
--f
c::
;::::ic:J
ICJO
0
C1
m
ICJO
c::
Q
Q
m
;::::ic:J

®

c:
c..r>
rn
;::>O

c..r>

GJ
c:
CJ
rn

m
0

::111::11 ..

TURB
DEBU

z- BORLAND
z
a

Turbo Debugge!®

Version 2.5

User's Guide

BORLAND INTERNATIONAL, INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, SCOTTS VALLEY, CA 95067-0001

Rl

Copyright© 1988, 1991 by Borland International. All rights
reserved. All Borland products are trademarks or registered
trademarks of Borland International, Inc. Other brand and
product names are trademarks or registered trademarks of their
respective holders. Windows, as used in this manual, shall refer to
Microsoft's implementation of a windows system.

PRINTED IN THE USA.
10 9 8 7 6 5 4

c 0 N T

Introduction 1
New features and changes for version 2.5 . 2
Hardware and software requirements . . . 2
A note on terminology 3
What's in the manual 3
How to contact Borland 6
Recommended reading 7

Books on Turbo Debugger and Tools . . 7
Books on Microsoft Windows 8

Chapter 1 Getting started 9
The distribution disks 10
The README file . 10
The HELPME!.DOC file 10
Turbo Debugger utilities 11
Installing Turbo Debugger 12

Unzipping example files 12
LCD and B/W monitors 13

Hardware debugging 13
Where to now? . 14

Programmers learning a Turbo
language . 14
Programmers already using a Turbo
language . 14

Chapter 2 Debugging and Turbo
Debugger 15

What is debugging? 15
Is there a bug? . 16
Where is it? . 16
What is it? . 16
Fixing it . 16

What Turbo Debugger can do for you . . . 17
What Turbo Debugger won't do 18
How Turbo Debugger does it 19

The Turbo Debugger advantage 19
Menus and dialog boxes 20

E N T s

Using the menus 20
Dialog boxes . 22

Knowing where you are 23
Local menus . 24

History lessons . 25
Automatic name completion 26

Incremental matching 27
Making macros . 27
Window shopping 27

Windows from the View menu 28
Module window 28
Watches window 28
Breakpoints window 28
Stack window 29
Log window 29
Variables window 29
File window 29
CPU window 30
Dump window 30
Registers window 30
Numeric Processor window 31
Execution History window 31
Hierarchy window 31
Windows Messages window 32
Duplicate windows 32

User screen 32
Inspector windows 32
The active window 33
What's in a window 33
Working with windows 35

Window hopping 35
Moving and resizing windows . . . 36
Closing and recovering windows . 37
Saving your window layout 38

Getting help . 38
Online help . 38

The status line 40
In a window 40
In a menu or dialog box 41

Chapter 3 A quick example 43
The demo programs 43
Using Turbo Debugger 45

The menus . 45
The status line . 45
The windows . 46

Using the C demo program 48
Setting breakpoints 49
Using watches . SO
Examining simple C data objects 51
Examining compound C data objects . 53
Changing C data values 53

Using the Pascal sample program 55
Setting breakpoints 56
Using watches . 57
Examining simple Pascal data objects . 58
Examining compound Pascal data
objects 60
Changing Pascal data values 61

Chapter 4 Starting Turbo Debugger 63
Preparing programs for debugging 63

Preparing Borland C++ programs 64
Preparing Turbo Pascal programs 64
Preparing Turbo Assembler programs . 65
Preparing Microsoft programs 65

Running Turbo Debugger 65
Command-line options 66

Loading the configuration file (-c) 66
Display updating (-d) 67
Getting help (-hand-?} 67
Process ID switching (-i) 67
Keystroke recording (-k) 67
Assembler-mode startup (-1) 68
Setting heap size (-m) 68
Mouse support (-p) 69
Remote debugging (-r) 69
Source code handling (-s) 69
Video hardware (-v) 70

ii

Remote Microsoft Windows debugging (-
w) 70
Overlay pool size (-y) 70

Configuration files 71
The Options menu 72

The Language command 72
The Macros menu 72

Create , 72
StopRecording 72
Remove 73
Delete All . 73

Display Options command 73
Display Swapping 73
Integer Format 74
Screen Lines . 74
Tab Size 74

Path for Source command 74
Save Option.S command 74
Restore Options command 75

Running DOS in Turbo Debugger 75
Returning to DOS . 76

Chapter 5 Controlling program
execution

Examining the current program state
The Variables window ,

The Global pane local menu
Inspect
Change
Watch

The Static/Local pane local menu ..
Inspect
Change
Watch
Show

The Stack window
The Stack window local menu

Inspect
Locals · · ·

The Origin local menu command
The Get Info command

DOS format
Windows format

Status line messages

77
78
78
79
79
80
80
80
81
81
81
81
82
82
82
83
83
83
83
85
86

Global memory information 88
The Rrm menu . 88

Rrm 88
Go to Cursor . 89
Trace Into . 89
Step Over . 89
Execute To... 90
Until Return . 90
Anin:i.ate... 90
Back Trace . 90
Instruction Trace 91
Arguments 91
Program Reset . 91

The Execution History window 92
The Instructions pane 92

The Instructions pane local menu . . 93
Inspect 93
Reverse Execute 93
Full History 94

The Keystroke Recording pane 94
The Keystroke Recording pane local
menu 94

Inspect 94
Keystroke Restore 95

Interrupting program execution 95
Ctrl-Break . 95

Program termination 96
Restarting a debugging session 96

Reloading your program 96
Keystroke macro recording and
playback . 97

Opening a new program to debug 98
Changing the program arguments 98

Chapter 6 Examining and modifying
data 101

The Data menu . 102
Inspect... 102
Evaluate/Modify... 102
Add Watch... 105
Frmction Return 105

Pointing at data objects in source files . . 105
The Watches window 106

The Watches window local menu ... 107

iii

Watch 107
Edit.. 107
Remove . 107
Delete All . 107
Inspect . 107
Change 107

Inspector windows 108
C data Inspector windows 108

Scalars.......... i08
Pointers . 109
Structures and rmions 110
Arrays 110
Frmctions . 111

Pascal data Inspector windows 111
Scalars . 111
Pointers . 112
Arrays 113
Records . 113
Procedures and functions 114

Assembler data Inspector windows . . 114
Scalars . 114
Pointers . 114
Arrays 115
Structures and unions 116

The Inspector window local menu 116
Range 117
Change 117
Inspect 117
Descend 118
New Expression 118
Type Cast 118

Chapter 7 Breakpoints 119
The Breakpoints menu 120

Toggle 121
At 121
Changed Memory Global... 121
Expression True Global... 121
Hardware Breakpoint... 121

Delete All . 121
Scope of breakpoint expressions 122
The Breakpoints window 122

The Breakpoints window local menu . 123
Set Options... 123

Hardware Options 125
Add 126
Remove 126
Delete All . 126
Inspect . 126

The Log window . 126
The Log window local menu 127

Open Log File... 127
Close Log File 128
Logging . 128
Add Comment... 128
Erase Log . 128
Display Windows Info 128

Simple breakpoints 128
Conditional breakpoints and pass
counts 129
Global breakpoints 130
Breaking for changed data objects 131
Logging variable values 131
Executing expressions 132

Chapter 8 Examining and modifying
files 133

Examining program source files 133
The Module window 134
The Module window local menu 135

Inspect . 135
Watch 136
Module 136
File... 136
Previous 136
Line 136
Search 137
Next 137
Origin 137
Goto 137
Edit 138

Examining other disk files 138
The File window 138
The File window local menu 139

Goto 139
Search 139
Next 140

iv

Display As . 140
File... 140
Edit 140

Chapter 9 Expressions 141
Choosing the language for expression
evaluation . 142
Code addresses, data addresses, and line
numbers . 143
Accessing symbols outside the current
scope 143

Scope override syntax 144
Implied scope for expression
evaluation 146

Byte lists . 147
C expressions . 147

C symbols . 147
C register pseudovariables 148
C constants and number formats 149
Escape sequences 149
C operators precedence 150
Executing C functions in your pro-
gram 151
C expressions with side effects 152
C reserved words and type
conversion . 152

Pascal expressions 153
Pascal symbols 153
Pascal constants and number formats . 154
Pascal strings . 154
Pascal operators and operator
precedence . 154
Calling Pascal functions and
procedures 155

Assembler expressions 155
Assembler symbols 155
Assembler constants 156
Assembler operators 156

Format control . 157

Chapter 1 O C++ and object-oriented
Pascal debugging 159

The Hierarchy window 159
The Object Type List pane 160

The Object Type I Class List pane local
menu 160

Inspect 160
Tree 161

The Hierarchy Tree pane 161
The Hierarchy Tree pane local
menu(s) 161
The Parent Tree pane local menu . . 162

Object type/ class Inspector windows . . 162
The object type/ class Inspector window
local menus 163

The Object Data Field (top) pane .. 163
Inspect . 163
Hierarchy . 163
Show Inherited 163

The Object Method (bottom) pane . 163
Inspect 164
Hierarchy . 164
Show Inherited 164

Object instance Inspector windows 164
The object/ class instance Inspector
window local menus 165

Range 165
Change 166
Methods 166
Show Inherited 166
Inspect . 166
Descend . 166
New Expression 166
Type Cast... 166
Hierarchy . 167

The middle and bottom panes 167

Chapter 11 Assembler-level
debugging 169

When source debugging isn't enough .. 169
The CPU window 170
The Code pane 172

The disassembler 172
The Code pane local menu 173

Goto 173
Origin 173
Follow 173
Caller 174

v

Previous . 174
Search 174
Mixed 175
New CS:IP . 175
Assemble 175
1/0 176

In Byte 176
Out Byte . 176
Read Word 176
Write Word 176

The Register and Flags panes 177
The Register pane local menu 177

Increment . 177
Decrement . 177
Zero 177
Change 177
Registers 32-bit 178

The Flags pane local menu 178
Toggle 178

The Data pane . 178
The Data pane local menu 179

Goto 179
Search 179
Next 180
Change 180
Follow 180

Near Code 180
Far Code . 180
Offset to Data 180
Segment:Offset to Data 180
Base Segment:O to Data 181

Previous . 181
Display As . 181

Byte 181
Word 181
Long 181
Comp 181
Float 182
Real 182
Double 182
Extended . 182

Block 182
Clear 182
Move 182

Set 183
Read 183
Write 183

The Stack pane . 183
The Stack pane local menu 183

Goto 183
Origin 184
Follow 184
Previous . 184
Change 184

The assembler . 184
Operand address size overrides 185

Memory and immediate operands . 185
Operand data size overrides 186
String instructions 186

The Dump window 186
The Registers window 187
Borland C++ code generation 187

Chapter 12 The 80x87 coprocessor
chip and emulator 189

The 80x87 chip vs. the emulator 189
The Numeric Processor window 190

The Register pane 190
The 80-bit floating-point registers . 190
The Register pane local menu 191

Zero 191
Empty 191
Change 191

The Control pane 191
The control bits 191
The Control pane local menu 191

Toggle 192
The Status pane 192

The status bits 192
The Status pane local menu 192

Toggle 192

Chapter 13 Command reference 193
Hot keys , 194
Commands from the menu bar 195

The= (System) menu 196
The File menu 196
The View menu 196

vi

The Run menu . 197
The Breakpoints menu 197
The Data menu 197
The Options menu 198
The Window menu 198
The Help Menu 198

The local menu commands 199
Breakpoints window 199
The CPU window menus 200

Code pane . 200
Data pane . 200
Flags pane . 201
Register pane 202
Stack pane . 202

Dump window 202
The Execution History window
menus 202

Instructions pane 202
Keystroke Recording pane 202

File window . 203
Log window menu 203
Module window 204
Windows Messages window 204

Window Selection pane 204
Message Class pane 205
Messages pane 205

Numeric Processor window 205
Register pane 205
Status pane . 206
Control pane 206

Hierarchy window 206
Object Type/Class List pane 206
Hierarchy Tree pane 206
Parent Tree pane 207

Registers window menu 207
Stack window . 207
Variables window 207

Global Symbol pane 207
Local Symbol pane 207

Watches window 208
Inspector window 208
Object Type/Class Inspector
window 209

Object/ class instance Inspector
window

Text panes
List panes
Commands in input and history list
boxes
Window movement commands
Wildcard search templates
Complete rrierlu. tree

Chapter 14 How to debug a
program

When things don't work
Debugging style

Run the whole thing
Incremental testing

Types of bugs
General bugs

Hidden effects
Assuming initialized data
Not cleaning up
Fencepost errors

C-specific bugs
Using uninitialized autovariables .
Confusing = and ==
Confusing operator precedence .. .
Bad pointer arithmetic
Unexpected sign extension
Unexpected truncation
Misplaced semicolons
Macros with side effects
Repeated autovariable names
Misuse of autovariables
Undefined function return value ..
Misuse of break keyword
Code has no effect

Pascal-specific bugs
Uninitialized variables
Dangling pointers
Scope confusion
Superfluous semicolons
Undefined function return value ..
Decrementing Word or Byte
variables

209
210
210

211
212
212

215
215
216
217
217
217
217
218
218
218
219
219
219
220
220
220
221
221
221
222
222
222
222
223
223
223
224
224
225
226
227

228

vii

Ignoring boundary or special cases . 228
Range errors 229

Assembler-specific bugs 230
Forgetting to return to DOS 230
Forgetting a RET instruction 230
Generating the wrong type of
return 231
Reversing operands 231
rorgettir1g t:he stack or reservirLg a too­
small stack . 231
Calling a subroutine that wipes out
registers . 231
Using the wrong sense for a conditional
jump 232
Forgetting about REP string
overrun . 232
Relying on a zero CX to cover a whole
segment . 232
Using incorrect direction flag
settings . 232
Using the wrong sense for a repeated
string comparison 233
Forgetting about string segment
defaults . 233
Converting incorrectly from byte to
word operations 233
Using multiple prefixes 233
Relying on the operand(s) to a string
instruction . 233
Wiping out a register with
multiplication 233
Forgetting that string instructions alter
several registers 234
Expecting certain instructions to alter
the carry flag 234
Waiting too long to use flags 234
Confusing memory and immediate
operands . 234
Causing segment wraparound 234
Failing to preserve everything in an
interrupt handler 234
Forgetting group overrides in operands
and data tables 235

Accuracy testing . 235

Testing boundary conditions 235
Invalid data input 235
Empty data input 236

Debugging as part of program design . . 236
The sample debugging session 236
C debugging session 237

Looking for errors 237
Deciding your plan of attack 238
Starting Turbo Debugger 238
Inspecting . 239
Breakpoints . 239
The Watches window 240
The Evaluate/Modify dialog box 240
Eureka! . 240

Pascal debugging session 242
Looking for errors 242
Deciding your plan of attack 243
Starting Turbo Debugger 244
Moving through the program 244
The Evaluate/Modify dialog box 245
Inspecting . 246
Watches 247
Just one more bug... 248

Chapter 15 Virtual debugging on the
80386 processor 251

Equipment required for virtual
debugging 252
Installing the virtual debugger device
driver 252
Starting the virtual debugger 252
Differences between normal and virtual
debugging 254
Troubleshooting tips 255
TD386 error messages 256
TDH386.SYS error messages 257

Chapter 16 Protected-mode debugging
with TD286 259

Equipment required for the protected-mode
debugger . 259
Installing the protected-mode
debugger . 260
Starting the protected-mode debugger . 260

viii

Differences between Turbo Debugger and
protected-mode . 260
Debugging programs that use extended
memory 261
Running TD286 on different machines 261

Chapter 17 Turbo Debugger for
Windows (TOW) 263

Requirements for running TDW 263
Installing TDW 264
Configuring TDW 265

Using TDW command-line options . . 265
Using TDINST with TDW 266

Using TDW 266
Logging window messages 268

Selecting a window 268
Adding a window selection 268
Deleting a window selection 269

Specifying a message class and
action 269

Adding a message class 269
Deleting a message class 272

Viewing messages 272
Obtaining memory and module lists . 272

Listing the contents of the global
heap 273
Listing the contents of the local
heap 275
Obtaining a list of modules 275

Debugging dynamic link libraries
(DLLs) 276

Using the Load Modules or DLLs
dialog box . 277

Changing source modules 277
Working with DLLs and
programs . 277

Adding a DLL to the DLLs & Programs
list 279
Setting debug options in a DLL . . . 279
Controlling TDW's loading of DLL
symbol tables 280
Debugging DLL startup code 280

Converting memory handles to
addresses . 282

Debugging tips 282
TDW error messages 283

Chapter 18 Debugging a Windows
application 285

The sample programs 285
Compiling and linking the demo
programs . 286
Debugging BCWDEMOA 286

Deciding what to do 287
Terminating BCWDEMOA 287
Logging messages 288
Analyzing the message log 289
Finding the bug 289

Stepping through the program 290
Analyzing DoPaint 292
Fixing the bug 293

Terminating BCWDEMOA 293
Debugging BCWDEMOB 294

Switching out of the program 294
Testing the program 295
Deciding what to do 295
Comparing global memory lists 296
Finding the bug, a functional
approach . 297

Choosing menu items 297
Drawing a shape 297

Pressing the left mouse button . . 297
Moving the mouse 298
Drawing the shape (and finding the
bug) 298
Releasing the left button 298
Painting the screen 299

Post mortem 299

Chapter 19 Debugging TSRs and
device drivers 301

What's a TSR? . 301
Debugging a TSR 302

What's a device driver? 305
Debugging a device driver 306

Terminating the debugging session 309

ix

Appendix A Summary of command-line
options 311

Appendix B Technical notes 313
Changed load address and free
memory 313
Crashing the system 314
Tracing through DOS and process ID
switching . 314
Using th~ 8087 /80287 math coprocessor and
emulator . 314
Interrupts used by Turbo Debugger . . . 315
Debugging using INT 3 and INT 1 315
Display-saving and mode-switching . . . 316
Memory consumption 316
EMS support . 316
Interrupt vector saving and restoring . . 317

Appendix C lnline assembler
keywords 319

Appendix D Customizing Turbo
Debugger 323

"Running TDINST 324
Setting the screen colors 324

Customizing screen colors 324
Windows . 324
Dialog boxes 325
Menus 326
Screen 326

The default colors 326
Setting Turbo Debugger display
parameters . 327

Display Swapping 327
Integer Format 328
Beginning Display 328
Screen Lines . 328
Tab Size . 328
Maximum Tiled Watch 328
Fast Screen Update 329
Permit 43 I 50 Lines 329
Full Graphics Saving 329
User Screen Updating 329
Log List Length 330

Turbo Debugger options 330

Directories... 330
Input and Prompting... 331

History List Length 331
Interrupt Key 331
Set Key 331
Mouse Enabled 331
Beep on Error 331
Keystroke Recording 332
Control Key Shortcuts 332

Source Debugging 332
Language . 332
Ignore Symbol Case 333

Miscellaneous Options... 333
NMI Intercept 333
Use Expanded Memory 334
Change Process ID 334
DOS Shell Swap Size 334
Spare Symbol Memory 334
Remote Debugging 334
Remote Link Port 334
Link Speed 334

Setting the mode for display 334
Default . 335
Color 335
Black and White 335
Monochrome 335
LCD 335

Command-line options and installation
equivalents . 335
When you're through... 337

Savingchanges 337
Save Configuration File 337
Modify TD.EXE 337

Exiting TDINST 337

Appendix E Remote debugging 339
Setting up a remote debugging system . 340
Debugging remote DOS applications . . 341

Installing TDREMOTE 341
Configuring TDREMOTE: the command­
line options . 341
Starting the DOS remote link 342
Starting Turbo Debugger on the local
machine . 343

x

About loading the program to the
remote system 343

Remote DOS debugging sessions 344
TDREMOTE messages 344
Troubleshooting TDREMOTE connection
problems . 346

Debugging remote Windows
applications 347

Hardware requirements 347
Installing WREMOTE 347
Configuring WREMOTE 348
WREMOTE command-line options . . 349
Starting the Windows remote link . . . 349
Running Turbo Debugger 350

Turbo Debugger command-line
options . 350
Starting Turbo Debugger on the local
machine 350
About loading the program to the
remote system 351

Remote Windows debugging
sessions . 351
WREMOTE messages 352
Troubleshooting WREMOTE connection
problems . 352

Appendix F Dialog boxes and error
messages 353

Dialog boxes . 353
Error messages . 360

Fatal errors . 360
Other error messages 361

Information messages 379

Appendix G Using Turbo Debugger
with different
languages 381

Borland C++ tips 381
Compiler code optimizing 381
Accessing pointer data 382
Stepping through complex
expressions . 382

Turbo Assembler tips 383
Looking at raw hex data 383

Source-level debugging 383
Examining and changing registers . . . 383

Turbo Pascal tips . 384
Stepping through initialization code . 384
Stepping through exit procedures . . . 384
Constants . 384

xi

String and set temporaries on the
stack 385
Clever typecasting 385
CPU window tips for Pascal 386

Glossary 387

Index 391

T A B

2.1: What goes in a dialog box 22
13.1: The function key and hot key

commands 194
13.2: Text pane key commands 210
13.3: List pane key commands 211
13.4: Dialog box key commands 211
13.5: Window movement key

commands 212
17.1: Windows message classes 270
17.2: Format of a global heap list 274
17.3: Format of a local heap list 275
17.4: Format of a Windows module list .. 276
17.5: DLLs & Programs list dialog box

buttons 278

xii

L E s

A.1: Turbo Debugger command-line
options 312

C.1: 8086/80186/80286 instruction
mnemonics 320

C.2: 80386 instruction mnemonics 320
C.3: 80486 instruction mnemonics 321
C.4: 80386 registers 321
C.5: CPU registers 321
C.6: Special keywords 321
C.7: 8087 /80287 numeric coprocessor

instruction mnemonics 322
C.8: 80387 instruction mnemonics 322
D.1: Turbo Debugger command-line

options 336

F G u

2.1: Global vs. local menus 24
2.2: A history list in an input box 26
2.3: Can you spot the active window? 33
2.4: A typical window 34
2.5: The normal status line 40
2.6: The status line with Alt pressed 40
2.7: The status line with Ctrl pressed40
3.1: The startup screen showing

TCDEMO 44
3.2: The menu bar 45
3.3: The status line 45
3.4: The Module and Watches windows,

tiled 47
3.5: Program stops on return from function

showargs 49
3.6: A breakpoint at line 44 50
3.7: A C variable in the Watches window . 51
3.8: An Inspector window 52
3.9: Inspecting a structure 53
3.10: The Change dialog box 54
3.11: The Evaluate/Modify dialog box ... 55
3.12: The program stops after returning from

a procedure 56
3.13: A breakpoint at line 121 57
3.14: A Pascal variable in the Watches

window 58
3.15: An Inspector window 59
3.16: Inspecting a record 60
3.17: The Change dialog box 61
3.18: The Evaluate/Modify dialog box ... 62
4.1: The Display Options dialog box 73
4.2: The Save Options dialog box 75
5.1: The Variables window 78
5.2: The Local Display dialog box 82
5.3: The Stack window 82
5.4: The DOS Get Info text box 84

xiii

R E s

5.5: The Windows Get Info text box 86
5.6: The Execution History window 92
5.7: The Load Program dialog box 98
6.1: The Evaluate/Modify dialog box ... 103
6.2: The Watches window 106
6.3: A C scalar Inspector window 109
6.4: AC pointer Inspector window 110
6.5: A C structure or union Inspector

window 110
6.6: A C array Inspector window 111
6.7: AC function Inspector window 111
6.8: A Pascal scalar Inspector window .. 112
6.9: A Pascal pointer Inspector window .112
6.10: A Pascal array Inspector window .. 113
6.11: A Pascal record Inspector window .113
6.12: A Pascal procedure Inspector

window 114
6.13: An assembler scalar Inspector

window 114
6.14: An assembler pointer Inspector

window 115
6.15: An assembler array Inspector

window 116
6.16: An assembler structure Inspector

window 116
7.1: The Breakpoints window 122
7.2: The Breakpoint Options dialog box .123
7.3: The Log window 126
8.1: The Module window 134
8.2: The File window 138
8.3: The File window showing hex data .138
10.1: The Hierarchy window 160
10.2: An object type/ class Inspector

window 162
10.3: An object/ class instance Inspector

window 165

11.1: The CPU window 170
11.2: The Dump window 186
11.3: The Registers window 187
12.1: The Numeric Processor window ... 190
13.1: The Turbo Debugger menu tree 213
17.1: The Windows Messages window .. 268
17.2: The Add Window dialog box 268
17.3: The Set Message Filter dialog box .. 270
17.4: The Windows Information dialog

box 272
17.5: The Load Modules or DLLs dialog

box 277

xiv

D.1: Customizing colors for windows ... 325
D.2: Customizing colors for dialog

boxes 326
D.3: The Display Options dialog box 327
D.4: The User Input and Prompting dialog

box 331
D.5: The Source Debugging dialog box .. 332
D.6: The Miscellaneous Options dialog

box 333
E.1: WRSETUP main window and Settings

dialog box 348

N T R

Introduction

0 D u c T 0

Turbo Debugger is a state-of-the-art, source-level debugger
designed for Borland Turbo language programmers and pro­
grammers using other compilers who want a more powerful
debugging environment.

N

Multiple, overlapping windows, a combination of pull-down and
pop-up menus, and mouse support provide a fast, interactive
environment. An online context-sensitive help system provides
you with help during all phases of operation.

Here are just some of Turbo Debugger's features:

• uses the expanded memory specification (EMS) for debugging
large programs

•full C, Pascal, and assembler expression evaluation

•reconfigurable screen layout

•assembler I CPU access when needed

• powerful breakpoint and logging facility

•keystroke recording (macros)

•back tracing

•remote system for debugging large programs

•support for 80386 and other vendors' debugging hardware

•full support for object-oriented programming in Turbo Pascal
5.5 and later

•full support for C++ in Borland's line of C++ compilers

• TSR and device driver debugging

•debugging of Microsoft Windows applications

New features and changes for version 2.5

With Turbo Debugger 2.5, you can debug Microsoft Windows
applications. The icon on the left indicates a feature used only
with Windows. The following additions and changes have been
made to Turbo Debugger to support this new capability:

• A new version of Turbo Debugger, called Turbo Debugger for
Windows (TDW), supports debugging on a single machine.
This program is described in Chapter 17.

•A new version of TDREMOTE, called WREMOTE, supports
remote debugging.

•The -rs command-line option for Turbo Debugger and
TDREMOTE has changed to support more baud rates, and a
new option, -w, has been added for Turbo Debugger. See page
341 for a description of the TDREMOTE command-line options
and page 350 for a description of Turbo Debugger remote
command-line options.

•An additional command on the View menu, Windows Info, lets
you view several types of information about a Windows
application: messages passed between windows, global and
local heap contents, and a list of modules making up the
application.

Hardware and software requirements

Turbo Debugger runs on the IBM PC family of computers,
including the XT and AT, the PS/2 series, and all true IBM
compatibles. DOS 2.0 or higher is required and at least 384K of
RAM. It runs on any 80-column monitor, either color or mono­
chrome. We recommend a hard disk. If you want to run Turbo
Debugger on a two-floppy system, you must use high-density
disks. You can also use 3.5-inch, 720K disks; INSTALL won't
install Turbo Debugger on these, so you will have to copy the files
over yourself.

¢ Turbo Debugger does not require an 8087 math coprocessor chip.

¢ Turbo Debugger works with the following Borland products:
Turbo C 2.0, Borland's line of C++ compilers, Turbo Pascal 5.0 or
later, and Turbo Assembler 1.0 or later. To use Turbo Debugger on

2 Turbo Debugger User's Guide

a program, it must be an executable (.EXE file) that you compiled
with full debugging information turned on.

¢ When you run Turbo Debugger, you'll need both the .EXE file and
the original source files. Turbo Debugger searches for source files
first in the directory where the compiler found them when it
compiled, second in the directory specified in the Options/Path
for Source command, third in the current directory, and fourth in
the directory the .EXE file is in.

A note on terminology

For convenience and brevity, we use a couple of terms in this
manual in slightly more generic ways than usual. These terms are
module, function, and argument.

Module Refers to what is usually called a module in C and in assembler,
but also to what is called a unit in Pascal.

Function Refers to both a C function and to what is known in Pascal as a
subprogram (or routine), which encompasses functions, procedures,
and object methods. In C, a function can return a value (like a
Pascal function) or not (like a Pascal procedure). (When a C
function doesn't return a value, it's called a void function.) In the
interest of brevity, we often use function in a generic way to stand
for both C functions and Pascal functions and procedures­
except, of course, in the language-specific areas of the manual.

Argument Is used interchangeably with parameter in this manual. This
applies to references to command-line arguments (or parameters),
as well as to arguments (or parameters) passed to procedures and
functions.

What's in the manual

Introduction

Here is a brief synopsis of the chapters and appendixes in this
manual:

Chapter 1 : Getting started describes the contents of the distri­
bution disk and tells you how to load Turbo Debugger files into
your system. It also gives you advice on which chapter to go to
next, depending on your level of expertise.

3

4

Chapter 2: Debugging and Turbo Debugger explains the Turbo
Debugger environment, menus, and windows, and shows you
how to respond to prompts and error messages.

Chapter 3: A quick example leads you through a sample session­
using either a Pascal or C program-that demonstrates many of
the powerful capabilities of Turbo Debugger.

Chapter 4: Starting Turbo Debugger shows how to run the
debugger from the DOS prompt, when to use command-line
options, and how to record commonly used settings in
configuration files.

Chapter 5: Controlling program execution demonstrates the
various ways of starting and stopping your program, as well as
how to restart a session or replay the last session.

Chapter 6: Examining and modifying data explains the unique
capabilities Turbo Debugger has for examining and changing data
inside your program.

Chapter 7: Breakpoints introduces the concept of actions, and
how they encompass the behavior of what are sometimes referred
to as breakpoints, watchpoints, and tracepoints. Both conditional
and unconditional actions are explained, as well as the various
things that can happen when an action is triggered.

Chapter 8: Examining and modifying files describes how to
examine and change program source files, as well as how to
examine and modify arbitrary disk files, either as text or binary
data.

Chapter 9: Expressions describes the syntax of C, Pascal, and
assembler expressions accepted by the debugger, as well as the
format control characters used to modify how an expression's
value is displayed.

Chapter 1 O: C++ and object-oriented Pascal debugging explains
the debugger's special features that let you examine objects (in
programs written using Turbo Pascal 5.5 or later) and classes (in
programs written using one of Borland's C++ compilers).

Chapter 11: Assembler-level debugging explains how to view
and change memory as raw hex data, how to use the built-in
assembler and disassembler, and how to examine or modify the
CPU registers and flags.

Turbo Debugger User's Guide

Introduction

Chapter 12: The 80x87 coprocessor chip and emulator discusses
how to examine and modify the contents of the floating-point
hardware or emulator.

Chapter 13: Command reference is a complete listing of all main
menu commands and all local menu commands for each window
type.

Chapter 14: How to debug a program is an introduction to
strategies for effective debugging of your programs.

Chapter 15: Virtual debugging on the 80386 processor describes
how you can take advantage of the extended memory and power
of an 80386 computer by letting the program you're debugging
use the full address space below 640K, as if no debugger were
loaded.

Chapter 16: Protected-mode debugging with TD286 tells you how
to use TD286 to run Turbo Debugger in protected mode, freeing
up memory for debugging large programs.

Chapter 17: Turbo Debugger for Windows (TOW) describes how
to run TOW and how to use its special features.

Chapter 18: Debugging Windows applications leads you through
a debugging session on a sample Windows program.

Chapter 19: Debugging TSRs and device drivers explains how to
debug terminate and stay resident programs and programs that
become resident at startup time with Turbo Debugger, and how to
load a symbol table manually.

Appendix A: Summary of command-line options is a summary of
all the command-line options that are completely described in
Chapter4.

Appendix B: Technical notes is for experienced programmers. It
describes implementation details of Turbo Debugger that explain
how it interacts with both your program and with DOS.

Appendix C: lnline assembler keywords lists all instruction
mnemonics and other special words used for entering inline
8086/80286/80386 and 8087 /80287 /80837 instructions.

Appendix D: Customizing Turbo Debugger explains how to use
the installation program (TDINST) to customize screen colors and
change default options.

5

Appendix E: Remote debugging explains how to use the
WREMOTE utility for remote debugging of Windows
applications and the TDREMOTE utility for remote debugging of
DOS (non-windows) applications. These utilities enable you to
run Turbo Debugger on one machine and the program you are
debugging on another.

Appendix F: Dialog boxes and error messages lists all the Turbo
Debugger prompts and error messages that can occur, with
suggestions on how to respond to them.

Appendix G: Using Turbo Debugger with different languages
provides several tips when you're debugging programs written in
C, assembler, or Pascal.

Glossary is an alphabetical list of commonly used terms in this
manual, with short definitions.

How to contact Borland

6

The best way to contact Borland is to log on to Borland's Forum
on CompuServe: Type GO BOR from the main CompuServe menu
and choose "Borland Programming Forum B {Turbo Prolog,
Turbo Assembler, Turbo Debugger, & Turbo C)" from the Borland
main menu. Leave your questions or comments there for the
support staff to process.

If you prefer, write a letter with your comments and send it to

Borland International
Technical Support Department - Turbo Debugger
1800 Green Hills Road
P.O. Box 660001
Scotts Valley, CA 95067-0001, USA

408-438-5300 You can also telephone our Technical Support department. Please
have the following information handy before you call:

1. Product name and serial number on your original distribution
disk. Please have your serial number ready, or we won't be
able to process your call.

2. Product version number. The version number for Turbo
Debugger is displayed when you first load the program and

Turbo Debugger User's Guide

before you press any keys. If you are in Turbo Debugger,
choose About from the = (System) menu.

3. Computer brand, model, and the brands and model numbers
of any additional hardware.

4. Operating system and version number. (The version number
can be determined by typing VER at the MS-DOS prompt.)

5. Contents of your AUTOEXEC.BAT file.

6. Contents of your CONFIG.SYS file.

Recommended reading

Books on Turbo
Debugger and

Tools

Introduction

Many leading publishers support Borland products with a wide
range of excellent books, serving everyone from beginning
programmers to advanced users. In addition, there are books on
other topics, such as programming for Windo~s, that are
required reading.

Here are a few titles that offer additional information on Turbo
Debugger and Tools:

Ackerman, Charles. Turbo Debugger and Tools: A Self-Teaching
Guide, John Wiley and Sons (New York: 1990).

Swan, Tom. Mastering Turbo Assembler, Howard W. Sams and Co.
(Carmel, IN: 1989).

Swan, Tom. Mastering Turbo Debugger and Tools, Howard W. Sams
and Co. (Carmel, IN: 1990).

Syck, Gary. The Waite Group's Turbo Assembler Bible, Howard W.
Sams and Co. (Carmel, IN: 1990).

7

8

Books on
Microsoft
Windows

The following books provide information on writing Windows
application programs:

Microsoft staff. Microsoft Windows Software Development Kit, Guide
to Programming, Microsoft Corporation. (Redmond, WA: 1990).

Microsoft staff. Microsoft Windows Software Development Kit
Reference, Vols. 1 and 2, Microsoft Corporation. (Redmond, WA:
1990).

Microsoft staff. Microsoft Windows Software Development Kit, Tools,
Microsoft Corporation. (Redmond, WA: 1990).

Petzold, Charles. Programming Windows, Microsoft Press.
(Redmond, WA: 1990).

Turbo Debugger User's Guide

c H

Chapter 7, Getting started

A p T E R

l

Getting started

Your Turbo Debugger package consists of a set of distribution
disks and the Turbo Debugger User's Guide (this manual). The
distribution disks contain all the programs, files, and utilities
needed to debug programs written in Turbo C, Turbo Assembler,
Turbo Pascal, Microsoft C, and Microsoft Assembler. In the
README, the HELPME!.DOC, the MANUAL.DOC, and the
HELPME.DOC files, the Turbo Debugger package also contains
documentation on subjects not covered in this manual.

The Turbo Debugger User's Guide provides a subject-by-subject
introduction of Turbo Debugger's capabilities and a complete
command reference.

Before you get started using Turbo Debugger, you should make a
complete working copy of the distribution disks, then store the
original disks in a safe place. Use the original distribution disks as
your backup only, and run Turbo Debugger off of the copy you've
just made-the distribution disks are your only backup in case
anything happens to your working files.

If you are not familiar with Borland's no-nonsense license state­
ment, now's the time to read the agreement. Mail your filled-in
product registration card, so you'll be notified about updates and
new products as they become available.

9

The distribution disks

When you install Turbo Debugger on your system, files from the
distribution disks are copied to your working floppies or to your
hard disk. Just run INSTALL.EXE, the easy-to-use installation
program on your distribution disks. The distribution disks are
formatted for double-sided, double-density disk drives and can be
read by IBM PCs and close compatibles.

For a list of the files on your distribution disks, see the README
file on the Installation disk.

The README file

¢ It is very important that you take the time to look at the README
file on the Installation disk before you do anything else with
Turbo Debugger. This file contains last-minute information that
may not be in the manual. It also lists every file on the distri­
bution disks, with a brief description of each.

To access the README file, insert the Installation disk in drive A,
switch to drive A by typing A: and pressing Enter, then type README
and press Enter again. Once you are in README, use the i and ,I,
keys to scroll through the file. Press Esc to exit.

The HELPME!.DOC file

10

Your Installation disk also contains a file called HELPME!.DOC,
which contains answers to problems.that users commonly run
into. Consult it if you find yourself having difficulties. Among
other things, the HELPME!.DOC file deals with:

• Screen output for graphics and text-based programs

• Executing other programs while you are still using the
debugger

Turbo Debugger User's Guide

• Breaking out of a program

• The syntactic and parsing differences between Turbo Debugger
and the Turbo languages

•Debugging multi-language programs with Turbo Debugger

•Tandy 1000, IBM PC convertible, or NEC MultiSpeed, and other
computers that use the NMI (nonmaskable interrupt)

Turbo Debugger utilities

Chapter 7, Getting started

Your Turbo Debugger package comes with several utility pro­
grams. Detailed information on these utilities is available on your
distribution disks. See the README file for how to access this
disk-based documentation.

Here is a brief description of each of the Turbo Debugger utilities:

•The Code View to Turbo Debugger utility, TDCONVRT.EXE,
lets you debug C and assembler programs developed with
Microsoft compilers.

•The remote file transfer utility, TDRF.EXE, works in conjunction
with remote debugging and lets you issue basic file­
maintenance commands to a remote system.

•The symbol table stripping utility, TDSTRlP.EXE, lets you strip
the debugging information (the "symbol table") from your pro­
grams without relinking.

• TDP ACK.EXE lets you pack the debugging information.

• TDMAP.EXE appends to an .EXE file debugging information
from the corresponding .MAP file, allowing you to debug an
executable program that you compiled with a non-Borland
compiler and linker.

• TDDEV.EXE displays a table showing information about all
device drivers.

• TDMEM.EXE displays a table showing current memory use
and availability, including expanded and extended memory.

•Finally, TDUMP.EXE is a generic object module and .EXE file
disassembler.

•Additionally, we give you a small TSR program, TDNMI.COM
that resets the breakout-switch latch if you are using a
Periscope I board.

11

¢ For a list of all the command-line options available for
TDCONVRT.EXE, TORP.EXE, TDSTRIP.EXE, TDPACK.EXE,
TDMAP.EXE, or TDUMP.EXE, just type the program name and
press Enter. For example, to see the command-line options for
TDMAP.EXE, you would type

TD MAP

Installing Turbo Debugger

12

The Installation disks contain a program called INST ALL.EXE
that will assist you with the installation of Turbo Debugger 2.5.

To start the installation, change your current drive to the one that
has the INSTALL program on it and enter INSTALL. You are given
instructions in a box at the bottom of the screen for each prompt.

INSTALL copies all Turbo Debugger files onto your hard disk and
puts them into subdirectories. The default subdirectories are

Turbo Debugger directory: C: \TD
Example subdirectory: C: \TD

By default, all files from the distribution disks are placed in the
Turbo Debugger directory. If you would rather separate the demo
programs into their own subdirectory as well, edit the default
example files path before selecting START INSTALLATION.

You should read the README file to get further information
about Turbo Debugger after you install Turbo Debugger.

¢ For a list of all the command-line options available for
INSTALL.EXE, enter the program name followed by -h:

INSTALL -h

Unzipping
example files The Turbo Debugger distribution disks contain a file with a .ZIP

file name extension: TDEXAMPL.ZIP.

These files contain several other files that have been compressed
and placed inside an archive. You can de-archive them yourself
by using the UNZIP.EXE utility.

Turbo Debugger User's Guide

LCD and B/W

For example, entering

UNZIP TDEXAMPL

unpacks all the files stored in the TDEXAMPL.ZIP archive into
the current directory.

INSTALL gives you a choice of copying the .ZIP files intact or de­
archiving and copying all of the individual files onto your hard
disk during the installation process.

monitors If you have difficulty reading the text displayed by the INSTALL
utility, it accepts an optional /8 command-line parameter that
forces it to use black-and-white (BW80) mode:

A:INSTALL /B

Specifying the /8 parameter may be necessary if you are using an
LCD screen or a system that has a color graphics adapter and a
monochrome or composite monitor.

Hardware debugging

If you're using an 80386 system, you can install the TDH386.SYS
device driver supplied with Turbo Debugger. This device driver
will vastly speed up breakpoints that watch for changed memory
areas and I/ 0 port accesses.

Copy this file to the directory where you keep your device drivers
and put a line in your CONFIG.SYS file that loads the driver, such
as

DEVICE = \SYS\TDH386.SYS

The next time you boot up your system, Turbo Debugger will be
able to find and use this device driver.

See the disk-based documentation on the hardware debugger
interface for complete information on this device driver interface.

¢ If you have a hardware debugging board (such as Atron,
Periscope, Purart Trapper, and so on), you may be able to use the
board with Turbo Debugger. Check with the vendor of your
board for its compatibility with Turbo Debugger.

Chapter 7, Getting started 13

Where to now?

14

Programmers
learning a Turbo

language

Programmers
already using a

Turbo language

Now that you've loaded all the files, you can start learning about
Turbo Debugger. Since this User's Guide is written for two types of
users, different chapters of the manual may appeal to you. The
following roadmap will guide you.

If you are just starting to learn one of the languages in the Turbo
family, you will want to be able to create small programs using it
before you learn about the debugger. What better way to learn
how to use the debugger than to have a real live problem of your
own to debug! After you have gained a working knowledge of the
language, work your way through Chapter 3, "A quick example,"
for a speedy tour of the major functions of Turbo Debugger. There
you'll learn enough about the features you need to debug your
first program; you'll find out about the debugger's more
sophisticated capabilities in later chapters.

If you are an experienced Turbo family programmer, you can
learn about the exciting new features of the Turbo Debugger
environment by reading Chapter 2, "Debugging and Turbo
Debugger." If it suits your style, you can then work through the
tutorial or, if you prefer, move straight on to Chapter 4, "Starting
Turbo Debugger." For a complete rundown of all commands, tum
to Chapter 13, "Command reference."

Turbo Debugger User's Guide

c H A p T E R

2

Debugging and Turbo Debugger

The simple truth is that no one's perfect; we all make mistakes.
Whether it's with simple things like walking or complicated
things like programming, we all stumble sometimes.

If you're a programmer, stumbling is a way of life. You hardly
ever write an error-free program the first time out the gate. That's
nothing to be ashamed of. Stumbling also implies picking yourself
up off the floor and trying again, and again, and maybe again. In
programming parlance, that's debugging.

What is debugging?

Debugging is the process of finding and correcting errors ("bugs")
in your programs. It's not unusual to spend more time on finding
and fixing bugs in your program than on writing the program in
the first place. Debugging is not an exact science; the best debug­
ging tool you have is your own "feel" for where a program has
gone wrong. Nonetheless, you can always profit from a syste­
matic method of debugging.

Chapter 2, Debugging and Turbo Debugger 15

Is there a bug?

Where is it?

What is it?

Fixing it

16

The debugging process can be broadly divided into four steps:

1. Realizing you have an error

2. Finding where the error is

3. Finding the cause of the error

4. Fixing the error

The first step can be really obvious. The computer freezes up (or
hangs) whenever you run it. Or perhaps it crashes in a shower of
meaningless characters. Sometimes, however, the presence of a
bug is not so obvious. The program might work fine until you
enter a certain number (like 0 or a negative number) or until you
examine the output closely. Only then do you notice that the
result is off by a factor of .2 or that the middle initials in a list of
names are wrong.

The second step is sometimes the hardest: isolating where the
error occurs. Let's face it, you simply can't keep the entire pro­
gram in your head at one time (unless it's a very small program
indeed). Your best approach is to divide and conquer-break up
the program into parts and debug them separately. Structured
programming is perfect for this type of debugging.

The third step, finding the cause of the error, is probably the
second-hardest part of debugging. Once you've discovered where
the bug is, it's usually somewhat easier to find out why the pro­
gram is misbehaving. For example, if you've determined the error
is in a procedure called PrintNames, you have only to examine the
lines of that procedure instead of the entire program. Even so, the
error can be elusive and you might need to experiment a bit
before you succeed in tracking it down.

The final step is fixing the error. Armed with your knowledge of
the program language and knowing where the error is, you can

Turbo Debugger User's Guide

See Chapter 74 for a more
detailed discussion of the

debugging process.

squash the bug. Now you run the program again, wait for the
next error to show up, and start the debugging process again.

Many times this four-step process is accomplished when you are
writing the program itself. Syntax errors, for example, prevent
your programs from compiling until they're corrected. The
Borland language products have built-in syntax checkers that
inform you of these errors and let you fix them on the spot.

Rllt nthPr Prror~ ~l"P rnnrt:io inc::ir:lirn1c:: ::lnrl c11h-f-lo Thou l;o in TAT~lf-___ ------ ------ --- --·--- .. .-.~--~- ~·~ ~~~··-· ···-1 .. _
until you enter a negative number, or they're so elusive you're
stymied. That's where Turbo Debugger comes in.

What Turbo Debugger can do for you

Adding a full-feature
debugger to the compiler

itself would make it too big.

You must use a conversion
utility that we supply before

you debug a program
written in a Microsoft

language.

With the standalone Turbo Debugger, you have access to a much
more powerful debugger than exists in your language compiler.

You can use Turbo Debugger with any program written using one
of Borland's C compilers, Turbo Pascal, Turbo Assembler,
Microsoft C, or MASM. If Code View information is present, you
must use the TDCONVRT utility described in the documentation
on Turbo Debugger utilities on your distribution disks.

Turbo Debugger helps with the two hardest parts of the debug­
ging process: finding where the error is and finding the cause of
the error. It does this by slowing down program execution so you
can examine the state of the program at any given spot. You can
even test new values in variables to see how they affect your pro­
gram. With Turbo Debugger, you can perform tracing, stepping,
viewing, inspecting, changing, and watching.

Tracing You can execute your program one line at a time.

Back tracing You can step backward through your executed
code, reversing the execution as you go.

Stepping You can execute your program one line at a time
but step over any procedure or function calls. If
you're sure your procedures and functions are
error-free, stepping over them speeds up
debugging.

Viewing You can have Turbo Debugger open a special
window to show you the state of your program
from various perspectives: variables, their values,

Chapter 2, Debugging and Turbo Debugger 17

18

What Turbo
Debugger won't

do

Inspecting

Changing

Watching

breakpoints, the contents of the stack, a log, a
data file, a source file, CPU code, memory, regis­
ters, numeric coprocessor information, object or
class hierarchies, execution history, or program
output.

You can have Turbo Debugger delve deeper into
the workings of your program and show you the
contents of complicated data structures like
arrays.

You can replace the current value of a variable,
either globally or locally, with a value you
specify.

You can isolate program variables and keep track
of their changing values as the program runs.

You can use these powerful tools to dissect your program into
discrete chunks, confirming that one chunk works before moving
to the next. In this way, you can burrow through the program, no
matter how large or complicated, until you find where that bug is
hiding. Maybe you'll find there's a function that inadvertently
reassigns a value to a variable, or maybe the program gets stuck
in an endless loop, or maybe it gets pulled into an unfortunate
recursion. Whatever the problem, Turbo Debugger helps you find
where it is and what's at fault.

Turbo Debugger, version 2.0 and later, enables you to debug C++
and object-oriented Pascal programs. It is smart about objects and
classes, and it correctly handles late binding of virtual methods or
member functions so that it always executes and displays the
correct code.

With all the features built into Turbo Debugger, you might be
thinking that it's got it all. In truth, there are at least three things
Turbo Debugger won't do for you.

• Turbo Debugger does not have a built-in editor to change your
source code. Most programmers have their favorite editor and
are comfortable with it. You can, however, easily transfer con­
trol to your text editor by choosing the local Edit command
from a File window (more on local commands in a minute).
Turbo Debugger uses the editor you specified with the TDINST

Turbo Debugger User's Guide

How Turbo

installation program. Better still, if you have one of Borland's
C++ compilers, you can use the Transfer feature to run Turbo
Debugger from inside the Turbo language's integrated
environment.

•Turbo Debugger cannot recompile your program for you. You
need the original program compiler (like Turbo Pascal or
Borland C++) to do that.

• Turbo Debugger does not take the place of thinking. When
you're debugging a program, your greatest asset is simple
thought. Turbo Debugger is a powerful tool, but if you use it
mindlessly, it's unlikely to save you time or effort.

Debugger does it Here's the really good news: Turbo Debugger gives you all this
power and sophistication, and at the same time it's easy-dare we
say intuitive-to use.

Turbo Debugger accomplishes this artful blend of power and ease
by offering an exciting environment. The next section examines
the advantages of Turbo Debugger's revolutionary environment.

The Turbo Debugger advantage

Once you start using Turbo Debugger, we think you'll be unable
to get along without it. Turbo Debugger has been especially
designed to be as easy and convenient as possible. To this end,
Turbo Debugger offers you these powerful features:

•Convenient and logical global menus.

•Context-sensitive local menus throughout the product, which
practically do away with memorizing and typing commands.

•Dialog boxes in which you can choose, set, and toggle options
and type in information.

•When you need to type, Turbo Debugger keeps a history list of
the text you've typed in similar situations. You can choose text
from the history list, edit the text, or type in new text.

• Full macro control to speed up series of commands and
keystrokes.

•Convenient, complete window management.

•Mouse support.

Chapter 2, Debugging and Turbo Debugger 19

20

Menus and
dialog boxes

• Access to several types of online help.

• Session recording and reverse execution.

The rest of this chapter discusses these features of the Turbo
Debugger environment.

As with many Borland products, Turbo Debugger has a
convenient global menu system accessible from a menu bar
running along the top of the screen. This menu system is always
available, no matter which of the debugger windows is active (that
is, has a cursor in it).

A pull-down menu is available for each item on the menu bar.
Through the pull-down menus, you can

• execute a command.

• open a pop-up menu. Pop-up menus appear when you choose a
menu item that is followed by a menu icon (~).

• open a dialog box. Dialog boxes appear when you choose a
menu item that is followed by a dialog box icon(...).

Using the menus There are four ways you can open the menus on the menu bar:

Getting in •Press F10, use ~ or ~ to go to the desired menu, and press
Enter.

•Press F10, then press the first letter of the menu name (Spacebar,
F, V, R, B, D, 0, W, H).

• Press Alt plus the first letter of any menu bar command
(Spacebar, F, V, R, B, D, 0, W, H). For example, wherever you are
in the system, A/t-F takes you to the File menu. The = (System)
menu opens with Alt-Spacebar.

¥ •Click the menu bar command with the mouse.

Once you are in the global menu system, here is how you move
around in it:

Getting around •Use~ and~ to move from one pull-down menu to another.
(For example, when you are in the File menu, pressing ~ takes
you to the View menu.)

•Use i and J, to scroll through the commands in a specific menu.

•Use Home and End to go to the first and last menu items,
respectively.

Turbo Debugger User's Guide

• Highlight a menu command and press Enter to move to a
lower-level (pop-up) menu or dialog box.

M., •Click the mouse on a command to move to a lower-level (pop­
up) menu or dialog box.

This is how you get out of a menu or the menu system:

Getting out •Press Esc to exit a lower-level menu and return to the previous
menu.

• Press Esc in a pull-down menu to leave the menu system and
return to the active window.

•Press F10 at any menu level (but not in a dialog box) to leave the
menu system and return to the active window.

M, • Click the active window with the mouse to leave the menu
system and return to the active window.

Some menu commands have a shortcut hot key that you press to
execute them. The hot key appears in the menu to the right of
these commands.

Figure 13.1 in Chapter 13 shows the complete pull-down menu
tree for Turbo Debugger. Table 13.1 on page 194 lists all the hot
keys. For a summary of all the commands available in Turbo
Debugger, refer to Chapter 13.

Chapter 2, Debugging and Turbo Debugger 21

Dialog boxes Many of Turbo Debugger's command options are available to you
in dialog boxes. A dialog box contains one or more of the following
items:

Table 2.1
What goes in a dialog box

The hot key for the OK button
is Alt-K.

1-

[X]

()
(.)
()

THISFI LE. EXE
111r.11111••1w

TOTHERFL. EXE

Item

Buttons

Check boxes

Radio buttons

Input boxes

List boxes

What it looks like, what it does

Buttons are "shadowed" text (on monochrome systems
they appear in reverse video). If you choose a button,
Turbo Debugger carries out the related action imme­
diately. Get out of a dialog box by pressing the button
marked OK to confirm your choices, or Cancel to cancel
them. Dialog boxes also contain a Help button that
brings up online help.

A check box is an on/off toggle. Choose it to turn the
option on or off. When a check box option is turned on,
an X appears in brackets: [X].

Radio buttons offer a set of toggles, but the choices are
mutually exclusive: you can choose only one radio
button in a set at a time. When you do, a bullet appears
between the parentheses, as follows: (•) .

An input box prompts you to type in a string (the name
of a file, for example). An input box often has a history
list associated with it (see the section "History lessons"
for more on these).

A list box contains a list of items from which you can
choose (for example, a list of possible files to open).

You navigate around dialog boxes by pressing Tab and Shift-Tab.
Within sets of radio buttons, use the arrow keys to change the
settings. To choose a button, tab to it and press Enter.

II.&. If you have a mouse, it is even easier to get around in a dialog
box. Just click the item you want to choose. To close the dialog
box, click the close box in the upper left comer.

¢ You can also choose items in a dialog box by pressing their hot
key, the highlighted letter in each command.

22 Turbo Debugger User's Guide

Knowing where
you are In addition to the convenient system of Borland pull-down

menus, the Turbo Debugger advantage consists of a powerful
feature that lessens confusion by actually reducing the number of
menus.

To understand this feature, you must realize that first and fore­
most, Turbo Debugger is context-sensitive. That means it keeps
tabs on exactly which window you have open, what text is
selected, and which subdivision, or pane, of the window your
cursor is in. In other words, it knows precisely what you're look­
ing at and where the cursor is when you choose a command. And
it uses this information when it responds. Let's take an example to
illustrate.

Suppose your Pascal program has a line like this:

MyCounter[TheGrade] := MyCounter[TheGrade] + 1;

As you'll discover when you work with Turbo Debugger, getting
information on data structures is easy; all you do is press Ctr/-/, the
hot key that opens an Inspector window, to inspect it. When the
cursor is at MyCounter, Turbo Debugger shows you information
on the contents of the entire array variable. But if you were to
select (that is, highlight) the whole array name and the index and
then press Ctr/-/, Turbo Debugger knows that you want to inspect
one member and shows you only that member.

You can tunnel down to finer and finer program detail in this
way. Pressing Ctr/-/ while you're already inspecting an array gives
you a look at a particular member.

This sort of context-sensitivity makes Turbo Debugger extremely
easy to use. It saves you the trouble of memorizing and typing
complicated strings of menu commands or arcane command-line
switches. You simply move to the item you want to examine (or
select it using the Ins key or drag over it with the mouse), and then
invoke the command (Ctr/-/ for Inspect, for example). Turbo
Debugger always does its best on delivering the goods for the
particular item.

This context-sensitivity, which makes life easy for the user, also
makes the task of documenting commands difficult. This is
because Ctr/-/, for example, in Turbo Debugger does not have a

Chapter 2, Debugging and Turbo Debugger 23

24

single result; instead, the outcome of a command depends on where
your cursor is or what text is selected.

Local menus Another aspect of Turbo Debugger's context-sensitivity is in its
use of local menus specific to different windows or panes within
windows.

Figure 2.1
Global vs. local menus

Local menus in Turbo Debugger are tailored to the particular
window or pane you are in. It's important not to confuse them
with global menus. Here is a composite screen shot of both kinds
of menus (when you're actually working in Turbo Debugger,
however, you could never have both types of menus showing at
the same time):

.. begin {
Init;
Buff
whil
begi

p
Bu

end;
Show
Pa ms

end.

Compare the following two lists:

ENU
[i]=u ..

Local menu

Global menus •Global menus are those that you access by pressing F10 and
using the arrow keys or typing the first letter of the menu name.

• The global menus are always available from the menu bar,
visible at the top of the screen.

• Their contents never change.
• Some of the menu commands have hot key shortcuts that are

available from any part of Turbo Debugger.

Local menus •You call up a local menu by pressing Alt-F10 or Ctr/-F10, or by
clicking the right button on your mouse.

•The placement and contents of the menu depends on which
window or pane you are in and where your cursor is.

Turbo Debugger User's Guide

History lessons

•Contents can vary from one local menu to another. (Even so,
many of the local commands appear in almost all of the local
menus, so that there's a predictable core of commands from one
to another.) The results of like-named commands can be
different, however, depending on the context.

•Every command on a local menu has a hot key shortcut
consisting of Ctr/ plus the highlighted letter in the command.

Because of t:his arran.gemerLt, a hot key, say Ctr!-S, migI' . .t rr .. ear..
one thing in one context but quite another in a different context.
(A core of commands, however, is still consistent across the
local menus. For example, the Goto command and the Search
command always do the same thing, even when they are
invoked from different panes.)

From a user's standpoint, local menus are a great convenience. All
possible command choices relevant to the moment are laid out at
a glance. This prevents you from trying to choose inappropriate
commands and keeps the menus small and uncluttered.

Menus and context-sensitivity comprise just two aspects of the
convenient environment of Turbo Debugger. Another habit­
forming feature is the history list.

Conforming to the philosophy that the user shouldn't have to
type more than absolutely necessary, Turbo Debugger remembers
whatever you enter into input boxes and displays that text when­
ever you call up the box again.

For example, to search for the function called MyPercentage, you
have to type in all or part of that word. Then suppose you search
for a variable called ReturnOninvestment. When you see the dialog
box this time, you'll notice that ReturnOninvestment appears in the
input box. When you search for another text string, both pre­
viously entered strings appear in the input box. The list keeps
growing as you continue to use the Search command.

Chapter 2, Debugging and Turbo Debugger 25

Figure 2.2
A history list in an input box

The first item in a search list is
always the word the cursor is

on in the Module window.

26

Automatic name
completion

Wamlng!

The search input box might look like this:

o u e: TPDEM Fil!i TPD~PAS 219
end;

Writeln;
end; { PannsOnHeap }

~ begi n { program }
Init;
Buffer :• Getline;
while Buffer <> ' ' do
begin

ProcessLine(Buffer);
Buffer : • 91!"iiijijE;n1telrisiealrichlsitlriiniiiiii

end; Ill
ShowResu l ts;
Pa nnsOnHeap;

end.

lROMPT
l=lt [H=;i ..

You can use this history list as a shortcut to typing by using the
arrow keys to select any previous entry then pressing Enter to start
the search. If you have a mouse, you can also use the scroll bar to
scroll to the entry you want. If you use an unaltered entry from
the history list, that entry is copied to the top of the list.

You can also edit entries (use the arrow keys to insert the cursor
in the highlighted text, then edit as usual, using Del or Backspace).
For example, you can select MyPercentage and change it to
HisPercentage, instead of typing in the entire text. If you start to
type a new item when an entry is highlighted, you will overwrite
the highlighted item.

A history list lists the last five responses unless you tell it other­
wise. (You can change its size using the TDINST program.)

Turbo Debugger keeps a separate history list for most input
boxes. That way, the text you enter to do a search does not clutter
up the box for, say, going to a particular label or line number.

Whenever you are prompted for text entry in an input box, you
can type in just part of a symbol name in your program, then
press Ctrl-N.

When the word READY ••• appears in the upper right comer of the
screen with three dots after it, it means the symbol table is being
sorted. Ctrl-N won't work until the three dots go away, indicating
that the symbol table is available for name completion.

Turbo Debugger User's Guide

Incremental
matching

Making macros
Whenever you find yourself
repeating a series of steps,
say to yourself, "Shouldn't I
be using a macro for thisr

Create Alt=
Stop recording Alt­
Remove
Delete all

Window shopping

•If you have typed enough of a name to uniquely identify it,
Turbo Debugger simply fills in the rest of it.

• If the name you have typed so far is not the beginning of any
known symbol name, nothing happens.

•If what you have typed matches the beginning of more than
one symbol name, a list of matching names is presented for you
to pick the one you want.

Turbo Debugger also lets you use incremental matching to find
entries in a dialog box list of file and directory names. Start typing
the name of the file or directory; if the file is available from the list
box, the highlight bar moves to the name as soon as you have
typed enough characters to identify it uniquely. Then all you have
to do is choose the OK button.

Macros are simply hot keys that you define.

You can assign any series of Turbo Debugger commands and
keystrokes to a single key, for playback whenever you want.

To create a macro, choose Options I Macros. At this point, you
have a choice of four commands: Create, Stop Recording,
Remove, and Delete All. Choose Create; Turbo Debugger prompts
you for a key to save the upcoming macro to. Press a little-used or
easily remembered key or key combination (for example, Shift-Ft
for rerunning a program). Now go through all the steps and com­
mands you want to save to that key.

To end the macro recording session, do one of these things:

• Choose Options I Macros I Stop Recording.

•Press the newly defined macro key (Shift-Ft in this example).

•Press Alt- (hold down Alt and press the hyphen or minus sign).

Lots of programs do windows these days, but Turbo Debugger
does them better. Turbo Debugger displays all information and
data in menus (local and global), dialog boxes (which you use to
set options and enter information), and windows. There are many

Chapter 2, Debugging and Turbo Debugger 27

Windows from the View
menu

Breakpoints
Stack
Log
Watches
Variables
Module... F3
File ...
CPU
Dump
Registers
Numeric processor
Execution history
Hierarchy
Windows info
Another ~

Chapter 8 details the Module
window and Its commands.

See Chapter 6 for more
about the Watches window.

See Chapter 7 for a
complete description of this

type of window and how
breakpoints work.

28

types of windows; a window's type depends on what sort of
information it holds. You open and close all windows using menu
commands (or hot key shortcuts for those commands). Most of
Turbo Debugger's windows come from the View menu, which
lists fourteen types of windows. Another class of window, called
the Inspector window, is opened by choosing either Data I Inspect
or Inspect from a local menu.

Here's a list of the fourteen types of windows you can open from
the View menu:

Once you have opened one or more of these windows, you can
move, resize, close, and otherwise manage them with commands
from the Window and = (System) menus, which are discussed in
the section "Working with windows."

Module window

Displays the program code that you're debugging. You can move
around inside the module and examine data and code by posi­
tioning the cursor on program variable names and issuing the
appropriate local menu command.

You will probably spend more time in Module windows than in
any other type, so take the time to learn about all the various local
menu commands for this type of window.

You can also press F3to open a Module window.

Watches window

Displays variables and their changing values. You can add a
variable to the window by pressing Ctrl-Wwhen the cursor is on
the variable in the Module window.

Breakpoints window

Displays the breakpoints you have set. A breakpoint defines a
location in your program where execution stops so you can
examine the program's status. The left pane lists the position of
every breakpoint (or indicates that it is global), and the right pane
indicates the conditions under which the currently highlighted
breakpoint executes.

Use this window to modify, delete, or add breakpoints.

Turbo Debugger User's Guide

Chapter 5 provides more
information on the Stack

window.

Chapter 7 tells you more
about the Log window.

Chapter 5 describes the
Variables window in more

detail.

You can learn more about
the File window in Chapter 8.

Stack window

Displays the current state of the stack, with the function called
first on the bottom (in C programs, this is function main) and all
subsequently called functions on top, in the order they were
called.

You can bring up and examine the source code of any function in
the stack by highlighting it and pressing Ctr/-/.

By highlighting a function name in the stack and pressing Ctrl-L,
you open a Variables window displaying variables global to the
program, variables local to the function, and the arguments with
which the function was called.

Log window

Displays the contents of the message log. The log contains a
scrolling list of messages and information generated as you work
in Turbo Debugger. It tells you such things as why your program
stopped, the results of breakpoints, and the contents of windows
you saved in the log.

You can also use the log window to obtain information about
memory usage and modules for a Microsoft Windows
application.

This window lets you look back into the past and see what led up
to the current state of affairs.

Variables window

Displays all the variables accessible from a given spot in your pro­
gram. The upper pane has global variables; the lower pane shows
variables local to the current function or module, if any.

This window is helpful when you want to find a function or
variable that you know begins with, say, "abc," and you can't
remember its exact name. You can look in the global Symbol pane
and quickly find what you want.

File window

Displays the contents of a disk file. You can view the file either as
raw hex bytes or as ASCII text. You can search for specific text or

Chapter 2, Debugging and Turbo Debugger 29

Chapter 7 7 discusses the
CPU window and assembler­

/eve/ debugging.

See Chapter 7 7, which
discusses assembler

debugging, for more on this
window.

Chapter 7 7, which discusses
assembler debugging, has

more information on this
window.

30

byte sequences, as well as directly patching any part of the file on
disk.

This is handy if you are debugging a program that uses disk files
and you want to alter the program's behavior by changing the
contents of one of its files. You can also correct a mistake in the
contents of a file, or examine a file produced by a program to
make sure the contents are correct.

CPU window

Displays the current state of the central processing unit (CPU).
This window has five panes: one that contains disassembled
machine instructions, one that shows hex data bytes, one that
displays a raw stack of hex words, one that lists the contents of
the CPU registers, and one that indicates the state of the CPU
flags.

The CPU window is useful when you want to watch the exact
sequence of instructions that make up a line of source code or the
bytes that comprise a data structure. If you know assembler code,
this can help locate subtle bugs. You do not need to use this
window to debug the majority of programs.

Turbo Debugger sometimes opens a CPU window automatically,
if your program stops on an instruction in the middle of a line of
source code.

Dump window

Displays a raw display of an area of memory. (This window is the
same as the Data pane of a CPU window.) You can view the data
as characters, hex bytes, words, double words, or any floating­
point format. You can use this window to look at some raw data
when you don't need to see the rest of the CPU state. The local
menu has commands to let you modify the displayed data,
change the format in which you view the data, and manipulate
blocks of data.

Registers window

Displays the contents of the CPU registers and flags. This window
has two panes, which are the same as the registers pane and flags
pane, respectively, of a CPU window. Use this window when you
want to look at the contents of the registers but don't need to see

Turbo Debugger User's Guide

See Chapter 12 for more
information about using the
Numeric Processor window.

See Chapter 5 for more
information on the Execution

History window.

See Chapter 10 for more
information about using the

Hierarchy window.

the rest of the CPU state. You can change the value of any of the
registers or flags through commands in the local menu.

Numeric Processor window

Displays the current state of the math coprocessor. This window
has three panes: one pane that shows the contents of the floating­
point registers, one that shows the status flag values, and one that
shows the control flag values.

This window can help you diagnose problems in programs that
use floating-point numbers. You need to have a fair understand­
ing of the inner workings of the math coprocessor in order to
really reap the benefits of this window.

Execution History window

Displays assembly code and source lines for your program, up to
the last line executed. The upper pane contains the assembly code
that has been executed, so you can reverse back through it; the
lower pane displays

1. whether you are tracing or stepping
2. the line of source code for the instruction about to be executed

3. the line number of the source code

You can examine it or use it to rerun your program to a particular
spot.

Hierarchy window

Lists and displays a hierarchy tree of all object or class types used
by the current module. The window has two panes: one for the
object/ class type list, the other for the object/ class hierarchy tree.
(If you're debugging a C++ program with multiple inheritance, a
third pane also opens, showing the parents of the highlighted
class type.)

This window shows you the relationship of the objects or classes
used by the current module. It also makes it possible for you to
examine any object or class type, as well as its component data
fields or members, and its methods or member functions, via its
local menus.

Chapter 2, Debugging and Turbo Debugger 31

Chapter 17 explains how to
use the Windows Messages

feature.

32

Module •••
Dump
File ...

User screen

Alt-FS is the hot key that
toggles between the

environment and the User
screen.

Inspector windows

Windows Messages window

Displays a list of messages passed between the windows in your
Microsoft Windows application. This window has three panes:

•The left pane shows which procedures or handles you're
tracking messages for.

•The right pane shows the type of messages you're tracking.

•The bottom pane displays the messages.

Duplicate windows

You can also open duplicates of three types of windows-Dump,
File, and Module-by choosing View I Another. This lets you keep
track of several separate areas of assembly code, different files the
program uses or generates, or several distinct program modules
at once.

Don't be alarmed if Turbo Debugger opens one of these windows
all by itself. It will do this in some cases in response to a com­
mand.

The User screen shows your program's full output screen. The
screen you see is exactly the same as the one you would see if
your program was running directly from DOS and not under
Turbo Debugger.

You can use this screen to check that your program is at the place
in your code that you expect it to be, as well as to verify that it is
displaying what you want on the screen. To switch to the User
screen, choose Window I User Screen. After viewing the User
screen, press any key to go back to the debugger screen.

An Inspector window displays the current value of a selected
variable. Open it by choosing Data I Inspect or Inspect from a local
menu. Usually, you close this window by pressing Esc or clicking
the close box with the mouse. If you've opened more than one
Inspector window in succession, as often happens when you
examine a complex data structure, you can remove all the Inspec­
tor windows by pressing Alt-F3 or using the Window I Close
command.

You can open an Inspector window to look at an array of items or
at the contents of a variable or expression. The number of panes in
the window depends on the nature of the data you are inspecting.

Turbo Debugger User's Guide

An Inspector window adapts to the type of data being displayed.
It can display not only simple scalars (int, float, and so on), but
also pointers, arrays, records, structures, and unions. Each type of
data item is displayed in a way that closely mimics the way you
are used to seeing it in your program's source code.

¢ You create additional Inspector windows simply by choosing the
Inspect command, whereas you can create additional Module,
File, or CPU windows only by choosing View I Another.

The active window Even though you can have many windows open in Turbo Debug­
ger at the same time, only one window can be active. You can spot
the active window by the following criteria:

Figure 2.3
Can you spot the active

window?

•The active window has a double outline around it, not a single
line.

•The active window contains the cursor or highlight bar.

•If your windows are overlapping, the active window is the
topmost one.

When you issue commands, enter text, or scroll, you affect only
the active window, not any other windows that are open.

READY

What's in a window A window always has most or all of the following features, which
give you information about it or let you do things to it:

Chapter 2, Debugging and Turbo Debugger 33

34

Figure 2.4
A typical window

Zootll and
Window Iconize

Close box Title ninber boxes

' ' ' ' [•]=Module: TCDEMO File: tcdemo.c (modified) 31 l=[t](']
static void showargs{1nt argc, char •argvO);

/• program entry point
*/

.. int main(int argc, char ••argv) I
unsigned int nlines, nwords, wordcount;
unsigned long totalcharacters;

nlines • O;
nwords = O;
tot a 1 characters • O;
showarQs(argc, argv);
while (readaline() I• O) I

wordcount • makei ntowords buffer ;

Scroll bar

.. Scroll bar

t
Resize box

•An outline (double if the window is active, single otherwise).
•A title, located at the left top.

M •A scroll bar or bars on the right or bottom if the window opens
on more information than it can hold at one time. You operate
the scroll bars with the mouse:

• Click the direction arrows at the ends of the bar to move one
line or one character in the indicated direction.

• Click the gray area in the middle of the bar to move one
window size in the indicated direction.

• Drag the scroll box to move as much as you want in the
direction you want.

•A resize box in the lower right comer. Drag it with your mouse
to make the window larger or smaller. If no scroll bar is present
on the bottom or right side of a window, that side of the
window border also activates window resizing.

•A window number in the upper right, reflecting the order in
which the window was opened.

•A zoom box and iconize box in the upper right comer. The one
on the left contains the zoom icon, the one on the right the
iconize icon. Click these with your mouse to expand the
window to full screen size, restore it to its original size, or
iconize it. (When a window is zoomed to full size, only the
iconize box is available, and when it is iconized, only the zoom
box is available.)

•A close box in the upper left comer. Click it with your mouse to
close the window.

Turbo Debugger User's Guide

Working with windows

Press Alt-Spacebar to open the
= menu, or Alt-W to open the

Winaows menu.

F6 is the hot key for the
Window I Next Window.

Tab and Shift-Tab are the hot
keys for Window I Next Pane.

With all these different windows to work with, you will probably
have several open onscreen at a time. Turbo Debugger makes it
easy for you to move from one window to another, move them
around, pile them on top of one another, shrink them to get them
out of your way, expand them to work in them more easily, and
close them when you are through.

Most of the window-management commands are in the Windows
menu. You'll find a few more commands in the = (System) menu,
the menu marked with the = icon at the far left of the menu bar.

Window hopping

Each window that you open is numbered in the upper right
comer. Usually, the Module window is window 1 and the
Watches window is window 2. Whatever window you open after
that will be window 3, and so on.

This numbering system gives you a quick, easy means of moving
from one window to another. You can make any of the first nine
open windows the active window by pressing Alt in combination
with the window number. If you press Alt-2, for example, to make
the Watches window active, any commands you choose will affect
that window and the items in it.

You can also cycle through the windows onscreen by choosing
Window I Next or pressing F6. This is handy if an open window's
number is covered up so you don't know which number to press
to make it active.

If you have a mouse, you can also activate a window by clicking
it.

To see a list of all open windows, choose Window from the menu
bar. The bottom half of the Window menu lists up to nine open
windows from which you can make a selection. Just press the
number of a window to make it the active one.

If you have more than nine windows open, the window list will
include a Window Pick command; choose it to open a pop-up
menu of all the windows open onscreen.

If a window has panes-areas of the window reserved for a
specific type of data-you can move from one pane to another by
choosing Window I Next Pane or pressing Tab or Shift-Tab.

Chapter 2, Debugging and Turbo Debugger 35

36

M. You can also click the pane with the mouse.

The most pane-full window in Turbo Debugger is the CPU
window, which has five panes.

As you hop from pane to pane, you'll notice that a blinking cursor
appears in some panes, and a highlight bar appears in others. If a
cursor appears, you move around the text using standard keypad
commands. (PgUp, Ctr/-Home, and Ctr/-PgUp, for example, move the
cursor up one screen, to the top of pane, or to the top of the list,
respectively.) You can also use WordStar-like hot keys for moving
around in the pane. Refer to Chapter 13 for a table of keystroke
commands in panes.

If there's a highlight bar in a pane instead of a cursor, you can still
use standard cursor-movement keys to get around, but a couple
of special keystrokes also apply. In alphabetical lists, for example,
you can select by typing. As you type each letter, the highlight bar
moves to the first item starting with the letters you've just typed.
The position of the cursor in the highlighted item indicates how
much of the name you have already typed. Once the highlight bar
is on the desired item, your search is complete. This incremental
matching or select by typing minimizes the number of characters
you must type in order to choose an item from a list.

Once an item is selected (highlighted) from a list, press Alt-F10 or
Ctrl-F10 to choose a command relevant to it from its local menu. In
many lists, you can also just press Enter once you have selected an
item. This acts as a hot key to one of the commonly used local
menu commands. The exact function of the Enter key in these cases
is described in the reference section starting on page 199.

Finally, a number of panes let you start typing a new value or
search string without choosing a command first. This usually
applies to the most frequently used local menu command in a
pane or window-like Goto in a Module window, Search in a File
window, or Change in a Registers window.

Moving and resizing windows

When you open a new window in Turbo Debugger, it appears
near the current cursor location and has a default size suitable for
the kind of window it is. If you find either the size or the location
of the window inconvenient, you can use the Window I Size/
Move command to adjust the size or location of the window.

Turbo Debugger User's Gulde

Ctrl-F5 is the hot key for the
Window I Size/Move

command.

F5 is the hot key for the
Window I Zoom command.

Alt-F3 is the hot key for
Window I Close.

Alt-F6 is the hot key for
Window I Undo Close.

When you move or resize a window, your active window border
changes to a single-line border. You can then use the arrow keys
to move the window around or Shift with the arrow keys to
change the size of the window onscreen. Press Enter when you're
satisfied.

If you have a mouse, moving and resizing a window is even
easier:

•Drag the resize box in the lower right corner to change the size
of the window.

•Drag the title bar or any edge (but not the scroll bars) to move
the window around.

If you want to enlarge or reduce a window quickly, choose
Window I Zoom, or click the mouse on the zoom box or the iconize
box in the upper right corner.

Finally, if you want to get a window out of the way temporarily
but don't want to close it, make the window active, then choose
Window I lconize/Restore. The window will shrink to a tiny box
(icon) with only its name, close box, and zoom box visible. To
restore the window to its original form, make it active and choose
Window I lconize/Restore again, or click your mouse on the zoom
box.

Closing and recovering windows

When you are through working in a window, you can close it by
choosing Window I Close, or pressing Alt-F3, the hot key for this
command.

If you have a mouse, you can also click the close box in the upper
left corner of the window.

If you close a window by mistake, you can recover it by choosing
Window I Undo Close or by pressing Alt-F6. This works only for the
last window you closed.

You can also restore your Turbo Debugger screen to the layout it
had when you first entered the program. Just choose = (System) I
Restore Standard.

Finally, if your program has overwritten your environment screen
with output (because you turned off screen swapping), you can
clean it up again with= (System) I Repaint Desktop.

Chapter 2, Debugging and Turbo Debugger 37

Getting help

38

Saving your window layout

Use the Options I Save Options command to save a specific
window configuration once you have the screen arranged the way
you like. In the Save Configuration dialog box, tab to Layout and
press Spacebar to toggle it on. If you save your configuration to a
file called TDCONFIG.TD, the screen will then appear with your
chosen layout each time you start Turbo Debugger from DOS.
This is the only configuration file that is loaded automatically
when Turbo Debugger is loaded. Other configurations can be
loaded by using the Options I Restore Options command, if they
have been saved to configuration files with a different name.

As you've seen, Turbo Debugger goes out of its way to make
debugging easy for you. It doesn't require you to remember
obscure commands; it keeps lists of what you type, in case you
want to repeat it; it lets you define macros; and it offers incredible
control of windows. Even so, Turbo Debugger is a sophisticated
program with lots of features and commands. To avoid potential
confusion, Turbo Debugger offers the following help features:

•An activity indicator in the upper right corner always displays
the current activity. For example, if your cursor is in a window,
the activity indicator reads READY; if there's a menu visible, it
reads MENU; if you're in a dialog box, it reads PROMPT. If you ever
get confused about what's happening in Turbo Debugger, look
at the activity indicator for help. (Other activity indicator
modes are SIZE/MOVE, MOVE, ERROR, RECORDING, WAIT, RUNNING, MENU,
HELP, STATUS, and PLAYBACK.)

•The active window is always topmost and has a double line
around it.

• You can access an extensive context-sensitive help system by
pressing F1. Press F1 again to bring up an index of help topics
from which you can select what you need.

•The status line at the bottom of the screen always offers a quick
reference summary of keystroke commands. The line changes
as the context changes and as you press Alt or Ctr/. Whenever
you are in the menu system, the status line offers a one-line
synopsis of the current menu command.

For more information on the last two avenues for help, read the
following two sections.

Turbo Debugger User's Guide

Online help Turbo Debugger, like other Borland products, gives context­
sensitive onscreen help at the touch of a single key. Help is
available anytime you're within a menu or window, as well as
when an error message or prompt is displayed.

Press F1 to bring up a Help screen showing information pertinent
to the current context (window or menu). If you have a mouse,

.... you can also bring up help by clicking Fl in the status line. Some
Help screens contain 1'ighlighted key,vords t..~at let y·ou get addi­
tional help on that topic. Use Tab and Shift-Tab to move to any key­
word and then press Enterto get to its screen. Use the Home and
End keys to go to the first and last keywords on the screen,
respectively.

Index Shift-Fl
Previous topic Alt-Fl
Help on help

You can get online help for
reserved words via

THELP.COM.

You can also access the onscreen help feature by choosing Help
from the menu bar (Alt-H).

If you want to return to a previous Help screen, press Alt-F1 or
choose Previous Topic from the Help menu. From within the
Help system, use PgUp to scroll back through the last 20 help
screens. (PgDn only works when you're in a group of related
screens.) To access the Help Index, press Shift-Ft (or F1 from within
the Help system), or choose Index from the Help menu. To get
help on Help, choose Help I Help on Help. To exit from Help, press
Esc.

If you are using Turbo Pascal, Turbo Assembler, or one of
Borland's C++ compilers and you want help on language-specific
reserved words and functions, you can get it by using a RAM­
resident utility called THELP.COM that comes with these
compilers. To use THELP.COM,

1. Make sure that both THELP.COM and the help file for the
language you are using (TURBO.HLP for Turbo Pascal,
TASM.TAH for Turbo Assembler, TCHELP.TCH for Borland's
C and C++ compilers) are copied into your Turbo Debugger
directory or a directory on your path.

2. Type THELP and press Enter.
3. Go into Turbo Debugger.

4. To open a Help screen on any reserved word or function,
position the cursor under the word you want help on, then
press 5 on the numeric keypad. (THELP won't work if you use
the 5 on your keyboard.)

Chapter 2, Debugging and Turbo Debugger 39

5. You can then use the help just as you would in the integrated
debugger, paging through related screens, using Alt-F1 to
return to previous screens, and pressing Enter to bring up a
screen on a selected keyword.

6. To exit the Help screen, press Esc.

¢ For more information on THELP, consult the THELP.DOC file for
the Turbo language you are using.

The status line Wherever you're in Turbo Debugger, a quick-reference help line
appears at the bottom of the screen. This status line provides at­
a-glance keystroke or menu command help for your current
context.

In a window

The normal status line shows the commands performed by the
function keys and looks like this:

If you hold down the Alt key for a second or two, the commands
performed by the Alt keys are displayed.

Figure 2.6
The status line with Alt Alt: F2llil3mlF3Ul!'J'DF4m:IF5lllli'lilF6ll!Ji1ililF7llli1BIFBlil!ilF9DIFl<amll

pressed

If you hold down the Ctr/ key for a second or two, the commands
performed by the Ctr/ letter keys are displayed. This status line
changes depending on the current window and current pane, and
it shows the single-keystroke equivalents for the current local
menu. If there are more local menu commands than can be
described on the status line, only the first keys are shown. You
can view all the available commands on a local menu by pressing
Alt-F10 or Ctrl-F10 to pop up the entire menu.

Figure 2.7
The status line with Ctrl Ctrl' 1~FDIDIPDH4!1"!!!·•t.Dlilil~

pressed

¥ If you have a mouse, all you have to do to execute an Alt- or Ctr/­
key command is click the command in the status line.

40 Turbo Debugger User's Guide

In a menu or dialog box

Whenever you are in a menu or a dialog box, the status line
displays a one-line explanation of what the current item does. For
example, if you have highlighted View I Registers, the status line
says Open a CPU registers window.

The status line gives you menu help whether you are in a global
menu or a local menu.

Chapter 2, Debugging and Turbo Debugger 41

42 Turbo Debugger User's Guide

c H A p T E R

3

A quick example

If you are itching to use Turbo Debugger and aren't the sort of
person to work through the whole manual first, this chapter gives
you enough knowledge to debug your first program. Once you've
learned the basic concepts described here, the well-integrated,
intuitive environment and context-sensitive help system let you
learn as you go along.

This chapter leads you through all Turbo Debugger's basic fea­
tures. After describing the demo programs-one in C and one in
Pascal-provided on the distribution disks, it shows you how to

• run and stop program execution

• examine the contents of program variables

•look at complex data objects, like arrays and structures

• change the value of variables

The demo programs

Chapter 3, A quick example

The demo programs (TCDEMO.C for C and TPDEMO.P AS for
Pascal) introduce you to the two main things you need to know to
debug a program: how to stop and start your program, and how
to examine your program's variables and data structures. The
programs themselves are not meant to be terribly useful: Some of
their code and data structures exist solely to show you Turbo
Debugger's capabilities.

43

Each demo program lets you type in some lines of text or the
name of a data file, then counts the number of words and letters
that you entered or that it reads from the file. At the end of the
program, each displays some statistics about the text, including
the average number of words per line and the frequency of each
letter.

¢ Make sure that your current directory contains the two files
needed for each tutorial: TCDEMO.C and TCDEMO.EXE for the
C example, TPDEMO.PAS and TPDEMO.EXE for the Pascal
example.

Getting in To start the C program, type

Figure 3.1
The startup screen showing

TCDEMO

TD TCDEMO

To start the Pascal program, type

TD TPDEMO

Turbo Debugger loads the demo program, displays the startup
screen overlaid by the About program information box, and
positions the cursor at the start of the program. To get rid of the
About box, press Enter or choose OK.

~-.. ~11,#llfM I =folo u e: r DE Flii tcdemo.c 2
tEADY

static vofd showargs(fnt argc, char •argvO);
l=[tJ[~h

I• program entry pofnt
•I

~ int mafn(int argc, char ••argv) {
unsigned int nlines, nwords, wordcount;
unsigned long totalcharacters;

nl fnes • O;
nwords = 0;
total characters = O;
showal'!jS (argc, ar11vl;
while (readaline(J I= 0) {

wordcount = makeintowords(buffer);
nwords += wordcount;
totalcharacters += analyzewords(buffer);
nlfnes++;

•

I
I

I
r=-_:a_:::_:~-=--~--=-~~--=---~-~--~~-=--~~-~~-~--~=--]

-Help ;-Bkpt --Mod •-Here -Zoom I-Next -Trace :-Step '-Run I-Menu

The startup screen consists of the menu bar, the Module and
Watches windows, and the status line.

Getting out To exit from the tutorial at any time and return to DOS, press Alt-X.
If you get hopelessly lost following the tutorial, press Ctrl-F2 to
reload the program and start at the beginning. However, Ctrl-F2
doesn't clear breakpoints or watches; you'll have to use Alt-F 0 to

44 Turbo Debugger User's Gulde

Getting help

do that. (A/t-B D deletes all breakpoints too, of course, but some­
times it's faster to reload with Alt-F 0.)

Press F1 whenever you need help with the current window, menu
command, dialog box, or error message. You can learn a lot by
working your way through the menu system and pressing F1 at
each command to get a summary of what it does.

Using Turbo Debugger

The menus

The status line

The top line of the screen shows the menu bar. To pull down a
menu from it, press F10, use~ or~ to highlight your selection,
and press Enter, or else press Alt in combination with the first letter
of one of the menu names.

Press F10now. Notice that the cursor disappears from the Module
window, and the = command on the menu bar becomes high­
lighted. The bottom line of the screen also changes to indicate
what sort of commands the = menu performs.

Use the arrow keys to move around the menu system. Press .!. to
pull down the menu for the highlighted item on the menu bar.

You can also open a menu by clicking an item in the menu bar
with your mouse.

Press Esc to move back through the levels of the menu system.
When just one menu item on the menu bar is highlighted, pres­
sing Esc returns you to the Module window, with the menu bar
no longer active.

The status line at the bottom of the screen shows relevant function
keys and what they do.

Chapter 3, A quick example 45

46

This line changes depending on what you are entering (menu
commands, data in a dialog box, and so on). Hold Alt down for a
second or two, for example. Notice that the status line changes to
show you the function keys you can use with Alt.

Now press Ctr/ for a second. The commands shown on the status
line are the hot keys to the local menu commands for the current
pane (area of the window). They change depending on which sort
of window and which pane you are in. More about these later.

As soon as you enter the menu system, the status line changes
again to show you what the currently highlighted menu option
does. Press F10 to go to the menu bar, and press~ to highlight the
File option. The status line now reads, "File oriented functions."
Use .l- to scroll through the options on the File menu, and watch

ib&. the message change. Press Esc or click the Module window with
your mouse to leave the menu system.

The windows
The window area takes up most of the screen. This is where you
examine various parts of your program through the different
windows.

The display starts up with two windows: a Module window and
the Watches window. Until you open more windows or adjust
these two, they remain tiled. This means they fill the entire screen
without overlapping. New windows automatically overlap
existing windows until you move them.

Turbo Debugger User's Guide

Figure 3.4
The Module and Watches

windows, tiled

Chapter 3, A quick example

1 =Mo u e: DONUTHIN Fle: DiJUfHIN.PAS
program DoNuthin;

.. begin
end.

This is the Module window

tEADY
l=LtJ[~]=;i ..

I

Notice that the Module window has a double-line border and a
highlighted title. This means it is the active window. You use the
cursor keys (the arrow keys, Home, End, PgUp, and so on) to move
around inside the active window. Now press F6 to switch to
another window. The Watches window becomes active, with a
double-line border and a highlighted title.

You use commands from the View menu to create new windows.
For example, choose View I Stack to open a Stack window. The
Stack window pops up on top of the Module window.

Now press Alt-F3 to remove the active window. The Stack window
disappears.

Turbo Debugger stores the last-closed window so you can recover
it if you need to. If you accidentally close a window, choose
Window I Undo Close. The Stack window reappears. You can also
press Alt-F6 to recover the last-closed window.

The Window menu contains the commands that let you adjust the
appearance of the windows you already have onscreen. You can
both move the window around the screen and change its size.
(You can use Ctrl-F5 to do this too.)

Choose Window I Size/Move and use the arrow keys to reposition
the active window (the Stack window) on the screen. Next, hold
Shift down and use the arrow keys to adjust the size of the
window. Press Enter when you have defined a new size and
position that you like.

47

Now, to prepare for the next section, remove the Stack window by
pressing Alt-F3. Depending on whether you've loaded the C or
Pascal demo program, either continue with the next section (for
the C sample) or move to the Pascal section on page 55.

Using the C demo program

48

The filled arrow (~) in the left column of the Module window
shows where Turbo Debugger stopped your program. Since you
haven't run your program yet, the arrow is on the first line of the
program. Press Fl to trace a single source line. The arrow and
cursor are now on the next executable line.

Look at the right margin of the Module window title. It shows the
line that the cursor is on. Move the cursor up and down with the
arrow keys and notice how the line number in the title changes.

As you can see from the Run menu, there are a number of ways to
control the execution of your program. Let's say you want to
execute the program until it reaches line 39.

First, position the cursor on line 39, then press F4. This runs the
program up to (but not including) line 39. Now press Fl, which
executes one line of source code at a time; in this case, it executes
line 39, a call to the function showargs. The cursor immediately
jumps to line 151, where the definition of showargs is found.

Continuing to press Fl would step you through the function
showargs and then return you to the line following the call-line
40. Instead, press Alt-FB, which causes showargs to execute and
then return, at which point the program stops. This command too,
returns you to line 40, and is very useful when you want to jump
past the end of a function.

If you had pressed FB instead of Fl on line 39, the cursor would
have gone directly to line 40 instead of into the function. FB is
similar to Fl in that it executes a procedure or source line, but it
skips any function calls.

Turbo Debugger User's Guide

Figure 3.5
Program stops on return from

function showargs

Setting
breakpoints

[ill

Chapter 3, A quick example

1 =Modu e: TCDEMO Fie: tc ano. c 4
nwords = O;
total characters = O;
showargs(argc, argv);

• while (readaline() I= 0) {

l

I

wordcount • makei ntowords (buffer);
nwords += wordcount;
total characters += analyzewords(buffer);
nl i nes++;

pri ntstati sti cs (nl i nes, nwords, total characters);
return(O);

l ~*make the buffer into a list of null-terminated words that end in
* in two nulls, squish out white space
*/

static int makeintowords(char *bufp) {
uns i ned int nwords;

I

READY
l=LtJ [+J=n ..

I
I

To execute the program until a specific place is reached, you can
directly name the function or line number, without moving the
cursor to that line in a source file and then running to that point.
Press Alt-F9 to specify a label to run to. A dialog box appears. Type
readaline and press Enter. The program runs, then stops at the
beginning of function readaline (line 142).

Another way to control where your program stops running is to
set breakpoints. The simplest way to set a breakpoint is with the
F2 key. Move the cursor to line 44 and press F2. Turbo Debugger
highlights the line, indicating there is a breakpoint set on it.

You can also use the mouse to toggle breakpoints by clicking the
first two columns of the Module window.

49

Figure 3.6
A breakpoint at line 44

Using watches

..
I
pri ntstati sti cs(nl i nes, nwords, total characters);
return(O);

f* make the buffer into a list of null-terminated words that end in
* in two nulls, squish out white space
*/

static int makeintowords(char *bufp) {
unsi ned int nwords;

Now press F9 to execute your program without interruption. The
screen switches to the program's display. The demo program is
now running and waiting for you to enter a line of text. Type abc,
a space, def, and then press Enter. The display returns to the Turbo
Debugger screen with the arrow on line 44, where you set a break­
point that has stopped the program. Now press F2 again to toggle
it off.

See Chapter 7 for a complete description of breakpoints, including
conditional and global breakpoints.

The Watches window at the bottom of the screen shows the value
~I F10 I of variables you specify. For example, to watch the value of the

variable nwords, move the cursor to the variable name on line 42
and choose Watch from the Module window local menu (bring it
up with Alt-F10 or choose the shortcut, Ctrl-W, from the status line).

M, Click Ctrl-W in the status line with your mouse.

50 Turbo Debugger User's Guide

Figure 3.7
A C variable in the Watches

window

Examining simple
C data objects

Chapter 3, A quick example

1 =+to u e: T DEMO Fil!i tc emo.c 4
nwords • O;
total characters • O;
showarQS (argc, arpv);
while (readaline(J I= 0) I

wordcount = makeintowords(buffer);
nwords += wordcount;
total characters += analyzewords (buffer);

~ nl ines++;
I
printstatistics(nlines, nwords, totalcharacters);
return(O);

/*make the buffer into a list of null-tenninated words that end in
* in two nulls, squish out white space

*' static int makeintowords(char *bufp) I
uns i ned i nt nwords;

READY
l=LtHH=;i

•

I
I

nwords now appears in the Watches window at the bottom of the
screen, along with its type (unsigned int) and value. As you
execute the program, Turbo Debugger updates this value to
reflect the variable's current value.

Once you have stopped your program, there are a number of
ways of looking at data using the Inspect command. This very
powerful facility lets you examine data structures in the same
way that you visualize them when you write a program.

The Inspect commands (in various local menus and in the Data
menu) let you examine any variable you specify. Suppose you
want to look at the value of the variable nlines. Move the cursor so
it is under one of the letters in nlines and choose Inspect from the
Module window local menu (press Ctr/-/). An Inspector window
pops up.

51

52

Figure 3.8
An Inspector window

/*make the buffer into a list of null-tenninated words that end in
* in two nul 1 s, squish out white space

*' static int makeintowords(char *bufp) I
unsigned int nwords;

The title tells you the variable name; the next line shows you its
address in memory. The third line shows you what type of data is
stored in nlines (it's a C unsigned int). To the right is the current
value of the variable.

Now, having examined the variable, press Esc to close the
Inspector window. You can also use Alt-F3 to remove the Inspector
window, just like any other window, or you can click the close
box with your mouse.

Let's review what you actually did here. By pressing Ctr/, you took
a shortcut to the local menu commands in the Module window.
Pressing I specified the Inspect command.

To examine a data item that is not conveniently displayed in the
Module window, choose Data I Inspect. A dialog box appears,
asking you to enter the variable to inspect. Type letterinfo and
press Enter. An Inspector window appears, showing the values of
the letterinfo array elements. The title of the Inspector window
shows the name of the data you are inspecting. The first line
under the title is the address in main memory of the first element
of the array letterinfo. Use the arrow keys to scroll through the 26
elements that make up the letterinfo array. The next section shows
you how to examine this compound data object.

Turbo Debugger User's Guide

Examining
compound C
data objects

Figure 3.9
Inspecting a structure

Changing C data
values

Chapter 3, A quick example

A compound data object, such as an array or structure, contains
multiple components. Move to the fourth element of the letterinfo
array (the one indicated by [3 J). Press Alt-F10 to bring up the local
menu for the Inspector window, then press I to choose Inspect. A
new Inspector window appears, showing the contents of that
element in the array. This Inspector window shows the contents
of a structure of type linfo.

odu e: TCDEMO File: tc emo.c 4
nwords = O;
totalcharacters = O;
showa rgs (argc, ar~v) ;
while (readaline(J I• O)

wordcount • mak
nwords += wordc
tot a 1 characters

.. nlines++;
}
pri ntstati sti cs(nl i nes,
return (0);

/•make the buffer into a list of
* in two nulls, squish out white
•/

static int makeintowords(char •buf
unsigned int nwords;

READY

When you place the cursor over one of the member names, the
data type of that member appears in the bottom pane of the
Inspector window. If one of these members were in tum a com­
pound data object, you could issue an Inspect command and dig
down further into the data structure.

Press Alt-F3 to remove both Inspector windows and return to the
Module window. (A/t-F3 is a convenient way of removing several
Inspector windows at once. If you had pressed Esc, only the latest
Inspector window would have been deleted.)

So far, you've learned how to look at data in the program. Now,
let's change the value of data items.

Use the arrow keys to go to line 38 in the source file. Place the
cursor at the variable totalcharacters and press Ctr/-/ to inspect its

53

54

Figure 3.10
The Change dialog box

value. With the Inspector window open, press Alt-F10 to bring up
the Inspector's local menu, and choose the Change option. (You
could also have done this directly by pressing Ctrl-C.) A dialog box
appears, asking for the new value.

....... ~·i·i~IM~tt!li•
o u e: TCDEMO Fie: tc emo.c 3

static void showargs(int argc, char •argv[]};

/• program entry point
•/

int main(int argc, [•]=Inspecting totalcharacters=3=[t] [H
unsigned i @78BE: FFC6
unsigned l

PROMPT

n 1 i nes 11"lliliiiiiiliiliiiiiiliiilliliiiiliiiiliiiiiliiiiiiiiiiillllillll nwords 111
total ch
showarg
while (

.. tot a !characters += anal yzewords (buffer};
nlines++;

iEnter :t:::rompted for in dialog titl

At this point, you can enter any C expression that evaluates to a
number. Type totalcharacters + 4 and press Enter. The value in the
Inspector window now shows the new value, 101 (OxA).

To change a data item that isn't displayed in the Module window,
choose Data I Evaluate/Modify. A dialog box appears. Enter the
name of the variable to change in the first input box: Type argc
and press Enter. Then press Tab twice to move to the input box
labeled New Value. Type 123 and press Enter. The result (second
box) changes to int 123 (Ox7B).

Turbo Debugger User's Guide

Figure 3.11
The Evaluate/Modify dialog

box

1.

PROMPT
o ul e: TCDEMO File: tcdemo. c 3

static void showargs(int argc, char *argv[]);

/* program e"ia/iiiiaiiiiiiiElvalliualtel/imoidilfiiiiiiiiiiiiii~ *' Ill int main(int
unsi
unsi

nl in
nwor
tot a

That's a quick introduction to using the Turbo Debugger with a
program written using one of Borland's C or C++ compilers.
Chapter 14 offers a more extensive debugging sample.

Using the Pascal sample program

Chapter 3, A quick example

The filled arrow(..) in the left column of the Module window
shows where Turbo Debugger stopped your program. Since you
haven't run your program yet, the arrow is on the first line of the
program. Press Fl to trace a single source line. The arrow and
cursor are now on the next executable line.

Look at the right margin of the Module window title. It shows the
line that the cursor is on. Move the cursor up and down with the
arrow keys and notice how the line number in the title changes.

To make the program execute until it reaches line 221, move the
cursor to that line and then press F4. TPDEMO prompts you to
enter a string. Type ABC, a space, DEF, and then press Enter. Now,
with the cursor still on line 221, press Fl twice to execute two
more lines of source code. Since the second line you executed is a
call to a different procedure, the arrow now appears on the first
line of the function Process Line. Continuing to press Fl would step
you through the function ProcessLine and then return you to the
line following the call-line 224. Instead, press Alt-FB to make the
program stop when ProcessLine returns. This command is very

55

Figure 3.12
The program stops after

returning from a procedure

56

Setting
breakpoints

[ill

useful when you want to jump past the end of a function or
procedure.

If you had pressed FB instead of Fl on line 221, the cursor would
have gone directly to line 224 instead of into the function. FB is
similar to Fl in that it executes functions, but it doesn't step
through their source code.

•=!!FlllmVIBllR!mBWm·'·''·· .. -· READY
l=LtJ [~]=;i [• =Module: TPDEMO File: TPDEMO.PAS 22

while Buffer <> ' ' do
begin

ProcessLine(Buffer);
.. Buffer := GetLine;

end;
ShowResults;
PannsOnHeap;

end.

..

To execute the program until a specific place is reached, you can
directly name the function or line number, without moving the
cursor to that line in a source file and then running to that point.
Press Alt-F9 to specify a label to run to. A dialog box appears. Type
GetLine and press Enter. The program runs, then stops at the
beginning of function GetLine.

Another way to control where your program stops running is to
set breakpoints. The simplest way to set a breakpoint is with the
F2 key. Move the cursor to line 121 and press F2. Turbo Debugger
highlights the line, indicating there is a breakpoint set on it.

You can also use the mouse to toggle breakpoints by clicking the
first two columns of the Module window.

Turbo Debugger User's Guide

Figure3.13
A breakpoint at line 121

Using watches

Chapter 3, A quick example

•(9'SBmR!lillBllJm·'·''·'•-·
1 =Modu e: TPDEMO File: TPDEMO.PAS 121

i : Integer;
Word Len : Word;

begin (Process Line I
~ Inc(Numlines);

i := 1;
while i <• Length(S) do
begin

(Skip non-1 etters I
while (i <• Length(S)) and not lsLetter(S[i]) do

Inc(i);

READY
l=LtWl=;i ..

I •

I ,.
_J

Now press F9 to execute your program without interruption. The
screen switches to the program's display. The demo program is
now running and waiting for you to enter a line of text. Type abc,
a space, def, and then press Enter. The display returns to the Turbo
Debugger screen with the arrow on line 121, where you set a
breakpoint that has stopped the program. Now press F2 again to
toggle it off.

See Chapter 7 for a complete description of breakpoints, including
conditional and global breakpoints.

The Watches window at the bottom of the screen shows the value
of variables you specify. For example, to watch the value of the
variable NumWords, move the cursor to the variable name on line
144 and choose Watch from the Module window local menu
(bring it up with Alt-F10, or choose the shortcut, Ctrl-W, from the
status line).

You can also click Ctrl-Win the status line with your mouse.

57

Figure 3.14
A Pascal variable in the

Watches window

Examining simple
Pascal data

objects

58

·~FllmVDmRm.WlS·'·''''•oml4WWW~·
1 =Module: TPDEMO File: TPDEMO.PAS 14

Inc(LetterTable[UpCase(S[i])]. Count);
if Word Len = 0 then { bump counter }

Inc(LetterTabl e[UpCase(S[i])] • Fi rstletter);
Inc(i);
Inc (Wordlen) ;

end;

I Bump word count info }
if Wordlen > O then
begin

Inc(NumWords);
if Word Len <= MaxWordlen then

Inc(WordlenTabl e[Wordlen]);
end;

end; { while }
end; { Processline }

function Getline : BufferStr;

READY
l=[f] [~]=n ..

I
I

I ..

Num Words now appears in the Watches window at the bottom of
the screen, along with its type (Word) and value. As you execute
the program, Turbo Debugger updates this value to reflect the
variable's current value.

Once you have stopped your program, there are a number of
ways of looking at data using the Inspect command. This very
powerful facility lets you examine data structures in the same
way that you visualize them when you write a program.

The Inspect commands (in various local menus and in the Data
menu) let you examine any variable you specify. Suppose you
want to look at the value of the variable NumLines. Move the
cursor back to line 121 so it's under one of the letters in NumLines
and press Ctr/-/. An Inspector window pops up.

Turbo Debugger User's Guide

Figure 3.15
An Inspector window

Chapter 3, A quick example

•=•Flll9ltmmR!mBliifil!4•i•ii1il.WDftliMOOJll'li ~-·~·h~LW~.qt;~,pw~~IQI~· ~·~~~~~R~EA~DY
..me: TPDEMO File: TPDEMO.PAS 121'.:
i : Integer;
WordLen : Word;

{ Find end of word, bump 1 etter & word counters }
WordLen := O;
while (i <= Length(S)) and IsLetter(S[i]) do
begin

Inc(NumLetters);
Inc (LetterTabl e[UpCase (S [i])] .Count);

The first line tells you the variable name; the second line shows its
address in memory. The third line tells you what type of data is
stored in NumLines (it's a Pascal Word) and displays the current
value of the variable.

Now, having examined the variable, press Esc to close the
Inspector window. You can also use Alt-F3 to remove the Inspector
window, just like any other window, or you can click the close
box with your mouse.

Let's review what you actually did here. By pressing Ctr/, you used
a hot key for the local menu commands in the Module window.
Pressing I specified the Inspect command.

To examine a data item that is not conveniently displayed in the
Module window, choose Data I Inspect. A dialog box appears,
asking you to enter the variable to inspect. Type LetterTable and
press Enter. An Inspector window appears, showing the value of
LetterTable. Use the arrow keys to scroll through the 26 elements
that make up LetterTable. The title of the Inspector window shows
the name of the data you are inspecting. The next section shows
you how to examine this compound data object.

59

60

Examining
compound

Pascal data
objects

Figure 3.16
Inspecting a record

A compound data object, such as an array or structure, contains
multiple components. Move to the fourth element of the
LetterTable array (the one indicated by ['D']). Press Aft·F10 to bring
up the local menu for the Inspector window, then choose Inspect.
A new Inspector window appears, showing the contents of that
element in the array. This Inspector window shows the contents
of a record of type LlnfoRec.

~g.11111M@-•
Fn TPDEMO.PAS 121

,;:----lnspecling
07701:005A

Lei lPr I eb le-, _____ ---

begin { Process Line }
~ Inc(NumLines};

i := l;
while i <• Length(S) do

['I;']
[' B ']
[' c 'l
[' 0 ']

(I, 1)
(1, 0)
(1, 0)
(1, 1)

lll!JllE.SIOJO o)
I Skip non-letter !7701:0066
while (i <• Lengt

Inc(i);

0)
UNT 1 11

IRSTLEl fER 1 ($1)

{ Find end of war IN FOR EC

be11in i[•]=Inspecting LetterTa

Wordlen := O; "===============-'
while (i <= Length(S}) and Isletter(S[i]) do
begin

Inc(NumLetters);
Inc(LetterTable[UpCase(S[i])] .Count);

lfADY

When you place the cursor over one of the member names, the
data type of that member appears in the bottom pane of the
Inspector window. If one of these members were in tum a
compound data object, you could issue an Inspect command and
dig down further into the data structure.

Press Alt-F3 to remove both Inspector windows and return to the
Module window. (Alt-F3 is a convenient way of removing several
Inspector windows at once. If you had pressed Esc, only the
topmost Inspector window would have been deleted.)

Turbo Debugger User's Guide

Changing Pascal
data values

Figure 3.17

So far, you've learned how to look at data in the program. Now,
let's change the value of data items.

Use the arrow keys to go to line 103 in the source file. Place the
cursor at the variable called NumLetters and press Ctr/-/ to inspect
its value. With the Inspector window open, press Alt-F10 to bring
up the Inspector window's local menu. Choose the Change option.
(You could also have done this directly by pressing Ctrf-C.) A
dialog box appears, asking for the new value.

•=••DmR!im~U.IHlilW . . • , The Change dialog box 0 u e: TPDEMO Fie: TPDEMO.PAS 10
PROMPT

Chapter 3, A quick example

function Isletter(ch : C
begin

Isletter := UpCase(ch)
end; { lsletter} ik================:!i

var
i : Integer;

NumWords

Enter item prompted for in

At this point, you can enter any Pascal expression that evaluates
to a number. Type NumLetters + 4 and press Enter. The value in the
Inspector window now shows the new value, 10.

To change a data item that isn't displayed in the Module window,
choose Data I Evaluate/Modify. A dialog box appears. Enter the
name of the variable to change. Type NumLines and press Enter. The
result is displayed in the middle pane. Press Tab twice, then type
123 and press Enter. This sets the variable NumLines to 123.

61

62

procedure Ini t;
begin "j[•~]iiiiiiiiiiiiilvall uialtel/imoidlf fmiiiiiiiiiiiiii Numlf nes : Ill

FillChar(L
FillChar(W
Wrfteln('E

end; { Init

procedure Pr

function Isl
begfn

Isletter :

end; { IsletllllJ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!~
var II:

f : Integer;

9~14"¥ SiumWois 2 : W RD

lnter new val u

That wraps up our quick introduction to using Turbo Debugger
with a Turbo Pascal program. Chapter 14 offers a more extensive
debugging sample.

Turbo Debugger User's Gulde

c H A p T E R

4

Starting Turbo Debugger

This chapter tells you how to prepare programs for debugging.
We show you how to start Turbo Debugger from the DOS com­
mand line, and how to tailor its many command-line options to
suit the program you are debugging. We explain how to make
these options permanent in a configuration file. You also learn
how to run a DOS command processor from within a Turbo
Debugger session and, finally, how to return to DOS when you
are done.

Preparing programs for debugging

When you compile and link with one of Borland's Turbo
languages, you can tell the compiler to generate full debugging
information. If you have compiled your program's object modules
without any debugging information, you must recompile all its
modules to have full source debugging capabilities throughout
your program. It is possible to generate debug information only
for specific modules (you might have to do this if you're debug­
ging a large program), but you will find it annoying later to enter
a module that doesn't have any debug information available. We
suggest recompiling all modules.

Chapter 4, Starting Turbo Debugger 63

Preparing Borland
C++ programs

Preparing Turbo
Pascal programs

If you're using the integrated environment of a Borland C or C++
compiler (TC or BC), open the Debugger dialog box (choose
Options I Debugger) and set the Source Debugging radio button to
Standalone before you compile your source modules. For Turbo C
2.0, set Debug I Source Debugging to Standalone.

If you're using the command-line compiler (TCC), specify the -v
command-line option.

If you're using TLINK as a standalone linker, you must use the Iv
option to append debugging information at the end of the .EXE
file.

You also should make sure optimizing is disabled. Either don't
use the -0 option or specify -0- to turn off the -0 in your
TURBOC.CFG file. This eliminates the few occasions when Turbo
Debugger appears to skip over lines of source code when you're
stepping through a program.

First, make sure that yoh have version 5.0 or later of Turbo Pascal.
Earlier versions do not have the ability to bundle debugging
information into the .EXE file so that Turbo Debugger can use it.

If you're using the integrated environment (TURBO.EXE), go to
the Debug menu and change the Standalone Debugging setting to
On. Turn Options I Compiler I Debug Information On or use the
{$D+} compiler directive. If you want to be able te> access local
symbols (any declared within procedures and functions), you
must either set Options I Compiler I Local Symbols to On or put
the following directive at the start of your program:

Just like this, with no spaces { $L+)

64

You can then compile your program.

If you're using the command-line version (TPC.EXE), you must
compile using the Iv command-line option. Debug information
and local symbols are, by default, generated. If you don't want
them, you can use /$ command-line options to disable them.

Turbo Debugger User's Guide

Preparing Turbo
Assembler To debug a Turbo Assembler program, specify the /zi command­
programs line option to get full debugging information.

Preparing
Microsoft
programs

To link your program with TLINK, use the Iv option to append
debugging information at the end of the .EXE file.

See the documentation on your distribution disks for information
about how to use the utility program TDCONVRT.EXE, which
converts Code View executable programs to Turbo Debugger
format.

Running Turbo Debugger

To debug a program with Turbo Debugger, simply type TD at the
DOS prompt, followed by an optional set of command-line
arguments and the name of the program, and press Enter. Turbo
Debugger then loads your program, displaying its source code so
you can step through your program statement by statement.

The generic command-line format is

TD [options] [progname [progargs]]

The items enclosed in brackets are optional; if you include any,
type them without the brackets. Progname is the name of the pro­
gram to debug. You can follow a program name with arguments.
Here are some sample command lines:

Command

td -sc progl a b

td prog2 -x

Action

Starts the debugger with -sc option and loads pro­
gram prog1 with two command-line arguments, a
andb.

Starts the debugger with default options and loads
program prog2 with one argument, -x.

If you simply type TD Enter, Turbo Debugger loads and uses its
default options.

¢ When you run a program in Turbo Debugger, you need to have
both its .EXE file and the original source files available. Turbo

Chapter 4, Starting Turbo Debugger 65

Debugger searches for source files first in the directory the
compiler found them in when it compiled, second in the directory
specified in the Options I Path for Source command, third in the
current directory, and fourth in the directory the .EXE file is in.

¢ You must have already compiled your source code into an
executable (.EXE) file with full debugging information turned on
before debugging with Turbo Debugger.

¢ Remember, Turbo Debugger works only with programs in Turbo
Pascal 5.0 or later, Turbo C 2.0, Borland's line of C++ compilers, or
Turbo Assembler 1.0 or later.

If you're running your program from the DOS prompt and notice
a bug, you have to exit from your program and load it under the
debugger before you can begin debugging.

Command-line options

Appendix A has an easy-to­
use list of Turbo Debugger's

command-line options.

Loading the
configuration file

(-c)

66

All Turbo Debugger command-line options start with a hyphen(-)
and are separated from the TD command and each other by at
least one space. You can explicitly tum a command-line option off
by following the option with another hyphen. For example, -vg­
tums off a complete graphics save. You can do this if an option
has been permanently enabled in the configuration file. You can
modify the configuration file by using the TDINST configuration
program described in Appendix D.

The following sections describe all available command-line
options.

This option loads the specified configuration file. There must not
be a space between -c and the file name.

If the -c option isn't included, TDCONFIG.TD is loaded if it
exists. Here's an example:

TD -cMYCONF.TD TCDEMO

This loads the configuration file MYCONF.TD and the source
code for TCDEMO.

Turbo Debugger User's Guide

Display updating
(-d)

Getting help (-h
and-?)

Process ID
switching (-i)

Keystroke
recording (-k)

All -d options affect the way in which display updating is
performed.

-do Runs Turbo Debugger on your secondary display. View
your program's screen on the primary display, and run
the debugger on the secondary one.

-clp Shows the debugger on one display page and the pro­
gram being debugged on another, minimizing the time it
takes to swap between the two screens (also called screen
flipping). You can use this option only on a display that
has multiple display pages, a feature of many color
displays. You can't use this option if the program you are
debugging uses multiple display pages itself.

-ds The default option for all displays, it's also called screen
swapping. Required for a monochrome display. Maintains
a separate screen image for the debugger and the pro­
gram being debugged by loading the entire screen from
memory each time your program is run or the debugger
is restarted. This technique is the most time-consuming
method of displaying the two screen images, but works
on any display hardware and with programs that do
unusual things to the display.

These options display a screenful of help that describes Turbo
Debugger's command-line syntax and options.

This option enables process ID switching. Don't use this option
when you are debugging inside DOS or when DOS system calls
are active. See Appendix B for more technical information on this
feature. You needn't be concerned with this option to debug most
programs.

This option enables keystroke recording in the Keystroke
Recording pane of the Execution History window.

Chapter 4, Starting Turbo Debugger 67

Assembler-mode
startup (-1)

Setting heap size
(-m)

If you use this option, all keystrokes that you type during a
debugging session will be recorded to a disk file. Then you can
recover to a previous point in your debugging session by having
Turbo Debugger reload your program and play back the recorded
keystrokes. Turbo Debugger records both the keys you press
while you're in Turbo Debugger and the keys you press while
your program is running.

This option forces startup in assembler mode, showing the CPU
window. Turbo Debugger does not execute your program's
startup code, which usually executes automatically when you
load your program into the debugger. This means that you can
step through your startup code.

If you are using Turbo Debugger with the remote Windows
debugging program WREMOTE, using the -I option when you
start Turbo Debugger means also that you can debug the
assembly-language startup code for any dynamic link libraries
(DLLs) your application starts. See Chapter 17, page 280, for more
information.

This option sets the working heap used by Turbo Debugger to
NK, where the syntax is

-mN

and N is the number of kilobytes. A space must not exist between
the -m option and the size of the heap. Here's an example:

TD -mlO TCDEMO.EXE

The default heap size is 18K; the low boundary is 7K. If you need
memory, use this option to reduce the amount of heap Turbo
Debugger uses. Turbo Debugger stores transient information,
such as command history lists and breakpoints, in the heap.

¢ If you specify a heap size of 0 (zero) with the -m command-line
option (-mO), Turbo Debugger uses the maximum that it's able to
use, usually 18K.

68 Turbo Debugger User's Guide

Mouse support
(-p)

Remote
debugging (-r)

Source code
handling (-s)

This option enables mouse support. However, since the default
for mouse support in Turbo Debugger is On, you won't have
much use for the -p option unless you use TDINST to change the
default to Off. If you want to disable the mouse, use -p-.

All -r options affect the remote debugging link.

-r Enables debugging on a remote system over the serial
link. Uses the default serial port (COMl) and speed (115
Kbaud), unless you have changed them with TDINST.

-rpN Sets the remote link port to port N. N can be 1 or 2 to
indicate COMl or COM2, respectively.

-rsN Sets the remote link speed. N can be 1 for 9600 baud, 2 for
19,200 baud, 3 for 38,400 baud, or 4for115,000 baud.

All -s options affect the way Turbo Debugger handles source
code and program identifiers.

This option does not affect -sc
Pascal, because it is not case

sensitive.

Ignores case when you enter symbol names, even if your
program has been linked with case sensitivity enabled.

This option does not change -sd
the starting directory.

Chapter 4, Starting Turbo Debugger

Without the -sc option, Turbo Debugger ignores case
only if you've linked your program with the case ignore
option enabled.

Sets one or more source directories to scan for source files;
the syntax is

-sddirname

To set multiple directories, use the -sd option
repeatedly-only one directory name can be specified
with each -sd option. Directories are searched in the
order specified. dirname can be a relative or absolute path
and can include a disk letter. If the configuration file
specifies any directories, the ones specified by the -sd
option are added to the end of that list.

69

Video hardware

-smN This option sets the symbol table reserved memory size.
Follow it with the number of kilobytes you want to
reserve, like this:

-smN

where N is the number of kilobytes. Use this option if you
want to load a symbol table manually with the
File I Symbol Load command. You may have to
experiment with the amount of memory to reserve.

(-V) All-v options affect how Turbo Debugger handles the video
hardware.

-vg Saves complete graphics image on program screen.
Requires an extra BK of memory, but can debug programs
that use certain graphics display modes. Try this option if
your program's graphics screen becomes corrupted when
running under Turbo Debugger.

-vn 43/50-line display is not allowed. Specifying this option
saves some memory. Use this if you're running on an
EGA or VGA and know you won't switch into 43- or
50-line mode once Turbo Debugger is running.

-vp Enables the EGA/VGA palette save.

Remote Microsoft
Windows -w

debugging (-w)
Indicates that the remote debugging program is
WREMOTE, used to debug remote Microsoft Windows
applications.

~
Overlay pool size

70

(-y) The -y options are used to set the size of the overlay pool size,
either in main memory or in EMS memory.

-yN This option sets the overlay pool size in main memory.
The syntax is as follows, where N is the number of
kilobytes you want to reserve:

-yN

Turbo Debugger User's Guide

Use TDINST to set a
permanent overlay code

pool size.

Normally, Turbo Debugger uses an 80K code pool size.
The smallest pool size that you can set is 20K, and the
largest is 200K.

Use this option if you do not have enough memory to
load your program under Turbo Debugger, or if you are
debugging small programs and want to improve Turbo
Debugger's performance. The smaller the code pool size,
the more often Turbo Debugger loads program overlays
from disk, and the slower it responds. With a larger code
pool, there is less memory available for the program you
are debugging, but Turbo Debugger runs faster.

-yeN This option sets the overlay pool size in EMS memory.
Use this option if you need to free up some EMS memory
for the program you are debugging. The syntax is as
follows, where N is the number of 16K EMS pages you
want to reserve:

-yeN

For example, -ye4 sets the overlay pool to four pages. The
default is twelve 16K EMS pages.

Use -yeO to disable the EMS overlay pool.

Configuration files

Chapter 7 7 describes on
page 266 how to use TDINST
to create a configuration file

for Turbo Debugger for
Windows (TOW).

Appendix D describes how
to use the installation pro­

gram to create configuration
files.

Turbo Debugger uses a configuration file to override built-in
default values for command-line options. You can use TDINST to
set the options that Turbo Debugger will default to if there is no
configuration file. You can also use it to build configuration files.

Turbo Debugger looks for the configuration file TDCONFIG.TD
first in the current directory, next in the TURBO directory set up
with the TDINST installation program, and then in the directory
that contains TD.EXE. If you are running on DOS 2.x, Turbo De­
bugger won't look for TDCONFIG.TD in the TD.EXE directory.

If Turbo Debugger finds a configuration file, the settings in that
file override its built-in defaults. Any command-line options that
you supply when you start Turbo Debugger from DOS override
those default options and any values in TDCONFIG.TD.

Chapter 4, Starting Turbo Debugger 71

The Options menu

Language. . • Source
Macros ~
Display options .••
Path for source •••
Save options ••.
Restore options ..•

The Language
command

The Macros menu

Create Alt=
Stop recording Alt­
Remove
Delete all

Create

The Options menu lets you set or adjust a number of parameters
that control the overall appearance and operation of Turbo
Debugger. The following sections describe each menu command
and refer you to other sections of the manual where you can find
more details.

Chapter 9 describes how to set the current expression language
and how it affects the way you enter expressions.

The Macros command displays another menu that lets you define
new keystroke macros or delete ones that you have already
assigned to a key. It has the following commands: Create, Stop
Recording, Remove, and Delete All.

Starts recording keystrokes that you are assigning to a key (for
example, Alt-M). To begin a recording session, choose Options I
Macros I Create. You are prompted for the key you want to assign
the macro to. The message RECORDING is displayed in the upper
right-hand corner of the screen while the recording session is in
progress. Type the keystrokes you want to record. These key­
strokes are acted upon by Turbo Debugger exactly as if you were
not recording a macro.

Once you have finished recording keystrokes, issue the Options I
Macros I Stop Recording command or its hot key, Alt-Hyphen. You
can also press the key you assigned the macro to (Alt-M) once
more.

Alt= is the hot key for starting to record a macro.

Stop Recording Stops recording keystrokes that are assigned to a key. Use this
command after issuing the Options I Macros I Create command to
assign keystrokes to a key.

Alt-Hyphen is the hot key for ending a macro.

72 Turbo Debugger User's Guide

Remove Removes a macro assigned to a single key. You are prompted to
press the key of the macro you want to delete.

Delete All Removes all keystroke macro definitions and restores all keys to
the meaning that they originally had.

Display Options
command Tnis command opens a dialog box in which you can set several

options that control the appearance of the Turbo Debugger
display.

Figure4.l
The Display Options dialog

box
• =Mo u e: TPDEMO Fie: TPDEMO.PA 2 7

end;
Writeln;

end; { ParmsOnHeap }

~ begin { program }
!nit;
Buffer := GetLine;
while Buffer <> '' do
begin

Process Li ne(Buffer)
Buffer : = GetL i ne;

end;
ShowResu 1 ts;
ParmsOnHeap;

end.

PROMPT
l=L t][t], ..

Display Swapping The Display Swapping radio buttons let you choose from three
ways of controlling how the User screen gets swapped back and
forth with Turbo Debugger's screen:

None

Smart

Chapter 4, Starting Turbo Debugger

Don't swap between the two screens. Use this option if
you're debugging a program that does not output to
the User screen.

Swap to the User screen only when display output may
occur. Turbo Debugger swaps the screens any time that
you step over a routine, or if you execute an instruction
or source line that appears to read from or write to
video memory. This is the default option.

73

74

Always Swap to the User screen every time the user program
runs. Use this option if the Smart option is not catching
all the occurrences of your program writing to screen.
If you choose this option, the screen flickers every time
you step through your program, since Turbo De­
bugger's screen is replaced for a short time with the
User screen.

Integer Format These radio buttons let you choose from three display formats for
displaying integers:

Hex Shows integers as hexadecimal numbers, displayed in
a format appropriate to the current language.

Decimal Shows integers as ordinary decimal numbers.

Both Shows integers as both decimal numbers and as hex
numbers in parentheses after the decimal value.

Screen Lines These radio buttons are used to determine whether Turbo
Debugger's screen uses the normal 25-line display or the 43- or
50-line display available on EGA and VGA display adapters.

Tab Size This input box lets you set how many columns each tab stop
occupies. You can reduce the tab column width to see more text in
source files that have a lot of code indented with tabs. You can set
the tab column width from 1 to 32.

Path for Source
command

Save Options
command

Sets the directories that Turbo Debugger searches for your source
files. See the discussion of the Module window in Chapter 8 for
more information.

This command opens a dialog box from which you can save your
current options to a configuration file on disk. These options are

•your macros

• the current window layout and pane formats

• all settings made in the Options menu

Turbo Debugger User's Guide

Figure 4.2
The Save Options dialog box

Restore Options
command

• =Mo u e: TPDEMO Fie: TPOEMO.PAS 217
end;

Writeln;
end; { ParmsOnHeap }

.. begin { program }
!nit;
Buffer : = GetLf ne;
while Buffer <> '' do
begin

Process Li ne(Buffer);
Buffer : = Getl i ne;

endi
ShowResul ts;
ParmsOnHeap;

end.

PROMPT
l=lt] [H, ..

Turbo Debugger lets you save your options in any or all of these
ways, depending on which of the Save Configuration check boxes
you tum on:

Options Saves all settings made in the Options menu.

Layout Saves only the windowing layout.

Macros Saves only the currently defined macros.

You can also use the Save To input box to change the name of the
configuration file to which you are saving the options.

Restores your options from a disk file. You can have multiple
configuration files, containing different macros, window layouts,
and so forth. You must choose a configuration file that was
created by the Save Options command or with TDINST.

Running DOS in Turbo Debugger

When debugging a program, you sometimes need to use another
program or utility. Do this via File I DOS Shell.

When you start the DOS command processor, the program you
are debugging is swapped to disk if necessary. This lets you
perform DOS commands even while you are debugging a

Chapter 4, Starting Turbo Debugger 75

program that takes all the available memory. Of course, this
means that there may be a few seconds of delay while your pro­
gram is being swapped to and from the disk.

Warning! Do not load TSRs (terminate and stay resident programs) on top
of Turbo Debugger while you are shelled to DOS.

When you have finished issuing commands to DOS, type EXIT and
press Enter to return to your debugging session.

Returning to DOS

76

You can end your debugging session and return to DOS at any
time by pressing Alt-X, except when a dialog box is active (in that
case, first close the dialog box by pressing Esc). You can also
choose File I Quit.

All the memory initially allocated to the program being debugged
is freed. If the program you are debugging allocates memory via
the DOS block memory allocation routines, that memory is also
freed.

Turbo Debugger User's Guide

c H A p T E R

5

Controlling program execution

When you debug a program, you usually execute portions of it
and check at a stopping point to see that it is behaving correctly.
Turbo Debugger gives you many ways to control your program's
execution. You can

• execute single machine instructions or single source lines

•skip over calls to functions or procedures

• "animate" the debugger (perform continuous tracing)
•run until the current function or procedure returns to its caller

•run to a specified location

•continue until a breakpoint is reached

• reverse program execution

A debugging session consists of alternating periods when either
your program or the debugger is running. When the debugger is
running, you can cause your program to run by choosing one of
the Run menu's command options or pressing its hot key equiva­
lent. When your program is running, the debugger starts up again
when either the specified section of your program has been exe­
cuted, or you interrupt execution with a special key sequence, or
Turbo Debugger encounters a breakpoint.

This chapter shows you how to examine the state of your pro­
gram whenever Turbo Debugger is in control. You'll see various
ways to execute portions of your program, and also how to inter­
rupt your program while it's running. Finally, you'll learn the

Chapter 5, Controlling program execution 77

ways you can restart a debugging session, either with the same
program or with a different program.

Examining the current program state

78

The Variables

The "state" of your program consists of the following elements:

•its DOS command-line arguments

•the stack of active functions or procedures

• the current location in the source code or machine code

• register values
• the contents of memory

• the reason the debugger stopped your program

•the value of your program data variables

The following sections explain how to use the Variables window,
the Stack window, the local menus of the Global and Static panes,
and the Origin and Get Info commands. See Chapter 6 for more
information on how to examine and change the values of your
program data variables.

Window You open the Variables window by choosing View I Variables.

Figure 5.1
The Variables window

This window by default shows you all the variables (names and
values) that are accessible from the current location in your pro­
gram. Use it to find variables whose names you can't remember.
You can then use the local menu commands to further examine or
change their values. You can also use this window to examine the
variables local to any function that has been called.

[•]=Variables=======.l,=[f] [~]=;i
TPDEMO.SHOWRESULTS @7129:01FA ,.

I

Turbo Debugger User's Guide

¢ When you're debugging a Turbo Pascal program, the variables
won't be arranged alphabetically.

You open a Variables window by choosing View I Variables. A
Variables window has two panes:

•The Global pane (top) shows all the global symbols in your
program.

•The Static/Local pane (bottom) by default shows all the static
symbols in the current module (the module containing the
current program location, CS:IP) and all the symbols local to the
current function.

Both panes show the name of the variable at the left margin and
its value at the right margin. If Turbo Debugger can't find any
data type information for the symbol, it displays four question
marks(????).

Press Alt-F10 or the right mouse button to pop up the Global pane's
local menu. If you have enabled control-key shortcuts, you can
also press Ctr/ with the first letter of the desired command to
access it.

If your program contains functions that perform recursive calls, or
if you want to view the variables local to a function that has been
called, you can examine the value of a specific instance of a func­
tion's local data. First create a Stack window with View I Stack,
then move the highlight to the desired instance of the function
call. Next, bring up the Stack window local menu and choose
Locals. The Static/Local pane of the Variables window then
shows the values for that specific instance of the function.

The Global pane local This local menu consists of three commands: Inspect, Change, and
menu Watch.

Inspect
Change
Watch Inspect

Opens an Inspector window that shows you the contents of the
currently highlighted global symbol.

If the variable you want to inspect is the name of a function,
Turbo Debugger shows you the source code for that function. If
there is no source file, the disassembled code appears in a CPU
window.

Chapter 5, Controlling program execution 79

See Chapter 6 for more
information on how Inspector

windows behave.

See Chapter 9 for more
information on assignment
and data type conversion.

See Chapter 6 for more
information on the Watches

window.

The Static/Local pane
local menu

80

Inspect
Change
Watch
Show

If the variable you inspect has a name that is superseded by a
local variable with the same name, you'll see the actual value of
the global variable, not the local one. This characteristic is
different from the usual behavior of Inspector windows, which
normally show you the value of a variable from the point of view
of your current program location (CS:IP). This difference gives
you a convenient way of looking at the value of global variables
whose names are also used as local variables.

Change

Changes the value of the currently selected (highlighted) global
symbol to the value you enter at the Change dialog box. Turbo
Debugger performs any necessary data type conversion exactly as
if the assignment operator for your current language had been
used to change the variable.

You can also change the value of the currently highlighted symbol
by opening the Inspector window and typing a new value. When
you do this, the same dialog box appears as if you had first
specified the Change command.

Watch

Opens a Watches window and puts the currently selected
(highlighted) global symbol in the window. This command
simply puts a character string in the Watches window.

The Watches window doesn't keep track of whether the variable
is local or global. If you insert a global variable using the Watch
command and later encounter a local variable by the same name,
the local variable will take precedence as long as you are in the
local variable's block. In other words the Watches window always
shows you the value of a variable from the point of view of your
current program location (CS:IP).

Either bring up the Static/Local pane's local menu or, if control­
key shortcuts are enabled, use the Ctr/ key with the first letter of
the desired command to access a command.

The Static/Local pane has the four local menu commands shown
in the box on the left.

Turbo Debugger User's Guide

See Chapter 6 for more
information on how Inspector

windows behave.

See Chapter 9 for more
information on assignment
and date f'y'pe conversion.

See Chapter 6 for more
information on how Watches

windows behave.

Inspect

The Inspect command opens an Inspector window that displays
the contents of the currently highlighted module's local symbol.

Change

Changes the value of the currently selected (highlighted) local
symbol to the value you enter at the Change dialog box. Turbo
Debugger performs any data type conversion necessary, exactly as
if the assignment operator for your current language had been
used to change the variable.

You can also change the value of the currently highlighted symbol
by opening the Inspector window (see previous command) and
starting to type a new value. When you do this, the same dialog
box appears as if you had first specified the Change command.

Watch

The Watch command opens a Watches window and puts the
currently selected (highlighted) static or local symbol in the
window.

Show

Choosing the Show command brings up the Local Display dialog
box, which enables you to change both the scope of the variables
being shown (static, auto, or both) and the module from which
these variables are selected.

The following radio button selections appear in this dialog box:

Static Show only static variables.

Auto Show only variables local to the current block.

Both Show both types of variables (the default).

Module Change the current module. Brings up a dialog box
showing the list of modules for the program, from
which you can select a new module.

Chapter 5, Controlling program execution 81

Figure 5.2
The Local Display dialog box

The Stack window

Figure 5.3
The Stack window

You create a Stack window by choosing View I Stack. The Stack
window lists all active functions or procedures. The most recently
called routine is displayed first, followed by its caller and the
previous caller, all the way back to the first function or procedure
in the program (the main program in Pascal; in C programs,
usually the function called main). For each procedure or function,
you see the value of each parameter it was called with.

~[•]=Stack [t] [H~

i""'·"'"'"'"'· "'"''" ''' ~ PDEMO. PROCESSL!NE 'ABC DEF'
PD EMO

The Stack window likewise displays the names of object methods
or class member functions, prefixed with the name of the object or
class type that defines the method or member function:

SHAPES.ACIRCLE(l74, 360, 75.0) {Turbo Pascal)

Press Alt-F10 to pop up the Stack window local menu, or press Ctr/
with the first letter of the desired command to access it.

The Stack window local The Stack window local menu has two commands: Inspect and
menu Locals.

82

Inspect
Locals

Inspect

Opens a Module window positioned at the active line in the
currently highlighted function. If the highlighted function is the
top (most recently called) function, the Module window shows
the current program location (CS:IP). If the highlighted function is
one of the functions that called the most recent function, the
cursor is positioned on the line in the function that will be
executed after the called function returns.

Turbo Debugger User's Guide

The Origin local
menu command

The Get Info

You can also invoke this command by positioning the highlight
bar over a function, then pressing Enter.

Locals

Opens a Variables window that shows the symbols local to the
current module, as well as the symbols local to the currently high­
lighted function. If a function calls itself recursively, there are
multiple instances of the function in the Stack window. By posi­
tioning the highlight bar on one instance of the function, you can
use this command to look at the local variables in that instance.

Both the Module window and the Code pane of a CPU window
have an Origin command on their local menus. Origin positions
the cursor at the current code segment (CS:IP). This is very useful
when you have been looking at your code and want to get back to
where your program stopped.

command You can choose File I Get Info to look at memory use and to
determine why the debugger gained control. The command
produces a text box that disappears when you press Enter,
Spacebar, or Esc. The information in the text box varies depending
on whether you're debugging a DOS or a Windows program.

DOS format If you're debugging a DOS program, the following information
appears in the System Information box (see Figure 5.4):

•The name of the program you're debugging.

• A description of why your program stopped.

•The amount of memory used by DOS, Turbo Debugger, and
your program.

• If you have EMS memory, its use appears to the right of main
memory use.

•A list of interrupts intercepted by the program you're
debugging.

•The DOS version you're running.

•Whether breakpoints are handled entirely in software or if they
have hardware assistance.

Chapter 5, Controlling program execution 83

84

Figure 5.4
The DOS Get Info text box

•The current date and time.

Program: ... D\PASCAL \EXAMPLES EMS. EXE
Status : Step

-- Memory -­
DOS : l39Kb
Debugger : 249Kb
Symbols !Kb
Program : 249Kb
Available: OKb

----- EMS -----
DOS 32Kb
Debugger : 272Kb
Program : 16Kb
Available: 2016Kb

User interrupts: OOh lBh 23h 24h

I
DOS version 4.00
Breakpoints Hardware
1-9-1990 2:32pm

~

Here are the messages you'll see on the second (status) line,
describing why your program stopped:

Stopped at_
Your program stopped as the result of a completed Run I
Execute To, Run I Go to Cursor, or Run I Until Return command.
This status line message also appears when your program is
first loaded, and the compiler startup code in your program
has been executed to put you at the start of your source code.

No program loaded
You started Turbo Debugger without loading a program. You
cannot execute any code until you either load a program or
assemble some instructions using the Assemble local menu
command in the Code pane of a CPU window.

Control Break
You interrupted execution of your program with Ctrl-Break.

Trace
You executed a single source line or machine instruction with
Fl (Run I Trace).

Breakpoint at _
Your program encountered a breakpoint that was set to stop
your program. The text after "at" is the address in your pro­
gram where the breakpoint occurred.

Terminated, exit code_
Your program has finished executing. The text after "code" is
the numeric exit code returned to DOS by your program. If
your program does not explicitly return a value, a garbage

Turbo Debugger User's Guide

value may be displayed. You cannot run your program until
you reload it with Run I Program Reset.

Loaded
You loaded Turbo Debugger and specified a program and the
option that prevents the compiler startup code from executing.
No instructions have been executed at this point, including
those that set up your stack and segment registers. This means
that if you try to examine certain data in your program, you
may see incorrect values.

Step
You executed a single source line or machine instruction,
skipping function calls, with FB (Run I Step Over).

Interrupt
You pressed the interrupt key (usually Ctrl-Break) to regain
control. Your program was interrupted and control passed
back to the debugger.

Exception_
You were using TD386, and a processor exception has
occurred. This usually happens when your program attempts
to execute an illegal instruction opcode. The Intel processor
documentation describes each exception code in complete
detail.

Hardware device driver stuck
You were using a hardware debugger and set a hardware
breakpoint in a stack variable that is conflicting with Turbo
Debugger. You must remove the hardware breakpoint before
you proceed.

Divide by zero
Your program has executed a divide instruction where the
divisor is zero.

Global breakpoint_ at_
A global breakpoint has been triggered. You are told the
breakpoint number and the location in your program where
the breakpoint occurred.

Windows format If you're debugging a Windows program, the following
information appears in the System Information box (see
Figure 5.5):

Chapter 5, Controlling program execution 85

86

Figure 5.5
The Windows Get Info text

box

•The name of the program you're debugging.

• A description of why your program stopped.

• Information about the global memory on your system.

•The DOS version you're running.

• The current date and time.

Status line messages

Here are the messages you'll see on the second (status) line,
describing why your program stopped:

Stopped at_
Your program stopped as the result of a completed Run I
Execute To, Run I Go to Cursor, or Run I Until Return command.
This status line message also appears when your program is
first loaded, and the compiler startup code in your program
has been executed to put you at the start of your source code.

No program loaded
You started Turbo Debugger without loading a program. You
cannot execute any code until you either load a program or
assemble some instructions using the Assemble local menu
command in the Code pane of a CPU window.

Control Break
You interrupted execution of your program with Ctrl-Alt-SysRq.

Trace
You executed a single source line or machine instruction with
Fl (Run I Trace).

Turbo Debugger User's Guide

Breakpoint at _
Your program encountered a breakpoint that was set to stop
your program. The text after "at" is the address in your pro­
gram where the breakpoint occurred.

Window message breakpoint at _
Your program encountered a window message breakpoint that
was set to stop your program. The text after "at" is the window
procedure the message was destined for.

Terminated, exit code _
Your program has finished executing. The text after "code" is
the numeric exit code returned to Windows by your program.
If your program does not explicitly return a value, a garbage
value might be displayed. You cannot run your program until
you reload it with Run I Program Reset.

Loaded
You loaded Turbo Debugger and specified a program and the
option that prevents the compiler startup code from executing.
Because no instructions have been executed at this point,
including those that set up your stack and segment registers, if
you try to examine certain data in your program, you might see
incorrect values.

Step
You executed a single source line or machine instruction,
skipping function calls, with FB (Run I Step Over).

Interrupt
You pressed the interrupt key (Ctr/-Alt-SysRq) to regain control.
Your program was interrupted and control passed back to the
debugger.

Exception_
A processor exception has occurred, which usually happens
when your program attempts to execute an illegal instruction
opcode. The Intel processor documentation describes each
exception code in complete detail.

Divide by zero
Your program has executed a divide instruction where the
divisor is zero.

Global breakpoint_ at_
A global breakpoint has been triggered. You are told the
breakpoint number and the location in your program where
the breakpoint occurred.

Chapter 5, Controlling program execution 87

The Run menu

Run

88

Global memory information

TOW provides you with the following information about global
memory:

Mode Memory modes can be Large-frame EMS, Small­
ftame EMS, and non-EMS (extended memory).

Banked The amount in kilobytes of memory above the
EMS bank line (eligible to be swapped to expanded
memory if the system is using it).

Not banked The amount in kilobytes of memory below the
EMS bank line (not eligible to be swapped to
expanded memory).

Largest The largest contiguous free block of memory, in
kilobytes.

The Run menu has a number of options for executing different
parts of your program. Since you use these options frequently,
they are all available on function keys.

Run
Go to cursor
Trace into
Step over
Execute to .•.
Until return
Animate ..•
Back trace
Instruction trace

Arguments .•.
Program reset

F9
F4
Fl
F8

Alt-F9
Alt-F8

Alt-F4
Alt-F7

Ctrl-F2

Runs your program at full speed. Control returns to the debugger
when one of the following events occurs:

•Your program terminates.

•A breakpoint with a break action is encountered.

•You interrupt execution with Ctrl-Break.

Turbo Debugger User's Guide

Go to Cursor

Trace Into

Step Over

Executes your program up to the line that the cursor is on in the
current Module window or CPU Code pane. If the current
window is a Module window, the cursor must be on a line of
source code.

Executes a single source line or assembly level instruction. If the
current window is a Module window, a single line of source code
is executed; if it's a CPU window, a single machine instruction. If
the current line contains any procedure or function calls, Turbo
Debugger traces into the routine. However, if the current window
is a CPU window, only a single machine instruction is executed.

Turbo Debugger treats object methods and class member func­
tions just like any other procedure or function. Fl traces into the
source code if it's available.

Executes a single source line or machine instruction, skipping
over any procedure or function call(s). If the current window is a
Module window, this command usually executes a single source
line. However, if the current window is a CPU window, only a
single machine instruction is executed.

If you step over a single source line, Turbo Debugger treats any
function or procedure call(s) in that line as part of the line. You
don't end up at the start of one of the functions. Instead, you end
up at the next line in the current routine or at the previous routine
that called the current one.

If you are in a CPU window, Turbo Debugger treats certain
instructions as a single instruction, even when they cause mul­
tiple assembly instructions to be executed. Here is a complete list
of the instructions Turbo Debugger treats as single instructions:

CALL
INT
LOOP
LOOPZ
LOOP NZ

Subroutine call, near, and far
Interrupt call
Loop control with ex counter
Loop control with ex counter
Loop control with ex counter

Chapter 5, Controlling program execution 89

Execute To ...

Until Return

Animate ...

Back Trace

90

Also stepped over are REP, REPNZ, or REPZ followed by CMPS,
CMPS, CMPSW, LODSB, LODSW, MOVS, MOVSB, MOVSW,
SCAS, SCASB, SCASW, STOS, STOSB, or STOSW.

The Run I Step Over command treats a call to an object method or
a class member function like a single statement, and steps over it
like any other procedure or function call.

Executes your program until the address you specify in the dialog
box is reached. The address you specify may never be reached if a
breakpoint action is encountered first, or if you interrupt
execution.

Executes until the current function returns to its caller. This is
useful in two circumstances: When you have accidentally exe­
cuted into a function or procedure that you are not interested in
with Run I Trace instead of Run I Step, or when you have deter­
mined that the current function works to your satisfaction, and
you don't want to slowly step through the rest of it.

Performs a continuous series of Trace Into commands, updating
the screen after each one. (The effect is to run your program in
slow motion.) You can watch the current location in your source
code and see the values of variables changing. You interrupt this
command by pressing any key.

After you choose Run I Animate, you will be prompted for a time
delay between successive traces. The time delay is measured in
tenths of a second; the default is 3.

If you are tracing (Fl or Alt-Fl) through your program, reverses the
order of execution. This is handy if you trace beyond the point
where you think there may be a bug, and want to reverse
program execution back to that point. This lets you "undo" the
execution of your program by stepping backward through the
code, either a single step at a time or to a specified point

Turbo Debugger User's Guide

highlighted in the Instructions pane of the Execution History
window.

Warning/ Some restrictions apply. See the section, "The Instructions pane"
(page 92).

Instruction Trace

Arguments ...

Program Reset

Executes a single machine instruction. Use this when you want to
trace into an interrupt, or when you're in a Module window and
you want to trace into a procedure or function that's in a module
with no debug information (for example, a library routine).

Since you will no longer be at the start of a source line, this
command usually places you in a CPU window.

This command lets you set new command-line arguments for
your program. For a discussion of this command, see "Changing
the program arguments" on page 98.

Reloads from disk the program you're debugging. You might use
this command

•When you've executed past the place where you think there is a
bug

• When your program has terminated and you want to run it
again

•If you're in a Module or CPU window, you've suspended your
Windows application program with Ctrl-Alt-SysRq, and you want
to terminate it and start over

•If you've already loaded your application, you've just set
startup debugging for one or more dynamic link libraries
(DLLs), and you now want to debug those DLLs

If you're in a Module or CPU window, the debugger will set the
current-line marker at the start of the program, but the display
will stay exactly where you were when you chose the Program
Reset command. This behavior makes it easier for you to set the
cursor near where you were and run the program to that line.

If you chose Program Reset because you just executed one source
statement more than you intended, you can position the cursor up

Chapter 5, Controlling program execution 91

a few lines in your source file and press F4 to run to that location.
Alternatively, if Full History had been on (local window of the
View I Execution History window), you could have chosen Run I
Back Trace to step back through previously executed code instead
of choosing Program Reset.

The Execution History window

Figure 5.6
The Execution History window

The Instructions

Turbo Debugger has a special feature called the execution history
that keeps track of each instruction as it is executed (provided you
are tracing into the code), and also, if you want, records the key­
strokes you input to get to a given point in your program. You
can examine these instructions, and also undo them to return to a
point in the program where you think there might be a bug. If you
don't have EMS memory, Turbo Debugger can record about 400
instructions. If you have EMS, it can record approximately 3000
instructions.

[•]=Execution history =[f] [H51
t ll I

t p ' I II

7229 :04F7: ca 1 TPDEMO. PROCESS LINE. JSLETTE,. . .
race TPDEM0.122: while i <= Length (sj ·do
race TPDEM0.125: while (i <= Length(S)) an
race TPDEMO.PROCESSLINE.ISLETTER: begin

You can examine the execution history in the Execution History
window, which you open by choosing View I Execution History.

This window has two panes: the Instructions pane on top and the
Keystroke Recording pane on the bottom.

pane The Instructions pane shows instructions already executed that
you can examine or undo. Use the highlight bar to make your
selection.

¢ The execution history only keeps track of instructions that have
been executed with the Trace Into command (Fl) or the Instruction
Trace command (Alt-Fl). It also tracks for Step Over, as long as you
don't encounter one of the instructions listed on page 89. As soon
as you use the Run command or execute an interrupt, the
execution history is deleted. (It starts being recorded again as
soon as you go back to tracing.)

92 Turbo Debugger User's Guide

The Instructions pane
local menu

Inspect
Reverse execute

Ful 1 hi story No

Warning!

Warning/

You cannot backtrace into an interrupt call.

If you step over a procedure or function call, you will not be able
to trace back beyond the instruction following the return.

Backtracing through a port-related instruction has no effect, since
you can't undo reads and writes.

The local menu for the Instructions pane contains three
instructions:

Inspect

This command takes you to the command highlighted in the
Instructions pane. If it is a line of source code, you are shown that
line in the Module window; if there is no source code, the CPU
window opens, with the instruction highlighted in the Code pane.

Reverse Execute

This command reverses program execution to the location
highlighted in the Instructions pane. If you selected a line of
source code, you are returned to the Module window; otherwise,
the CPU window appears with the highlight bar of the Code pane
on the instruction.

You can never reverse back over a section of your program that
you didn't trace through. For example, if you set a breakpoint and
then pressed F9 to run until the breakpoint was reached, all your
reverse execution history will be thrown away. In this case, if you
want to recover, you can use the keystroke replay facility of the
Execution History window to reload your program and run
forward to that point.

The INT instruction causes any previous execution history to be
thrown out. You can't reverse back over this instruction, unless
you press Alt-Fl to trace into the interrupt.

The following instructions do not cause the history to be thrown
out, but they cannot have their effects undone. You should be on
the lookout for unexpected side effects if you back up over these
instructions:

IN
OUT

INSB
INSW

OUTSB
OUTSW

Chapter 5, Controlling program execution 93

The Keystroke
Recording pane

You can't use keystroke
recording in Turbo Debugger

for Windows (TOW).

The Keystroke
Recording pane local

menu

Inspect
Keystroke restore

94

Full History

This command is a toggle. If it is set to On, backtracing is enabled.
If it is Off, backtracing is disabled.

Even if you do inadvertently destroy your execution history, you
can quickly execute back to a given point in your program, if you
have keystroke recording enabled.

Keystroke recording works in conjunction with the reverse pro­
gram execution capability to give you different ways of recover­
ing to a previous point in your debugging session. It keeps a
record of all the keys that you press, both when you're issuing
commands to Turbo Debugger and when you're interacting with
the program you are debugging. The keystrokes are recorded in a
file named PROGNAME.TDK, where progname is the name of the
program you are debugging.

Use the bottom pane of the Execution History window to replay
keystrokes and recover to a previous point in your session. Each
line in the keystroke history list shows the reason that Turbo
Debugger gained control (breakpoint, trace, and so forth) and
your program's current location at that time. If the location corre­
sponds to a line of source code, that line is displayed. Otherwise,
the instruction at that address is disassembled.

The -k command-line option enables keystroke recording. (See
page 67.) You can also use TDINST to set the default to On.

The local menu for the Keystroke Recording pane contains two
commands: Inspect and Keystroke Restore.

Inspect

If you highlight a line in the Keystroke Recording pane, then
choose Inspect from the local menu, the Module window comes
up with the cursor on the line of source code at which that key­
stroke occurred.

If this line does not correspond to a source code position, the CPU
window opens with the highlight positioned on the instruction.

Turbo Debugger User's Guide

Keystroke Restore

If you highlight a line in the Keystroke Recording pane, then
choose Keystroke Restore, Turbo Debugger reloads your program
and runs it to the highlighted context. This is especially useful if
you have executed a Turbo Debugger command that has deleted
your execution history.

interrupting program execution

Ctrl-Break

With interactive programs, the quickest way to get to a specific
place in your program is sometimes to simply run it, interact with
it until it gets to the desired part of the code, and then interrupt
execution. This is particularly true if the piece of code you want to
examine is called several times before the one time of particular
interest to you.

You may also want to interrupt program execution when, for
some unexpected reason, control does not return to the debugger.
This can happen when a piece of code contains an infinite loop:
You expect a piece of code to be executed, so you set a breakpoint,
but the breakpoint is never reached.

This key combination will almost always interrupt your program
and return control to the debugger. It takes effect as soon as you
press it, so you might sometimes appear to be in an unexpected
piece of code. This code could be in the ROM keyboard BIOS if
your program is waiting for a keystroke, or at any instruction in
the loop being executed.

Ctrl-Break is unable to override two conditions. If either of the
following conditions occurs, you will need to reboot your system:

•You are stuck in a loop with interrupts disabled.

•The system has crashed due to execution of erroneous code.

If you are debugging a program that needs to act upon the Ctr/­
Break key combination itself, you can change the interrupt key.
Using the TDINST installation program, you can set the interrupt
key to be any key combination.

Chapter 5, Controlling program execution 95

Program termination

When your program terminates and exits back to DOS, Turbo
Debugger regains control. It displays a message showing the exit
code that your program returned to DOS. Once your program
terminates, you cannot use any of the Run menu options until you
reload the program with Run I Program Reset.

The segment registers and stack are usually not correct when your
program has terminated, so do not examine or modify any pro­
gram variables after termination.

Restarting a debugging session

Reloading your

Turbo Debugger has several features that make restarting a de­
bugging session as painless as possible. When you're debugging a
program, it's easy to go just a little too far and overshoot the real
cause of the problem. In that case, Turbo Debugger lets you
restart debugging but suspends execution before the last few com­
mands that caused you to miss the problem that you wanted to
observe.

Most debuggers force you to type in manually what could be a
very long sequence of commands to get back to the place where
the error occurred. Turbo Debugger has the powerful capability to
record the keystrokes that made up the last session and to replay
them on demand. It also lets you reload your last program from
disk, with its previous DOS command-line arguments.

program To reload the program you were debugging, choose Run I Pro­
gram Reset. Turbo Debugger reloads the program from disk, with
any data you have added since you last saved to disk. This is the
safest way to restart a program. Restarting by executing at the
start of the program can be risky, since many programs expect
certain data to be initialized from the disk image of the program.

¢ Note that Program Reset leaves breakpoints and watchpoints
intact.

96 Turbo Debugger User's Guide

Keystroke macro
recording and

playback
You can use the keystroke macro facility to record keystroke
sequences that you use frequently. During debugging, you often
repeat the same sequence of commands to get to a certain place in
your program. This can be very tedious.

To get around this problem, you can define a keystroke macro
that records all the keys you press, from when you first start
Turbo Debugger untii you have your program in the desired
state. At that point, you can stop recording keystrokes. If you
have to get back to the same place in your program, all you have
to do is replay the keystroke macro.

¢ You can't use this utility to record keystrokes that must be typed
to your program. You can only record Turbo Debugger command
keystrokes.

The first thing you must do after starting Turbo Debugger from
DOS is define a keystroke macro. Choose Options I Macros I Create
to do this. You're prompted to press a key to assign the keystroke
macro to. Choose a key that hasn't been assigned to a function
yet, such as Shift and one of the function keys, say Shift-Ft. Now
take your program to its point of crashing.

At that point, stop recording the keystroke macro by choosing
Options I Macros I Stop Recording. Save the macro to disk by
choosing the Options I Save Options command and turning on the
Macros option in the Save Configuration dialog box. Continue
running your program. After your program crashes and you have
reloaded it and Turbo Debugger, you can simply press Shift-Ft to
restart the program.

If your program requires you to type things to get to the next part
of the recorded command sequence, you still have to enter those
keystrokes manually. (You can do this while the macro is run­
ning.) For programs that do not require you to enter anything,
this keystroke recording mechanism can completely automate the
restarting procedure, saving many keystrokes.

¢ When a macro is saved to a configuration file, the configuration of
the total environment is saved, including opened and zoomed
windows. Thus if you record a macro that opens a window and
don't close the window before saving the macro, the next time
you restore that configuration file, the window will be open
automatically even though you haven't executed the macro.

Chapter 5, Controlling program execution 97

Opening a new program to debug

Figure 5.7
The Load Program dialog

box

You load a new program to debug by choosing File I Open to open
the Load Program dialog box.

1 sp.exe
donuthin.exe
dotota 1 • exe
drwhappy. exe
echo.exe
hello.exe
11ttle.exe
mytest.exe
pwrs.exe
reverse. exe
small .exe
tcdemo.exe

You can enter a file name (extension .EXE) in the File Name input
box, or press Enterto active a list box of all the .EXE files in the
current directory. Move the highlight bar to the file you want to
load and press Enter.

If, instead, you type in the name of the file you want to load, the
highlight bar moves to the file that begins with the first letter(s)
you typed. When the bar is positioned on the file you want, press
Enter.

You can supply arguments to the program to debug by placing
them after the program name, exactly as you would at the DOS
prompt:

myprog a b c

This loads program MyProg with three command-line arguments,
a, b, and c.

Changing the program arguments

98

If you forgot to supply some necessary arguments to your pro­
gram when you loaded it, you can use the Run I Arguments
command to set or change the arguments. Enter new arguments
exactly as you would following the name of your program on the
DOS command line.

Turbo Debugger User's Guide

Once you have entered new arguments, Turbo Debugger asks you
if you want to reload your program from disk. You should
answer Yes, because for most programs, the new arguments will
only take effect if you reload the program first.

Chapter 5, Controlling program execution 99

100 Turbo Debugger User's Guide

c H A p T E R

6

Examining and modifying data

For how to examine or
modify arbitrary blocks of

memory as hex data bytes,
see Chapter 11.

Turbo Debugger provides a unique and intuitive way to examine
and even change your program's data.

•Inspector windows let you look at your data as it appears in
your source file. You can "follow" pointers, scroll through
arrays, and see structures, records, and unions exactly as you
wrote them.

•You can also put variables and expressions into the Watches
window, where you can watch their values as your program
executes.

•The Evaluate/Modify dialog box shows you the contents of any
variable and lets you assign a new value to it.

This chapter assumes that you understand the various data types
that can be used in the language you're using (C, Pascal, or
assembler). If you are fairly new to a language and have not yet
explored all its data types (char, int, integer, Boolean, real, single­
and double-precision floating point, string, long integer, and so
on), this chapter can still give you valuable information about
them. When you have delved into the more complex data types
(arrays, pointers, records, structures, unions, and so on), return to
this chapter to learn more about looking at them with Turbo
Debugger.

In this chapter, we show you how to examine and modify vari­
ables in your program. First, we explain the Data menu and its
options. We then discuss how you can modify program data by
evaluating expressions that have side effects, and show you how

Chapter 6, Examining and modifying data 101

The Data menu

Inspect •••
Evaluate/modify ••• Ctrl-F4
Add watch... Ctrl-F7
Function return

Inspect ...

to point directly at data items in your source modules. Finally, we
introduce the Watches window and describe the way that the data
types of each language appear in Inspector windows.

The Data menu lets you choose how to examine and change pro­
gram data. You can evaluate an expression, change the value of a
variable, and open Inspector windows to display the contents of
your variables.

Prompts you for the variable that references the data you want to
inspect, then opens an Inspector window that shows the contents
of the program variable or expression. You can enter a simple
variable name or a complex expression.

If the cursor is on a variable in a text pane when you issue this
command, the dialog box automatically contains the variable at
the cursor, if any. If you select an expression in a text pane (using
Ins), the dialog box contains the selected expression.

Inspector windows really come into their own when you want to
examine a complicated data structure, such as an array of
structures or a linked list of items. Since you can inspect items
within an Inspector window, you can "walk" through your pro­
gram's data objects as easily as you scroll through your source
code in the Module window.

¢ See the "Inspector windows" section later in this chapter for a
complete description of how Inspector windows behave.

Evaluate/Modify ...

102

See Chapter 9 for a
complete discussion of

expressions.

Opens the Evaluate/Modify dialog box (Figure 6.1), which
prompts you for an expression to evaluate, then evaluates it,
exactly as the compiler would during compilation when you
choose the Eval button.

If the cursor is in a text pane when you issue this command, the
dialog box automatically contains the variable at the cursor, if
any. If you select an expression (using Ins), the dialog box contains
the marked expression.

Turbo Debugger User's Guide

Figure 6.1
The Evaluate/Modify dialog

box

See Chapter 9 for a
discussion of format control.

Evaluate/modi f

Remember that you can add a format control string after the
expression that you want to watch. Turbo Debugger displays the
result in a format suitable for the data type of the result. To
display the result in a different format, put a comma(,) separator,
then a format control string after the expression. This is useful
when you want to watch something but have it displayed in a
format other than Turbo Debugger's default display format for the
data type.

The dialog box has three fields. You type the expression you want
to evaluate in the top one. This is the Evaluate input box, and it
has a history list just like any other input box. The middle field
displays the result of evaluating your expression. The bottom
field is an input box where you can enter a new value for the
expression. If the expression can't be modified, this box reads
<Not available>, and you can't move your cursor into it.

Your entry in the New Value input box takes effect when you
choose the Modify button.

Data strings too long to display in the Result input box are termi­
nated by an arrow ("'). You can see more of the string by scrolling
to the right.

If you are debugging a C++ or object-oriented Pascal program, the
Evaluate/Modify dialog box also lets you display the fields of an
object instance or the members of a class instance. You can use
any format specifier with an instance that can be used in
evaluating a record.

When you're tracing inside a method or member function, Turbo
Debugger knows about the scope and presence of the Self I this
parameter. You can evaluate Self I this and follow it with format
specifiers and qualifiers.

Chapter 6, Examining and modifying data 103

104

You cannot execute
constructor or destructor

methods or member
functions In the Evaluate

window.

Turbo Debugger also lets you c~ll a method or member function
from inside the Evaluate/Modify dialog box. Just type the
instance name followed by a dot, followed by the method or
member function name, followed by the actual parameters (or
empty parentheses if there are no parameters). With these
declarations,

type
Point = object

X, Y : Integer;
Visible : Boolean;
constructor Init(InitX, InitY Integer);
destructor Done; virtual;

end;

var

procedure
procedure
procedure

Show; virtual;
Hide; virtual;
MoveTo(NewX, NewY

APoint : Point;

Integer);

you could enter any of these expressions in Turbo Debugger's
Evaluate window:

Expression

APoint.X
APqint
APoint.MoveTo
APoint.MoveTo(10, 10)
APoint.Show()

Result

5 ($5) : Integer
(5,23,FALSE): Point
@6F4F: OOBE
calls method MoveTo
calls method Show

C programmers The C language has a feature called expressions with side effects that
can be powerful and convenient, as well as a source of surprises
and confusion.

An expression with side effects alters the value of one or more
variables or memory areas when it is evaluated. For example, the
C increment(++) and decrement (--)operators and the assign­
ment operators (=, +=, and so on) have this effect. If you execute
functions in your program within a C expression (for example,
myfunc(2)), note that your function can have unexpected side
effects.

If you don't intend to modify the value of any variable but merely
want to evaluate an expression containing some of your program
variables, don't use any of the operators that have side effects. On
the other hand, side effects can be a quick and easy way to change

Turbo Debugger User's Guide

Add Watch,,,

Function Return

the value of a variable or memory area. For example, to add 1 to
the value of your variable named count, evaluate the C expression
count++.

You can also use the Evaluate/Modify dialog box as a simple
calculator by typing in numbers as operands instead of program
variables.

Prompts you for an expression to watch, then places the expres­
sion or program variable on the list of variables displayed in the
Watches window when you press Enter or choose the OK button.

If the cursor is in a text pane when you issue this command, the
dialog box automatically contains the variable at the cursor, if
any. If you select an expression (using Ins), the dialog box contains
the selected expression.

Shows you the value the current function is about to return. Use
this command only when the function is about to return to its
caller.

The return value is displayed in an Inspector window, so you can
easily examine return values that are pointers to compound data
objects.

This command saves you having to switch to a CPU window to
examine the return value that is placed in the CPU registers. And
since it also knows the data type being returned and formats it
appropriately, it is much easier to use than a hex dump.

Pointing at data objects in source files

See Chapter 8 for a full
discussion of using Module

windows.

Turbo Debugger has a powerful mechanism to relieve you from
always typing in the names of program variables that you want to
inspect. From within any Module window, you can place the
cursor anywhere within a variable name and use the local menu
Inspect command to create an Inspector window showing the
contents of that variable. You can also select an expression or
variable to inspect by pressing Ins and using the cursor keys to
highlight it before choosing the Inspect command.

Chapter 6, Examining and modifying data 105

The Watches window

Figure6.2
The Watches window

See Chapter 9 for a
complete discussion of

scopes and when a variable
or parameter is valid.

Warning!

106

The Watches window lets you list variables and expressions in
your program whose values you want to track. You can watch the
value of both simple variables (such as integers) and complex
data objects (such as arrays). In addition, you can watch the value
of a calculated expression that does not refer directly to a memory
location (for example, x * y + 4).

~~h[•]=Watches,================Z [t] [~]914
~ 0 ($00) ' ""' etterrable 2,2 , 2,0, 2,0, 2,2 , 2,0 , 2,0 , 0,0 , 0,0 , 0,0 , 0,0, 0,0

umletters 12 ($C) : LONGINT
umWords 4 ($4) : WORD
uml i nes 2 ($2) : WORD

Choose View I Watches to access the Watches window. It holds a
list of variables or expressions whose values you want to watch.
For each item, the variable name or expression appears on the left
and its data type and value on the right. Compound values like
arrays and structures appear with their values between braces ({})
for C programs, and between parentheses for Pascal programs. If
there isn't room to display the entire name or expression, it is
truncated.

When you enter an expression to be watched, feel free to use
variable names that are not yet valid because they are in a
function that has not yet been called. This lets you set up a watch
expression before its scope becomes active. This is the only
situation in Turbo Debugger where you can enter an expression
that cannot be immediately evaluated.

This means that if you mistype the name of a variable, the mistake
won't be detected because Turbo Debugger assumes it is the name
of a variable that becomes available as your program executes.

Unless you use the scope-overriding mechanism discussed in
Chapter 9, Turbo Debugger evaluates expressions in the Watches
window in the scope of the current location where your program
is stopped. Hence an expression in the Watches window is
evaluated as if it appeared in your program at the place where the
program is stopped. If a watch expression contains a variable
name that is not accessible from the current scope-for example, if
it's private to another module-the value of the expression is
undefined and is displayed as four question marks(????).

When you're tracing inside an object method, you can add the
Self/this parameter to the Watches window.

Turbo Debugger User's Guide

The Watches
window local

menu

Watch ...

Edit ...

Watch •••
Edit .•.
Remove
Delete all

Inspect
Change

Remove

Delete All

Inspect

Change

See Chapter 9 for more
information on the

assignment operator and
type conversion (casting).

As with all local menus, press Alt-F10 to pop up the Watches
window local menu. If you have control-key shortcuts enabled,
press Ctr/ with the first letter of the desired command to access it.

Prompts you for the variable name or expression to add to the
Watches window. It is added to the beginning of the list.

Opens a dialog box in which you can edit an expression in the
Watches window. You can change any watch expression that's
there, or enter a new one.

You can also invoke this command by pressing Enter once you've
positioned the highlight bar over the watch expression you want
to change. Press Enter or choose the OK button to put the edited
expression into the Watches window.

Removes the currently selected item from the Watches window.

Removes all the items from the Watches window. This command
is useful if you move from one area of your program to another,
and the variables you were watching are no longer relevant.
(Then use the Watch command to enter more variables.)

Opens an Inspector window to show you the contents of the
currently highlighted item in the Watches window. If the item is a
compound object (array, record, or structure), this lets you view
all its elements, not just the ones that fit in the Watches window.
(The section "Inspector windows" on page 108 explains all about
Inspector windows.)

Changes the value of the currently highlighted item in the
Watches window to the value you enter in the dialog box. If the
current language you are using permits it, Turbo Debugger
performs any necessary type conversion exactly as if the
appropriate assignment operator(= or:=) had been used to
change the variable.

Chapter 6, Examining and modifying data 107

Inspector windows

An Inspector window displays your program data appropriately,
depending on the data type you're inspecting. Inspector windows
behave differently for scalars (for example, char or int), pointers
(char* in C, A in Pascal), arrays (long x[4], array [l..10] of Word),
functions, structures, records, unions, and sets.

The Inspector window lists the items that make up the data object
being inspected. The title of the window shows the data type of
the inspected data and its name, if there is one.

The first item in an Inspector window is always the memory
address of the data item being inspected, expressed as a segment:
offset pair, unless it has been optimized to a register or is a
constant (for example, 3).

To examine the contents of an Inspector window as raw data
bytes, select the View I Dump command while you're in the
Inspector window. The Dump window comes up, with the cursor
positioned to the data displayed in the Inspector window. You

M can return to the Inspector window by closing the window with
the Window I Close command (Alt-F3), or clicking the close box
with your mouse.

The following sections describe the different Inspector windows
that can appear for each of the languages supported by Turbo
Debugger: C, Pascal, and assembler. The programming language
used dictates the format of the information displayed in Inspector
windows. Data items and their values always appear in a format
similar to the one they were declared with in the source file.

Remember that you don't have to do anything special to cause the
different Inspector windows to appear. The right one appears
automatically, depending on the data you're inspecting.

C data Inspector
windows

108

Scalars Scalar Inspector windows show you the value of simple data
items, such as

char x = 4;
unsigned long y = 1234561;

Turbo Debugger User's Guide

Figure 6.3
A C scalar Inspector window

Pointers

Following the top line, these Inspector windows have only a
single line of information that gives the address of the variable. To
the left on the following line appears the type of the scalar
variable (char, unsigned long, and so forth), and to the right
appears its present value. The value can be displayed as decimal,
hex, or both. It's usually displayed first in decimal, with the hex
values in parentheses (using the standard C hex prefix of Ox). Use
TDINST to change how the value is displayed.

If the variable being displayed is of type char, the equivalent
character is also displayed. If the present value does not have a
printing character equivalent, use the backslash(\) followed by a
hex value to display the character value. This character value
appears before the decimal or hex values.
ll@[•]=Inspecting wordcount=l=[t] [Hl
!76B2:FFC4 ~

ns1gned 1nl 2 Ox2

Pointer Inspector windows show you the value of data items that
point to other data items, such as

char *p = "abc";
int *ip = 0;
int **ipp = &ip;

Pointer Inspector windows usually have a top line that contains
the address of the variable, followed by a single line of informa­
tion about the data pointed to. To the left appears (O], indicating
the first member of an array. To the right appears the value of the
item being pointed to. If the value is a complex data item, such as
a structure or an array, however, only as much of it as possible is
displayed with the values enclosed in braces ({ and }).

If the pointer is of type char and appears to be pointing to a null­
terminated character string, more information appears, showing
the value of each item in the character array. To the left in each
line appears the array index ([1], [2], and so on), and the value
appears to the right as it would in a scalar Inspector window. In
this case, the entire string is also displayed on the top line, along
with the address of the pointer variable and the address of the
string that it points to.

You also get multiple lines if you open the Inspector window and
then use the Range local menu command. This is an important
technique for C programmers who use pointers to point to arrays
of items as well as single items. For example, if you had the code

Chapter 6, Examining and modifying data 109

Figure 6.4
A C pointer Inspector

window

int array[lO];
int *arrayp = array;

and you wanted to look at what arrayp pointed to, use the Range
local command on arrayp, specifying a start index of 0 and a range
of 10. If you had not done this, you would only have seen the first
item in the array.

[•]=Inspecting bufp=3=[f] [H=ii
@76B2:FFBE : ds:07D2 [#TCDEMO#A

I

Pointer Inspector windows also have a lower pane indicating the
data type to which the pointer points.

Structures and unions Structure and union Inspector windows show you the value of
the members in your structure and union data items. For
example,

110

Figure 6.5
A C structure or union

Inspector window

struct linfo {
unsigned int count;
unsigned int firstletter;

letterinfo [26];

union {
int small;
long large;

holder;

These Inspector windows have another pane below the one that
shows the values of the members. This additional pane shows the
data type of the member highlighted in the top pane.

Structures and unions appear the same in Inspector windows. The
lower pane of the Inspector window tells you whether you are
looking at a structure or a union. These Inspector windows have
as many items after the address as there are members in the struc­
ture or union. Each item shows the name of the member on the
left and its value on the right, displayed in a format appropriate
to its C data type.

Turbo Debugger User's Guide

Arrays Array Inspector windows show you the value of arrays of data
items, such as

Figure 6.6
A C array Inspector window

Functions

Figure 6.7
A C function Inspector

window

Pascal data
Inspector
windows

long thread[3] [4] [5];
char message[] = "eat these words";

There is a line for each member of the array. To the left on each
line appears the array index of the item. To the right appears the
value of the item. If the value is a complex data item such as a
stmcture or array, as much of it as possible is displayed.

You can use the Range local menu command to examine any
portion of an array. This is useful if the array has a lot of elements,
and you want to look at something in the middle of the array.

Function Inspector windows show each parameter with which a
function is called. The parameters are displayed below the
memory address at the top of the window.

liiiiii[•]=Inspecting analyzewords=3=[t] [!]
@71E9:02DD

• I I

I
Io

They also give you information about the calling parameters,
return data type, and calling conventions for a function. The
lower pane indicates the data type returned by the function.

Scalars Scalar Inspector windows show you the value of simple data
items, such as

Chapter 6, Examining and modifying data 111

Figure 6.8
A Pascal scalar Inspector

window

Pointers

Figure 6.9
A Pascal pointer Inspector

window

112

var
X : Integer;
Y : Longint;

These Inspector windows have only a single line of information
following the top line that gives the address of the variable. To the
left appears the type of the scalar variable (Byte, Word, Integer,
Longint, and so forth), and to the right appears its present value.
The value can be displayed as decimal, hex, or both. It's usually
displayed first in decimal, with the hex values in parentheses
(using the Turbo Pascal hex prefix$). You can use TDINST to
change how the value is displayed.

If the variable being displayed is of type Char, the character
equivalent is also displayed. If the present value does not have a
printing character equivalent, use a pound sign (#) followed by a
number to display the character value. This character value
appears before the decimal or hex values.

[•J=Inspecting Wordlen=3=[t] [+]1
@8810:3EFO ~

ORD 0 0 .. '' ' ' ' ' ' '
' ' ' ' ' • I <

Pointer Inspector windows in a Pascal program show you the
value of data items that point to other data items, such as

var
IP : Ainteger;
LP : AApointer;

Pointer Inspector windows usually have only a single line of
information following the top line that gives the address of the
variable. To the left appears [l], indicating the first member of an
array. To the right appears the value of the item being pointed to.
If the value is a complex data item such as a record or an array,
however, only as much of it as possible is displayed, with the
values enclosed in parentheses.

You also get multiple lines if you open the Inspector window and
issue the Range local command, specifying a c9unt greater than 1.

Turbo Debugger User's Guide

Arrays Array Inspector windows in Pascal programs show you the value
of arrays of data items, such as

Figure 6.10
A Pascal array Inspector

window

var
A: array[l .. 10,1 .. 20] of Integer;
B : array[l .. 50] of Boolean;

There is a line for each member of the array. To the left on each
line appears the array index of the item and to the right is its
present value .. If the value is a corrlplex data item sucl-t as a record
or an array, as much of it as possible is displayed, with the values
enclosed in parentheses.

You can use the Range command to examine any portion of an
array. This is useful if the array has a lot of elements, and you
want to look at something in the middle of the array.

.... :
'A' 2 ,2

[' B'] (2 ,0)
['C'] (2,0)
['D'] (2 ,2)
['E'] (2,0)
['F'] (2,0)

~JXV p:£i~':''.'?Qi'j &V'Ci%t6~tE':,: :,:::: : ·

Records Record Inspector windows in Pascal programs show you the
value of the fields in your records. For example,

Figure 6.11
A Pascal record Inspector

window

record
year
month
day

end

Integer;
1. .12;
1.. 31;

These Inspector windows have another pane below the one that
shows the values of the fields. This additional pane shows the
data type of the field highlighted in the top pane.

Chapter 6, Examining and modifying data 113

114

Procedures and
functions

Figure 6.12
A Pascal procedure

Inspector window

Assembler data
Inspector
windows

In the upper pane, procedure and function Inspector windows in
Pascal programs give you information about calling parameters.
These windows have a second pane, in which the routine is
identified as a procedure or function, as well as the data type
returned by a function.

[•]=Inspecting ProcessLine=3=[t] [H
340:0486

:

Scalars Scalar Inspector windows in assembly language programs show

Figure 6.13
An assembler scalar

Inspector window

Pointers

you the value of simple data items, such as

VARl DW 99

MAGIC DT 4.608
BIGNUM DD 123456

These Inspector windows have only a single line of information
following the top line that gives the address of the variable. To the
left appears the type of the scalar variable (BYTE, WORD,
DWORD, QWORD, and so forth), and to the right appears its
present value. The value can be displayed as decimal, hex, or
both. It's usually displayed first in decimal, with the hex values in
parentheses (using the standard assembler hex postfix H). You
can use TDINST to change how the value is displayed.
l/i[•]=lnspecting Count=3=[t] [Hl
~72ED:0019 ~

word 18 12h

Pointer Inspector windows in assembler programs show you the
value of data items that point to other data items, such as

X DW 0
XPTR DW X

FARPTR DD X

Pointer Inspector windows usually have only a single line of
information following the top line that gives the address of the
variable. To the left appears [O], indicating the first member of an

Turbo Debugger User's Guide

Figure 6.14
An assembler pointer

Inspector window

Arrays

array. To the right appears the value of the item being pointed to.
If the value is a complex data item such as a STRUC or array,
however, only as much of it as possible is displayed, with the
values enclosed in braces ({and}).

If the pointer is of type BYTE and appears to be pointing to a
null-terminated character string, more information appears,
showing the value of each item in the character array. To the left
in each line appears the array index ([l], [2], and so on), and the
value appears to the right as it would in a scalar Inspector win­
dow. In this case, the entire string is also displayed on the top
line, along with the address of the variable and the address of the
string that it points to.

You also get multiple lines if you open the Inspector window with
a Range local command and specify a count greater than 1.

[•]=Inspecting TextPtr=3=[f] [+]=;i
@72ED:0017 : ds:OOOA [#test#text]•

I

Array Inspector windows in assembler programs show you the
value of arrays of data items, such as

WARRAY DW 10 DUP (0)
MSG DB "Greetings",O

There is a line for each member of the array. To the left on each
line appears the array index of the item and to the right is its
present value. If the value is a complex data item such as a
STRUC, however, only as much of it as possible is displayed.

You can use the Range local command to examine a portion of an
array. This is useful if the array has a lot of elements, and you
want to look at something in the middle of the array.

Chapter 6, Examining and modifying data 115

Figure 6.15
An assembler array Inspector

window

Structures and unions Structure Inspector windows in assembler programs show you
the value of the fields in your STRUC and UNION data objects. For
example,

Figure 6.16
An assembler structure

Inspector window

x STRUC
ME Ml DB
MEM2 DD
x ENDS
ANX x <1,ANX>

y UNION
ASBYTES DB 10 DUP (?)
ASFLT OT
y ENDS
AY y <?,1.0>

These Inspector windows have another pane below the one that
shows the values of the fields. This additional pane shows the
data type of the field highlighted in the top pane.

[•]=lnspecti ng Names=3=[t] [~]
72ED:001D
irstname "Carleton 11

astname "Wh1tehal l "
ge '#' 35 (23h)
ex 'M' 77 (4Dh)
ncome 30000 (7530h)

true namedata

The Inspector window local menu

116

Range •••
Change ...

Inspect
Descend
New expression •••
Type cast ...

The commands in this menu give the Inspector window its real
power. By choosing the Inspect local menu command, for
example, you create another Inspector window that lets you go
into your data objects. Other commands in the menu let you
inspect a range of values and inspect a new variable.

Turbo Debugger User's Guide

Range ...

Change ...

Inspect

Sets the starting element and number of elements that you want
to display. Use this command when you are inspecting an array,
and you only want to look at a certain subrange of all the
members of the array.

If you have a long array and want to look at a few members near
the middle, use this command to open the Inspector window at
tht! array index that you want to examine.

This command is particularly useful in C where you often declare
a pointer to a data item-like char *p-but what you really mean
is that p points to an array of characters, not just a single character.

Changes the value of the currently highlighted item to the value
you enter in the dialog box. If the current language permits it,
Turbo Debugger performs any necessary casting exactly as if the
appropriate assignment operator had been used to change the
variable. See Chapter 9 for more information on the assignment
operator and casting.

Opens a new Inspector window that shows you the contents of
the currently highlighted item. This is useful if an item in the
Inspector window contains more items itself (like a structure or
array), and you want to see each of those items.

If the current Inspector window is inspecting a function, issuing
the Inspect command shows you the source code for that
function.

You can also invoke this command by pressing Enter after high­
lighting the item you want to inspect.

You can return to the previous Inspector window by pressing Esc
to close the new Inspector window. If you are through inspecting
a data structure and want to remove all the Inspector windows,

W.. use the Window I Close command or its shortcut, A/t-F3, or click the
close box with your mouse.

Chapter 6, Examining and modifying data 117

Descend
This command works like the Inspect local menu command
except that instead of opening a new Inspector window to show
the contents of the highlighted item, it puts the new item in the
current Inspector window. This is like a hybrid of the New
Expression and Inspect commands.

¢ Once you have descended into a data structure like this, you can't
go back to the previous unexpanded data structure. Use this
command when you want to work your way through a compli­
cated data structure or long linked list, but you don't care about
returning to a previous level of data. This helps reduce the
number of Inspector windows onscreen.

New Expression ...

Type Cast ...

118

Prompts you for a variable name or expression to inspect, without
creating another Inspector window. This lets you examine other
data without having to put more Inspector windows on the
screen. Use this command if you are no longer interested in the
data in the current Inspector window.

Inspector windows for Pascal objects and C++ classes are some­
what different from regular Inspector windows. See Chapter 10
for a description of object type/ class Inspector windows.

Lets you specify a different data type (Byte, Word, Int, Char
pointer) for the item being inspected. This is useful if the
Inspector window contains a symbol for which there is no type
information, as well as for explicitly setting the type for untyped
pointers.

Turbo Debugger User's Guide

c H

Chapter 7, Breakpoints

A p T E R

7

Breakpoints

Turbo Debugger uses the single term "breakpoint" to refer to the
debugger functions usually called breakpoints, watchpoints, and
tracepoints.

Traditionally, breakpoints, watchpoints, and tracepoints are
defined like this: A breakpoint is a place in your program where
you want execution to stop so that you can examine program
variables and data structures. A watchpoint causes your program
to be executed one instruction or source line at a time, watching
for the value of an expression to become true. A tracepoint causes
your program to be executed one instruction or source line at a
time, watching for the value of certain program variables or
memory-referencing expressions to change.

Turbo Debugger unifies these three concepts by defining a
breakpoint in three parts:

• the location in the program where the breakpoint occurs
• the condition under which the breakpoint is triggered
• what happens when the breakpoint is triggered

The location can be at either a single or global location in your
program (if it is global, the breakpoint can occur at any source line
or instruction in your program).

The "condition" can be

•always
•when an expression is true
•when a data object changes value

119

A "pass count" can also be specified, which requires "condition"
to be true a certain number of times before the breakpoint can be
triggered.

The "what happens" can be one of these:

•stop program execution (a breakpoint)
• log the value of an expression
•execute an expression (splice code)

In this chapter, we'll show you how Turbo Debugger breakpoints
give you more power and flexibility than traditional breakpoints,
watchpoints, and tracepoints. You'll learn about the Breakpoints
and Log windows; how to set simple breakpoints, conditional
breakpoints, and breakpoints that log the value of your program
variables; and how to set breakpoints that watch for the exact
moment when a program variable, expression, or data object
changes value.

Many times, you just want to set a few simple breakpoints, so that
if your program reaches any one of these locations, it stops. You
can set or clear a breakpoint at any location in your program by
simply placing the cursor on the source code line and pressing F2.
You can also set a breakpoint on any line of machine code by
pressing F2 when you are pointing at an instruction in the Code

M. pane of a CPU window. Or, if you have a mouse, just click either
of the leftmost two columns of the line where you want to set the
breakpoint. (If you're in the correct column, an asterisk (*)
appears in the position indicator.) There is no limit to the number
of breakpoints you can set.

The Breakpoints menu

120

You can access the Breakpoints menu at any time by pressing the
Alt-B hot key.

Toggle F2
At... Alt-F2
Changed memory global .. .
Expression true global .. .
Hardware breakpoint ...
Delete all

Turbo Debugger User's Guide

Toggle

At ...

Changed
Memory Global ...

Expression True.
Global. ..

Hardware
Breakpoint ...

Waming!

Delete All

Chapter 7, Breakpoints

Sets or clears a breakpoint at the currently highlighted address in
a Module window or CPU window Code pane. The hot key is F2.

Lets you set a breakpoint at a specific location in your program. It
opens a dialog box in which you can set all breakpoint options.
Alt-F2 is the hot key.

Sets a breakpoint that's triggered when an area of memory
changes value. You are prompted for the area of memory to
watch. For more information, see the Changed Memory command
in "The Breakpoints window local menu" section later in this
chapter.

Sets a breakpoint that is triggered when the value of an expres­
sion you supply becomes true. You are prompted for the expres­
sion. For more information, see the Condition Expression True
command in "The Breakpoints window local menu" section later
in this chapter.

Information on the hardware debugger interface is available in a
file on your distribution disks. Refer to the README file for how
to access this disk-based documentation.

You must have a hardware debugging board in order to use
hardware debugging.

Removes all the breakpoints you have set.

121

Scope of breakpoint expressions

Both the action that a breakpoint performs and the condition
under which it is triggered can be controlled by an expression you
supply. That expression is evaluated using the scope of the
address at which the breakpoint is set, not the scope of the current
location where the program is stopped. This means that your
breakpoint expression can use only variable names that are valid
at the address in your program where you set the breakpoint,
unless you use scope overrides. See Chapter 9 for a complete
discussion of scopes and scope overrides.

If you want to set a breakpoint for an expression in a module that
isn't currently loaded and Turbo Debugger cannot find that
expression, you can use either a scope override to specify the file
that contains the expression or the View I Module command to
change modules.

If you use variables that are local to a routine as part of an expres­
sion, that breakpoint will execute much more slowly than a break­
point that uses only global or module local variables.

The Breakpoints window

122

Figure 7.1
The Breakpoints window

You open a Breakpoints window by choosing the View I
Breakpoints command. This gives you a way of looking at and
adjusting the conditions that trigger a breakpoint. You can use
this window to add new breakpoints, delete breakpoints, and
adjust existing breakpoints.

Breakpoint
Always
Enabled

Breakpoints windows have two panes. The left pane (Breakpoint
List) shows a list of all the addresses at which breakpoints are set.
The right pane (Breakpoint Detail) shows the details of the cur­
rently highlighted breakpoint in the left pane. Only the break­
point list pane has a local menu, which you get to by pressing Alt­
F10. Its options affect whatever breakpoint is highlighted in the
Breakpoint List pane.

Turbo Debugger User's Guide

The Breakpoints
window local

menu
The commands in this menu let you add new breakpoints, delete
existing breakpoints, or change how a breakpoint behaves.

Set options •••
Hardware options •••

Add •••
Remove
Delete all
Insoect

Alt-Ft 0 pops up the Breakpoints window local menu. If you have
control-key shortcuts enabled, press Ctr/ with the first letter of the
desired command to access the command directly.

Set Options... Opens the Breakpoint Options dialog box, which contains two
sets of radio buttons, four input boxes, and two check boxes. In
this dialog box, you can

Figure 7.2
The Breakpoint Options

dialog box

Chapter 7, Breakpoints

• define what happens when the breakpoint highlighted in the
Breakpoints List pane is triggered.

• control the conditions under which the breakpoint is triggered.

• set the number of times an action is encountered before the
breakpoint triggers.

• enable or disable the breakpoint.

• set or change the breakpoint address.

•make the breakpoint global.

The Action radio buttons have three settings:

Break Causes your program to stop when the break­
point is triggered. The Turbo Debugger screen
reappears, and you can once again enter

123

124

Execute

Log

commands to look around at your program's data
structures.

Causes an expression to be executed. Enter the
expression in the Action Expression input box.
The expression should have some side effect,
such as setting a variable to a value. This option
can act as a "code splice," letting you insert an
expression that will execute before the code in
your program at the current line number.

Causes the value of an expression to be recorded
in the Log window. You are prompted for the
expression whose value you want to log. Be
careful that the expression doesn't have any
unexpected side effects. See Chapter 9 for a
description of expressions and side effects.

The Condition radio buttons have four settings:

Always

Changed
Memory

Indicates that no additional conditions need be
true before the breakpoint is triggered.

Watches a memory variable or object and allows
the breakpoint to be triggered if the object
changes. Use the Condition Expression input box
to enter an expression reproducing the object you
want to watch, followed by the number of objects
to watch. The total number of bytes in the
memory area is the size of the object that the
expression references times the number of objects.
For example, if you used C to enter

(long)a,4

the area watched for change would be 16 bytes
long, since a long is 4 bytes and you said to watch
four of them.

If you attach this condition to a global breakpoint,
your program executes much more slowly
because the memory area will have to be checked
for change after every source line has been
executed. If you've installed a hardware debugger
device driver, changed memory breakpoints may
become much faster. If a changed memory break­
point has hardware assistance, an asterisk (*)
appears after the breakpoint name in the left

Turbo Debugger User's Guide

See disk-based
documentation about the

hardware debugger
interface and the options

available under this menu.

Expression
True

pane. You can expect then that the breakpoint
will not slow down your program's execution.

By setting this condition on a breakpoint at a
specific address, you do not incur the speed
penalty of the global breakpoint, and you can still
check the variable each time a specific line of code
is executed.

Allol'\rs the breakpoir .. t to be triggered '"rhen art
expression becomes true (nonzero). Use the
Condition Expression input box to enter an
expression to evaluate each time the action is
encountered.

Hardware Causes the breakpoint to be triggered by the
hardware-assisted device driver. Use this menu
either if you have a 386 system and are using the
TDH386.SYS device driver, or if you have a
hardware debugger board installed in your
system and the board vendor supplies a Turbo
Debugger device driver.

The Pass Count input box lets you set the number of times the
breakpoint action must occur before the breakpoint is triggered.
The default number is 1. The pass count is decremented only
when the condition attached to the breakpoint is true. This means
that if you set a pass count as well as a condition, it causes the
breakpoint to be triggered the nth time that the condition is true.

The Breakpoint Disabled check box lets you enable or disable the
currently highlighted breakpoint. A disabled breakpoint is
"invisible" until you enable it again; it behaves as if it had been
deleted.

This check box is useful if you have defined a complex breakpoint
that you don't want to use just now, but will want to use again
later. It saves you from having to delete the breakpoint, and then
re-enter it along with its conditions and action.

Hardware Options... Refer to the disk-based documentation about the hardware
debugger interface for how to use this option.

Warning! You must have a hardware debugging board in order to use
hardware debugging.

Chapter 7, Breakpoints 125

Add... Opens a dialog box like the Set Options dialog box. You must
enter an address in the Address input box.

You can also add a breakpoint by simply starting to type the
address at which you want to set it. A dialog box appears just as if
you had invoked the Add command.

Once you've added the breakpoint, you can use the other local
menu commands to modify its behavior. When you first add a
breakpoint, it has a pass count of 1, its condition is set to always
occur, and the action is to break (stop) your program.

Remove Removes the currently highlighted breakpoint.

Delete All Removes all breakpoints, both global and those set at specific
addresses. You will have to set more breakpoints if you want your
program to stop on a breakpoint.

Inspect Shows you the source code line or assembler instruction that
corresponds to the currently highlighted breakpoint item. If the
breakpoint is set at an address that corresponds to a source line in
your program, a Module window is opened and set to that line.
Otherwise, a CPU window is opened, with the Code pane set to
show the instruction at which the breakpoint is set.

You can also invoke this command by pressing Enter once you
have the highlight bar positioned over a breakpoint.

The Log window

126

Figure 7.3
The Log window

You create a Log window by choosing the View I Log command.
This window lets you review a list of significant events that have
taken place in your debugging session.

L _.
reakpoint at TPDEM0.220
rea kpoin t at TPIJEMO. 220
reakpoint at TPDEM0.220
rcakpoint at TPDEM0.225
reakpo1nt at IPDtM0.226
e are now en ten ng procedure Para1rs ...

Log windows show a scrolling list of the lines output to the
window. If more than 50 lines have been written to the log, the

Turbo Debugger User's Guide

The Log window
local menu

Open log file .•.
Close log file
Logging Yes
Add corrment ••.
Erase log
Display Windows info

Open Log File ...

Chapter 7, Breakpoints

oldest lines are lost from the top of the scrolled list. If you want to
change the number of lines in the list, use the TDINST
customization program (described in Appendix D). You can also
preserve the entire log, continuously writing it to a disk file, by
using the Open Log File local menu command.

Here's a list of what can cause lines to be written to the log:

•Your program stops at a location you specified. The location it
<:fnn<: ,.+ ;<: •"PrnrrlPrl ;n +hP lnu ---r- -· -- -------- --- ~-- --o·

•You issue the Add Comment local menu command. You are
prompted for a comment to write to the log.

• A breakpoint is triggered that logs the value of an expression.
This value is put in the log.

•You use the Window I Dump Pane to Log command (from the
menu bar) to record the current contents of a pane in a window.

•You are debugging a Microsoft Windows application and use
the Display Windows Info command on the Log window local
menu to write global heap information, local heap information,
or the module list to the log.

•You are debugging a Microsoft Windows application, have
used the View I Windows Messages command to display the
Windows Messages window, and are now in the local menu of
the Messages pane of that window. You toggle Send to Log
Window to Yes so all messages coming to this window will also
go to the Log window.

The commands in this menu let you control writing the log to a
disk file, stopping and starting logging, adding a comment to the
log, clearing the log, and writing information about a Windows
program to the log.

Alt-F10 pops up the Log window local menu. If you have control­
key shortcuts enabled, pressing Ctr/ and the first letter of the
desired command accesses the command directly.

Causes all lines written to the log to be written to a disk file as
well. A dialog box appears that prompts you for the name of the
file to write the log to (or you can select a directory and file from
the list boxes).

127

Close Log File

Logging

Add Comment ...

Erase Log

Display Windows Info

When you open a log file, all the lines already displayed in the log
window's scrolling list are written to the disk file. This lets you
open a disk log file after you see something interesting in the log
that you want to record to disk.

If you want to start a disk log that does not start with the lines
already in the Log window, first choose Erase Log before
choosing Open Log File.

Stops writing lines to the log file specified in the Open Log File
local menu command, and the file is closed.

Enables or disables the log, controlling whether anything is
actually written to the Log window.

Lets you insert a comment in the log. You are prompted for a line
of text that can contain any characters you desire.

Clears the log list. The Log window will now be blank. This does
not affect writing the log to a disk file.

Displays the Windows Information dialog box, which enables you
to list global heap information, local heap information, or the list
of modules making up your application. See Chapter 17 for an
explanation of how to use this feature.

Simple breakpoints

128

One of the most common things you'll want to do during debug­
ging is cause your program to stop if certain pieces of code are
about to be executed.

There are a number of ways to set a breakpoint. Each one is
convenient in different circumstances:

•Move to the desired source line in a Module window and issue
the Breakpoints I Toggle command (or press F2 or click the line
with your mouse). Doing this on a line that already has a break­
point set causes that breakpoint to be deleted.

•Move to an instruction in the Code pane of a CPU window and
issue the Breakpoints I Toggle command (or press F2 or click the

Turbo Debugger User's Guide

line with your mouse). Doing this on a line that already has a
breakpoint set causes that breakpoint to be deleted.

• Issue the Breakpoints I At command and enter a code address at
which to set a breakpoint. (A code address has the same format
as a pointer in the current language. See Chapter 9 about
expressions.)

• Issue the Add local menu command from the Breakpoint List
pane of the Breakpoints window and enter a code address at
which to set a breakpoint.

Conditional breakpoints and pass counts

Chapter 7, Breakpoints

There are many occasions where you do not want a breakpoint to
be triggered every time a certain source statement is executed,
particularly if that line of code is executed many times before the
occurrence you are interested in. Turbo Debugger gives you two
ways to qualify when a breakpoint is actually triggered: pass
counts and conditions.

If you want to stop your program on the tenth call to a function,
you can set a breakpoint at the start of the function and use the
Pass Count input box in the Breakpoint Options dialog box to set
the number of times you want to skip the breakpoint before it is
actually triggered.

If you want to stop your program at a specific location but only
when a certain condition is true, you can specify an expression
using the Expression True radio button in the Breakpoint Options
dialog box. Each time the breakpoint is encountered, the expres­
sion will be evaluated, and if it is true (nonzero), the breakpoint
will be triggered. This can be used in combination with the pass
count to trigger a breakpoint only after the expression has been
true a certain number of times.

You can use the Changed Memory radio button to specify a
breakpoint that occurs only after a data item changes value. This
can be a lot more efficient than specifying a global breakpoint that
watches for exactly when something changes. If you only watch
for something to change when a specific source statement is
reached, it reduces the amount of processing Turbo Debugger
does in order to detect when the change occurred.

129

Global breakpoints

If you want to have a breakpoint occur every time a source line or
instruction is encountered, use global breakpoints. There are a
number of ways to create a global breakpoint, each best-suited for
a particular situation:

•In the Breakpoint Options dialog box, tum on the Global check
box. Use this method when you want to set a qualifying condi­
tion or pass count, or when you want to do something other
than stop when the breakpoint is triggered.

• Choose the Breakpoints I Changed Memory Global command to
stop when a specific area of memory changes.

• Choose the Breakpoints I Expression True Global command to
stop execution when an expression becomes true.

When you set a global breakpoint, you usually use the local menu
in the Breakpoints window to modify the condition or the action;
otherwise, all you end up with is a breakpoint action that occurs
on every source line-just like using the Run I Trace Into main
menu command.

If you want to test your global breakpoints each time a source line
is about to be executed, make sure your current window is not a
CPU window, then restart your program with one of the Run
commands from the menu bar (or its function-key equivalents).

To test your global actions each time a single instruction is
executed, make sure your current window is a CPU window
when you restart your program.

Warning! A global action will occur on every source line or instruction. Use
a global breakpoint when you want to find out exactly when a
variable changes or when some condition becomes true.

Global breakpoints greatly slow the execution of your program.
However, they can be very convenient for finding where your
program is "bashing" data.

¢ After adding the global breakpoint, you must set a condition that
will trigger it.

130 Turbo Debugger User's Guide

Breaking for changed data objects

When you want to find out where in your program a certain data
object is being changed, first set a global breakpoint using one of
the techmques outlined in the previous section. Then use the
Changed Memory radio button in the Breakpoint Options dialog
box. When the input box appears, enter an expression that refers
to the memorv area vou want to keep track of. along with an
optional cou:r{t of th~ number of obje'cts to track. -

Your program will execute slowly when you use this command.
You may want to localize the problem before using this technique
to find the exact location where a data item changes.

If you have installed a hardware device driver, Turbo Debugger
will try to set a hardware breakpoint to watch for a change in the
data area. Different hardware debuggers support different
numbers and types of hardware breakpoints. You can see if a
breakpoint has used the hardware by opening a Breakpoint
window with the View I Breakpoints command. Any breakpoint
that is hardware assisted will have an asterisk(*) beside it. These
breakpoints will be much faster than global breakpoints that are
not hardware assisted.

Logging variable values

You can only set one break­
point per address.

Chapter 7, Breakpoints

Sometimes, you may find it useful to log the value of certain
variables each time you reach a certain place in your program.
You can log the value of any expression, including, for example,
the values of the parameters a function is called with. By looking
at the log each time the function is called, you can determine
when it was called with erroneous parameters.

Choose the Log radio button from the Breakpoint Options dialog
box. You are prompted for the expression whose value is to be
logged each time the breakpoint is triggered. If you want to log
the value of multiple variables, you must set multiple break­
points.

131

Executing expressions

132

By executing an expression that has side effects each time a break­
point is triggered, you can effectively "splice in" new pieces of
code before a given source line. This is useful when you want to
alter the behavior of a routine to test a diagnosis or bug fix. This
saves you from going through the compile-and-link cycle just to
test a minor change to a routine.

Of course, this technique is limited to the insertion of an expres­
sion before an already existing line of code is executed; you can't
use this technique to modify existing source lines directly.

Turbo Debugger User's Guide

c H A p T E R

8

Examining and modifying files

Turbo Debugger treats disk files as a natural extension of the
program you're debugging. You can examine and modify any file
on the disk, viewing it either as ASCII text or as hex data. You can
also make changes to text files using your favorite word processor
or text editor, all from within Turbo Debugger.

This chapter shows you how to examine and modify two sorts of
disk files: those that contain your program source code, and other
files on disk.

Examining program source files

Loading and debugging
Microsoft Windows DLL
modules is described in

Chapter 17 on page 276.

Program source files are your source files that are compiled and
that generate an object module (an .EXE file). You usually
examine them when you want to look at the behavior or design of
a portion of your code. During debugging, you often need to look
at the source code for a function to verify either that its arguments
are valid or that it is returning a correct value.

As you step through your program, Turbo Debugger automati­
cally displays the source code for the current location in your
program.

Files that are included in a source file by a compiler directive and
generate line #s (like #include in C and INCLUDE in assembler)
are also considered to be program source files (that is, when you
choose View I Module, they appear in the Pick a Module list pane).

Chapter 8, Examining and modifying files 133

134

The Module

You should always use a Module window to look at your
program source files because this informs Turbo Debugger that
the file is a source module. It can then let you do things like
setting breakpoints or examining program variables simply by
moving to the appropriate place in your file. These techniques
and others are described in the following sections.

window You create a Module window by choosing the View I Module
command from the menu bar (or pressing the hot key, F3).

Figure 8.1
The Module window

[•]=Module: TPDEMO File: TPDEMO.PAS 217'========1=[t]U]=n
end; •

Writeln;
end; { PannsOnHeap }

.. begin { program I
Init;
Buffer := Getline;
whi 1 e Buffer <> ' ' do
begin

Processline(Buffer);
Buffer := Getline;

end;
ShowResults;
PannsOnHeap;

end.
•
II ..

• llllllll Biil lllllllllt 1111•1111111• 1111 llMlllll H l I

A dialog box appears in which you can enter the name of the
module you want to view.

If you are debugging a Windows application, this dialog box
shows one list for modules of the program and another list for
DLLs and .EXE files currently loaded by Windows. See page 277
for an explanantion of this dialog box.

Turbo Debugger will then load the source file for the module that
you select. It searches for the source file in the following places:

1. in the directory where the compiler found the source file

2. in the directories specified by the Options I Path for Source
command or the-sd command-line option

3. in the current directory

4. in the directory that contains the program you're debugging

Module windows show the contents of the source file for the
module you've selected. The title of the Module window shows
the name of the module you're viewing, along with the source file
name and the line number the cursor is on. An arrow (~) in the

Turbo Debugger User's Guide

The Module
window local

menu
Inspect
Watch

Module •••
File •.•

Previous
Line •••
Search •••
Next
Origin
Goto •••
Edit

first column of the window shows the current program location
(CS:IP).

Note that when you run Turbo Debugger, you'll need both the
.EXE file and the original source file. Turbo Debugger searches for
source files first in the directory the compiler found them in when
it compiled, second in the directory specified in the Options I Path
for Source command, third in the current directory, and fourth in
the directory the .EXE file is in.

If the word modified appears after the file name in the title, the file
has been changed since it was last compiled or linked to make the
program you are debugging. This means that the routines in the
updated source file may no longer have the same line numbers as
those in the version used to build the program you are debug­
ging. This can cause the arrow that shows the current program
location (CS:IP) to be displayed on the wrong line.

The Module window local menu provides a number of com­
mands that let you move around in the displayed module, point
at data items and examine them, and set the window to display a
new file or module.

You will probably use this menu more than any other menu in
Turbo Debugger, so you should become quite familiar with its
various options.

Use the Alt-F10 key combination to pop up the Module window
local menu or, if you have control-key shortcuts enabled, use the
Ctr/ key with the first letter of the desired command to access that
command (for example, Ctrl-S for Search).

Inspect Opens an Inspector window to show you the contents of the
program variable at the current cursor position. Before issuing
this command, you can place the cursor at the program variables
in the source file that you want to inspect, or you can enter it in
the input box of the dialog box that appears.

You can also use the Ins key to select (highlight) an expression to
inspect. This saves you from typing in an expression that is in
plain view in the source module.

Chapter 8, Examining and modifying files 135

Because this command saves you from having to type in each
name you are interested in, you'll end up using it a lot to examine
the contents of your program variables.

Watch Adds the variable at the current cursor position to the Watches
window. This is useful if you want to monitor the value of a
variable continuously as your program executes. Before issuing
this command, you can place the cursor at the program variables
in the source file that you want to inspect, or you can enter it in
the input box of the dialog box that appears.

You can also use the Ins key to mark an expression to watch. This
saves you from typing in an expression that is in plain view in the
source module.

Module... Lets you view a different module by picking the one you want
from the list of modules displayed. This command is useful when
you are no longer interested in the current module, and you don't
want to end up with more Module windows onscreen.

File... Lets you switch to view one of the other source files that makes
up the module you are viewing. Pick the file that you want to
view from the list of files presented. Most modules only have a
single source file that contains code. Other files included in a
module usually only define constants and data structures. Use
this command if your module has source code in more than one
file.

Use View I File to look at the first file. If you want to see more than
one, use View I Another I File to open subsequent File windows.

Previous Returns you to the last source module location you were viewing.
You can also use this command to return to your previous
location after you've issued a command that changed your
position in the current module.

line... Positions you at a new line number in the file. Enter the new line
number to go to. If you enter a line number after the last lille in
the file, you will be positioned at the last line in the file.

136 Turbo Debugger User's Guide

Search... Searches for a character string, starting at the current cursor
position. Enter the string to search for. If the cursor is positioned
over something that looks like a variable name, the search dialog
box will come up initialized to that name. Also, if you have
marked a block in the file using the Ins key, that block will be used
to initialize the search dialog box. This saves you from typing if
what you want to search for is a string that is already in the file
you are viewing.

You can search using simple wildcards, with? indicating a match
on any single character, and * matching zero or more characters.
The search does not wrap around from the end of the file to the
beginning. To search the entire file, go to the first line by pressing
Ctrl-PgUp.

Next Searches for the next instance of the character string you specified
with the Search command; you can only use this after issuing a
Search command.

Sometimes, a search command matches an unexpected string
before reaching the one you really wanted to find. Next lets you
repeat the search without having to reenter what you want to
search for.

Origin Positions you at the module and line number that is the current
program location (CS:IP). If the module you are currently viewing
is not the module that contains the current program location, the
Module window will be switched to show that module. This com­
mand is useful after you have looked around in your code and
want to return to where your program is currently stopped.

Goto... Positions you at any location within your program. Enter the
address you want to examine; you can enter a function name or a
hex address. See Chapter 9 for a complete description of the ways
to enter an address.

You can also invoke this command by simply starting to type the
label to go to. This brings up a dialog box exactly as if you had
chosen the Goto command. Entering the label name is a handy
way to invoke this frequently used command.

Chapter 8, Examining and modifying files 137

Edit Starts up your choice of an editor so that you can make changes to
the source file for the module you are viewing. You can specify
the command that starts your editor from the installation
program TDINST.

Examining other disk files

The File window

Figure 8.2
The File window

Figure 8.3
The File window showing hex

data

138

You can examine or modify any file on your system by using a
File window. You can view the file either as ASCII text or as hex
data bytes, using the Display As command described in a later
section of this chapter.

You create a File window by choosing the View I File command
from the menu bar. You can use DOS-style wildcards to get a list
of file choices, or you can type a specific file name to load.

[

[•]=File g:\netfiles\debug\program\tcde3=[t] [H=;i
/* file <tcdemo.c> •
* I

* Demonstration program to show off Turb,
* Reads words from standard input, analyz
*/

#include <stdar9.h> ..
•::::: 1 111 1 1 11111 r 1111111 •: 111 111 1 '

File windows show the contents of the file you've selected. The
name of the file you are viewing is displayed at the top of the
window, along with the line number the cursor is on if the file is
displayed as ASCII text.

When you first create a File window, the file will appear either as
ASCII text or as hexadecimal bytes, depending on whether the file
contains what Turbo Debugger thinks is ASCII text or binary
data. You can switch between ASCII and hex display at any time
using the Display As local menu command described later.

~
[•]=File g:\netfiles\debug\program\tcde3=[t] [+]=;i
0000: 2f 2a 09 66 69 6c 65 20 /*ofi 1 e •
0008: 3c 74 63 64 65 6d 6f 2e <tcdemo. •
0010: 63 3e Od Oa 20 2a Od Oa c>JI *JI I
0018: 20 2a 09 44 65 6d 6f 6e woDemon
0020: 73 74 72 61 74 69 6f 6e stration
0028: 20 70 72 6f 67 72 61 6d program
0030: 20 74 6f 20 73 68 6f 77 to show ..
IJ

Turbo Debugger User's Guide

The File window
local menu The File window local menu has a number of commands for

moving around in a disk file, changing the way the contents of the
file are displayed, and making changes to the file.

Goto
Search
Next

Use the Alt-F10 key combination to pop up the File window local
menu or, if you have control-key shortcuts enabled, use the Ctr/
key with the first letter of the desired command to access it.

Goto Positions you at a new line number or offset in the file. If you are
viewing the file as ASCII text, enter the new line number to go to.
If you are viewing the file as hexadecimal bytes, enter the offset
from the start of the file at which to start displaying. You can use
the full expression parser for entering the offset. If you enter a line
number after the last line in the file or an offset beyond the end of
the file, you will be positioned at the end of the file.

Search Searches for a character string, starting at the current cursor
position. You are prompted to enter the string to search for. If the
cursor is positioned on something that looks like a symbol name,
the Search dialog box comes up initialized to that name. Also, if
you have marked a block in the file using the Ins key, that block
will be used to initialize the Search dialog box. This saves you
from typing if what you want to search for is a string that is
already in the file you are viewing. The format of the search string
depends on whether the file is displayed in ASCII or hex.

See Chapter 9 for complete
information about byte lists.

If the file is displayed in ASCII, you can use simple wildcards,
with ? indicating a match on any single character, and *matching
0 or more characters.

If the file is displayed in hexadecimal bytes, enter a byte list
consisting of a series of byte values or quoted character strings,
using the syntax of whatever language you are using for
expressions.

Chapter 8, Examining and modifying files 139

Next

Display As

File ...

Edit

Chapter 9 has a complete
description of byte lists.

140

The search does not wrap around from the end of the file to the
beginning. To search the entire file, go to the first line of the file by
pressing Ctrl-PgUp.

You can also invoke this command by simply starting to type the
string that you want to search for. This brings up a dialog box
exactly as if you had specified the Search command.

Searches for the next instance of the character string you specified
with the Search command; you can only use this command after
first issuing a Search command.

This is useful when your Search command didn't find the
instance of the string you wanted. You can keep issuing this
command until you find what you want.

Toggles between displaying the file as ASCII text or hexadecimal
bytes. When you select ASCII display, the file appears as you are
used to seeing it on the screen in an editor or word processor. If
you select Hex display, each line starts with the hex offset from the
beginning of the file for the bytes on the line. Eight bytes of data
are displayed on a line. To the right of the hex display of the
bytes, the display character for each byte appears. The full display
character set can be displayed, so byte values less than 32 or
greater than 127 appear as the corresponding display symbol.

Lets you switch to a different file. You can use DOS-style
wildcards to get a list of file choices, or you can type a specific file
name to load. This lets you view a different file without putting a
new File window onscreen. If you want to view two different files
or two parts of the same file simultaneously, issue the View I
Another I File command to make another File window.

If you are viewing the file as ASCII text, this command lets you
make changes to the file you are viewing by invoking the editor
you specified with the TDINST installation program.

If you are viewing the file as hex data bytes, the debugger does
not start your editor. Instead, you are prompted for the bytes to
replace those at the current cursor position. Enter a byte list, just
as if you were entering a list of bytes to search for.

Turbo Debugger User's Guide

c H

Each language evaluates an
expression differently.

Chapter 9, Expressions

A p T E R

9

Expressions
Expressions can be a mixture of symbols from your program (that
is, variables and names of routines), and constants and operators
from one of the supported languages: C, Pascal, or assembler.

Turbo Debugger can evaluate expressions and tell you their value.
You can also use expressions to indicate a data item in memory
whose value you want to know. You can supply an expression in
any dialog box that asks for a value or an address in memory.

Use Data I Evaluate/Modify to open the Evaluate/Modify dialog
box, which tells you the value of an expression. (You can also use
this dialog box as a simple calculator.)

In this chapter, you'll learn how Turbo Debugger chooses which
language to use for evaluating an expression, and how you can
make it use a specific language. We describe the components of
expressions that are common to all the languages, such as source­
line numbers and access to the processor registers. We then
describe the components that can make up an expression in each
language, including constants, program variables, strings, and
operators. For each language, we also list the operators that Turbo
Debugger supports and the syntax of expressions.

For a complete discussion of C, Pascal, and assembler expressions,
refer to the Getting Started and Programmer's Guide for Borland's C
or C++ compilers, the Turbo Pascal User's Guide and Reference
Guide, or the Turbo Assembler Reference Guide.

141

Choosing the language for expression evaluation

142

Turbo Debugger normally determines which expression evaluator
and language to use from the language of the current module.
This is the module in which your program is stopped. You can
override this by using the Options I Language command to open
the Expression Language dialog box; in it you can set radio
buttons to Source, C, Pascal, or Assembler. If you choose Source,
expressions are evaluated in the manner of the module's
language. (If Turbo Debugger can't determine the module's
language, it uses the expression rules for Turbo Assembler.)

Usually, you let Turbo Debugger choose which language to use.
Sometimes, however, you'll find it useful to set the language
explicitly; for example, when you are debugging an assembler
module that is called from one of the other languages. By expli­
citly setting expression evaluation to use a particular language,
you can access your data in the way you refer to it with that
language, even though your current module uses a different
language.

Sometimes it is convenient to treat expressions or variables as if
they had been written in a different language; for example, if you
are debugging a Pascal program,. assembly language or C conven­
tions may offer an easier way to change the value of a byte stored
in a string.

So long as your initial choice of language is correct when you
enter Turbo Debugger, you should have no difficulty using other
language conventions. Turbo Debugger still retains information
about the original source language and will handle the conver­
sions and data storage appropriately. If the language seems ambi­
guous, Turbo Debugger defaults to assembly language.

Even if you deliberately choose the wrong language when you
enter Turbo Debugger, it will still be able to get some information
about the original source language from the symbol table and the
original source file. Under some circumstances, however, it may
be possible to confuse Turbo Debugger into storing data
incorrectly.

Turbo Debugger User's Guide

Code addresses, data addresses, and line numbers

Normally, when you want to access a variable or the name of a
routine in your program, you simply type its name. However, you
can also type an expression that evalutes to a memory pointer, or
specify code addresses as source line numbers by preceding the
line number with a pound sign (#), like #123. The next section
describes ho\v to access syrr1bols outside the current scope.

Of course, you can also specify a regular segment:offset address,
using the hexadecimal syntax for the source code language of
your program:

Language

c
Pascal
assembler

Format

Oxnnnn
$nnnn
nnnnh

Example

Ox1234:0x0010
$1234:$0010
1234h:0010h
1234h:OB234h

In assembler, hex numbers starting with A to F must be prefixed with a zero.

Accessing symbols outside the current scope

Chapter 9, Expressions

Where the debugger looks for a symbol is known as the scope of
that symbol. Accessing symbols outside of the current scope is an
advanced concept that you don't really need to understand in
order to use Turbo Debugger in most situations.

Normally, Turbo Debugger looks for a symbol in an expression
the same way a compiler would. For example, C first looks in the
current function, then in the current module for a static (local)
symbol, then for a global symbol. Pascal first looks in the current
procedure or function, then in an "outer" subprogram (if the
active scope is nested inside another), then in the implementation
section of the current unit (if the current scope resides in a unit),
and then for a global symbol.

If Turbo Debugger doesn't find a symbol using these techniques,
it searches through all the other modules to find a static symbol
that matches. This lets you reference identifiers in other modules
without having to explicitly mention the module name.

If you want to force Turbo Debugger to look elsewhere for a
symbol, you can exert total control over where to look for a

143

144

Scope override
syntax

symbol name by specifying a module, a file within a module, or a
routine to look inside. You can access any symbol in your pro­
gram that has a defined value, even symbols that are private to a
function or procedure and have names that conflict with other
symbols.

No matter what language you're using, you use the same method
to override the scope of a symbol name.

Normally, you use a pound sign (#) to separate the components of
the scope. If it's not ambiguous in the current language, you can
also use a period(.) instead of# and omit the initial pound sign.

The following syntax describes scope overriding; brackets ([])
indicate optional items:

[#module[#filename]]#linenumber[#variablename]

or

[#module[#filename]] [#functionname]#variablename

If you don't specify a module, the current module is assumed.
Here are some examples of valid symbol expressions with scope
overrides. There is one example for each of the legal combinations
of elements that you can use to override a scope.

The first six examples show various ways of using line numbers
to generate addresses and override scopes:

#123 Line 123 in the current module

#123#myvarl Symbol myvarl accessible from line
123 of the current module

#mymodule#123 Line 123 in module mymodule

#mymodule#123#myvarl Symbol myvarl accessible from line
123 in module mymodule

#mymodule#file1#123 Line 123 in source file filel, which is
part of module mymodule

#mymodule#file1#123#myvarl Symbol myvarl accessible from line
123 in source file filel, which is part
of mymodule

The next six examples show various ways of overriding the scope
of a variable by using a module, file, or function name:

Turbo Debugger User's Guide

#rnyvar2

#rnyfunc#rnyvar2

#rnyrnodule#rnyvar2

#rnyrnodule#rnyfunc#rnyvar2

#rnyrnodule#file2#rnyvar2

#rnyrnodule#file2#rnyfunc
#rnyvar2

Same as myvar2 without the #

Variable myvar2 accessible from
routine myfunc

Variable myvar2 accessible from
module mymodule

Variable myvar2 accessible from
routine myfunc in module mymodule

Variable myvar2 accessible from
file2, which is included in mymodule

Variable myvar2 accessible from
myfunc defined in file file2, which is
included in mymodule

Turbo Debugger also supports Pascal's unit-override syntax:

unitnarne.syrnbolnarne

Finally, Turbo Debugger lets you override scope by using object,
class, method, and member function names. Here are some
examples:

Aninstance

Aninstance.AField

AnObjectType.AMethod

Aninstance.AMethod

AUnit.Aninstance.AField

Instance Anlnstance accessible in the
current scope.

Field Afield accessible in instance
Anlnstance accessible in the current
scope

Method AMethod accessible in object
type AnObjectType accessible in the
current scope

Method AMethod accessible in
instance Anlnstance accessible in the
current scope

Field Afield accessible in instance
Anlnstance accessible in unit A Unit

AUni t. An Object Type. AMethod Method AMethod accessible in object
type AnObjectType accessible in unit
A Unit

Chapter 9, Expressions 145

AUnit .AnObjectType .AMethod. Local variable A Var accessible in
ANestedProc .AVar procedure ANestedProc accessible in

method AMethod accessible in object
type AnObjectType accessible in unit
A Unit

You can enter such qualified identifier expressions anywhere an
expression is valid, including in the Evaluate/Modify dialog box
and the Watches window, or when you're changing an expression
in an Inspector window or using the local menu in the Module
window to Goto a method, member function, or procedure
address in the source code.

¢ If you are debugging a C++ program and want to examine a
function with an overloaded name, just enter the name of the
function in the appropriate input box. Turbo Debugger opens the
Pick a Symbol Name dialog box, which shows a list box of all the
functions of that name with their arguments, enabling you to
choose the one you want.

Implied scope for
expression
evaluation

Whenever Turbo Debugger evaluates an expression, it must
decide where in your program the "current scope" is that is used
for any symbol names without an explicit scope override. Deter­
mining scope is important because in many languages you can
have symbols inside functions or procedures with the same name
as global symbols; Turbo Debugger must know which instance of
a symbol you mean.

146

Turbo Debugger usually uses the current cursor position as the
context for "deciding" about scope. Thus, you can set the scope
where an expression will be evaluated by moving the cursor to a
specific line in a Module window.

This means that if you have moved the cursor off the current line
where your program is stopped, you may get unexpected results
from evaluating expressions. If you want to be sure that expres­
sions are evaluated in your program's current scope, use the
Origin local menu command in the Module window to return to
the current location in the source code. You can also set the
expression scope by moving around inside the Code pane of a
CPU window, by cursoring to a routine in the Stack window, or
by cursoring to a routine name in a Variables window.

Turbo Debugger User's Guide

Byte lists

C expressions

C symbols

Chapter 9, Expressions

Several commands ask you to enter a list of bytes, including the
Search and Change local menu commands in the Data pane of the
CPU window, and the Search and Change local menu commands
of the File window when it's displaying a file in hexadecimal
format.

A byte list can be any mixture of scalar (non-floating-point) num­
bers and strings in the syntax of the current language, determined
by the Options I Language command. Both strings and scalars use
the same syntax as expressions. Scalars are converted into a
corresponding byte sequence. For example, a Pascal Longint
value of 123456 becomes a 4-byte hex quantity 40 E2 01 00.

Language

c
Pascal
Assembler

Byte list

"ab" Ox04 "c"
'ab'#4'c'
1234 "AB"

Hex data

6162 04 63
6162 04 63
3412 4142

Turbo Debugger supports the complete C expression syntax. A C
expression consists of a mixture of symbols, operators, strings,
variables, and constants. Each of these components is described in
one of the following sections.

A symbol is the name of a data object or routine in your program.
A symbol name must start with a letter (a-z, A-Z) or underscore
(_). Subsequent characters can be any of these characters as well
as the digits 0 through 9. You can omit the beginning underscore
from symbol names; if you enter a symbol name without an
underscore and Turbo Debugger can't find that name, it searches
for the name again with an underscore at the beginning. Because
the compiler automatically puts an underscore at the start of your
symbol names, you don't have to remember to add one.

147

C register
pseudovariables

148

Turbo Debugger lets you access the processor registers using the
same technique as one of Borland's C or C++ compilers, namely
pseudovariables. A pseudovariable is a variable name that
corresponds to a given processor register.

Pseudovariable Type Register

_AX unsigned int AX
_AL unsigned char AL
_AH unsigned char AH

_BX unsigned int BX
_BL unsigned char BL
_BH unsigned char BH
_ex unsigned int ex
_CL unsigned char CL
_CH unsigned char CH
_DX unsigned int DX
_DL unsigned char DL
_DH unsigned char DH
_cs unsigned int cs
_DS unsigned char DS
_SS unsigned char SS
_ES unsigned char ES
_SP unsigned int SP
_BP unsigned char BP
_DI unsigned char DI
_SI unsigned char SI
_IP unsigned int IP

Turbo Debugger User's Guide

C constants and

The following pseudovariables let you access the 80386 processor
registers:

Pseudovariable Type Register

EAX unsigned long EAX
_EBX unsigned long EBX
_ECX unsigned long ECX
_EDX unsigned long EDX

ESP unsigned long ESP
_EBP unsigned long EBP
_EDI unsigned long EDI
_ESI unsigned long ESI

_FS unsigned int FS
_GS unsigned int GS

number formats Constants can be either floating point or integer.

Escape

An integer constant is specified in decimal, unless one of the C
conventions for overriding this is used:

Format

digits
Odigits

OXdigits
Ox digits

Radix

decimal
octal

hexadecimal
hexadecimal

Constants are normally of type int (16 bits). If you want to define
a long (32-bit) constant, you must add an l or L at the end of the
number. For example, 123456L.

A floating-point constant contains a decimal point and can use
decimal or scientific notation. For example,

1.234 4.Se+ll

sequences A string is a sequence of characters enclosed in double quotes("").

You can use the standard C backslash(\) as an escape character.

Chapter 9, Expressions 149

150

C operators
precedence

Sequence Value Character

\\ oxsc Backslash
\a OX07 Bell
\b OX08 Backspace
\f oxoc Formfeed
\n OXOA Newline
\r OXOD Carriage return
\t OX09 Horizontal tab
\v OXOB Vertical tab
\xnn nn Hex byte value
\nnn nnn Octal byte value

If you follow the backslash with any other character than those
listed here, that character is inserted into the string unchanged.

Turbo Debugger uses the same operators as C, with the same
precedence. The debugger has one operator that is part of the C++
set of operators: the double colon(::). This operator has a higher
priority than any of the regular C operators. It is used to make a
constant far address out of the expression that precedes it and the
expression that follows it; for example,

OX1234::0Xl000

ES:: BX

The primary expression operators

[] -> sizeof

have the highest priority, from left to right. The unary operators

* & ++

are of a lower priority than the primary operators but a greater
priority than the binary operators, grouped from right to left. The
priority of the binary operators, in descending order, is as follows
(operators on the same line have the same priority):

Turbo Debugger User's Guide

Executing C
functions in your

prograrn

Chapter 9, Expressions

highest * I %
+
>> <<
<> <= >=
-- !=
&
A

I
&&

lowest 11

The single ternary operator, ?:, has a· priority below that of the
binary operators.

The assignment operators are below the ternary operator in
priority. They are all of equal priority, and group from right to
left:

= += -= *= /= 0/o= >>= <<= &= /\= I=

You can call functions from a C expression exactly as you do in
your source code. Turbo Debugger actually executes your pro­
gram code with the function arguments that you supply. This can
be a very useful way of quickly testing the behavior of a function
you've written. You can repeatedly call it with different argu­
ments and then check that the returned value is correct each time.

The following function raises one integer number to a power (xY):

long power (int x, int y)

{

long temp = l;
while (y--)

temp *= x;
return (temp);

The following table shows the result of calls to this function with
different function arguments:

C expression

power(3,2) * 2
25 + power(5,8)
power(2)

Result

18
390650
Error (missing argument)

151

C expressions with
side effects

C reserved words
and type

conversion

152

A side effect occurs when you evaluate a C expression that
changes the value of a data item in the process of being evaluated.
In some cases, you may want a side effect, using it to intentionally
modify the value of a program variable. At other times, you want
to be careful to avoid them, so it's important to understand when
a side effect can occur.

The assignment operators (=, +=, and so on) change the value of
the data item on the left side of the operator. The increment and
decrement(++ and - -) operators change the value of the data
item that they precede or follow, depending on whether they are
used as prefix or postfix operators.

A more subtle type of side effect can occur if you execute a func­
tion that's part of your program. For example, if you evaluate the
C expression

myfunc (1, 2, 3) + 7

your program may misbehave later if myfunc changed the value
of other variables in your program.

Turbo Debugger lets you perform type conversions on (cast)
pointers exactly as you would do in a C program. A type conver­
sion consists of a C data-type declaration between parentheses. It
must come before an expression that evaluates to a memory
pointer.

Type conversions are useful if you want to examine the contents
of a memory location pointed to by a far address you generated
using the double colon(::) operator, for example,

(long far *)Ox3456::0

(char far *)_ES: :_BX

You can use a type conversion to access a program variable for
which there is no type information, which happens when you
compile a module without generating debugging-type informa­
tion. Rather than recompiling and relinking, if you know the data
type of a variable, you can simply put that in a type conversion
before the name of the variable.

Turbo Debugger User's Guide

For example, if your variable iptr is a pointer to an integer, you
can examine the integer that it points to by evaluating the C
expression

*(int *)iptr

You can also use the Type Cast command in the Inspector
window local menu for this purpose.

1lal Turbo Debugger provides two reserved words, lh2fp and gh2fp,
~ for dereferencing-memory handles used in Microsoft Windows

applications. See page 282 for an explanation of these two type
conversions.

Use the following C reserved words to perform type conversions
for Turbo Debugger:

char
double
en um
far
float

gh2fp
huge
int
lh2fp
long

near
short
struct
union
unsigned

Pascal expressions

Pascal symbols

Chapter 9, Expressions

Turbo Debugger supports the Pascal expression syntax, with the
exception of string concatenation and set operators. A Pascal
expression consists of a mixture of symbols, operators, strings,
variables, and constants. The following sections describe each of
the components that make up an expression.

Symbols in Pascal are user-defined names for data items or rou­
tines in your program. A Pascal symbol name can start with a
letter (a-z, A-Z) or an underscore L). Subsequent characters in the
name can contain the digits (0 to 9) and the underscore, as well as
letters.

Normally, a symbol obeys the Pascal scoping rules, with "nested"
local symbols overriding other symbols of the same name. You
can override this scoping if you want to access symbols in other
scopes. For more details, see the section "Accessing symbols
outside the current scope" on page 143.

153

Pascal constants
and number

formats

Pascal strings

Pascal operators
and operator
precedence

154

Constants can ,be either real (floating-point) or integer constants.
Negative con§tants start with a minus sign (-). If the number
contains a decimal point or an e that introduces an exponent, it is
a real number. For example,

123.4 456e34 123.45e-5

Integer-type constants are normally decimal, unless they start
with a dollar sign ($) to indicate hexadecimal. Decimal integer
constants must be between-2,137,483,648 and 2,147,483,647.
Hexadecimal constants must be between $00000000 and
$FFFFFFFF.

A string is simply a group of characters surrounded by single
quotes. For example,

'abc'

You can embed control characters in a string by preceding the
decimal control character value with a#. For example,

'def' 417' xyz'

Turbo Debugger supports all the Pascal expression operators.

The unary operators are of the highest precedence and are of
equal priority.

@

/\

not
typeid
+

Takes address of an identifier
Contents of pointer
Bitwise complement
Typecast
Unary plus, positive
Unary minus, negative

The binary operators are 0£ a lower precedence than the unary
operators. They are listed here in descending order (operators on
the same line have the same priority):

Turbo Debugger User's Gulde

r-01 1: ,... Pas,.....,...' '--' Ill 18 vUI

functions and
procedures

* I div mod and shl shr

in + or xor

< <= > >= <>

The assignment operator(:=) has the lowest precedence; it returns
a value, as in C.

You can refer to Pascal functions and procedures in expressions.
For example, assume you have declared a function called
HaljFunc that divides an integer by 2:

function HalfFunc(i:Integer): Real;

You can then choose the Data I Evaluate/Modify command and
call HaljFunc as follows:

HalfFunc (3)
HalfFunc(lO) = HalfFunc(lO div 2)

You can also call procedures, although not in an expression, of
course. When you enter a procedure or function name by itself,
Turbo Debugger reports its address and declaration. To call a
function or procedure that has no parameter, place a set of empty
parentheses after the symbol name. For example,

MyProc () Calls MyProc
MyProc Reports MyProc's address, and so on
MyFunc = 5 Compares address of MyFunc to 5
My Fune () = s Calls My Fune and compares returned value to 5

Assembler expressions

Assembler
symbols

Chapter 9, Expressions

Turbo Debugger supports the complete assembler expression
syntax. An assembler expression consists of a mixture of symbols,
operators, strings, variables, and constants. Each of these compo­
nents is described in this section.

Symbols are user-defined names for data items and routines in
your program. An assembler symbol name starts with a letter (a-z,
A-Z) or one of these symbols: @ ? _$.Subsequent characters in
the symbol can contain the digits 0 to 9, as well as these

155

156

Assembler

characters. The period (.) can also be used as the first character of
a symbol name, but not within the name.

The special symbol $ refers to your current program location as
indicated by the CS:IP register pair.

constants Constants can be either floating point or integer. A floating-point
constant contains a decimal point and may use decimal or scien­
tific notation. For example,

Assembler
operators

1.234 4.Se+ll

Integer constants are hexadecimal unless you use one of the
assembler conventions for overriding the radix:

Format Radix

digitsH Hexadecimal

digitsO Octal

digitsQ Octal

digitsD Decimal

digitsB Binary

You must always start a hexadecimal number with one of the
digits 0 to 9. If you want to enter a number that starts with one of
the letters A to F, you must first precede it with a 0 (zero).

Turbo Debugger supports most of the assembler operators, listed
here in order of priority:

xxx PTR (BYTE PTR ...)
. (structure member selector)
: (segment override)
OR XOR
AND
NOT
EQ NE LT LE GT GE
+ -
* / MOD SHR SHL
Unary + Unary -
OFFSET SEG
() []

Turbo Debugger User's Guide

Format control

Chapter 9, Expressions

Variables can be changed using the= assignment operator. For
example,

a= [BYTE PTR DS:4)

vVhen you supply an expressiun to be displayed, Turbo Debugger
displays it in a format based on the type of data it is. Turbo
Debugger ignores a format control that is wrong for a particular
data type.

If you want to change the default display format for an expres­
sion, place a comma at the end of the expression and supply an
optional repeat count followed by an optional format letter. You
can only supply a repeat count for pointers or arrays.

Character

c

d

f[#]

m

md

p

s

xorh

Format

Displays a character or string expression as raw
characters. Normally, nonprinting character values are
displayed as some type of escape or numeric format. This
option forces the characters to be displayed using the full
IBM display character set.

Displays an integer as a decimal number.

Displays as floating-point format with the specified
number of digits. If you don't supply a number of digits,
as many as necessary are used.

Displays a memory-referencing expression as hex bytes.

Displays a memory-referencing expression as decimal
bytes.

Displays a raw pointer value, showing segment as a
register name if applicable. Also shows the object pointed
to. This is the default if no format control is specified.

Displays an array or a pointer to an array of characters as
a quoted character string. The string is terminated with a
null character.

Displays an integer as a hexadecimal number.

157

158 Turbo Debugger User's Guide

c H A p T E R

10

C++ and object-oriented Pascal
debugging

To meet the needs of the C++ and object-oriented Pascal
revolution, Turbo Debugger has been enhanced to support
object-oriented programming. To use these new features, you
must have version 5.5 or later of Turbo Pascal or a compiler in
Borland's line of C++ compilers, and version 2.0 or later of Turbo
Debugger.

Besides extensions that let you trace into object methods or class
member functions and examine objects or classes in the Evaluate/
Modify dialog box and the Watches window, Turbo Debugger 2.0
and later come equipped with a special set of windows and local
menus specifically designed for objects and classes.

The Hierarchy window

Turbo Debugger provides a special window for examining object
or class hierarchies. You can bring up the Hierarchy window by
choosing View I Hierarchy.

Chapter 70, C++ and object-oriented Pascal debugging 159

Figure 10.l
The Hierarchy window

Use Tab to move between
the two panes.

The Object Type
List pane

The Object Type/Class
List pane local menu

160

Inspect
Tree

Jevi ce
Gl owGauge
HorzArrow
HorzBar
Linea rGauge
Point
n.ange
.ectangl e
icreen
rextWi ndow
lertArrow
lertBar

----Point
L----Rectangl e

t-----Oev ice*
-------TextWi ndow

Range
L---'-·--~·-Devi ce

-----Gl owGauge

Parents of Device
t----Range
----Rectangle

L----Po1nt
Screen

The Hierarchy window displays information on object or class
types rather than instances. The left pane lists in alphabetical order
the types used by the module being debugged. The right pane
(two panes if you are running a C++ program with multiple
inheritance) shows all objects or classes in their hierarchies, using
a line graphic that places the base type at the left margin of the
pane and displays descendants (also ancestors for classes with
multiple inheritance) beneath and to the right of the base type,
with lines indicating ancestor and descendant relationships.

The left pane provides an alphabetical list of all object or class
types used by the current module. It supports an incremental
matching feature to eliminate the need to cursor through large
lists of types: When the highlight bar is in the left pane, simply
start typing the name of the object or class type you're looking for.
At each keypress, Turbo Debugger highlights the first type
matching all keys pressed up to that point.

Press Enterto open an object type/ class Inspector window for the
highlighted type. Object type/ class Inspector windows are
described on page 162.

Press Alt-F10 to display the local menu for the pane. You can use
the control-key shortcuts if you've enabled hot keys with TDINST.
This local menu contains two items: Inspect and Tree.

Inspect

Displays an object type/ class Inspector window for the
highlighted type.

Turbo Debugger User's Guide

The Hierarchy
Tree pane

The Hierarchy Tree
pane local menu(s)

Inspect

Inspect
Parents Yes

Tree

Moves to the right pane of the window, in which the hierarchy
tree is displayed, and places the highlight bar on the type that was
highlighted in the left pane.

The right pane displays the hierarchy tree for all objects or classes
used by the current moduie. Ancestor and descendant relation­
ships are indicated by lines, with descendants to the right of and
below their ancestors.

To locate a single object or class type in a complex hierarchy tree,
go back to the left pane and use the incremental search feature;
then choose the Tree item from the local menu to move back into
the hierarchy tree. The matched type appears under the highlight
bar.

When you press Enter, an object type/ class Inspector window
appears for the highlighted type.

If you have loaded a C++ program that uses classes with multiple
inheritance, a third pane, the Parent Tree pane, appears below the
Hierarchy Tree pane in the Hierarchy window. If the class you are
examining has multiple ancestors, and if the Parent command in
the Hierarchy Tree pane local menu is set to Yes, a reverse tree
appears in the Parent Tree pane with the message Parents of
Class at the left margin of the pane and the ancestors displayed
beneath and to the right, with lines indicating descendant and an­
cestor relationships.

You can open an object type I class Inspector window for any class
that appears in the Parent Tree pane, just as you can in the
Hierarchy Tree pane.

The Hierarchy Tree pane local menu (A/t-F10 in the right pane) has
only one item: Inspect. When you choose it, an object type/ class
Inspector window appears for the highlighted type. However, a
faster and easier method is simply to press Enter when you want
to inspect the highlighted type.

If you have loaded a C++ program that uses classes with multiple
inheritance, the Hierarchy Tree pane local menu contains a
second command, Parents. This is a toggle with which you can
control whether to show the ancestors of a class in the Parent Tree

Chapter 10, C++ and object-oriented Pascal debugging 161

The Parent Tree pane
local menu

Inspect

pane. This is useful if a class you are examining has multiple
inheritance. The default for Parents is Yes.

Finally, the Parent Tree pane, if it exists, has a local menu of its
own, with a single command, Inspect. It works just the same as
the Inspect command in the Hierarchy Tree pane local menu: It
opens an Inspector window for the highlighted object type or
class.

Object type/class Inspector windows

162

Figure 10.2
An object type/class

Inspector window

Turbo Debugger provides a special type of Inspector window to
let you inspect the details of an object type: the object type/ class
Inspector window. The window summarizes type information,
but does not reference any particular instance.

[•]=Class LinearGauge=4=[f] [H=;i
int Range: :Low •

I

The window is divided horizontally into two panes, with the top
pane listing the data fields or members of the type and the bottom
pane listing the method or member function names and (if the
selected item is a function rather than a procedure) the function
return type. Use the Tab key to move between the two panes of
the object type/class Inspector window.

If the highlighted data field is an object or class type, or a pointer
to an object or class type, pressing Enter opens another object
type/ class Inspector window for the highlighted type. (This
action is identical to selecting the Inspect command in the local
menu for this pane.) In this way, complex nested structures of
objects or classes can be inspected quickly with a minimum of
keystrokes.

For brevity's sake, method or member function parameters are not
shown in the object type/class Inspector window. To examine
parameters, highlight the method or member function and press
Enter. A method/ member function Inspector window appears.
The top pane of the window displays the code address for the

Turbo Debugger User's Guide

The object
type/class

Inspector window
local menus

object or class type's implementation of the selected method or
member function, and the names and types of all its parameters. If
your source program is in object-oriented Pascal, the bottom pane
of the window indicates whether the method is a procedure or a
function.

Pressing Enter from anywhere within the method/member func­
tion Inspector window brings the Module window to the fore­
ground, with the cursor at the code that implements the method
or member function being inspected.

As with standard inspectors, Esc closes the current Inspector
window and A/t-F3 closes them all.

Pressing A/t-F10brings up the local menu for either pane. If
control-key shortcuts are enabled (through TDINST), you can get
to a local menu item by pressing Ctr/ and the first letter of the item.

Inspect
Hierarchy
Show inherited Yes

The Object Data Field The Object Data Field pane local menu contains these items:
(top) pane

Inspect

If the highlighted field is an object or class type or a pointer to
one, a new object type/ class Inspector window is opened for the
highlighted field.

Hierarchy

Opens an Hierarchy window for the object or class type being
inspected. The Hierarchy window is described on page 159.

Show Inherited

Yes is the default value of this toggle. When it is set to Yes, all data
fields or members are shown, whether they are defined within the
type of the inspected object or class or inherited from an ancestor
type. When it is set to No, only those fields/members defined
within the type being inspected are displayed.

Chapter 70, C++ and object-oriented Pascal debugging 163

The Object Method
(bottom) pane

The local menu commands for the bottom Object Method pane
are Inspect, Hierarchy, and Show Inherited.

Inspect

A method/member function Inspector window is opened for the
highlighted item. If you press Ctr/-/ when the cursor is positioned
over the address shown in the method/member function
Inspector window, the Module window is brought to the fore­
ground with the cursor at the code that implements what is being
inspected.

Hierarchy

Opens an Hierarchy window for the object or class type being
inspected. The Hierarchy window is described on page 159.

Show Inherited

Yes is the default value of this toggle. When it is set to Yes, all
methods or member functions are shown, whether they are
defined within the type being inspected or inherited from an
ancestor. When it is set to No, only those methods or member
functions are displayed that are defined within the object type
being inspected.

Object instance Inspector windows

164

Object type/ class Inspector windows provide information about
object or class types, but say nothing about the data contained in a
particular object or class instance at a particular time during pro­
gram execution. Turbo Debugger provides an extended form of
the familiar record Inspector window specifically to inspect object
and class instances.

Bring up this window by placing your cursor on an object or class
instance in the Module window, then pressing Ctrl-1.

Turbo Debugger User's Guide

Figure 10.3
An object/class instance

Inspector window

The object/ class
instance

Inspector window
local menus

[•]=Inspecting tW=3=[t] [~]91
@75C6:01E8 "'

creen: :MaxX 500 OxlF4
creen: :MaxY 512 (OxZOO)

c rPPn- ·convert @0000: 0000
creen: :VertVtoA @0000:0000
creen: :VertAloV @0000:0000

class TexlWindow

Most Turbo Debugger data record Inspector windows have two
panes; a top pane summarizing the record's field nanies/members
and their current values, and a bottom pane displaying the type of
the field or member highlighted in the top pane. An object/ class
instance Inspector window provides both of those panes, and also
a third pane between them. This third pane summarizes the
instance's methods or member functions, with the code address of
each. (The code address takes into account polymorphic objects
and the VMT.)

Each of the top two panes of the object/ class instance Inspector
window has its own local menu, displayed by pressing Alt-F10 in
that pane. Use the control-key shortcuts to get to individual menu
items if you've enabled hot keys with TDINST.

Range .. .
Change .. .
Methods Yes
Show inherited Yes

Inspect
Descend
New expression ...
Type cast
Hierarchy

As with record Inspector windows, the bottom pane serves only
to display the type of the highlighted field and doesn't have a
local menu.

The top pane, which summarizes the data fields or members for
the selected item, are described here.

Range... This command is unchanged from earlier versions. It displays the
range of array items. If the inspected item is not an array or a
pointer, the item cannot be accessed.

Chapter 10, C++ and object-oriented Pascal debugging 165

Change ...

Methods

Show Inherited

Inspect

Descend

Use Descend to inspect a
complex data structure

when you don't want to
open a separate Inspector

window for each item.

New Expression ...

Type Cast ...

166

By choosing this command, you can load a new value into the
highlighted data field or member. This command is also
unchanged from earlier versions of Turbo Debugger.

This command is a Yes/No toggle, with Yes as the default condi­
tion. When it is set to Yes, methods or member functions are sum­
marized in the middle pane. When it is set to No, the middle pane
does not appear. This toggle is remembered by the next Inspector
window to be opened.

This command is also a Yes/No toggle. When it is set to Yes, all
data fields or members and all methods or member functions are
shown, whether they are defined within the type being inspected
or inherited from an ancestor type. When it is set to No, only those
fields and methods defined within the type being inspected are
displayed.

As with earlier versions of Turbo Debugger, choosing this
command opens an Inspector window on the highlighted field or
member. Pressing Enter over a highlighted field or member does
the same thing.

This command has not changed from earlier versions of Turbo
Debugger. The highlighted item takes the place of the item in the
current Inspector window. No new Inspector window is opened.
However, you cannot return to the previously inspected field, as
you could if you had used the Inspect option.

No change from earlier versions. This command prompts you for
a new data item or expression to inspect. The new item replaces
the current one in the window; it doesn't open another window.

Lets you specify a different data type (Byte, Word, Int, Char
pointer) for the item being inspected. This is useful if the
Inspector window contains a symbol for which there is no type
information, as well as for explicitly setting the type for untyped
pointers.

Turbo Debugger User's Guide

Hierarchy When you choose this command, an Hierarchy window opens.
For a full description of this window, see page 159.

The middle and
bottom panes The middle pane summarizes the methods of an object or the

member functions of a class. The only difference between the
Object Method pane's local menu and the local menu for the top
pant:! is the absence of the Change command. Unlike data fields
and members, methods and member functions cannot be changed
during execution, so there is no need for this command.

The bottom pane displays the type of the item highlighted in the
upper two windows.

Chapter 70, C++ and object-oriented Pascal debugging 167

168 Turbo Debugger User's Guide

c H

You don't need to use the
information in this chapter to

debug your programs-but
there are certain problems
that may be easier to find

using techniques discussed in
this chapter.

A p T E R

l l

Assembler-level debugging

This chapter is for programmers who are familiar with pro­
gramming the 80x86 processor family in assembler.

We explain when you might want to use assembler-level debug­
ging and describe the CPU window with its built-in disassembler
and assembler. You then learn how to examine and modify raw
hex data bytes, how to peruse the function calling stack, how to
examine and modify the CPU registers, and finally how to
examine and modify the CPU flags.

When source debugging isn't enough

When you are debugging a program, most of the time you refer to
data and code at the source level; you refer to symbol names
exactly as you typed them in your source code, and you proceed
through your program by executing pieces of source code.

Sometimes, however, you can gain insight into a problem by
looking at the exact instructions that the compiler generated, the
contents of the CPU registers, and the contents of the stack. To do
this, you need to be familiar with both the 80x86 family of proces­
sors and with how the compiler turns your source code into
machine instructions. Because many excellent books are available
about the internal workings of the CPU, we won't go into that in
detail here. You can quickly learn how the compiler turns your

Chapter 7 7, Assembler-level debugging 169

source code into machine instructions by looking at the
instructions generated for each line of source code.

C and Pascal, for example, let you write lines of source code that
perform many actions at once, and Turbo Debugger lets you step
one source line at a time, not one expression at a time. However,
you sometimes want to know the result of executing a small piece
of one source line. By stepping through your program one
machine instruction at a time, you can examine intermediate
results, although it does require some effort to figure out how the
compiler translated your source statements into machine code.

The CPU window

170

Figure 11.l
The CPU window

The CPU window shows you the entire state of the CPU. You can
examine and change the bits and bytes that make up your pro­
gram's code and data. You can use the built-in assembler in the
Code pane to patch your program temporarily by entering
instructions exactly as you would type assembler source state­
ments. You can also access the underlying bytes of any data struc­
ture, display them in a number of formats, and change them.

[•]=CPU 8028 =[t] [H
TPDEMO. 217: begin { program } • ax 0000 c=O

cs: 084E .. 9A00004B62 call 6248: 0000 • bx 0000 z=O
cs:0853 9AAE164B62 call 624B:16AE ex 0000 s=O
cs:0858 55 push bp dx 0000 o=O
cs : 0859 89 ES mov bp, sp s i 0000 p=O
cs:085B 81EC0001 sub sp,0100 di 0000 a=O

TPDEM0.218: !nit; bp 0000 i=l
cs :085F E8AOF8 call TPDEMO. !NIT sp 3FFE d=O

TPDEM0.219: Buffer := Getline; ds 61AF
cs:0862 8DBEOOFF lea di, [bp-0100] es 61AF
cs :0866 16 push SS SS 668F
cs :0867 57 push di cs 61BF
cs:0868 E838FD call TPDEMO.GETLIN" ip 084E

s: 0 D F = a Ua•
ds:OOOB 18 02 82 01 22 31 7C 01 +"llo
ds :0010 22 31 88 02 52 28 E2 lD "U!eR+r ..
ds :0018 01 01 01 00 03 FF FF FF ooo •

ss:4004 0000
ss:4002 0000
ss:4000 0000
ss:3FFE .. OOOO

Open a CPU window by choosing View I CPU from the menu bar.
Depending on what you are viewing in the current window, the
new CPU window comes up positioned at the appropriate code,
data, or stack location. This provides a convenient method for
taking a "low-level" look at the code, data, or stack location your
cursor is currently on.

The following table shows where your cursor will be positioned
when you choose the CPU command:

Turbo Debugger User's Guide

Current window

Stack window
Module window
Variable window
Inspector window
Breakpoint

(if not global)

CPU
window pane

Stack
Code
Data*
Data
Code

*Code pane, if item in window is a routine

Position

Current SS:SP
Current CS:IP
Address of item
Address of item
Breakpoint address

CPU windows have five panes. To go from one pane to the next,
press Tab or Shift-Tab, or click the pane with your mouse. The line
at the top of the CPU window shows what processor type you
have (8086, 80286, 80386, or 80486). The top left pane (Code pane)
shows the disassembled program code intermixed with the source
lines. The second top pane (Register pane) shows the contents of
the CPU registers. The right pane is the Flags pane, showing the
state of the eight CPU flags. The bottom left pane (Data pane)
shows a raw hex dump of any area of memory you choose. The
bottom right pane (Stack pane) shows the contents of the stack.

In the Code pane, an arrow(~) shows the current program loca­
tion (CS:IP). In the Stack pane, an arrow(~) shows the current
stack pointer (SS:SP).

If the highlighted instruction in the Code pane references a
memory location, the memory address and its current contents
are displayed on the top line of the CPU window. This lets you
see both where an instruction operand points in memory and the
value that is about to be read or written over.

The Flags pane shows the value of each of the CPU flags.

As with all windows and panes, pressing Alt-F10 pops up the Code
pane local menu or, if control-key shortcuts are enabled, the Ctr/
key with the first letter of the desired command gets you to it.

In the Code, Data, and Stack panes, you can press Ctr/ ,J.. and Ctr/ i
to shift the starting display address of the pane by 1 byte up or
down. This is easier than using the Goto command if you just
want to adjust the display slightly.

Chapter 7 7, Assembler-level debugging 171

The Code pane

The disassembler

172

This pane shows the disassembled instructions at an address that
you choose.

The left part of each disassembled line shows the address of the
instruction. The address is displayed either as a hex segment and
offset, or with the segment value replaced with the CS register
name if the segment value is the same as the current CS register. If
the window is wide enough (zoomed or resized), the bytes that
make up the instruction are displayed. The disassembled instruc­
tion appears to the right.

The Code pane automatically disassembles and displays your
program instructions. If an address corresponds to either a global
symbol, static symbol, or a line number, the line before the dis­
assembled instruction displays the symbol if the Mixed display
mode is set to Yes. Also, if there is a line of source code that corre­
sponds to the symbol address, it is displayed after the symbol.

Global symbols appear simply as the symbol name. Static symbols
appear as the module name, followed by a pound sign (#) or a
period(.), followed by the static symbol name. Line numbers
appear as the module name, followed by a pound sign (#) or a
period(.), followed by the decimal line number.

When an immediate operand is displayed, you can infer its size
from the number of digits: A byte immediate has 2 digits, and a
word immediate has 4 digits.

Turbo Debugger can detect an 8087, 80287, or 80387 numeric
coprocessor and disassemble those instructions if a floating-point
chip or emulator is present.

The instruction mnemonic RETF indicates that this is a far return
instruction. The normal RET mnemonic indicates a near return.

Where possible, the target of JMP and CALL instructions is
displayed symbolically. If CS:IP is a JMP or conditional jump
instruction, an arrow (t or .!.) that shows jump direction will be
displayed only if the executing instruction will cause the jump to
occur. Also, memory addresses used by MOV, ADD, and other
instructions display symbolic addresses.

Turbo Debugger User's Guide

The Code pane
local menu If you don't come up in the Code pane, use Tab or Shift-Tab to get

there. Then press Alt-F10 to bring up the local menu.

Goto
Origin
Follow
Caller
Previous
Search
View source
Mixed Yes

New cs:ip
Assemble •••
I/0 ~

Goto After choosing this command, you're prompted for the new
address to go to. You can enter addresses that are outside of your
program, to examine code in the BIOS ROM, inside DOS, and in
resident utilities. See Chapter 9 for complete information on
entering addresses.

The Previous command restores the Code pane to the position it
had before the Goto command was issued.

Origin Positions you at the current program location as indicated by the
CS:IP register pair. This command is useful when you want to
return to where you started.

The Previous command restores the Code pane to the position it
had before the Origin command was issued.

Follow Positions you at the destination address of the currently high­
lighted instruction. The Code pane is repositioned to display the
code at the address where the currently highlighted instruction
will transfer control. For conditional jumps, the address is shown
as if the jump occurred.

This command can be used with the CALL, JMP, conditional jump
(JZ, JNE, LOOP, JCXZ, and so forth) and INT instructions.

The Previous command restores the Code pane to the position it
had before the Follow command was selected.

Chapter 7 7, Assembler-level debugging 173

174

Caller Positions you at the instruction that called the current interrupt or
subroutine.

This command won't always work If the interrupt routine or
subroutine has pushed data items onto the stack, sometimes
Turbo Debugger can't figure out where the routine was called
from.

The Previous command restores the Code pane to the position it
had before the Caller command was selected.

Previous Restores the Code pane position to the address before the last
command that explicitly changed the display address. Using the
arrow keys and PgUp and PgDn does not cause the position to be
remembered.

When you choose Previous, the Code pane position is remem­
bered, so that repeated use of the Previous command causes the
Code pane to switch back and forth between two addresses.

Search Lets you enter an instruction or byte list to search for. Enter an
instruction exactly as you would with the Assemble command.

Be careful which instructions you try to search for; you should
only search for instructions that don't change the bytes they
assemble to, depending on their location in memory. For example,
searching for the following instructions is no problem:

PUSH DX
POP [DI+4]
ADD AX,100

but searching for the following instructions can cause unpre­
dictable results:

JE 123
CALL MYFUNC
LOOP 100

You can also enter a byte list instead of an instruction. See
Chapter 9 for more on entering byte lists.

Turbo Debugger User's Guide

Mixed Toggles between the three ways of displaying disassembled
instructions and source code:

No No source code is displayed, only disassembled
instructions.

Yes Source code lines appear before the first disassembled
instruction for that source line. The pane is set to this
display mode if your current module is a high-level
language source module.

Both Source code lines replace disassembled lines for those
lines that have corresponding source code; otherwise, the
disassembled instruction appears. Use this mode when
you are debugging an assembler module, and you want
to see the original source code, instead of the correspond­
ing disassembled instruction. The pane is set to this
display mode if your current module is an assembler
source module.

New CS:IP Sets the program location counter (CS:IP registers) to the current­
ly highlighted address. When you rerun your program, execution
starts at this address. This is useful when you want to skip over a
piece of code without executing it.

¢ Use this command with extreme care. If you adjust the CS:IP to a
location where the stack is in a different state than at the current
CS:IP, you will almost certainly crash your program. Do not use
this command to set the CS:IP to an address outside of the current
routine.

Assemble... Assembles an instruction, replacing the one at the currently
highlighted location. You are prompted for the instruction to
assemble. See the section called "The assembler" in this chapter
(page 184) for more details.

You can also invoke this command by simply starting to type the
statement you want to assemble. When you do this, a dialog box
appears exactly as if you had specified Assemble.

Chapter 7 7, Assembler-level debugging 175

1/0

In byte
Out byte
Read word
Write word

Reads or writes a value in the CPU's 1/0 space and lets you
examine the contents of I/ 0 registers on cards and write things to
them.

It pops up this menu.

In Byte

Reads a byte from an 1/0 port. You are prompted for the 1/0 port
whose value you want to examine. Use the Read Word option to
read from a word-sized 1/0 port.

Out Byte

Writes a byte to an 1/0 port. You are prompted for the 1/0 port
to write to and the value you want to write. Use the Write Word
option to write to a word-sized 1/0 port.

Read Word

Reads a word from an I/ 0 port. You are prompted for the I/ 0
port whose value you want to examine. Use the In Byte option to
read from a byte-sized I/ 0 port.

Write Word

Writes a word to an 1/0 port. You are prompted for the 1/0 port
to write to and the value you want to write. Use the Out Byte
option to write to a byte-sized I/ 0 port.

IN and OUT instructions access the 1/0 space where peripheral
device controllers (such as serial cards, disk controllers, and video
adapters) reside.

¢ Be careful when you use these commands. Some I/ 0 devices consider
reading their ports to be a significant event that causes the device
to perform some action, such as resetting status bits or loading a
new data byte into the port. You may disrupt the normal
operation of the program you are debugging or the device with
indiscriminate use of these commands.

176 Turbo Debugger User's Guide

The Register and Flags panes

The Register pane
local menu

The Register pane, which is the top pane to the right of the Code
pane, shows the contents of the CPU registers.

The top right pane is the Flags pane, which shows the state of the
eight CPU flags. The following table lists the different flags and
how they are shown in the Flags pane:

Letter in pane

c
z
s
0

p
a
i
d

Flag name

Carry
Zero
Sign
Overflow
Parity
Auxiliary carry
Interrupt enable
Direction

Press Alt-Ft 0 to pop up the Register pane local menu. Or, if
control-key shortcuts are enabled, use the Ctr/key with the first
letter of the desired command to access the command.

Increment
Decrement
Zero
Change •••
Registers 32-bit No

Increment Adds 1 to the value in the currently highlighted register. This is an
easy way to make small adjustments in the value of a register to
compensate for "off-by-one" bugs.

Decrement Subtracts 1 from the value in the currently highlighted register.

Zero Sets the value of the currently highlighted register to 0.

Change... Changes the value of the currently highlighted register. You are
prompted for the new value. You can make full use of the expres­
sion evaluator to enter a new value.

Chapter 11, Assembler-level debugging 177

Registers 32-bit

The Flags pane
local menu

j Toggle j

Toggle

The Data pane

178

You can also invoke this command by simply starting to type the
new value for the register. A dialog box appears exactly as if you
had specified the Change command.

On an 80386 processor, toggles between displaying the CPU
registers as 16-bit or 32-bit values. You will usually see 16-bit
registers, unless you use this command to set the display to 32-bit
registers. You really need to see 32-bit registers only if you're de­
bugging a program that uses the 32-bit addressing capabilities of
the 386 chip. If you are debugging an ordinary program that uses
only normal 16-bit addressing, use the 16-bit register display.

Press Alt-F10 to pop up the Flags pane local menu or, if control-key
shortcuts are enabled, use the Ctr/ key with the first letter of the
desired command to access the command.

Sets the value of the flag to 0 if it was 1, and to 1 if it was 0. The
value 0 corresponds to "clear," and 1 indicates "set." You can also
press Enter to toggle the value of the currently highlighted flag.

This pane shows a raw display of an area of memory you've
selected. The leftmost part of each line shows the address of the
data displayed in that line. The address is displayed either as a
hex segment and offset, or with the segment value replaced with
the DS register name if the segment value is the same as the
current DS register.

Next, the raw display of one or more data items is displayed. The
format of this area depends on the display format selected with
the Display As local menu command. If you choose one of the
floating-point display formats (Comp, Float, Real, Double,
Extended), a single floating-point number is displayed on each
line. Byte format displays 8 bytes per line, Word format displays
4 words per line, and Long format displays 2 long words per line.

When the data is displayed as bytes, the rightmost part of each
line shows the display characters that correspond to the data
bytes displayed. Turbo Debugger displays all byte values as their

Turbo Debugger User's Guide

The Data pane
local menu

display equivalents, so don't be surprised if you see funny
symbols displayed to the right of the hex dump area-these are
just the display equivalents of the hex byte values.

If you use the Data pane to examine the contents of the display
memory, the ROM BIOS data area, or the vectors in low memory,
you will see the values that are there when the program being
debugged runs, not the actual values in memory when Turbo
Debugger is running. These are not the same values that are in
these memory areas at the time you look at them. Turbo Debug­
ger detects when you're accessing areas of memory that it uses as
well, and it gets the correct data value from where it stores the
user program's copy of these data areas.

Once you are positioned in the Data pane, press Alt-F10 to pop up
the local menu or, if control-key shortcuts are enabled, use the Ctr/
key with the first letter of the desired command to access it.

Goto
Search
Next
Change
Follow ..
Previous

Display as ..
Block ..

Goto Positions you at an address in your data. Enter the new address
you want to go to. You can enter addresses inside DOS, in resi­
dent utilities, or outside of your program, which lets you examine
data in the BIOS data area. See Chapter 9 for a complete
discussion of how to enter addresses.

Search Searches for a character string, starting at the current memory
address as indicated by the cursor position. Enter the byte list to
search for. The search does not wrap around from the end of the
segment to the beginning. See Chapter 9 for a complete discussion
of byte lists.

Chapter 7 7, Assembler-level debugging 179

180

Near code
Far code

Next Searches for the next instance of the byte list you previously
specified with the Search command.

Change... Lets you change the bytes at the current cursor location. If you're
over an ASCII display or the format is Byte, you're prompted for
a byte list. Otherwise, you're prompted for an item of the current
display type. See Chapter 9 for a discussion of byte lists.

Follow

You can also invoke this command by simply starting to type the
new value or values. This brings up a dialog box exactly as if you
had chosen the Change command.

This command opens a menu that lets you follow near or far
pointer chains.

Near Code
Offset to data
Segment:offset to data
Base segment:O to data

This command interprets the word under the cursor in the Data
pane as an offset into the current code segment as specified by the
CS register. The Code pane becomes the current pane and is posi­
tioned to this address.

Far Code

This command interprets the doubleword under the cursor in the
Data pane as a far address (segment and offset). The Code pane
becomes the current pane and is positioned to this address.

Offset to Data

This command lets you follow word (near, offset only) pointer
chains. The Data pane is set to the offset specified by the word in
memory at the current cursor location.

Segment:Offset to Data

This command lets you follow long (far, segment, and offset)
pointer chains. The Data pane is set to the offset specified by the
two words in memory at the current cursor location.

Turbo Debugger User's Guide

Base Segment:O to Data

This comm.and interprets the word under the cursor as a segment
address and positions the Data pane to the start of that segment.

Previous Restores the Data pane address to the address before the last
comm.and that explicitly changed the display address. Using the
arrow keys and PgUp and PgDn does not cause the position to be
rerrLembered.

Display As

Byte
Word
Long
Comp
Float
Real
Double
Extended

Turbo Debugger maintains a stack of the last five addresses, so
you can backtrack through multiple uses of the Follow m.enu or
Goto comm.ands.

Lets you choose how data appears in the Data pane. You can
choose from. any data form.at used by C, Pascal, and assembler.
The m.enu options are described here.

Byte

Sets the Data pane to display as hexadecimal bytes. This
corresponds to the C char data type and the Pascal Byte type.

Word

Sets the Data pane to display as word hexadecimal numbers. The
2-byte hexadecimal value is shown. This corresponds to the C int
data type and the Pascal Word type.·

Long

Sets the Data pane to display as long hexadecimal integers. The
4-byte hex value is shown. This corresponds to the C long data
type and the Pascal Longint type.

Comp

Sets the Data pane to display 8-byte integers. The decimal value of
the integer is shown. This is the Pascal Com.p (IEEE) data type.

Chapter 7 7, Assembler-level debugging 181

182

Block

Clear
Move
Set
Read
Write

Float

Sets the Data pane to display as short floating-point numbers. The
scientific notation floating-point value is shown. This is the same
as the C float data type and the Pascal Single (IEEE) type.

Real

Sets the Data pane to display Pascal's 6-byte floating-point
numbers. The scientific notation floating-point value is shown.
This is the Pascal Real type.

Double

Sets the data pane to display 8-byte floating-point numbers. The
scientific notation floating-point value is shown. This is the same
as the C long double data type, the Pascal Double type, and the
assembler TBYTE type.

Extended

Sets the Data pane to display 10-byte floating-point numbers. The
scientific notation floating-point value is shown. This is the inter­
nal format used by the 80x87 coprocessor. It also corresponds to
the C long double data type and the Pascal Extended (IEEE) type.

Lets you manipulate blocks of memory. You can move, clear and
set memory blocks, and read and write memory blocks to and
from disk files. Block brings up the pop-up menu shown.

Clear

Sets a contiguous block of memory to zero (0). You are prompted
for the address and the number of bytes to clear.

Move

Copies a block of memory from one address to another. You are
prompted for the source address, the destination address, and
how many bytes to copy.

Turbo Debugger User's Guide

The Stack pane

The Stack pane
local menu

Set

Sets a contiguous block of memory to a specific byte value. You
are prompted for the address of the block, how many bytes to set,
and the value to set them to.

Read

Reads all or a portion of a file into a block of memory. You are
prompted first for the file name to read from, then for the address
to read it into, and finally for how many bytes to read.

Write

Writes a block of memory to a file. You are prompted first for the
file name to write to, then for the address of the block to write and
how many bytes to write.

The Stack pane, in the lower right comer of the CPU window,
shows the contents of the stack.

At the Stack pane, press Alt-F10 to pop up the local menu or, if
control-key shortcuts are enabled, use the Ctr/key with the first
letter of the desired command to access the command.

Goto
Origin
Follow
Previous
Change •••

Goto Positions you at an address in the stack. Enter the new stack
address. If you want, you can enter addresses outside your pro­
gram's stack, although you would usually use the Data pane to
examine arbitrary data outside your program. See Chapter 9 for
information about how to enter addresses.

The Previous command restores the Stack pane to the position it
had before the Goto command was issued.

Chapter 11, Assembler-level debugging 183

Origin Positions you at the current stack location as indicated by the
SS:SP register pair. This command is useful when you want to
return to where you started.

The Previous command restores the Stack pane to the position it
had before the Origin command was issued.

Follow Positions you at the word in the stack pointed to by the currently
highlighted word. This is useful for following stack-frame threads
back to a calling function.

The Previous command restores the Stack pane to the position it
had before the Follow command was issued.

Previous Restores the Stack pane position to the address before the last
command that explicitly changed the display address. Using the
arrow keys and PgUp and PgDn does not cause the position to be
remembered.

Repeated use of the Previous command causes the Stack pane to
switch back and forth between two addresses.

Change Lets you enter a new word value for the currently highlighted
stack word.

You can also invoke this command by simply starting to type the
new value for the highlighted stack item. A dialog box will
appear, exactly as if you had specified the Change command.

The assembler

184

Via the Assemble command in the Code pane local menu, Turbo
Debugger lets you assemble instructions for the 8086, 80186,
80286, 80386, and 80486 processors, and also for the 8087, 80287,
and 80387 numeric coprocessors.

When you use Turbo Debugger's built-in assembler to modify
your program, the changes you make are not permanent. If you
reload your program using the Run I Program Reset command, or
if you load another program using the File I Open command,
you'll lose any changes you've made.

Turbo Debugger User's Guide

Operand address
size overrides

Memory and
immediate operands

Normally you use the assembler to test an idea for fixing your
program. Once you've verified that the change works, you must
change your source code and recompile and link your program.

The following sections describes the differences between the
built-in assembler and the syntax accepted by Turbo Assembler.

For the call (CALL), jump (JMP), and conditional jump (JNE, JL,
and so forth) instructions, the assembler automatically generates
the smallest instruction that can reach the destination address.
You can use the NEAR and FAR overrides before the destination
address to assemble the instruction with a specific size. For
example,

CALL FAR XYZ
JMP NEAR Al

When you use a symbol from your program as an instruction
operand, you must tell the built-in assembler whether you mean
the contents of the symbol or the address of the symbol. If you use
just the symbol name, the assembler treats it as an address, exact­
ly as if you had used the assembler OFFSET operator before it. If
you put the symbol inside brackets ([]), it becomes a memory
reference. For example, if your program contains the data
definition

A DW 4

then [A] references the area of memory where A is stored.

When you assemble an instruction or evaluate an assembler
expression to refer to the contents of a variable, use the name of
the variable alone or between brackets:

mov dx,a
mov ax, [a)

To refer to the address of the variable, use the OFFSET operator:

mov ax, offset a

Chapter 11, Assembler-level debugging 185

Operand data
size overrides

String instructions

For some instructions, you must specify the operand size using
one of the following expressions before the operand:

BYTE PTR
WORD PTR

Here are examples of instructions using these overrides:

add BYTE PTR[si),10
mov WORD PTR[bp+l0],99

In addition to these size overrides, you can use the following
overrides to assemble 8087 /80287 /80387 numeric coprocessor
instructions:

DWORD PTR
QWORD PTR
TBYTE PTR

Here are some examples using these overrides:

fild QWORD PTR[bx]
stp TBYTE PTR[bp+4]

When you assemble a string instruction, you must include the
size (byte or word) as part of the instruction mnemonic. The
assembler does not accept the form of the string instructions that
uses a sizeless mnemonic with an operand that specifies the size.
For example, use STOSW rather than STOS WORD PTR[di].

The Dump window

186

Figure 11.2
The Dump window

The Dump window shows you a raw data dump of any area of
memory. It works exactly like the Data pane in the CPU window.

[

[•]=llum -[t] [~]=;i
ds:OOOO CD 20 00 AO 00 9A FO FE = 4 Oe1 •
ds:OOOS 18 02 82 01 22 31 7C 01 ..aio"llo •
ds:OOlO 22 31 88 oz 52 28 EZ 10 "l°hoR+r.. I
ds:0018 01 01 01 00 03 FF FF FF 11110 • ,.

Turbo Debugger User's Guide

See "The Data pane local menu" section earlier in this chapter
(page 179) for a description of the contents and local menu for this
window.

Typically, you'd use this window when you're debugging an
assembler program at the source level, and you want to take a
low-level look at some data areas. Use View I Dump to open a
Dump window.

You cart also use this '¥indc'A/ if you're in an Lrtspector wLn~dow,
and you want to look at the raw bytes that make up the object you
are inspecting. Use View I Dump to get a Dump window that's
positioned to the data in the Inspector window.

The Registers window

Figure 11.3
The Registers window

You can shrink the size of
your Module window and

put up a Registers window
alongside it.

The Registers window shows you the contents of the CPU
registers and flags. It works like a combination of the Registers
and Flags panes in the CPU window.

[•]=Regs=3=[+]
ax 0000 c=O
bx 0000 z=O
ex 0000 s=O
dx 0000 o=O
si 0000 p=O
di 0000 a=O
bp 0000 i=l
sp 3FFE d=O
ds 61AF
es 61AF
SS 668F
cs 618F
ip 084E

See "The Register pane local menu" (page 177) and "The Flags
pane local menu" (page 178) sections earlier in this chapter for a
description of the contents and local menus for this window.

Use this window when you're debugging an assembler program
at the source level and want to look at the register values.

Borland C++ code generation

Borland's C and C++ compilers do a number of predictable things
when they generate machine code. Once you become familiar
with your compiler, you'll quickly see exactly how the machine
instructions correspond to your source code.

Chapter 7 7, Assembler-level debugging 187

188

Function return values are placed in the following registers:

Return type

int
long
float
double
long double
near*
far*

Register(s)

AX
DX:AX
ST(O)
ST(O)
ST(O)
AX
DX:AX

The compiler places heavily used int and near pointers into regis­
ters, using first the SI register, then the DI register.

Your autovariables and function-calling parameters are accessed
fromSS:BP.

The AX, BX, CX, and DX registers are not necessarily preserved
across function calls.

Registers are always used as word registers, not as byte registers,
even if you use char data types.

Switch statements can be compiled into one of three forms,
depending on which will produce the most efficient code:

•conditional jumps as if the switch were an if ... else chain

• a jump table of code addresses

•a jump table of switch values and code addresses

Refer to the manuals for your Borland C or C++ compiler for
more information on how it generates code.

Turbo Debugger User's Guide

c H A p T E R

12

The 80x87 coprocessor chip and
emulator

This chapter is for pro­
grammers who are familiar

with the operation of the
80x87 math coprocessor.

If your program uses floating-point numbers, Turbo Debugger
lets you examine and change the state of the numeric coprocessor
or software emulator. You don't need to use the capabilities
described in this chapter to debug programs that use floating­
point numbers, although some very subtle bugs may be easier to
find.

In this chapter, we discuss the differences between the 80x87 chip
and the software emulator. We also describe the Numeric
Processor window and show you how to examine and modify the
floating-point registers, the status bits, and the control bits.

The 80x87 chip vs. the emulator

Turbo Debugger automatically detects whether your program is
using the math chip or the emulator and adjusts its behavior
accordingly.

Note that most programs use either the emulator or the math
chip, not both within the same program. If you have written
special assembler code that uses both, Turbo Debugger won't be
able to show you the status of the math chip; it will report on the
emulator only.

Chapter 72, The 80x87 coprocessor chip and emulator 189

The Numeric Processor window

Figure 12.1
The Numeric Processor

window

The Register pane

190

The 80-bit floating­
point registers

You create a Numeric Processor window by choosing the View I
Numeric Processor command from the menu bar. The line at the
top of the window shows the current instruction pointer, data
pointer, and instruction opcode. The data pointer and instructions
pointer are both shown as 20-bit physical addresses. You can con­
vert these addresses to a segment and offset form by using the
first four digits as the segment value, and the last digit as the
offset value.

For example, if the top line shows IPTR=5A669, you can treat this as
the address 5a66:9 if you want to examine the current data and
instruction in a CPU window. This window has three panes: The
left pane (Register pane) shows the contents of the floating-point
registers, the middle pane (Control pane) shows the control flags,
and the right pane (Status pane) shows the status flags.

[•]=Emulator IPTR=OOOOO OPCODE=OOO OPTR=00003=[t] m
Empty ST!Ol im=O ie=O
Empty ST 1 dm=O de=O
Empty ST 2 zm=O ze=O
Empty ST (3) om=O oe=O
Empty ST (4) um= 1 ue=O
Empty ST (5) pm=l pe=O
Empty ST (6l i em=O i r=O
Empty ST(7 pc=3 cc=9

rc=O st=O
i c=l

The top line shows you information about the last floating-point
operation that was executed. The IPTR shows the 20-bit physical
address from which the last floating-point instruction was
fetched. The OPCODE shows the instruction type that was
fetched. The OPTR shows the 20-bit physical address of the
memory address that the instruction referenced, if any.

The Register pane shows each of the floating-point registers, ST(O)
to ST(7), along with its status (valid/zero/special/empty). The
contents are shown as an 80-bit floating-point number.

If you've zoomed the Numeric Processor window (by pressing F5)
or made it wider by using Window I Size/Move, you'll also see
the floating-point registers displayed as raw hex bytes.

Turbo Debugger User's Guide

The Register pane local
menu

Zero
Empty
Change

The Control pane

To bring up the Register pane local menu, press Alt-F10, or use the
Ctr/ key with the first letter of the desired command to directly
access the command.

Zero

Sets the value of the currently highlighted register to zero.

Empty

Sets the value of the currently highlighted register to empty. This
is a special status that indicates that the register no longer
contains valid data.

Change

Loads a new value into the currently highlighted register. You are
prompted for the value to load. You can enter an integer or float­
ing-point value, using the current language's expression parser.
The value you enter will be automatically converted to the 80-bit
temporary real format used by the numeric coprocessor.

You can also invoke this command by simply starting to type the
new value for the floating-point register. A dialog box will appear
exactly as if you had specified the Change command.

The control bits The following table lists the different control flags and how they
appear in the Control pane:

Name in pane

im
dm
zm
om
um
pm
iem
pc
re
ic

Chapter 72, The 80x87 coprocessor chip and emulator

Flag description

Invalid operation mask
Denormalized operand mask
Zero divide mask
Overflow mask
Underflow mask
Precision mask
Interrupt enable mask (8087 only)
Precision control
Rounding control
Infinity control

191

The Control pane local
menu

I Toggle I

The Status pane

Press Tab to go to the Control pane, then press Aft·F10 to pop up
the local menu. (Alternatively, you can use the Ctr/ key with the
first letter of the desired command to access it.)

Toggle

Cycles through the values that the currently highlighted control
flag can be set to. Most flags can only be set or cleared (0 or 1), so
this command just toggles the flag to the other value. Some other
flags have more than two values; for those flags, this command
increments the flag value until the maximum value is reached,
and then it sets it back to zero.

You can also toggle the control flag values by highlighting them
and pressing Enter.

The status bits The following table lists the different status flags and how they
appear in the Status pane:

Name in pane

ie
de
ze
oe
ue
pe
ir
cc
st

Flag description

Invalid operation
Denormalized operand
Zero divide
Overflow
Underflow
Precision
Interrupt request
Condition code
Stack top pointer

The Status pane local Press Tab to move to the Status pane, then press Aft·F10 to
menu pop up the local menu. (You can also use the Ctr/ key with

the first letter of the desired command to access the

192

I Toggle I command directly.)

Toggle

Cycles through the values that the currently highlighted
status flag can be set to. Works the same as the Control pane
local menu Toggle command.

Turbo Debugger User's Guide

c H A p T E R

13

Command reference

Now that you've read about all the commands, here's a quick
summary. This chapter lists and describes

•all the single-keystroke commands available on the function
and other keys

• all the menu bar commands and the commands for the local
menu of each window type

• keystrokes used in the two types of panes (those in which you
enter text and those from which you select an item)

• keystrokes for moving and resizing windows

Chapter 73, Command reference 193

Hot keys

A hot key is a key that performs its action no matter where you
are in the Turbo Debugger environment. The following table lists
all the hot keys:

Table 13.l: The function key and hot key commands

Key

Ft
F2
F3
F4
F5
F6
Fl
FB
F9
F10

Aft-Ft
Alt-F2
Aft-F3
Alt-F4
Aft-F5
Alt-F6
Alt-Fl
Alt-FB
Alt-F9
Alt-F10

Alt-1-9
Alt-Space
Alt-8
Alt-D
Alt-F
Aft-H
Alt-0
Alt-R
Alt-V
Alt-W
Alt-X
Alt=
Alt-

194

Menu command

Breakpoints I Toggle
View I Module
Run I Go to Cursor
Window I Zoom
Window I Next Window
Run I Trace Into
Run I Step Over
RunlRun

Help I Previous Topic
Breakpoints I At
Window I Close
Run I Back Trace
Window I User Screen
Window I Undo Close
Run I Instruction Trace
Run I Until Return
Run I Execute To

File I Quit
Options I Macros I Create
Options I Macros I Stop

Recording

Function

Brings up context-sensitive help.
Sets breakpoint at cursor position.
Module pick list.
Runs to cursor position.
Zooms/ unzooms current window.
Goes to next window.
Executes single source line or instruction.
Executes single source line or instruction, skipping calls.
Runs program.
Invokes the menu bar, takes you out of menus.

Brings up last help screen.
Sets breakpoint at an address.
Closes current window.
Reverses program execution.
Shows your program's screen.
Reopens the last-closed window.
Executes a single instruction.
Runs until return from function.
Runs to a specified address.
Invokes the window's local menu.

Switch to numbered window 1 through 9.
Goes to the = (System) menu.
Goes to the Breakpoints menu.
Goes to the Data menu.
Goes to the File menu.
Goes to the Help menu.
Goes to the Options menu.
Goes to the Run menu.
Goes to the View menu.
Goes to the Window menu.
Quits Turbo Debugger and returns you to DOS.
Defines a keystroke macro.
Ends a macro recording.

Turbo Debugger User's Guide

Table 13.l: The function key and hot key commands (continued)

Key Menu command

Ctrl-F2 Run I Program Reset
Ctrl-F4 Data I Evaluate
Ctrl-F5 Window I Size/Move
Ctrl-Fl Data I Add Watch
Ctrf-FB Breakpoints I Toggle
Ctrl-F9 RunlRun
Ctrl-F10
Gtri~

Ctr! f--

Ctrl-A
Ctrl-C
Ctrl-D
Ctrl-E
Ctrl-F
Ctrl-R
Ctrl-S
Ctrl-X

Shift-F1 Help I Index
Shift-Tab

Shift~
Shift f--
Shift i
Shift ,j,

Esc
Ins

Tab Window I Next Pane

Function

Stops debug session and resets the program to start again.
Evaluates an expression.
Initiates window moving or resizing.
Adds a variable to the Watches window.
Toggles a breakpoint at cursor.
Runs a program.
Invokes the window's local menu.
Shifts 1 byte up the starting address in a Code, Data, or Stack
pane in a CPU window.
Shifts 1 byte down the starting address in a Code, Data, or Stack
pane in a CPU window.
Moves to previous word.
Scrolls down one screen.
Moves right one column.
Moves up one line.
Moves to next word.
Scrolls up one screen.
Moves left one column.
Moves down one line.

Goes to the index for online help.
Moves cursor to previous window pane or dialog box item.

Moves cursor between the panes in a window.
(The pane in the direction of the arrow becomes
the active pane.)

Closes an Inspector window, goes out of menus.
Starts text block selection (highlight); use f-- and~ to
highlight.
Moves cursor to next window pane or dialog box item.

Commands from the menu bar

You invoke the menu bar by pressing the F10 key; you can then go directly
to one of the individual menus by

• moving the cursor to the menu title and pressing Enter

•pressing the highlighted letter of the menu title

You can also open a menu directly (without first moving to the menu bar)
by pressing Alt in combination with the first letter of the menu name you
desire.

Chapter 73, Command reference 195

The = (System)
menu Repaint Desktop Redisplays entire screen

Restore Standard Restores standard window layout
About Displays information about Turbo

Debugger

The File menu
Open Opens a new program to debug
Change Dir Changes to new disk or directory
Get Info Displays program information
DOS Shell Starts a DOS command processor
Resident Causes Turbo Debugger to terminate and

stay resident
Symbol Load Loads symbol table independent of .EXE

file
Table Relocate Sets base segment of symbol table
Quit Returns to DOS

The View menu
Breakpoints Displays breakpoints
Stack Displays function-calling stack
Log Displays log of events and data
Watches Displays variables being watched
Variables Displays global and local variables
Module Displays program source module
File Displays disk file as ASCII or hex
CPU Displays CPU instructions, data, stack
Dump Displays raw data dump
Registers Displays CPU registers and flags
Numeric Processor Displays coprocessor or emulator
Execution History Displays assembler code saved for

backtracking or keystroke playback

~ Hierarchy Displays object or class type list and
hierarchy tree

~ Windows messages Displays a list of Windows messages for
v one or more windows in your application

program

196 Turbo Debugger User's Guide

The Run menu

The Breakpoints
menu

The Data menu

Another
Module
Dump
File

Run

Go To Cursor
Trace Into

Step Over
Execute To
Until Return
Animate
Back Trace

Instruction Trace
Arguments

Program Reset

Makes another Module window
Makes another Dump window
Makes another File window

Runs your program without
stopping
Runs to current cursor location
Executes one source line or
instruction
Traces, skipping calls
Runs to specified address
Runs until function returns
Continuously steps your program
Reverses program execution for one
source line or instruction
Executes a single instruction
Sets program command-line
arguments
Reloads current program

Toggle Toggles breakpoint at cursor
At Sets breakpoint at specified address
Changed Memory Global Sets global breakpoint on memory

area
Expression True Global Sets global breakpoint on

expression
Delete All Removes all breakpoints

Inspect
Evaluate /Modify
Add Watch
Function Return

Inspects a data object
Evaluates an expression
Adds variable to Watches window
Inspects current routine's return
value

Chapter 73, Command reference 197

The Options
menu Language Sets expression language from

source module
Macros

Create Defines a keystroke macro
Stop Recording Ends the recording session
Remove Removes a keystroke macro
Delete All Removes all keystroke macros

Display Options Lets you set screen display options
(screen swapping, size, tabs)

Path for Source Directory list for source files
Save Options Saves options, screen layout, and

macros to disk
Restore Options Restores options from disk

The Window
menu Zoom Zooms window to full screen size

and back
Next Activates successive windows open

onscreen
Next Pane Goes to the next pane in a window
Size/Move Moves window or changes its size
lconize /Restore Reduces window to a small symbol

or restores it
Close Closes window
Undo Close Reopens the last window closed
Dump Pane to Log Writes current pane to Log window
User Screen Displays your program output
Open window list Displays list of open windows to

activate
Window Pick Displays a menu of open menus, if

more than 9 are open onscreen

The Help Menu
Index Goes to the index for online help
Previous Topic Brings up last help screen
Help on Help Accesses online help on the help

system

198 Turbo Debugger User's Guide

The local menu commands

Each type of window and
each pane within a window

has a different local menu.

The menus in this section are
arranged in alphabetical

order to make lookups easier.

Breakpoints
window

You invoke the local menu for the current window by pressing
Alt-F10. If control-key shortcuts are enabled, you can go directly to
one of the individual menu items by pressing the Ctr/ key in
combination with the first letter of the item you desire. (Use the
installation program TDINST to enable control-key shortcuts, if
they've been disabled.)

The following sections describe the local menu for each window
and pane.

Some panes have shortcuts to commonly used commands on their
local menu. In the following section, these special keys are listed
before the menu commands for the pane to which they apply. In
many panes, the Enter key is a shortcut to examining or changing
the currently highlighted item. The Del key often invokes the local
menu command that deletes the highlighted item. Some panes let
you start typing letters or numbers without first invoking a local
menu command. In these cases, the dialog box for one of the local
menu items pops up to accept your input.

The Breakpoints window has two panes: the List pane on the left
and the Detail pane on the right. Only the List pane has a local
menu.

Set Options

Hardware Options
Add
Remove
Delete All
Inspect

Sets breakpoint actions, conditions,
pass count, and enable/ disable
Lets you set hardware breakpoints
Adds a new breakpoint
Removes highlighted breakpoint
Deletes all breakpoints
Looks at code where breakpoint is
set

Del is the shortcut for Remove in this window.

Chapter 73, Command reference 199

The CPU window

200

menus The CPU window has five panes, each with a local menu: the
Code pane, the Data pane, the Stack pane, the Register pane, and
the Flags pane.

Code pane

Data pane

Goto
Origin
Follow

Caller
Previous
Search
View Source
Mixed

NewCS:IP
Assemble
1/0

In Byte
Out Byte
Read Word
Write Word

Displays code at new address
Displays code at CS:IP
Displays code at JMP or CALL
target
Displays code at calling function
Displays code at last address
Searches for instruction or bytes
Switches to Module window
Mixes source code with dis­
assembly: No/Yes/Both
Sets CS:IP to execute at new address
Assembles instruction at cursor
Brings up I/O menu
Reads a byte from an 1/0 location
Writes a byte to an I/O location
Reads a word from an I/O location
Writes a word to an I/O location

Typing any character is a shortcut for the Assemble local menu
command in this pane.

Goto
Search
Next
Change

Follow
Near Code

Far Code

Offset to Data

Displays data at new address
Searches for string or data bytes
Searches again for next occurrence
Changes data bytes at cursor
address

Sets Code pane to the near address
under the cursor
Sets Code pane to the far address
under the cursor
Sets Data pane to the near address
under the cursor

Turbo Debugger User's Guide

Flags pane

Segment:Offset
to Data

Base Segment:O
to Data

Previous
Display As

Byte
Word
Long
Comp

Float

Real

Double

Extended

Block
Clear
Move
Set
Read
Write

Sets Data pane to the far address
under the cursor
Sets Data pane to start of segment
that contains the address under the
cursor
Displays data at last address

Displays hex bytes
Displays hex words
Displays hex 32-bit long words
Displays 8-byte Pascal comp
integers
Displays short (4-byte) floating­
point numbers (Pascal singles, C
floats)
Displays 6-byte floating-point
numbers (Pascal reals)
Displays 8-byte floating-point
numbers (Pascal and C doubles)
Displays 10-byte floating-point
numbers (C long double, Pascal
extended)

Sets memory block to zero
Moves memory block
Sets memory block to value
Reads from file to memory
Writes from memory to file

Typing any character is a shortcut for the Change local menu
command in this pane.

Toggle Sets or clears highlighted flag

Pressing Enter or Spacebaris a shortcut for the Toggle local menu
command in this pane.

Chapter 13, Command reference 201

202

Register pane

Stack pane

Dump window

The Execution
History window

menus

Instructions pane

Increment
Decrement
Zero
Change
Registers 32-bit

Adds one to highlighted register
Subtracts one from highlighted register
Clears highlighted register
Sets highlighted register to new value
Toggles 32-bit register display: No/Yes

Typing any character is a shortcut for the Change local menu
command in this pane.

Goto
Origin
Follow
Previous
Change

Displays stack at new address
Displays data at SS:SP
Displays code pointed to by current item
Restores display to last address
Lets you edit information

Typing any character is a shortcut for the Change local menu
command in this pane.

The Dump window is identical to the Data pane of the CPU
window. Its local menu is identical to the Data pane local menu.

The Execution History window has two panes, each with a local
menu: the Instructions pane and the Keystroke Recording pane.

The Instructions pane shows instructions already executed that
you can examine or undo.

Inspect

Reverse Execute

Full History

Takes you to the highlighted command.

Reverses program execution to the
instruction highlighted in the Instructions
pane.

Enables (On) or disables (Off) reverse
execution.

Turbo Debugger User's Guide

Keystroke Recording
pane

File window

Log window

The Keystroke Recording pane shows your recorded keystrokes.
You can use them to examine source code or rerun your program.

Inspect Lets you see the line of source code or the
instruction at which the keystroke
occurred.

Keystroke Restore Reloads and runs your program to the
context cf t.1-ie higPJigPLted keystroke
(useful if Execution History isn't
available).

The File window shows the contents of the disk file as hex bytes
or as an ASCII file.

Goto
Search
Next
Display As
File
Edit

Displays line number or hex offset
Searches for string or data bytes
Searches again for next occurrence
Sets file display mode: ASCII/Hex
Switches to view new file
Edits file or changes bytes at cursor

Typing any character is a shortcut for the Search local menu
command.

menu The Log window shows messages sent to the log and allows you
to list Windows memory and module information.

Open Log File
Close Log File
Logging
Add Comment
Erase Log

Chapter 13, Command reference

Starts logging to a file
Stops logging to a file
Toggles logging: No/Yes
Writes user comment to log
Clears all log messages

203

Module window

204

Windows
Messages

window

Window Selection
pane

~

Display Windows info Displays the Windows Information
dialog box, from which you can
pick the type of list (global heap,
local heap, or module) you want to
display

Typing any character is a shortcut for the Add Comment local
menu command.

The Module window shows the source file for the program
module.

Inspect
Watch
Module
File
Previous
Line
Search
Next
Origin
Goto
Edit

Shows contents of variable under cursor
Adds variable under cursor to watch list
Changes to display different module
Changes to display different file
Displays last module and position
Displays source at line in module
Searches for text string
Searches for next occurrence of string
Displays current program location
Shows source or instructions at address
Starts editor to edit source file

Typing any character is a shortcut for the Goto local menu
command.

The Windows Messages window has three panes: the Window
Selection pane, the Message Class pane, and the Messages pane.

These are the local menu commands in this pane:

Add
Remove
Delete all

Adds a window name or handle value
Removes the selected window
Deletes all window selections

Turbo Debugger User's Guide

Typing any character is a shortcut for the Add local menu
command in this pane.

The De/key or the Ctr/-Ykey combination is a shortcut for the
Remove local menu command.

Message Class pane These are the local menu commands in this pane:

Add
Remove

Delete all

Adds a message class or single message
Removes the selected message class or
single message
Deletes all message class or single
message selections

Typing any character is a shortcut for the Add local menu
command in this pane.

The De/key or the Ctrl-Ykey combination is a shortcut for the
Remove local menu command.

Messages pane These are the local menu commands in this pane:

Numeric

Send to log window Sends all messages received to the log
window so they can be saved in a log
file

Erase log Erases all messages in the pane

Processor window The Numeric Processor window has three panes: the Register
pane, the Status pane, and the Control pane.

Register pane These are the local menu commands in this pane:

Clears the highlighted register Zero
Empty
Change

Sets the highlighted register to empty
Sets the highlighted register to a value

Typing any character is a shortcut for the Change local menu
command in this pane.

Chapter 73, Command reference 205

Status pane This is the local menu command in this pane:

Toggle Cycles through valid flag values

Pressing Enter or Spacebaris a shortcut for the Toggle local menu
command in this pane.

Control pane This is the local menu command in this pane:

Hierarchy window

@:]

Object Type/Class List
pane

Hierarchy Tree pane

206

Toggle Cycles through valid flag values

Pressing Enter or Spacebar is a shortcut for the Toggle local menu
command in this pane.

The Hierarchy window has two panes, the Object Type/Class List
pane and the Hierarchy Tree pane. It also has a third pane, the
Parent Tree pane, if you are running a C++ program with
multiple inheritance.

Inspect

Tree

Inspect

Parents

Shows contents of highlighted object or class
type
Moves to the Hierarchy Tree pane

Shows contents of highlighted object or class
type
Toggles whether Parent Tree pane is displayed
if you are running a C ++ program with
multiple inheritance

Turbo Debugger User's Gulde

Parent Tree pane

Registers window

Inspect Shows contents of highlighted object or class
type

menu The Registers window is identical to the Register and Flags panes
of the CPU window. Its local menus are identical to the Register

Stack window

Variables window

Global Symbol pane

Local Symbol pane

pane local menu and the Flags pane local menu. -

The Stack window shows the currently active functions.

Inspect
Locals

Shows source code for highlighted function
Shows local variables for highlighted function

Pressing Enter is a shortcut for the Inspect local menu command.

The Variables window has two panes, each with a local menu:
The Global Symbol pane and the Local Symbol pane.

Inspect
Change
Watches

Shows contents of highlighted symbol
Changes value of highlighted symbol
Adds highlighted symbol to Watches window

Pressing Enter is a shortcut for the Inspect local menu command in
this pane.

Inspect
Change
Watches
Show

Shows contents of highlighted symbol
Changes value of highlighted symbol
Adds highlighted symbol to Watches window
Changes modules, or shows only static
variables, only auto variables, or both

Pressing Enter is a shortcut for the Inspect local menu command in
this pane.

Chapter 73, Command reference 207

Watches window

Inspector window

208

The Watches window has a single pane that shows the names and
values of the variables you're watching.

Watch
Edit
Remove
Delete All
Inspect

Change

Adds a variable or expression to watch
Lets you edit a watch variable or expression
Deletes highlighted variable or expression
Deletes all watch variables and expressions
Shows contents of highlighted variable or
expression
Changes contents of highlighted variable; does
not affect expressions

The following keys are shortcuts to local menu commands in this
window:

any character
Enter
Del

Watch
Edit
Remove

An Inspector window shows the contents of a data item.

Range
Change
Inspect

Descend

New Expression

Type Cast

Selects array members to inspect
Changes the value of highlighted item
Opens new Inspector window for
highlighted item
Expands highlighted item into this
Inspector window
Inspects a new expression in this
Inspector window
Type casts highlighted item to new
type

Turbo Debugger User's Guide

Object
Type/Class

Inspector window

~

Object/class
instance

Inspector window

~

Object type/ class Inspector windows have two panes that show
the contents (data fields or members, and methods or member
functions) of an object or class. Their local menus, the same for
both panes, are quite different from the local menu of regular
Inspector windows.

Inspect

Hierarchy
Show Inherited

Shows the contents of the highlighted
type
Returns to the Hierarchy window
Toggles between showing all contents
of object or class, and contents
declared in current object or class

Object/ class instance Inspector windows contain three panes, of
which only the first two have local menus. (The third displays
only the object type or class to which the instance belongs). Both
local menus are the same, and contain the following commands:

Range
Change
Methods

Show Inherited

Inspect

Descend

New Expression

Type Cast

Hierarchy

Selects array members to inspect
Changes the value of highlighted item
Toggles whether methods or member
functions are summarized in the
middle pane
Toggles between showing all contents
of object or class and contents declared
in current object or class
Opens new Inspector window for
highlighted item
Expands highlighted item into this
Inspector window
Inspects a new expression in this
Inspector window
Type casts highlighted data item to
new type
Returns to the Object Hierarchy
window

Chapter 73, Command reference 209

Text panes

Table 13.2
Text pane key commands

List panes

210

Text pane is the generic name for a pane that displays the contents
of a text file. The blinking cursor shows your current position in
the file. The following table lists all the commands:

Key

Ins
i
J.
--+
~

Ctr/-+
Ctr/~
Home
End
Pg Up
PgDn
Ctr/-Home
Ctrl-End
Ctrl-PgUp
Ctrl-PgDn

Function

Marks text block
Moves up one line
Moves down one line
Moves right one column
Moves left one column
Moves to next word
Moves to previous word
Goes to start of line
Goes to last character on line
Scrolls up one screen
Scrolls down one screen
Goes to top line of pane
Goes to bottom line of pane
Goes to first line of file
Goes to last line of file

If you are not using the control-key shortcuts, you can also use the
WordStar-style control keys for moving around a text pane.

This is the generic name for a pane that lists information you can
scroll through. A highlight bar shows your current position in the
list. Here's a list of all the commands available to you.

Turbo Debugger User's Guide

Table 13.3
List pane key commands Key

~

~

Home
End
Pg Up
Pa On
Ctrl-Home
Ctrl-End
Ctrl-PgUp
Ctrl-PgDn
Backspace
Letter

Function

Moves up one item
Moves down one item
Scroll right
Scroll left
Goes to start of line
Goes to last character on line
Scrolls up one screen
Scrolls down one screen
Goes to top line of list pane
Goes to bottom line of list pane
Goes to first item in list
Goes to last item in list
Backs up one character in incremental match
Makes incremental search (select by typing)

You can also use the WordStar-style control keys for moving
around a List pane.

Commands in input and history list boxes

Table 13.4
Dialog box key commands

The following table shows the commands available when you're
inside an input or list box:

Key

i
j,
~

~

Ctr/~
Ctr/~

Home
End
Pg Up
Pg On
Ctrl-Home
Ctrl-End
Ctrl-PgUp
Ctrl-PgDn
Backspace
Enter
Del
Esc
Ctrl-N

Function

Moves up one list item
Moves down one list item
Moves right one character
Moves left one character
Moves to next word
Moves to previous word
Goes to start of line
Goes to last character on line
Scrolls up one screen
Scrolls down one screen
Goes to top line of list pane
Goes to bottom line of list pane
Goes to first item in list
Goes to last item in list
Deletes the character before the cursor
Accepts your input and proceed
Deletes the character at the cursor
Cancels the dialog box and returns to menu
Completes partially typed name in input box

Chapter 73, Command reference 211

Window movement commands

Table 13.5
Window movement key

commands

The following table shows the keys you can use to reposition and
resize a window:

Key

Ctrl-F5
1'
J,
~

~

Shift 1'
Shift J,
Shift~
Shift~
Home
End
Pg Up
Pg On
Enter
Esc

Function

Toggles window-positioning mode
Moves window up one line
Moves window down one line
Moves window right one column
Moves window left one column
Resizes window; moves bottom up
Resizes window; moves bottom down
Resizes window; moves right side away from left
Resizes window; moves right side toward left
Moves to left side of screen
Moves to right side of screen
Moves to top line of screen
Moves to bottom line of screen
Accepts current position
Cancels window-positioning command

Wildcard search templates

You can use wildcard search templates in two circumstances:

•when you enter a file name to load or examine

• when you enter a text search expression in a text pane

The? (question mark) matches any single character in the search
expression. The* (asterisk) matches 0 or more characters in the
search expression.

Complete menu tree

212

Figure 13.1 shows the complete structure of Turbo Debugger's
pull-down menus.

Turbo Debugger User's Guide

Figure l 3.1: The Turbo Debugger menu tree .. llllil ·~-, "''·"~· - mlill JI
l I I

5 (System} Run Options

Repaint desktop Run F9 Language ••• Source
Restore standard Go to cursor F4 Macros ~t--,

Trace into F7 Display options ...
About ... Step over FB Path for source ...

Execute to ... Alt-F9 Save options •..
Until return Alt-FB I Restore options ••• I Animate •••
Back trace Alt-F4
Instruction trace Alt-F7 J_

Create Alt •
Arguments ••• Stop recording Alt -
Program reset Ctrl-F2 Remove

Delete all

l l l
File Breakpoints Window

Open ... Toggle F2 Zoom FS
Change dir ••• At ••• Alt-F2 Next F6
Get info ... Changed memory global ••• Next pane Tab
DOS shell Expression true global ••• Size/move Ctrl-FS

Hardware breakpoint ... Iconi ze/restore
Resident Delete all Close Alt-F3
Symbol load ... Undo close Alt-F6
Table relocate ...

Dump pane to log
Quit Alt-X User screen Alt-FS

1 Module TPDEMO
2 Watches

l l l
View Data Help

Breakpoints Inspect ... Index Shift-Fl
Stack Evaluate/modify ••• Ctrl-F4 Previous topic Alt-Fl
Log Add watch ... Ctrl-F7 Help on help
Watches Function return
Variables
Module ... F3
File •••
CPU
Dump
Registers
Numeric processor
Execution history
Hierarchy ~Module ... I Windows messages Dump
Another ~ File •••

Chapter 74, How to debug a program 213

214 Turbo Debugger User's Guide

c H A p T E R

14

How to debug a program

Debugging is like the other phases of designing and imple­
menting a program-part science and part art. There are specific
procedures that you can use to track down a problem, but at the
same time, a little intuition goes a long way toward making a long
job shorter.

The more programs you debug, the better you get at rapidly
locating the source of problems in your code. You learn tech­
niques that suit you well, and you unlearn methods that have
caused you problems.

In this chapter, we discuss some different approaches to debug­
ging, talk over the different types of bugs you may find in your
programs, and suggest some ways to test your program to make
sure that it works-and keeps on working.

Let's begin by looking at where to start when you have a program
that doesn't work correctly.

When things don't work

First and foremost, don't panic! Even the most expert program­
mer seldom writes a program that works the first time.

To avoid wasting a lot of time on fruitless searches, try to resist
the temptation to randomly guess where a bug might be. It is

Chapter 74, How to debug a program 215

better to use a universally tried-and-true approach: divide and
conquer.

Make a series of assumptions, testing each one in turn. For
example, you can say, "The bug must be occurring before function
xyz is called," and then test your assumption by stopping your
program at the call to xyz, to see if there's a problem. If you do
discover a problem at this point, you can make a new assumption
that the problem occurs even earlier in your program.

If, on the other hand, everything looks fine at function xyz, your
initial assumption was wrong. You must now modify that
assumption to "The bug is occurring sometime after function xyz
is called." By performing a series of tests like this, you can soon
find the area of code that is causing the problem.

That's all very well, you say, but how do I determine whether my
program is behaving correctly when I stop it to take a look? One
of the best ways of checking your program's behavior is to
examine the values of program variables and data objects. For
example, if you have a routine that clears an array, you can check
its operation by stopping the program after the function has
executed, and then examining each member of the array to make
sure that it's cleared.

Debugging style

216

Everyone has their own style of writing a program, and everyone
develops their own style of debugging. The debugging sugges­
tions we give here are just starting points that you can build on to
mold your own personal approach.

Many times, the intended use of a program influences the
approach you take to debug it. If a program is for your own use or
will only be used once or twice to perform a specific task, a full­
scale testing of all its components is probably a waste of time,
particularly if you can determine that it is working correctly by
inspecting its output. If a program is to be distributed to other
people or performs a task of which the accuracy is hard to deter­
mine by inspection, your testing must be far more rigorous.

Turbo Debugger User's Guide

Run the whole
thing

Incremental
testing

Types of bugs

General bugs

For a simple or throwaway program, the best approach is often
just to run it and "see what happens." If your test case has prob­
lems, run the program with the simplest possible input and check
the output. You can then move on to testing more complicated
input cases until the output is wrong. This will give you a good
feeling for just how much or how little of the program is working.

When you want to be very sure that a program is healthy, you
must test the individual routines, as well as checking that the
program works as expected for some test input data. You can do
this in a couple of ways: You can test each routine as you write it
by making it part of a test program that calls it with test data. Or
you can use Turbo Debugger to step through the execution of
each routine when the whole program is finished.

Bugs fall into two broad categories: those peculiar to the language
you're working in (C, Pascal, or assembler), and those that are
common to any programming language or environment.

By making mental notes as you debug your programs, you learn
both the language-specific constructs you have trouble with, and
also the more general programming errors you make. You can
then use this knowledge to avoid making the same mistakes in
the future, and to give you a good starting point for debugging
future programs.

Understanding that each bug is an instance of a general family of
bugs or misunderstandings will improve your ability to write
errorless code. After all, it's better to write bug-free code than to
be really good at finding bugs.

The following examples barely scratch the surface of the kinds of
problems you can encounter in your programs.

Chapter 74, How to debug a program 217

218

Hidden effects If you are careless about using global variables in functions, a call
to a function can leave unexpected contents in a variable or data
structure:

Assuming initialized
data

char workbuf[20];
strcpy(workbuf,"all done\n");
convert("xyz");
printf(workbuf);

convert(char *p)
I

strcpy(workbuf, p);
while (*p)

Here, the correct thing to do would be to have the function use its
own private work buffer.

Don't assume that another routine has already set a variable for
you:

char *workbuf;
addworkstring(char *s)
I

strcpy(workbuf, s); I* oops */

You should code a routine of this sort defensively by adding the
statement

if (workbuf == 0) workbuf = (char *)malloc(20);

Not cleaning up This sort of bug can crash your program by exhausting heap
space:

crunch_string(char *p)
I

char *work= (char *)malloc(strlen(p));
strcpy(work, p);

return (p); /* whoops--work still allocated */

Turbo Debugger User's Guide

Fencepost errors These bugs are named after the old brain teaser that goes "If I
want to put up a 100-foot fence with posts every 10 feet, how
many fenceposts do !need?" A quick but wrong answer is ten
(what about the final post at the far end?). Here's a simple
example from the world of C programming:

C-specific bugs

Using uninitialized
autovariables

for (n = l; n < 10; n++)
{

/* oops--only 9 times */

Here you can easily see the numbers 1 and 10, and you think that
your loop goes from one to ten. (Better make that< into a<=.)

The User's Guide for each of Borland's C and C++ products has a
section on pitfalls in C programming. However this lesson on
how to debug is a good place to reiterate those pitfalls and
expand on them.

Borland's C and C++ compilers are very good at finding C-specific
bugs that other compilers don't warn you about. You can save
yourself some debugging time by turning on all the warnings that
the compiler is capable of generating. (See the User's Guide for
your Borland C or C++ compiler for information on setting these
warnings.)

What follows is by no means an exhaustive list of ways you can
get in trouble with C. For some of these errors, Borland's C and
C++ compilers issue a warning message. Remember to examine
the cause of any warning messages; they may be telling you about
a bug in the making.

In C, an autovariable declared inside a function is undefined until
you assign a value to it:

do_ ten_ times()
{

int n;
while (n < 10)

n++;

Chapter 14, How to debug a program 219

This function executes the while loop an unpredictable number of
times because n is not initialized to 0 before being used as a
counter.

Confusing= and== C lets you both assign a value(=) and test for equality(==) within
an expression; for example,

Confusing operator
precedence

if (x = y)

This inadvertently loads y into x and performs the statements in
the if expression if the value of y is not 0. You almost certainly
meant to say

if (x == y)

C has so many operators that it is hard to remember which ones
are applied first when an expression is evaluated. One combi­
nation that often causes grief is the mixture of shift operators with
addition or subtraction. For example,

x = 3 « 1 + 1

evaluates to 12, not 7, as you might expect if << took effect before
the+.

Bad pointer arithmetic When you use a pointer to step through an array, be careful how
you increment and decrement it. For example,

220

int *intp;
intp += sizeof(int);

does not increment intp to point to the next element of an integer
array. Instead, intp is advanced by two array elements because in
adding to or subtracting from a pointer, C takes into account the
size of the item the pointer is pointing to. All you have to do to
move the pointer to the next element is

intp++

Turbo Debugger User's Guide

Unexpected sign Be careful about assigning between integers of different sizes:
extension

int i = OXFFFE;
long l;
1 = i;
if (1 & OX80000000)

/* this DOES get executed */

One of C's strong points can cause you trouble if you are not
aware of how it operates. C lets you assign freely between scalar
values (char, int, and so on). When you copy an integer scalar into
a larger scalar, the sign (positive or negative) is preserved in the
larger scalar by propagating the sign (highest) bit throughout the
high portion of the larger scalar. For example, an int value of -2
(Oxfffe) becomes a long value of-2 (Oxfffffffe).

Unexpected truncation This problem is the opposite of the previous one:

int i;
long 1 = OXlOOOO;
i = l;
while (i > 0)

/* this does NOT get executed */

Here, the assignment of I to i resulted in the top 16 bits of I being
truncated, leaving a value of zero in i.

Misplaced semicolons The following code fragment may appear to be fine at first glance:

for (x = O; x < 10; x++);
{

/* only executed once */

Why does the code between the braces execute only once? Closer
inspection reveals a semicolon(;) at the end of the for expression.
This hard-to-find bug causes the loop to execute ten times, but
does nothing. The subsequent block is then executed once. This is
a nasty problem because you can't find it with the usual technique
of examining the formatting and indenting of code blocks in your
program.

Chapter 74, How to debug a program 221

Macros with side
effects

The following problem is enough to make you swear off #define
macros for life:

fdefine toupper(c) 'a'<= (c)&&(c)<='z' ? (c)-'a'-'A' : (c)
char c, *p;
c = toupper(*p++);

Here, p is incremented two or three times, depending on whether
the character is uppercase. This type of problem is very hard to
find, because the side effect is hidden within the macro definition.

Repeated autovariable Another hard one to find:
names

myfunc ()
(

int n;
for (n = 5; n >= 0; n--)
(

int n = 10;

if (n == 0)
(

/* never gets executed */

Here, the autovariable name n is reused in an inner block, hiding
access to the one declared in the outer block. You must be careful
about reusing variable names in this manner. You can get into
trouble more easily than you might think, especially if you use a
limited number of variable names for local loop counters (for
example, i, n, and so forth).

Misuse of autovariables This function means to return a pointer to the result:

222

int *divide_by_3(int n)
(

int i;
i = n I 3;
return (&i);

The trouble is that by the time the function returns, the auto­
variable is no longer valid and is likely to have been overwritten
by other stack data.

Turbo Debugger User's Gulde

Undefined function
return value

Misuse of break
keyword

If you don't end a function with the return keyword followed by
an expression, it returns an indeterminate value; for example,

char *first_capital_letter(char *p)
{

while (*p)

if ('A' <= *p && *p <= 'Z')
return (p);

p++,

/* Oops--nothing returned here */

If there are no capital letters in the string, a garbage value is
returned. You should put a return (0) as the last line of this
function.

The break keyword exits from only a single level of do, for,
switch, or while loops:

for (...)
{

while (...)
if (...)

break; /* we want to exit for loop */

Here, the break exits only from the while loop. This is one of the
few cases where it is excusable to use the goto statement.

Code has no effect Sometimes a typo results in perfectly compilable source code.

Pascal-specific
bugs

However, it probably doesn't do what you want it to, and it may
not do anything at all:

a + b;

Here, the intended line of code was a += b.

Because of the strong type- and error-checking features of Pascal,
there are few bugs specific to the language itself. However,
because Turbo Pascal gives you the power to turn off much of that

Chapter 14, How to debug a program 223

error checking, you can introduce errors that you might not have
otherwise. And even with Pascal, there are ways of getting into
trouble.

Uninitialized variables Turbo Pascal does not initialize variables for you; you must do it
yourself, either through assignment statements or by declaring
them as typed constants. Consider the following program:

224

program Test;
var

I,J,Count : Integer;
begin

for I := 1 to Count do begin
J := I*I;
Writeln(I:2,' ',J:4)

end
end.

Count has whatever random value occupied its location in
memory when it was created, so you have no idea how many
times this loop is going to execute.

Furthermore, variables declared within a procedure or function
are created each time you enter that routine and destroyed when
you exit; you cannot count on those variables retaining their
values between calls to that routine.

Dangling pointers Three common errors occur with pointers. The first is using them
before you have assigned them a value (nil or otherwise). Just like
any other variable or data structure, a pointer is not automatically
initialized just by being declared. It should be explicitly set to an
initial value (by passing it to New or assigning it nil) as soon as
possible.

Second, don't reference a nil pointer, that is, don't try to access the
data type or structure that the pointer points to if the pointer itself
is nil. For example, suppose you have a linear linked list of
records, and you want to search it for a record with a given value.
Your code might look like this:

Turbo Debugger User's Guide

function FindNode(Head : NodePtr; KeyVal Integer) NodePtr;
var

Temp : NodePtr;
beqin

Temp := Head;
while (Temp•.KeyVal <>Val) and (Temp<> nil) do

Temp := Temp•.Next;
FindNode := Temp

end; { of function FindNode

If Val isn't equal to the Key field in any of the nodes in the linked
list, this code tries to evaluate TempA .Key when Temp is nil,
resulting in unpredictable behavior. Solution? Rewrite the
expression to read

while (Temp<> nil) and (Temp•.Key <>Val)

and enable short-circuit Boolean evaluation, using the Turbo
Pascal {$8-} option or the Options I Compiler I Boolean command.
That way, if Temp does equal nil, the second term is never
evaluated.

Finally, don't assume that a pointer is set to nil just because you've
passed it to Dispose or FreeMem. The pointer still has its original
value; however, the memory it points to is now free to be used for
other dynamic variables. You should explicitly set a pointer to nil
after disposing of its data structure.

Scope confusion Pascal lets you nest procedures and functions very deeply, and
each of those procedures and functions can have its own
declarations. Consider the following program:

proqram Confused;
var

A,B,T : Integer;

procedure Swap(var A,B Integer);
var

T : Integer;
beqin

Writeln('2: A,B,T = ',A:3,B:3,' ',T);
T := A;
A := B;
B := T;

Writeln('3: A,B,T = ',A:3,B:3,' ',T)
end; { of procedure Swap }

Chapter 74, How to debug a program 225

begin { main body of Confused }
·A := 10; B := 20; T := 30;
Writeln('l: A,B,T = ',A:3,B:3,' ',T);
Swap(B,A);
Writeln('4: A,B,T = ',A:3,B:3,' ',T);

end. { of program Confused }

What's the output of this program? It looks something like this:

1: A,B,T = 10 20 30
2: A,B,T = 20 10 22161
3: A,B,T = 10 20 20
4: A,B,T = 20 10 30

What's happening here is that you have two versions each of A, B,
and T. The global versions are used in the main body of the pro­
gram, while Swap has versions local to itself-its formal param­
eters A and B, and its local variable T. To further confuse things,
we made the call Swap(B,A), which means that the formal
parameter A is actually the global variable B and vice versa. And,
of course, there is no correlation between the local and global
versions of T.

There was no real "bug" here, but problems can arise when you
think that you're modifying something that you aren't. For
example, the variable Tin the main body didn't get changed, even
though you thought it might have. This is the opposite of the
"hidden effects" bug mentioned on page 218.

If you also had the following record declaration, things could get
even more confusing:

type
RecType = record

A, B : Integer;
end;

var
A, B : Integer;
Rec : RecType;

Inside a with statement, a reference to A or B would reference the
fields, not the variables.

Superfluous semicolons Like C, Pascal allows a "null" statement (one consisting only of a
semicolon). Placed at the wrong spot, this can create all kinds of
problems. Consider the following program:

226 Turbo Debugger User's Guide

Undefined function
return value

program Test;
var

I, J : Integer;
begin

for I := 1 to 20 do;
begin

J := I * I;
Writeln(I:2,' ',J:4)

end;
Writeln('All done!')

end.

The output of this program is not a list of the first 20 integers and
their squares; it's simply

20 400
All done!

That's because the statement for I := 1 to 20 do; ends with a
semicolon. This means it executes the null statement 20 times.
After that, the statements in the begin .. end block are executed,
then the final Writeln statement. To fix this, just eliminate the
semicolon following the do keyword.

If you write a function, you must be sure that the function name
has some value assigned to it before you exit the function.
Consider the following section of code:

con st
NLMax = 100;

type
NumList = array[l .. NLMax] of Integer;

function FindMax(List : NumList; Count : Integer) Integer;
var

I,Max : Integer;
begin

Max := List[l];
for I := 2 to Count do

if List[I] >Max then
begin

Max := List[I];
FindMax := Max

end
end; { of function FindMax }

Chapter 74, How to debug a program 227

Decrementing Word or
Byte variables

Ignoring boundary or
special cases

228

This function works fine-as long as the highest value in List isn't
in List[l]. In that case, FindMax never gets assigned a value. A
correct version of the function would use this:

begin
Max := List [1];
for I := 2 to Count do

if List[I] >Max then
Max := List[I];

FindMax := Max
end; { of function FindMax

Be careful not to decrement an unsigned scalar (Byte or Word)
while testing for >= 0. The following code produces an infinite
loop:

var
w : Word;

begin
w := 5;
while w >= 0 do

w := w - 1;
end.

After the fifth iteration, w equals 0. The next time through, it's
decremented to 65,535 (because words range from 0 to 65,535),
which is still >= 0. You should use an Integer or Longint in such
cases.

Note that both versions of the function FindMax in the previous
section assume that Count >= 1. However, there may be times
when Count= O; that is, the list is empty. If you call FindMax in
that situation, it returns whatever happens to be in List[l]. Like­
wise, if Count > NLMax, you'll end up either generating a run­
time error (if range-checking is enabled) or searching through
memory locations not contained in List for the maximum value.

There are two possible solutions to this. One, of course, is never to
call FindMax unless Count is in the range l..NLMax. This isn't a
flip comment; a serious part of good software design is to define
the requirements for calling a given routine, then ensuring they
are met each time that routine is called.

The other solution is to test Count and return some predetermined
value if it isn't in the range l..NLMax. For example, you might
rewrite the body of FindMax to look like this:

Turbo Debugger User's Guide

begin
if (Count < 1) or (Count > NLMax) then

Max := -32768
else
begin

Max := List [l];
for I := 2 to Count do

if List[!] >Max then
Max:= List[!]

end;
FindMax := Max

end; { of function FindMax

This leads to the next type of Pascal pitfall: range errors.

Range errors Turbo Pascal has range-checking turned off by default. This
produces faster, more compact code, but it also lets you commit
certain types of errors, such as assigning to variables values
outside their allowed range or indexing nonexistent elements in
arrays as shown in the previous example.

The first step in finding such errors is to turn range-checking back
on by inserting the {$R+} compiler option into your program,
compiling the program, and running it again. If you know (or
suspect) where the error is, you can put this directive above that
section and add a corresponding {$R-} directive afterward, thus
enabling range-checking for that section only. If a range error
does occur, your program stops with a run-time error, and Turbo
Pascal shows you where the error occurred.

One common type of range error happens when you are indexing
through an array using a while or repeat loop. For example,
suppose you are looking for an array element containing a certain
value. You want to stop when you've found it or when you reach
the end of the array. If you've found it, you want to return the
index of the element; otherwise, you want to return 0. Your first
effort might look like this:

function FindVal(List : NumList; Count, Val : Integer) : Integer;
var

I : Integer;
begin

FindVal := 0;
I := l;

while (I <=Count) and (List[!] <>Val) do
Inc(!);

Chapter 14, How to debug a program • 229

Assembler­
specific bugs

Forgetting to return to
DOS

230

Forgetting a RET
instruction

if I <= Count then
FindVal := I

end; { of function FindVal)

This is all very nice, but it could result in a run-time error if Val
isn't in List, and you're using normal Boolean evaluation. Why?
Because the last time the test is made at the top of the while loop, I
equals Count+ 1. If Count = NLMax, you're beyond the limits for
List.

There are two solutions to this type of problem. One is to tum off
range-checking. However, that could end up introducing subtle
bugs, especially if the code involved actually changes values. A
better solution, shown earlier, is to select short-circuit Boolean
evaluation, either by using the Options I Compiler I Boolean
command or by using the {$8-} directive. That way, if I> Count,
the expression

List[I) <>Val

is never evaluated.

Here are some of the common pitfalls of assembly language pro­
gramming. You should refer to the Turbo Assembler User's Guide
for a fuller explanation on these oft-encountered errors-and tips
on how to avoid them.

In Pascal, C, and other languages, a program ends automatically
and returns to DOS when there is no more code to execute, even if
no explicit termination command was written into the program.
Not so in assembly language, where only those actions that you
explicitly request are performed. When you run a program that
has no command to return to DOS, execution simply continues
right past the end of the program's code and into whatever code
happens to be in the adjacent memory.

The proper invocation of a subroutine consists of a call to the
subroutine from another section of code, execution of the sub­
routine, and a return from the subroutine to the calling code.
Remember to insert a RET instruction in each subroutine, so that
the RETurn to the calling code occurs. When you're typing a pro­
gram, it's easy to skip a RET and end up with an error.

Turbo Debugger User's Guide

Generating the wrong
type of return

The PROC directive has two effects. First, it defines a name by
which a procedure can be called. Second, it controls whether the
procedure is a near or far procedure.

The RET instructions in a procedure should match the type of the
procedure, shouldn't they?

Yes and no. The problem is that it's possible and often desirable to
group several subroutines in the same procedure. Since these
subroutines lack an associated PROC directive, therr RET instruc­
tions take on the type of the overall procedure, which is not
necessarily the correct type for the individual subroutines.

Reversing operands To many people, the order of instruction operands in 8086
assembly language seems backward (and there is certainly some
justification for this viewpoint). If the line

Forgetting the stack or
reserving a too-small

stack

Calling a subroutine
that wipes out registers

mov ax,bx

meant "move AX to BX," the line would scan smoothly from left
to right, and this is exactly the way in which many micro­
processor manufacturers have designed their assembly languages.
However, Intel took a different approach with 8086 assembly
language; for us, the line means "move BX to AX," and that can
sometimes cause confusion.

In most cases, you are treading on thin ice if you don't explicitly
allocate space for a stack. Programs without an allocated stack
sometimes run, but there is no assurance that these programs will
run under all circumstances. Most programs should have a
.STACK directive to reserve space for the stack, and for each pro­
gram that directive should reserve more than enough space for
the deepest stack you can conceive of the program using.

When you're writing assembler code, it's easy to think of the
registers as local variables, dedicated to the use of the procedure
you're working on at the moment. In particular, there's a tendency
to assume that registers are unchanged by calls to other proce­
dures. It just isn't so-the registers are global variables, and each
procedure can preserve or destroy any or all registers.

Chapter 74, How to debug a program 231

Using the wrong sense
for a conditional jump

Forgetting about REP
string overrun

Relying on a zero CX to
cover a whole

segment

Using incorrect
direction flag settings

232

The profusion of conditional jumps in assembly language (JE,
JNE, JC, JNC, JA, JB, JG, and so on) allows tremendous flexi­
bility in writing code-and also makes it easy to select the wrong
jump for a given purpose. Moreover, since condition-handling in
assembly language requires at least two separate lines, one for the
comparison and one for the conditional jump (it requires many
more lines for complex conditions), assembly language
condition-handling is less intuitive and more prone to errors than
condition-handling in C and Pascal.

String instructions have a curious property: After they're exe­
cuted, the pointers they use wind up pointing to an address 1 byte
away (or 2 bytes for a word instruction) from the last address
processed. This can cause some confusion with repeated string
instructions, especially REP SCAS and REP CMPS.

Any repeated string instruction executed with ex equal to zero
does nothing. Period. This can be convenient in that there's no
need to check for the zero case before executing a repeated string
instruction; on the other hand, there's no way to access every byte
in a segment with a byte-sized string instruction.

When a string instruction is executed, its associated pointer or
pointers-SI or DI or both-increment or decrement. It all
depends on the state of the direction flag.

The direction flag can be cleared with CLO to cause string
instructions to increment (count up) and can be set with STD to
cause string instructions to decrement (count down). Once cleared
or set, the direction flag stays in the same state until either
another CLO or STD is executed, or until the flags are popped
from the stack with POPF or IRET. While it's handy to be able to
program the direction flag once and then execute a series of string
instructions that all operate in the same direction, the direction
flag can also be responsible for intermittent and hard-to-find bugs
by causing the behavior of string instructions to depend on code
that executed much earlier.

Turbo Debugger User's Guide

Using the wrong sense
for a repeated string

comparison

Forgetting about string
segment defaults

Converting incorrectly
from byte to word

operations

Using multiple prefixes

Relying on the
operand(s) to a string

instruction

Wiping out a register
with multiplication

The CMPS instruction compares two areas of memory; the SCAS
instruction compares the accumulator to an area of memory.
Prefixed by REPE, either of these instructions can perform a
comparison until either ex becomes zero or a not-equal compari­
son occurs. Unfortunately, its easy to become confused about
which of the REP prefixes does what.

Each of the string instructions defaults to using a source segment
(if any) of DS, and a destination segment (if any) of ES. It's easy to
forget this and try to perform, say, a STOSB to the data segment,
since that's where all the data you're processing with nonstring
instructions normally resides.

In general, it's desirable to use the largest possible data size
(usually word, but dword on an 80386) for a string instruction,
since string instructions with larger data sizes often run faster.

There are a couple of potential pitfalls here. First, the conversion
from a byte count to a word count by a simple

shr cx,l

loses a byte if ex is odd, since the least-significant bit is shifted
out.

Second, make sure you remember SHR divides the byte count by
two. Using, say, STOSW with a byte rather than a word count can
wipe out other data and cause problems of all sorts.

String instructions with multiple prefixes are error-prone and
should generally be avoided.

The optional operand or operands to a string instruction are used
for data sizing and segment overrides only, and do not guarantee
that the memory location referenced is accessed.

Multiplication-whether 8 bit by 8 bit, 16 bit by 16 bit, or 32 bit by
32 bit-always destroys the contents of at least one register other
than the portion of the accumulator used as a source operand.

Chapter 74, How to debug a program 233

Forgetting that string
instructions alter
several registers

Expecting certain
instructions to alter the

carry flag

Waiting too long to use
flags

Confusing memory and
immediate operands

234

Causing segment
wraparound

Failing to preserve
everything in an
interrupt handler

The string instructions, MOVS, STOS, LOOS, CMPS, and SCAS,
can affect several of the flags and as many as three registers
during execution of a single instruction. When you use string
instructions, remember that SI, DI, or both either increment or
decrement (depending on the state of the direction flag) on each
execution of a string instruction. ex is also decremented at least
once, and possibly as far as zero, each time a string instruction
with a REP prefix is used.

While some instructions affect registers or flags unexpectedly,
other instructions don't even affect all the flags you might expect
them to.

Flags last only until the next instruction that alters them, which is
usually not very long. It's a good practice to act on flags as soon as
possible after they're set, thereby avoiding all sorts of potential
bugs.

An assembler program may refer either to the offset of a memory
variable or to the value stored in that memory variable. Unfortu­
nately, assembly language is neither strict nor intuitive about the
ways in which these two types of references can be made, and as a
result, offset and value references to a memory variable are often
confused.

One of the most difficult aspects of programming the 8086 is that
memory isn't accessible as one long array of bytes, but is rather
made available in chunks of 64K relative to segment registers.
Segments can introduce subtle bugs; if a program attempts to
access an address past the end of a segment, it actually ends up
wrapping back to access the start of that segment instead.

Every interrupt handler should explicitly preserve the contents of
all registers. While it is valid to preserve explicitly only those
registers that the handler modifies, it's good insurance just to
push all registers on entry to an interrupt handler and pop all
registers on exit.

Turbo Debugger User's Guide

Forgetting group
overrides in operands

and data tables

Segment groups let you partition data logically into a number of
areas without having to load a segment register every time you
want to switch from one of those logical data areas to another.

Unfortunately, there are a few problems with the way the
Microsoft Macro Assembler (MASM) handles segment groups, so
until Turbo Assembler came along, segment groups were quite a
nuisance in assembler. They were, however, an unavoidable
nuisance, for they are required i_n_ order to link assembler code to
high-level languages such as C.

In MASM Quirks mode, Turbo Assembler emulates MASM, warts
and all. This means that in MASM Quirks mode, Turbo Assem­
bler has the same problems with segment groups that MASM has.
If you're not planning to use MASM Quirks mode, read no more,
but if you are going to use MASM Quirks mode, refer to the Turbo
Assembler User's Guide for more information.

Accuracy testing

Testing boundary
conditions

Invalid data input

Making a program work with valid input is only part of the job of
testing. The following sections discuss some important test cases
that any program or routine should be subjected to before being
given a clean bill of health.

Once you think a routine works with a range of data values, you
should subject it to data at the limits of the range of valid input.
For example, if you have a routine to display a list from 1 to 20
items long, you should make sure it behaves correctly both when
there is exactly 1 item and exactly 20 items in the list. This can
flush out the one-too- few and one-too-many "fencepost" errors
(described on page 219).

Once you are sure that a routine works with a full range of valid
input, check that it behaves correctly when it's given invalid
input. Check that erroneous input is rejected, even when it's very
close to valid data. For example, the previous routine that

Chapter 74, How to debug a program 235

Empty data input

accepted values from 1 to 20 should make sure that 0 and 21 are
rejected.

This is a frequently overlooked area, both in testing and in
designing a program. If you write a program to have reasonable
default behavior when some input is omitted, you greatly
enhance its ease of use.

Debugging as part of program design

When you first start designing your program, you can plan for the
debugging phase. One of the most basic tradeoffs in program
design involves the degree to which the different parts of your
program check that they are getting valid input and that their
output is reasonable.

If you do a lot of checking, you end up with a very resilient pro­
gram that can often tell you about an error condition but con­
tinues to run after performing some reasonable recovery. You also
end up with a larger and slower program. This type of program
can be fairly easy to debug because the routines themselves
inform you of invalid data before the dangers can be propagated.

You can also implement a program whose routines do little or no
validation of input or output data. Your program will be smaller
and faster, but bad input data or a small bug can bring things to a
grinding halt. This type of program can be the most difficult to
debug, since a small problem can end up manifesting itself much
later during execution. This makes it hard to track down the
original error.

Most programs end up being a mixture of these two techniques.
You should treat input from external sources (such as the user or
a disk file) with greater suspicion than data from one internal
routine calling another.

The sample debugging session

236

This sample session uses some of the techniques we talked about
in the previous sections. The program you are debugging is a

Turbo Debugger User's Guide

version of the demonstration program used in Chapter 3
(TCDEMO.C or TPDEMO.PAS), except this one has some
deliberate bugs in it.

Make sure that your current directory contains the two files
needed for the debugging demonstration. If you're a C program­
mer, you'll need TCDEMOB.C and TCDEMOB.EXE. If you're
debugging a Pascal program, you'll need TPDEMOB.P AS and
TPDEMOB.EXE. (The Bin these file names stands for "buggy.")

Go ahead and compile the source code program to generate your
.EXE file. (If you are compiling TCDEMOB.C, open it in the
integrated development environment and set the Options I
Compiler I Optimization I Use Register Variables switch to Off
before you compile.)

C debugging session

Looking for errors

This section uses a C program as its example. If you're a Pascal
programmer, refer to page 242 for the sample debugging session
using a Turbo Pascal program.

Before we start the debugging session, let's run the buggy demo
program to see what's wrong with it. To start the program, type

TCDEMOB

You are prompted for lines of text. Enter two lines of text

one two three
four five six

A final empty line ends your input. TCDEMOB then prints out its
analysis of your input:

Arguments:
Enter a line (empty line to end) : one two three
Enter a line (empty line to end) : four five six
Enter a line (empty line to end) :
Total number of letters = 7
Total number of lines = 6
Total word count = 2
Average number of words per line= 0.3333333
'E' occurs 1 times, 0 times at start of a word
'F' occurs 1 times, 1 times at start of a word

Chapter 74, How to debug a program 237

238

Deciding your
plan of attack

Starting Turbo
Debugger

'N' occurs 1 times, 0 times at start of a word
'0' occurs 2 times, 1 times at start of a word
'R' occurs 1 times, 0 times at start of a word
'U' occurs 1 times, 0 times at start of a word
There is 1 word 3 characters long
There is 1 word 4 characters long

Notice there are erroneous numbers for the total number of
words, letters, and word count. Later on, the letter and word
frequency tables seem to be based on an erroneous letter and
word count. This is an all-too-typical situation-the program
must have more than one thing wrong. This happens frequently
in the early stages of debugging a program.

Your first task is to decide which problem to attack first. A good
rule of thumb is to start with the problem that appears to be
happening "first." In this program, each input line is broken
down into words, then analyzed, and finally, after all the lines
have been entered, the tables are displayed. Since the word and
letter counts are off as well as the tables, it's a good bet that
something is wrong during the initial breaking down and
counting phase.

Now is the time to start debugging, after you've thought about the
problem for a moment and decided on a rough plan of attack.
Here, the strategy is to examine the routine makeintowords, to see if
it is correctly chopping the line into null-terminated words, and
then see if analyzewords is correctly counting the analyzed line.

To start the debugging session, type

TD TCDEMOB

Turbo Debugger loads the buggy demo program and then
displays its startup screen. If you wish to exit from the tutorial
session and return to DOS, press Alt-X at any time. If you get hope­
lessly lost, you can reload the demonstration program at any time
and start at the beginning by pressing Ctrl-F2. (Note that this
doesn't clear breakpoints or watches.)

Since the first thing you want to do is to check that makeintowords
is working correctly, run the program up to that routine and then
check it. There are two approaches you can use: Either step

Turbo Debugger User's Guide

Inspecting

Breakpoints

through makeintowords as it executes, making sure that it does the
right thing, or stop the program after makeintowords has done its
stuff and see if it did the right thing.

Since makeintowords has a clearly defined task and it's easy to
determine whether it's working correctly by inspecting the output
buffer it produces, let's opt for the second approach. To do this,
move down to line 42 and press F4 to run to this line. When the
program screen appears, type

one two three

and press the Enter key.

You are now stopped at the source line after the call to
makeintowords. Look at the contents of buffer to see if the right
thing happened. Move the cursor up a line, place it under the
word buffer, and press Alt-F10 I (for Inspector) to open an Inspector
window to show the contents of buffer. Use the arrow keys to
scroll through the elements in the array. Notice that makeintowords
has indeed put a single null character (0) at the end of each word
as it is meant to. This means that you should execute more of the
program and see if analyzewords is doing the right thing. First,
remove the Inspector window by pressing Esc. Then, press F7
twice to execute to the start of analyzewords.

Check that analyzewords has been called with the correct pointer to
the buffer by moving the cursor under bufp and pressing Alt-F10 I.
You can see that bufp indeed points to the null-terminated string
'one'. Press Esc to remove the Inspector window. Since there
seems to be a problem with counting characters and words, let's
put a breakpoint at the places where a character and a word are
counted:

1. Move to line 93 and press F2 to set a breakpoint.

2. Move to line 97 and set another breakpoint.

3. Finally, set a breakpoint on line 99 so you can look at the
character count this function returns.

Setting multiple breakpoints like this is a typical way to learn
about whether things are happening in the right order in a

Chapter 14, How to debug a program 239

The Watches
window

The
Evaluate/Modify

dialog box

Eureka!

240

program, and lets you check on important data values each time
the program stops at a breakpoint.

Run the program by pressing F9. The program stops when it
reaches the breakpoint on line 93. Now you want to look at the
value of charcount. Since you'll want to check it each time you hit
a breakpoint, this is an ideal time to use the Watch command to
place it in the Watches window. Move the cursor under charcount
and press Alt-F10 W. The Watches window at the bottom of the
screen now displays the current value of 0. To make sure that the
character is being counted properly, execute a single line by pres­
sing F7. The Watches window now shows that charcount is 1.

Run the program again by pressing F9. You are now back at line
93 for another character. Press F9 again twice to read the last letter
on the word and the terminating null. charcount now correctly
shows 3, and the wordcounts array is about to be updated to count
a word. Everything is fine so far. Press F9 again to start processing
the next word in the buffer. AHA! Something is wrong.

You expected the program to stop again on line 93 as it processed
the next word, but it didn't. It went straight to the statement that
returns from the function. The only way to end up on line 99 is if
the while loop that started on line 83 no longer has a true test
value. This means that *bufp != 0 must evaluate to false (that is, 0).

To check this, move back to line 83 and mark the entire expression
*bufp != 0 by putting the cursor under the *, pressing Ins, and
moving the cursor to the final' 0' before the')'. Now evaluate
this expression by opening the Data I Evaluate Modify dialog box
and pressing Enter, and choosing the Eval button to accept the
marked expression. The value is indeed 0. Press Esc to return to
the Module window.

Now here comes the analytical leap that causes you to "solve" the
bug. The reason bufp points to a 0 is because that is where the
inner while loop starting on line 86 left it at the end of a word. To
continue to the next word, you must increment bufp past the 0
that ended the previous word. To do this, you need to add a

Turbo Debugger User's Guide

"bufp++" statement before line 97. You could recompile your pro­
gram with this statement added, but Turbo Debugger lets you
"splice" in expressions by using a fancy sort of breakpoint.

To do this, first reload the program by pressing Ctrl-F2 so you can
test with a clean slate. Now remove all the breakpoints you set in
the previous session by typing Alt-8 D. Go back to line 97 and set a
breakpoint again by pressing F2. Now, open a Breakpoints
window bv pressing Alt-VB. Set this breakpoint to execute the
expressio~ bufp++ e~ch time it is encountered:

1. Choose View I Breakpoints.

2. Open the Breakpoints window local menu by pressing Alt-F10.

3. Choose Set Options to open the Breakpoint Options dialog
box.

4. Set the Action radio buttons to Execute.

5. Press Tab to get to the Action Expression prompt.

6. Enter bufp++.

7. Press Esc to close the dialog box and Alt-F3 to return to the
Module window.

Now run the program. Enter the usual two input lines

one two three
four five six

Press Enter at the third prompt, and when the program has
terminated, press Alt-F5 to look at your output on the User screen.

You'll notice that things have improved considerably. The total
number of words and lines seem to be wrong, but the tables are
correct. Stop at the beginning of the printstatistics routine and see
if it is given the correct values to print. First reload the program
by pressing Ctrl-F2 to retest. Then go to line 104 and press F4 to
execute to there. Move the cursor to the nlines argument and press
Alt-F10 I to look at its value. Note that the value is 6 where it
should be 2.

Now go back to where nlines is called from in main and look at
the its value there. Move the cursor to line 36, place it under
nlines, and press Alt-F10 I to look at the value. The value of nlines in
main is 2, which is correct! If you go down to line 46, you will
notice that the two arguments nwords and nlines have been
reversed. There is no way that the compiler could have known
that you meant to have them the other way around.

Chapter 74, How to debug a program 241

If you correct these two bugs, the program will run correctly. The
files TCDEMO.EXE is a corrected version that you may run if you
are curious.

Pascal debugging session

Looking for errors

242

This section uses a Turbo Pascal program as its example. If you're
a C programmer, you should look at the preceding section, start­
ing on page 237, which takes you through a session using a
Borland C++ program.

Before we start the Pascal debugging session, let's run the buggy
Pascal demo program to see what's wrong with it. The program is
already compiled and on your distribution disk.

To start the program, enter the program name and pass it three
command-line arguments:

TPDEMOB first second third

You'll be prompted for lines of text. Enter two lines of text exactly
as follows:

ABC DEF GHI
abc def ghi

A final empty line ends your input. TPDEMOB then prints out its
analysis of your input:

9 char(s) in 3 word(s) in 2 line(s)
Average of 0.67 words per line

Word length: 1 2 3 4 5 6 7 8 9 10
Frequency: 0 0 3 0 0 0 0 0 0 0

Letter: M
Frequency: 1 1 1 1 1 1 1 0 0 0 0
Word starts: 1 0 0 1 0 0 0 0 0 0 0 0

Letter: z
Frequency: 0 0 0 0 0 0 0 0 0 0 0 0 0
Word starts: 0 0 0 0 0 0 0 0 0 0 0 0 0

Program name: C:\td\tpdemob.exe
Command line parameters: first second third

Turbo Debugger User's Guide

Deciding your

There are five separate problems with this output:

1. The number of words is wrong (3 instead of 6).

2. The number of words per line is wrong (0.67 instead of 3.00).

3. The column headings for the second and third tables display
only one letter each (instead of A .. M and N .. Z).

4. You typed two lines, each containing a letter from A .. I, but the
letter frequency tables show only a count of one each for those
letters. - · ·

5. The last character of each command-line parameter entered
was lost and random characters are being displayed (although
the last parameter is okay).

plan Of attack Your first task is to decide which problem to attack first. A good
rule of thumb is to start with the problem that appears to be
happening first. In this program, after procedure Init is called to
initialize data, keyboard input is read by function GetLine and
then processed by procedure ProcessLine until the user enters an
empty string. ProcessLine scans each input string and updates the
global counters. Then, the results are displayed by procedure
ShowResults. Finally, in a completely independent subprogram,
procedure ParmsOnHeap builds a linked list of command-line
parameters on the heap and then traverses and displays that list
at the end of the program.

The average number of words per line is computed by
ShowResults, using the number of lines and words. Since the word
count seems to be off, take a look at ProcessLine to see how
NumWords is updated. Even though NumWords is wrong, the 0.67
words-per-line figure doesn't make sense. There's probably an
error in the ShowResults calculation, which needs your attention as
well.

The column titles for all the tables are drawn at the request of
ShowResults. You should wait until the main loop terminates
before tracking down the second and third bugs. Since the letter
and word counts are wrong, it's a good bet that something is
amiss inside ProcessLine, and that's where you should start
looking for the first and fourth bugs.

Chapter 14, How to debug a program 243

Starting Turbo
Debugger

Moving through
the program

244

Finally, once you've scrutinized the word and letter counting
parts of the program, take a look at ParmsOnHeap to find and fix
the last (fifth) bug.

Now is the time to actually start debugging-after you've thought
about the problem for a moment and decided on a rough plan of
attack.

To start the debugging sample session, load the debugger and
give it the same command-line parameters you gave it earlier:

TD TPDEMOB first second third

Turbo Debugger loads the buggy demo program and displays the
startup screen. If you wish to exit from the tutorial session and
return to DOS, press Alt-X at any time. If you get hopelessly lost,
you can always reload the demonstration program and start from
the beginning again by pressing Ctrl-F2. (Note that this doesn't
clear breakpoints or watches.)

There are two approaches to debugging a routine like ProcessLine:
Either step through it line-by-line as it executes and make sure it
does the right thing, or stop the program immediately after
ProcessLine has done its stuff and see if it did the right thing. Since
both the letter and word counts are wrong, you probably ought to
look inside ProcessLine carefully and see how characters are
processed.

Now you're going to run the program and step inside the call to
ProcessLine. There are many ways to do that. You can press FB four
times (to step over procedure and function calls), then press Fl
once (to trace into the call to ProcessLine). You can also move the
cursor down to line 231, press F4 (Go to Cursor command), and
press Fl once to step into ProcessLine.

There are even more ways to get into ProcessLine. Try this one:
Press Alt-F9. A dialog box pops up, prompting you to enter a code
address to run to. Type processline, and press Enter. The program
will now run until ProcessLine gains control. When you are
prompted to enter a string, enter the same data as before (that is,
ABC DEF GHI).

Turbo Debugger User's Guide

The
Evaluate/Modify

dialog box

ProcessLine contains several loops. An outer one scans the entire
string. Inside that loop, there's one loop to skip over non-letters,
and a second one to process words and letters. Move the cursor to
the while loop on line 133 and press F4 (Go to Cursor).

This loop keeps scanning until it reaches the end of the string or
until it finds a letter. Each character scanned is checked via a call
to a Boolean function, IsLetter. Press Fl to trace into IsLetter.
IsLetter is a nested function that takes a character value and
returns True if it's a letter; otherwise, False. A not-very-close look
reveals that it checks only for uppercase letters. It should either
check for characters in the range A to Z and a to z, or it should
convert the character to uppercase before performing the test.

A quick look at both lines of input that you originally entered
provides a further clue to the source of the bug: You entered both
uppercase and lowercase letters from A to I, but only the upper­
case letters entered were displayed in the totals. Now you can see
why.

Get back to the line that called IsLetter by another navigation
technique: Press Alt-FB, which runs past the end statement of the
current procedure or function. Since the second line of input you
originally entered, abc def ghi, contained only lowercase letters,
each character was treated as whitespace and skipped. This
throws off both the letter counts and the word count, and solves
the mysteries of bugs #1 and #4.

By the way, there's another powerful way to verify IsLetter's
misbehavior. Invoke the Evaluate/Modify dialog box by pressing
Alt-D E and enter the following expression:

IsLetter('a') = IsLetter('A')

A and a are both letters, but the evaluation False confirms that
they're not treated the same by IsLetter. (You can use the
Evaluate/Modify dialog box and Watches window to evaluate
expressions, perform assignments, or, as you did here, call proce­
dures and functions. For more information, refer to Chapter 6.)

Chapter 74, How to debug a program 245

Inspecting

246

Two bugs down, three to go. Bug #2 is much easier to find than
the previous ones. Press Alt-FB to exit Process Line, then move the
cursor to line 234 and press F4 to run to the cursor position.

TPDEMOB prompts you for a string. Type abc def ghi and press
Enter, then press Enter the second time the prompt appears. Now
press Fl to step into Show Results.

Remember, you're trying to find out why the average number of
words per line is incorrect. The first line in ShowResults calculates
the number of lines per word instead of words per line. Clearly,
those two terms should be reversed.

As long as you're here, you might as well make sure that
NumLines and NumWords have the values you'd expect. NumLines
should equal 2, and-because of the IsLetter bug you've un­
covered but haven't fixed-NumWords should equal 3. Move the
cursor to NumLines and press Alt-F10 I to inspect a variable. The
Inspector window shows you NumLines' address, type, and
current value in both decimal and hexadecimal. The value is
indeed equal to 2, so you can move on and have a look at
NumWords. Press Esc to close the Inspector window, move the
cursor forward to NumWords, and press Alt-F10 I again (you can
also use the hot key, Ctr/-~. NumWords has the expected (incorrect)
value of 3, so you can move on.

Or can you? There's another problem with this calculation, and it's
not even on our list. There is no check to see whether the second
term is 0 before the division is performed. If you run the program
from the beginning and enter no data at all (just press Enter when
prompted), the program crashes (even after you reverse the
divisor and the dividend).

To confirm this, press Esc to close the Inspector window, type Alt-R
P to end the current debug session, press F9 to run the program
from the beginning, and press Enter at TPDEMOB's string prompt.
The program terminates and an error box displays a run-time
error. You should modify this statement to read

if NumLines <> 0 then
AvgWords := NumWords I NumLines

else
AvgWords := 0;

Turbo Debugger User's Guide

Watches

So much for bugs #2 and #2b. As long as you're tinkering with the
Inspector window, try using it to "walk" through a data structure.
Move the cursor up to the declaration of LetterTable on line 50.
Place the cursor on the word LetterTable, and press Alt-F10 I. You
can see it's an array of records, 26 elements long. Use the cursor
keys to scroll through each element of the array, and press Enter to
step into one of the array elements. This is a very powerful way of
examining your data structures, and will be especially handy
when you traverse ParmsOnHeap's iinked list later on.

You've still got to squash that column title bug (#3} in ShowResults.
Since you already terminated the program when you tracked the
divide-by-zero error, prepare for another session by pressing Alt-
R P (to reset the program). Then press Alt-F9, type showresults, and
press Enter. Now type the all-too-familiar data ABC DEF GHI and
press Enter again. Finally, type abc def ghi and press Entertwice.
Turbo Debugger should be stopped at ShowResults.

ShowResults uses a nested procedure, ShowLetterlnfo, to display
the letter tables. Move the cursor down to line 103, press F4, then
press Fl to step into Show Letter Info.

There are three for loops. The first one displays the column titles,
and the second and third display frequency counts. Use Fl to step
to the first loop on line 63. :Position the cursor over FromLet and
ToLet and use Alt-F10 Ito check their values. They look okay (the
first equals A, and the second equals M). Press A/t-FS to view the
User screen and see where things stand. Press any key to return to
the Module window.

When you're stepping through a loop like this, the Watches
window is very handy; position the cursor over ch and press Ctrl­
W. Now use Fl to step through the for loop. As expected, it steps
down to the Write statement on line 64. If you look at the Watches
window, though, you'll see thatch's value is already M. (It already
executed the entire loop!) There's an extra semicolon right after
the keyword do, making the for loop do absolutely nothing 13
times. When control falls through to the Write statement on line
64, the current value of ch, M, is output and the program moves
on. Removing that extra semicolon eliminates bug #3.

Chapter 74, How to debug a program 247

248

Just one more
bug ... It's time to track down that strange bug with the command-line

parameters. To refresh your memory, the last character of all but
the last command-line parameter was garbage. Perhaps the string
length byte was wrong, or perhaps the string data was over­
written by some later assignment.

Use the Watches window to find out. Press Alt-F9, type parmsonheap
and press Enter. The for statement loops through all the
command-line parameters, constructing a linked list and copying
each string onto the heap as it goes. One pointer, Head, points to
the beginning of the list; Tail points to the last node in the list; and
Temp is used as temporary storage to allocate and initialize a new
node. Since the string data is corrupted, press Ctrl-F7 and add the
following expression to the Watches window:

Tail A .ParmA

This keeps track of the string data stored in the last node in the
list. Of course, this value will be garbage until Tail is initialized on
line 207.

Rather than step through line-by-line, just keep an eye on the
Watches window at the end of each iteration. Move the cursor to
line 208 and press F2 to set a breakpoint there. Now press F9 to
run to that breakpoint. If you're using DOS 3.x, you'll see the full
path to TPDEMOB.EXE in the Watches window. (If you're using
DOS 2.x, you'll see an empty string; in that case, just press F9
again and then go on.) The string data looks just fine.

Press F9 to execute the loop another time. Again, the data looks
okay. Now you know that the string is being copied onto the heap
correctly. You can use the Inspector window to find out whether
it's been corrupted yet. Move the cursor over Head on line 203 and
press Alt-Ft 0 I.

Look at the value referenced by Parm by pressing J-, followed by
Enter. You're looking at the first node in the list, and its string data
is already corrupted. If you press Esc, J-, and then press Enter
again, you'll open an Inspector window onto the second node in
the list. Press J,, followed by Enter, to inspect its string data. It's
intact, and, in fact, is the same node referenced by the Tail pointer.
Something is definitely clobbering the tail end of the string data.

Turbo Debugger User's Guide

Keep your eye on the Watches window while you use F7 to step
through the loop. The call to GetMem on line 199 is the culprit;
before that call, Tail".Pamz" is equal to first. Immediately after the
call to GetMem, the last character in Tail" Parm" is trashed.

What's happening? For each command-line parameter, the for
loop allocates first a record, then the string data, then the next
record, and so on. The GetMem call on line 199 should allocate
enough for the length of the string plus the length byte, but you
can see it does not add 1 to Length(s); Though the string assign­
ment on line 200 succeeds in doing the copy, it actually uses 1
more byte than was allocated to it. Thus, the last character of the
string is overlapped by the first byte of the next record allocated
when a call is made to New(Temp). The last parameter escapes
unscathed because it's not followed by another ParmRec.

Whew. That's all the (known) bugs in this program. Perhaps
you'll find some more as you step through the code. You can fix
the bugs (they are :µi.arked with two asterisks(**) for your conve­
nience) and then recompile; or you can run TPDEMO.P AS, the
bug-free version of this program, discussed in Chapter 3.

Chapter 74, How to debug a program 249

250 Turbo Debugger User's Guide

c H A p T E R

15

Virtual debugging on the 80386
processor

Turbo Debugger lets you use the full power of systems that have
the 80386 processor. Virtual debugging lets the program you're
debugging use the full address space below 640K, just as if no
debugger were loaded. (Turbo Debugger is loaded into extended
memory, above the lMB address point.)

You debug exactly as you would normally use Turbo Debugger,
except that once the TDH386 device driver is loaded, your
program loads and runs at exactly the same address whether or
not it's being debugged. Virtual debugging is extremely useful
both for debugging programs that are large, and for finding bugs
that go away if the program is loaded higher in memory, as it is
when it is being debugged normally.

Virtual debugging also lets you watch for reads or writes to arbi­
trary memory or 1/0 locations, all at full or nearly full processor
speed. This gives you some of the power of a hardware debugger
at no additional cost.

80286 users! If you have an 80286 processor, you can make more memory
available than you would normally have with Turbo Debugger by
using the protected-mode debugger, TD286. See Chapter 16 for
more information.

Chapter 7 5, Virtual debugging on the 80386 processor 251

Equipment required for virtual debugging

You must have a computer based on the 80386 processor in order
to use the virtual debugger. You must also have 640K of available
extended memory. If you have used up your extended memory
for RAM disks, caches, and so forth, you may want to make a
special CONFIG.SYS or AUTOEXEC.BAT file that removes some
of these programs when you want to use virtual debugging.

Installing the virtual debugger device driver

Before starting the virtual debugger, you must make sure that you
have installed its device driver in your CONFIG.SYS file. Do this
by including a line similar to the following in CONFIG.SYS:

DEVICE = TDH386.SYS

If you have placed the TDH386.SYS device driver somewhere
other than in the root directory, make sure that you include that
directory path as part of the device driver file name.

Normally, the virtual debugger lets you have up to 256 bytes of
DOS environment strings. If this is not enough, or if you don't
need that much and would like to conserve as much memory as
possible, use the -e option in CONFIG.SYS to set the number of
bytes of environment. For example,

DEVICE = TDH386.SYS -e2000

reserves 2000 bytes for your DOS environment variables.

Starting the virtual debugger

252

You start the virtual debugger much as you would normally start
Turbo Debugger, with a command line like this:

TD386 [options] program [program options]

In other words, you simply enter TD386 instead of TD. TD386 then
takes care of finding the Turbo Debugger executable program and
loading it into extended memory.

If you have other programs or device drivers that use extended
memory, such as RAM disks, caches, or whatever, you must tell

Turbo Debugger User's Guide

TD386 how much extended memory to set aside for these other
programs. Do this by using the -e command-line option. Follow
the -e with the number of kilobytes (K) of extended memory used
by the other programs. For example,

TD386 -e512 myprog

This command line informs TD386 that you want to reserve the
first 512K of extended memory for other programs.

¢ Normally, if your system supports the XMS standard, it is not
necessary to inform TD386 how much memory to set aside for
programs in extended memory; the programs have already
passed that information to TD386. You need to use -e only with
programs (such as VDISK) that don't communicate with the XMS
standard.

Since you probably always reserve the same amount of extended
memory for other programs, TD386 gives you a way to perma­
nently set the amount of extended memory to reserve. Use the -w
option with the -e option to specify that you want the -e value to
be permanently set in the TD386 executable program file.

You'll then be prompted for the name of the executable program.
If you are running on DOS 3.0 or later, the prompt indicates the
path and file name that you executed TD386 from. You can accept
this name by pressing Enter, or you can enter a new executable file
name.

If you are running on version 2.x of DOS, you will have to supply
the full path and file name of the TD386 executable program.

Here is a complete list of command-line options for TD386.EXE:

-?, -h Accesses help on TD386.

-b Lets you break out of programs with Ctrl-Break, even
when interrupts are disabled.

-e#### Specifies the number of kilobytes of extended memory
being used by other programs or by the program
you're debugging. (You don't need this option if your
system supports the XMS standard.)

-f#### Enables EMS emulation through paging (in extended
memory) and sets the page frame segment to#### (in
hex). The last three digits must be 000 (like COOO or
EOOO). Note that this option only applies to Turbo
Debugger's EMS calls. If you don't use this option

Chapter 75, Virtual debugging on the 80386 processor 253

when you load TD386, TD386 will not be able to use
EMS. If you cannot load your symbol table, try using
the -f option to force TD386 to borrow from extended
memory.

No real EMS: -fDOOO
Real EMS at DOOO: -fEOOO
Real EMS at EOOO: -fDOOO

-f- Disables EMS emulation (presumably to override a
previous command-line option).

-w Modifies TD386.EXE with the new default value of -e
or -f. You can enter a new executable file name that
does not already exist, and TD386 will create the new
executable file.

Note that TD386.EXE options must appear first in the command
line before any Turbo Debugger options or the program name.
For example,

TD386 -e1024 -fDOOO -w

reserves 1024K of extended memory, enables EMS emulation with
a page frame of DOOO, and modifies TD386.EXE with these values.

For a list of all the command-line options available for
TD386.EXE, just type TD386 -? or TD386 -hand press Enter.

¢ If you have an 80386-based machine and want to read the
command-line options for TD386.EXE, TDH386.SYS must be
loaded.

Differences between normal and virtual debugging

254

Most things work exactly the same whether you are debugging
normally or using the 80386 virtual debugging capability. The
following items behave differently:

• When you use the File I DOS Shell command to run a DOS
command, the program you're debugging is never swapped to
disk. This means you may not always have enough memory to
run other programs from the DOS prompt.

• Your program can use nearly all of the 80386 instructions, with
the exception of the privileged protected-mode instructions:
CL TS, LMSW, L TR, LGDT, LIDT, LLDT.

Turbo Debugger User's Guide

• Even though you can use all the 80386 extended addressing
modes and 32-bit registers during virtual debugging, you can't
access memory above the lMB point. If you try to do so, an
exception interrupt will be generated, and Turbo Debugger will
regain control.

•You can't use virtual debugging if you're already running a
program or device driver that uses the virtual and protected
modes of the 80386 processor. This includes programs such as:

• DesqView operating environment

• Microsoft Windows-386 operating environment

• QEMM.SYS, the QuarterDeck EMS simulator

• CEMM.SYS Compaq EMS simulator

• 386AMAX

If you normally use one of these or similar programs, you will
have to stop them or unload them before using ID386.

•If you are using virtual debugging, ID386 can catch exceptions
generated by your program. If an exception occurs, your
program stops, and ID386 reports the exception that occured.
The error message that appears indicates the nature of the
exceptions, and the arrow in the CPU window Code pane-or
the cursor in the Module window-marks the instruction that
caused the exception.

•You should not get an unexpected interrupt. If you do, check
the next section to see if the interrupt is mentioned. If not,
contact Borland technical support.

Troubleshooting tips

If you are using ID386 and you receive the message "Not enough
memory to load symbol table", you need to enable EMS
emulation for ID386. To do this, start ID386 using the -F option.

For example, to set up EMS for ID386 at segment ODOOOh, use the
following command to start ID386:

TD386 -FDOOO

If you are using an HP-Vectra, and you get an Unexpected
Interrupt 06 when trying to run ID386, you need to set an option
in the CMOS setup. By default the Vectra series uses a protected

Chapter 7 5, Virtual debugging on the 80386 processor 255

mode instruction as part of the HP-HIL. To work around this,
contact Hewlett Packard for instruction on disabling this function.

If an Exception 06 occurs after running for a while in TD386, your
code has probably been overwritten. An Exception 06 is
generated by the 80386 processor when an illegal opcode is
encountered. A common cause of this problem is using
µninitialized pointers.

Exception 06, Exception 13, and Unexpected Interrupt OD can
occur if you are using an old mouse driver, network driver, or
other device driver. If you get these errors in TD386, try removing
device drivers one at a time, starting with your mouse driver, then
your network driver, and so on until you identify the offending
driver. If an upgrade is available for the driver, see if installing it
corrects the problem. The last resort is to remove the driver
entirely, if possible.

If you get a "Processor already in protected mode" error message
when trying to load TD386, you are running a program that's
using the virtual mode of the 80386 (such as QEMM). It's not
possible to use these programs and TD386 at the same time. If you
need to use these memory managers, try using TD286 instead of
TD386.

TD386 error messages

256

TD386 generates one of the following messages when it can't
start, and then returns to the DOS prompt. You must correct the
condition before you can start TD386 successfully.

TD386 error: 80386 device driver missing or wrong version
You must install the TDH386.SYS device driver in your
CONFIG.SYS file before you invoke TD386 from the DOS
command line.

TD386 error: Can't enable the A20 address line
TD386 can't access the memory above lMB. This may happen if
you're running on a system that is not exactly IBM compatible.

TD386 error: Can't find TD.EXE
TD386 could not find TD.EXE.

TD386 error: Couldn't execute TD.EXE
TD386 could not run TD.EXE.

Turbo Debugger User's Guide

TD386 error: Environment too long; use -e#### switch with
TDH386.SYS

You need to change the -e option as described on page 252.

TD386 error: Not enough Extended Memory available
TD386 ran out of memory. You need to get more memory for
your machine or free up memory (by reducing a RAM disk, for
example).

TD386 error: Wrong CPU type (not an 80386)
You are not running on a system with an 80386 processor.

The following errors might occur if you're trying to modify TD386
with the -w option:

TD386 error: Cannot open program file
TD386 error: Cannot read program file
TD386 error: Cannot write program file
TD386 error: Program file corrupted or wrong version

TDH386.SYS error messages

There are only two possible error messages associated with the
TDH386.SYS driver:

Wrong CPU type: TDH386 driver not installed

Invalid command line: TDH386 driver not installed

Chapter 75, Virtual debugging on the 80386 processor 257

258 Turbo Debugger User's Guide

c H A p T E R

16

Protected-mode debugging with
TD286

The TD286 protected-mode debugger takes advantage of the
capabilities of the 80286 processor to free more memory for the
program you are debugging. TD286 puts the Turbo Debugger
program into extended memory above the lMB address point,
and leaves a relatively small loader in the lower 640K. This gives
you more room for the program you are debugging and its
symbol table.

Use Turbo Debugger exactly as you normally would. The only
difference is that your program has more memory to run in.

80386 users! If you have an 80386 processor, you can get even more capabilities
and memory savings by using the TD386 virtual debugger. See
Chapter 15 for more information.

Equipment required for the protected-mode
debugger

To use the TD286 protected-mode debugger, you must have a
computer based on the 80286 or 80386 processor. You must also
have at least 640K of available extended memory.

Chapter 76, Protected-mode debugging with TD286 259

Installing the protected-mode debugger

Before you use TD286 for the first time, you must run the
TD286INS configuration program to let TD286 determine some
hardware characteristics of the system you are running on. To
configure TD286, run the configuration program by entering
TD286INS at the DOS prompt.

TD286INS asks you to press Spacebar a number of times as it
determines the characteristics of your hardware. If at any point
your system hangs and the program does not proceed, just reboot
and restart the configuration program. The configuration program
knows where it had a problem and continues with the next phase
of its testing.

Once TD286INS runs to completion, TD286 is ready to use.

Starting the protected-mode debugger

You start the protected-mode debugger with this command-line
syntax:

TD286 [options] program [program options]

TD286 has the same command-line options as regular Turbo
Debugger, with the exception that it does not allow the -y option
that sets the overlay code pool size. This option is not necessary
because TD286 does not use overlays.

Differences between Turbo Debugger and
protected-mode

260

There are a few things you can do in regular Turbo Debugger that
you can't do with TD286:

• When you use the File I DOS Shell command to run a DOS
command, the program you are debugging is not swapped to
disk. This means that you may not always have enough
memory to run other programs from the DOS prompt.

Turbo Debugger User's Guide

•You can't use TD286 to debug programs that run in protected
mode, or use a DOS extender that conflicts with that used by
TD286.

Debugging programs that use extended memory

By default, TD286 will use all of your extended memory. If you're
debugging programs that use extended memory, you can specify
the amount of extended memory that TD286 is allowed to use by
creating a configuration file called CONFIG.286 in the root
directory of your current drive. Put the following command in the
file(# is the amount of extended memory TD286 can use):

MEGS=#

Running TD286 on different machines

TD286 knows the hardware characteristics of dozens of different
machines. When you run TD286INS and it reports "Machine
already in file's database" your machine is already known to
TD286 and no modification is necessary.

If TD286INS does execute its tests, it will store your machine's
hardware characteristics in TD286 and create a file with the .DB
extension. This file should be sent back to Borland or uploaded
onto one of our forums on Compuserve so that future versions of
TD286 will automatically know your computer's hardware
characteristics. TD286 can store the characteristics of 10 machines
other than the ones it starts with.

Chapter 76, Protected-mode debugging with TD286 261

262 Turbo Debugger User's Guide

c H A p T E R

17

Turbo Debugger for Windows (TOW)

Turbo Debugger for Windows (TDW) enables you to debug
applications you've written for Microsoft Windows, Version 3.0
and higher. It runs under Windows on the same machine as the
program you are debugging and switches between its own
screens and your application's screens, just as Turbo Debugger
does.

You debug much as you would using Turbo Debugger, except
that you can also get access to information particular to Windows
applications, such as

• Messages received and sent by your application's windows

•The global heap

• The local heap

•The complete list of modules (including dynamic link libraries)
loaded by Windows

•Dynamic link library (DLL) debugging

Requirements for running TDW

TDW runs in Windows standard mode or 386 enhanced mode,
which means that your computer must have an 80286 processor
or higher and at least one megabyte of memory.

TDW supports only the standard graphics display modes: CGA,
EGA, VGA, and Hercules monochrome-graphics. If you are using

Chapter 17, Turbo Debugger for Windows (TOW) 263

Installing TDW

264

an unusual driver, such as one that supports Super-VGA
(800x600), switch to a standard driver before starting Windows
and using TDW. If you try to use a nonstandard driver with TDW,
you will not be able to switch between your application's screens
and the TDW display.

Like Turbo Debugger, TDW can also take advantage of a second
monitor attached to your computer, allowing you to view TDW
screens on one monitor and your application's screens on another.
You select this display option by starting TDW with the -do
command-line switch or by running the TDINST utility and
setting User Screen Updating to Other display.

When you install Turbo Debugger on your system, the installation
program puts the Windows-related files in the same directory as
your Turbo Debugger files. These files include the following:

• TDW.EXE, the TDW program.

• TDWHELP.TDH, the TDW help files.

• WRSETUP.EXE, the configuration program for the remote
Windows application debugger WREMOTE.

• WREMOTE.EXE, the remote Windows application debugging
program. (Remote debugging of Windows programs is
described in Appendix E.)

• WINDEBUG.DLL, th~ dynamic link library required to run
TDW and WREMOTE.

• l3CWDEMO.C, BCWDEMOA.C, and BCWDEMOB.C, the C
source files for the Windows demo programs used in Chapter
18. There are additional files related to these programs, such as
the .EXE files and t~e .H, .DEF, .RC, .RES, and .PRJ files.

The installation process creates icons for TDW, WRSETUP, and
WREMOTE and installs them under the Windows Applications
group of the Windows Program Manager. You can run one of
these programs by choosing the icon, just as you can with any
other Windows application.

Turbo Debugger User's Guide

Configuring TDW

Using TOW

Just as with Turbo Debugger, you can configure TOW two ways,
by entering command-line options or by using the TOINST utility.

command-line just as with Turbo Debugger, you can set the configuration of
options TOW by using various command-line options followed by an

optional program name with its own command-line options. The
program name can be preceded by a path name.

Because TOW is a Windows program, you will probably enter
any command-line options either by using the Program Manager
File I Run command or by using the Program Manager File I
Properties command to change the command-line property of the
TOW icon. You can also start Windows from the DOS command
line and use the TOW command, optionally followed by switches,
or a program name with or without switches, or both, as an
argument to the Windows command.

The command-line syntax for TOW is

TDW [options] [program-name [program-args]]

TOW uses fewer command-line options than Turbo Debugger.
Except for the -t option, the options it does use are the same as
those used by Turbo Debugger, explained starting on page 66.

The following is a summary of the command-line options for
TOW:

-?,-h
-c<file>
-do
-ds
-I

-p
-SC
-Sd<dir>
-t<dir>

Access help on TOW command-line options.
Use configuration file <file>.
Run TOW on the secondary display.
Update screens by swapping pages.
Start up in Assembler mode. Debug DLL
startup library code.
Use a mouse.
Ignore case for symbol names.
Set a source file directory to <dir>.
Set the starting directory to <dir>.

¢ One of these command-line options, -t, is available only
with TOW. This option changes TOW's starting directory,

Chapter 7 7, Turbo Debugger for Windows (TOW) 265

Using TDI NST with
TDW

Using TDW

which is where TDW looks for the configuration file and for
.EXE files not specified with a full path. The syntax is

-tdirname

You can set only one starting directory with this option. If
you enter it more than once on the same command line,
TDW uses only the last entry.

To use TDINST with TDW, start TDINST using the -w
command-line option. TDINST for TDW works just like
TDINST for Turbo Debugger, except that the default con­
figuration file is TDCONFIG.TDW and fewer options are
available. (See the list of TDW command-line options in the
previous section.)

For a description of how to use TDINST, see Appendix D.

When you run TDW, it comes up in full-screen, DOS
character mode, not in a window. Despite this appearance,
TDW is a Windows application and will run only under
Windows.

Unlike other applications that run under Windows, you
can't use the Windows shortcut keys (like Alt-Esc or Ctrl-Esc)
to switch out of the TDW display. However, if the appli­
cation you are debugging is active (the cursor is active in
one of its windows), you can use these keys or the mouse to
switch to other programs.

Debugging using TDW is pretty much the same as
debugging using Turbo Debugger, except for a few Turbo
Debugger features that work differently and some
additional features to aid in debugging Windows
applications.

Differences between TDW The features that work differently are as follows:
and Turbo Debugger

266

• Switching from your application to TDW is accomplished
by using the Cr/-Alt-SysRq key combination. This operation
is similar to using Ctrl-Break to switch out of a DOS appli­
cation and back to Turbo Debugger, except that the DOS

Turbo Debugger User's Guide

application terminates, while the Windows application is
only suspended.

•The -I command-line option not only enables you to
debug your application's startup code, but also lets you
debug the assembly-language startup code of any DLLs
linked to your application.

•If possible, run your application to completion or use the
System command to exit it before exiting TDW or loading
in another program to be debugged. Failing to exit a
Windows application properly can leave resources
allocated that would otherwise have been deallocated,
potentially causing problems with TDW or other
applications.

• Keystroke recording is not available.

• You cannot debug device drivers or TSRs.

•There is no support for hardware debugging. (You can
leave the TDH386.SYS device in CONFIG.SYS if you
prefer. It doesn't affect operation of Windows or TDW.)

• The following commands are not available from the File
menu because TDW runs under Windows:

• DOS Shell, because there is none

• Resident, because TDW cannot terminate and stay
resident

• Table Relocate, because you cannot set the base
segment of the symbol table

New TDW features The new features that support debugging of Windows
programs are

•A view window, the Windows Messages window, which
shows messages passed to windows in your program

•Three types of data you can display in the Log window:

• The data segments in your program's local heap

•The data segments in the global heap

• A complete list of modules making up your program,
including any dynamic link libraries (DLLs)

• Expression type casting from memory handles to far
pointers

•Debugging of dynamic link libraries (DLLs)

Chapter 7 7, Turbo Debugger for Windows (TOW) 267

Logging window
messages

Figure 17.1
The Windows Messages

window

Selecting a window

Add •••
Remove
Delete all

Figure 17.2
The Add Window dialog box

268

•The -t command-line option, which enbles you to set the
starting directory for TOW in order to use a configuration
file or .EXE file in that directory.

To track messages being passed to your program's windows,
choose the View I Windows Messages command to open the
Windows Messages window. This window shows you the
messages that Windows is passing to one or more windows
in your program.

The Windows Messages window is composed of three
panes, the Window Selection pane (top left), the Message
Class pane (top right), and the Messages pane (bottom). The
messages show up in the Messages pane.

==?======3=[t] [H
Lo messa e WM PAINT

~~=:::J Hwnd:2214 wParam:OOOO 1Param:od'o8888bfo86Y) WM PAINT

Before you can log messages, you must first indicate which
window you're logging messages for. You do this in the top
left pane, the Window Selection pane. This pane's local
menu (activated by pressing Alt-F10) lets you add a window
selection, delete a window selection, or delete all window
selections.

Adding a window selection

To add a window selection, you can either choose Add from
the Window Selection pane local menu or begin typing in
the pane. Either method brings up the following dialog box:

Turbo Debugger User's Guide

Entering the first value in this
box also sets the message

class to "Log all messages.·

Specifying a message
class and action

Add •••
Remove
Delete all

You can enter either the name of the routine that processes
messages for the window (select the Window Proc button)
or a handle value (select the Handle button). Enter as many
routine names or handle values as necessary to track
messages for your windows.

It's easier to indicate the window by the name of the routine
that processes its messages (for example, WndProc) because
you can enter a routine name any time after loading your
program.

If you prefer to use a handle variable name, you must first
step through the program past the line where the handle
variable is assigned a handle. (Use the F7 or FB key to
single-step through the program.) If you try to enter the
variable name before stepping past its assignment state­
ment, TOW will not be able to pick up messages for it.

Deleting a window selection

To delete a window selection, move the cursor to the item,
then either bring up the local menu and choose Remove or
press the Delete, Ctrl-Y, or Ctrl-R key.

To delete all selections, choose Delete All from the local
menu.

The top right pane is the Message Class pane. Its local menu,
identical to that of the Window Selection pane, allows you
to add a message class, remove a message class, or delete all
classes you have added.

You must specify a window procedure or handle in the
Window Selection pane before you can add a message class
in this pane.

If you don't indicate a specific message or class of messages
to watch, TOW watches all messages sent to the window
procedure or handle.

Adding a message class

To add a message class, choose Add from the Message Class
pane local menu. TOW displays the following dialog box:

Chapter 7 7, Turbo Debugger for Windows (TOW) 269

Figure 17.3
The Set Message Filter dialog

box

Table 17.l
Windows message classes

270

A 1 messages
() Mouse
() Window (l Input
(System
() Initialization
() Clipboard
() DOE
() Non-client
() Other
(•) Sin le message

The Set Message Filter dialog box prompts you both for a class of
message to track and an action to be performed when that
message is received.

TDW by default logs all messages starting with WM_. Because so
many messages come in, you'll probably want to narrow the focus
by selecting one of the classes in the Message Class list. You can
add only one class at a time, so if you need to track messages from
multiple classes, you have to use the Add option for each class
you want to set.

The following table describes the message classes:

Message class

All Messages

Mouse

Window

Input

System

Initialization

Description

All messages starting with WM_

Messages generated by a mouse event (for example,
WM_LBUTTONDOWN and WM_MOUSEMOVE)

Messages from the window manager (for example,
WM_pAINTand WM_CREATE)

Messages generated by a keyboard event or by the
user's accessing a System menu, scroll bar, or size
box (for example, WM_KEYDOWN and
WM_SYSCOMMAND)

Messages generated by a system-wide change, (for
example, WM_FONTCHANGE and
WM_SPOOLERST ATUS)

Messages generated when an application creates a
dialog box or a window (for example,
WM_INITDIALOG and WM_INITMENU)

Turbo Debugger User's Guide

Table 17.l: Windows message classes (continued)

Message class

Clipboard

DDE

Non-client

Other

Single Message

Description

Messages generated when one application tries to
access the clipboard of a window in another
application (for example, WM_DRAWCLIPBOARD
and WM_SIZECLIPBOARD)

Dynamic Data Exchange messages, generated by
applications' communicating with one another's
wmdows (for example, W M_lJDb_lNlTIATE and
WM_DDE_ACK)

Messages generated by Windows to maintain the
non-client area of an application window (for
example, WM_NCHITTEST and WM_NCCREATE)

Any messages starting with WM_ that don't fall into
any of the other categories, such as owner draw
control messages and multiple document interface
messages

Any single message starting with WM_ you want to
log or break on

To track a single message, select Single Message and enter a
message name or number. If you enter a message name, be sure to
use all capital letters.

The default action is to put the messages in the log. The other
action you can perform, having the program break when it
receives a message, is equivalent to setting a breakpoint for a
message.

For example, if you want to track the WM_P AINT message and
have the program stop every time this message is sent to a
window you chose in the Window Selection pane, do the
following:

1. Select the top right pane, the Message Class pane.

2. Bring up the local menu, then choose Add.

3. From the dialog box, select Break from the Action radio
buttons and Single Message from the Message Name radio
buttons.

4. Enter WM_PAINT in the Message Name input box, then press
return.

Figure 17.l shows how the Windows Messages window looks
after you have made these selections and a message has come in.

Chapter 7 7, Turbo Debugger for Windows (TOW) 271

272

Viewing messages

Send to log window No
Erase log

Obtaining
memory and

module lists

Figure 17.4
The Windows Information

dialog box

Deleting a message class

To delete a message class, move the cursor to the item, then either
bring up the local menu and choose Remove or press the Delete or
Ctrl-Ykey.

To delete all classes, choose Delete All from the local menu.

The default class, Log all messages, will appear after you have
deleted all classes. You cannot delete this class using the Remove
command or the Delete All command.

Window messages show up in the lower pane of the Windows
Messages window. This pane can hold up to 200 messages.

If you want to save the messages to a file, you have to open a log
file for the Log window (use the View I Log File command, then
choose the Open Log File command from the local menu). You
then switch back to the Messages pane and change the Send To
Log Window entry on the local menu to Yes.

If you want to clear the pane of all messages, choose Erase Log
from the local menu. Any messages written to the Log window
will not be affected by this command.

To list the contents of the global or local heap or the modules for
your Windows program, first bring up the Log window with the
View I Log command, then access the local menu. The last com­
mand on the Log window local menu is Display Windows info.
Choosing that command displays the Windows Information
dialog box, from which you can pick the type of list you want to
display and where to start the list.

Turbo Debugger User's Guide

Listing the contents of
the global heap

If you select the global heap option, you can choose to display the
list from top to bottom, from bottom to top, or from a location
indicated by a starting handle.

A starting handle is the name of a global memory handle set in
your application by a call to a Windows memory allocation
routine like GlobalAlloc. Picking a starting handle causes TDW to
display the object at that handle as well as the next four objects
that follow it in the heap.

The global heap is the global memory area Windows makes
available to all applications. If you allocate resources like icons,
bit maps, dialog boxes, and fonts, or if you allocate memory using
the GlobalAlloc function, your application is using the global heap.

To see a list of the data objects in the global heap, select the Global
Heap radio button in the Windows Information dialog box, then
choose OK. The data objects will be listed in the Log window.
Because this list is likely to exceed the number of lines the Log
window can write (the default is 50 lines), you should either write
the contents to a log file (use the Log window local menu) or
increase the number of lines the Log window can use (use
TDINST). The maximum number of lines you can set is 200.

Chapter 7 7, Turbo Debugger for Windows (TOW) 273

The following table shows two lines of sample global heap output
followed by an explanation of each field in the sample output:

Table 17.2
Format of a global heap list _s_a_m_p_le_g_lo_b_a_I _he_a_p_o_u_t_p_u_t ________________ _

274

OECS 00000040b PDB (OFlD)
053E (0530) 00002DC0b GDI DATA MOVEABLE LOCKED=OOOOl PGLOCKED=OOOl

Field

OECS
053E

(053D)

00000040b
00002DCOb

PDB
GDI

(OFlD)

DATA

MOVEABLE

LOCKED=OOOOl

PGLOCKED=OOOl

Description

Either a handle to the memory object, expressed
as a 4-digit hex value, or the word FREE,
indicating a free memory block.

A memory selector pointing to an entry in the
global descriptor table. The selector isn't displayed
if it's the same value as the memory handle.

A hexadecimal number representing the length of
the segment in bytes.

The allocator of the segment, usually an
application or library module. A PDB is a process
descriptor block, also known as a program
segment prefix (PSP).

A handle indicating the owner of a PDB.

The type of memory object. The types are:

DATA Data segment of an application or DLL

CODE Code segment of an application or DLL

PRIV Either a system object or global data for
an application or DLL

A memory allocation attribute. An object can be
FIXED, MOVEABLE, or MOVEABLE
DISCARD ABLE.

For a moveable or moveable-discardable object,
the number of locks on the object that have been
set using either the GlobalLock or LockData function.

For 386 Enhanced mode, the number of page locks
on the object that have been set using the
GlobalPageLock function. With a page lock set on a
memory object, Windows can't swap to disk any of
the object's 4-kilobyte pages.

Turbo Debugger User's Guide

Listing the contents of
the local heap

The local heap is a private memory area for the application. It is
not accessible to other Windows applications, including other
instances of the same application.

A program doesn't necessarily have a local heap. Windows
creates a local heap if the application's definition file has the
HEAPSIZE statement in it or the application uses the LocalAlloc
function.

To see a list of the data objects in the local heap, select the Local
Heap radio button in the Windows Information dialog box, then
choose OK. The data objects will be listed in the Log window. The
caution in the previous global heap section about using a log file
or increasing the number of lines that can be written in the Log
window also applies to the local heap.

The following table shows a typical line of local heap output
followed by an explanation of its format:

Table 17.3
Format of a local heap list Local heap output

~~~~~~~~~~~~~~~~~~~~~~~~~-

Obtaining a list of 
modules 

05 CD: 0024 BUSY (10AF) 

Field 

05CD: 

0024 

BUSY 

(lOAF) 

Description 

The object's offset in the local data segment 

The length of the object in bytes 

The disposition of the memory object, as follows: 

FREE An unallocated block of memory 

BUSY An allocated object 

A local memory handle for the object 

To see a list of the task and DLL modules that have been loaded 
by Windows, select the Module List radio button in the Windows 
Information dialog box, then choose OK. The modules will be 
listed in the Log window. 

Chapter 17, Turbo Debugger for Windows (TOW) 275 



Table 14.l 
Format of a Windows module 

list 

Debugging 
dynamic link 

libraries (DLLs) 

TOW can load a DLL that 
doesn't have a symbol table, 
but only into a CPU window, 

and only if you are 
debugging in a CPU window. 

276 

The following table shows three sample lines of a module list 
followed by an explanation of the last line in the list: 

Sample module list output 

0985 TASK TDW C:\TD\TDW.EXE 
OE2D DLL WINDEBUG C:\WIN3\WINDEBUG.DLL 
OEFD TASK GENERIC C:\TD\GENERIC.EXE 

Field Description 

OEFD A handle for the memory segment, expressed 
as a 4-digit hex value. 

TASK The module type. A module can be either a 
task or a DLL. 

GENERIC The module name. 

C:\ TD\ GENERIC.EXE The path to the module's executable file. 

A OLL is a Windows library of routines and resources that is 
linked to your application at runtime instead of at compile time. 
This runtime linking allows multiple applications to share a single 
copy of routines, data, or device drivers, thus saving on memory 
usage. When an application that uses a OLL starts up, if the OLL 
is not already loaded into memory, Windows loads it in so the 
application can access the OLL's entry points. 

When you load an application into TOW that has OLLs linked 
into it, TOW determines which of these OLLs, if any, have symbol 
tables (were compiled with the debugging option turned on) and 
tracks these OLLs for you. If, during execution of your appli­
cation, TOW encounters a call to an entry point for one of these 
OLLs, TOW loads the symbol table and source for that OLL and 
positions the module line marker at the beginning of the OLL 
routine called by your application. The OLL is then available in 
the module window just as your application source code was. 

When the OLL routine exits, TOW reloads your application's 
symbol table and source code and positions the line marker on the 
next statement after the call to the OLL entry point. 

Because so much of OLL debugging is automatic with TOW, you 
never have to specify which OLLs to load. However, you might 
want to perform other tasks, such as: 

Turbo Debugger User's Guide 



Figure 17.5 
The Load Modules or DLLs 

dialog box 

Using the Load 
Modules or Dlls dialog 

box 

•Adding a DLL to the list of DLLs 
•Setting breakpoints, watches, and so on, in a DLL 
• Specifying which DLLs TDW is not supposed to load 
•Debugging DLL startup code 

To perform any of these tasks, you have to access the Load 
Modules or DLLs dialog box by using the View I Modules 
command. (Pressing F3will also bring up this dialog box.) 

This dialog box enables you to do two things: 

• Change to another source module of your application 

• Perform operations (such as loading in a symbol file and source 
file) on DLLs and .EXE files 

Changing source modules 

If you're debugging an application consisting of multiple source 
modules linked into one .EXE file and you need access to a 
module of the application other than the one currently in the 
Module window, you can bring up the Load Modules or DLLs 
dialog box and pick one of the modules in the list on the left, the 
Source Modules list. All the modules linked into your application 
are on this list. 

To pick a module, highlight it, and then either press Enter, click 
twice with the mouse, or choose the Load box. TDW displays the 
Module window with the new source module in it. 

Working with Dlls and programs 

When you're debugging an application that has one or more 
DLLs associated with it (as does any Windows application) and 

Chapter 7 7, Turbo Debugger for Windows (TDW) 277 



Table 17.5 
DLLs & Programs list dialog 

box buttons 

278 

you bring up the Load Modules or DLLs dialog box, you see in 
the DLLs & Programs list (the list on the right) a list of DLLs and 
.EXE files. This list includes all DLL and .EXE files Windows 
currently has loaded, as well as all DLLs that get started when 
your application starts up. It does not include any DLLs your 
application starts with a LOADLIBRARY call unless one of these 
DLLs is already loaded by your program or by Windows. 

The items at the top of this list, marked on the right with an oval, 
are your application's .EXE file and the DLLs with symbol tables 
that your application calls. If you make no changes, TDW 
automatically loads in the symbol table and source for each 
marked DLL whenever your application makes a call to that DLL. 
In addition, TDW automatically loads the symbol table and 
source of any DLL your application starts with a LOADLIBRARY 
call, even though the DLL might not appear on the list at first. (It 
will appear there after TDW loads it.) 

The buttons to the right of this list let you perform operations on 
the DLL or application you have highlighted. The text entry box 
underneath the list lets you add a DLL to the list. You can use 
these features as follows: 

Button 

Symbol load 

Load symbols (No/Yes) 

Debug startup (No/Yes) 

Description 

Load in the symbol table and source files 
for the DLL or application. This command 
changes the contents of the Module 
Window so you can set breakpoints, 
Windows messages, and so on for the DLL. 

Choose whether to load the DLL symbol 
table and source when the application 
makes a call to the DLL. You might use this 
option to prevent TDW from loading the 
symbol table and source of a DLL that you 
don't need to debug. The default setting is 
Yes. 

Choose whether to debug startup code for 
the DLL. The default setting is No. 

Turbo Debugger User's Guide 



Adding a DLL to the 
DLLs & Programs list 

There are two different types 
of startup code mentioned in 

this section: your 
applications startup code 

and DLL startup code. Some 
DLLs are started in your 

applications startup code. 
When your application starts 
a DLL the DLL s startup code 

is then executed. 

There ore also two types of 
DLL startup code, explained 

later on page 280. 

Setting debug options 
in a DLL 

Table 17.5: DLLs & Programs list dialog box buttons (continued) 

Button 

DLLName 

AddDLL 

Description 

Enter the name of a DLL that isn't on the 
DLLs & Programs list so you can add it to 
the list. Adding a DLL to the list enables 
you to use one of the previous three 
commands on it. You can use a full path 
name if necessary. 

Add the DLL in the text entry box to the 
DLLs & Programs list. 

Before you can set debug options, debug DLL startup code, or 
prevent TOW from loading a DLL's symbol table and source, the 
DLL must first be in the DLLs & Programs list. A DLL accessed by 
your application might not be in this list because, just after your 
application loads, TOW only knows about DLLs that are linked 
into the startup code of your application. Your application can 
also start a DLL explicitly by using the LOAD LIBRARY command; 
TOW won't know about it until your application calls 
LOAD LIBRARY. 

If you want to add a DLL to the DLLs & Programs list, bring up 
the Load Modules or DLLs dialog box (press F3 or use the View I 
Modules command), move to the DLL Name text entry box, enter 
the name of the DLL (enter the full path if necessary), then press 
the Add DLL button to add it to the list. 

If you want to set breakpoints or watches or some other debug 
option for a DLL, bring up the Load Modules or DLLs dialog box 
(press F3 or use the View I Modules command), find the DLL on 
the DLLs & Programs list, highlight it, and then use the Symbol 
Load command to bring up the Module window with the DLL in 
it. Once you're in the Module window you can perform your 
operations on the DLL. 

When you're finished with the DLL, before you can return to 
debugging your application you must load in the symbol table 
and source for the application. Bring up the Load Modules or 
DLLs dialog box, select the .EXE file for your application, and 
press the Symbol Load button. 

Chapter 17, Turbo Debugger for Windows (TOW) 279 



Controlling TDW's 
loading of DLL symbol 

tables 

Debugging DLL startup 
code 

By default, TOW loads in the symbol table and source of every 
DLL that your applic<:ttion accesses, but only if the DLL has a 
compatible symbol table. A DLL has a symbol table compatible 
with TOW if it was compiled with debugging information turned 
on and the compiler was Borland C++. The symbol table of a DLL 
compiled using Microsoft C 6.0 or later with debugging 
information turned on can be made compatible by running 
TOCONVRT on the DLL. (See the MANUAL.DOC file for more 
information on TOCONVRT.) 

Because it takes time to load in a DLL's symbol table and then 
load in the original application's symbol table once the DLL 
routine has finished, you might want to disable TOW's default 
operation for DLLs you don't want to debug. To prevent TOW 
from loading a DLL's symbol table, bring up the Load Modules or 
DLLs dialog box (press F3 or use the View I Modules command), 
find the DLL on the DLLs & Programs list, highlight it, and then 
push the Load Symbols No button. 

TOW by default does not debug DLL startup code and only loads 
a DLL's symbol table when your application makes a call to a DLL 
entry point. TOW then brings up the Module or CPU window 
with the current line marker at the beginning of the DLL routine 
called by the application. 

TOW will debug DLL startup code if you tell it to. You can use 
TOW to debug either of two types of DLL startup code: 

What kind of startup code •The initialization code immediately following LibMain (the 
are you debugging? default) 

Is your application already 
loaded? 

280 

•The assembly-language code linked into the DLL that does 
initial startup and contains emulated math packages for the size 
model the DLL is running in (selected by starting TOW with the 
-I command-line option) 

After you specify startup debugging for one or more of the DLLs 
in your application, TDW loads in the symbol table for each DLL 
either when your application startup code starts the DLL or when 
your application makes a LOADLIBRARY call. 

If you try to load your application and then set startup 
debugging, TOW might not behave as you expect, since some or 

Turbo Debugger User's Guide 



Doing startup code 
debugging 

all of the DLLs might already have been loaded. Therefore, you 
should set startup debugging either 

•By setting the DLLs before you load your application 

•By loading your application, indicating the DLLs for startup 
debugging, and then restarting your application ( Ctrl-F2 or Run I 
Program Reset) 

With all these preliminaries in mind, use the following steps to 
specify startup debugging for one or more DLLs and to debug 
those DLLs' startup code: 

1. Bring up the Load Modules or DLLs dialog box (press F3 or 
use the View I Modules command). 

2. Find a DLL on the DLLs & Programs list and highlight it. 

3. Push the Debug Startup Yes button. 

4. Repeat steps 2 and 3 until you've set startup debugging for all 
DLLs you're interested in. 

5. If a DLL you want isn't on the list or there are no DLLs on the 
list (because you haven't loaded your application yet), use the 
DLL Name text entry box to enter each DLL name, add it to 
the list using the Add DLL button, and then push the Debug 
Startup Yes button. 

6. When you've set all the DLLs for which you want to debug 
startup code, the next step is either to use the File I Load 
command to load in your application (if you haven't loaded it 
yet) or to use the Run I Program Reset command to reload 
your application (if you loaded it before setting startup 
debugging). 

7. As your application starts each DLL, TDW puts you either in 
the module window at the DLL's LibMain (the default) or in 
the CPU window at the start of the assembly code listing for 
the startup library (because you ran TDW using the -I option). 

8. When you've finished debugging startup code for a DLL, press 
F9 to run through the end of the startup code and return to the 
application. If you've specified any more DLLs for startup 
code debugging, TDW displays startup code for those DLLs 
when your application starts them. 

¢ Be sure to run to the end of a DLL's startup code before reloading the 
current application or loading a new one. If you don't, the partially 
executed DLL startup code can cause Windows to hang, forcing 
you to reboot. 

Chapter 7 7, Turbo Debugger for Windows (TOW) 281 



Converting 
memory handles 

to addresses 

Debugging tips 

282 

Windows uses memory handles instead of addresses for memory 
objects because it performs its own memory management and can 
change the physical location in memory of an object. ff you need 
the actual address referred to by a memory handle, you can use 
the Turbo Debugger built-in typecast symbols lh2fp (for a local 
handle) and gh2fp (for a global handle) to dereference the handle. 

You use these typecasting symbols in TDW just as you use the 
regular C typecasting symbols for pointers. For example, you 
could cast the local memory handle hLocalMemory using two 
methods: 

•You could use the Data I Inspect window to evaluate the 
folowing expression: 

(lh2fp) hLocalMemory 

•You could use the Type Cast command in the Inspector local 
window and enter lh2fp as the type. 

In either case, the expression evaluates to the first character of the 
memory block pointed to by hLocalMemory. 

You could also use either of these techniques to do a more compli­
cated cast - for example, a 2-stage cast from a handle into a far 
character pointer into a far pointer to the data in memory, as 
follows: 

(Mystruct far *) (lh2fp)h1oca1Memory 

Because Windows applications are interactive programs, the best 
way to debug one is to run the application and then interrupt it or 
cause it to encounter a breakpoint. 

As a primary debugging technique, stepping or tracing through a 
Windows application can be of marginal utility, because even­
tually you will reach the code that sits in a loop, waiting for a 
message for a window. Instead, you should set code and message 
breakpoints if possible, run your program until it encounters one 
of these breakpoints, and then step or trace if necessary. 

If you do step into the message loop, you can press the Alt-F5 key 
combination to see the application screen, but you won't be able 

Turbo Debugger User's Guide 



Interrupting a DOS 
application terminates it, but 

interrupting a Windows 
application only suspends it. 

to interact with the program. Instead, you can press F9 to run the 
program so you can use the application's windows, but what 
happens if you need to get back to TDW to track down a bug that 
shows up while you're using one of your application's windows? 

With a DOS application, you can press Ctrl-Break to interrupt the 
program and return to Turbo Debugger, but that key combination 
has no effect on a Windows application. There is, however, a way 
to interrupt your program: you can press the Ctrl-Alt-SysRq key 
combination. Once you're back in TDW, you can set code or 
message breakpoints, set up views, look at any messages you 
might have been logging, or whatever else you need to do to track 
the bug. When you're ready to return to the application again, 
press the F9 key. 

When your application is interrupted, there are two things you 
should not do: 

•Single-step through your program. Attempting to single-step 
after interrupting your application can have unpredictable 
effects, because your application might have been executing 
Windows code. A typical result is that Windows terminates 
both your application and TDW, generating the message, 
"Unrecoverable application error." 

•If your application was executing Windows code, do not 
terminate either your application or TDW. If you do, Windows 
gets confused and hangs, forcing you to reboot. If you do try to 
exit or reload in this situation, TDW will display the following 
prompt in a dialog box: 

Ctrl-Alt-SysRq interrupt. System crash possible. Continue? 

TDW error messages 

There are only two error messages returned solely by TDW. In 
addition, Turbo Debugger error messages pertaining to TDW 
operations can be returned, such as "Symbol not found" in 
response to an nonexistent window proc name. 

Invalid window handle 
While trying to set up message logging for a window in your 
program, you have entered a handle variable name that hasn't 
been assigned a handle. Single-step through your program 

Chapter 7 7, Turbo Debugger for Windows (TOW) 283 



284 

past the statement that assigns a value to the handle variable, 
and then try entering the name again. 

Ctrl-Alt-SysRq interrupt. System crash possible. Continue? 
You attempted either to exit TDW or to reload your appli­
cation program while the program was suspended as a result 
of your having pressed Ctrl-Alt-SysRq. Because Windows kernel 
code was executing at the time you suspended the application, 
exiting TDW or reloading the application will have 
unpredictable results (most likely hanging the system and 
forcing a reboot). 

If possible, set a breakpoint in your code and run your 
program again. When your program encounters the break­
point and exits to TDW, you can terminate TDW or reload 
your program. 

Turbo Debugger User's Guide 



c H A p T E R 

18 

Debugging a Windows application 

As mentioned in Chapter 17, debugging a Microsoft Windows 
application can be very much like debugging a DOS application, 
especially if the DOS application is an interactive one. All the 
techniques mentioned in Chapter 14, "How to debug a program," 
also apply to Windows programs. 

Because a Windows application uses the Windows Application 
Program Interface (API), there are many additional ways to mess 
up a program. This chapter doesn't attempt to tell you how to 
avoid the pitfalls of Windows programming: the purpose of this 
chapter is to show you how to use TDW features to find bugs in a 
sample application. 

The sample programs 

There are three sample programs provided with TDW, all of 
which require a mouse. The programs are: 

• BCWDEMO.EXE, the executable file for a program called 
Simple Paint. This program allows you to draw lines, ellipses, 
and rectangles in three colors and three pen thicknesses. It's 
installed under the Program Manager by the installation 
program and can be run by choosing its icon. BCWDEMO.EXE 
is accompanied by a source file, BCWDEMO.C, and a project 
file, BCWDEMO.PRJ. 

Chapter 78, Debugging a Windows application 285 



• BCWDEMOA.EXE, the executable file that contains all the bugs. 
It's accompanied by a source file, BCWDEMOA.C, and a project 
file, BCWDEMOA.PRJ. 

• BCWDEMOB.EXE, the executable file that has the first bug 
from BCWDEMOA removed. It's accompanied by a source file, 
BCWDEMOB.C, and a project file, BCWDEMOB.PRJ. 

In addition, there are several files common to all three versions of 
the program, as follows: 

• BCWDEMO.DEF is the module definition file. 

• BCWDEMO.H is the header file. 

• BCWDEMO.RC is the source for the resource file. 

• BCWDEMO.RES is the compiled resource file. 

Compiling and linking the demo programs 

You've been supplied with three versions of the demo program to 
make it easier to follow the steps in this chapter. If you prefer, you 
can make the changes to the programs yourself. You can use 
Borland C++ and compile and link from the Interactive 
Development Environment using the provided project files. 

See the Borland C++ User's Guide for more information on 
compiling Windows programs using project files. 

Debugging BCWDEMOA 

You might want to play with 
BCWDEMO.EXE a bit before 

starting the debugging 
session, just to get some Idea 

of what the program Is 
supposed to do. 

286 

The first program you will debug is BCWDEMOA. Start 
Windows, run TDW, then load in BCWDEMOA. When you see 
the program source code come up in the Module window, press 
the F9 key to run the sample program. 

What you see is the display screen for Simple Paint with the 
cursor as an hourglass, indicating that some processing is going 
on. Normally, the hourglass would disappear quickly and an 
arrow would replace it. Since the hourglass doesn't disappear at 
all, something must be wrong. 

To get back to TDW so you can figure out what's going on, press 
the Ctrl-Alt-SysRq key combination to suspend the application. 

Turbo Debugger User's Guide 



Deciding what to 
do 

Terminating 
BCWDEMOA 

When you are back in TDW, the next step is to decide how to 
check what's going wrong with the program. Typically, if a 
Windows application hangs or dies when it first starts up, you 
reload it and begin single-stepping through the window initial­
ization routines. If you make it as far as the message loop, you can 
then log Windows messages to see what messages are coming 
into the program. 

Since the initial screen gets drawn, you know the program has 
gotten as far as the message loop, because it has to be processing 
Windows messages in order to draw the screen. Therefore, you 
can skip the single-stepping and go directly to logging messages. 
Knowing which messages have been processed will at least give 
you some idea what parts of the code have been used. 

It would be possible to set the messages you want to log and 
return to the program by pressing F9, but exiting the program and 
starting over would provide a more accurate picture of what hap­
pened. Because you suspended the application using Ctrl-Alt-SysRq, 
exiting the program at this point might hang the system if 
Windows kernel code was executing at the time you interrupted 
your program. To terminate the program, perform the following 
steps: 

1. Use the Run I Program Reset command ( Ctrl-F2) to reload the 
program. 

2. If the program reloads, you're in the module window at 
WinMain. Everything went fine, and you can skip the rest of 
these steps and continue with the "Logging messages" section. 

3. If you get a message box saying "Ctrl-Alt-SysRq Interrupt. 
System crash possible. Continue?", choose No to cancel the 
program reset. What you need to do now is to make the 
application exit by setting a message breakpoint. 

4. Choose the View I Windows Messages command to bring up 
the Windows Messages window. 

5. The cursor is in the top left pane, the Window Selection pane. 
Bring up the local menu (press Alt-F10), then choose Add. 

Chapter 78, Debugging a Windows application 287 



288 

Logging 

6. Enter the name of the routine where the messages for this 
window are processed. In this program, there is only one 
window, and therefore only one message-processing routine, 
WndProc. 

7. Press Enter to accept the entry. 

8. Using the Tab key or the mouse, move to the top right pane, 
the Message Class pane, then bring up the local menu and 
choose Add. 

9. From the Set Message Filter dialog box, select All Messages as 
the message class and Break as the action, then press Enterto 
add this message class. TDW will now cause the program to 
break on the next message that comes in. 

10. Press F9 to run the program again. It will break on the next 
message and return you to TDW. 

11. When you're back in TDW, position the cursor on WinMain, 
then use the Run I Program Reset command again to reload 
BCWDEMOB. When the program has reloaded, you'll be able 
to continue. 

messages This time, you'll tell TDW to log all messages before starting the 
program. Open the Windows Messages window by using the 
View I Windows messages comm'!-nd, then add WndProc to the top 
left pane. You'll see "Log all messages" appear in the top right 
pane. Since this is what you want, you're done with this window. 

Because you're logging an unknown number of messages, it's 
possible that TDW might run out of messae;e space (200 messages) 
before you return from the program, so you'll need to be sure 
these messages are saved to a file. Do the following: 

1. Move to the bottom pane of the Window Messages window 
and bring up the local menu. 

2. Select the Send To Log Window commcµld. If it's set to No, 
press Enter to toggle it to Yes. 

3. Get into the Log window by using the View I Log command, 
then bring up the local menu. 

4. Choose Open Log File and press Enter to accept the default log 
file name, BCWDEMOA.LOG. 

Turbo Debugger User's Guide 



Analyzing the 
message log 

Finding the bug 

Now you're ready to run the program by pressing F9. When the 
screen comes up, press Ctrl-A/t-SysRq to return to TOW. 

In the bottom pane of the Windows Message window, you see a 
lot of WM_PAINT messages and probably nothing else. To see all 
the messages that came back, use the View I File command to 
bring up a list of files in the current directory. Choose 
BCWDEMOA.LOG to see the log file. 

What you should see is a fairly short list of window initialization 
messages (16 or so) followed by a very long list of WM_P AINT 
messages. What appears to have happened is that Windows 
began sending the messages to set up the initial screen, but got 
stuck on the WM_PAINT message. This analysis reflects what you 
saw when the program started up: the screen came up, but 
nothing else happened. 

So where do you go from here? You could start looking through 
the code to see if there's an area where WM_P AINT is handled. 
However, a more attractive alternative is to set a message 
breakpoint to put as at the right spot, and then begin stepping 
through the program to see where the problem is. 

Setting the message breakpoint will also undo the Ctrl-Alt-SysRq exit 
from the application, which might make it unsafe to step through 
a program or exit from TOW. Since WM_P AINT is the message 
the program is stuck on, set TDW to break on the WM_P AINT 
message, and then run the program again, as follows: 

1. Get into the Windows Messages window again, move to the 
top right pane, bring up the local menu, and choose Add. 

2. The Set Message Filter dialog box comes up with Single 
Message already selected and the cursor in the Single Message 
Name text entry box. Enter WM_P AINT (be sure to use capital 
letters, or TDW won't find a match), then select Break as the 
action. 

3. Press F9 to run the program. 

The program breaks immediately and leaves you on the first line 
of WndProc. (You'll have to clear the Windows Messages window 
from the screen to get an unobstructed view of the code.) This 

Chapter 78, Debugging a Windows application 289 



The WndProc routine 

Stepping through the 
program 

The DoPaint routine 

290 

routine consists entirely of a switch statement on the messages 
handled specially by the program, as follows: 

long FAR PASCAL WndProc (HWND hWnd, unsigned Message, 
WORD wParam, LONG lParam) 

switch(Message) 
{ 

case WM COMMAND: 
return DoWMCommand(wParam); 

case WM LBUTTONDOWN: 
DoLButtonDown(hWnd,lParam); 
break; 

case WM LBUTTONUP: 
DoLButtonUp(hWnd,lParam); 
break; 

case WM MOUSEMOVE: 
DoMouseMove(hWnd,lParam); 
break; 

case WM PAINT: 
DoPaint (hWnd) ; 
break; 

default: 
return DefWindowProc(hWnd,Message,wParam,lParam); 

return 0; 

Begin pressing the Fl key to single-step through the program. The 
current-line marker will step down to the WM_PAINT case, and 
then will arrive at the DoPaint routine: 

void DoPaint(HWND hWnd) 
{ 

int i, 
saveROP; 

HDC hdc, 
hMemDC; 

RECT theRect, 
destRect; 

HBITMAP theBitmap; 
PAINTSTRUCT ps; 

if (CurrentPoint >= 0) 
{ 

hdc = BeginPaint(hWnd,&ps); 

Turbo Debugger User's Guide 



I* 
* Determine which rectangle on the window is invalid. 
* If no rectangle is marked invalid, it will be a full 
* window repaint. 
*/ 

GetUpdateRect(hWnd,&theRect,0); 
if (IsRectEmpty(&theRect)) 

GetClientRect(hWnd,&theRect); 

/* 
* Create a memory DC and bitmap the same 
* size as the update rectangle. 
*/ 

hMemDC = CreateCompatibleDC(hdc); 
theBitmap = CreateCompatibleBitmap(hdc, 

theRect.right-theRect.left, 
theRect.bottom-theRect.top); 

SelectObject(hMemDC,theBitmap); 

/* 
* Erase the memBitmap. 
*I 

BitBlt(hMemDC, 0, 0, 
theRect.right-theRect.left, 
theRect.bottom-theRect.top, 
hdc, 0, 0, SRCCOPY); 

/* 
* Draw only those shapes that lie 
* within the update rectangle. 
*I 

for (i = 0; i <= CurrentPoint; ++i) 
{ 

IntersectRect(&destRect, &thisShape[i] .Points, &theRect); 
if (!IsRectEmpty(&destRect)) 

I* 

DrawShape(hMemDC, 
thisShape[i] .Points.left-theRect.left, 
thisShape[i].Points.top-theRect.top, 
thisShape[i] .Points.right-theRect.left, 
thisShape[i].Points.bottom-theRect.top, 
thisShape[i] .theShape,thisShape[i] .PenWidth, 
thisShape[i].PenColor,thisShape[i] .Slope); 

* Note that when drawing the shape, the program 
*transformed the shape's position so that the origin 
* was at the upper-left corner of the update rectangle. 
* This is the point (0,0) on the bitmap that will 
* map onto (theRect.left,theRect.right). 
*/ 

Chapter 78, Debugging a Windows application 291 



292 

I* 
* Finally, copy the bitmap onto the update rectangle. 
*I 

BitBlt(hdc, theRect.left, theRect.top, 
theRect.right-theRect.left, 
theRect.bottom-theRect.top, 
hMemDC, 0, 0, SRCCOPY); 

DeleteDC(hMemDC); 
DeleteObject(theBitmap); 
ReleaseDC(hWnd,hdc); 
EndPaint(hWnd,&ps); 

As you continue to single-step, you'll notice that the only line of 
code that gets executed inside DoPaint is 

if (CurrentPoint >= 0) 

Control then returns to the message loop, where the program 
picks up the next message, WM_P AINT, and then loops through 
WndProc and DoPaint again. DoPaint is obviously doing 
something wrong, but what is it supposed to do? 

Analyzing DoPaint The purpose of this routine is either to paint the entire screen the 
first time the routine is called or to repaint an area of the screen, 
the current rectangle, if something has been drawn on the screen. 
To determine if something has been drawn, DoPaint tests the 
value of CurrentPoint, initially set to -1. (CurrentPoint indicates the 
number of objects that have been drawn.) If the value of 
CurrentPoint is -1, as it is when the program first starts and the 
initial screen is drawn, there's no need to get the contents of the 
current rectangle and redraw it, so it skips all the code inside the 
if statement and returns, letting Windows redraw the entire 
screen. 

If you check the value of CurrentPoint by using the View I Watches 
window, you'll see that its value remains -1 whenever you step 
through the routine. This makes sense, since you never even get a 
chance to draw anything. 

Turbo Debugger User's Guide 



Fixing the bug 

See page 8 for a list of 
reference books. 

Terminating 
BCWDEMOA 

At this point, if you check Programming Windows by Charles 
Petzold to see how Windows handles the WM_P AINT message, 
the cause of the problem will become clear. The minimum 
response required by Windows to a WM_P AINT message is a call 
to BeginPaint followed by a call to EndPaint. If these routines 
aren't called, Windows never gets notified that its WM_PAINT 
message has been received, and it continues sending WM_P AINT 
messages to the program. 

You'll see in the code that BeginPamt was put inside the if 
statement, so it never got called when the screen was first drawn. 
Moving the BeginPaint statement before the if statement should 
take care of that problem. 

How about the EndPaint statement? It, too, is inside the if 
statement, along with a call to ReleaseDC, which releases hdc, the 
handle to the device context set by the call to BeginPaint. These 
two lines should be placed after the if statement. 

The WM_PAINT bug has been corrected in BCWDEMOB, the 
next version of the program you'll be looking at. Before loading 
this program in, it's a good idea to terminate BCWDEMOA in 
order to release any system resources it might be using. Since the 
only problem with the program is that code inside the if statement 
isn't being executed on the first pass, setting the value of 
CurrentPointer to zero should cause the code to execute, allowing 
you to exit the program. The following steps will allow you to 
terminate the program: 

1. In the Windows Messages window, remove the window 
procedure name WndProc from the top left pane so the 
program won't break on WM_PAINT. 

2. Press F7 till the following line is displayed: 
if (CurrentPointer >= 0) 

3. Highlight CurrentPoint, then press Ctrl-F4 to get the Evaluate I 
Modify screen. 

4. Choose Eval. 

5. Move the cursor to the New Value entry field, enter 0, then 
choose Modify to change the variable's value. Now when you 

Chapter 78, Debugging a Windows application 293 



run the program, the if statement will evaluate to TRUE and 
the BeginPaint and EndPaint calls will execute on the first pass. 

6. Press F9 to run the program. 

7. Select Quit to exit the program. You might have to press a key 
to get the command to take effect, because Windows might be 
refusing to release mouse input messages from the system 
queue. Pressing a key will release all mouse input messages 
currently in the queue. 

Debugging BCWDEMOB 

Switching out of 
the program 

294 

When you've terminated BCWDEMOA, you're ready to load in 
BCWDEMOB. When the program displays on the screen, press F9 
to run it, then play with it for a while. 

If you draw lots of objects, and especially if you move the mouse 
around a lot with the right button pressed, you'll notice that 
eventually strange things start to happen. You might notice first 
that response slows down, then the objects disappear or the color 
and thickness of the lines change, and then the screens get messed 
up. Eventually, everything grinds to a halt, and you have to do a 
cold boot. 

The most likely cause of all these problems is some kind of misuse 
of memory. To verify that this is the case and start looking for the 
bug, load Windows again, run only the Program Manager and 
TDW if possible (to minimize memory usage), and load 
BCWDEMOB into TDW again. 

Before continuing with the debugging session, you might want to 
set things up so you don't have to use Ctrl-A/t-SysRq to switch out of 
the application, because you have to be so careful with TDW 
when using that method. The trick is to set a single message on 
which to break, one that you can produce at will while in the 
program, but that won't occur during normal operation. 

Because BCWDEMO is a mouse-driven graphics program that 
takes no text input, there's no need to use keys; therefore, a good 
choice for a message to break on is WM_KEYFIRST. After setting 
this message in the View I Windows Messages window, the 
program will break whenever you press a key. (Because the 

Turbo Debugger User's Guide 



Testing the 
program 

Deciding what to 
do 

program doesn't respond to the right mouse button, you could 
also use WM_RBUTIONDOWN.) 

Now you can press F9 to run BCWDEMOB. Before doing 
anything in the program, check to see what percentage of system 
memory is available to Windows programs by switching to the 
Program Ma..'l.ager, choosi..'1.g Help, and then choosing About 
Program Manager. An information box will appear showing what 
version of Windows is running, how much free memory there is, 
and then, at the bottom, the statistic you're interested in, the 
percentage of Free System Resources. 

Now get back to Simple Paint and do some drawing. After a 
while, bring up the About Program Manager screen again, and 
you'll see that the amount of system resource memory has 
decreased. If you keep drawing in Simple Paint, eventually the 
resources will dwindle to zero, and you'll get the same effects as 
before. 

What do you know at this point? For one thing, the program must 
be allocating global memory, because it eats up all the system 
resources available to Windows. That knowledge could give you 
a place to start: you could reload the program, use TDW's global 
memory feature to save a list of global memory to a log file, draw 
in Simple Paint for a while, and then save another list of global 
memory to another log file. 

Because Windows is likely to have moved things around in 
memory by the time the second list comes out, the two lists 
probably won't match. You'll have to go through each object on 
the list and match it with objects having the same owner on the 
other list to see if a pattern emerges. 

Because it's so slow and the results are marginal, this method is 
suggested only as an exercise in looking at global memory. The 
method you'll actually use is to look at any memory objects that 
the program allocates and see if the program also deallocates 
them. 

Chapter 18, Debugging a Windows application 295 



296 

Comparing 
global memory 

lists 
If you do want to produce the global memory lists, do the 
following: 

1. Restart Windows to ensure that global memory is cleared of 
any memory objects allocated by .BCWDEMOB. Again, avoid 
starting any unnecessary programs to cut down on the 
number of global memory objects. 

2. Once you're in TDW and you have BCWDEMOB loaded, set 
the program to break on WM_KEYFIRST again. 

3. Press F9 to run the program, then press a key to exit back to 
TDW. 

4. Choose View I Log and bring up the local menu. 

5. Choose Open Log File, enter a log file name when the dialog 
box comes up, then press Enter. 

6. Bring up the Log window local menu again, choose Display 
Windows Info, then press Enter when the Windows 
Information dialog box comes up. Pressing Enter accepts the 
default setting, which lists global memory objects starting at 
the top of memory. 

7. When TDW has finished listing global memory, bring up the 
local menu again and choose Close Log File to close the file. 

8. Choose Erase Log from the local menu to clear the log. 

9. Press F9 to run the program again, then use the mouse to 
check the About Program Manager box. Note the percentage 
of system resources available. 

10. Draw enough in Simple Paint to bring the percentage of 
system resources down 20 or 30 percent. 

11. Press a key to return to TDW, and then perform steps 4 
through 8 again, this time using a different log file name. 

12. Exit TDW, then print the log files and compare them. 

If you do go through this process, you'll notice at least two things: 

•The memory objects owned by BCWDEMO don't change in 
size. 

• The GDI memory objects do increase in size. 

Turbo Debugger User's Guide 



Finding the bug, 
a functional 

approach 

Choosing menu items 

The first item supports something you already know: that the 
buggy code in BCWDEMOB is allocating global memory, not local 
memory. 

The second item tells you something new: BCWDEMOB is 
allocating Graphics Device Interface objects and not releasing 
them. 

Now that you have an idea what the bug is, you can begin 
searching through the program to find places where it allocates 
memory objects and doesn't delete them. A useful approach 
might be to do a functional overview of the program and examine 
each routine as you go. 

You select menu items by moving the cursor to the menu, 
pressing the left mouse button, and moving down the menu until 
you've made a selection that changes the color, pen thickness, or 
shape. Changing one of these settings causes Windows to send a 
WM_ COMMAND message to the WndProc routine, which 
handles the message by making a call to Do WM Command. 

DoWMCommand is a switch statement that saves your selection in 
a program variable. These variables are stored in the BCWDEMO 
data segment and don't affect global memory. 

Drawing a shape You draw a shape by positioning the cursor in the client area of 
the window, holding down the left mouse button, moving the 
mouse, and then releasing the left button. If you move the mouse 
around with the left button depressed, you might notice that the 
shape gets drawn, then erased, then redrawn as the mouse moves. 
The shape is permanently drawn on the screen only when you 
release the left button. 

Pressing the left mouse button 

When you press the left mouse button in the client area, Windows 
sends a WM_LBUITONDOWN to WndProc, which calls 
DoButtonDown. This routine saves the current mouse position 
(called the anchor from now on) and pen settings in the thisShape 
structure. This structure is a program variable and affects only the 
BCWDEMO data segment. 

Chapter 78, Debugging a Windows application 297 



298 

Moving the mouse 

When you move the mouse after pressing the left mouse button in 
the client area, Windows sends a WM_MOUSEMOVE (or 
WM_MOUSEFIRST, which is the same message) to WndProc, 
which calls DoMouseMove. This routine uses DrawShape to erase 
the shape from the previous mouse position back to the original 
position, and then calls DrawShape again to draw the shape from 
the current position to the anchor. The only use of global memory 
in DoMouseMove is in obtaining the device context of the current 
window, and this device context is released at the end of the 
routine with a call to ReleaseDC. 

Drawing the shape (and finding the bug) 

The next routine to look at is DrawShape, which is called twice by 
DoMouseMove. DrawShape saves the previous pen used to draw 
the last shape, creates a new pen, and then draws either a line, an 
ellipse, or a rectangle. The last thing it does is to restore the pen it 
saved at the beginning of the routine. 

Because a pen is a Graphics Device Interface (GDI) object that gets 
allocated in global memory, DrawShape could contain code that 
causes the memory problems. This routine is particularly suspect, 
because it gets called twice every time the mouse moves. If it's 
creating pens and not deleting them, it will eat up memory pretty 
quickly. 

Sure enough, near the beginning, DrawShape allocates a pen with 
a call to SelectObject, but at the end it doesn't call DeleteObject to 
deallocate the pen. To correct this bug, you would replace the last 
line in DrawShape with the following code: 

DeleteObject(SelectObject(hdc,saveObject)); 

It's possible that you've found the only cause of the memory 
problems at this point, but just to be sure, you need to look at rest 
of the drawing process. 

Releasing the left button 

When you release the left mouse button, BCWDEMOB draws the 
figure for the last time and leaves it on the screen. Releasing the 
button causes Windows to send a WM_LBUTTONUP message to 
WndProc, which calls DoLButtonUp. This routine saves the current 
rectangle in the user area to the current shape in the thisShape 

Turbo Debugger User's Guide 



array, calls InvalidateRect to add the area to the window's update 
region, and then calls UpdateWindow, which sends a WM_PAINT 
message directly to the main window. This routine doesn't use 
any global memory. 

When DoLButtonUp exits, a WM_PAINT message is sitting in the 
queue, ready to be processed by WndProc. 

Painting the screen 

When WndProc receives the WM_PAINT message, it calls DoPaint, 
which repaints the appropriate area of the screen (described 
earlier in this section on page 292). In repainting the update 
rectangle, DoPaint calls two Windows routines that affect global 
memory: CreateCompatibleDC and SelectObject. At the end of 
DoPaint are calls to the routines DeleteDC and DeleteObject, which 
deallocate the global memory allocated at the beginning of the 
routine. 

Post mortem Because you've looked at every routine in the program, you can 
be fairly sure that you've found the memory bug. This approach 
was taken because you weren't familiar with the program. Of 
course, had you written the program, you could have found the 
memory allocation statements much faster. 

More testing would have helped as well. With sufficient testing 
and knowledge of the program, you could have skipped the 
menu part of the search, because you could cause the failure by 
just moving the mouse around the screen. In addition, if you 
knew that just moving the mouse in the client area with the left 
button pressed caused the problem (which you could have 
discovered by pressing the left mouse button and moving the 
mouse till the program died), you quickly could have decided on 
DoMouseMove as the routine on which to concentrate your efforts. 

Chapter 78, Debugging a Windows application 299 



300 Turbo Debugger User's Guide 



c H A p T E R 

19 

Debugging TSRs and device drivers 

What's a TSR? 

With Turbo Debugger 2.0 and later you can debug terminate and 
stay resident (TSR) programs and device drivers, as well as con­
ventional executable files. You can also run Turbo Debugger itself 
as a TSR, while you perform other operations at DOS level or run 
other programs. 

Turbo Debugger, Version 2.0 and later, has three commands on 
the file menu that are specifically designed to be used for debug­
ging TSRs and device drivers. These are the File I Resident, File I 
Symbol Load, and File I Table Relocate commands. 

This chapter gives a brief explanation of what TSRs and device 
drivers are, and provides information on how to debug them with 
Turbo Debugger 2.0 or later. 

TSR stands for "terminate and stay resident." TSRs are programs 
that stay in RAM after they are finished running. SideKick and 
SuperKey are TSRs; they stay in RAM all the time and are 
invoked using special hot keys. Other TSRs are invoked from 
programs that issue an appropriate software interrupt. Borland's 
C and C++ compilers provide a function, geninterrupt, that issues 
such software interrupts. 

TSRs consist of two parts: a transient portion and a resident portion. 
The transient portion is responsible for loading the resident 

Chapter 7 9, Debugging TSRs and device drivers 301 



Debugging a TSR 

302 

portion into RAM, and for installing an interrupt handler that 
determines how the TSR is invoked. If the TSR is to be invoked 
through a software interrupt, the transient portion places the 
address of the resident portion of the code in the appropriate 
interrupt vector. If the TSR is to be invoked through a hot key, the 
resident portion must modify the DOS interrupt handler for key­
board presses. 

When the transient portion is finished executing, it invokes a DOS 
function that allows a portion of the .EXE file to stay resident in 
RAM after execution is terminated-hence the phrase "terminate 
and stay resident." The transient portion of the TSR knows the 
size of the resident portion as well as the resident portion's 
location in memory, and passes this information along to DOS. 
DOS then leaves the specified block of memory alone, but is free 
to overwrite the unprotected portion of memory. Thus the resi­
dent portion stays in memory, while the transient portion can be 
overwritten. 

The trick to debugging TSRs is that you want to be able to debug 
the resident portion as well as the transient portion. When the 
.EXE file executes, the only code that is executed is the transient 
portion of the TSR. So when you run Turbo Debugger as usual, by 
specifying a file name, the only code you see executed is the 
transient portion, as it installs the resident portion and its inter­
rupt handlers. In order to debug the resident portion, you must 
set a debugger breakpoint and make Turbo Debugger itself go 
resident. More about this later. 

Debugging the transient portion of a TSR is the same as debug­
ging any other file. It is only when you start to debug the resident 
portion that anything novel happens. 

Here is how you debug a TSR program: 

1. Compile or assemble the TSR, being sure to incorporate 
symbolic (debugging) information. Use the TASM fZI or TCC 
-v command-line option, for example, or TPC N. 

2. If you have to link the TSR, use the /v option to incorporate 
symbolic information. You can use the TDSTRIP -s option to 
move the symbolic information into a separate file, though 
you don't have to if the program is an .EXE file. 

Turbo Debugger User's Guide 



3. Now load the TSR program into Turbo Debugger and run the 
transient portion, using the Run I Run command as usual. Go 
ahead and debug the transient portion in the usual way. When 
you finish running the transient portion, the resident portion 
is installed in RAM. The trick now is to debug the resident 
portion. 

4. Set a breakpoint at the beginning of the resident portion of 
your code, using F2. You can instead set breakpoints at some 
other positions in the resident portion, if you want. 

5. Choose the File I Resident command to make Turbo Debugger 
itself go resident. This has nothing to do with making your 
TSR memory-resident; it makes itself go resident when you 
run it in Turbo Debugger, just as it would if you had run it 
from the command line. The only reason you are making 
Turbo Debugger go resident is so you can go back to DOS and 
invoke your TSR, making its resident portion start executing. 

6. When you are back at the DOS command line, execute the 
resident portion of your TSR by pressing its hot key or doing 
whatever else you do to invoke it. Execute your program as 
usual. 

7. When your program hits the breakpoint, Turbo Debugger 
comes back up, with your TSR displayed at the appropriate 
point. Now you can start debugging the resident part of your 
code. (You can also re-enter Turbo Debugger from DOS by 
pressing Ctr/-Break twice.) 

A second method of debugging a TSR's resident portion is to 
execute the TSR from the DOS command line, then use Turbo 
Debugger to debug the area of RAM containing the TSR. 

To use this method, you need the TDMEM utility, which displays 
a map of how your system's RAM memory is used and gives the 
segment address where your TSR's resident portion is loaded. 

To use this method: 

1. Follow Steps 1 through 2 of the first method to compile or 
assemble your code, and to strip off its symbol table if 
necessary and place it in a .IDS file. If necessary for your 
application, run TDSTRIP with the -c option as well, to 
convert your TSR from an .EXE to a .COM file. 

2. Execute your TSR from the DOS command line by typing its 
name. For example, if your TSR is called TSR.EXE, type TSR at 
the DOS prompt and press Enter. 

Chapter 7 9, Debugging TSRs and device drivers 303 



304 

3. Run TDMEM to see a memory map of your computer. Note 
the segment address at which the resident portion of your TSR 
is loaded. We refer to this segment as Seg. 

4. Next, you need to determine the amount of symbol table 
memory you are going to want Turbo Debugger to allocate 
when you call it up. To do this, note the size of your TSR's 
symbol table (.IDS) file by doing a DIR command from DOS. 

This size is a lower limit on the amount of symbol table 
memory you need to allocate when you load Turbo Debugger, 
since, in addition to the information stored here, Turbo 
Debugger creates a number of tables, temporary and other­
wise, when it loads the symbol table. A useful rule of thumb is 
that you need to allocate about one and a half times as much 
symbol table memory as the .IDS file occupies on the disk, 
though sometimes you might need more and sometimes you 
can get by with less. Turbo Debugger lets you know if you've 
allocated too little symbol table memory by displaying the 
message "Not enough memory to load symbol table" when 
you do a File I Symbol Load (discussed later), so feel free to 
experiment. 

5. Load Turbo Debugger without specifying a file name, 
allocating symbol table memory as appropriate with the -sm 
command-line option. The -sm option takes as an argument 
the number of kilobytes of symbol table memory to be 
allocated. For example, if you want to reserve 3K of symbol 
table memory, enter TD -sm3 at the DOS prompt. When you 
load Turbo Debugger, do not specify a file name, since you are 
debugging something that is already in memory, You should 
have the .TDS and source files for your TSR available in your 
default directory, however, so that they can be accessed to 
supply symbolic information. 

6. You could now start debugging your TSR by setting break­
points, making Turbo Debugger go resident, and performing 
some action from the DOS command level that would trigger 
your breakpoint. This opens Turbo Debugger at the 
appropriate place in your code. However, your debugging 
task can be simplified by recalling the symbolic information 
present in your symbol table and source file first. 

7. Once Turbo Debugger comes up, clear the sign-on message by 
pressing Esc, then load in your TSR's symbol table with the 
File I Symbol Load command, specifying the appropriate 
symbol table name. If you get a message that there is not 

Turbo Debugger User's Guide 



enough memory to load your symbol table, exit Turbo 
Debugger and start it up again from the DOS prompt using a 
higher value as an argument to -sm. 

8. The symbol table contains a set of symbols tied to relative 
memory locations in your code. The symbols in the symbol 
table are all prefixed by the characters #FILENAME#, where 
FILENAME is the name of your TSR source file. For example, if 
your source file was called TSR.ASM and contained a label 
Intr, the symbol #TSR#INTR marks a location in memory. 

The symbols in the symbol table are offset from each other by 
the correct number of bytes, but the absolute location of the 
first symbol has not been determined because DOS might have 
loaded your TSR at a different absolute memory location than 
the one at which it was assembled. For this reason, you must 
use a command to explicitly locate the first symbol in memory. 

9. Use File I Table Relocate to place the first symbol from the 
symbol table at the proper location in memory. In this way, the 
symbolic information present corresponds with your code. To 
do this, when you are prompted by Turbo Debugger, specify 
the segment address Seg for your TSR that you determined 
from TDMEM. 

The disassembled statements from memory are synchronized 
with information from the symbol table. If your source file is 
present, source statements are printed on the same line as the 
information from the symbol table. 

10. Use the Goto command (Ctrl-G) to go to the segment of RAM 
containing your TSR. Do this either by giving the segment 
address of your TSR, followed by offset OOOOH, or by going to 
a specific symbolic label in your code. 

From here on, continue as in the first method, from Step 4 on. 

What's a device driver? 

Device drivers are collections of routines used by DOS to control 
low-level 1/0 functions. Installable device drivers (as opposed to 
those intrinsic to DOS) are installed by inserting lines such as 

device = clock.sys 

in your CONFIG.SYS file. When DOS has to perform an 1/0 
operation involving a single character, it scans through a linked 

Chapter 79, Debugging TSRs and device drivers 305 



306 

Debugging a 

list of device headers looking for a device with the appropriate 
logical name (for example, COMl). In the case of block device 
drivers such as disk drives, DOS keeps track of how many block 
devices have been installed and designates each by a letter, with A 
for the first block device driver installed, B for the second, and so 
on. When you make a reference to drive C, for example, DOS 
knows to call the third block device driver. 

The linked list of device headers contains offsets to the two 
components of the device driver itself, the strategy routine and the 
interrupt routine. 

When DOS determines that a given device driver needs to be 
invoked, it calls the driver twice. The first time the driver is called, 
DOS talks to the strategy routine and passes it a pointer to a 
memory buffer called the request header. The request header 
contains information about what DOS wants the device driver to 
do. The strategy routine simply stores this pointer away for later 
use. On the second call to the device driver, DOS invokes the 
interrupt routine, which does the actual work specified by DOS in 
the request header, such as transferring characters in from a disk. 

The request header specifies what the device driver is to do 
through a byte in the request header called a command code. This 
specifies one of a predefined set of operations all device drivers 
must perform. The set of command codes is different for character 
device drivers than for block device drivers. 

The problem with debugging device drivers is that there is no 
.EXE file to run, since for proper operation, the driver must be 
installed using a DEVICE= DRIVER.EXT command at boot, 
where .EXT= .SYS, .COM or .BIN. This means the device driver 
to be debugged is already resident in memory before debugging, 
as it must be for proper operation. Hence the functions to load 
and relocate symbol tables become very useful, since they can 
restore symbolic information to the disassembled segment of 
memory where the device driver is loaded. The File I Resident 
command is also very useful, as we shall see. 

device driver Here is how you debug a device driver using TDREMOTE: 

1. Compile or assemble the device driver, being sure to 
incorporate symbolic (debugging) information. Use the TASM 
/ZI or TCC -v command-line option, for example. 

Turbo Debugger User's Guide 



2. Link the device driver using the /v option to incorporate 
symbolic information. 

3. Type TDSTRIP -s -c FILENAME, where FILENAME is the name of 
the device you're debugging, to move the symbolic 
information from the .EXE file into a separate .TDS file, and to 
transform the existing .EXE file into a .COM file. 

4. Copy the .COM file to the remote system. 

5. Modify your CONFIG.SYS file on the remote system by 
adding the line 

device = FILENAME.COM 

6. Make sure FILENAME includes the correct path to find the 
device driver. 

7. Reboot your remote system to load the device driver. 

8. Run TDDEV to tell you the location in memory on the remote 
system where DOS has loaded your device driver. Note the 
address where your device driver is loaded. We refer to the 
segment portion of this address as Seg. 

9. Next you need to determine the amount of symbol table 
memory you will need Turbo Debugger to allocate when you 
call it up. To do this, note the size of your device driver's 
symbol table (.TDS) file by doing a DIR command from DOS. 

This size is a lower limit on the amount of symbol table 
memory you will need to allocate when you load Turbo 
Debugger, since in addition to the information stored here, 
Turbo Debugger creates a number of temporary and other 
tables when loading the symbol table. A useful rule of thumb 
is that you need to allocate about one and a half times as much 
symbol table memory as the .TDS file occupies on disk, though 
sometimes you need more, and sometimes you can get by with 
less. Turbo Debugger lets you know if you've allocated too 
little symbol table memory by displaying the message "Not 
enough memory to load symbol table" when you do a File I 
Symbol Load (discussed later), so feel free to experiment. 

10. Load TDREMOTE on the remote system. 

11. Load Turbo Debugger (using the -r option and the-rp and-rs 
options as needed) without specifying a file name, allocating 
symbol table memory as appropriate by using the -sm 
command line switch. The -sm switch takes as an argument 
the number of kilobytes of symbol table memory to be 
allocated. For example, if you wish to reserve 3K of symbol 
table memory, type TD -sm3 at the DOS prompt. When you 

Chapter 79, Debugging TSRs and device drivers 307 



308 

load Turbo Debugger, you do not specify a file name because 
you are debugging something that is already in memory. You 
should have the .TDS and source files for your device driver 
available in your default directory, however, so that they can 
be accessed to supply symbolic information. 

12. You could now start debugging your device driver by setting 
breakpoints, making Turbo Debugger go resident, and 
performing some action from the DOS command level on the 
remote system which would trigger your breakpoint. This 
would open Turbo Debugger at the appropriate place in your 
code. However, your debugging task can be simplified by 
recalling the symbolic information present in your symbol 
table and source file first. 

13. Once Turbo Debugger comes up, clear the sign-on message by 
pressing Esc, then load in your device driver's symbol table 
using the File I Symbol Load command, specifying the 
appropriate symbol table name. If you get a message that there 
is not enough memory to load your symbol table, exit Turbo 
Debugger and start it up again from the DOS prompt using a 
higher value as an argument to -sm. 

14. The symbol table contains a set of symbols tied to relative 
memory locations in your code. The symbols in the symbol 
table are all prefixed by the characters UILENAME#, where 
FILENAME is the name of your device driver source file. For 
example, if your source file was called DRIVER.ASM and 
contained a label Intr, the symbol #DRIVER#INTR marks a 
location in memory. 
The symbols in the symbol table are offset from each other by 
the correct number of bytes, but the absolute location of the 
first symbol is not determined, since DOS may load your 
device driver at a different absolute memory location than the 
one at which it was assembled. For this reason, you must use a 
command to explicitly locate the first symbol in memory. 

15. Use the File I Table Relocate command to place the first symbol 
from the symbol table at the proper location in memory. In 
this way, the symbolic information present will correspond 
with your code. To do this, specify the segment address Seg for 
your device driver which you determined in Step 6. 

The disassembled statements from memory are synchronized 
with information from the symbol table. If your source file is 
present, source statements will be printed on the same line as 
the information from the symbol table. 

Turbo Debugger User's Guide 



16. Set any breakpoints in your code. 

17. Choose the File I Resident comm.and to make Turbo Debugger 
itself go resident. This has nothing to do with making your 
device driver memory resident; it goes resident at boot on the 
remote system as a result of the device comm.and in 
CONFIG.SYS. The only reason you are making Turbo 
Debugger go resident is so you can go back to DOS and do 
whatever is necessary to invoke your device driver. 

18. When you are back to the DOS command iine on the remote 
system, do whatever is necessary to activate your device 
driver. For example, send information to whatever device it 
controls. 

19. When your program hits the breakpoint, Turbo Debugger 
comes back up with your device driver displayed at the 
appropriate point, and you can begin debugging your code. 
(You can also re-enter Turbo Debugger while DOS is running, 
by pressing Ctrl-Break.) 

Terminating the debugging session 

To terminate a debugging session, get out of Turbo Debugger in 
the usual way, by choosing the File I Quit command or pressing 
Alt-X. If you're debugging a TSR, it will be unloaded automatically. 

Chapter 19, Debugging TSRs and device drivers 309 



310 Turbo Debugger User's Gulde 



A p p E N D x 

A 

Summary of command-line options 

When you start up Turbo Debugger from the DOS command line, 
you can at the same time configure it using certain options. Here's 
the general format to use: 

td [options] [program_name [program_args]] 

Items enclosed in brackets are optional. Following an option with 
a hyphen disables that option if it was already enabled in the 
configuration file. 

Appendix A Summary of command-line options 311 



TableA.1 
Turbo Debugger command­

line options 

312 

Option 

-cfilename 

-do 
-dp 
-ds 

-h,-? 

-i 

-k 

-I 

-mN 

-p 

-r 
-rpN 
-rsN 

-SC 
-sddirectory 
-smN 

-vg 
-vn 
-vp 

-yN 
-yeN 

What it means 

Startup configuration file 

Other display 
Page flipping 
Swap user screen contents 

Display help screen listing all the command-line 
options 

Process ID switching 

Enable keystroke recording 

Assembler startup 

Set heap size (K) 

Enable mouse 

Debug on remote system; COMl, fast 
COM port for remote link 
Link speed: l=slow, 2=med, 3=fast 

No case-checking 
Source file directory 
Set symbol table memory size (K) 

Complete graphics save 
43/50 line display not allowed 
EGA palette save 

Set overlay pool size (K) 
Set EMS overlay area size to N 16K pages 

Turbo Debugger User's Gulde 



A p p E N D x 

B 

Technical notes 

This appendix is for advanced users who want to understand 
some of the technical details that underlie the operation of Turbo 
Debugger. Don't be put off if this chapter appears to have been 
written in Greek; you don't have to understand the issues pre­
sented here in order to become a productive and successful Turbo 
Debugger user. 

Some of the information in this chapter will let you understand 
how Turbo Debugger interacts with DOS, the hardware, and your 
program. This can help you understand how your program's 
behavior might differ while running under Turbo Debugger. 

You will also learn why you can crash the system without too 
much effort, and, even better, how to avoid it. 

Changed load address and free memory 

Appendix B, Technical notes 

When Turbo Debugger loads your program, it is placed after the 
debugger in memory. This has two important results: Your pro­
gram loads at a higher segment address, and it has less free 
memory available. By loading at a different address, some bugs 
that are the result of accessing memory outside your program 
may appear or disappear. By changing the amount of free 
memory, bugs in your memory allocation or use may be hard to 
duplicate. 

313 



If you're using a 386-based computer, you can use the TD386 
virtual debugging program to eliminate those problems. See 
Chapter 15 for information on virtual debugging. 

Crashing the system 

Since the debugger can read and write memory at any address in 
your system, you can inadvertently cause a crash by modifying 
certain memory locations outside your program, such as some 
inside DOS, or the interrupt table starting at memory address 
location zero. 

As an example, changing the hardware clock interrupt vector at 
location 0000h:0020h is almost certain to cause a problem. 

Tracing through DOS and process ID switching 

Turbo Debugger keeps track of the process that is running (either 
itself or your program) so that it can open and close files without 
interfering with your program's file handles. This switching is 
done by using a DOS function call. The switch occurs each time 
your program is started from Turbo Debugger, and each time the 
debugger is re-entered from your program. Since DOS is not re­
entrant, you can get into trouble by setting breakpoints or tracing 
inside DOS. 

You should use the -i-command-line option to disable process 
ID switching if you want to poke around inside DOS. However, 
your program wl}l then share Turbo Debugger's file handles, 
which may cause either your program or the debugger to run out 
of them. 

Using the 8087 /80287 math coprocessor and emulator 

314 

Turbo Debugger uses neither the math coprocessor nor the 
software emulator, leaving them both free to be used by your pro­
gram. You shouldn't experience any difference between using a 
standalone floating-point program and running it under Turbo 
Debugger. 

Turbo Debugger User's Guide 



Interrupts used by Turbo Debugger 

Turbo Debugger intercepts several interrupt vectors in order to 
debug your program. The following descriptions let you 
determine if there may be interactions between your program and 
Turbo Debugger. 

Interrupt 1/lnterrupt 3 
Turbo Debugger uses these interrupts to process breakpoints and 
instruction single-stepping. If these interrupts are modified by 
your program, Turbo Debugger may not be able to regain control 
at the next breakpoint. Normal applications never use these inter­
rupts because they are reserved for programs such as debuggers 
that must control the execution of other programs. 

Interrupt 2 
Many hardware debuggers use this interrupt to signal that a 
match condition has occurred. If your program takes over this 
interrupt, these boards and their supporting device drivers may 
not work properly. If you must take over this interrupt, chain on 
to the previous owner of it if you do not want to service the 
interrupt. 

Interrupt 9 
This is the keyboard hardware interrupt, which is used for track­
ing key presses and release codes. Turbo Debugger chains into 
this interrupt when the user program is running, so that it can 
regain control of a program stuck in a loop. Turbo Debugger 
reinstalls this vector each time your program is restarted, thereby 
allowing a program that modifies this interrupt to keep working 
correctly. 

Debugging using INT 3 and INT 1 

Appendix B, Technical notes 

If you want to debug a program that uses these interrupts, the 
version of the program you are debugging should only load these 
interrupt vectors when it absolutely must, and restore the old 
contents as soon as it is done using them. This technique mini­
mizes the amount of code that cannot be debugged. While your 
program has these vectors loaded, you cannot use Turbo 
Debugger to step through your code. 

315 



Display-saving and mode-switching 

Turbo Debugger usually attempts to save and restore your pro­
gram's display mode whenever it runs a piece of your program. If 
you only use the standard ROM BIOS calls to change the display 
mode, all will be well. If you directly manipulate the display 
controller registers, Turbo Debugger may disturb those settings. 

Memory consumption 

EMS support 

316 

When you first start Turbo Debugger, DOS loads it into the first 
free memory above DOS and any resident programs. Then, Turbo 
Debugger allocates a working stack and heap above its program 
code. Your program's symbol table comes next in memory, 
followed by the actual program that you want to debug. 

When you exit back to DOS, Turbo Debugger frees the memory 
used by the symbol table and the program being debugged. If 
your program has allocated any memory blocks with the DOS 
memory allocate function (48), Turbo Debugger frees that 
memory as well. 

If your system has an expanded memory specification (EMS) 
board, Turbo Debugger will use it to store the symbol table for 
your program being debugged. This leaves more main memory 
free for your program. Turbo Debugger saves and restores the 
state of the EMS driver, letting you debug programs that use EMS 
memory. 

If your program must use all of EMS memory, or if you expe­
rience interaction problems between your program and Turbo De­
bugger with both using EMS memory, you can disable EMS 
symbol table use by Turbo Debugger. Use the TDINST installation 
utility to do this or specify -yeO to disable overlay caching in 
EMS. 

Turbo Debugger User's Guide 



Interrupt vector saving and restoring 

Appendix B, Technical notes 

Turbo Debugger maintains three separate copies of the first 48 
interrupt vectors in low memory (00 through 2F). 

When Turbo Debugger first starts from the DOS command line, a 
copy is made of the vectors. These vectors are restored when you 
return back to DOS by using the File I Quit (or Alt-X) command. 
These vectors are also restored if you use the File i DOS Sheil 
command to enter a DOS command while debugging a program. 

The second set of vectors are Turbo Debugger's vectors. These are 
in effect whenever Turbo Debugger is running and onscreen. 
They are restored every time Turbo Debugger regains control 
after running your program. 

The third set of vectors are for the program you're debugging. 
These vectors are restored every time you run or step your pro­
gram, and are saved every time your program stops and Turbo 
Debugger regains control. This lets you debug programs that 
change interrupt vectors, and at the same time allows Turbo 
Debugger to use its own version of those same interrupts. 

317 



318 Turbo Debugger User's Guide 



A p p E N D x 

c 

lnline assembler keywords 

This appendix lists the instruction mnemonics and other special 
symbols that you use when entering instructions with the inline 
assembler. The keywords presented here are the same as those 
used by Turbo Assembler and MASM. 

Appendix C, lnline assembler keywords 319 



TableC.l AAA INC LIDT** REPNZ 
8086/80186/80286 instruction AAD INSB* LLDT** REPZ 

mnemonics AAM INSW* LMSW** RET 
AAS INT LOCK REFT 
ADC INTO LODSB ROL 
ADD IRET LODSW ROR 
AND JB LOOP SAHF 
ARPL** JBE LOOP NZ SAR 
BOUND* JCXZ LOOPZ SBB 
CALL JE LSL** SCA SB 
CLC JL LTR** SCA SW 
CLO JLE MOV SGDT** 
CLI JMP MOVSB SHL 
CLTS** JNB MOVSW SHR 
CMC JNBE MUL SLOT** 
CMP JNE NEG SMSW** 
CMPSB JNLE NOP STC 
CMPSW JNO NOT STD 
CWD JNP OR STI 
DAA JO OUT STOSB 
DAS JP OUTSB STOSW 
DEC JS OUTSW* STR** 
DIV LAHF POP SUB 
ENTER* LAR** POPA* TEST 
ESC LOS POPF WAIT 
HLT LEA PUSH VERA** 
IDIV LEAVE* PUSHA* VERW** 
IMUL LES PUSHF XCHG 
IN LGDT** RCL XLAT 

XOR 

*Available only when running on the 186 and 286 processor 
** Available only when running on the 286 processor 

Turbo Debugger supports all 80386 and 80387 instruction mnemonics 
and registers: 

TableC.2 
80386 instruction mnemonics BSF LSS SETG SETS 

BSR MOVSX SETL SHLD 
BT MOVZX SETLE SHAD 
BTC POP AD SETNB CMPSD 
BTR POPFD SETNE STOSD 
BTS PU SHAD SETNL LODSD 
CDQ PUSH FD SETNO MOVSD 
CWDE SETA SETNP SCASD 
IRETD SETB SETNS INSD 
LFS SET BE SETO OUTSD 
LGS SETE SETP JECXZ 

320 Turbo Debugger User's Guide 



TableC.3 
80486 instruction mnemonics 

TableC.4 
80386 registers 

BSWAP 
CM PX CHG 
INVD 

EAX 
EBX 
ECX 
EDX 
ESI 

INVLPG 
WBPINVD 
XADD 

EDI 
EBP 
ESP 
FS 
GS 

TableC.5 
CPU registers Byte registers AH,AL,BH,BL,CH,CL,DH,DL 

TableC.6 
Special keywords 

Word registers 

Segment registers 

Floating registers 

AX, BX, ex, DX, SI, DI, SP, BP, FLAGS 

CS,DS,ES,SS 

ST, ST(O), ST(1 ), ST(2), ST(3), ST(4), ST(S), ST(6), 
ST(7) 

WORDPTR 
BYTEPTR 
DWORDPTR 
QWORDPTR 

TBYTE PTR 
NEAR 
FAR 
SHORT 

Appendix C, lnline assembler keywords 321 



TableC.7 
8087 /80287 numeric 

coprocessor instruction 
mnemonics 

TableC.8 
80387 instruction mnemonics 

322 

FABS 
FAOO 
FAOOP 
FBLO 
FBSTP 
FCHS 
FCLEX 
FCOM 
FCOMP 
FCOMPP 
FOECSTP 
FOISI 
FOIV 
FOIVP 
FOIVR 
FOIVRP 
FENI 
FFREE 

FIAOO 
FICOM 
FICO MP 
FIOIV 
FIDIVR 
FILO 
FIMUL 
FINCSTP 
FINIT 
FIST 
FISTP 
FISUB 
FISUBR 
FLO 
FLOCW 
FLOENV 
FLOLG2 
FLOLN2 

FLOL2E 
FLOL2T 
FLOPI 
FLOZ 
FL01 
FMUL 
FMULP 
FNOP 
FNSTS** 
FPATAN 
FPREM 
FPTAN 
FRNOINT 
FRSTOR 
FSAVE 
FSCALE 
FSETPM* 
FSQRT 

FST 
FSTCW 
FSTENV 
FSTP 
FSTSW* 
FSUB 
FSUBP 
FSUBR 
FSUBRP 
FTST 
FWAIT 
FXAM 
FXCH 
FXTRACT 
FYL2X 
FYL2XP1 
F2XM1 

•Available only when running on the 287 numeric coprocessor. 
•• On the 80287, the fstsw and fnstsw instructions can use the AX register as an 

operand, as well as the normal memory operand. 

FCOS 
FSIN 
FPREM1 
FSINCOS 

FU COM 
FU COMP 
FUCOMPP 

Turbo Debugger User's Guide 



A p p E N D x 

D 

Customizing Turbo Debugger 

Turbo Debugger is ready to run as soon as you make working 
copies of the files on the distribution disk. However, you can 
change many of the default settings by running the customization 
program called TDINST. You also can change some of the options 
using command-line options when you start Turbo Debugger 
from DOS. If you find yourself frequently specifying the same 
command-line options over and over, you can make those options 
permanent by running the customization program. 

The customization program lets you set the following items: 

•Window, dialog box, and menu colors 

• Display parameters: screen swapping mode, integer display 
format, beginning display (source or assembler code), screen 
lines, tab column width, maximum tiled Watches size, fast 
screen update, 43/50-line mode, full graphics saving, User 
screen updating, and log list length 

•Your editor startup command and directories to search for 
source files and the Turbo Debugger help and configuration 
files 

•User input and prompting parameters: interrupt key, history 
list length, beep on error, mouse, keystroke recording, and 
control-key shortcuts 

Appendix D, Customizing Turbo Debugger 323 



Running TDINST 

Colors ~ 
Display ••• 
Options ~ 
Mode for display ~ 
Save ~ 
Quit 

• Source debugging: language options and case sensitivity 

• NMI intercept, DOS process ID switching, expanded memory 
specification (EMS) for symbol table, remote debugging, OS 
shell swap size, and symbol memory size 

• Display mode 

To run the customization program, enter TDINST at the DOS 
prompt. As soon as TDINSTcomes up, it displays its main menu. 
You can either press the highlighted first letter of a menu option 
or use the i and J. keys to move to the item you want and then 
press Enter. For instance, press D to change the display settings. 
Use this same technique for choosing from the other menus in the 
installation utility. To return to a previous menu, press Esc. You 
may have to press Esc several times to get back to the main menu. 

Setting the screen colors 

324 

Customizing 
screen colors 

Windows 

Choose Colors from the main menu to bring up the Colors menu. 
It offers you two choices: Customize and Default Color Set. 

If you choose Customize, a third menu appears, with options for 
customizing windows, dialog boxes, menus, and screens. 

To customize windows, choose the Windows command. This 
opens a fourth menu, from which you can choose the kind of 
window you want to customize: Text, Data, Low Level (for 
example, the CPU window), and Other (for example, the Break­
points window). Choosing one of these options brings up yet 
another menu listing the window elements, together with a pair 
of sample windows (one active, one inactive) in which you can 
test various color combinations. The screen looks like this: 

Turbo Debugger User's Guide 



Figure D.l 
Customizing colors for 

windows 

When you select an item you want to change, a palette box pops 
up over the menu. Use the arrow keys to move around in the 
palette box. As you move the selection box through the various 
color choices, the window element whose color you are changing 
is updated to show the current selection. When you find the color 
you like, press Enter to accept it. 

¢ Turbo Debugger maintains three color tables: one for color, one 
for black and white, and one for monochrome. You can only 
change one set of colors at a time, based on your current video 
mode and display hardware. So, if you are running on a color 
display and want to adjust the black-and-white table, first set 
your video mode to black and white by typing MODE BWBO at the 
DOS prompt, and then run TDINST. 

Dialog boxes If you choose Dialogs from the Customize menu, a menu appears 
listing dialog box and menu elements, with a sample dialog box 
for you to experiment with. 

Appendix D, Customizing Turbo Debugger 325 



Figure D.2 
Customizing colors for dialog 

boxes 

Menus 

Menu background 
Standard item 
Active item 
Hot letter 

Screen 

Pattern for background ~ 

Pattern background 
Pattern foreground 
Window move background 

Window move foreground 

The default colors 

326 

The screen looks like this: 

As with the Windows menu, choosing an item from the current 
menu opens a palette from which you can choose the color for 
that item. 

If you choose Menus from the Customize menu, a menu of menu 
options opens, along with a sample menu. Choosing an item from 
the menu causes the usual palette to appear. 

Choosing Screen from the Customize menu opens a menu from 
which you can access another menu with screen patterns and 
palettes for screen elements, as well as a sample screen back­
ground on which to test them. 

If you choose Default Color Set from the Colors menu, an active 
text window and an inactive window appear onscreen, so you can 
see what the default colors for their elements are. 

Turbo Debugger User's Guide 



Setting Turbo Debugger display parameters 

Figure D.3 
The Display Options dialog 

box 

Choose Display from the main menu to bring up the Display 
Options dialog box. 

¢ These display options include some you can set from the DOS 
command line when you start up Turbo Debugger, as well as 
some you can set only with TDINST. See page 336 for a table of 
Turbo Debugger command-line options and corresponding 
TDINST settings. 

Display Swapping 
You use the Display Swapping radio buttons to control how 
Turbo Debugger switches between its own display and the output 
of the program you're debugging. Using the t and ..!- keys, you 
can toggle between the following settings: 

None Don't swap between the two screens. Use this option if 
you're debugging a program that does not output to 
the User screen. 

Smart Swap to the User screen only when display output may 
occur. Turbo Debugger swaps the screens any time that 
you step over a routine, or if you execute any instruc­
tion or source line that appears to read or write video 
memory. This is the default option. 

Always Swap to the User screen every time the user program 
runs. Use this option if the Smart option is not catching 
all the occurrences of your program writing to screen. 
If you choose this option, the screen flickers every time 
you step through your program, since Turbo Debug­
ger's screen is replaced for a short time with the User 
screen. 

Appendix D, Customizing Turbo Debugger 327 



Integer Format 

Beginning Display 

Screen Lines 

The Integer Format radio buttons let you set how integers are 
displayed. You can toggle between the following options: 

Hex 

Decimal 

Both 

Chooses hexadecimal number display. 

Chooses decimal number display. 

Displays both hexadecimal and decimal. 

The Beginning Display radio buttons determines the language in 
which your program is displayed when Turbo Debugger starts. 
They have the following settings: 

Assembler Assembler Startup: None of your program is 
executed, and a CPU window shows the first 
instruction in your program. 

Source Source startup: Your program's compiler beginning 
code runs, and you start in a Module window, 
where your source code begins. 

Use these radio buttons to toggle whether Turbo Debugger 
should start up with a display screen of 25 lines or a display 
screen of 43 or 50 lines. 

¢ Only the EGA and VGA can display more than 25 lines. 

328 

Tab Size 

Maximum Tiled 
Watch 

In this input box, you can set the number of columns between tab 
stops in a text or source file display. You are prompted for the 
number of columns (a number from 1 to 32); the default is 8. 

This input box sets the number of lines that the Watches window 
can expand to when it's in Tiled mode. You are prompted for the 
number of lines (1 to 20). 

Turbo Debugger User's Guide 



Fast Screen 
Update 

Permit 43/50 Lines 

Full Graphics 
Saving 

User Screen 
Updating 

The Fast Screen Update check box lets you toggle whether your 
displays will be updated quickly. Toggle this option off if you get 
"snow" on your display with fast updating enabled. You need to 
disable this option only if the "snow" annoys you. (Some people 
prefer the snowy screen because it gets updated more quickly.) 

Turning this check box on allows big (43/50-line) display modes. 
If you turn it off, you save approximately SK, since the large 
screen modes need more window buffer space in Turbo 
Debugger. This may be helpful if you are debugging a very large 
program that needs as much memory as possible to execute in. 
When the option is disabled, you will not be able to switch the 
display into 43/50-line mode even if your system is capable of 
handling it. 

Turning this check box on causes the entire graphics display 
buffer to be saved whenever there is a switch between the Turbo 
Debugger screen and the User screen. If you tum it off, you can 
save approximately SK of memory. This is helpful if you are 
debugging a very large program that needs as much memory as 
possible to execute. Generally the only drawback to disabling this 
option is a small number of corrupted locations on the User 
screen in graphics mode that don't usually interfere with 
debugging. 

The User Screen Updating radio buttons set how the User screen 
is updated when Turbo Debugger switches between its screen and 
your program's User screen. There are three settings: 

Flip Pages Puts Turbo Debugger's screen on a separate 
display page. This option works only if your 
display adapter has multiple display pages, like a 
CGA, EGA, or VGA. You can't use this option on 
a monochrome display. This option works for the 
majority of debugging situations; it is fast and 

Appendix D, Customizing Turbo Debugger 329 



Log List Length 

disturbs only the operation of programs that use 
multiple display pages, such as graphics 
programs. 

Swap Uses a single display adapter and display page, 
and swaps the contents of the User and Turbo De­
bugger screens in software. This method, the 
default for updating user screens, is the slowest 
method of display swapping, but is the most 
protective and least disruptive. If you are de­
bugging a program that uses multiple display 
pages, like a graphics program, use this option. 
Also use the Swap option if you shell to DOS and 
run other utilities or if you are using a TSR (such 
as SideKick Plus) and want to keep the current 
Turbo Debugger screen as well. 

Other Display Runs Turbo Debugger on the other display in 
your system. If you have both a color and 
monochrome display adapter, this option lets you 
view your program's screen on one display and 
Turbo Debuggers on the other. 

Use this input box to set how many previous entries are saved in 
the log file. The maximum number is 200; the minimum is 4. 

Turbo Debugger options 

330 

Di rector1 es ••• 
Input & prompting ••• 
Source debugging ••• 
Miscellaneous ••• 

Directories ... 

The Options command in the main menu opens a menu of 
options, which in tum open dialog boxes for you. 

This dialog box contains input boxes in which you can enter: 

Editor program name Specifies the DOS command that starts 
your editor. This lets Turbo Debugger 
start up your favorite editor when you 
are debugging and want to change some­
thing in a file. Turbo Debugger adds to 

Turbo Debugger User's Guide 



Input and 
Prompting ... 

Figure D.4 
The User Input and Prompting 

dialog box 

Source directories 

Turbo directory 

the end of this command the name of the 
file that it wants to edit, separated by a 
space. 

Sets the list of directories Turbo 
Debugger searches for source files. 

Sets the directory that Turbo Debugger 
will look in for its help and configuration 
flies. 

This dialog box lets you set options that control how you input 
information to Turbo Debugger, and how Turbo Debugger 
prompts you for information: 

History List Length This input box lets you specify how many earlier entries are to be 
saved in an history list input box. 

Interrupt Key These radio buttons let you assign a default interrupt key. 

Set Key If you choose Other, press the Set Key button to choose the actual 
interrupt key. You are prompted for the key to use. 

Mouse Enabled This check box controls whether Turbo Debugger defaults to 
mouse support. 

Beep on Error By default, Turbo Debugger gives a warning beep when you press 
an invalid key or do something that generates an error message. 
The Beep on Error check box lets you change this default. 

Appendix D, Customizing Turbo Debugger 331 



Keystroke Recording This check box determines whether the Execution History 
window defaults to automatic keystroke recording. 

Control Key Shortcuts This check box enables or disables the control-key shortcuts. 
When control-key shortcuts are enabled, you can invoke any local 
menu command directly by pressing the Ctr/ key in combination 
with the first letter of the menu item. However, in that case, you 
can't use those control keys as WordStar-style cursor-movement 
commands. 

332 

Source 
Debugging ... 

FigureD.5 
The Source Debugging 

dialog box 

The Source Debugging dialog box lets you specify what language 
Turbo Debugger will use for evaluating expressions, and enables 
and disables case sensitivity. 

Language The Language radio buttons toggle the language Turbo Debugger 
uses for evaluating expressions: 

Source Module Choose what language to use based on the 
languages of the current source module. 

c 

Pascal 

Assembler 

Always use C expressions, no matter what 
language the current module was written in. 

Always use Pascal expressions, no matter 
language the current module was written in. 

Always use assembler expressions, no matter 
what language the current module was written 
in. 

Turbo Debugger User's Guide 



Ignore Symbol Case 

Miscellaneous 
Options ... 

Figure D.6 
The Miscellaneous Options 

dialog box 

NMI Intercept 

If this check box is turned on, Turbo Debugger defaults to treating 
uppercase and lowercase the same. If it is off, case sensitivity is in 
effect. 

The Miscellaneous Options dialog box contains options control­
ling NMI interrupts, EMS memory, use of process IDs, DOS shell 
swapping, symbol table size, and remote debugging. 

X NMI intercept 
X Use expanded memory 
X] Change process ID 
] Full trace hi stor 

The non-maskable interrupt (NMI) is a hardware interrupt that 
the processor must deal with immediately. It is typically used to 
halt processing when there is a memory parity error: an error 
message like "Memory Parity Error" is displayed and the system 
hangs. 

Another use for this interrupt is to enable a debugger board to 
perform a breakout when you press the breakout button. Because 
the NMI defaults to OFF with Turbo Debugger, you will probably 
want to tum this interrupt on if you use a debugger board. 

If your computer is not a Tandy 1000, IBM PC convertible, ACER 
1100, or NEC MultiSpeed, you run TDINST and try turning on the 
NMI Intercept check box. Some computers use the NMI in ways 
that conflict with Turbo Debugger, so if you have problems 
loading in applications under Turbo Debugger after turning this 
option on, run TDINST again and disable Turbo Debugger's use 
of this interrupt. 

Appendix D, Customizing Turbo Debugger 333 



Use Expanded Memory Use this check box to toggle whether Turbo Debugger uses EMS 
memory for symbol tables. You can enable this option even if 
your program uses EMS as well. 

Change Process ID Use this check box to control whether Turbo Debugger uses 
process ID switching. 

Warning! Do not tum this check box off unless you are tracing through DOS 
and have a good understanding of the technical issues discussed 
in Appendix B. 

DOS Shell Swap Size Determines how much of the user program is swapped to disk 
when you shell to DOS; if you enter 0, the whole program is 
swapped. 

Spare Symbol Memory This input box lets you specify the amount of memory set aside 
for manually loaded symbol tables. 

Remote Debugging This check box lets you toggle between enabling and disabling the 
remote link. 

Warning! Usually you won't want to tum this check box on, since that will 
mean that Turbo Debugger will start up every time using the 
remote link. 

Remote Link Port The Remote Link Port radio buttons let you choose between using 
the COMl or COM2 serial port for the remote link. 

Link Speed The Link Speed radio buttons let you choose one of the three 
speeds that are available for the remote link: 9600 baud, 40,000 
baud, or 115,000 baud. 

Setting the mode for display 

334 

Default 
Color 
Black and white 
Monochrome 
LCP 

Choosing Mode for Display from the main menu opens a menu 
from which you can select the display mode for your system. 

Turbo Debugger User's Guide 



Default 

Turbo Debugger detects the kind of graphics adapter on your 
system and selects the display mode appropriate for it. 

Color 

If you have an EGA, VGA, CGA, MCGA, or 8514 graphics adapter 
and choose this as your default, the display will be in color. 

Black and White 

If you have an EGA, VGA, CGA, MCGA, or 8514 graphics adapter 
and choose this as your default, the display will be in black and 
white. 

Monochrome 

Choose this if you are using a color monitor with a Hercules or 
monochrome text-only adapter. 

LCD 

Choose this if you have an LCD monitor. 

Command-line options and installation equivalents 

Some of the options described in the previous section can be 
overridden when you start Turbo Debugger from DOS. The 
following table shows the correspondence between Turbo 
Debugger command-line options and the TDINST program com­
mand that permanently sets that option. 

Appendix D, Customizing Turbo Debugger 335 



Table D.l 
Turbo Debugger command- Option TDINST menu path Dialog box and option 

line options 

Display Display Options 
-do (•) Other Display 
-dp ( •) Fl i p Pages 
-ds (•) Swap 

Options I Miscellaneous Miscellaneous Options 
-i [X] Change Process ID 
-i- [ ] Change Process ID 

Options I Input and Prompting User Input and Prompting 
-k [X] Keystroke Recording 
-k- [ ] Keystroke Recording 

Display Display Options 
-I (•) Assembler 
-1- (•) Source 

Options I Input and Prompting User Input and Prompting 
-p [X] Mouse Enabled 
-p- [ ] Mouse Enabled 

Options I Miscellaneous Miscellaneous Options 
-r [X] Remote Debugging 
-r- [ ] Remote Debugging 

Options I Miscellaneous Miscellaneous Options 
-rp1 (•) COMl 
-rp2 ( •) COM2 

Options I Miscellaneous Miscellaneous Options 
-rs1 (•) 9600 Baud 
-rs2 (•) 19200 Baud 
-r$3 (•) 38400 Baud 
-rs4 ( •) 115000 Baud 

Options I Source Debugging Source Debugging 
-sc [X] Ignore Symbol Case 
-sc- [ ] Ignore Symbol Case 

Options I Directories Directories 
-sd Source Directories 

Options I Miscellaneous Miscellaneous Options 
-sm Spare Symbol Memory 

Display Display Options 
-vn [ ] Permit 43/50 Lines 
-vn- [X] Permit 43/50 Lines 

¢ For a list of all the command-line options available for 
TDINST.EXE, enter the program name followed by -h: 

336 Turbo Debugger User's Guide 



When you're through ... 

Saving changes 

Save configuration file ••• 
Modify td.exe 

Save Configuration File 

When you have all your Turbo Debugger options set the way you 
want, choose Save from the main menu to determine how you 
want them saved. 

If you choose Save Configuration File, a dialog box opens, initial­
ized to the default configuration file TDCONFIG.TD. You can 
accept this name by pressing Enter, or you can type a new configu­
ration file name. If you specify a different file name, you can load 
that configuration by using the -c command-line option when 
you start Turbo Debugger. For example, 

td -crnycf g rnyprog 

You can also use the Turbo Debugger Options I Restore Configu­
ration command to load a configuration once you have started 
Turbo Debugger. 

Modify TD.EXE If you choose Modify TD.EXE, any changes that you have made to 
the configuration are saved directly into the Turbo Debugger 
executable program file TD.EXE. The next time you enter Turbo 
Debugger, those settings will be your defaults. 

¢ If at any time, you want to return to the default configuration that 
Turbo Debugger is shipped with, copy TD.EXE from your master 
disk onto your working system disk, overwriting the TD.EXE file 
that you modified. 

Exiting TDINST 
To get out of TDINST at any time, choose Quit from the main 
menu. 

Appendix 0, Customizing Turbo Debugger 337 



338 Turbo Debugger User's Guide 



A p p E N D x 

E 

Remote debugging 

Turbo Debugger's remote capability is unlike that offered by other 
debuggers. With other debuggers, you merely control the de­
bugger from the remote system; the debugger and the program 
being debugged are both still on the same system. This can cause 
problems if the program you are debugging requires more 
memory than that left after the debugger is loaded. 

TDREMOTE and WREMOTE, supplied as part of the Turbo 
Debugger package, solve this problem by letting you run Turbo 
Debugger on one system and the program you are debugging on 
another system. 

In this appendix, we'll look at how to debug very large programs 
and Windows programs by using a second PC connected to your 
main PC. 

Of course, you're probably wondering, "Why use remote de­
bugging?" As an example, if the program you want to debug 
won't load under Turbo Debugger, you're a candidate for remote 
debugging. If you get the message "Not enough memory to load 
symbol table," or the message "Not enough memory" when you 
attempt to load a program to debug, you might want to consider 
remote debugging. 

Sometimes, your program will load properly under Turbo 
Debugger, but there may not be enough memory left for it to 
operate properly. This situation is another case where you might 
want to use remote debugging. 

Appendix E, Remote debugging 339 



If you're experiencing memory problems debugging a program 
and your system has EMS memory, make sure you're using EMS 
for the program's symbol tables (usually, Turbo Debugger does 
this automatically). You can use the configuration utility 
(TDINST) to control Turbo Debugger's use of EMS for symbol 
tables. You can use TDREMOTE to debug TSRs and device 
drivers that can't be debugged on a single machine. 

If you're debugging a Windows application, you have the choice 
of running Turbo Debugger for Windows (TDW) and the appli­
cation on a single machine or running WREMOTE and the appli­
cation on one machine and Turbo Debugger on another. Remote 
debugging has the following advantages for Windows 
applications: 

•If you have a single monitor, running TDW and the application 
on the same machine means that you must switch between 
TDW's screens and the application's screens. If you use 
WREMOTE, you can see the application's screens and Turbo 
Debugger's screens at the same time. (If you have two monitors 
attached to the same machine, you can get the same result.) 

• WREMOTE uses far less memory than TDW, so the program 
you are debugging will behave more like it does when running 
normally, without TDW. 

Setting up a remote debugging system 

340 

In order to use the remote debugging facility, you'll need the 
following equipment: 

•a development system with a serial port for running Turbo 
Debugger 

• another PC with a serial port and enough memory and disk 
space to hold either TDREMOTE and the DOS program you 
want to debug or WREMOTE, Microsoft Windows, and the 
Windows program you want to debug 

• a null modem cable to connect the two systems 

Make sure that the cable you use to connect the two systems is set 
up properly. You can't use a straight through extension-type cable. 
The cable must, at the very least, swap the transmit and receive 
data lines. (A good computer store should be able to sell you what 
you need.) 

Turbo Debugger User's Guide 



Once you've obtained a suitable cable, use it to connect the two 
serial ports. 1his completes the hardware setup required for the 
remote link. 

Debugging remote DOS applications 

Installing 
TD REMOTE 

Configuring 
TDREMOTE: the 
command-line 

options 

To debug a remote DOS application, you must run TDREMOTE 
and the application on one machine and Turbo Debugger on 
another. In this discussion, the machine running TDREMOTE and 
the application is called the remote machine, and the machine 
running Turbo Debugger is called the local machine. 

Copy the remote debugging driver TDREMOTE.EXE to the 
remote system. You must also put on the remote system any files 
required by the program you're debugging. These files can be 
data input files, configuration files, help files, and so on. 

You can put files on the remote system by using floppy disks, or 
you can use the TDRF remote file transfer utility described in the 
disk-based documentation for the Turbo Debugger utilities. 

You can also put a copy of the program you want to debug onto 
the remote system. 1his is not essential, since Turbo Debugger 
will send it over the remote link if necessary. 

Here is a complete list of all the command-line options supported 
by TD REMOTE. You can start an option with either a hyphen (-) 
or a slash (/). 

- ? or -h Displays a help screen 

-rp1 
-rp2 

-rs1 
-rs2 
-rs3 
-rs4 

-w 

Port 1 (COMl); default 
Port 2 (COM2) 

Slowest speed, 9600 baud 
Slow speed, 19,200 baud 
Medium speed, 38,400 baud 
High speed, 115,000 baud (default) 

Writes options to executable program file 

Appendix E, Remote debugging 341 



If you start TDREMOTE with no command-line options, it uses 
the default port and speed built into the executable program file 
(COMl and 115,000 baud, unless you have changed them with the 
-woption). 

You can make the TDREMOTE command-line options permanent 
by writing them back into the TDREMOTE executable program 
file on disk. Do this by specifying the -w command-line option 
along with the other options you want to make permanent. You 
are then prompted for the name of the executable program. You 
can enter an executable file name that does not already exist, 
because TDREMOTE will create a new executable file. 

¢ For a list of all the command-line options available for 
TDREMOTE, enter the program name followed by -h or-?, as 
follows: 

TDREMOTE -h 

If you are running on DOS 3.0 or later, the prompt indicates the 
path and file name that you executed TDREMOTE from. You can 
accept this name by pressing Enter, or you can enter a new 
executable file name. 

If you are running on a DOS 2.x version, you'll have to supply the 
full path and file name of the executable program. 

Starting the DOS 

342 

remote link When you start the TDREMOTE driver program on the remote 
system, make sure your current diredory is set where you want it. 
This is important because TDREMOTE puts the program you are 
going to debug into the directory that was current at the time 
TDREMOTE was started. 

Before starting TDREMOTE, determine whether your serial port 
on the remote system is set up as COMl or COM2. If your serial 
port is set up as COMl, start up TDREMOTE by typing 

TDREMOTE -rpl -rs4 

If your serial port is set up as COM2, start up TDREMOTE by 
typing 

TDREMOTE -rp2 -rs4 

Both these commands start the remote link at its maximum speed 
(115 Kbaud). This speed will work with most PCs and cable 

Turbo Debugger User's Gulde 



Starting Turbo 
Debugger on the 

local machine 

About loading the 
program to the remote 

system 

setups. Later, we'll tell you how to start the link at a slower speed 
if you experience communication difficulties. 

TDREMOTE will sign on with a copyright message and indicate 
that it is waiting for you to start Turbo Debugger on the other end 
of the link. If you want to stop and return to DOS, just press 
Ctrl-Break. 

To start Turbo Debugger on the local machine and use the remote 
link, add the following options to the command line you use to 
start Turbo Debugger from DOS: 

•For serial port COMl: -rpl -rs4 

•For serial port COM2: -rp2 -rs4 

When the link is successful, the message "Turbo Debugger 
online" appears on the remote system, and the message 
"TDREMOTE online" appears on the Turbo Debugger screen. The 
"TDREMOTE online" message will be quickly replaced with 
Turbo Debugger's normal window display. 

Notice that both Turbo Debugger and TDREMOTE use the same 
command-line options to set the speed and serial port. Both Turbo 
Debugger and TDREMOTE must be set to the same speed (-rs 
option) to work properly. 

You can use instead the -r command-line option, which starts the 
remote link using the default speed and serial port. Unless you've 
changed the defaults using TDINST, -r specifies COMl at 115,000 
baud (the fastest baud speed). 

Here's a typical Turbo Debugger command line to start the remote 
link: 

td -rs4 rnyprog 

This command begins the link on the default serial port (usually 
COMl) at the highest link speed (115 Kbaud), and loads the pro­
gram myprog into the remote system if it's not already there. 

Turbo Debugger is smart about loading the program onto the 
remote system. It looks at the date and time of the copy of the 
program on the local system and the remote system. If the local 
copy is later than the remote copy, Turbo Debugger assumes 
you've recompiled or linked the program and sends it over the 

Appendix E, Remote debugging 343 



344 

Remote DOS 
debugging 

sessions 

TD REMOTE 

link at the speed set by the -rs parameter (if you started Turbo 
Debugger using -rs4, that's about llK per second). Since a typical 
60K program will take about 6 seconds to transfer at the highest 
speed, don't be alarmed if there's a delay when you want to load a 
new program. 

To indicate that something's happening, the screen on the remote 
system counts up the bytes of the file as they are transferred. 

Once you've started TDREMOTE and Turbo Debugger in remote 
mode, you can debug your program much as if you were doing it 
on a single system. Turbo Debugger commands work exactly as 
usual; there is nothing new to learn. 

Remember, since the program you are debugging is actually 
running on the remote system, any screen output or keyboard 
input to the program happens on the remote system. The 
Window I User Screen command has no effect when you are 
running on the remote link. 

The CPU type of the remote system appears as part of the CPU 
window title, with the word "REMOTE" before it. 

If you want to send files to the remote system while you are 
running Turbo Debugger, you can go to DOS using the File I DOS 
Shell command and then use the TDRF utility to perform file 
maintenance activities on the remote system. You can then return 
to Turbo Debugger by typing EXIT at the DOS prompt and 
continue debugging your program. TDRF is described in the 
disk-based documentation for Turbo Debugger utilities. 

messages Here is a list of the messages you might receive when you're 
working with TDREMOTE. 

nn bytes downloaded 
A file is being sent to the remote system. This message shows 
the progress of the file transfer. At the highest link speed 
(115,000 baud), transfer speed is about lOK per second. 

Can't create file 
You are attempting to debug a program, and the file doesn't 
exist on the remote system. TDREMOTE checked and found it 
couldn't create the file that needs to be sent to it. This can 

Turbo Debugger User's Guide 



happen either if the disk is full or if the file name already 
exists as a directory. 

Can't modify exe file 
The file name you specified to modify is not a valid copy of the 
TDREMOTE utility. You can only modify a copy of the 
TDREMOTE utility with the -w option. 

Can't open exe file to modify 
Tne file name you specified tu be modified can't be opened. 
You have probably entered an invalid or nonexistent file 
name. 

Download complete 
A file has been successfully sent to TDREMOTE. 

Download failed, write error on disk 
TDREMOTE can't write part of a received file to disk. This 
usually happens when the disk fills up. You will have to delete 
some files before the file can be successfully downloaded. 

Enter program file name to modify 
If you are running on DOS 3.0 or later, the prompt will 
indicate the path and file name from which you executed 
TDREMOTE. You can accept this name by pressing Enter, or 
you can enter a new executable file name. 

If you're running DOS 2.0, you will have to supply the full 
path and file name of the executable program. 

Interrupted 
You have pressed Ctrl-Break while waiting for communications 
to be established with the other system. 

Invalid command-line option 
You have given an invalid command-line option when starting 
TDRF from the DOS command line. 

Link broken 
The program communicating with TDREMOTE has stopped 
and returned to DOS. 

Link established 
A program on the other system has just started to 
communicate with TDREMOTE. 

Loading program "name" from disk 
Turbo Debugger has told TDREMOTE to load a program from 
disk into memory in preparation for debugging it. 

Appendix E, Remote debugging 345 



Troubleshooting 
TDREMOTE 

connection 
problems 

346 

Program load failed, EXEC failure 
DOS could not load the program into memory. This can 
happen if the program has become corrupted or truncated. 
You should delete the program file from disk to force Turbo 
Debugger to send a new copy over the link. If this message 
happens again after deleting the file, you should relink it on 
the other system and try again. 

Program load failed; not enough memory 
The remote system does not have enough free memory to load 
the program that you want to debug. This won't happen 
except with very large programs, since TDREMOTE takes only 
about lSK of memory. 

Program load failed; program not found 
TDREMOTE could not find the program on its disk. This 
should never happen because Turbo Debugger downloads the 
program to the remote system if it can't find it. 

Program load successful 
TDREMOTE has finished loading the program Turbo De­
bugger wants to debug. 

Reading file "name" from Turbo Debugger 
A file is being sent to Turbo Debugger. 

Unknown request: message 
TDREMOTE has received an invalid request from the other 
system. This message should never occur if the link is working 
properly. If you get this message, check that the link cable is in 
good working order, and if you get this error again, try 
reducing the link speed by using the -rs command-line 
option. 

Waiting for handshake (press Ctrl-Break to quit) 
TDREMOTE has been started and is waiting for a program on 
the other system to start talking to it. If you want to return to 
DOS before the other system initiates communication, press 
the Ctrl-Break key combination. 

Since the remote debugging setup involves two different 
computers and a cable going between them, there's a chance 
you'll run into some difficulty getting everything to work 
together. 

Turbo Debugger User's Guide 



If you do experience any problems, first check your cable hook­
ups. If they are OK, ensure that you are using the correct COM 
ports. Next, try running the link at the slowest speed by using the 
-rs1 command-line option when starting up both TDREMOTE 
and Turbo Debugger. If it works using-rs1, try-rs2 (19,200 
baud), and then -rs3 (38,400 baud) if necessary. Some hardware 
and cable combinations don't always work properly at the highest 
speed, so if you can get the link to work only at a lower speed, 
you might want to try a different cable or different computers. 

Debugging remote Windows applications 

Hardware 
requirements 

Installing 
WREMOTE 

To debug a remote Windows application, you must run 
Windows, WREMOTE, and the application on one machine and 
Turbo Debugger on another. In this discussion, the machine 
running Windows, WREMOTE, and the application is called the 
remote machine, and the machine running Turbo Debugger is 
called the local machine. 

The remote machine must be able to run in protected mode, 
which means that the CPU must be at least an 80286. The amount 
of memory required depends on the mode in which you're 
running Windows, but must be at least 1 megabyte. 

Copy both the remote debugging driver WREMOTE.EXE and the 
configuration program WRSETUP.EXE to the remote system. You 
must also put on the remote system any files required by the pro­
gram you're debugging. These files can be data input files, 
configuration files, help files, and so on. 

You can put files on the remote system by using floppy disks, or 
you can use the TDRF remote file transfer utility described in the 
disk-based documentation for the Turbo Debugger utilities. 

You can also put a copy of the program you want to debug on the 
remote system. This isn't essential, since Turbo Debugger will 
send the program over the remote link if necessary. 

Appendix E, Remote debugging 347 



Configuring 
WREMOTE 

Setting up WREMOTE and 
WRSETUP under Windows 

Figure E.l 
WRSETUP main window and 

Settings dialog box 

348 

Before running WREMOTE for the first time, you should run the 
WRSETUP program to set the baud rate and communications port 
for WREMOTE. Both WRSETUP and WREMOTE are programs 
that run under Windows 3.0 or later. 

If you're running WRSETUP for the first time, you should use the 
Windows Program Manager File I New command to configure 
WRSETUP.EXE as an application in the Windows Application 
group. While you're at it, you might as well do the same for 
WREMOTE.EXE. 

When you run WRSETUP, you see a window displaying the 
commands File, Settings, and Help. Choosing Settings displays 
the following screen: 

WRSetup Turbo Debugger Setup 
file ,S.ettings .!:!elp 

®fI~".?.°Q.O.J 

Comm port 

@ COMt 

0COM2 

0 38400 

0115000 D Disable clock interrupts 
!8J Quit when TD quits 

Starting directory: 

Select a baud rate and communications port that works for your 
hardware setup. The defaults are 115,000 baud and COMl. In the 
Starting Directory text entry box, you can enter the path to a 
directory where Turbo Debugger will look for the program you're 
debugging. If you want WREMOTE and the Windows application 
to quit (return control to Windows) when you terminate Turbo 
Debugger on the local machine, select the Quit When TD Quits 
box. Selecting the Disable Clock Interrupts box might help if you 

Turbo Debugger User's Guide 



WREMOTE 
command-line 

options 

Starting the 
Windows remote 

link 

are having trouble getting Turbo Debugger and WREMOTE to 
communicate. 

When you have set your options, close the WRSETUP window. 
WRSETUP saves your settings to the file WREMOTE.INI in your 
Windows directory. As with any .INI file, you can edit the file 
directly using any word processor that produces ASCII text. The 
following WREMOTE.INI file sets WREMOTE at 115,000 baud on 
COMl with clock interrupts not disabled and the program 
quitting when TD quits: 

[WRemote] 
BaudRate=3 
Port=l 
Quit=l 
Clock=O 

You can use the WREMOTE command-line options that follow to 
override the default settings or the settings in the WREMOTE.INI 
file. You can start an option with either a hyphen(-) or a slash(/). 

-c<filename> 
-d<dir> 

-rcO 
-rc1 

-rp1 
-rp2 

-rqO 
-rq1 

-rs1 
-rs2 
-rs3 
-rs4 

Use <filename> as the configuration (.INI) file 
Use <dir> as the startup directory 

Run with clock interrupts enabled 
Run with clock interrupts disabled 

Use Port 1 (COMl); default 
Use Port 2 (COM2) 

Don't quit when TD quits 
Quit when TD quits 

Use slowest speed (9600 baud) 
Use slow speed (19200 baud) 
Use medium speed (38400 baud) 
Use fast speed (115000 baud) 

When you start the WREMOTE driver program on the remote 
system, your current directory is set to the directory where 
WREMOTE.EXE resides. This directory is where WREMOTE 
looks for the application to be debugged, and is where 
WREMOTE stores the application if Turbo Debugger transfers it 
over the link 

Appendix E, Remote debugging 349 



Running Turbo 
Debugger 

Turbo Debugger 
command-line options 

Starting Turbo 
Debugger on the local 

machine 

350 

After you start WREMOTE from Windows, the program displays 
an hourglass at the mouse cursor location, indicating that it is 
waiting for you to start Turbo Debugger on the other end of the 
link. 

To terminate WREMOTE while it is waiting to establish a 
connection wiht TOW (if, for example, you're having problems 
connecting with TOW), press Ctrl-Break on the remote machine. 

Before describing how to start TOW on the local machine, it might 
be helpful to review the remote command-line options. 

Here is a complete list of all the remote command-line options 
supported by Turbo Debugger. You can start an option with either 
a hyphen (-) or a slash (/). 

-? or-h 
-c<file> 

-rp1 
-rp2 

-rs1 
-rs2 
-rs3 
-rs4 

-w 

Displays a help screen 
Use configuration file <file> 

Port 1 (COMl); default 
Port 2 (COM2) 

Slowest speed, 9600 baud 
Slow speed, 19,200 baud 
Medium speed, 38,400 baud 
Fast speed, 115,000 baud (default) 

Indicates that the remote program is WREMOTE 

To start Turbo Debugger on the local machine and use the remote 
link, add the following options to the command line you use to 
start Turbo Debugger from DOS (these commands assume you're 
using the maximum baud rate, 115,000 baud): 

•For serial port COMl: -rpl -rs4 -w 

•For serial port COM2: -rp2 -rs4 -w 

When Turbo Debugger starts on the local machine, it displays 
copyright and version information and the following message: 

Waiting for handshake from remote debugger (ctrl-break to quit) 

If the link is successful, the hourglass disappears from the remote 
screen and Turbo Debugger's normal window display comes up 
on the local machine. If the link isn't successful, you can press 
Ctrl-Break to exit Turbo Debugger. 

Turbo Debugger User's Guide 



About loading the 
program to the remote 

system 

Remote Windows 
debugging 

sessions 

Both Turbo Debugger and WREMOTE must be set to the same 
speed to work properly. You can use the -rs parameter to set the 
baud rate for Turbo Debugger, or you can use instead the -r 
command-line option, which starts the remote link using the 
default speed and serial port. Unless you've changed the defaults 
using TDINST, -r specifies COMl at 115,000 baud (the fastest 
baud speed). 

Here's a typical Turbo Debugger command line to start the remote 
link: .. 

td -rs4 -w myprog 

This command begins the link on the default serial port (usually 
COMl) at the highest link speed (115 Kbaud), and loads the pro­
gram myprog into the remote system if it's not already there. 

Turbo Debugger is smart about loading the program to the 
remote system. It looks at the date and time of the copy of the 
program on the local system and the remote system. If the local 
copy is later than the remote copy, Turbo Debugger assumes 
you've recompiled or linked the program and asks you if you 
want the program transferred to the remote machine. If you do, 
Turbo Debugger sends it over the link at the link speed set by the 
-rs parameter (if you started TD using -rs4, that's about llK per 
second). Since a typical 60K program will take about 6 seconds to 
transfer at the highest speed, don't be alarmed if there's a delay 
when you want to load a new program. 

Once you've started WREMOTE and Turbo Debugger is in remote 
mode, you can debug your program much as if you were doing it 
on a single system. When you're debugging a remote Windows 
application, Turbo Debugger commands work exactly like Turbo 
Debugger for Windows (TDW) commands. (See Chapter 17 for 
more information on TDW commands.) 

Remember, since the program you're debugging is actually 
running on the remote system, any screen output or keyboard 
input to the program happens on the remote system. The 
Window I User Screen command has no effect when you're 
running on the remote link. 

Appendix E, Remote debugging 351 



WREMOTE 

The CPU type of the remote system appears as part of the CPU 
window title, with the word "REMOTE" before it. 

messages Here's a list of the messages you might receive when you're 
working with WREMOTE. 

Troubleshooting 
WREMOTE 

connection 
problems 

352 

Can't find configuration file 
You used the -c command-line option to specify a file that 
doesn't exist. 

Can't load WINDEBUG.DLL 
The dynamic link library WINDEBUG.DLL isn't in the current 
directory. WREMOTE requires this DLL in order to run. 

Can't open COMx serial port 
WREMOTE is trying to use a COM port that either is in use or 
doesn't exist. 

Invalid switch 
You specified an unknown option on the WREMOTE 
command line. 

Since the remote debugging setup involves two different 
computers and a cable going between them, there's a chance 
you'll run into some difficulty getting everything to work 
together. 

If you do experience any problems, first check your cable hook­
ups. If they are OK, ensure that you are using the correct COM 
ports. Next, try running the link at the slowest speed by using the 
9600 baud setting for WREMOTE and the -rs1 command-line 
option for Turbo Debugger. If it works using-rs1, try-rs2 (19,200 
baud), and then -rs3 (38,400 baud) if necessary. 

If you can't get the connection to work at any speed, use 
WRSETUP to set the Disable clock interrupts option, and then try 
running the link at 115,000 baud. If that doesn't work, try each 
successive lower speed until one does work. 

Some hardware and cable combinatfons don't always work prop­
erly at the highest speed, so if you can get the link to work only at 
a lower speed, you might want to try a different cable or different 
computers. 

Turbo Debugger User's Guide 



A p p E N D x 

F 

Dialog boxes and error messages 

Dialog boxes 

Turbo Debugger displays error messages and dialog boxes at the 
current cursor location. Tilis chapter describes the dialog boxes 
and error and information messages Turbo Debugger generates. 

We tell you how to respond to both dialog boxes and error 
messages. All the dialog boxes and error messages (including the 
startup fatal error messages) are listed in alphabetical order, with 
a description provided for each one. 

Turbo Debugger displays a dialog box when you must supply 
additional information to complete a command. The title of the 
dialog box describes the information that's needed. The contents 
may show a history list (previous responses) that you have given. 

You can respond to a dialog box in one of two ways: 

• Enter a response and accept it by pressing Enter. 

• Press Esc to cancel the dialog box and return to the menu 
command that preceded the dialog box. 

Some dialog boxes only present a choice between two items (like 
Yes/No). You can use Tab to select the choice you want and then 
press Enter, or press Y or N directly. Cancel the command by press­
ing Esc. 

Appendix F, Dialog boxes and error messages 353 



354 

For a more complete discussion of the keystroke commands to use 
when a dialog box is active, refer to Chapter 2. 

Here's an alphabetical list of all the messages generated by dialog 
boxes: 

Already recording, do you want to abort? 
You are already recording a keystroke macro. You can't start 
recording another keystroke macro until you finish the current 
one. Press Y to stop recording the macro; N to continue 
recording the macro. 

Device error - Retry? 
An error has occurred while writing to a character device, such 
as the printer. This could be caused by the printer being 
unplugged, offline, or out of paper. Correct the condition and 
then press Y to retry or N to cancel the operation. 

Disk error on drive _ - Retry? 
A hard error has occurred while accessing the indicated drive. 
This may mean you don't have a floppy disk in the drive or, in 
the case of a hard disk, it may indicate an unreadable or 
unwritable portion of the disk. You can press Y to see if a retry 
will help; otherwise, press N to cancel the operation. 

Edit watch expression 
Modify or replace the watch expression. The dialog box is 
initialized to the currently highlighted watch expression. 

Enter address, count, byte value 
Enter the address of the block of memory you want to set to a 
particular byte value, then the number of bytes you want to set, 
followed by the value to fill the block with. 

Enter address to position to 
Enter the address you want to view in your program. You can 
enter a function name, a line number, an absolute address, or a 
memory pointer expression. See Chapter 9 for more on 
entering addresses. 

Enter animate delay (10ths of sec) 
Specify how fast you want the Animate command to proceed. 
The higher the number, the longer between successive steps 
during animation. 

Turbo Debugger User's Guide 



Enter code address to execute to 
Enter the address in your program where you want execution 
to stop. See Chapter 9 for more information on entering 
addresses. 

Enter command-line arguments 
Enter the command-line parameters for the program you're 
debugging. 

Enter comment to add to end of log 
Enter an arbitrary line of text to add to the messages displayed 
by the Log window. You can enter any text you want; it will be 
placed in the log exactly as you type it. 

Enter expression for conditional breakpoint 
Enter an expression that must be true (nonzero) in order for the 
breakpoint to be triggered. This expression will be evaluated 
each time the breakpoint is encountered as your program 
executes. Be careful about any side effects it may have. 

Enter expression to evaluate 
Enter an expression whose value you want to know. The value 
and type of the result will be displayed in an error-type 
window, which disappears once the next keystroke is pressed. 

Enter expression to watch 
Enter a variable name or expression whose value you want to 
watch in the Watches window. If you want, you can enter an 
expression that does not refer to a memory location, such as 
x * (y + 4). If the dialog box is initialized from a text pane, you 
can accept the entry by pressing Enter, or change it and enter 
something else entirely. 

Enter inspect start index, range 
Enter the index of the first item in the array you want to view, 
followed by the number of items you want to view. Separate 
the two scalars by a space or a comma(,). 

Enter instruction to assemble 
Enter an assembler instruction to replace the one at the current 
address in the Code pane. Appendix Chas a condensed listing 
of all assembler keywords, and Chapter 11 discusses the 
assembler language in more detail. 

Enter log file name 
Enter the name of the file you want to write the log to. Until 
you issue a Close Log File command, all lines sent to the log 
will be written to the file, as well as displayed in the window. 

Appendix F, Dialog boxes and error messages 355 



356 

The default file name has the extension .LOG and is the same 
file name as the program you are debugging. You can accept 
this name by pressing Enter, or type a new name instead. 

Enter memory address 
Enter a single memory address. You can use a symbol name or 
a complete expression. 

Enter memory address, count 
Enter a memory address, followed by an optional comma and 
the number of items. You can use a symbol name or a complete 
expression. 

Enter name of configuration file 
Enter the name of a configuration file to read or write. If you 
are reading from a configuration file, you can enter a wildcard 
mask and get a list of matching files. 

Enter name of file to view 
You can use DOS-style wildcards to get a list of file choices, or 
you can type a specific file name to load. 

Enter new bytes 
Enter a byte list that will replace the bytes at the position in the 
file marked by the cursor. See Chapter 9 for a complete descrip­
tion of byte lists. 

Enter new coprocessor register value 
Enter a new value for the currently highlighted numeric 
coprocessor register. You can enter a full expression to generate 
the new value. The expression will be converted to the correct 
floating-point format before being loaded into the register. 

Enter new data bytes 
Enter a byte list to replace the bytes at the position in the 
segment marked by the cursor. See Chapter 9 for a complete 
description of byte lists. 

Enter new directory 
Enter the new drive or directory name that you want to 
become the current drive and directory. 

Enter new file offset 
You are viewing a disk file as hexadecimal data bytes. Enter the 
offset from the start of the file where you want to view the data 
bytes. The file will be positioned at the line that contains the 
offset you specified. 

Turbo Debugger User's Guide 



Enter new line number 
Enter the line number you want to see in the current module. If 
you enter a line number that is past the end of the file, you'll 
see the last line in the file. Line numbers start at 1 for the first 
line in the file. The current line number that the cursor is on is 
shown as the first line of the Module window. 

Enter new relocation segment value 
Enter an expression in the current language. This value will be 
used to set the base segment address of a symbol table that you 
loaded with the File I Symbol Load command. The expression 
that you enter should evaluate to the segment number of the 
start of the code for which the symbol table applies. 

Enter new value 
Enter a new value for the currently highlighted CPU register. 
You can enter a full expression to form the new value. 

Enter port number 
Enter the I/O port number you want to read from; valid port 
numbers are from 0 to 65,535. 

Enter port number, value to output 
Enter the 1/0 port number you want to write to, and the value 
to write; separate the two expressions with a comma. Valid 
port numbers are from 0 to 65,535. 

Enter program name to load 
Enter the name of a program to debug. You can use DOS-style 
wildcards to get a list of file choices, or you can type a specific 
file name to load. If you do not supply an extension to the file 
name, .EXE will be appended. 

Enter read file name 
Enter a file name or a wildcard specification for the file you 
want to read into memory. If you supply a wildcard 
specification or accept the default*.*, a list of matching files 
will be displayed for you to select from. 

Enter search bytes 
Enter a byte list to search for starting at the position in memory 
marked by the cursor. See Chapter 9 for a complete description 
of byte lists. 

Enter search instruction or bytes 
Enter an instruction, as you would for the Assemble local menu 
command, or enter a byte list as you would for a Search com­
mand in a Data pane. 

Appendix F, Dialog boxes and error messages 357 



358 

Enter search string 
Enter a character string to search for. You can use a simple 
wildcard matching facility to specify an inexact search string; 
for example, use *to match zero or more of any characters, and 
? to match any single character. 

Enter source address, destination, count 
Enter the address of the block you want to move, the number 
of bytes to move, and the address you want to move them to. 
Separate the three expressions with commas. 

Enter source directory path 
Enter a list of directories, separated by spaces or semicolons(;). 
These directories will be searched, in the order that they appear 
in this list, for your source files. 

Enter symbol table name 
Enter the name of a symbol table to load from disk. Usually 
these files have an extension of . TDS. You must explicitly 
supply the file-name extension. 

Enter tab column spacing 
Enter a number between 1 and 32 that specifies how far apart 
tab columns will be when Turbo Debugger displays files in a 
File or Module window. 

Enter variable to inspect 
Enter the name of a variable or expression whose contents you 
want to examine. If the dialog box is initialized from a text 
pane, you can accept the entry by pressing Enter or change it 
and enter something else. 

Enter write file name 
Enter the name of the file you want to write the block of 
memory to. 

Overwrite ' ? 
You have specified a file name to write to that already exists. 
You can choose to overwrite the file, replacing its previous 
contents, or you can cancel the command and leave the 
previous file intact. 

Overwrite existing macro on selected key? 
You have pressed a key to record a macro, and that key already 
has a macro assigned to it. If you want to overwrite the existing 
macro, press Y; otherwise, press N to cancel the command. 

Turbo Debugger User's Guide 



Pick a method name 
You have specified a routine name that can refer to more than 
one method in an object. Pick the correct one from the list 
presented. 

Pick a module 
Select a module name to view in the Module window. You are 
presented with a list of all the modules in your program. If you 
want to view a file that is not a program module, use the View I 
File menu command. 

Pick a source file 
Select a source file from the list displayed; only the source files 
that make up the current module are shown. 

Pick a symbol 
Pick a symbol from the list of displayed symbols. You can start 
to type a name, and you will be positioned to the first symbol, 
starting with what you have typed so far. 

Pick a window 
Pick a window from the list of active window titles. 

Press key to assign macro to 
Press the key that you want to assign the macro to. Then, press 
the keys to do the command sequence that you want to assign 
to the macro key. The command sequence will actually be per­
formed as you type it. To end the macro recording sequence, 
press the key you assigned the macro to. This macro will be 
recorded on disk along with any other keystroke macros. 

Press key to delete macro from 
Press the key for the macro that you want to delete. The key 
will then be returned to its original pre-macro function. 

Program already terminated, reload? 
You have attempted to run or step your program after it has 
already terminated. If you choose Y, your program will be 
reloaded. If you choose N, your program will not be reloaded, 
and your run or step command will not be executed. 

Program out of date on remote; send over link? 
You are running Turbo Debugger over the remote link, and the 
program you want to debug is either not on the remote system 
or it is older than the version on the main system. If you 
respond Y, the new program will be sent over the remote link. 
If you respond N, the load command will be aborted. If you are 
running at the slowest remote speed, you may want to copy the 

Appendix F, Dialog boxes and error messages 359 



Error messages 

Fatal errors 

360 

program to the remote system manually by using a floppy 
disk. At the highest link speed, the data transfer rate is at least 
as fast as using a floppy disk. 

Reload program so arguments take effect? 
You have just changed the command-line arguments for the 
program you're debugging. If you type Y, your program will be 
reloaded and set back to the start. You usually want to do this 
after changing the arguments because programs written in 
many Borland languages only look at their arguments once­
just as the program is loaded. Any subsequent changes to the 
program arguments won't be noticed until the program is 
restarted. 

Turbo Debugger uses error messages to tell you about things you 
haven't quite expected. Sometimes the command you have issued 
cannot be processed. At other times the message warns that 
things didn't go exactly as you wanted. 

Error messages are normally accompanied by a beep. You can 
tum off the beep in the customization program, TDINST. 

All fatal errors cause Turbo Debugger to quit and return to 
DOS. Some fatal errors are the result of trying to start Turbo 
Debugger from DOS. A few others occur if something 
unrecoverable happens while you are using the debugger. In 
either case, after having solved the problem, your only remedy 
is to restart Turbo Debugger from the DOS prompt. 

Bad configuration file 
The configuration file is either corrupted or not a Turbo 
Debugger configuration file. 

Could not create dummy PSP segment 
When starting the TD386 virtual debugger with no program to 
load, the dummy program could not be created. Try starting 
TD386 with a program to debug. 

Fatal EMS Error 
The EMS memory driver returned an unrecoverable error indi­
cation. Either your EMS hardware is malfunctioning, or the 

Turbo Debugger User's Guide 



Other error 

software driver has become corrupted. Reboot your system and 
try again. If the problem persists, it's probably a problem with 
your EMS hardware. 

Invalid switch: 
You supplied an invalid option switch on the DOS command 
line. Appendix A has an abbreviated list of all command-line 
switches, and Chapter 4 discusses each one in detail. 

Not enough memory 
Turbo Debugger ran out of working memory while loading. 

Old configuration file 
You have attempted to start Turbo Debugger with a 
configuration file for a previous version. You must create new 
configuration files for this version of Turbo Debugger. 

Remote link timeout 
The connection to the remote system has been disrupted. Try 
rebooting both systems and starting again. If the problem 
persists, refer to Appendix E, where debugging on a remote 
system is discussed. 

Unsupported video adapter 
Turbo Debugger can't determine what display adapter you are 
using; MDA, CGA, EGA, VGA, MCGA, Hercules, Compaq 
composite, AT&T, and close compatibles are supported. 

Wrong version of TDREMOTE 
You have an incompatible version of TDREMOTE running on 
the remote system. You must use the same release of Turbo 
Debugger and TDREMOTE together. 

messages ')' expected 
While evaluating an expression, a right parenthesis was found 
to be missing. This happens if a correctly formed expression 
starts with a left parenthesis and does not end with a matching 
right one. For example, 

3 * (7 + 4 

should have been 

3 * (7 + 4) 

Appendix F, Dialog boxes and error messages 361 



362 

':'expected 
While evaluating a C expression, a question mark (?) 
separating the first two expressions of the ternary ?: operator 
was encountered; however, no matching: (colon) to separate 
the second and third expressions was found. For example, 

x < 0 ? 4 6 

should have been 

x < 0 ? 4 : 6 

']' expected 
While evaluating an expression, a left bracket ([) starting an 
array index expression was encountered without a matching 
right bracket (]) to end the index expression. For example, 

table[4 

should have been 

table[4] 

This error can also occur when entering an assembler 
instruction using the built-in assembler. In this case, a left 
bracket was encountered that introduced a base or index 
register memory access, and there was no corresponding right 
bracket. For example, 

mov ax,4[si 

should have been 

mov ax,4[si] 

Already logging to a file 
You issued an Open Log File command after having already 
issued the same command without an intervening Close Log 
File command. If you want to log to a different file, first close 
the current log by issuing the Close Log File command. 

Ambiguous symbol name 
You have entered a symbol name in an expression that does 
not uniquely identify a method in a C++ or object Pascal 
program, and you have chosen not to pick the correct symbol 
from a list. You must pick the proper symbol from the list 
presented before your expression can be evaluated. 

Turbo Debugger User's Guide 



Assignment out of range 
When doing a Pascal assignment, you have attempted to assign 
a value to a variable that is beyond the range of legal values for 
the variable. 

Bad configuration file name 
You have specified a nonexistent file name with the -c 
command-line option. 

Cannot be changed 
You tried to change a symbol that can't be changed. The only 
symbols that can be changed directly are scalars (int, long, and 
so forth in C; Byte, Integer, Longint, and Strings in Pascal) and 
pointers and strings in Pascal. If you want to change a structure 
or array, you must change individual elements one at a time. 

Can't execute DOS command processor 
Either there was not enough memory to execute the DOS 
command processor, or the command processor could not be 
found. Make sure that the COMSPEC environment variable 
correctly specifies where to find the DOS command processor. 

Can't go resident until user program terminates 
You have attempted to make Turbo Debugger resident before 
the program you are debugging has gone resident itself. Turbo 
Debugger can go resident only when there is no program 
loaded or when the loaded program has run and terminated. 

Can't have more than one segment override 
You attempted to assemble an instruction where both operands 
have a segment override. Only one operand can have a 
segment override. For example, 

moves: [bx],ds:ax 

should have been 

mov es: [bx], ax 

Can't set a breakpoint at this address 
You tried to set a breakpoint in ROM, nonexistent memory, or 
in segment 0. The only way to view a program executing in 
ROM is to use the Run I Trace Into command to watch it one 
instruction at a time. 

Can't set any more hardware breakpoints 
You can't set another hardware breakpoint without first 
deleting one you have already set. Different hardware 

Appendix F, Dialog boxes and error messages 363 



364 

debuggers support different numbers and types of hardware 
breakpoints. 

Can't set hardware condition on this breakpoint 
You have attempted to set a hardware condition on a 
breakpoint that is not a global breakpoint. Hardware 
conditions can only be set on global breakpoints. 

Can't set that sort of hardware breakpoint 
The hardware device driver that you have installed in your 
CONFIG.SYS file can't do a hardware breakpoint with the 
combination of cycle type, address match, and data match that 
you have specified. 

Can't swap user program to disk 
You issued a command that required the program being 
debugged to be written to disk, but there is no room on your 
current disk to write it. You will have to make some space on 
your disk before issuing any commands that require the pro­
gram to be swapped. The File I DOS Shell and Edit commands 
in text panes both require the program to be swapped. 

Can't use same register twice 
You attempted to assemble an instruction that used a base or 
index register twice in the same memory operand. You can 
only use a register once in any operand. For example, 

mov ax, [bx+bx] 

should have been 

mov ax, [bx+si] 

Cannot access an inactive scope 
You entered an expression or pointed to a variable in a Module 
window that is not in an active function. Variables in inactive 
functions do not have a defined value, so you can't use them in 
expressions or look at their values. 

Constructors and destructors cannot be called 
This error message appears only if you are debugging a 
program that uses objects. You probably tried to evaluate an 
object method that's either a constructor or a destructor. This is 
not allowed. 

Destination too far away 
You attempted to assemble a conditional jump instruction 
where the target address is too far from the current address. 

Turbo Debugger User's Guide 



The target for a conditional jump instruction must be within 
-128 and 127 bytes of the instruction itself. 

Divide by zero 
You entered an expression using the divide(/, div) or modulus 
operators (mod,%) that had on its right side an expression that 
evaluated to zero. Since the divide and modulus operators do 
not have defined values in this case, an error message is issued. 

Edit program not specified 
You tried to use the Edit local menu command from a Module 
or Disk File window, but you did not specify an editor startup 
command by using the installation program. 

Error loading program 
DOS was not able to load the program you specified. This 
could mean the file you specified is not a valid .EXE file, or that 
the .EXE file has been corrupted. 

Error opening file _ 
Turbo Debugger couldn't open the file that you want to look at 
in the File window. 

Error opening log file_ 
The file name you supplied for the Open Log File local menu 
command can't be opened. Either there is not enough room to 
create the file, or the disk, directory path, or file name you 
specified is invalid. Either make room for the file by deleting 
some files from your disk, or supply a correct disk, path, and 
file name. 

Error reading block into memory 
The block you specified could not be read from the file into 
memory. You probably specified a byte count that exceeded the 
number of bytes in the file. 

Error recording keystroke macros 
An error occurred while writing the recorded macro keystrokes 
to the configuration file. The macro was probably not recorded 
to disk. 

Error saving configuration 
Turbo Debugger could not write your configuration to disk. 
Make sure that there is some free space on your disk. 

Error swapping in user program, press key to reload 
After swapping your program to disk to execute another pro­
gram that you specified, Turbo Debugger is unable to reload 

Appendix F, Dialog boxes and error messages 365 



366 

your program. This most likely means that you accidentally 
deleted the disk file that your program was swapped to 
(SWAP.$$$). The only thing that the debugger can do is to 
reload your program exactly as if you had issued the File I 
Open menu command. 

Error writing block to disk 
The block that you specified could not be written to the file that 
you specified. You probably specified a count that exceeded the 
amount of free file space available on the disk. 

Error writing log file 
An error occurred while writing to the log file collecting the 
output from the log window. Your disk is probably full. 

Error writing to file 
Turbo Debugger could not write your changes back to the file. 
The file may be marked as read-only, or a hard error may have 
occurred while writing to disk. 

Expression accesses more than one scope 
In conjunction with a breakpoint, you entered an expression 
that contains references to variables from too many scopes. In 
Pascal, you can reference local variables and parameters, 
globals, and locals from an outer subprogram (if the breakpoint 
is in a nested procedure or function). In C, you can reference 
function autos, module statics, and program globals, but not 
autos from more than one function. 

Expression too complex 
The expression you supplied is too complicated; you must 
supply an expression that has fewer operators and operands. 
You can have up to 64 operators and operands in an 
expression. Examples of operands are constants and variable 
names. Examples of operators are plus(+), assignment(= or:=), 
structure member selection(->), and set membership (in). 

Expression with side effects not permitted 
You have entered an expression that modifies a memory 
location when it gets evaluated. You can't enter this type of 
expression whenever Turbo Debugger might need to 
repeatedly evaluate an expression, such as when it is in an 
Inspector window or Watches window. 

Turbo Debugger User's Guide 



Extra input after expression 
You entered an expression that was valid, but there was more 
text after the valid expression. This sometimes indicates that 
you omitted an operator in your expression. For example, 

3*4+52 

should have been 

3 * 4 + s I 2 

Another example, 

add ax,4 5 

should have been 

add ax,45 

You could also have entered a number in the wrong syntax for 
the language you are using, for example, OxFOOO instead of 
OFOOOh when you are in assembler mode. 

Help file _ not found 
You asked for help but the disk file that contains the help 
screens could not be found. Make sure that the help file is in 
the same directory as the debugger program. 

Illegal procedure or function call 
You have attempted to evaluate a function at a time when you 
can't do so. This can happen in one of three circumstances: 

•You are attempting to call a function that is in a Pascal 
overlay. 

•You are attempting to call a function while your current 
program location is in a Pascal overlay. 

•You are attempting to call an Object Pascal method that has 
been removed by the Turbo Pascal smart linker. 

Immediate operand out of range 
You entered an instruction that had a byte-sized operand com­
bined with an immediate operand that is too large to fit in a 
byte. For example, 

add BYTE PTR[bx],300 

should have been 

add WORD PTR[bx],300 

Appendix F, Dialog boxes and error messages 367 



368 

Initialization not complete 
You have attempted to access a variable in your program 
before the data segment has been set up properly by the 
compiler's initialization code. You must let the compiler 
initialization code execute to the start of your source code 
before you can access most program variables. 

Invalid argument list 
The expression you entered contains a procedure or function 
call that does not have a correctly formed argument list. An 
argument list starts with a left parenthesis, has zero or more 
comma-separated expressions for arguments, and ends with a 
right parenthesis. Note that Turbo Debugger requires empty 
parentheses to call a parameterless Pascal function or 
procedure. For example, 

myfunc(l,2 3) 

should have been 

myfunc (1, 2, 3) 

or 

myfunc () 

Invalid character constant 
The expression you entered contains a badly formed character 
constant. A character constant consists of a single quote 
character (') followed by a single character, ending with 
another single quote character. For example, 

'A= 'a' 

should have been 

'A' = 'a' 

Invalid far address 
When entering an instruction to assemble, you supplied a 
badly formed far address for the target of a JMP or CALL 
instruction. A far address consists of a pair of hex numbers 
separated by a colon. For example, 

JMP 1234:XYZ 

should have been 

JMP 1234:1000 

Turbo Debugger User's Guide 



Invalid format string 
You have entered a format control string after an expression, 
but it is not a valid format control string. See Chapter 9 for a 
description of format strings. 

Invalid function parameters 
You have attempted to call a function in an expression, but 
you have not supplied the proper parameters to the function 
call. 

Invalid instruction 
You entered an instruction to assemble that had a valid 
instruction mnemonic, but the operand you supplied is not 
allowed. This usually happens if you attempt to assemble a 
POP CS instruction. 

Invalid instruction mnemonic 
When entering an instruction to be assembled, you failed to 
supply an instruction mnemonic. An instruction consists of an 
instruction mnemonic followed by optional arguments. For 
example, 

AX,123 

should have been 

MOV ax,123 

Invalid operand separator 
You entered an instruction to assemble but didn't separate the 
operands with a comma. If an instruction has more than one 
operand, you must always use a comma between the 
operands. For example, 

ADD ax 12 

should have been 

ADD ax, 12 

Invalid operand(s) 
The instruction you are trying to assemble has one or more 
operands that are not allowed. For example, a MOV instruction 
cannot have two operands that reference memory, and some 
instructions only work on word-sized operands. For example, 

POP al 

Appendix F, Dialog boxes and error messages 369 



370 

should have been 

POP ax 

Invalid operator/data combination 
You have entered an expression where an operator has been 
given an operand that can't have the selected operation 
performed on it. For example, you attempt to multiply a 
constant by the address of a function in your program. 

Invalid pass count entered 
You have entered a breakpoint pass count that is not between 
1and65,535. You can't set a pass count of 0. While your code 
is running, a pass count of 1 means that the breakpoint is 
eligible to be triggered the first time it is encountered. 

Invalid register 
You entered an invalid floating-point register as part of an 
instruction being assembled. A floating-point register consists 
of the letters ST, optionally followed by a number between 0 
and 7 within parentheses; for example, ST or ST(4). 

Invalid register combination in address expression 
When entering an instruction to assemble, you supplied an 
operand that did not contain one of the permitted 
combinations of base and index registers. An address 
expression can contain a base register, an index register, or one 
of each. The base registers are BX and BP, and the index 
registers are SI and DI. Here are the valid address register 
combinations: 

BX BX+SI 
BP BP+SI 
DI BX+DI 
SI BP+DI 

Invalid register in address expression 
You entered an instruction to assemble that tried to use an 
invalid register as part of a memory address expression 
between brackets([]). You can only use the BX, BP, SI, and DI 
registers in address expressions. 

Invalid symbol in operand 
When entering an instruction to assemble, you started an 
operand with a character that can never be used to start an 
operand, for example, the colon(:). 

Turbo Debugger User's Guide 



Invalid typecast 
You entered a expression that contained an incorrectly formed 
typecast. A correct C cast starts with a left parenthesis, 
contains a possibly complex data type declaration (excluding 
the variable name), and ends with a right parenthesis. For 
example, 

(x *)p 

should have been 

(struct x *) p 

A correct Pascal typecast starts with a known data type, then a 
left parenthesis, then an expression, then ends with a right 
parenthesis. For example, 

Longint(p) 

or 

Word(p') 

Invalid value entered 
When prompted to enter a memory address, you supplied a 
floating-point value instead of an integer value. 

Keyword not a symbol (C and assembler only) 
The C expression you entered contains a keyword where a 
variable name was expected. You can only use keywords as 
part of typecast operations, with the exception of the sizeof 
special operator. For example, 

floatval = char charval 

should have been 

floatval = (char)charval 

Left side not a record, structure, or union 
You entered an expression that used one of the C structure 
member selectors (. or->) or the Pascal record field qualifier 
(.).This symbol, however, was not preceded by a record or 
structure name, nor was it preceded by a pointer to a record or 
structure. 

No coprocessor or emulator installed 
You tried to create a Numeric Processor window using the 
View I Numeric Processor command, but there is no numeric 
processor chip installed on your system, nor does the program 

Appendix F, Dialog boxes and error messages 371 



372 

you're debugging use the software emulator. Or the emulator 
has not been initialized. 

No hardware debugging available 
You have tried to set a breakpoint that requires hardware 
debugging support, but you don't have a hardware debugging 
device driver installed. You can also get this error if your 
hardware debugging device driver does not find the hardware 
it needs. 

No help for this context 
You pressed F1 to get help, but Turbo Debugger could not find 
a relevant help screen. Please report this to Borland technical 
support. 

No modules with line number information 
You have used the View I Module command, but Turbo 
Debugger can't find any modules with enough debug 
information in them to let you look at any source modules. 
This message usually happens when you're debugging a pro­
gram without a symbol table. See the "Program has no symbol 
table" error message entry on page 375 for more information 
on symbol tables. 

No previous search expression 
You attempted to perform a Next command from the local 
menu of a text pane, but you had not previously issued a 
Search command to specify what to search for. You can only 
use Next after issuing a Search command in a pane. 

No program loaded 
You attempted to issue a command that requires a program to 
be loaded. There are many commands that can only be issued 
when a program is loaded. For example, none of the com­
mands in the Run menu can be performed without having a 
program loaded. Use the File I Open command to load a pro­
gram before issuing these commands. 

No source file for module 
No source file can be found for the module you want to view. 
ff the source file is not in the current directory, you can use the 
Options I Path for Source command to specify which directory 
your source file(s) are in. 

No type information for this symbol 
You have entered an expression that contains a program 
variable name without debug information attached to it. This 

Turbo Debugger User's Guide 



can happen when the variable is in a module compiled with­
out the correct debug information being generated. You can 
supply type information by preceding the variable name with 
a typecast expression to indicate its data type. 

Not a function name 
You have entered an expression that contains a function call, 
but the name preceding the left parenthesis introducing the 
function call is not a function name. Any time a parenthesis 
immediately follows a name, the expression parser presumes 
that you intend it to be a function call. 

Not a memory referencing expression 
You have entered an expression that does not refer to a 
memory location. There are many cases where the expression 
must reference a memory location, not just return a value. For 
example, the Data I Inspect command requires that the data 
item you inspect be a memory area, not just an expression 
with a result. For example, 

3 * 4 < (9 - 1) 

does not reference memory, but 

myarray[4] 

does reference a memory location. 

Not an Object Pascal or C++ program 
Your program is not an object Pascal or C++ program, so it 
does not contain any objects; therefore, command you selected 
cannot be performed. 

Not a record, structure, or union member 
You entered an expression that used one of the C structure 
member selectors (. or->) or the Pascal record field qualifier 
(.).This symbol, however, was not preceded by a record or 
structure name, nor was it preceded by a pointer to a record or 
structure. 

Not enough memory for selected operation 
You issued a command that needed to create a window, but 
there is not enough memory left for the new window. You 
must first remove or reduce the size of some of your windows 
before you can reissue the command. 

Not enough memory to load program 
Your program's symbol table has been successfully loaded into 
memory, but there is not enough memory left to load your 

Appendix F, Dialog boxes and error messages 373 



374 

program. If your system has EMS memory, make sure that 
Turbo Debugger is set to use it for the symbol table. You can 
use TDINST to set it. 

If you don't have EMS or your program doesn't load even 
with EMS, you can hook two systems together and run Turbo 
Debugger on one system and the program you're debugging 
on the other. See Appendix E for more information on how to 
do this. Or consider using TD286 protected-mode or TD386 
virtual debugging. See chapters 15 and 16 for more 
information. 

Not enough memory to load symbol. table 
There is not enough room to load your program's symbol table 
into memory. The symbol table contains the information that 
Turbo Debugger uses when showing you your source code 
and program variables. If you have any resident utilities 
consuming memory, you may want to remove them and then 
restart Turbo Debugger. You can also try making the symbol 
table smaller by having the compiler only generate debug 
information for those modules you are interested in debug­
ging. If you're using TD386, try the -f option to force TD to 
emulate expanded memory. See Chapter 15 for details. 

When this message is issued, your program itself has not even 
been loaded. This means you must free enough memory for 
the symbol table and your program. 

Only one operand size allowed 
You entered an instruction to assemble that had more than one 
size indicator. Once you have set the size of an operand, you 
can't change it. For example, 

mov WORD PTR BYTE PTR[bx],1 

should have been 

mov BYTE PTR[bx],1 

Operand must be memory location 
You entered an expression that contained a subexpression that 
should have referenced a memory location but did not. Some 
things that must reference memory include the assignment 
operators(=,+=, and so on) and the increment and decrement 
( ++ and - -) operators. 

Turbo Debugger User's Guide 



Operand size unknown 
You entered an instruction to assemble, but did not specify the 
size of the operand. Some instructions that can act on bytes or 
words require you to specify which size to use if it cannot be 
deduced from the operands. For example, 

add [bx],l 

should have been 

add BYTE PTR[bx],l 

Overlay not loaded 
You've tried to set a pane in the CPU window to a location in 
your program that is not presently loaded into memory. You 
can use a Module window to examine source code that has not 
yet been loaded into memory, but you can't look at the under­
lying instructions since they haven't yet been loaded into 
memory. 

Path not found 
You entered a drive and directory combination that does not 
exist. Check that you have specified the correct drive and that 
the directory path is spelled correctly. 

Path or file not found 
You specified a non-existent or invalid file name or path when 
prompted for a file name to load. If you do not know the exact 
name of the file you want to load, you can pick the file name 
from a list by pressing Enterwhen the dialog box first appears. 
The names in the list that end with a backslash(\) are 
directories, letting you move up and down the directory tree 
through the lists. 

Program has invalid symbol table 
The symbol table attached to the end of your program has 
become corrupted. Re-create an .EXE file and reload it. 

Program has no symbol table 
The program you want to debug has been successfully loaded, 
but it does not contain any debug symbol information. You'll 
still be able to step through the program using a CPU window 
and examining raw data, but you will not be able to refer to 
any code or data by name. 

To create a symbol table in Turbo Pascal (5.0 or later), turn on 
Debug I Standalone Debugging (or use the /v command-line 
option with TPC.EXE). If you're using one of Borland's C or 

Appendix F, Dialog boxes and error messages 375 



376 

C++ compilers, you must compile with Iv and link your pro­
gram with TLINK, using the Iv option, in order to get debug 
symbol information. If you're using Turbo Assembler, 
assemble with /zi and link with Iv. 

Program linked with wrong linker version 
You are attempting to debug a program with out-of-date 
debug information. Relink your program using the latest 
version of the linker or recompile it with the latest version of 
Turbo Pascal. 

Program not found 
The program name you specified does not exist. Either supply 
the correct name or pick the program name from the file list. 

Register cannot be used with this operator 
You have entered an instruction to assemble that attempts to 
use a base or index register as a negative displacement. You 
can only use base and index registers as positive offsets. For 
example, 

INC WORD PTR[l2-BX) 

should have been 

INC WORD PTR[l2+BX] 

Register or displacement expected 
You have entered an instruction to assemble that has a badly 
formed expression between brackets ([ ]). You can only put 
register names or constant displacement values between the 
brackets that form a base-indexed operand. 

Repeat count not allowed 
You have entered a format control string that has a repeat 
count, but the expression that you are applying it to can't have 
a repeat count. 

Run out of space for keystroke macros 
The macro you ate recording has run out of space. You can 
record up to 256 keystrokes for all macros. 

Search expression not found 
The text or bytes that you specified could not be found. The 
search starts at the current location in the file, as indicated by 
the cursor, and proceeds forward. If you want to search the 
entire file, press Ctrl-PgUp before issuing the search command. 

Turbo Debugger User's Guide 



Source file not found 
Turbo Debugger can't find the source file for the module you 
want to examine. Before issuing this message, it has looked in 
several places: 

•where the compiler found it 
•in the directories specified by the -sd command-line option 

and the Options I Path for Source command 

• in the current directory 
•in the directory where Turbo Debugger found the program 

you're debugging 

You should add the directory that contains the source file to 
the directory search list by using the Options I Path for Source 
command. 

Symbol not found 
You entered an expression that contains an invalid variable 
name. You may have mistyped the variable name, or it may be 
in some procedure or function other than the active one, or out 
of scope in a different module. 

Symbol table file not found 
The symbol table file that you have specified does not exist. 
You can specify either a . TDS or .EXE file for the symbol file. 

Syntax error 
You entered an expression in the wrong format. This is a 
general error message when a more specific message is not 
applicable. 

Too many files match wildcard mask 
You specified a wildcard file mask that included more than 
100 files. Only the first 100 file names will be displayed. 

Type EXIT to return to Turbo Debugger 
You have issued the File I DOS Shell command. This message 
informs you that when you are done running DOS commands, 
you must type EXIT to return to your debugging session. 

Unexpected end of line 
While evaluating an expression, the end of your expression 
was encountered before a valid expression was recognized. 

For example, 

99 - 22 * 

Appendix F, Dialog boxes and error messages 377 



378 

should have been 

99 - 22 * 4 

And this example, 

SUB AX, 

should have been 

SUB AX,4 

Unknown character 
You have entered an expression that contains a character that 
can never be used in an expression, such as a reverse single 
quote(') in C. 

Unknown record or structure name 
You have entered an expression that contains a typecast with 
an unknown record, structure, union, or enum name. (Note 
that C and assembler structures have their own name space 
different from variables.) 

Unknown symbol 
You entered an expression that contained an invalid local 
variable name. Either the module name is invalid, or the local 
symbol name or line number is incorrect. 

Unterminated string 
You entered a string that did not end with a closing quote(" in 
C, ' in Pascal) If you want to enter a string that contains quote 
characters in Pascal, they must contain additional quote char­
acters('). To enter a C string with quote characters, you must 
precede the quote with a backslash(\) character. 

Value must be between 1 and 32 
You have entered an invalid value for the tab width. Tab 
columns must be at least 1 column wide, but no more than 32 
columns. 

Value out of range 
You have entered a value for a Pascal variable that is outside 
the range of allowed values. 

Video mode not available 
You have attempted to switch to 43/50-line mode, but your 
display adapter does not support this mode; you can only use 
43/50-line mode on an EGA or VGA. 

Turbo Debugger User's Guide 



Video mode switched while flipping pages 
Your program has changed the video display mode when 
Turbo Debugger is in page flipping mode. This means that the 
contents of your program's screen may have been lost. You can 
avoid this by using the -ds command-line option to set video 
swapping mode. 

information messages 

Turbo Debugger generates some information messages that 
appear before the normal windowed display starts up. Here's a 
description of them. 

TDREMOTE online 
Turbo Debugger has succeeded in establishing 
communications with the TDREMOTE remote debug driver 
program on the remote system. If you specified a program 
name to load on the DOS command line, that file will now be 
loaded into the remote system. 

Waiting for handshake from TDREMOTE (Ctrl-Break to quit) 
You have told Turbo Debugger to debug your program on the 
remote system connected via the serial port (-r, -rs, and-rp 
command-line options). Turbo Debugger is now waiting for 
the remote system to inform it that it is running. 

You can interrupt Turbo Debugger and return to the DOS 
prompt by pressing Ctrf-Break. 

Appendix F, Dialog boxes and error messages 379 



380 Turbo Debugger User's Guide 



A p p E N D x 

G 

Using Turbo Debugger with different 
languages 

In this appendix, we have gathered together some tips on how to 
most effectively use Turbo Debugger with different languages. 

Borland C++ tips 

Compiler code 
optimizing If you have used the -0 command-line option with TCC or BCC, 

or the Options I Compiler I Optimization command with the 
integrated environment to specify optimized code generation, you 
may have difficulty stepping through certain source code areas. In 
particular, if you have multiple or nested if..else statements, it 
might be difficult to stop as each else clause is encountered. A for 
loop is also rearranged in a manner which makes tracing through 
it a little odd in some situations. 

To get around these (infrequent) problems, you can either switch 
to assembler-level debugging by opening a CPU window, or you 
can disable optimizing in the compiler while you are debugging. 

Appendix G, Using Turbo Debugger with different languages 381 



Accessing pointer 
data 

Stepping through 

Many times in C, you use pointers to refer to arrays of data items. 
Normally, Turbo Debugger shows you the single pointed-to item 
when you inspect a pointer variable. To access a pointer as an 
array, you can first inspect the data item with one of the usual 
techniques, such as placing the cursor over the variable in a 
Module window and pressing Ctr/-/, and then set a range of items 
to look at by using the Range command on the Inspector window 
local menu. For example, if your program contained 

char *p, buf[80]; 
for (p = buf; p < buf + sizeof(buf); p++) 

you can examine p as an array of characters by choosing the 
Range command in the Inspector window's local menu, and 
entering a starting index of 0 and a count of 80. 

complex If you have a complex expression, such as 

382 

expressions if (isvalid(x) && !useless (x)) { 

you may want to see the result of each subexpression that makes 
up the conditional expression. If there are function calls in the 
expression, press Fl to trace into a function, put the cursor on the 
closing } at the end of the function, and press F4 to run to that 
point. Then, choose the Data I Function Return command to look 
at the value about to be returned. If there are other function calls 
in the conditional expression, you can then press F7 to stop on the 
first line of the next function in the conditional expression. You 
can then repeat this procedure to examine its return value. 

If you have a complex expression that does not contain function 
calls, for example, 

if (x <= 5 && y[z] > 8) { 

Turbo Debugger User's Guide 



and you want to see the result of evaluating each subexpression, 
you will have to open a CPU window, do assembler-level 
stepping, and watch the subexpression results being put in CPU 
registers. 

Turbo Assembler tips 

Looking at raw 
hex data 

Source-level 
debugging 

Examining and 
changing 

registers 

You can use the Data I Add Watch and Data I Evaluate/Modify 
commands with a format modifier to look at raw data dumps. For 
example, 

[ES:DI),20m 

specifies that you want to look at a raw hex memory dump of the 
20 bytes pointed to by the ES:DI register pair. 

You can step through your assembler code using a Module win­
dow just as with any of the high-level languages. If you want to 
see the register values, you can put a Registers window to the 
right of the Module window. 

Sometimes, you may want to use a CPU window and see your 
source code as well. To do this, open a CPU window and choose 
the Code pane's Mixed command until it reads Both. That way 
you can see both your source code and machine code bytes. 
Remember to zoom the CPU window (by pressing F5) if you want 
to see the machine code bytes. 

The obvious way to change registers is to highlight a register in 
either a CPU window or Registers window. A quick way to 
change a register is to use the Data I Evaluate/Modify command. 
You can enter an assignment expression that directly modifies a 
register's contents. For example, 

SI = 99 

loads the SI register with 99. 

Appendix G, Using Turbo Debugger with different languages 383 



Likewise, you can examine registers using the same technique. 
For example, 

Alt-D E AX 

shows you the value of the AX register. 

Turbo Pascal tips 

Stepping through 
initialization code 

Stepping through 
exit procedures 

Constants 

384 

When you first load your program into Turbo Debugger, the 
right-pointing filled arrow points to the begin keyword of the 
main program. The begin actually corresponds to a series of calls 
to the initialization sections of all the units that your program 
uses (assuming they have initialization code). All programs begin 
with a call to the initialization code of the System unit. 

At this point, if you press Fl (the hot key for the Run I Trace Into 
command), you'll trace into the the first unit that has initialization 
code with debug information enabled. If you use Fl to step past 
the end of the first unit's initialization code, you'll trace into the 
next unit; eventually you'll return to the main program, ready to 
execute the first statement. 

If, on the other hand, you press FB (the hot key for the Run I Step 
Over command) at the beginning of the program, you will skip 
over all initialization code and begin stepping through the body 
of the main program. 

When your program terminates, control is passed down a chain of 
exit procedures (refer to the chapter titled "Inside Turbo Pascal" 
in the Turbo Pascal Object-Oriented Programming Guide). When you 
step past the end of the main program, Turbo Debugger does not 
trace into the exit procedures. In order to step through this chain, 
place a breakpoint in each exit of the procedures you want to 
debug. 

Constant identifiers are recognized only for scalar and typed 
constants; for example, 

Turbo Debugger User's Guide 



String and set 
temporaries on 

the stack 

Clever 
typecasting 

program Test; 
con st 

A = 5; 
B = Pi; 

Message = 'Testing'; 
Caps = ['A' .. 'Z'] ; 
Digits : string[lOJ = '0123456789'; 

begin 
WritPln IA\: 

Writeln(B); 
Writeln(Message); 
Writeln('A' in Caps); 
Writeln(Digits); 

end. 

In this program, you can inspect A (a scalar constant), Digits (a 
typed constant), B (a floating-point constant), or Message (a string 
constant), but not Caps (a set constant). 

If you're using the CPU window, be advised that Turbo Pascal 
automatically allocates string and set temporaries on the stack in 
the following way: 

The plus ( +) operator, when used with strings, and all string 
functions will reserve stack space for results of these operations. 
This stack space is reserved in the caller's stack frame. Likewise, 
the+,-, and* set operators will also reserve stack space for inter­
mediate results. 

The Dos unit defines the internal data format for all the prede­
fined file types. You can use these declarations to examine the 
data of any file variable. Try entering this program: 

program Typecast; 
uses Dos; 
var 

TextFile : Text; 
IntFile : file of Integer; 

begin 
Assign(TextFile, 'TEXT.DTA'); 
Rewrite(TextFile); 
Assign(IntFile, 'INT.DTA'); 

Appendix G, Using Turbo Debugger with different languages 385 



CPU window tips 
for Pascal 

386 

Rewrite(IntFile); 
Close(TextFile); 
Close (IntFile); 

end. 

Now add these four watch expressions: 

IntFile 
TextFile 
FileRec(IntFile),r 
TextRec(TextFile),r 

The first two will display the file status (CLOSED, OPEN, INPUT, 
OUTPUT) and disk file name, while the second two use typecast­
ing to reveal internal field names and values for the file variables. 

• Routines in the System unit are unnamed. When watching a call 
instruction in the CPU window, you will see a call to an abso­
lute address instead of a symbolic name. 

•A number of 1/0 routines (for example Readln and Writeln) 
often generate multiple assembler-language calls. 

• Range-checking, stack-checking, and I/ 0-checking generate 
calls to library routines to perform their respective functions. 

•A number of operators (Longint multiplication, string concate­
nation, and so on) are implemented via calls to library routines. 

•The literal constants (string, set, and floating-point) of a 
procedure are placed in the code segment, just before the 
procedure's entry point. 

Turbo Debugger User's Guide 



G L 0 s s A R y 

Tne ter1T1s listed 11ere are used frequcrLtly irL this manual. Some of 
them are general terms about software and computers, and others 
are specific to the Turbo Debugger environment. 

action What happens when a breakpoint gets triggered. Actions can stop 
your program, log the value of an expression, or execute an 
expression. 

active pane The pane in the active window that is accepting user input. All 
cursor motion and local menu commands act upon this pane. 

active window The window on the display that the user is interacting with. Only 
one window can be the active window. It has its title in reverse 
video, and a double-line rather than a single-line border. 

array A data item composed of one or more items of the same data type. 

autovariable In the C language, a variable in a program that is local to an 
instance of a called function. These variables are stored on the 
stack, and their scope is that of the enclosing block (in C, source 
lines between a pair of { } ). 

block scope The region of the program in which a specific data item is 
"visible." For example, some variables have global scope, meaning 
they are accessible anywhere in your program; other variables 
may be local to a module or procedure. 

breakpoint An address in the program you are debugging where some action 
is to be performed. See also action. 

button A dialog box item, represented by shadowed text, that executes a 
command or confirms settings you have made in the dialog box. 

casting Converting an expression from one data type to another. For 
example, converting from an integer to a floating-point number. 
In C, a cast consists of a data type enclosed in parentheses, like 
(int). In Pascal, a typecast consists of a type, followed by an 
expression surrounded by parentheses, like word(S). (Also called 
typecasting and type conversion.) 

Glossary 387 



C expression An expression using the C language syntax. Turbo Debugger lets 
you evaluate any C expression, including those that assign values 
to memory locations. 

check box A dialog box item that toggles a setting between On and Off. 
When the option is set to On, an X appears between the square 
brackets of the check box: [X]. 

CPU The central processing unit; refers to the 80x86 processor in your 
system. The CPU has a number of flags and registers. The CPU 
window shows the current CPU state. 

CPU flag One of the control bits in the CPU that either affects subsequent 
instructions or is set to reflect the results of an operation. 

CPU register A fast storage location inside the CPU chip. The register names 
are AX, BX, CX, DX, SI, DI, BP, SP, IP, CS, DS, ES, SS. Extended 
register names are EAX, EBX, ECX, ESI, EDI, EBP, ESP, FS, and 
GS. 

CS:IP The current program location, as specified by the code segment 
(CS) CPU register, and the instruction pointer (IP) register. 

dialog box An onscreen box in which you can view and adjust settings and 
input information. 

disassembler A program that converts machine code into assembler code that 
you can read. The Code pane in a CPU window automatically 
disassembles instructions in one of its panes. 

EMS Expanded memory specification. Turbo Debugger can put your 
program's symbol table in EMS to conserve main memory. 

expression A combination of operators and operands conforming to the 
syntax of one of the languages supported by Turbo Debugger: C, 
Pascal, and assembler. 

global breakpoint A breakpoint that can occur on every instruction or source line. 

history list A list of previous user input lines maintained for each input box. 
This lets you select a previous entry instead of having to type it in. 

inspector A window used to examine or change the values in a data 
element, array, or structure. 

operand The data item that an operator acts on; for example, in 3 * 4, both 
3 and 4 are operands. 

operator An action that is performed on one or more operands, such as 
addition(+) or multiplication(*). 

388 Turbo Debugger User's Guide 



PATH The DOS environment variable that indicates where to search for 
executable programs. Turbo Debugger searches the path for a 
configuration file. 

postfix An operator that comes after its operand, like x++ in C. 

prefix An operator that comes before its operand, like - -x in C. 

radio buttons A set of three or more options, one and only one of which must be 
a('tjvp at any given time. If a radio button is on, a bullet appears 
between parentheses: ( • ) . 

record See structure. 

reverse execution The process of stepping backward through your program one 
instruction at a time, undoing the effects of program execution as 
you go. 

scalar A basic data type consisting of ordered components such as Byte, 
Integer, Char, and Boolean in Pascal or char, int, and float in C. 
Scalars can be the individual elements of larger data items, such 
as arrays or structures. 

scope See block scope. 

set An unordered group of elements, all of the same scalar type. 

stack The region of memory that stores procedure and function return 
addresses, parameters, and other data related to an instance of a 
called procedure or function. 

side effect An expression that alters the value of a variable or memory 
location; for example, an assignment statement or one that calls a 
function in your program that modifies some data. 

step To execute the program being debugged one instruction or source 
line at a time, while treating procedure or function calls as a 
single instruction. This lets you skip over calls to routines that 
you don't want to examine one line at a time. 

symbol A name of any variable, constant, procedure, or function. 

trace To execute a program one instruction or source line at a time. 

tracepoint A global breakpoint that watches for a variable or memory area to 
change. 

triggered A breakpoint is triggered when all the conditions controlling it 
become true: Your program must have reached the specified 

Glossary 389 



address, the pass count must have been reached, and the 
condition must have been satisfied. 

type Data items in your program have different types indicating their 
purpose. For example, your program can contain pointers, 
floating-point numbers, arrays, and so on. 

watchpoint A global breakpoint that watches for an expression to become 
true. 

wildcards The characters* and?, used in file matching expressions. 

? matches any single character 
* matches zero or more characters 

For example, abc* .1 matches abc99 .1 and abcdef .1 but not xyz99 .1. 

window A rectangular area of the screen containing information that can 
be viewed independently of the contents of other windows. In 
Turbo Debugger, windows can partially or completely obscure 
one another. See also active window. 

390 Turbo Debugger User's Guide 



N 

???? 
in Variables window 79 
in Watches window 106 

8514 graphics adapter 335 
:: (double colon) operator 150, 152 
386" MAX 255 
/$ option (TPC) 64 
32-bit register display 178 
-? option (help) 67 

remote TD 350 
TD386 virtual debugger 253, 254 
TDREMOTE 341 

= (System) menu 196 
activating 20 

80x87 coprocessors 314, See also numeric 
coprocessors 
control bits 191 
CPU data display 182 
instruction mnemonics 322 
registers 321 
status bits 192 

80x86 processors See also 80286 processor; 
80386 processor 
CPU register display 178 
debugging 169-188 

triggering breakpoints 125 
instructions 

assembling 184-186 
mnemonics 320 
operands and 231 

memory allocation 234 
type, in CPU window 171 

80286 processor See also 80x86 processors 
debugging 259-261 

80386 processor See also 80x86 processors 
debugging 251-257 

device driver 13, 252 
exception handlers and 85 
extended address modes 254 

Index 

D E 

instructions 233 
mnemonics 320 
TD386 virtual debugger and 254 

registers 149, 254, 320 

A 
About command 6 
accuracy testing 235 
Acer 1100 and NMl 333 
Action Expression input box 124 
Action radio button 123 
active window 33 

returning to 21 
activity indicators 38 

x 

adapters See graphics adapters; video adapters 
Add command 

breakpoints 126, 129 
Windows messages 

message classes 269 
window proc 268 

Add Comment command 127, 128 
Add Watch command 105, 383 
Add Window dialog box 268 
address, Borland 6 
Address input box 126 
addresses 143, 313 

backtracking through 181 
far 368 
instruction, disassembled 172 
instructions, disassembled 172 
memory See memory, addresses 
returning to previous 174 
running to specified 137, 171, 173, 179 

problems with 90 
scope override for 144 
segment: offset 

physical addresses and 190 
size overrides (built-in assembler) 185 

391 



stack 183 
resetting 184 

switching between 17 4, 184 
symbol tables, base segment 357 
word pointer chain 180-181 

addressing modes, 80386 processor 254 
Alt-key shortcuts See hot keys 
Always option 

breakpoints condition 124 
display swapping 73 

ancestor and descendant relationships 160, 161 
ancestor types 166 
Animate command 90, 354 
Another command 32 
arguments 3, See also parameters 

calling function 29 
command-line options 65, 360 

changing 98 
setting 91, 98 

list 368 
Arguments command 98 
arrays 

changing 363 
indexes 355 
inspecting 23, 32, See also Inspector windows 

C tutorial 51 
Pascal tutorial 58 
subranges of 111, 113, 115, 117 

quoted character strings and 157 
watching 106, See also Watches window 

arrow keys See also keys 
history lists and 26 
Inspector windows and 52 
menu commands and 20 
radio buttons and 22 
README file and 10 
resizing windows with 36 

ASCII 
files 210 

editing 140 
searching 139 

text 
viewing files as 138, 139, 140 

text editors and 140 
ASCII display option (files) 140 
.ASM files 304, 308 
Assemble command 175, 184 

392 

assembler See also Turbo Assembler 
built-in 170, 184-186, See also Code pane 

problems with 362 
Turbo Assembler vs. 185-186 

bytes, changing 180 
character strings, searching for 179, 180 
code 31, 189 

skipping over 175 
tracking32 

conditional jumps 172, 173, 185 
data, formatting 178, 181-182 
debugging techniques 169-188 

modules 175 
inline, keywords 319-322 

problems with 371 
instructions 172, 175, See also instructions 

back tracing and unexpected side effects 93 
breakpoints and 126 
disassembled 175 
executing single 89 
execution history and 93 
multiple, treated as single 89 
peripheral device control 176 
protected-mode 254 
recording 94 
referencing variables 185 
returning 173, 17 4 
searching for 17 4 

problems with 174 
size overrides and 185-186 
watching 30, See also CPU window 

memory dumps 178, 182, 186 
mode, starting Turbo Debugger in 68 
OFFSET operator 185 
operands 

size overrides 185, 186 
programs 

display modes 175 
returning to 173 

registers 187, See also CPU, registers 
altered 234 
1/0 read/writes 176 
incrementing/ decrementing 177 

returns, far and near 172, 180, 185 
routines 175 
stack See also Stack window 

examining 183-184 

Turbo Debugger User's Guide 



symbols 172 
As~embler option (language convention) 142 
assignment operators See also operators 

Borland C++ 151 
expressions with side effects and 104, 152 

language-specific 80, 81, 107 
Turbo Pascal 155 

At command 121, 129 
Atron debugging board 13 
AUTOEXEC.BAT 7 

virtual debugging and 252 

B 
/B option (black-and-white mode) 13 
Back Trace command 90 
backward trace 17, 93, See also Back Trace 

command; reversing program execution 
addresses, near and far and 181 
assembler instructions 93 
interrupts and 92 

Base Segment:O to Data command 181 
BCWDEMO 

files 285 
BCWDEMOA 286 

bug, fixing 293 
DoPaint routine 290 
WndProc routine 290 

BCWDEMOB 294 
bug, fixing 298 
DoButtonDown routine 297 
DoLButtonUp routine 298 
DoMouseMove routine 298 
DoPaint routine 299 
DoWMCommand routine 297 
DrawShape routine 298 

beep on error, setting 331 
Beep on Error check box (TDINST) 331 
Beginning Display radio buttons (TDINST) 328 
binary operators See also operators 

Borland C ++ 150 
Turbo Pascal 154 

bits 170 
control, 80x87 coprocessor 191 
CPU register display 178 
status, 80x87 coprocessor 192 

blinking cursor 36 
Block command 182 

Index 

blocks 
memory See memory, blocks 
moving 358 
reading from, problems with 365 
writing to files, problems with 366 

boards 
debugger 

nonmaskable interrupts and 333 
books, reference 8 
Borland 

CompuServe Forum 6 
license agreement 9 
mailing address 6 
technical support 6 

Borland C ++ 366 
arrays 53, 220 

inspecting 110 
problems with 110 

autovariables 222, See also variables herein 
scope222 
uninitialized 219 

bugs specific to 219-223 
character strings 149 
code 

stepping through 381 
tracing into 48 

command-line options 64 
compiler 187, 219 

directives, #include 133 
optimizing 381 

constants 149 
CPU registers, use of 187 
data 

inspecting 108-111 
types 51-52 

compound 53 
converting 152 

debugging techniques 381-383 
preparing programs for 64 

demo programs 43, 48-55 
debugging 237-242 
starting 44 

escape sequences 149 
expressions 147-153, 220 

complex, stepping through 382 
entering in dialog boxes 54 
problems with 362 

393 



with side effects 104, 152 
#define macros and 222 

functions 48, 49, 151, 382 
inspecting 111 
problems with 104 
returning from 48, 222 
tracing into 48 

integer assignment 221 
keywords 152 

problems with 371 
language-specific help 39 
loops, exiting 223 
operators 220 

expressions with side effects and 104, 152 
precedence 150, 220 

optimization 64 
pointers 382 

incrementing and decrementing 220 
inspecting 109 

pseudovariables 148, 149, See also variables 
herein 

scalars, inspecting 108 
source code 221, 223 
source files 44 
structures, inspecting 110 
symbols 147 
Transfer utility 19 
unions, inspecting 110 
variables See also autovariables; 

pseudovariables herein 
inspecting 51-53 
return values 53-55, 106 
watching50 

Both option (integer display) 74 
bottom line See also reference line 
boundary errors 219 

Pascal-specific 228 
testing for 235 

Break option (breakpoints action) 123 
breaking out of programs 11 
Breakpoint Detail pane 122 
Breakpoint Disabled check box 125 
Breakpoint List pane 122 
Breakpoint Options dialog box 123 
breakpoints 28, 119-132, See also Breakpoints 

window 
Boolean 125, 129, 130 

394 

complex 125 
conditional 125, 129, 130 
disabling/enabling 125 
global 130 

memory variables and 124 
testing 130 
where occurred in program 85, 87 

hardware-assisted 13, 83 
80386 systems and 125 
device drivers and 131, 364 
memory variables and 124 
problems with 85, 363, 364, 372 

infinite loops and 95 
inspecting 126 
multiple 131 
pass counts See pass counts 
process ID switching and 314 
processing 

interrupts and 315 
reloading programs and 96 
removing 120, 126 
returning information on 83 
running programs to 50, 57 
saving temporarily 125 
scope 122 
setting 120, 122, 126 

conditional 129 
pass counts 125, 129, 130 
problems with 363, 364 
program termination and 84, 87 
simple 128 
tutorial 49, 56 

setting in module files 122 
skipping 129 
triggering 129 
TSR programs and 302 

resident portion 303 
using241 

with demo programs 239 
viewing 122 
windows message 

setting, program termination and 87 
Windows messages 

setting287 
Windows messages, setting 271 

Breakpoints command 122 
Breakpoints menu 120, 197 

Turbo Debugger User's Guide 



Breakpoints window 28, 122-126 
local menu 123, 199 
opening 122 
panes 122 

bugs 15-17, 215, 217-219 
accuracy testing 235 
assembler-specific 230-235 

Quirks mode 235 
boundary errors 219 

Pascal-specific 228 
testing for 235 

C-specific 219-223 
finding 16, 17, 91, 215-216 

backward trace and 90 
demo programs 

BCWDEMOA 286 
BCWDEMOB 294 
DOS236-249 

execution history and 92 
history lists and 126 
interrupting DOS program execution and 
95 
interrupting Windows program execution 
and283 
memory allocation and 251, 313 
in subroutines 218 

fixing 132 
BCWDEMOA, in 293 
BCWDEMOB, in 298 
built-in assembler and 184 

incremental testing 217 
off-by-one 177 
Pascal-specific 223-230 
range errors 229 
returning information on 83, 86 

built-in assembler 170, 184-186, See also 
assembler, built-in 

built-in syntax checkers 17 
bullets ( •) 

Result box and 103 
Watches window and 106 

buttons 22, See also dialog boxes 
Help 22 
radio See radio buttons 

Byte command 181 
byte lists 

entering 139, 147 

Index 

searching for 17 4, 179, 180 
text editors and 140 

bytes 170, 172, 180 
command codes and 306 
formatting 178, 181 
hexadecimal 

floating-point registers 190 
viewing files as 138, 140 

memory blocks 183 
memory blocks set to 354 
raw data 356 

examining 108 
floating-point registers and 190 

reserving in memory 69 
searching for 376 
symbol tables and 305, 308 
watching 30 

c 
C++ programs 

class instances 
formatting 103 
inspecting 164-167 

class member functions 31, 82 
inspecting 162 

class types 160 
hierarchy tree 31 
inspecting 162-164 

compatibility with Turbo Debugger 159 
debugging 18, 159-167 

nested class structures 162 
this parameter and 103 

expressions, problems with 362 
multiple inheritance 31, 160, 161 
scope override 145 
stepping through 90 
tracing into 89 

-c option (load configuration file) 
problems with 363 
remote TD 350 
TDW 265 
Turbo Debugger 66 
WREMOTE349 

C option (language convention) 142 
C programming language See Borland C ++ 
calculator 105 
Caller command 17 4 

395 



case sensitivity 
enabling 333 
overriding 69 

casting See type conversion 
central processing unit See CPU 
CGA 13, See also graphics adapters; video 

adapters 
Change command 

Data pane local menu 180 
Global pane local menu 80 
Inspector window local menu 117 
Object Data Field pane local menu 166 
Register pane local menu 177, 191 
Stack pane local menu 184 
Static/Local pane local menu 81 
Watches window local menu 107 

Change dialog box 
global symbols and 80 
local and static symbols and 81 

Change Process ID check box (TDINST) 334 
Changed Memory Global command 121, 130 
Changed Memory option (breakpoints 

condition) 124 
Changed Memory radio button 129, 131 
character constants 368 
character devices, problems with 354 
character strings 

Borland C ++ 149 
null-terminated 109, 115 
quoted 139 

arrays as 157 
problems with 378 

searching 137, 139, 140 
searching for 179, 180, 358 
Turbo Pascal 154 

characters 
control (Pascal programs) 154 
display (ASCII vs. hex) 140 
escape (Borland C++) 149 
invalid 378 
problems with scalar variables and 109, 112 
raw 157 
value of 109, 112 

check boxes 22, See also dialog boxes 
Beep on Error (TDINST) 331 
Breakpoint Disabled 125 
Change Process ID (TDINST) 334 

396 

Control Key (TDINST) 332 
Fast Screen (TDINST) 329 
Full Graphics Saving (TDINST) 329 
Global 130 
Ignore Symbol Case (TDINST) 333 
Keystroke Recording (TDINST) 332 
Mouse Enabled (TDINST) 331 
NMI Intercept (TDINST) 333 
Permit 43/50 Lines (TDINST) 329 
Remote Debugging (TDINST) 334 
Save Configuration 75 
Use Expanded Memory (TDINST) 334 

class instances· See C++ programs 
class member functions and types See C ++ 

programs 
Clear command 182 
close box 34 
Close command 32, 37, 117 
Close Log File command 128 
code See also specific language application 

breakpoints and 126, 129, 130 
checking onscreen 32 
command-line options and source 69 
current segment See programs, current 
location 
debugging See debugging 
disassembled 175 

problems with 79 
editing 133-134 
executing 

TSR programs and 302 
exit, returned to DOS 84 
exit, returned to Windows 87 
inspecting 93, 94, See also Inspector windows 
interrupts and, problems with 95 
pool size, setting 70 
skipping over 175 
splice 124 
splicing in 132 
stepping through 89, See also Step Over 

command 
problems with 315 

tracing into 89, See also Trace Into command 
execution history and 92 

viewing 170 
execution history and 31 
in multiple files 136, 140 

Turbo Debugger User's Guide 



watching See also Watches window 
in slow motion 90 

Code pane 172-176 
80x87 coprocessors and 172 
addresses 

symbolic memory 172 
current program location 171 
disassembler and 172 
display modes 175 
immediate operands and 172 
instruction addresses 172 
local menu 173, 200 

codes, release 315 
color graphics adapters 13, See also graphics 

adapters 
color monitors 67, See also monitors 

customizing 324-326 
color tables 325 
Colors command (TDINST) 324 
command codes 306 
command-line options 65-71, See also specific 

switch 
arguments 360 

changing 98 
setting 91, 98 

disabling 66 
dynamic link libraries 

startup code, debugging 280 
INSTALL 

/B (black-and-white mode) 13 
-h (help) 12 

overriding 335 
saving 323 
summary of 311-312 
symbol table allocation 

device drivers and 307 
problems with 308 

TSRsand 304 
problems with 305 

symbolic debugging information 
device drivers and 306 

symbolic information 
TSRsand 302 

syntax 65 
help with 67 

TD286 protected-mode debugger 260 
TD386 virtual debugger 253 

Index 

-? (help) 254 
-h (help) 254 

TDINST vs. 335-336 
TDREMOTE 341-342 
TDW 265 
Turbo Debugger utilities 11 
WREMOTE349 

commands 23, See also specific menu command 
assigning as macros 72 
choosing 20 

active windows and 33 
problems with 373 

dialog boxes and 353 
escaping out of 21 
hot keys and menu 21 
local menu 25 
recording frequently used 97 
summary of 193-213 

onscreen 38, 40 
comments 

adding to history lists 127 
adding to log 355 

communications 
remote systems See also TDREMOTE; 
WREMOTE 

DOS applications 
debugging over 344 
debugging problems 346 
program load error 346 

errors 
incompatible version 361 
link timeout 361 
send program 359 

TD command line 69 
termination message 345 
Windows applications 

debugging over 351 
debugging problems 352 

communications; remote systems 334 
Comp command 181 
Compaq EMS simulator 255 
compiler directives See also specific language 

application 
files and 133 

compiling, Windows demo programs 286 
complex data objects 106 
complex data types 101 

397 



composite monitors 13 
compound data objects 105 

inspecting 107 
compressed files, unarchiving 12 
CompuServe Forum, Borland 6 
COMSPEC environment variable (DOS) 363 
Condition Expression input box 124, 125 
Condition radio button 124 
conditional breakpoints See breakpoints 
conditions See also breakpoints 

controlling 122 
qualifying 130 
setting 129 

CONFIG.SYS See configuration files 
configuration files 7, 71 

changing default name 75, 337 
device driver debugging and 307 
directory paths 69 

setting 331 
loading 66, 356 
overriding 66, 71 
problems with 360, 361, 363 
saving 337 

macros to 97 
options to 7 4 
problems with 365 

TDCONFIG.TD 38, 66, 71 
TDCONFIG.TDW 266 
TDW 266 
virtual debugging and 252 

configuring TDW 265 
constants 

Borland C ++ 149 
Inspector windows and 108 
problems with 368 
TASM 156 
Turbo Pascal 154, 384, 386 

constructor methods 104 
problems with 364 

context-sensitive help 38-41 
context-sensitivity 23, 24 
continuous trace 90 
control bits, viewing 191 
control flags 191 
Control Key check box (TDINST) 332 
control-key shortcuts 332, See also hot keys; 

keys 

398 

Control pane 191 
local menu 191, 206 

conversion See type conversion 
coprocessors See 80x87 coprocessors; numeric 

coprocessors 
CPU See also CPU window 

flags 178 
state of 177 
viewing 31, 171, 187 

memory dump 178 
registers 148, 169, 187, 321 

80386 processor 149 
16-bit vs. 32-bit display 178 
compound data types and 105 
decrementing 177 
incrementing 177 
I/O 176 
optimization with 52, 59 
resetting 177 
viewing 31, 177-178, 187 

state, examining 30, 170 
TDREMOTE and 344 
WREMOTE and 351 

CPU command 108, 170 
CPU window 30, 170-184 

cursor in 171 
disassembled code and 79 
opening 170 
panes 30, 171-184 
problems with 375 
processor type in 171 
program execution and 88-94 

crashes See system, crashes 
Create command 27, 72 
Ctrl-Alt-SysRq (Windows interrupt key) 283 

Get Info box, and 86 
message breakpoint alternative 294 
Program Reset command, and 283, 287 

Ctrl-Break (interrupt key) 95 
device drivers and 309 
problems with 84 
resetting 95, 331 
TSR programs and 303 

current activity, help with 38 
current code segment See programs, current 

location 

Turbo Debugger User's Guide 



cursor 36 
CPU window 171 
running programs to 89 

tutorial 48, 55 
cursor-movement keys See keys 
customer assistance 6 
customizing Turbo Debugger 71, 72, 323-337 

D 
-d option (startup directory) 349 
data 102-105, See also Data pane 

accessing 142 
bashing 

global breakpoints and 130 
formatting 103 
input236 
inspecting 101-118, See also Inspector 

windows 
in recursive functions 83 

manipulating 30 
modifying 54, 61 
objects 

complex 106 
compound 105, 107 
inspecting 102, 187, See also Inspector 
windows 
pointing at 105 
watching 106, See also Watches window 

raw 
displaying 178 
examining 108, 178-183 
inspecting 187 
viewing 30, 186, 356 

size overrides (built-in assembler) 186 
structures 

inspecting 166 
structures, inspecting 23 
testing, invalid input and 235 
truncated 103 
types 101 

complex 101 
converting 81, See type conversion 
formatting 181-182 
inspecting 33, 108-116, See also Inspector 
windows 
problems with 79, 103, 157 
tracking 131 

Index 

variables and 373 
values 235 

setting breakpoints for 129 
viewing 170 

in recursive functions 79 
incorrect values shown 85, 87 
pointers to 190 

watching See Watches window 
Data menu 102-105, 197 
Data pane 178-183 

display formats 181-182 
local menu 179, 200 
memory addresses in 178 
pointer chains 180 
problems with, memory values 179 

Debug Information command 64 
debugger boards 

nonmaskable interrupts and 333 
Debugger command 64 
Debugger dialog box 64 
debugging 15-20, 169, See also programs, 

debugging 
80286 processors 259-261 
80386 processors 251-257 
80x86 processors 169-188 
assembler 

modules 175 
programs 169-188 

C++ programs See C++ programs, 
debugging 

continuous trace 90 
control 77-99, 143 

infinite loops and 95, 315 
interrupt vectors and 315, 317 
memory use and 83 
returning to Turbo Debugger 88, 95, 96 
symbol tables and 259 
TD386 virtual debugger and 255 

defined 15 
demo programs See demo programs 
device drivers 306-309 

problems with 306 
dynamic link libraries 276 

startup code 280 
features 1, 19 
functions 131, 133, 151 

recursive 79, 83 

399 



hardware See hardware, debugging 
large programs 251 

display modes and 329 
problems with 346 
TDREMOTE and 339 

message logs and 29 
multi-language programs 11 
multiple components 53, 60 
object-oriented programs See object-oriented 

programs, debugging 
protected-mode See TD286 protected-mode 

debugger 
remote systems See also TDREMOTE; 

WREMOTE 
defaults, setting in TDINST 334 
DOS applications 344 
link timeout 361 
TD command line 69 
TDREMOTE, problems with 346 
Windows applications 351 
WREMOTE, problems with 352 

required files 3 
restrictions 17 
routines 218 
sessions 77 

preparing programs for 63-76, 236 
restarting 96-97 
starting 98 

simple programs 217 
small programs 68, 71 
source files and 3 
steps 16 
strategies 238, 243 
techniques 215-249 
terminology 3 
tools 17 
TSR programs 302·305 
tutorial 43-62, 236-249 

help with 45 
variables 218 

uninitialized 218 
virtual See TD386 virtual debugger 
Windows programs 

remotely 347 
sample tutorial 285 
user interface 263 

debugging boards 121, 125, See also hardware 

400 

compatibility with Turbo Debugger 13 
problems with 315 
triggering breakpoints 125 

decimal numbers 74 
integers displayed as 157 

Decimal option (integer display) 74 
Decrement command 177 
Default Color Set command (TDINST) 326 
default directories, changing 12 
default settings 323 

overriding 71, See also TOINST 
restoring 75, 337 

Delete All command 
Breakpoints menu 121 
Breakpoints window local menu 126 
Macros menu 73 
Watches window local menu 107 
Windows messages 

message classes 272 
Windows Messages window 

message classes 272 
window proc 269 

demo programs 43-62 
Borland C++ 48-55, 237-242 
DOS236-249 
help with 45 
reloading 44 
source files 43 
starting 44, 238, 244 
Turbo Pascal 55-62, 242-249 
Windows285 

BCWDEMOA 286 
BCWDEMOB 294 
compiling and linking 286 

Descend command 
Inspector window local menu 118 
Object Data Field pane local menu 166 

descendant relationships 160, 161 
DesqView 255 
destructor methods 104 

problems with 364 
device drivers 305-306, See also hardware 

activating 309 
breakpoints and 124, 131 

problems with 372 
character vs. block 306 

Turbo Debugger User's Guide 



debugging 306-309 
problems with 306 
virtual 255 

interrupt routine 306 
interrupts and 315 
loading 307 
strategy routine 306 
symbol tables, loading 308 
symbolic information, incorporating 306 
TDH386.SYS 13 

error messages 257 
installing 252 

TDREMOTE.EXE 341 
WREMOTE.EXE 347 
XMS253 

dialog boxes 22 
bottom line in 41 
Breakpoint Options 123 
Change BO, 81 
closing 76 
commands and 353 
customizing 325 
Debugger 64 
Directories (TDINST) 330 
Display Options 73 

TDINST 327 
escaping out of 353 
Evaluate/Modify 103, 141, 240, 245 
Expression Language 142 
icons20 
Load Program 98 
messages 353-360 
Miscellaneous Options (TDINST) 333 
moving around in 22 
responding to 353 
Save Options 75 
search 137, 139 
Source Debugging (TDINST) 332 
Watch BO 

Dialogs command (TDINST) 325 
directories 

default 12, 330 
paths 3 

multiple 69 
problems with 375 
setting 74, 358 
setting for source 69 

Index 

starting directory, changing 265 
TDREMOTE and 342 
WREMOTE and 349 

Directories dialog box (TDINST) 330 
disassembled instructions 172 
disassembler 172 

display modes 175 
disk drives 306 

accessing, problems with 354 
running Turbo Debugger on two-floppy 2 

disks 
controllers 176 
distribution 9, 10 
files on See files, disk 
writing to, problems with 364, 365, 366 

display 
buffer, saving 329 
formats 

data types 181-182 
expressions 157 
integers 74, 181, 328 

modes325 
Code pane (CPU) 175 
controller registers 316 
defaults, setting 73, 334 
problems with 13, 378, 379 
ROM BIOS calls and 316 

options 327-330 
colors 324-326 
saving 38 

output 73 
problems with 335 

pages329 
problems with 37 
swapping See screens, swapping 
updating 329 

Display As command 
Data pane local menu 178, 181 
File window local menu 140 

Display command (TDINST) 327 
Display Options command 73 
Display Options dialog box 73 

TDINST327 
display pages 

multiple 67 
Display Swapping radio buttons 73 

TDINST327 

401 



Display Windows Info command 128, 204, 272 
distribution disks 9 

copying 10 
DLL See dynamic link libraries 
-do option (run on secondary display) 

TDW265 
Turbo Debugger 67 

DoButtonDown routine (BCWDEMOB.C) 297 
DoLButtonUp routine (BCWDEMOB.C) 298 
DoMouseMove routine (BCWDEMOB.C) 298 
DoPaint routine 

BCWDEMOA.C 290 
BCWDEMOB.C 299 

DOS 
command processor, problems with 363 
COMSPEC environment variable 363 
debugging programs from 67 
device drivers and 305 
examining code inside 173, 179 
exit code and 84 
function calls 314 
interrupt handlers and TSR programs 302 
overwriting 314 
returning to 76 
running programs from 66, 316, 317 

TD286 protected-mode debugger and 260 
TD386 virtual debugger and 252, 254 
TDREMOTE and 344 

shelling to 75 
display swapping and 330 

system calls, Turbo Debugger and 67 
tracing through 334 

problems with 314 
TSR programs 

executing from 303 
versions 7, 83, 86 

compatible with Turbo Debugger 2 
problems with TDCONFIG.TD and 71 
TD386 virtual debugger and 253 
TDREMOTE and 342 

wildcards, choosing files and 138 
DOS Shell command 75, 364 

TD286 protected-mode debugger and 260 
TDREMOTE and 344 

DOS Shell command, TD386 virtual debugger and 
254 

double colon(::) operator 150, 152 

402 

Double command 182 
DoWMCommand routine (BCWDEMOB.C) 297 
-dp option (use two display pages) 67 
DrawShape routine (BCWDEMOB.C) 298 
drives See disk drives 
-els option (swap screens) 

TDW265 
Turob Debugger 67 

Dump command 187 
Dump Pane to Log command 127 
Dump window 30, 186 

local menu 202 
opening 187 

duplicate windows, opening 32 
dynamic link libraries 

debugging 276 
startup code 280 

E 
-e option (TD386 virtual debugger) 253 
Edit command 364 

File window local menu 19, 140 
Module window local menu 138 
problems with 365 
Watches window local menu 107 

editing 
ASCII files 140 
expressions 107 
history lists 26 

editors, text See text editors 
EGA See also graphics adapters; video adapters 

line display 70, 74, 328 
palette 70 

Empty command 191 
EMS 83, 316 

disabling 316 
drivers 316 
emulation and TD386 virtual debugger 253 
enabling 334 
execution history and 92 
problems with 360 
simulators 255 
symbol tables and 339 
Windows info box 88 

emulator, 80x87 coprocessor 189 
end of lines, problems with 377 
Enhanced Graphics Adapters See EGA 

Turbo Debugger User's Guide 



Erase Log command 
Log window local menu 128 
Windows Messages window 272 

Erase Log File command 128 
error messages 360-379 

beep, enabling 331 
TD386 virtual debugger 256-257 
TDREMOTE 344 
Turbo Debugger 360 
WREMOTE352 

errors, boundary See boundary errors 
escape sequences, Borland C++ 149 
Evaluate command 383 
Evaluate input box 103 
Evaluate/Modifycommand 102-105, 141 
Evaluate/Modify dialog box 103, 141 

using 240, 245 
exception codes 85, 87 
executable program files See files 
Execute option (breakpoints action) 124 
Execute To command 90 
execution history 92, See also Execution History 

window 
backward trace and 93 
deleting 92 
losing 93 
recovering 93, 94, 95 

Execution History command 92 
Execution History window 31, 92-95 

keystroke recording and 332 
opening 92 
panes 92 

exit code 
returned to DOS 84 
returned to Windows 87 

exiting 
TDINST 337 
Turbo Debugger 76 

TSR debugging and 309 
tutorial 44 

expanded memory specification See EMS 
Expression Language dialog box 142 
Expression True Global command 121, 130 
Expression True option (breakpoints condition) 

125 
Expression True radio button 129 

Index 

expressions 141-157 
complex 102 
editing 107 
entering, problems with 364, 366, 371, 373 

argument lists and 368 
character constants and 368 
invalid characters and 378 
invalid variables and 377, 378 
memory areas and 373, 374 
operators and 365, 367, 370 

evaluating 102-105, 240, 245 
functions in 155 
implied scope 146 
language conventions 142 
problems with 146, 361, 362, 366, 377 
procedures in 155 
return values 355 

formatting 157 
problems with 369 

inspecting 32, 102, 118, 358, See also 
Inspector windows 

language options 142, 332 
pointing at 105 
return values 106, 141 
scope override 144, 146 
syntax 

Borland C++ 147-153 
TASM 155-157 
TurboPascal 153-155 

undefined 106 
updating 107 
watching 105, 355, See also Watches window 

format specifiers and 103 
with side effects (C programs) 104, 152 

Extended command 182 
extended memory 251 

F 

protected-mode debugging and 259 
TD386 virtual debugger and 252 

problems with 257 

-f option (TD386 virtual debugger) 253 
Far Code command 180 
Fast Screen Update check box (TDINST) 329 
fatal errors 360 
features 

version 2.5 2 

403 



File command 
File window local menu 140 
Module window local menu 136 
View menu 138 

File menu 196 
File window 29, 138-140 

local menu 139, 203 
opening 136 

files See also File menu; File window 
.ARC 12 
.ASM 304, 308 
AUTOEXEC.BAT 7 

virtual debugging and 252 
BCWDEM0285 
compiler directives and 133 
compressed 12 
configuration See configuration files 
demo program 43 
disk 29, 133, 138 

history lists and 127 
problems with 365 

editing 138 
executable program 133, 357 

required for debugging 3 
TD386 virtual debugger and 253, 254 

handles 314 
HELPME!.DOC 9, 10, 331 
include 133 
INST ALL.EXE 10, 12 
list boxes and 27 
loading See files, opening 
log 355 

problems with 362, 365, 366 
saving entries to 330 

modifying, byte lists and 147 
modules of program 

loading a new module 136 
viewing 133 

moving to specific line number in 136, 139 
multiple 

viewing 136, 140 
opening 98, 138, 356 

problems with 71, 365, 375 
wildcard masks and 377 

overriding 142 
overwriting 358 
PROGNAME.TDK 94 

404 

program module 
setting breakpoints in other 122 

reading to memory 183 
README 9, 10, 12 
searching 139 
searching for 212 
source See source files 
SWAP.$$$ 366 
TCDEMO.C43 
TCDEMO.EXE 242 
TD.EXE337 
TDCONFIG.TD 38, 66, 71 
TDH386.SYS 13, 125, 252, 254 
TDREMOTE.EXE 341 
.TDS 304, 307, 308 
TDW.EXE264 
TDW program, list of 264 
TDWHELP.TDH 264 
text 210, See also ASCII, files 
THELP.COM 39 
TPDEMO.PAS 43, 249 
tracking 32 
unarchiving and unpacking 12 
viewing 29, 134, 138, 140 

as ASCII text 138, 140 
text editors and 140 

as hex data 138, 140 
offset address 356 
text editors and 140 

multiple 136, 140 
source code 134 

WINDEBUG.DLL 264 
WREMOTE.EXE 347 
writing to, problems with 366 

filled arrow 48 
flags 

80x87 coprocessor 
control 191 
status 192 

CPU See CPU, flags 
Flags pane 171, 177 

local menu 178 
Float command 182 
floating point 

constants 
Borland C ++ 149 
TASM 156 

Turbo Debugger User's Guide 



Turbo Pascal 154 
numbers 189 

formatting 157, 178, 182 
problems with 31 

registers 190, 356 
problems with 370 

Follow command 
Code pane local menu 173 
Data pane local menu 180 
Stack pane local menu 184 

format specifiers 103, 157 
problems with 369 

repeat counts and 376 
Full Graphics Saving check box (TDINST) 329 
Full History command 94 
function keys 40, See also hot keys; keys 

summary of 194-195 
Function Return command 105, 382 
functions 3, See also specific language 

calling 105 
problems with 367, 368, 369, 373 

class-member See C++ programs 
debugging 131, 133, 151 
inspecting 82, 117, See also Inspector 

windows 
variable with same name as 79 

method See object-oriented programs 
names, finding 29 
recursive, local data and 79, 83 
return values and current 105 
returning from 90, 17 4 
returning to 184 
stepping over 17 
stepping through 90 
variables and inactive 364 
viewing in stack 29, 82 
watching See Watches window 

G 
Get Info command 83 
Get Info text boxes 

DOS83 
Windows86 

gh2fp (type-cast symbol) 282 
global breakpoints See breakpoints 
Global check box 130 

Index 

global memory, Windows 
analyzing 295 
information about 88 
listing 273 
percentage available 295 

global menus 20, See also menus 
local vs. 24 
reference 195-198 

Global pane 79 

Global Symbol pane local menu 207 
global symbols 207 

disassembler and 172 
global variables See also variables 

changing 80 
debugging, in subroutines 218 
inspecting 79, See also Inspector windows 
same name as local 80 
viewing 29, 79 

in stack 29 
Watches window, adding to 80 

Go to Cursor command 89 
Goto command 

Code pane local menu 173 
Data pane local menu 179 
File window local menu 139 
Module window local menu 137 
Stack pane local menu 183 

graphics 10 
color tables 325 
display buffer, saving 329 
modes See display, modes 
palettes 70 
problems with 70 

snow329 
graphics adapters 335, See also hardware 

CGA, problems with 13 
display options 335 
display pages 329 
EGA 70, 7 4, 328 
Hercules 335 
monochrome text-only 335 
problems with 378 
supported 361 
TDW requirements 263 
VGA 70, 74, 328 

405 



H 
-h option (help) 67 

INSTALL 12 
remote TD 350 
TD386 virtual debugger 253 
TDREMOTE 341 

handle 
memory 

casting to far pointer 282 
listing global memory, and 273 

window, messages, and 268 
hardware 

adapters See graphics adapters; video 
adapters 
debugging 13, 121, 125, See also breakpoints, 
hardware-assisted 

problems with 85, 363, 364, 372 
debugging boards See debugging boards 
keyboard interupts 315 
math chips 2, 172, 189 
peripheral device controllers 176 
primary and secondary displays 67 
requirements 2 

TD286 protected-mode debugger 259 
TD386 virtual debugger 252 
TDREMOTE 340 
TDW 263 

Hardware Breakpoint command 121 
Hardware option (breakpoints condition) 125 
Hardware Options command 125 
heap 

allocation 218 
global, Windows 273 
local, Windows 275 
size, setting 68 

help 38-41 
accessing 38 

problems with 367, 372 
additional topics for 39 
command-line options 67 

remote TD 350 
TD386 virtual debugger 254 
TDINST 336 
TDREMOTE 341 
Turbo Debugger utilities 11 

context-sensitive 38-41 
current activity 38 

406 

demo programs 45 
dialog boxes 22 
language-specific 39 
online 38-40 

Help button 22 
Help Index 39 
Help menu 39, 198 
Help on Help command 39 
Help screen 

activating 39 
highlighted keywords in 39 

HELPME!.DOC 9, 10 
setting directory path for 331 

Hercules graphics adapter 335 
Hex display option (files) 140 
Hex option (integer display) 74 
hexadecimal bytes 139 

floating-point registers 190 
viewing 

data as 179, 181 
files as 138, 140 

hexadecimal constants 
TASM 156 
Turbo Pascal 154 

hexadecimal numbers 7 4 
integers displayed as 157 

hierarchies, object type \class 159, See also 
Hierarchy window 

Hierarchy command 
Object Data Field pane local menu 163, 167 
Object Methods pane local menu 164 
View menu 159 

Hierarchy Tree pane 160, 161 
local menu 161, 206 

Hierarchy window 31, 159, 206 
opening 159 
panes 160-162 

highlight bar in windows 36 
History List Length input box (TDINST) 331 
history lists 25-26, See also execution history 

breakpoints 126 
editing 26 
length, setting 331 
logging to 127 
moving around in 211 

hot keys 21, See also keys 
Alt= (Create Macros) 72 

Turbo Debugger User's Guide 



Alt - (Stop Recording) 72 
Alt-B (Breakpoints) 120 
Alt-F4 (Back Trace) 90 
Alt-F3 (Close) 37 
Alt-F9 (Execute To) 90 
Alt-F7 (Instruction Trace) 91 
Alt-F6 (Undo Close) 37 
Alt-FS (User screen) 32 
Ctr1-F2 (Program Reset) 91 
Ctrl-FS (Size/Move) 36 
Ctrl-1 (Inspect) 23 
Ctrl-N (text entry) 26 
dialog boxes 22 
enabling 332 
F2 (Breakpoints) 49 
F4 (Go to Cursor) 89 
F3 (Module window) 28 
F6 (Next Window) 35 
F9 (Run) 88 
F8 (Step Over) 89 
F7 (Trace Into) 89 
F8 (Until Return) 90 
FS (Zoom) 37 
help with 40 
local menus 25, 40 
macros as 27, 72 
summary of 194-195 
Tab/Shift-Tab (Next Pane) 35 

-i option (enable ID switching) 67, 314 
IBM display character set 157 
IBM PC convertible and NMI 11, 333 
iconize box 34 
Iconize/Restore command 37 
icons 

dialog boxes 20 
menu20 
reducing windows to 34, 37 
zoom34 

ID switching See process ID switching 
identifiers 

program, handling 69 
referencing in other modules 143 
scope override 146 

Ignore Symbol Case check box (TDINST) 333 
In Byte command 176 

Index 

include files 133 
Increment command 177 
incremental matching 27 
Index command 39 
indicators, activity 38 
initialization code 384 
inline assembler keywords 319-322 

problems with 371 
input See 110 
input boxes 22, See also dialog boxes 

Action Expression 124 
Address 126 
Condition Expression 124, 125 
entering text in 26 
Evaluate 103 
History List Length (TDINST) 331 
history lists and 25-26 
Log List Length (TDINST) 330 
Maximum Tiled Watch (TDINST) 328 
moving around in 211 
New Value 103 
Pass Count 125, 129 
Result 103 
Save To 75 
Spare Symbol Memory (TDINST) 334 
Tab Size 74 

TDINST 328 
Inspect command 51 

Breakpoints window local menu 126 
Data menu 32, 102 
Global pane local menu 79 
Hierarchy Tree pane local menu 161 
Inspector window local menu 117 
Instructions pane local menu 93 
Keystroke Recording local menu 94 
Module window local menu 135 
Object Data Field pane local menu 162, 163, 
166 
Object Methods pane local menu 164 
Object Type List pane local menu 160 
Parent Tree pane local menu 162 
Stack window local menu 82 
Static/Local pane local menu 81 
Watches window local menu 107 

Inspector windows 18, 23, 32, 108-118 
arrays 110, 113, 115 
closing 32 

407 



compound data objects and 102, 118 
functions 111, 114 

method/member 162 
global symbols and 79 
language-specific programs and 108 
local menus 116-118 

object/ class instance 209 
object type/ class 209 

local symbols and 81 
object/ class instance 164-167 
object type I class 162-164 
opening28 

additional 33 
panes 

object/ class instance 165 
object type I class 162 

pointers 109, 112, 114 
problems with 

character values in 109, 112 
multiple lines and 109, 112, 115 
pointers to arrays 110 

procedures 114 
records 113 
reducing number onscreen 118 
scalars 108, 111, 114 
structures 110, 116 
unions 110, 116 
using 

C tutorial 51-53 
in demo programs 239, 246 
Pascal tutorial 58-60 

variables in 79 
viewing contents as raw data bytes 108 

INSTALL.EXE 10, 12 
problems with graphics display and 13 

installation 12 
command-line options, help 12 
compressed (.ZIP) files and 13 
problems with, graphic display and 13 
TD286 protected-mode debugger 259, 260 
TD386 virtual debugger 252 
TDH386.SYS device driver 13, 252 
TDINST utility and See TDINST 
TDREMOTE 340, 341 
TDW 264 
WREMOTE347 

instruction opcodes 190 

408 

illegal 85, 87 
instruction pointers, viewing 190 
Instruction Trace command 91 

execution history and 92 
instructions 169, See also Instructions pane 

assembling 170, 175, 184-186 
problems with 367, 369, 370 

base and index registers 364, 370, 376 
instruction mnemonics 369 
invalid registers 370 
size indicators 374, 375 
target addresses 364, 368 

referencing variables 185 
back tracing into 93 
breakpoints and 130 
built-in assembler and 170, 185-186 
current interrupt 17 4 
disassembled 94 
divide, information about 85, 87 
execution history and 92-94 
inspecting 93, See also Inspector windows 
machine 170 

Borland C++ compiler and 187 
executing 89, 91 
stepping through 170 

multiple assembly treated as single 89 
referencing memory 171 
single-stepping 

interrupts and 315 
viewing 92 

coprocessor 190 
watching See also CPU window; Watches 

window 
Instructions pane 92-94 

local menu 93, 202 
Integer Format radio buttons 74 

TDINST 328 
integers 

constants 
Borland C++ 149 
TASM 156 
Turbo Pascal 154 

formatting 74, 181, 328 
viewing 

decimal 157 
hexadecimal 157 

watching 106, See also Watches window 

Turbo Debugger User's Guide 



interrupt handlers 302 
Interrupt Key radio button (TDINST) 331 
interrupt routine 306 
interrupt vectors 315, 317 

loading 315 
interrupting programs 

DOS95 
Windows 

using Ctrl-Alt-SysRq 283 
using message breakpoints 294 

interrupts 17 4 
back tracing into 92 
device drivers and 309 
DOS program 

messages about 85 
exception, TD386 virtual debugger and 255 
handlers 

TSR programs 301 
keyboard 315 
NMI 11, 333 
problems with 84, 174 
program 95, See also Ctrl-Break (interrupt 

key) 
TDREMOTE 343, 346 
WREMOTE 349 

software 301, 302 
tracing into 91 
TSR programs and 303 
Windows program 

messages about 87 
1/0 

CPU 176 
functions, low-level 305 
options 331 
ports 176 

reading from 357 
writing to 357 

TDREMOTE and 344 
video 73 
watching, TD386 virtual debugger and 251 
WREMOTE and 351 

I/0 command 176 

K 
-k option (enable keystroke recording) 67 
keyboard interrupt 315 

Index 

keys See also arrow keys; function keys; hot 
keys 
assigning as macros 27, 72 
Ctrl-Break (interrupt) 84, 95, 331 
cursor-movement 36, 212 

CPU window 171 
dialog boxes 22, 211 
Help window 39 
menu commands 20 
TDINST 324 
text boxes 211 
text files 210 

recording as macros See keystrokes, 
recording 

keystroke macro facility 97 
Keystroke Recording check box (TDINST) 332 
Keystroke Recording pane 94 

local menu 94, 202 
Keystroke Restore command 95 
keystrokes 

assigning as macros 27, 72 
displayed 31 
recording 67, 97, 376 

automatic 332 
execution history and 92, 94 
problems with 354 
restoring to previous 73 

replaying 94 
keywords, inline assembler 319-322 

problems with 371 
keywords in Help window 39 

L 
-1 option (assembler mode) 

TDW 265,280 
Turbo Debugger 68 

labels, running programs to 90 
tutorial 49, 56 

Language command 142 
Language radio buttons (TDINST) 332 
language-specific applications See also specific 

language 
assignment operators and 80, 81 
conventions 142 
debugging 219-235, 381-386 

preparing for 63-65 
expressions and 141 

409 



help with 39 
Inspector windows and 108 
options 328, 332 
scope override and 144 
using 17, 141 

Layout option (save configuration) 75 
layouts 

restoring 37, 38 
LCD screens 335 

problems with 13 
lh2fp (type-cast symbol) 282 
license agreement, Borland 9 
Line command 136 
line numbers 357 

Code pane 172 
displaying current 48 
generating scope override 144 
moving to specific 136, 139 
problems with, source files and current 135 

lines, multiple, problems with 109, 112, 115 
Link Speed radio buttons (TDINST) 334 
linked lists 118 
linking, Windows demo programs 286 
list boxes 22, See also dialog boxes 

incremental matching in 27 
moving around in 210, 211 

list panes, Pick a Module 133 
lists 

choosing items from 36 
global memory, Windows 273 
local heap, Windows 275 
modules, Windows 275 

Load Modules or DLLs dialog box 277 
Load Program dialog box 98 
local and static variables 

changing 81 
selecting for Variables window 81 
watching 81 

local heap, Windows 275 
local menus 24-25, See also menus 

accessing 24 
Breakpoints window 123-126, 199 
Code pane 173-176, 200 
Control pane 191, 206 
Data pane 179-183, 200 
Dump window 202 
File window 139-140, 203 

410 

Flags pane 178 
Global pane 79 
Global Symbol pane 207 
Hierarchy Tree pane 161, 206 
Inspector windows 116-118, 208 
Instructions pane 93, 202 
Keystroke Recording pane 94, 202 
Local Symbol pane 207 
Log window 127, 203 
Message Class pane 205 
Messages pane 205 
Module window 135-138, 204 
Object Data Field pane 163, 165 
Object Method pane 164, 167 
Object Type/Class List pane 160, 206 
Parent Tree pane 162, 207 
Register pane 

CPU window 177-178, 202 
Numeric Processor window 191, 205 

Registers window 207 
Stack pane 183-184, 202 
Stack window 82, 207 
Static/Local pane 80 
Status pane 192, 206 
Varibles window 207 
viewing hot keys in 40 
Watches window 107, 208 
Window Selection pane 204 

Local Symbol pane local menu 207 
Local Symbols command 64 
local variables See also variables 

breakpoints and 122 
global values and 79 
inspecting 81, See also Inspector windows 
problems with 378 
viewing 29 

in stack 29 
specific instances of 79, 83 

Locals command 83 
79 

Log command 126 
log files 355 

opening, problems with 362, 365 
saving entries to 330 
writing to, problems with 366 

Log List Length input box (TDINST) 330 
Log option (breakpoints action) 124 

Turbo Debugger User's Guide 



Log radio button 131 
Log To File command 365 
Log window 29, 126-128 

adding comments to 355 
local menu 127, 203 
opening 126 
window messages, sending to 272 

Logging command 128 
Long cornrnand 181 
loops, infinite 315 

problems with debugging and 95 

M 
-m option (set heap size) 68 
machine instructions 170 

Borland C++ compiler and 187 
executing 89, 91 
stepping through 170 

macros27 
recording 27 

keystrokes as 72, 97 
problems with 358, 365, 376 
terminating 27 

removing 73 
restoring to previous 73 
saving 75, 97 

to configuration files 97 
Macros command 27, 72 
Macros option (save configuration) 75 
MASM See Microsoft languages 
math chips 2 

80x87 coprocessor 189 
disassembler and 172 

math coprocessor See numeric coprocessors 
Maximum Tiled Watch input box (TDINST) 328 
memory 70, 71, 329, 339 

accessing 
problems with 179 
TD386 virtual debugger and 255 

addresses 141, 314, 356 
disassembler and 171 

symbolic 172 
dump 178 
entering 356 
high251 
Numeric Processor window 190 
problems with 371 

Index 

references vs. 185 
allocation 76, 316 

inspecting 83 
problems with 76, 218, 373 
TD386 virtual debugger and 252 

allocation for symbol tables 
device drivers and 307 
TSR programs and 304 

blocks 316, 354 
manipulating 182 
problems with 365 

buffer 306 
device drivers and 306 
dump 30, 178-183, 186 

problems with 179 
extended See extended memory 
freeing 259, 313 
global, Windows 

Get Info box 86 
Get Info summary 88 
listing 273 

graphics mode and 70 
handle 

casting to far pointer 282 
listing global memory 273 

heap size and, problems with 68 
interrupt vectors and 317 
local, Windows 

listing 275 
locations 314 

problems with 366, 374 
symbol tables and 305, 308 

mapping83 
device drivers and 307 
TSR programs and 303 

operands, problems with 364 
problems with 373 
random access See RAM 
read-only 173, 179, 363 
references 

built-in assembler 185 
formatting 157 
problems with 373 

symbol tables and 334 
tracking 131 
watching 124 

specific areas of 130 

411 



TD386 virtual debugger and 251 
Windows global 

analyzing 295 
percentage available 295 

menu bar 20, 45 
activating 20 
commands 195 

menu trees 212-213 
menus 20-21 = (System) 20, 196 

activating 20 
Breakpoints 120, 197 
commands See commands 
customizing 325, 326 
Data 102-105, 197 
exiting 21 
File 196 
global20 

local vs. 24 
reference 195-198 

Help 39, 198 
hot keys and 21 
local See local menus 
Options 72-75, 198 
pop-up20 
pull-down 20 
Run 77, 88-91, 197 

program termination and 96 
TDINST 324 
tutorial 45 
View 28, 196 
Window 35, 47, 198 

Menus command (TDINST) 326 
message breakpoints 

setting, program termination and 87 
Message Class pane 

local menu 205 
message classes 270 

adding to TDW Windows Messages window 
269 
deleting from TDW Windows Messages 
window272 

message log 29, See also log files 
messages See also error messages 

dialog boxes 353-360 
informational 379 

412 

program termination 
DOS84 
Windows86 

TDREMOTE 344-346 
TDW error 283 
Windows 

analyzing 289 
logging to a file 272, 288 
logging to the TDW window 268 
setting breakpoints 271, 287 

Messages pane 
local menu 205 

methods See functions; object-oriented 
programs 

Methods command 166 
Microsoft 

languages, Turbo Debugger and 9, 17 
MASM, Quirks mode 235 

Microsoft Windows 255 
debugging programs 

sample tutorial 285 
user interface 263 
WREMOTE347 

demo programs 285 
Display Windows Info command 204, 272 
exit code,and 87 
interrupting programs 

using Ctrl-Alt-SysRq 283 
using message breakpoints 294 

reference books 8 
TDW,and263 
tips, debugging tips 282 
Windows Messages command 268 

Microsoft Windows Messages window 
panes204 

Miscellaneous Options dialog box (TDINST) 
333 

Mixed command 172, 175 
Mode for Display menu (TDINST) 334 
modes See display modes 
Modify TD.EXE command (TDINST) 337 
Module command 372 

Module window local menu 136 
View menu 134 

Module window 28, 134-138 
filled arrow and 48 
local menu 135, 204 

Turbo Debugger User's Guide 



opening 134 
duplicate 136 

program execution and 88-95 
source files and 134 

modules 3, 133, See also Module window 
assembler 175 
compiling 63 
current 

changing1 in TDW 277 
changing, in Turbo Debugger 134 
overriding 142 

hierarchy tree (object/ class types) 31 
high-level source 175 
language options 332 
loading 359 

new 136 
problems with 137 
referencing identifiers in other 143 
scope override and 106, 144 
searching for 134 
setting breakpoints in other 122 
tracing into 91 
tracking 32 
viewing 28, 134-138 

duplicate 136 
problems with 372, 377 
source code in 357 

Windows, listing 275 
modulus operator, problems with 365 
monitors See also hardware; screens 

color 67, 335 
customizing 324-326 

compatible with Turbo Debugger 2 
composite 13 
customizing color tables 325 
display options 335 
display swapping 67, 330 
monochrome 67 

problems with 13 
problems with 13 
second, using with TDW 264 

monochrome monitors See monitors 
monochrome ' 

mouse 
choosing menu commands 20-21 
executing Alt- or Ctrl-key commands 40 
moving around in dialog boxes 22 

Index 

setting breakpoints 49, 120 
support 

disabling/enabling 69, 265, 331 
online help 39 
windows and 33-34 

Mouse Enabled check box (TDINST) 331 
Move command 182 
multi-language programs 11 
multiple inheritance 31, 160, 161 

N 
Near Code command 180 
NEC MultiSpeed and NMI 11, 333 
New CS:IP command 175 
New Expression command 

Inspector window local menu 118 
Object Data Field pane local menu 166 

new features for version 2.5 2 
New Value input box 103 
Next command See also Search command 

Data pane local menu 180 
File window local menu 140 
Module window local menu 137 
problems with 372 

Next Pane command 35 
Next Window command 35 
NMI, systems using 11, 333 
NMI Intercept check box (TDINST) 333 
None option (display swapping) 73 
nonmaskable interrupt See NMI 
nonprinting characters 109, 112 

return value 157 
null modem cable 340 
null-terminated character string 109, 115 
numbering system, windows 35 
numbers 105 

decimal 74 
floating-point See floating point, numbers 
formatting 157, 328 

Borland C++ 149 
problems with 367 
TASM 156 
Turbo Pascal 154 

hexadecimal 74 
real 154 
scalar 147 

413 



numeric coprocessors See also 80x87 
coprocessors 
changing 189-192 
control flags 191 
current state, viewing 31 
data size overrides 186 
disassembler and 172 
instructions 

assembling 184-186 
mnemonics 322 

registers 190, 321 
entering new values for 356 

status flags 192 
numeric exit code 84, 87 
Numeric Processor command 190 
Numeric Processor window 31, 190-192 

opening 190 
problems with 371 

panes 190, 205 

0 
-0- option (TCC) 64 
Object Data Field pane 162 

local menu 163, 165 
Object Method pane 162 

local menu 164, 167 
object methods See functions; object-oriented 

programs 
object modules 133 
object-oriented programs 

compatibility with Turbo Debugger 159 
debugging 18, 159-167 

nested object structures 162 
Self parameter and 106 
Self/this parameter and 103 

expressions, problems with 362 
object hierarchies 160 
object instances 

formatting 103 
inspecting 164-167 

object methods 31, 82 
inspecting 162 
problems with 364 
tracing into 89 

object types 
hierarchy tree 31 
inspecting 162-164 

414 

scope override 145 
stepping through single statements 90 

Object Type/Class List pane, local menu 160 
Object Type List pane 160 

local menu 206 
objects, data See data, objects 
Offset to Data command 180 
online help 38-40, See also help 

dialog boxes 22 
OOP See object-oriented programs 
opcodes, illegal instruction 85, 87 
Open command 98 
Open Log File command 127 
operands 105, 366 

instruction, memory pointers and 171, 185 
problems with 374 

invalid 369 
invalid separators and 369 
out of range 367 
segment overrides and 363 
size 172 

problems with 374, 375 
size overrides 185, 186 

operators 366 
assignment See assignment operators 
binary 150, 154 
C programs and 104 
invalid 370 
modulus, problems with 365 
OFFSET (built-in assembler) 185 
precedence 

Borland C ++ 150 
TASM 156 
Turbo Pascal 154 

options 72, 330, See also Options menu 
command-line See command-line options 
customizing 323 
display 327-330 
display swapping 73, 327 
input 331 
language 328 

expressions 332 
program execution 88 
restoring defaults 75, 337 
saving 74 

Options menu 72-75, 198 
TDINST 330 

Turbo Debugger User's Guide 



Options option (save configuration) 75 
Origin command 83 

Code pane local menu 173 
Module window local menu 137, 146 
Stack pane local menu 184 

Out Byte command 176 
output See also 1/0 

display onscreen 73 
overlays 

p 

pool size 70 
problems with 375 
protected-mode debugging and 260 

-p option (mouse support) 
TDW265 
Turbo Debugger 69 

panes 
blinking cursor in 36 
Breakpoints window 28, 122 
Code See Code pane 
Control 191 
CPU window 30 

cycling through 171 
Data See Data pane 
Execution History window 31, 92 
Flags 171, 177, 178 
Hierarchy window 31, 160-162 
highlight bar in 36 
Inspector windows 32 

object/class instance 165 
object type/class 162 

listboxes210 
local menus and 24 
moving between window 35 
Numeric Processor window 31, 190, 205 
recording current contents of 127 
Register 

CPU window 177-178 
Numeric Processor window 190-191 

Registers window 30 
Stack 171, 183-184 
Status 192 
text See text panes 
Variables window 29, 79 
Windows Messages window 204 

Index 

parameters 3, See also arguments 
logging 131 
Self 103, 106 
this 103 
viewing, program-calling 82 

Parent Tree pane 161 
local menu 162, 207 

Parents command 161 
parsing, Turbo Debugger vs. Turbo languages 

11 
Pascal option (language convention) 142 
Pascal programming language See Turbo Pascal 
Pass Count input box 125, 129 
pass counts 119 

decrementing 125 
problems with 370 
setting 125, 129, 130 

Path for Source command 3, 74 
paths, directory See directories 
Periscopy debugging board 13 
Permit 43/50 Lirtes check box (TDINST} 329 
Pick a Module list pane 133 
pointers 157, 180-181 

compound data objects 105 
current instruction 190 
memory 143, 171, 185 
stack, current location 171 

pointing at data objects 105 
polymorphic objects 165 
pop-up menus 20 
ports 

1/0 176, 357 
remote link 69 
serial 69, 334 

precedence, operators See operators 
Previous command 39 

Code pane local menu 174 
Data pane local menu 181 
Module window local menu 136 
Stack pane local menu 184 . 

primary display 67, See also screens, swappmg 
printers, problems with 354 
procedures See also functions; specific language 

calling, problems with 367, 368 
stepping over 17 
viewing in stack 82 

process ID switching 67, 314, 334 

415 



processors See 80x86 processors; CPU 
PROGNAME.TDK 94 
program execution 

DOS, interrupting 95 
Windows, interrupting 283 

Program Reset command 91, 96 
Ctrl-Alt-SysRq, and 283 

BCWDEMOA demo program 287 
programs 69, 236, 330 

accuracy testing 235 
altering 30, 184 
breaking out of 11 
compiling 19 
current location 48, 156 

CPU window 171 
Inspector windows 80 
Module window 82 
problems with 91, 135 
returning to 83, 137, 146, 173 
scope 146 

overriding mechanism and 106 
setting 175 
stack 184 
verifying 32 
Watches windows 80 
watching 90, 133, See also Watches 
window 

current state 78 
inspecting 78-88, See also Inspector 
windows 

debugging 17, 18, 63-66, 128, 215-216, See 
also debugging 

416 

current scope and 146 
dynamic link libraries 276 
infinite loops and 95, 315 
interrupt vectors and 315 

using 315, 317 
planning for 76, 236 
problems with 

disassembler and 176 
memory allocation and 76 

returning information on 83-88 
starting Turbo Debugger 65 
with no debug information 91, 375 
with out-of-date debug information 376 

demo See demo programs 
DOS 

not loaded, problems with debugging 84 
stopping, messages about 84 
unexecuted, problems with examining data 
85 

execution 10, See also programs, running 
controlling 77-99 
menu options 88 
reversing 90, 93, 94 

problems with 94 
terminating See programs, stopping 

fatal errors and 360 
full output screen 32 
incremental testing 217 
inspecting 23, See also Inspector windows 
interrupt key, resetting 95, 331 
language options 328, 332 

overriding 142 
language-options See also TDINST 
loading 251, 316, 357, See also files, opening 

dynamic link libraries 276 
load address, changing 313 
memory allocation and 316 
new98 
problems with 71, 339, 365, 372, 376 

symbol tables and 373 
remote DOS debugging 343 
remote systems See also TDREMOTE; 
WREMOTE 
remote Windows debugging 351 

message logs and 29 
modifying See programs, altering 
multi-language 11 
opening See programs, loading 
patching, temporarily 170 
recompiling 19 
recovering 67, 93 

from crashes 97 
keystroke recording and 94, 97 
to a previous point 94 

reloading 91, 96 
BCWDEMOA demo program 287 
problems with 365 
Windows and Ctrl-Alt-SysRq 283 

restarting a debugging session 96, 97 
returning from 48, 56 

Turbo Debugger User's Guide 



returning to 83, 136 
running 31, 77, 98, See also programs, 

execution 
to breakpoints 50, 57 
command-line options and 98 
to cursor 48, 55, 89 
DOS level, from 66, 254 
execution history and 92-95 
from DOS 260, 344 
at full speed 88 
to labels 49, 56, 90 
nonmaskable interrupts and 333 
returning information on 83 
in slow motion 90 

scope See scope 
source code See code 
source files and 134 
stepping through 170 

problems with 85, 87 
tutorial 48, 56 

stopping 96, 120, 122, See also breakpoints 
at specific locations 129 

swapping to disk 76 
problems with 364 

terminate and stay resident See TSR 
programs 

text-based 10 
watching See Watches window 
Windows 

debugging 263 
not lo~ded, problems with debugging 86 
stopping, messages about 86 
unexecuted, problems with examining values 
87 

with floating-point numbers 189, 314 
prompts, setting 331 
protected-mode debugging See TD286 

protected-mode debugger 
pseudovariables (Borland C++) 148 
pull-down menus 20 

Q 
QuarterDeck EMS simulator 255 
Quit command 76 

TDINST 337 

Index 

R 
-r option (remote serial link) 69 
radio buttons 22, See also dialog boxes 

Action 123 
Beginning Display (TDINST) 328 
Changed Memory 129, 131 
changing settings 22 
Condition 124 
Display Swapping 73 

TDINST 327 
Expression Language 142 
Expression True 129 
Integer Format 74 

TDINST 328 
Interrupt Key (TDINST) 331 
Language(TDINST)332 
Link Speed (TDINST) 334 
Log 131 
Remote Link Port (TDINST) 334 
Screen Lines 7 4 

TDINST 328 
Source Debugging 64 
User Screen Updating (TDINST) 329 

RAM 
requirements, Turbo Debugger 2 
resident utilities 173, 179 

running Turbo Debugger as 303, 309 
problems with 363 

system map 303 
TSR programs and 301 

segment containing 305 
Range command 

Inspector window local menu 117 
Object Data Field pane local menu 165 

range errors 229 
-re option (remote clock interrupts) 349 
Read command 183 
read-only memory See ROM 
Read Word command 176 
README file 9, 10, 12 
READY indicator 26 
Real command 182 
RECORDING indicator 72 
records, problems with 373, 378 
recursive functions 79, 83 
reference books 8 

417 



reference line 
dialog boxes 41 

Register pane 
CPU window 177-178 

local menu 177, 202 
Numeric Processor window 190-191 

local menu 191, 205 
registers 108, See also Registers window 

80386 processor, virtual debugging and 254 
80x87 coprocessors 190, 190-192 
assembling See Turbo Assembler 

valid address combinations 370 
CPU See CPU, registers 
display controller 316 
floating-point 190, 356 
problems with 364, 376 

invalid 370 
segment 96, 157 
values, accessing 30, 187 

Registers 32-bit command 178 
Registers window 30, 187 

local menu 207 
panes 30 

release codes 315 
reloading programs 91 

BCWDEMOA demo program 287 
Windows and Ctrl-Alt-SysRq 283 

Relocate Table command 308 
remote debugging See TDREMOTE; 

WREMOTE 
Remote Debugging check box (TDINST) 334 
remote DOS links 

hardware requirements 340 
remote file transfer utility (TDRF) 

debugging DOS applications 
and 341 

remote Windows debugging 
and 347 

transferring files while debugging remote 
DOS applications 344 

REMOTE indicator 344, 352 
Remote Link Port radio buttons (TDINST) 334 
remote links 69 

defaults, setting 334 
maximum speed 342 
problems with 346, 359 
reducing link speed 346 

418 

using 342-344 
remote systems See communications, remote 

systems 
remote Windows links 

hardware requirements 347 
Remove command 

Breakpoints window local menu 126 
Macros menu 73 
Watches window local menu 107 
Windows Messages window 

message classes 272 
window proc 269 

Repaint Desktop command 37 
repeat counts 157 

problems with 376 
Resident command 303, 309 
resize box 34 
resizing windows See windows, resizing 
restarting a debugging session 96, 96-97 
Restore Options command 38, 75 
Restore Standard command 37 
Result input box 103 
return values 131, 141 

bytes 180 
changing 107, 117 
CPU flags 178 
CPU registers 177, 187 
expressions 355 
inspecting 105, See also Inspector windows 
memory blocks 183 
nonprinting characters 157 
problems with 84, 87, 179, 371, 378 

assignment 363 
tracking 106 
variables See variables 

Reverse Execute command 93 
reversing program execution 90, 93, See also 

backward trace 
problems with 94 

ROM 
accessing 173 
examining 179 
programs executing in 363 

routines 132, See also functions 
accessing 143 

problems with 359 
debugging 218 

Turbo Debugger User's Guide 



testing 235 
viewing in stack 82 

-rp option (remote link port) 69 
remote TD 350 
TDREMOTE 341 
WREMOTE349 

-rq option (remote quit) 349 
-rs option (remote link speed) 69 

remote TD 350 
TDREMOTE 341, 343, 350 
WREMOTE349 

Run command 88 
execution history and 92 

Run menu 77, 88-91, 197 
program termination and 96 

running 

s 

programs See programs, running 
TD286 protected-mode debugger 259-261 
TD386 virtual debugger 251-257 
TDINST 323-337 
TDREMOTE 342-344 
TDW266 
Turbo Debugger 135 

as RAM resident program 303, 309 
problems with 363 

on two-floppy systems 2 

sample programs See demo programs 
Save Configuration check box 75 
Save Configuration File command (TDINST) 

337 
Save menu (TDINST) 337 
Save Options command 38, 74 
Save Options dialog box 75 
Save To input box 75 
-sc option (ignore case) 

TDW 265 
Turbo Debugger 69 

scalar numbers 147, 355 
scalar variables 109, 112 
scientific notation 149, 156, 182 
scope 106, 143-146 

breakpoint expressions 122 
current 143, 146 

accessing symbols outside 143 
implied, evaluating expressions and 146 

Index 

overriding 144-146, 153 
problems with 366 

inactive 364 
Self parameter 103 
this parameter 103 

Screen command (TDINST) 326 
Screen Lines radio buttons 7 4 

TDINST 328 
screens See also hardware; monitors 

background, customizing 326 
colors, customizing 324-326 
display modes See display, modes 
layouts, restoring 37 
LCD335 
lines per, setting 70, 74, 328, 329 
problems with 

graphics display 37, 70, 316 
and INSTALL 13 

snow329 
writing to 73 

repainting 329 
startup 44 

options 328 
swapping 73, 327, 330 

multiple display pages and 67 
problems with 254, 260 

updating 329 
User See User screen 

scroll bars 34 
scrolling 33 

dialog boxes 211 
Help screens 39 
Inspector windows 52, 59 
menus20 
text boxes 211 
text panes 210 

-sd option (set source directories) 
TDW265 
Turbo Debugger 69 

Search command See also Next command 
Code pane local menu 174 
Data pane local menu 179 
File window local menu 139 
history lists and 25 
Module window local menu 137 

search sequence, module files 134 
search templates 212 

419 



secondary display 67, See also display, 
swapping 

segment 
overrides, problems with 363 
pointers to register 157 
PSP, problems with 360 

segment:offset addresses 
physical addresses and 190 

Segment:Offset to Data command 180 
segment registers, program termination and 96 
select by typing 27 
Self parameter 103 

watching 106 
Send to Log Window command (Windows 

Messages window) 272 
serial .cards 176 
serial links, remote 334, See also WORD 

communications, remote systems 
debugging over 69 
TDREMOTE and 342 

Set command 183 
Set Message Filter dialog box 270 
Set Options command 123 
shelling to DOS 75 
shortcuts See hot keys 
Show command 

Static/Local pane local menu 81 
Show Inherited command 

Object Data Field pane local menu 163, 166 
Object Methods pane local menu 164 

SideKick 301 
Size/Move command 36 
-sm option (set symbol table memory size) 69 

device drivers and 307, 308 
TSR debugging and 304, 305 

Smart option (display swapping) 73 
snow329 
software 

emulator 172, 189 
changing 189-192 
using 314 

requirements 2 
source code See code 
Source Debugging dialog box (TDINST) 332 
Source Debugging radio button 64 
source files 3, 133-140, See also files 

language conventions and 142 

420 

loading 359 
problems with 372, 377 

searching for 134 
setting directory path 331 

Source option (language convention) 142 
Spare Symbol Memory input box (TDINST) 334 
stack 96, 169, 170, See also Stack pane; Stack 

window 
current state 29, 82-83 
examining 183-184 
pointer, current location 171 

Stack command 79, 82 
Stack pane 183-184 

current stack pointer 171 
local menu 183, 202 

Stack window 29, 82-83 
local menu 82, 207 
opening 79, 82 

Standalone Debugging command 64 
standalone linkers 64, 65 
Standalone option 64 
starting directory, changing 265 
starting Turbo Debugger 65 

in assembler mode 68 
command-line options and 311 
remote DOS systems 343 
remote systems 

problems with 334 
remote Windows systems 350 

startup code 
application 68 
dynamic link libraries 280 

startup screen 44 
options 328 

Static/Local pane 79 
local menu 80 

static symbols, disassembler and 172 
status bits, viewing 192 
status flags 192 
status line 38, 40 
Status pane 192 

local menu 192, 206 
Step Over command 89, 384 

execution history and 92 
stepping over 

functions 17 
procedures 17 

Turbo Debugger User's Guide 



stepping through See also specific language 
application 
functions 90 
programs 170 

problems with 85, 87 
Stop Recording command 27, 72 
strategy routine 306 
strings 157, 186 

byte lists ari_d 147 

character 
Borland C ++ 149 
null-terminated 109, 115 
quoted 139 

problems with 378 
searching 137, 139, 140 
searching for 179, 180, 358 
Turbo Pascal 154 

concatenation (Turbo Pascal) 153 
format control See format specifiers 
text, searching for 25 
truncated 103, 106 

structures 
changing 363 
inspecting complicated data 102, 118 
problems with 373, 378 

subdirectories, default 12 
subprograms See functions; routines 
subroutines, calling 17 4 

problems with 17 4 
SuperKey 301 
SWAP.$$$ 366 
switches See command-line options 
Symbol Load command 304, 308 
symbol names, problems with 362 
Symbol pane 29 
symbol tables 142, 305, 308, 375 

base segment address 357 
device drivers and 306 
dynamic link libraries, and 276 
invalid 375 
loading 358 

problems with 374, 377 
memory allocation 334, 339 

device drivers and 307 
setting 69, 334 
TSR programs and 304 

TD286 protected-mode debugger and 259 

Index 

symbols 79, 141 
accessing 143-146, 359 

in other scopes 153 
as memory reference 185 
Borland C++ 147 
disassembler and 172 
global 207 
problems with 363, 377, 378 

invalid 370 
type information and 372 

scope 143 
Turbo Pascal 153 

syntax 
checkers, built-in 17 
errors 17, 377 

system 
crashes 95, 175, 314 

recovering from 97 
rebooting 95 

System Information box 
DOS format 83 
Windows format 85 

System menu See = (System) menu 

T 
-t option (starting directory) 265 
Tab Size input box 74 

TDINST 328 
Table Load command 357 
Table Relocate command 305 
tabs, setting 74, 328 

problems with 378 
TAEXAMPLx.ARC 13 
Tandy 1000 and NMI 11, 333 
TCDEMO.C43 
TCDEMO.EXE 242 
TD286 protected-mode debugger 259-261 

command-line options 260 
installation 260 

system requirements 259 
instructions 254 
programs using extended memory 261 
running programs, problems with 260 
starting 260 

TD286INS 260 
TD386 virtual debugger 251-257 

command-line options 253 

421 



syntax254 
error messages 256-257 
exception codes 85 
installation 

device driver 13, 252 
system requirements 252 

problems with 254, 360 
setting breakpoints 125 
starting 252 

problems with 256 
TD.EXE337 
TDCONFIG.TD 71 

loading 66 
overriding 71 

TDCONVRT 11 
TDDEV 11 
TDEXAMPL.ZIP 12 
TDH386.SYS 13, 125, 252, 254 

error messages 257 
TDINST 323-337 

command-line options vs. 335-336 
exiting 337 
main menu 324 
options, saving 337 
TDW, using with 266 

TDMAP 11 
TDMEM 11, 303, 304 
TDNMI 11 
TDPACK 11 
TDREMOTE 339-347 

command-line options 341-342 
saving 342 

hardware requirements 340 
messages 344-346 
problems with 361 
running 342-344 

problems with 359 
software requirements 341 

TDRF 11 
.TDS files 304, 307, 308 
TDSTRIP 11 
TDUMP 11 
TDW 

command-line options 265 
configuring 265 
demo programs 285 

compiling and linking 286 

422 

differences from Turbo Debugger 266 
dynamic link libraries, debugging 276 
error messages 283 
features 267 
global memory, listing 273 
installation 

system requirements 263 
installing 264 
list of files 264 
local memory, listing 275 
logging window messages 268 
message classes 

adding 269 
deleting 272 
list of 270 

modules, Windows, listing 275 
windowproc 

adding268 
deleting 269 

TDW.EXE264 
TDWHELP.TDH 264 
technical support, Borland 6 
terminate and stay resident See TSR programs 
ternary operators (Borland C++) 151 
text 74 

editing See Edit command; editing 
entering 

active windows and 33 
in input boxes 26 
incremental matching 27 
in log 355 

searching for 212, 376 
strings, searching for 25 

text-based programs 10 
text boxes, Get Info 

DOS83 
Windows86 

text editors 138, 140, 330 
compatibility with Turbo Debugger 18 
problems with 365 

text files 210, See also ASCII, files 
text modes See also display, modes 

problems with 13 
text panes 210, 355, 358, 364 

moving around in 210 
THELP.COM 39 
this parameter 103 

Turbo Debugger User's Guide 



tiled windows 46, 328 
time delays, setting 90, 354 
Toggle command 

Breakpoints menu 121, 128 
Control pane local menu 192 
Flags pane local menu 178 
Status pane local menu 192 

TPDEMO.PAS 43, 249 
Trace Into command 89, 384 

continuous tracing 90 
execution history and 92 
programs executing in ROM and 363 

tracepoints 119, See also breakpoints 
tracing 17, 92-95, See also Trace Into command 

backward See backward trace 
continuous (animation) 90, 354 
execution history and 92 
into interrupts 91 
into functions 48, 55 
program termination, and, information about 
84,86 
Self parameter and 103, 106 
this parameter and 103 

Tree command 161 
TSR programs 76 

debugging 302-305 
resident portion 302, 303 
transient portion 301 

display swapping and 330 
executing from DOS 303 
resident portion 301, 303 
symbol tables, loading 304 
transient portion 301, 302 

Turbo Assembler See also assembler 
arrays, inspecting 115 
bugs specific to 230-235 
built-in assembler vs. 185-186 
code, stepping through 383 
command-line options 65 
conditional jumps 232 
constants 156 
data, inspecting 114-116 
debugging techniques 169-188 
example program files 13 
expressions 155-157 

assignment 383 
flags altered by instructions 234 

Index 

functions, returning from 230, 231 
hex data, examining 383 
INCLUDE compiler directive 133 
instruction mnemonics 172, 173 

size overrides 185, 186 
instructions See also instructions 

carry flags and 234 
mnemonics 319-322 
string 232 

byte to word conversions 233 
comparisons 233 
direction flags and 232 
multiple prefixes 233 
operands to 233 
registers, altered 234 
segment defaults and 233 

interrupt handlers 234 
language-specific help 39 
machine code bytes, viewing 383 
operands 

memory variables and 234 
order of 231 

operators, precedence 156 
pointers, inspecting 114 
programs 383-384 

debugging 230 
preparation for 65 

Quirks mode, using MASM and 235 
registers 

altering 383 
multiplication and 233 
preserving 231 
saved in interrupt handler 234 
viewing383 

scalars, inspecting 114 
segment groups 235 
segment wraparound 234 
stack allocation 231 
structures, inspecting 116 
symbols 155 
unions, inspecting 116 
variables 

immediate operands vs. 234 
versions compatible with Turbo Debugger 2 

Turbo C See Borland C++; C++ programs 
versions compatible with Turbo Debugger 2 

Turbo C++ See Borland C++ 

423 



Turbo Debugger for Windows See TDW 
Turbo Pascal See also object-oriented programs 

arrays 60 
inspecting 113 

bugs specific to 223-230 
code 

skipping over 384 
stepping through 384 
tracing into 55 

command-line options 64 
compiler directives 

$B option 225, 230 
$R option 229 

constants 154, 384, 386 
data 

inspecting 111-114 
types 58-59 

compound 60 
converting 385 

debugging techniques 384-386 
preparing programs for 64 
Variables window and 78 

demo programs 43, 55-62 
debugging 242-249 
starting 44 

expressions 153-155 
entering in dialog boxes 61 

functions 155, 368, 385 
executing 56 
inspecting 114 
returning from 56, 227 
tracing into 55 

language-specific help 39 
operators 153, 385, 386 

precedence 154 
pointers 224 

inspecting 112 
procedures 155, 368 

inspecting 114 
stepping through 384 

range-checking 229, 386 
records, inspecting 113 
routines, watching 386 
scalars, inspecting 111 
source code 69, 226 
source files 44 
strings 154, 385 

424 

concatenation 153 
symbols 64, 153 
units See also modules 

override syntax 145 
variables 224, 225 

decrementing 228 
inspecting 58-60 
problems with 363, 378 
return values 61-62, 106 
watching 57, 385 

versions compatible with Turbo Debugger 2 
two-floppy systems, Turbo Debugger on 2 
type conversion 81, 107 

Borland C ++ reserved words and 152 
memory handle to far pointer 282 
problems with 371, 378 
Turbo Pascal 385 

typecasting See type conversion 
types 

u 

class member See C ++ programs 
data See data, types 
object See objects, types 

unarchiving example files 12 
unary operators 

Borland C ++ 150 
Turbo Pascal 154 

Undo Close command 37 
union members, problems with 373 
Until Return command 90 
UNZIP.EXE utility 12 
Use Expanded Memory check box (TDINST) 

334 
User screen 32, 73 

display buffer 329 
updating 329 

User Screen command 32 
remote links and 344, 351 

User Screen Updating radio buttons (TDINST) 
329 

utilities 
disk-based documentation for 11 
INSTALL 12 

problems with graphics display and 13 
TDCONVRT 11 
TDDEV 11 

Turbo Debugger User's Gulde 



v 

TDINST See TDINST 
TDMAP 11 
TDMEM 11 
TDNMI 11 
TDPACK 11 
TDREMOTE See TDREMOTE 
TDRF 11 
TDRF (remote file transfer) 

debugging DOS applications 
and 341 

remote Windows debugging 
and 347 

transferring files while debugging remote 
DOS applications 344 

TDSTRIP 11 
TDUMP 11 
THELP 39 
VNPACK12 

/v option 
TLINK 64, 65 
TPC64 

-v option (TCC) 64 
values, return See return values 
variables 29, 102-105, See also Variables 

window 
accessing 143 

problems with 368 
with no type information 152 

built-in assembler and 185 
debugging 218 
global See global variables 
inactive functions and 364 
inspecting 32, 102, 108-116, 118, 358, See 

also Inspector windows 
function with same name as 79 
in recursive functions 83 

language conventions and 142 
local See local variables 
logging 131 
multiple 131 
names 106 

finding 29 
problems with 373 

pointing at 105 
private 106 

Index 

program termination and 96 
return values 18, 104 

inspecting 32 
problems with 79, 109, 112 

scalar, character values and 109, 112 
scope override 144 
uninitialized 218 
updating 107 
viewing 78-82 

in recursive functions 79 
watching 28, 105, 106, 355, See also Watches 

window 
Variables command 79 
Variables window 29, 78-82 

local menu 207 
opening 79 

vectors, interrupt See interrupt vectors 
-vg option (save graphics image) 70 
VGA See also graphics adapters; video adapters 

line display 70, 74, 328 
video adapters 176, 335, See also graphics 

adapters, hardware 
command-line options 70 
display options 74 

setting 328, 329 
display pages 329 
problems with 378 
supported 361 
TDW requirements 263 

Video Graphics Array Adapter See VGA 
videos See monitors; screens 
View menu 28, 196 
virtual debugging See TD386 virtual debugger 
virtual methods table (VMT) 165 
-vn option (no EGA/VGA display) 70 
-vp option (EGA palette save) 70 

w 
-w option 

TD 
command-line options 70 
using with WREMOTE 350 

TD386 virtual debugger 254, 257 
TDREMOTE 341 

warning beeps, enabling 331 
Watch command 

Global pane local menu 80 

425 



Module window local menu 136 
Static/Local pane local menu 81 
Watches window local menu 107 

Watch dialog box 
global symbols and 80 

Watches command 106 
Watches window 28, 106-107 

local menu 107, 208 
maximum tiled size 328 
opening 106 
using 240, 247 

C tutorial 50 
Pascal tutorial 57 

Watches windows 
local and static symbols and 81 

watchpoints 18, 119, See also breakpoints 
C tutorial 50 
Pascal tutorial 57 
reloading programs and 96 

wild cards 
DOS 138, 377 
searching with 137, 212 

WINDEBUG.DLL 264 
Window menu 47, 198 

opening 35 
window management and 35 

window messages 
analyzing 289 
logging 

to a file 272, 288 
to the TDW window 268 

setting breakpoints for 271, 287 
Window Pick command 35 
windowproc 

adding to TDW Windows Messages window 
268 
deleting from TDW Windows Messages 
window269 

Window Selection pane 
local menu 204 

Windows See Microsoft Windows 
windows 17, 27-38 

active 33 
returning to 21 

bottom line in 40 
Breakpoints 28, 122-126 
closing 37 

426 

temporarily 37 
CPU See CPU window 
customizing 324 
Dump 30, 186, 202 
Execution History 31, 92-95, 332 

opening 92 
File 29, 138-140, 203 

opening 136 
Hierarchy 31, 159, 206 
Inspector See Inspector windows 
layout, saving 38, 75 
local menus and 24 
Log29, 126-128,203 
Module See Module window 
mouse support 33-34 
moving36 
moving around in 212 
multiple 35, 136, 140, 187 

moving between 35 
Numeric Processor 31, 190-192, 205 

problems with 371 
opening 

duplicate 32 
new28 

panes See panes 
problems with 30, 32, 373 

current program location and 91 
recovering last closed 37 
reducing to icon 34, 37 
Registers 30, 187, 207 
repainting 37, See also display updating 
resizing 34, 36 
saving layout 97 
single-line borders and 36 
Stack 29, 82-83, 207 

opening 79 
tiled 46 

maximum size 328 
tutorial 46 
Variables 29, 78-82, 207 

opening 79 
Watches See Watches windows 
Windows Messages 204 
Windows messages 32 

Windows command (TDINST) 324 
Windows Information dialog box 272 

Turbo Debugger User's Guide 



windows message breakpoints 
setting, program termination and 87 

Windows Messages window 268 
WndProc routine (BCWDEMOA.C) 290 
word 172 

formatting 178, 181 
pointer chains 180-181 
read/writes 176 

Word command 181 
WordStar-style cursor-movement commands 

210, 211, 332 
WREMOTE 

command-line options 349 
error messages 352 
hardware requirements 347 
software requirements 347 

Write command 183 

Index 

Write Word command 176 

x 
XMS standard 253 

y 
-y option (set overlay pool size) 70 

z 
Zero command 177, 191 
-zi option (T ASM) 65 
.ZIP files 12 
zoom box 34 
Zoom command 37 
zoomicon34 

427 





25 
.. j 

' ·, ~ 
' -J 

• .->l 

USER'S 
GUIDE 

TURB 
DEBU 

BORLAND 

ER 

CORPORATE HEADQUARTERS: 1800 GREEN HILLS ROAD, P.O. BOX 660001 , scons VALLEY, CA 95067-0001 , (408) 438-5300. 
OFFICES IN: AUSTRALIA, DENMARK, FRANCE, GERMANY, ITALY, JAPAN, SWEDEN AND THE UNITED KINGDOM • PART # 15MN-AS001-25 • BOR 1489A 


