane

190

The 80-bit floating-
point registers

You create a Numeric Processor window by choosing the View |
Numeric Processor command from the menu bar. The line at the
top of the window shows the current instruction pointer, data
pointer, and instruction opcode. The data pointer and instructions
pointer are both shown as 20-bit physical addresses. You can con-
vert these addresses to a segment and offset form by using the
first four digits as the segment value, and the last digit as the
offset value.

For example, if the top line shows IPTR=5A669, you can treat this as
the address 5a66:9 if you want to examine the current data and
instruction in a CPU window. This window has three panes: The
left pane (Register pane) shows the contents of the floating-point
registers, the middle pane (Control pane) shows the control flags,
and the right pane (Status pane) shows the status flags.

[w]=Emulator IPTR=00000 OPCODE=000 OPTR=00003=[1][¢]=
Empty ST(0O im=0 | ie=0
Empty ST(1 dm=0 | de=0
Empty ST(2 zm=0 | ze=0
Empty ST(3 om=0 | oe=0
Empty ST(4 um=1 | ue=0
Empty ST(5 pm=1 | pe=0
Empty ST%G; iem=0 | ir=0
Empty ST(7 pc=3 | cc=9

rc=0 | st=0
ic=1

The top line shows you information about the last floating-point
operation that was executed. The IPTR shows the 20-bit physical
address from which the last floating-point instruction was
fetched. The OPCODE shows the instruction type that was
fetched. The OPTR shows the 20-bit physical address of the
memory address that the instruction referenced, if any.

The Register pane shows each of the floating-point registers, ST(0)
to ST(7), along with its status (valid/zero/special/empty). The
contents are shown as an 80-bit floating-point number.

If you've zoomed the Numeric Processor window (by pressing F5)
or made it wider by using Window | Size/Move, you'll also see
the floating-point registers displayed as raw hex bytes.

Turbo Debugger User's Guide

The Register pane local
menu

Zero
Empty
Change

The Control pane

The control bits

To bring up the Register pane local menu, press Alt-F10, or use the
Ctrl key with the first letter of the desired command to directly
access the command.

Zero
Sets the value of the currently highlighted register to zero.

Empty

Sets the value of the currently highlighted register to empty. This
is a special status that indicates that the register no longer
contains valid data.

Change

Loads a new value into the currently highlighted register. You are
prompted for the value to load. You can enter an integer or float-
ing-point value, using the current language’s expression parser.
The value you enter will be automatically converted to the 80-bit
temporary real format used by the numeric coprocessor.

You can also invoke this command by simply starting to type the
new value for the floating-point register. A dialog box will appear
exactly as if you had specified the Change command.

The following table lists the different control flags and how they
appear in the Control pane:

Name in pane Flag description
im Invalid operation mask
dm Denormalized operand mask
zm Zero divide mask
om Overflow mask
um Underflow mask
pm Precision mask
iem Interrupt enable mask (8087 only)
pc Precision control
Ic Rounding control
ic Infinity control

Chapter 12, The 80x87 coprocessor chip and emulator 191

The Control pane local

menu

The Status pane

The status bits

The Status pane local

192

menu

Press Tab to go to the Control pane, then press Alf-F10 to pop up
the local menu. (Alternatively, you can use the Cirl key with the
first letter of the desired command to access it.)

Toggle

Cycles through the values that the currently highlighted control
flag can be set to. Most flags can only be set or cleared (0 or 1), so
this command just toggles the flag to the other value. Some other
flags have more than two values; for those flags, this command
increments the flag value until the maximum value is reached,
and then it sets it back to zero.

You can also toggle the control flag values by highlighting them
and pressing Enter.

The following table lists the different status flags and how they
appear in the Status pane:

Name in pane Flag description
ie Invalid operation
de Denormalized operand
ze Zero divide
oe Overflow
ue Underflow
pe Precision
ir Interrupt request
cc Condition code
st Stack top pointer

Press Tab to move to the Status pane, then press Alf-F10 to
pop up the local menu. (You can also use the Cirlkey with
the first letter of the desired command to access the
command directly.)

Toggle

Cycles through the values that the currently highlighted
status flag can be set to. Works the same as the Control pane
local menu Toggle command.

Turbo Debugger User’s Guide

13

Command reference

Now that you've read about all the commands, here’s a quick
summary. This chapter lists and describes

m all the single-keystroke commands available on the function
and other keys

m all the menu bar commands and the commands for the local
menu of each window type

m keystrokes used in the two types of panes (those in which you
enter text and those from which you select an item)

m keystrokes for moving and resizing windows

Chapter 13, Command reference 193

Hot keys

A hot key is a key that performs its action no matter where you
are in the Turbo Debugger environment. The following table lists

all the hot keys:
Table 13.1: The function key and hot key commands
Key Menu command Function
F1 Brings up context-sensitive help.
F2 Breakpoints | Toggle Sets breakpoint at cursor position.
F3 View | Module Module pick list.
F4 Run | Go to Cursor Runs to cursor position.
F5 Window | Zoom Zooms/unzooms current window.
F6 Window | Next Window Goes to next window.
F7 Run | Trace Into Executes single source line or instruction.
F8 Run | Step Over Executes single source line or instruction, skipping calls.
F9 Run|Run Runs program.
F10 Invokes the menu bar, takes you out of menus.
Alt-F1 Help | Previous Topic Brings up last help screen.
Alt-F2 Breakpoints | At Sets breakpoint at an address.
Alt-F3 Window | Close Closes current window.
Alt-F4 Run | Back Trace Reverses program execution.
Alt-F5 Window | User Screen Shows your program’s screen.
Alt-F6 Window | Undo Close Reopens the last-closed window.
Alt-F7 Run | Instruction Trace ~ Executes a single instruction.
Alt-F8 Run | Until Return Runs until return from function.
Alt-F9 Run | Execute To Runs to a specified address.
Alt-F10 Invokes the window’s local menu.
Alt-1—9 Switch to numbered window 1 through 9.
Alt-Space Goes to the = (System) menu.
Alt-B Goes to the Breakpoints menu.
Ait-D Goes to the Data menu.
Alt-F Goes to the File menu.
Alt-H Goes to the Help menu.
Alt-O Goes to the Options menu.
AltR Goes to the Run menu.
AtV Goes to the View menu.
AltW Goes to the Window menu.
Alt-X File | Quit Quits Turbo Debugger and returns you to DOS.
Alt= Options | Macros | Create = Defines a keystroke macro.
Alt— Options | Macros | Stop ~ Ends a macro recording.
Recording
194 Turbo Debugger User’s Guide

Table 13.1: The function key and hot key commands (continued)

Key Menu command

Function

Ctrl-F2 Run | Program Reset
Ctrl-F4 Data | Evaluate

Ctrl-F5 Window | Size/Move
Ctrl-F7 Data | Add Watch
Ctrl-F8 Breakpoints | Toggle
Ctrl-F9 Run | Run

Ctrl-F10

Ctri >

Ctrl «—

Ctrl-A
Ctrl-C
Ctrl-D
Ctrl-E
Ctrl-F
Ctrl-R
Ctrl-S
Ctrl-X

Shift-F1 Help | Index
Shift-Tab

Shift —
Shift «
Shift T
Shift 1

Esc
Ins

Tab Window | Next Pane

Stops debug session and resets the program to start again.
Evaluates an expression.

Initiates window moving or resizing.

Adds a variable to the Watches window.

Toggles a breakpoint at cursor.

Runs a program.

Invokes the window’s local menu.

Shifts 1 byte up the starting address in a Code, Data, or Stack
pane in a CPU window.

Shifts 1 byte down the starting address in a Code, Data, or Stack
pane in a CPU window.

Moves to previous word.

Scrolls down one screen.

Moves right one column.

Moves up one line.

Moves to next word.

Scrolls up one screen.

Moves left one column.

Moves down one line.

Goes to the index for online help.
Moves cursor to previous window pane or dialog box item.

Moves cursor between the panes in a window.
(The pane in the direction of the arrow becomes
the active pane.)

Closes an Inspector window, goes out of menus.

Starts text block selection (highlight); use <~ and — to
highlight.

Moves cursor to next window pane or dialog box item.

Commands from the menu bar

You invoke the menu bar by pressing the F10 key; you can then go directly
to one of the individual menus by

m moving the cursor to the menu title and pressing Enter

m pressing the highlighted letter of the menu title

You can also open a menu directly (without first moving to the menu bar)
by pressing Altin combination with the first letter of the menu name you

desire.

Chapter 13, Command reference

195

196

The = (System)
menu

The File menu

The View menu

Repaint Desktop
Restore Standard

Redisplays entire screen
Restores standard window layout

About Displays information about Turbo
Debugger

Open Opens a new program to debug

Change Dir Changes to new disk or directory

Get Info Displays program information

DOS Shell Starts a DOS command processor

Resident Causes Turbo Debugger to terminate and
stay resident

Symbol Load Loads symbol table independent of .EXE
file

Table Relocate Sets base segment of symbol table

Quit Returns to DOS

Breakpoints Displays breakpoints

Stack Displays function-calling stack

Log Displays log of events and data

Watches Displays variables being watched

Variables Displays global and local variables

Module Displays program source module

File Displays disk file as ASCII or hex

CPU Displays CPU instructions, data, stack

Dump Displays raw data dump

Registers Displays CPU registers and flags

Numeric Processor Displays coprocessor or emulator

Execution History = Displays assembler code saved for
backtracking or keystroke playback

Hierarchy Displays object or class type list and

Windows messages

hierarchy tree

Displays a list of Windows messages for
one or more windows in your application
program

Turbo Debugger User's Guide

Another

Module Makes another Module window
Dump Makes another Dump window
File Makes another File window
The Run menu
Run Runs your program without

Go To Cursor
Trace Into

Step Over
Execute To
Until Return
Animate
Back Trace

Instruction Trace
Arguments

Program Reset

stopping

Runs to current cursor location
Executes one source line or
instruction

Traces, skipping calls

Runs to specified address

Runs until function returns
Continuously steps your program
Reverses program execution for one
source line or instruction
Executes a single instruction

Sets program command-line

arguments
Reloads current program

The Breakpoints
menu Toggle
At
Changed Memory Global

Expression True Global

Delete All

' Toggles breakpoint at cursor

Sets breakpoint at specified address
Sets global breakpoint on memory
area

Sets global breakpoint on
expression

Removes all breakpoints

The Data menu

Inspect
Evaluate/Modify
Add Watch
Function Return

Chapter 13, Command reference

Inspects a data object

Evaluates an expression

Adds variable to Watches window
Inspects current routine’s return
value

197

The Options
menu

The Window
menu

The Help Menu

198

Language

Macros
Create
Stop Recording
Remove
Delete All
Display Options

Path for Source
Save Options

Restore Options

Sets expression language from
source module

Defines a keystroke macro

Ends the recording session
Removes a keystroke macro
Removes all keystroke macros
Lets you set screen display options
(screen swapping, size, tabs)
Directory list for source files

Saves options, screen layout, and
macros to disk

Restores options from disk

Zoom
Next

Next Pane
Size/Move
Iconize/Restore

Close

Undo Close

Dump Pane to Log
User Screen

Open window list

Zooms window to full screen size
and back

Activates successive windows open
onscreen

Goes to the next pane in a window
Moves window or changes its size
Reduces window to a small symbol
or restores it

Closes window

Reopens the last window closed
Writes current pane to Log window
Displays your program output
Displays list of open windows to
activate

Window Pick Displays a menu of open menus, if
more than 9 are open onscreen

Index Goes to the index for online help

Previous Topic Brings up last help screen

Help on Help Accesses online help on the help

system

Turbo Debugger User’s Guide

The local menu commands

E?)Ch fype q:hwindow gnd You invoke the local menu for the current window by pressing

each pane within a window : B} ;

has a different local meny, AEF10-1f C?ntl:o! key shortcx'lts are enabled., you can go d11:ectly to
one of the individual menu items by pressing the Ctrlkey in
combination with the first letter of the item you desire. (Use the
installation program TDINST to enable control-key shortcuts, if
they've been disabled.)

The menus in this section are The following sections describe the local menu for each window

arranged in alphabetical and pane
order to make lookups easier. p)

Some panes have shortcuts to commonly used commands on their
local menu. In the following section, these special keys are listed
before the menu commands for the pane to which they apply. In
many panes, the Enter key is a shortcut to examining or changing
the currently highlighted item. The Delkey often invokes the local
menu command that deletes the highlighted item. Some panes let
you start typing letters or numbers without first invoking a local
menu command. In these cases, the dialog box for one of the local
menu items pops up to accept your input.

Breakpoints

WiNndOw The Breakpoints window has two panes: the List pane on the left
and the Detail pane on the right. Only the List pane has a local

menu.

Set Options Sets breakpoint actions, conditions,
pass count, and enable/disable

Hardware Options Lets you set hardware breakpoints

Add Adds a new breakpoint

Remove Removes highlighted breakpoint

Delete All Deletes all breakpoints

Inspect Looks at code where breakpoint is
set

Delis the shortcut for Remove in this window.

Chapter 13, Command reference 199

The CPU window

MENUS The CPU window has five panes, each with a local menu: the
Code pane, the Data pane, the Stack pane, the Register pane, and

200

Code pane

Data pane

the Flags pane.
Goto Displays code at new address
Origin Displays code at CS:IP
Follow Displays code at JMP or CALL
target
Caller Displays code at calling function
Previous Displays code at last address
Search Searches for instruction or bytes
View Source Switches to Module window
Mixed Mixes source code with dis-
assembly: No/Yes/Both
New CS:IP Sets CS:IP to execute at new address
Assemble Assembles instruction at cursor
1/0 Brings up I/O menu
In Byte Reads a byte from an I/O location
Out Byte Writes a byte to an I/O location
Read Word Reads a word from an I/O location
Write Word Writes a word to an I/O location

Typing any character is a shortcut for the Assemble local menu

command in this pane.

Goto
Search
Next
Change

Follow
Near Code

Far Code

Offset to Data

Displays data at new address
Searches for string or data bytes
Searches again for next occurrence
Changes data bytes at cursor
address

Sets Code pane to the near address
under the cursor

Sets Code pane to the far address
under the cursor

Sets Data pane to the near address
under the cursor

Turbo Debugger User's Guide

Segment:Offset Sets Data pane to the far address

to Data under the cursor
Base Segment:0 Sets Data pane to start of segment
to Data that contains the address under the
cursor
Previous Displays data at last address
Display As
Byte Displays hex bytes
Word Displays hex words
Long Displays hex 32-bit long words
Comp Displays 8-byte Pascal comp
integers
Float Displays short (4-byte) floating-
point numbers (Pascal singles, C
floats)
Real Displays 6-byte floating-point
numbers (Pascal reals)
Double Displays 8-byte floating-point
numbers (Pascal and C doubles)
Extended Displays 10-byte floating-point
numbers (C long double, Pascal
extended)
Block
Clear Sets memory block to zero
Move Moves memory block
Set Sets memory block to value
Read Reads from file to memory
Write Writes from memory to file

Typing any character is a shortcut for the Change local menu
command in this pane.

Flags pane
9P Toggle Sets or clears highlighted flag

Pressing Enter or Spacebar is a shortcut for the Toggle local menu
command in this pane.

Chapter 13, Command reference 201

202

Register pane

Stack pane

Dump window

The Execution
History window
menus

Instructions pane

Increment Adds one to highlighted register
Decrement Subtracts one from highlighted register
Zero Clears highlighted register

Change Sets highlighted register to new value

Registers 32-bit Toggles 32-bit register display: No/Yes

Typing any character is a shortcut for the Change local menu
command in this pane.

Goto Displays stack at new address

Origin Displays data at SS:SP

Follow Displays code pointed to by current item
Previous Restores display to last address

Change Lets you edit information

Typing any character is a shortcut for the Change local menu
command in this pane.

The Dump window is identical to the Data pane of the CPU
window. Its local menu is identical to the Data pane local menu.

The Execution History window has two panes, each with a local
menu: the Instructions pane and the Keystroke Recording pane.

The Instructions pane shows instructions already executed that
you can examine or undo.

Inspect Takes you to the highlighted command.

Reverse Execute Reverses program execution to the
instruction highlighted in the Instructions
pane.

Full History Enables (On) or disables (Off) reverse
execution.

Turbo Debugger User’s Guide

Keystroke Recording The Keystroke Recording pane shows your recorded keystrokes.
pane You can use them to examine source code or rerun your program.

Inspect Lets you see the line of source code or the
instruction at which the keystroke
occurred.

Keystroke Restore =~ Reloads and runs your program to the
context of the hichlichted kevstroke
context of the highlighted keystro
(useful if Execution History isn’t
available).

File window
The File window shows the contents of the disk file as hex bytes
or as an ASCII file.
Goto Displays line number or hex offset
Search Searches for string or data bytes
Next Searches again for next occurrence
Display As Sets file display mode: ASCII/Hex
File Switches to view new file
Edit Edits file or changes bytes at cursor
Typing any character is a shortcut for the Search local menu
command.
Log window

Menu The Log window shows messages sent to the log and allows you
to list Windows memory and module information.

Open Log File Starts logging to a file
Close Log File Stops logging to a file
Logging Toggles logging: No/Yes
Add Comment Writes user comment to log
Erase Log Clears all log messages

Chapter 13, Command reference 203

Display Windows info ~ Displays the Windows Information
= dialog box, from which you can
pick the type of list (global heap,
local heap, or module) you want to

display

Typing any character is a shortcut for the Add Comment local
menu command.

Module window
The Module window shows the source file for the program

module.
Inspect Shows contents of variable under cursor
Watch Adds variable under cursor to watch list
Module Changes to display different module
File Changes to display different file
Previous Displays last module and position
Line Displays source at line in module
Search Searches for text string
Next Searches for next occurrence of string
Origin Displays current program location
Goto Shows source or instructions at address
Edit Starts editor to edit source file

Typing any character is a shortcut for the Goto local menu
command.

Windows

Messages The Windows Messages window has three panes: the Window
window Selection pane, the Message Class pane, and the Messages pane.

Window Selection These are the local menu commands in this pane:

pane
= Add Adds a window name or handle value
Remove Removes the selected window

Delete all Deletes all window selections

204 Turbo Debugger User’s Guide

Message Class pane

Messages pane

Numeric
Processor window

Register pane

Typing any character is a shortcut for the Add local menu
command in this pane.

The Del key or the Cirl-Y key combination is a shortcut for the
Remove local menu command.

These are the local menu commands in this pane:

Add Adds a message class or single message

Remove Removes the selected message class or
single message

Delete all Deletes all message class or single

message selections

Typing any character is a shortcut for the Add local menu
command in this pane.

The Del key or the Cirl-Y key combination is a shortcut for the
Remove local menu command.

These are the local menu commands in this pane:

Send to log window Sends all messages received to the log
window so they can be saved in a log
file

Erase log Erases all messages in the pane

The Numeric Processor window has three panes: the Register
pane, the Status pane, and the Control pane.

These are the local menu commands in this pane:

Zero Clears the highlighted register
Empty Sets the highlighted register to empty
Change Sets the highlighted register to a value

Typing any character is a shortcut for the Change local menu
command in this pane.

Chapter 13, Command reference 205

Status pane

Control pane

Hierarchy window

Object Type/Class List
pane

Hierarchy Tree pane

206

This is the local menu command in this pane:

Toggle . Cycles through valid flag values

Pressing Enter or Spacebar is a shortcut for the Toggle local menu
command in this pane.

This is the local menu command in this pane:

Toggle Cycles through valid flag values

Pressing Enter or Spacebar is a shortcut for the Toggle local menu
command in this pane.

The Hierarchy window has two panes, the Object Type/Class List
pane and the Hierarchy Tree pane. It also has a third pane, the
Parent Tree pane, if you are running a C++ program with
multiple inheritance.

Inspect Shows contents of highlighted object or class
type

Tree Moves to the Hierarchy Tree pane

Inspect Shows contents of highlighted object or class
type

Parents Toggles whether Parent Tree pane is displayed
if you are running a C++ program with
multiple inheritance

Turbo Debugger User’s Guide

Parent Tree pane R -
Inspect Shows contents of highlighted object or class

type

Registers window

Menu The Registers window is identical to the Register and Flags panes
of the CPU window. Its local menus are identical to the Register
pane local menu and the Flags pane local menu.

Stack window

The Stack window shows the currently active functions.

Inspect Shows source code for highlighted function
Locals Shows local variables for highlighted function

Pressing Enter is a shortcut for the Inspect local menu command.

Variables window

The Variables window has two panes, each with a local menu:
The Global Symbol pane and the Local Symbol pane.

Global Symbol pane

Inspect Shows contents of highlighted symbol
Change Changes value of highlighted symbol
Watches Adds highlighted symbol to Watches window

Pressing Enter is a shortcut for the Inspect local menu command in

this pane.
Local Symbol pane -
Inspect Shows contents of highlighted symbol
Change Changes value of highlighted symbol
Watches Adds highlighted symbol to Watches window
Show Changes modules, or shows only static

variables, only auto variables, or both

Pressing Enter is a shortcut for the Inspect local menu command in
this pane.

Chapter 13, Command reference 207

Watches window

The Watches window has a single pane that shows the names and
values of the variables you're watching.

Watch Adds a variable or expression to watch

Edit Lets you edit a watch variable or expression

Remove Deletes highlighted variable or expression

Delete All Deletes all watch variables and expressions

Inspect Shows contents of highlighted variable or
expression

Change Changes contents of highlighted variable; does

not affect expressions

The following keys are shortcuts to local menu commands in this
window:

any character Watch
Enter Edit
Del Remove

Inspector window
An Inspector window shows the contents of a data item.

Range Selects array members to inspect

Change Changes the value of highlighted item

Inspect Opens new Inspector window for
highlighted item

Descend Expands highlighted item into this
Inspector window

New Expression Inspects a new expression in this
Inspector window

Type Cast Type casts highlighted item to new
type

208 Turbo Debugger User's Guide

Object
Type/Class
Inspector window

Object/class
instance
Inspector window

Object type/class Inspector windows have two panes that show
the contents (data fields or members, and methods or member
functions) of an object or class. Their local menus, the same for
both panes, are quite different from the local menu of regular

Inspector windows.

Inspect

Hierarchy
Show Inherited

Shows the contents of the highlighted
type

Returns to the Hierarchy window
Toggles between showing all contents
of object or class, and contents
declared in current object or class

Object/ class instance Inspector windows contain three panes, of
which only the first two have local menus. (The third displays

only the object type or class to which the instance belongs). Both
local menus are the same, and contain the following commands:

Range
Change
Methods

Show Inherited

Inspect

Descend

New Expression
Type Cast

Hierarchy

Selects array members to inspect
Changes the value of highlighted item
Toggles whether methods or member
functions are summarized in the
middle pane

Toggles between showing all contents
of object or class and contents declared
in current object or class

Opens new Inspector window for
highlighted item

Expands highlighted item into this
Inspector window

Inspects a new expression in this
Inspector window

Type casts highlighted data item to
new type

Returns to the Object Hierarchy
window

Chapter 13, Command reference

209

Text panes

Text pane is the generic name for a pane that displays the contents
of a text file. The blinking cursor shows your current position in
the file. The following table lists all the commands:

Table 13.2 N
Text pane key commands Key Function
Ins Marks text block
Moves up one line
d Moves down one line
- Moves right one column
— Moves left one column
Ctrl — Moves to next word
Ctrl Moves to previous word
Home Goes to start of line
End Goes to last character on line
PgUp Scrolls up one screen
PgDn Scrolls down one screen
Ctrl-Home Goes to top line of pane
Ctrl-End Goes to bottom line of pane
Ctrl-PgUp Goes to first line of file
Ctrl-PgDn Goes to last line of file

If you are not using the control-key shortcuts, you can also use the
WordStar-style control keys for moving around a text pane.

List panes
This is the generic name for a pane that lists information you can
scroll through. A highlight bar shows your current position in the
list. Here’s a list of all the commands available to you.

210 Turbo Debugger User’s Guide

Table 13.3
List pane key commands Key

Function

Home

End

PgUp
PgDn
Ctrl-Home
Ctrl-End
Ctrl-PgUp
Ctrl-PgDn
Backspace
Letter

Moves up one item

Moves down one item

Scroll right

Scroll left

Goes to start of line

Goes to last character on line

Scrolls up one screen

Scrolls down one screen

Goes to top line of list pane

Goes to bottom line of list pane

Goes to first item in list

Goes to last item in list

Backs up one character in incremental match
Makes incremental search (select by typing)

You can also use the WordStar-style control keys for moving
around a List pane.

Commands in input and history list boxes

The following table shows the commands available when you're
inside an input or list box:

Table 13.4
Dialog box key commands

Function

Ctrl —
Ctrl
Home
End
PgUp
PgDn
Ctrl-Home
Ctrl-End
Ctrl-PgUp
Ctrl-PgDn
Backspace
Enter

Del

Esc
Ctrl-N

Moves up one list item

Moves down one list item

Moves right one character

Moves left one character

Moves to next word

Moves to previous word

Goes to start of line

Goes to last character on line

Scrolls up one screen

Scrolls down one screen

Goes to top line of list pane

Goes to bottom line of list pane

Goes to first item in list

Goes to last item in list

Deletes the character before the cursor
Accepts your input and proceed

Deletes the character at the cursor

Cancels the dialog box and returns to menu
Completes partially typed name in input box

Chapter 13, Command reference

211

Window movement commands

The following table shows the keys you can use to reposition and
resize a window:

Table 13.5

Window movement key Key Function
commands Ctrl-F5 Toggles window-positioning mode
Moves window up one line

\) Moves window down one line
- Moves window right one column
«— Moves window left one column
Shift T Resizes window; moves bottom up
Shift 4 Resizes window; moves bottom down
Shift — Resizes window; moves right side away from left
Shift « Resizes window; moves right side toward left
Home Moves to left side of screen
End Moves to right side of screen
PgUp Moves to top line of screen
PgDn Moves to bottom line of screen
Enter Accepts current position
Esc Cancels window-positioning command

Wildcard search templates

You can use wildcard search templates in two circumstances:

m when you enter a file name to load or examine
m when you enter a text search expression in a text pane

The ? (question mark) matches any single character in the search
expression. The * (asterisk) matches 0 or more characters in the
search expression.

Complete menu tree

Figure 13.1 shows the complete structure of Turbo Debugger’s
pull-down menus.

212 Turbo Debugger User's Guide

Figure 13.1: The Turbo Debugger menu tree

I = Run J Ereakpoints JData] Ciindon JTeTo i
= (System) Run Options
Repaint desktop Run F9 Language... Source
Restore standard Go to cursor F4 Macros >
Trace into F7 Display options...
About... Step over F8 Path for source...
Execute to... Alt-F9 Save options...
Until return A1t-F8 Restore options...
Animate...
Back trace Alt-F4
Instruction trace Alt-F7
Create.... Alt =
Arguments. .. Stop recording Alt -
Program reset Ctr1-F2 Remove
Delete all
File Breakpoints Window
Open... Toggle F2 Zoom F5
Change dir... At... Alt-F2 Next F6
Get info... Changed memory global... Next pane Tab
DOS shell Expression true global... Size/move Ctrl-F5
Hardware breakpoint... Iconize/restore
Resident Delete all Close ATt-F3
Symbol Toad... Undo close Alt-F6
Table relocate...
Dump pane to log
Quit ATt-X User screen Alt-F5
1 Module TPDEMO
2 Watches
View Data Help
Breakpoints Inspect... Index Shift-F1
Stack Evaluate/modify... Ctrl-F4 Previous topic Alt-F1
Log Add watch... Ctri-F7 Help on help
Watches Function return
Variables
Module... F3
File...
CPU
Dump
Registers
Numeric processor
Execution history
Hierarchy Module...
Windows messages Dump
Another 4 File...

Chapter 14, How to debug a program

213

214 Turbo Debugger User’s Guide

14

How fo debug a program

Debugging is like the other phases of designing and imple-
menting a program—part science and part art. There are specific
procedures that you can use to track.down a problem, but at the
same time, a little intuition goes a long way toward making a long
job shorter.

The more programs you debug, the better you get at rapidly
locating the source of problems in your code. You learn tech-
niques that suit you well, and you unlearn methods that have
caused you problems.

In this chapter, we discuss some different approaches to debug-
ging, talk over the different types of bugs you may find in your
programs, and suggest some ways to test your program to make
sure that it works—and keeps on working.

Let’s begin by looking at where to start when you have a program
that doesn’t work correctly.

When things don’t work

First and foremost, don’t panic! Even the most expert program-
mer seldom writes a program that works the first time.

To avoid wasting a lot of time on fruitless searches, try to resist
the temptation to randomly guess where a bug might be. It is

Chapter 14, How to debug a program 215

better to use a universally tried-and-true approach: divide and
conquer.

Make a series of assumptions, testing each one in turn. For
example, you can say, “The bug must be occurring before function
xyz is called,” and then test your assumption by stopping your
program at the call to xyz, to see if there’s a problem. If you do
discover a problem at this point, you can make a new assumption
that the problem occurs even earlier in your program.

If, on the other hand, everything looks fine at function xyz, your
initial assumption was wrong. You must now modify that
assumption to “The bug is occurring sometime after function xyz
is called.” By performing a series of tests like this, you can soon
find the area of code that is causing the problem.

That'’ all very well, you say, but how do I determine whether my
program is behaving correctly when I stop it to take a look? One
of the best ways of checking your program’s behavior is to
examine the values of program variables and data objects. For
example, if you have a routine that clears an array, you can check
its operation by stopping the program after the function has
executed, and then examining each member of the array to make
sure that it’s cleared.

Debugging style

Everyone has their own style of writing a program, and everyone
develops their own style of debugging. The debugging sugges-
tions we give here are just starting points that you can build on to
mold your own personal approach.

Many times, the intended use of a program influences the
approach you take to debug it. If a program is for your own use or
will only be used once or twice to perform a specific task, a full-
scale testing of all its components is probably a waste of time,
particularly if you can determine that it is working correctly by
inspecting its output. If a program is to be distributed to other
people or performs a task of which the accuracy is hard to deter-
mine by inspection, your testing must be far more rigorous.

216 Turbo Debugger User’s Guide

Run the whole
thing

Incremental
testing

Types of bugs

For a simple or throwaway program, the best approach is often
just to run it and “see what happens.” If your test case has prob-
lems, run the program with the simplest possible input and check
the output. You can then move on to testing more complicated
input cases until the output is wrong. This will give you a good
feeling for just how much or how little of the program is working.

When you want to be very sure that a program is healthy, you
must test the individual routines, as well as checking that the
program works as expected for some test input data. You can do
this in a couple of ways: You can test each routine as you write it
by making it part of a test program that calls it with test data. Or
you can use Turbo Debugger to step through the execution of
each routine when the whole program is finished.

General bugs

Bugs fall into two broad categories: those peculiar to the language
you're working in (C, Pascal, or assembler), and those that are
common to any programming language or environment.

By making mental notes as you debug your programs, you learn
both the language-specific constructs you have trouble with, and
also the more general programming errors you make. You can
then use this knowledge to avoid making the same mistakes in
the future, and to give you a good starting point for debugging
future programs.

Understanding that each bug is an instance of a general family of
bugs or misunderstandings will improve your ability to write
errorless code. After all, it's better to write bug-free code than to
be really good at finding bugs.

The following examples barely scratch the surface of the kinds of
problems you can encounter in your programs.

Chapter 14, How fo debug a program 217

Hidden effects If you are careless about using global variables in functions, a call
to a function can leave unexpected contents in a variable or data
structure:

char workbuf{20];

strcpy (workbuf, "all done\n");
convert ("xyz");

printf (workbuf);

convert (char *p)

{
strcpy (workbuf, p);
while (*p)

}

Here, the correct thing to do would be to have the function use its
own private work buffer.

Assuming initialized Don’t assume that another routine has already set a variable for
data you:

char *workbuf;
addworkstring(char *s)

{
strcpy (workbuf, s); /* oops */
}

You should code a routine of this sort defensively by adding the
statement

if (workbuf == 0) workbuf = (char *)malloc(20);

Not cleaning up This sort of bug can crash your program by exhausting heap
space:

crunch_string(char *p)

{
char *work = (char *)malloc(strlen(p));
strcpy (work, p);

return (p) ; /* whoops--work still allocated */

}

218 Turbo Debugger User's Guide

Fencepost errors These bugs are named after the old brain teaser that goes “If I
want to put up a 100-foot fence with posts every 10 feet, how
many fenceposts do Ineed?” A quick but wrong answer is ten
(what about the final post at the far end?). Here’s a simple
example from the world of C programming:

for (n = 1; n < 10; n++)
{
/* oops--only 9 times */

}

Here you can easily see the numbers 1 and 10, and you think that
your loop goes from one to ten. (Better make that < into a <=.)

C-specific bugs
The User’s Guide for each of Borland’s C and C++ products has a
section on pitfalls in C programming. However this lesson on
how to debug is a good place to reiterate those pitfalls and
expand on them.

Borland’s C and C++ compilers are very good at finding C-specific
bugs that other compilers don’t warn you about. You can save
yourself some debugging time by turning on all the warnings that
the compiler is capable of generating. (See the User’s Guide for
your Borland C or C++ compiler for information on setting these
warnings.)

What follows is by no means an exhaustive list of ways you can
get in trouble with C. For some of these errors, Borland’s C and
C++ compilers issue a warning message. Remember to examine
the cause of any warning messages; they may be telling you about
abug in the making.

Using uninitialized In C, an autovariable declared inside a function is undefined until
autovariables you assign a value to it:

do_ten_times()
{
int n;
while (n < 10) {
n++;

}

Chapter 14, How to debug a program 219

Confusing = and ==

Confusing operator
precedence

Bad pointer arithmetic

220

This function executes the while loop an unpredictable number of
times because # is not initialized to 0 before being used as a
counter.

C lets you both assign a value (=) and test for equality (==) within
an expression; for example,

if (x=y) {
}

This inadvertently loads y into x and performs the statements in
the if expression if the value of y is not 0. You almost certainly
meant to say

if (x ==y)

C has so many operators that it is hard to remember which ones
are applied first when an expression is evaluated. One combi-
nation that often causes grief is the mixture of shift operators with
addition or subtraction. For example,

x=3<K1+1

evaluates to 12, not 7, as you might expect if << took effect before
the +.

When you use a pointer to step through an array, be careful how
you increment and decrement it. For example,

int *intp;
intp += sizeof (int);

does not increment intp to point to the next element of an integer
array. Instead, intp is advanced by two array elements because in
adding to or subtracting from a pointer, C takes into account the
size of the item the pointer is pointing to. All you have to do to
move the pointer to the next element is

intp++

Turbo Debugger User’s Guide

Unexpected sign
extension

Unexpected truncation

Misplaced semicolons

Chapter 14, How fo debug a program

Be careful about assigning between integers of different sizes:

int i = OXFFFE;

long 1;

1=1i;

if (1 & 0X80000000) {
. /* this DOES get executed */

}

One of C’s strong points can cause you trouble if you are not
aware of how it operates. C lets you assign freely between scalar
values (char, int, and so on). When you copy an integer scalar into
a larger scalar, the sign (positive or negative) is preserved in the
larger scalar by propagating the sign (highest) bit throughout the
high portion of the larger scalar. For example, an int value of -2
(Oxfffe) becomes a long value of -2 (0xfffffffe).

This problem is the opposite of the previous one:
int i;
long 1 = 0X10000;
i=1
while (i > 0) {
/* this does NOT get executed */
}

Here, the assignment of [to 7 resulted in the top 16 bits of [being
truncated, leaving a value of zero in i.

The following code fragment may appear to be fine at first glance:

for (x = 0; x < 10; x+4);
{

/* only executed once */

}

Why does the code between the braces execute only once? Closer
inspection reveals a semicolon (;) at the end of the for expression.
This hard-to-find bug causes the loop to execute ten times, but
does nothing. The subsequent block is then executed once. This is
a nasty problem because you can’t find it with the usual technique
of examining the formatting and indenting of code blocks in your
program.

221

Macros with side The following problem is enough to make you swear off #define
effects macros for life:

#define toupper(c) ’a’<= (c)&&(c)<='z’ ? (c)-'a’'-'A’ : (c)
char ¢, *p;
c = toupper (*p++);

Here, p is incremented two or three times, depending on whether
the character is uppercase. This type of problem is very hard to
find, because the side effect is hidden within the macro definition.

Repeated autovariable Another hard one to find:

names
myfunc ()

{
int n;
for (n =5; n > 0; n--)
{

int n = 10;

if (n == 0)
{

/* never gets executed */

}

}

Here, the autovariable name 7 is reused in an inner block, hiding
access to the one declared in the outer block. You must be careful
about reusing variable names in this manner. You can get into
trouble more easily than you might think, especially if you use a
limited number of variable names for local loop counters (for
example, 7, n, and so forth).

Misuse of autovariables This function means to return a pointer to the result:

int *divide by 3(int n)
{

int i;
i=n/3;
return(&i);

}

The trouble is that by the time the function returns, the auto-
variable is no longer valid and is likely to have been overwritten
by other stack data.

222 Turbo Debugger User’s Guide

Undefined function If you don’t end a function with the return keyword followed by
return value an expression, it returns an indeterminate value; for example,

char *first capital letter(char *p)
{
while (*p)
{
if ("A’ <= *p && *p <= '7’)
return(p);
pies

}

/* Oops--nothing returned here */
}

If there are no capital letters in the string, a garbage value is
returned. You should put a return(0) as the last line of this
function.

Misuse of break The break keyword exits from only a single level of do, for,
keyword switch, or while loops:

for (...)
{
while (...) {
if (...)
break; /* we want to exit for loop */

}

Here, the break exits only from the while loop. This is one of the
few cases where it is excusable to use the goto statement.

Code has no effect Sometimes a typo results in perfectly compilable source code.
However, it probably doesn’t do what you want it to, and it may
not do anything at all:

atb;

Here, the intended line of code was a += b.

Pascal-specific

PbuQgs Because of the strong type- and error-checking features of Pascal,
there are few bugs specific to the language itself. However,
because Turbo Pascal gives you the power to turn off much of that

Chapter 14, How to debug a program 223

error checking, you can introduce errors that you might not have
otherwise. And even with Pascal, there are ways of getting into
trouble.

Uninitialized variables Turbo Pascal does not initialize variables for you; you must do it
yourself, either through assignment statements or by declaring
them as typed constants. Consider the following program:

program Test;

var
I,J,Count : Integer;
begin
for I := 1 to Count do begin
J = I*I;
Writeln(I:2," ’,J:4)
end
end.

Count has whatever random value occupied its location in
memory when it was created, so you have no idea how many
times this loop is going to execute.

Furthermore, variables declared within a procedure or function
are created each time you enter that routine and destroyed when
you exit; you cannot count on those variables retaining their
values between calls to that routine.

Dangling pointers Three common errors occur with pointers. The first is using them
before you have assigned them a value (nil or otherwise). Just like
any other variable or data structure, a pointer is not automatically
initialized just by being declared. It should be explicitly set to an
initial value (by passing it to New or assigning it nil) as soon as
possible.

Second, don't reference a nil pointer, that is, don't try to access the
data type or structure that the pointer points to if the pointer itself
is nil. For example, suppose you have a linear linked list of
records, and you want to search it for a record with a given value.
Your code might look like this:

224 Turbo Debugger User’s Guide

Scope confusion

function FindNode (Head : NodePtr; KeyVal : Integer) : NodePtr;
var

Temp : NodePtr;
begin

Temp := Head;

while (Temp”.KeyVal <> Val) and (Temp <> nil) do

Temp := Temp”.Next;

FindNode := Temp

end; { of function FindNode }

If Val isn’t equal to the Key field in any of the nodes in the linked
list, this code tries to evaluate Temp".Key when Temp is nil,
resulting in unpredictable behavior. Solution? Rewrite the
expression to read

while (Temp <> nil) and (Temp”.Key <> Val)

and enable short-circuit Boolean evaluation, using the Turbo
Pascal {$B-} option or the Options | Compiler | Boolean command.
That way, if Temp does equal nil, the second term is never
evaluated.

Finally, don’t assume that a pointer is set to nil just because you've
passed it to Dispose or FreeMem. The pointer still has its original
value; however, the memory it points to is now free to be used for
other dynamic variables. You should explicitly set a pointer to nil
after disposing of its data structure.

Pascal lets you nest procedures and functions very deeply, and
each of those procedures and functions can have its own
declarations. Consider the following program:

program Confused;
var
A,B,T : Integer;

procedure Swap (var A,B : Integer);

var
T : Integer;
begin
Writeln(’2: A,B,T = ',A:3,B:3," /,T);
T :=A;
A := B;
B :=1T;

Writeln(’3: A,B,T = ',A:3,B:3,” ’,T)
end; { of procedure Swap }

Chapter 14, How fo debug a program 225

Superfluous semicolons

226

begin { main body of Confused }
‘A :=10; B :=20; T := 30;
Writeln(’1: A,B,T = ',A:3,B:3,’ /,T);

Swap (B,A) ;
Writeln(’4: A,B,T = ',A:3,B:3,’ /,T);
end. { of program Confused }

What's the output of this program? It looks something like this:

1: A,B,T = 10 20 30
2: A,B,T = 20 10 22161
3: A,B,T= 10 20 20
4: A,B,T = 20 10 30

What'’s happening here is that you have two versions each of A, B,
and T. The global versions are used in the main body of the pro-
gram, while Swap has versions local to itself—its formal param-
eters A and B, and its local variable T. To further confuse things,
we made the call Swap(B,A), which means that the formal
parameter A is actually the global variable B and vice versa. And,
of course, there is no correlation between the local and global
versions of T.

There was no real “bug” here, but problems can arise when you
think that you're modifying something that you aren’t. For
example, the variable T in the main body didn’t get changed, even
though you thought it might have. This is the opposite of the
“hidden effects” bug mentioned on page 218.

If you also had the following record declaration, things could get
even more confusing:

type
RecType = record
A,B : Integer;
end;
var

A,B : Integer;
Rec : RecType;

Inside a with statement, a reference to A or B would reference the
fields, not the variables.

Like C, Pascal allows a “null” statement (one consisting only of a
semicolon). Placed at the wrong spot, this can create all kinds of
problems. Consider the following program:

Turbo Debugger User's Guide

program Test;

var
I,J : Integer;
begin
for I :=1 to 20 do;
begin
J:=1*1;
Writeln(I:2," *,J:4)
end;
Writeln(’All done!’)
end.

The output of this program is not a list of the first 20 integers and
their squares; it'’s simply

20 400
All done!

That’s because the statement for I := 1 to 20 do; ends with a
semicolon. This means it executes the null statement 20 times.
After that, the statements in the begin..end block are executed,
then the final Writeln statement. To fix this, just eliminate the
semicolon following the do keyword.

Undefined function If you write a function, you must be sure that the function name
return value has some value assigned to it before you exit the function.
Consider the following section of code:

const
NLMax = 100;
type
NumList = array[l..NLMax] of Integer;

function FindMax (List : NumList; Count : Integer) : Integer;

var

I,Max : Integer;
begin

Max := List[1];

for I := 2 to Count do
if List[I] > Max then

begin
Max := List[I];
FindMax := Max
end

end; { of function FindMax }

Chapter 14, How fo debug a program 227

Decrementing Word or

Byte variables

Ignoring boundary or

228

special cases

This function works fine—as long as the highest value in List isn’t
in List[1]. In that case, FindMax never gets assigned a value. A
correct version of the function would use this:

begin
Max := List[1]);
for I := 2 to Count do
if List([I] > Max then
Max := List[I];
FindMax := Max
end; { of function FindMax }

Be careful not to decrement an unsigned scalar (Byte or Word)
while testing for >= 0. The following code produces an infinite
loop:

var
w : Word;
begin
w o= 5;
while w >= 0 do
wi=w-1;
end.

After the fifth iteration, w equals 0. The next time through, it’s
decremented to 65,535 (because words range from 0 to 65,535),
which is still >= 0. You should use an Integer or Longint in such
cases.

Note that both versions of the function FindMax in the previous
section assume that Count >= 1. However, there may be times
when Count = 0; that is, the list is empty. If you call FindMax in
that situation, it returns whatever happens to be in List[1]. Like-
wise, if Count > NLMax, you'll end up either generating a run-
time error (if range-checking is enabled) or searching through
memory locations not contained in List for the maximum value.

There are two possible solutions to this. One, of course, is never to
call FindMax unless Count is in the range 1..NLMax. This isn’t a
flip comment; a serious part of good software design is to define
the requirements for calling a given routine, then ensuring they
are met each time that routine is called.

The other solution is to test Count and return some predetermined
value if it isn’t in the range 1..NLMax. For example, you might
rewrite the body of FindMax to look like this:

Turbo Debugger User’s Guide

begin
if (Count < 1) or (Count > NLMax) then

Max := -32768
else
begin

Max := List[1];

for I := 2 to Count do
if List[I] > Max then
Max := List[I]
end;
FindMax := Max
end; { of function FindMax }

This leads to the next type of Pascal pitfall: range errors.

Range errors Turbo Pascal has range-checking turned off by default. This
produces faster, more compact code, but it also lets you commit
certain types of errors, such as assigning to variables values
outside their allowed range or indexing nonexistent elements in
arrays as shown in the previous example.

The first step in finding such errors is to turn range-checking back
on by inserting the {$R+} compiler option into your program,
compiling the program, and running it again. If you know (or
suspect) where the error is, you can put this directive above that
section and add a corresponding {$R-} directive afterward, thus
enabling range-checking for that section only. If a range error
does occur, your program stops with a run-time error, and Turbo
Pascal shows you where the error occurred.

One common type of range error happens when you are indexing
through an array using a while or repeat loop. For example,
suppose you are looking for an array element containing a certain
value. You want to stop when you've found it or when you reach
the end of the array. If you've found it, you want to return the
index of the element; otherwise, you want to return 0. Your first
effort might look like this:

function FindVal (List : NumList; Count,Val : Integer) : Integer;
var

I : Integer;
begin

Findval := 0;

I:=1;

while (I <= Count) and (List[I] <> Val) do

Inc(I);

Chapter 14, How to debug a program _ 229

if I <= Count then
Findval := I
end; { of function FindVal }

This is all very nice, but it could result in a run-time error if Val
isn’t in List, and you're using normal Boolean evaluation. Why?
Because the last time the test is made at the top of the while loop, I
equals Count+1. If Count = NLMax, you're beyond the limits for
List.

There are two solutions to this type of problem. One is to turn off
range-checking. However, that could end up introducing subtle
bugs, especially if the code involved actually changes values. A
better solution, shown earlier, is to select short-circuit Boolean
evaluation, either by using the Options | Compiler | Boolean
command or by using the {$B-} directive. That way, if I > Count,
the expression

List[I] <> Val

is never evaluated.

Assembler-

specific bugs Here are some of the common pitfalls of assembly language pro-
gramming. You should refer to the Turbo Assembler User’s Guide
for a fuller explanation on these oft-encountered errors—and tips
on how to avoid them.

Forgetting to return to In Pascal, C, and other languages, a program ends automatically
DOS and returns to DOS when there is no more code to execute, even if

no explicit termination command was written into the program.
Not so in assembly language, where only those actions that you
explicitly request are performed. When you run a program that
has no command to return to DOS, execution simply continues
right past the end of the program’s code and into whatever code
happens to be in the adjacent memory.

Forgetting a RET The proper invocation of a subroutine consists of a call to the
instruction subroutine from another section of code, execution of the sub-
routine, and a return from the subroutine to the calling code.
Remember to insert a RET instruction in each subroutine, so that
the RETurn to the calling code occurs. When you're typing a pro-
gram, it’s easy to skip a RET and end up with an error.

230 Turbo Debugger User's Guide

Generating the wrong The PROC directive has two effects. First, it defines a name by
type of return which a procedure can be called. Second, it controls whether the
procedure is a near or far procedure.

The RET instructions in a procedure should match the type of the
procedure, shouldn’t they?

Yes and no. The problem is that it’s possible and often desirable to
group several subroutines in the same procedure. Since these
subroutines lack an associated PROC directive, their RET instruc-
tions take on the type of the overall procedure, which is not
necessarily the correct type for the individual subroutines.

Reversing operands To many people, the order of instruction operands in 8086
assembly language seems backward (and there is certainly some
justification for this viewpoint). If the line

mov ax,bx

meant “move AX to BX,” the line would scan smoothly from left
to right, and this is exactly the way in which many micro-
processor manufacturers have designed their assembly languages.
However, Intel took a different approach with 8086 assembly
language; for us, the line means “move BX to AX,” and that can
sometimes cause confusion.

Forgetting the stack or In most cases, you are treading on thin ice if you don’t explicitly
reserving a too-small allocate space for a stack. Programs without an allocated stack
stack sometimes run, but there is no assurance that these programs will
run under all circumstances. Most programs should have a
.STACK directive to reserve space for the stack, and for each pro-
gram that directive should reserve more than enough space for
the deepest stack you can conceive of the program using.

Calling a subroutine When you're writing assembler code, it’s easy to think of the
that wipes out registers registers as local variables, dedicated to the use of the procedure
you're working on at the moment. In particular, there’s a tendency
to assume that registers are unchanged by calls to other proce-
dures. It just isn’t so—the registers are global variables, and each
procedure can preserve or destroy any or all registers.

Chapter 14, How to debug a program 231

Using the wrong sense
for a conditional jump

Forgetting about REP
string overrun

Relying on a zero CX to
cover a whole
segment

Using incorrect
direction flag settings

232

The profusion of conditional jumps in assembly language (JE,
JNE, JC, JNC, JA, JB, JG, and so on) allows tremendous flexi-
bility in writing code—and also makes it easy to select the wrong
jump for a given purpose. Moreover, since condition-handling in
assembly language requires at least two separate lines, one for the
comparison and one for the conditional jump (it requires many
more lines for complex conditions), assembly language
condition-handling is less intuitive and more prone to errors than
condition-handling in C and Pascal.

String instructions have a curious property: After they’re exe-
cuted, the pointers they use wind up pointing to an address 1 byte
away (or 2 bytes for a word instruction) from the last address
processed. This can cause some confusion with repeated string
instructions, especially REP SCAS and REP CMPS.

Any repeated string instruction executed with CX equal to zero
does nothing. Period. This can be convenient in that there’s no
need to check for the zero case before executing a repeated string
instruction; on the other hand, there’s no way to access every byte
in a segment with a byte-sized string instruction.

When a string instruction is executed, its associated pointer or
pointers—SI or DI or both—increment or decrement. It all
depends on the state of the direction flag.

The direction flag can be cleared with CLD to cause string
instructions to increment (count up) and can be set with STD to
cause string instructions to decrement (count down). Once cleared
or set, the direction flag stays in the same state until either
another CLD or STD is executed, or until the flags are popped
from the stack with POPF or IRET. While it’s handy to be able to
program the direction flag once and then execute a series of string
instructions that all operate in the same direction, the direction
flag can also be responsible for intermittent and hard-to-find bugs
by causing the behavior of string instructions to depend on code
that executed much earlier.

Turbo Debugger User’s Guide

Using the wrong sense
for a repeated string
comparison

Forgetting about string
segment defaults

Converting incorrectly
from byte to word
operations

Using multiple prefixes

Relying on the
operand(s) to a string
instruction

Wiping out a register
with multiplication

Chapter 14, How to debug a program

The CMPS instruction compares two areas of memory; the SCAS
instruction compares the accumulator to an area of memory.
Prefixed by REPE, either of these instructions can perform a
comparison until either CX becomes zero or a not-equal compari-
son occurs. Unfortunately, it’s easy to become confused about
which of the REP prefixes does what.

Each of the string instructions defaults to using a source segment
(if any) of DS, and a destination segment (if any) of ES. It’s easy to
forget this and try to perform, say, a STOSB to the data segment,
since that’s where all the data you're processing with nonstring
instructions normally resides.

In general, it’s desirable to use the largest possible data size
(usually word, but dword on an 80386) for a string instruction,
since string instructions with larger data sizes often run faster.

There are a couple of potential pitfalls here. First, the conversion
from a byte count to a word count by a simple

shr cx,1

loses a byte if CX is odd, since the least-significant bit is shifted
out.

Second, make sure you remember SHR divides the byte count by
two. Using, say, STOSW with a byte rather than a word count can
wipe out other data and cause problems of all sorts.

String instructions with multiple prefixes are error-prone and
should generally be avoided.

The optional operand or operands to a string instruction are used
for data sizing and segment overrides only, and do not guarantee
that the memory location referenced is accessed.

Multiplication—whether 8 bit by 8 bit, 16 bit by 16 bit, or 32 bit by
32 bit—always destroys the contents of at least one register other
than the portion of the accumulator used as a source operand.

233

Forgetting that string
instructions alter
several registers

Expecting certain
instructions to alter the
carry flag

Waiting too long to use
flags

Confusing memory and
immediate operands

Causing segment
wraparound

Failing to preserve
everything in an
interrupt handler

234

The string instructions, MOVS, STOS, LODS, CMPS, and SCAS,
can affect several of the flags and as many as three registers
during execution of a single instruction. When you use string
instructions, remember that SI, DI, or both either increment or
decrement (depending on the state of the direction flag) on each
execution of a string instruction. CX is also decremented at least
once, and possibly as far as zero, each time a string instruction
with a REP prefix is used.

While some instructions affect registers or flags unexpectedly,
other instructions don’t even affect all the flags you might expect
them to.

Flags last only until the next instruction that alters them, which is
usually not very long. It’s a good practice to act on flags as soon as
possible after they're set, thereby avoiding all sorts of potential
bugs.

An assembler program may refer either to the offset of a memory
variable or to the value stored in that memory variable. Unfortu-
nately, assembly language is neither strict nor intuitive about the
ways in which these two types of references can be made, and as a
result, offset and value references to a memory variable are often
confused.

One of the most difficult aspects of programming the 8086 is that
memory isn’t accessible as one long array of bytes, but is rather
made available in chunks of 64K relative to segment registers.
Segments can introduce subtle bugs; if a program attempts to
access an address past the end of a segment, it actually ends up
wrapping back to access the start of that segment instead.

Every interrupt handler should explicitly preserve the contents of
all registers. While it is valid to preserve explicitly only those
registers that the handler modifies, it’s good insurance just to
push all registers on entry to an interrupt handler and pop all
registers on exit.

Turbo Debugger User’s Guide

Forgetting group
overrides in operands
and data tables

Segment groups let you partition data logically into a number of
areas without having to load a segment register every time you
want to switch from one of those logical data areas to another.

Unfortunately, there are a few problems with the way the
Microsoft Macro Assembler (MASM) handles segment groups, so
until Turbo Assembler came along, segment groups were quite a
nuisance in assembler. They were, however, an unavoidable
nuisance, for they are required in order to link assembler code to
high-level languages such as C.

In MASM Quirks mode, Turbo Assembler emulates MASM, warts
and all. This means that in MASM Quirks mode, Turbo Assem-
bler has the same problems with segment groups that MASM has.
If you're not planning to use MASM Quirks mode, read no more,
but if you are going to use MASM Quirks mode, refer to the Turbo
Assembler User’s Guide for more information.

Accuracy testing

Testing boundary
conditions

Invalid data input

Making a program work with valid input is only part of the job of
testing. The following sections discuss some important test cases
that any program or routine should be subjected to before being
given a clean bill of health.

Once you think a routine works with a range of data values, you
should subject it to data at the limits of the range of valid input.
For example, if you have a routine to display a list from 1 to 20
items long, you should make sure it behaves correctly both when
there is exactly 1 item and exactly 20 items in the list. This can
flush out the one-too- few and one-too-many “fencepost” errors
(described on page 219).

Once you are sure that a routine works with a full range of valid
input, check that it behaves correctly when it’s given invalid
input. Check that erroneous input is rejected, even when it’s very
close to valid data. For example, the previous routine that

Chapter 14, How to debug a program 235

accepted values from 1 to 20 should make sure that 0 and 21 are
rejected.

Empty data input

This is a frequently overlooked area, both in testing and in
designing a program. If you write a program to have reasonable
default behavior when some input is omitted, you greatly
enhance its ease of use.

Debugging as part of program design

When you first start designing your program, you can plan for the
debugging phase. One of the most basic tradeoffs in program
design involves the degree to which the different parts of your
program check that they are getting valid input and that their
output is reasonable.

If you do a lot of checking, you end up with a very resilient pro-
gram that can often tell you about an error condition but con-
tinues to run after performing some reasonable recovery. You also
end up with a larger and slower program. This type of program
can be fairly easy to debug because the routines themselves
inform you of invalid data before the dangers can be propagated.

You can also implement a program whose routines do little or no
validation of input or output data. Your program will be smaller
and faster, but bad input data or a small bug can bring things to a
grinding halt. This type of program can be the most difficult to
debug, since a small problem can end up manifesting itself much
later during execution. This makes it hard to track down the
original error.

Most programs end up being a mixture of these two techniques.
You should treat input from external sources (such as the user or
a disk file) with greater suspicion than data from one internal
routine calling another.

The sample debugging session

This sample session uses some of the techniques we talked about
in the previous sections. The program you are debugging is a

236 Turbo Debugger User’s Guide

version of the demonstration program used in Chapter 3
(TCDEMO.C or TPDEMO.PAS), except this one has some
deliberate bugs in it.

Make sure that your current directory contains the two files
needed for the debugging demonstration. If you're a C program-
mer, you'll need TCDEMOB.C and TCDEMOB.EXE. If you're
debugging a Pascal program, you'll need TPDEMOB.PAS and
TPDEMOB.EXE. (The B in these file names stands for “buggy.”)

Go ahead and compile the source code program to generate your
.EXE file. (If you are compiling TCDEMOB.C, open it in the
integrated development environment and set the Options |
Compiler | Optimization | Use Register Variables switch to Off
before you compile.)

C debugging session

Looking for errors

This section uses a C program as its example. If you're a Pascal
programmer, refer to page 242 for the sample debugging session
using a Turbo Pascal program.

Before we start the debugging session, let’s run the buggy demo
program to see what’s wrong with it. To start the program, type

TCDEMOB
You are prompted for lines of text. Enter two lines of text

one two three
four five six

A final empty line ends your input. TCDEMOB then prints out its
analysis of your input:

Arguments:

Enter a line (empty line to end): one two three
Enter a line (empty line to end): four five six
Enter a line (empty line to end):

Total number of letters =7

Total number of lines = 6

Total word count = 2

Average number of words per line = 0.3333333
'E’ occurs 1 times, 0 times at start of a word
'F’ occurs 1 times, 1 times at start of a word

Chapter 14, How to debug a program 237

238

Deciding your
plan of attack

Starting Turbo
Debugger

'N’ occurs 1 times, 0 times at start of a word
"0’ occurs 2 times, 1 times at start of a word
'R’ occurs 1 times, 0 times at start of a word
'U’ occurs 1 times, 0 times at start of a word
There is 1 word 3 characters long
There is 1 word 4 characters long

Notice there are erroneous numbers for the total number of
words, letters, and word count. Later on, the letter and word
frequency tables seem to be based on an erroneous letter and
word count. This is an all-too-typical situation—the program
must have more than one thing wrong. This happens frequently
in the early stages of debugging a program.

Your first task is to decide which problem to attack first. A good
rule of thumb is to start with the problem that appears to be
happening “first.” In this program, each input line is broken
down into words, then analyzed, and finally, after all the lines
have been entered, the tables are displayed. Since the word and
letter counts are off as well as the tables, it’s a good bet that
something is wrong during the initial breaking down and
counting phase.

Now is the time to start debugging, after you've thought about the
problem for a moment and decided on a rough plan of attack.
Here, the strategy is to examine the routine makeintowords, to see if
it is correctly chopping the line into null-terminated words, and
then see if analyzewords is correctly counting the analyzed line.

To start the debugging session, type
TD TCDEMOB

Turbo Debugger loads the buggy demo program and then
displays its startup screen. If you wish to exit from the tutorial
session and return to DOS, press Alt-X at any time. If you get hope-
lessly lost, you can reload the demonstration program at any time
and start at the beginning by pressing Cir-F2. (Note that this
doesn’t clear breakpoints or watches.)

Since the first thing you want to do is to check that makeintowords
is working correctly, run the program up to that routine and then
check it. There are two approaches you can use: Either step

Turbo Debugger User’s Guide

through makeintowords as it executes, making sure that it does the
right thing, or stop the program after makeintowords has done its
stuff and see if it did the right thing.

Since makeintowords has a clearly defined task and it’s easy to
determine whether it's working correctly by inspecting the output
buffer it produces, let’s opt for the second approach. To do this,
move down to line 42 and press F4 to run to this line. When the
program screen appears, type

one two three

and press the Enter key.

Inspecting

You are now stopped at the source line after the call to
makeintowords. Look at the contents of buffer to see if the right
thing happened. Move the cursor up a line, place it under the
word buffer, and press Alt-F10 | (for Inspector) to open an Inspector
window to show the contents of buffer. Use the arrow keys to
scroll through the elements in the array. Notice that makeintowords
has indeed put a single null character (0) at the end of each word
as it is meant to. This means that you should execute more of the
program and see if analyzewords is doing the right thing. First,
remove the Inspector window by pressing Esc. Then, press F7
twice to execute to the start of analyzewords.

Breakpoints

Check that analyzewords has been called with the correct pointer to
the buffer by moving the cursor under bufp and pressing Alt-F10 1.
You can see that bufp indeed points to the null-terminated string
"one'. Press Esc to remove the Inspector window. Since there
seems to be a problem with counting characters and words, let’s
put a breakpoint at the places where a character and a word are
counted:

1. Move to line 93 and press F2 to set a breakpoint.
2. Move to line 97 and set another breakpoint.

3. Finally, set a breakpoint on line 99 so you can look at the
character count this function returns.

Setting multiple breakpoints like this is a typical way to learn
about whether things are happening in the right order in a

Chapter 14, How to debug a program 239

The Watches
window

The

Evaluate/Modify

240

dialog box

Eureka!

program, and lets you check on important data values each time
the program stops at a breakpoint.

Run the program by pressing F9. The program stops when it
reaches the breakpoint on line 93. Now you want to look at the
value of charcount. Since you’ll want to check it each time you hit
a breakpoint, this is an ideal time to use the Watch command to
place it in the Watches window. Move the cursor under charcount
and press Alt-F10 W. The Watches window at the bottom of the
screen now displays the current value of 0. To make sure that the
character is being counted properly, execute a single line by pres-
sing F7. The Watches window now shows that charcount is 1.

Run the program again by pressing F9. You are now back at line
93 for another character. Press F9 again twice to read the last letter
on the word and the terminating null. charcount now correctly
shows 3, and the wordcounts array is about to be updated to count
a word. Everything is fine so far. Press F9 again to start processing
the next word in the buffer. AHA! Something is wrong.

You expected the program to stop again on line 93 as it processed
the next word, but it didn’t. It went straight to the statement that
returns from the function. The only way to end up on line 99 is if
the while loop that started on line 83 no longer has a true test
value. This means that *bufp != 0 must evaluate to false (that is, 0).

To check this, move back to line 83 and mark the entire expression
*bufp = 0 by putting the cursor under the *, pressing Ins, and
moving the cursor to the final ' 0’ before the ’)’. Now evaluate
this expression by opening the Data | Evaluate Modify dialog box
and pressing Enter, and choosing the Eval button to accept the
marked expression. The value is indeed 0. Press Esc to return to
the Module window.

Now here comes the analytical leap that causes you to “solve” the
bug. The reason bufp points to a 0 is because that is where the
inner while loop starting on line 86 left it at the end of a word. To
continue to the next word, you must increment bufp past the 0
that ended the previous word. To do this, you need to add a

Turbo Debugger User’s Guide

“bufp++" statement before line 97. You could recompile your pro-
gram with this statement added, but Turbo Debugger lets you
“splice” in expressions by using a fancy sort of breakpoint.

To do this, first reload the program by pressing Ctri-F2 so you can
test with a clean slate. Now remove all the breakpoints you set in
the previous session by typing Alf-B D. Go back to line 97 and set a
breakpoint again by pressing F2. Now, open a Breakpoints
window by pressing Alf-V B. Set this breakpoint to execute the
expression bufp++ each time it is encountered:

1. Choose View | Breakpoints.
2. Open the Breakpoints window local menu by pressing Alf-F10.

W

Choose Set Options to open the Breakpoint Options dialog
box.

Set the Action radio buttons to Execute.
Press Tab to get to the Action Expression prompt.
Enter bufp++.

Press Esc to close the dialog box and Alf-F3 to return to the
Module window.

N e

Now run the program. Enter the usual two input lines

one two three
four five six

Press Enter at the third prompt, and when the program has
terminated, press Al-F5 to look at your output on the User screen.

You'll notice that things have improved considerably. The total
number of words and lines seem to be wrong, but the tables are
correct. Stop at the beginning of the printstatistics routine and see
if it is given the correct values to print. First reload the program
by pressing Cirl-F2 to retest. Then go to line 104 and press F4 to
execute to there. Move the cursor to the nlines argument and press
Alt-F10 1 to look at its value. Note that the value is 6 where it
should be 2.

Now go back to where nlines is called from in main and look at
the its value there. Move the cursor to line 36, place it under
nlines, and press Alt-F10 to look at the value. The value of nlines in
main is 2, which is correct! If you go down to line 46, you will
notice that the two arguments nwords and nlines have been
reversed. There is no way that the compiler could have known
that you meant to have them the other way around.

Chapter 14, How to debug a program 241

If you correct these two bugs, the program will run correctly. The
files TCDEMO.EXE is a corrected version that you may run if you
are curious.

Pascal debugging session

Looking for errors

242

This section uses a Turbo Pascal program as its example. If you're
a C programmer, you should look at the preceding section, start-
ing on page 237, which takes you through a session using a
Borland C++ program.

Before we start the Pascal debugging session, let’s run the buggy
Pascal demo program to see what’s wrong with it. The program is
already compiled and on your distribution disk.

To start the program, enter the program name and pass it three
command-line arguments:

TPDEMOB first second third

You’'ll be prompted for lines of text. Enter two lines of text exactly
as follows:

ABC DEF GHI
abc def ghi

A final empty line ends your input. TPDEMOB then prints out its
analysis of your input:

9 char(s) in 3 word(s) in 2 line(s)
Average of 0.67 words per line

Word length: 1 2 3 4 5 6 7 8 9 10
Frequency: 00 3 0 0 0 0 0 0 0

Letter:
Frequency:
Word starts: 10 0o 1 0 0 1 0 O O O 0 O

—
[y
=
—
—
=
_
-
—
o
o
o
o

Letter: Z
Frequency: o 06 o 0 0 0 0 0 O O 0 0 O
Word starts: 6o 0o o 0 0 0 0 O 0 O0 0 0 0

Program name: C:\td\tpdemob.exe
Command line parameters: first second third

Turbo Debugger User’s Guide

There are five separate problems with this output:

1. The number of words is wrong (3 instead of 6).

2. The number of words per line is wrong (0.67 instead of 3.00).

3. The column headings for the second and third tables display
only one letter each (instead of A.M and N..Z).

4. You typed two lines, each containing a letter from A..I, but the
letter frequency tables show only.a count of one each for those
letters.

5. The last character of each command-line parameter entered
was lost and random characters are being displayed (although
the last parameter is okay).

Deciding your

plan of attack Your first task is to decide which problem to attack first. A good
rule of thumb is to start with the problem that appears to be
happening first. In this program, after procedure Init is called to
initialize data, keyboard input is read by function GetLine and
then processed by procedure ProcessLine until the user enters an
empty string. ProcessLine scans each input string and updates the
global counters. Then, the results are displayed by procedure
ShowResults. Finally, in a completely independent subprogram,
procedure ParmsOnHeap builds a linked list of command-line
parameters on the heap and then traverses and displays that list
at the end of the program.

The average number of words per line is computed by
ShowResults, using the number of lines and words. Since the word
count seems to be off, take a look at ProcessLine to see how
NumWords is updated. Even though NumWords is wrong, the 0.67
words-per-line figure doesn’t make sense. There’s probably an
error in the ShowResults calculation, which needs your attention as
well.

The column titles for all the tables are drawn at the request of
ShowResults. You should wait until the main loop terminates
before tracking down the second and third bugs. Since the letter
and word counts are wrong, it’s a good bet that something is
amiss inside ProcessLine, and that’s where you should start
looking for the first and fourth bugs.

Chapter 14, How fo debug a program 243

Starting Turbo
Debugger

Moving through

244

the program

Finally, once you've scrutinized the word and letter counting
parts of the program, take a look at ParmsOnHeap to find and fix
the last (fifth) bug.

Now is the time to actually start debugging—after you've thought
about the problem for a moment and decided on a rough plan of
attack.

To start the debugging sample session, load the debugger and
give it the same command-line parameters you gave it earlier:

TD TPDEMOB first second third

Turbo Debugger loads the buggy demo program and displays the
startup screen. If you wish to exit from the tutorial session and
return to DOS, press Alt-X at any time. If you get hopelessly lost,
you can always reload the demonstration program and start from
the beginning again by pressing Ctrl-F2. (Note that this doesn’t
clear breakpoints or watches.)

There are two approaches to debugging a routine like ProcessLine:
Either step through it line-by-line as it executes and make sure it
does the right thing, or stop the program immediately after
ProcessLine has done its stuff and see if it did the right thing. Since
both the letter and word counts are wrong, you probably ought to
look inside ProcessLine carefully and see how characters are
processed.

Now you're going to run the program and step inside the call to
ProcessLine. There are many ways to do that. You can press F8 four
times (to step over procedure and function calls), then press F7
once (to trace into the call to ProcessLine). You can also move the
cursor down to line 231, press F4 (Go to Cursor command), and
press F7 once to step into ProcessLine.

There are even more ways to get into ProcessLine. Try this one:
Press Alt-F9. A dialog box pops up, prompting you to enter a code
address to run to. Type processline, and press Enter. The program
will now run until ProcessLine gains control. When you are
prompted to enter a string, enter the same data as before (that is,
ABC DEF GHI).

Turbo Debugger User’s Guide

ProcessLine contains several loops. An outer one scans the entire
string. Inside that loop, there’s one loop to skip over non-letters,
and a second one to process words and letters. Move the cursor to
the while loop on line 133 and press F4 (Go to Cursor).

This loop keeps scanning until it reaches the end of the string or
until it finds a letter. Each character scanned is checked via a call
to a Boolean function, IsLetter. Press F7 to trace into IsLetter.
IsLetter is a nested function that takes a character value and
returns True if it’s a letter; otherwise, False. A not-very-close look
reveals that it checks only for uppercase letters. It should either
check for characters in the range A to Z and a to z, or it should
convert the character to uppercase before performing the test.

A quick look at both lines of input that you originally entered
provides a further clue to the source of the bug: You entered both
uppercase and lowercase letters from A to I, but only the upper-
case letters entered were displayed in the totals. Now you can see
why.

Get back to the line that called IsLetter by another navigation
technique: Press Alt-F8, which runs past the end statement of the
current procedure or function. Since the second line of input you
originally entered, abc def ghi, contained only lowercase letters,
each character was treated as whitespace and skipped. This
throws off both the letter counts and the word count, and solves
the mysteries of bugs #1 and #4.

The

Evaluate/Modify By the way, there’s another powerful way to verify IsLetter’s
dialog box misbehavior. Invoke the Evaluate/Modify dialog box by pressing
Alt-D E and enter the following expression:

Isletter(’a’) = IsLetter(’A’)

A and a are both letters, but the evaluation False confirms that
they’re not treated the same by IsLetter. (You can use the
Evaluate/Modify dialog box and Watches window to evaluate
expressions, perform assignments, or, as you did here, call proce-
dures and functions. For more information, refer to Chapter 6.)

Chapter 14, How to debug a program 245

Inspecting

Two bugs down, three to go. Bug #2 is much easier to find than
the previous ones. Press Ali-F8 to exit ProcessLine, then move the
cursor to line 234 and press F4 to run to the cursor position.

TPDEMOB prompts you for a string. Type abc def ghi and press
Enter, then press Enter the second time the prompt appears. Now
press F7 to step into ShowResults.

Remember, you're trying to find out why the average number of
words per line is incorrect. The first line in ShowResults calculates
the number of lines per word instead of words per line. Clearly,
those two terms should be reversed.

As long as you're here, you might as well make sure that
NumlLines and NumWords have the values you'd expect. NumLines
should equal 2, and—because of the IsLetter bug you've un-
covered but haven't fixed—NumWords should equal 3. Move the
cursor to NumLines and press Alt-F10/to inspect a variable. The
Inspector window shows you NumLines’ address, type, and
current value in both decimal and hexadecimal. The value is
indeed equal to 2, so you can move on and have a look at
NumWords. Press Esc to close the Inspector window, move the
cursor forward to NumWords, and press Alt-F10 | again (you can
also use the hot key, Ctrl-l). NumWords has the expected (incorrect)
value of 3, so you can move on.

Or can you? There’s another problem with this calculation, and it’s
not even on our list. There is no check to see whether the second
term is 0 before the division is performed. If you run the program
from the beginning and enter no data at all (just press Enfer when
prompted), the program crashes (even after you reverse the
divisor and the dividend).

To confirm this, press Esc to close the Inspector window, type Alt-R
P to end the current debug session, press F9 to run the program
from the beginning, and press Enter at TPDEMOBs string prompt.
The program terminates and an error box displays a run-time
error. You should modify this statement to read

if NumLines <> 0 then

AvgWords := NumWords / NumLines
else

AvgWords := 0;

246 Turbo Debugger User's Guide

So much for bugs #2 and #2b. As long as you're tinkering with the
Inspector window, try using it to “walk” through a data structure.
Move the cursor up to the declaration of LetterTable on line 50.
Place the cursor on the word LetterTable, and press Alt-F10 1. You
can see it’s an array of records, 26 elements long. Use the cursor
keys to scroll through each element of the array, and press Enter to
step into one of the array elements. This is a very powerful way of
examining your data structures, and will be especially handy
when you traverse ParmsOnHeap's linked list later on.

Watches

You've still got to squash that column title bug (#3) in ShowResults.
Since you already terminated the program when you tracked the
divide-by-zero error, prepare for another session by pressing Alf-
R P (to reset the program). Then press Alt-F9, type showresults, and
press Enter. Now type the all-too-familiar data ABC DEF GHI and
press Enter again. Finally, type abc def ghi and press Enter twice.
Turbo Debugger should be stopped at ShowResults.

ShowResults uses a nested procedure, ShowLetterInfo, to display
the letter tables. Move the cursor down to line 103, press F4, then
press F7 to step into ShowLetterInfo.

There are three for loops. The first one displays the column titles,
and the second and third display frequency counts. Use F7 to step
to the first loop on line 63. Position the cursor over FromLet and
ToLet and use Alt-F10 | to check their values. They look okay (the
first equals A, and the second equals M). Press Al-F5 to view the
User screen and see where things stand. Press any key to return to
the Module window.

When you’re stepping through a loop like this, the Watches
window is very handy; position the cursor over ch and press Ctrl-
W. Now use F7 to step through the for loop. As expected, it steps
down to the Write statement on line 64. If you look at the Watches
window, though, you'll see that ch’s value is already M. (It already
executed the entire loop!) There’s an extra semicolon right after
the keyword do, making the for loop do absolutely nothing 13
times. When control falls through to the Write statement on line
64, the current value of ch, M, is output and the program moves
on. Removing that extra semicolon eliminates bug #3.

Chapter 14, How to debug a program 247

248

Just one more
bug...

It’s time to track down that strange bug with the command-line
parameters. To refresh your memory, the last character of all but
the last command-line parameter was garbage. Perhaps the string
length byte was wrong, or perhaps the string data was over-
written by some later assignment.

Use the Watches window to find out. Press Alt-F9, type parmsonheap
and press Enter. The for statement loops through all the
command-line parameters, constructing a linked list and copying
each string onto the heap as it goes. One pointer, Head, points to
the beginning of the list; Tail points to the last node in the list; and
Temp is used as temporary storage to allocate and initialize a new
node. Since the string data is corrupted, press Ctr-F7 and add the
following expression to the Watches window:

Tail”*.Parm®

This keeps track of the string data stored in the last node in the
list. Of course, this value will be garbage until Tail is initialized on
line 207.

Rather than step through line-by-line, just keep an eye on the
Watches window at the end of each iteration. Move the cursor to
line 208 and press F2 to set a breakpoint there. Now press F9 to
run to that breakpoint. If you're using DOS 3.x, you'll see the full
path to TPDEMOB.EXE in the Watches window. (If you're using
DOS 2.x, you'll see an empty string; in that case, just press F9
again and then go on.) The string data looks just fine.

Press F9 to execute the loop another time. Agdin, the data looks
okay. Now you know that the string is being copied onto the heap
correctly. You can use the Inspector window to find out whether
it’s been corrupted yet. Move the cursor over Head on line 203 and
press Alt-F10 1.

Look at the value referenced by Parm by pressing {, followed by
Enter. You're looking at the first node in the list, and its string data
is already corrupted. If you press Esc, |, and then press Enter
again, you'll open an Inspector window onto the second node in
the list. Press {, followed by Enter, to inspect its string data. It's
intact, and, in fact, is the same node referenced by the Tail pointer.
Something is definitely clobbering the tail end of the string data.

Turbo Debugger User's Guide

Keep your eye on the Watches window while you use F7 to step
through the loop. The call to GetMem on line 199 is the culprit;
before that call, TailN.Parm” is equal to first. Inmediately after the
call to GetMem, the last character in Tail"Parm” is trashed.

What'’s happening? For each command-line parameter, the for
loop allocates first a record, then the string data, then the next
record, and so on. The GetMem call on line 199 should allocate
enough for the length of the string plus the length byte, but you
can see it does not add 1 to Length(s). Though the string assign-
ment on line 200 succeeds in doing the copy, it actually uses 1
more byte than was allocated to it. Thus, the last character of the
string is overlapped by the first byte of the next record allocated
when a call is made to New(Temp). The last parameter escapes
unscathed because it’s not followed by another ParmRec.

Whew. That’ all the (known) bugs in this program. Perhaps
you'll find some more as you step through the code. You can fix
the bugs (they are marked with two asterisks (**) for your conve-
nience) and then recompile; or you can run TPDEMO.PAS, the
bug-free version of this program, discussed in Chapter 3.

Chapter 14, How to debug a program 249

280

Turbo Debugger User's Guide

15

Virfual debugging on the 80386
processor

Turbo Debugger lets you use the full power of systems that have
the 80386 processor. Virtual debugging lets the program you're
debugging use the full address space below 640K, just as if no
debugger were loaded. (Turbo Debugger is loaded into extended
memory, above the 1IMB address point.)

You debug exactly as you would normally use Turbo Debugger,
except that once the TDH386 device driver is loaded, your
program loads and runs at exactly the same address whether or
not it’s being debugged. Virtual debugging is extremely useful
both for debugging programs that are large, and for finding bugs
that go away if the program is loaded higher in memory, as it is
when it is being debugged normally.

Virtual debugging also lets you watch for reads or writes to arbi-
trary memory or I/O locations, all at full or nearly full processor

speed. This gives you some of the power of a hardware debugger
at no additional cost.

80286 users! If you have an 80286 processor, you can make more memory
available than you would normally have with Turbo Debugger by
using the protected-mode debugger, TD286. See Chapter 16 for
more information.

Chapter 15, Virtual debugging on the 80386 processor 251

Equipment required for virfual debugging

You must have a computer based on the 80386 processor in order
to use the virtual debugger. You must also have 640K of available
extended memory. If you have used up your extended memory
for RAM disks, caches, and so forth, you may want to make a
special CONFIG.SYS or AUTOEXEC.BAT file that removes some
of these programs when you want to use virtual debugging.

Installing the virtual debugger device driver

Before starting the virtual debugger, you must make sure that you
have installed its device driver in your CONFIG.SYS file. Do this
by including a line similar to the following in CONFIG.SYS:

DEVICE = TDH386.SYS

If you have placed the TDH386.5YS device driver somewhere
other than in the root directory, make sure that you include that
directory path as part of the device driver file name.

Normally, the virtual debugger lets you have up to 256 bytes of
DOS environment strings. If this is not enough, or if you don’t
need that much and would like to conserve as much memory as
possible, use the —e option in CONFIG.SYS to set the number of
bytes of environment. For example,

DEVICE = TDH386.5YS -e2000

reserves 2000 bytes for your DOS environment variables.

Starting the virtual debugger

You start the virtual debugger much as you would normally start
Turbo Debugger, with a command line like this:

TD386 [options] program [program options)

In other words, you simply enter TD386 instead of TD. TD386 then
takes care of finding the Turbo Debugger executable program and
loading it into extended memory.

If you have other programs or device drivers that use extended
memory, such as RAM disks, caches, or whatever, you must tell

252 Turbo Debugger User's Guide

TD386 how much extended memory to set aside for these other
programs. Do this by using the —e command-line option. Follow
the —e with the number of kilobytes (K) of extended memory used
by the other programs. For example,

TD386 -e512 myprog

This command line informs TD386 that you want to reserve the
first 512K of extended memory for other programs.

;> Normally, if your system supports the XMS standard, it is not
necessary to inform TD386 how much memory to set aside for
programs in extended memory; the programs have already
passed that information to TD386. You need to use —e only with
programs (such as VDISK) that don’t communicate with the XMS
standard.

Since you probably always reserve the same amount of extended
memory for other programs, TD386 gives you a way to perma-
nently set the amount of extended memory to reserve. Use the —w
option with the —e option to specify that you want the —e value to
be permanently set in the TD386 executable program file.

You'll then be prompted for the name of the executable program.
If you are running on DOS 3.0 or later, the prompt indicates the
path and file name that you executed TD386 from. You can accept
this name by pressing Enter, or you can enter a new executable file
name.

If you are running on version 2.x of DOS, you will have to supply
the full path and file name of the TD386 executable program.

Here is a complete list of command-line options for TD386.EXE:
-?,-h Accesses help on TD386.

-b Lets you break out of programs with Cirl-Break, even
when interrupts are disabled.

—e#i##t Specifies the number of kilobytes of extended memory
being used by other programs or by the program
you’re debugging. (You don’t need this option if your
system supports the XMS standard.)

—f#H##H# Enables EMS emulation through paging (in extended
memory) and sets the page frame segment to #### (in
hex). The last three digits must be 000 (like C000 or
E000). Note that this option only applies to Turbo
Debugger’s EMS calls. If you don’t use this option

Chapter 15, Virtual debugging on the 80386 processor 253

when you load TD386, TD386 will not be able to use
EMS. If you cannot load your symbol table, try using
the —f option to force TD386 to borrow from extended
memory.

No real EMS: —-fD000
Real EMS at D000: —fE000
Real EMS at E000: —£D000

—f- Disables EMS emulation (presumably to override a
previous command-line option).
-w Modifies TD386.EXE with the new default value of —e

or —f. You can enter a new executable file name that
does not already exist, and TD386 will create the new
executable file.

Note that TD386.EXE options must appear first in the command
line before any Turbo Debugger options or the program name.
For example,

TD386 -e1024 -£D000 -w

reserves 1024K of extended memory, enables EMS emulation with
a page frame of D000, and modifies TD386.EXE with these values.

For a list of all the command-line options available for
TD386.EXE, just type TD386 -2 or TD386 -h and press Enter.

> If you have an 80386-based machine and want to read the
command-line options for TD386.EXE, TDH386.5YS must be
loaded.

Differences between normal and virtual debugging

Most things work exactly the same whether you are debugging
normally or using the 80386 virtual debugging capability. The
following items behave differently:

m When you use the File | DOS Shell command to run a DOS
command, the program you're debugging is never swapped to
disk. This means you may not always have enough memory to
run other programs from the DOS prompt.

m Your program can use nearly all of the 80386 instructions, with
the exception of the privileged protected-mode instructions:
CLTS, LMSW, LTR, LGDT, LIDT, LLDT.

254 Turbo Debugger User’s Guide

m Even though you can use all the 80386 extended addressing
modes and 32-bit registers during virtual debugging, you can’t
access memory above the IMB point. If you try to do so, an
exception interrupt will be generated, and Turbo Debugger will
regain control.

m You can’t use virtual debugging if you're already running a

program or device driver that uses the virtual and protected
modes of the 80386 processor. This includes programs such as:

e DesqView operating environment

e Microsoft Windows-386 operating environment
o QEMM.SYS, the QuarterDeck EMS simulator

e CEMM.SYS Compaq EMS simulator

e 386"MAX

If you normally use one of these or similar programs, you will
have to stop them or unload them before using TD386.

m If you are using virtual debugging, TD386 can catch exceptions
generated by your program. If an exception occurs, your
program stops, and TD386 reports the exception that occured.
The error message that appears indicates the nature of the
exceptions, and the arrow in the CPU window Code pane—or
the cursor in the Module window—marks the instruction that
caused the exception.

m You should not get an unexpected interrupt. If you do, check
the next section to see if the interrupt is mentioned. If not,
contact Borland technical support.

Troubleshooting tips

If you are using TD386 and you receive the message “Not enough
memory to load symbol table”, you need to enable EMS
emulation for TD386. To do this, start TD386 using the —F option.

For example, to set up EMS for TD386 at segment 0D000h, use the
following command to start TD386:
TD386 -FD000

If you are using an HP-Vectra, and you get an Unexpected
Interrupt 06 when trying to run TD386, you need to set an option
in the CMOS setup. By default the Vectra series uses a protected

Chapter 15, Virtual debugging on the 80386 processor 255

mode instruction as part of the HP-HIL. To work around this,
contact Hewlett Packard for instruction on disabling this function.

If an Exception 06 occurs after running for a while in TD386, your
code has probably been overwritten. An Exception 06 is
generated by the 80386 processor when an illegal opcode is
encountered. A common cause of this problem is using
uninitialized pointers.

Exception 06, Exception 13, and Unexpected Interrupt 0D can
occur if you are using an old mouse driver, network driver, or
other device driver. If you get these errors in TD386, try removing
device drivers one at a time, starting with your mouse driver, then
your network driver, and so on until you identify the offending
driver. If an upgrade is available for the driver, see if installing it
corrects the problem. The last resort is to remove the driver
entirely, if possible.

If you get a “Processor already in protected mode” error message
when trying to load TD386, you are running a program that’s
using the virtual mode of the 80386 (such as QEMM). It's not
possible to use these programs and TD386 at the same time. If you
need to use these memory managers, try using TD286 instead of
TD386.

TD386 error messages

256

TD386 generates one of the following messages when it can’t
start, and then returns to the DOS prompt. You must correct the
condition before you can start TD386 successfully.

TD386 error: 80386 device driver missing or wrong version
You must install the TDH386.SYS device driver in your
CONFIG.SYS file before you invoke TD386 from the DOS
command line.

TD386 error: Can’t enable the A20 address line
TD386 can’t access the memory above 1MB. This may happen if
you're running on a system that is not exactly IBM compatible.

TD386 error: Can’t find TD.EXE
TD386 could not find TD.EXE.

TD386 error: Couldn’t execute TD.EXE
TD386 could not run TD.EXE.

Turbo Debugger User’s Guide

TD386 error: Environment too long; use —e#### switch with
TDH386.SYS
You need to change the —e option as described on page 252.

TD386 error: Not enough Extended Memory available
TD386 ran out of memory. You need to get more memory for
your machine or free up memory (by reducing a RAM disk, for
example).

TD386 error: Wrong CPU type (not an 80386)
You are not running on a system with an 80386 processor.

The following errors might occur if you're trying to modify TD386
with the —w option:

TD386 error: Cannot open program file
TD386 error: Cannot read program file
TD386 error: Cannot write program file
TD386 error: Program file corrupted or wrong version

TDH386.5YS error messages

There are only two possible error messages associated with the
TDH386.SYS driver:

Wrong CPU type: TDH386 driver not installed

Invalid command line: TDH386 driver not installed

Chapter 15, Virtual debugging on the 80386 processor 257

258 Turbo Debugger User's Guide

16

Profecfed—mode debugging with

80386 users!

D286

The TD286 protected-mode debugger takes advantage of the
capabilities of the 80286 processor to free more memory for the
program you are debugging. TD286 puts the Turbo Debugger
program into extended memory above the 1MB address point,
and leaves a relatively small loader in the lower 640K. This gives
you more room for the program you are debugging and its
symbol table.

Use Turbo Debugger exactly as you normally would. The only
difference is that your program has more memory to run in.

If you have an 80386 processor, you can get even more capabilities
and memory savings by using the TD386 virtual debugger. See
Chapter 15 for more information.

Equipment required for the protected-mode

debugger

To use the TD286 protected-mode debugger, you must have a
computer based on the 80286 or 80386 processor. You must also
have at least 640K of available extended memory.

Chapter 16, Protected-mode debugging with TD286 259

Installing the protected-mode debugger

Before you use TD286 for the first time, you must run the
TD286INS configuration program to let TD286 determine some
hardware characteristics of the system you are running on. To
configure TD286, run the configuration program by entering
TD286INS at the DOS prompt.

TD286INS asks you to press Spacebar a number of times as it
determines the characteristics of your hardware. If at any point
your system hangs and the program does not proceed, just reboot
and restart the configuration program. The configuration program
knows where it had a problem and continues with the next phase
of its testing.

Once TD286INS runs to completion, TD286 is ready to use.

Starting the protected-mode debugger

You start the protected-mode debugger with this command-line
syntax:

TD286 [options] program [program options]

TD286 has the same command-line options as regular Turbo
Debugger, with the exception that it does not allow the -y option
that sets the overlay code pool size. This option is not necessary
because TD286 does not use overlays.

Differences between Turbo Debugger and
protected-mode

There are a few things you can do in regular Turbo Debugger that
you can’t do with TD286:

m When you use the File | DOS Shell command to run a DOS
command, the program you are debugging is not swapped to
disk. This means that you may not always have enough
memory to run other programs from the DOS prompt.

260 Turbo Debugger User’s Guide

m You can’t use TD286 to debug programs that run in protected
mode, or use a DOS extender that conflicts with that used by
TD286.

Debugging programs that use extended memory

By default, TD286 will use all of your extended memory. If you're
debugging programs that use extended memory, you can specify
the amount of extended memory that TD286 is allowed to use by
creating a configuration file called CONFIG.286 in the root
directory of your current drive. Put the following command in the
file (# is the amount of extended memory TD286 can use):

MEGS=#

Running TD286 on different machines

TD286 knows the hardware characteristics of dozens of different
machines. When you run TD286INS and it reports “Machine
already in file’s database” your machine is already known to
TD286 and no modification is necessary.

If TD286INS does execute its tests, it will store your machine’s
hardware characteristics in TD286 and create a file with the .DB
extension. This file should be sent back to Borland or uploaded
onto one of our forums on Compuserve so that future versions of
TD286 will automatically know your computer’s hardware
characteristics. TD286 can store the characteristics of 10 machines
other than the ones it starts with.

Chapter 16, Protected-mode debugging with TD286 261

262 Turbo Debugger User’s Guide

17

Turbo Debugger for Windows (TDW)

Turbo Debugger for Windows (TDW) enables you to debug
applications you've written for Microsoft Windows, Version 3.0
and higher. It runs under Windows on the same machine as the
program you are debugging and switches between its own

screens and your application’s screens, just as Turbo Debugger
does.

You debug much as you would using Turbo Debugger, except
that you can also get access to information particular to Windows
applications, such as

m Messages received and sent by your application’s windows

m The global heap
m The local heap

m The complete list of modules (including dynamic link libraries)
loaded by Windows

m Dynamic link library (DLL) debugging

Requirements for running TDW

TDW runs in Windows standard mode or 386 enhanced mode,
which means that your computer must have an 80286 processor
or higher and at least one megabyte of memory.

TDW supports only the standard graphics display modes: CGA,
EGA, VGA, and Hercules monochrome-graphics. If you are using

Chapter 17, Turbo Debugger for Windows (TDW) 263

Installing TDW

an unusual driver, such as one that supports Super-VGA
(800x600), switch to a standard driver before starting Windows
and using TDW. If you try to use a nonstandard driver with TDW,
you will not be able to switch between your application’s screens
and the TDW display.

Like Turbo Debugger, TDW can also take advantage of a second
monitor attached to your computer, allowing you to view TDW
screens on one monitor and your application’s screens on another.
You select this display option by starting TDW with the —do
command-line switch or by running the TDINST utility and
setting User Screen Updating to Other display.

264

When you install Turbo Debugger on your system, the installation
program puts the Windows-related files in the same directory as
your Turbo Debugger files. These files include the following:

m TDW.EXE, the TDW program.
mn TDWHELP.TDH, the TDW help files.

m WRSETUP.EXE, the configuration program for the remote
Windows application debugger WREMOTE.

m WREMOTE.EXE, the remote Windows application debugging
program. (Remote debugging of Windows programs is
described in Appendix E.)

m WINDEBUG.DLL, the dynamic link library required to run
TDW and WREMOTE.

m BCWDEMO.C, BCWDEMOA.C, and BCWDEMOB.C, the C
source files for the Windows demo programs used in Chapter

18. There are additional files related to these programs, such as
the .EXE files and the .H, .DEF, .RC, .RES, and .PR] files.

The installation process creates icons for TDW, WRSETUP, and
WREMOTE and installs them under the Windows Applications
group of the Windows Program Manager. You can run one of
these programs by choosing the icon, just as you can with any
other Windows application.

Turbo Debugger User's Guide

Configuring TDW

Just as with Turbo Debugger, you can configure TDW two ways,
by entering command-line options or by using the TDINST utility.

Using TDW
command-line Just as with Turbo Debugger, you can set the configuration of
options TDW by using various corpmgnd—line options fol‘lowed Py an
optional program name with its own command-line options. The
program name can be preceded by a path name.

Because TDW is a Windows program, you will probably enter
any command-line options either by using the Program Manager
File |Run command or by using the Program Manager File |
Properties command to change the command-line property of the
TDW icon. You can also start Windows from the DOS command
line and use the TDW command, optionally followed by switches,
or a program name with or without switches, or both, as an
argument to the Windows command.

The command-line syntax for TDW is
TDW [options] [program-name [program-args]]

TDW uses fewer command-line options than Turbo Debugger.
Except for the —t option, the options it does use are the same as
those used by Turbo Debugger, explained starting on page 66.

The following is a summary of the command-line options for

TDW:

-?,-h Access help on TDW command-line options.

—c<file> Use configuration file <file>.

-do Run TDW on the secondary display.

—ds Update screens by swapping pages.

-l Start up in Assembler mode. Debug DLL
startup library code.

-p Use a mouse.

-sC Ignore case for symbol names.

-sd<dir> Set a source file directory to <dir>.

~t<dir> Set the starting directory to <dir>.

C;> One of these command-line options, -t, is available only
with TDW. This option changes TDW's starting directory,

Chapter 17, Turbo Debugger for Windows (TDW) 265

Using TDINST with

TDW

Using TDW

which is where TDW looks for the configuration file and for
.EXE files not specified with a full path. The syntax is

~tdirname

You can set only one starting directory with this option. If
you enter it more than once on the same command line,
TDW uses only the last entry.

To use TDINST with TDW), start TDINST using the -w
command-line option. TDINST for TDW works just like
TDINST for Turbo Debugger, except that the default con-
figuration file is TDCONFIG.TDW and fewer options are
available. (See the list of TDW command-line options in the
previous section.)

For a description of how to use TDINST, see Appendix D.

Differences between TDW

266

and Turbo Debugger

When you run TDW), it comes up in full-screen, DOS
character mode, not in a window. Despite this appearance,
TDW is a Windows application and will run only under
Windows.

Unlike other applications that run under Windows, you
can’t use the Windows shortcut keys (like Alf-Esc or Cirl-Esc)
to switch out of the TDW display. However, if the appli-
cation you are debugging is active (the cursor is active in
one of its windows), you can use these keys or the mouse to
switch to other programs.

Debugging using TDW is pretty much the same as
debugging using Turbo Debugger, except for a few Turbo
Debugger features that work differently and some
additional features to aid in debugging Windows
applications.

The features that work differently are as follows:

m Switching from your application to TDW is accomplished
by using the Crl-Alt-SysRq key combination. This operation
is similar to using Ctr-Break to switch out of a DOS appli-
cation and back to Turbo Debugger, except that the DOS

Turbo Debugger User’s Guide

application terminates, while the Windows application is
only suspended.

m The -| command-line option not only enables you to
debug your application’s startup code, but also lets you
debug the assembly-language startup code of any DLLs
linked to your application.

m If possible, run your application to completion or use the
System command to exit it before exiting TDW or loading
in another program to be debugged. Failing to exit a
Windows application properly can leave resources
allocated that would otherwise have been deallocated,
potentially causing problems with TDW or other
applications.

m Keystroke recording is not available.
m You cannot debug device drivers or TSRs.

m There is no support for hardware debugging. (You can
leave the TDH386.SYS device in CONFIG.SYS if you
prefer. It doesn’t affect operation of Windows or TDW.)

m The following commands are not available from the File
menu because TDW runs under Windows:
e DOS Shell, because there is none

e Resident, because TDW cannot terminate and stay
resident

o Table Relocate, because you cannot set the base
segment of the symbol table

New TDW features The new features that support debugging of Windows
programs are

m A view window, the Windows Messages window, which
shows messages passed to windows in your program
m Three types of data you can display in the Log window:

e The data segments in your program’s local heap
e The data segments in the global heap

e A complete list of modules making up your program,
including any dynamic link libraries (DLLs)

¢ Expression type casting from memory handles to far
pointers

m Debugging of dynamic link libraries (DLLs)

Chapter 17, Turbo Debugger for Windows (TDW) 267

m The -t command-line option, which enbles you to set the
starting directory for TDW in order to use a configuration
file or .EXE file in that directory.

Logging window
messages To track messages being passed to your program’s windows,
choose the View | Windows Messages command to open the
Windows Messages window. This window shows you the
messages that Windows is passing to one or more windows
in your program.

The Windows Messages window is composed of three
panes, the Window Selection pane (top left), the Message
Class pane (top right), and the Messages pane (bottom). The
messages show up in the Messages pane.

Figure 17.1 [s]==Windows messag 3=[11[4]
The Windows Messoges Windowproc wndproc Log message WM PAINT
window

Hwnd:2214 wParam:0000 1Param:00000000 (000f) WM PAINT

Selecting a window Before you can log messages, you must first indicate which

Add. . window you're logging messages for. You do this in the top

Remove left pane, the Window Selection pane. This pane’s local

Delete all menu (activated by pressing Alt-F10) lets you add a window
selection, delete a window selection, or delete all window
selections.

Adding a window selection

To add a window selection, you can either choose Add from
the Window Selection pane local menu or begin typing in
the pane. Either method brings up the following dialog box:

Figure 17.2 u]=Add window or handle to watch

The Add Window dialog box indow identifie
| 0K g

Identify by M

e) Window proc
e

268 Turbo Debugger User's Guide

Entering the first value in this
box also sefs the message
class to "Log all messages.”

Specifying a message
class and action

Add...
Remove
Delete all

You can enter either the name of the routine that processes
messages for the window (select the Window Proc button)
or a handle value (select the Handle button). Enter as many
routine names or handle values as necessary to track
messages for your windows.

It’s easier to indicate the window by the name of the routine
that processes its messages (for example, WndProc) because
you can enter a routine name any time after loading vour
program.

If you prefer to use a handle variable name, you must first
step through the program past the line where the handle
variable is assigned a handle. (Use the F7 or F8key to
single-step through the program.) If you try to enter the
variable name before stepping past its assignment state-
ment, TDW will not be able to pick up messages for it.

Deleting a window selection

To delete a window selection, move the cursor to the item,
then either bring up the local menu and choose Remove or
press the Delets, Cirl-Y, or Cirl-R key.

To delete all selections, choose Delete All from the local
menu.

The top right pane is the Message Class pane. Its local menu,
identical to that of the Window Selection pane, allows you
to add a message class, remove a message class, or delete all
classes you have added.

You must specify a window procedure or handle in the
Window Selection pane before you can add a message class
in this pane.

If you don’t indicate a specific message or class of messages

to watch, TDW watches all messages sent to the window
procedure or handle.

Adding a message class

To add a message class, choose Add from the Message Class
pane local menu. TDW displays the following dialog box:

Chapter 17, Turbo Debugger for Windows (TDW)

269

Figure 17.3
The Set Message Filter dialog

box Mouse
Window
; Input
System
) Initialization
) Clipboard
) DDE
() Non-client
s Other
¢) Single message

Sing1 message name
VI () Log

The Set Message Filter dialog box prompts you both for a class of
message to track and an action to be performed when that
message is received.

TDW by default logs all messages starting with WM_. Because so
marty messages come in, you’ll probably want to narrow the focus
by selecting one of the classes in the Message Class list. You can
add only one class at a time, so if you need to track messages from
multiple classes, you have to use the Add option for each class
you want to set.

The following table describes the message classes: