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Getting Starfed provides an
overview of the entire Turbo
C++ documentation set.
Read the introduction and
Chapter 2 in that book for
information on how to most
effectively use the Turbo C++
manuails.

Contents of this

This manual contains materials for the advanced programmer. If
you already know how to program well (whether in C or another
language), this manual is for you. It provides a language refer-
ence, a cross-reference to the run-time library, and programming
information on the C++ streams, memory models, floating point,
overlays, video functions, assembly language interfacing, and the
run-time and compiler error messages.

Read Getting Started if:

1. You have never programmed in any language.

2. You have programmed, but not in C, and you would like an
introduction to the C language.

3. You are looking for information on how to install Turbo C++.

Use the User’s Guide for reference information on the Turbo C++
integrated environment (including the editor), the project
manager, the command-line compiler, utilities that come with
Turbo C++, and the Turbo Editor Macro Language.

The Library Reference contains an alphabetical listing of all of
Turbo C++'s functions and global variables.

manual

Infroduction

Chapter 1: The Turbo C++ language standard describes the Turbo
C++ language. Any differences from the ANSI C standard are
noted here. This chapter includes a language reference and syntax
for Cand C++.

Chapter 2: Run-time library cross-reference provides some
information on the source code for the run-time library, lists and
describes the header files, and provides a cross-reference to the



run-time library, organized by subject. For example, if you want
to find out which functions relate to graphics, you would look in
this chapter under the topic “Graphics.”

Chapter 3: C++ streams tells you how to use the C++ streams
library.

Chapter 4: Memory models, floating point, and overlays covers
memory models, mixed-model programming, floating-point
concerns, and overlays.

Chapter 5: Video functions is devoted to handling text and
graphics in Turbo C++.

Chapter 6: Interfacing with assembly language tells how to write
assembly language programs so they work well when called from
Turbo C++ programs.

Chapter 7: Error messages lists and explains all run-time and
compiler-generated fatal errors, errors, and warnings, and
suggests possible solutions.

Appendix A: ANSI implementation-specific standards describes
those aspects of the ANSI C standard that have been loosely
defined or undefined by ANSI. These aspects will vary, then,
according to each implementation. This appendix tells how Turbo
C++ operates with respect to each of these aspects.

Turbo C++ Programmer's Guide



The Turbo C++ language standard

This chapter provides a detailed programmer’s reference guide to
the Turbo C++ language. It is not a language tutorial, but rather a
formal description of the C and C++ languages as implemented in
Turbo C++. The chapter provides both lexical and phrase
structure grammars, together with details of the preprocessor
directives available. We've used a modified Backus-Naur notation
to indicate syntax, supplemented where necessary by brief
explanations and program examples.

Turbo C++ implements the ANSI C standard developed by Tech-
nical Committee X3]11 between June 1983 and December 1988,
with several extensions as indicated in the text. You can set
options in the compiler to warn you if any such extensions are
encountered. You can also set the compiler to treat the Turbo C++
extension keywords as normal identifiers (see Chapter 4, “The
command-line compiler,” in the User’s Guide).

There are also “conforming” extensions provided via the #pragma
directives offered by ANSI C for handling nonstandard,
implementation-dependent features.

Turbo C++ is also a full implementation of AT&T’s C++ version
2.0, the object-oriented superset of C developed by Bjarne
Stroustrup of AT&T Bell Laboratories. In addition to offering
many new features and capabilities, C++ often veers from C by
small or large amounts. We’ve made note of these differences
throughout this chapter. All the Turbo C++ language features

Chapter 1, The Turbo C++ language standard 3



derived from C++ are discussed in greater detail starting on page
98.

Syntax and terminology

Syntactic definitions consist of the name of the nonterminal being
defined, followed by a colon (:). Alternatives usually follow on
separate lines, but a single line of alternatives can be used if pre-
fixed by the phrase “one of.” For example,

external-definition:
function-definition
declaration

octal-digit: one of
01234567

Optional elements in a construct are printed within angle
brackets:

integer-suffix:
unsigned-suffix <long-suffix>

Throughout this chapter, the word “argument” is used to mean
the actual value passed in a call to a function. “Parameter” is used
to mean the variable defined in the function header to hold the
value.

Lexical and phrase-structure grammars

Pages 5 through 58 cover
Turbo C++5 lexical grammar:
pages 58 through 98 cover
the elements of Turbo C++
phrase structure grammait.

Lexical grammar is concerned with the different categories of
word-like units, known as tokens, recognized by a language.
Phrase structure grammar details the legal ways in which tokens
can be grouped together to form expressions, statements, and
other significant units.

The tokens in Turbo C++ are derived from a series of operations
performed on your programs by the compiler and its preproces-
SOr.

A Turbo C++ program starts life as a sequence of ASCII
characters representing the source code, created by keystrokes
using a suitable text editor (such as the Turbo C++ editor). The
basic program unit in Turbo C++ is the file. This usually

Turbo C++ Programmer's Guide



Whitespace

corresponds to a named DOS file located in RAM or on disk and
having the extension .C or .CPP.

The preprocessor first scans the program text for special prepro-
cessor directives (see page 133). For example, the directive #include
<inc_file> adds (or includes) the contents of the file inc_file to the
program before the compilation phase. The preprocessor also
expands any macros found in the program and include files.

Line splicing
with \

Chapter 1. The Turbo C++ language standard

In the tokenizing phase of compilation, the source code file is
parsed (that is, broken down) into tokens and whitespace. White-
space is the collective name given to spaces (blanks), horizontal
and vertical tabs, newline characters, and comments. Whitespace
can serve to indicate where tokens start and end, but beyond this
function, any surplus whitespace is discarded. For example, the
two sequences

int  i; float f;
and
int 1 ;
float f;

are lexically equivalent and parse identically to give the six
tokens:
inti;floatf;

The ASCII characters representing whitespace can occur within
literal strings, in which case they are protected from the normal
parsing process; in other words, they remain as part of the string:

char name[] = "Borland International";

parses to seven tokens, including the single literal-string token
“Borland International”.

A special case occurs if the final newline character encountered is
preceded by a backslash (\). The backslash and new line are both
discarded, allowing two physical lines of text to be treated as one
unit.

"Borland \



Comments

C comments

Nested comments

International"

is parsed as “Borland International” (see page 17, “String literals,”
for more information).

Comments are pieces of text used to annotate a program. Com-
ments are for the programmer’s use only; they are stripped from
the source text before parsing.

There are two ways to delineate comments: the traditional C
method and the C++ method. Both are supported by Turbo C++,
with an additional, optional extension permitting nested com-
ments. You can mix and match either kind of comment in both C
and C++ programs.

A traditional C comment is any sequence of characters placed
after the symbol pair /*. The comment terminates at the first occur-
rence of the pair */ following the initial /*. The entire sequence, in-
cluding the four comment delimiter symbols, is replaced by one
space after macro expansion. Note that some C implementations
remove comments without space replacements.

Turbo C++ does not support the non-portable token pasting
strategy using /**/. Token pasting in Turbo C++ is performed with
the ANSI-specified pair ##, as follows:

fdefine VAR(i,]j) (i/**/j) /* won’t work */
fdefine VAR(i,9) (i##9) /* OK in Turbo Ct+ */
#define VAR(i, ) (1 #¥ J) /* Also OK */

In Turbo C++,

int /* declaration */ i /* counter */;
parses as

int 1 ;

to give the three tokens: inti ;

ANSI C doesn’t allow nested comments. Attempting to comment
out the preceding line with

/* int /* declaration */ i /* counter */; */
fails, since the scope of the first /* ends at the first */. This gives

i; %

Turbo C++ Programmer’s Guide



C++ comments
You can also use // to create

comments in C code. This is
specific to Turbo C++.

Comment delimiters
and whitespace

Tokens

which would generate a syntax error.

By default, Turbo C++ won’t allow nested comments, but you can
override this with compiler options. You can enable nested com-
ments with the —~C option (the command-line compiler) or via the
O|C|Source Options menu in the integrated environment.

C++ allows a single-line comment using two adjacent slashes
(//). The comment can start in any position, and extends until the
next new line:

class X { // this is a comment

veo )i

In rare cases, some whitespace before /* and //, and after */,
although not syntactically mandatory, can avoid portability
problems. For example, this C++ code

int 1 = j//* divide by k*/k;
+m;

parses as int i = j +m; notas

int 1 = j/k;
+m;

as expected under the traditional C convention. The more legible

int 1 = j/ /* divide by k*/ k;
+m;

avoids this problem.

Chapter 1, The Turbo C++ language standard

Turbo C++ recognizes six classes of tokens: keywords, identifiers,
constants, string-literals, operators, and punctuators (also known as
separators). The formal definition of a token is as follows:

token:
keyword
identifier
constant
string-literal
operator
punctuator



Keywords

Table 1.1
All Turbo C++ keywords

Table 1.2
Turbo C++ extensions to ANS|
C

Table 1.3
Keywords specific to C++

As the source code is parsed, tokens are extracted in such a way
that the longest possible token from the character sequence is
selected. For example, external would be parsed as a single
identifier, rather than as the keyword extern followed by the
identifier al.

Keywords are words reserved for special purposes and must not
be used as normal identifier names. The following two tables list
the Turbo C++ keywords. You can use command-line compiler
options (or options in the IDE) to select ANSI keywords only,
UNIX keywords, and so on. See chapters 1, “The IDE reference,”
and 4, “The command-line compiler,” both in the User’s Guide, for
information on these options.

asm _ds interrupt short
auto else _loadds signed
break enum long sizeof
case _es near _Ss
catch _export new static
cdecl extern operator struct
char far pascal switch
class float private template
const for protected this
continue friend public typedef
_Cs goto register union
default huge _regparam unsigned
delete if return virtual
do inline _saveregs void
double int _seg volatile
while
cdecl _export _loadds _saveregs
_Cs far near _seg
_ds huge pascal _ss
_es interrupt _regparam
catch friend operator public
class inline private template
delete new protected this
virtual
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Table 1.4
Turbo C++ register
pseudovariables

|[dentifiers

Naming and length
restrictions

Note that identifiers in C++
programs are significant to
any length.

Identifiers and case
sensitivity

Chapter 1, The Turbo C++ language standard

_AH BL CL DL
“AL “BP “cx DX
“AX “BX “DH “FLAGS
“BH “CH DI sl

SP

The formal definition of an identifier is as follows:

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of
abcdefghijklmnopqrstuvwxyz_
ABCDEFGHIJKLMNOPQRSTUVWXYZ

digit: one of
0123456789

Identifiers are arbitrary names of any length given to classes, ob-
jects, functions, variables, user-defined data types, and so on.
Identifiers can contain the letters A to Z and 4 to z, the underscore
character (), and the digits 0 to 9. There are only two restrictions:

1. The first character must be a letter or an underscore.

2. By default, Turbo C++ recognizes only the first 32 characters
as significant. The number of significant characters can be
reduced by menu and command-line options, but not
increased. Use the —in TCC option or the integrated
environment’s O|C|S|ldentifier Length menu option, where 1
<=n<=32.

Turbo C++ identifiers are case sensitive, so that Sum, sum, and
suM are distinct identifiers.

Global identifiers imported from other modules follow the same
naming and significance rules as normal identifiers. However,
Turbo C++ offers the option of suspending case sensitivity to
allow compatibility when linking with case-insensitive languages.
By checking the Options | Linker | Case-Sensitive Link box in the
Linker dialog box, or using the /C command-line switch with



Unigueness and scope
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Constants

TLINK, you can ensure that global identifiers are case insensitive.
Under this regime, the globals Sum and sum are considered
identical, resulting in a possible “Duplicate symbol” warning
during linking.

An exception to these rules is that identifiers of type pascal are
always converted to all uppercase for linking purposes.

Although identifier names are arbitrary (within the rules stated),
errors result if the same name is used for more than one identifier
within the same scope and sharing the same name space. Duplicate
names are always legal for different name spaces regardless of
scope. The rules are covered in the discussion on scope starting on
page 29.

Constants are tokens representing fixed numeric or character val-
ues. Turbo C++ supports four classes of constants: floating point,
integer, enumeration, and character.

The data type of a constant is deduced by the compiler using such
clues as numeric value and the format used in the source code.
The formal definition of a constant is shown in the following
table:
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Table 1.5: Constants—formal definitions

constant:
floating-constant
integer-constant
enumeration-constant
character-constant

floating-constant:

fractional-constant <exponent-part> <floating-
suffix>

digit-sequence exponent-part <floating-suffix>
fractional-constant:

<digit-sequence> . digit-sequence

digit-sequence .

exponent-part:
e <sign> digit-sequence
E <sign> digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit
floating-suffix: one of
f1 FL

integer-constant:
decimal-constant <integer-suffix>
octal-constant <integer-suffix>
hexadecimal-constant <integer-suffix>

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
0 x hexadecimal-digit

0 X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
123456789

octal-digit: one of
01234567

hexadecimal-digit: one of
0123456789
abcdef
ABCDEF

integer-suffix:
unsigned-suffix <long-suffix>
long-suffix <unsigned-suffix>

unsigned-suffix: one of
u U

long-suffix: one of
1L

enumeration-constant:
identifier
character-constant:
c-char-sequence
c-char-sequence:
c-char
c-char-sequence c-char
c-char:
Any character in the source character set except

the single-quote (’), backslash (\), or newline
character escape-sequence.

escape-sequence: one of

\" \/ \? \\
\a \b \f \n
\o \oo \ooo \r
\t \v \Xh... \xh...

Integer constants  Integer constants can be decimal (base 10), octal (base 8) or hexa-
decimal (base 16). In the absence of any overriding suffixes, the
data type of an integer constant is derived from its value, as
shown in Table 1.6. Note that the rules vary between decimal and
nondecimal constants.
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Decimal constants

Decimal constants from 0 to 4,294,967,295 are allowed. Constants
exceeding this limit will generate an error. Decimal constants
must not use an initial zero. An integer constant that has an initial
zero is interpreted as an octal constant. Thus,

int 1 = 10; /*decimal 10 */
int i = 010; /*decimal 8 */
int 1 = 0; /*decimal 0 = octal 0! */

Negative constants are simply unsigned constants with the unary
minus operator.

Octal constants

All constants with an initial zero are taken to be octal. If an octal
constant contains the illegal digits 8 or 9, an error is reported.
Octal constants exceeding 037777777777 will generate an error.

Hexadecimal constants

All constants starting with Ox (or 0X) are taken to be hexadecimal.
Hexadecimal constants exceeding OXFFFFFFFF will generate an
error.

Long and unsigned suffixes

The suffix L (or I) attached to any constant forces it to be repre-
sented as a long. Similarly, the suffix U (or u) forces the constant
to be unsigned. It is unsigned long if the value of the number
itself is greater than decimal 65,535, regardless of which base is
used. You can use both L and U suffixes on the same constant in
any order or case: ul, lu, UL, and so on.

The data type of a constant in the absence of any suffix (U, u, L, or
1) is the first of the following types that can accommodate its
value:

decimal int, long int, unsigned long int
octal int, unsigned int, long int, unsigned long int
hexadecimal int, unsigned int, long int, unsigned long int

If the constant has a U or u suffix, its data type will be the first of
unsigned int, unsigned long int that can accommodate its value.
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Table 1.6
Turbo C++ integer constants
without L or U

Character constants

If the constant has an L or [ suffix, its data type will be the first of
long int, unsigned long int that can accommodate its value.

If the constant has both u and [ suffixes (ul, Iu, Ul, IU, uL, Lu, LU,
or UL), its data type will be unsigned long int.

Table 1.6 summarizes the representations of integer constants in
all three bases. The data types indicated assume no overriding L

or U suffix has been used.

Decimal constants

0to 32,767
32,768 to 2,147,483,647
2,147,483,648 to 4,294,967,295

> 4294967295
Octal constants

00 to 077777
0100000 to 0177777
02000000 to 017777777777
020000000000 to 037777777777

> 037777777777
Hexadecimal constants

0x0000 to 0x7FFF

0x8000 to OXFFFF
0x10000 to Ox7FFFFFFF
0x80000000 to OXFFFFFFFF

> OxFFFFFFFF

int
long
unsigned long

Generates an error.

int

unsigned int
long

unsigned long

Generates an error.

int

unsigned int
long

unsigned long

Generates an error.

A character constant is one or more characters enclosed in single
quotes, such as *A’, '=',’\n’. In C, single character constants

have data type int; they are represented internally with 16 bits,
with the upper byte zero or sign-extended. In C++, a character
constant has type char. Multicharacter constants in both C and
C++ have data type int.

Escape sequences

The backslash character (\) is used to introduce an escape sequence,
allowing the visual representation of certain nongraphic charac-
ters. For example, the constant \n is used for the single newline
character.

A backslash is used with octal or hexadecimal numbers to repre-
sent the ASCII symbol or control code corresponding to that val-
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ue; for example, ' \03’ for Ctrl-C or ' \x3F' for the question mark.
You can use any string of up to three octal or any number of
hexadecimal numbers in an escape sequence, provided that the
value is within legal range for data type char (0 to Ox{f for Turbo
C++). Larger numbers generate the compiler error, “Numeric con-
stant too large.” For example, the octal number \777 is larger than
the maximum value allowed, \377, and will generate an error.
The first nonoctal or nonhexadecimal character encountered in an
octal or hexadecimal escape sequence marks the end of the
sequence.

Originally, Turbo C allowed only three digits in a hexadecimal
escape sequence. The new ANSI C rules adopted in Turbo C
version 2.0 and in Turbo C++ might cause problems with old code
that assumes only the first three characters are converted. For ex-
ample, using Turbo C 1.x to define a string with a bell (ASCII 7)
followed by numeric characters, a programmer might write:

printf("\x0072.1A Simple Operating System");

This is intended to be interpreted as \x007 and “2.1A Simple
Operating System”. However, Turbo C++ (and Turbo C version
2.0) compile it as the hexadecimal number \x0072 and the literal
string “.1A Simple Operating System”.
To avoid such problems, rewrite your code like this:

printf("\x007" “2.1A Simple Operating System");
Ambiguities may also arise if an octal escape sequence is followed
by a nonoctal digit. For example, because 8 and 9 are not legal oc-

tal digits, the constant \258 would be interpreted as a two-
character constant made up of the characters \25 and 8.

The next table shows the available escape sequences.
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Table 1.7

Turbo C++ escape Sequence Value Char What it does
sequences \a 0x07  BEL Audible bell
The \\ must be used fo \b 0x08 BS Backspace
represent a real ASCII \f 0x0C FF Formfeed
backslash, as used in DOS \n 0x0A LF Newline (linefeed)
paths. \r 0x0D CR Carriage return
\t 0x09 HT Tab (horizontal)
\v 0x0B VT Vertical tab
\\ 0x5¢ \ Backslash
\/ 0x27 ! Single quote (apostrophe)
\" 0x22 " Double quote
\? 0x3F ? Question mark
\O any O = a string of up to three octal
digits
\xH any H = a string of hex digits
\XH any H = a string of hex digits

Turbo C++ special two-character constants

Turbo C++ also supports two-character constants (for example,
*An’, '\n\t’, and ' \007\007"). These constants are represented
as 16-bit int values, with the first character in the low-order byte
and the second character in the high-order byte. These constants
are not portable to other C compilers.

Signed and unsigned char

In C, one-character constants, such as  A’, ’\t’,and ' \007’, are
also represented as 16-bit int values. In this case, the low-order
byte is sign extended into the high byte; that is, if the value is
greater than 127 (base 10), the upper byte is set to —1 (=0xFF). This
can be disabled by declaring that the default char type is un-
signed (use the -K TCC option or choose Unsigned Characters in
the Options | Compiler | Code Generation menu), which forces the
high byte to be zero regardless of the value of the low byte.

Wide character constants (C only)

A character constant preceded by an L is a wide-character con-
stant of data type wchar_t (an integral type defined in stddef.h).
For example,

x =L 'AB’;
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Floating-point
constants

Table 1.8

Turbo C++ floating constant

16

sizes and ranges

A floating constant consists of six parts:

# decimal integer

m decimal point

m decimal fraction

meor E and a signed integer exponent (optional)
m type suffix: for F or [ or L (optional)

You can omit either the decimal integer or the decimal fraction
(but not both). You can omit either the decimal point or the letter e
(or E) and the signed integer exponent (but not both). These rules
allow for conventional and scientific (exponent) notations.

Negative floating constants are taken as positive constants with
the unary operator minus (-) prefixed.

Examples:
Constant Value
23.45e6 23.45 x 108
.0 0
0. 0
1. 1.0 x10°=1.0
-1.23 -1.23
2e-5 2.0 x105
3E+10 3.0 x 101
09E34 0.09 x 1034

Floating point constants—data types

In the absence of any suffixes, floating-point constants are of type
double. However, you can coerce a floating constant to be of type
float by adding an f or F suffix to the constant. Similarly, the suffix
lor L forces the constant to be data type long double. The next
table shows the ranges available for float, double, and long
double.

Type Size (bits) Range

float 32 34x10%t03.4x 1038
double 64 1.7 x 10308 {0 1.7 x 10308
long double 80 3.4 x 10932 0 1.1 x 104932
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Enumeration constants

Enumeration constants are identifiers defined in enum type declar-
ations. The identifiers are usually chosen as mnemonics to assist
legibility. Enumeration constants are integer data types. They can
be used in any expression where integer constants are valid. The
identifiers used must be unique within the scope of the enum
declaration.

See page 71 for a defailed  The values acquired by enumeration constants depend on the for-
look at enum declarations. 1yt of the enumeration declaration and the presence of optional
initializers. In this example,

enum team { glants, cubs, dodgers };

giants, cubs, and dodgers are enumeration constants of type team
that can be assigned to any variables of type team or to any other
variable of integer type. The values acquired by the enumeration
constants are

giants = 0, cubs = 1, dodgers = 2
in the absence of explicit initializers. In the following example,
enum team { giants, cubs=3, dodgers = giants + 1 };
the constants are set as follows:
glants = 0, cubs = 3, dodgers =1
The constant values need not be unique:
enum team { giants, cubs = 1, dodgers = cubs - 1 };

Negative initializers are allowed.

String literals ~ String literals, also known as string constants, form a special cate-
gory of constants used to handle fixed sequences of characters. A
string literal is of data type array of char and storage class static,
written as a sequence of any number of characters surrounded by
double quotes:

"This is literally a string!"
The null (empty) string is written "*.

The characters inside the double quotes can include escape
sequences (see page 13). This code, for example,

"\t\t\"Name\"\\\tAddress\n\n"

prints out like this:
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“"Name"\  Address

“Name” is preceded by two tabs; Address is preceded by one tab.
The line is followed by two new lines. The \* provides interior
double quotes.

A literal string is stored internally as the given sequence of charac-
ters plus a final null character ("\0"). A null string is stored as a
single *\0’ character.

Adjacent string literals separated only by whitespace are concate-
nated during the parsing phase. In the following example,

#include <stdio.h>

main()
{

char *p;

p = "This is an example of how Turbo C+t"
" will automatically\ndo the concatenation for"
" you on very long strings,\nresulting in nicer"
" looking programs.";
printf(p);
}

The output of the program is

This is an example of how Turbo C++ will automatically
do the concatenation for you on very long strings,
resulting in nicer looking programs.

You can also use the backslash (\) as a continuation character in
order to extend a string constant across line boundaries:

puts(“This is really \
a one-line string");

Constants and infernal  ANSI C acknowledges that the size and numeric range of the basic
representation  data types (and their various permutations) are implementation

specific and usually derive from the architecture of the host com-
puter. For Turbo C++, the target platform is the IBM PC family
(and compatibles), so the architecture of the Intel 8088 and 80x86
microprocessors governs the choices of inner representations for
the various data types. The next table lists the sizes and resulting
ranges of the data types for Turbo C++. See page 39 for more
information on these data types. Figure 1.1 shows how these types
are represented internally.

18 Turbo C++ Programmer’s Guide



Table 1.9: Data types, sizes, and ranges

Size
Type (bits) Range Sample applications
unsigned char 8 0 to 255 Small numbers and full PC character set
char 8 -128 to 127 Very small numbers and ASCII characters
enum 16 -32,768 to 32,767 Ordered sets of values
unsigned int 16 0to 65,535 Larger numbers and loops
short int 16 -32,768 to 32,767 Counting, small numbers, loop control
int 16 -32,768 to 32,767 Counting, small numbers, loop control

unsigned long 32 0 to 4,294,967,295

Astronomical distances

long 32 -2,147,483,648 to 2,147,483,647
float 32 3.4 %1038 t0 3.4 x 1038
double 64 1.7 x 10308 o 1.7 x 10308

long double 80 3.4 x 104320 1.1 x 104932

Large numbers, populations
Scientific (7-digit precision)

Scientific (15-digit precision)
Financial (19-digit precision)

near pointer 16 Not applicable Manipulating memory addresses
far pointer 32 Not applicable Manipulating addresses outside current
segment
Figure 1.1 I ing signifl
Internal representations of
dCTCl Types int ; magnitude (2's complement)
1
long int |5 magnitude (2’s complement)
1]
i
float |s .bx::;’::ml significand
Pl
double |s eb,';,’,,'fml significand
1)
i
long double |s .%';,;"m 1-|_ significand
kad 6463
s = Sign bit (0 = positive, 1 = negative)
i = Position of implicit binary point
1 = Integer bit of significand:
Stored in long double
Implicit (always 1) in float, double
Exponent bias (normahzed values)
float 'L
double : 3FFH
long doubla 16 383 (3FFFH)
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Constant expressions A constant expression is an expression that always evaluates to a
constant (and it must evaluate to a constant that is in the range of
representable values for its type). Constant expressions are evaluated
just as regular expressions are. You can use a constant expression
anywhere that a constant is legal. The syntax for constant expres-
sions is

constant-expression:
Conditional-expression

Constant expressions cannot contain any of the following operators,
unless the operators are contained within the operand of a sizeof
operator:

m assignment
® decrement

m function call
B comma

Operator descriptions

Operators are tokens that trigger some computation when applied to
variables and other objects in an expression. Turbo C++ is especially
rich in operators, offering not only the common arithmetical and
logical operators, but also many for bit-level manipulations, struc-
ture and union component access, and pointer operations (refer-
encing and dereferencing).

@} C++ extensions offer additional operators for accessing class
members and their objects, together with a mechanism for
overloading operators. Overloading lets you redefine the action of any
standard operators when applied to the objects of a given class. In
this section, we confine our discussion to the standard operators of
Turbo C++. Overloading is covered starting on page 124.

After defining the standard operators, we discuss data types and
declarations, and explain how these affect the actions of each
operator. From there we can proceed with the syntax for building
expressions from operators, punctuators, and objects.

The operators in Turbo C++ are defined as follows:

operator: one of
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[1 O . - ++ -

& * + - ~ ]
sizeof / % << >> <
> <= >= == 1= A
| && Il ?: = *=
The operators# and ## are /= %= += — <<= >>=
used only by the preproces- &= A= |= , # ##

sor (see page 133).
And the following operators specific to C++:

't _>*

Except for [], (), and ?:, which bracket expressions, the multicharac-
ter operators are considered as single tokens. The same operator
token can have more than one interpretation; depending on the
context. For example,

A*B Multiplication

*ptr Dereference (indirection)
A&B Bitwise AND

&A Address operation

int & Reference modifier (C++)
label: Statement label

a?x:y Conditional statement
void func{int n); Function declaration

a = (btc)*d; Parenthesized expression
a, b, ¢; Comma expression
func(a, b, ¢); Function call

a = ~b; Bitwise negation (one’s complement)

~func() {delete a;} Destructor (C++)

Unary operators

* Ro

Address operator

Indirection operator

Unary plus

Unary minus

Bitwise complement (1’s complement)
Logical negation

++ Prefix: preincrement; Postfix: postincrement
- Prefix: predecrement; Postfix: postdecrement

1+
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Binary operators

Additive operators

Multiplicative operators

Shift operators

Bitwise operators

Logical operators

Assignment operators

Relational operators

22

Binary plus (addition)
Binary minus (subtraction)

Multiply
Divide
Remainder

Shift left
Shift right

Bitwise AND
Bitwise XOR (exclusive OR)
Bitwise inclusive OR

Logical AND
Logical OR

Assignment

Assign product
Assign quotient
Assign remainder (modulus)
Assign sum

Assign difference
Assign left shift
Assign right shift
Assign bitwise AND
Assign bitwise XOR
Assign bitwise OR

Less than

Greater than

Less than or equal to
Greater than or equal to
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Equality operators
Component selection
operators
Class-member

operators

Conditional operator

Comma operator

Punctuators

Brackets

Parentheses

== Equal to
Not equal to

Direct component selector
-> Indirect component selector

Scope access/resolution

> Dereference pointer to class member

—* Dereference pointer to class member
a?x:y “if a then x; else y”

s Evaluate; e.g., a, b, c; from left to right

The operator functions, as well as their syntax, precedences, and
associativities, are covered starting on page 73.

The punctuators (also known as separators) in Turbo C++ are
defined as follows:

punctuator: one of
[TC)Y L), ;0 =#

[] (open and close brackets) indicate single and multidimensional
array subscripts:

char ch, str[] = "Stan";
int mat[3][4]; /* 3 x 4 matrix */
ch = str[3]; /* 4th element */

() (open and close parentheses) group expressions, isolate condition-
al expressions, and indicate function calls and function parameters:

d=c* (a +b); /* override normal precedence */

if (d == z) ++x; /* essential with conditional statement */
func(); /* function call, no args */

int (*fptr) (); /* function pointer declaration */

fptr = func; /* no () means func pointer */
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Braces

Comma

Semicolon

24

void func2(int n); /* function declaration with args */

Parentheses are recommended in macro definitions to avoid poten-
tial precedence problems during expansion:

$define CUBE(x) ((x) * (X) * (x))

The use of parentheses to alter the normal operator precedence and
associativity rules is covered on page 76.

{ } (open and close braces) indicate the start and end of a compound
statement:

if (d == 2)
{
+4x;
func();

}

The closing brace serves as a terminator for the compound statement,
s0 a ; (semicolon) is not required after the }, except in structure or
class declarations. Often, the semicolon is illegal, as in

if (statement)
{}: /*illegal semicolon*/
else

The comma (,) separates the elements of a function argument list:
void func(int n, float f, char ch);

The comma is also used as an operator in comma expressions. Mixing
the two uses of comma is legal, but you must use parentheses to
distinguish them:

func(i, j); /* call func with two args */
func((expl, exp2), (exp3, exp4, exp5)); /* also calls func
with two args! */

The semicolon (;) is a statement terminator. Any legal C expression
(including the empty expression) followed by ; is interpreted as a
statement, known as an expression statement. The expression is evalu-
ated and its value is discarded. If the expression statement has no
side effects, Turbo C++ may ignore it.

a+tb; /* maybe evaluate a + b, but discard value */
++a; /* side effect on a, but discard value of ++a */
; /* empty expression = null statement */
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Semicolons are often used to create an empty statement:

for (i = 0; i < n; i++)

{

}

Colon Use the colon (:) to indicate a labeled statement:

start: x=0;
goto start;

switch (a) {
case 1: puts("One");
break;
case 2: puts("Two");
break;

default: puts(“"None of the above!");
break;

}
Labels are covered on page 92.

Ellipsis  Ellipsis (...) are three successive periods with no whitespace inter-
vening. Ellipsis are used in the formal argument lists of function pro-
totypes to indicate a variable number of arguments, or arguments

with varying types:

void func(int n, char ch,...);

This declaration indicates that func will be defined in such a way
that calls must have at least two arguments, an int and a char, but
can also have any number of additional arguments.

w In C++, you can omit the comma preceding the ellipsis.

Asterisk (pointer The * (asterisk) in a variable declaration denotes the creation of a
declaration) pointer to a type:

char *char ptr; /* a pointer to char is declared */

Pointers with multiple levels of indirection can be declared by indi-
cating a pertinent number of asterisks:

int **int ptr; /* a pointer to a pointer to an int */

double ***double ptr; /* a pointer to a pointer to a pointer
to doubles */
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Equal sign (initializen

Pound sign
(preprocessor
directive)

Declarations

You can also use the asterisk as an operator to either dereference a
pointer or as the multiplication operator:

i = *int ptr;

a=Db*3.14;

The = (equal sign) separates variable declarations from initialization
lists:

char array(5] = {1, 2, 3, 4, 5 };
int x=05;

In a C function, no code can precede any variable declarations. In
C++, declarations of any type can appear (with some restrictions) at
any point within the code.

In a C++ function argument list, the equal sign indicates the default
value for a parameter:

int f{int 1 =0) { ... } /* parameter 1 has default value of
zero */

The equal sign is also used as the assignment operator in
expressions:

a=b+c;
ptr = farmalloc(sizeof(float)*100);

The # (pound sign) indicates a preprocessor directive when it occurs
as the first non whitespace character on a line. It signifies a compiler
action, not necessarily associated with code generation. See page 133
for more on the preprocessor directives.

# and ## (double pound signs) are also used as operators to perform
token replacement and merging during the preprocessor scanning
phase.

26

This section briefly reviews concepts related to declarations: objects,
types, storage classes, scope, visibility, duration, and linkage. A
general knowledge of these is essential before tackling the full
declaration syntax.

Scope, visibility, duration, and linkage determine those portions of a
program that can make legal references to an identifier in order to
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access its object. Scope is discussed starting on page 29; visibility is
discussed starting on page 30; duration is discussed starting on page
31; and linkage is discussed on page 32.

Objects

An object is an identifiable region of memory that can hold a fixed or
variable value (or set of values). (This use of the word object is not to
be confused with the more general term used in object-oriented lan-
guages—see Chapter 5, “A C++ primer,” in Getting Started.) Each
value has an associated name and type (also known as a data type).
The name is used to access the object. This name can be a simple
identifier, or it can be a complex expression that uniquely “points” to
the object. The type is used

m to determine the correct memory allocation required initially,

m to interpret the bit patterns found in the object during subsequent
accesses,

m and in many type-checking situations to ensure that illegal
assignments are trapped.

Turbo C++ supports many standard (predefined) and user-defined
data types, including signed and unsigned integers in various sizes,
floating point numbers in various precisions, structures, unions,
arrays, and classes. In addition, pointers to most of these objects can
be established and manipulated in various memory models.

The Turbo C++ standard libraries and your own program and
header files must provide unambiguous identifiers (or expressions
derived from them) and types so that Turbo C++ can consistently
access, interpret, and (possibly) change the bit patterns in memory
corresponding to each active object in your program.

Declarations establish the necessary mapping between identifiers
and objects. Each declaration associates an identifier with a data
type. Most declarations, known as defining declarations, also establish
the creation (where and when) of the object, that is, the allocation of
physical memory and its possible initialization. Other declarations,
known as referencing declarations, simply make their identifiers and
types known to the compiler. There can be many referencing declara-
tions for the same identifier, especially in a multifile program, but
only one defining declaration for that identifier is allowed.

Generally speaking, an identifier cannot be legally used in a program
before its declaration point in the source code. Legal exceptions to this
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Lvalues

Rvalues

Types and
storage classes

rule, known as forward references, are labels, structures, union tags,
and calls to undeclared functions.

An lvalue is an object locator an expression that designates an object.
An example of an lvalue expression is *P, where P is any expression
evaluating to a nonnull pointer. A modifiable lvalue is an identifier or
expression that relates to an object that can be accessed and legally
changed in memory. A const pointer to a constant, for example, is
not a modifiable lvalue. A pointer to a constant can be changed (but
its dereferenced value cannot).

Historically, the I stood for “left,” meaning that an lvalue could legal-
ly stand on the left (the receiving end) of an assighment statement.
Now only modifiable lvalues can legally stand to the left of an
assignment statement. For example, if 2 and b are nonconstant inte-
ger identifiers with properly allocated memory storage, they are both
modifiable lvalues, and assignments suchasa =1;and b =a + b are
legal.

The expression a + b is not an Ivalue: a + b = a is illegal because the
expression on the left is not related to an object. Such expressions are
often called rvalues (short for right values).

Associating identifiers with objects requires that each identifier has
at least two attributes: storage class and type (sometimes referred to as
data type). The Turbo C++ compiler deduces these attributes from
implicit or explicit declarations in the source code.

Storage class dictates the location (data segment, register, heap, or
stack) of the object and its duration or lifetime (the entire running
time of the program, or during execution of some blocks of code).
Storage class can be established by the syntax of the declaration, by
its placement in the source code, or by both of these factors.

The type, as explained earlier, determines how much memory is
allocated to an object and how the program will interpret the bit
patterns found in the object’s storage allocation. A given data type
can be viewed as the set of values (often implementation-dependent)
that identifiers of that type can assume, together with the set of
operations allowed on those values. The special compile-time opera-
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tor, sizeof, lets you determine the size in bytes of any standard or
user-defined type; see page 81 for more on this operator.

Scope
The scope of an identifier is that part of the program in which the
identifier can be used to access its object. There are five categories of
scope: block (or local), function, function prototype, file, and class (C++
only). These depend on how and where identifiers are declared.

Block scope The scope of an identifier with block (or local) scope starts at the
declaration point and ends at the end of the block containing the
declaration (such a block is known as the enclosing block). Parameter
declarations with a function definition also have block scope, limited
to the scope of the block which defines the function.

Function scope The only identifiers having function scope are statement labels. Label
names can be used with goto statements anywhere in the function in
which the label is declared. Labels are declared implicitly by writing
label_name: followed by a statement. Label names must be unique
within a function.

Function prototype Identifiers declared within the list of parameter declarations in a
scope function prototype (not part of a function definition) have function
prototype scope. This scope ends at the end of the function

prototype.

File scope File scope identifiers, also known as globals, are declared outside of
all blocks and classes; their scope is from the point of declaration to
the end of the source file.

Class scope (C++)  For now, think of a class as a named collection of members, including
data structures and functions that act on them. Class scope applies,
with some exceptions, to the names of the members of a particular
class. Classes and their objects have many special access and scoping
rules; see pages 102 to 113.

Scope and name  Name space is the scope within which an identifier must be unique.
spaces There are four distinct classes of identifiers in C:
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1. goto label names. These must be unique within the function in

which they are declared.
Sfructures, classes, and 2. Structure, union, and enumeration tags. These must be unique
enumerations are in the within the block in which they are defined. Tags declared outside

in C++. . . 1o .
samename spaceh &+ of any function must be unique within all tags defined externally.

3. Structure and union member names. These must be unique
within the structure or union in which they are defined. There is
no restriction on the type or offset of members with the same
member name in different structures.

4. Variables, typedefs, and enumeration members. These must be
unique within the scope in which they are defined. Externally
declared identifiers must be unique among externally declared
variables.

Visibility
The visibility of an identifier is that region of the program source
code from which legal access can be made to the identifier’s associ-
ated object.

Scope and visibility usually coincide, though there are circumstances
under which an object becomes temporarily hidden by the appearance
of a duplicate identifier: The object still exists but the original identi-
fier cannot be used to access it until the scope of the duplicate
identifier is ended.

Visibility cannot exceed
scope, but scope can

exceed Visibility. int i; char ch; // auto by default
i=3; // int 1 and char ch in scope and visible

{
double 1i;
i = 3.0e3; // double i in scope and visible
// int i=3 in scope but hidden
ch ="'a'; // char ch in scope and visible

}
// double i out of scope
i+=1; // int i visible and = 4
// char ch still in scope & visible = ’A’

// int i and char ch out of scope

w Agam special rules apply to hidden class names and class member
names: Special C++ operators allow hidden identifiers to be accessed
under certain conditions (see page 103).
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Duration

Duration, closely related to storage class, defines the period during
which the declared identifiers have real, physical objects allocated in
memory. We also distinguish between compile-time and run-time
objects. Variables, for instance, unlike typedefs and types, have real
memory allocated during run time. There are three kinds of dura-
tion: static, local, and dynamic.

Static duration  Objects with static duration are allocated memory as soon as execu-
tion is underways; this storage allocation lasts until the program
terminates. Static duration objects usually reside in fixed data
segments allocated according to the memory model in force. All
functions, wherever defined, are objects with static duration. All
variables with file scope have static duration. Other variables can be
given static duration by using the explicit static or extern storage
class specifiers.

Static duration objects are initialized to zero (or null) in the absence
of any explicit initializer or, in C++, constructor.

Static duration must not be confused with file or global scope. An
object can have static duration and local scope.

Local duration  Local duration objects, also known as automatic objects, lead a more

An object with local duration precarious existence. They are cre."ated' on the stack (or in a register)
also has local scope. since it when the enclosing block or function is entered. They are deallocated
does not exist outside of its  when the program exits that block or function. Local duration objects
enclosing block. The con-  must be explicitly initialized; otherwise, their contents are unpredic-

;’fgs; " o’t’)‘;;gfuggs ,’)‘(’vaog table. Local duration objects always must have local or function
static duration.  scope. The storage class specifier auto may be used when declaring
local duration variables, but is usually redundant, since auto is the
default for variables declared within a block.

When declaring variables (for example, int, char, float), the storage
class specifier register also implies auto; but a request (or hint) is
passed to the compiler that the object be allocated a register if possi-
ble. Turbo C++ can be set to allocate a register to a local integral or
pointer variable, if one is free. If no register is free, the variable is
allocated as an auto, local object with no warning or error.
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Dynamic duration

Translation units

Linkage

Dynamic duration objects are created and destroyed by specific
function calls during a program. They are allocated storage from a
special memory reserve known as the heap, using either standard
library functions such as malloc, or by using the C++ operator new.
The corresponding deallocations are made using free or delete.

The term translation unit refers to a source code file together with any
included files, but less any source lines omitted by conditional
preprocessor directives. Syntactically, a translation unit is defined as
a sequence of external declarations:

translation-unit:
external-declaration
translation-unit external-declaration

external-declaration
function-definition
declaration

The word external has several connotations in C; here it refers to
declarations made outside of any function, and which therefore have
file scope. (External linkage is a distinct property; see the following
section, “Linkage.”) Any declaration that also reserves storage for an
object or function is called a definition (or defining declaration). For
more details, see “External declarations and definitions” on page 36.

An executable program is usually created by compiling several inde-
pendent translation units, then linking the resulting object files with
preexisting libraries. A problem arises when the same identifier is
declared in different scopes (for example, in different files), or de-
clared more than once in the same scope. Linkage is the process that
allows each instance of an identifier to be associated correctly with
one particular object or function. All identifiers have one of three
linkage attributes, closely related to their scope: external linkage,
internal linkage, or no linkage. These attributes are determined by
the placement and format of your declarations, together with the
explicit (or implicit by default) use of the storage class specifier static
or extern.
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Each instance of a particular identifier with external linkage represents
the same object or function throughout the entire set of files and
libraries making up the program. Each instance of a particular
identifier with internal linkage represents the same object or function
only within one file. Identifiers with no linkage represent unique
entities.

External and internal linkage rules are as follows:

1. Any object or file identifier having file scope will have internal
linkage if its declaration contains the storage class specifier static.
For C, if the same identifier appears with both internal and exter-
nal linkage within the same file, the identifier will have internal
linkage. In C++, it will have external linkage.

2. If the declaration of an object or function identifier contains the
storage class specifier extern, the identifier has the same linkage
as any visible declaration of the identifier with file scope. If there
is no such visible declaration, the identifier has external linkage.

3. If a function is declared without a storage class specifier, its link-
age is determined as if the storage class specifier extern had been
used.

4. If an object identifier with file scope is declared without a storage
class specifier, the identifier has external linkage.

The following identifiers have no linkage attribute:

1. any identifier declared to be other than an object or a function (for
example, a typedef identifier)

2. function parameters

3. block scope identifiers for objects declared without the storage
class specifier extern

Declaration syntax

Allsix interrelated attributes (storage class, type, scope, visibility,
duration, and linkage) are determined in diverse ways by
declarations.

Declarations can be defining declarations (also known simply as defini-
tions) or referencing declarations (sometimes known as nondefining
declarations). A defining declaration, as the name implies, performs
both the duties of declaring and defining; the nondefining
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declarations require a definition to be added somewhere in the
program. A referencing declaration simply introduces one or more
identifier names into a program. A definition actually allocates
memory to an object and associates an identifier with that object.

Tentative

definitions The ANSI C standard introduces a new concept: that of the tentative
definition. Any external data declaration that has no storage class
specifier and no initializer is considered a tentative definition. If the
identifier declared appears in a later definition, then the tentative
definition is treated as if the extern storage class specifier were
present. In other words, the tentative definition becomes a simple
referencing declaration.

If the end of the translation unit is reached and no definition has
appeared with an initializer for the identifier, then the tentative
definition becomes a full definition, and the object defined has
uninitialized (zero-filled) space reserved for it. For example,

int x;
int x; /*legal, one copy of x is reserved */
int y;
int y = 4 /* legal, y is initialized to 4 */
int z = 5;
int z = 6; /* not legal, both are initialized definitions */
Possible
declarations  The range of objects that can be declared includes

m variables

m functions

m classes and class members (C++)

m types

m structure, union, and enumeration tags
m structure members

= union members

m arrays of other types

m enumeration constants

m statement labels

W preprocessor macros
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Table 1.10
Turbo C++ declaration syntax

The full syntax for declarations is shown in the following tables. The
recursive nature of the declarator syntax allows complex declarators.
We encourage the use of typedefs to improve legibility.

declaration:
<decl-specifiers> <declarator-list>;
asm-declaration
function-declaration
linkage-specification

decl-specifier:
storage-class-specifier
type-specifier
fet-specifier
friend (C++ specific)
typedef

decl-specifiers:
<decl-specifiers> decl-specifier

storage-class-specifier:
auto
register
static
extern

fet-specifier: (C++ specific)
inline
virtual

type-specifier:
simple-type-name
class-specifier
enum-specifier
elaborated-type-specifier
const
volatile

simple-type-name:
class-name
typedef-name
char

short

int

long
signhed
unsigned
float
double
void

elaborated-type-specifier:
class-key identifier
class-key class-name
enum enum-name

class-key: (C++ specific)
class
struct
union

enum-specifier:
enum <identifier> { <enum-list> }
enum-list:

enumerator
enumerator-list , enumerator

enumerator:
identifier
identifier = constant-expression

constant-expression:
conditional-expression

linkage-specification: (C++ specific)
extern string { <declaration-list> }
extern string declaration

declaration-list:
declaration
declaration-list ; declaration

For the following table, note that there are restrictions on the number
and order of modifiers and qualifiers. Also, the modifiers listed are
the only addition to the declarator syntax that are not ANSI C or
C++. These modifiers are each discussed in greater detail starting on

page 46.
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Table 1.11: Turbo C++ declarator syntax

declarator-list:
init-declarator
declarator-list , init-declarator

init-declarator:
declarator <initializer>

declarator:
dname
modifier-list
ptr-operator declarator
declarator ( parameter-declaration-list ) <co-qualifier-list>
(The <cv-qualifier-list> is for C++ only.)
declarator [ <constant-expression> ]
(declarator ) :

modifier-list:
modifier
modifier-list modifier

modifier:
cdecl
pascal
interrupt
near
far
huge

pir-operator:

* <cv-qualifier-list>

& <cv-qualifier-list> (C++ specific)

class-name :: * <co-qualifier-list> (C++ specific)
co-qualifier-list:

co-qualifier <co-qualifier-list>
co-qualifier

const

volatile

dname:
name

class-name (C++ specific)
~ class-name (C++ specific)
typedef-name

type-name:
type-specifier <abstract-declarator>

abstraci-declarator:
ptr-operator <abstract-declarator>
<abstract-declarator> ( argument-declaration-list ) <cv-qualifier-list>
<abstract-declarator> [ <constant-expression> ]
(abstract-declarator )

argument-declaration-list:
<arg-declaration-list>
arg-declaration-list , ...
<arg-declaration-list> ... (C++ specific)

arg-declaration-list:
argument-declaration
arg-declaration-list , argument-declaration

argument-declaration:
decl-specifiers declarator
decl-specifiers declarator = expression (C++ specific)
decl-specifiers <abstract-declarator>
decl-specifiers <abstract-declarator> = expression (C++ specific)

fet-definition:
<decl-specifiers> declarator <ctor-initializer> fct-body

fct-body:

compound-statement
initializer:

= expression

= { initializer-list }

(expression-list ) (C++ specific)
initializer-list:

ression
initializer-list , expression
{ initializer-list <,> }

External

declarations aNd  The storage class specifiers auto and register cannot appear in an
definitions external declaration (see “Translation units,” page 32). For each
identifier in a translation unit declared with internal linkage, there
can be no more than one external definition.

An external definition is an external declaration that also defines an
object or function; that is, it also allocates storage. If an identifier
declared with external linkage is used in an expression (other than as
part of the operand of sizeof), there must be exactly one external
definition of that identifier somewhere in the entire program.

Turbo C++ allows later re-declarations of external names, such as
arrays, structures, and unions, to add information to earlier
declarations. For example,

36
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int all;
struct mystruct;

// no size
// tag only, no member declarators

int a[3] = {1, 2, 3}; // supply size and initialize

struct mystruct {
int i, 3;

Vi

// add member declarators

The following table covers class declaration syntax. Page 98 covers

C++ reference types (closely related to pointer types) in detail.

Table 1.12: Turbo C++ class declarations (C++ only)

class-specifier:
class-head { <member-list> )

class-head:
class-key <identifier> <base-spec>
class-key class-name <base-spec>

member-list:
member-declaration <member-list>
access-specifier 1 <member-list>

member-declaration:
<decl-specifiers> <member-declarator-list> ;
function-definition <;>
qualified-name ;

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator <pure-specifier>
<identifier> : constant-expression

pure-specifier:

access-specifier <virtual> class-name

access-specifier:
private
protected
public

conversion-function-name:
operator conversion-type-name

conversion-type-name:
type-specifiers <ptr-operator>
ctor-initializer:
: mem-initializer-list
mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list
mem-initializer:
class name ( <argument-list>)
identifier ( <argument-list>)
operator-function-name:
operator operator

operator: one of

basf-;’::(f_:l ist new delete sizeof

base-list: ; n ! /| :/° "
base-specifier N ! .. ) % g

. op - b = = o= =

base-list , base-specifier _ |= << o oo <<=

base-specifier: == = <= >= && Il
class-name ++ -— s —>* -> ()
virtual <access-specifier> class-name [1 X
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Type specifiers

Type taxonomy

&>

The type specifier with one or more optional modifiers is used to
specify the type of the declared identifier:

int i; // declare i as a signed integer
unsigned char chl, ch2; // declare two unsigned chars

By long-standing tradition, if the type specifier is omitted, type
signed int (or equivalently, int) is the assumed default. However, in
C++ there are some situations where a missing type specifier leads to
syntactic ambiguity, so C++ practice uses the explicit entry of all int
type specifiers.

There are four basic type categories: void, scalar, function, and aggre-
gate. The scalar and aggregate types can be further divided as
follows:

m Scalar: arithmetic, enumeration, pointer, and, in C++, reference

types
m Aggregate: array, structure, union, and, in C++, class types

Types can also be divided into fundamental and derived types. The
fundamental types are void, char, int, float, and double, together
with short, long, signed, and unsigned variants of some of these.
The derived types include pointers and references to other types,
arrays of other types, function types, class types, structures, and
unions.

A class object, for example, can hold a number of objects of different
types together with functions for manipulating these objects, plus a
mechanism to control access and inheritance from other classes.

Given any nonvoid type type (with some provisos), you can declare
derived types as follows:
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Table 1.13
Declaring types

Type void

C++ handles func() in a
special manner. See
“Declarations and
protofypes” on page 60 and
code examples on page 61.

The fundamental
types

signed and unsigned are
modifiers that can be
applied fo the integral types.

typet; An object of type type

type array[10]; Ten types: array(0] — array[9]

type *ptr; ptr is a pointer to type

type &ref = t; ref is a reference to type (C++)
type func(void); func returns value of type type
void funci(typet); funct takes a type type parameter
struct st {type t1; type t2}; structure st holds two types

And here’s how you could declare derived types in a class:

class ct { // class ct holds ptr to type plus a function
// taking a type parameter (C++)
type *ptr;
public:

void func(type*);

void is a special type specifier indicating the absence of any values. It
is used in the following situations:
m An empty parameter list in a function declaration:
int func(void); // func takes no arguments
m When the declared function does not return a value:
void func(int n); // return value
® As a generic pointer: A pointer to void is a generic pointer to
anything:
void *ptr; // ptr can later be set to point to any object
m In typecasting expressions:

extern int errfunc(); // returns an error code

(void) errfunc(); // discard return value

The fundamental type specifiers are built from the following
keywords:

char int signed
double long unsigned
float short

From these keywords, you can build the integral and floating-point
types, which are together known as the arithmetic types. The include
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integral types

Table 1.14
Integral types

file limits.h contains definitions of the value ranges for all the funda-
mental types.

char, short, int, and long, together with their unsigned variants, are
all considered integral data types. The integral type specifiers are as
follows, with synonyms listed on the same line:

char, signed char Synonyms if default char set to signed
unsigned char

char, unsigned char Synonyms if default char set to unsigned
signed char

int, signed int

unsigned, unsigned int

short, short int, signed short int

unsigned short, unsigned short int

long, long int, signed long int

unsigned long, unsigned long int

At most, one of signed and unsigned can be used with char, short,
int, or long. If you use the keywords signed and unsigned on their
own, they mean signed int and unsigned int, respectively.

In the absence of unsigned, signed is usually assumed. An exception
arises with char. Turbo C++ lets you set the default for char to be
signed or unsigned. (The default, if you don’t set it yourself, is
signed.) If the default is set to unsigned, then the declaration char ch
declares ch as unsigned. You would need to use signed char chto
override the default. Similarly, with a signed default for char, you
would need an explicit unsigned char ch to declare an unsigned char.

At most, one of long and short can be used with int. The keywords
long and short used on their own mean long int and short int.

ANSI C does not dictate the sizes or internal representations of these
types, except to insist that short, int, and long form a non-decreasing
sequence with “short <= int <= long.” All three types can legally be
the same. This is important if you want to write portable code aimed
at other platforms.

In Turbo C++, the types int and short are equivalent, both being 16
bits. long is a 32-bit object. The signed varieties are all stored in 2's
complement format using the MSB (most significant bit) as a sign bit:
0 for positive, 1 for negative (which explains the ranges shown in
Table 1.9 on page 19). In the unsigned versions, all bits are used to
give a range of 0 — (2" — 1), where n is 8, 16, or 32.
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Floating-point fypes The representations and sets of values for the floating-point types are
implementation dependent; that is, each implementation of C is free
to define them. Turbo C++ uses the IEEE floating-point formats. (Ap-
pendix A, “ANSI implementation-specific standards,” tells more
about implementation-specific items.)

float and double are 32- and 64-bit floating-point data types, respec-
tively. long can be used with double to declare an 80-bit precision
floating-point identifier: long double test_case, for example.

Table 1.9 on page 19 indicates the storage allocations for the floating-
point types.

Standard conversions  When you use an arithmetic expression, such as a + b, where g and b
are different arithmetic types, Turbo C++ performs certain internal
conversions before the expression is evaluated. These standard con-
versions include promotions of “lower” types to “higher” types in the
interests of accuracy and consistency.

Here are the steps Turbo C++ uses to convert the operands in an
arithmetic expression:

1. Any small integral types are converted as shown in Table 1.15.
After this, any two values associated with an operator are either
int (including the long and unsigned modifiers, double, float, or
long double).

2. If either operand is of type long double, the other operand is
converted to long double.

3. Otherwise, if either operand is of type double, the other operand is
converted to double.

4. Otherwise, if either operand is of type float, the other operand is
converted to float.

5. Otherwise, if either operand is of type unsigned long, the other
operand is converted to unsigned long.

6. Otherwise, if either operand is of type long, then the other oper-
and is converted to long.

7. Otherwise, if either operand is of type unsigned, then the other
operand is converted to unsigned.

8. Otherwise, both operands are of type int.

The result of the expression is the same type as that of the two
operands.
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Table 1.15
Methods used in standard
arithmetic conversions

Special char, int, and
enum conversions

The conversions discussed in
this section are specific to
Turbo C++.

Initialization

If it has automatic storage
duratfion, its value is
indeterminate.

(€O
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Type Converts to Method

char int Zero or sign-extended (depends on
default char type)

unsigned char int Zero-filled high byte (always)

signed char int Sign-extended (always)

short int Same value

unsigned short unsigned int Same value

enum int Same value

Assigning a signed character object (such as a variable) to an integral
object results in automatic sign extension. Objects of type signed char
always use sign extension; objects of type unsigned char always set
the high byte to zero when converted to int.

Converting a longer integral type to a shorter type truncates the high-
er order bits and leaves low-order bits unchanged. Converting a
shorter integral type to a longer type either sign extends or zero fills
the extra bits of the new value, depending on whether the shorter type
is signed or unsigned, respectively.

Initializers set the initial value that is stored in an object (variables,
arrays, structures, and so on). If you don’t initialize an object, and it
has static duration, it will be initialized by default in the following
manner:

m to zero if it is of an arithmetic type
m to null if it is a pointer type
The syntax for initializers is as follows:
initializer
= expression
= {initializer-list} <,>}
(expression list)
initializer-list
expression
initializer-list, expression
{initializer-list} <,>)

Rules governing initializers are:

1. The number of initializers in the initializer list cannot be larger
than the number of objects to be initialized.
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2. The item to be initialized must be an object type or an array of
unknown size.

3. All expressions must be constants if they appear in one of these
places:

a. in an initializer for an object that has static duration (not
required for C++)

b. in an initializer list for an array, structure, or union (expres-
sions using sizeof are also allowed)

4. If a declaration for an identifier has block scope, and the identifier
has external or internal linkage, the declaration cannot have an
initializer for the identifier.

5. If there are fewer initializers in a brace-enclosed list than there are
members of a structure, the remainder of the structure is initial-
ized implicitly in the same way as objects with static storage
duration.

Scalar types are initialized with a single expression, which can option-
ally be enclosed in braces. The initial value of the object is that of the
expression; the same constraints for type and conversions apply as for
simple assignments.

For unjons, a brace-enclosed initializer initializes the member that first
appears in the union’s declaration list. For structures or unions with
automatic storage duration, the initializer must be one of the
following:

m an initializer list as described in the following section

m a single expression with compatible union or structure type. In this
case, the initial value of the object is that of the expression.

Arrays, structures, and  You initialize arrays and structures (at declaration time, if you like)

unions  with a brace-enclosed list of initializers for the members or elements
of the object in question. The initializers are given in increasing array
subscript or member order. You initialize unions with a brace-
enclosed initializer for the first member of the union. For example,
you could declare an array days, intended to count how many times
each day of the week appears in a month (and assuming that each day
will appear at least once), as follows:

int days(71 = (1,1, 1,1, 1,1, 1}

Use these rules to initialize character arrays and wide character
arrays:
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1. You can initialize arrays of character type with a literal string,
optionally enclosed in braces. Each character in the string, in-
cluding the null terminator, initializes successive elements in the
array. For example, you could declare

char name[] = { "Unknown" };

which sets up an eight-element array, whose elements are ‘U’ (for
namel0]), ‘n’ (for name[1]), and so on (and including a null
terminator).

2. You can initialize a wide character array (one that is compatible
with wehar_t) by using a wide string literal, optionally enclosed in
braces. As with character arrays, the codes of the wide string literal
initialize successive elements of the array.

Here is an example of a structure initialization:

struct mystruct {
int i;
char str([21];
double d;
} s ={ 20, "Borland", 3.141 };

Complex members of a structure, such as arrays or structures, can be
initialized with suitable expressions inside nested braces. You can
eliminate the braces, but you must follow certain rules, and it isn’t
recommended practice.

Simple declarations of variable identifiers have the following pattern:
data-type varl <=init1>, var2 <=init2>, ...;

where varl, var2,... are any sequence of distinct identifiers with op-
tional initializers. Each of the variables is declared to be of type data-
type. For example,

int x=1,y=2;

creates two integer variables called x and y (and initializes them to the
values 1 and 2, respectively).

These are all defining declarations; storage is allocated and any
optional initializers are applied.

The initializer for an automatic object can be any legal expression that
evaluates to an assignment-compatible value for the type of the
variable involved. Initializers for static objects must be constants or
constant expressions.
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@} In C++, an initializer for a static object can be any expression involv-
ing constants and previously declared variables and functions.

Storage class

specifiers A storage class specifier, or a type specifier, must be present in a
declaration. The storage class specifiers can be one of the following:

auto register typedef
extern static

Use of storage class The storage class specifier auto is used only with local scope variable
specifier auto  declarations. It conveys local (automatic) duration, but since this is the
default for all local scope variable declarations, its use is rare.

Use of storage class  The storage class specifier extern can be used with function and
specifier extern  variable file scope and local scope declarations to indicate external
linkage. With file scope variables, the default storage class specifier is
extern. When used with variables, extern indicates that the variable
has static duration. (Remember that functions always have static
duration.)

Use of storage class  The storage class specifier register is allowed only for local variable

specifier register and function parameter declarations. It is equivalent to auto, with the
added excitement that a request is made to the compiler that the vari-
able should be allocated to a register if possible. The allocation of a
register can significantly reduce the size and improve the performance
of programs in many situations. However, since Turbo C++ does a
good job of placing variables in registers, it is rarely necessary to use
the register keyword.

Turbo C++ lets you select register variable options from the Options |
Compiler | Optimizations dialog box. If you check Automatic, Turbo
C++ will try to allocate registers even if you have not used the
register storage class specifiers.

Use of storage class  The storage class specifier static can be used with function and vari-
specifier static  able file scope and local scope declarations to indicate internal
linkage. static also indicates that the variable has static duration. In
the absence of constructors or explicit initializers, static variables are
initialized with O or null.
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In C++, a static data member of a class has the same value for all
instances of a class. A static function member of a class can be invoked
independently of any class instance.

The keyword typedef indicates that you are defining a new data type
specifier rather than declaring an object. typedef is included as a stor-
age class specifier because of syntactical rather than functional
similarities.

static long int biggy;

typedef long int BIGGY;

The first declaration creates a 32-bit, long int, static-duration object
called biggy. The second declaration establishes the identifier BIGGY
as a new type specifier, but does not create any run-time object.
BIGGY can be used in any subsequent declaration where a type
specifier would be legal. For example,

extern BIGGY salary;
has the same effect as
extern long int salary;

Although this simple example can be achieved by #define BIGGY long
int, more complex typedef applications achieve more than is possible
with textual substitutions.

typedef does not create new data types; it merely creates useful mne-
monic synonyms or aliases for existing types. It is especially valuable
in simplifying complex declarations:

typedef double (*PFD)();

PFD array pfd(10];

/* array pfd is an array of 10 pointers to functions
returning double */

You can’t use typedef identifiers with other data-type specifiers:

unsigned BIGGY pay; /* TLLEGAL */

In addition to the storage class specifier keywords, a declaration can
use certain modifiers to alter some aspect of the identifier /object map-
ping. The modifiers available with Turbo C++ are summarized in the
next table.
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Table 1.16 —
Turbo C++ modifiers  Modifier

C++ extends const and const
volatile to Include classes
and member functions.

Turbo C++ extensions

cdecl
cdecl

pascal
pascal

interrupt

near,
far,
huge
_Cs,
_ds,
_es,
_seg,
_ss
near,
far,
huge
near,
far

_export
_loadds

_saveregs

Functions

Variables

Functions

Variables

Functions

Pointer variables

Pointer variables

Functions

Variables

Functions

Functions

Functions

Use with Usage
Variables only Prevents changes to object.
volatile Variables only Prevents register allocation and some

optimization. Warns compiler that object
may be subject to outside change during
evaluation.

Forces C argument-passing convention.

Forces global identifier case-sensitivity
and leading underscores.

Forces Pascal argument-passing
convention.

Forces global identifier case-insensitivity
with no leading underscores.

Function compiles with the additional
register-housekeeping code needed when
writing interrupt handlers.

Overrides the default pointer
type specified by the current
memory model.

Segment pointers;
see page 199.

Overrides the default function
type specified by the current
memory model.

Directs the placement of
the object in memory.

OS/2 only. Ignored by Turbo C++.

Sets DS to point to the current
data segment.

Preserves all register values
(except for return values)
during execution of the function.
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The const modifier

The modifier const used
by itself is equivalent to
const inf.

The interrupt function
modifier

The const modifier prevents any assignments to the object or any
other side effects, such as increment or decrement. A const pointer
cannot be modified, though the object to which it points can be.
Consider the following examples:

const float pi =3,1415926;

const maxint =32767;

char  *const  str “Hello, world"; // A constant pointer

char  const *str2 "Hello, world"; /* A pointer to a constant char

*x/

Given these, the following statements are illegal:

non

pi =3.0; /* Assigns a value to a const */
i = maxint++; /* Increments a const */
str = “Hi, there!"; /* Points str to something else */

Note, however, that the function call strcpy(str, "Hi, there!") is legal,
since it does a character-by-character copy from the string literal “Hi,
there!” into the memory locations pointed to by str.

In C++, const also hides the const object and prevents external
linkage. You need to use extern const. A pointer to a const can’t be
assigned to a pointer to a non-const (otherwise, the const value could
be assigned to using the non-const pointer). For example,

char *str3 = str2 /* disallowed */

The interrupt modifier is specific to Turbo C++. interrupt functions are
designed to be used with the 8086/8088 interrupt vectors. Turbo C++
will compile an interrupt function with extra function entry and exit
code so that registers AX, BX, CX, DX, S, D], ES, and DS are pre-
served. The other registers (BP, SP, S5, CS, and IP) are preserved as
part of the C-calling sequence or as part of the interrupt handling
itself. The function will use an iret instruction to return, so that the
function can be used to service hardware or software interrupts. Here
is an example of a typical interrupt definition:

void interrupt myhandler ()

{

}

You should declare interrupt functions to be of type void. Interrupt
functions can be declared in any memory model. For all memory
models except huge, DS is set to the program data segment. For the
huge model, DS is set to the module’s data segment.
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The volatile modifier The volatile modifier indicates that the object may be modified; not
In C++, volatile has a special only by you, but ‘also by S(}m(e):thmg (]):t)ltslldg of youerrogra}r)n, sulch '?S
meaning for class member ~an interrupt roupne or an I/O port. Dec aring an o )ef:t to be volatile
functions. If you've declared ~warns the compiler not to make assumptions concerning the value of
a volatile object. youcan  the object while evaluating expressions containing it, since the value
only use ifs volatile member  qo]d (in theory) change at any moment. It also prevents the compiler
functions. . . . .
from making the variable a register variable.

volatile int ticks;
interrupt timer()
{
ticks++;
}

wait (int interval)
{
ticks = 0;
while (ticks < interval); // Do nothing

}

These routines (assuming timer has been properly associated with a
hardware clock interrupt) implement a timed wait of ticks specified
by the argument interval. A highly optimizing compiler might not
load the value of ticks inside the test of the while loop, since the loop
doesn’t change the value of ticks.

The cdecl and pascal  Turbo C++ allows your programs to easily call routines written in
modifiers other languages, and vice versa. When you mix languages like this,
you have to deal with two important issues: identifiers and parameter
passing.

In Turbo C++, all global identifiers are saved in their original case
(lower, upper, or mixed) with an underscore (_) prepended to the
front of the identifier, unless you have selected the —u— option
(Generate Underbars...Off in the Options | Compiler | Code Generation
dialog box).

Page 32 tells how to use extern, which allows C names to be
referenced from a C++ program.

pascal

In Pascal, global identifiers are not saved in their original case, nor are
underscores prepended to them. Turbo C++ lets you declare any iden-
tifier to be of type pascal; the identifier is converted to uppercase, and
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The -p compiler option
(Calling Convention... Pascal
in the Options | Compiler|
Code Generation dialog
box) causes all functions
(and pointers to those
functions) to be freated as if
they were of type pascal.

main must be declared as
cdecl; this is because the C
starf-up code always tries to
call main with the C calling
convention.
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no underscore is prepended. (If the identifier is a function, this also
affects the parameter-passing sequence used; see “Function type
modifiers,” page 51, for more details.)

The pascal modifier is specific to Turbo C++; it is intended for func-
tions (and pointers to functions) that use the Pascal parameter-
passing sequence. Also, functions declared to be of type pascal can
still be called from C routines, so long as the C routine sees that the
function is of type pascal.

pascal putnums(int i, int j, int k)
{

printf("And the answers are: %d, %d, and %d\n",i,J,k);
}

Functions of type pascal cannot take a variable number of arguments,
unlike functions such as printf. For this reason, you cannot use an
ellipsis (...) in a pascal function definition.

cdecl

Once you have compiled with the —p option, you may want to ensure
that certain identifiers have their case preserved and keep the under-
score on the front, especially if they’re C identifiers from another file.
You can do so by declaring those identifiers to be cdecl. (This also has
an effect on parameter passing for functions).

Like pascal, the cdecl modifier is specific to Turbo C++. It is used
with functions and pointers to functions. It overrides the —p compiler
directive and allows a function to be called as a regular C function.
For example, if you were to compile the previous program with the —-p
option set but wanted to use printf, you might do something like this:

extern cdecl printf();
putnums (int i, int j, int k);

cdecl main{()
{

putnums (1,4,9);
}

putnums (int i, int j, int k)
{

printf("And the answers are: %d, %d, and %d\n",i,7,k);
}

If you compile a program with the —p option, all functions used from
the run-time library will need to have cdecl declarations. If you look
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at the header files (such as stdio.h), you'll see that every function is
explicitly defined as cdecl in anticipation of this.

The pointer modifiers Turbo C++ has eight modifiers that affect the indirection operator (*);
that is, they modify pointers to data. These are near, far, huge, _cs,
_ds, _es,_seg, and _ss.

C lets you compile using one of several memory models. The model
you use determines (among other things) the internal format of
pointers. For example, if you use a small data model (tiny, small,
medium), all data pointers contain a 16-bit offset from the data seg-
ment (DS) register. If you use a large data model (compact, large,
huge), all pointers to data are 32 bits long and give both a segment
address and an offset.

Sometimes, when using one size of data model, you want to declare a
pointer to be of a different size or format than the current default. You
do so using the pointer modifiers.

See the discussion starting on page 192 in Chapter 4 for an indepth
explanation of near, far, and huge pointers, and page 193 for a
description of normalized pointers. Also see the discussion starting on
page 199 for more on _cs, _ds, _es, _seg, and _ss.

Function type modifiers The near, far, and huge modifiers can also be used as function type
modifiers; that is, they can modify functions and function pointers as
well as data pointers. In addition, you can use the _export, _loadds,
and _saveregs modifiers to modify functions. ‘

The near, far, and huge function modifiers can be combined with
cdecl or pascal, but not with interrupt.

Functions of type huge are useful when interfacing with code in
assembly language that doesn’t use the same memory allocation as
Turbo C++.

‘A non-interrupt function can be declared to be near, far, or huge in
order to override the default settings for the current memory model.

A near function uses near calls; a far or huge function uses far call
instructions.

In the tiny, small, and compact memory models, an unqualified func-
tion defaults to type near. In the medium and large models, an
unqualified function defaults to type far. In the huge memory model,
it defaults to type huge.
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See Table 1.9 on page 35 for
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declarators

the declarafor syntax. The
definition covers both
identifier and function
declarators.

A huge function is the same as a far function, except that the DS
register is set to the data segment address of the source module when
a huge function is entered, but left unset for a far function.

The _export modifier is parsed, but ignored. It provides compatibility
with source code written for OS/2. The _export modifier has no
significance for DOS programs.

The _loadds modifier indicates that a function should set the DS
register, just as a huge function does, but does not imply near or far
calls. Thus, _loadds far is equivalent to huge.

The _saveregs modifier causes the function to preserve all register
values and restore them before returning (except for explicit return
values passed in registers such as AX or DX).

The _loadds and _saveregs modifiers are useful for writing low-level
interface routines, such as mouse support routines.

Simple declarations have a list of comma-delimited identifiers
following the optional storage class specifiers, type specifiers, and
other modifiers.

A complex declaration uses a comma-delimited list of declarators
following the various specifiers and modifiers. Within each declarator,
there exists just one identifier, namely the identifier being declared.
Each of the declarators in the list is associated with the leading storage
class and type specifier.

The format of the declarator indicates how the declared dname is to be
interpreted when used in an expression. If typeis any type, and
storage class specifier is any storage class specifier, and if D1 and D2 are
any two declarators, then the declaration

storage class specifier type D1, D2;

indicates that each occurrence of DI or D2 in an expression will be
treated as an object of type type and storage class storage class specifier.
The type of the dname embedded in the declarator will be some phrase
containing fype, such as “type,” “pointer to type,” “array of type,”
“function returning type,” or “pointer to function returning type,”
and so on.

For example, in the declarations

int n, nao(], naf{3], *pn, *apn[], (*pan)(], &nr=n;
int f(void), *fnp(void), (*pfn) (void);
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each of the declarators could be used as rvalues (or possibly lvalues in
some cases) in expressions where a single int object would be appro-
priate. The types of the embedded identifiers are derived from their
declarators as follows:

Table 1.17: Complex declarations

Declarator

syntax Implied type of name Example

type name; type int count;

type name[]; (open) array of type int count[];

type name[3]; Fixed array of three elements, all of type int count [3];
(namel0], name[1], and name[2])

type *name; Pointer to type int *count;

type *name(l; (open) array of pointers to fype int *count[];

type *(name[]); Same as above int *(count[]);

type (*name)[]; Pointer to an (open) array of type int (*count) [];

type &name; Reference to type (C++ only) int &count;

type name(); Function returning type int count(});

type *name(); Function returning pointer to type int *count();

type *(name()); Same as above int *(count());

type (*name) (); Pointer to function returning type int (*count) ();

Pointers

Note the need for parentheses in (*name)[] and (*name)(), since the
precedence of both the array declarator [ ] and the function declarator
() is higher than the pointer declarator *. The parentheses in *(name[])
are optional.

See page 80 for a discussion
of referencing and de-
referencing.

Pointers fall into two main categories: pointers to objects and pointers
to functions. Both types of pointers are special objects for holding
memory addresses.

The two pointer classes have distinct properties, purposes, and rules
for manipulation, although they do share certain Turbo C++
operations. Generally speaking, pointers to functions are used to
access functions and to pass functions as arguments to other
functions; performing arithmetic on pointers to functions is not
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Pointers to
objects

Pointers to
functions

allowed. Pointers to objects, on the other hand, are regularly
incremented and decremented as you scan arrays or more complex
data structures in memory.

Although pointers contain numbers with most of the characteristics of
unsigned integers, they have their own rules and restrictions for
assignments, conversions, and arithmetic. The examples in the next
few sections illustrate these rules and restrictions.

A pointer of type “pointer to object of type” holds the address of (that
is, points to) an object of type. Since pointers are objects, you can have
a pointer pointing to a pointer (and so on). Other objects commonly
pointed at include arrays, structures, unions, and classes.

The size of pointers to objects is dependent on the memory model and
the size and disposition of your data segments, possibly influenced by
the optional pointer modifiers (discussed starting on page 51).

A pointer to a function is best thought of as an address, usually in a
code segment, where that function’s executable code is stored; that is,
the address to which control is transferred when that function is
called. The size and disposition of your code segments is determined
by the memory model in force, which in turn dictates the size of the
function pointers needed to call your functions.

A pointer to a function has a type called “pointer to function re-
turning type,” where type is the function’s return type.

Under C++, which has stronger type checking, a pointer to a function
has type “pointer to function taking argument types type and re-
turning type.” In fact, under C, a function defined with argument
types will also have this narrower type. For example,

void (*func)();

In C, this is a pointer to a function returning nothing. In C++, it's a
pointer to a function taking no arguments and returning nothing. In
this example,

void (*func) (int);

*func is a pointer to a function taking an int argument and returning
nothing.
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Pointer

declarations A pointer must be declared as pointing to some particular type, even
See page 39 for details on  if that type is void (which really means a pointer to anything). Once
vold.  declared, though, a pointer can usually be reassigned to point to an
object of another type. Turbo C++ lets you reassign pointers like this
without typecasting, but the compiler will warn you unless the
pointer was originally declared to be of type pointer to void. And in
C, but not C++, you can assign a void* pointer to a non-void* pointer.

If type is any predefined or user-defined type, including void, the
declaration
Warning! You need fo type *ptr; /* Danger--uninitialized pointer */

initialize pointers before using . . .
them. declares ptr to be of type “pointer to type.” All the scoping, duration,

and visibility rules apply to the ptr object just declared.

A null pointer value is an address that is guaranteed to be different
from any valid pointer in use in a program. Assigning the integer
constant 0 to a pointer assigns a null pointer value to it.

The mnemonic NULL (defined in the standard library header files,
such as stdio.h) can be used for legibility. All pointers can be
successfully tested for equality or inequality to NULL.

The pointer type “pointer to void” must not be confused with the null
pointer. The declaration

void *vptr;

declares that uptr is a generic pointer capable of being assigned to by
any “pointer to type” value, including null, without complaint.
Assignments without proper casting between a “pointer to type?” and
a “pointer to type2” where type? and type2 are different types, can
invoke a compiler warning or error. If type? is a function and type2
isn’t (or vice versa), pointer assignments are illegal. If type?is a
pointer to void, no cast is needed. If type2is a pointer to void, under
C, no cast is needed.

Assignment restrictions also apply to pointers of different sizes (near,
far, and huge). You can assign a smaller pointer to a larger one
without error, but you can’t assign a larger pointer to a smaller one
unless you are using an explicit cast. For example,

char near *ncp;
char far *fcp;
char huge *hcp;
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fcp = ncp; // legal

hep = fep; // legal

fep = hep; // not legal
ncp = fep; // not legal
ncp = {char near¥*)fcp; // now legal

Pointers and

constants A pointer or the pointed-at object can be declared with the const
modifier. Anything declared as a const cannot be assigned to. It is also
illegal to create a pointer that might violate the nonassignability of a
constant object. Consider the following examples:

int i; // 1 is an int

int * pi; // pi is a pointer to int ({uninitialized)
int * const cp = &i; // cp is a constant pointer to int.

const int ci = 7; // ci is a constant int

const int * pci; // pci is a pointer to constant int

const int * const cpc = &ci; // cpc is a constant pointer to a
// constant int

The following assignments are legal:

i=ci; // Assign const-int to int
*cp = ci; // RAssign const-int to
// object-pointed-at-by-a-const-pointer
++pci; // Increment a pointer-to-const
pci = cpe; // Assign a const-pointer-to-a-const to a

// pointer-to-const

The following assignments are illegal:

ci=0; // NO--cannot assign to a const-int
ci=-=; // NO--cannot change a const-int
*pci = 3; // NO--cannot assign to an object

// pointed at by pointer-to-const

cp = &ci; // NO--cannot assign to a const-pointer,
// even if value would be unchanged

cpett; // NO--cannot change const-pointer

pi = pci; // NO--if this assignment were allowed,
// you would be able to assign to *pci
// (a const value) by assigning to *pi.
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Similar rules apply to the volatile modifier. Note that const and
volatile can both appear as modifiers to the same identifier.

Pointer arithmetic

mff infem;’ Oﬂ'fhfl"f;‘ﬁc Pointer arithmetic is limited to addition, subtraction, and comparison.
performed on pointers : : : . : age .
depends on the memory Arlthmepcal operations on object pointers of type pointer to type’

model in force and the automatically take into account the size of type; that is, the number of
presence of any overriding  bytes needed to store a type object.

. ointer modifiers. . L . .
The differerlce befwoen two  When performing arithmetic with pointers, it is assumed that the

p;éqﬁeﬁo?ﬂgrggigﬁg%”g)g pointer points to an array of objects. Thus, if a pointer is declared to
same array.  point to type, adding an integral value to the pointer advances the

pointer by that number of objects of type. If type has size 10 bytes,
then adding an integer 5 to a pointer to fype advances the pointer 50
bytes in memory. The difference has as its value the number of array
elements separating the two pointer values. For example, if ptr1 points
to the third element of an array, and ptr2 points to the tenth element,
then the result of ptr2 - ptrl would be 7.

When an integral value is added to or subtracted from a “pointer to
type,” the result is also of type “pointer to type.” If type is a nonarray
object, a pointer operand is treated as though it were a pointer to the
first element of an “array of type” of length sizeof (type).

There is no such element as “pointer to one past the last element”, of
course, but a pointer is allowed to assume such a value. If P points to
the last array element, P + 1 is legal, but P + 2 is undefined. If P points
to one past the last array element, P -1 is legal, giving a pointer to the
last element. However, applying the indirection operator *to a
“pointer to one past the last element” leads to undefined behavior.

Informally, you can think of P + n as advancing the pointer by
(n * sizeof(type)) bytes, as long as the pointer remains within the legal
range (first element to one beyond the last element).

Subtracting two pointers to elements of the same array object gives an
integral value of type ptrdiff_t defined in stddef.h (signed long for
huge and far pointers; signed int for all others). This value represents
the difference between the subscripts of the two referenced elements,
provided it is in the range of ptrdiff t. In the expression P1 — P2, where
P1 and P2 are of type pointer to type (or pointer to qualified type), P1
and P2 must point to existing elements or to one past the last element.
If P1 points to the i-th element, and P2 points to the j-th element, P1 -
P2 has the value (i —j).
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Pointer
conversions

C++ reference
declarations

Arrays

Pointer types can be converted to other pointer types using the
typecasting mechanism:

char *str;
int *ip;
str = (char *)ip;

More generally, the cast (type*) will convert a pointer to type “pointer
to type.”

C-++ reference types are closely related to pointer types. Reference types
create aliases for objects and let you pass arguments to functions by
reference. Traditional C passes arguments only by value. In C++ you
can pass arguments by value or by reference. See page 98,
“Referencing,” for complete details.

This section starts the phrase-
structure grammar part of
this chapter: see page 4 for
a description of the
difference between lexical
and phrase-structure
grammars.
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The declaration
type declarator [<constant-expression>]

declares an array composed of elements of type. An array in C
consists of a contiguous region of storage exactly large enough to hold
all of its elements.

If an expression is given in an array declarator, it must evaluate to a
positive constant integer. The value is the number of elements in the
array. Each of the elements of an array is numbered from 0 through

the number of elements minus one.

Multidimensional arrays are constructed by declaring arrays of array
type. Thus, a two-dimensional array of five rows and seven columns
called alpha is declared as

type alpha [5] [7];

In certain contexts, the first array declarator of a series may have no

expression inside the brackets. Such an array is of indeterminate size.
The contexts where this is legitimate are ones in which the size of the
array is not needed to reserve space. For example, an extern declara-
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Functions

tion of an array object does not need the exact dimension of the array,
nor does an array function parameter. As a special extension to ANSI
C, Turbo C++ also allows an array of indeterminate size as the final
member of a structure. Such an array does not increase the size of the
structure, except that padding can be added to ensure that the array is
properly aligned. These structures are normally used in dynamic
allocation, and the size of the actual array needed must be explicitly
added to the size of the structure in order to properly reserve space.

Except when it is the operand of a sizeof or & operator, an array type
expression is converted to a constant pointer to the first element of the
array.

Declarations and
definitions

In C++ you must always use
function prototypes. We
recommend that you also
always use them in C.

Functions are central to Turbo C++ programming. Languages such as
Pascal distinguish between procedure and function. Turbo C++ func-
tions play both roles.

Each program must have a single external function named main
marking the entry point of the program. Functions are usually de-
clared as prototypes in standard or user-supplied header files, or
within program files. Functions are external by default and are nor-
mally accessible from any file in the program. They can be restricted
by using the static storage class specifier (see page 32).

Functions are defined in your source files or made available by
linking precompiled libraries.

A given function can be declared several times in a program, pro-
vided the declarations are compatible. Nondefining function
declarations using the function prototype format provide Turbo C++
with detailed parameter information, allowing better control over
argument number and type checking, and type conversions.

Excluding C++ function overloading, only one definition of any given
function is allowed. The declarations, if any, must also match this
definition. (The essential difference between a definition and a
declaration is that the definition has a function body.)
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prototypes

In C++, this declaration
means <type> func(void)

You can enable a warning
within the IDE or with the
command-line compiler:

“Function called without a

profotype.”

In the original Kernighan and Ritchie style of declaration, a function
could be implicitly declared by its appearance in a function call, or
explicitly declared as follows:

<type> func()

where type is the optional return type defaulting to int. A function can
be declared to return any type except an array or function type. This
approach does not allow the compiler to check that the type or
number of arguments used in a function call match the declaration.

This problem was eased by the introduction of function prototypes
with the following declaration syntax:

<type> func(parameter-declarator-list);

Declarators specify the type of each function parameter. The compiler
uses this information to check function calls for validity. The compiler
is also able to coerce arguments to the proper type. Suppose you have
the following code fragment:

long lmax(long v1, long v2); /* prototype */

main()

{
int limit = 32;
char ch = 'A’;

long mval;

mval = lmax(limit,ch); /* function call */

}

Since it has the function prototype for Imax, this program converts
limit and ch to long, using the standard rules of assignment, before it
places them on the stack for the call to Imax. Without the function
prototype, limit and ch would have been placed on the stack as an
integer and a character, respectively; in that case, the stack passed to
Imax would not match in size or content what Imax was expecting,
leading to problems. The classic declaration style does not allow any
checking of parameter type or number, so using function prototypes
aids greatly in tracking down programming errors.

Function prototypes also aid in documenting code. For example, the
function strcpy takes two parameters: a source string and a destina-
tion string. The question is, which is which? The function prototype
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char *strcpy(char *dest, char *source);

makes it clear. If a header file contains function prototypes, then you
can print that file to get most of the information you need for writing
programs that call those functions. If you include an identifier in a
prototype parameter, it is only used for any later error messages
involving that parameter; it has no other effect.

A function declarator with parentheses containing the single word
void indicates a function that takes no arguments at all:

func(void);
w In C++, func() also declares a function taking no arguments.

stdarg.h contains macros A function prototype normally declares a function as accepting a fixed
thaf you can use in User-  nymper of parameters. For C functions that accept a variable number
defined functions with X . .
variable numbers of Of parameters (such as printf), a function prototype can end with an
parameters.  ellipsis (...), like this:

f(int *count, long total, ...)
With this form of prototype, the fixed parameters are checked at

compile time, and the variable parameters are passed with no type
checking.

Here are some more examples of function declarators and prototypes:

int £(); /* In C, a function returning an int with no
information about parameters. This is the K&R
"classic style." */

int £0); /* In C++, a function taking no arguments */

int f(void); /* A function returning an int that takes no
parameters. */

int p(int,long); /* A function returning an int that accepts two
parameters: the first, an int; the second, a long.
*/

int pascal q(void); /* A pascal function returning an int that takes no
parameters at all. */

char far *s(char *source, int kind); /* A function returning a far
pointer to a char and accepting two parameters: the
first, a pointer to a char; the second, an int. */

int printf(char *format,...); /* A function returning an int and
accepting a pointer to a char fixed parameter and any
number of additional parameters of unknown type. */

int  (*fp) (int); /* A pointer to a function returning an int and
accepting a single int parameter. */
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The general syntax for external function definitions is given in the
following table:

Table 1.18

External function definitions file
external-definition

file external-definition
external-definition:
function-definition
declaration
asm-statement
function-definition:
<declaration-specifiers> declarator <declaration-list> compound-statement

In general, a function definition consists of the following sections (the
grammar allows for more complicated cases):

You can infermix elements 1, Optional storage class specifiers: extern or static. The default is
from 1and 2. extern.

2. A return type, possibly void. The default is int.

3. Optional modifiers: pascal, cdecl, interrupt, near, far, huge. The
defaults depend on the memory model and compiler option
settings.

4. The name of the function.

5. A parameter declaration list, possibly empty, enclosed in paren-
theses. In C, the preferred way of showing an empty list is
func(void). The old style of func() is legal in C but antiquated and
possibly unsafe. In C++, you'll get a warning.

6. A function body representing the code to be executed when the
function is called.

Formal parameter

declarations The formal parameter declaration list follows a similar syntax to that
of the declarators found in normal identifier declarations. Here are a
few examples:

int func(void) { // no args

w int func(T1 t1, T2 t2, T3 t3=1) { // three simple parameters, one
// with default argument

w int func(T1* ptrl, T2& tref) { // a pointer and a reference arg
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int func{register int 1) { // request register for arg

int func(char *str,...) { /* one string arg with a variable
number of other args, or with a fixed number of args with
varying types */

w In C++, you can give default arguments as shown. Parameters with
default values must be the last arguments in the parameter list. The
arguments’ types can be scalars, structures, unions, enumerations;
pointers or references to structures and unions; or pointers to
functions or classes.

The ellipsis (...) indicates that the function will be called with dif-
ferent sets of arguments on different occasions. The ellipsis can follow
a sublist of known argument declarations. This form of prototype
reduces the amount of checking the compiler can make.

The parameters declared all enjoy automatic scope and duration for
the duration of the function. The only legal storage class specifier is
register.

The const and volatile modifiers can be used with formal argument
declarators.

Function calls

and argument A function is called with actual arguments placed in the same se-
i quence as their matching formal arguments. The actual arguments are
conversions converted as if by initialization to the declared types of the formal
arguments.

Here is a summary of the rules governing how Turbo C++ deals with
language modifiers and formal parameters in function calls, both with
and without prototypes:

1. The language modifiers for a function definition must match the
modifiers used in the declaration of the function at all calls to the
function.

2. A function may modify the values of its formal parameters, but
this has no effect on the actual arguments in the calling routine,
except for reference arguments in C++.

When a function prototype has not been previously declared, Turbo
C++ converts integral arguments to a function call according to the
integral widening (expansion) rules described in the section “Stan-
dard conversions,” starting on page 41. When a function prototype is
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Structures

in scope, Turbo C++ converts the given argument to the type of the
declared parameter as if by assignment.

When a function prototype includes an ellipsis (...), Turbo C++
converts all given function arguments as in any other prototype (up to
the ellipsis). The compiler widens any arguments given beyond the
fixed parameters, according to the normal rules for function
arguments without prototypes.

If a prototype is present, the number of arguments must match (un-
less an ellipsis is present in the prototype). The types need only be
compatible to the extent that an assignment can legally convert them.
You can always use an explicit cast to convert an argument to a type
that is acceptable to a function prototype.

If your function prototype does not match the actual function defini-
tion, Turbo C++ will detect this if and only if that definition is in the
same compilation unit as the prototype. If you create a library of
routines with a corresponding header file of prototypes, consider in-
cluding that header file when you compile the library, so that any dis-
crepancies between the prototypes and the actual definitions will be
caught. C++ provides type-safe linkage, so differences between
expected and actual parameters will be caught by the linker.

64

Structure inifialization is
discussed on page 42.

A structure is a derived type usually representing a user-defined
collection of named members (or components). The members can be
of any type, either fundamental or derived (with some restrictions to
be noted later), in any sequence. In addition, a structure member can
be a bit field type not allowed elsewhere. The Turbo C++ structure
type lets you handle complex data structures almost as easily as single
variables.

In C++, a structure type is treated as a class type (with certain differ-
ences: Default access is public, and the default for the base class is also
public). This allows more sophisticated control over access to struc-
ture members by using the C++ access specifiers: public (the default),
private, and protected. Apart from these optional access mechanisms,
and from exceptions as noted, the following discussion on structure
syntax and usage applies equally to C and C++ structures.

Structures are declared using the keyword struct. For example,

struct mystruct { ... }; // mystruct is the structure tag
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Untagged
structures and
typedefs

Untagged sfrucfure and
union members are ighored
during initialization.

Structure member
declarations

You can omit the struct
keyword in C++.

struct mystruct s, *ps, arrs(10];
/* s is type struct mystruct; ps is type pointer to struct mystruct;
arrs is array of struct mystruct. */

If you omit the structure tag, you can get an untagged structure. You
can use untagged structures to declare the identifiers in the comma-
delimited struct-id-list to be of the given structure type (or derived
from it), but you cannot declare additional objects of this type
elsewhere:

struct { ... } s, *ps, arrs(10]; // untagged structure

It is possible to create a typedef while declaring a structure, with or
without a tag:

typedef struct mystruct { ... } MYSTRUCT;
MYSTRUCT s, *ps, arrs[10]; // same as struct mystruct s, etc.
typedef struct { ... } YRSTRUCT; // no tag

YRSTRUCT y, *yp, arry(20];

You don’t usually need both a tag and a typedef: Either can be used in
structure declarations.

The member-decl-list within the braces declares the types and names of
the structure members using the declarator syntax shown in Table 1.11
on page 36.

A structure member can be of any type, with two exceptions:

1. The member type cannot be same as the struct type being
currently declared:
struct mystruct { mystruct s } sl, s2; // illegal
A member can be a pointer to the structure being declared, as in
the following example:
struct mystruct { mystruct *ps } sl, s2; // OK
Also, a structure can contain previously defined structure types
when declaring an instance of a declared structure.
2. Except in C++, a member cannot have the type “function
returning...,” but the type “pointer to function returning...” is
allowed. In C++, a struct can have member functions.
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Structure member
access
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A function can return a structure type or a pointer to a structure type:

mystruct funcl(void); // funcl{() returns a structure
mystruct *func2(void); // func2() returns pointer to structure

A structure can be passed as an argument to a function in the
following ways:

void funcl{mystruct s); // directly
void func2(mystruct *sptr); // via a pointer
vold func3(mystruct &sref); // as a reference (C++ only)

Structure and union members are accessed using the selection
operators . and ->. Suppose that the object s is of struct type S, and
sptr is a pointer to S. Then if m is a member identifier of type M
declared in S, the expressions s.m and sptr->m are of type M, and both
represent the member object m in s. The expression s->sptr is a
convenient synonym for (*sptr).m.

The operator . is called the direct member selector; the operator —> is
called the indirect (or pointer) member selector; for example,

struct mystruct {
int i;
char str[21];
double d;

} s, *sptr=ss;

s.i=3 // assign to the i member of mystruct s
sptr=>d = 1.23;  // assign to the d member of mystruct s

The expression s.m is an lvalue, provided that s is not an lvalue and m
is not an array type. The expression sptr->m is an lvalue unless m is an

array type.

If structure B contains a field whose type is structure A, the members
of A can be accessed by two applications of the member selectors:
struct A {
int j;
double x;
}i

struct B {
int i;
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struct A a;

double d;
} s, *sptr;
s.i=3; // assign to the i member of B
s.a.j = 2; // assign to the j member of A
sptr->d = 1.23; // assign to the d member of B

(sptr->a).x = 3.14 // assign to x member of A

Each structure declaration introduces a unique structure type, so that
in

struct A {
int 1,7;
double d;
} a, al;

struct B {
int 1i,73;
double d;
} b;

the objects @ and 4l are both of type struct A, but the objects a and b
are of different structure types. Structures can be assigned only if the
source and destination have the same type:

al; // OK: same type, so member by member assignment
= b; // ILLEGAL: different types

a.i =b.i; a.j = b.j; a.d = b.d /* but you can assign
member-by-member */

a

Memory is allocated to a structure member-by-member from left to
right, from low to high memory address. In this example,

struct mystruct {
int i;
char str[21];
double d;

b osi

the object s occupies sufficient memory to hold a 2-byte integer, a 21-
byte string, and an 8-byte double. The format of this object in memory
is determined by the Turbo C++ word alignment option. With this
option off (the default), s will be allocated 31 contiguous bytes.

If you turn on word alignment with the —a compiler option (or with
the Options | Compiler | Code Generation dialog box), Turbo C++ pads
the structure with bytes to ensure the structure is aligned as follows:
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spaces

Incomplete

1. The structure will start on a word boundary (even address).

2. Any non-char member will have an even byte offset from the start
of the structure.

3. A final byte is added (if necessary) at the end to ensure that the
whole structure contains an even number of bytes.

With word alignment on, the structure would therefore have a byte
added before the double, making a 32-byte object.

Structure tag names share the same name space with union tags and
enumeration tags (but enums within a structure are in a different
name space in C++). This means that such tags must be uniquely
named within the same scope. However, tag names need not differ
from identifiers in the other three name spaces: the label name space,
the member name space(s), and the single name space (which consists
of variables, functions, typedef names, and enumerators).

Member names within a given structure or union must be unique, but
they can share the names of members in other structures or unions.
For example,

goto s;

s:

struct s { // OK: tag and label name spaces different
int s; // OK: label, tag and member name spaces different
float s; // ILLEGAL: member name duplicated

} s; // OK: var name space different. In C++, this can only be
// done if s does not have a constructor.

union s { // ILLEGAL: tag space duplicate
int s; // OK: new member space
float f;

} £; // OK: var name space

struct t {

int s; // OK: different member space

} s; // ILLEGAL: var name duplicate

declarations A pointer to a structure type A can legally appear in the declaration of

another structure B before the structure A has been declared:
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struct A; // incomplete
struct B { struct A *pa };
struct A { struct B *pb };

The first appearance of A is called incomplete because there is no
definition for it at that point. Incomplete declarations are allowed in
this situation, since the definition of B does not need the size of A.

Bit fields
A sfructure can confain any  You can declare signed or unsigned integer members as bit fields
mixture of bif field and non-  grym 1 to 16 bits wide. You specify the bit field width and optional
bit field types. . .
identifier as follows:

type-specifier <bitfield-id> : width;

where type-specifier is char, unsigned char, int, or unsigned int. Bit
fields are allocated from low-order to high-order bits within a word.
The expression width must be present and must evaluate to a constant
integer in the range 0 to 16.

If the bit field identifier is omitted, the number of bits specified in
width is allocated, but the field is not accessible. This lets you match
bit patterns in, say, hardware registers where some bits are unused.
For example,

struct mystruct {

int i 2;

unsigned j : 5;

int : 4

int k:1;

unsigned m : 4;
} a, b, ¢c;

produces the following layout:

15|14({13 (1211|109 {8 | 7 |6 | 5|43 |2]1]0

X X X X X X X X X X X X X X X X

A
Y
A
Y

< o lat3l
« PR

m k (unused) j i

Integer fields are stored in 2’s-complement form, with the leftmost bit
being the MSB (most significant bit). With int (for example, signed) bit
fields, the MSB is interpreted as a sign bit. A bit field of width 2
holding binary 11, therefore, would be interpreted as 3 if unsigned,
but as -1 if int. In the previous example, the legal assignment a.i = 6
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Unions

would leave binary 10 = -2 in 4.i with no warning. The signed int field
k of width 1 can hold only the values —1 and 0, since the bit pattern 1
is interpreted as -1.

Bit fields can be declared only in structures, unions, and classes. They
are accessed with the same member selectors ( . and —>) used for non-
bit field members. Also, bit fields pose several problems when writing
portable code, since the organization of bits-within-bytes and bytes-
within-words is machine dependent.

The expression &mystruct.x is illegal if x is a bit field identifier, since
there is no guarantee that mystruct.x lies at a byte address.
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Unions correspond to the
variant record types of
Pascal and Moadula-2.

Union types are derived types sharing many of the syntactical and
functional features of structure types. The key difference is that a
union allows only one of its members to be “active” at any one time.
The size of a union is the size of its largest member. The value of only
one of its members can be stored at any time. In the following simple
case,

union myunion { /* union tag = myunion */
int i;
double d;
char ch;

} mu, *muptr=&mu;

the identifier mu, of type union myunion, can be used to hold a 2-byte
int, an 8-byte double, or a single-byte char, but only one of these at the
same time.

sizeof(union myunion) and sizeof(rmu) both return 8, but 6 bytes are
unused (padded) when mu holds an int object, and 7 bytes are unused
when mu holds a char. You access union members with the structure
member selectors (. and —»), but care is needed:

mu.d = 4.016;

printf("mu.d = $f\n",mu.d); // OK: displays mu.d = 4.016
printf("mu.i = $d\n",mu.i); // peculiar result

mu.ch = 'A’;

printf("mu.ch = %c\n",mu.ch); // OK: displays mu.ch = A
printf("mu.d = $f\n",mu.d); // peculiar result

muptr=>i = 3;

printf("mu.i = %d\n",mu.i); // OK: displays mu.i = 3
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declarations

The second printf is legal, since mu.i is an integer type. However, the
bit pattern in mu.i corresponds to parts of the double previously
assigned, and will not usually provide a useful integer interpretation.

When properly converted, a pointer to a union points to each of its
members, and vice versa.

The general declaration syntax for unions is pretty much the same as
that for structures. Differences are

1. Unions can contain bit fields, but only one can be active. They all
start at the beginning of the union.

@.}} 2. Unlike C++ structures, C++ union types cannot use the class access

specifiers: public, private, and protected. All fields of a union are
public.
3. Unions can be initialized only through their first declared member:
union local87 {
int i;
double d;
ba=1{201});

w 4. A union can’t participate in a class hierarchy. It can’t be derived

from any class, nor can it be a base class. A union can have a
constructor.

w 5. Anonymous unions can’t have member functions.

Enumerations

An enumeration data type is used to provide mnemonic identifiers for
a set of integer values. For example, the following declaration,

enum days { sun, mon, tues, wed, thur, fri, sat } anyday;

establishes a unique integral type, enum days, a variable anyday of this
type, and a set of enumerators (sun, mon,...) with constant integer
values.

Turbo C++ is free to store enumerators in a single byte when the -b
flag is off (default is on, meaning enums are always ints) if the range
of values permits, but the value is always promoted to an int when
used in expressions. The identifiers used in an enumerator list are im-
plicitly of type unsigned char or int, depending on the values of the
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See page 17 for more on
enumeration constants.

enumerators. If all values can be represented in an unsigned char,
that is the type of each enumerator.

In C, a variable of an enumerated type can be assigned any value of
type int—no type checking beyond that is enforced. In C++, a variable
of an enumerated type can be assigned only one of its enumerators.
That is,

mon; // OK
1; // illegal, even though mon == 1

1

anyday
anyday

The identifier days is the optional enumeration tag that can be used in
subsequent declarations of enumeration variables of type enum days:

enum days payday, holiday; // declare two variables

In C++, you can omit the enum keyword if days is not the name of
anything else in the same scope.

As with struct and union declarations, you can omit the tag if no
further variables of this enum type are required:

enum { sun, mon, tues, wed, thur, fri, sat } anyday;
/* anonymous enum type */

The enumerators listed inside the braces are also known as enumera-
tion constants. Each is assigned a fixed integral value. In the absence of
explicit initializers, the first enumerator (sun) is set to zero, and each
succeeding enumerator is set to one more than its predecessor (mon =
1, tues = 2, and so on).

With explicit integral initializers, you can set one or more enumera-
tors to specific values. Any subsequent names without initializers will
then increase by one. For example, in the following declaration,

/* initializer expression can include previously declared
enumerators */
enum coins { penny = 1, tuppence, nickel = penny + 4, dime = 10,
quarter = nickel * nickel } smallchange;

tuppence would acquire the value 2, nickel the value 5, and quarter the
value 25.

The initializer can be any expression yielding a positive or negative
integer value (after possible integer promotions). These values are
usually unique, but duplicates are legal.

enum types can appear wherever int types are permitted.

enum days { sun, mon, tues, wed, thur, fri, sat } anyday;
enum days payday;
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typedef enum days DAYS;
DAYS *daysptr;
int 1 = tues;

anyday = mon; // OK
*daysptr = anyday; // OK
mon = tues; // ILLEGAL: mon is a constant

Enumeration tags share the same name space as structure and union
tags. Enumerators share the same name space as ordinary variable
identifiers:

int mon = 11;

{
enum days { sun, mon, tues, wed, thur, fri, sat } anyday;
/* enumerator mon hides outer declaration of int mon */
struct days { int i, j;}; // ILLEGAL: days duplicate tag

double sat; // ILLEGAL: redefinition of sat
}
mon = 12; // back in int mon scope
@3@> In C++, enumerators declared within a class are in the scope of that

class.

Expressions

~Table .19 shows how  An expression is a sequence of operators, operands, and punctuators
identifiers gg%g‘;’, 2’5;2’ sf:,ﬁ that specifies a computation. The formal syntax, listed in Table 1.19,
grammatically legal  indicates that expressions are defined recursively: Subexpressions can
“phrases.” be nested without formal limit. (However, the compiler will report an
out-of-memory error if it can’t compile an expression that is too

complex.)
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Table 1.19: Turbo C++ expressions

primary-expression:
literal
pseudo-variable
(expression)
this (C++ specific)
:: identifier (C++ specific)
:: operator-function-name (C++ specific)
name

literal:
integer-constant
character-constant
floating-constant
string
name:
identifier
operator-function-name (C++ specific)
conversion-function-name (C++ specific)
qualified-name (C++ specific)

qualified-name: (C++ specific)
class-name :: identifier
class-name :: operator-function-name
class-name :: conversion-function-name
class-name :: class-name
class-name :: ~ class-name

postfix-expression:
primary-expression
postfix-expression [ expression |
postfix-expression ( <expression-list> )

simple-type-name  ( <expression-list>) (C++ specific)

postfix-expression . name
postfix-expression —> name
postfix-expression ++
postfix-expression — ~
expression-list:
assignment-expression
pression-list , assignment-exp

unary-expression:
postfix-expression
++ unary-expression
— — unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof ( type-name )
allocation-expression (C++ specific)
deallocation-expression (C++ specific)

unary-operator: one of
& L

allocation-expression: (C++ specific)

<> new <placement> restricted-type-name <initializer>

<::> new <placement> (type-name) <initializer>

placement: (C++ specific)
( expression-list )

restricted-type-name: (C++ specific)
type-specifiers <restricted-declarator>

restricted-declarator: (C++ specific)
ptr-operator <restricted-declarator>
restricted-declarator [ <expression> ]

deallocation-expression: (C++ specific)
<::> delete cast-expression
<:> delete [ expression ] cast-expression

cast-expression:
unary-expression
( type-name ) cast-expression

pm-expression:
cast-expression
pm-expression .* cast-expression (C++ specific)
pm-expression —>* cast-expression (C++ specific)

multiplicative-expression:
-expression

multiplicative-expression * pm-expression

multiplicative-expression | pm-expression

multiplicative-expression % pm-expression
additive-expression:

multiplicative-expression

additive-expression + mul,

addttnve—expmsszon - mult:pllcatwe-aprsswn

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression

relational-exp >= shift-exp

equality-expression:
relational-expression
equality expression == relational-expression
equality expression 1= relational-expression

AND-expression:

equality-expression

AND-expression & equality-expression
exclusive-OR-expression:

AND-expression

exclusive-OR-expression & AND-expression

inclusive-OR-expression:

exclusive-OR-expression

inclusive-OR-expression | exclusive-OR-expression
logical-AND-expression.

inclusive-OR-expression

logical- AND-expression && inclusive-OR-expression
logical-OR-expression:

logical-AND-expression

logical-OR-expression || logical-AND-expression
conditional-expression:

logical-OR-expression

logical-OR-exp ? expression : conditional

assignment-expression:
conditional-expression

unary-expressi ignment-oy
assignment-gperator: one of

= *= I= %= += —

<<= >»>= &= LS I=
expression:

assignment-expression

expression, dssignment-expression
constant-expression:

conditional-expression

74
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The standard conversions are
detailed in Table 1.15 on
page 42.

The grammair in Table 1.19

on page 74 completely
defines the precedence and
associativity of the operators.

Table 1.20

Associativity and
precedence of Turbo C++
operators

There are sixteen
precedence categories. The
first category (the first line)
has the highest precedence.
Operators in the same cate-
gory have equal prece-
dence. Where there are
duplicates of operators in the
table, the first occurrence is
unary, the second binary.

Expressions and
C++

Expressions are evaluated according to certain conversion,
grouping, associativity, and precedence rules which depend on
the operators used, the presence of parentheses, and the data
types of the operands. The way operands and subexpressions are
grouped does not necessarily specify the actual order in which
they are evaluated by Turbo C++ (see “Evaluation order” on page
76). Expressions can produce an lvalue, an rvalue, or no value.
Expressions may cause side effects whether they produce a value
or not.

We've summarized the precedence and associativity rules in Table
1.20. Each category has an associativity rule: left to right, or right
to left. In the absence of parentheses, these rules resolve the
grouping of expressions with operators of equal precedence.

Operators Associativity
OIr1 - = . Left to right
!~ + - ++ —— & * (typecast) sizeof new delete  Right to left
Kot Left to right
I % Left to right
+ - Left to right
<< >> Left to right
< <= > >= Left to right
= I= Left to right
& Left to right
A Left to right
| Left to right
&& Left to right
Il Left to right
?: (conditional expression) Right to left
= *z /= %= 4= —= &= Az |= <<= >>= Right to left
) Left to right

C++ allows the overloading of certain standard C operators, as ex-
plained starting on page 125. An overloaded operator is defined
to behave in a special way when applied to expressions of class
type. For instance, the relational operator == might be defined in
the class complex to test the equality of two complex numbers
without changing its normal usage with non-class data types.
Overloaded operators are implemented as functions; the function
determines the operand type, lvalue, and evaluation order to be
applied when the overloaded operator is used. However,
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Evaluation order

overloading cannot change the precedence of an operator. Similarly,
C++ allows user-defined conversions between class objects and funda-
mental types. Keep in mind, then, that some of the rules for operators
and conversions discussed in this section may not apply to
expressions in C++.

The order in which Turbo C++ evaluates the operands of an
expression is not specified, except where an operator specifically
states otherwise. The compiler will try to rearrange the expression in
order to improve the quality of the generated code. Care is therefore
needed with expressions in which a value is modified more than once.
In general, avoid writing expressions that both modify and use the
value of the same object. Consider the expression

i = v[i++]; // 1 is undefined

The value of i depends on whether i is incremented before or after the
assignment. Similarly,

int total = 0;
sum = (total = 3) + (++total); // sum = 4 or sum = 7 22

is ambiguous for sum and fotal. The solution is to revamp the
expression, using a temporary variable:

int temp, total = 0;
temp = ++total;
sum = (total = 3) + temp;

Where the syntax does enforce an evaluation sequence, it is safe to
have multiple evaluations:

sum = (i = 3, i++, i++); // OK: sum = 4, i = 5

Each subexpression of the comma expression is evaluatea from left to
right, and the whole expression evaluates to the rightmost value.

Turbo C++ regroups expressions, rearranging associative and com-
mutative operators regardless of parentheses, in order to create an
efficiently compiled expression; in no case will the rearrangement
affect the value of the expression.

You can use parentheses to force the order of evaluation in expres-
sions. For example, if you have the variables g, b, ¢, and f, then the
expression f=a + (b +¢) forces (b + ¢) to be evaluated before adding
the result to a.
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Errors and
overflows

During the evaluation of an expression, Turbo C++ can encounter
many problematic situations, such as division by zero or out-of-range
floating-point values. Integer overflow is ignored (C uses modulo 2"
arithmetic on n-bit registers), but errors detected by math library
functions can be handled by standard or user-defined routines. See
matherr and signal in the Library Reference.

Operator semantics

The Turbo C++ operators
described here are the
standard ANSI C operators.

Postfix and prefix
operators

Array subscript
operator|[ ]

Unless the operators are overloaded, the following information is true
in both C and C++. In C++ you can overload all of these operators
with the exception of . (member operator) and ?: (conditional
operator) (and you also can’t overload the C++ operators :: and .*).

If an operator is overloaded, the discussion may not be true for it
anymore. Table 1.19 on page 74 gives the syntax for all operators and
operator expressions.

The six postfix operators [] () . —=> ++ and——are used to build

postfix expressions as shown in the expressions syntax table (Table
1.19). The increment and decrement operators (++ and — -) are also
prefix and unary operators; they are discussed starting on page 79.

In the expression
postfix-expression [expression]

In C, but not necessarily in C++, the expression expl/exp2] is defined
as

* ((expl) + (exp2))

where either expl is a pointer and exp2 is an integer, or expl is an
integer and exp2 is a pointer. (The punctuators [ ], *, and + can be
individually overloaded in C++.)
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Function call
operators ()

Structure/union
member operator
. (dob)

Ivalues are defined on page

28.

Structure/union pointer

78

operator —>

Postfix increment
operator ++

The expression
postfix-expression(<arg-expression-list>)

is a call to the function given by the postfix expression. The arg-
expression-list is a comma-delimited list of expressions of any type
representing the actual (or real) function arguments. The value of the
function call expression, if any, is determined by the return statement
in the function definition. See “Function calls and argument conver-
sions,” page 63, for more on function calls.

In the expression
postfix-expression . identifier

the postfix expression must be of type structure or union; the
identifier must be the name of a member of that structure or union
type. The expression designates a member of a structure or union
object. The value of the expression is the value of the selected mem-
ber; it will be an lvalue if and only if the postfix expression is an
lvalue. Detailed examples of the use of . and —> for structures are
given on page 66.

In the expression
postfix-expression —> identifier

the postfix expression must be of type pointer to structure or pointer
to union; the identifier must be the name of a member of that struc-
ture or union type. The expression designates a member of a structure
or union object. The value of the expression is the value of the selected
member; it will be an lvalue if and only if the postfix expression is an
Ivalue.

In the expression
postfix-expression ++

the postfix expression is the operand; it must be of scalar type
(arithmetic or pointer types) and must be a modifiable lvalue (see
page 28 for more on modifiable lvalues). The postfix ++ is also known
as the postincrement operator. The value of the whole expression is the
value of the postfix expression before the increment is applied. After
the postfix expression is evaluated, the operand is incremented by 1.
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The increment value is appropriate to the type of the operand. Pointer
types are subject to the rules for pointer arithmetic.

Postfix decrement  The postfix decrement, also known as the postdecrement, operator
operator-—-  follows the same rules as the postfix increment, except that 1 is
subtracted from the operand after the evaluation.

Increment and

decrement The first two unary operators are ++ and — —. These are also postfix
operators and prefix operators, so they are discussed here. The remaining six
unary operators are covered following this discussion.

Prefix increment  In the expression
operator .
++ Unary-expression
the unary expression is the operand; it must be of scalar type and
must be a modifiable lvalue. The prefix increment operator is also
known as the preincrement operator. The operand is incremented by 1
before the expression is evaluated; the value of the whole expression is
the incremented value of the operand. The 1 used to increment is the
appropriate value for the type of the operand. Pointer types follow the
rules of pointer arithmetic.

Prefix decrement  The prefix decrement, also known as the predecrement, operator has
operator the following syntax:
— — unary-expression

It follows the same rules as the prefix increment operator, except that
the operand is decremented by 1 before the whole expression is
evaluated.

Unary operators

The six unary operators (aside from ++ and --)are & * + ~ ~ and !.
The syntax is

unary-operator cast-expression

cast-expression:
unary-expression
(type-name) cast-expression
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Address operator &
The symbol & is also used in
C++ fo specify reference
types; see page 98.

Indirection operator *

The & operator and * operator (the * operator is described in the next
section) work together as the referencing and dereferencing operators. In
the expression

& cast-expression

the cast-expression operand must be either a function designator or an
Ivalue designating an object that is not a bit field and is not declared
with the register storage class specifier. If the operand is of type type,
the result is of type pointer to type.

Note that some non-lvalue identifiers, such as function names and
array names, are automatically converted into “pointer to X" types
when appearing in certain contexts. The & operator can be used with
such objects, but its use is redundant and therefore discouraged.

Consider the following extract:

type t1 =1, t2 = 2;
type *ptr = &tl; // initialized pointer
*ptr = t2; // same effect as tl = t2

Note that type *ptr = &tlis treated as
T *ptr;
ptr = &ti;

so it is ptr, not *ptr, that gets assigned. Once pitr has been initialized
with the address &t1, it can be safely dereferenced to give the lvalue
*.

pir.

In the expression
* cast-expression

the cast-expression operand must have type “pointer to type,” where
type is any type. The result of the indirection is of type type. If the
operand is of type “pointer to function,” the result is a function
designator; if the operand is a pointer to an object, the result is an
Ivalue designating that object. In the following situations, the result of
indirection is undefined:

1. The cast-expression is a null pointer.

2. The cast-expression is the address of an automatic variable and
execution of its block has terminated.
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Unary plus operator +

Unary minus operator -

Bitwise complement
operator ~

Logical negation
operator !

The sizeof
operator

How much space is set aside
for each type depends on
the machine.

In the expression
+ cast-expression

the cast-expression operand must be of arithmetic type. The result is
the value of the operand after any required integral promotions.

In the expression
— cast-expression

the cast-expression operand must be of arithmetic type. The result is
the negative of the value of the operand after any required integral
promotions.

In the expression
~ cast-expression

the cast-expression operand must be of integral type. The result is the
bitwise complement of the operand after any required integral
promotions. Each 0 bit in the operand is set to 1, and each 1 bit in the
operand is set to 0.

In the expression
! cast-expression

the cast-expression operand must be of scalar type. The result is of type
int and is the logical negation of the operand: 0 if the operand is non-
zero; 1 if the operand is zero. The expression /E is equivalent to

(0 == E).

There are two distinct uses of the sizeof operator:

sizeof unary-expression
sizeof (type-name)

The result in both cases is an integer constant that gives the size in
bytes of how much memory space is used by the operand (determined
by its type, with some exceptions). In the first use, the type of the op-
erand expression is determined without evaluating the expression
(and therefore without side effects). When the operand is of type char
(signed or unsigned), sizeof gives the result 1. When the operand is a
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Multiplicative
operators

Rounding is always toward
zero.

non-parameter of array type, the result is the total number of bytes in
the array (in other words, an array name is not converted to a pointer
type). The number of elements in an array equals sizeof array/sizeof
array[0].

If the operand is a parameter declared as array type or function type,
sizeof gives the size of the pointer. When applied to structures and
unions, sizeof gives the total number of bytes, including any padding.

sizeof cannot be used with expressions of function type, incomplete
types, parenthesized names of such types, or with an lvalue that
designates a bit field object.

The integer type of the result of sizeof is size_t, defined as unsigned
int in stddef.h.

You can use sizeof in preprocessor directives; this is specific to Turbo
C+.

In C++, sizeof(classtype), where classtype is derived from some base
class, returns the base class size.

There are three multiplicative operators: * / and %. The syntax is

multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression | cast-expression
multiplicative-expression % cast-expression

The operands for * (multiplication) and / (division) must be of
arithmetical type. The operands for % (modulus, or remainder) must
be of integral type. The usual arithmetic conversions are made on the
operands (see page 41).

The result of (op1 * op2) is the product of the two operands. The
results of (op1 / 0p2) and (op1 % op2) are the quotient and remainder,
respectively, when opl is divided by op2, provided that op2 is nonzero.
Use of / or % with a zero second operand results in an error.

When op1 and op2 are integers and the quotient is not an integer, the
results are as follows:
1. If op1 and op2 have the same sign, opI / op2 is the largest integer
less than the true quotient, and opl % op2 has the sign of opI.

2. If op1 and op2 have opposite signs, op1 / op2 is the smallest integer
greater than the true quotient, and op1 % op2 has the sign of op1.
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Additive
operators

The addition
operator +

The subtraction
operator -

Bitwise shift
operators

There are two additive operators: + and —. The syntax is

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression — multiplicative-expression

The legal operand types for opl + op2 are

1. Both opI and op2 are of arithmetic type.
2. opl is of integral type, and op2 is of pointer to object type.
3. op2 is of integral type, and op1 is of pointer to object type.

In case 1, the operands are subjected to the standard arithmetical
conversions, and the result is the arithmetical sum of the operands. In
cases 2 and 3, the rules of pointer arithmetic apply. (Pointer arithmetic
is covered on page 57.)

The legal operand types for opl - op2 are

1. Both opl and op2 are of arithmetic type.

2. Both op1 and op2 are pointers to compatible object types. (Note:
The unqualified type typeis considered to be compatible with the
qualified types const type, volatile type, and const volatile type.)

3. opl is of pointer to object type, and op2 is integral type.

In case 1, the operands are subjected to the standard arithmetic
conversions, and the result is the arithmetic difference of the
operands. In cases 2 and 3, the rules of pointer arithmetic apply.

There are two bitwise shift operators: << and >>. The syntax is

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression
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Bitwise left-shift
operator <<

The constants UUONG_MAX
and UINT_MAX are defined in
limits.h.

Bitwise right-shift
operator >>

Relational
operators

84

In the expression E1 << E2, the operands EI and E2 must be of integral
type. The normal integral promotions are performed on E1 and E2,
and the type of the result is the type of the promoted EI. If E2 is
negative or is greater than or equal to the width in bits of E1, the
operation is undefined.

The result of E1 << E2 is the value of E1 left-shifted by E2 bit posi-
tions, zero-filled from the right if necessary. Left shifts of an unsigned
long E1 are equivalent to multiplying E1 by 252, reduced modulo
ULONG_MAX + 1; left shifts of unsigned ints are equivalent to
multiplying by 252 reduced modulo UINT_MAX + 1. If E1 is a signed
integer, the result must be interpreted with care, since the sign bit may
change.

In the expression E1 >> E2, the operands E1 and E2 must be of integral
type. The normal integral promotions are performed on E1 and E2,
and the type of the result is the type of the promoted E1.If E2 is
negative or is greater than or equal to the width in bits of EI, the
operation is undefined.

The result of E1 >> E2 is the value of E1 right-shifted by E2 bit posi-
tions. If E1 is of unsigned type, zero-fill occurs from the left if
necessary. If E1 is of signed type, the fill from the left uses the sign bit
(0 for positive, 1 for negative EI). This sign-bit extension ensures that
the sign of E1 >> E2 is the same as the sign of E1. Except for signed
types, the value of E1 >> E2 is the integral part of the quotient E1/2E2,

There are four relational operators: < > <= and >=. The syntax for
these operators is:

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression
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The less-than  In the expression E1 < E2, the operands must conform to one of the
operator < following sets of conditions:

1. Both E1 and E2 are of arithmetic type.

Quaiified names are defined 2. Both E1 and E2 are pointers to qualified or unqualified versions of
on page 108. compatible object types.

3. Both EI and E2 are pointers to qualified or unqualified versions of
compatible incomplete types.

In case 1, the usual arithmetic conversions are performed. The result
of E1 < E2 is of type int. If the value of E1 is less than the value of E2,
the result is 1 (true); otherwise, the result is zero (false).

In cases 2 and 3, where E1 and E2 are pointers to compatible types, the
result of EI < E2 depends on the relative locations (addresses) of the
two objects being pointed at. When comparing structure members
within the same structure, the “higher” pointer indicates a later
declaration. Within arrays, the “higher” pointer indicates a larger
subscript value. All pointers to members of the same union object
compare as equal.

Normally, the comparison of pointers to different structure, array, or
union objects, or the comparison of pointers outside the range of an
array object give undefined results; however, an exception is made for
the “pointer beyond the last element” situation as discussed under
“Pointer arithmetic” on page 57. If P points to an element of an array
object, and Q points to the last element, the expression P < Q + 11is
allowed, evaluating to 1 (true), even though Q + 1 does not point to an
element of the array object.

The greater-than  The expression E1 > E2 gives 1 (true) if the value of E1 is greater than
operator >  the value of E2; otherwise, the result is 0 (false), using the same inter-
pretations for arithmetic and pointer comparisons, as defined for the

less-than operator. The same operand rules and restrictions also

apply.

The less-than or equal-  Similarly, the expression E1 <= E2 gives 1 (true) if the value of E1 is
to operator <= less than or equal to the value of E2. Otherwise, the result is 0 (false),
using the same interpretations for arithmetic and pointer compari-
sons, as defined for the less-than operator. The same operand rules
and restrictions also apply.
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The greater-than or
equal-to operator >=

Equality operators

86

The equal-to
operator ==

Finally, the expression EI1 >= E2 gives 1 (true) if the value of E1 is
greater than or equal to the value of E2. Otherwise, the result is 0
(false), using the same interpretations for arithmetic and pointer
comparisons, as defined for the less-than operator. The same operand
rules and restrictions also apply.

There are two equality operators: == and !=. They test for equality and
inequality between arithmetic values or between pointer values,
following rules very similar to those for the relational operators. Note,
however, that == and != have a lower precedence than the relational
operators < >, <=,and >=. Also, == and != can compare certain
pointer types for equality and inequality where the relational opera-
tors would not be allowed.

The syntax is

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression 1= relational-expression

In the expression E1 == E2, the operands must conform to one of the
following sets of conditions:

1. Both E1 and E2 are of arithmetic type.

2. Both E1 and E2 are pointers to qualified or unqualified versions of
compatible types.

3. One of E1 and E2 is a pointer to an object or incomplete type, and
the other is a pointer to a qualified or unqualified version of void.

4. One of EI or E2 is a pointer and the other is a null pointer
constant.

If E1 and E2 have types that are valid operand types for a relational
operator, the same comparison rules just detailed for EI < E2, EI <=
E2, and so on, apply.

In case 1, for example, the usual arithmetic conversions are per-
formed, and the result of E1 == E2 is of type int. If the value of E1 is
equal to the value of E2, the result is 1 (true); otherwise, the result is
zero (false).
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In case 2, E1 == E2 gives 1 (true) if E1 and E2 point to the same object,
or both point “one past the last element” of the same array object, or
both are null pointers.

If E1 and E2 are pointers to function types, E1 == E2 gives 1 (true) if
they are both null or if they both point to the same function.
Conversely, if E1 == E2 gives 1 (true), then either E1 and E2 point to
the same function, or they are both null.

In case 4, the pointer to an object or incomplete type is converted to
the type of the other operand (pointer to a qualified or unqualified
version of void).

The inequality operator  The expression E1 != E2 follows the same rules as those for E1 == E2,
= except that the result is 1 (true) if the operands are unequal, and 0
(false) if the operands are equal.

Bitwise AND
operafor & The syntax is
AND-expression:
equality-expression
AND-expression & equality-expression
In the expression E1 & E2, both operands must be of integral type. The
usual arithmetical conversions are performed on E1 and E2, and the

result is the bitwise AND of E1 and E2. Each bit in the result is
determined as shown in Table 1.21.

Table 121 Bit value Bit value
Bitwi fors truth tabl
fwise operatorstuin fale BtV in E2 E1&E2 E14E2 E1| E2
0 0 0 2 )
1 0 0 1 1
0 I 9 0 I
1 1 ! ° :

Bitwise exclusive
OR operator A The syntax is

exclusive-OR-expression:
AND-expression
exclusive-OR-expression » AND-expression
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Bitwise inclusive
OR operator |

Logical AND
operator &&

Logical OR
operator | |

In the expression E1 » E2, both operands must be of integral type. The
usual arithmetic conversions are performed on EI1 and E2, and the
result is the bitwise exclusive OR of EI and E2. Each bit in the result is
determined as shown in Table 1.21.

The syntax is

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

In the expression E1 | E2, both operands must be of integral type. The
usual arithmetic conversions are performed on EI and E2, and the
result is the bitwise inclusive OR of E1 and E2. Each bit in the result is
determined as shown in Table 1.21.

The syntax is

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

In the expression E1 && E2, both operands must be of scalar type. The

result is of type int, the result is 1 (true) if the values of EI and E2 are
both nonzero; otherwise, the result is 0 (false).

Unlike the bitwise & operator, && guarantees left-to-right evaluation.
E1is evaluated first; if E1 is zero, E1 && E2 gives 0 (false), and E2 is
not evaluated.

The syntax is

logical-OR-expression:
logical-AND-expression
logical-OR-expression || logical-AND-expression

In the expression E1 || E2, both operands must be of scalar type. The
result is of type int, and the result is 1 (true) if either of the values of
E1 and E2 are nonzero. Otherwise, the result is 0 (false).
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Unlike the bitwise | operator, || guarantees left-to-right evaluation. E1
is evaluated first; if E1 is nonzero, E1 || E2 gives 1 (true), and E2 is not
evaluated.

Condifional
operator ? ;.  Thesyntaxis
conditional-expression
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

In the expression E1 ? E2 : E3, the operand EI must be of scalar type.
The operands E2 and E3 must obey one of the following sets of rules:

. Both of arithmetic type
. Both of compatible structure or union types
. Both of void type

. Both of type pointer to qualified or unqualified versions of
compatible types

. One operand of pointer type, the other a null pointer constant

. One operand of type pointer to an object or incomplete type, the
other of type pointer to a qualified or unqualified version of void

=W N =

N U

First, E1 is evaluated; if its value is nonzero (true), then E2 is evalua-
ted and E3 is ignored. If E1 evaluates to zero (false), then E3 is
evaluated and E2 is ignored. The result of E1 ? E2 : E3 will be the
value of whichever of E2 and E3 is evaluated.

In case 1, both E2 and E3 are subject to the usual arithmetic conver-
sions, and the type of the result is the common type resulting from
these conversions.

In case 2, the type of the result is the structure or union type of E2 and
E3.

In case 3, the result is of type void.

In cases 4 and 5, the type of the result is pointer to a type qualified
with all the type qualifiers of the types pointed to by both operands.

In case 6, the type of the result is that of the nonpointer-to-void
operand.
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Assignment
operators

The simple assignment
operator =

The compound
assignment operators

90

There are eleven assignment operators. The = operator is the simple
assignment operator; the other ten are known as compound
assignment operators.

The syntax is

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of

= *= /: %= += -

In the expression E1 = E2, E1 must be a modifiable lvalue. The value
of E2, after conversion to the type of E1, is stored in the object
designated by E1 (replacing E1’s previous value). The value of the
assignment expression is the value of E1 after the assignment. The
assignment expression is not itself an lvalue.

The operands E1 and E2 must obey one of the following sets of rules:

1. E1is of qualified or unqualified arithmetic type and E2 is of
arithmetic type.

2. ET has a qualified or unqualified version of a structure or union
type compatible with the type of E2.

3. E1 and E2 are pointers to qualified or unqualified versions of com-
patible types, and the type pointed to by the left has all the
qualifiers of the type pointed to by the right.

4. One of E1 or E2 is a pointer to an object or incomplete type and the
other is a pointer to a qualified or unqualified version of void. The
type pointed to by the left has all the qualifiers of the type pointed
to by the right.

5. E1is a pointer and E2 is a null pointer constant.

The compound assignments op=, where op can be any one of the ten
operator symbols * / % + — << >> & A |, are interpreted as follows:

E1 op= E2

has the same effect as
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Comma
operator

Statements

El=ElopE2

except that the lvalue E1 is evaluated only once. For example, E1 +=
E2 is the same as E1 = E1 + E2.

The rules for compound assignment are therefore covered in the
previous section (on the simple assignment operator =).

The syntax is

expression:
assignment-expression
expression , assignment-expression
In the comma expression
E1,E2

the left operand E1 is evaluated as a void expression, then E2 is
evaluated to give the result and type of the comma expression. By
recursion, the expression

E1,E2,...,En

results in the left-to-right evaluation of each Ei, with the value and
type of En giving the result of the whole expression. To avoid
ambiguity with the commas used in function argument and initializer
lists, parentheses must be used. For example,

func(i, (3=1, J+4), k;

calls func with three arguments, not four. The arguments are i, 5, and
k.

Statements specify the flow of control as a program executes. In the
absence of specific jump and selection statements, statements are
executed sequentially in the order of appearance in the source code.
The following table lays out the syntax for statements:
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Table 1.22: Turbo C++ statements

statement:

labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement
asm-statement

declaration (C++ specific)

asm-statement:
asm tokens newline
asm tokens;
asm { tokens; <tokens;>=
<tokens;>

}

labeled-statement:
identifier : statement

declaration-list declaration

statement-list:
statement
statement-list statement

expression-statement:
<expression> ;

selection-statement:
if (expression ) statement
if (expression ) statement else statement
switch ( expression ) statement

iteration-statement:
while ( expression ) statement
do statement while ( expression ) ;
for (for-init-statement <expression> ; <expression>) statement

for-init-statement
expression-statement

case constant-expression : statement : o
default ; statement declaration (C++ specific)
jump-statement:
compound-statement: ] 7 goto identifier ;
{ <declaration-list> <statement-list> } continue -
’

declaration-list:
declaration

break ;
return <expression> ;

92

Blocks

Labeled
statements

A compound statement, or block, is a list (possibly empty) of state-
ments enclosed in matching braces ({ }). Syntactically, a block can be
considered to be a single statement, but it also plays a role in the
scoping of identifiers. An identifier declared within a block has a
scope starting at the point of declaration and ending at the closing
brace. Blocks can be nested to any depth.

A statement can be labeled in the following ways:

1. label-identifier : statement

The label identifier serves as a target for the unconditional goto
statement. Label identifiers have their own name space and enjoy
function scope. Note that in C++ you can label both declaration
and non-declaration statements.

2. case constant-expression : statement
default : statement
Case and default labeled statements are used only in conjunction
with switch statements.
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Expression
statements  Any expression followed by a semicolon forms an expression statement:

<expression>;

Turbo C++ executes an expression statement by evaluating the ex-
pression. All side effects from this evaluation are completed before the
next statement is executed. Most expression statements are
assignment statements or function calls.

A special case is the null statement, consisting of a single semicolon (;).
The null statement does nothing. It is nevertheless useful in situations
where the Turbo C++ syntax expects a statement but your program
does not need one.

Selection

statements Selection or flow-control statements select from alternative courses of
action by testing certain values. There are two types of selection
statements: the if...else and the switch.

if statements  The basic if statement has the following pattern:

The parentheses around if (cond-expression) t-st <else f-st>
cond-expression are . .
essenfial.  The cond-expression must be of scalar type. The expression is evalua-

ted. If the value is zero (or null for pointer types), we say that the
cond-expression is false; otherwise, it is true.

If there is no else clause and cond-expression is true, t-st is executed;
otherwise, ¢-st is ignored.

If the optional else f-st is present and cond-expression is true, t-st is
executed; otherwise, t-st is ignored and f-st is executed.

Note  Unlike, say, Pascal, Turbo C++ does not have a specific Boolean data
type. Any expression of integer or pointer type can serve a Boolean
role in conditional tests. The relational expression (a > b) (if legal)
evaluates to int 1 (true) if (2 > b), and to int O (false) if (a <= b). Pointer
conversions are such that a pointer can always be correctly compared
to a constant expression evaluating to 0. That is, the test for null
pointers can be written if (!ptr)...orif (ptr == 0)....

The f-st and f-st statements can themselves be if statements, allowing
for a series of conditional tests nested to any depth. Care is needed
with nested if...else constructs to ensure that the correct statements
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It is illegal to have duplicate
case constants in the same
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switch statements

switch statement.

are selected. There is no endif statement: Any “else” ambiguity is
resolved by matching an else with the last encountered if-without-
an-else at the same block level. For example,

if (x == 1)
if (y == 1) puts("x=1 and y=1");
else puts("x != 1");

draws the wrong conclusion! The else matches with the second if, de-
spite the indentation. The correct conclusion is that x=1and y != 1.
Note the effect of braces:

if (x == 1)
{

if (y == 1) puts("'x =1 and y = 1%);
}

else puts("x != 1"); // correct conclusion

The switch statement uses the following basic format:
switch (sw-expression) case-st

A switch statement lets you transfer control to one of several case-
labeled statements, depending on the value of sw-expression. The latter
must be of integral type (in C++, it can be of class type, provided that
there is an unambiguous conversion to integral type available). Any
statement in case-st (including empty statements) can be labeled with
one or more case labels:

case const-exp-i : case-st-i

where each case constant, const-exp-i, is a constant expression with a
unique integer value (converted to the type of the controlling expres-
sion) within its enclosing switch statement.

There can also be at most one default label:
default : default-st

After evaluating sw-expression, a match is sought with one of the
const-exp-i. If a match is found, control passes to the statement case-st-i
with the matching case label.

If no match is found and there is a default label, control passes to
default-st. If no match is found and there is no default label, none of
the statements in case-st is executed. Program execution is not affected
when case and default labels are encountered. Control simply passes
through the labels to the following statement or switch. To stop
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execution at the end of a group of statements for a particular case, use
break.

[teration

statements Iteration statements let you loop a set of statements. There are
three forms of iteration in Turbo C++: while, do, and for loops.

while statements  The general format for this statement is

The parentheses are while (cond-exp) t-st
essential.

The loop statement, ¢-st, will be executed repeatedly until the
conditional expression, cond-exp, compares equal to zero (false).

The cond-exp is evaluated and tested first (as described on page 93). If
this value is nonzero (true), t-st is executed; if no jump statements that
exit from the loop are encountered, cond-exp is evaluated again. This
cycle repeats until cond-exp is zero.

As with if statements, pointer type expressions can be compared with
the null pointer, so that while (ptr)... is equivalent to

while (ptr != NULL)...

The while loop offers a concise method for scanning strings and other
null-terminated data structures:

char str[10]="Borland";

char *ptr=gstr(0];

int count=0;

/...

while (*ptr++) // loop until end of string
count++;

In the absence of jump statements, #-st must affect the value of cond-
exp in some way, or cond-exp itself must change during evaluation in
order to prevent unwanted endless loops.

do while statements The general format is
do do-st while (cond-exp);

The do-st statement is executed repeatedly until cond-exp compares
equal to zero (false). The key difference from the while statement is
that cond-exp is tested after, rather than before, each execution of the
loop statement. At least one execution of do-st is assured. The same
restrictions apply to the type of cond-exp (scalar).
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for statements The for statement format in C is

For C++, <init-exp> can be for (<init-exp>; <test-exp>; <increment-exp>) statement
an expression or a
declarafion.  The sequence of events is as follows:

1. The initializing expression init-exp, if any, is executed. As the name
implies, this usually initializes one or more loop counters, but the
syntax allows an expression of any degree of complexity (in-
cluding declarations in C++). Hence the claim that any C program
can be written as a single for loop. (But don’t try this at home.
Such stunts are performed by trained professionals.)

2. The expression test-exp is evaluated following the rules of the while
loop. If test-exp is nonzero (true), the loop statement is executed.
An empty expression here is taken as while (1), that is, always true.
If the value of test-exp is zero (false), the for loop terminates.

3. increment-exp advances one or more counters.

4. The expression statement (possibly empty) is evaluated and control
returns to step 2.

If any of the optional elements are empty, appropriate semicolons are
required:
for (;;) | // same as for (; 1;)

// loop forever

}

@} The C rules for for statements apply in C++. However, the init-exp in
C++ can also be a declaration. The scope of a declared identifier ex-
tends to the end of the controlled statement, not beyond. For example,

for (int 1 = 1; 1 < j; ++1)
{
if (1 ... ... // ok to refer to i here

}
if (i...) // illegal; i is now out of scope

Jump statements

A jump statement, when executed, transfers control unconditionally.
There are four such statements: break, continue, goto, and return.
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break statements  The syntax is
break;

A break statement can be used only inside an iteration (while, do, and
for loops) or a switch statement. It terminates the iteration or switch
statement. Since iteration and switch statements can be intermixed
and nested to any depth, take care to ensure that your break exits
from the correct loop or switch. The rule is that a break terminates the
nearest enclosing iteration or switch statement.

continue statements  The syntax is
continue;

A continue statement can be used only inside an iteration statement; it
transfers control to the test condition for while and do loops, and to
the increment expression in a for loop.

With nested iteration loops, a continue statement is taken as
belonging to the nearest enclosing iteration.

goto statements  The syntax is
goto label;

The goto statement transfers control to the statement labeled label (see
“Labeled statements,”page 92), which must be in the same function.

w In C++, it is illegal to bypass a declaration having an explicit or impli-
cit initializer unless that declaration is within an inner block that is
also bypassed.

return statements  Unless the function return type is void, a function body must contain
at least one return statement with the following format:

return return-expression;

where return-expression must be of type type or of a type that is
convertible to type by assignment. The value of the return-expression is
the value returned by the function. An expression that calls the
function, such as func (actual-arg-list), is an rvalue of type type, not

an lvalue:
t = func(arq); // OK
func(arg) = t; /* illegal in C; legal in C++ if return type of

func is a reference */
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C++

(func(arg)) ++; /* 1llegal in C; legal in C++ if return type of
func is a reference */

The execution of a function call terminates if a return statement is
encountered; if no return is met, execution “falls through,” ending at
the final closing brace of the function body.

If the return type is void, the return statement can be written as
{
; e'aéur n;
}

with no return expression; alternatively, the return statement can be
omitted.

Referencing

Pointer referencing and

dereferencing is discussed on
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page 80.

C++ is basically a superset of C. This means that, generally speaking,
you can compile C programs under C++, but you can’t compile a C++
program under C if the program uses any constructs peculiar to C++.
Some situations need special care. The same function func declared
twice in C with different argument types will invoke a duplicated
name error. Under C++, however, func will be interpreted as an
overloaded function—whether this is legal or not will depend on
other circumstances. For a general discussion of programming in C++,
see Chapter 5, “A C++ primer,” in Getting Started. Chapter 6, “Hands-
on C++,” also in Getting Started, gives you a quick feeling for how C++
constructs work.

Although C++ introduces new keywords and operators to handle
classes, some of the capabilities of C++ have applications outside of
any class context. We first review these aspects of C++ that can be
used independently of classes, then get into the specifics of classes
and class mechanisms.

C++ reference types are closely related to pointer types. C++ reference
types create aliases for objects and let you pass arguments to functions
by reference. Traditional C passes arguments only by value. In C++
you can pass arguments by value or by reference.
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Simple references The reference declarator can be used to declare references outside

functions:
int 1 =0;
int &ir = i; // ir is an alias for i
ir = 2; // same effect as 1 =2

This creates the lvalue ir as an alias for i, provided that the initializer
is the same type as the reference. Any operations on ir have precisely
the same effect as operations on i. For example, ir = 2 assigns 2 to i,
and &ir returns the address of i.

Reference arguments The reference declarator can also be used to declare reference type
parameters within a function:

void funcl (int 1);

void func2 (int &ir); // ir is type “reference to int"
int sum=3;

funcl (sum) ; // sum passed by value

func2 (sum) ; // sum passed by reference

The sum argument passed by reference can be changed directly by
func2. func1, on the other hand, gets a copy of the sum argument
(passed by value), so sum itself cannot be altered by func1.

When an actual argument x is passed by value, the matching formal
argument in the function receives a copy of x. Any changes to this
copy within the function body are not reflected in the value of x itself.
Of course, the function can return a value that could be used later to
change x, but the function cannot directly alter a parameter passed by
value.

The traditional C method for changing x uses the actual argument &x,
the address of x, rather than x itself. Although &x is passed by value,
the function can access x through the copy of &x it receives. Even if
the function does not need to change x, it is still useful (though subject
to possibly dangerous side effects) to pass &x, especially if x is a large
data structure. Passing x directly by value involves the wasteful
copying of the data structure.

Compare the three implementations of the function treble:

Implementation 1 int treble 1{n)
( _

return 3*n;

}
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Implementation 2

Implementation 3

Scope access
operator

int x, 1 = 4;

X = treble 1(i); // x now =12, i =4
void treble 2(int* np)
{
*np = (*np) *3;
}
treble 2(int &i); // i now = 12

void treble 3(int& n)
{

// n is a reference type

n = 3*n;
}

treble 3(i); /] 1 now = 36

The formal argument declaration typeé& t (or equivalently, type &t)
establishes ¢ as type “reference to type.” So, when treble_3 is called
with the real argument i, 7 is used to initialize the formal reference
argument n. n therefore acts as an alias for i, so that n = 3*nalso
assigns 3 * i to i.

If the initializer is a constant or an object of a different type than the
reference type, Turbo C++ creates a temporary object for which the
reference acts as an alias:

int& ir = 6; /* temporary int object created, aliased by ir, gets value

6 */
float f£;
inte ir2 = f; /* creates temporary int object aliased by ir2; f converted
before assignment */
ir2 = 2.0 // ir2 now = 2, but f is unchanged

The automatic creation of temporary objects permits the conversion of
reference types when formal and actual arguments have different (but
assignment-compatible) types. When passing by value, of course,
there are fewer conversion problems, since the copy of the actual
argument can be physically changed before assignment to the formal
argument.

The scope access (or resolution) operator :: (two semicolons) lets you
access a global (or file duration) name even if it is hidden by a local
redeclaration of that name (see page 29):
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This code also works if the int i; // qlobal i
“global” 1is a file-level static.

void func(void);

{

int i=0; // local i hides global 1
i=3; // this 1 is the local i
il =4 // this 1 is the global i
printf ("%d“,1i); // prints out 3

}

The :: operator has other uses with class types, as discussed through-
out this chapter.

The new and

delete operators The new and delete operators offer dynamic storage allocation and
deallocation, similar but superior to the standard library functions in
the malloc and free families (see the Library Reference).

A simplified syntax is

pointer-to-name = neW name <name-initializer>;
delete pointer-to-name;

name can be of any type except “function returning...” (however,
pointers to functions are allowed).

new tries to create an object of type name by allocating (if possible)
sizeof(name) bytes in free store (also called the heap). The storage
duration of the new object is from the point of creation until the
operator delete kills it by deallocating its memory, or until the end of
the program.

If successful, new returns a pointer to the new object. A null pointer
indicates a failure (such as insufficient or fragmented heap memory).
As with malloc, you need to test for null before trying to access the
new object. However, unlike malloc, new calculates the size of name
without the need for an explicit sizeof operator. Further, the pointer
returned is of the correct type, “pointer to name,” without the need for
explicit casting.

hew, being a keyword, name *nameptr; // name is any non-function type
doesn’t need a protfotype.

if (! (nameptr = new name)) {
errmsg ("Insufficient memory for name");
exit (1);

}

// use *nameptr to initialize new name object
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The operator new with

arrays

The ::operator new

Initializers with the new
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operator

Classes

delete nameptr; // destroy name and deallocate sizeof({name) bytes

If name is an array, the pointer returned by new points to the first
element of the array. When creating multidimensional arrays with
new, all array sizes must be supplied:

mat_ptr = new int[3][10][12]; // OK
mat_ptr = new int[3](][12]; // illegal
mat_ptr = new int[][10]([12]; // illegal

When used with non-class objects, new works by calling a standard
library routine, the global ::operator new. With class objects of type
name, a specific operator called name::operator new can be defined.
new applied to class name objects invokes the appropriate
name::operator new if present; otherwise, the standard ::operator new
is used.

The optional initializer is another advantage new has over malloc
(although calloc does clear its allocations to zero). In the absence of
explicit initializers, the object created by new contains unpredictable
data (garbage). The objects allocated by new, other than arrays, can be
initialized with a suitable expression between parentheses:

int_ptr = new int(3);

Arrays of classes with constructors are initialized with the default
constructor (see page 115). The user-defined new operator with
customized initialization plays a key role in C++ constructors for
class-type objects.

C++ classes offer extensions to the predefined type system. Each class
type represents a unique set of objects and the operations (methods)
and conversions available to create, manipulate, and destroy such
objects. Derived classes can be declared that inherit the members of
one or more base (or parent) classes.

In C++, structures and unions are considered as classes with certain
access defaults.

A simplified, “first-look” syntax for class declarations is
class-key class-name <: base-list> { <member-list> }

class-key is one of class, struct, or union.
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The optional base-list lists the base class or classes from which the class
class-name will derive (or inherit) objects and methods. If any base
classes are specified, the class class-name is called a derived class (see
page 110, “Base and derived class access”). The base-list has default
and optional overriding access specifiers that can modify the access
rights of the derived class to members of the base classes (see page
108, “Member access control”).

The optional member-list declares the class members (data and
functions) of class-name with default and optional overriding access
specifiers that may affect which functions can access which members.

Class names  class-name is any identifier unique within its scope. With structures,
classes, and unions, class-name can be omitted (see “Untagged struc-
tures and typedefs,” page 65.)

Class types The declaration creates a unique type, class type class-name. This lets
you declare further class objects (or instances) of this type, and objects
derived from this type (such as pointers to, references to, arrays of
class-name, and so on):

class X { ... };
X X, &xr, *xptr, xarray[l10];
/* four objects: type X, reference to X, pointer to X and array of X*/

struct Y { ... };

Yy, &yr, *yptr, yarray[10];

// C would have

// struct Yy, &yr, *yptr, yarray[10];

union 2 { ... };

% z, &zr, *zptr, zarray[10];

// C would have

// union 2 z, &zr, *zptr, zarray[10];

Note the difference between C and C++ structure and union declara-
tions: The keywords struct and union are essential in C, but in C++
they are needed only when the class names, Y and Z, are hidden (see
the following section).

Class name scope The scope of a class name is local, with some tricks peculiar to classes.
Class name scope starts at the point of declaration and ends with the
enclosing block. A class name hides any class, object, enumerator, or
function with the same name in the enclosing scope. If a class name is
declared in a scope containing the declaration of an object, function,
or enumerator of the same name, the class can only be referred to
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Class objects

Class member list

using the elaborated type specifier. This means that the class key, class,
struct, or union must be used with the class name. For example,

struct S { ... };
int S(struct S *Sptr);

void func(void)
{
S t; // ILLEGAL declaration: no class key
// and function § in scope
struct S s; // OK: elaborated with class key
S(&s); // OK: this is a function call
}

C++ also allows an incomplete class declaration:

class X; // no members, yet!
struct Y;
union Z;

Incomplete declarations permit certain references to the class names
X, Y, or Z (usually references to pointers to class objects) before the
classes have been fully defined (see “Structure member declarations,”
page 65). Of course, you must make a complete class declaration with
members before you can declare and use class objects.

Class objects can be assigned (unless copying has been restricted),
passed as arguments to functions, returned by functions (with some
exceptions), and so on. Other operations on class objects and members
can be user-defined in many ways, including member and friend
functions, and the redefinition of standard functions and operators
when used with objects of a certain class. Redefined functions and
operators are said to be overloaded. Operators and functions that are
restricted to objects of a certain class (or related group of classes) are
called member functions for that class. C++ offers a mechanism
whereby the same function or operator name can be called to perform
different tasks, depending on the type or number of arguments or
operands.

The optional member-list is a sequence of data declarations (of any
type, including enumerations, bit fields and other classes) and
function declarations and definitions, all with optional storage class
specifiers and access modifiers. The objects thus defined are called
class members. The storage class specifiers auto, extern, and register
are not allowed. Members can be declared with the static storage class
specifiers.
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Member functions A function declared without the friend specifier is known as a member
function of the class. Functions declared with the friend modifier are
called friend functions.

The same name can be used to denote more than one function,
provided that they differ in argument type or number of arguments.

The keyword this Nonstatic member functions operate on the class type object with
which they are called. For example, if x is an object of class X and fis a
member function of X, the function call x.f () operates on x. Similarly,
if xptr is a pointer to an X object, the function call xptr->f () operates
on *xptr. But how does f know which x it is operating on? C++
provides f with a pointer to x called this. this is passed as a hidden
argument in all calls to non-static member functions.

The keyword this is a local variable available in the body of any
nonstatic member function. this does not need to be declared and is
rarely referred to explicitly in a function definition. However, it is
used implicitly within the function for member references. If x.f(y) is
called, for example, where y is a member of X, this is set to &x and y is
set to this->y, which is equivalent to x.y.

Inline functions You can declare a member function within its class and define it else-
where. Alternatively, you can both declare and define a member
function within its class, in which case it is called an inline function.
(Chapter 5, “A C++ primer,” in Getting Started gives some examples of
inline functions.)

Turbo C++ can sometimes reduce the normal function call overhead
by substituting the function call directly with the compiled code of the
function body. This process, called an inline expansion of the function
body, does not affect the scope of the function name or its arguments.
Inline expansion is not always possible or feasible. The inline specifier
is a request (or hint) to the compiler that you would welcome an in-
line expansion. As with the register storage class specifier, the com-
piler may or may not take the hint!

Explicit and implicit inline requests are best reserved for small, fre-
quently used functions, such as the operator functions that implement
overloaded operators. For example, the following class declaration:

int i; // global int

class X {
public:
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Static members

char* func(void) { return i; } // inline by default
char* i;

b
is equivalent to:
inline char* X::func(void) { return i; }

func is defined “outside” the class with an explicit inline specifier. The
i returned by func is the char* i of class X—see the section on member
scope starting on page 107.

The storage class specifier static can be used in class declarations of
data and function members. Such members are called static members
and have distinct properties from nonstatic members. With nonstatic
members, a distinct copy “exists” for each object in its class; with
static members, only one copy exists, and it can be accessed without
reference to any particular object in its class. If x is a static member of
class X, it can be referenced as X::x (even if objects of class X haven’t
been created yet). It is still possible to access x using the normal
member access operators. For example, y.x and yptr->x, where y is an
object of class X and yptr is a pointer to an object of class X, although
the expressions y and yptr are not evaluated. In particular, a static
member function can be called with or without the special member
function syntax:

class X {
int member int;
public:
static void func({int i, X* ptr);
}i
void g(void);
{
X obj;
func(l, &obj); // error unless there is a global func()
// defined elsewhere

Xs:func(l, &obj); // calls the static func() in X
// OK for static functions only
obj.func(l, &obj); // so does this (OK for static and
// nonstatic functions)

}

Since a static member function can be called with no particular object
in mind, it has no this pointer. A consequence of this is that a static
member function cannot access nonstatic members without explicitly
specifying an object with . or —>. For example, with the declarations of
the previous example, func might be defined as follows:
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void X::func(int i, X* ptr)
{

member int = i; // which object does member int
// refer to? Error
ptr->member int = i; // OK: now we know!

}

Apart from inline functions, static member functions of global classes
have external linkage. Static member functions cannot be virtual func-
tions. It is illegal to have a static and nonstatic member function with
the same name and argument types.

The declaration of a static data member in its class declaration is not a
definition, so a definition must be provided elsewhere to allocate stor-
age and provide initialization. The definition of a static data member
can be omitted if “default initialization to all zeros” is in operation.

Static members of a class declared local to some function have no link-
age and cannot be initialized. Static members of a global class can be
initialized like ordinary global objects, but only in file scope. Static
members obey the usual class member access rules, except they can be
initialized.

class X {

static int x;

Vi

int Xi:x = 1
The main use for static members is to keep track of data common to
all objects of a class, such as the number of objects created, or the last-

used resource from a pool shared by all such objects. Static members
are also used to

m reduce the number of visible global names
m make obvious which static objects logically belong to which class
m permit access control to their names

Member scope The expression X::func() in the example on page 106 uses the class
name X with the scope access modifier to signify that func, although
defined “outside” the class, is indeed a member function of X, and it
exists within the scope of X. The influence of X:: extends into the body
of the definition. This explains why the i returned by func refers to
X::i, the char* i of X, rather than the global int i. Without the X:: modi-
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fier, the function func would represent an ordinary non-class function,
returning the global int i.

All member functions, then, are in the scope of their class, even if
defined outside the class.

Data members of class X can be referenced using the selection opera-
tors . and —> (as with C structures). Member functions can also be
called using the selection operators (see also “The keyword this,”
page 105). For example,

class X {

public:
int i;
char name[20];
X *ptrl;
X *ptr2;
void Xfunc(char*data, X* left, X* right); // define elsewhere
}i
void f(void);
{
X x1, x2, *xptr=¢xl;

x1.1 = 0;
x2.1 = x1.1;
xptr->i = 1;

x1.Xfunc("stan", &x2, xptr);

}

If m is a member or base member of class X, the expression X: :mis
called a qualified name; it has the same type as m, and it is an lvalue
only if m is an lvalue. A key point is that even if the class name X is
hidden by a non-type name, the qualified name X::m will access the
correct class member, m.

Class members cannot be added to a class by another section of your
program. The class X cannot contain objects of class X, but can contain
pointers or references to objects of class X (note the similarity with C’s
structure and union types).

Member access control

Members of a class acquire access attributes either by default (depend-
ing on class key and declaration placement) or by the use of one of the
three access specifiers: public, private, and protected. The significance
of these attributes is as follows:

public The member can be used by any function.
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Friend function declarations  private The member can be used only by member functions and
are not affected by access friends of the class in which it is declared.

specifiers (see “Friends of

classes,”page 112).  protected Same as for private, but additionally, the member can be
used by member functions and friends of classes derived
from the declared class, but only in objects of the derived
type. (Derived classes are explained in the next section.)

Members of a class are private by default, so you need explicit public
or protected access specifiers to override the default.

Members of a struct are public by default, but you can override this
with the private or protected access specifier.

Members of a union are public by default; this cannot be changed. All
three access specifiers are illegal with union members.

A default or overriding access modifier remains effective for all subse-
quent member declarations until a different access modifier is en-
countered. For example,

class X |{
int 1i;
char ch;
public:
int j;
int k;
protected:
int 1;
}i

struct Y {
int i;
private:
int j;
public:
int k;
Vi

union Z {
int i;
double d;
}i

// X::1 is private by default
// so is X::ch

// next two are public

// X::1 is protected

// Y::1 is public by default
// Y::} is private

// Y::k is public

// public by default; no other choice

The access specifiers can be listed and grouped in any convenient
sequence. You can save a little typing effort by declaring all the
private members together, and so on.
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Base and derived class  When you declare a derived class D, you list the base classes B1, B2,
access ... in a comma-delimited base-list:

class-key D : base-list { <member-list> }

Since a base class can ifself D inherits all the members of these base classes. (Redefined base class
be a derived class, the - mempers are inherited and can be accessed using scope overrides, if
access dttribute question is : X
recursive: You backirack unti needed.) D can use qnly the public and protected mgmbelrs of its base
you reach the basest of the - classes. But, what will be the access attributes of the inherited mem-
base classes, those that do  bers as viewed by D? D may want to use a public member from a base
notinhertt.  .1ass, but make it private as far as outside functions are concerned.

The solution is to use access specifiers in the base-list.

When declaring D, you can use the access specifier public or private in
front of the classes in the base-list:

protected cannot be used in class D : public Bl, private B2, ... {
a base list. Unions cannot .
have base classes., and }
unions cannot be used as

base classes.  These modifiers do not alter the access attributes of base members as
viewed by the base class, though they can alter the access attributes of
base members as viewed by the derived class.

The default is private if D is a class declaration, and publicif Dis a
struct declaration.

The derived class inherits access attributes from a base class as
follows:

public base class: public members of the base class are public
members of the derived class. Protected mem-
bers of the base class are protected members of
the derived class. Private members of the base
class remain private to the base class.

private base class:  Both public and protected members of the base
class are private members of the derived class.
Private members of the base class remain private
to the base class.

In both cases, note carefully that private members of a base class are,
and remain, inaccessible to member functions of the derived class
unless friend declarations are explicitly declared in the base class
granting access. For example,

class X : A { // default for class is private A
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}

/* class X is derived from class A */

class Y : B, public C { // override default for C

}

/* class Y is derived (multiple inheritance) from B and C
B defaults to private B */

struct S : D { // default for struct is public D
cee /* struct S is derived from D */
}
struct T : private D, E { // override default for D

// E is public by default

}
/* struct T is derived (multiple inheritance) from D and E
E defaults to public E */

The effect of access specifiers in the base list can be adjusted by using
a gualified-name in the public or protected declarations in the derived
class. For example,

class B {

int a; // private by default
public:

int b, c;

int Bfunc(void);
Vi

class X : private B { // a, b, c, Bfunc are now private in X
int d; // private by default, NOTE: a is not
// accessible in X
public:
B::c; // ¢ was private, now is public
int e;

int Xfunc(void);

bi
int Efunc(X& x); // external to B and X
The function Efunc can use only the public names ¢, e, and Xfunc.

The function Xfunc is in X, which is derived from private B, so it has
access to

m The “adjusted-to-public” c
m The “private-to-X” members from B: b and Bfunc
m X’s own private and public members: 4, ¢, and Xfunc

However, Xfunc cannot access the “private-to-B” member, a.
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Virtual base

classes with multiple inheritance, a base class can’t be specified more than
once in a derived class:

class B { ...};
class D : B, B { ... }; // Illeqgal

However, a base class can be indirectly passed to the derived class
more than once:

class X : public B { ... }
class Y : public B { ... }

class 7 : public X, public Y { ... } // OK

In this case, each object of class Z will have two sub-objects of class B.
If this causes problems, the keyword virtual can be added to a base
class specifier. For example,

class X : virtual public B { ... }
class Y : virtual public B { ... }
class Z : public X, public Y { ... }

B is now a virtual base class, and class Z has only one sub-object of
class B.

Friends of classes

A friend F of a class X is a function or class that, although not a mem-
ber function of X, has full access rights to the private and protected
members of X. In all other respects, F is a normal function with respect
to scope, declarations, and definitions.

Since F is not a member of X, it is not in the scope of X and it cannot be
called with the x.F and xptr->F selector operators (where x is an X
object, and xptr is a pointer to an X object).

If the specifier friend is used with a function declaration or definition
within the class X, it becomes a friend of X.

Friend functions defined within a class obey the same inline rules as
member functions (see “Inline functions,” page 105). Friend functions
are not affected by their position within the class or by any access
specifiers. For example,

class X {
int i; // private to X
friend void friend func(X*, int);
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/* friend func is not private, even though it’s declared in the private
section */
public:
void member func(int);
}i
/* definitions; note both functions access private int i */
void friend func(X* xptr, int a) { xptr->i = a; }
void X::member func(int a) { i = a; }

X xobj;
/* note difference in function calls */

friend func(s&xobj, 6);
xobj.member func(6);

You can make all the functions of class Y into friends of class X with a
single declaration:

class ¥; // incomplete declaration
class X {

friend Y;

int i;

void member funcX();
bi

class Y; | // complete the declaration
vold friend X1(Xs);
void friend X2 (X*);

}i

The functions declared in Y are friends of X, although they have no
friend specifiers. They can access the private members of X, such as i
and member_funcX.

It is also possible for an individual member function of class X to be a
friend of class Y:

class X {

vold member funcX();

}

class Y {
int i;
friend void X::member funcX();

Vi

Class friendship is not transitive: X friend of Y and Y friend of Z does
not imply X friend of Z. However, friendship is inherited.
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Constructors and
destructors

114

There are several special member functions that determine how the
objects of a class are created, initialized, copied, and destroyed. Con-
structors and destructors are the most important of these. They have
many of the characteristics of normal member functions—you declare
and define them within the class, or declare them within the class and
define them outside—but they have some unique features.

1. They do not have return value declarations (not even void).

2. They cannot be inherited, though a derived class can call the base
class’ constructors and destructors.

3. Constructors, like most C++ functions, can have default arguments
or use member initialization lists.

4. Destructors can be virtual, but constructors cannot.
5. You can’t take their addresses.

main{)

{
void *ptr = base::base; // illegal

}

6. Constructors and destructors can be generated by Turbo C++ if
they haven’t been explicitly defined; they are also invoked on
many occasions without explicit calls in your program. Any
constructor or destructor generated by the compiler will be public.

7. You cannot call constructors the way you call a normal function.
Destructors can be called if you use their fully qualified name.

{

X *p;

p=>X::~X(); // legal call of destructor
XX // illegal call of constructor

}

9. The compiler automatically calls constructors and destructors
when defining and destroying objects.

10. Constructors and destructors can make implicit calls to operator
new and operator delete if allocation is required for an object.
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11. An object with a constructor or destructor cannot be used as a
member of a union.

If a class X has one or more constructors, one of them is invoked each
time you define an object x of class X. The constructor creates x and
initializes it. Destructors reverse the process by destroying the class
objects created by constructors.

Constructors are also invoked when local or temporary objects of a
class are created; destructors are invoked when these cbjects go out of
scope.

Constructors

Constructors are distinguished from all other member functions by
having the same name as the class they belong to. When an object of
that class is created or is being copied, the appropriate constructor is
called implicitly.

Constructors for global variables are called before function main is
called. When the pragma startup directive is used to install a function
prior to main, global variable constructors are called prior to the
startup functions.

Local objects are created as the scope of the variable becomes active. A
constructor is also invoked when a temporary object of the class is
created.

class X
{
public:
X{(); // class X constructor

bi
A class X constructor cannot take X as an argument:

class X {
public:

X(X); // illegal
}

The parameters to the constructor can be of any type except that of the
class of which it is a member. The constructor can accept a reference to
its own class as a parameter; when it does so, it is called the copy
constructor. A constructor which accepts no parameters is called the
default constructor. We discuss the default constructor next; the de-
scription of the copy constructor starts on page 116.

Chapter 1, The Turbo C++ language standard 115



The default constructor

Important!

The copy constructor

116

The default constructor for class X is one that takes no arguments:
X::X(). If no user-defined constructors exist for a class, Turbo C++
generates a default constructor. On a declaration such as X x, the
default constructor creates the object x.

Like all functions, constructors can have default arguments. For
example, the constructor

X::X({int, int = 0)

can take one or two arguments. When presented with one argument,
the missing second argument is assumed to be a zero int. Similarly,
the constructor

X::X(int =5, int = 6)

could take two, one, or no arguments, with appropriate defaults.
However, the default constructor X::X() takes no arguments and must
not be confused with, say, X::X(int = 0), which takes one or no
arguments.

Take care to avoid ambiguity in calling constructors. In the following
case, the default constructor and the constructor accepting an integer
could become ambiguous:

class X
{
public:
X();
X(int 1 = 0);
H
main()
(
X one(10); // OK; uses X::X(int)
X two; // illegal; ambiguous whether to call X::X() or
// X::X(int = Q)

return 0;

A copy constructor for class X is one that can be called with a single
argument of type X: X: :X(const X&) Or X::X(const X&,int = 0). Default
arguments are also allowed in a copy constructor. Copy constructors
are invoked when copying a class object, typically when you declare
with initialization by another class object: X x = y. Turbo C++
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generates a copy constructor for class X if one is needed and none is
defined in class X.

Overloading Constructors can be overloaded, allowing objects to be created,
constructors  depending on the values being used for initialization.

class X
{
int integer part;
double double part;
public:
X(int 1) { integer part = i; }
X({double d) { double part = d; }
Vi
main()

{
X one(10); // invokes X::X(int) and sets integer part to 10

X one(3.14); // invckes X::X(double) setting double part

return 0;

Order of calling In the case where a class has one or more base classes, the base class
constructors  constructors are invoked before the derived class constructor. The
base class constructors are called in the order they are declared.

For example, in this setup,

class Y {...}
class X : public Y {...}
X one;

the constructors are called in this order:

Y(); // base class constructor
X(); // derived class constructor

For the case of multiple base classes:

class X : public Y, public Z
X one;

the constructors are called in the order of declaration:

Y(); // base class constructors come first
();
X0
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Constructors for virtual base classes are invoked before any non-
virtual base classes. If the hierarchy contains multiple virtual base
classes, the virtual base class constructors are invoked in the order in
which they were declared. Any non-virtual bases are then constructed
before the derived class constructor is called.

If a virtual class is derived from a non-virtual base, that non-virtual
base will be first so that the virtual base class may be properly con-
structed. The code

class X : public Y, virtual public Z
X one;

produces this order:

2(); // virtual base class initialization
Y(); // non-virtual base class
X(); // derived class

Or for a more complicated example:

class base;

class base2;

class levell : public base2, virtual public base;
class level2 : public base2, virtual public base;
class toplevel : public levell, virtual public level?;
toplevel view;

The construction order of view would be as follows:

base(); // virtual base class highest in hierarchy
// base is only constructed once
base2(); // non-virtual base of virtual base level2

// must be called to construct level2
level2(); // virtual base class
base2(); // non-virtual base of levell
levell(); // other non-virtual base
toplevel();

In the event that a class hierarchy contains multiple instances of a
virtual base class, that base class is only constructed once. If, however,
there exist both virtual and non-virtual instances of the base class, the
class constructor is invoked a single time for all virtual instances and
then once for each non-virtual occurrence of the base class.

Constructors for elements of an array are called in increasing order of
the subscript.
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Class initialization  An object of a class with only public members and no constructors or
base classes (typically a structure) can be initialized with an initializer
list. If a class has a constructor, its objects must be either initialized or
have a default constructor. The latter is used for objects not explicitly
initialized.

Objects of classes with constructors can be initialized with an expres-
sion list in parentheses. This list is used as an argument list to the
constructor. An alternative is to use an equal sign followed by a single
value. The single value can be of the type of the first argument
accepted by a constructor of that class, in which case either there are
no additional arguments, or the remaining arguments have default
values. It could also be an object of that class type. In the former case,
the matching constructor is called to create the object. In the latter
case, the copy constructor is called to initialize the object.

class X
{
int 1i;
public:
X(): // function bodies omitted for clarity
X{int x);
X(const X&);
}i

main()

{
X one; // default constructor invoked
X two(l); // constructor X::X(int) is used
X three = 1; // calls X::X(int)
X four = one; // invokes X::X(const X&) for copy
X five(two); // calls X::X(const X&)

}

The constructor can assign values to its members in two ways. It can
accept the values as parameters and make assignments to the member
variables within the function body of the constructor:

class X
{
int a, b;
public:
X(int 1, int J) {a=1;b =73}
}i

Or it can use an initializer list prior to the function body:

class X
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{

int a, b;
public:

X(int i, int 3) : a(i), b{J) {}
bi

In both cases, an initialization of X x(1, 2) assigns a value of 1 to x::a
and 2 to x::b. The second method, the initializer list, provides a mecha-
nism for passing values along to base class constructors.

class basel

Base class constructors must {

be declared as either public Int x;
or protected to be called public: .
from a derived class. basel (int i) { x = i; }

}:

class base2

{
int x;
public:
base2(int i) : x(i) {}
}i
class top : public basel, public base2
{

int a, b;
public:

top(int i, int j) : basel(i*5), base2(j+i), a(i) { b = j;}
}i

With this class hierarchy, a declaration of top one (1, 2) would result
in the initialization of base1 with the value 5 and base2 with the
value 3. The methods of initialization can be intermixed.

As described previously, the base classes are initialized in declaration
order. Then the members are initialized, also in declaration order,
independent of the initialization list.

class X
{
int a, b;
public:
X{int 1, J) : a(i), bla+t) {}
b

With this class, a declaration of X x(1,1) results in an assignment of 1
to x::a and 2 to x::b.
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Base class constructors are called prior to the construction of any of
the derived classes members. The values of the derived class can’t be
changed and then have an affect on the base class’s creation.

class base
{
int x;
public:
base(int i) : x(i) {}
Vi
class derived : base
{
int a;
public:
derived(int i) : a(i*10), base(a) { } // Watch out! Base will be
// passed an uninitialized a.
4

With this class setup, a call of derived d(1) will not result in a value of
10 for the base class member x. The value passed to the base class
constructor will be undefined.

When you want an initializer list in a non-inline constructor, don’t
place the list in the class definition. Instead, put it at the point at
which the function is defined.

derived::derived(int i) : a(i)

{

}

Destructors

The destructor for a class is called to free members of an object before
the object is itself destroyed. The destructor is a member function
whose name is that of the class preceded by a tilde (~). A destructor
cannot accept any parameters, nor will it have a return type or value
declared.

class X
{
public:
~X{); // destructor for class X
}i

If a destructor is not explicitly defined for a class, the compiler will
generate one.
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When destructors are
invoked

atexit, #pragma exit,
and destructors

exit and destructors

abort and destructors

122

A destructor is called implicitly when a variable goes out of its
declared scope. Destructors for local variables are called when the
block they are declared in is no longer active. In the case of global
variables, destructors are called as part of the exit procedure after
main.

When pointers to objects go out of scope, a destructor is not implicitly
called. This means that the delete operator must be called to destroy
such an object.

Destructors are called in the exact opposite order from which their
corresponding constructors were called (see page 117).

All global objects are active until the code in all exit procedures has
executed. Local variables, including those declared in main, are de-
stroyed as they go out of scope. The order of execution at the end of a
Turbo C++ program in these regards is as follows:

m atexit functions are executed in the order they were inserted.

m #pragma exit functions are executed in the order of their priority
codes.

m Destructors for global variables are called.

When you call exit from within a program, destructors are not called
for any local variables in the current scope. Global variables are de-
stroyed in their normal order.

If you call abort anywhere in a program, no destructors are called, not
even for variables with a global scope.

A destructor can also be invoked explicitly in one of two ways:
indirectly through a call to delete, or directly by using the destructor’s
fully qualified name. You can use delete to destroy objects that have
been allocated using new. Explicit calls to the destructor are only
necessary for objects allocated a specific address through calls to new.

class X {
~X{);
}i
void* operator new(size t size, void *ptr)

{
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return ptr;

}

char buffer(sizeof(X)];

main()

{
X* pointer = new X;
X* exact_pointer;

exact_pointer = new(sbuffer) X; // peinter initialized at
// address of buffer

delete pointer; // delete used to destroy pointer
exact_pointer->X::~X(); // direct call used to deallocate

Virtual destructors A destructor can be declared as virtual. This allows a pointer to a base
class object to call the correct destructor in the event that the pointer
actually refers to a derived class object. The destructor of a class
derived from a class with a virtual destructor is itself virtual.

class color

{
public:
virtual ~color(); // virtual destructor for color

i

class red : public color

{
public:
~red(); // destructor for red is also virtual

Vi
class brightred: public red

{
public:
~brightred(); // brightred’s destructor also virtual

bi
The previously listed classes and the following declarations

color *palette[3];

palette[0] = new red;
palette[l] = new brightred;
palette[2] = new color;

will produce these results

delete palette[0];
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//  The destructor for red is called followed by the
//  destructor for color.

delete palettel[l];
// The destructor for brightred is called, followed by ~red
// and ~color.

delete palette(2];
// The destructor for color is invoked.

However, in the event that no destructors were declared as virtual,
delete palette[0], delete palette[1], and delete palette[2] would all call
only the destructor for class color. This would incorrectly destruct the
first two elements, which were actually of type red and brightred.

Overloaded

operators  C++ lets you redefine the action of most operators, so that they per-
form specified functions when used with objects of a particular class.
As with overloaded C++ functions in general, the compiler distin-
guishes the different functions by noting the context of the call: the
number and types of the arguments or operands.

All the operators on page 20 can be overloaded except for
S S

The preprocessing symbols # and ## also cannot be overloaded.

The keyword operator followed by the operator symbol is called the
operator function name; it is used like a normal function name when de-
fining the new (overloaded) action of the operator.

A function operator called with arguments behaves like an operator
working on its operands in an expression. The operator function can’t
alter the number of arguments or the precedence and associativity
rules (Table 1.20 on page 75) applying to normal operator use. Con-

sider the class complex:
];hisf cl?ss was irgvenfe? fcﬁ class complex |
illustrative purposes only. N .
isn 't the same as the class bti(;ghjle real, imag; // private by default
complex in the run-time pu :
library. cee
complex() { real = imag = 0; } // inline constructor
complex (double r, double i = 0) { // another one

real = r; imag = i;

}
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We could easily devise a function for adding complex numbers, say,
complex AddComplex (complex cl, complex c2);
but it would be more natural to be able to write:

complex c1(0,1), c2(1,0), c3
c3 =cl + c2;

than
c3 = AddComplex(cl, c2);

The operator + is easily overloaded by including the following
declaration in the class complex:

friend complex operator +(complex cl, complex c2);
and defining it (possibly inline) as:

complex operator +(complex cl, complex c2)

{

return complexcl.real + c2.real, cl.imag + c2.imag);

}

Operator

functions Operator functions can be called directly, although they are usually
invoked indirectly by the use of the overload operator:

c3 = cl.operator + (c2); // same as c3 =cl + c2

Apart from new and delete, which have their own rules (see the next
sections), an operator function must either be a nonstatic member
function or have at least one argument of class type. The operator
functions =, (), [ ] and —> must be nonstatic member functions.

Overloaded operators  With the exception of the assignment function operator =() (see
and inheritance  “Overloading the assignment operator =” on page 127), all overloaded
operator functions for class X are inherited by classes derived from X,
with the standard resolution rules for overloaded functions. If X is a
base class for Y, an overloaded operator function for X may possibly
be further overloaded for Y.

Overloading new and  The operators new and delete can be overloaded to provide alterna-
delete tive free storage (heap) memory-management routines. A user-
defined operator new must return a void* and must have a size_t as

The fype size_t is deig?g ;? its first argument. A user-defined operator delete must have a void
S1aib.N.
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return type and void* as its first argument; a second argument of type
size_t is optional. For example,

#include <stdlib.h>

class X {

public:
void* operator new(size t size) { return newalloc(size);)
void operator delete(void* p) { newfree(p); )}

X() { /* initialize here */ }
X{(char ch) { /* and here */ }

~X{) { /* clean up here */ }

}i

The size argument gives the size of the object being created, and
newalloc and newfree are user-supplied memory allocation and deal-
location functions. Constructor and destructor calls for objects of class
X (or objects of classes derived from X that do not have their own
overloaded operators new and delete) will invoke the matching user-
defined X::operator new() and X::operator delete(), respectively.

The X::operator new and X::operator delete operator functions are
static members of X whether explicitly declared as static or not, so
they cannot be virtual functions.

The standard, predefined (global) new and delete operators can still
be used within the scope of X, either explicitly with the global scope
operator (::operator new and ::operator delete), or implicitly when
creating and destroying non-X or non-X-derived class objects. For
example, you could use the standard new and delete when defining
the overloaded versions:

void* X::operator new(size t s)
{

void* ptr = new char(s]; // standard new called

return ptr;
}

void X::operator delete(void* ptr)

{

delete (void*) ptr; // standard delete called
}
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The reason for the size argument is that classes derived from X inherit
the X::operator new. The size of a derived class object may well differ
from that of the base class.

Overloading unary  You can overload a prefix or postfix unary operator by declaring a
operatfors nonstatic member function taking no arguments, or by declaring a
non-member function taking one argument. If @ represents a unary
operator, @x and x@ can both be interpreted as either x.operator@()
or operator@(x), depending on the declarations made. If both forms
have been declared, standard argument matching is applied to resolve

any ambiguity.
Care is needed when overloading ++ and — -, since postfix and prefix

usage cannot be distinguished from within the overloading function.
For example,

class X {

X operator ++() { /* increment X routine here */ }

}

X X, y;
y = ++x; // same as y = x++ !

Overloading binary  You can overload a binary operator by declaring a nonstatic member
operators  function taking one argument, or by declaring a non-member function
(usually friend) taking two arguments. If @ represents a binary
operator, x@y can be interpreted as either x.operator@(y) or
operator@(x,y), depending on the declarations made. If both forms
have been declared, standard argument matching is applied to resolve

any ambiguity.
Overloading the  The assignment operator = can only be overloaded by declaring a
assignment operator = nonstatic member function. For example,

class String {
Strings operator = (String& str);

String (String&);
~String();
}

This code, with suitable definitions of String::operator =(), allows
string assignments str] = str2, just like other languages. Unlike the
other operator functions, the assignment operator function cannot be
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inherited by derived classes. If, for any class X, there is no user-
defined operator =, the operator = is defined by default as a member-
by-member assignment of the members of class X:

X& X::operator = (const X& source)

{

// memberwise assignment

}

The function call
primary-expression ( <expression-list>)

is considered a binary operator with operands primary-expression and
expression-list (possibly empty). The corresponding operator function
is operator(). This function can be user-defined for a class X (and any
derived classes) only by means of a nonstatic member function. A call
x(argl, arg2), where x is an object of class X, is interpreted as
x.operator()(argl,arg2).

Similarly, the subscripting operation
primary-expression | expression ]

is considered a binary operator with operands primary-expression and
expression. The corresponding operator function is operator[]; this can
be user-defined for a class X (and any derived classes) only by means
of a nonstatic member function. The expression x[y], where x is an
object of class X, is interpreted as x.operator(] (y).

Class member access using
primary-expression —> expression

is considered a unary operator. The function operator-> must be a
nonstatic member function. The expression x->m, where x is a class X
object, is interpreted as (x.operator->())->m, so that the function
operator->() must either return a pointer to a class object or return an
object of a class for which operator-> is defined.

Virtual functions allow derived classes to provide different versions
of a base class function. You can declare a virtual function in a base
class, then redefine it in any derived class, even if the number and
type of arguments are the same. You can also declare the functions int
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Base::Fun (int) and int Derived::Fun (int) even when they are not
virtual. The base class version is available to derived class objects via
scope override. If they are virtual, only the function associated with
the actual type of the object is available.

With virtual functions, you cannot change just the function type. It is
illegal, therefore, to redefine a virtual function so that it differs only in
the return type. If two functions with the same name have different
arguments, C++ considers them different, and the virtual function
mechanism is ignored.

The redefined function is said to override the base class function. The
virtual specifier is used to declare a virtual function. The virtual
specifier implies membership, so a virtual function cannot be a global
(nonmember) function.

If a base class B contains a virtual function vf, and class D, derived
from B, contains a function vf of the same type, then if vf is called for
an object 4 or D, the call made is D: : vf, even if the access is via a
pointer or reference to B. For example,

struct B {
virtual void vfl();
virtual void vf2();
virtual void vf3();
void £();
Vi
class D : public B {
virtual void vfl{(); // virtual specifier is legal but redundant

void vf2(int); // not virtual, since it’s using a different
// arg list
char vE3(); // Illegal: return-type-only change!
void f();
Vi
void extf()
{
D d; // declare a D object

B* bp = &d; // standard conversion from D* to B*
bp->vfl(); // calls D::vfl
bp->vf2(); // call B::vf2 since D's vf2 has different args
bp->f(); // calls B::f (not virtual)
}

The overriding function vf1 in D is automatically virtual. The virtual
specifier can be used with an overriding function declaration in the
derived class, but its use is redundant.
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in action.

The interpretation of a virtual function call depends on the type of the
object for which it is called; with non-virtual function calls, the
interpretation depends only on the type of the pointer or reference
denoting the object for which it is called.

Virtual functions must be members of some class, but they cannot be
static members. A virtual function can be a friend of another class.

A virtual function in a base class, like all member functions of a base
class, must be defined or, if not defined, declared pure:

class B {
virtual void vf(int) = 0; // = 0 means ’pure’

In a class derived from such a base class, each pure function must be
defined or redeclared as pure (see the next section, “Abstract classes”).

If a virtual function is defined in the base it need not necessarily be
redefined in the derived class. Calls will simply call the base function.

Virtual functions exact a price for their versatility: Each object in the
derived class needs to carry a pointer to a table of functions in order
to select the correct one at run time (late binding). See Chapter 5, “A
C++ primer,” in Getting Started.

An abstract class is a class with at least one pure virtual function. A
virtual function is specified as pure by using the pure-specifier.

An abstract class can be used only as a base class for other classes. No
objects of an abstract class can be created. An abstract class cannot be
used as an argument type or as a function return type. However, you
can declare pointers to an abstract class. References to an abstract class
are allowed, provided that a temporary object is not needed in the
initialization. For example:

class shape { // abstract class
point center;

public:
where() { return center; )}
move (point p) { center = p; draw(); }
virtual void rotate(int) = 0; // pure virtual function
virtual void draw() = 0; // pure virtual function
virtual void hilite() = 0; // pure virtual function
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shape x; // ERROR: attempted creation of an object of
// an abstract class
shape* sptr; // pointer to abstract class is OK
shape f(); // ERROR: abstract class cannot be a return
/] type
int g(shape s); // ERROR: abstract class cannot be a
//function argument type
shape& h(shapes); // reference to abstract class as return
// value or function arqument is OK

Suppose that D is a derived class with the abstract class B as its
immediate base class. Then for each pure virtual function pvf in B, D
must either provide a definition for pvf, or D must declare pvf as pure.

For example, using the class shape outlined above,

class circle : public shape { // circle derived from
// abstract class

int radius; // private
public:

void rotate(int) { } // virtual function defined:
// no action to rotate a
// circle

void draw(); // circle::draw must be
// defined somewhere

void hilite() = 0; // redeclare as pure

}

Member functions can be called from a constructor of an abstract
class, but calling a pure virtual function directly or indirectly from
such a constructor provokes a run-time error.

C++ scope

The lexical scoping rules for C++, apart from class scope, follow the
general rules for C, with the proviso that C++, unlike C, permits both
data and function declarations to appear wherever a statement may
appear. The latter flexibility means that care is needed when interpre-
ting such phrases as “enclosing scope” and “point of declaration.”

Class scope The name M of a member of a class X has class scope “local to X;” it
can only be used in the following situations:

® In member functions of X
m In expressions such as x.M, where x is an object of X

m In expressions such as xptr->M, where xptr is a pointer to an object
of X
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Hiding

C++ scoping rules
summary

m In expressions such as X::M or D::M, where D is a derived class of X
m In forward references within the class of which it is a member.

Classes, enumerations, or typedef names declared within a class X, or
names of functions declared as friends of X, are not members of X;
their names simply have enclosing scope.

A name can be hidden by an explicit declaration of the same name in
an enclosed block or in a class. A hidden class member is still accessi-
ble using the scope modifier with a class name: X::M. A hidden file
scope (global) name can be referenced with the unary operator ::; for
example, ::g. A class name X can be hidden by the name of an object,
function, or enumerator declared within the scope of X, regardless of
the order in which the names are declared. However, the hidden class
name X can still be accessed by prefixing X with the appropriate
keyword: class, struct, or union.

The point of declaration for a name x is immediately after its complete
declaration but before its initializer, if one exists.

The following rules apply to all names, including typedef names and
class names, provided that C++ allows such names in the particular
context discussed:

1. The name itself is tested for ambiguity. If no ambiguities are de-
tected within its scope, the access sequence is initiated.

2. If no access control errors occur, the type of the object, function,
class, typedef, and so on, is tested.

3. If the name is used outside any function and class, or is prefixed
by the unary scope access operator ::, and if the name is not quali-
fied by the binary :: operator or the member selection operators .
and —>, then the name must be a global object, function, or
enumerator.

4. If the name n appears in any of the forms X::n, x.n (where x is an
object of X or a reference to X), or ptr->n (where ptr is a pointer to
X), then n is the name of a member of X or the member of a class
from which X is derived.

5. Any name not covered so far that is used in a static member
function must be declared in the block in which it occurs or in an
enclosing block, or be a global name. The declaration of a local
name n hides declarations of # in enclosing blocks and global dec-
larations of n. Names in different scopes are not overloaded.
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6. Any name not covered so far that is used in a nonstatic member
function of class X must be declared in the block in which it occurs
or in an enclosing block, be a member of class X or a base class of
X, or be a global name. The declaration of a local name 7 hides
declarations of n in enclosing blocks, members of the function’s
class, and global declarations of n. The declaration of a member
name hides declarations of the same name in base classes.

7. The name of a function argument in a function definition is in the
scope of the outermost block of the function. The name of a func-
tion argument in a non-defining function declaration has no scope
at all. The scope of a default argument is determined by the point
of declaration of its argument, but it can’t access local variables or
nonstatic class members. Default arguments are evaluated at each
point of call.

8. A constructor initializer (see ctor-initializer in the class declarator
syntax, Table 1.12 on page 37) is evaluated in the scope of the
outermost block of its constructor, so it can refer to the
constructor’s argument names.

Turbo C++ preprocessor directives

CPP is documented online.

The preprocessor defects
preprocessor directives (also
known as control lines) and
parses the tokens
embedded in them.

Although Turbo C++ uses an integrated single-pass compiler for both
its IDE and command-line-compiler versions, it is useful to retain the
terminology associated with earlier multipass compilers. In the latter,
a first pass of the source text would pull in any include files, test for
any conditional-compilation directives, expand any macros, and
produce an intermediate file for further compiler passes. Since both
the IDE and command-line-compiler versions of Turbo C++ perform
this first pass with no intermediate output, Turbo C++ provides an
independent preprocessor, CPP.EXE, that does produce such an
output file. CPP is useful as a debugging aid, letting you see the net
result of include directives, conditional compilation directives, and
complex macro expansions.

The following discussion on preprocessor directives, their syntax and
semantics, therefore, applies both to the CPP preprocessor and to the
preprocessor functionality built into the Turbo C++ compilers.

The Turbo C++ preprocessor includes a sophisticated macro processor
that scans your source code before the compiler itself gets to work.
The preprocessor gives you great power and flexibility in the fol-
lowing areas:
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program.

m Defining macros that reduce programming effort and improve your
source code legibility. Some macros can also eliminate the overhead
of function calls.

m Including text from other files, such as header files containing
standard library and user-supplied function prototypes and
manifest constants.

m Setting up conditional compilations for improved portability and
for debugging sessions.

Any line with a leading # is taken as a preprocessing directive, unless
the # is within a string literal, in a character constant, or embedded in
a comment. The initial # can be preceded or followed by whitespace
(excluding new lines).

The full syntax for Turbo C++'s preprocessor directives is given in the
next table.

Table 1.23: Turbo C++ preprocessing directives syntax

preprocessing-file: # newline
group action: one of
group: + -
group-part bbreviation:
group  group-part abbreciation:
group-part: amb amp apt aus big dn cpt
<pp-tokens> newline def dup eff mod par pia pro
if-section rch ret rmg rpt rvl sig str
control-line stu stv  sus ucp use voi zst
if-section: Iparen:
if-group <elif-groups> <else-group> endif-line the left parenthesis character without preceding whitespace
. . replacement-list:
if-group: . . <pp-tokens>
#if constant-expression newline <group>
#ifdef identifier newline <group> pp-tokens:

#ifndef wentifier newline <group>

elif-groups:
elif-group
elif-groups elif-group

elif-group:

#elif constant-expression newline <group>

else-group:

#else newline <group>
endif-line:

#endif newline

control-line:
#include pp-tokens newline

preprocessing-token
pp-tokens preprocessing-token

preprocessing-token:
header-name (only within an #include directive)
identifier (no keyword distinction)
constant
string-literal
operator
punctuator
each non-whitespace character that cannot be one of the preceding

header-name:
<h-char-sequence>

h-char-sequence:

#define identifier replacement-list newline h-char
#define identifier Iparen <identifier-list>) replacement-list newline h-char-sequence h-char

#undef identifier newline
#line pp-tokens newline
#error  <pp-tokens> newline
#pragma <pp-tokens> newline

h-char:
any character in the source character set except the newline (\n) or
greater than (>) character

#pragma warn action abbreviation newline newline:

#pragma Iinline newline

the newline character

134
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Null directive #

The null directive consists of a line containing the single character #.
This directive is always ignored.

The #define and

#undef directives The #define directive defines a macro. Macros provide a mechanism
for token replacement with or without a set of formal, function-like
parameters.

Simple #define macros In the simple case with no parameters, the syntax is as follows:
#define macro_identifier <token_sequence>

Each occurrence of macro_identifier in your source code following this
control line will be replaced in situ with the possibly empty
token_sequence (there are some exceptions, which are noted later). Such
replacements are known as macro expansions. The token sequence is
sometimes called the body of the macro.

Any occurrences of the macro identifier found within literal strings,
character constants, or comments in the source code are not
expanded.

An empty token sequence results in the effective removal of each
affected macro identifier from the source code:

#define HI "Have a nice day!"
§define empty
#define NIL "*

puts(HI); /* expands to puts("Have a nice day!"“); */
puts (NIL); /* expands to puts("“); */

puts(“"empty"); /* NO expansion of empty! */

/* NOR any expansion of the empty within comments! */

After each individual macro expansion, a further scan is made of the
newly expanded text. This allows for the possibility of nested macros:
The expanded text may contain macro identifiers that are subject to
replacement. However, if the macro expands into what looks like a
preprocessing directive, such a directive will not be recognized by the
preprocessor:

#define GETSTD #include <stdio.h>

GETSTD /* compiler error */
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GETSTD will expand to #include <stdio.h>. However, the preproces-
sor itself will not obey this apparently legal directive, but will pass it
verbatim to the compiler. The compiler will reject #include <stdio.h>
as illegal input. A macro won't be expanded during its own
expansion. So #define A A won’t expand indefinitely.

You can undefine a macro using the #undef directive:
#undef macro_identifier

This line detaches any previous token sequence from the macro
identifier; the macro definition has been forgotten, and the macro
identifier is undefined.

No macro expansion occurs within #undef lines.

The state of being defined or undefined turns out to be an important
property of an identifier, regardless of the actual definition. The #ifdef
and #ifndef conditional directives, used to test whether any identifier
is currently defined or not, offer a flexible mechanism for controlling
many aspects of a compilation.

After a macro identifier has been undefined, it can be redefined with
#define, using the same or a different token sequence.

#define BLOCK SIZE 512
buff = BLOCK SIZE*blks; /* expands as 512*blks *

fundef BLOCK SIZE
/* use of BLOCK SIZE now would be illegal "unknown" identifier */

fdefine BLOCK SIZE 128 /* redefinition */

buf = BLOCK SIZE*blks; /* expands as 128*blks */

Attempting to redefine an already defined macro identifier will result
in a warning unless the new definition is exactly the same, token-by-
token definition as the existing one. The preferred strategy where
definitions may exist in other header files is as follows:

#ifndef BLOCK_SIZE
$define BLOCK_SIZE 512
fendif

The middle line is bypassed if BLOCK_SIZE is currently defined; if
BLOCK_SIZE is not currently defined, the middle line is invoked to
define it.
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Note that no semicolon (;) is needed to terminate a preprocessor direc-
tive. Any character found in the token sequence, including semi-
colons, will appear in the macro expansion. The token sequence ter-
minates at the first non-backslashed new line encountered. Any
sequence of whitespace, including comments in the token sequence, is
replaced with a single space character.

Assembly language programmers must resist the temptation to write:

#define BLOCK SIZE = 512 /* 22 token sequence includes the = */

The -D and -U options Identifiers can be defined and undefined using the command-line
compiler options —D and -U (see Chapter 4, “The command-line
compiler,” in the User’s Guide). Identifiers can be defined, but not ex-
plicitly undefined, from the IDE Options | Compiler | Defines menu
(see Chapter 1, “The IDE reference,” also in the User’s Guide).

The command line
tcc -Ddebug=1; paradox=0; X -Umysym myprog.c
is equivalent to placing

#define debug 1
#define paradox 0
#define X

#undef mysym

in the program.

Keywords and It is legal but ill-advised to use Turbo C++ keywords as macro
protected words identifiers:

#define int long /* legal but probably catastrophic */
#define INT long /* legal and possibly useful */

The following predefined global identifiers may not appear
immediately following a #define or #undef directive:

Note the double STDC DATE
underscores, leading and - _FILE - - _TIME -
trailing. "TLINE__

Macros with  The following syntax is used to define a macro with parameters:
parameters
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argument, not as an
argument delimiter.

#define macro_identifier(<arg_list>) token_sequence

Note that there can be no whitespace between the macro identifier
and the (. The optional arg_list is a sequence of identifiers separated
by commas, not unlike the argument list of a C function. Each
comma-delimited identifier plays the role of a formal argument or place
holder.

Such macros are called by writing
macro_identifier<whitespace>(<actual_arg_list>)

in the subsequent source code. The syntax is identical to that of a
function call; indeed, many standard library C “functions” are
implemented as macros. However, there are some important semantic
differences and potential pitfalls (see page 140).

The optional actual_arg_list must contain the same number of comma-
delimited token sequences, known as actual arguments, as found in
the formal arg_list of the #define line: There must be an actual
argument for each formal argument. An error will be reported if the
number of arguments in the two lists is different.

A macro call results in two sets of replacements. First, the macro
identifier and the parenthesis-enclosed arguments are replaced by the
token sequence. Next, any formal arguments occurring in the token
sequence are replaced by the corresponding real arguments appearing
in the actual_arg_list. For example,

#define CUBE(x) ({(x)*(x)*(x))
int n,y:
n = CUBE(y);
results in the following replacement:
n=((y)*(y)*(y);
Similarly, the last line of
fdefine SUM ((a) + (b))
1nt i,3,sum;
sum = SUM(i,3);

expands to sum = ((i) + (j)). The reason for the apparent glut of
parentheses will be clear if you consider the call

n = CUBE(y+1);
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Without the inner parentheses in the definition, this would expand as
n = y+I*y+1 *y+1, which is parsed as

n=y+ (1*y) + (I*y) + 1; // != (y+l) cubed unless y=0 or y = -3!

As with simple macro definitions, rescanning occurs to detect any
embedded macro identifiers eligible for expansion.

Note the following points when using macros with argument lists:

1. Nested parentheses and commas: The actual_arg_list may contain
nested parentheses provided that they are balanced; also, commas
appearing within quotes or parentheses are not treated like
argument delimiters:

#define ERRMSG(x, str) showerr("Error",x,str)
#define SUM(x,y) ({x) + (y))

ERRMSG(2, "Press Enter, then Esc");

/* expands to showerr("Error",2,"Press Enter, then Esc");
return SUM(f(i,]), q(k,1));

/* expands to return ((£(i,3)) + (g(k,1))); */

2. Token pasting with ##: You can paste (or merge) two tokens
together by separating them with ## (plus optional whitespace on
either side). The preprocessor removes the whitespace and the ##,
combining the separate tokens into one new token. You can use
this to construct identifiers; for example, given the definition

#define VAR(1,J) (i##])
then the call VAR (x, 6) would expand to (x6). This replaces the older
(nonportable) method of using (i/**/3).

3. Converting to strings with #: The # symbol can be placed in front
of a formal macro argument in order to convert the actual
argument to a string after replacement. So, given the following
macro definition:

#define TRACE(flag) printf(#flag “=%d\n", flag)
the code fragment

int highval = 1024;
TRACE (highval);

becomes

int highval = 1024;
printf("highval® "= %d\n", highval);

which, in turn, is treated as

int highval = 1024;
printf("highval=%d\n", highval);
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#include

optional.

4. The backslash for line continuation: A long token sequence can

straddle a line by using a backslash (\). The backslash and the
following newline are both stripped to provide the actual token
sequence used in expansions:

#define WARN "This is really a single-\
line warning"

puts (WARN) ;
/* screen will show: This is really a single-line warning */

. Side effects and other dangers: The similarities between function

and macro calls often obscure their differences. A macro call has
no built-in type checking, so a mismatch between formal and
actual argument data types can produce bizarre, hard-to-debug
results with no immediate warning. Macro calls can also give rise
to unwanted side effects, especially when an actual argument is
evaluated more than once. Compare CUBE and cube in the fol-
lowing example:

int cube(int x) {
return x*x*x;

}
#define CUBE(x) ((x)*(x)*(x))

int b=0, a=3;

b = cube(att);

/* cube() 1s passed actual arg = 3; so b = 27; a now = 4 */
a=3;

b = CUBE(at+);

/* expands as ((at++)*(at++)*(at+)); a now = 6 */

The #include directive pulls in other named files, known as include
files, header files, or headers, into the source code. The syntax has three
forms:

#include <header_name>
#include “header _name”
#include macro_identifier

The third variant assumes that neither < nor “ appears as the first
non-whitespace character following #include; further, it assumes that
a macro definition exists that will expand the macro identifier into a
valid delimited header name with either of the <header_name> or
“header_name” formats.

Turbo C++ Programmer’s Guide



The first and second variant imply that no macro expansion will be
attempted; in other words, header_name is never scanned for macro
identifiers. header _name must be a valid DOS file name with an ex-
tension (traditionally .h for header) and optional path name and path
delimiters.

The preprocessor removes the #include line and conceptually replaces
it with the entire text of the header file at that point in the source code.
The source code itself is not changed, but the compiler “sees” the en-
larged text. The placement of the #include may therefore influence the
scope and duration of any identifiers in the included file.

If you place an explicit path in the header_name, only that directory
will be searched.

The difference between the <header_name> and “header_name” formats
lies in the searching algorithm employed in trying to locate the in-
clude file; these algorithms are described in the following two
sections.

Header file search with  The <header_name> variant specifies a standard include file; the search
<header_name> is made successively in each of the include directories in the order
they are defined. If the file is not located in any of the default
directories, an error message is issued.

Header file search with  The “header_name” variant specifies a user-supplied include file; the
“header_name” file is sought first in the current directory (usually the directory
holding the source file being compiled). If the file is not found there,
the search continues in the include directories as in the <header_name>
situation.

The following example clarifies these differences:

#include <stdio.h>
/* header in standard include directory */

#define myinclude "c:\tc\include\mystuff.h"
/* Note: Single backslashes OK here; within a C statement you would
need "c:\\tc\\include\\mystuff.h" */

#include myinclude
/* macro expansion */

#include "myinclude.h"
/* no macro expansion */

After expansion, the second #include statement causes the preproces-
sor to look in C:\TC\INCLUDE\mstuff.h and nowhere else. The

Chapter 1, The Turbo C++ language standard 141



Conditional
compilation

The #if, #elif, #else, and

142

#endif conditional
directives

third #include causes it to look for myinclude.h in the current
directory, then in the default directories.

Turbo C++ supports conditional compilation by replacing the appro-
priate source-code lines with a blank line. The lines thus ignored are
those beginning with # (except the #if, #ifdef, #ifndef, #else, #elif, and
#endif directives), as well as any lines that are not to be compiled as a
result of the directives. All conditional compilation directives must be
completed in the source or include file in which they are begun.

The conditional directives #if, #elif, #else, and #endif work like the
normal C conditional operators. They are used as follows:

#if constant-expression-1
<section-1>
<#elif constant-expression-2 newline section-2>

<t#elif constant-expression-n newline section-n>

<#else final-section>
#endif

If the constant-expression-1 (subject to macro expansion) evaluates to
nonzero (true), the lines of code (possibly empty) represented by
section-1, whether preprocessor command lines or normal source lines,
are preprocessed and, as appropriate, passed to the Turbo C++
compiler. Otherwise, if constant-expression-1 evaluates to zero (false),
section-1 is ignored (no macro expansion and no compilation).

In the true case, after section-1 has been preprocessed, control passes to
the matching #endif (which ends this conditional interlude) and con-
tinues with next-section. In the false case, control passes to the next #elif
line (if any) where constant-expression-2 is evaluated. If true, section-2 is
processed, after which control moves on to the matching #endif.
Otherwise, if constant-expression-2 is false, control passes to the next
#elif, and so on, until either #else or #endif is reached. The optional
#else is used as an alternative condition for which all previous tests
have proved false. The #endif ends the conditional sequence.

The processed section can contain further conditional clauses, nested
to any depth; each #if must be carefully balanced with a closing
#endif.
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The net result of the above scenario is that only one section (possibly
empty) is passed on for further processing. The bypassed sections are
relevant only for keeping track of any nested conditionals, so that
each #if can be matched with its correct #endif.

The constant expressions to be tested must evaluate to a constant
integral value.

The operator defined

The defined operator offers an alternative, more flexible way of
testing whether combinations of identifiers are defined or not. It is
valid only in #if and #elif expressions.

The expression defined(identifier) or defined identifier (parentheses are
optional) evaluates to 1 (true) if the symbol has been previously
defined (using #define) and has not been subsequently undefined
(using #undef); otherwise, it evaluates to O (false). So the directive

$1f defined(mysym)
is the same as
$ifdef mysym

The advantage is that you can use defined repeatedly in a complex
expression following the #if directive, such as

#1f defined(mysym) && !defined(yoursym)

The #ifdef and #ifndef The #ifdef and #ifndef conditional directives let you test whether an

conditional directives identifier is currently defined or not, that is, whether a previous
#define command has been processed for that identifier and is still in
force. The line

$ifdef identifier
has exactly the same effect as
#f 1
if identifier is currently defined, and the same effect as
#1£ 0
if identifier is currently undefined.
#ifndef tests true for the “not-defined” condition, so the line
$ifndef identifier

has exactly the same effect as
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HE O

if identifier is currently defined, and the same effect as
Hf 1

if identifier is currently undefined.

The syntax thereafter follows that of the #if, #elif, #else, and #endif
given in the previous section.

An identifier defined as NULL is considered to be defined.

The #line line

control directive  You can use the #line command to supply line numbers to a program
for cross-reference and error reporting. If your program consists of
sections derived from some other program file, it is often useful to
mark such sections with the line numbers of the original source rather
than the normal sequential line numbers derived from the composite
program. The syntax is

#line integer_constant <“filename”>

indicating that the following source line originally came from line
number integer_constant of filename. Once the filename has been reg-
istered, subsequent #line commands relating to that file can omit the
explicit filename argument. For example,

The inclusion of stdio.h /* TEMP.C: An example of the #line directive */
means that the preprocessor )
output will be somewhat #include <stdio.h>
large.

#line 4 “junk.c"
void main()
{

printf(" in line %d of %s", ILINE , FILE );
#line 12 “temp.c"

printf("\n");

printf(" in line %d of %s", LINE_ , FILE );
#line 8

printf("\n");

printf(" in line %d of %s", LINE , FILE );
}

If you run TEMP.C through CPP (cpp temp), you'll get an output file
TEMP.]; it should look like this:

temp.c 1:

c:\borland\tc\cpp\include\stdio.h 1:
c:\borland\tc\cpp\include\stdio.h 2:
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We ve eliminated most of the
stdio.h portion.

The #error
directive

c:\borland\tc\cpp\include\stdio.h 3:

c:\borland\tc\cpp\include\stdio.h 212:
c:\borland\tc\cpp\include\stdio.h 213:

temp.c 2:

temp.c 3:

junk.c 4: void main()

junk.c 5: {

junk.c 6: printf(" in line %d of %s",6,"junk.c");
junk.c 7:

temp.c 12: printf("\n");

temp.c 13: printf(" in line %d of $%s",13,"temp.c");
temp.c 14:

temp.c 8: printf("\n");

temp.c 9: printf(" in line %d of %s",9,"temp.c");
temp.c 10: }

temp.c 11:

If you then compile TEMP.C, you’ll get the output shown here:

in line 6 of junk.c
in line 13 of temp.c
in line 9 of temp.c

Macros are expanded in #line arguments as they are in the #include
directive.

The #line directive is primarily used by utilities that produce C code
as output, and not in human-written code.

The #error directive has the following syntax:
#error errmsg

This generates the message:
Error: filename line# : Error directive: errmsg

This directive is usually embedded in a preprocessor conditional that
catches some undesired compile-time condition. In the normal case,
that condition will be false. If the condition is true, you want the
compiler to print an error message and stop the compile. You do this
by putting an #error directive within a conditional that is true for the
undesired case.

For example, suppose you #define MYVAL, which must be either 0 or
1. You could then include the following conditional in your source
code to test for an incorrect value of MYVAL:
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The #pragma
directive

#pragma argsused

#pragma exit and
#pragma startup

$if (MYVAL != 0 && MYVAL != 1)
ferror MYVAL must be defined to either 0 or 1
fendif

The #pragma directive permits implementation-specific directives of
the form:

#pragma directive-name

With #pragma, Turbo C++ can define whatever directives it desires
without interfering with other compilers that support #pragma. If the
compiler doesn’t recognize directive-name, it ignores the #pragma
directive without any error or warning message.

Turbo C++ supports the following #pragma directives:

m #pragma argsused
m #pragma exit

m #pragma inline

m #pragma option

W #pragma saveregs
m #pragma startup
W #pragma warn

The argsused pragma is only allowed between function definitions,
and it affects only the next function. It disables the warning message:

"Parameter name is never used in function func-name"

These two pragmas allow the program to specify function(s) that
should be called either upon program startup (before main is called),
or program exit (just before the program terminates through _exit).

The syntax is as follows:

#pragma exit function-name <priority>
#pragma startup function-name <priority>

The specified function-name must be a previously declared function
taking no arguments and returning void; in other words, it should be
declared as

void func(void);
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The optional priority parameter should be an integer in the range 64 to
255. The highest priority is 0. (Priorities from 0 to 63 are used by the C
libraries, and should not be used by the user.) Functions with higher
priorities are called first at startup and last at exit. If you don’t specify
a priority, it defaults to 100. For example,

#include <stdio.h>

void startFunc(void)
{

printf(“Startup function.\n");
}

#pragma startup startFunc 64
/* priority 64 --> called first at startup */

void exitFunc(void)
{

printf("Wrapping up execution.\n");
}

#pragma exit exitFunc

/* default priority is 100 */
void main(void)

{

printf("This is main.\n");

}

Note that the function name used in pragma startup or exit must be
defined (or declared) before the pragma line is reached.

#pragmainline This directive is equivalent to the -B command-line compiler option
or the integrated environment option. It tells the compiler that there is
inline assembly language code in your program (see Chapter 6,
“Interfacing with assembly language”). The syntax is

#pragma inline

This is best placed at the top of the file, since the compiler restarts
itself with the =B option when it encounters #pragma inline. Actually,
you can leave off both the —B option and the #pragma inline directive,
and the compiler will restart itself anyway as soon as it encounters
asm statements. The purpose of the option and the directive is to save
some compilation time.
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#pragma option  Use #pragma option to include command-line options within your

program code. The syntax is
#pragma option [options...]

options can be any command-line option (except those listed in the
following paragraph). Any number of options can appear in one
directive.

Options that cannot appear in a pragma option include:
m -B (compile using assembly)

m —¢ (compile, but don’t link)

m —dxxx (define a macro)

m -Dxxx = ccc (define a macro with text)

m —efff (name .EXE file fff)

m -Ifff (name include directory)

m —Lfff (name library directory)

m -lxset (linker option x)

m —M (create a .MAP file in link)

m —o overlays

u-Q EMS

m -S (create .ASM output and stop)

m -Uxxx (undefine a macro)

m -V (virtual)

m-Y (overlays)
The compile proceeds in two states. You can include more options in a

#pragma option during the first state than during the second state.
The first state is called parsing-only; the second is the coding state.

Using any macro name that begins with two underscores (and is
therefore a possible built-in macro) in an #if, #ifdef, #ifndef or #elif
directive changes the compiler to coding state.

The occurrence of the first real token (the first C declaration) also
changes the state to coding.

In other words, you can use #pragmas, #includes, #define, and some
#ifs during the parsing-only state. During this phase, you can use
#pragma option to change the command-line options.
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Options which can appear in #pragma options only during the
parsing-only state include:

m -Efff (assembler name string)

m —f* (any floating-point option except —ff)
m —i# (significant identifier chars)

m -m*(any memory model option)

m -nddd (output directory)

m —offf (output file name fff)

m -U (use underbars on cdecl names)

m -z* (any segment name option)

Other options can be changed anywhere. The following options will
only affect the compiler if they get changed between functions or

object declarations:

-1 Instruction set control.

-2 Instruction set control.

-a Alignment control. (Note that alignment of structure
members is determined at the point of the structure
definition, not when later objects use the structure.)

—ff Fast floating-point control.

-G Generate code for speed.

-k Standard stack frame control.

-N Stack checking control.

-0 Optimization control.

Pascal calling convention default.

-r and —rd Register variable control.

-v Verbose debugging control.

-y Line information control.
The following options can be changed at any time and take effect
immediately:

-A Keyword control.

-C Nested comment control.

—d Merge duplicate strings.

-gn Stop after n warnings.

—in Stop after n errors.

-K char type is unsigned.

WXXX Warning (same as #pragma warn).

Any of the toggle options (such as —a or -K) can be turned on and off
as on the command line. They can additionally appear followed by a
dot (.) to reset the option to its command-line state.
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#pragma saveregs

#pragma warm

Predefined
MACros

__CDECL__

The saveregs pragma guarantees that a huge function will not change
the value of any of the registers when it is entered. This directive is
sometimes needed for interfacing with assembly language code. The
directive should be placed immediately before the function definition.
It applies to that function alone.

The warn directive lets you override specific ~-wxxx command-line
options (or check Display Warnings in the Options | Compiler |
Messages dialog box).

For example, if your source code contains the directives

#pragma warn +xxx
#pragma warn -yyy
#pragma warn .zzz

the xxx warning will be turned on (even if on the Options | Compiler |
Messages menu it was toggled to Off), the yyy warning will be turned
off, and the zzz warning will be restored to the value it had when
compilation of the file began.

A complete list of the three-letter abbreviations and the warnings to
which they apply is given in Chapter 4, “The command-line
compiler,” in the User’s Guide.

Turbo C++ predefines the following global identifiers. Except for
_ _cplusplus, each of these starts and ends with two underscore
characters (_ _). These macros are also known as manifest constants.

This macro is specific to Turbo C++. It signals that the —p flag was not
used (Calling Convention...C): Set to the integer constant 1 if —p was
not used; otherwise, undefined.

The following six symbols are defined based on the memory model
chosen at compile time.

__COMPACT__ __MEDIUM__
_ HUGE_ _ _ SMALL__
_LARGE__ TINY

Only one is defined for any given compilation; the others, by defini-
tion, are undefined. For example, if you compile with the small
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model, the __SMALL_ _ macro is defined and the rest are not, so that
the directive

§if defined( SMALL )
will be true, while
#if defined(_ _HUGE_ )

(or any of the others) will be false. The actual value for any of these
defined macros is 1.

_ _cplusplus  This macro is specific to Turbo C++. This allows you to write a
module that will be compiled sometimes as C and sometimes as C++.
Using conditional compilation, you can control which C and C++
parts are included.

__DATE__ This macro provides the date the preprocessor began processing the
current source file (as a string literal).

Each inclusion of _ _DATE_ _ in a given file contains the same value,
regardless of how long the processing takes. The date appears in the

format mmm dd yyyy, where mmm equals the month (Jan, Feb, and so
forth), dd equals the day (1 to 31, with the first character of dd a blank
if the value is less than 10), and yyyy equals the year (1990, 1991, and

so forth).

_FILE_ _  This macro provides the name of the current source file being pro-
cessed (as a string literal). This macro changes whenever the compiler
processes an #include directive or a #line directive, or when the
include file is complete.

_LINE_ _  This macro provides the number of the current source-file line being
processed (as a decimal constant). Normally, the first line of a source
file is defined to be 1, through the #line directive can affect this. See

page 144 for information on the #line directive.

_MSDOS__  This macro is specific to Turbo C++. It provides the integer constant 1
for all compilations.
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_ _OVERLAY_ _

__PASCAL_ _

_SIDC_

—_TIME_

_ _TURBOC_ _

This macro is specific to Turbo C++. It is predefined to be 1 if you
compile a module with the =Y option (enable overlay support). If you
don’t enable overlay support, this macro is undefined.

This macro is specific to Turbo C++. It signals that the —p flag has been
used. The macro is set to the integer constant 1 if the —p flag is used;
otherwise, it remains undefined.

This macro is defined as the constant 1 if you compile with the ANSI
compatibility flag (-A or ANSI Keywords Only...On); otherwise, the
macro is undefined.

This macro keeps track of the time the preprocessor began processing
the current source file (as a string literal).

As with _ _DATE_ _, each inclusion of _ _TIME_ _ contains the same
value, regardless of how long the processing takes. It takes the format
hh:mm:ss, where hh equals the hour (00 to 23), mm equals minutes (00
to 59), and ss equals seconds (00 to 59).

This macro is specific to Turbo C++. It gives the current Turbo C++
version number, a hexadecimal constant. For example, version 1.0 is
0x0100.
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Run-fime library cross-reference

In C++, you must always use
profotypes.See page 60 for
more information on function
profotypes.

This chapter is an overview of the Turbo C++ library routines and
include files.

In this chapter, we

m explain why you might want to obtain the source code for the
Turbo C++ run-time library

m list and describe the header files

m summarize the different categories of tasks performed by the
library routines

Turbo C++ comes equipped with over 450 functions and macros
that you call from within your C programs to perform a wide
variety of tasks, including low- and high-level I/O, string and file
manipulation, memory allocation, process control, data conver-
sion, mathematical calculations, and much more. These functions
and macros, called library routines, are individually documented
in the Library Reference.

Turbo C++' routines are contained in the library files (Cx.LIB,
CPx.LIB, MATHx.LIB, and GRAPHICS.LIB). Because Turbo C++
supports six distinct memory models, each model except the tiny
model has its own library file and math file, containing versions of
the routines written for that particular model. (The tiny model
shares the small model’s library and math files.)

Turbo C++ implements the latest ANSI C standard which, among
other things, allows (and strongly recommends) function
prototypes to be given for the routines in your C programs. All of
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Turbo C++'s library routines are declared with prototypes in one
or more header files.

Reasons to access the run-time library source code

154

The Turbo C++ run-time library contains over 450 functions, cov-
ering a broad range of areas: low-level control of your IBM PC,
interfacing with DOS, input/output, process management, string
and memory manipulations, math, sorting and searching, and so
on. There are several good reasons why you may wish to obtain
the source code for these functions:

m You may find that a particular Turbo C++ function you want to
write is similar to, but not the same as, a function in the library.
With access to the run-time library source code, you can tailor
the library function to your own needs, and avoid having to
write a separate function of your own.

m Sometimes, when you are debugging code, you may wish to
know more about the internals of a library function. Having the

source code to the run-time library would be of great help in
this situation.

m When you can’t figure out what a library function is really sup-
posed to do, it’s useful to be able to take a quick look at that
function’s source code.

® You may want to eliminate leading underscores on C symbols.

Access to the run-time library source code will let you eliminate
them.

® You can learn a lot from studying tight, professionally written
library source code.

For all these reasons, and more, you will want to have access to
the Turbo C++ run-time library source code. Because Borland be-
lieves strongly in the concept of “open architecture,” we have
made the Turbo C++ run-time library source code available for li-
censing. All you have to do is fill out the order form distributed
with your Turbo C++ package, include your payment, and we'll
ship you the Turbo C++ run-time library source code.
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The Turbo C++ header files

Header files defined by ANSI Header files, also called include files, provide function prototype
C are marked assuch with & gaclarations for library functions. Data types and symbolic con-

comment in the margin. C++

header files are also marked  Stants used with the library functions are also defined in them,
inthe margin.  along with global variables defined by Turbo C++ and by the
library functions. The Turbo C++ library follows the ANSI C
standard on names of header files and their contents.

alloc.h

ANSIC  assert.h

w bed.h

bios.h

w complex.h

conio.h

ANSIC Ctype_h

dirh
dos.h

ANSIC  errno.h
fentl.h

ANSIC  floath

@} fstream.h
w generich

graphics.h

io.h

Chapter 2, Run-time library cross-reference

Declares memory management functions (alloca-
tion, deallocation, etc.).

Defines the assert debugging macro.

Declares the C++ class bed and the overloaded
operators for bed and bed math functions.

Declares various functions used in calling IBM-
PC ROM BIOS routines.

Declares the C++ complex math functions.

Declares various functions used in calling the
DOS console I/0 routines.

Contains information used by the character
classification and character conversion macros
(such as isalpha and toascii).

Contains structures, macros, and functions for
working with directories and path names.

Defines various constants and gives declarations
needed for DOS and 8086-specific calls.

Defines constant mnemonics for the error codes.

Defines symbolic constants used in connection
with the library routine open.

Contains parameters for floating-point routines.

Declares the C++ stream classes that support file
input and output.

Contains macros for generic class declarations.
Declares prototypes for the graphics functions.

Contains structures and declarations for low-level
input/output routines.
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@-}} iomanip.h
@} iostream.h

ANSIC

ANSIC

ANSIC

ANSIC

ANSIC

ANSI C

ANSIC
ANSIC

limits.h

locale.h

math.h

mem.h
process.h

setjmp.h

share.h

signal.h

stdarg.h

stddef.h
stdio.h

w stdiostr.h

Declares the C++ streams I/O manipulators and
contains macros for creating parameterized
manipulators.

Declares the basic C++ (version 2.0) streams (I/0)
routines.

Contains environmental parameters, information
about compile-time limitations, and ranges of
integral quantities.

Declares functions that provide country- and
language-specific information.

Declares prototypes for the math functions; also
defines the macro HUGE_VAL, and declares the
exception structure used by the matherr routine.

Declares the memory-manipulation functions.
(Many of these are also defined in string.h.)

Contains structures and declarations for the
spawn... and exec... functions.

Defines a type jmp_buf used by the longjmp and
setjmp functions and declares the routines
longjmp and setjmp.

Defines parameters used in functions that make
use of file-sharing.

Defines constants and declarations for use by the
signal and raise functions.

Defines macros used for reading the argument list
in functions declared to accept a variable number
of arguments (such as vprintf, vscanf, etc.).

Defines several common data types and macros.

Defines types and macros needed for the
Standard I/0 Package defined in Kernighan and
Ritchie and extended under UNIX System V.
Defines the standard I/O predefined streams
stdin, stdout, stdprn, and stderr, and declares
stream-level I/O routines.

Declares the C++ stream classes for use with stdio
FILE.structures.
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ANSIC  stdlib.h Declares several commonly used routines:
conversion routines, search/sort routines, and
other miscellany.

w stream.h Declares the C++ (version 1.2) streams (I/O)
routines.

ANSIC  string.h Declares several string-manipulation and
memory-manipulation routines.

w strstrea.h Declares the C++ stream classes for use with byte
arrays in memory.

sys\stat.h Defines symbolic constants used for opening and
creating files.
sys\timeb.h  Declares the function ftime and the structure
timeb that ftime returns.
sys\types.h  Declares the type time_t used with time functions.
ANSIC  time.h Defines a structure filled in by the time-

conversion routines asctime, localtime, and
gmtime, and a type used by the routines ctime,
difftime, gmtime, localtime, and stime; also
provides prototypes for these routines.

values.h Defines important constants, including machine
dependencies; provided for UNIX System V
compatibility.

Library routines by category

Classification
routines

The Turbo C++ library routines perform a variety of tasks. In this
section, we list the routines, along with the include files in which
they are declared, under several general categories of task per-
formed. For complete information about any of the functions
below, see the function entry in Chapter 1, “The run-time library,”
in the Library Reference.

These routines classify ASCII characters as letters, control
characters, punctuation, uppercase, etc.

isalnum (ctype.h) isascii  (ctype.h) isdigit  (ctype.h)
isalpha (ctype.h) iscntrl  (ctype.h) isgraph  (ctype.h)
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islower (ctype.h) ispunct  (ctype.h) isupper (ctype.h)
isprint  (ctype.h) isspace (ctype.h) isxdigit (ctype.h)

Conversion

roufines These routines convert characters and strings from alpha to
different numeric representations (floating-point, integers, longs)
and vice versa, and from uppercase to lowercase and vice versa.

atof (stdlib.h)  itoa (stdlibh)  _tolower (ctype.h)
atoi (stdlib.h)  ltoa (stdlib.h)  tolower  (ctype.h)
atol (stdlib.h) strtod (stdlib.h)  _toupper (ctype.h)
ecvt (stdlib.h) strtol (stdlib.h) toupper  (ctype.h)
fovt (stdlib.h)  strtoul (stdlib.h)  ultoa (stdlib.h)
gevt (stdlib.h)  toascii (ctype.h)

Directory control
routines  These routines manipulate directories and path names.

chdir (dirh) fnsplit (dir.h) mkdir (dirh)
findfirst  (dirh) getcurdir (dirh) mktemp  (dirh)
findnext (dirh) getcwd (dirh) rmdir (dirh)
fnmerge (dirh) getdisk (dirh) searchpath (dirh)

setdisk (dir.h)

Diagnostic
routines These routines provide built-in troubleshooting capability.

assert (assert.h)
matherr (math.h)
perror (errno.h)

Graphics routines
These routines let you create onscreen graphics with text.

arc (graphics.h) fillellipse (graphics.h)
bar (graphics.h) fillpoly (graphics.h)
bar3d (graphics.h) floodfill (graphics.h)
circle (graphics.h) getarccoords (graphics.h)
cleardevice (graphics.h) getaspectratio (graphics.h)
clearviewport (graphics.h) getbkcolor (graphics.h)
closegraph (graphics.h) getcolor (graphics.h)
detectgraph (graphics.h) getdefaultpalette  (graphics.h)
drawpoly (graphics.h) getdrivername (graphics.h)
ellipse (graphics.h) getfillpattern (graphics.h)
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getfillsettings (graphics.h) outtext (graphics.h)

getgraphmode (graphics.h) outtextxy (graphics.h)
getimage (graphics.h) pieslice (graphics.h)
getlinesettings (graphics.h) putimage (graphics.h)
getmaxcolor (graphics.h) putpixel (graphics.h)
getmaxmode (graphics.h) rectangle (graphics.h)
getmaxx (graphics.h) registerbgidriver  (graphics.h)
getmaxy (graphics.h) registerbgifont (graphics.h)
getmodename (graphics.h) restorecrtmode  (graphics.h)
getmoderange (graphics.h) sector (graphics.h)
getpalette (graphics.h) setactivepage (graphics.h)
getpalettesize (graphics.h) setallpalette (graphics.h)
getpixel (graphics.h) setaspectratio (graphics.h)
gettextsettings (graphics.h) setbkcolor (graphics.h)
getviewsettings  (graphics.h) setcolor (graphics.h)
getx (graphics.h) setcursortype (conio.h)

gety (graphics.h) setfillpattern (graphics.h)
graphdefaults (graphics.h) setfillstyle (graphics.h)

grapherrormsg (graphics.h) setgraphbufsize  (graphics.h)
_graphfreemem  (graphics.h) setgraphmode (graphics.h)

_graphgetmem (graphics.h) setlinestyle (graphics.h)
graphresult (graphics.h) setpalette (graphics.h)
imagesize (graphics.h) setrgbpalette (graphics.h)
initgraph (graphics.h) settextjustify (graphics.h)
installuserdriver  (graphics.h) settextstyle (graphics.h)
installuserfont (graphics.h) setusercharsize  (graphics.h)
line (graphics.h) setviewport (graphics.h)
linerel (graphics.h) setvisualpage (graphics.h)
lineto (graphics.h) setwritemode (graphics.h)
moverel (graphics.h) textheight (graphics.h)
moveto (graphics.h) textwidth (graphics.h)

Input/output

roufines These routines provide stream-level and DOS-level I/O

capability.
access (io.h) Creatnew (io.h)
cgets (conio.h) creattemp (io.h)
_chmod (io.h) cscanf (conio.h)
chmod (io.h) dup (io.h)
chsize (io.h) dup2 (io.h)
clearerr (stdio.h) eof (io.h)
_close (io.h) fclose (stdio.h)
close (io.h) fcloseall (stdio.h)
cprintf (conio.h) fdopen (stdio.h)
cputs (conio.h) feof (stdio.h)
_creat (io.h) ferror (stdio.h)
Creat (io.h) fflush (stdio.h)
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Inferface routines
(DOS, 8086, BIOS)
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fgetc
fgetchar
fgetpos
fgets
filelength
fileno
flushall
fopen
fprintf
fputc
fputchar
fputs
fread
freopen
fscanf
fseek
fsetpos
fstat
ftell
fwrite
getc
getch
getchar
getche
getftime
getpass
gets
getw
ioctl
isatty
kbhit
lock
Iseek
_open
open
perror

(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(io.h)

(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(sys\stat
(stdio.h)
(stdio.h)
(stdio.h)
(conio.h)
(stdio.h)
(conio.h)
(io.h)

(conio.h)
(stdio.h)
(stdio.h)
(io.h)

(io.h)

(conio.h)
(io.h)

(io.h)

(io.h)

(io.h)

(stdio.h)

.h)

printf
putc
putch
putchar
puts
putw
_read
read
remove
rename
rewind
scanf
setbuf
setcursortype
setftime
setmode
setvbuf
sopen
sprintf
sscanf
stat
_strerror
strerror
tell
tmpfile
tmpnam
ungetc
ungetch
unlock
viprintf
viscanf
vprintf
vscanf

" vsprintf

vsscanf
_write

(stdio.h)
(stdio.h)
(conio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(io.h)
(io.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(conio.h)
(io.h)
(io.h)
(stdio.h)
(io.h)
(stdio.h)
(stdio.h)
(sys\stat.h)
(string.h, stdio.h)
(stdio.h)
(io.h)
(stdio.h)
(stdio.h)
(stdio.h)
(conio.h)
(io.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(stdio.h)
(io.h)
(io.h)

These routines provide DOS, BIOS and machine-specific

capabilities.

absread
abswrite
bdos
bdosptr
bioscom
biosdisk
biosequip

(dos.h)
(dos.h)
(dos.h)
(dos.h)
(bios.h)
(bios.h)
(bios.h)

bioskey (bios.h) dosexterr (dos.h)
biosmemory (bios.h) enable (dos.h)
biosprint (bios.h) FP_OFF (dos.h)
biostime (bios.h) FP_SEG (dos.h)
country (dos.h) freemem (dos.h)
ctribrk (dos.h)  geninterrupt (dos.h)
disable (dos.h)  getcbrk (dos.h)
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getdfree (dos.h)
getdta (dos.h)
getfat (dos.h)
getfatd (dos.h)
getpsp (dos.h)
getvect (dos.h)
getverify (dos.h)
harderr (dos.h)
hardresume (dos.h)
hardretn (dos.h)
inport (dos.h)
inportb (dos.h)

int86
int86x
intdos
intdosx
intr
keep
MK_FP
outport
outportb
parsfnm
peek
peekb

(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)

poke
pokeb
randbrd
randbwr
segread
setcbrk
setdta
setvect
setverify
sleep
unlink

(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)
(dos.h)

Manipulation

routines These routines handle strings and blocks of memory: copying,
comparing, converting, and searching.

memccpy (mem.h, string.h)
memchr  (mem.h, string.h)
memcmp (mem.h, string.h)
memcpy (mem.h, string.h)
memicmp (mem.h, string.h)
memmove (mem.h, string.h)
memset (mem.h, string.h)
movedata (mem.h, string.h)
movmem (mem.h, string.h)

setmem  (mem.h)
stpcpy (string.h)

strcat (string.h)
strchr (string.h)
stremp (string.h)
streoll (string.h)

strcpy (string.h)
strecspn  (string.h)
strdup (string.h)
strerror  (string.h)

stricmp
stricmpi
strlen
striwr
strncat
strnemp
strncmpi
strncpy
strnicmp
strnset
strpbrk
strrchr
strrev
strset
strspn
strstr
strtok
strupr
strxfrm

(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)
(string.h)

Math routines

These routines perform mathematical calculations and

conversions.

abs (complex.h, stdlib.h)
acos (complex.h, math.h)
arg (complex.h)

asin (complex.h, math.h)
atan (complex.h, math.h)
atan2 (complex.h, math.h)
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atof
atoi
atol
bed
cabs
ceil

(stdlib.h, math.h)

(stdlib.h)
(stdlib.h)
(bed.h)

(math.h)
(math.h)
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_clear87 (float.h) Itoa (stdlib.h)

complex (complex.h) _matherr (math.h)

conj (complex.h) matherr (math.h)
_control87 (float.h) modf (math.h)

cos (complex.h, math.h) norm (complex.h)

cosh (complex.h, math.h) polar (complex.h)

div (math.h) poly (math.h)

ecvt (stdlib.h) pow (complex.h, math.h)
exp (math.h) pow10 (math.h)

fabs (math.h) rand (stdlib.h)

fevt (stdlib.h) random (stdlib.h)

floor (math.h) randomize (stdlib.h)

fmod (math.h) real (complex.h)
_fpreset (float.h) _rotl (stdlib.h)

frexp (math.h) _rotr (stdlib.h)

gevt (stdlib.h) sin (complex.h, math.h)
hypot (math.h) sinh (complex.h, math.h)
imag (complex.h) sqrt (complex.h, math.h)
itoa (stdlib.h) srand (stdlib.h)

labs (stdlib.h) _status87  (float.h)

Idexp (math.h) strtod (stdlib.h)

Idiv (math) strtol (stdlib.h)

log (complex.h, math.h) strtoul (stdlib.h)

log10 (complex.h, math.h)  tan (complex.h, math.h)
_lrotl (stdlib.h) tanh (complex.h, math.h)
_lrotr (stdlib.h) ultoa (stdlib.h)

Memory routines

These routines provide dynamic memory allocation in the small-
data and large-data models.

allocmem (dos.h) farrealioc (alloc.h)
brk (alloc.h) free (alloc.h,
calloc (alloc.h) stdlib.h)
coreleft (alloc.h, heapcheck (alloc.h)

stdlib.h) heapcheckfree (alloc.h)
farcalloc (alloc.h) heapchecknode (alloc.h)
farcoreleft (alloc.h) heapwalk (alloc.h)
farfree (alloc.h) malloc (alloc.h,
farheapcheck (alloc.h) stdlib.h)
farheapcheckfree  (alloc.h) realloc (alloc.h,
farheapchecknode (alloc.h) stdlib.h)
farheapfillfree (alloc.h) sbrk (alloc.h)
farheapwalk (alloc.h) setblock (dos.h)
farmalloc (alloc.h)
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Miscellaneous
routines  These routines provide nonlocal goto capabilities, sound effects,

and locale.

delay (dos.h) setjmp (setjmp.h)
localeconv (locale.h) setlocale (locale.h)
longjmp (setjmp.h) sound (dos.h)

nosound (dos.h)

Process control
routines These routines invoke and terminate new processes from within

another.

abort (process.h) execvp  (process.h) spawnl (process.h)
execl (process.h) execvpe (process.h) spawnle (process.h)
execle (process.h)  _exit (process.h)  spawnlp (process.h)
execlp (process.h)  exit (process.h)  spawnlpe (process.h)
execlpe (process.h) getpid (process.h) spawnv  (process.h)
execv (process.h)  raise (signal.h) spawnve (process.h)
execve  (process.h)  signal (signal.h) spawnvp (process.h)

spawnvpe (process.h)

Standard routines
These are standard routines.

abort (stdlib.h) exit (stdlib.h) malloc  (stdlib.h)
abs (stdlib.h) fevt (stdlib.h) putenv  (stdlib.h)
atexit (stdlib.h) free (stdlib.h) qsort (stdlib.h)
atof (stdlib.h) gevt (stdlib.h) rand (stdlib.h)
atoi (stdlib.h) getenv  (stdlib.h) realloc  (stdlib.h)
atol (stdlib.h) itoa (stdlib.h) srand (stdlib.h)
bsearch (stdlib.h) labs (stdlib.h) strtod (stdlib.h)
calloc  (stdlib.h) Ifind (stdlib.h) strtol (stdlib.h)
ecvt (stdlib.h) Isearch  (stdlib.h) swab (stdlib.h)
_exit (stdlib.h) Itoa (stdlib.h) system  (stdlib.h)

Text window
display routines These routines output text to the screen.
cireol (conio.h) gotoxy (conio.h)
clrscr (conio.h) highvideo (conio.h)
delline (conio.h) insline (conio.h)
gettext (conio.h) lowvideo (conio.h)
gettextinfo (conio.h) movetext (conio.h)
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normvideo (conio.h) textcolor (conio.h)

puttext (conio.h) textmode (conio.h)
setcursortype (conio.h) wherex (conio.h)
textattr (conio.h) wherey (conio.h)
textbackground  (conio.h) window (conio.h)

Time and date
routines These are time conversion and time manipulation routines.

asctime (time.h) mktime (time.h)
ctime (time.h) setdate (dos.h)
difftime (time.h) settime (dos.h)
dostounix (dos.h) stime (time.h)
ftime (sys\timeb.h) stritime  (time.h)
getdate (dos.h) time (time.h)
gettime (dos.h) tzset (time.h)
gmtime  (time.h) unixtodos (dos.h)

localtime (time.h)

Variable

argument list  These routines are for use when accessing variable argument lists
routines (such as with vprintf, etc).

va_arg (stdarg.h)
va_end (stdarg.h)
va_start (stdarg.h)
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C++ streams

This chapter gives you a brief overview of C++ stream I/0.
Stream I/O in C++ is used to convert typed objects into readable
text, and vice versa. It allows you to define input/output func-
tions which are then used automatically for corresponding user-
defined types. Further examples can be found in Chapter 5, “A
C++ primer,” in Getting Started; the bibliography in that book
offers some titles for more advanced study.

New streams for old

Turbo C++ supports both the original C++ stream library and the
new enhanced iostream library of C++ release 2.0. Having both
versions will help you if you have programs written under the old
conventions and need to use Turbo C++ while you make the tran-
sition to the more efficient release 2.0 iostreams. We strongly
recommend that all new code should be written using the release
2.0 iostream library. While providing some material on making
the transition to 2.0 streams (starting on page 184), this chapter is
primarily devoted to the release 2.0 iostream classes and methods.

Using the 2.0 streams

The release 2.0 iostream enhancements, while for the most part
upwardly compatible with the older C++ version, offer new
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What's a stream?

166

The iostream
library

opportunities through the use of multiple inheritance and other
C++ release 2.0 features.

For a discussion of the differences between old streams and new
iostreams, and for guidelines for converting from the old streams
to the new, see “Using the older streams” and “Guidelines for
upgrading to 2.0 streams” at the end of this chapter.

The C++ stream concept is aimed at solving several problems
with the standard C I/0O library functions such as printf and
scanf. The latter, of course, are still available to C++ program-
mers, but the improved flexibility and elegance of C++ streams
makes the stdio.h library functions less attractive. The classes
associated with C++ streams offer you extensible libraries, so that
you can perform type-secure formatted I/O on both predefined
and user-defined data types using overloaded operators and other
object-oriented techniques.

To access stream I/0O, your program must include iostream.h.
Other header files may be needed for some stream functions. For
example, strstream.h is needed for in-memory formatting using
the classes istrstream and ostrstream. The header file strstream.h
also includes iostream.h. If you want fstreams, include fstream.h,
which also includes iostream.h. Conceivably, you could include
both fstream.h and strstream.h.

A stream is an abstraction referring to any flow of data from a
source (or producer) to a sink (or consumer). We also use the syno-
nyms extracting, getting, and fetching when speaking of inputting
characters from a source; and inserting, putting, or storing when
speaking of outputting characters to a sink.

Despite its name, a stream class can be used to format data in situ-
ations where input and output is not involved. You will see that
in-memory formatting is possible with arrays of characters and
other structures.

The iostream library has two parallel classes: streambuf, and ios.
Both are low-level classes, each doing a different set of jobs.
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The streambuf class provides general methods for buffering and
handling streams when little or no formatting is required.
streambuf is a useful base class employed by other parts of the
iostream library, though it is also available to derive classes for
your own functions and libraries. Most of streambuf’s member
functions (methods) are inline for maximum efficiency. The
classes strstreambuf and filebuf are derived from streambuf.

The class ios (and hence any of its derived classes) contains a
pointer to streambuf.

ios has two derived classes: istream (for input) and ostream (for
output). Another class, iostream, is derived from both istream
and ostream by multiple inheritance:

class ios;

class istream : virtual public ios;

class ostream : virtual public ios;

class iostream : public istream, public ostream;

In addition, there are three withassign classes derived from
istream, ostream, and iostream:

class istream withassign : public istream;
class ostream withassign : public ostream;
class iostream withassign : public iostream;

The stream classes

m The class ios contains state variables for handling the interface
with streambuf, and for error handling.

m The class istream supports both formatted and unformatted
conversions of character streams fetched from streambufs.

m The ostream class supports both formatted and unformatted
conversions of character streams stored into streambufs.

m The iostream class combines istream and ostream for bidirec-
tional operations where a single stream acts as source and sink.

m The withassign derived classes provide four predefined
“standard” streams: ¢in, cout, cerr, and clog, as explained in
the next section. The withassign classes add assignment
operators to their respective base classes as follows:

class istream withassign : public istream {
istream withassign();
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istreamé operator={(istreams);
istream& operator=(streambuf*);
}i
and similarly for ostream_withassign and
iostream_withassign.

A stream class is any class derived from istream or ostream.

The four standard

streadms C++ programs start with four predefined open streams, declared
as objects of withassign classes in iostream.h as follows:

extern istream withassign cin;
extern ostream withassign cout;
extern ostream withassign cerr;
extern ostream withassign clog;

Their constructors are called each time iostream.h is included, but
the actual initialization is performed just once.

The four standard streams are as follows:

Corresponds to stdin. cin The standard input (file descriptor 0).
Corresponds to stdout. cout The standard output (file descriptor 1).
Corresponds fo stderr. cerr  The standard error output (file descriptor 2). cerr is

unit buffered, flushed after each insertion.
clog  This stream is a fully buffered version of cetr.

As in C, you can reassign these standard names to other files or
character buffers after program startup.

Qutput

Stream output is accomplished with the insertion or put to opera-
tor, <<. The standard left shift operator, <<, is overloaded for out-
put operations. Its left operand is an object of type class ostream.
Its right operand is any type for which stream output has been
defined (more about this later). Stream output is predefined for
built-in types. The << operator overloaded for type typeis called
the type inserter. For example,

cout << "Hello!\n";

writes the string “Hello!” to cout (the standard output stream,
normally your screen) followed by a newline. The << here is the
string or char* inserter.
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The << operator is left associative and returns a reference to the
ostream object for which it is invoked. This allows several in-
sertions to be cascaded as follows:

void function display(int i, double d)

{
cout << "i=" << i << ", d=" << d << "\n";

}
This will write something like
i=8,d=2.34

to your standard output.

Note that overloading does not change the normal precedence of

<<, S0 you can write
cout << “sum = " << xty << "\n";
without parentheses. However, in
cout << (x&y) << "\n";

the parentheses are needed.

The inserter types directly supported are: char (signed and un-

signed), short (signed and unsigned), int (signed and unsigned),

long (signed and unsigned), char* (treated as a string), float,
double, long double, and void*. Integral types are converted
according to the default rules for printf (unless you've changed
these rules by setting various ios flags). For example, given the
declarations int i; long 1;, the two statements

cout << 1 << " " 1;
printf("sd $1d", i, 1);

give the same result.

Similarly, floating-point types are converted according to the
printf default rules for the %g conversion. So, given the
declaration double d;, the statements

cout << d;
printf("sq", d);

produce identical results.
A pointer (void*) inserter is also predefined:

int 1 =1;
cout << &i; // display pointer in hex
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The put and write
functions
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The char inserter works as follows:

char ch = 'A’;
cout << ch; // displays A

To output binary data or a single character, you can use the
member function put declared in ostream as follows:

ostream& ostream;:put(char ch);

With the declaration int ch='x’;, the following two lines are
equivalent:

cout.put (ch);
cout << (char)ch;

The write member functions let you output larger objects:

ostreamé ostream::write(const signed char* ptr, int n);
ostreamé ostream::write(const unsigned char* ptr, int n);

The write functions output n characters (including any embedded
nulls) in binary format. Unlike the string inserter, write does not
terminate when meeting a null. For example,

cout.write((char *)&x, sizeof(x))

will send the raw binary representation of x to the standard
output.

There is a subtle difference between the formatted operator <<
and the unformatted put and write functions. The formatted
operator can cause flushing of tied streams, and can have a field
width associated with it. The unformatted operators do not. So
cout << ’a’ and cout put (‘a’) can produce different results. All
formatting flags apply to <<, but none apply to put or write.

Formatting for both input and output is determined by various
format state flags enumerated in the class ios. The states are
determined by bits in a long int as follows:

public:
enum {
skipws = 0x0001, // skip whitespace on input
left = 0x0002, // left-adjust output
right = 0x0004, // right-adjust output
internal = 0x0008, // pad after sign or base indicator
dec = 0x0010, // decimal conversion
oct = 0x0020, // octal conversion
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Conversion base

Width
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hex = 0x0040, // hexadecimal conversion

showbase = 0x0080, // show base indicator on output
showpoint = 0x0100, // show decimal point (fp output)
uppercase = 0x0200, // uppercase hex output

showpos = 0x0400, // show '+’ with positive integers
scientific = 0x0800, // use 1.2345E2 fp notation and E output
fixed = 0x1000, // use 123.45 fp notation

unitbuf = 0x2000, // flush all streams after insertion
stdio = 0x4000, // flush stdout, stderr after insertion

i

These flags, of course, are inherited by the derived classes
ostream and istream. In the absence of specific user action, the
format flags are set to give the default formatting shown in the
previous examples. Functions are available to set, test, and clear
the format flags, either individually or in related groups. Some
flags are automatically cleared after each output or input.

By default, integers are inserted in decimal notation. This can be
varied by setting the flag bits ios::dec, ios::oct, and ios::hex (see
“Manipulators” on page 172). If all are zero (the default), insertion
takes place in decimal.

The default for inserters is to output the minimum number of
characters needed to represent the right-hand operand. To vary
this default, you can use the convenient width functions:

int ios::width({int w); // set width field to w
// and return previous width

int ios::width(); // return current width -- no change

The default value for width is zero, which outputs without
padding. A nonzero width means that inserters will output at
least that many characters, padding if necessary to make up the
total width needed. Note that no truncation takes place: If the
width is less than the number of characters needed, it is ignored
(just as if width were set to zero). For example,

int i =123;

int old w = cout.width(6);

cout << i; // output bbbl23 where b=blank.
// width is then set to 0

cout.width(old_w); // restore previous width field

Notice that the width is cleared to zero after each formatted
insertion, so that in
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Manipulators

Manipulators with a
parameter are more

complicated, and require

172

iomanip.h.

int i, 3;

cout.width(4);
cout << 1 «< " " §;

the i would display at least four characters, but the space and the j
would display just the minimum needed.

A simpler way of changing the width state and other format vari-
ables is to use a special function-like operator called a manipulator.
Manipulators take a stream reference as argument and return a
reference to the same stream—so manipulators can be embedded
in a chain of insertions (or extractions) in order to alter stream
states as a side effect without actually performing any insertions
(or extractions). For example,

cout << setw(4) << 1 << setw(6) << j;
is equivalent to the more verbose

cout.width(4);
cout << i;
cout.width(6);
cout << j;

setw is a parameterized manipulator declared in iomanip.h. Other
parameterized manipulators, setbase, setfill, setprecision,
setiosflags and resetiosflags, work in the same way (see Table
3.1). To make use of these, your program must include iomanip.h.
You can write your own manipulators without parameters:

ostreams dingy( ostream& os)

{

return os << "\a\a";

}

cout << 1 << dingy << j;
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Table 3.1: Manipulators

Manipulator Syntax Action

dec outs << dec Set decimal conversion base format flag
ins >> dec

hex outs << hex Set hexadecimal conversion base format flag
ins >> hex

oct outs << oct Set octal conversion base format flag
ins >> oct

ws ins >> ws Extract whitespace characters

endl outs << endl Insert newline and flush stream

ends outs << ends Insert terminal null in string

flush outs << flush Flush an ostream

setbase(int) outs << setbase(n) Set conversion base format to base n (0, 8, 10, or 16). 0

resetiosflags(long)
setiosflags(long)
setfill(int)
setprecision(int)

setw(int)

ins >> resetiosflags(l)
outs << resetiosflags(l)

ins >> setiosflags(l)
outs << setiosflags(l)

ins >> setfill(n)
outs << setfill(n)

ins >> setprecision(n)
outs << setprecision(n)

ins >> setw(n)
outs << setw(n)

means the default: decimal on output, C rules for
literal integers on input.

Clear the format bits in ins or outs specified by
argument [.

Set the format bits in ins or outs specified by
argument L

Set the fill character to n.

Set the floating-point precision to z digits

Set field width ton

The non-parameterized manipulators dec, hex, and oct (declared
in ios.h) take no arguments and simply change the conversion
base (and leave it changed):

int 1 = 36;

cout << dec << 1 <« "
<< hex << 1« "
<< oct << i << endl;
// displays 36 24 44

The manipulator endl inserts a newline character and flushes the
stream. You can also the flush an ostream at any time with

ostream << flush;

Chapfter 3, C++ streams
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Filing and padding

User-defined inserters
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The fill character and the direction of the padding depend on the
setting of the fill character and the left, right, and internal flags.

The default fill character is a space. You can vary this by using the
function fill:

int 1 = 123;

cout.fill(’*');

cout.width(6);

cout << i; // display ***123

The default direction of padding gives right justification (pad on
the left). You can vary these defaults (and other format flags) with
the functions setf and unsetf:

int 1 = 56;

cout.width(6);
cout. f111("§");
cout.setf(ios::left,ios::adjustfield);
cout << i; // display Se#i##

The second argument, ios::adjustfield, tells setf which bits to set.
The first argument, ios::left, tells setf what to set those bits to.
Alternatively, you can use the manipulators setfill, setiosflags,
and resetiosflags to modify the fill character and padding mode
(see Table 3.1).

You can write inserters to output your own data types by
overloading the << operator. Suppose you have a type

struct info {
char *name;
double val;
char *units;

}i
You can overload << as follows:

ostream§ operator << (ostream& s, infos m)

{

s << m.name << " ¥ << m.val << " " << m.units;

}
The statements

info x;
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// initialize x here
cout << x;

would produce output like “capacity 1.25 liters”.

Stream input is similar to output but uses the overloaded right
shift operator, >>, known as the extraction (get from) operator, or
extractor. The >> operator provides a more compact and readable
alternative to the scanf family of functions in stdio (it’s also less
error-prone). The left operand of >> is an object of type class
istream. As with output, the right operand can be of any type for
which stream input has been defined.

All the built-in types listed earlier for output also have predefined
extraction operators. You are also free to overload >> for stream
input to your own data types. The >> operator overloaded for
type typeis called the type extractor. For example,

cin > x;

inputs a value from cin (the standard input stream, usually your
keyboard) to x. The conversion and formatting functions will
depend on the type of x, how its extractor is defined, and on the
settings of the format state flags.

By default, >> skips whitespace (as defined by the isspace fun-
ction in ctype.h), then reads in characters appropriate to the type
of the input object. Whitespace skipping is controlled by the
ios::skipws flag in the format state’s enumeration (see “Output
formatting” on page 170). The skipws flag is normally set to give
whitespace skipping. Clearing this flag (with setf, for example)
turns off whitespace skipping. Note also the special “sink”
manipulator, ws, that lets you discard whitespace (see Table 3.1).

As with <<, the >> operator is left associative and returns its left
operand. The left operand is a reference to the istream object for
which it is invoked. This allows several input operations to be
combined in one statement. Consider the following example:

int i;

double d;

cin > 1 > d;
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Extractors for built-in
types

Warning

The last line causes whitespace to be skipped; digits read from the
standard input (by default, your keyboard) are then converted to
internal binary form and saved in variable i; more whitespace is
skipped, and finally a floating-point number is read, converted,
and saved in variable d.

Extractors for the built-in types fall into three categories: integral,
floating point, and strings. Each is described in the following
sections. For all numeric types, if the first non-whitespace charac-
ter is not a digit or a sign (or a decimal point for floating-point
conversions), the stream enters the fail state (as described on page
177) and no further input will be done until the error condition is
cleared.

Integral exiractors

For types short, int, and long (signed and unsigned), the default
action of >> is to skip whitespace and convert an integral value,
reading input characters until one is found which cannot be part
of the legal representation of the type. The format of integral val-
ues recognized is the same as that of integer constants in C++,
excluding integer suffixes. (See page 11.)

If you specify hex, dec, or oct conversion, that is what you'll get.
0x10 becomes 0 in decimal or octal; 010 becomes 10 in decimal, 16
in hexadecimal.

Floating-point extractors

For types float and double, the effect of the >> operator is to skip
whitespace and convert a floating-point value, reading input
characters until one is found that cannot be part of a floating-
point representation. The format of floating-point values recog-
nized is the same as that of floating-point constants in C++,
excluding floating suffixes. (See page 16.)

Character extractors

For type char (signed or unsigned), the effect of the >> operator is
to skip whitespace and store the next (non-whitespace) character.

If you need to read the next character, whether it is whitespace or
not, you can use one of the get member functions:

char ch;
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Putback function

Chapter 3, C++ streams

cin.get(ch); // ch is set to next char in istream
// even if it’s a whitespace character

The get functions for input correspond to the put functions for
output. The following get variant offers control over the number
of characters extracted, where they are placed, and the termina-
ting character:

istream& istream::get(char *buf, int max, int term=’\n’);

This function reads characters from the input stream into the
character array buf until it has read max — 1 characters, or until it
encounters the terminating character given by term, whichever
comes first. A final null is appended automatically. The default
terminator (which need not be specified) is the newline character
('\n’). The terminator itself is not read into the buf array, nor is it
removed from the istream. The buf array must be at least max
chars.

Corresponding to the ostream write member function (see page
170), you can read “raw” binary data as follows:

cin.read ( (char*)s&x, sizeof(x) );

For type char* (treated as a string), the effect of the >> operator is
to skip whitespace and store the next (non-whitespace) characters
until another whitespace character is found. A final null (0) char-
acter is then appended. Care is needed to avoid “overflowing” a
string. The default width of zero (meaning no limit) can be altered
using setw as follows:

char array([SIZE];

// initialize array

cin.width(sizeof(array));

cin >> array; // avoids overflow
For all input with built-in types, if the end of input occurs before
any non-whitespace character is encountered, nothing is stored in
the target buf, and the istream state is set to “fail.” So, if the target
was uninitialized, it will still be uninitialized.
The member function

istreams istream::putback(char c);

pushes back just the character ¢ into the istream; if the character
can’t be put back, the state of the stream is set to “fail.” The fol-
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lowing simple routine reads a C++ identifier from the standard
input:

void getident (char *s /* where to put ident */)
{

char ¢ = 0; // quard against EOF
cin > ¢; // skip whitespace
if (isalpha(c) [l c =="'_")
do {
*stt+ = cj
c=0; // quard against EQOF
cin.get(c);
} while (isalnum(c) || c=="'_");
*s = 0; // terminate the string
if (c)

cin.putback(c); // we always get one too many

You can create extractors for your own defined types in the same
way as for inserters. Taking the structure information defined on
page 174, the operator >> can be overloaded as follows:

istream& operator >> (istreams s, info& m);
{

s >> m.name >> m.val >> m.units;

return s;

}

(In a real application, of course, you would add code to check for
input errors.) To read an input line such as “capacity 1.25 liters”
you would use a line such as

cin > m;

The streams cin, cout, cerr, and clog are initialized and opened at
program start, and then connected to their standard files. Initial-
izing (constructing) a stream means associating it with a stream
buffer. The ostream class has the constructor

ostream: :ostream(streambuf*);

which initializes the ios state variables and associates a stream
buffer with an ostream object. The istream constructor works in
the same way. In most cases, you need not be concerned with the
mechanics of buffering.

Turbo C++ Programmer’s Guide



The iostream library offers a variety of classes derived from
streambuf, ostream, and istream, allowing a wide choice of
methods for creating streams with different sources and sinks and
different buffering strategies.

Classes derived from streambuf are as follows:

filebuf filebuf supports I/O through file descriptors.
Member functions support the functions of
opening, closing, and seeking.

stdiobuf stdiobuf supports I/O via stdio FILE structures,
and is provided solely to allow compatibility
when mixing C++ code with existing C
programs.

strstreambuf strstreambuf lets you input and output charac-
ters from byte arrays in memory. Two
additional classes, istrstream and ostrstream,
provide formatted in-memory I/0.

Specialized classes for file I/O are derived as follows:

ifstream is derived from istream
ofstream is derived from ostream
fstream is derived from iostream

These three classes support formatted file I/O using filebufs.

Simple file 1/O

The class ofstream inherits the insertion operations from ostream,
while ifstream inherits the extraction operations from istream.
They also provide constructors and member functions for creating
files and handling file I/O. You must include fstream.h in all pro-
grams using these classes. Consider the following example that
copies the file FILE_FROM to the file FILE_TO:

#include fstream.h
char ch;
ifstream f1("file from");

The not operator () is if (!fl) errmsg(“"Cannot open ’file from’ for input");
overloaded:; see page 183. ofstream f2("file to");

if (1£2) errmsg("Cannot open ’'file to’ for output");
while ( f2 && fl.get(ch) ) f2.put(ch);

Stream errors are discussed in - Note that if the ifstream or ofstream constructors are unable to
defailonpage 181, hen the specified files, the appropriate stream error state is set.
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The constructors allow you to declare a file stream without speci-
fying a named file. Later, you can associate the file stream with a
particular file:

ofstream ofile; // creates output file stream

ofile.open({"payroll"); // ofile stream associates with
// file “payroll"

// do some payrolling

ofile.close(); // “payroll" closes

ofile.open("employee"); // ofile can be reused

By default, files are opened in text mode. This means that on in-
put, carriage return/linefeed sequences are converted to the ‘\n’
character. On output, the ‘\n’ character is converted to a carriage-
return/linefeed sequence. These translations are not done in
binary mode.

The member function ofstream::open is declared as follows:
void open(char * name, int=ios::out, int prot=filebuf::openprot);
Similarly, ifstream::open is declared thus:
void open(char * name, int=ios::in, int prot=filebuf::openprot);

The second argument, known as the open mode, defaults as shown.
The open mode argument (possibly OR’d with several mode bits)
can be given explicitly as follows:

Mode bit Action

ios:app Append data—always write at end of file.

ios::ate Seek to end of file upon original open.

ios::in Open for input (implied for ifstreams).

ios::out Open for output (implied for ofstreams).

ios:trunc Discard contents if file exists (implied if ios::out is
specified and neither ios::ate nor ios::app is specified).

ios::nocreate If file does not exist, open fails.

ios::noreplace  1f file exists, open for output fails unless ate or app is
set

The mode mnemonics come from the enumeration open_mode in
ios:

class ios {
public:

enum open mode { in, out, app, ate, nocreate, noreplace };
Vi

The statement
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|/O stream error

states
Note that goodbit is not a
real bit, but a zero value

indicating that no error bits
have been set.

Chapter 3. C++ streams

ofstream ofile("data", ios::applios::nocreate);

will try to open the file DATA for appended output; it will fail if
the file does not exist. Failure will be signaled in the error state of
ofile. If successful, the stream ofile will be attached to the file
DATA. The class fstream (derived from both ifstream and
ofstream) can be used to create files for simultaneous input and
output:

fstream inout(“data",ios::inlios::out);
inout << i;

ir.l(')ut >> 5;
You can use the functions tellg and tellp to determine the current
“get” position and the current “put” position of the file; that is,

the places in the stream where the next output or input operation
will operate:

streampos cgp = inout.tellg(); // cgp is current "get" position

where streampos is typedef’d in fstream.h. The member functions
seekg and seekp can reset the current get and put positions:

inout.seekp(cp); // set current “put" position to cp

Variants of seekp and seekg let you set the current position via
relative offsets:

inout.seekqg(5,10s::beg); // move cp 5 bytes from beginning
inout.seekq(5,io0s::cur); // move cp 5 bytes forward
inout.seekp(-5,1i0s::end); // move cp 5 bytes before end

You might want to print out and study the commented header
files to see how the various stream classes are related, and how
their member functions are declared.

Each stream has an associated error state, a set of error bits de-
clared as an io_state enumeration in class ios:

class ios {
public:

// stream status bits
enum io_state f{
goodbit = 0x00,

eofbit = 0x01,
failbit = 0x02,
badbit = 0x04,
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hardfail = 0x80
}i
Vi
Errors occurring during stream I/O set the appropriate bit(s) as
indicated in Table 3.2.

Table 3.2 Status bit Meaning
ios error bits

goodbit No bit set, so all is well.

eofbit “End of file”: set if istream has no more characters
available for extraction. Subsequent extraction attempts
are ignored.

failbit Set if last I/O operation (extraction or conversion) has
failed. Stream is still usable once error bit cleared.

badbit Set if last attempted I/0O operation was invalid. Stream
may be usable after clearing error condition.

hardfail Set if stream is in an irrecoverable error state.

Once a stream is placed in an error state, all attempts to insert into
or extract from that stream will be ignored until the error
condition is corrected and the error bit(s) cleared (using, for
example, the member function los::clear(i)).The los::clear(i)
member function actually sets the error bits according to the
integer argument i, so that los::clear(0) clears all error bits, except
hardfail, which cannot be cleared.

Note that inserters and extractors cannot change the state of a
stream once an error has occurred. It is therefore sound practice to
test for stream errors at appropriate points in your program.
Table 3.3 lists the member functions available for testing and
setting the error bits.

Table 3.3 Member function Action

Current sfream state -
member functions int rdstate(); Returns current error state.

void clear(int i = 0); Sets error bits to i. For example, this code:
str.clear(ios::failbit|str.rdstate());

sets failbit of stream str without disturbing
the other bits.

int good(); Returns nonzero if no error bits set;
otherwise, returns zero.

int eof(); Returns nonzero if istream eofbit is set;
otherwise, returns zero.
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Table 3.3: Current stream state member functions (continued)

int fail(); Returns nonzero if failbit, badbit, or hardfail
is set; otherwise, returns zero.
int bad(); Returns nonzero if badbit or hardfail is set;

otherwise, returns zero.

You can also check for errors by testing a stream as though it were
a Boolean expression:

if (cin >> x) return; // input ok
// error recovery here
if (lcout) errmsg(“Output Error!");

These examples reveal the elegance of C++. The class ios has the
following operator function declarations:

int operator! ();
operator void* ();

The void*() operator is defined to “convert” a stream to a pointer
which will be 0 (false) if failbit, badbit, or hardfail are set, but non-
null (true) otherwise. (Note: The returned pointer is to be used
only for Boolean testing; it has no other practical significance.)
The overloaded not operator (!) is defined to return nonzero (true)
if the stream’s failbit, badbit, or hardfail are set; otherwise, it returns
zero (false).

Using the older streams

Chapter 3, C++ sfreams

Although the C++ release 1.x stream and release 2.0 iostream
libraries share many class and function names and offer many
similar facilities, their structures differ in some crucial areas.
Turbo C++ therefore implements the two streams with separate
libraries and header files. To work entirely with old streams code,
you must include stream.h, avoid including iostream.h, and link
with the old stream library. Consult the file OLDSTR.DOC for
more information on the release 1.x streams. We also encourage
you to study the declarations and comments in stream.h.

Depending on which classes and features your old streams
programs use, it is possible that they might compile and run
satisfactorily with the new iostream library.
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Guidelines for upgrading to 2.0 streams

A key difference between the old and new streams classes is that
most of the old streambuf class public members are now declared
as protected in the new streambuf class. If your old stream code
makes direct reference to such members, or if you have derived
classes from streambuf that rely on such members, you will need
to revamp your programs before they can run with the iostream
library. Another difference that may affect upward compatibility
is that the old streambuf directly supported the use of character
arrays for in-memory formatting. Under iostreams, this support is
assumed by the derived class strstreambuf declared in
strstream.h.

Old stream constructors invoking filebufs such as
istream instream(file descriptor);

must be replaced by
ifstream instream(file descriptor);

in iostreams programs.

The old and new stream classes interact differently with stdio. For
example, stream.h includes stdio.h and the old istream and
ostream support pointers to the stdio FILE structure. With
iostream, stdio is supported via the specialized stdiostream class
declared in stdiostream.h.

In the old stream library, the predefined streams cin, cout, and
cerr are connected directly to stdio’s FILEs stdin, stdout, and
stderr. With iostream, they are connected to file descriptors and
use different buffering strategies. To avoid buffering problems
when mixing stdout and cout code, you can use

los::sync with stdio();

which connects the predefined streams with the stdio files in
unbuffered mode. Note, though, that this slows cin, cout, and
cerr considerably.

The old stream library allowed a stream to be directly assigned to
another stream; for example,

ostream outs; outs = cout; // old streams only

With lostream, this is only possible if the left-hand stream is
assignable; in other words, of type istream_withassign or
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ostream_withassign. If your program contains such assignments,
you can either rewrite them using pointers or references, or you
can change the declarations:

ostream withassign outs = cout; // new iostreams only
outs << i;
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4

Memory models, floafing point, and
overlays

This chapter covers three major topics:

m Memory models, from tiny to huge. We tell you what they are,
how to choose one, and why you would (or would not) want to
use a particular memory model.

m Floating-point options. How and when to use them.
m Overlays. How they work, how to use them.

Memory models

See page 194 forasummary  Turbo C++ gives you six memory models, each suited for
ofeachmemory model.  gjfferent program and code sizes. Each memory model uses

memory differently. What do you need to know to use memory
models? To answer that question, we have to take a look at the
computer system you're working on. Its central processing unit
(CPU) is a microprocessor belonging to the Intel iAPx86 family;
probably an 8088 or 80286, though possibly an 8086, 80186, 80386,
or an 80486. For now, we'll just refer to it as an 8086.

The 8086 registers

These are the registers found in the 8086 processor. There is one
more register—IP (instruction pointer)—but Turbo C++ can't
access it directly, so it isn’t shown here.
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Figure 4.1
8086 registers

General-purpose
registers

BX
CcX
DX

CS
DS
SS
ES

SP
BP
SI

DI

General-purpose registers

AH AL accumulator (math operations)
BH BL base (indexing)

CH CL count (indexing)

DH DL data (holding data)

Segment address registers

code segment pointer

data segment pointer

stack segment pointer

extra segment pointer

Special-purpose registers

stack pointer

base pointer

source index

destination index

The general-purpose registers are the ones used most often to
hold and manipulate data. Each has some special functions that
only it can do. For example,

m Some math operations can only be done using AX.
m BX can be used as an index register.

m CXis used by LOOP and some string instructions.
m DX is implicitly used for some math operations.

But there are many operations that all these registers can do; in
many cases, you can freely exchange one for another.

Turbo C++ Programmer’s Guide



Segment registers  The segment registers hold the starting address of each of the four
segments. As described in the next section, the 16-bit value in a
segment register is shifted left 4 bits (multiplied by 16) to get the
true 20-bit address of that segment.

Special-purpose  The 8086 also has some special-purpose registers:

registers m The SI and DI registers can do many of the things the general-

purpose registers can, plus they are used as index registers.
They’re also used by Turbo C++ for register variables.

m The SP register points to the current top-of-stack and is an
offset into the stack segment.

m The BP register is a secondary stack pointer, usually used to
index into the stack in order to retrieve arguments or automatic
variables.

C functions use the base pointer (BP) register as a base address for
arguments and automatic variables. Parameters have positive
offsets from BP, which vary depending on the memory model. BP
always points to the saved previous BP value. Functions that have
no arguments will not use or save BP if the Standard Stack Frame
option is Off.

Automatic variables are given negative offsets from BP. The
offsets depend on how much space has already been assigned to
variables.

The flags register  The 16-bit flags register contains all pertinent information about
the state of the 8086 and the results of recent instructions.

i 42 Virtual 8086 Mode
gure 4, Resume
Flags register of the 8086 ol brecion Lova
Overflow
Direction
nlerrupt Enable
Trap
Sign
Zero
Auxiliary Carry
Parity
Cany
3t 2 15 7 tl:
CITTTTITTITTTTT Ivinl INjiorfolDl1]TIsIZ] [Al IP] [C|
. T A\ T N T /
80386 only 80286 All 80x86 processors
80386
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Memory
segmentation

For example, if you wanted to know whether a subtraction pro-
duced a zero result, you would check the zero flag (the Z bit in the
flags register) immediately after the instruction; if it were set, you
would know the result was zero. Other flags, such as the carry and
overflow flags, similarly report the results of arithmetic and logical
operations.

Other flags control modes of operation of the 8086. The direction
flag controls the direction in which the string instructions move,
and the interrupt flag controls whether external hardware, such as
a keyboard or modem, is allowed to halt the current code tempo-
rarily so that urgent needs can be serviced. The trap flag is used
only by software that debugs other software.

The flags register isn’t usually modified or read directly. Instead,
the flags register is generally controlled through special assembler
instructions (such as CLD, STI, and CMC) and through arithmetic
and logical instructions that modify certain flags. Likewise, the
contents of certain bits of the flags register affect the operation of
instructions such as JZ, RCR, and MOVSB. The flags register is not
really used as a storage location, but rather holds the status and
control data for the 8086.

The Intel 8086 microprocessor has a segmented memory architecture.
It has a total address space of 1 Mb, but it is designed to directly
address only 64K of memory at a time. A 64K chunk of memory is
known as a segment; hence the phrase, “segmented memory
architecture.”

m The 8086 keeps track of four different segments: code, data, stack,
and extra. The code segment is where the machine instructions
are; the data segment, where information is; the stack is, of
course, the stack; and the extra segment is also used for extra
data.

m The 8086 has four 16-bit segment registers (one for each seg-
ment) named CS, DS, S5, and ES; these point to the code, data,
stack, and extra segments, respectively.

m A segment can be located anywhere in memory—at least,
almost anywhere. For reasons that will become clear as you

read on, a segment must start on an address that’s evenly
divisible by 16 (in base 10).
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Address calculation A complete address on the 8086 is composed of two 16-bit values:
the segment address and the offset. Suppose the data segment
address—the value in the DS register—is 2F84 (base 16), and you
want to calculate the actual address of some data that has an
offset of 0532 (base 16) from the start of the data segment; how is
that done?

Address calculation is done as follows: Shift the value of the seg-
ment register 4 bits to the left (equivalent to one hex digit), then

add in the offset.

The resulting 20-bit value is the actual address of the data, as

illustrated here:
DS register (shifted): 0010 1111 1000 0100 0000 = 2F840
Offset: 0000 0101 0011 0010 = 00532
Address: 0010 1111 1101 0111 0010 = 2FD72

A chunk of 16 bytes is known  The starting address of a segment is always a 20-bit number, but a
as a paragraph, S0 you  seament register only holds 16 bits—so the bottom 4 bits are al-
could say that a segment . .
always starts on a paragraph ~ Ways assumed to be all zeros. This means—as we said—that seg-
boundary. ments can only start every 16 bytes through memory, at an
address where the last 4 bits (or last hex digit) are zero. So, if the
DS register is holding a value of 2F84, then the data segment

actually starts at address 2F840.

The standard notation for an address takes the form segment:offset;
for example, the previous address would be written as 2F84:0532.
Note that since offsets can overlap, a given segment:offset pair is
not unique; the following addresses all refer to the same memory
location:

0000:0123
0002:0103
0008:00A3
0010:0023
0012:0003

Segments can (but do not have to) overlap. For example, all four
segments could start at the same address, which means that your
entire program would take up no more than 64K—but that’s all
the space you would have for your code, your data, and your
stack.

Chapter 4, Memory models, floating point, and overlays 191



192

Pointers

Near pointers

Far pointers

What do pointers have to do with memory models and Turbo
C++? A lot. The type of memory model you choose will
determine the default type of pointers used for code and data
(though you can explicitly declare a pointer or a function to be of
a specific type regardless of the model being used). Pointers come
in four flavors: near (16 bits), far (32 bits), huge (also 32 bits), and
segment (16 bits).

A 16-bit (near) pointer relies on one of the segment registers to
finish calculating its address; for example, a pointer to a function
would add its 16-bit value to the left-shifted contents of the code
segment (CS) register. In a similar fashion, a near data pointer
contains an offset to the data segment (DS) register. Near pointers
are easy to manipulate, since any arithmetic (such as addition) can
be done without worrying about the segment.

A far (32-bit) pointer contains not only the offset within the seg-
ment, but also (as another 16-bit value) the segment address,
which is then left-shifted and added to the offset. By using far
pointers, you can have multiple code segments; that, in turn,
allows you to have programs larger than 64K. You can also
address more than 64K of data.

When you use far pointers for data, you need to be aware of some
potential problems in pointer manipulation. As explained in the
section on address calculation, you can have many different
segment:offset pairs refer to the same address. For example, the
far pointers 0000:0120, 0010:0020, and 0012:0000 all resolve to the
same 20-bit address. However, if you had three different far
pointer variables—y, b, and c—containing those three values
respectively, then all the following expressions would be false:

if (a ==Db) ¢ o o
if (b == C) )
if (a==c) o o

A related problem occurs when you want to compare far pointers
using the >, >=, <, and <= operators. In those cases, only the offset
(as an unsigned) is used for comparison purposes; given that a, b,
and c still have the values previously listed, the following expres-
sions would all be true:
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if (@a>b) o oo
if b>c) oo
if (a>c) o oo

The equals (==) and not-equal (!=) operators use the 32-bit value
as an unsigned long (not as the full memory address). The com-
parison operators (<=, >=, <, and >) use just the offset.

The == and != operators need all 32 bits, so the computer can com-
pare to the NULL pointer (0000:0000). If you used only the offset
value for equality checking, any pointer with 0000 offset would be
equal to the NULL pointer, which is not what you want.

Important! If you add values to a far pointer, only the offset is changed. If
you add enough to cause the offset to exceed FFFF (its maximum
possible value), the pointer just wraps around back to the begin-
ning of the segment. For example, if you add 1 to 5031:FFFF, the
result would be 5031:0000 (not 6031:0000). Likewise, if you sub-
tract 1 from 5031:0000, you would get 5031:FFFF (not 5030:000F).

If you want to do pointer comparisons, it’s safest to use either near
pointers—which all use the same segment address—or huge
pointers, described next.

Huge pointers Huge pointers are also 32 bits long. Like far pointers, they contain
both a segment address and an offset. Unlike far pointers, how-
ever, they are normalized to avoid the problems associated with far
pointers.

What is a normalized pointer? It is a 32-bit pointer which has as
much of its value in the segment address as possible. Since a seg-
ment can start every 16 bytes (10 in base 16), this means that the
offset will only have a value from 0 to 15 (0 to F in base 16).

To normalize a pointer, convert it to its 20-bit address, then use
the right 4 bits for your offset and the left 16 bits for your segment
address. For example, given the pointer 2F84:0532, you would
convert that to the absolute address 2FD72, which you would
then normalize to 2FD7:0002. Here are a few more pointers with
their normalized equivalents:

0000:0123 0012:0003
0040:0056 0045:0006
500D: 9407 594D:0007
7418:DO3F 811B:000F

There are three reasons why it is important to always keep huge
pointers normalized.
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The six memory
models

this model when memory

is at an absolute premium.

This is a good size for
average applications.

Best for large programs that
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don’t keep much datain
memory.

1. Because, doing it that way, for any given memory address
there is only one possible huge address—segment:offset pair—
for it. That means that the == and != operators return correct
answers for any huge pointers.

2. In addition, the >, >=, <, and <= operators are all used on the
full 32-bit value for huge pointers. Normalization guarantees
that the results there will be correct also.

3. Finally, because of normalization, the offset in a huge pointer
automatically wraps around every 16 values, but—unlike far
pointers—the segment is adjusted as well. For example, if you
were to increment 811B:000F, the result would be 811C:0000;
likewise, if you decrement 811C:0000, you get 811B:000F. It is
this aspect of huge pointers that allows you to manipulate data
structures greater than 64K in size. This ensures that, for
example, if you have a huge array of structs that’s larger than
64K, indexing into the array and selecting a struct field will
always work with structs of any size.

There is a price for using huge pointers: additional overhead.
Huge pointer arithmetic is done with calls to special subroutines.
Because of this, huge pointer arithmetic is significantly slower
than that of far or near pointers.

Turbo C-++ gives you six memory models: tiny, small, medium,
compact, large, and huge. Your program requirements determine
which one you pick. Here’s a brief summary of each:

Tiny

Small

Medium

As you might guess, this is the smallest of the
memory models. All four segment registers (CS,
DS, SS, ES) are set to the same address, so you
have a total of 64K for all of your code, data, and
stack. Near pointers are always used. Tiny model
programs can be converted to .COM format by
linking with the /t option.

The code and data segments are different and
don’t overlap, so you have 64K of code and 64K
of data and stack. Near pointers are always used.

Far pointers are used for code, but not for data.
As a result, data plus stack are limited to 64K, but
code can occupy up to 1 Mb.
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Best if your code is small buf Compact  The inverse of medium: Far pointers are used for

you need fo adaress a (’;’TTO" data, but not for code. Code is then limited to
ara. 64K, while data has a 1-Mb range.
Large and huge are needed Large Far pointers are used for both code and data,
only for very large giving both a 1-Mb range.
applications.
Huge Far pointers are used for both code and data.
Turbo C++ normally limits the size of all static
data to 64K; the huge memory model sets aside
that limit, allowing data to occupy more than
64K.
In order to select these memory models, you can either use menu
selections from the integrated environment, or you can type
options invoking the command-line compiler version of Turbo
C+.
The following illustrations (Figures 4.3 through 4.8) show how
memory in the 8086 is apportioned for the six Turbo C++ memory
models.
Figure 4.3 Segment Registers: Segment Size:
Tinymodelmemory &gza CSDS,SS—> N
segmentation  3.& } —TEXT class 'CODE
E code

_DATA class 'DATA’
initialized data

BSS class 'BSS'
DGROUPS “Uninitialized data >up to 64K

SP (TOS)—J[
v

Starting SP—

Free
Space

Address

High
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Figure 4.4
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Figure 4.6
Compact model memory
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Figure 4.8
Huge model memory
segmentation

CS and DS point to only one
sfile at a time

Table 4.1
Memory models

The models tiny, small, and
compact are small code
models because, by default,
code pointers are near;
likewise, compact, large,
and huge are large data
models because, by default,
data pointers are far.

Important!
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Cs *%
Segment Registers:

Segment Size:
tE4 b ach sfil,
SE ! . each sfile
3 (sfile) TEXT class 'CODE R
DS~ k sfile) DATA class 'DATA' each sfile
initialized data up to 64K
Em—
§§ Free
Space
SP (TOS)—»
STACKT up to 64K
Starting SP >
? HEAP l up to rest of memory
53 Spoc
=P34 Space

Table 4.1 summarizes the different models and how they compare
to one another. The models are often grouped according to
whether their code or data models are small (64K) or large (1 Mb);
these groups correspond to the rows and columns in Table 4.1.

Code size
Data size
64K 1Mb

Tiny (data, code overlap;
total size = 64K)

64K
Small (no overlap; Medium (small data,
total size = 128K) large code)
Compact (large data, Large (large data, code)
small code)

1Mb

Huge (same as large but
static data > 64K)

When you compile a module (a given source file with some
number of routines in it), the resulting code for that module
cannot be greater than 64K, since it must all fit inside of one code
segment. This is true even if you're using one of the larger code
models (medium, large, or huge). If your module is too big to fit
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into one (64K) code segment, you must break it up into different
source code files, compile each file separately, then link them
together. Similarly, even though the huge model permits static
data to total more than 64K, it still must be less than 64K in each
module.

Mixed-model programming: Addressing modifiers

Turbo C++ introduces eight new keywords not found in standard
ANSI C (near, far, huge, _cs, _ds, _es, _ss, and _seg) that can be
used as modifiers to pointers (and in some cases, to functions),
with certain limitations and warnings.

In Turbo C++, you can modify the declarations of functions and
pointers with the keywords near, far, or huge. We explained near,
far, and huge data pointers earlier in this chapter. near functions
are invoked with near calls and exit with near returns. Similarly,
far functions are called far and do far returns. huge functions are
like far functions, except that huge functions set DS to a new
value, while far functions do not.

There are also four special near data pointers: _cs, _ds, _es, and
_ss. These are 16-bit pointers that are specifically associated with
the corresponding segment register. For example, if you were to
declare a pointer to be

char ss *p;
then p would contain a 16-bit offset into the stack segment.

Segment pointers are restricted in terms of what can be done with
them.

® You can’t increment or decrement segment pointers. When you
add or subtract an integer to a segment pointer, it is implicitly
converted to a far pointer, and the arithmetic is performed as if
the integer were added to or subtracted from the far pointer.

m When a segment pointer is used in an indirection expression, it
is also implicitly converted to a far pointer.

m As an extension to the binary + operator, if a segment pointer is
added to a near pointer, the result is a far pointer that is formed
by using the segment from the segment pointer and the offset
from the near pointer. This operation is only allowed if the two
pointers point to the same type, or else if one of the pointers
points to a void type.
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Table 4.2
Pointer results

Declaring
functions to be
near or far

m Segment pointers can be compared. They are compared as if
their values were unsigned integers.

Functions and pointers within a given program default to near or
far, depending on the memory model you select. If the function or
pointer is near, it is automatically associated with either the CS or
DS register.

The next table shows just how this works. Note that the size of the
pointer corresponds to whether it is working within a 64K mem-
ory limit (near, within a segment) or inside the general 1 Mb
memory space (far, has its own segment address).

Memory model Function pointers Data pointers
Tiny near, _cs near, _ds
Small near, _cs near, _ds
Medium far near, _ds
Compact near, _cs far
Large far far
Huge far far

Pointers to data can also be declared using the _seg modifier.
These are 16-bit segment pointers.

On occasion, you'll want (or need) to override the default func-
tion type of your memory model shown in Table 4.1 (page 198).

For example, suppose you're using the large memory model, but
you have a recursive (self-calling) function in your program, like
this:

double power(double x,int exp)
t
if (exp <= 0)
return(l);
else
return(x * power(x, exp-1));

}

Every time power calls itself, it has to do a far call, which uses
more stack space and clock cycles. By declaring power as near,
you eliminate some of the overhead by forcing all calls to that
function to be near:

double near power(double x,int exp)
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This guarantees that power is callable only within the code seg-
ment in which it was compiled, and that all calls to it are near
calls.

This means that if you are using a large code model (medium,
large, or huge), you can only call power from within the module
where it is defined. Other modules have their own code segment
and thus cannot call near functions in different modules. Further-
more, a near function must be either defined or declared before
the first time it is used, or the compiler won’t know it needs to
generate a near call.

Conversely, declaring a function to be far means that a far return
is generated. In the small code models, the far function must be
declared or defined before its first use to ensure it is invoked with
a far call.

Look back at the power example. It is wise to also declare power
as static, since it should only be called from within the current
module. That way, being a static, its name will not be available to
any functions outside the module.

Declaring

pointers to be  You've seen why you might want to declare functions to be of a
near, far, or huge different model than the rest of the program. Why might you
want to do the same thing for pointers? For the same reasons
given in the preceding section: either to avoid unnecessary over-
head (declaring near when the default would be far) or to refer-
ence something outside of the default segment (declaring far or
huge when the default would be near).

There are, of course, potential pitfalls in declaring functions and
pointers to be of nondefault types. For example, say you have the
following small model program:

vold myputs(s)
char *s;
{
int 1i;
for (i = 0; s[i] != 0; i++) putc(s[il);
}

main{)
{

char near *mystr;

mystr = "Hello, world\n";
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If you're going to explicitly
declare pointers to be of
type far or near, be sure to
use function prototypes for
any functions that might use
them.

Pointing to a given
segment:offset address
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myputs (mystr);
}

This program works fine, and, in fact, the near declaration on
mystr is redundant, since all pointers, both code and data, will be
near.

But what if you recompile this program using the compact (or
large or huge) memory model? The pointer mystr in main is still
near (it’s still a 16-bit pointer). However, the pointer s in myputs is
now far, since that’s the default. This means that myputs will pull
two words out of the stack in an effort to create a far pointer, and
the address it ends up with will certainly not be that of mystr.

How do you avoid this problem? The solution is to define myputs
in modern C style, like this:

void myputs(char *s
{

/* body of myputs */
}

Now when Turbo C++ compiles your program, it knows that
myputs expects a pointer to char; and since you're compiling
under the large model, it knows that the pointer must be far.
Because of that, Turbo C++ will push the data segment (DS)
register onto the stack along with the 16-bit value of mystr,
forming a far pointer.

How about the reverse case: Arguments to myputs declared as far
and compiling with a small data model? Again, without the func-
tion prototype, you will have problems, since main will push both
the offset and the segment address onto the stack, but myputs will
only expect the offset. With the prototype-style function
definitions, though, main will only push the offset onto the stack.

How do you make a far pointer point to a given memory location
(a specific segment:offset address)? You can use the built-in
library routine MK_FP, which takes a segment and an offset and
returns a far pointer. For example,

MK_FP (segment_value, offset_value)

Given a far pointer, fp, you can get the segment component with
FP_SEG(fp) and the offset component with FP_OFF(fp). For more
information about these three Turbo C++ library routines, refer to
the Library Reference.
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Using library files

Turbo C++ offers a version of the standard library routines for
each of the six memory models. Turbo C++ is smart enough to
link in the appropriate libraries in the proper order, depending on
which model you've selected. However, if you're using the Turbo
C++ linker, TLINK, directly (as a standalone linker), you need to
specify which libraries to use. Read the section on TLINK in
Chapter 5, “Utilities”, in the User’s Guide for details on how to do
sO.

Linking mixed
modules What if you compiled one module using the small memory

model, and another module using the large model, then wanted
to link them together? What would happen?

The files would link together fine, but the problems you would
encounter would be similar to those described in the earlier sec-
tion, “Declaring functions to be near or far.” If a function in the
small module called a function in the large module, it would do
so with a near call, which would probably be disastrous. Further-
more, you could face the same problems with pointers as de-
scribed in the earlier section, “Declaring pointers to be near, far, or
huge,” since a function in the small module would expect to pass
and receive near pointers, while a function in the large module
would expect far pointers.

The solution, again, is to use function prototypes. Suppose that
you put myputs into its own module and compile it with the large
memory model. Then create a header file called myputs.h (or
some other name with a .h extension), which would have the
following function prototype in it:

void far myputs(char far *s);
Now, if you put main into its own module (called MYMAIN.C),
set things up like this:

#include <stdio.h>

#include “"myputs.h"

main()

{

char near *mystr;

mystr = "Hello, world\n";
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myputs (mystr) ;
}

When you compile this program, Turbo C++ reads in the function
prototype from MYPUTS.H and sees that it is a far function that
expects a far pointer. Because of that, it will generate the proper
calling code, even if it’s compiled using the small memory model.

What if, on top of all this, you need to link in library routines?
Your best bet is to use one of the large model libraries and declare
everything to be far. To do this, make a copy of each header file
you would normally include (such as stdio.h), and rename the
copy to something appropriate (such as fstdio.h).

Then edit each function prototype in the copy so that it is explicit-
ly far, like this:

int far cdecl printf(char far * format, ...):

That way, not only will far calls be made to the routines, but the
pointers passed will be far pointers as well. Modify your program
so that it includes the new header file:

#include <fstdio.h>

main()
{
char near *mystr;
mystr = “"Hello, world\n";
printf(mystr);
}
Compile your program with TCC, then link it with TLINK,
specifying a large model library, such as CL.LIB. Mixing models is
tricky, but it can be done; just be prepared for some difficult bugs
if you do things wrong.

Floating-point options
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There are two types of numbers you work with in C: integer (int,
short, long, and so on) and floating point (float, double, and long
double). Your computer’s processor is set up to easily handle inte-
ger values, but it takes more time and effort to handle floating-
point values.

However, the iAPx86 family of processors has a corresponding
family of math coprocessors, the 8087, the 80287, and the 80387.
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We refer to this entire family of math coprocessors as the 80x87, or
“the coprocessor.”

Ifyou ha;/:- an 80486 The 80x87 is a special hardware numeric processor that can be
processor. the numeric : o moint ] :
coprocessor s aready built installed in your PC. It executes floating pczmt instructions very
. quickly. If you use floating point a lot, you'll probably want a
coprocessor. The CPU in your computer interfaces to the 80x87 via

special hardware lines.

Emulating the

80x87 chip The default Turbo C++ code generation option is emulation (the ~f
command-line compiler option). This option is for programs that
may or may not have floating point, and for machines that may or
may not have an 80x87 math coprocessor.

With the emulation option, the compiler will generate code as if
the 80x87 were present, but will also link in the emulation library
(EMU.LIB). When the program runs, it will use the 80x87 if it is
present; if no coprocessor is present at run time, the program uses
special software that emulates the 80x87.

Using 80x87 code

If your program is only going to run on machines with an 80x87
math coprocessor, you can save about 10K bytes in your .EXE file
by omitting the 80x87 autodetection and emulation logic. Simply
choose the 80x87 floating-point code generation option (the —f87
command-line compiler option). Turbo C++ will then link your
programs with FP87.LIB instead of EMU.LIB.

No floafing-point

code If there is no floating-point code in your program, you can save a
small amount of link time by choosing None for the floating-point
code generation option (the —f~ command-line compiler option).
Then Turbo C++ will not link with EMU.LIB, FP87.LIB, or
MATHXx.LIB.

Fast floating-point

option Turbo C++ has a fast floating-point option (the —ff command-line
compiler option). It can be turned off with —ff— on the command
line. Its purpose is to allow certain optimizations that are technic-
ally contrary to correct C semantics. For example,
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The 87 environ-
ment variable

double x;
X = (float) (3.5%x);

To execute this correctly, x is multiplied by 3.5 to give a double
that is truncated to float precision, then stored as a double in x.
Under the fast floating-point option, the long double product is
converted directly to a double. Since very few programs depend
on the loss of precision in passing to a narrower floating-point
type, fast floating point is the default.

If you build your program with 80x87 emulation, which is the
default, your program will automatically check to see if an 80x87
is available, and will use it if it is.

There are some situations in which you might want to override
this default autodetection behavior. For example, your own run-
time system might have an 80x87, but you need to verify that
your program will work as intended on systems without a copro-
cessor. Or your program may need to run on a PC-compatible sys-
tem, but that particular system returns incorrect information to
the autodetection logic (saying that a nonexistent 80x87 is avail-
able, or vice versa).

Turbo C++ provides an option for overriding the start-up code’s
default autodetection logic; this option is the 87 environment
variable.

You set the 87 environment variable at the DOS prompt with the
SET command, like this:

C> SET 87=N
or like this:
C> SET 87=Y

Don’t include spaces to either side of the =. Setting the 87 environ-
ment variable to N (for No) tells the start-up code that you do not
want to use the 80x87, even though it might be present in the
system.

Setting the 87 environment variable to Y (for Yes) means that the
coprocessor is there, and you want the program to use it. Let the
programmer beware!! If you set 87 = Y when, in fact, there is no
80x87 available on that system, your system will hang.
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If the 87 environment variable has been defined (to any value) but
you want to undefine it, enter the following at the DOS prompt:

C> SET 87=

Press Enterimmediately after typing the equal sign.

Registers and the

80x87 There are a couple of points concerning registers that you should
be aware of when using floating point.

1. In 80x87 emulation mode, register wraparound and certain
other 80x87 peculiarities are not supported.

2. If you are mixing floating point with inline assembly, you may
need to take special care when using registers. This is because
the 80x87 register set is emptied before Turbo C++ calls a func-
tion. You might need to pop and save the 80x87 registers be-
fore calling functions that use the coprocessor, unless you are
sure that enough free registers exist.

Disabling
floating-point By default, Turbo C++ programs abort if a floating-point overflow
i or divide by zero error occurs. You can mask these floating-point
exceptions exceptions by a call to _control87 in main, before any floating-
point operations are performed. For example,

#include <float.h>
main() {
_control87(MCW_EM,MCW_EM) ;

}

You can determine whether a floating-point exception occurred
after the fact by calling _status87 or _clear87. See the entries for
these functions in Chapter 1 of the Library Reference for details.

Certain math errors can also occur in library functions; for in-
stance, if you try to take the square root of a negative number. The
default behavior is to print an error message to the screen, and to
return a NAN (an IEEE not-a-number). Use of the NAN will likely
cause a floating-point exception later, which will abort the
program if unmasked. If you don’t want the message to be
printed, insert the following version of matherr into your

program.
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