
3.0

USER'S GUIDE

BORLAND

Turbo 0++
Version 3.0

User's Guide

BORLAND INTERNATIONAL, 100 BORLAND WAY
P.O. BOX 660001, scons VALLEY, CA 95066-3249, USA

Rl

Copyright © 1992 by Borland International. All rights reserved. All
Borland products are trademarks or registered trademarks of
Borland InternationaL Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.
Windows, as used in this manuaL refers to Microsoft's
implementation of a windows system.

PRINTED IN THE USA.
2019

c o N T

Introduction 1
What's in Turbo C++ 1
Hardware and software requirements ... 3
The Turbo C++ implementation 3
The Turbo C++ package 3

The User's Guide 4
Online documentation 5

Using the manual , 6
Programmers learning C or C++ 6

Typefaces and icons used in these books . 6
How to contact Borland 7

Resources in your package 7
Borland resources 8

Part 1 Using Turbo C++

Chapter 1 Installing Turbo C++ 13
Using INSTALL 14

Protected mode and memory 14
DPMIINST 15
DPMIMEM 15
DPMIRES 16
Extended and expanded memory .. 16

Running Turbo C++ 17
Laptop systems 17

The README file . " 17
The FILELIST.DOC and HELPMELDOC
files 17
Example programs 18
Customizing the IDE 18

Chapter 2 IDE basics 19
Starting and exiting 20

Command-line options 20
The /b option 20
The / d option 21
The /e option 21

E N T s

The /h option 21
The /1 option " 22
The / m option " 22
The / p option 22
The / r option " 22
The / s option " 22
The / x option 22

Exiting Turbo C++ 23
IDE components " 23

The menu bar and menus 23
Shortcuts 24
Command sets 24

Native option 27
Turbo C++ windows 27

Window management 29
The status line 30
Dialog boxes 31

Action buttons 31
Radio buttons and check boxes 31
Input and list boxes 32

Configuration and project files " 33
The configuration file " 33
Project files 34

The project directory 34
Desktop files 35
Changing project files 35
Default files 35

IDE menus " 36
Syntax highlighting 37
IDE cross-reference 37

Chapter 3 An introduction to C++ 43
How to run the examples 44
Basic programming operations 44
Basic structure of a C++ program 48
Working with numbers 5Q

Numeric data types 50
Integers .. 52
Integer modifiers 53

The long modifier 53
The signed and unsigned
modifiers 53

Floating-point numbers 54
The floating-point types 55

Variables 55
Initializing variables 55
Assignment statements 56
Combination assignments 57
Variable names 57
More about input and output 58

Formatting with escape sequences.. 58
Arithmetic operators 60
Arithmetic and type conversion 61

Typecasting 62
Combining arithmetic and assignment. 63
Increment and decrement 63
Working bit by bit 64

. Expressions 66
Evaluating an expression 66
Assigning a value in an expression ... 68

Characters and strings 69
Input and outPut for single characters. 69
Displaying a character 71
Displaying character strings 71

Testing conditions and making choices . 72
Using relational operators 72
Using logical operators 74
Branching with if and if ... else 74
Multiple choices with if ... else 75
Multiple choice tests: switch 77

Repeating execution with loops 79
The while loop 80
The do while loop 81
The for loop .. 82
break and continue 84
Nested loops 86
Choosing appropriate loops 87

Program design with functions and
macros 87

Defining your own functions 88

The function prototype 88
Function declarations under
Kernighan and Ritchie 89

The function definition 89
Processing within the function 90
The function return value 90
Using the return value 90

Multifunction programs 91
Function prototypes and global
declarations ~ 94
Setting up the graphics display 94
Calculating the graphics
coordinates 95
Drawing the planets 95

Header files, functions, and libraries .. 96
Scope and duration of variables 99

Scope 99
Duration. .. 101

Using constant values 102
Building data structures 103
Declaring and initializing an array 104

Arrays with multiple dimensions ... 106
Arrays and strings 108
Renaming types 109
Enumerated types. 110
Combining data into structures 111
Using parts of a structure 111

Pointers 112
Declaring and using a pointer 113
Pointers and strings 115
Pointer arithmetic 116
Pointers, structures, and lists 116
Using pointers to return values from
functions 119

Using system resources 121
Opening a stream 124

Chapter 4 Object-oriented
programming with C++ 125

Encapsulation 127
Inheritance .. 130
Polymorphism 132
Overloading 132
Modeling the real world with classes .. 133

Building classes: a graphics example. 133
Declaring objects " 135
Member functions " 135
Calling a member function 136
Constructors and destructors 137
Code and data together " 140
Member access control: private, public,
and protected 140
The class: private by default 141
Running a C++ program 142

Inheritance " 144
Rethinking the Point class " 145

Inheritance and access control 146
Packaging classes into modules ... " 148
Extending classes 151
Multiple inheritance 155

virtual functions 160
virtual functions in action 162
Defining virtual functions 163
Developing a complete graphics
module 164

Reference types " 165
Ordinary or virtual member
functions? " 172

Dynamic objects 172
Destructors and delete 174
An example of dynamic object
allocation 174

More flexibility in C++ 179
Inline functions outside class
definitions 179
Functions with default arguments . .. 180
More about overloading functions ... 181
Overloading operators to provide new
meanings 184
friend functions 187
The C++ streams libraries 188

Standard I/O 189
Formatted output 191

Manipulators 192.
put, write, and get 192

Disk I/O .. 193
I/O for user-defined data types " 196

iii

Where to now? 197
Conclusion 198

Chapter 5 Hands-on C++ 199
A better C: Making the transition from
C 200

Program 1 200
Program 2 201
Program 3 201
Program 4 202

Object support .. 203
Program 5 204

Program 6 206
Program 7 209
Program 8 210
Program 9 212

Summary , 215

Chapter 6 Debugging in the IDE 217
Debugging and program development. 218
Designing the example program: .
PLOTEMP.C 220
Writing the prototype program 222
Using the integrated debugger , 223
Tracing the flow of a program 224

Tracing high-level execution. 224
Tracing into called functions 225

Continuing program development 226
Setting breakpoints 227

Instant breaking with etr/-Break 228
Inspecting your data .'............... 229

Inspector windows 229
Inspecting arrays and strings 230
Inspecting structs and unions , 230
Inspecting pointers 231
Inspecting functions 231
When should you use inspectors? .. , 231

Evaluating and changing variables 232
Specifying display format , 233
Specifying the number of values 233
Copying from the cursor position' . .. 234
Specifying variables in other
functions 234
Changing values 234

Monitoring your program by setting
watches. .. 237

Adding a watch. 237
Watching your watches 238
Controlling the debugger windows .. 239
Editing and deleting watches 239
Finding a function definition 240
Finding out who called whom 240
Multiple source files 241

Preventive medicine 241
Design defensively ...) 241
Write clearly 242

Systematic software testing 242
Test modifications thoroughly 243
Areas to watch carefully 243

Finishing PLOTEMP.C 244
Finishing table_view ~........ 245
Implementing graph_view 246
save_temps and read_temps 247

Answers tod~bugging exercises 248
min_max and avg_temps 248
graph_view 249
save_temps 249
read_temps 249

Advanced options 250

Chapter 7 Managing multi-file
projects 251

, Sampling the project manager 252
Error tracking 255

Stopping a make 255
Syntax errors in multiple source files . 256
Saving or deleting messages 257
Autodependency checking 257

Using different file translators 258
Overriding libraries ~ . .. 260
More Project Manager features 260

Notes for your project 263

Chapter 8 The command-line
compiler 265

Using the command-line compiler 265
DPMIINST 266
Running TCC 266

iv

Using the options 266
Option precedence rules :.. 267

Syntax and file names 270
Response files 271
Configuration files 271

Option precedence rules 272
Compiler options 272

Memory model 273
Macro definitions 274
Code-generation options 275

The -v and -vi options. 278
Optimization options 279
Source code options 281
Error-reporting options 282

ANSI violations 282
Frequenterrors 283
Portability warnings 283
C++ warnings 283

Segment-naming control 284
Compilation control options 285
EMS and expanded memory options . 287
C++ virtual tables 287
C++ member pointers 289
Template generation options 290

Linker options ; .. 290
Environment options 291
Backward compatibility options 292

Searching for include and library
files 293
File-search algorithms 294

An annotated example 295

Chapter 9 MAKE: The program
, manager 297

How MAKE works 297
Starting MAKE 298

Command-line options 299
The BUILTINS.MAK file 301

A simple use of MAKE 301
Creating makefiles 303
Components of a makefile ' .. 304

Comments 304
Command lists for implicit and explicit
rules '. .. 305

Prefixes
Command body and operators

Compatibility option
Batching programs '"
Executing commands

Explicit rules
Special considerations
Multiple explicit rules for a single
target
Examples
Automatic dependency checking ..

Implicit rules
Macros ~

Defining macros
Using macros ,
Using environment variables as

305
305
307
307
308
309
310

311
311
312
312
315
316
316

macros .' 316
Substitution within macros " 317
Special considerations 317
Predefined macros 318

Defined Test Macro ($d) 318
File name macros 319

Base file name macro ($*) 319,
Full file name macro ($<) 319
File name path macro ($:) 320
File name and extension macro
($.) 320
File name only macro ($&) 320
Full target name with path macro
($@) 320
All dependents macro ($**) ... " 321
All out of date dependents macro
($?) 321

Macro modifiers 321
Directives " 322
Dot directives 323

. precious .. 323

.path.ext 323

. suffixes 324
File-inclusion directive " 324
Conditional execution directives 325

Expressions allowed in conditional
directives 327

Error directive 328

v

Macro undefinition directive 329
The compatibility option -N " 329

Chapter 10 TLlNK: The Turbo linker 331
Invoking TLINK 331

An example of linking 332
File names on the TLINK command
line 332
Using response files " 333
The TLINK configuration file " 334
Using TLINK with Turbo C++
modules 334

Startup code 335
Libraries .. 336

BGI graphics library 336
Math libraries 336
Run-time libraries '. 337

Using TLINK with TCC " 337
TLINK options 338

The TLINK configuration file 338
13 (32-bit code) 338
I c (case sensitivity) 338
Id (duplicate symbols) 339
Ie (no extended dictionary) 339
Ii (uninitialized trailing segments) " 340
II (line numbers) 340
IL (library search paths) 340
1m, Is, and Ix (map options) 340
I n (ignore default libraries) 342
10 (overlays) 342
It (tiny model.COM file) 343
lTd , 343
Iv (debugging information) 344
lye (expanded memory) " 344
I yx (extended memory) 345

Part 2 Programming Reference

Chapter 11 Lexical elements 349
Whitespace 350

Line splicing with \ 350
Comments 351

C comments " 351
Nested comments. 351
C++ comments 352

Comment delimiters and
whitespace .. 352

Tokens '........... 352
Keywords .. 353
Identifiers , 354

Naming and length restrictions ... 354
Identifiers and case sensitivity 354
Uniqueness and scope 355

Constants .. 355
Integer constants .. : 355

Decimal constants 355
Octal constants 356
Hexadecimal constants 357
long and unsigned suffixes 357

Character constants 358
Escape sequences 358
Turbo C++ special two-character
constants 359
signed and unsigned char 359
Wide character constants 360

Floating-point constants 360
Floating-point constants - data
types , 360
Enumeration constants 361

String literals 362
Constants and internal
representation 363
Constant expressions 364

Punctuators 365
Brackets 365
Parentheses 365
Braces '" 365
Comma 366
Semicolon'. .. 366
Colon 367
Ellipsis 367
Asterisk (pointer declaration) 367
Equal sign (initializer) 368
Pound sign (preprocessor
directive) 368

Chapter 12 Language structure 369
Declarations 369

Objects 369

vi

Lvalues .. 370
Rvalues '. 371

Types and storage classes 371
Scope 371

Block scope 372
Function scope 372
Function prototype scope 372
File scope 372
Class scope (C++) 372
Scope and name spaces 372

Visibility 373
Duration .. 373

Static duration. 373
Local duration 374
Dynamic duration 374

Translation units 375
Linkage. .. 375

Name mangling 376
Declaration syntax 377

Tentative definitions 377
Possible declarations 378
External declarations and definitions .380
Type specifiers 382
Type taxonomy 382

Type void .. 383
The fundamental types 383

Integral types 384
Floating-point types 385
Standard conversions 385
Special char, int, and enum
conversions 386

Initialization 386
Arrays, structures, and unions 387

Simple declarations ;.. 388
Storage class specifiers 389

Use of storage class specifier auto . 389
Use of storage class specifier
extern 389
Use of storage class specifier
register .. 389
Use of storage class specifier static. 390
Use of storage class specifier
typedef .. 390

Modifiers 391

The const rrH)difier 391
The interrupt function modifier ... 393
The volatile modifier 393
The cdecl and pascal modifiers ... 394

pascal 394
cdecl 394

The pointer modifiers 395
Function type modifiers. 396

Complex declarations and
declarators ~ 397

Pointers 398
Pointers to objects 399
Pointers to functions 399
Pointer declarations 400
Pointers and constants 401
Pointer arithmetic 402
Pointer conversions 403
C++ reference declarations 403

Arrays 403
Functions 404

Declarations and definitions 404
Declarations and prototypes 405
Definitions 407
Formal parameter declarations 408
Function calls and argument
conversions 408

Structures .. 409
Untagged structures and typedefs ... 410
Structure member declarations 410
Structures and functions 411
Structure member access 411
Structure word alignment 413
Structure name spaces 413
Incomplete declarations 414
Bit fields : 414

Unions 415
Anonymous unions (C++ only) 416
Union declarations 417

Enumerations 417
Expressions 419

Expressions and C++ 422
Evaluation order 422
Errors and overflows 423

Operators .. 423

vii

Unary operators 425
Binary opera tors 425

Additive operators 425
Multiplicative operators 425
Shift operators 425
Bitwise operators 425
Logicaloperators 425
Assignment operators 425
Relational operators 426
Equalityoperators 426
Component selection operators ... 426
Class-member operators 426
Conditional operator 426
Comma operator 426

Postfix and prefix operators 426
Array subscript operator [] 426
Function call operators () 427
Structure/union member operator
. (dot) 427
Structure / union pointer
operator -> 427
Postfix increment operator ++ 427
Postfix decrement operator - - 428

Increment and decrement operators 428
Prefix increment operator 428
Prefix decrement operator 428

Unary operators 428
Address operator & 429
Indirection operator * 429
Unary plus operator + 430
Unary minus operator - 430
Bitwise complement operator - ... 430
Logical negation operator! 430

The sizeof operator ·430
Multiplicative operators 431
Additive operators ' 432

The addition operator + 432
The subtraction operator - 432

Bitwise shift operators 433
Bitwise shift operators «< and ») . 433

Relational operators 433
The less-than operator < 434
The greater-than operator> 434

The less-than or equal-to operator
<= 434
The greater-than or equal-to
operator >= 434

Equalityoperators 435
The equal-to operator == 435
The inequality operator != 436

Bitwise AND operator & 436,
Bitwise exclusive OR operator A • • • •• 436
Bitwise inclusive OR operator I 437
Logical AND operator && 437
Logical OR operator II 437
Conditional operator?: 438
Assignment operators 439

The simple assignment operator = . 439
The compound assignment
operators 439

Comma operator 440
C++ operators 440

Statements 441
Blocks ; . .. 441
Labeled statements 442
Expression statements ;........ 442
Selection statements 443

if statements 443
switch statements 444

Iteration statements 444
while statements 444
do while statements 445
for statements 445

Jump statements 446
break statements 446
continue statements 447
goto statements 447
return statements 447

Chapter 13 C++ specifics 449
Referencing 449

Simple references 450
Reference arguments 450

Scope access operator. 452
The new and delete operators. 452

Handling errors 453
The operator new with arrays 453

viii

The operator delete with arrays 454
The ::operator new 454
Initializers with the new operator .. , 454

Classes 455
Class names , 455
Class types , 455
Class name scope 456
Class objects 457
Class member list 457
Member functions 457
The keyword this 457
Inline functions 458
Static members 459
Member scope 460

Nested types 461
Member access control. 462

Base and derived class access 464
virtual base classes 466
friends of classes 466
Constructors and destructors 468
Constructors 469

Constructor defaults 470
The copy constructor 471
Overloading constructors 472
Order of calling constructors 472
Class initialization 474,

Destructors 476
When destructors are invoked 477
atexitO, #pragma exit, and
destructors .. 477
exitO and destructors 477
abort() and destructors 478
virtual destructors 478

Operator overloading 479
Overloaded operators and
inheritance .. 481
Operators new and delete 481
Unary operators 482
Binary operators 483
The assignment operator=O. 484
The function call operator() 484
The subscript operator '. 484'
The class member access operator ... 485

virtualfunctions 485

Abstract classes .. 487
C++ scope 488

Class scope . 488
Hiding 488
C++ scoping rules summary 489

Templates. .. 490
Function templates 490

Overriding a template function ... 492
Implicit and explicit template
functions 492

Class templates 493
Arguments 494
Angle brackets 495
Type-safe generic lists 495
Eliminating pointers 496

Template compiler switches 497
Using template switches 498

'Chapter 14 The preprocessor 501
Null directive # 503
The #define and #undef directives 503

Simple #define macros 503
The #undef directive 504
The -0 and -U options.·. 505
The Define option 505
Keywords and protected words 506
Macros with parameters 506

File inclusion with #include 509
Header file search with <header _name>
...... : 510

Header file search with "header_name"
................................. 510

Conditional compilation 510
The #if, #elif, #else, and #endif conditional
directives 511

The operator defined 511
The #ifdef and #ifndef conditional
directives 512

The #line line control directive 513
The #error directive 514
The #pragma directive 515

#pragma argsused 515
#pragma exit ahd #pragma startup .. 515
#pragma hdrfile 516

ix

#pragma hdrstop 517
#pragma inline 517
#pragma option ' 517
#pragma saveregs 518
#pragma warn 519

Predefined macros 519
__ CDECL __ 519
__ cplusplus .. 520
__ DATE __ 520
__ FILE_ _ 520
__ LINE...,... _ .. 520
__ MSDOS __ .. 521
__ OVERLAY __ 521
__ PASCAL __ 521
__ STDC __ 521
__ TCPLUSPLUS __ 521
__ TEMPLATES __ 521
__ TIME __ 521
__ TURBOC __ , 522

Chapter 15 The main function 523
Arguments to main 523

An example program 524
Wildcard arguments 525

An example program 526
Using -p (Pascal calling conventions) .. 527
The value main returns 527

Chapter 16 Using C++ streams 529
What is a stream? 529
The iostream library 530

The streambuf class 530
The ios class '. 530

Output 531
Fundamental types 532
1\0 formatting 532
Manipulators 533
Filling and padding 534

Input 535
110 of user-defined types 536
Simple file 1/ 0 537
String stream processing 538
Screen output streams 539
Stream class reference 541

conbuf
Member functions

constream
Member functions

filebuf
Data members
Member functions

fstream
Member functions

fstreambase
Member functions

ifstream
Member functions

ios
Data members
Member functions

iostream
iostream_withassign

Member functions
istream

Member functions
istream_withassign

Member functions
istrstream
of stream

Member functions
ostream

Member functions
ostream_withassign

Member functions
ostrstream

Member functions
streambuf

Member functions
strstreambase

Member functions
strstreambuf

Member functions
strstream

Member function

541
541
543
543
543
543
544
545
545
545
546
546
547
547
547
549
551
551
551
551
551
553
553
553
553
554
554
554
555
555
555
556
556
556
558
559
559
559
560
560

Chapter 17 Converting from Microsoft
C 561

Environment and tools 561

x

Paths for.h and .LIB files 562
MAKE 563
Command-line compiler. 563
Command-line options and libraries. 565
Linker 565

Source-level compatibility 566
__ MSC macro 566
Header files 567
Memory models 567
Keywords. .. 568
Floating-point return values 568
Structures returned by value 569

Conversion hints. 569

Chapter 18 Memo'ry management 571
Running out of memory 571
Memory models 571

The iAPx86 registers 572
General-purpose registers 572
Segment registers 573
Special-purpose registers. 573
The flags register 573

Memory segmentation 574
Address calculation 575

Pointers 576
Near pointers 576
Far pointers 576
Huge pointers 577

The six memory models 578
Mixed-model programming: Addressing
modifiers 582

Segment pointers 583
Declaring far objects : 584
Declaring functions to be near or far . 585
Declaring pointers to be near, far, or
huge 586

Pointing to a given segment:offset
address .. 586

Using library files 586
Linking mixed modules. 586

Overlays (VROOMM) 587
How overlays work 588

Getting the best out of Turbo C++
overlays 589

Requirements 590
Using overlays 590

Overlay example 591
Overlaying in the IDE 591

Overlaid programs 592
The far call requirement. 592
Buffer size 592
What not to overlay 593
Debugging overlays 593
External routines in overlays 593

Swapping .. 594
Expanded memory 594
Extended memory 595

Chapter 19 Mathematical
operations 597

Floating-point options 597
Emulating the 80x87 chip 598
Using 80x87 code 598
No floating-point code , 598
Fast floating-point option ' 598
The 87 environment variable 599
Registers and the 80x87 600
Disabling floating-point exceptions .. 600

Using complex math 601
Using BCD math ; ... 602

Converting BCD numbers 603
Number of decimal digits 603

Chapter 20 Video functions 605
Some words about video modes 605
Some words about windows and
viewports 606

What is a window? 606
What is a viewport? 607
Coordinates 607

Programming in text mode 607
The console I/O functions 607

Text output and manipulation 608
Window and mode control 609
Attribute control 609
State query 610
Cursor shape , 610

Text windows 610

xi

An example 611
The text _modes type 611
Textcolors 612
High-performance output 613

Programming in graphics mode. 614
The graphics library functions 615

Graphics system control 615
A more detailed discussion 617
Drawing and filling 617
Manipulating the screen and
viewport .. 619
Text output in graphics mode. 620
Color control 622
Pixels and palettes 622
Background and drawing color '" 623
Color control on a CGA 623

CGA low resolution 623
CGA high resolution 624
CGA palette routines 625

Color control on the EGA and
VGA 625
Error handling in graphics mode .. 625
State query , 626

Appendix A Editor reference 629
Block commands. 631
Other editing commands 633

Appendix B Precompiled headers 635
How they work .. 635

Drawbacks 636
Using precompiled headers 636

Setting file names 637
Establishing identity 637
Optimizing precompiled headers 637

Appendix C Error messages 639
Finding a message in this
appendix 639

Types of messages 640
Compile-time messages 640
DPMI server messages 641
MAKE messages , 641
Run-time error messages , 642 '
TLIB messages' , 642

TLINK messages 642 Index 713
Message explanations 643

xii

T A B L E s

2.1: General hot keys 25 11.6: Turbo C++ integer constants without L
2.2: Menu hot keys 25 orU 357
2.3: Editing hot keys 26 11.7: Turbo C++ escape sequences 359
2.4: Window management hot keys : .26 11.8: Turbo C++ floating constant sizes and
2.5: Online Help hot keys " 26 ranges 361
2.6: Debugging/Running hot keys 27 11.9: Data types, sizes, and ranges 363
2.7: Manipulating windows 29 12.1: Turbo C++ declaration syntax 379
2.8: IDE overview 36 12.2: Turbo C++ declarator syntax ,! 380
2.9: IDE menu cross-reference 37 12.3: Turbo C++ class declarations (C++
3.1: Data types, sizes, and ranges 52 only) 381
3.2: Character escape sequences 59 12.4: Declaring types 383
3.3: Type promotions for arithmetic 62 12.5: Integral types 384
3.4: Bit manipulation operators 64 12.6: Methods used in standard arithmetic
3.5: Precedence and associativity of conversions 386

operators 68 12.7: Turbo C++ modifiers 391
3.6: Relational operators 73 12.8: Complex declarations 398
3.7: Logical 9perators 74 12.9: External function definitions 407
3.8: Preopened streams in Turbo C++ ... 122 12.10: Associativity and precedence of Turbo
4.1: Class access 147 C++ operators 420
8.1: Command-line options summary ... 267 12.11: Turbo C++ expressions421
9.1: MAKE options 300 12.12: Bitwise operators truth table 436
9.2: MAKE prefixes 305 12.13: Turbo C++ statements 441
9.3: MAKE predefined macros.' 318 14.1: Turbo C++ preprocessing directives
9.4: MAKE filename macros 318 syntax ; 502
9.5: MAKE macro modifiers 322 16.1: Stream manipulators 534
9.6: MAKE directives 322 16.2: Console stream manipulators 540
9.7: MAKE operators 327 17.1: CL and TCC options compared 564
10.1: TLINK options 331 17.2: LINK and TLI.NK options"
10.2: .OBJ and .LIB files 337 compared 566
10.3: TLINK overlay options 343 18.1: Memory models 582
11.1: All Turbo C++ keywords 353 18.2: Pointer r~sults 583
11.2: Turbo C++ extensions to C 353 20.1: Graphics mode state query
11.3: Keywords specific to C++ 353 functions 627
11.4: Turbo C++ register A.1: Editing commands 629

pseudovariables 354 A.2: Block commands in depth 632
11.5: Constants-formal definitions 356 A.3: Borland-style block commands 633

xiii

A.4: Other editor commands in depth ... 633 C.3: TLIB message variables 642
C.1: Compile-time message variables ... 641 C.4: TLINK error message variables 643
C.2: MAKE error message variables 642

xiv

F G

2.1: A typical window 28
2.2: A typical status line 31

, 2.3: A sample dialog box 31
3.1: Interpreting memory locations as

numbers (in I-byte increments) 51
3.2: How a string is stored in memory 71
3.3: Information flow to and from the tax

function 90
3.4: Simple program structure (all in one) .97
3.5: Program built from several files 98
3.6: Program using custom libraries 99
3.7: Two ways to deal with sets of data .. 104
3.8: How pointers point (and what they

point to) 115
3.9: Using pointers to access an array of

structures 118
3.10: Using pointers in a function 121
4.1: Traditional C versus encapsulated

C++ 130
4.2: A partial taxonomy chart of insects .131
4.3: Multiple inheritance 156
4.4: Circles with messages 160
6.1: Program development flowchart 220
6.2: Graph view of temperature data 222

u

xv

R E s

6.3: Inspecting the temps array 230
6.4: Inspecting the min_max function ... 231
10.1: Detailed map of segments 341
11.1: Internal representations of data

types 364
16.1: Class streambuf and its derived

classes 530
16.2: Class ios and its derived classes ... 531
18.1: iAPx86 registers 572
18.2: Flags register of the iAPx86 574
18.3: Tiny model memory segmentation .579
18.4: Small model memory

segmentation 580
18.5: Medium model memory

segmentation 580
18.6: Compact model memory

segmentation .. · 580
18.7: Large model memory

segmentation 581
18.8: Huge model memory

segmentation 581
18.9: Memory maps for overlays 589
20.1: A window in 80x25 text mode 611

N T R o D u c T o N

Turbo C++ is a powerful compiler for beginner and experienced
C++ and C programmers. With Turbo C++, you get both C++
(AT&T v2.l compliant) and ANSI C. It is a powerful, fast, and effi­
cient compiler for creating practically any application.

C++ is an object-oriented programming (OOP) language that
allows you to take advantage of OOP's advanced design
methodology and labor-saving features. It's the next step in the
natural evolution of C. C++ application programs are portable, so
you can easily transfer them from one system to another. C++ is
suitable for almost any programming task.

What/s in Turbo C++

Chapter 7 tells you how to
install Turbo C++. This

Introduction tells you where
you can find out more about

each of these features.

Introduction

Turbo C++ includes the latest features programmers have asked
for:

• C and C++: Turbo C++ offers you the full power of C and C++
programming, with a complete implementation of the AT&T v.
2.1 and ANSI C specifications. Turbo C++ 3.0 also provides a
number of useful C++ class libraries, plus the first complete
commercial implementation of templates. With templates,
efficient collection class~s can be built using parameterized
types .

• Faster compilation speed: Typically, Turbo C++ 3.0 cuts
compilation time for C++ in half compared to previous versions
of the product. Precompiled headers, a Borland exclusive,
significantly shorten recompilation time .

.• DPMI Compiler: Turbo C++ compiles huge programs of a size
limited only by the Inemory on your system. Turbo C++ 3.0
now uses the industry-standard DPMI (DOS Protected Mode

2

Interface) protocol that runs the compiler (as well as the IDE,
the linker, and other programs) in DOS protected mode.

• Programmer's Platform: Turbo C++ 3.0 comes with an
improved version of the Programmer's Platform, Borland's
open-architecture IDE that gives you access to the following full
range of programming tools and utilities:

• a multi-file editor, featuring both an industry-standard
Common User Access (CUA) interface and a familiar alternate
interface, compatible with previous versions of Turbo C++

• advanced Turbo Editor Macro Language (TEML) and
compiler

• multiple overlapping windows with full mouse support

• fully integrated debugger running in DPMI, for debugging
large applications

• support for inline assembler code

• complete undo and redo capability with an extensive buffer

and much more.

• VROOMM: Turbo C++'s Virtual Run-time Object-Oriented
Memory Manager lets you overlay your code without
complexity. You select the code segments for overlaying;
VROOMM takes care of the rest, doing the work needed to fit
your code into 640K.

• Help: Online context-sensitive hypertext help has copy-and­
paste program examples for practically every function.

• Streams: Turbo C++ includes full support for C++ iostreams,
plus special Borland extensions.

• Container classes: Advanced container class libraries gives
you sets, bags, lists, arrays, B-trees and other reusable data
structures, implemented both as templates and as object-based
containers for maximum flexibility.

Other features:

• Over 200 new library functions for maximum flexibility and
compatibility.

• Complex and BCD math, fast huge arithmetic.

• Heap checking arid memory management functions, with far
objects and huge arrays.

Turbo C++ User's Guide

• New BGI fonts and BGI support for the full ASCII character set.

• Response files for the command-line compiler.

• NMAKE compatibility for easy transition from Microsoft C.

Hardware and software requirements

Turbo C++ runs on the IBM PC compatible family of computers,
including the AT and PS/2, along with all true IBM compatible
286,386 or 486 computers. Turbo C++ requires a 286 or higher,
DOS 3.31 or higher, a hard disk, a floppy drive, and at least 640K
plus 1MB of extended memory; it runs on any 80-column monitor.

Turbo C++ includes floating-point routines that let your programs
make use of an 80x87 math coprocessor chip. It emulates the chip
if it is not available. Though it is not required to run Turbo C++,
the 80x87 chip can significantly enhance the performance of your
programs that use floating point math operations.

Turbo C++ also supports (but does not require) a mouse.

The Turbo C++ implementation

Turbo C++ is a full implementation of the AT&T C++ version 2.1,
and it includes an implementation of templates. It also supports
the American National Standards Institute (ANSI) C standard. In
addition, Turbo C++ includes certain extensions for mixed­
language and mixed-model programming that let you exploit
your PC's capabilities.

The Turbo C++ package

Introduction

Your Turbo C++ package consists of a set of disks and this
manual, which tells you how to use the product, how to program
in C and C++, and how to use specialized programming tools.

In addition to this manual, you'll find a convenient Quick
Reference card. The disks contain all the programs, files, and
libraries you need to create, compile, link, and run your Turbo
C++ programs; they also contaip sample programs, many
standalone utilities, a context-sensitive help file, an integrated

3

The User's Guide

4

debugger, and additional C and C++ documentation not covered
in this documentation.

The User's Guide introduces you to Turbo C++ and shows you
how to create and run both C and C++ programs. It consists of in­
formation you'll need to get up and running quickly, and
provides reference chapters on the features of Turbo C++:
Borland's Programmer's Platform, including the editor and Project
Manager, as well as details on using the command-line compiler.
This manual includes the following chapters:

Introduction introduces you to Turbo C++ and tells you where to
look for mor~ information about each feature and option.

Chapter 1: Installing Turbo C++ tells you how to install Turbo
C++ on your system; it also tells you how to customize the colors,
defaults, and many other aspects of Turbo C++.

Chapter 2: IDE Basics introduces the features of the
Programmer's Platform, tells you how to start up and exit from
the IDE, and presents examples of how to use the IDE.

Chapter 3: An introduction to C++ covers basic C++ syntax.

Chapter 4: Object-oriented· programming with C++ describes the
major concepts involved in object-oriented programming.

Chapter 5: Hands-on C++ is step-by-step instruction in C++
programming.

Chapter 6: Debugging in the new IDE is a tutorial on how to
debug a C program.

Chapter 7: Managing multi-file projects introduces you to Turbo
C++'s built-in project manager and shows you how to build and
update large projects from within the IDE.

Chapter 8: The command-line compiler tells how to use the
command-line compiler and configuration files.

Chapter 9: MAKE: The program manager introduces th~ Turbo
C++ MAKE utility, describes its features and syntax, and presents
some examples of usage.

Turbo C++ User's Guide

Introduction

Chapter 10: TLINK: The Turbo linker is a complete reference to the
features and functions of the Turbo Linker (TLINK).

Chapters 11: Lexical elements describes the Turbo C++ language
tokens.

Chapter 12: Language structure explains how C++ tokens can be
grouped together.

Chapter 13: C++ specifics describes details of the language and
how to use C++ with and without the classes.

Chapter 14: The preprocessor describes preprocessor directives,
their syntax and semantics, and the macro processor incorporated
in the preprocessor.

Chapter 15: The main function describes the main function.

Chapter 16: Using C++ streams tells you how to use the C++
iostreams library.

Chapter 17: Convert~ng from Microsoft C provides some
guidelines on converting your Microsoft C programs to Turbo
C++.

Chapter 18: Memory management briefly describes the DOS
Protected Mode Interface (DPMI) and other memory-related
topics.

Chapter 19: Mathematical operations covers floating-point and
BCD math.

Chapter 20: Video functions is devoted to handling text and
graphics in Turbo C++.

Appendix A: Editor reference provides a convenient command
reference to using the editor with both the CVA command
interface and the Turbo C++ alternate interface.

Appendix B: Precompiled headers tells you how to use Turbo
C++'s exclusive precompiled headers feature to save substantial
time when recompiling large projects.

Appendix C: Error messages lists and explains run-time,
compile-time, linker, librarian, and Help compiler errors and
warnings with suggested solutions.

5

Online
documentation In addition to the README.DOC and HELPME!.DOC, the

following online documents are included with Turbo C++:

• ANSI.DOC covers those aspects of the ANSI C standard that
have been left loosely defined or undefined by ANSI and how
Borland has chosen to implement them.

• CONTAIN.DOC tells you how to use the Turbo C++ container
class library in your programs.

• UTIL.DOC tells how to write inline assembly language functions
that can be assembled with the built-in assembler (BASM) and
used within your Turbo C++ program.

• UTIL.DOC describes TLIB and other utilities.

• Online help describes functions in the run-time library and·
contains information of a wide-range of other topics.

Using the manual

Programmers
learning C or C++

6

The manual is arranged so you can pick and choose among the
chapters to find exactly what you need to know at the time you
need to know it.

If you don't know C or C++, there are many good products on the
market that can get you going in these languages. You can use
Chapters 11 through 16 for reference on specific technical aspects
of Turbo C++.

Your riext step is to start programming in C and C++. Chapter 15,
"The main function," provides information on aspects of the
main() function that is seldom found elsewhere. Or, you might
prefer to use the online help; it contains much of the same
information, and includes programming examples that you can
copy into your own programs.

Turbo C++ User's Guide

Typefaces and icons used ·in these books

Monospace type

ALL CAPS

()

<>

Boldface

Italics

Keycaps

This typeface represents text as it appears onscreen or in a pro­
gram. It is also used for anything you must type literally (such as
TC to start up Turbo C++ 3.0).

We use all capital letters for the names of constants and files.

Square brackets [] in text or DOS command lines enclose optional
items that depend on your system. Text of this sort should not be
typed verbatim.

Angle brackets in the function reference section enclose the names
of include files.

Turbo C++ function names (such as printf), class, and structure
names are shown in boldface when they appear in text (but not in
program examples). This typeface is also used in text for Turbo

, C++ reserved words (such as char, switch, near, and cdecl), for
format specifiers and escape sequences (%d, \t), and for
command-line options (fA).

Italics indicate variable names (identifiers) that appear in text.
They can represent terms that you can use as is, or that you can
think up new names for (your choice, usually). They are also used
to emphasize certain words, such as new terms.

This typeface indicates a key on your keyboard. For example,
"Press Esc to exit a menu."

This icon indicates keyboard actions.

This icon indicates mouse actions.

~ This icon indicates language items that are specific to C++.

How to contact Borland

Introduction

Borland offers a variety of services to .answer your questions
about this product. Be sure to send in the registration card;
registered owners are entitled to technical support and may
receive information on upgrades and supplementary products.

7

Resources in your
package This product contains many resources to help you:

Borland resources

8

800-822-4269 (voice)
Techfax

408-439-9096 (modem)
File Download BBS

2400 Baud

Online information services

408-438-5300 (voice)
Technical Support

6 a.m. to 5 p.m. PST

• The manual provides information on every aspect of the
program. Use it as your main information source.

• While using the program, you can press F1 for help.
• Many common questions are answered in the DOC files listed

in the README file located in the program directory.

Borland Technical Support publishes technical information sheets
on a variety of topics and is available to answer your questions.

TechFax is a 24-hour automated service that sends free technical
information to your fax machine. You can use your touch-tone
phone to request up to three documents per call.

The Borland File Download BBS has sample files, applications,
and technical information you can download with your modem.
No special setup is required.

Subscribers to the CompuServe, GEnie, or BIX information
services can receive technical support by modem. Use the
commands in the following table to contact Borland while
accessing an information service.

Service Command

CompuServe GO' BORLAND
SIX JOIN BORLAND
GEnie BORLAND

Address electronic messages to Sysop or All. Don't include your
serial number; messages are in public view unless sent by a
service's private mail system. Include as much information on the
question as possible; the support staff will reply to the message
within one working day.

Borland Technical Support is available weekdays from 6:00 a.m.
to 5:00 p.m. Pacific time to answer any technical questions you
have about Borland products. Please call from a telephone near
your computer, and have the program running. Keep the
following information handy to help process your call:

• Product name, serial number, and version number.

Turbo C++ User's Guide

• The brand and model of any hardware in your system.

• Operating system and version number. (Use the .DOS command
VER to find the version number.)

• Contents of your AUTOEXEC.BAT and CONFIG.SYS files
(located in the root directory (\) of your computer's boot disk).

• A daytime phone number where you can be contacted.

• If the call concerns a problem, the steps to reproduce the
problem.

408-438-5300 (voice) Borland Customer Service is available weekdays from 7:00 a.m. to
Customer Service 5:00 a.m. Pacific time to answer any non-technical questions you

7 a.m. to 5 p.m. PST h b BId dId . . f ave a out or an pro ucts, inc u ing pncing In ormation,
upgrades, and order status.

Introduction 9

10 Turbo C++ User's Guide

p A R T

1 .

Using Turbo C++

11

12 Turbo C++ User's Guide

c H

Your Turbo C++ package
includes two different

versions of Turbo C++: the IDE
(Programmer's Platform) and

the DOS command line
version.

IMPORTANT! To create
backup copies of your disks,

put the backup on the same
type of disk as the source. For

example, if you're backing
up the 5 7/4-inch 7.2 Mb disk
set, use only blank 5 7/4-inch

7.2 Mb disks for backup. The
installation doesn't work

correctly unless the original
disks and backup disks are

the same type of storage
media.

A p T E R

1

Installing Turbo C++

Turbo C++ comes wjth an automatic installatfon program called
INSTALL. Because we used file-compression techniques, you
must use this program; you can't just copy the Turbo C++ files
onto your hard disk. Instead, INSTALL automatically copies and
uncompresses the Turbo C++ files. For reference, the README
file on the installation disk includes a list of the distribution files.

We assume you are already familiar with DOS commands. If you
don't already knowhow to use DOS commands, refer to your
DOS reference manual before setting up Turbo C++ on your
system. For example, you'll need the DISKCOPY command to
make backup copies of your distribution disks. Make a complete
working copy of your distribution disks when you receive them,
then store the original disks away in a safe place.

None of Borland's products use copy protection schemes. If you
are not familiar with Borland's No-Nonsense License Statement,
read the agreement included with your Turbo C++ package. Fill
in the product registration card and return it by mail to Borland.
Returning this information ensures that you'll receive important
upgrades and new product announcements promptly.

This chapter contains the following information:

• installing Turbo C++ on your system
• accessing the README file
• accessing the HELPME! file

Chapter 7, Installing Turbo C++ 13

Using INSTALL

We recommend that you
study the README file before

proceeding with the
installation.

• a pointer to more information on example programs
• information about customizing Turbo C++ default settings,

display colors, and so on .

. Once you have installed Turbo C++, you'll be ready to start
digging into Turbo C++. The Introduction tells where to find out
more about Turbo C++ features in the documentation.

INSTALL detects what hardware you're using and configures
Turbo C++ appropriately. It creates required directories and
transfers files from the distribution disks to your hard disk. The
distribution disks are the disks included in the Turbo C++
product package.

To install Turbo C++, perform the following steps:

1. Insert the installation disk (disk 1) into drive A. Type the
following command, then press Enter.

A: INSTALL

2. Press Enter at the installation screen.

3. Follow the prompts.

4. At the end of installation, you might want to add the
following line to your CONFIG.SYS file:

FILES = 20

You might want to add the following line to your
AUTOEXEC.BAT file or change your PATH statement
accordingly:

PATH = C:\TC\BIN

Important! When INSTALL is finished, it displays the README file, which
contains important, last-minute information about Turbo C++.
The HELPME!.DOC file is available to answer many common
technical support questions, also.

Protected mode
and memory Turbo C++ utilizes the DPMI (Dos Protected Mode Interface) to

run the compiler in. protected mode, giving you access to all your
computer's memory without swapping. The protected mode
interface is transparent to the user, and you usually don't have to

14 Turbo C++ User's Guide

think about it. The following sections discuss the rare
circumstances that require your interaction with the DPMI.

DPMIINST When you run Turbo C++ for the first time, you might receive an
error message and have to run DPMIINST. Turbo C++ uses an
internal database of various machine characteristics to determine
how to enable protected mode operations on your machine, and it
configures itself accordingly. If your machine isn't recognized by .
Turbo C++, you receive the following error message:

Machine not in database (RUN DPMIINST)

If you get this message, run the DPMIINST program by typing the
following command at the DOS prompt:

DPMIINST

Follow the program's instructions. DPMIINST runs your machine
through a series of tests to determine the best way of enabling
protected mode, and automatically configures Turbo C++
accordingly. Once you run DPMIINST, you never have to run it
again.

DPMIMEM By default, the Turbo C++ DPMI interface allocates all available
extended and expanded memory·for its own use. If you don't
want all of the available memory to be taken by the DPMI kernel,
set the environment variable DPMI, which specifies a maximum
amount of memory to use, using the following syntax:

set DPMIMEM=MAXMEM nnnn

where nnnn is the amount of memory in kilobytes.

You tan set DPMIMEM by entering the command at the DOS
prompt, or you can put it into your AUTOEXEC.BAT file to set
PPMIMEM automatically.

For example, if a user has a system with 4MB and wants the
DPMI kernel to use 2MB of it, leaving the other 2MB alone, the
DPMIMEM variable would be set as follows:

c:> set DPMIMEM=MAXMEM 2000

Chapter 7, Installing Turbo C++ 15

16

DPMIRES DPMIRES is a utility that can be used with Turbo C++ to increase
performance of some language tools under certain conditions. In
particular, the performance of TCC and TLINK can be enhanced
through its use.

Extended and
expanded memory

When run, DPMIRES enables the Dos Protected Mode interface
and spawns a DOS command shell. Applications such as TLINK
load faster into this shell. Typing 'EXIT' to the shell removes it.

DPMIRES is especially useful if you're compiling with batch files,
instead of using the protected mode MAKE. In this situation, it's
,more efficient to run DPMIRES before running the batch file, since
the compile loads faster on each invocation.

Once the DPMI kernel is loaded (either by running.TC or through
the DPMIRES utility), the Turbo C++ integrated development
environment interacts directly with the DPMI server to allocate its
memory during both loading and operating. By default, the IDE
uses all the extended memory reserved by the DPMI kernel and
all available EMS (expanded) ;memory with the EMS memory
being used as a swap device. .

The Options I Environment I Startup ... dialog items (Use Extended
Memory and Use EMS Memory) and the corresponding IX and IE
command line switches change the default method of memory
allocation, which affects how much memory the IDE uses. The
settings don't change the memory reserved by the kernel itself.

The Use Extended Memory dialog item corresponds to the IX
command line option. It tells TC how much of the memory
reserved by the DPMI kernel to use. By limiting TC's use of the
kernel's memory, other DPMI applications can be run from within
the IDE's memory (using the Transfer capability), or other
applications can be run from a DOS shell opened from the IDE.

The Use EMS Memory dialog item corresponds to the IE
command line option. It tells the IDE how many 16K EMS pages
to use as a swap device. Unless the kernel has been instructed to
set aside some available memory, no EMS pages are available to
the IDE.

Turbo C++ User's Guide

Running Turbo
C++ Once you have installed Turbo C++, change to the Turbo C++ \

BIN directory, type TC and press Enter.

Laptop systems

The README file

After experimenting with the IDE, select the Options I
Environment I Startup and Options I Environment I Colors if you
want to customize the IDE.

If you have a laptop computer (one with an LCD or plasma
display), set your screen parameters before using Turbo C++ to
the recommended setting by typing the following command at
the DOS prompt:

MODE BW80

To set the MODE automatically, either create a batch file to set
Mode to BW80, or better yet, install Turbo C++ for a black-and­
white screen from within the IDE using the Options I
Environment I Startup option. Choose "Black and White / LCD"
from the Video options group.

The README file contains last-minute information that might not
be in the manuaL

Turbo C++ automatically displays the README file when you
run the INSTALL program. To access the README file at a later
time type the following command at the DOS command line:

README

The FILELIST,DOC and HELPMELDOC files

Other files on the installation disk are FILELIST.DOC and
HELPME!.DOC. FILELIST.DOC briefly describes every file on the
distribution disk. HELPMELDOC contains answers to
frequently-encountered problems. Consult these files to try to

Chapter 7, Installing Turbo C++ 17

solve difficulties. You can use the README program to look at
HELPME!.DOC. Type the following command at the command
line:

README HELPME!.DOC

Example programs

Your Turbo C++ package includes the source code for a large
number of example programs in C and C++,inc1uding a complete
spreadsheet program called Turbo Calc. These programs are
located in the EXAMPLES directory (and subdirectories) created
by INSTALL. The EXAMPLES directory also contains
subdirectories for examples of the other tools and utilities that
come with Turbo C++. Before you compile any of these example
programs, you should read the printed or online documentation
for them.

Customizing the IDE

For detailed information on
the menus and options in the

IDE, see Chapter 2, "IDE
Basics."

18

Turbo C++ allows you to customize your installation from within
the IDE, using the various options in the Options I Environment
menu. The options specify the video mode, editing modes, default
directories, menu colors, and control color syntax highlighting
during debugging.

Turbo C++ User's Guide

c H

Chapter 2, IDE basics

A p T E R

2

IDE basics

Borland's Programmer's Platform, also known as the integrated
development environment or IDE, has everything you need to
write, edit, compile, link, and debug your programs. It provides

• multiple, movable, resizable windows

• mouse support and dialog boxes

• syntax highlighting in colors you can change

• cut,' paste, and copy commands that use the Clipboard

• full editor undo and redo

• online Help
• examples ready to copy and paste from Help

• a built-in assembler

• quick transfer to other programs and back again

• an editor macro language

This chapter explains how to start up and exit the Turbo C++ IDE,
discusses its generic components, and explains how configuration
and project files work. The table at the end of the chapter cross­
references IDE menu items to descriptions throughout the
manual.

19

Starting and exiting

20

Turbo C++ runs only in
protected mode.

Command-line

To start the IDE, type TC at the DOS prompt. You can follow it
with one or more IDE command-line options.

options The command-line options for Turbo C++'s IDE are Ib,/d,/e,/h,/l,
Im,/p,/rx,/s, and Ix using this syntax:

The /b option

TC [option [option ...]] [sourcename I projectname [sourcename]]

where option can be one or more of the options, sourcename is any
ASCII file (default extension assumed), and projectname is your
project file (it must have the .PRJ extension). The order and case is
not important.

To turn an option off, follow the option with a minus sign. For
example,

TC le-

turns off the default swap to expanded memory option.

The Ib (build) option causes Turbo C++ to recompile and link all
the files in your project, print the compiler messages to the
standard output device, and then return to the operating system.
This option lets you start Turbo C++ from a batch file so you can
automate project builds. Turbo C++ determines what .EXE to
build based on the file you specify on the command line. If it
doesn't find a project file it builds the active file loaded into the
IDE edit window. It looks for project file (.PRJ) and source file
(.CPP) extensions.

To specify a project file, enter the TC command followed by /b and
the project file name. For example,

TC Ib myproj.prj

If there is no MYPROG.PRJ file, the following command loads the
file MYPROG.CPP in the editor and then compiles and links it:

TC MYPROG IB

Turbo C++ User's Guide

The Id option The Id option causes Turbo C++ to run in dual monitor mode if it
detects two video cards installed in your computer (for example, a
monochrome card and a color card); otherwise, the Id option is
ignored. Using dual monitor mode makes it easier to watch a
program's output while you are debugging the program.

If your system has two monitors, DOS treats one monitor as the
active monitor. Use the DOS MODE command to switch between
the two monitors (MODE C080, for example, or MODE MONO). In dual
monitor mode, the normal Turbo C++ screen appears on the
inactive monitor, and program output goes to the active monitor.
So when you type TC Id at the DOS prompt on one monitor, Turbo
C++ comes up on the other monitor. When you want to test your
program on a particular monitor, exit Turbo C++, switch the
active monitor to the one you want to test with, and then issue the
TC I d command again. Program output then goes to the monitor
where you typed the TC command.

Keep the following in mind when using the Id option:

• Don't change the active monitor (by using the DOS MODE
command, for example) while you are in a DOS shell (File I DOS
Shell).

• User programs that directly access ports on the inactive moni­
tor's video card are not supported, and have unpredictable
results.

• Don't use it when you run or debug programs that explicitly
make use of dual monitors.

The Ie option The Ie option tells Turbo C++ to swap to expanded memory if
necessary; it is on by default. The syntax for this option is as
follows:

le[=n]

where n equals the number of pages of expanded memory that
you want the IDE to use for swapping. Each page is 16K.

The Ih option Typing TC Ih on the command line, you get a list of all the
command-line options available. Their default values are also
shown.

Chapter 2, IDE basics· 21

22

The II option Use the II (lowercase 1) option if you're running Turbo C++ on an
LCD screen.

The 1m option The 1m option lets you do a make rather than a build. That is, only
outdated source files in your project are recompiled and linked.
Follow the instructions for the Ib option, but use 1m instead. See
page 297 for MAKE information.

The Ip option If your program modifies the EGA palette registers (or has BGI do
it), use the Ip option, which controls palette swapping on EGA
video adapters. The EGA palette is restored each time the screen
is swapped.

The Ir option Use Irxto speCify a swap drive, usually a RAM disk, if all your
virtual memory fills up. The:X in Irxis the letter of the swap drive.
For example, Ird specifies drive D as the swap drive.

The Is option Using the Is option, (on by default) the compiler allows the
majority of available memory to be allocated for its internal tables
while compiling. If it is compiling large modules, little memory
may remain for the needed overlays; therefore, the compiler may
spend a long time "thrashing," that is, swapping overlays in and
out of memory.

If you specify Is~, the compiler won't permit its internal tables to
severely restrict the overlay space in memory. As a result, if you
are compiling very large modules, the compilation may fail and
you'll get an out-of-memory error, but the compiler won't thrash
excessively.

The Ix option Use the Ix switch to tell Turbo C++ how much of the available
extended memory to use for its heap space.

/x

uses all available memory.

/x[=n]

where n equals the amount of memory in kilobytes, let's you
specify how much extended memory should be used.

Turbo C++ User's Guide

Exiting Turbo C++

You return to the IDE after
you exit the program you

transferred to.

There are three ways to leave the IDE.

• Choose File I Exit to leave the IDE completely; you have to type
TC again to reenter it. You'll be prompted to save your
programs before exiting, if you haven't already done so.

• Choose File I DOS Shell to shell out from the IDE to enter
commands at the DOS command line. When you're ready to
return to the IDE, type EXIT at the command line and press Enter.
The IDE reappears just as you left it.

• Choose a program from the System menu (=) to temporarily
transfer to another program without leaving the IDE. You can
add new Transfer programs with the Options I Transfer
command.

IDE components

The menu bar
and menus

Chapter 2, IDE basics

There are three visible components to the IDE: the menu bar at the
top, the window area in the middle, and the status line at the bot­
tom of the screen. Many menu items also offer dialog boxes.
Although there are several different ways to make selections in
~he IDE, they access the same commands and dialog boxes. Before
we list menu items in the IDE, we'll explain these more generic
components.

The menu bar is your primary access to all the menu commands.
The menu bar is always visible except when you're viewing your
program's output or transferring to another program.

If a menu command is followed by an ~llipsis (...), choosing the
command displays a dialog box. If the command is followed by
an arrow (~), the command leads to another menu. If the
command has neither an ellipsis nor an arrow, the action occurs
as soon as you choose the command.

Here is how you choose menu commands using the keyboard:

1. Press F10. This makes the menu bar active; the next thing you
type will telate to the items on the menu bar.

23

To cancel an action,
press Esc.

Turbo C++ uses only the left
mouse button. You can,

however, customize the right
button and make other

mouse option changes, by
choosing Options I

Environment I Mouse.

Shortcuts

Input boxes are described on
page 32

24

2. Use the arrow keys to select the menu you want to display.
Then press Enter.

As a shortcut for this step, you can just press the highlighted
letter of the menu title. For example, when the menu bar is
active, press E to move to and display the Edit menu. At any
time, press Alt and the highlighted letter (such as Alt+E) to
display the menu you want.

3. Use the arrow keys again to select a command from the menu
you've opened. Then press Enter.

At this point, Turbo C++ either carries out the command,
displays a dialog box, or displays another menu.

There are two ways to choose commands with a mouse:

• Click the desired menu title to display the menu and click the
desired command.

• Or, drag straight from the menu title down to the menu
command. Release the mouse button on the command you
want. (If you change your mind, just drag off the menu; no
command will be chosen.)

Note that some menu commands are unavailable when it would
make no sense to choose them. However, you can always get
online Help about currently unavailable commands.

Turbo C++ offers a number of quick ways to choose menu
commands. The click-drag method for mouse users is an example.
From the keyboard, you can use a number of keyboard shortcuts
(or hot keys) to access the menu bar~ choose commands, or work
within dialog boxes. You need to hold down Altwhile pressing the
highlighted letter when moving from an input boxto a group of
buttons or boxes. Here's a list of the shortcuts available:

Do this ...

Press Alt plus the highlighted
letter of the command (just
press the highlighted letter
in a dialog box). For the
== menu, press Alt+Spacebar.

Type the keystrokes next to a
menu command.

To accomplish this ...

Display the menu or carry out the
command.

Carry out the command.

For example, to cut selected text, press Alt+E T (for Edit I Cut) or
you can just press Shift+Del, the shortcut displayed next to it.

Turbo C++ User's Guide

Command sets Turbo c++ has two command sets: the Common User Access
(CUA) command set and the Alternate command set popularized
in previous Borland products. The set determines the shortcuts
available to you, which keys you use within the editor, and, to
some extent, how the editor works. See more about using
command sets in the editor in Appendix A. A Native command
set option is discussed at the end of this section.

You can select a command set by choosing Options I
Environment I Preferences and then selecting the command set
you prefer in the Preferences dialog box. If you are a long-time
Borland language user, you may prefer the Alternate command
set.

The following tables list the most-used Turbo C++ hot keys in
both command sets.

Table 2.1: General hot keys

CUA Alternate Menu item

F1

Ctr/+F6
F7

FB

F9
F10

F1
F2
F3
F4

F5
F6
F7

FB

F9
F10

Help
File I Save
File I Open
Run I Go to Cursor

Window I Zoom
Window I Next
Run I Trace Into

Run I Step Over

Compile I Make
(none)

Tdble 2.2: Menu hot keys

CUA

Alt+Spacebar
Alt+C
Alt+D
Alt+E
Alt+F
Alt+H
Alt+O
Alt+P
Alt+R
Alt+S .

Alternate.

Alt+Spacebar
Alt+C
Alt+D
Alt+E
Alt+F
Alt+H
Alt+O
Alt+P
A1t+R·
Alt+S

~hapter 2, IDE basics

Menu item

==menu
Compile menu
Debug menu
Edit menu
File menu
Help menu
Options menu
Project menu
Run menu
Search menu

Function

Displays context-sensitive help screen.
Saves the file that's in the active edit window.
Brings up a dialog box so you can open a file.
Runs your program to the line where the cursor is
positioned.
Zooms the active window.
Cycles through all open windows.
Runs your program in debug mode, tracing into
functions.
Runs your program in debug mode, stepping over
function calls.
Invokes the Project Manager to make an .EXE file.
Takes you to the menu bar.

Function

Takes you to the == (System) menu
Takes you to the Compile menu
Takes you to the Debug menu
Takes you to the Edit menu
Takes you to the File menu
Takes you to the Help menu
Takes you to the Options menu
Takes you to the Project menu
Takes you to the Run menu
Takes you to the Search menu

25

Table 2.2: Menu hot keys (continued)

Alt+W
Alt+F4

Alt+W
Alt+X·

Window menu
File I Exit

Table 2.3: Editing hot keys

CUA Alternate Menu item

Ctrl+lns Ctrl+lns Edit I Copy
Shift+Del Shift+Del Edit I Cut

Shift+lns Shift+lns Edit I Paste

Ctrl+Del Ctrl+Del Edit I Clear

Alt+Bkspc Alt+Bkspc Edit I Undo

Alt+Shft+Bksp Alt+Shft+Bksp Edit I Redo
F3 Ctrl+L Search I Search Again

F2 File I Save
F3 File I Open

Table 2.4: Window management hot keys

CUA Alternate Menu item

Alt+# Alt+#

Alt+O Alt+O Window I List All
Ctrl+F4 AIt+F3 Window I Close
Shift+FS Window I Tile
Alt+FS Alt+F4 Debug I Inspect
Shift+FS Alt+FS Window I User Screen

FS Window I Zoom
Ctrl+F6 F6 Window I Next

Ctrl+FS

Table 2.5: Online Help hot keys

CUA Alternate Menu item

F1 F1 Help I Contents
F1 F1 F1 F1

Shift+F1 Shift+F1 Help I Index
Alt+F1 Alt+F1 Help I Previous Topic
Ctrl+F1 Ctrl+F1 Help I Topic Search

26

Takes you to the Window menu
Exits Turbo C++ to DOS

Function

Copies selected text to Clipboard
Places selected text in the Clipboard,
deletes selection
Pastes text from the Clipboard into the
active window
Removes selected text from the window
but doesn't put it in the Clipboard
Restores the text in the active window to a
previous state
"Undoes" the previous Undo.
Repeats last Find or Replace command
Saves the file in the active edit window
Lets you open a file

Function

Displays a window, where # is the number
of the window you want to view
Displays a list of open windows
Closes the active window
Tiles all open windows
Opens an Inspector window
Displays User Screen
Zooms/ unzooms the active window
Switches the active wind0w
Changes size or position of active window

Function

Opens a context-sensitive help screen
Brings up Help on Help. (Just press F1
when you're already in the help system.)
Brings up Help index
Displays previous Help screen .
Calls up language-specific help (in the
active edit window)

Turbo C++ User's Guide

Table 2.6: Debugging/Running hot keys

CUA

Alt+FS
Alt+F7
Alt+FB
Alt+F9
Ctrl+F2

Ctrl+FS
FS
Ctrl+F9

F7
FB
F9

Alternate

Alt+F4
Alt+F7
Alt+FB
Alt+F9
Ctrl+F2
Ctrl+F3
Ctrl+F4
Ctrl+F7
Ctrl+FB
Ctrl+F9
F4
F7
FB
F9

Menu item

Debug I Inspect
Search I Previous Error
Search I Next Error
Compile I Compile to OBJ
Run I Program Reset
Debug I Call Stack
Debug I Evaluate/Modify
Debug I Add Watch
Debug I Toggle Breakpoint
Run I Run
Run I Go To Cursor
Run I Trace Into
Run I Step Over
Compile I Make

Native option

Function

Opens an Inspector window
Takes you to previous error
Takes you to next error
Compiles to .OBJ
Resets running program
Brings up call stack
Evaluates an expression
Adds a watch expression
Sets or clears conditional breakpoint
Runs program
Runs program to cursor position
Executes one line, tracing into functions
Executes one line, skipping function calls
Makes (compiles/links) program

Native makes the Alternate
command set the default.

If you choose Options I Environment I Preferences to display the
Preferences dialog box, you'll notice another option: Native. This
is the default setting.

Turbo C++
windows

If you exit Turbo C++ with a
fife open in a window, you

are returned to your desktop,
open file and al/, when you

next use Turbo C++.

Chapter 2, IpE basics

The IDE uses the configuration file, TCCONFIG.TC, to determine
which command set is in effect. Therefore, if you have selected the
CD A command set in the IDE, that is the one in effect the next
time you start up.

With Native selected, Turbo C++ for DOS uses the Alternate
command set automatically.

Most of what you see and do in the IDE happens in a window. A
window is a screen area that you can open, close, move, resize,
zoom, tile, and overlap.

You can have many windows open in the IDE, but only one
window can be active at any time. Any command you choose or
text you type generally applies only to the active window. (If you
have the same file open in several windows, the action will apply
to the file everywhere that it's open.)

You can spot the active window easily: It's the one with the
double-lined border around it. The active window always has a
close box, a zoom box, and scroll bars. If your windows are over-

27

28

Figure 2.1
A typical window

lapping, the active window is always the one on top of all the
others (the foremost one).

There are several types of windows" but most of 'them have these
things in common:

• a title bar
.a close box
• scroll bars
.azoom box
• a window number (1 to 9)

A edit window also displays the current line and column num­
bers in the lower left corner. If you've modified your file, an aste­
risk (*) appears to the left of the column and line numbers.

The following figure shows a typical window:

Click the
IIIIIIim3 to
qui ckly close
the window.

The IIIIIiID'iD contains
the name of the wi ndow.

~ ~

Window Title ====== : =[t]~

I ...
The first nine ~
windows have a ~
1D!IiDDi. Use A 1 t and #
to make the # act i ve.

Use a mouse to scroll the
contents of the wi ndow

::C::::::::::::::::::::::::::lli::~::J
'----'-------------{ Drag any corner to make

windows larger or smaller

The close box of a window is the box in the upper left corner. Click
this box to quickly close the window. (Or choose Window I Close.)
The Inspector and Help windows are considered temporary; you
can close them by pressing Esc.

Turbo C++ User's Guide

Shortcut: Double-click the
title bar of a window to zoom

or restore it.

Alt+O gives you a list of all
windows you have open.

Scroll bars also show -you
where you are in your file.

W.

The title bar, the topmost horizontal bar of a window, contains the
name of the window and the window number. Double-clicking
the title bar zooms the window. You can also drag the title bar to
move the window around.

The zoom box of a window appears in the upper right comer. If the
icon in that corner is an up arrow (t), you can click the arrow to
enlarge the window to the largest size possible. If the icon is a
doubleheaded arrow (~), the window is already at its maximum'
size. In that case, clicking it returns the window to its previous
size. To zoom a window from the keyboard, choose Window I
Zoom.

The first nine windows you open in Turbo C++ have a window
number in the upper right border. You can make a window active
(and thereby bring it to the top of the heap) by pressing Aft in
combination with the window number. For example, if the Help
window is #5 but has gotten buried under the other windows,
Alt+5brings it to the front.

Scroll bars are horizontal or vertical bars that look like this:

£l
IU.UI II UU C IIII••• 11 111 1111 •••••••••••• 111.11 1 •••• 1.111.111;
......... 111 11 •••• 111 111111 111 11111 11.11 111 •••••••• 11111 11
111 11 11.11.11 ••••••••••••• 111111.11 111 •••••• 111 ... 11 1111111 11 ••••••••• 11 •• 111111 •••••••••• 11111 •••••

You use these bars with a mouse to scroll the contents of the
window. Click the arrow at either end to scroll one line at a time.
(Keep the mouse button pressed to scroll continuously.) You can
click the shaded area to either side of the scroll box to scroll a
page at a time. Finally, you can drag the scroll box to any spot on
the bar to quickly move to a spot in the window relative to the
position of the scroll box,

You can drag any corner to make a window larger or smaller. To
resize using the keyboard, choose Size/Move from the Window
menu.

Window management Table 2.7 gives you a quick rundown of how to handle windows
in Turbo C++. Note that you don't need a mouse to perform these
actions-a keyboard works just fine.

Table 2.7
Ma~pu~flngw~do~ _T_o_a_c_co_m~p_li_sh~th_i_s_:~~~_U_s_e_o_n_e_o_f_t_h_e_se~m_e_th_o_d_s~~~~~~

Chapter 2, IDE basics

Open an ,edit window Choose File I Open to open a file and
display it in a window. .

Open other windows Choose the desired window from the
Window menu

29

30

The status line

Table 2.7: Manipulating windows (continued)

Close a window

Activate a window

Move the active window

Resize the active window

Zoom the active window

Choose Close from the Window menu or
click the close box of the window.

Click anywhere in the window, or

Press A/tplus the window number (1 to 9,
in the upper right border of the window),
or

Choose Window I List or press Alt+O and
select the window from the list, or

Choose Window I Next to make the next
window active (hext in the order you first
opened them).

Drag its title bar. Or choose Window I
Size/Move and use the arrow keys to place
the window where you want it, then press
Enter.

Drag any corner. Or choose Window I
Size/Move and press Shift while you use
the arrow keys to resize the window, then
press Enter.

Click the zoom box in the upper right
corner of the window, or

Double-click the window's title bar, or

Choose Window I Zoom.

The status line appears at the bottom of the screen. It

• reminds you of basic keystrokes and shortcuts (or hot keys)
applicable at that moment in the active window.

N. • lets you click the shortcuts to carry out the action instead of
choosing the command from the menu or pressing the shortcut
keystroke.

• tells you what the program is doing. For example, it displays
Savingfilename ... when an edit file is being saved.

• offers one-line hints on any selected menu command and dialog
box items.

The status line changes as you switch windows or activities~ One
of the most common ,status lines is the one you see when you're
actually writing and editing programs in an edit window. Here is
what it looks like:

Turbo C++ User's Guide

Figure 2.2
A typical status Iil1e

Dialog boxes

Figure 2.3
A sample dialog box

If you have a color monitor,
Turbo C++ uses different

colors for various elements of
the dialog box.

Action buttons

You can select another
button with Tab; press Enter to

choose that button.

Chapter 2, IDE basics

Fl Help F2 Save F3 Open F7 Trace Fa Step F9 Make FlO Menu

When you've selected a menu title or command, the status line
changes to display a one-line summary of the function of the
selected item.

A menu command with an ellipsis (...) after it leads to a dialog box.
Dialog boxes offer a convenient way to view and set multiple
options. When you're making settings in dialog boxes, you work
with five basic types of onscreen controls: action buttons, radio
buttons, check boxes, input boxes, and list boxes. Here's a sample
dialog box that illustrates some of these items:

This dialog box has three standard buttons: OK, Cancel, and Help.
If you choose OK, the choices in the dialog box are accepted; if
you choose Cancel, nothing changes, no action takes place, and
the dialog box is put away. Choose Help to open a Help window
about this dialog box. Esc is always a keyboard shortcut for
Cancel (even if no Cancel button appears).

If you're using a mouse, click the dialog box button you want.
When you're using the keyboard, press Alt and the highlighted
letter of an item to activate it. For example, Alt+K selects the OK
button because the K in OK is highlighted. Press Tab or Shift+ Tab to
move forward or back from one item to another in a dialog box.
Each element is highlighted when it becomes active.

In this dialog box, OK is the default button, which means you need
only press Enter to choose that button. (On monochrome systems,
arrows indicate the default; on color monitors, default buttons are
highlighted.) Be aware that tabbing to a button makes that button
the default.

31

32

Radio buttons and
check boxes

() None
(-) Emulation
() 8087
() 80287

[X] Checked check box
[] Unchecked check box

Input and list boxes

You can control whether
history lists are saved to the

desktop using Options I
Environment I Desktop.

Radio buttons are like car radio buttons. They come in groups,
and only one radio button in the group can be on at anyone time.
To choose a radio button, click it or its text. From the keyboard,
sele~t Alt and the highlighted letter, or press Tab until the group is
highlighted and then use the arrow keys to choose a particular
radio button. Press Tab or Shift+ Tab again to leave the group with
the new radio button chosen.

Check boxes differ from radio buttons in that you can have any
number of check boxes checked at any time. When you select a
check box, an x appears in it to show you it's on. An empty box
indicates it's off. To change the status of a check box, click it or its
text, press Tab until the check box is highlighted and then press
Spacebar, or select Alt and the highlighted letter.

If several check boxes apply to a topic, they appear as a group. In
that case, tabbing moves to the group. Once the group is selected,
use the arrow keys to select the item you want, and then press
Spacebar to check or uncheck it. On monochrome monitors, the
active check box or group of check boxes will have a chevron
symbol (») to the left and right. When you press Tab, the chevrons
move to the next group of check boxes or radio buttons.

Input boxes let you type in text. Most basic text-editing keys work
in the text box (for example, arrow keys, Home, End, and Ins). If you
continue to type once you reach the end of the box, the contents
automatically scroll. If there's more text than what shows in the
box, arrowheads appear at the end (.... and ~). You can click the
arrowheads to scroll or drag the text. If you need to enter control
characters (such as I\L or I\M) in the input box, then prefix the
character with a I\P. So, for example, to enter I\L into the input
box, hold down the Gtrl key and press P L. (This capability is useful
for search strings.)

If an input box has 'a down-arrow icon (..) to its right, there is an
associated history list. Click the .. to display the list. You'll find text
you typed the last few times you used the input box. Press Enter to
choose an item from this list. The Find box, for example, has such
a history list, which keeps track of the text you searched for
previously. Try choosing a previous search string. You can also
edit an entry in the history list. Press Esc to exit from the history
list without making a selection.

Turbo C++ User's Guide

Here is what a history list for the Find text box might look like if
you had used it six times previously:!

Text to find •••••••••

struct date
pr;ntf(
char buf[7]
/*
returneD
returnO

A final component of many dialog boxes is a list box, which lets
you scroll through and select from variable-length lists (often file
names) without leaving a dialog box. If a blinking cursor appears
in the list box and you know what you're looking for, you can
type the word (or the first few letters of the word) and Turbo C++
will search for it.

You make a list box active by clicking it or by choosing the high­
lighted letter of the list title (or press Tab until it's highlighted).
Once a list box is displayed, you can use the scroll box to move
through the list or press i or J, from the keyboard.

Configuration and project files

The configuration
file

Chapter 2, IDE basics

With configuration files, you can specify how you want to work
within the IDE. Project files contain all the information necessary
to build a project, but don't affect how you use the IDE.

The IDE configuration file, TCCONFIG. TC, contains only
environmental (or global) information, including

• editor key binding and macros,
• editor mode setting (such as autoindent, use tabs, etc.),
• mouse preferences, and
• auto-save flags.

The configuration file is not required to build programs defined
by a project. The project (.PRJ) file handles those details.

33

Project files

When you start a programming session, Turbo C++ looks for
TCCONFIG.TC first in the current directory and then in the
directory that contains TC.EXE.

The IDE places all information needed to build a program into a
binary project file, a file with a .PRJ extension. Project files contain
the settings for

• compiler, linker, make and librarian options

• directory paths
• the list of all files that ~ake up the project

• special translators (such as Turbo Assembler)

In addition, the project file contains other general information on
the project, such as compilation statistics (shown in the project
window), and cached autodependency information.

IDE .PRJ project files correspond to the .CFG configuration files
that you supply to the command-line compiler (thedefault
command-line compiler configuration file is TURBOC.CFG). The
PRJCFG utility can convert .PRJ files to .CFG files and .CFG files
to .PRJ files.

You can load project files in any of three ways:

1. When starting Turbo C++, give the project name with the .PRJ
~xtension after the TC command; for example,

TC myproj.PRJ

You must use the .PRJ extension to differentiate it from source
files.

2. If there is only one .PRJ file in the current directory, the IDE
assumes that this directory is dedicated to this project and
automatically loads it.

3. To load a project from within the IDE, select Project I Open
Project.

The project directory When a project file is loaded from a directory other than the
current directory, the current DOS directory is set to where the
project is loaded from. This allows your project to be defined in
terms of relative paths in the Options I Directories dialog box and
also allows projects to move from one drive to another or from

34 Turbo C++ User's Guide

Desktop files

You can set some of these
options on or offusing

Options I Environment I
Desktop.

one directory branch to another. Note, however, that changing
directories after loading a project may make the relative paths
incorrect and your project unbuildable. If this happens, change
the current directory back to where the project was loaded from.

Each project file has an associated desktop file (prjname.DSK) that
contains state information about the associated project. While
none of its information is needed to build the project, all of the
information is directly related to the project. The desktop file
includes

• the context information for each window of the desktop (for
example, your positions in the files or bookmarks)

• the history lists for various input boxes (for example, search
strings or file masks)

• the layout of the windows on the desktop

• the contents of the Clipboard

• watch expressions

• breakpoints

Changing project files Because each project file has its own desktop file, changing to
another project file causes the newly loaded project's desktop to
be used, which can change your entire window layout. When you
create a new project (by using Project I Open Project and typing in
a new .PRJ file name), the new project's desktop inherits the
previous desktop. When you select Project I Close Project, the
default project is loaded and you get the default desktop and
project settings.

Default files When no project file is loaded, there are two default files that
serve as global place holders for project- and state-related infor­
mation: TCDEF.DPR and TCDEF.DSK files, collectively referred
to as the default project.

Chapter 2, IDE basics

These files are usually stored in the same directory as TC.EXE,
and are created if they are not found. When you run the IDE from
a directory without loading a project file, you get the desktop and
settings from these files. These files are updated when you change
any project-related options (for example, compiler options) or
when your desktop changes (for example, the window layout).

When you start a new project, the options you set in your
previous project will be in effect.

35

IDE menus

36

Table 2.8
IDE overview

The IDE is designed to explore and learn online. As you scroll the
menus, notice the status line explanation of each selection. When
you select an item, press FI for online Help. The following table
has general information. The cross-reference table refers
individual menu entries to related information in the rest of the

, manual.

Menu

File

Edit

Search.

Run

Compile

Debug

Project

Options

Window

Help

Use

Repaint Desktop. Transfer to displayed programs. If you
don't have the sample programs, add your own
standalone programs to the menu using the Options I
Transfer command.

Open and creat.e program files in edit windows. Save
changes, perform other file functions, and quit the IDE.

Cut, copy marked text to the Clipboard, and paste from
the Clipboard to the cursor position in an edit window.
Undo changes and even reverse the changes you've just
undone. The Edit I Copy Example command copies the
preselected example text in the current Help window to
the Clipboard.

Search for text, function declarations, and error locations
in your files.

Run your program or start and end debugging sessions.
Set arguments for the IDE to pass to the program as if
you entered them on the command line. For example, if
you would type progname args, enter args in the Run I
Argument dialog bo~.

Compile the currently selected module. Make (compiles
source files that have changed since the last compile then
links if necessary) or build (compiles and links all
modules, regardless of change) your current project.

Use the integrated debugger. See Chapter 6, "Debugging
in the new IDE." Specify whether or not debugging
information is generated in the Options I Debugger dialog
box.

Control the features of the Project manager. See Chapter
7, "Managing multi-file projects".

View and change various default settings in Turbo C++
,including syntax highlighting.

Manage windows.

Online help. Try FI, Alt FI, Shift FI, and see Help on
Help.

Turbo C++ User's Guide

Syntax
highlighting

IDE cross-

The edit window is syntax-sensitive, helping you see what the
code is doing. Use Options I Environment I Editor I Syntax
Highlighting to toggle the feature on and off. 10 choose the
colors, select Options I Environment I Colors I Edit Window.·
Syntax items include Marked Text, Normal Text, Break Point
Line, Comment, Reserved, Identifier, Symbol, String, Integer,
Float, Octal, Hex, Character, Preprocessor, and Illegal Char.

reference Specific IDE menu items and dialog boxes relate to topics
discussed in other parts of this manual or in online Help. Table
2.9 helps you find them in the book. We capitalize each word in
the menu item to make them stand out. Switches refer to TCC
command-line options unless specifically defined as TC, MAKE,
TLINK, or TLIB. An asterisk (*) shows that the option is enabled
by default. Since the IDE has an integrated debugger, the·
standalone debugger command-line options are documented in
the manuals for that product.

Table 2.9: IDE menu cross-reference

IDE menu selection

File

Edit

Search
Locate Function ...

. Run.
Run
Program Reset (Integrated debugger)
Go To Cursor
Trace Into
Step Over
Arguments '"

Compile
Compile To OBJ
Make
Build All

Debug
Inspect
Evaluate /Modify
Call Stack

Chapter 2, IDE basics

Switch

-c
TC/m
TC/b

Page

36

36,629

36
240

36
250
225
224
224
36,250

36,286
22,36
20,36

229
232
240

37

Table 2.9: IDE menu cross-reference (continued)

Watches
Add Watch ...
Delete Watch
Edit Watch ...
Remove All Watches

Toggle Breakpoint
Breakpoints ...

Project
Open Project ...
Add Item ...
Delete Item
Local Options

Command Line Options
Output Path (for .OBJ file)
Project File Translators
Overlay This Module (with 0 I LIS I Output I Overlaid EXE)
Exclude Debug Information

Include Files ... (compiled include files)

Options
Application

Standard*
Overlay
Library

Compiler

38

Code Generation
Model

Tiny
Small
Medium
Compact
Large
Huge

Options
Treat Enums As Ints*
Word Alignment
Duplicate Strings Merged
Unsigned Characters
Precompiled Headers

Assume SS Equals DS
Default For Memory Model
Never
Always

Defines
Advanced Code Generation

Floating Point
None
Emulation*
8087
80287

TUNK 10
TUNK Iv-

-ms
-mm-Y
-ms
TUB

-rot
-ms
-mm
-mc
-ml
-mh

-b
-a
-d
-K
-H

-f-
-f
-f87
-f287

237
237
239
239
239
228
227

253
253
253

267
254
259
342,587
344
257

273
273,279
273
UTIL.DOC

273
273
273
273
273
273

275
275
275
277
286,635
273
589
273
274
274

276
276
277
277

Turbo C++ User's Guide

Table 2.9: IDE menu cross-reference (continued)

Instruction Set
8088/8086 -1- 275
80186 -1 275
80286 -2 275

Options
Generate Underbars* -u 278
Line Numbers Debug Info -y 279
Debug Info In OBJs* -v 278
Fast Floating Point* -ff 276
Fast Huge Pointers -h 277
Generate COMDEFS -Fc 275
Automatic Far Data -Ff 276

Far Data Threshold -Ff=size 276
Entry/Exit Code

Prolog/Epilog Code Generation
Standard* -y-
Overlay -y 279,589

Calling Convention
C* -p- 278
Pascal -p 278

Stack Options
Standard Stack Frame* -k 278
Test Stack Overflow -N 278

C++ Options
Use C++ Compiler

CPP Extension* -P-cpp 286
C++ Always -P 286

C++ Virtual Tables
Smart* -V 287
Local -Vs 288
External -VO 288
Public -VI 288

Template Generation
Smart* -Jg 290
Global -Jgd 290
External

. Options
-Jgx 290

Out-Of-Line Inline Functions* -vi 279
Far Virtual Tables -Vf 288

,Optimization Options
Optimizations

Suppress Redundant Loads -z 280
Jump Optimization -0 280

Register Variables
None -r- 280
Register Keyword -rd 280
Automatic* -r 280

Optimize For
Size* -G- 280
Speed -G 279

Source

Chapter 2, IDE basics 39

Table 2.9: IDE menu cross-reference (continued)

40

Keywords
TurboC++*
ANSI
UNIX V
Kernighan & Ritchie

Source Options
Nested Comments

Identifier Length (32 by default)
Messages

Display
Display Warnings

All
Selected
None

Errors: Stop After
Warnings: Stop After

Portability
Non-portable Pointer Conversion*
Non-portable Pointer Comparison*
Constant Out Of Range In Comparison*
Constant Is Umg
Conversion May Lose Significant Digits
Mixing Pointers To Signed And Unsigned Char

ANSI violations
Void Functions May Not Return A Value*
Both Return And Return Of A Value Used*
Suspicious Pointer Conversion*
Undefined Structure 'ident'*
Redefinition Of 'ident' Is Not identical*
Hexadecimal Value More Than Three Digits*
Bit Fields Must Be Signed Or Unsigned Int
'ident' Declared As Both External And Static*
Declare 'ident' Prior To Use In Prototype*
Division By Zero*
Initializing 'ident' With 'ident'*
Initialization Is Only Partially Bracketed

C++ Warnings
Base Initialization Without A Class Name Is Obsolete*
Functions Containing 'ident' Are Not Expanded Inline*
Temporary Used To Initialize 'ident'*
Temporary Used For Parameter 'ident'*
Constant Member 'ident' Is Not Initialized*
This Style Of Function Definition Is Now ObsoIete*
Use Of Overload Is Now Unnecessary And Obsolete*
Assigning 'type' to 'enumeration'*
'Function1' Hides Virtual Function 'Fu,nction2'*
Non-const Function 'ident' Called For Const Object*
Base Class 'ident' Inaccessible Because Also In 'ident'*
Overloaded Prefix Operator Used As Postfix Operator*
Array Size For Delete Ignored*
Use Qualified Name To Access Nested Type 'ident'*

-A-,-AT 281
-A 281
-AU 281
-AK 281

-C 281
-in 281

-w 282
-wxxx 282
-w-
-jn 282
-gn 282

-wrpt
-wcpt
-wrng
-wcln
-wsig
-wucp

. -wvoi
-wret
-wsus
-wstu
-wdup
-wbig
-wbbf
-wext
-wdpu
-wzdi
-wbei
-wpin

-wobi
-win1
-wlin
-wIvc
-wnci
-wofp
-wovl
-wbei
-whid
-wncf
-wibc
-wpre
-wdsz
-wnst

Turbo C++ User's Guide

Table 2.9: IDE menu cross-reference (continued)

Frequent Errors
Function Should Return A Value*
Unreachable Code*
Code Has No Effect*
Possible Use Of 'ident' Before Definition*
'ident' Is Assigned A Value That Is Never Used*
Parameter 'ident' Is Never Used* \
Possibly Incorrect Assignment*

Less Frequent Errors
Superfluous & With Function
Ambiguous Operators Need Parentheses
Structure Passed By Value
No declaration For Function 'ident'
Call To Function With No Prototype
Unknown Assembler Instruction
Ill-formed Pragma*
Condition Is Always (True/False)*
Array Variable 'ident' Is Near*
'ident' Declared But Never Used

Names
Code Segment
Code Group
Code Class
Data Segment
Data Group
Data Class
BSSSegment
BSSGroup
BSS Class
Far Data Segment
Far Data Group
Far Data Class

Transfer
Program Titles

-GREP
Make

Break Make On
All Sources Processed

Check Auto-dependencies*
Linker

Settings
Options

Initialize Segments
Default Libraries*
Warn Duplicate Symbols
"No stack" Warning*
Case-Sensitive Link*

-Map file
Off*
Segments

Chapter 2, IDE basics

-wrvl
-wrch
-weff
-wdef
-waus
-wpar
-wpia

-wamp
-wamb
-wstv
-wnod
-wpro
-wasm
-will
-wccc
-wias
-wuse

-zC 284
-zp 285
-zA 284
-zR 285
-zS 285
-zT 285
-zD 284
-zG 285
-zB 284
-zE 284
-zH 285
-zF 284

259
297

MAKE-i 300
MAKE-a 300

331

TLINK /i 340
TLINK/n 336,342
TLINK /d 339

335
TLINK/c 338

TLINK/x 340
TLINK 340

41

Table 2.9: IDE menu cross-reference (continued)

Publics
Detailed

Output
Standard EXE*
Overlaid EXE

Libraries
Container Class
Graphics Library
Standard Run Time*

Librarian
Options

Generate List File
Case-sensitive Library
Purge Comment Records
Create Extended Library

Library Page Size
D~bugger

Source Debugging
On*

Directories
Include Directories
Library Directories

Output Directory
Environment

Preferences
Command Set

Editor
Syntax Highlighting (toggle onloff)

Startup
Video Startup Options

Dual Monitor Mode
Video Mode

Black & White I LCD
Swap File Drive
Use Extended Memory

Use EMS Memory*

Colors
Edit Window (Syntax Highlighting)

* enabled by default

42

TLINK 1m 340
TLINK Is 340

TLINK lTd 332
TLINK/o 342,589

CLASSUB.DOC
607
Online Help

TUB UTIL.DOC
TLIB IC UTIL.DOC
TUB 10 UTIL.DOC
TLIB IE UTIL.DOC
TLIB IPsize UTIL.DOC

-y 279
TUNK Iv 344

-Ipath 293
-Lpath 293
TUNK -Lpath 340
-npath 291

629
629
37

TC Id 21

TC II 22
TC /r 22
TC/x 22
-Qx=nnnn 287
TUNK Iyx 345
TC Ie 21
-Qe 287
TUNK lye 344

37

Turbo c++ User's Guide

c H

If you have never
programmed in C or C++,

this chapter is for you.

If you are an experienced C
programmer, you may want

to scan this chapter brief/y,
then skip to Chapter 4,

"Object-oriented
programming with C++. "

A p T E R

3

An introduction to C++

The best way to learn anything new is to start at the beginning. In
the case of C++, which began as an extension to the C program­
ming language, a knowledge of Cis generally considered a .
necessary starting point. This tutorial takes a somewhat different
approach, which makes it suitable for programmers and novice
programmers who want to learn C++ without first mastering C.
We can take this approach because, even though C++ supports a
radically different style of programming (known as object-oriented
programming), the basic language elements are, with few
exceptions, the same as C. What C++ adds to C is mostly a
number of high-level features to support this new programming
style.

In this chapter you will develop a working knowledge of the
fundamental language features of C++, many of which were
inherited from C. The program examples used here are designed
to illustrate the key concepts of C++ as clearly as possible. This
chapter is a necessary first step that will lead to an understanding
of the more complex and abstract principles of object-oriented
programming found in later chapters.

You will be introduced to a substantial body of new terminology
and concepts. There are sample programs that demonstrate how
these concepts are used. The best way to learn to program in any
language is to compile and run the sample programs. When you
understand how a particular sample program works, change it,
expand it, play with it.

Chapter 3, An introduction to C++ 43

The sample programs are
included in the EXAMPLES

subdirectory.

You'll solve a variety of problems involving numbers, words, and
graphics. We also provide some guidelines for designing and
structuring programs.

How to run the examples

You can follow along with the examples in this chapter by
compiling and running the designated programs. To run the
example programs using the Turbo C++ IDE, follow these steps:

1. From the EXAMPLES subdirectory, start Turbo C++ by typing
Te.

2. Open the example file you wish to compile by selecting File I
Open I exampleJile_name from the IDE menu.

3. Run the example program by selecting Run I Run.

4. To see the program's output, select Window I User screen.

Alternatively, you may compile and run the examples from the
DOS command line. In the EXAMPLES directory, give the
command

Tee example_file_name <Enter>

After the example is compiled, you may run it and view the
output by typing

Basic programming operations

44

Computer programs vary greatly in purpose, style, and complexi­
ty. Nearly all programs, however, go through a process consisting
of three phases:

• describing, collecting, and storing information (data)

• processing the data to achieve the desired result

• formatting, displaying and/or storing the results

Any data used by a program has to be described so that Turbo
C++ knows how to store and retrieve it. Memory must be set
aside to hold the amount of data expected. The program must

Turbo C++ User's Guide

To try out this program, load
and run INTRO 7.CPP

(FileIOpenIINTR07)., which
can be found in the

EXAMPLES subdirectory. For
more about how to load and

run the example programs
refer to chapter 2, "IDE

basics."

then use some means to get the actual data into storage - this
could involve reading the characters from the keyboard,
retrieving data from a file on disk, receiving data over a telephone
line, or using some other kind of input device.

Once the data has been stored in numeric variables, chara'cter
strings, arrays, or more complicated data structures, it must be
processed. The processing varies with the purpose of the pro­
gram, of course: A spreadsheet program might apply a formula to
a set of data to calculate a result, while a word-processing
program might rearrange lines of text to fit new margins.

, Once the data is processed, the results must be made available in
some way to the user. Lines of text can be rearranged on the
screen or sent to the printer, and the spreadsheet cells can be re­
displayed to show their new values. Most data must eventually be
stored on disk for later use.

Let's use the three phases of program design in this short example
program.

/ /INTR01.CPP--Example from Chapter 3, "An Introduction to C++"

#include <iostream.h>

int main ()
{

}

int bushels;
float dollars, rate;
cout « "How many dollars did you get? $" i
cin » dollars;
cout « "For how many bushels? ";
cin » bushels;
rate = dollars / bushels;
cout.precision(2) ;
cout « "You have received $" « rate « " for each bushel. \n";

return 0;

The first line of this program, / /INTR01.CPP -- Example from
Chapter 3 II An Introduction to Ctt" is a comment. Comments are
preceeded by the /I symbol and continue to the end of the line.
(Turbo C++ also recognizes the older C-style notation for
comments, which begin with /* and end with */. This style of
comments may include more than one line.) Comments are
ignored by the compiler. The comment symbol tells Turbo C++ to
ignore all characters from the /I symbol to the end of the line. You
use comments to describe the purpose of a program, function, or
statement. Appropriate comments make it easier for you to

Chapter 3, An introduction to C++ 45

46

Header files are also called
include files.

remember just what a particular part of your program does -
and it helps other programmers who may later be called on to
modify your pr?gram.

The second line, #include dostream.h>, tells the compiler to add
the Turbo C++ header file iostream.h to INTROl.CPP before
compiling. iostream.h contains the declarations and functions for
the iostream input and output library. A library is a collection of
ready to use functions which your program can call to take care of
basic programming chores. We need iostream.h because it
contains the information which allows us to use the cout and cin
operators described below.

The next line, int main () defines a function. A function is a group
of related program instructions. Every C++ program must have a
main () function, which is where program execution begins.
Functions are the building blocks of C++ programs. The open
brace" {" indicates the beginning of a group of program
instructions, or statements-in this case, the statements which
define what will happen when the function main() is executed.
Each group of statements ends with a closing brace /I}".

Notice that each statement ends in a semicolon (;). While Turbo
C++ lets you string several statements together on the same line,
we don't recommend this; it makes programs harder to read.

Describing the data The first two statements in INTROl.CPP are

Collecting and storing the
data

int bushels;
float dollars l rate;

Recall that the first step in writing a program is /I describing,
collecting, and storing information." In C++, you must declare
each item of data before you can do anything else with it. To
declare an item of data, list what type of data it is, then give it a
name. Here, you have one data item that is of type int (integer, or
whole number), and is named bushels. You also have two data
items~ dollars and rate, that are of type float (a floating-point
number is a number that has a decimal fraction). Notice that we
have declared two data items, dollars and rate, in the same
statement. You must separate the data items with a comma, and
the data items must be of the same type-in this case both are of
type float. These data items are also called variables, since their
value may be updated or changed as the program runs.

The next four statements obtain and store the data we've just de­
scribed. The cout statements prompt for the number of bushels

Turbo C++ User's Guide

and the number of dollars received for those bushels, and the cin
statements get these values and store them in the variables
named. Most of the actual work done in a Turbo C++ program is
accomplished by calling upon the functions provided in the
libraries included with Turbo C++. In this example our input and
output are handled by the iostream library. For now it is sufficient
to know that cout is the standard output stream (normally your
computer's monitor screen), and cin is the standard input stream
(normally the keyboard). The operators «and» are the
insertion ("put to"), and extraction (" get from") operators.
Operators are symbols that tell the computer to perform some
type of basic operation on your data. The insertion and extraction
operators are members of an extensive set of operators provided
by Turbo C++.

We will discuss other operators later in this chapter.

Processing the data The statement, rate = dollars/bushels, does the processing part of
the program, dividing the number of dollars by the number of
bushels to get the dollars per bushel.

Formatting the data The statement, cout.precision (2), is a call to a member function
declared in iostream.h which formats our data for output.
cout.precision(2) is a special function which formats the way our
data will be displayed. cout.precision(2) affects all floating-point
input/output operations until its next use. For example, you
might want to display four decimal places at some other point in
the program, in which case you would use the statement
cout.precision (4). In INTR01.CPP, cout.precision (2) specifies
that the floating-point numbers displayed by cout should be
rounded off to two decimal places, since we want to represent
dollars and cents. The cout operator defaults to six decimal places
if no provision is made to format the output. (Even though cout
defaults to six decimal places for floating point numbers, it will
aut<?matically drop any trailing zeros).

Displaving the data The final statement,

cout « "You have received $" «rate«" for each bushel\n";

once again uses cout ,to display the results of this calculation. The
first« (insertion) operator directs the output of the phrase "You
have received II to the screen. The monitor screen is the default
output device of the cout operator. The second « operator
outputs the value of the variable rate, and the third « operator
directs the phrase II dollars for each bushel" to the screen. The \n

Chapter 3, An introduction to C++ 47

is the newline symbol which places the cursor at the beginning of
the next line.

When you run the program, the output looks like this:

How many dollars did you get? $32
For how many bushels? 24
You have received $1.33 for each bushel

Basic structure of a C++ program

Load and run INTR02.CPP,

The general format of a .
function declaration is:

return_type
function_name(parametectype

(paramefecname) ",);

48

This next example demonstrates functions, variables, and the
preprocessor directive #include.

II INTR02.CPP--Example from Chapter 3, nAn Introduction to c++ n

II INTR02.CPP calculates a sales slip.

#include <iostream.h>
float tax (float);

int main ()
{

float purchase, tax_amt, total;
cout « n\nAmount of purchase: n;
cin » purchase;

tax_amt = tax{purchase);
total = purchase + tax_amt;
cout.precision(2) ;
cout « n\nPurchase is: n « purchase;
cout « n\nTax: n « tax_amt;
cout « n\nTotal: n « total;

return 0;

float tax (float amount)
{

float rate = 0.065;
return{amount * rate);

The first and second line of the program are comments. Line three
is a preprocessor directive which tells Turbo C++ to read in and
compile the contents of the header file iostream.h.

The next statement is a function declaration, it declares or describes
the user-defined function float tax (float) . Functi9n declarations,
also called prototypes, give the compiler important information
about the function so it can recognize and use it in the program.

Turbo C++ User's Guide

The first word of the function declaration, float, specifies that this
function will return a value of type float (a floating-point number).
When we say that a function will return a value, we mean that the
function will pass its . answer back to the program when it has
finished its work. The word tax tells the compiler the name of the
function, and the word in parentheses (float) tell the compiler
that this function will expect a floating point number as input.
Inputs to a function are called arguments. If there are several
arguments then you must separate them with commas. The
parentheses delimit or surround the argument list (a function does
not have to take arguments, in which case the parentheses are left
empty or the word void is placed inside the parentheses). Finally
we terminate the function de.claration with a semicolon. Putting
the function declaration at the top of the program helps Turbo
C++ make sure that your program doesn't try to give the function
the wrong kind of data (a character string, for example).

float purchase, tax_amt, total;

declares three floating-point variables (purchase, tax_amt and total).
The next two statements, beginning with cout and cin, prompt for
and obtain the amount of purchase.

Now it's time for the actual computing.

tax_amt = tax (purchase) ;

is a junction call. It calls the user-defined tax() function, passing it a
value based on purchase. To find out what the function does, skip
down to the bottom of the program, where you see its definition:

float tax (float amount)
{

float rate = 0.065;
return(amount * rate);

This specifies that the tax() function takes the floating point value
(in this case, purchase) that it receives from the calling statement
and places that value into its argument amount, multiplies amount
by the defined variable rate, and returns the result back to the
calling statemenL Thus, when the line

tax_amt = tax(purchase);

is executed, the tax on the amount of purchase is calculated and
returned by the taxO function and then stored in the variable

Chapter 3, An introduction to C++ 49

tax_amt for later use. In the next line this amount is added to
purchase to obtain total.

It may seem unnecessary to have a whole separate function just to
calculate the tax, and it is in this program. But it becomes useful
in more complicated situations, such as when there are several tax
rates to choose from according to the purchaser's county of resi­
dence. Perhaps you also have to check a product code to deter­
mine whether the item is taxable in the first place. In that case,
separating the mechanism for figuring tax makes the main part of
the program easier to follow. If necessary, you can later change
how the tax is calculated without affecting the rest of the
program.

The final four lines of the main program set the floating-point
precision to 2 decimal places, then print out the purchase amount,
tax, and total. A sample run looks like this:

Amount of purchase:
Purchase is: 24.95
Tax: 1. 62
Total: 26.57

Working with numbers

50

Numeric data
types

NUTIl.bers are the fundamental data used by computers. Tne actual
contents of computer memory consists of binary numbers. These
are usually organized in groups of 8 bits (1 byte) or 16 bits (2
bytes, or 1 word). Even those computing activities that involve
words or graphics basically involve series of numbers stored in
memory.

The same part of memory could be interpreted as several different
kinds of numbers, depending on how many bytes are grouped
together. The name of a variable, such as total, actually refers to
the contents of one or more bytes following a specific address in
memory - this address is assigned by Turbo C++ when you first
define (or initialize) the variable. But you and the compiler must
agree about what kind of number will be represented by a given
variable, and thus how many bytes will be stored and fetched
starting at the variable's address. You make this agreement by
specifying a data type when you declare the variable. For example,

Turbo C++ User's Guide

Figure 3.1
Interpreting memory

locations as numbers (in
1-byte increments)

int total, count, step;
float cost, profit;

. Ehar[
Int

float
1001

double 1002

1003

1004

1005

1006

1007

Each data type represents a different kind of number. You must
choose an appropriate type for the kind of number you need. In
this variable declaration,

• The variable total is of type int (integer). When you tell your
program to use the value of total in a statement, it fetches 2
bytes, starting at total's address .

• The variable cost is of type float (floating point). When your
program uses cost, it fetches 4 bytes, starting at cost's address.
This is because a floating-point number needs the two extra
bytes to represent the significant digits of the number and the
magnitude of the number in terms of powers of two.

Table 3.1 shows the basic Turbo C++ data types and their
variations. Notice the variety of numbers that can be accommo­
dated. This chapter shows you how to use many of these data
types.

Chapter 3, An introduction to C++ 51

Table 3.1: Data types, sizes, and ranges

Size
Type (bits) Range Sample applications

unsigned char 8 o to 255 Small numbers and full PC character set·

char 8 -128 to 127 Very small numbers and ASCII characters

enum ** ** Ordered sets of values

unsigned int 16 o to 65,535 Larger numbers and loops

short int 16 -32,768 to 32,767 Counting, small numbers, loop control

int 16 -32,768 to 32,767 Counting, small numbers, loop control

unsigned long 32 o to 4,294,967,295 Astronomical distances

long 32 -2,147,483,648 to 2,147,483,647 Large numbers, populations

float 32 3.4 x 10-38 to 3.4 X 1038 Scientific (7-digit precision)

double' 64 1.7 x 10-308 to 1.7 X 10308 Scientific (15-digit precision)

long double 80 3.4 x 10-4932 to 1.1 x 104932 Financial (19-digit precision)

near pointer 16 Not applicable Manipulating memory addresses

far pointer 32 Not applicable Manipulating addresses outside current'
segment

** In C++ enum can be of any type, consequently, its range is consistent with the type declared.

Integers The basic integer type is int, which can express either negative or
positive numbers, but within a limited range (-32,768 to 32,767).
Here's an example program that performs some operations with
integers:

To tryout this program load I/INTR03.CPP--Example from Chapter 3, "An Introducdon to C++"
and run INTR03. Cpp

52

#include <iostream.h>

int main ()
{

int pounds;
int total, bags;
pounds = 50;
bags = 1000;
total = bags * pounds;
cout « "There are" « total « "lbs. in 1000 ,bags of beans\n";
return 0 i

The output from this program is a little surprising:

There are -15536 lbs. in 1000 bags of beans

Turbo C++ User's Guide

The compiler doesn't always
warn you If you try to store a

value that doesn't fit into the
specified data type.

Integer modifiers

To decide which data type
to use, consider the possible

results of a calculation or
other operation.

Why is this? It is because the total of bags * pounds, 50,000, is too
large for an ordinary int(which you can verify from Table 3.1).
When your program tried to store 50,000 in a type that could only
hold 32,767, the result overflowed. How do you solve. this
proble~? Use long into

The long modifier

long int, which is usually abbreviated just as long, gives you a
larger integer range. You can solve the problem of the negative
beans by declaring:

long total;

This gives you room for more pounds of beans than you'd ever be
likely to see, because a long, which is stored in 32 bits instead of
the 16 used by an ordinary int, can accommodate a value between
-2,147,483,648 and 2,147,483,647. But what about pounds? This
variable should be fine as an int, since the weight of one bag is
unlikely to exceed 32,767 pounds. The variable bags, however,
might conceivably exceed 32;767, so make it a long also. Why not
use long instead of int variables for everything? A long takes up 4
bytes of memory, while an int takes only 2. If you have many
variables, you'll end up wasting a lot of memory.

int pounds;
long bags, total;

The signed and unsigned modifiers

All the data types listed in Table 3.1 are signed by default-one of
the bits in the stored value is used to indicate whether the number
is positive or negative. (Those marked unsigned are, of course,
explicitly unsigned.) Some values encountered in your work can
be either positive or negative - for example, temperatures and
bank balances. Many other values, however, are never negative­
a business can't have a negative number of employees, for
example. By adding the word unsigned to any data type, you
restrict its range to positive numbers. Since a sign bit is no longer
needed, this doubles the maximum value stored by the type. For
example, while an ordinary (signed) int ranges from -32,768 to
32,767, an unsigned int ranges from a to 65,535. (An unsigned
long ranges between a and 4,294,967,295.) The preceding program
example would also have worked correctly if you had declared

Chapter 3, An introduction to C++ 53

Since the default for all
numeric data types is signed,

you don't have to declare
signed in' or signed long.

Floating-point numbers

To try out this program, load
and run INTR04.CPP.

54

unsigned int total;

though you'd be getting uncomfortably close to the limits of the
unsigned int type.

Many numbers involve a fractional part set off with a decimal
point, such as prices in dollars and cents. These are called
floating-point numbers (also often called real numbers). Most exact
measurements involve fractions: If you buy screws at the hard­
ware store, you'll probably have to specify the diameter in frac­
tions of an inch. The float data type covers such situations. Here's
an example:

IIINTR04.CPP--Example from Chapter 3.

#include <iostream.h>

int main()
{

float num, denom;
float value;

II numerator and denominator of fraction
II value of fraction as decimal

cout « "Convert a fraction to a decimal\n";
cout « "Numerator: ";
cin » num;
cout « "Denominator: ";
cin » denom;

value = num I denom; II convert fraction to decimal

cout « "\n" « num « "I" « denom « " = " « value;

return 0;

The program prompts for the numerator and denominator of a
fraction, then converts them to a decimal value and prints the
result. For example,

Convert a fraction to a decimal
Numerator: 7
Denominator: 8

7/8= 0.875

Clearly value must be a float in order to hold a fraction, but you
may not realize that either num or denom (or both) has to be of the
float type if you wish to divide num/denom correctly. Try this
example:

Turbo C++ User's Guide

If you divide integers by
integers, the result is rounded

down to the nearest whole
number before it is assigned

to the float variable.

Variables

Initializing
variables

II INTR05.CPP -- Example from chapter 3 "Introduction to e++

#include <iostream.h>

int main ()
{

int num = 3, denom = 4;
float value;
value = num I denom;
cout « value;

return 0;

The result is zero - not the 0.75 you'd expect.

The floating-point types

The double and long double types are like float, only they accom­
modate larger numbers with more precision. Precision is
important in both scientific and financial calculations. When you
declare a variable give some thought to the kind of numbers the
variable will represent, this will ensure that the results of the
program execution will be meaningful.

As you have learned, every variable must be declared b~fore it
can be used. A declaration consists ofa data type followed by one
or more variable names. Declarations simply tell Turbo C++ that
you intend to use a particular variable, and what type of data it
will store.

int hours;
float total-pay, pay_rate;
long id_number;

You also need to initialize a variable-set it to a specific value,
such as O. What do you think the following program will display?

Chapter 3, An introduction to C++ 55

56

Assignment
statements

#include <iostream.h>

int main()
{

int somethingj
cout <~ somethingj
return OJ

The result will vary - on our machine, it was -32,417. Did you
notice that the program did not assign any value to the variable
something before trying to print it out? With the exception of
global or static variables (discussed later), variables in C++ do not
have a default value. The value of something, therefore, is
whatever number happens to be stored at the address Turbo C++
assigned to the variable. This value is unpredictable. In fact, if you
compiled this program, you might have noticed a warning.in the
Message window: "Possible use of 'something' before· definition in
function main." When you get this warning, you should check the
variable named to make sure you initialize it before you use it for
anything.

You give a value to a variable with an assignment statement.
Assignment consists of a variable name followed by an equals
sign and the value to be assigned. Here are some examples:

count = OJ
total = purchase + tax_amtj
tax_amt = tax(purchase)j

In the first statement, an actual number, or numeric constant, is
assigned to the variable count. The second statement uses an
expression to assign the sum of purchase and tax_amt to the
variable total. An expression is any combination of values and
operators (such as + or *) that yield a single value. In C++, you can
use an entire expression just about anywhere that you can use a
single numeric value. You can assign it to a variable, send it to a
function for processing, or display it with cout.

The third statement is slightly more complex: it first calls the
function tax, giving it the value of the variable purchase. The
function uses this value and other information to calculate the tax,
then returns the result. In other words, the function call
tax(purchase) is evaluated, then replaced by an actual value, such as
1.14. Finally, the assignment operator "=" assigns this value to

Turbo C++ User's Guide

Combination

tax_amt. Assignment statements using function calls are very
common in C++.

assignments c++ often lets you combine two or more distinct operations in a
single statement. You can declare a variable and assign it a value
in a single statement. Instead of

Variable names

float total_expenses;
total_expenses = OJ

most C++ programmers write

float total_expenses = OJ

You can also assign several variables the same value in one state­
ment. A word processor might start processing text by setting

page = line = column = 1;

This works because an assignment statement not only assigns a
value, it also .provides a value that can be used by other parts of a
statement in which it is embedded. That is, column = 1 assigns 1 to
column, and makes this value, 1, available. Moving right to left,
we get the equivalent of line = 1. In turn, that assignment passes
on the value 1, so the final assigriment is page = 1.

But don't go overboard. It is often better to declare and initialize
one variable per statement, so you can include a comment
describing the purpose of each variable:

int lines = OJ

int words = 0;

int chars = OJ

II Lines of text, ending in new line char
II Words are groups of characters surrounded
II by space, tabs, or new lines
II Every character is counted

Taking the time to do this might also alert you to potential prob­
lems. For example, is it really a good idea for chars to be an int?

. It's time now to consider what names you can give to variables.
C++ is quite flexible in this regard. User-supplied names (called
identifiers) must follow these rules:

• All identifiers must start with a letter (a to z or A to Z) or an
underscore C).

Chapter 3, An introduction to C++ 57

More about input
and output

58

Formatting with
escape sequences

• The rest of the identifier can use letters, underscores, or digits (0
to 9). Other characters (such as punctuation marks or control
characters) cannot be used. c++ identifiers are significant to
any length.

• Identifiers are case sensitive. This means that amount and
Amount are completely separate variables.

By these rules, deduction, tax_status, and amt_l099 are all legal
identifiers, while 1989'-tax and stop! are not. (1989_tax begins with
a digit instead of a letter or underscore, and stop! contains an
exclamation point, which is not a letter, underscore, or digit.)

Besides following the rules, it is important to give some thought
to naming your variables. Here are some suggestions:

• The name should describe what the variable contains. a doesn't
tell you anything. amt is better, but taxable_amount is most clear
and specific.

• Use capital letters or underscores to separate words in a long
identifier. PricePerl00 or price-per _100 are much easier to read
than priceperl00.

• Use comments to describe the nature and purpose of a variable,
particularly if it is not obvious.

There are a number of characters that control how text appears
onscreen; for example, the tab character advances the cursor to
the next tab position, the newline character moves the cursor to
the next line, and the formfeed starts a new screen or page of text.
cout lets you include any of these characters (and others) in the
text to be printed, simply by prefixing the symbol for the char­
acter with a backslash (\). The backslash is called an escape because
it tells Turbo C++ to interpret the following character not as a
literal n or for w}iatever, but as the symbol for a special character.

Indeed, you have already seen numerous examples using \n in a
string being displayed with couto While the print statement in
languages such as BASIC automatically advances the cursor or
print head to the next line, there is no such default in C++. This
gives you more flexibility, since you can use separate statements
within cout to display text on the same line, and advance to the
next line only when you specifically wish to. The next table lists
Turbo C++'s escape sequences.

Turbo C++ User's Guide

Table 3.2
Character escape

sequences

To try this out, load and run
INTR06. CPP.

Sequence Name Meaning

\a
\b
\f
\n
\r
\t
\v
\\
\'
\"

Sounds a beep
Backs up one character
Starts a new screen or page
Moves to beginning of next line
Moves to beginning of current line
Moves to next tab position
Moves down a fixed amount
Displays an actual backslash

\?
\000

Alert
Backspace
Formfeed
Newline
Carriage return
Horizontal tab
Vertical tab
Backslash
Single quote
Double quote
Question mark

Displays an actual single quote
Displays an actual double quote
Displays an actual question mark
Displays a character whose ASCII code
is an octal value (one to three digits)
Displays a character whose ASCII code
is a hexadeCimal value (one or more
digits)

\xHHH

• "Newline" on MS-DOS systems is equivalent to a carriage
return (CR) plus a linefeed (LF), This is not true of some other
systems.

• A backslash in front of the single and double quotes is needed
only when Turbo C++ would otherwise interpret these
characters as having a special meaning. For example, "
normally delimits a string. To print a string in quotes, use
"\ "a string in quotes\ "".

• The octal or hexadecimal values are often used to send special
graphics characters or printer control characters. For example,
print f ("\xDB") on the IBM PC displays a solid square character.

After \n, the most commonly used escape sequence is probably \t,
the tab character. It is useful for aligning tables of numbers. For
example, this code:

II INTR06.CPP--Example from Chapter 3, "Introduction to CH"

#include <iostream.h>

int main ()
{

int i = 101, j = 59, k = 0;
int m = 70, n = 85, p = 5;
int q = 39, r = 110, s = 11;

cout « '\t' « "Won" « '\t' « "Lost" « '\t' « "Tied\n\n";
cout « "Eagles" « '\t' « i « '\t' « j « '\t' « k « '\n';
cout « "Lions" « '\t' «m « '\t' « n « '\t' « p « '\n';

Chapter 3, An introduction to C++ 59

Arithmetic

cout « "Wombats" « '\t' « q « '\t' « r « '\t' « s « '\n';

return 0;

produces the following neatly formatted table:

Won

Eagles 101
Lions 70
Wombats 39

Lost

59
85
110

Tied

o

11

operators Now that you know how to get and display values for different
kinds of variables, let's look more closely at the variety of
operators provided by Turbo C++. You are already familiar with
several operators: the assignment operator (=) and four arithmetic
operators (+, -, *, and I, for addition, subtraction, multiplication,
and division, respectively).

These operators work pretty much the way you would expect
them to, though with some differences. For example, dividing two
int values gives you an int result, with any fraction dropped.
There is also a specific order, called precedence, in which operators
take effect. For arithmetic operators, multip~ication and division
come before addition and subtraction. Try to guess the four num­
bers that will be displayed by this program (to try it out, load and
run INTR07.CPP)

II INTR07.CPP--Example from Chapter 3, " An Introduction to C++"

#include <iostream.h>

It doesn't hurt to use
parentheses, even if they

aren't strictly needed. They
can make expressions easier

to read.

int main()
{

float result;
result = 1.0 + 2.0 * 3.0 I 4.0;
cout « '\n' « result;
result = 1.0 I 2.0 + 3.0;

60

cout « '\n' « result;
result = (1. 0 + 2.0) I 3.0;
cout « '\n' « result;
result = (1.0 + 2.0 I 3.0) + 4.0;
cout « '\n' « result;

return 0;

Here they are. How did you do?

Turbo C++ User's Guide

2.5
3.5

5.666667

In the first expression, the multiplication 2.0 * 3.0 is done first,
yielding 6. Next, 6/4.0 gives 1.5, which is finally added to 1.0 to
get the final result, 2.5. Notice that when operators have equal
precedence (* and I have equal precedence, as do + and -),
operations are done from left to right.

In the second expression, the division is done first, then the
addition, so the result is 0.5 + 3, or 3.5.

In the third expression, (1.0 + 2.0) is in parentheses, so it is
performed first: The result, 3.0, is then divided by 3 to get 1.

Finally, the last expression places 1.0 + 2.0/3.0 within paren­
theses. Within the parentheses, the usual rules are followed: 2 is
divided by 3, and then added to 1. The result, 1.666667, is then
added to 4 to get 5.666667.

modulus (%) The modulus operator (%) divides two numbers and keeps only
the remainder. For example, the expression 5 % 2 gives a result of
1, while 18 % 3 gives 0, since 3 divides evenly into 18.

Arithmetic and
type conversion What happens if you add an int to a float? You would want the

result to be a float so that any fractional part is retained, and that
is what happens. Turbo C++ promotes smaller types to larger ones
according to a set of rules (see the next table). From the table, you
can see that when an int and a float are added, the int is promoted
to a float. The two numbers are then added, resulting in a float.

Chapter 3, An introduction to C++ 61

Table 3.3
Type promotions for

arithmetic

Some types in this table have
not been discussed vet.

Type Converts to

These types are converted automatically:

char int

unsigned char
signed char
short
unsigned short
enum
float

int
int
intI
unsigned intI
int
double

Then these rules are applied in this order, until both operands have the
same type:

If either operand is ...

long double
double
float
unsigned long
long
unsigned

The other is converted to ...

long double
double
float
unsigned long
long
unsigned

. IThis is an ANSI requirement. However, short and int are the same size for all c++
compilers on the PC, so no conversion is done.

Typecasting It is sometimes useful or necessary to explicitly convert a data
item to a specified type. For example, if you have

62

#include <iostream.h>

int main ()
{

int a = 5, b = 2i
cout « a I b;
return Oi

you'll get a result of 2, since integer division drops any fractional
part. If, however, you do it this way:

#include <iostream.h>

int main()
{

int a = 5, b = 2i
cout « (float)a I (float)b;
return 0 i

Turbo C++ User's Guide

Combining
arithmetic and

assignment

Increment and

the values a and b will be converted to the type enclosed in
parentheses (float in this case) before the division, so the value of
the expression will be 2.5. This forced conversion is called a type
cast, or just a cast.

A common operation in programming involves adding a fixed
amount to a variable (incrementing it). For example, if a program is
counting words, when it finds a word, it will do something like
totaLwords = totaLwords + 1. Later, you will also see how loops
usually involve repeatedly adding or subtracting a number until a
variable reaches a specified limit.

A shorthand way of doing things in C++ is to perform arithmetic
and assignment in one step. You can combine any binary arith­
metic operator with the assignment operator. The preceding
statement can also be written as total_words += 1. Read this as
"add 1 to the current value of totaLwords and assign this quantity
as the new value of totaLwords." Similarly, a checkbook-balancing
program might execute the statement balance -= check_amt (sub­
tract the amount of the check from the balance and make that the
new value of balance). The somewhat less common combinations
*= and 1= work in the same way.

decrement Adding and subtracting exactly one is so common an operation
that two special operators, increment" ++" and decrement" - -",
are provided for the purpose. Thus, tttotal_words does exactly the
same thing as total_words t= 1. A program that does a countdown
for the space shuttle might use count-- in a loop until zero is
reached.

Load and run INTROB.CPP

The increment and decreql.ent operators can come either before or
after the affected variable. When the operator comes before the
variable it is applied to the variable first, and then the result is
used in the expression as a whole; this is called prefix notation.
When the operator comes after the variable, the value of the
variable is used first, and then the operator is applied to the
variable; this is called as postfix notation. For example, look at
INTR08.CPP:

//INTR08.CPP--Example from Chapter 3, " An Introduction to Ctt"

#include <iostream.h>

Chapter 3, An introduction to C++ 63

Working bit by bit

64

Table 3.4
Bit manipulation operators

Load and run INTR09. Cpp

int main ()
{

int val = 1;

cout « "\nval is II « val++ « " and then post-incremented\n";
cout « "val is now" « val « '\n';
cout « "val is pre-incremented to " « ++val « '\n';

return 0;

which gives the results

val is 1 and then post-incremented
val is now 2
val is pre-incremented to 3

In the first cout statement, val is still 1 when it is printed, but
becomes 2 afterward, as shown in the second cout. In the third
statement, val is incremented first, so it is 3 by the time it is dis­
played by the third cout.

Sometimes you'll find that you have to manipulate the actual bits
that make up each byte in memory. C++ provides a set of bitwise
operators, shown in the next table.

Operator Meaning

Operators that take two operands:

& AND; if both bits are 1, result is l.
I OR; if either bit is 1, result is 1.
1\ Exclusive OR; if only 1 bit is 1, result is l.
» For a signed int, shift bits right the number of times

specified by following number; fill in 1s at left if the
number is negative, Os if positive. For an unsigned int,
fill in Os to left.

« Shift bits left the number of times specified by following
n~mber; fill in zeros at right.

Operator that has a single operand (unary operator):

l's complement; reverse all bit values.

The following program illustrates the use of these operators:
I/INTR09.CPP--Example from Chapter 3, " An Introduction to C++"

#include <iostream.h>

int main()

Turbo C++ User's Guide

cout ~< "1 & 1 is " « (1 & 1) « '\n';
cout « "1 I 1 is " « (1 I 1) « '\n';
cout « "1 A 1 is " « (1 A 1) « '\n';
cout « "255 « 2 is " « (255 « 2)~< '\n';
cout « "255 » 2 is "« (255 » 2) « '\n';
cout « "~255 is " « ~(unsigned ii1t)255 « '\n';
return 0;

Remember that the integer 1 is stored in 2 bytes as 00000000
00000001, while 255 is 0000000011111111. Here is the output:

1 & 1 is 1
1 I 1 is 1
1 A 1 is 0
255 « 2 is 1020
255 » 2 is 63
~255 is 65280

Notice that the &. operator gives 1 only if the corresponding bits
are both 1. This makes it useful for "masking off" selected bits of a
value by using a bit pattern that has zeros in the positions you
wish to turn off. The I operator turns on a bit if either or both
values have a 1 in that position. If you want to guarantee that a
certain bit is on, "OR" that value with a value that has a 1 in that
position.

The fourth statement left-shifts the value 255 twice (00000000
1111111 becomes 0000001111111100). Since each place in a binary
number is two times the preceding place, this is equiv~lent to
multiplying 255* 2 * 2, or 1020. In the next statement, 255 is
right-shifted twice, so 00000000 1111111 becomes 00000000
00111111, or 63. Finally,the last statement turns 00000000
11111111 into 11111111 00000000. This is equivalent to 65,535-
255, or 65,280.

A few points should be made about the properties of the insertion
« and extraction ». stream operators. The reasons for overloading
the shift-left operator « and the shift-right operator » for use as
stream operators are that they are among the least commonly
used operators, and the precedence of the shift-left «and shift­
right » operators is low enough to allow the use of arithmetic
expressions as operands without parentheses. However, if you
write expressions containing operators of lower precedence you
must contain the expression within parenthe~es. Specifically, there
are three operators which have a lower precedence than the shift

Chapter 3, An introduction to C++ 65

Expressions

Evaluating an

operators. These are the AND &, the exclusive or XOR A, and the
inclusive or OR I bitwise operators. Also you must parenthesize
an expression containing the shift-left « or shift-right » bitwise
operators when intermingled with the overloaded insertion « or
extraction » stream operators. When one of these operators is
used within the cout or cin statements you must parenthesize
them as follows:

cout « "1 & 1 is " « (1 & 1) « '\n';

If you should fail to parenthesize, as in the above example, the
compiler will provide you with the error message Illegai use of
pointer, in other words Turbo C++ attempts to interpret the
ampersand & as the address-of operator.

You have noW seen a variety of statements that use expressions,
so this is a good time to review how expressions work in general.
An expression is any combination of variables, defined constants,
or literal numbers which together with one or more operators
yield a single value and possibly produce one or more side effects.
Thus

purchase * TAX_RATE
dollars / bushels
counttt
STATUS & SWITCH_ON

are all examples of expressions. An expression can be assigned to
a variable with the assignment operator "=". It can be displayed
by cout in the same way as a single variable. The preceding
program, for example, used statements such as

cout«"255 « 2 is "« (255 « 2)«"\n";

Where the expression (255 «2) is an expression which is
equivalent to 1020, the result of left-shifting the value 255 twice.

expression Turbo C++ evaluates expressions by applying the operators invol­
ved in order of their precedence, starting first with any parts of
the expression that are enClosed in parentheses. Table 3.4 lists all
of the C++ operators in order of their precedence and associa­
tivity. Associativity is the direction in which the compiler evaluates

66 Turbo C++ User's Guide

the operators and operands. For example, the various assignment
operators (=, +=, *=, and so on) associate from right to left
(assigning the expression on the right to the variable on the left)!
while the arithmetic operators (*, I, +, -, and %) associate from left
to right.

Precedence is the order in which evaluations are done. For
example, multiplication is done before addition, so that the
statement

count = 5 + 3 * 4

results in 17, not 32.

The best way to become familiar with these rules is to use an
expression with a cout statement so you can see the result, then
check the table to see how that result was arrived at. (As an alter­
native, Chapter 6, "Debugging in the new IDE," shows how you'
can use the built·in Turbo C++ debugger to evaluate many kinds
of expressions.)

The rules of precedence and associativity are as follows:

• Unary operators (operators with only one operand, such as ++)
have a higher order of precedence than binary operators (such
as I).

• Arithmetic operators come ahead of comparison operators.

• Greater than and less than come ahead of equals and not­
equals.

• Comparison operators come ahead of bit manipulation
operators (except for left and right shifts). .

• Bit manipulation operators come ahead of logical operators.

• Logical AND "&&" comes ahead of logical OR "II".

• Everything except for the comma operator comes before
assignment operators.

. Chapter 3, An introduction to C++ 67

Table 3.5
Precedence and

associativity of operators
Operators Associativity

() [] -> :: .
Operators, precedence, and
associativity are explained in
full in chapter 12, "Language

! - + - ++ - - & * (typecast) slzeof new delete
.* ->*
* 1 %

Left to right
Right to left
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Right to left
Right to left
Left to right

structure ". + -
« »
< <= > >=
== !=
&
1\
1
&&
II
?: (conditional expression)
= *= 1= %= += -= &= 1\= 1= «= »=

Assigning a value

68

in an expression You have been seeing examples of the assignment operator used
in a complete statement, such as the initialization of a variable,
total = O. Assignment statements like total = count = line = 0
remind us that every assignment is also an expression. What do
you think this program will display?

Try this example program, #include <iostrearn.h>
load and run INTRO 10. Cpp

int main (j

cout«"1 & 1 is "«(1 & 1)«"\n";
cout«"1 I 1 is "«(I I 1)«"\n";
cout«"1 A 1 is "«(I A 1)«"\n";
cout«"255 « 2 is "«(255 « 2)«"\n";
cout«"255 » 2 is "«(255 » 2)«"\n";
cout«"-255 is "«-(unsigned int)255«"\n";
return 0 i

If you guessed 7, you're right. The'value of an assignment state­
ment as an expression is the value assigned.

You have also seen that a call to a function that returns a value
has that value. For example, total += tax (total) is equivalent to

tax_arnt = tax(total);
total = total + tax_arnti

Turbo C++ User's Guide

The first form eliminates the extra variable at the cost of being a
bit more cryptic.

Characters and strings

Input and output
for single

characters

We've seen several types of variables which store numbers, such
as integers and floating point numbers. Now it's time to look at
characters and character strings. A character - whether an
uppercase or lowercase letter of the alphabet, a numeral, a
punctuation symbol, a carriage return, or Ctrl-C-is stored as a
single byte (8 bits).

The values for characters are assigned by the ASCII (American
Standards Committee for Information Interchange) code. The first
128 values are pretty much the same throughout the industry, but
IBM PC-compatible machines use the second 128 values (128 to
255) for special graphics and line-drawing characters. In C++, you
use the type char (which means the same as signed char) to
access the values from 0 to 127, with room for negative values for
special purposes (such as indicating an error or the end of a file).
If you want to access the full character set of the pC, use the type
unsi.gned char.

Here is one way to get a character from the keyboard and store it
in a variable (t9 try it out, load and run INTR011.CPP):

II INTROll.CPP--Example from Chapter 3, "An Introduction to C++"

#include <iostream.h>

int main ()
{

char one_char;
cout « "\nEnter a character: ";
cin » one_char;
cout « "The character you entered was" « one_char « '\n';
cout « "Its ASCII value is " « (int) one_char « '\n';
return 0;

A sample run looks like this:

Chapter 3, An introduction to C++ 69

This one is INTRO 72. CPP; load
and run it to see how it works.

70

Enter a character: A
The character you entered was A
Its ASCII value is 65

one_char is a variable of type char. The cin statement notes the
type of the declared variable char one_char, and stores the entered
value in one_char. The cout statement, cout « "\n" « "The
character you entered was "« one_char « "\n" i, displays the
value of one_char as type char. The nextcout statement prints the­
ASCII code for the entered character. It does this by using type
casting, ... < < (int) one_char i. This converts the character value to
its ASCII code. A character is an integer, but certain facilities in
C++ (such as the char type specifier) display the value as a
character rather than as an integer.

An alternate way to get a character from the keyboard is to use
the library functions getch() or getcheO which come supplied with
Turbo C++. A library function performs many activities such as
mathematical computations, graphics, file operations, displaying
output to the screen, and getting information from the keyboard.
To use a function contained in a library file you must include the
header file which contains the function declarations you want to
use. To use getch() or getche() you must include the header file
conio.h.

#include <conio.h>

The previous program could be rewritten as follows:

II INTR012.CPP--Example from Chapter 3, " An Introduction to C++"

#include <iostream.h>
#include <conio.h>

int main ()
{

int one_char;
cout « "\nEnter a character: ";
one_char = getch();
cout « "\nThe character you entered was "

« (char) one_char « '\n';
cout « " Its ASCII value is "« (int) one_char « '\n';

return 0;

With this version of the program, the character you type won't be
displayed onscreen. If you want the entered character to be
visible, use getche instead.

Turbo C++ User's Guide

Displaying a
character

. Displaying
character strings

Figure 3.2
How a string is stored in

memory

This example also shows one way to display a character line. By
typecasting the declared variable int one_char as a char in the first
cout statement we display the variable as a single character.
Another way to display a single character is with the library
function putch, which is defined in the header file conio. h. The
function putch('> ') displays the specified literal character >. If
one_char is a variable of type char (or, in some cases, of type int),
putch(c) displays the value of one_char as a character .

A string is a series of characters. You have already seen strings
used in cout statements. For example,

cout « "Enter a character: ";

calls cout and tells it to display a string of characters beginning
with an E and ending with a space. The double quotes tell Turbo
C++ to treat the group of characters as a string. Each character is
stored in a consecutive byte of memory, and cout receives the
address of the first character. How does cout know when it has
reached the end of the string? Whenever you define such a literal
string, Turbo C++ invisibly tacks a null character on the end. This
character has an ASCII value of 0, and is represented symbolically
as \0. The next figure shows how a string is stored in memory.

rStarting address
of string

null character 1

L 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Position

char message[30];
strcpy(message, "This is the value of msg\n");

Important! message is actually a pointer to a location for the string. Therefore,
the code

message = "This is the value of msg\n";

makes message point to where that string is. It does not copy the
literal string into the storage area of message. This is why you

Chapter 3, An introduction to C++ 71

must use strcpy to copy the characters of the string to the
variable.

For convenience, Turbo C++ also provides the library function
puts. This function writes a string to the standard output,
normally the screen. Thus puts ("Enter a character: ") works
almost the same as the cout statement just described, with one
exception: puts automatically puts a new line (\n) at the end of the
string, advancing the cursor to the next line. If your program
doesn't need the formatting capabilities of cout, you can save
considerable program space by using the simpler puts to display
strings. .

There is an important difference between double quotes and
single quotes for specifying strings and characters .

• "a" is a string consisting of one character, a, and the invisible
null character

• 'a' is the single character a.

Since strings and characters are different data types, specifiers or
functions that work with strings do not work with characters, and
vice versa. To display "a", use puts; for 'a', use putch.

Testing conditions and making choices

72

Using relational
operators

You have now learned many elements of the C++ language. So
far, all programs have run straight through from beginning to
end. Often, however, programs must make choices based on
certain values. For example, consider this code fragment:

if (bill> credit_limit)
puts ("Consult with the manager");

If the amount of the bill is greater than the amount of the credit
limit, the code displays the message about consulting withthe
manager.

The > (greater than) operator in the preceding statement is a
relational operator. It expresses a relationship between two
values-in this case, whether bill is greater than credit_limit.
Computers use a simple two-valued logic: If a relationship is true,

Turbo C++ User's Guide

Table 3.6
Relational operators

To try out this program, load
and run INTR073.CPP.

it has a value of 1; if it is false, it has a value of o. The relational
operators are listed in the next table.

Operator Meaning Example

> Greater than 5>4
>= Greater than or equal to 5>=x
< Less than 4<5
<= Less than or equal to x<=5
-- Equal to 5==5
!= Not equal to 5!=4

This example program shows you how relational operators can be
used:

II INTR013.CPP--Example from Chapter 3, "An Introduction to CH"

#include <iostream.h>

int main ()
{

int first, second;
cout « "\nInput two numbers ";
tin » first » second;
cout « "First > second has the value "

« (first> second) « '\n';
cout « "first < second has the value"

« (first < second) « '\n';
cout « "first == second has the value "

« (first == second) « '\n';

return 0;

Here's a sample run, using the values 3 and 5 (be sure to type a
space between the 3 and the 5):

Input two numbers: 3 5
first > second has the value 0
first < second has the value 1
first == second has the value 0

Notice that a relational test is an expression, since it gives a value.
Thus, it can be displayed by cout, and you can assign it to a vari­
able with a statement like hot = (temperature> 90). Be careful not
to confuse == (the relational equals operator) with = (the assign­
ment operator). Try editing the last statement in the example so
that it reads

cout« "First == second has the value "« (first = second)«'\n' i

Chapter 3, An introduction to C++ 73

74

Using logical
operators

Table 3.7
Logical operators

Branching with if
and if ... else

The expressionfirst = second evaluates to the value of second, or 5
in the sample run. The if, for, and other statements that test condi­
tions consider any nonzero condition to be true. You can see that
using = where you meant == will cause inappropriate program
behavior (such as being stuck in an endless loop).

You can combine more than one condition in a test. To do so, use
one of the three logical operators shown in the next table.

Operator Meaning

&& AND (both conditions must be true)
II OR (at least one condition must be true)

NOT (reverse the truth value of a condition)

For example, the conditional expression

(employee_type == temporary) && (wage> 6.00)

is true only if the employee is a temporary and his or her wage is
over $6.00 an hour. C++ is efficient at handling these operators: If
the first condition (employee_type == temporary) is found to be false,
the second condition isn't tested, since an AND expression is false
if either condition is false.

The expression

(employee_type == temporary) I I (employee_type == hourly)

is true if either or both of the two conditions is true. Thus if the
first condition is found to be true, there's no need to test the
second.

Now that you've surveyed relational and logical operators, it's
time to put them to work. The simple if statement takes the form

if (conditional expression)
statement or group of statements;

The condition can be a single relational expression or a combina­
tion of expressions joined by logical operators. It must be enclosed
in parentheses. The if statement acts according to the true or false
value from the conditional expression. If the expression is true,
the statement or group of statements that follow is executed. If
you want a group of statements to be executed, enclose them in

Turbo C++ User's Guide

To try out this code, load and
run INTRO 14.CPP.

Multiple choices
with if ... else

braces. The following program uses two if statements to tell you
whether the number you entered is odd or even:

II INTR014.CPP--Example from Chapter 3, "An Introduction to CH"

#inclu,de <iostream.h>

int main ()
{

int your_number;

cout « "Enter a whPle number: ";
cin »your_number;

if (your_number % 2 == 0)
cout« "\nYour number is even\n";

if (your_number % 2 != 0)
cout « "Your number is odd. \n";

cout « "That's all!\n";

return 0;

After prompting for and storing your _number, the program uses
an if statement to test whether the number is even, using the
modulus (0/0) operator. (Since all even numbers are evenly divi­
sible by 2, any even number mod 2 gives a result of 0.) If the num­
ber is even, the first cout statement is executed. The second if
statement tests whether yo'ur _number is odd, that is, if it has a
nonzero remainder when it's divided by 2. If the number is odd,
you see the following:

Your number is odd.
That's all!

The final message, "That's all!" isn't part of an if statement. It is
executed regardless of whether your _number is even or odd.

The previous example probably looked awkward to you. If a
number is even, it can't be odd, so why make two separate tests?
This example can be rewritten much more compactly by adding
an else branch to the if. The if ... else statement has this form:

if (conditional expression)
statement or group of statements;

else
alternative statement or group of statements;

Cnapter 3, An introduction to C++ 75

To try out this program, load
and run INTRO 75.CPP.

76

Applying this to the previous example, you get

// INTR015.CPP--Example from Chapter 3, "An Introduction to C++"

#include <iostream.h>

int main ()
{

int your_numberj
cout « "Enter a whole number: "j

cin » your_number j

if (your_number % 2 == 0)
cout « "Your number is even\n"j

else
cout « "Your number is odd.\n"j

cout « "That's all!\n"j
return OJ

You can nest if and else clauses as deeply as you wish, although
after a few dozen nested if statements the compiler is likely to run
out of memory. Suppose you had to write a program that allo­
cated computers to employees, subject to the following
conditions.

• If your employees are programmers and have been working at
least two years, give them an 80486 PC.

• If your employees are programmers and have been working less
than two years, give them an 80386 PC.

• If your employees have been working at least two years, but
aren't programmers, give them an 80286 PC.

• Finally, if your employees don't meet any of these conditions,
give them an 8088 PC.

Try to map out how you could specify these conditions with if
and else statements. Here's one way:

if (employee_type== PROGRAMMER)
if (years_worked >= 2)

give_employee (PC486) j

else
give_employee (PC386) j

else if (years_worked >= 2)
give_employee(PC286)j

else
give_employee(PC88)j

Turbo C++ User's Guide

Multiple choice
tests: switch

To try out this code, load and
run INTR076.CPP.

Notice how we used indentation to show which conditions
depend on other conditions. First the program determines
whether the employee is a programmer. If so, it checks the num­
ber of years worked, and awards the appropriate computer. If the
employee isn't a programmer, the outer if. .. else statement checks
the number of years worked, and awards the machines assigned
to nonprogrammers of varying seniority.

A long series of if and else if statements is tedious to write, con­
fusing, and prone to error. Consider the. next program, which has
to decide how to graph a set of data based on the character the
user has entered in response to a menu. Here's one way to do it:

II INTR016.CPP--Example from Chapter 3, "An Introduction to C++"

#include <conio.h>
#include <iostream.h>
#include <ctype.h>

int main()
{

char cmd;

cout « "Chart desired: Pie Bar Scatter Line Three-D";
cout « "\n Press first letter of the chart you want: ";
cmd = toupper(getch());
cout « '\n';

if (cmd == 'P')
cout « "Doing pie chart\n";

else if (cmd == 'B')
cout « "Doing bar chart\n";

else if (cmd == 'S')
cout « "Doing scatter chart \n" ;

else if (cmd == 'L')
cout « "Doing line chart\n";

else if (cmd == 'T')
cout « "Doing 3-D chart\n";

else cout « "Invalid choice. \n";

return 0;

The program displays a menu line, then gets a value for cmd via
the getch function. Along the way, the value is passed to the
toupper function. This ensures that you only need to deal with
uppercase characters. The series of if and else if branches then test

Chapter 3,·An introduction to C++ 77

The ... means that you can
have as many case clauses

as you want.

To try outthis program, load
and run INTRO 77. CPP.

78

for each valid value and execute the corresponding function. The
last else serves as the default case, handling invalid values.

The switch statement makes these multipath branches easier to
code. It uses the form

switch (value)
{

case value: statement or group of statements

default: statement or group of statements

The value is tested against the value for the first case. If they are
the same, the program code given after the colon for the first case
is executed until the end of the switch statement or until the
special statement break is reached. If they are different, the value
for the next case is tested, and so on. If none of the values are the
same as the switch value, the statement or group of statements
following default is executed. The default is optional. If you don't
supply one, and no condition is met, then no statements within
the switch are executed.

The preceding program example can be rewritten using a switch
as follows:

II INTR017.CPP--Example from Chapter 3, "An Introduction to C++"

#include <iostream.h>
#include <conio.h>
#include <ctype.h>

int main ()
{

char cmd;

cout « "Chart desired: Pie Bar Scatter Line Three-D";
cout « "\nPress first letter of the chart you want: ";
cmd = toupper(getch());
cout « '\n';

switch (cmd)
{

case 'P' :
case 'B' :
case ' S':
case 'L' :
case 'T' :
default :

cout «
cout «
cout «
cout «
cout «
cout «

"Doing pie chart\n"; break;
"Doing bar chart\n";break;
"Doing scatter chart\n"; break;
"Doing line chart\n"; break;
"Doing 3-D chart\n"i breaki
"Invalid choi.ce. \n" ;

Turbo C++ User's Guide

return 0;

The break statement at the end of each case is very important. It
causes execution to jump past the end of the switch statement.
You usually want to include a break statement as the last state­
ment for each case. For example, remove the break at the end of
the statement for case ' L' and run the program again. If you
select L, you'll see

Doing line chart
Doing 3-D chart

The statements for both the Land T cases are executed. In other
words, if you leave out the break, execution continues until it
finds a break or the end of the switch statement.

Sometimes this behavior can be useful. Suppose that you want the
user of your program to be able to use either D (for delete) or E
(for erase) to remove the current file. You could then code

switch (cmd)
{

case 'I': insert_file(); break;
case 'F': format_file(current_file); break;
case 'D':
case 'E': erase_file(current_file);

Since there is no break statement for case ' D' , erase_file will be
executed for this case as well as for case ' E' .

Repeating execution with loops

The most significant characteristic of the if, else, and switch state­
ments is that they perform their test only once, and execute what­
ever statements are specified only once. But many computer tasks
involve repetition; they involve instructions such as "use the same
process on each item in this file until you get.to the end of the file"
or "use the same process on each item in this set of data." For this
kind of task, you'll want to use a loop. Loops cause a statement or
series of statements to be executed repeatedly, monitoring a
specified condition in order to determine when to stop. C++
provides three kinds of loops: while, do, and for~

Chapter 3, An introduction to C++ 79

The while loop

To try out this example, load
and run INTRO 78. CPP.

80

The while loop executes one or more statements as long as a
specified condition is true. The syntax is

while (condition)
statement or group of statements;

The following program lets you enter numbers from the key­
board. It keeps a running total. When you enter a 0, it gives you
the total and average of the numbers entered.

II INTR018.CPP--Example from Chapter 3, "An Introduction to C++"

#include <iostream.h>

int main ()
{

int number= 1;
int total = 0;
int count = 0;

II Number entered by user
II Total of numbers entered so far
II Count of numbers entered

cout « "\nEnter a number, 0 to quit: \n" ;
while (number ! = 0)

{

cin » number;
if(number == 0)

cout « "Thank you. Ending routine.\n"i
else

count++;
total += number;

cout « "Total is " « total « '\n';
cout « "Count is " « count « '\n';
cout « "Average is "« total I count « '\n'i

return 0;

On the first time through the loop the value of number is 1. It is
tested by

while (number != 0)

Since it isn't a 0, it enters the body of the loop, where several
things happen:

• Anew number is obtained with cin.

Turbo C++ User's Guide

The do while loop

• That number is tested. If it is equal to 0, a goodby message is
printed. Otherwise the count of numbers is incremented by
one.

• The number just entered is added to total.
• The while statement is tested again to see if the number equals

zero, and if not, the loop begins again.

• When the loop finally exits (after a 0 is entered), the values of·
total, count, and total!count (average) are printed out.

The do while loop is very similar to the while loop. It takes the
form

do statement or group of statements
while (condition is true)

Important! What's the difference between a do while and a while loop?

To try out this example, load
and run INTRO 79. CPP.

• The while loop performs the test first and executes the enclosed
statements only if the result of the test is true.

• The do while loop executes the enclosed statements and then
performs the test. This means that the enclosed statements are
performed at least once, even if the test turns out to be false.

A good situation for using the do while loop is processing a menu.
The earlier menu examples had the drawback that they only
executed once, and then terminated the program. Here is the
menu program rewritten to use a do while statement:

II INTR019.CPP--Example from Chapter 3, "An Introduction to C++"

#include <conio.h>
#include <ctype.h>
#include <iostream.h>
int main(}
{

char cmd;

do {
cout « "Chart desired: Pie Bar Scatter Line Three-D

Exit" i

cout « "\nPress first letter of the chart you want: ";
cmd = toupper(getch(}};
cout « I \n ' ;

switch (cmd)

Chapter 3, An introduction to C++ 81

The for loop

To try out this example, load
and run INTR020.CPP

82

case 'P' : cout «~"Doing pie chart\n"; break;
case 'B' : cout « "Doing bar chart \n" ; break;
case 'S' : cout « "Doing scatter chart\n"; break;
case 'L' : cout « "Doing line chart\n"; break;
case 'T' : cout « "Doing 3-D chart\n"; break;
case 'E' : break;
default : cout « "Invalid choice. Try again \n" ;

} while (cmd != 'E');

return 0;

What has changed? The active part of the program, including the
statements that display the menu and get a character as well as
the switch statement, have been enclosed ina do while loop. An
additional menu case, E, allows the user to exit the program. This
case simply has a break associated with it. If any other character
(including an invalid character) had been typed, the while condi­
tion causes the menu to be redisplayed. But if E (or e) is typed, the
condition cmd ! = 'E' is false, and control drops out of the bottom
of the do while loop. The program then terminates.

The for loop steps through a series of values, performing the
specified actions once for each value. The form for this statement

for (starting values; condition; changes)
{

statement or group of statements;

The following for loop displays the visible characters from the
PC's character set: .

II INTR020.CPP--Example from Chapter 3, "An Introduction to C++"

#include <iostream.h>

int main()
{

int asciLval;

for (ascii_val = 32; ascii_val < 256; ascii_val++)
{

cout « '\t' « (char) ascii_val;
if (ascii_val % 9 == 0)

cout « '\n';

Turbo C++ User's Guide

Try out this example, load
and run INTR02 7. Cpp

Some programmers put the
semicolon on a separate

line, so it will stand out.

return 0;

The variable asciCval is the counter variable for the for loop. The
initialization (starting) value is ascii_val = 32. The condition
ascii_val < 256 is the limit for the loop. The change that is made in
the counter variable is ascii_valtt (in other words, it is incre­
mented by one each time through the loop.)

The cout and if statements are enclosed by braces and make up
the body of the loop. The cout statement displays the character
corresponding to the current value of asciCval, using a tab char­
acter (\t) for spacing. The if statement begins a new line whenever
asciCval is evenly divisible by 9 - in other words, it ensures that
each row will have 9 characters.

There are many variations on the theme of for loops. The body of
the loop can have only one statement, in which case the braces are
optional but recommended for clarity. A for loop can have no
body at all, with all of the work being done in the change part of
the control statement. For example, this loop totals up the num­
bers from 1 through 10:

II INTR021.CPP--Example from Chapter 3, nAn Introduction to e++ n

#include <iostream.h>

int main ()
{

int number, total;
for (number = 1, total = 0; number < 11; total += number,

number++) ;
cout « n\nTotal of numbers from 1 to 10 is n« total;

return 0;

This example also shows that the starting and change parts of the
loop specification can have multiple expressions, separated by
commas. The loop initializes two variables, number and total. Each
time the loop runs, it adds number to total and then increments
number.

The semicolon immediately following the closing parenthesis
indicates that the body of the loop is empty. If it were omitted, the
loop would execute the· cout statement repeatedly, treating it as
the body.

Chapter 3, An introduction to C++ 83

To try this out load and run
INTR022.CPP.

break and

A for loop could be written instead as a while loop. The previous
example could be rendered as

II INTR022.CPP--Example from Chapter 3, "An Introduction to C++"

#include <iostream.h>

int main ()
{

int number = 1, total = 0;
whil e (number < 11)
{

total += number;
number++;

cout « "\nTotal of numbers from 1 to 10 is " « total;

return 0;

The while loop updates the counter variable within the body of
the loop. The for loop performs both of these operations within
the loop specification itself. The for loop is more compact, but it
can be harder to read if you place too many expressions between
the parentheses.

continue Sometimes it's necessary to abandon the statements in a loop even
before you test the condition again. The break statement has two
different uses: to break out of a switch statement after statements
provided for a particular case have been executed, and to exit a
while, do while, or for loop immediately, without performing the
rest of the statements enclosed in theloop. For example, suppose
you didn't want to launch a space shuttle if any warning lights
were on:

To try out this program, load
and run INTR023.CPP.

II INTR023.CPP--Example from Chapter 3, "An Introduction to C++"

84

#include <iostream.h>

int warning = -1;

int get_status(void)
{

return warning;

int main ()
{

int count = 10;

Turbo C++ User's Guide

To try out this program, load
and run INTR024.CPP.

while (count-- > 1)
{

if (get_status() == warning)
break;

CQut « '\n' « countj

if (count == 0)

cout « "Shuttle launched\n" j

else

cout « "\nWarning received \n" j

cout « "Count down held at t - "« countj'

return OJ

A while loop runs the countdown, each time checking the func­
tionget_status to see if it returns a value o£--l (which you have
defined as the variable int warning = -1';). This function would
presumably be reading the warning system in real time. If
get_status returns -1 at any time during the countdown, break
stops the countdown. Following the while statement, the if
statement checks to see if count reached zero. If it did, then no
warning occurred. If count is greater than 0, however, the
countdown must have been interrupted, and the shuttle is not
launched.

The continue statement, like break, causes all remaining state­
ments in the loop to be skipped. But while break completely exits
the loop, continue simply skips to the loop's test condition.
INTR024.CPP displays the even numbers up through 10:

II INTR024.CPP--Example from Chapter 3, "An Introduction to CH"

#include <iostream.h>

int main()
{

int num = OJ

while (numtt <= 10)
{

if (num % 2 != 0)
continuej

cout « '\n' « numj

return OJ

Chapter 3, An introduction to C++ 85

Nested loops

To try out this code, load and
run INTR025. CPP.

86

If the number is odd, the continue statement causes the cout
statement to be skipped.

continue isn't used very often. You have to think the problem
through to see when a continue or a break is appropriate. The use
of continue inside the while loop in the space shuttle program
would not be a good idea, since not only would the countdown
not be displayed (the cout ~tatement in the loop would be
skipped), but also count would continue down to 0, since the
decrement is part of the condition (count-- > 1). The shuttle
would be launched even if a warning had been received.

One of the statements in the body of a loop can be another loop -
this is called nesting. In this example, a for loop accepts strings
that you enter, and the nested for loop prints hyphens under the
string in order to underline it. We also introduce the function
getline(} which is an inherited member function of cin, declared in
iostream.h. getline(} reads characters until encountering the '\
n'character and places the resulting string in the buffer specified
by the argument. In the program INTR025.CPP we have used the
getline(} function twice in the initial for statement, the first usage
initializes the loop with the first string you enter, the second
getline(} is accessed each time through the loop until you type the
string "end".

//INTR025.CPP--Example from Chapter 3, "An Introduction to CH"

#include <iostream.h>
#include <string.h>
#include <conio.h>

int main ()
{

int ii
char text[801i

cout « "Type \"end\" to quit\n"i

for(cin.getline(text,80) istrcmp(text, "end") !=Oi
cin.getline(text,80))

for(i = Ii i <= strlen(text) i itt)
cout « "-"i

cout «' \n' i

Turbo C++ User's Guide

Choosing
appropriate loops

return 0;

The first for loop gets the input string with the function
cin.getline (text ,80), initializing the for loop, and storing the
string in the character array text. Then, it compares this string to
the string 11 end 11 with the strcmp function. If the comparison yields
a 0, the strings are identical, and the loop exits. If the comparison
yields a value other than 0, the nested for loop is executed. The
nested for loop then prints a number of hyphens equal to the
length of the string that was originally entered, using the strlen
function to find out how long it was. The cout statement, which
ends the body of the initial for loop, positions the cursor for entry
of the next line.

You have now seen three different ways to code loops (while, do
while, and for). Use whichever form of statement expresses the
idea of the program most clearly, keeping in mind the following
guidelines:

• If you don't want the body of the loop to be executed at all if
the condition is false, use a while loop.

• If you want the body of the loop to always be executed at least
once, use a do while loop.

• If the number of times the loop is to be executed is determined
by the value of a variable or constant, it is usually best to use a
for loop.

• If the loop is to be executed as long as some externally deter­
mined condition is true (for example, as long as there is data
left in the file), use a while loop.

Program design with functions and macros

Now that you know how to control the execution of a program,
you can do some useful workin C++. We encourage you to
modify and elaborate upon the example programs. Small, simple
programs such as the ones we've covered so far don't need a lot of
structure. However,· as your programs grow larger and more
complex, you need to break them down into smaller, more
manageable logical pieces, or functions.

Chapter 3, An introduction to C++ 87

Defining your own
functions The programs you have already seen perform divisions of labor.

When you call getline, strlen, or strcmp, you don't have to worry
about how the innards of these functions work. These and about
400 other functions are already defined and compiled for you in
the Turbo C++ library. To use them, you need only include the
appropriate header file in your program and check the online help
to make sure you understand how to call the function, and what
value (if any) it returns.

But you'll need to write your own functions. To do so, you need
to break your code into discrete sections (functions) that each
perform a single, understandable task for your program. Once
you have declared and defined your own functions, you can call
them throughout your program in the same way that you call
Turbo C++ library functions.

The function prototype Function prqtotypes are a key feature of the new ANSI standard
for the C language, and since the C language is a subset of C++,
function prototyping is a key feature of C++. A function prototype
is a declaration that takes this form:

88

return_type function_name(parameter _type [parameter_name] ...);

Here are some examples:

float tax(tloat purchase) ;
char get_employee_type(int employee_num);
char get_choice(void);
int getch(void};
void show_menu(void};

By looking at the prototype, you can tell exactly what type of
information the function expects, and what type it returns.

Let's look at tax. When you call it, you need to give it a floating­
point number. The result will also be floating point. The prototype
informs Turbo C++ about all this.

Some of the other example prototypes shown earlier use the key­
word void. void means empty, or none. When the word void ap­
pears in the parentheses in place of the parameter list, this indi­
cates that the function has no parameters. Thus if you tried to use
the statement show_menu (10) , you would be informed that
show_menu doesn't take any parameters. When .void appears as

Turbo C++ User's Guide

the function's return type, it means that the function does not
return a value-so you shouldn't try to assign the function call's
result to a variable.

Function declarations under Kernighan and Ritchie

We recommend that you use In the old Kernighan and Ritchie style, the return type of a
prototypes in your code. function was given only if it wasn't into Similarly, function

parameters were declared within the body of the function
definition, rather than in the parameter list. get_employee_type
would be declared in this old style as

char get_employee_type();

'And the function's actual code (its definition) would look like this

char get_employee_type(employee_num)
int employee_num;
{

/* body of function code */

Old-style functions compile correctly under Turbo C++. However,
they have less information about the function's parameters, so
errors involving the wrong type of parameters in function call:;;
won't be caught automatically. This is one of the many good
reasons why this older style is being discarded. The Kernighan
and Ritchie style of function declaration predates ANSI C and
C++, and is out of date. The information given here is to aid you
in recognizing the obsolete function declaration style in older C
source code.

The function definition The function definition contains the actual code for the function.
The preferred form for the function header starts out exactly the
same as the function declaration, except that it doesn't end in a
semicolon. It is followed by local variable declarations and the
code to be executed, enclosed in braces.

float tax(float purchase)
{

Chapter 3, An introduction to C++

float tax_rate = 0.065;
return(purchase * tax_rate);

89

Processing within the
function

The function return
value

Figure 3.3
Information flow to and from

the tax function

The function sees its parameters as though they had been de­
clared as variables of the indicated types. The tax function thus
has access to two values: its float parameter, purchase, and its own
float variable, tax_rate. If you make the function call tax (amount) , it
is a copy of the value of amount that the function tax receives
through its parameter purchase. The function refers to this value
under the name purchase and can change the value of purchase.
This doesn't change the value of the original variable amount,
however. We'll show you later how a function can use pointers to
change the values of variables used to call it.

A function doesn't have to return a value-in that case, you
should declare its return type to be void. To return a value to the
caller, a function uses the return statement (as in the function tax,
where the value returned is purchase * tax_rate). The next figure
summarizes how information flows to the tax function and then
flows back again.

The value of amount is
assigned to corresponding
parameter l2urchase

The value is now available
within function tax under the
name l2urchase--

The return statement sends the
calcu7ated value back to the calling
statement, where it replaces the
function call tax(amount)

In calling statement, returned value
is assigned to the variable tax_amt

I*function declaration*f
float tax(float purchase)

I*calling statement* f
tax_amt = tax(amount);

return(purchase * tax_rate);

tax_amt = tax(amount);

tax_amt = (value returned)

Using the return value The returned value of a function can be treated like any other
value in an expression. It can be combined with other variables
and arithmetic operators in an expression; it can be part of the

90 Turbo C++ User's Guide

Multifunction

condition for an if statement or loop; it can be assigned to a
variable, and so on. Here are some examples of the use of function
return values that you have already seen:

tax_arnt = tax(purchase)i
if (get_status() == warning)
for (cin.getline(text)i strcrnp(text,"end") 1= 0)

In the first example, the value returned by the tax function is
assigned to the variable tax_amt. In the second example, the value
returned by the call to get_status is compared with the value of
the variable warning; the result determines the truth value of the if
statement. In the last example, the value returned by cin.getline is
passed to the strcmp function (along with the string "end"), and
the result of the call fo strcmp in turn is compared with zero. That
result becomes the value of the for statement test.

programs The following program draws a graphic representation of part of
the solar system. It illustrates the use of several user-defined
functions as well some features of Turbo C++'s graphics library.
(For more on how to use Turbo C++ graphics, see Chapter 20,
"Video functions. ")

After you have loaded the PLANETS.CPP file, go to the MENU
BAR and select OPTIONS I LINKER, and then select LIBRARIES.
You will then be presented with the libraries dialog box, select
GRAPHICS LIBRARY and toggle the checkbox to on with the
spacebar or by clicking the left mouse button. This will ensure
that GRAPHICS. LIB will be linked in when you compile and run
PLANETS.CPP. Be sure to set your path argument in calls to
initgraph to the directory where your .BGI files are. When setting
the path use the \\ symbol instead of the usual \ so as to comply
with c++ escape sequences, for example "c:\ \tc\ \ bgi ", or the
relative path ". \ \bgi".

As written, the program requires EGA or VGA graphics hard­
ware, but because it scales itself to the capabilities of the adapter,
you could run a cruder version in CGA if you change the color
constants used.

The program listing has function prototypes, global declarations,
and then the definitions of the various other functions. This
program is included on your disk as PLANETS.CPP.

Chapter 3, An introduction to C++ 91

After reading through the
discussion of this program,
feel free to modify it. Study

the graphics library. Try differ­
ent colors and fill styles.
Experiment with various

scaling values for distances
and radii.

92

II PLANETS.CPP--Example from chapter 3

II#include <stdio.h>
#include <graphics.h>
#include <stdlib.h>
#include dostream.h>
#include <conio.h>

int set_graph(void);
void calc_coords(void);
void draw-planets(void);

II For graphics library functions
I I For exit ()

II Initialize graphics
II Scale distances onscreen
II Draw and fill planet circles

II Draw one planet circle
void draw-planet(float x-pos, float radius, int color, int
fill_style) ;
void get_key(void); II Display text on graphics screen,

I I Wait for key

II Global variables -- set by calc_coords()
ii1t max_x, max-y;. I I Maximum x- and y-coordinates
int y_org; II Y-coordinate for all drawings
int aul;

int au2;

int erad;

int main ()
{

II One astronomical unit in pixels
II (inner planets)

II One astronomical unit in pixels
II (outer planets)
II One earth radius in pixels

II Exit if not EGA or VGA
II Find out if they have what it takes
if (set_graph() != 1) {

cout « "This program requires EGA or VGA graphics\n";
exit (0) ;'

calc_coords() ;
draw-planets() ;
get_key ();
closegraph () ;

return 0;

int set_graph (void)

II Scale to graphics resolution in use
II Sun through Uranus
II Display message and wait for key press
II Close graphics system

int graphdriver = DETECT,graphmode, error_code;

IIInitialize graphics system; must be EGA or VGA
initgraph(&graphdriver, &graphmode, ".\\bgi");
error_code = graphresult();
if (error_code != grOk)

Turbo C++ User's Guide

return(-l); II No graphics hardware found
if ((graphdriver != EGA) && (graphdriver != VGA))
{

closegraph () i
return 0;

return(l) ; II Graphics OK, so return "true"

void calc_coords(void)
{

II Set global variables for drawing
max_x = getmaxx(); II Returns maximum x-coordinate
max-y = getmaxy(); II Returns maximum y-coordinate
y_org = max-y I 2; II Set Y coord for all objects
erad = max_x I 200; II One earth radius in pixels
au1 = erad * 20; II Scale for inner planets
au2 = erad * 10; II scale for outer planets

void draw-planets()
{

II Each call specifies x-coordinate in au, radius, and color
II arc of Sun
draw-planet(-90, 100, EGA_YELLOW, EMPTY_FILL);
I I Mercury
draw-planet(0.4 * au1, 0.4 * erad, EGA_BROWN, LTBKSLASH_FILL);
II Venus
draw-planet(0.7 * au1, 1.0 * erad, EGA_WHITE, SOLID_FILL) ;
II Earth
draw-planet(1.0 * au1, 1.0 * erad, EGA_LIGHTBLUE, SOLID_FILL);
II Mars
draw-planet(1.5 * au1, 0.4 * erad, EGA_LIGHTRED, CLOSE_DOT_FILL);
II Jupiter
draw-planet(5.2 * au2, 11.2 * erad, EGA_WHITE, LINE_FILL);
II Saturn
draw-planet(9.5 * au2, 9.4 * erad, EGA_LIGHTGREEN, LINE_FILL);
II Uranus
draw-planet(19.2 * au2, 4.2 * erad, EGA_GREEN, LINE_FILL);

void draw-planet(float x-pos, float radius, int color, int
fill_style)
{

Chapter 3, An introduction to C++

setcolor (color); II This becomes drawing color
circle (x-pos, y_org, radius); II Draw the circle
setfillstyle(fill_style, color); II Set pattern to fill interior
floodfill(x-pos, y_org, color); II Fill the circle

93

Function prototypes
and global

declarations

Setting up the graphics
display

94

void get_key (void)
{

outtextxy(50, rnax-y - 20, "Press any key to exit") i
getch() i

This program calls five programmer-defined functions. Their
declarations appear right after the #include statements. These
declarations could appear elsewhere, but then there wouldn't be
any type checking until the prototypes are reached. It is easiest to
have them right at the start. The prototypes of void and non-int
functions must appear before the first call to those functions.

The global variables hold information needed for drawing the
planets. Their values are calculated by the calc_coords function,
and these values are used by draw_planets. Making these
variables global (rather than declaring them inside a function)
makes them accessible to both functions that need them. Later,
we'll show other ways to share variables between two functions.
(Object-oriented programming, which we'll introduce in the next
chapter, generally shuns the use of global variables).

main's first call is to set_graph, which "packages" a number of
operations involving the Turbo C++ graphics library. set_graph
uses the library function initgraph with the DETECT mode to
automatically determine what kind of graphics hardware is
present. Notice the multiple return statements-a function can
have as many return statements as needed. The first if determines
whether there was an error initializing the graphics system (the
code returned isn't equal to grOk ("graphics OK")-the function
exits and returns an error code in that case. The second test
returns an error code if neither EGA nor VGA capability is present.
The second test is made only if the first was successful. The use of
multiple return statements avoids the need for else statements.

The identifiers DETECT and grOk appear not to have been
declared anywhere. In fact, these are defined constants that are
part of the graphics.h header file. In addition to function
prototypes, header files frequently make useful definitions
available to your programs. We recommend that you browse
through graphics.h and other header files that you frequently use
in your programs, so that you become familiar with their
contents. All of the colors and pattern fill styles you'll encounter
later are also defined in graphics.h. Each identifier has an integer

Turbo C++ Users Guide

Calculating the
graphics coordinates

value associated with it, but the use of symbolic names makes it
much easier to see what is going on. (BLACK is much more
meaningful than 0.)

main checks the value returned by set_graph. If anything other
than 1 was returned, the program displays a message and exits.

If everything checks out, calc_coords is called next. Many begin­
ning programmers are used to thinking of the x-y dimensions of
the graphics screen as being fixed by those provided by the
graphics adapter they use-for example, 640x350 for EGA. The
temptation is to hard-code these exact dimensions into your
program. But this leads to trouble when the program is run on a
machine that has a different graphics resolution and set of
available colors. As discussed further in Chapter 20, "Video func­
tions", the graphics library helps you write programs that run on
a wide range of graphics adapters.

To help make this possible, the library functions getmaxx and
getmaxy functions return the highest x- and y-coordinates,
respectively, for the graphics mode currently set. (This in turn was
set by initgraph.) The remaining statements

• set the center for the planetary circles by taking half of the
maximum y value.

• scale the Earth's planetary radius (which is the unit used to
express the radii of the other planets) to 1/200th of the width of
the screen (the maximum x value).

• set two distance measurements for placing the centers of the
circles on the x-axis. Because distances in the solar system
increase rapidly once past Mars, different scales are used for the
inner and outer planets. As a result, the drawing won't be accu­
rate in distances, though it will accurately show the relative
sizes of the planets. (Due to the limited size of the screen, you
can't have both.) For the same reason, Neptune and Pluto had
to be omitted.

Drawing the planets The function draw_planets gathers together a series of calls to the
function draw_planet, which does the actual work. draw_planet
takes four parameters: x_pos, radius; color, and fill_style.

• x_pos is the x-coordinate for the center of the planetary circle. It
is obtained by multiplying the distance unit (aul or au2) by the
mean distance of the planet's orbit from the sun, expressed in

Chapter 3, An introduction to C++ 95

96

Header files,
functions, and

libraries

astronomical units. (An astronomical unit is the distance of the
Earth from the Sun, approximately 93 million miles.)

• radius is the radius for the planetary circle. This is obtained by
multiplying the actual planet's radius in terms of Earth's radius
(about 4,000 miles) by erad, the number of pixels per Earth
radius. .

• color is a constant from graphics.h that gives the color to be
used for drawing the circle (and for filling it in) from the default
EGA palette (which also works for VGA).

• fill_style is a constant from graphics.h that gives the style to be
used for filling in the circle.

draw_planet takes these parameters and calls Turbo C++ graphicS
library routines to draw the circle and fill it in. Notice that the
y-coordinate needed by circle and floodfill didn't have to be
supplied as a parameter. Since it is fixed, the quantity y_org
previously calculated by calc_coords is used. .

Finally, get_key uses the outtext library function to display a
message, then calls getch, which waits for a key to be pressed to
exit the program.

In a small program, you will probably declare and define your
fl.lnctions in the sarrLe file, together with your main function that
ties everything together. Such a structure is shown in the next
figure.

Turbo C++ User's Guide

Figure 3.4
Simple program structure (all

in one)

Header files usually contain
function declarations so they

can be included in many
different source or module

files.

Describe
your

functions

Call
functions

Define tasks
performed

by your
functions

#include
#define
I*Function declarations*/
void draw_menu(void);

/*Global data*/

main 0
{

}

I*main program logic,*/
I*including function calls*/

I*Function definitions (code)*/
void draw_menu(void)
{

I*code for draw_menu*/
...
}

I*Definitions for other functions*/

As programs get larger, however, it becomes desirable to group
related function definitions in a separate file. For example, the
functions dealing with the user interface might go into one file,
the functions dealing with data processing in another, and the
functions dealing with presentation graphics in yet a third file.
Turbo C++ can compile all three files together to create the final
executable program. This kind of structure is shown in the next
figure.

Chapter 3, An introduction to C++ 97

98

Figure 3.5
Program built from several

files

You could substitute an
incl ude "header. h "

command for the function
declarations.

#include
#define

...
int main(void)
{ ,

I*Main program logic*/
...
}

Main program

Subtasks
(files compiled separately)

/1~
Menu Graphics Calculations

Module 1 Module 2 Module 3

I*menu.c*/
I*Function declarations*/
void menu(void);

I*Function definitions*/
void menu(void);
{

.

I*graphics.c* /
I*Function declarations*/
void bar_graph(inU;

I*Function definitions*/
void bacgraph(inU
{

}

.

I*calcs.c*/
I*Function declarations*/
float rate_oUeturn_;

I*Function definitions*/
float rate_oUeturn
{

}

,

Once parts of your program are stable, you can compile groups of
functions into libraries. The declarations for the functions in each
library can be put into a header file like those you use to access
Turbo C ++'s own libraries. Your main program includes the
header files, thus inserting the function declarations into your
program text. After compilation, the linker links the libraries into
your program's object code. This process is shown in the next
figure.

Turbo C++ User's Guide

Figure 3.6
Program using custom

libraries

Scope and
duration of

variables

Scope

Refer to chapter 5 for a more
detailed discussion of scope

with classes and struct.

You can load and run this
program: INTR026.CPP.

Header files
menu.h
/* declarations */ ~

graphix.h ---.
/* declarations * /

,------,1 /

calcs.h ./
/* declarations * /

Precompiled libraries

renu.lij ~
graphix.lib

/

Main program

#include --------­
#include --------­
#include menu.h
#include graphix.h
#include calcs.h

...
int main(void)
{

}

!
compiled code

of main function

I
L..--C_Lmk_er ---'~

\

As programs get more complicated, the question of access to
variables used in other parts of the program arises. Every variable
has two characteristics: scope and duration. Scope (sometimes.
called visibility) defines what paIts of a program can access the
variable. Duration specifies how long the variable remains
accessible.

Scope is determined by where you declare the variable. A variable
defined within a function definition is by default local-it can only
be accessed by code within the same function. For example, in this
program,

II INTR026.CPP--Example from Chapter 3, "An Introduction to C++I!

#include <iostream.h>

void showval(void)i

Chapter 3, An introduction to C++ 99

100

int main ()
{

int mainvar = 100;
showval() ;
cout « funcvar « '\n';

return 0;

void showval(void)
{

int funcvar = 10;
cout « funcvar « '\n';
cout « mainvar « '\n';

the function showval first uses a cout statement to display the
value ofJuncvar. This is fine, since funcvar is declared and defined
within the showval function. The next statement, which attempts
to display the value of mainvar, causes the compiler to complain
(by way of an error message) that mainvar is undefined. This is
because mainvar is defined within another function, namely main.
It cannot be accessed from within showval.

Even if you fix this, upon return from the call to showval, the
main function tries to display the value of the variable funcvar.
This, too, will cause 4an error because funcvar is defined within
showval.

To make a variable visible from within any function in the current
source file, define it outside any function definition. It will be
visible after the position in the source file where it is declared, so
the usual place to define such global variables is before the start of
the definition of main. If the preceding example starts out like
this,

void showval(void);
int mainvar, funcvar;

and if you remove the int declaration from

int mainvar = 100 and
int funcvar= 10,

there will be no complaint. Remember, however, that a variable
that is accessible from anywhere is also changeable from
anywhere, which can lead to bugs that are hard to track down.
Changes in value caused this way are sometimes called side effects.

Turbo C++ User's Guide

By default, global variables are accessible from any file.
(Although, without extern references in other files, a global
variable has file scope.) If you have a program that uses more
than one source file, and you need ~o ma\<e a variable visible in a
different source file, declare it in the current file by adding the
keyword extern ("external"). Thus, if the file main.c defines
int xscale, you can "see" this variable from within another file
(such asstars.c) by declaring

extern int xscale;

there. The variable is assigned its memory address when it is
originally defined. The extern declarations merely inform the
compiler that an external variable will be referenced.

Duration It would be inefficient to reserve memory permanently for all of
the variables in a large program. After all, a particular function
may only be called once. By default, variables declared within a
function definition are auto (automatic) variables. Their memory
is allocated when their function begins to execute. When the
function returns to its caller, the memory is freed up for use by
other variables.

To try out this code, load and
run INTR027.CPP.

Occasionally you may wish to override this default behavior and
have a variable stored permanently, even when the function it is
declared in isn't running. The keyword static accomplishes this.
For example, a function could count how many times it was
called:

II INTR027.CPP--Example from Chapter 3, "An Introduction to C++"

*include <iostream.h>
*include <conio.h>

void tally(voidl;

int main()
{

cout «"Enter q to quit. \n" j

while (getch(l != 'q'l
tally(l j

return OJ

void tally(void)
{

static int called = OJ

called++j

Chapter 3, An introduction to C++ 101

102

Using constant
values

cout « "Function tally called" « called «" times\n";

Each time the while loop in main receives a character other than q
from getch, it calls tally. tally increments the static variable called
on each call. C++ initializes static numeric variables to 0 when
they are declared.

Another declaration keyword that is occasionally used is register.
When it is added to a variable declaration, register asks the com­
piler to generate code that uses one of the microprocessor's fast
internal registers to hold the value, rather than using the slower
random access memory. register can only profitably be used with ,
data types small enough to fit in a register, such as char or into

Since modern compilers such as Turbo C++ optimize so that they
take advantage of machine resources efficiently, only experienced
programmers know when to take advantage of this feature. Using
it inappropriately can slow down your program. It is usually best
to let the compiler figure out whether to use a machine register
for a variable. Also, using the keyword register doesn't guarantee
that the variable will be saved in a register. It is only a suggestion
to the compiler that it attempt to do so.

A constant is a value that is fixed - it doesn't change during the
execution of your program. There are two ways to define
constants: the const keyword and the #define directive.

1. One way to create constants is to use the keyword const in a
declaration. For example, if you declare

const float cm-per_inch = 2.54

you are telling the compiler that this value will never change.
If you attempt to assign a new value to it anywhere in your
program (including by incrementing or decrementing it with
++ or --, you will receive an error message. Using this key­
word therefore helps Turbo C++ to catch programming slips.

2. Another way to include constant values in a program is by
using the #define directive. Such as

#define RATE 0.065

This is not a declaration, but an instruction to the preproces­
sor, a part of Turbo C++ that will make requested changes to
your source code before it is compiled. Here, the change is

Turbo C++ User's Guide

equivalent to using a word processor to find all instances of
RATE and replace them with the characters 0.065.

There are times when either const or #define is more appro­
priate. In both cases, you can change the value by simply
changing the definition and recompiling. const gives the
important advantage that Turbo C++ knows what data type
the value should have (for example, const int). On the other
hand, a #define can appear in multiple modules without
problems, but a const can't. The potential for problems with
the use of the #define directive result from the absence of any
type declaration, therefore the compiler cannot perform type
checking to ensure data type compatibility.

The advantage of using constants is that when the value
changes, you need change only this one statement. You don't
have to search for every instance of a particular number-a
process which, besides being tedious, is prone to error.

Building data structures

Structures are declared using
the keyword struet.

Data tends to come in bunches rather than single pieces. For
example, you may need to keep track of the number of hours an
employee has worked each week during the current year. Here
you have a set of related data items of the same type (total hours,
probably a float to allow for fractional hours). C++ allows you to
declare an array to store such a set of homogeneous data. But your
business also has to keep track of a variety of information about
each employee, such as name, years worked, salary, department,
and so on. These items are certainly related (they all refer to an
employee), but they are of different types. Names are character
strings (arrays of characters), years worked can be an int or a float
depending on whether fractions are allowed, the salary is pro­
bablya double (to allow for well-paid employees), and the
department can be a numeric code or a character string. The C++
structure type lets you handle complex data structures almost as
easily as single variables.

The struct type is used in ANSI C, but it does not have the added
features provided for it in C++. Thekey difference is the
treatment of a struct in C++ as being somewhat similiar to a class
(see Chapter five for more on structures and classes). A struct, by
default, allows access to all of its members. In C++ a structure can
include member functions allowing for the manipulation of the data

Chapter 3, An introduction to C++ 103

Figure 3.7
Two ways to deal with sets of

data

Note that the different
members of a structure may
not a/ways be contiguous in

memory.

members. The examples and discussion in this section will be
limited to the use of the struct as way to collect and organize your
data efficiently.

float hours[52];

An array

.. ~
~0---4~~8---~12~-1~6- 208

Memory addresses (relative)

A structure

typedef struct {
char name[40];
int dept_no;
float rate;
float hours;

name[40]

o ...
Memory addresses (relative)

employee;

dept_no hours
rate

... 39 42 46 49

In addition to organizing your data, you need a way that you can
easily find the particular item you want to work with. Since all
this data is actually stored in blocks of memory addresses (some­
thing like house addresses on a street), you can point to the data
you want by using addresses. In this section, you'll learn how to
use pointers to access data structures.

Declaring and initializing an array

104

An array is a chunk of memory that is used to hold a group of
data items of the same type. For example, an array of int will hold
the specified number of integers in consecutive memory locations.
You specify an array by giving the type of data to be stored, the
array name, and the number of items to be stored; put brackets
around the number of items to be stored. For example, here is
how you might declare an array that will hold the total hours
worked per week for an employee for one year:

Turbo C++ Users'Guide

Arrays start at index a and
end at a position one less

than their assigned size.

To try this one out, load and
run INTR028.CPP.

The addresses will vary from
one time to the next, and

from one machine to
another.

float hours [52] ;

This can be read as "hours, an array of 52 float values."

A particular item, called an element, of the array can be referred to
by giving the array name followed by the position of the item, in
brackets. The first item is stored at the address pointed to by the
array name itself. This can also be referred to as position O. Thus
the total for the first week in the hours array can be referred to as
hours[O]. The total for the tenth week would be hours[9], and the
total for the 52nd week would be hours[51].

The following program initializes the array hours to 0, assigns
values for the first four positions, and then displays the value,
showing how they are accessed:

II INTR028.CPP--Example from Chapter 3, "An Introduction to C++"

#include <iostream.h>

int main()
{

float hours [52] ;
int week;

II Initialize the array
for (week = 0; week < 52; week++)

hours [week] = 0;

II Store. four values in array
hours [0] = 32.5;
hours [1] = 44.0;
hours [2] = 4'0. 5 ;
hours [3] = 38.0;

II Retrieve values and show their addresses
cout « "Element "« "\tValue " « "\tAddress\n";
for (week = 0; week < 4; week++)

cout « "hours[" « week « "]" « '\t'
« hours[week] « '\t' « &hours[week] « '\n';

return 0;

The output of the program will be:
Element Value Address
hours[O] 32.5 Ox8f43ff26
hours [1] 44 Ox8f43ff2a
hours[2] 40.5 Ox8f43ff2e
hours [3] 38 Ox8f43ff32

Chapter 3, An introduction to C++ 105

106

Arrays with
multiple

dimensions

Notice that the elements are stored in consecutive addresses, 4
bytes apart (which is, after all, the size of a single float). The
address operator & retrieves the address of the element
referenced. The cout statement ... « &hours [week] ... displays the
address as a hexadecimal number. The for statement is quite
convenient for stepping through the elements of an array.

You can also explicitly initialize an array at the time it is declared.
To do so, place the values yoU: want to assign between braces,
separating them with commas. For example,

int quarters[4] = {3, 10, 7, 14};

might hold the amount of points scored by a team in each quarter
of a football game. (Of course data like this would probably come
from being entered at the keyboard or being read from a file. But
you can use explicit assignments to an array to provide data for
testing your program.)

When you assign character constants, put each character in single
quotes:

char grades [5] = { 'A', 'B', 'e', 'D', 'F'};

If you specify fewer values than the size of the array will accom­
modate, and the array is global or static, Turbo C++ sets the
remaining elements to 0 (if the array is of the numeric type) or to
null characters (in the case of an array of characters). If you
specify more values than specified in the size of the array, you will
receive the error message, "Too many initializers."

Arrays can be more complex than this (for example, you can omit
the array size, or initialize a character array with a string). How­
ever, such topics are beyond the scope of this chapter.

Sometimes it is useful to have a set of sets of values-for example,
if you want to store the total hours worked by 12 employees
during 52 weeks, you can declare

float hours [12] [52] ;

Read this as "an array containing 12 arrays of 52 values each, of
type float." You can think of this layout as being like a spread­
sheet with 12 rows and 52 columns.

Turbo C++ User's Guide

Load and run GAME.CPP

This next game generates a fictitious baseball score, by using an
array called scoreboard[2][9] representing two teams and their
respective scores for nine innings.

II GAME.CPP--Example from Chapter "An Introduction to C++"

#include <stdlib.h>
#include <iostream.h>
#include <conio.h>

const DODGERS = 0;
const GIANTS = 1;

void main (void)
{

int scoreboard [2) [9) ;
int team, inning;

II An array two rows by nine columns

int score, total;

randomize() ; II Initialize random number generator

II Generate the scores
for (team = DODGERS; team <= GIANTS; team++)

for (inning = 0; inning < 9; inning++) {
score = random(3);
if (score == 2) II 1/3 chance to score at least a run

score = random(3) + 1; II 1 to 3 runs
if (score == 3)

score = random(7) + 1; II Simulates chance of a big
II inning of 1 to 7 runs

scoreboard[team) [inning) = score;

II Print the scores
cout « "\nInning\ t1
cout « "Dodgers\t";
total = 0;

4

for (inning = 0; inning <= 8; inning++)
score = scoreboard [DODGERS) [inning);
total += score;
cout « score «" ";

cout « total « "\n";

cout « "Giants\t";
total = 0;
for (inning = 0; inning < 9; inning++)

score = scoreboard[GIANTSj [inning);
total += score;
cout « score « " "i

7 9 Total\n";

Chapter 3, An introduction to C++ 107

Arrays and strings

Remember that string arrays
need an extra element for
the ending null character.

108

cout « total « "\n" ;

Not surprisingly, when two array dimensions are involved, two
nested for loops are often used to access the array elements. The
inner loop, using inning as the counter variable, steps through the
nine innings, while the outer switches from team a (Dodgers) to
team 1 (Giants).

Within the body of the loop, the random function (defined in the
header file stdlib.h) generates the score. When random is first
called as random (3) , there is a 1/3 chance of score getting the value
2. (random returns a value between a and one less than its
parameter). If score has the value 2, it is recalculated as a random
number between 1 and 3 runs. Finally, if score now is 3, a final
random score of 1 to 7 runs is generated. The series of if state­
ments thus attempts to simulate the occasional big inning.

Two for loops then print out the scores, totaling them as they go.
Each one prints .out one t~am's scores by using the team name as a
constant value for the first dimension of the array, and varying
the inning. Here's a sample run:

Inning 1 2
Dodgers 0
Giants 1

4 5
1 0
2 0

7 Total
1 2 6
410

Strings and arrays are very similar. In fact, a string is simply an
array of char values with a null character stuck on the end. The
following program declares a character array (string), then lets
you store a value in it and extract a "substring" from the full
string (load and run INTR029.CPP):

I/INTR029.CPP--Example from Chapter 3, "An Introduction to c++"

#include <iostream.h>

int main()
{

char string[80);
int pos, num_chars;

II Has 79 usable elements

cout « "Enter a string for the character array: ";
cin.get(string,80, '\n');
cout « "How many characters do you want to extract? ";

Turbo C++ User's Guide

cin » num_chars;

for (pos = 0; pos < num_chars; pos++)
cout « string[posl;
cout « ' \n';

return 0;

Here's a sample run:

Enter a value for the character array: The quick brown fox
How many characters do you want to extract? 9
The quick

.. It is usually more convenient to use the library routines that .
manipulate strings such as strcat{) or strtok() to deal with strings
because they automatically take care of putting a null character at
the end of the string. If you create a string with an array
declaration and want to use these routines with it, you must
supply the null character yourself. (The array must be large
enough to hold the desired string plus the null character, which
you must put at the end of the string.)

Renaming types
As you get into more complex data structures, it is helpful to be
able to assign a meaningful name to them. You can do so using
the typedef keyword. typedef gives a name to some combination
of the standard C++ data types. Here are some examples:

#include <iostream.h>

typedef unsigned char uchar;

int main ()
{

uchar greek_alpha = 224, greek~beta = 225;
cout « '\n' « greek_alpha « greek_beta;
return 0;

The typedef declaration gives the new name uchar to the type
unsigned char. (This is a character type that can hold all 256
characters of the extended PC character set.) The first statement
inside main{) declares greek_alpha and greek_beta to be variables of
type uchar, and the cout statement displays their values.

Chapter 3, An introduction to C++ 109

110

Enumerated
types

typedef doesn't actually create new data types. It just makes it
easier to remember what kind of data you are dealing with later
in your program. As you will see, it is particularly useful for
giving names to more complex data types, such as enumerations
and structures.

Data sometimes fits logically into an ordered series where one
item follows another-for example, the days of the week. It is
convenient to use a loop to step through such values.

for (day = moni day <= frii day++)
/* add hours worked that day to total for week */

Since a loop steps through numeric values, you need to give man
an integer value, tues the next integer, and so on. You could do.
this with #define statements:

#define man 0
#define tues 1
#define wed 2
#define thurs 3
#define fri 4

However, the enum (enumerated) type offers a more compact
way to do this, as shown in this example (load and run
INTR03LCPP):

/ /INTR031.CPP--Example from Chapter 3, "An Introduction to C++"

#include <iostream.h>

int main ()
{

enum {man, tues, wed, thurs, fri}i
int daYi

for (day = moni day <= frii day++)
cout « day « '\n'i

return Oi

The first declaration automatically assigns the value 0 to man, 1 to
tues,2 to wed, and so on. These names can now be used to specify
the starting value and limit for a for loop, as shown.

Note that the numbers used in an enumeration don't have to be
consecutive-you can override the default order by assigning
values as follows: .

Turbo C++ User's Guide

Combining data
into structures

Using parts of a
structure

A field of a structure is
referred to by using the

structure name followed by a
period and the member

name. Thus mars. distance is
the member containing the

distance of Mars from the
Sun in astronomical units.

enum {touchdown = 6, field_goal = 3, safety = 2, point_after = 1};

The statement

cout « "\n" « touchdown + point_after + field_g'oal;

displays the result 10.

Arrays and enumerations give two powerful ways to handle sets
of data values of the same type. A structure bundles together a set
of data values of different types (or at least values that have
different meanings). For example, information about an employee
could be stored in the following structure: '

structemployee {

};

char last_name[30];
char first_name[201;
char initial;
double employee_no;
char dept_code[3];
float annual~salary;

You have now defined a new data type employee and specified
the list of data items (members) that a variable of employee type
will have. As you can see, a variety of data types can be used-in
this example, character arrays, single characters, doubles, and
floats.

The next example bundles together the information that the
earlier program PLANETS.CPP needed to draw a planet. We'll
use it later to illustrate how parts of a structure can be initialized
and accessed. Here they are displayed (load and run
INTR032.CPP):

//INTR032.CPP--Example from Chapter 3, "An Introduction to CH"

#include <iostream.h>
#include <string.h>

struct planet {
char name [101 ;
float distance;
float radius;

Chapter 3, An introduction to C++ 111

Pointers

112

};

planet mars;

int main ()
{

strcpy (mars . name , "Mars") ;
mars.distance = 1.5;
mars.radius = 0.4;

cout « "Planetary statistics:\n";
cout « "Name: "« mars.name « '\n';
cout« "Distance from Sun in AU: " «mars.distance.« '\n';
cout «"Radius in Earth radii: " « mars.radius;

return 0;

The struct keyword gives the name planet to a struct (structure)
consisting of three members, or fields: The planet name is an
array of characters, while the distance and radius are floating­
point values. The declaration pianet . mars i creates a variable mars
whose type isplanet (in other words, it makes a copy of the struc­
ture defined earlier). In main, values are assigned to these three
members.

As shown here, the library function strcpy is handy for copying a
string value into structure fields that hold arrays of characters.
The .numeric values are simply assigned as usual.

The cout statements at the end of the program use the
name. member notation to reference and print out the values that
were just assigned.

Every variable has a unique memory address that indicates the
beginning of the memory area occupied by its value. The amount
of memory used depends on the type of data involved. In the case
of an int, this area is 2 bytes, while a float uses 4 bytes. For an
array, the area occupied is equal to the number of elements times
the size needed for one value of the declared data type. For a
structure, the area used is equal to the sum of the areas needed for
the structure's members, plus some padding if needed. Because in
all cases data is stored in an orderly, predictable way, it is possible
to access data by using a variable that contains the relevant
address. Such a variable is called a pointer.

Turbo C++ User's Guide

Memory allocation is
discussed further in Chapter

78, "Memory management."

Declaring and
using a pointer

Most programmers use
names that include an

abbreviation of the word
pointer: for example, intptr.

Load and run INTR033.CPP.

Why are pointers useful? First, they allow you to access and ma­
nipulate structured data easily, without having to move the data
itself around in memory. For example, by being set to the address­
es of consecutive elements in an array, a pointer can be used to

. initialize the array or to retrieve data from it. By adding to or
subtracting from the pointer, you point to different data items.

Pointers can also be used to allow a function to receive and
change the value of a variable. This can avoid the need for de­
claring global variables.

Also, pointers are needed for allocating memory while your pro­
gram is running: In essence, you ask for some free memory (via a
function such as malloc), and get back a pointer to the first
available address.

A pointer declaration takes this form:

type *name

where type is any data type. Here are some example pointer
declarations:

int *intptr;
float *fltptr;
char *string;

II Points to an integer
II Points to a floating-point value
II Points to a character value

You can declare a pointer to any object in memory, including
arrays, structures, functions, and even other pointers.

To access the value pointed to by a pointer, precede the pointer
name with an asterisk. For example, *intptr yields the value stored
at the address stored in the pointer intptr. Because this value is
reached indirectly (rather than the case' of a regular variable,
where the valueis stored at the variable's own address), this pro­
cess is called indirection or dereferencing.

The following program declares a pointer and uses it to retrieve
the value of a variable:

I/INTR033.CPP--Example from Chapter 3, "An Introduction to C++"

#include <iostream.h>

int main ()
{

int intvar = 10;
int *intptr;

Chapter 3, An introduction to C++ 113

The values of the addresses
may vary.

114

intptr = &intvari

cout « "\nLocation of intvar: " « &intvari
cout « "\nContents of intvar: " « intvar;
cout « "\ntocation of intptr: " « &intptr;
cout « "\nContents of intptr: " « intptr;
cout « "\nThe value that intptr points to: " « *intptr;

return 0;

Here's the output:

Location of intvar: Ox8f8efff4
Contents of intvar: 10
Location of intptr: Ox8f8efff2
Contents of intptr: Ox8f8efff4
The value that intptr points to: 10

First, the int variable intvar is declared and assigned a value of 10.
The next declaration declares an int * variable called intptr. (Read
this declaration as "intptr, a pointer to an integer value.") The
next statement assigns intptr the address of the variable intvar
(notice the &, or address-of operator). A pointer must always be
assigned the address of the object it is intended to point to. If you
neglect this, the pointer will contain a random address. If you try
to store something at such an address by means of the pointer,
you risk destroying part of your program or data, or even halting
the systern.

As you can see from the output of the cout statements, intvar and
intptr are stored at different addresses, since they are different
variables. (Their addresses happen to be close together, but that .
has nothing to do with how pointers work.) intptr contains the ad­
dress of intvar (which had been assigned to it previously). The last
cout statement prints the value pointed to by ihtptr; in other
words, the contents of the address stored there. Since that address
is that of intvar, the value pointed to is the contents of intvar. The
next figure may help you visualize all this.

Turbo C++ User's Guide

Figure 3.8
How pOinters point (and

what they point to)

Pointers and
strings

This example is based on the
earlier example of a string as

a character array, but has
been rewritten to use a

pointer. To try it out, load and
run INTR034. CPP.

Address Contents Code

FFDC 10 int intvar=10; rDeclare and initialize intvar.*/

FFDE DC] int *intptr; rDeclare a pOinter. Memory locations* /
rFFDE and FFDF set aside.*/

FFDF FF intptr=&intvar; rput address of intvar into pointer.*/

You've seen that you can access individual characters from a
string by using indexing. For example, if you declare a string char
name[20] and store the string "Thomas" in it, the value of name[2]
is the character a (remembering that the count starts at 0: name[O]
is T). An alternative way to handle strings is to declare a pointer
to character and use it to manipulate the string.

//INTR034.CPP-Example from Chapter 3, "An Introduction to CH"

#include <iostream.h>

int main ()
{

char name [40 1 ;
char *str-ptr = namei
int pos, num_chars;

cout « "Enter a string for the character array: "i
cin.get (name, 40, '\n');
cout « "How many characters do you want to extract? "i
cin » num_chars;

for (pos = 0; pos < num_chars; pos++)
cout « *str-ptr++;

cout « ' \n' ;

return 0;

Notice that str _ptr is declared to be a pointer to character, and
then a~signed the address of the character array name. This could
have been written in two separate statements:

Chapter 3, An introduction to C++ 115

Pointer arithmetic

116

Pointers,
structures, and

lists

char *strJ)tri
strJ)tr = narnej

but by now you know that C++ programmers seldom use two
statements when one will do. Also notice that the address

. assigned is name, not &name. Referring to the name of an array (or
structure) gets you the first address used to store the array's val­
ues. This is equivalent to saying &name [01 (the address of the first
element of the array name); you will sometimes see the latter
notation.

The rest of the program works in the same way as before, until
you get to the for loop that extracts the requested substring. In the
old version, the character being retrieved each time the loop exe­
cutes was indexed from the array by using the expression
name[pos]. Here, however, the pointer is used, so the reference is
to the value currently being pointed at: *str _ptr++. (The pointer is
incremented each time so that it points to the next value.) .

Noncharacter arrays are handled with pointers in the same way
as strings are. You increment the pointer to point to the next
element in the array; you decrement it to pOint to the previous
item.. You have to check, of course, to make sure that you aren't
pointing to a locatio~ outside the bounds of the array. You
usually do this by setting the appropriate limit for the loop
statement used. In INTR034.CPP, for instance, if the variable
num_chars is set to a number greater than 39, you will exceed the
bounds of the array and get garbage out (try it).

It is important to remember that when the pointer ptr is incre­
mented, it does not necessarily point to the next address-in fact,
it usually doesn't. The distance between addresses pointed to is
equal to the size of the data type to which the pointer points. An
int pointer points two addresses ahead when it's incremented; a
double pointer points eight addresses ahead. C++ handles this
automatically.

You may remember that you get the value of a member field of a
structure by using the notation structure-.:...name.member _name, so
that the salary field in the employee structure named jim would
be jim.salary. How do you access structures and parts of structures

Turbo C++ User's Guide

Figure 3.9 illustrates how this
. program works.

The -> notation is explained
on page 779.

with a pointer? The following example shows how (load and run
SOLAR.CPP):

IISOLAR.CPP--Example from Chapter 3, "An Introduction to C++"

#include <graphics.h>
#include <iostream.h>
#include <string.h>

struct planet {

};

char name [10] ;
float distance;
float radius;
int colori
int fill_type;

planet solar_system[9];
planet *planet-ptr;
int planet_num;

int main ()
{

strcpy (solar_system[0] . name , "Mercury") ;
solar_system[Ol .distance = 0.4;
solar_system[O] . radius = 0.4;
solar_system[Ol .color = EGA_YELLOW;
solar~system[O] . fill_type = EMPTY_FILL;

planet-ptr = solar_system;
planet-ptr++i II Point to second planet structure
strcpy (planet-ptr->name, "Venus");

planet-ptr->distance = 0.7i
planet-ptr->radius = 1.0;
planet-ptr->color = EGA_BROWN;
planet-ptr->fill_type = SOLID_FILL;

planet-ptr = sOlar_system; II Reset to first element
for (planet_num = 0; planet_num < 2; planet_num++, planet-ptr++)
{

cout « " \nPlanetary statistics: ";
cout « " \nName: "« planet-ptr->name;
cout « " \nDistance from Sun in AU: "« planetJ)tr->distance;
cout « " \nRadius in Earth radii: "« planet-ptr->radiusi
cout « " \nColor constant value "« planet-ptr->colori
cout « " \nFill pattern constant value "

« planet-Ptr->fill_type;

return 0;

Chapter 3, An introduction to C++ 117

Figure 3.9
Using pointers to access an

array of structures

Since planeCptr was
declared as a painter to

structure type planet, the
built-in pointer arithmetic
takes care of moving the

pointed-to address enough
bytes to reach the next

element of solar_system.

118

The following figure illustrates how the previous code might
"look" during the first few steps through its for loop: '

Increment
planet-ptr , ...

increment
it again, ...

planet solar _system [9]
Array of nine planet structures

The planet structure is an expanded version of the one shown
earlier, with members added for the color and fill type. The next
declarations

planet solar_system[9];
planet *planet-ptr;

specify an array, solar _system, whose nine members are copies of
the planet structure and planet_ptr, a pointer to a planet structure.

The first group of statements in main initialize the members of the
first planet structure, using array and structure notation. To refer
to a member of a structure in an array of struc~res, use the form

array_name[index] .member_name

Thus the distance of the fourth planet in solar _system can be
referred to as solar..;..system[3] .distance.

The second block of statements initialize a planet structure using
pointers. Before you can use a pointer, you must assign it a valid
address. The· statement planetJ)tr = solar_system sets planeCptr to
point to the first element of the array solar _system. This is the
element that has just been initialized, containing information for
the planet Mercury. Therefore, the statement planetJ)trtt points
to the next (second) element.

With the pointer properly pointed, information about the second
planet (Venus) is assigned to the second element of solar _system.
Here, however, rather than array index notation, you see the use

Turbo C++ User's Guide

Using painters to
return values from

functions

of the pointer planeCptr to access the members of the planet
structure. This takes the form

so that, for example, the distance member for the planet structure
currently being pointed to is planetJ)tr->distance.

The rest of the program displays the two planet structures that
have been initialized. First, planet_ptr is set back to the first ele­
ment by being assigned the address solar _system. The for loop
increments planet_ptr and obtains the structure's member values
using the notation just discussed. Notice that the reference
planetJ)tr->distance is a bit less cumbersome than

solar_system[index] .distance

where index is the current element number.

In fact, for any array, the index of an array is actually 'a pointer to
the address of the array plus the index value, which internal
pointer arithmetic converts to the array address plus

index * sizeof(type)

where type is the declared type of the array, and sizeof is a C++
operator that returns the number of bytes used by a type or
variable.

Pointers also allow you to change the actual value of the variable
or variables used in calling a function. So far, functions have been
called only with constant values or the names of variables. When
you make a call such as draw (x_cor , y_cor, size, color), you are
passing the values of the specified variables to the function draw.
The function actually gets copies of these values and can refer to
them by name and manipulate them, but this has no effect on the
actual variables used by the caller.

Sometimes it is useful to be able to call a function using variable
names and have the function actually change the values of the
variables themselves. This function is an example:

void swap(int *a, int *b)

swap swaps the values of the two variables with which the
function is called. In order for the function to access the variables
themselves, however, it must have their addresses, so it can write
the new values back to their location in memory. Therefore, the

Chapter 3, An introduction to C++ 119

120

parameters are pointers to the appropriate variables, not the
variables themselves. Since a pointer refers to an address, you
would call this- function to swap the variables x and y using the
statement swap (&x, &y).

Here is the definition for the swap program, together with a main
function that tests it (load and run INTR035.CPP).

I/INTR035.CPP--Example from Chapter 3, "An Introduction to C++"

#include <iostream.h>

void swap(int *, int *); II This is swap's prototype

int main ()
{

int x = 5, y = 7;
cout « "\n x is "« x « " and y is " « y « i\n';
swap (&x, &y);
cout « "\n x is now "« x « " and y is now" « y « '\n';

return 0;

void swap(int *a, int *b)
{

int temp;
temp = *a;
*a = *b;
*b = temp;

II swap is actually defined here

Notice that the swap function uses indirection (the * notation) to
refer to the values contained in the variables x and y. The value of
x is first stored in a temporary variable, then the value of y is
stored in x. The former value of x is then obtained from the
temporary variable and stored in y.

Turbo c++ User's Guide

Figure 3.10
Using pointers in a function

Initialize variables:

I in! x = 5, Y = 3

Call the function:

swap(&x, &y);

Results:

void swap(int *a, int *b)
{
int temp; r..I'\..
temp = *a; ~
*a = *b;
*b = temp;

}

When you use pointers, a function is not limited to just returning
one value via a return statement. A function can change the
values of any variables it is given access to. While this could also
be achieved (in this example) by making a and b global variables
(declaring them outside of a function definition), it is easy to
accidentally change a global variable. Pointers keep the trans­
action private.

Using system resources

Thus far, the example programs have operated nearly in a
vacuum. Some programs read data that you typed at the key­
board, and every program displayed something on the screen.
None of the data was stored in permanent form-if you want the
data back, you must run the program again. In real applications,
programs usually have to read in the bulk of their data from the
disk drive, a communications port, or some other source. When
the data has been processed, the program may need to send it to

Chapter 3, An introduction to C++ 121

Table 3.8
Preopened streams in Turbo

C++

122

the printer or write it to a disk file for later use. This is true of
word processors, spreadsheets, and databases, for example.

You have actually been using files all along. Every C++ program
has automatic access to five streams, as shown in the next table.

Name Function

cin Standard input
cout Standard output
cerr Standard error
clog Buffered cerr

Connected to

Keyboard
Screen
Screen

cprn Printer (DOS only) Printer port

Except for clog each of the objects has a similar predefined file in
ANSIC.

All of the default streams can be redirected in various ways. Due
to their default connections, your Turbo C+-t: programs expect to
get input from the keyboard and send their output to the screen.

This section shows you how you can use Turbo C++ to read data
from a disk file and copy that data to another disk file. Conceptu­
ally, Turbo C++ sets up something called a stream through which
the data moves. There are lower-level ways to work with MS-DOS
files, and library functions for dealing with them, but the stream
features are recommended for portability. They allow you to use
files without worrying- about the target machine's operating
systern.

A stream represents a file on the disk or some other device from
which data can be read or to which it could be sent. (Many
devices are used for input or output but not both - you can't
usually read data from a printer, and data sent to a keyboard
won't accomplish much.) In the following example program we
don't manipulate the stream directly. Instead, the library file
fstream.h provides access to its member classes ifstream and
of stream which contain the constructors and functions for
creating and handling the files.

To open a stream, you use a predefined function contained in a
library file. In the following example we use get{) from fstream.h.
I~ the case of the program example, INTR036.CPP, get(ch)
extracts characters from the file OLDFILE.TXT into the variable
char ch; until an end-of-file is encountered. The put(ch) function
inserts the same characters into the newly created file
NEWFILE.TXT it also encounters the end-of-file symbol.

Turbo C++ User's Guide

Load and run INTR036.CPP.

If OLDFILE.TXT does not exist, or is not in the current directory,
the cerr statement will terminate the program and display "Cannot
open OLDFILE. TXT for input". If the program is unable to create, or
find and overwrite NEWFILE. TXT the program will terminate
with the statement "Cannot openNEWFILE. TXT for output ". The
work of the program is done in the while loop:

while (f2 && fl.get(ch))
f2 .put (ch) ;

The while loop is where the actual copying of OLDFILE. TXT to
NEWFILE. TXT is accomplished. To check the successful execution of
the program first check the user window for any error statements
as indicated above. If there are no error statements press FlO,'
select the FILE window, and then select the DOS shell option.
When at the DOS command line you can display the file on the
screen with the DOS command "TYPE NEWFILE.TXT".
NEWFILE.TXT will contain an exact copy of OLDFILE.TXT. In the
event that the program cannot find and open the file
OLDFILE.TXT it will still create the file NEWFILE.TXT, but the
file will be empty.

Text streams are used for normal DOS files. Therefore, files are
opened in text mode by default when using the file-stream
classes. When the file is extracted all of the DOS carriage
return/line feed sequences are converted to the '\n' character.
When the file is output to the target file (in this case, newfile.txt)
all'\n' characters are translated back to DOS carriage return/line
feed sequences. This maintains compatibility with DOS. The file­
stream classes (ifstream and of stream) allow you to set additional
parameters to overide this default procedure, giving you the
flexibility to open files in binary mode, delete files, append files,
and so on.

The following program copies the contents of OLDFILE.TXT to
NEWFILE.TXT:

//INT036.CPP--Example from Chapter 3, "An Introduction to C++"

#include <fstream.h>

int main ()
{

char Chi
ifstream f1 ("OLDFILE. TXT") ;
of stream f2 ("NEWFILE. TXT") ;

if (!f1) cerr « "Cannot open OLDFILE.TXT for input";
if (!f2) cerr « "Cannot open NEWFILE.TXT for output";

Chapter 3, An introduction to C++ 123

124

while (f2 && fl.get(ch))
f2 .put (ch) ;

return 0;

Opening a stream This program is a simple demonstration of using streams to work
with disk files. Here a file is opened for reading by ifstream, and
another file is created and opened for writing by of stream. By
default the ifstream is opened for reading, and the of stream is
opened for writing. As mentioned above both can take a second
argument specifying alternative modes of opening. It is also
possible to open a file for both input and output. We will leave a
more detailed discussion of the iostreams library and streams to
the following chapters. The purpose of this example program is to
introduce you to the basics of stream operations. A comprehen­
sive discussion of streams requires some groundwork in the
concept of object-oriented programming (OOP).
We have covered a wide range of information in this chapter with
the goal of giving you a chance to navigate the headwaters of the
C++ programming language as quickly and easily as possible.
Beyond this point, C++ begins to expand beyond the procedural
programming style we have focused on in this chapter.

In Chapter 4 you will be introduced to the concepts of classes,
in1-H~l"it!:'lnrt:> t:>nr!:'lnc111"' ... ;;... a-l "' ... "h"" ""r\~""C' -1-"" "he1 ,"''' "' ,"'
............... L'-".L.L""-. "''-I '-..LL'-'IU.,t'UtoA..I. ".L"-'.1.L .I.L'\A. V&...1.L"-'.L l.vY.1.\""":) \.V.1.L .J.}-' yuu VJ.t YUUl.

way towards gaining a comfortable and confident mastery of
object-oriented programming with Turbo C++.

Turbo C++ User's Guide

c H A p T E R

4

Object-oriented programming with
C++

This chapter covers the basic
ideas of object-oriented
programming with C++;

Chapter 5, "Hands-on C++,"
gives you practical examples

of OOP programming with
Turbo C++.

In the previous chapter, we introduced you to the "procedural"
side of C++: the basic syntax and control structures of the
language. In this chapter we'll give you the feel and flavor of
object-oriented programming in C++, and introduce the important
new design concepts that make C++ a genuinely new and better
language rather than just an "improved C." We'll demystify some
of the jargon and combine a little theory with simple, illustrative
programs. The source code for these examples is provided on
your distribution diskettes so you can study, edit, compile, and
run them. (The graphics examples, of course, will run only if you
have a graphics adapter and monitor. Any CGA, EGA, VGA, or
Hercules setup will do.)

Turbo C++ provides all the features of AT&T's C++ version 2.l.
C++ is an extension of the popular C language, adding special
features for object-oriented programming (OOP). '

OOP is a method of programming that seeks to mimic the way we
form models of the world. To cope with the complexities of life,
we have evolved a wonderful capacity to generalize, classify, and
generate abstractions; Almost every noun in our vocabulary re­
presents a class of objects sharing some set of attributes or beha­
vioral traits. From a world full of individual dogs, we distill an
abstract class called dog. This allows us to develop and process
ideas about canines without being distracted by the details con­
cerning any particular dog. The OOP extensions in C++ exploit

Chapter 4, Object-oriented programming with C++ 125

126

this natural tendency we have to classify and abstract things-in
fact, c++ was originally called "C with Classes."

Three main properties characterize an OOP language:

• Encapsulation: Combining a data structure with the functions
(actions or methods) dedicated to manipulating the data.
Encapsulation is achieved by means of a new structuring and
data-typing mechanism-the class.

• Inheritance: Building new, derived classes that inherit the data
and functions from one or more previously-defined base classes,

. while possibly redefining or adding new data and actions. This
creates a hierarchy of classes.

• Polymorphism: Giving an action one name or symbol that is
shared up and down a class hierarchy, with each class in the
hierarchy implementing the action in a way appropriate to
itself. .

Borland's C++ gives you the full power of object-oriented pro­
gramming:

• more control over your program's structure and modularity

• the ability to create neW data types with their own specialized
operators.

• and the tools to help you create reusable code

All these features add up to code that can be more structured,
extensible, and easier to maintain than that produced with non­
object-oriented languages.

To achieve these important benefits of C++, you may need to
modify ways of thinking about programming that have been
considered standard for many years. Once you do that, however,
C++ is a simple, straightforward, and superior tool for solving
many of the problems that plague traditional software.

Your background may affect the way you look at C++:

If you are new to C and C++. You may at first have some difficulty
with the new concepts discussed in this chapter, but working
through (and experimenting with) the examples will help make.
the ideas concrete. Before you begin, you should make sure you
understand the basic elements of the C language (you may wish
to review Chapter 3 before continuing here). As a beginner, you
have one very real advantage: You probably have fewer old pro­
gramming habits to unlearn.

. Turbo C++ User's Guide

Encapsulation

If you are an experienced C programmer. C++ builds upon the
existing syntax and capabilities of C. This makes the learning
curve much gentler than if you had to learn a whole new lan­
guage. It also allows you to port existing C programs to C++ with
a minimum of recoding. You aren't losing C's power and
efficiency: You're adding the representational power of classes
and the security of controlling access to internal data.

If you program in Turbo Pascal 5.5 or greater. Turbo Pascal 5.5
and greater embody many of the same object-oriented features
found in C++. While you will have to deal with basic syntax
differences between the two languages, you will find that Turbo
Pascal's objects and Turbo C++'s classes are structured similarly.
You will recognize C++ member functions as being like Turbo
Pascal's methods, and may note many other similarities. The main
difference you will observe is that C++ has tighter control over
data access.

If you are experienced in another object-oriented programming
language. You will find some differences in C++:

• First, the syntax of C++ is that of a traditional, procedural
language, as covered in chapter 3, "An introduction to C++."

• Second, the way C++ and Smalltalk actually deal with objects
during compilation is different. Smalltalk's binding is done
completely at run time (late binding); C++ allows both compile­
time (early) binding and late binding.

In this chapter, we begin by describing the three key OOP ideas -
encapsulation, inheritance, and polymorphism - in more detail.
The first listings show fragments of code to illustrate each topic.
Later, we present complete, compilable programs. The main ex­
ample develops object-oriented representations useful for
graphics, but occasional side tours .show how C++ works with
strings and other data structures.

How does C++ change the way you work with code and data?
One important way is encapsulation: the welding of code and data
together into a single class-type object. For example,you might
have developed a data structure, such as an array holding the
information needed to draw a character font on the screen, and

Chapter 4, Object-oriented programming with C++ 127

In this manual, we use bold
type to distinguish the

keyword class from the
generic word "class. "

code (functions) for displaying, scaling and rotating, highlighting,
and coloring your font characters.

In traditional C, the usual solution is to put the data structures
and related functions into a single separately compiled source file
in an attempt to treat <;ode and data as a single module. While this
is a step in the right direction, it isn't good enough. There is no
explicit relationship between the data and the code, and you or
another programmer can still access the data directly without
using the functions provided. This can lead to problems. For ex­
ample, suppose that you decide to replace the array of font infor­
mation with a linked list? Another programmer working on the
same project may decide that she has a better way to access the
character data, so she writes some functions of her own that ma­
nipulate the array directly. The problem is that the array isn't
there any more!

C++ comes to the rescue by extending the power of C's struct and
union keywords, and by adding a keyword not found in C: class.
All three keywords are used in C++ to define classes.

In C++, a single class entity (defined with struct, union, or class)
combines functions (known as member functions) and data (known
as data members). You usually give a class a usef\,ll name, such as
Font. This name becomes a new type identifier that you can use to
declare instances or objects of that class type:

class Font {
II here you declare your members: both data and functions;
II don't worry how for the moment.

};

Font Tiffany; II declares Tiffany to be of type class
II Font.

Note that in Turbo C++ you can now use two slashes (/1) to intro­
duce a single-line comment in both C and C++. You can still use
the 1* */ comment characters if you prefer them; in fact, they are
especially useful for long comments.

Warningl Use of the" comments is not usually portable to other C com­
pilers. However, it is portable to other ~ ++ compilers.

128

The variable Tiffany is an instance (sometimes called an instanti­
ation) of the class Font. You can use the class name Font very
much like a normal C data type. For example, you can declare
arrays and pointers: '

Turbo C++ User's Guide

c++ struels and unions are
not quite the same as the C

versions.

Font Times[10]i
Font* font..J)trr

II declare an array of 10 Fonts
II declare a pointer to Font

A major difference between c++ classes and C structures con­
cerns the accessibility of members. The members of a C structure
are freely available to any expression or function within their
scope. With C++, you can control access to struct and class
members (code and data) by declaring individual members as
public, private, or protected. (A C++ union is more like a C union,
with all members public.) We'll explain these three access levels in
more detail later on.

C++ structures and unions offer more than their C counterparts:
they can hold function declarations and definitions as well as data
members. In C++, the keywords struct, union, and class can all
be used to define classes.

• A class defined with struct is simply a class in which all the
members are public by default (but you can vary this
arrangement if you wish).

• A class defined with union has all its members public (this
access level cannot be changed).

• In a class defined with class, the members are private by
default (but there are ways of changing their access levels).

So, when we talk about classes in C++, we irlclude structures and
unions, as well as types defined with the keyword class.

Typically, you restrict member-data access to member functions:
you usually make the member data private and the member
functions public.

Returning to the problem of handling fonts, how does the C++
class concept help?

By creating a suitable Font class, you can ensure that the private
font data can be accessed and manipulated only through the
public Font member functions that you have created for that
purpose. You are now free at any time to change the font data
structure from an array to a linked list, or .whatever. You would,
of course, need to recode the member functions to handle the new
font data structure, but if the function names and arguments are
unchanged, programs (and programmers) in other parts of your
system will be unaffected by your improvements!

The next figure compares the ways C and C++ provide access to a
font.

Chaoter 4, Obiect-oriented oroarammina with C++ 129

Figure 4.1
Traditional C versus
encapsulated C++

Inheritance

130

A C STRUCTURE
AND CODE

strue! data
{

}

/* Code that does something *f
/* with the data: * f

{
init(...):
get(...):
sort(...);
print(...):

}

A C++ CLASS

class
{

1* Member functions * f

• constructor(...)

eget(...)

esort(...)

eprint(...)

Thus the technique of encapsulation in classes helps provide the
very real benefit of modularity, as found in languages such as Ada
and Modula-2. The c++ class establishes a well-defined interface
that helps you design, implement, maintain, and reuse programs.
Debugging a C++ program is often simpler since many errors can
be quickly traced to one particular class.

The class concept leads to the idea of data abstraction. Our font
data structure is no longer tied to any particular physical imple­
mentation; rather, it is defined in terms of the operations (member
functions) allowed on it. At the same time, the traditional C
philosophy that views a program as a collection of junctions, with
data as second-class citizens, has also shifted. The C++ class weds
data and function as equal, interdependent partners.

The descriptive branches of science (required before the
explanatory and predictive aims of science can bear fruit) spend
much time classifying objects according to certain traits. It often
helps to organize your classification as a family tree with a single
overall category at the root, with subcategories branching out into
subsubcategories, and so on.

Turbo C++ User's Guide

Figure 4.2
A partial taxonomy chart of

insects

Entomologists, for example, classify insects as shown in Figure
4.2. Within the phylum insect there are two divisions: winged and
wingless. Under winged insects is a larger number of categories:
moths, butterflies, flies, and so on.

This classification process is called taxonomy. It's a good starting
metaphor for OOP's inheritance mechanism.

The questions we ask in trying to classify some new animal or
object are these: How is it similar to the others of its general class?
How is it different? Each different class has a set of behaviors and
characteristics that define it. We begin at the top of a specimen's
family tree and start descending the branches, asking those
questions along the way. The highest levels are the most general,
and the questions the simplest: Wings or no wings? Each level is
more specific than the one before it, and less general.

Once a characteristic is defined, all the categories beneath that defi­
nition include'that characteristic. So once you identify an insect as
a member of the order diptera (flies), you needn't make the point
that a fly has one pair of wings. The species fly inherits that
characteristic from its order.

OOP is the process of building class hierarchies. One of the im­
portant things C++ adds to C is a mechanism by which class types
can inherit characteristics from simpler, more general types. This
mechanism is called inheritance. Inheritance provides for common­
alty of function while allowing as much specialization as needed.
If a class D inherits from class B, we say that D is the derived class
and B is the base class.

Chapter 4, Object,.oriented programming with C++ 131

Polymorphism

Overloading

132

It is by no means a trivial task, though, to establish the ideal class
hierarchy for a particular application. The insect taxonomy took
hundreds of years to develop, and is still subject to change and
acrimonious debate. Before you write a line of C++ code, you
must think hard about which classes are needed at which level.
As the application develops, you may find that new classes are
required that fundamentally alter the whole class hierarchy.
Remember also that a growing number of vendors are supplying
Turbo C++ compatible libraries of classes. So don't reinvent too
many wheels.

Occasionally, you encounter a class that combines the properties
of more than one previously established class. c++ version 2.0
offers a mechanism (not found in earlier C++ versions) known as
multiple inheritance, whereby R derived class can inherit from two
or more base classes. You'll see later how this is achieved as a
logical extension of the single inheritance mechanism.

The word polymorphism comes from the Greek: "having many
shapes." Polymorphism in C++ is accomplished with virtual func­
tions. Virtual functions let you use many versions of the same
function throughout a class hierarchy, with the particular version
to be executed being determined at run time (this is called late
binding).

In C, you can only have one function with a given name. For
example, if you declare and define the function

int cube (int number);

you can now get the cube of an integer. But suppose you want to
cube a float or a double? You can of course declare functions for
these purposes, but they can't use the name cube:

float fcube (float float_number);
double dcube (double double_number);

Turbo C++ User's Guide

In C++, however, you can overload functions. This means that you
can have several functions that have the same name but work
with different types of data. Thus you can declare:

int cube (int number);
float cube (float float_number);
double cube (double double_number);

As long as the argument lists are all different, C++ takes care of
calling the correct function for the argument given. If you have
the call cube(lO); the int version of cube is called, while if you call
cube(2.5); the double version will be called. If you call cube(2.5F),
then you are passing a floating-point literal rather than a double,
and the float version will be called. Even opera tors such as + can
be overloaded and redefined so they work not only with num­
bers, but
with graphic objects, strings, or whatever is appropriate for a
given class.

Modeling the real world with classes

Building classes: a
graphics example

The c++ class provides a natural way of building computer
models of real-world systems-indeed, Bjame Stroustrup devised
the language at AT&T Bell Labs in order to model a large
telephone switching system.

There have been many c++ applications in the motor industry.
When modeling vehicles, for instance, you would be interested in
both the physical description (the number of tires, engine power,

. weight, and so on) and the behavior (acceleration, breaking,
steering, fuel consumption). A Car class could encapsulate the
physical parameters (data) and their behavior (functions) in a
very general way. Using inheritance, you might then derive
specialized Sports_car and Station_wagon classes, adding new
da ta types and functions, as well as modifying (overriding) some
of the functions of the base class. Much of the coding you have
done for the base c1ass(es) is reused or at least recycled.

In a graphics environment, a reasonable place to start would be a
class that models the physical pixels on a screen with the abstract
points of plane geometry. A first try might be a struct class called

Chapter 4, Object-oriented programming with C++ 133

When you define a class, you
add a new data type to

C++. The language treats
your new data type in the

same way that it treats built­
in data types.

The terms object and class
instance are used

interchangeably in C++.

134

The Boolean type will be
familiar to Turbo Pascal

programmers.

Point that brings together the X and Y coordinates as data
members:

struct Point II defines a struct class called Point
int Xi II struct member data are public by default
int Yi

}i

You can now declare several particular variables of type struct
Point (for brevity, we often loosely refer to such variables as being
of type Point). In C, you would use declarations such as

struct Point Origin, Center, Cur_Pos, AnyPointi

but in C++, all you need is

Point Origin, Center, Cu~_Pos, AnyPointi

A variable of type Point (such as Origin) is one of many possible
instances of type Point. Note carefully that you assign values (par­
ticular coordinates) to instances of the class Point, not to Point
itself. Beginners often confuse the data type Point with the
instance variables of type Point. You can write Center = Origin
(assign Origin's coordinates to Center), but Point = Origin is
meaningless.

When you need to think of the X and Y coordinates separately,
you can think of them as independent members (fields) X and Y
of the structure. On the other hand, when you need to think of the
X and Y coordinates working together to fix a place on the screen,
you can think of them collectively as Point.

Suppose you want to display a point of light at a position de­
scribed on the screen. In addition to the X and Y location mem­
bers you have already seen, you'll want to add a member that
specifies whether there is an illuminated pixel at that location.
Here's a new struct type that includes all three members:

enum Boolean {false, true}i II false = Oi true = 1

struct Point
int Xi
int Yi
Boolean Visiblei

}i

This code uses an enumerated type (enum) to create a true/false
test. Since the values of enumerated 'types start at 0, Boolean can
have one of two values: 0 or 1 (false or true).

Turbo C++ Users Guide

Declaring objects

Member
functions,

Data members are what the
class knows; its member

functions are what the class
does.

Inline functions are discussed
in more detail on pages 743

and 779,

As with other data types, you can have pointers to classes and
arrays of classes:

Point Origin;
Point Row [80] ;

II declare object Origin of type Point
II declare an array of 80 objects of type Point

Point *point-ptr; II declare a 'pointer to type Point'
point-ptr = &Origin; II point it to the object Origin
point-ptr = Row; II then point it to Row[O]

As you saw earlier, C++ classes can contain functions as well as
data members. A member function is a function declared within the
class definition and tightly bonded to that class type. (Member
functions are known as methods in other object-oriented lan­
guages, such as Turbo Pascal and Smalltalk.)

Let's add a simple member function, GetX, to the class Point.
There are two ways of adding a member function to a class:

• Define the function inside the class

• Declare it inside the class, then define it outside the class

The two methods have different syntaxes and technical
implications.

The first method looks like this:

struct Point {

};

int x, Y;
Boolean Visible;
int GetX() { return X;} II inline member function defined

This form of definition makes GetX an in line function by default.
Briefly, inline functions are functions "small" enough to be use­
fully compiled in situ, rather like a macro, avoiding the overhead
of normal function calls.

Note that the inline member function definition follows the usual
C syntax for a function definition: the function GetX returns an int
and takes no arguments. The body of the function, between { and
}, contains the statements defining the function-in our case, the
single statement, return X;.

Chapter 4, Object-oriented programming with C++ 135

The :: is known as the scope
resolution operator; it tells the

. complier where the function
belongs.

Chapter 73 explains class
scope in more detail.

Calling a member
function

136

In the second method, you simply declare the me1l1ber function
within struct Point, (using normal C function declaration syntax),
then provide its full definition (complete with the body statements)
elsewhere, outside the body of the class definition.

struct Point {

};

int X, Y;
Boolean Visible;
int GetX(); II member function declared'

int Point::GetX() II member function defined
return X; II outside the class

Member functions defined outside the class definition still can be
made inline (if certain conditions are met), but you have to re­
quest this explicitly with the keyword inline.

Note carefully the use of the scope resolution operator in
Point::GetX in the function definition. The class name Point is
needed to tell the compiler which class GetX belongs to (there
may be other versions of GetX around belonging to other classes r
The inside definition did not need the Point:: modifier, of course,
since that GetX clearly belongs to Point.

The Point:: in front of GetX also serves another purpose. Its
influence extends into the function definition! so that the X in
return Xi is taken as a reference to the X member of the class
Point. Note also that the body of Point::GetX is within the scope
of Point regardless of its physical location.

Whichever defining method we use, the important point is that
we now have a member function GetX tied to the class Point.
Since it is a member function, it can access all the data variables
that belong to Point. In our simple case, GetX just accesses X, and
returns its value.

Now memher functions represent operations on objects of their
class, so when we call GetX we must somehow indicate which
Point object is being operated on. If GetX were a normal C func­
tion (or a C++ nonmember function), this problem would not
arise-you would simply invoke the function with the expression,
GetX(). With member functions, you must supply the name of the
target object. The syntax used is a natural extension of that used

Turbo C++ User's Guide

Constructors and
destructors

in C to reference structure members. Just as you would refer to
Origin.X for the X component of the object Origin, or to Endpoint. Y
for the Y component of the object Endpoint, you can invoke GetX
with Origin.GetX() or Endpoint.GetX(). The "." operator serves as
the class component selector for both data and function members.
The general calling syntax is

class-object-name.member-function-name(argument-list)

In the same way, if you had a pointer to a Point object, you woul<;i
use the pointer member selector, "_>": PointJ)ointer->GetX().
You'll see many examples of such member function calls in the
examples in this chapter.

There are two special types of member functions, constructors and
destructors, that playa key role in C++. To appreciate their impor­
tance, a short detour is needed. A common problem with tradi­
tionallanguages is initiali~ation: Before using a data structure, you
must initialize it and allocate memory for it. Cunsider the task of
initializing the structure defined earlier:

struct Point
int X;
intY;
Boolean Visible;

} ;

Inexperienced programmers might try to assign initial values to
the X, Y, and Visible members in the following way:

Point ThisPoint;
ThisPoint.X = 17;
ThisPoint.Y = 42;
ThisPoint.Visible = false;

This works, but it's tightly bound to one specific object, ThisPoint.
If more than one Point object needs to be initialized, you'll need
more assignment statements that do essentially the same thing.
The natural next step is to build an initialization function that
generalizes the assignment statements to handle any Point object
passed as an argument:

void lnitPoint(Point *Target, lnt NewX, lnt NewY)
{

Target->X = NewX;
Target->Y = NewY;

Chapter 4, Object-oriented programming with C++ 137

138

Target->Visible = falsei

This function takes a pointer to a Point object and uses it to assign
the given values to its members (note again the -> operator when
using pointers to refer to class members). You've correctly de­
signed the function InitPoint specifically to serve the structure
Point. Why, then, must you keep specifying the class type and the
particular object that InitPoint acts upon? The answer is that
InitPoint is not a member function. What we really need for true
object-oriented bliss is a member function that will initialize any
Point object. This is one of the roles of the constructor.

C++ aims to make user-defined data types as integral to the lan­
guage (and as easy to use) as built-in types. Therefore, C++ pro­
vides a special type of member function called a constructor. A
constructor specifies how a new object of a class type will be
created, that is, allocated memory and initialized. Its definition
can include code for memory allocation, assignment of values to
members, conversion from one type to another, and anything else
that might be useful. Constructors can be user-defined, or C++
can generate default constructors. Constructors can either be
called explicitly or iinplicitly. The C++ compiler automatically
calls the appropriate constructor whenever you define a new
object of the class. This can happen in a data declaration, when
copying an object, or through the dynamic allocation of a new
object using the operator new.

Destructors, as the name indicates, destroy the class objects previ­
ously created by a constructor by clearing values and deallocating
memory. As with constructors, destructors can be called explicitly
(using the C++ operator delete) or implicitly (when an object goes
out of scope, for example). If you don't define a destructor for a
given class, C++ generates a default version for you. Later on,
we'll be looking at the syntax for defining destructors. First,
though, let's see how constructors are made.

The following version of Point adds a constructor:

struct Point
int Xi
int Yi
Boolean Visiblei
int GetX() {return Xi}
Point(int NewX, int NewY)i II constructor declaration

}i

Turbo C++ User's Guide

Point::Point indicates that we
are defining a constructor for

the class Point.

Point::Point(int NewX, int NewY) II constructor definition
{

};

x = NewX;
Y = NewY;
Visible = false;

The constructor definition here is made outside the class definition.
Constructors can also be legally defined inside the class, as inline
functions. Or they can be defined outside the class definition and
made inline with the keyword in line. However, some care is
needed: The amount of code generated by a constructor is not
always proportional to the visible source code in its definition.

Notice that the name of a constructor is the same as the name of
the class: Point. That's how the compiler knows that it is dealing
with a constructor. Also note that a constructor can have argu­
ments as with any other kind of function. Here 'the arguments are
NewX and NewY. The constructor body is built just like the body
of any member function, so a constructor can call any member
functions of its class or access any member data. A constructor,
though, never has a return type-not even void.

Now you can declare a new Point object like this:

Point Origin(l,l);

This declaration invokes the previously defined Point constructor
for you. As you'll see later, you can have more that one construc­
tor for a class-and, as with other C++ overloaded functions, the
appropriate version will be automatically invoked according to
the argument lists involved. You'll also see that if you do not
define a constructor, C++ generates a default constructor with no
arguments.

Another useful trick in C++ is that you can have default values for
function arguments:

Point::Point(int NewX=O, int NewY=O) II revised constructor definition
{

II as before
}

The declaration,

Point Origin(5);

would initialize X to 5 and Y to 0 by default.

Chapter 4, Object-oriented programming with C++ 139

Code and data
together

Member access
control: private,

public, and
protected

, 140

One of the most important tenets of object-oriented programming
is that the programmer should think of code and data together
during program design. Neither code nor data exist in a vacuum.
Data directs the flow of code, and code manipulates the shape and
values of data.

When your data and code are separate entities, there's always the
danger of calling the right function with the wrong data or the
wrong function with the right data. Matching the two is the pro­
grammer's job, and while ANSI C, unlike traditional C, provides
good type-checking, at best it can only say what doesn't go
together.

By bundling code and data declarations together, C++ classes help
keep them in·sync. Typically, to get the value of one of a class's
data members, you call a member function belonging to that class
which returns the value of the desired member. To set the value of
a field, you call a member function that assigns a new value to
that field.

While the enhanced struct in C++ allows bundling of data and
functions, it is not as encapsulated or modular as it could be. As
we mentioned earlier, access to all data members and member
functions of a struct is public by default-that is, any statement
within the same scope can read or change the internal data of a
struct class. As hoted earlier, this isn't desirable and can lead to
serious problems. Good C++ design practices data hiding or infor­
mation hiding - keeping member data private or protected, and
providing an authorized interface for accessing it. The general
rule is to make all data private so that it can be accessed only
through public member functions. There are only a few situations
where public rather than private or protected data members are
needed. Also, some member functions involved only in internal
operations can be made private or protected rather than public.

Three keywords provide access control to structure or class mem­
bers. The appropriate keyword (with a colon) is placed before the
member declarations to be affected:

Turbo C++ User's Guide

The class: private
by default

private: Members following this keyword can be accessed
only by member functions declared within the same
class.

protected: Members following this keyword can be accessed by
member functions within the same class, and by
member functions of classes that are derived from
this class (see the discussion on page 144).

public: Members following this keyword can be accessed
from anywhere within the same scope as the class
definition.

For example, here is how to redefine the Point structure so that
the data members are private and the member functions are
public:

struct Point
private:

int X;
int Y;

public:
int GetX();
Point(int NewX, int NewY);

}i

A struct class is public by default, so you have to use private: to
specify the private part, and then public: for the part to be made
available for general access. Since good c++ practice makes things
private by default 'and carefully specifies what should be public,
c++ programmers generally favor the class over the struct. The
only difference between a class and a struct is this matter of
default privacy.

Point redefined as a class looks like this:

class Point
int X; I I private by default
int Y;

pUblic: II needed to override the private default
int GetX();
Point (int NewX, int NewY);

};

No private modifier is needed for the data members-they're
private by default. The member functions, however, must be

Chapter 4, Object-oriented programming with C++ 141

Data members are usually
private, while member func­

tions are usually public. Allow
public access only where it is

truly needed.

142

Running a C++
program

declared public so that they can be used outside of the class to
initialize and retrieve values of Point objects.

You can repeat access control specifications as often as needed:

enum Boolean {false, true}i

class Employee {
double salary;
Boolean permanenti
Boolean professionali

public:
char name [501 i

char dept_code[31i

private:
int Error_check(void)i

public:

II private by default

Employee(double salary, Boolean permanent, Boolean professional,
char *name, char *dept_code)i

}i

Here the data members salary, permanent, and professional are
private by default; the data members name and dept_code are de­
clared to be public; the member function Error_check is declarec1
to be private (intended for internal use); and the constructor
Employee is declared to be public.

It's time to put everything you've learned so far together into a
complete compilable program. To compile a C++ program in the
IDE, enter or load your text into the editor as usual. You can run
C++ programs from the IDE in either of two ways. First, by
default, any file with the .CPP extension will be compiled
assuming C++ syntax, and any files with the.C extension will be
compiled assuming C syntax. However, you can select the C++
Always button in the Source Options dialog box to have all files
treated as C++ source files, regardless of extension.

To compile a C++ program with the command-line compiler, just
give your filethe extension .CPP. Or you can use the command­
line option -P, in which case Turbo C++ will assume that the file
has an extension of .CPP. If the file has a different extension, you
must give the extension along with the file name. Life will be
easier for you (and your next-of-kin) if you give all C++ programs
a .CPP extension and all C programs a .C extension.

Turbo C++ User's Guide

This code is available to load
and run: POINT. CPP.

The program POINT.CPP defines the Point class and manipulates
its data values:

1* POINT.CPP illustrates a simple Point class *1

#include <iostream.h> II needeq for c++ 1/0

class Point II define Point class
II X and Yare private by default int Xi

int Yi
pUblic:

};

Point(int InitX, int InitY) {X = InitXi Y = InitY;}
int GetX() {return X;} II public member functions
int GetY() {return Y;}

int main ()
{

int Your X , YourY;

cout « "Set X coordinate: "; II screen prompt
cin » YourX; I I keyboard input to YourX

cout « "Set Y coordinate: "; II another prompt
cin » YourY; II key value for YourY

Point YourPoint(YourX, YourY)i II declaration calls constructor

cout « "X is " « YourPoint.GetX()i II call member function
cout « '\n'; / I newline
cout « "Y is " « YourPoint.GetY (); I I call member function
cout « '\n';
return 0;

The class Point now contains a new member function, GetY. This
function works just like the GetX defined earlier, but accesses the
private data member Y rather than X. Both are "short" functions
and good candidates for the inline form of definition within the
class body.

As with a macro using the #define directive, the code for an inline
function is substituted directly into your file each time the func­
tion is used, thereby avoiding the function call overhead at the
expense of code size. This is the classic "space versus time"
dilemma found in many programming situations. As a general
rule you should only use inline definitions for "short" functions,
say one to three statements. Note that, unlike a macro, an inline
function doesn't sacrifice the type checking that helps prevent
errors in function calls. The number of arguments in a function is
also relevant to your decision whether to "inline" or not, since the

Chapter 4, Object-oriented programming with C++ 143

Inheritance

144

. argument structure affects the function call overhead. The case for
. inlining is strongest when the total code for the function body is

smaller than the code it takes to call the function out of line. You
may need to try both methods and examine the assembly code
output before deciding which approach is best for your needs.

Whether to inline a constructor or not can depend on whether
base constructors are involved. A derived class constructor,
especially where there are virtual functions (see page 160) in the
hierarchy, can generate a lot of "hidden" code.

In the above example, the Point constructor has been defined as
out-of-line, following the end of the class declaration. While you
can put definitions in any order (and even put them elsewhere in
the current file), it makes sense with smaller, single-file programs
to put those definitions that aren't inline right after the class
definition, in the order in which they were declared.

As your code gets larger, you'll probably have your class decla­
rations in header files, and your class function definitions
(implementation code) in separately compiled c++ source files.
Inline function definitions, however, should always be in the
header file.

This program also uses the C++ iostreams library introduced in
chapter 3 (note the statement #include dostrearn.h> at the
beginning of the program).

Once the X and Y values have been received from the keyboard,
the Point object YourPoint is declared with the received values as
arguments. Recall that this declaration automatically invokes the
constructor for the Point class, which creates and initializes
YourPoint.

Try running the program. The result should look like this:

Set X coordinate: 50
Set Y coordinate: 100
X is 50,.
Y is 100

Classes don't usually exist in a vacuum. A program often has to
work with several different but related data structures. For exam-

Turbo C++ User's Guide

Rethinking the
Point class

pIe, you might have a simple memory buffer in which you can
store and from which you can retrieve data. Later, you may need
to create more specialized buffers: A file buffer that holds data
being moved to and from a file, and perhaps a buffer to hold data
for a printer, and another to hold data coming from or going to a
modem. These specialized buffers clearly have marty character­
istics in common, but each has some differences caused by the fact
that disk files, printers, and modems involve devices that work
differently.

The C++ solution to this "similar but different" situation is to
allow classes to inherit characteristics and behavior from one or
more base classes. This is an intuitive leap; inheritance is perhaps
the single biggest difference between C++ and C. Classes that
inherit from base classes are called derived classes. And a derived
class may itself be the base class from which other classes are
derived (recall the insect family tree).

The fundamental unit of graphics is the single point on the screen
(one pixel). So far we've devised several variants of a Point class
that define a point by its X and Y locations, a constructor that
creates and initializes a point's location, and other member func­
tions that can return the point's current X and Y coordinates.
Before you can draw anything, however, you have to distinguish
between pixels that are "on" (drawn in some visible color) and
pixels that are "off" (have the background color). Later, of course,
you may want to define which of many colors a given point
should have, and perhaps other attributes (such as blinking).
Pretty soon you can end up with a complicated class that has
many data members. _

Let's rethink our strategy. What are the two fundamental kinds of
information about points? One kind of information describes
where the point is (location) and the other kind of information
describes how the point is (the point's state of being: You can
either see it, or you can't, and if you can see it, it is in some color).
Of the two, the location is most fundamental: Without a location,
you can't have a point at all.

Because all points must contain a locati9n, you can make the class
Point a derived class of a more fundamental base class, Location,
which contains the information about X and Y coordinates. Point

Chapter 4, Object-oriented programming with C++ 145

146

This code is available as
point.h.

Inheritance and
access control

inherits everything that Location has, and adds whatever is new
about Point to make Point what it must be.

These two related classes can be defined this way:

1* point.h--Example from Object-oriented programming with c++ *1

II point.h contains two classes:
II class Location describes screen locations in X and Y coordinates
II class Point describes whether a point is hidden or visible

enum Boolean {false, true};

class Location
protected: II allows derived class to access private data

int X;
int Y;

public: II these functions can be accessed from outside
LocatiDn(int InitX, int InitY);
int GetX();
int GetY();

};

class Point: public Location ' II derived from class Location
II public derivation means that X .and Yare protected within Point

protected:
Boolean Visible; II classes derived from Point will need access

public:

};

Point(int InitX, int Ihity);
void Show () ;
void Bide();
Boolean Isvisible();
void MoveTo(int NewX, int NewY);

II constructor

. Here, Location is the base class, and Point is the derived class.
The process can continue indefinitely: You can define other
classes derived from Location, other classes derived from Point,
yet more classes derived from Point's derived class, and so on.
You can even have a class derived from more than one base class:
This is called multiple inheritance, and will be discussed later. A
large part of designing a C++ application lies in building this class
hierarchy and expressing the family tree of the classes in the
application.

Before we discuss the various member functions point.h, let's
review the inheritance and access control mechanisms of C++.

Turbo C++ User's Guide

Table 4.1
Class access

In a derived class, access to
the elements of its base class

can be made more
restrictive but never less

restrictive.

The data members of the Location class are declared to be
protected-recall that this means that member functions in both
the Location class and the derived class Point will be able to ac­
cess them, but the "public at large" won't be able to do so.

You declare a derived class as follows:

class D : access_modifier B { II default is private

or

struct D access_modifier B { II default is public

D is the name of the derived class, access_modifier is optional
(either public or private), and B is the name of the base class.

With class, the default access_modifier is private; with struct, the
default is public. (Note that unions can be neither base nor
derived classes.)

The access_modifier is used to modify the accessibility of inherited
members, as shown in the following table:

Access in base class

public
private
protected

public
private
protected

Access modifier

public
public
public

private
private
private

Inherited access in base

public
not accessible
protected

private
not accessible
private

When writing new classes that rely on existing classes, make sure
you understand the relationship between base and derived
classes. A vital part of this is understanding the access levels
conferred by the specifiers private, protected, and public. Access
rights must be passed on carefully (or withheld) from parents to
children to grandchildren. c++ lets you do this without "ex­
posing" your data to non-family and non-friends. The access level
of a base class member, as viewed by the base class, need not be
the same as its access level as viewed by its derived class. In other
words, when members are inherited, you have some control over
how their access levels are inherited.

Chapter 4, Object-oriented programming with C++ 147

See Chapter 73 for more
advanced technical details.

Base class members that you
want to use in a derived

class must be either
protected or public. private

base class members can't
be accessed except by their

own member functions or
through friend functions.

148

Packaging
classes into

modules

A class can be derived privately or publicly from its base class.
private derivation (the ~efault for class type classes) converts
public and protected members in the base class into private
members of the derived class, while private members remain
private. (Although private derivation is the default for classes, it is
by no means the most commonly used method of derivation-so
we have a rare situation where the default is not the norm.)

A public derivation leaves the access level unchanged.
\

A derived class inherits all members of its base class, but can only
use the protected and public members of its base class. private
members of the base class are not directly available through the
members of the derived class.

The particular definitions of Location and Point adopted here will
allow us later on to derive further classes from Point for more
complex graphics applications.

If you use public deri:vation, protected members of the base class
remain protected in the derived class, and thus won't be available
from outside except to other publicly derived classes and friends.
It's a good idea to always specify public or private, whatever the
default, to avoid confusion. Good comments, too, will improve
your source code legibility.

Classes such as Location and Point can be packaged together for
use in further program development. With its built-in data, mem­
ber functions, and access control, a class is inherently modular. In
developing a program, it often makes sense to put the declara­
tions for each class or group of related classes in a separate header
file, and the definitions for its non-inline member functions in a
separate source file.

You can also combine several class object files into a library using
TLIB. (See the online document UTIL.DOC to learn how to create
libraries.)

There are further advantages to modularizing classes: You can
distribute your classes in object form to other programmers. The
other programmers can derive new, specialized classes from the
ones you made available, without needing access to your source
code.

Turbo C++ User's Guide

This code is available as
POINT2.CPP.

We can now develop a separately compiled "module" containing
the Location and Point classes. First, the declarations for the two
classes (including their member functions) as listed on page 146
are put in the file point.h (on your distribution diskettes).

Note again how the class Point is derived from the class Location:

class Point: public Location { ...

The keyword public is needed before Location to ensure that the
member functions of the derived class, Point, can access the
protected members X and Y in the base class, Location. In

. addition to the X and Y location members, Point inherits the
member functions GetX and GetV from Location. The class Point
also adds the protected data member Visible (of the enumerated
type Boolean), and five public member functions, including the
constructor Point::Point. Note again that we have used protected
rather than private access for certain elements so that point.h can
be used in later examples that have further classes derived from
Location and Point.

The file POINT2.CPf contains the definitions for all of the
member functions of these two classes:

1* POINT2.CPP--Example from Object-oriented programming with c++ *j

II POINT2.CPP contains the definitions for the Point and Location
II classes that are declared in the file point.h

#include "point.h"
#include <graphics.h>

II member functions for the Location class
Location::Location(int InitX, int InitY) {

};

X = InitX;
Y = InitY;

int Location::GetX(void)
return X;

};

int Location::GetY(void)
return Y;

};

II member functions for the Point class: These assume
II the main program has initialized the graphics system

Point::Point(int InitX, int InitY) : Location(InitX,InitY)
Visible = false; II make invisible by default

};

Chapter 4, Object-oriented programming with C++ 149

A base constructor is invoked
before the body of the

derived class constructor:

150

void Point: :Show(void) {
Visible = true;
putpixel(X, Y, getcolor());

};

void Point::Hide(void) {
Visible = false;

II uses default color

putpixel(X, Y, getbkcolor()); II uses background color to erase
} ;

Boolean Point::lsVisible(void)
return Visible;

};

void Point::MoveTo(int NewX, int NewY) {
Hide() i II make current point invisible
X = NewX; II change X and Y coordinates to new location
Y = NewY;
Show() ; II show point at.new location

};

This example introduces the important concept of base-class con­
structors. When a Point object is defined, we want to make use of
the fact that its base class, Location, already has its own user­
defined constructor. The definition of the constructor Point::Point
begins with a colon and a reference to the base constructor
Location(InitX,InitY). This specifies that the Point constructor will
first call the Location constructor with the arguments InitX and
[nity; thereby creating and initializing data members X and Y.
Then the Point constructor body is invoked, creating and initializ­
ing the data member Visible. By explicitly specifying a base
constructor, we have saved ourselves some coding (in larger
examples, of course, the savings may be more significant).

In fact, derived-class constructors always call a constructor of the
base class first to ensure that inherited data members are correctly
created and initialized. If the base class is itself derived, the pro­
cess of calling base constructors continues down the hierarchy. If
you don't define a constructor for a particular class X, C++ will
generate a default constructor of the form X: :XO; that is, a
constructor with no arguments.

If the derived-class constructor does not explicitly invoke one of
its base-class constructors, or if you have not defined a base;..class
constructor, the default base class constructor (with no argu­
ments) will be invoked. (There's more on base class constructors
in chapter 13, "C++ specifics.")

Turbo C++ User's Guide

You'll need to compile and
link POINT2.CPP, PIXEL.CPP,

and GRAPHICS. LIB, using the
PIXEL. PRJ project file supplied
on your distribution diskettes.

(Read Chapter 7,
"Managing multi-file

projects," for information on
how to use project files.)

Extending classes

This code is on your disks:
CIRCLE.CPP.

Notice that the reference to the base class constructor,
Location(InitX,InitY) appears in the definition, not the declaration,
of the derived class constructor.

Here's a main program (available on your distribution disks as
PIXEL.CPP) that demonstrates the capabilities of the Point and
Location classes.

1* PIXEL.CPP--Example from Chapter 5 of Getting Started *1

II PIXEL.CPP demonstrates the Point and Location classes
II compile with POINT2.CPP and link with GRAPHICS.LIB

#include <graphics.h>
#include <conio.h>
#include "point.h"

int main ()
{

II declarations for graphics library
II for getch() function
II declaraeions for Point and Location

II initialize the graphics system
int graphdriver = DETECT, graphrnode;
initgraph(&graphdriver, &graphrnode, "c: .. \\bgi");

II move a point across the screen
Point APoint(100, 50); 1/ Initial X,Y at 100, 50
APoint.Show(); II APoint turns itself on
getch(); II Wait for keypress
APoint.MoveTo(300, 150); II APoint moves to 300,150
getch(); II Wait for keypress
APoint.Hide(); II APoint turns itself off
getch(); II Wait for keypress
closegraph() ;
return OJ

II Restore original screen

One of the beauties of classes is the way that new objects can be
accommodated and given appropriate functionality'. The next ex­
ample takes the already defined Location and Point classes and
derives a new class, Circle, along with functions to show, hide,
expand, move, and contract circles.

1* CIRCLE.CPP--Example from Object-oriented programming with Ctt *1

II CIRCLE.CPP A Circle class derived from Point

#include <graphics.h>
#include "pbint.h"
#include <conio.h>

II graphics library declarations
II Location and Point class declarations
II for getch() function

Chapter 4, Object-oriented programming with C++ 151

152

II link wi th point2. obj and graphics . lib

. class Circle: Point { II derived privately from class Point
II and ultimately from class Location

int Radius; II private by default

pUblic:
Circle(int InitX, int InitY, int InitRadius);
void ShOW(vciid);
void Hide (void) ;
void Expand(int ExpandBy);
void MoveTo(int NewX, int NewY);
void Contract (int ContractBy);

};

Ci~cle::Circle(int InitX, int InitY, int InitRadius)
Point (InitX, InitY)
{

Radius = InitRadius;
};

void Circle::Show(void)
{

Visible = true;
circle(X, Y, Radius);

void Circle::Hide(void)
{

};

unsigned int TempColor;
TempColor = getcolor();
setcolor(getbkcolor());
Visible = false;
circle(X, Y, Radius);
setcolor(TempColor);

II draw the circle

II to save current color
II set to current color
II set drawing color to background

II draw in background color to erase
II set color back to current color

void Circle::Expand(int ExpandBy)
{

};

Hide () ;
Radius += ExpandBy;
if (Radius < 0)

Radius = 0;
Show() ;

II erase old circle
II expand radius
II avoid negative radius

II draw new circle

void Circle::Contract(int ContractBy)
{

Expand(-ContractBy); II redraws with (Radius - ContractBy)
};

void Circle::MoveTo(int NewX, int NewY)
{

Turbo C++ User's Guide

};

Hide () i
X = NewXi
Y = NewYi
Show() i

II erase old circle
II set new location

II draw in new location

main()
{

II test the functions

II initialize the graphics system
int graphdriver = DETECT, graphmode;
initgraph(&graphdriver, &graphmode, "c: .. \\bgi");

Circle MyCircle(lOO, 200, 50);
MyCircle.Show() :
getch() ;
MyCircle.MoveTo(200, 250):

getch() :
MyCircle.Expand(50) ;
getch() ;
MyCircle.Contract(75):
getch() ;
closegraph () ;
return 0;

II declare a circle object
II show it
II wait for keypress
II move the circle (tests hide
II and show also)

II make it bigger

II make it smaller

To see how this works for the Circle class, you need to examine
the member functions in the listing CIRCLE.CPP and refresh
yourself on the class declarations in point.h.

Note first that the member functions of Circle need to access
various data members in the classes Circle, Point, and Location.

Consider Circle::Expand. It needs access to int Radius. No
problem. Radius is defined as private (by default) in Circle itself.
So, Radius is accessible to Circle::Expand-indeed, it is accessible
only to member functions of Circle. (Later, you'll see that the
private members of a class can also be accessed by functions that
have been specially defined as friends of that class.)

Next, look at the member function Circle::Hide. This needs to
access Boolean Visible from its base class Point. Now Visible is
protected in Point, and Circle is derived privately (by default)
from Point. So, from the rules outlined above, Visible is private
within Circle, and is accessible just like Radius. Note that if Visible
had been defined as private in Point, it would have been inaccess­
ible to the member functions of Circle. So, you might be tempted
to make Visible public. However, this is overkill: Visible would
become accessible to non-member functions. You might say that

Chapter 4, Object-oriented programming with C++ 153

154

protected is private with a dash of public for derived classes:
member functions of a derived class can access a protected
member without exposing that member to public abuse.

Finally, consider Circle::Show. Circle::Show needs to access
Locations members X and Y in order to draw the circle. How is
this achieved? Circle is not directly derived from Location, so the
access rights are not immediately obvious. Circle derives from
Point which derives from Location. Lets trace the access
declarations.

1. Members X and Yare declared protected in Location.

2. Point specifies public derivation from Location, so Point also
inherits the X and Y members as protected.

3. Circle is derived from Point using the default private
derivation.

4. Circle therefore inherits X and Y as private. Circle: :Show can
access X and Y. Note that X and Yare still protected within
Location.

Having digested this chain of access rights, you might want to
consider the situation if a derived class of Circle, such as PieChart
or Arc, was needed. Yes, you would need to change the derivation.
of Circle from Point-it would need to be a public derivation and
Radius would need to become protected.

It should now be pretty easy to see what is going on in
CIRCLE.CPP. A circle, in a sense, is a fat point: It has everything a
point has (an X,Y location and a visible/invisible state) plus a
radius. Class Circle appears to have only the single member
Radius, but don't forget about all the members that Circle inherits
by being a derived class of Point. Circle has X, Y, and Visible as
well, even if you don't see them in the class definition for Circle.

Compile and link CIRCLE.CPP, POINT2.CPP, and
GRAPHICS. LIB. The project file CIRCLE.PRJ on your distribution
diskettes will help you do this. As you press a key, you should see
a circle. Press a key again and the circle moves. Again, and the
circle expands, and again and the circle contracts.

Turbo C++ User's Guide

Multiple
inheritance As we mentioned earlier, a class can inherit from more than one

base class. This multiple inheritance mechanism was one of the
main features added to c++ release 2.0. To see a practical
example, the next program lets you display text inside a circle.

Your first thought might be to simply add a string data member
to the Circle class and then add code to Circle::Show so that it
displays the text with the circle drawn around it. But text and
circles are really quite different things: When you think of text
you think of fonts, character size, and possibly other attributes,
none of which really has anything to do with circles. You could, of
course, derive a new class directly from Circle and give it text
capabilities. When dealing with fundamentally different function­
alities, however, it is often better to create new "fundamental"
base classes, and then derive specialized classes that combine the
appropriate features. The next listing, MCIRCLE.CPP, illustrates
this approach.

We'll define a new class called GMessage that displays a string on
the screen starting at specified X and Y coordinates. This class will
be MCircle's other parent. MCircle will inherit GMessage: :Show
and use it to draw the text. The relationships of all of the classes
involved is shown in the t:lext figure.

Chapter 4, Object-oriented programming with C++ 155

Figure 4.3
Multiple inheritance

This code is available on your
disks: MCIRCLE.CPP. You

need to run it using
MCIRCLE.PRJ.

class Location: {
int X;
int y;

}

J
t +

class Point : Location { class GMessage : Location {
int Visible; yhar *msg;

int Font;
} int Field;

}

i
class Circle : Point {
int Radius;

}

I • class MCircle : Circle, GMessage {

}

1* MCIRCLE.CPP--Example for Object-oriented programming with c++ *1

1/ MCIRCLE.CPP Illustrates multiple inheritance

#include <graphics.h> /1 Graphics library declarations
#include "point.h" // Location and Point class declarations
#include <string.h> /1 for string functions
#include <conio.h> II for console 1/0

// link with point2.obj and graphics.lib

II The class hierarchy:
/1 Location->Point->Circle
// (Circle and GMessage)->MCircle

class Circle: public Point { 1/ Derived from class Point and
1/ ultimately from class Location

protected:
int Radius;

pUblic:

};

Circle(int InitX, int Inity, int InitRadius);
void Show(void) ;

class GMessage public Location {

156 Turbo C++ User's Guide

II display a message on graphics screen
char *msgj II message to be displayed
int Fontj II BGI font to use
int Fieldj II size of field for text scaling

public:

}j

II Initialize message
GMessage(int msgX, int msgY, int MsgFont, int FieldSize,

char *text)i
void Show(void)j II show message

class MCircle : Circle, GMessage { II inherits from both classes
pUblic:

MCircle(int mcircX, int mcircY, int mcircRadius, int Font,

}j

char *msg) j

void Show(void)j

II Member functions for Circle class

II Circle constructor

II show circle with message

Circle::Circle(int InitX, int InitY, int InitRadius) :
Point (InitX, InitY) / I initialize inherited members

II also invokes Location constructor
{

Radius = InitRadiusj
}j

void Circle::Show(void)
{

Visible = truej
circle(X, Y, Radius)j II draw the circle

I-I Member functions for GMessage class

II GMessage constructor
GMessage::GMessage(int msgX, int msgY, int MsgFont,

int FieldSize, char *text)
Location (msgX, msgY)

II X and Y coordinates for centering message
{

Font = MsgFontj II standard fonts defined in graph.h
Field = FieldSizej II width of area in which to fit text
msg = textj II point at message

}j

void GMessage::Show(void)
{

int size = Field! (8 * ~trlen(msg))j

Chapter 4, Object-oriented programming with C++

II 8 pixels per char.

157

The :: operator is used to
specify a function from

another scope rather than
(by default) using the func­

tion of that name in the
current scope.

158

settextjustify(CENTER_TEXT, CENTER_TEXT); II centers in circle
settextstyle(Font, HORIZ_DIR, size); II if size> 1, magnifies

. outtextxy (X, Y, msg); II display the text

II Member functions for MCircle class

II MCircle constructor
MCircle::MCircle(int mcircX, int mcircY, int mcircRadius, int Font,

char *msg) : Circle (mcircX, mcircY, mcircRadius),
GMessage (mcircX,mcircY, Font, 2*mcircRadius,msg)

void MCircle::Show(void)
{

Circle: : Show () ;
GMessage::Show() ;

main()
{

II draws some circles with text

int graphdriver = DETECT, graphmode;
initgraph(&graphdriver, &graphmode, "c: .. \\bgi");
MCircle Small(250, 100, 25, SANS_SERIF]ONT, "You");
Small. Show () ;
MCircle Medium(250, 150, 100, TRIPLEX_FONT, "World");
Medium. Show () ;
MCircle Large(250, 250, 225, GOTHIC_FONT, "Universe");
Large.Show() i

getch() ;
closegraph() ;
return 0;

As you read the listing, check the class declarations and note
which data members and member functions are inherited by each
class. You may also want to look at point.h again, since the
Location and Point classes are defined there. Notice that both
MCircle and GMessage have Location as their ultimate base class:
MCircle by way of Point and Circle, and GMessage directly.

In the body of the definition of MCircle: :Show, you will see the
two function calls Circle::Show(); and GMessage::Show();. This
syntax shows another common use of:: (the scope resolution
operator). When you want to call an inherited function, such as
Show, the compiler may need some help: which Show is re­
quired? Without the scope resolution "override," Show() would
refer to the Show() ill. the current scope, namely MCircle: :Show().
To call the Show() of another scope (assuming, of course, that you

Turbo C++ User's Guide

See Chapter 73 for details on
constructor calling

sequences.

have access permission), you must supply the appropriate class
name followed by:: and the function name (with arguments, if
any). What if there happened to be a nonmember function called
Show that you wanted to call? You would use ::Show{) with no
preceding class name.

A member function of a given name in the derived class overrides
the member function of the same name in the base class, but you
can still get at the latter by using ::. The scoping rules for C++ are
slightly different from those for C.

Before leaving MCIRCLE.CPP, a brief word about the constructor
for MCircle. You saw earlier how the Point constructor explicitly
invoked its base constructor in Location. Since MCircle inherits
from both Circle and GMessage, the MCircle constructor can con­
veniently initialize by calling both base constructors:

MCircle::MCircle
(int mcircX, int mcircY, int mcircRadius, int font, char *msg)
Circle (mcircX, mcircY, mcircRadius),
GMessage(mcircX, mcircY, 2*mcircRadius,msg) {

The constructor body is empty here because all the necessary
work is accomplished in the member initialization list (after the:
you enter a list of initializing expressions separated by commas.
You met a simpler version of this syntax in the single base class
constructors used in the Point and Circle class definitions). When
the MCircle constructor is invoked (by declaring an MCircle
object, for example), quite a spate of activity is triggered behind
the scenes.

First, the Circle constructor is called. This constructor then calls
the Point constructor, which in turn calls the Location constructor.
Finally, the GMessage constructor is called, which calls the
Location constructor for its own copy of its base class X and Y.
The arguments given in the MCircle constructor are passed on to
initialize the appropriate data members of the base classes.

When destructors are called (when an object goes out of scope, for
example), the deallocation sequence is the reverse of that used
during construction. (Virtual base class constructors and destruc­
tors have some sequencing quirks beyond the scope of this
chapter.)

Chapter 4, Object-oriented programming with C++ 159

Figure 4.4
Circles with messages

virtual functions

160

In passing, recall the point made earlier: if you don't supply your
own constructors or destructors, c++ will generate and invoke
default versions behind the scenes.

Figure 4.4 shows the output of MCIRCLE:

World

Each class type in our graphics hierarchy represents a different
type of figure onscreen: a point or a circle. It certainly makes sense
to say that you can show a point on the screen, or show a circle.
Later on, if you were to define classes to represent other figures
such as lines, squares, arcs, and so on, you could write a member
function for each that would display that object onscreen. In the
new way of object-oriented thinking, you could say that all these
graphic figure types had the ability to show themselves on the
screen.

What is different for each object type is the way it must show itself
onscreen. A point is drawn with a point-plotting routine that
needs only an X, Y location and perhaps a color value. A circle
needs a more complex graphics routine to display itself, taking
into account not only X and Y, but a radius as well. Still further,
an arc needs a start apgle and an end angle, and a different

Turbo C++ User's Guide

drawing algorithm. The same situation, of course, applies to
hiding, dragging, and other basic shape manipulations.

The ordinary member functions you have seen so far certainly
allow us to define a Show function for each shape class. But they
lack an essential ingredient. Graphics module.s based on our
existing classes and member functions would need source code
changes and recompilations each time a new shape class was
introduced with its own member function Show. The reason is
that the C++ mechanisms revealed so far allow essentially only
three ways to resolve the question: which Show is being
referenced ?:

1. There's the distinction by argument signature-Show(int,char)
is not the same function as Show(char*,float), for example.

2. There's the use of the scope resolution operator, whereby
Circle::Show is distinguished from Point::Show and ::Show.

3. There's the resolution by class object: ACircle.S~ow invokes
Circle::Show, while Apoint.Show invokes Point::Show.
Similarly with pointers to objects: APoinCpointer->Show
invokes Point::Show.

All these function resolutions, so far, have been made at compile
time-a mechanism called early or static binding.

A typical graphics toolbox would provide the user with class defi­
nitions in.H source files together with the precompiled .OBJ or .
. LIB code for the member functions. With the early binding re­
strictions, the user cannot easily add new class shapes, and even
the developer faces extra chores in extending the package. C++
offers a flexible mechanism to solve these problems: late (or dy­
namic) binding by means of special member functions called
virtual functions.

The key concept is that virtual function calls are resolved at run
time (hence the term, late binding). In practical terms, it means
that the decision as to which Show function is called can be de­
ferred until the object type involved is known during execution. A
virtual function Show, "hidden" in a class B in the precompiled
toolbox library, is not bound to the objects of B in the way that
ordinary member functions of Bare. You are free to create a class
o derived from B for your own favorite shape, and write
appropriate functions (putting on your Show, as it were). You
then compile and link your OBJ or LIB code to that of the toolbox.
Calls made on Show, whether from existing member functions of

Chapter 4, Object-oriented programming with C++ 161

virtual functions in

B or from the new functions you have written for 0, will
automatically reference the correct Show. This resolution is made
entirely on the object type involved in the call. Let's look at virtual
functions in action. We have a potential candidate in the earlier
code given for CIRCLE.CPP

action' Consider the member function Circle::MoveTo in CIRCLE.CPP:

162

void Circle::MoveTo(int NewX, int NewY)
{

Boolean vis = Visible;
if (vis) Hide(); II hide only if visible
X = NewX; Y = NewY; II set new location
if (vis) Show(); II draw at new location if previously

II visible

Notice how similar this definition is to Point::MoveTo found in
the Circle's base class Point. In fact, the return value, function
name, number and types of formal arguments (known as the
function signature), and even the function body itself, all appear to
be identical! If C++ encounters two function calls using the same
function name but differing in signatures, we have already seen
that the C++ compiler is smart enough to resolve the potential
arrtbiguities caused by function-nalne overloading. (Recall that C,
unlike C++, demands unique function names.) In C++, member
functions with different signatures are really different functions,
even if they share the same name.

But, our two MoveTos do not, at first sight, offer any distinguish­
ing clues to the compiler-so will it know which one you in­
tended to call? The answer, as you've seen, with ordinary member
functions is that the compiler determines the target function from
the class type of the object involved in the call.

So, why not let Circle inherit Point's MoveTo, just as Circle inher­
its Point's GetX and GetV (via Location)? The reason, of course, is
that the Hide and Show called-in Circle::MoveTo are not the same
Hide and Show called in Point::MoveTo. Only the names and
signatures are the same. Inheriting MoveTo from Point would
lead to the wrong Hide and Show being called when trying to
move a circle. Why? Because Point's versions of these two func­
tions would be bound to Point's (and hence also to Circle's)
MoveTo at compile time (early binding). As you may have

Turbo C++ User's Guide

Defining virtual
functions

guessed already, the answer is to declare Hide and Show as
virtual functions. This will delay the binding so that the correct
versions Hide and Show can be invoked when MoveTo is actually
called to move a point or a circle (or whatever).

Note again that if we wanted to precompile our class definitions
and member functions for Location, Point, and Circle in a neat
standalone library (with the implementation source locked up
with our other trade secrets), we certainly could not know in
advance the objects that MoveTo may be asked to move. Virtual
functions not only provide this technical advantage; they also
provide a conceptual gain that lies at the heart of OOP. We can
concentrate on developing reusable classes and methods with less
anxiety about name clashes.

While it is true that add-on library extensions are available for
most languages, the use of virtual functions and multiple inheri­
tance in C++ makes extensibility more natural. You inherit
everything that all your base classes have, and then you add the
new capabilities you need to make new objects work in familiar
ways. The classes you define and their versions of the virtual
functions become a true extension of an orderly hierarchy of
capabilities. Because this is part of the language design rather
than an afterthought, there is very little penalty in performance.

Having sold you on the merits of virtual functions, let's see how
you can implement them, and some of the rules you have to
follow.

The syntax is straightforward: add the qualifier virtual in the
member function's first declaration:

virtual void Show();
virtual void Hide();

.. Important! Only member functions can be declared as virtual.
Once a function is declared virtual, it must not be redeclared in
any derived class with the same formal argument signature but
with a different return type. If you redeclare Show with the same
formal argument signature and same return type, the new Show
automatically becomes virtual, whether you use the virtual
qualifier. or not. This new, virtual Show is said to override the
Show in its base class.

Chapter 4, Object-oriented programming with C++ 163

Developing a
complete

graphics module

164

You are free to redeclare Show with a different formal argument
signature (whether you change the return type or not)-but the
virtual mechanism is inoperable for this version of Show. Begin­
ners should avoid rpsh overloading-there are situations where a
non-virtual function can hide a virtual function declared in its
base.

The particular Show called will depend only on the class of the
object for which Show is invoked, even if the call is invoked via a
pointer (or reference) to the base class. For example,

Circle ACircle;
Point* APoint-pointer = &ACircle; II pointer to Circle assigned to

II pointer to base class, Point
APoint-pointer->Show(); II calls Circle::Show!

vpoint.h and VCIRC.CPP (available on your distribution disks)
are versions of point.h and CIRCLE.CPP with Show and Hide
made'virtual. Compile VCIRC.CPP with POINT2.CPP using
VCIRC.PRJ. It will run exactly like CIRCLE.CPP. We don't list the
virtual versions in full here since the differences can be summed
up simply as follows:

• In vpoint.h, Point's Show and Hide have been declared with the
. keyword virtual. The Show and Hide in the VCIRC's derived

class Circle have the same argument signature and return
values as the base versions in Point; this implies that they are
also virtual, even though the keyword virtual is not used in
their declarations.

• In VCIRC.CPP, Circle no longer has its own MoveTo member
function.

• We now derive Circle publicly from Point to allow access to
MoveTo .

To recap the significance of these changes:

Circle objects can now safely call the MoveTo inherited from
Point. The Show and Hide called by MoveTo will be bound at run
time to Circle's own Show and Hide. Any Point objects calling
MoveTo will invoke the Point versions. .

As a more complete and realistic example of virtual functions, let's
create a module that defines some shape classes and a generalized
means of dragging them around the screen. This module,

Turbo C++ User's Guide

figures.h and FIGURES.CPP (on your distribution diskettes), is a
simple implementation of the graphics toolbox discussed earlier.

A major goal in designing the FIGURES module is to allow users
of the module to extend the classes defined in the module-and
still make use of all the module's features. It is an interesting chal­
lenge to create some means of dragging an arbitrary graphics fig­
ure around the screen in response to user input.

As a first Clpproach, we might consider a function that takes an
object as an argument, and then drags that object around the
screen:

void Drag(Point& AnyFigure, int DragBy)
{

. int DeltaX, DeltaYi

} i

int FigureX,FigureYi
AnyFigure.Show()i II Display figure to be dragged
FigureX = AnyFigure.GetX()i II Get the initial X,Y of figure
FigureY = AnyFigure.GetY() i

II This is the drag loop
while (GetDelta (DeltaX, DeltaY))
{

II Apply delta to figure X,Y
FigureX = FigureX + (DeltaX * DragBY)i
FigureY = FigureY + (DeltaY * DragBy) i
II And tell the figure to move

. AnyFigure.MoveTo(FigureX, FigureY)i
}i

Reference types Notice that AnyFigure is declared to be of type Point&. This means
"a reference to an object of type Point" and is a new feature of
c++. As you know, C ordinarily passes arguments by value, not
by reference. In C, if you want to act directly on a variable being
passed to a function, you have to pass a pointer to the variable,
which can lead to awkward syntax, since you have to remember
to dereference the pointer. C++ lets you pass and modify the
actual variable by using a reference. To declare a reference, simply
follow the data type with an ampersand (&) in the variable
declaration.

Drag calls an auxiliary function not shown here, GetDelta, that
obtains some sort of change in X and Y from the user. It could be
from the keyboard, or from a mouse, or a joystick. (For

Chapter 4, C?bjecf-oriented programming with C++ 165

166

simplicity's sake, our example obtains input from the arrow keys
on the keyboard.)

An important point to notice about Drag is that any object of type
Point, or any type derived from Point,can be passed in the
AnyFigure·reference argument. Objects of Point or Circle type, or
any type defined in the future that inherits from Point or Circle,
can be passed without complication in AnyFigure.

Adding a new member function to an existing class hierarchy
involves a little thought. How far up the hierarchy should the
member function be placed? Think about the utility provided by
the function and decide how broadly applicable that utility is.
Dragging a figure involves changing the location of the figure in
response to input from the user. In terms of inheritability, it sits
right beside MoveTo-any object to which MoveTo is appropriate
should also inherit Drag. Therefore Drag should be a member of
Point, so that all of Point's derived types can share it.

Having resolved the place of Drag in the hierarchy, we can take a
closer look at its definition. As a member function of the base
class Point, there is no need for the explicit reference to the Point&
AnyFigure argument. We can rewrite Drag so that the functions it
calls, such as GetX, Show, MoveTo, and Hide, will correctly
reference the versions appropriate to the type of the object being
dragged. As we saw earlier, the functions Show and Hide that
require special shape-related code can be made virtual. vVe can
then redefine them for any future classes without disturbing the
FIGURES module. This also takes care of MoveTo, since MoveTo
calls the correct Show and Hide (you'll recall that that was our
original motivation for making Show and Hide virtual). GetX and
GetY present no problem: as ordinary member functions inherited
from Point via Location, they simply return the X and Y data
members of the calling object of any derived class, present or
future. Remember, though, that X and Yare protected in
Location, so we must use public derivation as shown.

The next design decision is whether to make Drag virtual. The
litmus test for- making any function virtual is whether its function­
ality is expected to change somewhere down the hierarchy. There
is no golden rule here, but later on we'll discuss the various
tradeoffs: extensibility versus performance overhead (virtual
functions require slightly more memory and a few more
memory-access cycles). We have taken the view that some future
class in, say, a CAD (Computer Aided Design) application might
conceivably need a special dragging action. Perhaps dragging an

Turbo C++ User's Guide

Remember to recompile
everything that uses this

header file.

This code is on your disks:
figures.h.

isometric drawing will require some scaling actions, and so on. In
our new Point class definition in figures.h, we have therefore
made Drag virtual.

class Point : public Location
protected:

Boolean Visible;
pUblic:

};

Point(int InitX, int InitY);
virtual void Show(); II Show and Hide are virtual
virtual void Hide();
Boolean IsVisible() {return Visible;}
void MoveTo(int NewX, int NewY);
virtual void Drag(int DragBy);

Here is the header' file figures.h containing the class declarations
for the FIGURES module. This is the only part of the package that
needs to be distributed in source code form:

II figures.h contains three classes.
II
II Class Location describes screen locations in X and Y
II coordinates.
/!
II Class Point describes whether a point is hidden or visible.
II
II Class Circle describes the radius of a circle around a point.
II
II To use this module, put #include <figures.h> in your main
II source file and compile the source file FIGURES.CPP together
II with your main source file.

enum Boolean {false, true};

class Location
protected:

int X;
int Y;

public:

};

Location(int InitX, iilt InitY) {X = InitX; Y = InitY;}
int GetX() {return X;}
int GetY() {return Y;}

class Point : public Location
protected:

Boolean Visible;
public:

Point(int InitX, int InitY);

Chapter 4, Object-oriented programming with C++ 167

This code is on your disks:
FlGURES.CPP. You should

compile this code and link it
to GRAPHICS.LlB to get

FlGURES.OBJ. You'll need
FlGURES.OBJ for the next

exercise.

168

virtual void Show();
virtual void Hide();

, /1 Show and Hide are virtual

virtual void Drag(int DragBy); II new virtual drag function
Boolean IsVisible() {return Visible;}
void MoveTo(int NewX, int NewY);

};

class Circle: public Point (II Derived from class Point and
I I ultimately from class Location

protected:
int Radius;

public:
Circle(int InitX, int InitY, int InitRadius);
void Show();

};

void Hide();
void Expand(int ExpandBy);
void Contract (int ContractBy);

II prototype of general-purpose, non-member function
II defined in FIGURES.CPP

Boolean GetDelta(int& DeltaX, int& DeltaY);

Here is the file FIGURES.CPP containing the member function
definitions. This is what would be distributed in object or library
form commercially. Note that we have defined the Circle con­
structor outside the class since it invokes base constructors. You
may wish to experiment by making it an inline function (see the
discussion on page 179). The nonmember function GetDelta will.
repay some study if you are new to C. Note the use of reference
arguments, which is a C++ touch; the rest of the code is
traditional. .

II FIGURES.CPP: This file contains the definitions for. the Point
II class (declared in figures.h). Member functions for the
II Location class appear as inline functions in figures.h.

#include "figures.h"
#include <graphics.h>
#include <conio.h>

II member functions for the Point class

Ilconstructor
Point::Point(int InitX, int InitY) : Location (InitX, InitY)
(

Visible = false;

void Point:: Show ()
{

II make invisible by default

Turbo C++ User's Guide

Visible = true;
putpixel(X, Y, getcolor()); II uses default color

void Point::Hide()
{

Visible = false;
putpixel(X, Y, getbkcolor()); II uses background color to erase

void Point: : MoveTo (int NewX, int NewY)
{

Hide () ;
X = NewX;
Y = NewY;
Show() ;

II make current point invisible
II change X and Y coordinates to new location

II show point at new location

II a general-purpose function for getting keyboard
II cursor movement keys (not a member function)

Boolean GetDelta(int& DeltaX, int& DeltaY)
{

char KeyChar;
Boolean Quit;
DeltaX = 0;
DeltaY = 0;

do
{

KeyChar = getch();
if (KeyChar == 13)

return(false);
if (KeyChar == 0)

II read the keystroke
II carriage return

II an extended keycode
{

Quit = true; II assume it is usable
KeyChar = getch(); II get rest of keycode

switch (KeyChar) {
'case 72: DeltaY = -1; break; II down arrow
case 80: DeltaY = 1; break; II up arrow
case 75: DeltaX = -1; break; II left arrow
case 77: DeltaX = 1; break; II right arrow
default: Quit = false; II bad key
};

};

while (!Quit);
return (true) ;

void Point::Drag(int DragBy)
{

int DeltaX, DeltaY;

Chapter 4, Object-oriented programming with C++ 169

170

int FigureX, FigureY;

Show() ;
FigureX = GetX();
FigureY = GetY();

II display figure to be dragged
II get initial position of figure

}

II This is the drag loop
while (GetDelta(DeltaX, DeltaY))

{

II Apply delta to figure at X, Y
FigureX += (DeltaX * DragBy);
FigureY += (DeltaY * DragBy');
MoveTo(FigureX, FigureY); II tell figure to move

};

II Member functions for the Circle class

Ilconstructor
Circle::Circle(int InitX, int InitY, int InitRadius)
InitY)
{

Radius = InitRadius;

void Circle::Show()
{

Visible = true;
circle(X, Y, Radius);

void Circle::Hide()
{

II draw the circle

II to save current color
II set to current color

Point (InitX,

unsigned int TempColor;
TempColor = getcolor();
setcolor(getbkcolor()) ;
Visible = false;
circle(X, Y, Radius);
setcolor(TempColor) ;

II set drawing color to background

II draw in background color to
II set color back to current color

void Circle::Expand(int ExpandBy)
{

Hide () ;
Radius += ExpandBy;
if (Radius < 0)

Radius = 0;
Show() ;

II erase old circle
II expand radius
II avoid negative radius

II draw new circle

void Circle::Contract(int ContractBy)
{

Turbo C++ User's Guide

This code is on your disks as
FIGDEMo.CPP. You need to

compile it and link it to
FlGURES.OBJ.

Expand(-ContractBy); II redraws with (Radius-ContractBy)

We are now ready to test FIGURES by exposing it to a new shape
class called Arc that is defined in FIGDEMO.CPP. Arc is
(naturally) derived publicly from Circle. Recall that Drag is about
to drag a shape it has never seen before!

II FIGDEMO.CPP -- Exercise for Object-oriented programming with Ctt

II demonstrates the Figures toolbox by extending it with
II a new type Arc.

II Link with FIGURES.OBJ and GRAPHICS.LIB

#include "figures.h"
#include <graphics.h>
#include <conio.h>

class Arc : public Circle
int StartAnglei
int EndAnglei

public:
II constructor

};

Arc(int InitX, int Inity, int InitRadius, intInitStartAngle, int
InitEndAngle) : Circle (Initx, Inity, InitRadius) {
StartAngle = InitStartAngle; EndAngle = InitEndAngle;}

void Show(); II these functions are virtual in Point
void Hide();

II Member functions for Arc

void Arc: : Show ()
{

Visible = true;
arc (X, y, Radius,. StartAngle, EndAngle);

void Arc: : Hide ()
{

int TempColor;
TempColor = getcolor();
setcolor (getbkcolor());
Visible = false;
II draw arc in background color to hide it
arc(X, Y, StartAngle, EndAngle, Radius);
setcolor(TempColor) ;

int main() II test the new Arc class
.{

Chapter 4, Object-oriented programming with C++ 171

Ordinary or virtual
member

functions?

int graphdriver = DETECT, graphmode;
initgraph(&graphdriver, &graphmode, "C: .. \\bgi");
Circle ACircle(151, 82, 56);
Arc AnArc(151, 82, 25, 0, 190);

II you first drag an arc using arrow keys (5 pixels per key)
II press Enter when tired of this!
II Now drag a circle (10 pixels per arrow key)
II Press Enter to end FIGDEMO.

AnArc.Drag(5); II drag increment is 5 pixels
AnArc.Hide() ;
ACircle.Drag(10); II now each drag is 10 pixels
closegraph () ;
return 0;

In general, because calling a non-virtual member function is a
little faster than calling a virtual one, we recommend that you use
ordinary member functions when extensibility is not a considera­
tion, but performance is. Use virtual functions otherwise.

To recap our earlier discussion, let's say you are declaring a class
named Base, and within Base you are declaring a member func­
tion named Action. How do you decide whether Action should be
virtual or ordinary? Here's the rule of thumb: Make Action virtual
if there is a possibility that some future class derived from Base
will override Action, and you want that future code to be accessi­
ble to Base. Make Action ordinary if it is evident that for derived
types, Action will perform the same steps (even if this involves
invoking other, virtual, functions); or the derived types will not
make use of Action.

Dynamic objects

172

All the examples shown so far, except for the message array allo­
cation in MCIRCLE.CPP, have had static or automatic objects of
class types that were declared as usual with their memory being
allocated by the compiler at compile time. In this section we look
at objects that are created at run time, with their memory allo­
cated from the system'sfree memory store. The creation of dynamic
objects is an important technique for many programming .
applications where the amount of data to be stored in memory

Turbo C++ User's Guide

To aI/ocate an object from
free store, declare a pointer

to the object's type and
assign the result of the

expression new object_type
to the pointer. ,You can now .

use the pointer to refer to the
newly created object.

You can find this on your
disks: DYNPOINT.CPP. Or use

DYNPOINT.PRJ.

cannot be known before the program is run. An example is a
free-form database program that holds data records of various
sizes in memory for rapid access.

C++ can use the dynamic memory allocation functions of C such
as malloc. However, C++ includes some powerful extensions that
make dynamic allocation and deallocation of objects easier and
more reliable. More importantly, it ensures that constructors and
destructors are called. For example,

Circle *ACircle = new Circle(151,82,50);

Here ACircle, a pointer to type Circle, is given the address of a
block of memory large enough to hold one object of type Circle. In
other words, ACircle now points to a Circle object allocated from
free store. A Circle constructor is then called to initialize the object
according to the arguments supplied.

If you are allocating an array rather than a standard-length data
type, use the optional syntax

new object [size]

For example, to dynamically allocate an array of SO integers called
counts, use

counts = new int [50];

If you wanted to create a dynamic Point class object, you might do
it like this:

II DYNPOINT.CPP -- Exercise in Chapter 5, Getting Started

#include <iostream.h>
#include <graphics.h>
#include <conio.h>
#include "figures.h"

int main()
{

II Assign pointer to dynamically allocated object; call constructor
Point *APoint = new Point(50, 100);

II initialize the graphics system
int graphdriver = DETECT, graphmode;
initgraph(&graphdriver, &grCiphmode, " .. \\bgi");

II Demonstrate the new object
APoint->Show() ;
cout « "Note pixel at (50,100). Now, hit any key ... ";
getch() ;
delete APoint;

Chapter 4, Object-oriented programming with C++ 173

Destructors and
delete

An example of
dynamic object

allocation

174

closegraph()i
return(O) i

. }

Just as you can define a constructor that will be called whenever a
new object of a class is created, you can define a destructor that
will be called when it is time to destroy an object, that is to say,
clear its value and deallocate its memory.

Space for static objects is allocated by the compiler; the construct­
or is called before main and the destructor is called after main.In
the case of auto objects, deallocation occurs when the declaration
goes out of scope (when the enclosing block terminates). Any
destructor you define is called at the time the static or auto objects
is destroyed. (If you haven't defined a destructor, c++ uses an
implicit, or built-in one.)

If you create a dynamic object using the new operator, however,
you are responsible for deallocating it, since C++ has no way of
"knowing" when the object is no longer needed. You use the
delete operator to deallocate the memory. Any destructor you
have defined is called when delete is executed.

The delete operator has the syntax

deiete pointer;

where pointer is the pointer that was used with new to allocate the
memory.

You have seen that a constructor for the class X is identified by
having the same name, viz X::XO. The name of a destructor for
class X is X::-X(). In addition to de allocating memory, destructors
can also perform other appropriate actions, such as writing mem­
ber field data to disk, closing files, and so on.

The next example program provides some practice in the use of
objects allocated dynamically from free store, including the use of
destructors for object deallocation. The program shows how a
linked list of graphics objects might be created in memory and
cleaned up using delete calls when the objects are no longer
required.

Turbo C++ User's Guide

See the next listing for the
declarations of List and

Node.

This code is on your disks as
LIST DEMO, CPP.

Building a linked list of objects requires that each object contain a
pointer to the next object in the list. Type Point contains no such
pointer. The easy way out would be to add a pointer to Point, and
in doing so ensure that all Point's derived types also inherit the
pointer. However, adding anything to Point requires that you
have the source code for Point, and as noted earlier, one advan­
tage of C++ is the ability to extend existing objects without
necessarily being able to recompile them. So for this example
we'll pretend that we don't have the source code to Point and
show how you can extend the graphics tool kit anyway.

One of the many solutions that requires no changes to Point is to
create a new class not derived from Point. Typ~ List is a very
simple class whose purpose is to head up a list of Point objects.
Because Point contains no pointer to the next object in the list, a
simple struct, Node, provides that service. Node is even simpler
than List, in that it has no member functions and contains no data
except a pointer to type Point and a pointer to the next node in the
list.

List has a member function that allows it to add new figures to its
linked list of Node records by inserting a new Node object imme­
diately after itself, as a referent to its Nodes pointer member. The
Add member function takes a pointer to a Point object, rather than
a Point object itself. Remember that rules for the class hierarchy in
C++ allows pointers to any type publicly derived from Point to be
passed in the Item argument to List::Add.

Program ListDemo declares a static variable, AList, of type List,
and builds a linked list with three nodes. Each node points to a
different graphics figure that is either a Point or one of its derived
classes. The number of bytes of free storage space is reported be­
fore any of the dynamic objects are created, and then again after
all have been created. Finally, the whole structure, including the
three Node records and the three Point objects, is cleaned up and
removed from memory, thanks to the destructor for the List class
called automatically for its object AList.

II LISTDEMO.CPP--Example from Object-oriented programming with c++

II LISTDEMO.CPP Demonstrates dynamic objects

II Link with FIGURES.OBJ and GRAPHICS.LIB

#include <conio.h>
#include <alloc.h>
#include <stdlib.h>

I I for getch ()
II for coreleft()
I i for itoa ()

Chapter 4, Object-oriented programming with C++ 175

176

#include <string.h>
#include <graphics.h>
#include "figures.h"

class Arc : public Circle
int StartAngle, EndAngle;

public:
II constructor

1/ for strcpy ()

Arc(int InitX, int Inity, int InitRadius, int InitStartAngle,

};

int InitEndAngle);
II virtual functions
void Show () ;
void Hide();

II the list item struct Node
Point *Item;
Node *Next;

II can be Point or any class derived from Point
II point to next Node object

};

class List {
Node *Nodes;

public:

II the list of objects pointed to by nodes
II points to a node

};

II constructor
List () ;

. I I destructor
-List () ;
II add an item to list
void Add(Point *Newltem);
II list the items
void Report();

II definitions for standalone functions

void OutTextLn(char *TheText)
{

outtext(TheText);
moveto(O, gety() + 12); II move to equivalent of next line

void MemStatus(char *StatusMessage)
{

unsigned long MemLeft; II to match type returned by
II coreleft()

char CharString[12l; II temp string to send to outtext()
outtext(StatusMessage) ;
MemLeft = long (coreleft());

II convert result to string with ltoa then copy into
II temporary string
Itoa(MemLeft, CharString, 10);

Turbo C++ User's Guide

OutTextLn(CharString);

II member functions for Arc class

Arc: :Arc(int InitX, int InitY, int InitRadius, int InitStartAngle,
int InitEndAngle) : Circle (InitX, InitY,InitRadius)

II calls Circle
II constructor

StartAngle = InitStartAngle;
EndAngle = InitEndAngle;

void Arc:: Show ()
{

Visible = true;
arc(X, Y, StartAngle, EndAngle, Radius);

void Arc: : Hide ()
{

unsigned TempColor;
TempColor = getcolor();
setcolor(getbkcolor());
Visible = false;
arc(X, Y, StartAngle, EndAngle, Radius);
setcolor(TempColor) ;

II member functions for List class

List: : List () {
Node *N;
N = new Node;
N->Item = NULL;
N->Next = NULL;
Nodes = NULL;

List: : -List ()
{

while (Nodes != NULL)
Node *N = Nodes;
delete (N->Item) ;
Nodes = N->Next;

delete N;
} ;

II sets node pointer to "empty"
II because nothing in list yet

II destructor

II until end of list
II get node pointed to
II delete ite~s memory
II point to next node

'II delete pointer's memory

void List::Add(Point *NewItem)
{

Chapter 4, Object-oriented programming with C++ 177

178

Node *N;
N = new Node;
N->Item = Newltem;
N->Next = Nodes;
Nodes = N;

II N is pointer to a node
II create a new node
II store pointer to object in node
II next item points to current list pos
II last item in list now points
II to this node

void List: :Report()
{

char TempString[12];
Node *Current = Nodes;
while (Current != NULL)
{

};

II get X value of item in current node and convert to string
itoa(Current->Item->GetX(), TempString, 10);
outtext ("X = ");
OutTextLn(TempString);
II do the same thing for the Y value
itoa(Current->Item->Gety(), TempString, 10);
outtext ("Y = ");

OutTextLn(TempString);
II point to the next node
Current = Current->Next;

void setlist(void);

II Main program
main()
{

int graphdriver = DETECT, graphmode;
initgraph(&graphdriver, &graphmode, "C: .. \\bgi");

MemStatus("Free memory before list is allocated: ");
setlist () ;
MemStatus("Free memory after List destructor: ");
getch() ;
closegraph();

void setlist() {

II declare a list (calls List constructor)
List'AList;

II create and add several figures to the list
Arc *Arc1 = new Arc(151, 82, 25, 200, 330);
AList.Add(Arc1);
MemStatus ("Free memory after adding arel: ");
Circle *Circle1 = new Circle(200, 80, 40);

Turbo C++ User's Guide

AList.Add(Circlel) ;
MemStatus("Free memory after adding circlel: ");
Circle *Circle2 = new Circle(305, 136, 35);
AList.Add(Circle2) ;
MemStatus("Free memory after adding circle2: ");
II traverse list and display X, Y of the list's figures
AList.Report();
II The 3 Alist nodes and the Arc and Circle objects will be
II deallocated automatically by their destructors when they
II go out of scope in main(). Arc and Circle use implicit
II destructors in contrast to the explicit -List destructor.
II However, you could delete explicitly here if you wish:
II delete Arcl; delete Circlel; delete Circle2;
getch(); II wait for a keypress
return;

Once you have mastered LISTDEMO.CPP, you might wish to
develop a more satisfying solution based on the following idea:
define a new class called PointList by multiple inheritance from
classes Point and List.

More flexibility in C++

None of these features are
essential to understanding

C++, but they can add to its
flexibility and power.

Inline functions
outside class

definitions

Although it will take you some time to master the nuances of this
new style of programming, you have now learned the essential
elements of C++. There are a number of additional features that
we touch on briefly here so that you will know what they are and
how to use them.

• Inline functions outside class definitions

• Default function arguments

• Overloading functions and multiple constructors

• Friend functions-another way of providing access to a class

• Overloading operators to provide new meanings

• More about C++ I/O and the streams library

You have already seen that you can include an in line definition of
a member function within the class declaration as shown here
with the Point class:

Chapter 4, Object-oriented programming with C++ 179

Remember that inline code is
enclosed in braces.

Functions with
default

arguments
If you plan to use certain

values offen for a function,
use those values as default
arguments for the function.

180

Default values must be
specified the first time the

function name is given.

II define Point class class Point:
int X; II these are private by default
int Y;

public: II public member functions
Point(int InitX, int InitY) {X = InitX, Y = InitY;}
int GetX(void) {return X;}
int GetY(void) {return Y;}

};

All three member functions of the Point class are defined inline,
so no separate definition is necessary. For functions with only a
line or so of code, this provides a more compact, easier to read
description of the class.

Functions can also be declared as inline. The only difference is that
you have to start the function declaration with the keyword
inline. For example, in LISTDEMO.CPP,there is an operation that
simply moves the output location for text in graphics mode down
one line (it is used in the function OutTextLn). If this function
were to be used in many other places in the code, it would be
more efficient to declare it as a separate inline function:

inline void graphLn() { moveto(O, gety() + 12); }

If you wish, you can format your inline definitions to look more
like a regular function definition:

inline void graphLn()
{

moveto(O, gety() + 12);

Another advantage to using the inline keyword is that you can
avoid revealing your implementation code in the distributed
header files.

You can define functions that you can call with fewer arguments
than defined. The arguments that you don't supply are given de­
fault values. If you are going to be using these default values most
of the time, such an Habbreviated" call saves typing. You don't
lose flexibility, because when you want to override the defaults,
you simply specify the values you want.

For example, the following version of the constructor for the Circle
class gives a default circle of radius 50 pixels centered at (X = 200,
Y = 200). A more portable program, of course, would have to

Turbo C++ User's Guide

As with ANSI C, C++ allows
functions to have a variable
number of arguments, such

as float average(int
number I •••), which can
take one or more integer

values. See Chapter 11 for
details.

More about
overloading

functions

determine the graphics hardware available and adjust these
values accordingly.

class Circle: public Point { II Derived from class Point and
II ultimately from class Location

protected:
int Radius;

pUblic:

};

Circle(int InitX = 200, int Inity = 200, int InitRadius = 50);
void Show(void)i
void Hide (void) ;
void Expand(int ExpandBy);
void Contract(int ContractBy);

Now the declaration

Circle ACircle;

gives you a circle with the default center at (200,200) and radius
50. The declaration

Circle ACircle(50, 100);

gives a circle with center at 50, 100, with the default radius of 50.

The declaration

Circle ACircle(300)

gives a circle at X = 300, with default Y = 200 and radius = 50.

Any default arguments must be in consecutive rightmost posi­
tions in the argument list. For example, you couldn't declare.

void func(int a = 10, int b, int c)

because the compiler wouldn't know which values are being
supplied. You could declare

void func(int a, int b, int c = 10)

Overloading is an important concept in C++. When several
different functions (whether member functions or ordinary) are
defined with the same name within the same scope, they are said
to be overloaded. You have met several such cases; for example,
the three functions called cube() on page 133. (Earlier versions of
C++ required that such declarations be preceded by the keyword
overload, but this is now obsolete.)

Chapter 4, Object-oriented programming with C++ 181

You can load and run
STRING. CPP from the IDE.

After running it, you'll have to
activate the User Screen to
see the output. Use the hot

key Alt-FS or the Window I User
Screen menu item.

182

The basic idea is that overloaded function calls are distinguished
by comparing the types of the actual arguments in the call and the
formal argument signatures in the function definitions. The actual
rules for disambiguation are beyond the scope of a primer and
should rarely affect the beginner (who is hereby cautioned against
the rash replication of function names). Among the possible com­
plications are functions called with default actual arguments, or
with a variable numbers of arguments; also, there are the normal
C conversions of argument type to be considered, together with
additional type conversions peculiar to C++. When faced with a
call to a heavily overloaded function, the compiler tries to find a
best match. If there is no best match, a compiler error results.

One of the most common cases is overloading a constructor so as
to provide several different ways to create a new object of a class.
To illustrate this, .we will define a very simple String class.

IISTRING.CPP--Example from Chapter 5 of Getting Started *1

#include <iostream.h>
#include <string.h>

class String {
char *char-ptr; II pointer to string contents
int length; II length of string in characters

public:

};

II three different constructors
String(char *text) i II constructor using existing string
String(int size = 80); II creates default empty string
String(String& Other_String); II for assignment from another

II object of this class
-String() {delete char-ptr;};
int Get_len (void);
void Show (void);

String::String (char *text)
{

};

length = strlen(text); II get length of text
char-ptr = new char[length + ll;
strcpy(char-ptr, text);

String::String (int size)
{

} ;

length = size;
char-ptr = new char [length+ll ;
*char-ptr = '\0';

Turbo C++ User's Guide

When calling a constructor
with no arguments (or when
accepting all default argu­

ments), don't put empty
parentheses after the name
of the object. For example,
declare String BString,.,

not String BString () i.

String::String (String& Other_String)
{

};

length = Other_String. length; II length of other string
char-ptr = new char [length + 1]; . II allocate the memory
strcpy (char-ptr, Other_String.char-ptr); II copy the text

int String::Get_len(void)
{

return (length);
};

void String::Show(void)
{

cout « char-ptr « "\n";
};

main ()
{

II test the functions

String AString ("Allocated from a constant string.");
AString. Show () ;

String BString; II uses default length
cout « "\n" « BString. Get_len () « "\n" ; I I display length
BString = "This is BString";

String CString(BString);
CString.Show() ;

II invokes the third constructor
II note its contents

The class String has three different constructors. The first takes an
ordinary string constant such as "This is a string" and initializes a
string with these contents. The second constructor uses a default
length of 80, and allocates the string without storing any charac­
ters in it (this might be used t~ create a temporary buffer). Note
that you can override the default simply by calling the constructor
with a different length: Instead of declaring String AString, you
could declare, for example, String AString (40) .

The third constructor takes a reference to another object of type
String (recall that the ampersand after a type means a reference to
that type, and is used to pass the address of a variable rather than
a copy of its contents.) With this constructor you can now write
statements such as these:

String AString("This is the first string"); II create and initialize
String BString ~ Astring; II create then assign BString from AString

Note that constructors are involved in three related but separate
aspects of an object's life story: creation, initialization, and assign­
ment. The use of the = operator for class assignments leads us

Chapter 4, Object-oriented programming with C++ 183

Overloading
operators to
provide new

meanings

Whitespace is okay between
the keyword operator and

the operator symbol.

184

nicely to our next topic, operator overloading. Unless you define a
special = operator for a class, C++ defaults to a member-by":,,
member assignment. .

C++ has a special feature found in few other languages: existing
operators such as + can be given new definitions to make them
work in an appropriate, user-defined manner with your own class
objects. Operators are a very concise way of doing business. If you
didn't have them, an expression such as line * width': pos would
have to be written something like this: add (mul t (1 ine I width) I pos) .
Fortunately, the arithmetic operators in C (and C++) already
know how to work with all of the numeric data types - the same
+ that works with int values also works with float; for example.
The same operator is used, but the code generated is clearly
different, since integers and floating-point numbers are
represented differently in memory. In other words, operators
such as + are already overloaded, even in regular C. C++ simply
extends this idea to allow user-defined versions of the existing op-
erators. .

To define an operator, you define a function that has as its name
the keyword operator followed by the operator symbol. (So, for
example, operatort names a new version of the + operator.) All
operator functions are by definition overloaded: They use an op­
erator that already has a meaning in C, but they redefine it for use
with a new data type. The + operator, for example, already has the
capability to add two values of any of the standard numeric types
(int, float, double, and so on).

Now we can add a + operator to the String class. This operator·
will concatenate two string objects (as in BASIC) returning the
result as a string object with the appropriate length and contents.
Since concatenating is "adding together," the + symbol is the ap­
propriate one to use. The BASIC lobby often criticizes C for not
having such natural string operations. With C++, you can go far
beyond the built-in BASIC string facilities .

. The file XSTRING.CPP, available on your distribution disks, has
the following additions to STRING.CPP to provide a simple
operator +.

IIXSTRING.CPP--Example from Object-oriented programming with Ctt
II version of STRING.CPP with overloaded operator +

#include <iostream.h>

Turbo C++ User's Guide

#include <string.h>

class String {
char *char-ptr;
int length;

pUblic:

II pointer to string contents
II length of string in characters

II three different constructors
String(char *text); II
String(int size = 80); II

constructor using existing string
creates default empty string

};

String(String& Other_String); II

-String() {delete char-ptr;}i
int Get_len (void);

II
II

String operator+ (String& Arg) ;
void Show (void);

for assignment from another
object of this class
inline destructor

String::String (char *text)
{

};

length = strlen(text); II get length of text
char-ptr = new char[length + 11;
strcpy(char-ptr, text);

String::String (int size)
{

};

length = size;
char-ptr = new char[length+11;
*char-ptr '\0';

String::String (String& Other_String)
{

};

length = Other_String. length; II length of other string
char-ptr = new char [length + 11; II allocate the memory
strcpy (char-ptr, Other_String.char_ptr); II copy the text

StringString::operator+ (String& Arg)
{

String Temp (length + Arg . length);
strcpy(Temp.char-ptr, char~tr);
strcat(Temp.char-ptr, Arg.char-ptr)i
return Temp;

int String::Get_len(void)
{

return (length) i
};

void String::Show(void)

Chapter 4, Object-oriented programming with C++ 185

To see this display from the
IDE, press Alt-FS or Window I

User.

186

cout « char-ptr « "\n";
};

main ()
{

II test the functions

String AString ("The Quick Brown fox");
AString. Show ()~;

String BString (" jumps over Bill");
String CString;
CString = AString + BString;
CString.Show() ;

When you run the program, CString is assigned the concatenation
of the two strings AString and BString. So CString.Show() displays

The Quick Brown Fox jumps over Bill

The overloaded + takes only one explicit argument, so you may
wonder how it manages to concatenate two strings. Well, the
compiler treats the expression AString + BString as

AString. (operator +(BString))

so the + operator does access two string objects. The first is the
String object currently being referenced, and the otheris a second
string object. The operator function adds the lengths of the two
strings together, then uses the strcat library function to combine
the contents of the two strings, which is then returned. This re­
markable trick makes use of a "hidden" pointer known as this.
What is this?

Every call by a member function sets up a pointer to the object
upon which the call is acting. This pointer can be referred via the
keyword this (also known as "self" or rather "pointer-to-self" in
OOP parlance), allowing functions to access the actual object.
Now this is of type "pointer to String", so the return value must
be *this, the actual current object, is exactly what is needed. Note,
too, that individual members of the object involved in a function
call can be referenced via the expression this->member. A further
point to watch: this is available only to member functions, not to
friend functions. '

There are some restrictions when overloading operators:

• c++ can't distinguish between the prefix and postfix versions of
++ and--. '

Turbo C++ User's Guide

friend functions

The position of the decla­
ration doesn't matter.

• The operator you wish to define must already exist in the
language. For example, you can't define the operator #.

• You can't overload the following operators:

•. * :: ?:

• Overloaded operators keep their original precedence.

• If @ stands for any unary operator, the expressions @x and x@
may be interpreted as either x.operator@() or as operator@(x).
If both forms have been declared, the compiler will try to
resolve the ambiguity by matching the arguments. Similarly,
with an overloaded binary operator, @, x@y could mean either
x.operator@(y) or operator@(x,y), and the compiler needs to
look at the arguments if both forms have been defined. You saw
an example of a binary operator in the string version of +,
where AString + BString was interpreted as AString . (operator
+ (BString)).

Normally, access to the private members of a class is restricted to
member functions of that class. Occasionally it may be necessary
to give outside functions access to the class's private data. The
friend declaration within a class declaration lets you specify out­
side functions (or even outside classes) that will be granted access
to the declared class's private members. You'll sometimes see an
overloaded operator declared as a friend, but generally speaking
friend functions are to be used sparingly-if their need persists in
your project, it is often a sign that your class hierarchy needs
revamping.

But, suppose that there is a fansy formatted printing function
called Fancy_Print that you want to have access to the contents of
your objects of class String~ You can add the following line to the
list of member function declarations:

class String {

friend v:oid Fancy_Print (String& AString);

In this admittedly artificial example, the Fancy_Print function can
access the members char _ptr and length of objects of the String
class. That is, if AString is a string object, Fancy_Print can access
AString. char_ptr and AString . length.

Chapter 4, Object-oriented programming with C++ 187

The C++ streams
libraries

This section is intended
merely to whet your appetite

and point you in the right
direction. We encourage you

to study the examples in
Chapter 76, "Using C++

streams, // and experiment on
your own.

If the Fancy_Print function is a member of another class (for ex­
ample, the class Format), use the scope resolution operator in the
friend declaration:

friend void Format: : Fancy_Print (String& AString);

You can also make a whole class the friend of the declared class,
by using the word class in the declaration:

friend class Format;

Now any member function of the Format class can access the
private members of the String class. Note that in C++, as in life,
friendship is not transitive: if X is a friend of V, and V is a friend of
Z, it does not follow that X is a friend of Z.

The friend declaration should be used only when it is really neces­
sary; when without it you would have to have a convoluted class
hierarchy. By its nature, the friend declaration diminishes encap­
sulation and modularity. In particular, if you find yourself
wanting to make a whole class the friend of another class, con­
sider instead the possibility of deriving a common derived class
and using it to access the needed members.

While all the stdio library I/O functions (such as printf and scanf)
are still available, C++ also provides a group of classes and func­
tions for I/O defined in the iostreams library. To access these,
your program must have the directive #include <iostream.h>, as
you may have noticed in some of our examples.

There are many advantages in using iostreams rather than stdio.
The syntax is simpler, more elegant, and more intuitive. The C++
stream mechanism is also more efficient and flexible. Formatting
output, for example, is simplified by extensive use of overloading.
The same operator can be used to output both predefined and
user-defined data types, avoiding the complexities of the printf
argument list.

Starting with the stream as an abstraction for modeling any flow
of data from a source (or producer) to a sink (or consumer),
iostream provides a rich hierarchy of classes for handling buf­
fered, and unbuffered I/O for files and devices.

.. Turbo C++ also supports the older (version l.x) C++ stream
library to assist programmers during the transition to the new
iostream library of C++ release 2.1. If you have any C++ code that

188 Turbo C++ User's Guide

uses the obsolete stream classes, you can still maintain and run it
with Turbo C++. However, given a choice, you should convert tq
the more efficient iostream and avoid stream when writing new
code. Chapter 16, "Using C++ streams," explains the differences
between the stream and iostream libraries, and provides some
hint~ on conversion. See also OLDSTR.DOC on your distribution
disks.

In this section we cover only the simpler classes in iostream. For a
more detailed account, you should read Chapter 16, "Using C++
streams." You can also browse through iostream.h on your
distribution disks to see the many classes defined there and how
they are derived using both single and multiple inheritance.

Standard I/O C++ provides four predefined stream objects defined as follows:

• cin Standard input, usually the keyboard, corre­
sponding to stdin in C

• cout Standard output, usually the screen, correspond­
ing to stdout in C

• cerr Standard error output, usually the screen, corre­
sponding to stderr in C

• clog A fully-buffered version of cerr (no C
equivalent)

You can redirect these standard streams from and to other devices
and files. (In C, you can redirect only stdin and stdout.) You have
already seen the most common of these, cin and cout, in some of
the examples in this chapter.

A simplified view of the iostream hierarchy, from primitive to
specialized, is as follows:

• streambuf

• istream

.ostream

• iostream

• istream_withassign

Chapter 4, Object-oriented programming with C++

Provides methods for memory buffers
Handles stream state variables and
errors
Handles formatted and unformatted
character conversions from a streambuf
Handles formatted and unformatted
character conversions to a streambuf
Combines istream and ostream to
handle bidirectional operations on a
single stream ,
Provides constructors and assignment
operators for the cin stream

189

« used with streams is called
the insertion or put to

operator, while » is called
the extraction or get from

. operator.

This program simply stores
each input character in the

variable ch and then outputs
the value of ch to the

screen.

190

.ostream_withassign Provides constructors and assignment
operators for the cout, cerr and clog
streams

The istream class includes overloaded definitions for the » oper­
ator for the standard types [int, long, double, float, char, and
char* (string)]. Thus the statement cin » Xi calls the appropriate
» operator function for the istream cin defined in iostream.h and
uses it to direct this input stream into the memory location repre­
sented by the variable x. Similarly, the ostream class has over­
loaded definitions for the « operator, which allows the statement
cout «Xi to send the value of x to ostream cout for output.

These operator functions return a reference to the appropriate
stream class type (for example, ostream&) in addition to moving
the data; This allows you to chain seyeral of these operators
together to output or input sequences of characters:

int i=O, x=243i double d=Oi
cout « "The value of x is " « x « '\n'i
cin » i » di II key an int, space, then a double

The second line would display "The value of x is 243" followed by
a new line. The next statement would ignore whitespace, read and
convert the keyed characters to an integer and place it in i, ignore
following whitespace, read and convert the next keyed characters
to a double ar;d place it Lrt d.

The following program simply copies cin to cout. In the absence
of redirection, it copies your keyboard input to the screen:

II COPYKBD.CPP Copies keyboard input to screen

#include <iostream.h>

int main (void)
{

char Chi
while (cin » ch)

cout « Chi

Note how you can test (cin »ch) as a normal Boolean expression.
This useful trick is made possible by definitions in the class ios.
Briefly, an expression such as (cout) or "(cin > > ch) is cast as a
pointer, the value of which depends on the error state of the
stream. A null pointer (tested as false) indicates an error in the
stream, while a non-null pointer (tested as true) means no errors.

Turbo C++ User's Guide

You can also reverse the test using !, so that ([caut) is true for an
error in the cout stream and false if all is well:

if (! cout) errmsg ("output error!");

Formatted output Simple I/O in C++ is efficient because only minimal conversion is
done according to the data type involved. For integers, conversion
is the same as the default for printf. The statements

int i=5; cout « i;

and

int i=5; printf("%d~,i);

give the same result.

Formatting is determined by a set of format state flags enumera­
ted in ios. These determine, for each active stream, the conversion
base (decimal, octal, and hexadecimal), padding left or right, the
floating-point format (scientific or fixed), and whether whitespace
is to be skipped on input. Other parameters you can vary include
field width (for output) and the character used for padding. These
flags can be tested, set, and cleared by various member functions.
The following snippet shows how the functions ios: :width and
ios::fill work:

int previous_width, i = 87;
previous_width = cout.width(7); II set field width to 7

couto fill (' *') ;
II and save previous width
II set fill character to *

cout « i « '\n'; II display *****87 <newline>
II after « the width is cleared to 0
II previous width may have been set without a subsequent «
II so you may want to restore it with the following line.
cout.width(previous_width) ;

Setting width to zero (the default) means that the display will take
as many screen positions as needed. If the given width is insuffi­
cient for the correct representation, a width of zero is assumed
(that is, there is no truncation). Default padding gives right
justification (left padding) for all types.

setfand unsetf are two general functions for setting and clearing
format flags:

cout.setf(ios::left, ios::adjustfield);

This sets left padding. The first argument uses enumerated mne­
monics for the various bit positions (possibly combined using &

Chapter 4, Object-oriented programming with C++ 191

192

and I), and the second argument is the target field in the format
state. unsetf works the same way but clears the selected bits.
(More on these in Chapter 16, "Using C++ streams.")

Manipulators

A rather more elegant way of setting the format flags (and per­
forming other stream chores) uses special mechanisms known as
manipulators. Like the« and» operators, manipulators can be
embedded in a chain of stream operations:

cout «/setw(7) « dec « i « setw(6) « oct « ji

Without manipulators, this would take six separate statements.

The parameterized manipulator setw takes a single int argument to
set the field width.

The non-parameterized manipulators, such as dec, oct, and hex,
set the conversion base to decimal, octal, and hexadecimal. In the
above example, int i would display in decimal on a field of width
7; int j would display in octal on a field of width 6.

Other simple parameterized manipulators include setbase, setfill,
setprecision, setiosflags, and resetiosflags. To use any of the
parameterized\manipulators, your program must include both of
these header files: iomanip.h and iostream.h. Non-parameterized
manipulators do not require iomanip.h.

Useful non-parameterized manipulators include:

• ws (whitespace extractor): istniam » ws; discards any
whitespace in istream.

• endl (endline and flush): ostream « endl; inserts a newline in
ostream, then flush the ostream.

• ends (end string with null): ostream « ends; appends a null to
ostream.

• flush (flush output stream): ostream « flush; flushes the
ostream.

put, write, and get

Two general output functions are worthy of mention: put and
write, declared in ostream as follows:

ostream& ostream: :put (char ch) i

II send ch to ostream

Turbo C++ User's Guide

ostream& ostream::write(const char* buff, int n);
II send n characters from buff to ostream; watch the size of n!

put and write let you output unformatted binary data to an
ostream object. put outputs a single character, while write can
send any number of characters from the indicated buffer. write is
useful when you want to output raw data that may include nulls.
(Note that writing binary data requires that the file be opened in
binary mode.) The normal string extractor would not work since
it terminates on a nulL

The input version of put is called get:

chat chi
cin.get (ch);
II grab next char from cin whether whitespace or not

Another version of get lets you grab any number of raw, binary
characters from an istream, up to a designated maximum, and
place them in a designated buffer (as with write, files must be
opened in binary mode):

istream& istream::get(char *buf, int max, int term='\n');
II read up to max chars from istream, and place them in buf. Stop if
II term char is read.

You can set term to a specific terminating character (the default is
the newline character), atwhich get will stop if reached before
max characters have been transferred to buf

Disk I/O The iostream library includes many classes derived from
streambuf, ostream, and istream, thereby allowing a wide choice
of file I/O methods. The filebuf class, for example, supports I/O
through file descriptors with member functions for opening,
closing, and seeking. Contrast this with the class stdiobuf that
supports I/O via stdio FILE structures, allowing some
compatibility when you need to mix C and C++ code.

This code is available as
DCOPY.CPP.

The most generally useful classes for the beginner are ifstream
(derived from istream), of stream (derived from ostream), and
fstream (derived from iostream). These all support formatted file
I/O using filebuf objects. Here's a simple example that copies an
existing disk file to another specified file:

II DCOPY.CPP-- Example from Object'-oriented programming with c++

II DCOPY source-file destination-file
II copies existing source-file to destination-file
II If latter exists, it is overwritten; if it does not

Chapter 4, Object-oriented programming with C++ 193

194

II exist, DCOPY will create it if possible
*1

I I for exit ()
#include <iostream.h>
#include <process.h>
#include <fstream.h> II for ifstream, of stream

main(int argc, char* argyl]) II access command-line arguments
{

char Chi
if (argc ! = 3)
{

II test number of arguments

cerr « "USAGE: dcopy filel file2\n";
exit(-l) ;

ifstream source;
of stream dest;

II declare input and output streams

source.open(argv[l],ios::nocreate); II source file must be there
if (! source)
{

cerr « "Cannot open source file " « argv[l] «
" for input\n";

exit(-l);

dest.open(argv[2]); II dest file will be created if not found
I I or cleared/overwritten if found

if (!dest)
{

cerr « "Cannot open destination file " « argv[2] «
" for output\n";

exit(-l) ;

while (dest && source.get(ch)) dest.put(ch);

cout « "DCOPY completed\n";

source.close() ;
dest.close() ;

II close both streams

Note first that #include dstream> also pulls in iostream.h. DCOPY
uses the standard method of accessing command-line arguments
to check whether the user specified the two files involved. When
this argument list is used with the main function, the argument
argc contains the number of command-line arguments (including
the name of the program itself), and the strings argv[l] and argv[2]

. contain the two file names entered. A typical command-line
invocation of this program would be

Turbo C++ User's Guide

dcopy letter.spr letter.bak

To see how DCOPY works, examine the following lines:

ifstream source; II declare an input stream (ifstream object)

open. source (argv[l] ,ios: :nocreate); II source file must be there

The declaration invokes a constructor of ifstream (the class for
handling input file streams) to create a stream object called source.
Before we can make use of source, we must create a file buffer and
associate the stream and buffer with a real, physical file. Both
tasks are performed by the member function open in ifstream.
The open function needs a file name string and, optionally, one or
two other arguments to specify the mode and protection rights.
The file name here is given as argv[l], namely, the source file
supplied in the command line.

A neater alternative to the above declaration is:

ifstream source(argv[l],ios::riocreate); II source file must be there
II this creates source and opens the file as well

The mode argument ios::nocreate tells open not to create a file if
the named file is not found. For DCOPY, we clearly want open to
fail if the named source file is not on the disk. Later, you'll see the
other mode arguments available. If the file argv[l] cannot be
opened for any reason (usually because the file is not found), the
value of source is effectively set to zero (false), S9 that (! source)
tests true, giving us an error message, then exiting.

In fact, we could determine the possible reason for the failure to
open the source file by examining the error bits set in the stream
state. The member functions eof, fail, and bad test various error
bits and return true if they are set. Alternatively, rdstate returns
the error state in an int, and you can then test which bits are set.
The eof (end of file) is not really an error per se, but it needs to be
tested and acted upon since a stream cannot be usefully accessed
beyond its final character. Note that once a stream is in an error
state (including eof), no further I/O is permitted. The function
clear is provided for clearing some or all error bits, allowing you
to resume after clearing a nonfatal situation.

Back in DCOPY.CPP, if all is well with the source file, we then try
to open the destination file with the of stream object, dest. With
output files, the default situation is that a file will be created if it
does not exist; if it exists it will be cleared and recreated as an

Chapter 4, Object-oriented programming with C++ 195

When C tests (x && y), it will
not bother to test y if x proves

false. Since dest is less likely
to "fai/" than source.get(ch),
you might consider reversing

the entries.

empty file. You can modify this behavior by adding a second
argument, mode, to the declaration of dest. For example,

of stream dest (argv [2], ios: : app I ios: :nocreate) ;

will try to open dest in append mode, failing if dest is not found. In
append mode, the data in the source file would be added to the
end of dest, leaving the previous contents undisturbed. Other
mode flags enumerated in class ios (note the scope operator in
ios::app), are ate (seek to end of file); in (open for input, used
with fstreams, since they can be opened for both input and
output); out (open for output, also used with fstreams); trunc
(discard contents if file exists); n
oreplace (fail if file exists).

Once both files have been opened, the actual copying is achieved
in typically condensed C fashion. Consider the Boolean expres­
sion tested by the while loop:

(dest && source.get(ch))

We have seen that dest will test true until an error occurs.
Similarly the call source.get(ch) will test true until either a reading
error occurs or until the end of the file is reached. In the absence
of "hard" errors, then, the loop gets characters from source and
puts them in dest until an end of file situation makes source false.

There are many more file 1/ 0 features in the iostream library,
And iostream can also help you with in-memory formatting,
where your streams are in RAM. Special classes, such as
strstreambuf, are provided for in-memory stream manipulation.

I/O for user-defined data types

196

A real benefit with C++ streams is the ease with which you can
overload » and « to handle IIO for your own personal data
types. Consider a simple data structure that you may have
declared:

struct emp {
char *name;
int dept;
long sales;

};

Turbo C++ User's Guide

Where to now?

To overload« to output objects of type emp, you need the
following definition:

ostream& operator « (ostream& str, emp& e)
{

str « setw(25) « e.name « ": Department" « setw(6) « e.dept «
« tab « " Sales $" « e.sales « '\n';
return str;

Note that the operator-function « must return ostream&, a
reference to ostream, so that you can chain your new « just like
the predefined insertion operator. You can now output objects of
type emp as follows:

#include <iostream.h>
#include <iomanip.h> II don't forget this!

emp jones = {"S. Jones", 25, 1000};
cout « jones;

giving the display

S. Jones: Department 25 Sales $1000

Did you spot the manipulator tab in the« definition? This is not
a standard manipulator-but a user-defined one:

ostream& tab(ostream& str)
return str « '\t';

This, of course, is trivial, but nevertheless makes for more legible
code.

An input routine for emp can be similarly devised by overloading
». This is left as an exerdse for the reader.

A suggestion for your first C++ project is to take the FIGURES
module shown on page 167 (you have it on disk) and extend it.
Points, circles, and arcs are by no means enough. Create objects
for lines, rectangles, and squares. When you're feeling more
ambitious, create a pie-chart object using a linked list of indivi­
dual pie-slice figures.

Chapter 4, Object-oriented programming with C++ 197

Conclusion

198

One more subtle challenge is to implement classes to ha:t;ldle
relative position. A relative position is an offset from some base
point, expressed as a positive or negative difference. A point at
relative coordinates -17,42 is 17 pixels to the left of the base point,
and 42 pixels down from that,base point. Relative positions are
necessary to combine figures effectively into single larger figures,
since multiple-figure combinations cannot always be tied together
at each figure's anchor point. Better to define an RX and RY field
in addition to anchor point X,Y, and have the final position of the
object onscreen be the sum of its anchor point and relative
coordinates.

Once you feel comfortable with C++, start building its concepts
into your everyday programming chores. Take some of your more
useful existing utilities and rethink them in C++ terms. Try to see
the classes in your hodgepodge of function libraries-then rewrite
the functions in class form. You'll find that libraries of classes are
much easier to reuse in future projects. Very little of your initial
investment in programming effort will ever be wasted. You will
rarely have to rewrite a class from scratch. If it will serve as is, use
it. If it lacks something, extend it. But if it works well, there's no
reason to throwaway any of what's there.

c++ is a direct response to the complexity of modern applications,
complexity that has often made many programmers throw up
their hands in despair. Inheritance and encapsulation are extreme~
ly effective means for managing complexity. C++ imposes a
rational order on software structures that, like a taxonomy chart,
imposes order without imposing limits.

Add to that the promise of the extensibility and reusability of
existing code, and you not only have a toolkit-you have tools to
build new tools!

Turbo C++ User's Guide

c H

This chapter is a concise,
hands-on tutorial for C++.

Important!

Chapter 5, Hands-on C++

A T E R

5

Hands-on C++

In order to give you a sense of how C++ looks and how to accom­
plish tasks in C++, this chapter moves quickly through a large
number of concepts with a mfuimum of verbiage. It is intended to
be used as you work at your computer; you can load and run each
of these programs (which are in your EXAMPLES subdirectory,
along with any header and other files that you'll need). If you
want a more in-depth treatment of C++, especially of the concepts
underlying object-oriented programming, read Chapter 4,
"Object-oriented programming with C++." You might also want
to refer to Chapter 13,"C++ specifics," for precise details about
the syntax and use of C++.

In this chapter, we assume that you are familiar with the C lan­
guage, and that you know how to compile, link, and execute a
source program with Turbo C++. We start with simple examples
that grow in complexity so that new concepts will stand out. It is
reasonable that such examples will not be bulletproof (in other
words, they don't check for memory failure and so on). This
chapter is not a treatise on data structures or professional pro­
gramming techniques; instead, it is a gentle introduction to a
complicated language.

This chapter is divided into two sections. The first section pro­
vides C++ alternatives to C programming knowledge and habits
you might have. The second section provides a swift introduction
to the kernel of C++: Object-oriented programming using classes
and inheritance.

199

A better C: Making the transition from C

200

When . referring to line
numbers, we've c;ounted

blank lines.

Program 1
Source

Output

Although knowing C is helpful to learning C++, sometimes that
knowledge can get in the way, particularly in the areas that aren't
specifically object-oriented programming, yet where C++ does
things differently from C. For that reason, this section shows how
to accomplish in C++ many of the same kinds of actions you
would perform in C: writing text to the screen, commenting your
code, creating and using constants, working with stream I/O and
inline functions, and so on.

II exl.cpp: A First Glance
II from Hands-on Ctt
#include <iostream.h>

main ()
{

cout « "Frankly, my dear ... \n" i
cout « "Ctt is a better C.\n"i

Frankly, my dear ...
Ctt is a better C.

Note the new comment syntax in the first line of this program. All
characters from the first occurrence of double slashes to the end of
a line are considered a comment, although you can still use the
traditional 1* ••• */ style. File names that have a .CPP extension are
assumed to be C++ files (or you could use the command-line com­
piler option -Pl.

The third line includes the standard header file iostream.h, which
replaces much of the functionality of stdio.h. cout is an output
stream, and is used to send characters to standard output (as
stdout does in C). The « operate>r (pronounced Uput to") sends
the data on its right to the stream on its left. The context of the «
operator here distinguishes it from the arithmetic shift-left opera­
tor, which uses the same symbol. (Such multiple use of operators
and functions is quite common in C++ and is called overloading.)

Turbo C++ User's Guide

Program 2
Source

Sample execution

Program 3
Source

Chapter 5, Hands-on C++

II ex2.cpp: An interactive example
II from Hands-on C++
#include <iostream.h>

main ()
{

char name[16];
int age;

cout « "Enter your name: ";
cin » name;
cout « "Enter your !1ge: ";
cin » age;

if (age < 21)
cout « "You young whippersnapper, " « name « "! \n";

else if (age < 40)
cout « name « ", you're still in your prime! \n";

else if (age < 60)
cout « "You're over the hill, " « name « "! \n" ;

else if (age < 80)
cout « "I bow to your wisdom, " « name « "! \n"';

else
cout « "Are you really" « age « ", " « name « "?\n";

Enter your name.: Don
Enter your age: 40
You're over the hill, Don!

cin is an input stream connected to standard input. It can correct­
ly process all the standard data types. You may have noticed in C

. that printing a prompt without a newline character to stdout re­
quired a call to fflush(stdout) in order for the prompt to appear. In
C++, whenever cin is used it flushes cout automatically (you can
turn this automatic flushing off - it's on by default).

II ex3.cpp: Inline Functions
II from Hands-on C++
#include <iostream.h>

const float pi = 3.1415926;

inline float area(const float r) {return pi * r * ri}

main ()

201

Sample execution

Program 4
Source

202

float radius;

cout « "Enter the radius of a circle: ";
cin » radius;
cout « "The area is " « area (radius) « "\n";

Enter the radius of a circle:
The area is 28.274334

A constant identifier behaves like a normal variable (that is, its
scope is the block that defined it, and it is subject to type check­
ing) except that it cannot appear on the left-hand side of an as­
signment statement (or anywhere an lvalue is required). Using
#define is almost obsolete in C++.

The keyword inline tells the compiler to insert code directly
whenever possible, in order to avoid the overhead of a function
call. In all other ways (scope, and so forth) an inline function
behaves like a normal function. Its use is recommended over
#defined macros (except, of course, where you depend on the
macro-substitution tricks of the preprocessor). This feature is
intended for simple, one-line functions.

II ex4.cpp: Default argurnentsand Pass-by-reference
II from Hands-on e++
#include <iostream.h>
#include <ctype.h>

int get_word(char *, int &, int start = 0);

main()
{

int word_len;
char *s =" These words will be printed one-per-line ";

int word_idx = get_word(s,word_len);
while (word_len> 0)
{

cout.write(s+word_idx, word_len);
cout « "\n";

I I line 13

II cout« form("%.*s\n",word_len,s+word_idx);
word_idx = get_word(s,word_len,word_idx+word_len);

Turbo C++ User's Guide

In· an important change from
C, declarations can appear
anywhere a statement can.

It's good programming style
to make null loop bodies

standout.

int get_word(char *s, int& size, int start)
{

II Skip initial whitespace
for (int i = start; isspace(s[i]); ++i)

II Traverse word
while (s[i] != '\0' && !isspace(s[i]))

Hi;

size = i - start_of_word;
return start_of_word;

Output These

One exciting feature of C++
is the default argument.

Object support

Chapter 5, Hands-on C++

words
will
be
printed
one-per-line

The prototype for the function get_word in the sixth line has two
special features. The second argument is declared to be a reference
parameter. This means that the value of that argument will be
modified in the calling program (this is equivalent to var param­
eters in Pascal, and is accomplished through pointers in C). By
this means, the variable word_len is updated in main, and yet we
can still return another useful value with the function get_word.

The third argument is a default argument. This means that it can
be omitted (as in line 13), in which case the value of a is passed
automatically. Note that the default value need only be specified
in the first mention of the function. Only the trailing arguments of
a function can supply default values.

The world is made up of things that both possess attributes and
exhibit behavior. C++ provides a model for this by extending the
notion of a structure to contain functions as well as data members.
This wayan object's complete identity is expressed through a
single language construct. The notion of object-oriented support
then is more than a notational convenience-it is a tool of
thought.

203

Program 5

You'll need ~o compile
DEF.CPP to an OBJ file, then

link it in with either EX6. CPP or
EX7.CPP (or load EX5.PRJ).

Yqu might also want to
compile it with Debug Info
checked so you can step

through and watch the
program flow.

In other object-oriented
languages, classes are often
called objects, and member

functions are called
methods.

204

Suppose we want to have an online dictionary. A dictionary is
made up of definitions for words. We will first model the notion
of a definition.

II def.h: A word definition class
II from Hands-on c++
#include <string.h>

const int Maxmeans = 5i

class Definition

char *wordi /1 Word being defined
char *meanings[Maxmeansli
int nmeaningsi

pUblic:
void put_word (c·har *) i

II Various meanings of this word

char *get_word(char *s) freturn strcPy(s,word)i}i /I line 15
void add_meaning(char *) i

char *get_meaning(int, char *)i
}i

In traditional C style, we put definitions in an include file. The
keyword class introduces the object description. By default,
members of a class are private (though you can explicitly use the
keyword private), so in this case the fields in lines 9 through 11
can only be accessed by functions of the class. (In C++, class
functions are called member functions.) To make these functions
available as a user interface, they are preceded by the keyword
public. Note that the inline keyword is not required inside class
definitions (line 15).

The implementation is usually kept in a separate file:

II def.cpp: Implementation of the Definition class
II from Hands-on Ctt
#include <string.h>
#include "def.h"

void Definition: : put_word (char *s)
{

word = new char[strlen(s)tl1i
strcpy(word,s)i
nmeanings = Oi

void Definition: : add_meaning (char *s)

Turbo C++ User's Guide

Source

Output

Chapter 5, Hands-on C++

if (nmeanings < Maxmeans)
{

meanings [nmeanings] = new char[strlen(s)+l];
strcpy(meanings[nmeanings++],s);

char * Definition: : get_meaning (int level, char *s)
{

if (0 <= level && level < nmeanings)
return strcpy(s,meanings[level]);

else
return 0; II line 27

The scope 'resolution operator (::) informs the compiler that we are
defining member functions for the Definition class (it's good
practice to capitalize the first letter of a class to avoid name
conflicts with library functions)~ The keyword new in line 8 is a
replacement for the dynamic memory allocation function malloe.
In C++, by convention, zero is used instead of NULL for pointers
(line 27). Although we didn't do so here, it is advisable to verify
that new returns a nonzero value.

II ex5.cpp: Using the Definition class
II from Hands-on e++
#include <iostream.h>
#include "deL h"

main ()
{

Definition d;
char s[81];

II Assign the meanings
d.put_word("class");

II Declare' a Definition object

d.add_meaning("a body of students meeting together to
study the same subject");

d.add_meaning("a group sharing the same economic status");
d.add_meaning("a group, set or kind sharing the same attributes");

II Print them
cout « d.get_word(s) « ": \n\n";
for (int i = 0; d.get_meaning(i,s) != 0; ++i)

cout « i+1 « ": " « s « "\n";

class:

1: a body of students meeting together to study the same subject

205

Program 6

From the command line,
build DICTION. OBJ and

DEF.OBJ with EX6.CPP. From
the IDE use the EX6.PRJ

project file.

206

2: a group sharing the same economic status
3: a group, set, or kind sharing the same attributes

We can now define a dictionary as a collection of definitions.

l/ diction.h: The Dictionary class
II from Hands-on c++
#include "def.h"

const int Maxwords = 100i

class Dictionary
{

Definition *words;
int nwordsi

II An array of definitionsi line 9

int find_word(char *)i II line 12

public:
II The constructor is on the next line
Dictiona~y(int n = Maxwords)

{nwords = Oi words = new Definition[n]i}i
-Dictionary() {delete wordsi};
void add_def(char *s, char **def) i II The destructor; line 17
int get_def(char *, char **)i

1.
J,

The function find_word on line 14 is for internal use only by the
Dictionary class and so is kept private. A function with the same
name as the class is called a constructor (line 18). It is called once
whenever an object is declared. It is used to perform initializa­
tions; here we are dynamically allocating space for an array of
definitions. A destructor (line 19) is called whenever an object goes
out of scope (in this case, the delete operator will free the memory
previously allocated by the constructor). In order to have an array
of member objects (line II), the included class must either have a
constructor with no arguments or no constructor at all (the
Definition class has none).

II diction.cpp: Implementation of the Dictionary class
II from Hands-on c++
#include "diction.h"

int Dictionary::find_word(char *s)
{

char word[81] i
for (int i = 0; i < nwordsi ++i)

Turbo C++ User's Guide

Source

Chapter 5, Hands-on C++

if (stricmp(words[i] .get_word(word),s) == 0)
return i;

return -1;

void Dictionary::add_def(char *word, char **def)
{

if (nwords < Maxwords)
{

words [nwords] . put_word (word) ;
while (*def != 0)

words [nwords] .add_meaning(*def++);
++nwords;

int Dictionary::get_def(char *word, char **def)
{

,}

char meaning [81] ;
int nw = 0;
int word_idx = find_word (word) ;
if (word_idx >= 0)
{

while (words [word_idx] . get_meaning (nw, meaning) != 0)
{

def[nw] = new char [strlen(meaning) +1] ;
strcpy (def [nw++] ,meaning);

def[nw] = 0;

return nw;

We can now use the Dictionary class without any reference to the
Definition class (the output is the same as in the previous
example).

II ex6.cpp: Using the Dictionary class
II from Hands-on c++
#include <iostream.h>
#include "diction.h"

main()
{

Dictionary d(5);
char *word = "class";
char *indef[4] =

{"a body of students meeting together to study the same",
"subject a group sharing the same economic status",

207

Build LIST. OBJ with EX7. CPP

208

"a group, set or kind sharing the same attributes",
O};

char *outdef[4J;

d.add_def(word,indef);
cout « word « ": \n\n";
int ndef = d.get_def(word,outdef);
for (int i = 0; i < ndef; ++i)

cout « i+l « ": " « outdef [i) « "\n";

In the Dictionary implementation, we specifically called the Defi­
nition member functions. Sometimes it is desirable to allow cer­
tain functions or even an entire class to have access to the private
members of another. We could declare the Dictionary class to be a
friend to the Definition class (line 18):

II def2.h: A word definition class
II from Hands-on e++
#include <string.h>

const int Maxmeans 5;

class Definition

char *word;
char *meanings[MaxmeansJ;
int nmeanings;

public:
void Put_w9rd(char *);

II Word being defined
II Various meanings of this word

char *get_word(char *s) {return strcpy(s,word)i}i
void add_meaning(char *)i

char *get_meaning(int, char *)i

friend class DictionarYi II line 18
} i

The implementation of find_word could then access Definition
members directly (line 5 in the following code):

int Dictionary::find_word(char *s)
{

char word[81] i

for (int i = 0; i < nwordsi ++i)
if (stricmp(words[iJ .word) ,s) 0)

return ii

return -Ii

Turbo C++ User's Guide

Program 7

To try these out, build
LlST.OBJ and EX7. CPP, or use

EX7.PRJ.

Chapter 5, Hands-on C++

One of the key features of object-oriented programming is inheri­
tance. A new class can inherit the data and member functions of
an existing ("base") class (the new class is said to be derived from
the base class). In this program, we define List, a base class for
processing a list of integers, then derive Stack, a class to handle a
stack (which is a special kind of list). First, we create the header
file:

II list.h: A Integer List Class
II from Hands-on C++
canst int-Max_elem = 10i

class List

int *listi
int nmaXi
int nelemi

pUblic:

II An array of integers
II The dimension of the array
II The number of elements

List(int n = Max_elem) {list = new int[nJi nmax = ni nelem = Oi}i
-List () {delete list i} i

}i

int put_elem(int, int) i
int get_elem(int&, int)i
void setn(int n) {nelem ~ ni}i
int getn() {return nelemi}i
void incn() {if (nelem < nmax) ++nelemi}i
int getmax() {return nmaxi}i
void print()i

Then we create the source code:

II list.cpp: Implementation of the List Class
II from Hands-on C++
#include <iostream.h>
#include "list.h"

int List::put_elem(int elem, int pas)
{

if (0 <= pas && pos < nmax)
{ ,

list[posJ = elemi
return Oi

else
return -Ii

II Put an element into the list

II Non-zero means error

209

Output

Program 8
Build STACK.OBJ and LlST.OBJ
with EX8. CPP, or use EX8.PRJ.

210

int List::get_elem(int& elem, int pos)
{

if (0 <= pos && pos < nmax)
{

elem = list [pos] ;
return 0;

II Retrieve a list element

else
return -1; II non-zero means error

void List::print()
{

for (int i = 0; i < nelem; tti)
cout « list[i] « "\n";

And finally we use the new class:

II ex7.cpp: Using the List class
II from Hands-on ett
#include "list.h"

main()
{

4

List 1(5);
int i = 0;

II Insert the numbers 1 through 5
while (l.put_elem(i+1;1) 0)

Hi;

l.setn(i) ;

1. print () ;

II stack.h: A Stack class derived from the List class

#include "list.h"

class Stack : public List
{

int top;

public:

Turbo C++ User's Guide

Chapter 5, Hands-on C++

}i

Stack() {top = Oi}i
Stack(int n) : List(n) {top = Oi}i
int push(int elem)i
int pop(int& elem) i
void print() i

To define a derived class, the base class definition must be avail­
able, so we include its header file (line 3). Line 5 informs the com­
piler that the Stack class is derived from the List class. The key­
word public states that the public members of List should be con­
sidered public in Stack also (this is what is usually needed). Since
the List class has a constructor that takes an argument, the Stack
constructor invokes the List constructor directly (line 11). Base
class constructors are executed before those ,of a derived class.

II stack.cpp: Implementation of the Stack class
II from Chapter 6 of the User's Guide
#include <iostream.h>
#include "stack.h"

int Stack::push(int elem)
{

int m = getmax()i
if (top < m)

{

put_elem(elem,top++) i
return 0 i

else
return -li

int Stack::pop(int& elem)
{

if (top> 0)
{

get_elem(elem,--top) i
return Oi

else
return -li

void Stack: :print()
{

int elemi

for (int i = top-1i i >= Oi --i)

211

II Print in LIFO order
get_elem(elem,i) ;
cout « elem« "\n";

Note that the public member functions of the List class can be
used directly, because a Stack is a List. However, the private
members of the List portion of a Stack object cannot be referenced
'directly.

II ex8.cpp: Using the Stack Class
II from Hands-on C++
#include "stack.h"

main()
{

Stack s (5) ;
int i = 0;

II Insert the numbers 1 through 5
while (s.push(i+l) == 0)

++i;

s.print ();

,Output 5

Program 9

Build EX9.CPP, UST2.0BJ,
STACK2.0BJ, or use EX9.PRJ

212

4

Sometimes it is convenient to allow a derived class to have direct
access to some of the private data members of a base class. Such
data members are said to be protected.

II list2.h: A Integer List Class
II from Hands-on C++
canst int Max_elem = 10;

class List

protected:

int *list;
int nmax;
int nelem;

II The protected keyword gives subclasses
II direct access to inherited members

II An array of integers
II The dimension of the array
II The number of elements

Turbo C++ User's Guide

Chapter 5, Hands-on C++

public:
List(int n = Max_elem) {list = new int[n]; nmax = n; nelem = OJ};
-List () {delete list;};

};

int put_elem(int, int);
int get_elem(int&, int) i.
void setn(int n) {nelem = n;};
int getn() {return nelem;};
void incn () {if (nelem < nmax) ++nelem;};
int getmax() {return nmax;};
virtual void print(); II line 22

We can now replace calls to List's member functions with direct
references to Lists data in the Stack implementation.

// stack2.cpp: Implementation of the Stack class

#include <iostream.h>
#include "stack2.h"

int Stack: :push(int elem)
{

if (top < nmax)
{

list [top++] = elem;
return 0 i

else
return -1;

int Stack::pop(int& elem)

if (top> 0)
{

elem = list[--top];
return 0;

else
return -1;

void Stack::print()
{

for (int i =top-1i i >= 0; --i)
cout « list[i] « "'n";

And then we can try it out:

// ex9.cpp: Using the print() virtual function
1/ from Hands-on c++

213

Output

214

#include <iostream.h>
#include "stack2.h"

main()
{

Stack s(5);
List I, *lp;
int i = 0;

II Insert the numbers 1 through 5 into the stack
whlle (s.push(i+l) == 0)

Hi;

II Put a couple of numbers into the list
1.puLelem(l,O) ;
1.put_elem(2,l) ;
1. setn (2) ;

II line 22
cout « "Stack:\n";
Ip = &s;
Ip->print(); // Invoke the Stack print() method; line 23

cout « "\nList:\n";
Ip = &1;
Ip->print(); 1/ Invoke the List print() method; line 27

Stack:
5
4

3 .
2
1

List:
1
2

The above example illustrates polymorphism (also known as "late
binding" or "dynamic binding," which in C++ is accomplished
using virtual functions). This means that an object's type is not
identified until run time. By defining the print member function to
be virtual (see line 22 of "list2.h"), we can invoke the different
print member functions through a pointer to the base class. In line
22 above, lp points to a Stack object (remember: a Stack is a List),
so the Stack print method is invoked in line 23. Likewise, the List
print member function is executed in line 27.

Turbo C++ User's Guide

Summary

Chapter 5, Hands.;.on C++

There is much more to C++ than this chapter covers (multiple in­
heritance, for example). This chapter is intended give you a sense
of the "look and feel" of C++, to show how it differs from C, and
to demonstrate how to use most of the basic features of C++. For
more information on the basic concepts of C++, read or review
Chapter 4, "Object-oriented programming with C++;" Chapter 13,
"C++ specifics," give more advanced material on C++.

215

216 Turbo C++ User's Guide

c H

Because C++ is complex
subject, this tutorial

concentrates just on C. We
have included some

elementary C++ debugging
information.

A p T E R

6

Debugging in the IDE

In previous chapters, you learned the major elements of C.
Through a variety of examples, you learned how these elements
are put together to create working programs. With that
knowledge, you've probably already written your own short
programs. If not, now is a good time to begin, because there is
nothing like writing your own code to test and extend your un­
derstanding of the concepts we have been discussing.

Of course, writing programs means dealing with your mistakes.
Most experienced programmers agree that tracking down logical
problems, commonly called bugs, in programs is a major part of
program development. In fact, debugging, or finding and fixing
bugs, can often take longer than writing the program itself.

Turbo C++ comes with an integrated, source-level debugger that
provides many capabilities of a standalone debugger, while
giving you the convenience and speed of remaining within the
IDE.

Source level means you can trace through your actual program
code-including, if you want, every function that your code calls.
By setting breakpoints, you can control how muchof your pro­
gram is run before you examine its condition. You can find out
the current value of any variable by selecting it with the cursor or
typing its name in the Evaluate field. You can set watches that
monitor one or more variables and display their changing values
as the program runs. All of this is done without your having to
stop thinking in C (or C++), since you use the same variables,

Chapter 6, Debugging in the IDE 217

Inspect •.• --'--___ --if

Evaluate/modify --=--11

Call stack •••

expressions, and operators you have been using to write your
program.

Type TC to start Turbo C++ (if it isn't already running), and take a
few minutes to examine the Debug menu. Highlight each item on
the menu in turn, pressing F1 each time to view the associated
help text. These menu options are the debugging tools that you'll
learn to use while developing this chapter's example program.

iIiiiIiI" ____ ..
BED lEal

Eva 1 uate and Mod 1 fy

.......... ?'IIIIjIII!jIIIIE-

'1ImJWI
_____ .. III.IiBDI

Watches ~---=--I Add watch... Ctrl-F7
De 1 ete watch
Edit watch •..

Toggl e Breakpoi nt I Remove all watches

: .. II

Breakpoi nts ~--=---If
»Breakpoint List Llne# ConditlOn Pass

» «

I.::

Debugging and program development

218·

While this chapter, PLOTEMP.C, focuses on debugging, it's
important not to treat debugging as something separate from
designing and writing a program. Turbo C ++'s integrated
debugger makes the mechanics of finding and fixing bugs as easy
as possible, but the way you design your program can help make
debugging easier, too.

Turbo C++ User's Guide

Consider the old tube televisions. They were hard to repair
because all their parts were wired into one big mass of tubes,
resistors, capacitors, and so on. This often made it hard to find out
which part or parts were not working. When you found the part
that needed to be replaced, it was hard to get at that one part in
the mass of wires.

After transistors and integrated circuits came into use, people
started designing TV s differently. Each circuit came on its own
slide-in module, which could slide out for easy access and testing.
To replace a defective module, you simply slid in a replacement.

The C equivalent of these plug-in modules is the function. You'll
design, implement, and test the example program in this chapter,
one function at a time. It is often tempting to write a whole pro­
gram, particularly if it is a small one, and only then start debug­
ging. Like the old TV, though,. this makes things unnecessarily
difficult. To see why, suppose main calls a function b, which in
turn calls functions c and d. If you don't test each of these func­
tions as you develop them, it is hard to tell whether a possible
problem in function d is due to a coding error there, or to one in b
or c. Of course, there is often more than just one bug. Meanwhile,
a seemingly unconnected function a may have modified global
data that b needs to pass to c. You can see that incremental
program development-developing and testing one part of your
program at a time-can save you considerable time and
frustration.

Chapter 6, Debugging in the IDE 219

Figure 6.1: Program development flowchart

mainO 1< Highest level (calls I
{ stub functions)
geUemp;
save_temp;
}

~tub definitio~

I 1 J
rCtempo read_tempO rraPhics_viewo

{
printf('.'This is geUemp"); printf("This is read_temp"); printf("This is 9raphics_viewA);
} } }

save_tempO table_view
ns.called > { {
nO printf("This is save_temp"); min_max;

} aV9-max;
}

~ code

r;.j;,_maxO II aV9-tempO I Functions called { {
by functions frintf("ThiS is min_max"); printf("This is aV9_maxn);

}

Designing the example program: PLOTEMP.C

220

The example program for this chapter collects temperature read­
ings and displays them using either a table or graph view. It
illustrates a diverse assortment of Turbo C++ capabilities: console
and file 1/0, passing an array to a function, and some graphics
charting functions. Later, if you want, you can modify
PLOTEMP.C to work with other kinds of data, and to provide
different kinds of reports and charts.

Turbo C++ User's Guide

One of the best ways to design a program is to prototype it by
showing how it interacts with the user-how it requests informa­
tion, responds to commands, and displays information. Before
looking at the program code, let's see what the program looks like
from the user's point of view.

When you run PLOTEMP.C, it displays this menu:
Temperature Plotting Program Menu

E - Enter temperatures for scratchpad
S - Store scratchpad to di sk
R - Read di sk fil e to scratchpad
T - Table view of current data
G - Graph vi ew of current data
X - Exi t the program

Press one of the above keys:

If you press E, you are prompted for a set of temperature read­
ings. The program is set up to handle a set of eight readings, but
you can change this simply by modifying the following line,
which is located near the top of the program:

#define READINGS 8

Suppose you entered the following data:
Enter temperatures. one at a time.
Enter reading # 1: 52
Enter read i ng # 2: 55
Enter read i ng # 3: 62
Enter read i ng # 4: 65
Enter readi ng # 5: 73
Enter readi ng # 6: 76
Enter readi ng # 7: 68
Enter readi ng # 8: 61

The PLOTEMP menu is redisplayed, unless you select X (for Exit).

Choosing S saves the data set currently in memory to a disk file
after you're asked for the file name. Choosing R reads a data set
from the disk file you specify to the program's "scratchpad" data
array.

Once you have data in the scratchpad (either by entering it from
the keyboard or reading it from disk), you can display a summary
table of the data by choosing T (for Table view):

Reading Temperature (F)
1 52
2 ~
3 ~
4 65
5 73
6 76
7 W
8 61
Mi nimum temperature: 52
Maximum temperature: 76
Average temperature: 64.000000

Alternatively, you can select the graph view shown in the
following figure of the current data by choosing G:

Chapter 6, Debugging in the IDE 221

Figure 6.2
Graph view of temperature

data

_II I

Plot o~ TeMperature Readings

52 55 62 65 73 76 68 6J.

Press any key to continue

There's one problem: The program you'll be putting together
won't run entirely as expected. You'll have to use the debugger to
find and fix the bugs.

Writing the prototype program

You can load this file right
now: File I Open I PLOTEMP 1.

As you loadand run these
successive pieces of code,

remember that we've
deliberately sprinkled them

with bugs.

222

Having decided what the program should do, you can determine
what global data and other definitions the program needs, and
write the main function:

Notice the following important features of this prototype
program:

• Global #defines and data structures (the array temps).

• The function main provides the top-level menu.

• Other functions are declared with void return and argument
type.

• Each function contains only a printf statement that identifies it
when it is executing.

• The program is already complete enough to execute.

Turbo C++ User's Guide

Why are functions given void declarations? They let you run the
program and check the flow of execution at the top level. If you
gave the functions full ANSI prototypes with arguments of
various data types, you would have to start implementing the
function definitions and writing code to use the values passed to
the functions. Otherwise, you would receive compiler warnings
about unused parameters. A good rule of program development
is "do one step at a time, test one step at a time." At this point,
you want to verify that the top-level structure of the program is
sound.

Using the integrated debugger

Compile PLOTEMPl.C by choosing Compile I Build All. The
compiler halts after displaying the error message:

Error C:\TC\EXAMPLES\PLOTEMP1.C 45:
Statement missing i

Turbo C++ has found a syntax error. You often need to wade
through a flock of syntax errors before you can actually run your
program, let alone debug it. Fortunately, syntax errors are usually
easy to fix. Press the space bar: Here, the error bar highlighted the
first line of the switch statement that displays the menu. A
reference to a missing semicolon usually refers to the preceding
statement (in this case, the last in the preceding group of printf
statements). Aft-F8 moves you directly to the next error / warning
message. As you probably recall, you can press Enter or F6 to
switch to the Edit window and make your correction.· If you have
more than one syntax error to deal with, press F6 to switch back to
the Message window, and then use Aft-F8 (or the J., key) to move to
the next error listed.

Highlighting the error/warning message and pressing F1 displays
information about the message.

Now that you've fixed the syntax error, compile the program
again. This time the compiler and linker run without error
messages, which means the program is now free of syntax errors.

Now choose Run I Run to run PLOTEMPl.EXE. You'll see the
program's menu. Try pressing each of the keys listed in the
menu-exercise the program. Try both uppercase and lowercase
letters. Try letters that aren't given on the menu at all. What
happens in each case? Did everything work as it should?

Chapter 6, Debugging in the IDE 223

You probably noticed that with each selection made from the
menu, a line describing the function was displayed. (Remember
those printf statements in the stub functions in the listing?)
Usually, the menu was then redisplayed. If you press X (or x), the
program exits, and you are returned to Turbo C++. What happens
when you press G (or g), though? You are also returned to Turbo
C++. That's not right - you shQuld get the menu again. There's a
bug lurking somewhere. .

Tracing the flow of a program

By using options on the Run menu and observing the run bar, you
can observe the order of execution of your program's statements
and control how detailed the tracing is.

Choose Run I Trace Into (or press Fl). The debugger scrolls the
beginning of function main into the Edit window and highlights
it. This highlight is called the run bar and marks the execution
position, indicating the next statement to be executed.

Tracing high-level

224

execution .To trace the high-level flow of your program, choose Run I Step
Over (or press F8); and the next line containing code is executed
(comment lines are skipped over). As you continue pressing FB,
the run bar moves through the series of printf statements that
display the menu. The screen flickers, because each time the
debugger executes a statement that displays information onscreen
or executes a function call, it momentarily switches to the User
screen. This is the screen display your program would generate if
you weren't executing it within Turbo C++'s IDE, but the screen
switching happens too fast for you to see the output. To look at
the User screen, choose
Window I User Screen, or press Alt-F5. Depending on how far
you've gotten in executing the printf statements, you'll see part or
all of PLOTEMP's menu. Press any key to switch back to the
debugger. '

Continue pressing FB until you reach the first line of the switch
statement. This line contains a call to the getche function, which
requires the user to input a character. Any time user input is re­
quested by the program, Turbo C++ switches to the User screen.
Since you want to observe what happens when the graph view

Turbo C++ User's Guide

Tracing into
called functions

(G) option is selected, press FB again, then press G. After you
supply the requested input, the display switches back to the
debugger, and the run bar moves to the following statement:

case 'G': graph_view();

So far, so good. The next time you step, however, the following
statement is exi t, and you are back in the editor the next time you
step. Press FB to verify that the program finishes. By now, you've
probably noticed that a break statement is needed on the
preceding line. Correct the line so that it reads:

case 'G': graph_view(); break;

Now let's see if the fix worked. You could start the program and
step one line at a time all the way from the beginning, but that
would be tedious. Instead, choose Run I Go to Cursor (or press F4;
make sure the cursor is on the correct line). Rebuild the program
(say yes to the "OK to rebuild" prompt); its lines execute until
user input is needed. Press G in response to PLOTEMP's menu;
execution continues up to the line you just fixed. Continue step­
ping. Notice that this time the break statement is executed, and
the execution position then goes back to the top of the while loop.
PLOTEMP's menu now appears to be operating correctly.

When you use Run I Step Over, only the highest level of your pro­
gram is stepped through. As you saw, the run bar stayed within
the main function, stepping through the printf statements and the
various cases within the switch statement. Often, however, you
need to trace into the functions called by your main function, and
sometimes the functions called by the functions. To trace through
function calls, choose Run I Trace Into, or press F7.

Try this now: Trace through the program, and press E at the
PLOTEMP menu. This time, the run bar goes to the appropriate
case in the switch statement, and then goes into the definition of
the get_temps function. After stepping through the function
(right now, there's just a printf statement there), execution falls to
the bottom of the big while loop in main, then returns to the top
where the menu is redisplayed., ~

Chapter 6, DebuQQinQ in the IDE 225

Continuing program development

226

Through the rest of this chapter, you add one function at a time to
PLOTEMP and then testing it by running the program again.
Instead of making you do all the work of typing in code, we've
provided incremental versions of PLOTEMP that you can load to
complete each step. If you were debugging one of your own
programs, you would follow these steps:

1. If necessary, replace the function prototype with the complete
one.

2. Replace the stub function definition with the actual code
needed to perform the task.

3. Test the new function by running the program again, making
the appropriate choice from its menu.

4. Fix any bugs that crop up, testing until there are no more
bugs.

5. Implement the next function in the same way, until the
fleshed-out program is complete.

For best and fastest results, write, compile, run, and debug each
function separately. Don't start developing the next function until
you have a working program that has no apparent errors. This
strategy won;t eliminate all bugs, because "hidden" bugs some­
times continue to lurk, waiting for some unforeseen combination
of circumstances. But this incremental approach minimizes the
chance of unexpected crashes.

Start with the get_temps function, which gets a set of temperature
readings from the keyboard. Since it doesn't take any arguments,
and doesn't return anything directly, the following prototype
declaration doesn't need to be changed:

void get_ternps(void)

A professional programmer probably would have every function
return a value, so errors could be detected. In our example
program, return values are omitted to reduce the size and
complexity of the example.

Find the existing definition of get_temps. Right now, it's a stub
definition that just prints a m,essage when it executes. Either
replace the stub with the following code, or load PLOTEMP2.C,
which already includes the correct code:

Turbo C++ User's Guide

void get_temps (void)
{

char inbuf [130];
int reading;

printf("\nEnter temperatures, one at a time.\n");
for (reading = 0; reading < READINGS; reading++)
{

printf("\nEnter reading # %d: ", reading + 1);
gets(inbuf);
sscanfqnbuf, "%d" , temps[reading]);

/* Show what was read */
printf("\nRead temps [%d] = %d", reading, temps[reading]) i

Setting breakpoints

Remember that arrays in C
begin with element 0: The first
reading goes into element 0,

the second into element 7,
and so on.

If get_temps works correctly, the for loop prompts for each
reading, gets grabs a string from inbuf, sscanf stores it in an
element of the temps array, and the last printf statement displays
the value stored in the array. After this function is debugged, you
can remove the last printf statement.

Run PLOTEMP2 and press E at the PLOTEMP menu so that
get_temps executes. As you enter the data, readings of zero are
displayed, as shown in the following example:

Enter readi ng # 1: 40

Read temps [0] = 0
Enter readi ng # 2: 50

Read temps [1] ,= 0
Enter readi ng # 3: 55

Read temps [2] = 0
Enter readi ng # 4: 57

Read temps [3] = 0
Enter reading # 5: 61

Read temps[4] = 0
Enter reading # 6: 64

Read temps [5] = 0
Enter readi ng # 7: 65

Read temps [6] = 0
Enter read i ng # 8: 60

Read temps [7] = 0

Chapter 6, Debugging in the IDE 227

A breakpoint is a place in
your program where you
want execution to run to,

then stop at.

If you choose Toggle
Breakpoint for a line that

already has a breakpoint, it
removes that breakpoint.

Instant breaking

What's happening here? Regardless of what data you enter, the
corresponding element of the temps array remains set to O. Some­
how the data being entered isn't finding its way into the array.

Clearly, this code needs closer examination. To run the program
until a particular area of interest is reached, set a breakpoint.
Move the cursor to the beginning of the loop in the get_temps
function:

for (reading = 0; reading < READINGS; reading++)

Now choose Debug I Toggle Breakpoint (or press etrl-F8) to set a
breakpoint at this line. The line with for is highlighted. Any time
the flow of execution reaches a line where a breakpoint is set, the
program is interrupted, and you're returned to the debugger.
Now you can use other debugger commands to examine and
change variables and other data structures. When you have
several breakpoints i~ a program, you can choose Debug I
Breakpoints and select the View button in the dialog box to see
the next breakpoint.

Breakpoints stay set until you do one of the following:

.Leave the IDE.

• Toggle the breakpoint off with etrl-F8.

• Delete the breakpoint using Debug I Breakpoints I Delete.

• Delete the line(s) on which the breakpoints are set.

• Edit a file containing breakpoints and abandon the file without
saving it.

Any time you correct a bug or otherwise edit the current file, and
resume using debugger commands, Turbo C++ asks, "Source
modified, rebuild?" Normally you'd press Yat this prompt, so the
program can be rebuilt into a version that reflects your changes. If
you press N, both breakpoints and the run bar appears in the
wrong places because the source file no longer matches the
executable program.

with efrl-Break Pressing elrl-Break allows you to "break out" of many running
programs, including Turbo C++ and the integrated debugger, but
the debugger doesn't always stop the program instantly. The
debugger waits until the machine code corresponding to one of
your lines of source code is being executed. It then stops the
program at the machine instruction that corresponds to the

228 Turbo C++ User's Guide

beginning of the next source code line. The run bar appears on the
line following the last line execute~.

To break instantly, press etr/-Break twice. When the second key
depression is detected, the debugger terminates· the program
immediately, without flushing any output or calling any exit
functions. (This is similar to using the _exit function.) A "double
break" is usually undesirable, since it changes the contents of data
files unpredictably, and the debugger doesn't know which line to
execute next. You'll probably only want to use a second etr/-Break
when your program is "hung" or stuck in an infinite loop.

Run the program again; the PLOTEMP menu is displayed. Press
E. The program runs into the get_temps function until the
breakpoint is reached. Step with F8 until the run bar has moved
through the statements in the body of the for loop and returned to
the first line of the loop. Now it's time to look at the key variables
to learn more about the bug.

Inspecting your data

Inspector
windows

You can inspect any legal C
or C++ expression, provided

it doesn't contain symbols
that were created with

#define or function calls.

Complex programs usually use a variety of data structures­
arrays, structures, unions, lists, and so on. To understand what is
going on in a particular part of your program, you often need to
know the actual contents of these data structures. Turbo C++ pro­
vides a new facility called inspectors. Inspectors let you raise the
hood at any part of your program and examine the inner
workings.

To open an Inspector window for an item, move the cursor to the
item in the Edit window and press A/t-F4. (You can also choose
Debug I Inspect to bring up the Inspector dialog box, and type in
the variable or expression for inspection.) Try inspecting the
variable reading from your current version of PLOTEMP2.C
(which should currently be in the Edit window). Choose Run I
Trace Into, then Debug I Inspect.

All Inspector windows begin with the name of the item. The line
below the variable name contains the address of the variable,
expressed as segment:offset. (Variables that have been declared to
be of register type don't have an address, since they are being
stored in the CPU rather than in RAM. Instead, you'll see the

Chapter 6, Debugging in the IDE 229

Inspecting arrays
and strings

Figure 6.3
Inspecting the temps array

Inspecting structs
and unions

230

word register.) The next line describes the item's data type (for
example, unsigned int).

The actual value of the item is displayed to the right of the data
type. Turbo C++ automatically selects the appropriate formats for
displaying the type of data involved. For nonprinting characters,
a backslash (\) followed by the hexadecimal character value is
used in place of the character value. An int variable, on the other
hand, would have decimal and hexadecimal values but no char­
acter representation. The other numeric types are handled
similarly.

For an array, a separate line is shown in the window for each
element. If there are too many elements to fit in the window, use
the arrow keys to scroll through them. For a string, a character
representation for the string as a whole is also shown. The next
figure shows the array temps from PLOTEMP.C after it has been
filled with data via the get_temps function.

~
[.]=.iIi!jU#iilii •• md=2=[t]

8E8F: 122C
[0] 55 (Ox0037)
[1] 58 (Ox003A)
[2] 61 (Ox003D)
[3] 64 (Ox0040)
[4] 69 (Ox0045)
[5] 72 (Ox0048)

11;;rt 81 U III . ~

The display for strings is similar to that for arrays (they are, after
all, the same data structure). With strings, however, the character
representation of the string is shown in addition to the individual
elements.

For structures and unions, the values of the individual members
are shown. To see how this works, load SOLAR.C, introduced in
Chapter 3, "An introduction to C++", and inspect the solar_system
array. Since this is an array whose elements are structures of type
planet, you can browse through the array elements and view the
data stored in the members of each planet structure.

Turbo C++ User's Guide

Inspecting
pointers

Inspecting
functions

Figure 6.4
Inspecting the min_max

function

When should you
use inspectors?

For a pointer, the Inspector window shows the address of the
pointer, the address the pointer points to, and the data found at
that address, which can be a simple variable, an array, a structure,
and so on. Indexes [0], [1], and so on are shown, clearly
identifying the position of each piece of data. This program
defines a character pointer pty:

main()
{

char * ptr = "This is a string\n";

The Inspector window for a function shows its return type and
address, as well as all of the function's parameters. The Inspector
window for the function min_max from the complete version of
PLOTEMP.C is shown in the next figure.

r=[I] =iWJ"P"d.M,,";M"€'+=l=[t] =
845B:03C8
int nurn vals
int *vaTs
int *rnin val
int *rnax-val

voi d ()

You can use function inspectors to review a function's return type
and parameters without having to go back to the function
declaration.

Using inspectors may seem like overkill when dealing with
simple variables and even arrays, since the Debug I
Evaluate/modify option (discussed later) also shows the values of
variables. Inspectors help you deal with more complex data
structures (structures, classes, unions, and arrays of these data
types). In general, inspectors are most useful for studying data in
depth, while the Debug I Evaluate/modify facility is better for
taking a quick look at simple data.

Chapter 6, Debugging in the IDE 231

Evaluating and changing variables

232

Load PLOTEMP2.C, compile it, and step to the last printf in the
function get_temps. Select E and enter one reading. You should
now have executed the contents of the for loop once, and received
as input, formatted, and stored one reading (via the gets and
sscanf functions). Now choose Debug I Evaluate/modify, which
pops up. a window containing three fields:

• the Expression field, which contains the expression you are
interested in

• the Result field, which displays the value of the expression in
the Evaluate field

• the New Value field, where you can enter a new value for the
selected expression

By default, the "word" (C variable, keyword, function call, and so
on) at the cursor is displayed in the Evaluate field. You're
interested in two variables: reading, which is the loop's counter
'variable, and the array temps, which is supposed to contain the
input data.

Type reading and press Enter. The debugger now displays 0 in the
Result field. If you step through the statements in the loop and
evaluate reading again, you'll find its value is now l.

You can also examine the values of more complex data structures,
such as arrays, strings, and structures. Here, you want to know
more about what's happening to the array temps. Go ahead and
type temps in the Evaluate field. The following is displayed:

{O, 0, 0, 0, 0, 0, 0, O}

This shows the integer values currently stored in the array temps.
You can get a single value by using an index: Specifying temps [0]

would get you the first integer, for example. Or you could open
an Inspector window.

Notice that we have been referring to expressions, not just values
(such as variables) by themselves. Recall that an expression is a
combination of variables, constants, and operators that yields a
single value; for example, valsl [index] + vals2 [index] + 1. You

, can display the value of any expression, provided that

• It doesn't involve a function call (so an expression such as
sqrt (a) + 1 can'tbe used).

Turbo C++ User's Guide

Specifying display
format

Specifying the
number of values

• It doesn't use a'#define value, such as READINGS in the
current program.

For practice, get the values of the following expressions by typing
them into the Evaluate field:

reading + 2
temps[reading + 1]

Optionally, you can add a comma and a format specifier to the
value you want displayed. For example, type reading, h to see the
current value of reading in hexadecimal (you could also type
reading, x). By default, integers are displayed as decimal, and
character arrays are displayed as strings.

The specifier m is useful when dealing with arrays: It displays a
memory dump starting at the specified address. For example,
temps ,m gets you a memory dump starting at the location
specified. Since temps is an array, its name points to the starting
address of the following stored data:

00 00 00 00 00 00 00

All the elements of the array temps are currently set to O. The
number of elements displayed depends on the size of the array.
You can combine m with other specifiers:

temps,mh

displays a memory dump in hexadecimal format.

Another useful specification is p,which displays the selected
variable as a pointer, giving information about the area of
memory being pointed to (for example, the Interrupt Vector
Table, the BIOS data area, or the user program's program segment
prefix [PSP]). If the memory pointed to is within the program's
own allocated memory, the name of the variable (if any) at the
address of the segment offset is also displayed.

When dealing with an array, you can specify how many values
you want to display: temps, 5 specifies the first five elements of the
array temps. Format specifiers can be combined with numerals.
For example, temps [2], 3h specifies that the three elements

Chapter 6, Debugging in ~he IDE 233

Copying from the
cursor position

Specifying
variables in other

functions

Changing values

234

following the third element of the temps array should be dis­
played in hexadecimal format.

Other format specifiers and more details of the debugger com­
mands are given in the online help.

As noted earlier, the Evaluate field contains whatever word was
at the cursor position when you chose Debug I Evaluate/modify.
Take advantage of this to save typing. For example, if you move
the cursor to the beginning of the expression

temps [reading]

temps appears in the Evaluate field. As you press~, the char­
acters following the word temps appear, letting you copy the
complete expression temps [reading 1 into the Evaluate field. Press
Enter as usual to display the value ..

Right now, you're I09king at the variables reading and temps in the
function get_temps. You can also ask the debugger for the values
of static variables in other functions because static variables retain
their values even when the function that uses them isn't being
executed. You can also look at variables in the functions that
called the one you're executing. You can't look at ordinary
automatic variables declared in other functions, because they no
longer have a value when their function exits. The context in
which expressions are evaluated is given by the current cursor
position in the Edit window.

To specify a variable outside of the current function, you can
move the cursor into the body of the function, or you can give the
name of the function, a period, and the name of the variable.

If the variable you want to inspect is in another program module,
you must specify the module name first; for example,

module2.getvals.count

Now you know how to look at different kinds of variables and
expressions, and how to see their values in different formats.
Practice stepping through the for loop in get_temps and examine

Turbo C++ User's Guide

the values of reading and temps[readingl. The latter insists on
always being O.

Try evaluating the expression temps [reading] as you step a few
times through the loop. The debugger displays its value as 0,
regardless of the value of reading. But what should this expression
represent? Since it is specifying the storage destination for the
sscanf function, it needs to be an address. This means that all of
the values entered are being stored at address O! You can confirm
this by using the pointer format temps [reading] ,p and finding that
that value is still O.

Use the address operator & to make this expression refer to the
address of the temps array. Evaluate &temps [reading] ,p. The result
looks something like this: DS: 1278 tempstl. The actual values
displayed depend on your system configuration and the current
value of reading, but you can see that &temps [reading] points to a
bona fide address in the data segment, with an offset from the
address pointed to by the variable temps.

Change the expression temps [reading] in the sscanf statement to
&temps [reading]. If you now continue stepping through the pro­
gram, you are asked whether to rebuild the program; press Y for
Yes. Now, if you step through the for loop again and evaluate
temps [reading], you'llfind that the values you are entering are
stored correctly in the array.

This is a good time to practice changing values with the debugger:
Evaluate the current value of temps [reading].

Use the Tab key to move among the Evaluate, Result, and New
Value fields. Once the input cursor is in the New Value field, type
a value, such as 66, and press Enter. If you type temps [reading] in
the Evaluate field, its new value, 66, is shown in the Result field.
You can change the value of any expression that represents a
single data element, such as a simple variable, a pointer, or an
array element.

Changing values interactively with the debugger is useful for
temporarily fixing a bug and continuing program execution a
little further, looking for the next bug. Here, for example, you
could put new values in temps[O] through temps[7], set reading to 8
to break out of the for loop, and return to the program's main
menu. You can also force a function to return a specific value, or
to pass that value to another function. This lets you test unusual
conditions that might lead to bugs, without having to put
temporary assignment statements in your code.

Chapter 6, Debugging in the IDE 235

Load PLOTEMP3.C.

236

The get_temps function should now be working correctly. Next,
implement the table_view function, so you can view the entered
da.ta. Either replace the stub code for table_view with the
following code, or load PLOTEMP3.C, which contains the correct
code:

void table_view (void)

int reading;

c1rscr () ; I *cl'ear the screen * I
printf ("Reading\t\tTemperature (F) \n");

for (reading = 0; reading <= READINGS; reading++)
printf ("%d\t\t\t%d\n", reading + 1, temps [reading));

min_max();
printf ("Minimum temperature: \n");
printf ("Maximum temperature: \n");
avg_temp () ;
printf("Average temperature: \n");

This function prints the table headings and then uses a for loop to
obtain and print the values stored in the temps array. Eventually, it
prints the minimum, maximum, and average temperatures. These
functions haven't been implemented yet, so they'll just print out a
message saying that they are being executed.

Notice that including the called functions before they are imple­
mented lets you test the program flow, and reminds you of the
program structure. This kind of design is often called top-down
because the program is designed at the top level first (the main
function). You are in the process of designing the functions called
directly by main, such as table_view here. When the top level of
table_view is working, you'll then implement the functions it
calls-min_max and aV9_temp.

Now build and run PLOTEMP3.C, choose E, and enter test data
(we entered 10, 20, 30, 40, 50, 60, 70, and 80). When you are back
at the menu, choose T (Table view), and you'll see something like
the following information on the screen:

Turbo C++ User's Guide

Readi ng Temperature (F)
1 10
2 20
3 30
4 40
5 50
6 60
7 70
8 80
9 0

Executing min maxO.
Minimum temperature:
Maximum temperature:

Executing avg tempO.
Average temperature:

Monitoring your program by setting watches

Adding a watch

Well, you entered eight readings and got back nine! The last one
had a value of o. You probably suspect the infamous "one off"
bug-getting one less or one more iteration ofa loop than you
had expected. .

First localize the problem by setting a breakpoint at the first line
of the for loop in table_view by moving the cursor to that line and
choosing Debug I Toggle Breakpoint (or press etrl-F8).

Now run the program again, enter the test data, and choose Table
view. The program stops at the breakpoint in table_view; now
you can see what's going on in the for loop.

So far, you have obtained the values of variables by stepping
through the program and using Debug I Evaluate / modify to
inspect their values. This is fine when you just need to inspeCt the
values once, but when you're dealing with loops or repeated
function calls, you also want to see how the values change. It
would be very tedious to evaluate the variables by hand
repeatedly. The debugger lets you monitor these changing values
automaically by setting watches. A watch is an expression whose
value is updated each time it is encountered in the running
program.

You are interested in two variables in this case: reading, which is
incremented repeatedly by the for loop, and temps[reading], which
holds the value being printed each time through the loop. Since
the cursor is already nearby, the easiest way to set these watches
is to move the cursor to the name of the variable you want to

Chapter 6, Debugging in the IDE 237

238

Watching your
watches

watch, and then choose Debug I Watches I Add Watch (or press
Ctrl-F7).Move the cursor to reading and try this; you'll see the
pop-up window. As with Debug I Evaluate/modify, the default
name shown is the one at the cursor; simply press Enter. Use the
same procedure to set a watch for temps[readingJ. The pop-up
window shows temps, but as with Debug I Evaluate/modify, you
can use ~ to copy the rest of the expression into the window, and
then press Enter to set the watch.

Now that you have set two watches, the variable name and value
for each watch is shown in the Watch window:

reading: 177
temps [reading] : 92

Since the loop hasn't been run yet, the values shown (which may
be different on your system) are meaningless, representing what­
ever happens to be at the respective memory locations.

Now start stepping through the loop (with FB). As you step, notice
how the values change. After the first time through the loop, the
values are

reading: 0
temps [reading] : 10

assuming you entered your test data starting with 10 as described
earlier. The next time through the loop, the watches' display

reading: 1
temps [reading] : 20

The last time the loop is executed, the values are

reading: 8
temps [reading] : 0

This suggests that the loop exits only after reading reaches 8.
When should it exit? Since there are eight readings entered, and
reading starts at 0, the last value it should have during the loop is
7, not 8. Now take a look at the loop exit condition:

reading <= READINGS

Checking your #defines at the beginning of the program, you see
that READINGS is 8. Do you see the problem? To exit when
reading is 7 (after processing eight readings), the condition should

Turbo C++ User's Guide

Controlling the
debugger

windows

This also works within the
Debug I Evaluate/modify

window.

Editing and
deleting watches

Debug I Watches I Edit Watch
changes only the expression

itself, not its value. To change
the value, use Debug I

Evaluate/modify.

read reading < READINGs.'Change <= to <, and rerun the program to
see if it works correctly.

If you have set more than a few watches, there won't be room to
see them all at once. You can scroll the Watch window using the
PgUp and PgDn keys, or move one line at a time with the l' and j,.
keys.

If a particular watch expression is too long to fit in the window,
you can see its beginning and end by scrolling it with the Home,
End, ~ , and ~ keys.

Another way to see more is to zoom a window.

Remember that you can look at an entire screen of the program
output at any time by pressing Alt-FS. Press any key to return to
the environment.

Now is a good time to practice using these features.

It's easy to edit, add, or delete watches. When the Watch window
is selected, the highlighted expression is active. To highlight a
different expression, use the Home, End, I, or j,. keys.

To edit (change) the currently highlighted watch, you can choose
Debug I Watches I Edit Watch, or as the bottom line of the screen
says, you can simply press Enter. The debugger opens a pop-up
window with the selected expression, and you can edit it. Practice
by changing the watch for temps [reading] to temps [reading+l].

You already know how to add watches, but once the Watch
window is active, there's an easier way: Press Ins. A pop-up
window appears. You can type in the watch expression, add to it
with the ~ key, or accept the default that was copied from the
cursor position.

To delete the current watch, choose Debug I Watches I Delete
Watch, or simply press Del. Practice by deleting the watch for
reading. You can delete all of the watches by choosing Debug I
Watches I Remove All Watches.

Chapter 6, Debugging in the IDE 239

I

Finding a function
definition

Finding out who
called whom

You can always scroll back
to the current execution

position by choosing the first
function in the Call Stack

window-in this case,

240

Now that PLOTEMP.C is starting to flesh out, it's harder to find
the function you want to examine. The debugger provides a way
to scroll the Edit window to a specified function definition.
Choose Search I Locate Function, and Turbo C++ opens a dialog
box. Practice by typing get_temps (don't type the parentheses after
the function name, or the debugger won't find your function). The
definition of get_temps is now displayed in the Edit window.
This is useful for reviewing the definition of a function, as well as
for finding locations to set breakpoints and watches.

Note that Search I Locate Function works only with functions that
have source code in a file that has been compiled with debug
information. Library functions such as printf can't be found with
Search I Locate Function, since their source code isn't available in
the IDE.

In a complex program, there may be several levels of function
calls, and you might not remember the calling order of functions
before the program reached the breakpoint. The debugger can
help you. Set a breakpoint that halts the program at the place
where you want to see the call sequence. For practice, set a
breakpoint at the printf in min_max.

Run the program and choose Table View from the menu
displayed by the program. The program stops at the breakpoint.
Now choose Debug I Call Stack. A pop-up window lists all the
functions that are waiting to finish execution at this point. The call
stack has the most recently called function at the top, which in
this case is min_max. It was called by table_view, which in turn
was called by main.

You can use the t and J- keys to highlight a particular function in
the Call Stack window. If you pres~ Enter, the Edit window scrolls
to show the last line executed in that function.· Right now,

• the last line executed in min_max is the first line of its defini­
tion, since that's where you placed the breakpoint.

• the last line executed in table_view was the line containing the
call to min_max.

Turbo C++ Users Guide

Multiple source
files

• the last line executed in main is the line that executed
table_view; namely, case 'T/: table_view; break;.

In other words, min_max is currently being executed, and
table_view and main are pending completion.

As you work with longer programs, you'll find the features we've
been discussing to be especially useful. Many substantial pro­
gramming projects consist of several source files. The debugger
automatically loads the file needed to fulfill your request into the
Edit window. For example, if you use Search I Locate Function to
find a function that is declared in a source file other than the one
in the Edit window, the debugger loads the appropriate source
file into the editor. If you've made any changes to the current file,
you are first asked if you want to save the changed file to disk.
The same thing happens when you use Debug I Call Stack to
examine the last executed line of a function whose definition is in
a different source file ..

Although the debugger makes it easy to work with multiple
source files, it is good practice to debug only one or two source
files at a time. Always test a given "bug fix" before moving on
because there is always a chance that your fix did not work, or
possibly even introduced new bugs.

Preventive medicine

Design
defensively

You'll soon resume the development and testing of PLOTEMP.C.
To aid in this and future debugging efforts, take a look at some
ways to minimize bugs, and look at some common "buggy"
situations.

Just as you can avoid accidents by driving your car defensively,
you can avoid bugs by designing your program defensively. As
you've seen, the design of PLOTEMP.C represents an approach to
defensive design through top-down programming.

Try to build up your program from functions whose purposes are
simple and well-defined. This makes it easier to set up test cases
and analyze their results. It also makes your program easier to

Chapter 6, Debugging in the IDE 241

Write clearly

read and modify. For example, if PLOTEMP.C combined both
table and graph views in the same function, the code could easily
become unwieldy.

Try to minimize the number of data elements each function
requires and the number of elements it changes to simplify
testing, analysis of results, and program readability and
modification. This too makes it easier to set up test cases and
analyze their results, and to read and modify your program. It
also tends to limit the amount of havoc a misbehaving function
can cause, letting you run the function several times in a single
debugging session. A program designed this way is said to be
loosely coupled.

Put indentation, liberal comments, and descriptive variable names
in your code to clarify it.

Keep code simple. Express complicated operations in many
simple statements rather than a few complex ones that show off
your knowledge of C's more obscure features. .

Don't try to squeeze the last bit of efficiency out of your program
when you write it. The most efficient code is often hard to read
and debug. Debug and test the program until it's working before
trying to improve program performance.

Be alert for opportunities to write multipurpose and reusable
functions. Writing and debugging one generalized function is
usually easier than writing multiple specialized ones.

Systematic software testing

242

Before a jet liner takes off, the crew goes through a systematic
checklist to ensure that everything is working properly. Following
a specific routine reduces reliance on fallible human memory. In
the same way, you should work toward a standard approach to
software testing: A checklist of steps, developed from experience,
helps you create a reliable program.

There is no single "right" way to test a program; your checklist
depends on the types of programs you write, your strengths and
weaknesses as a programmer, and personal style. The following

Turbo C++ User's Guide

Test modifications
thoroughly

Areas to watch
carefully

checklist is a model that you can build upon until you have a list
that works well for your particular needs.

• Feed the program some input that is simple but not trivial. Try the
unusual-for example, have you tried entering negative
temperatures into PLOTEMP? Trace into the code using
Debug I Evaluate/modify and watch expressions liberally to
check the values of data items. Correct the bugs you find, one
or a few at a time.

• Feed the program other sets of data that let you exercise the parts you
couldn't test in the preceding step. If possible, have someone who
is unfamiliar with your program interact with it at the key­
board. Common experience shows that programmers have
difficulty exercising their own programs properly because they
know which values are appropriate and which aren't. If your
program is designed to be used by accountants, try to find an
accountant.

• Test every statement in your program. You· might find bugs in
surprising places.

• Put aside the debugger and test the entire program for correct
behavior. If users expect a robust program, test how the program
responds to every type of entry error you can imagine.

When you modify a program, retest the affected parts thoroughly.
You may have to retest parts that haven't changed but are affected
by the changes.

If the program is complex, keep a record of the tests you have
performed. When you modify the program, this record helps you
repeat all the tests whose results could be affected by the change.
If the tests involve input files, save the files.

As you continue to learn C and to develop programs, keep a list
of common bugs and check you program for these errors. Here
are some common C programming pitfalls:

• making out-of-bounds errors

• confusing addresses versus values at those addresses

• placing the increment and decrement operators incorrectly

• not testing statements thoroughly

Chapter 6, Debugging in the IDE 243

• using Pascal syntax instead of C

The following section discusses each of these pitfalls.

Give special attention to boundary conditions-conditions that make a
program escape from a loop,fill an array, and so on~ Bugs are often
manifested as failures to handle boundary conditions. You've
already seen how the condition reading <= READINGS caused one
too many values to be displayed. Other problems could be caused
by starting a loop-counter at 1 instead of O.

Always be careful about whether you are specifying an address or a
value at that address. For example, don't confuse the value
temps[reading] with the address &temps[reading].

Be careful with the increment and decrement operators ++ and - -. Is
the value being incremented before or after it is used?

Be alert for individual statements or expressions that must be tested
more than one way, like these:

switch (strcmp(a,b)) .. ,

strcmp can return three values: 0 (a equals b), -1 (a is less than b),
or +1 (a is greater than b). This suggests that you should test the
statement with three sets of input values to verify that strcmp
works correctly in each case.

The follov,ring statement contains an "irriplicit if" that can produce
two different results:

x = (x>O) ? func(x) : 0 i

Finishing PLOTEMP,C

244

You've installed and tested the prototype PLOTEMP.C and have
implemented, tested, and debugged the get_temps and
table_view functions. You've learned how to use the debugger
features. The completion of PLOTEMP.C involves the following
exercises:

• Either replace the stub code for a particular function with the
code given previously in this chapter, or load the next version
of PLOTEMPX.C, which already has the correct code.

• Change the function prototype (if ne~essary).

Turbo C++ User's Guide

Finishing
table_view

Load PLOTEMP4.C.
Remember that we have

included deliberate bugs in
the PLOTEMP programs so

you can practice your
debugging skills.

. This change is included in
PLOTEMP4.C.

This change is included in
PLOTEMP4.C

• Test the function implementation using appropriate debugger
facilities.

• Find and fix the bugs.

• Move on to the next function.

To finish this function, implement the following functions:

void min_max (int num~vals, int vals[), int *min_val, int *max_val)
{

int readingi

*min_val = *max_val = vals[O)i

for (reading = Ii reading < num_valsi reading++)
{

if (vals[reading) < *min_val)
*min_val = &vals[reading)i

else if (vals[reading) > *max_val)
*max_val = &vals[reading)i

float avg_temp(int num_vals, int vals[))
{

int reading, total = Ii

for (reading = Oi reading < num_valsi reading++)
total += vals[reading)i

return (float) total/readingi /* reading equals total vals */

Since these functions have parameters and return values, the
following corrected prototypes are required:

void min_max (int num_vals, int vals[), int *min_val, int *max_val)

float avg_temp(int num_vals, int vals[))

Finally, change table_view so that the return values from the
functions are used properly. The revised table_view should read
as follows:

void table_view (void)

int reading, min, maXi

elrscr() i /* clear the screen */
printf ("Reading\t\tTemperature (F) \n") i

Chapter 6, Debugging in the IDE 245

246

.I

.I

.I
Implementing

graph_view

Load PLOTEMP5.C.

for (reading = 0; reading < READINGS; reading++)
printf("%d\t\t\t%d\n", reading + 1, temps[reading]);

min_max (READINGS, temps, &min, &max);
printf ("Minimum temperature: %d\n", min);
printf ("Maximum temperature: %d\n", max);
printf ("Average temperature: %f\n", avg_temp (READINGS, temps));

Try some debugging on your own by checking the following
normal operations:

• Are the loops working properly?

• Are the arithmetic operations appropriate?

• What do the comparisons compare?

Recall that the graph_view function creates the chart shown in
Figure 6.2. To implement this function, replace its definition with
the following code. Add #include <graphics .h> at the beginning of
your code, and change the third parameter of initgraph to the
path of the BGl files.

void graph_view (void)
{

int graphdriver = DETECT, graphmode;
int reading, value;
int maxx, maxy, left, top, right, bottom, width;
int base; /* zero x-axis for graph */
int vscale = 1.5; /* value to scale vertical bar size */
int space = 10; /* spacing between bars */

char fprint[20]; /* formatted text for sprintf */

initgraph(&graphdriver, &graphmode, "");
if (graphresult() < 0) /* make sure initialized OK */

return;

maxx = getmaxx(); /* farthest right you can go */
width = maxx / (READINGS + 1); /* scale and allow for spacing */
maxy = getmaxy () - 100; /* leave room for text * /
left = 25;
right = width;
base = maxy / 2; /* allow for neg values below */

for (reading ~ 0; reading <= READINGS; reading++)
{

value = (temps[READINGS]) * vscale;
if (value> 0)

Turbo C++ User's Guide

save_temps and
read_temps

Load PLOTEMP5. C.

top = base - value; 1* toward top of screen */
bottom = base;
setfillstyle(HATCH_FILL, 1);

else

top = base;
bottom = base - value; /* toward bottom of screen *1
setfillstyle(WIDE_DOT_FILL, 2);

bar(left, top, right, bottom);
left += (width + space); 1* space over for next bar */
right += (width + space); 1* right edge of next bar */

outtextxy(O, base, "0 -");
outtextxy(10, maxy + 20, "plot of Temperature Readings");
for (reading = 0; reading < READINGS; reading++)
{

sprintf(fprint, "%d", temps[reading]);
outtextxy((reading * (width + space)) + 25, maxy + 40, fprint);

outtextxy(50, maxy+80, "Press any key to continue");

getch() ;

closegraph() ;

1* wait for a key press */

The function save_temps saves the current "scratchpad" (the
contents of the array temps) to a disk file. By now, you should be
familiar with the logic involved in accessing elements of this
array .

. Replace the stub definition for the save_temps function with the
following code:

void save_temps (void)
{

FILE * outfile;
char file_name[40];

printf ("\nSave to what filename? ");
while (kbhit()); 1* "eat" any char already in keyboard buffer */
gets (file_name);
if ((outfile = fopen(file_name,"wb")) == NULL)

perror("\nOpen failed! ");

Chapter 6, Debugging in the IDE 247

This change is also included
in PLOTEMP5.C.

return;
fwrite(temps, sizeof(int), READINGS, outfile);
fclose (outfile);

The function read_temps is the counterpart to save_temps; it
reads values from a disk file into the temps array. Implement
read_temps by replacing its stub definition with the following
code:

void read_temps (void)
{

FILE * infile;
char file-'name[40j = "test";

printf("\nRead from which file? ");
gets (file_name) ;

while (kbhit()); /* "eat" any char already .in keyboard buffer */

if((infile == fopen(file_name,"rb")) == NULL)

perror("\nOpen failed! ");

fread(temps, sizeof(int), READINGS, infile);
fclose (infile);

After you're finished with read_temps, you should have a
complete, working version of PLOTEMP.C. PLOTEMP6.C is a
bug-free version of this program.

Answers to debugging exercises

248

min_max and
aVQ_temps

Here are the bugs in the remaining functions of PLOTEMP5.C.

In min_max, the if statements assign the value &vals[reading],
which is an address to the min or max, rather than the correct
value vals[reading]. Also, in aV9_temp, the variable total should be
O. Having it start as 1 adds 1 to the total of the readings, thereby
giving an incorrect average.

When table_view calls min_max, pointers to min_val and max_val,
rather than local values, are passed.

Turbo C++ User's Guide

There are two obscure bugs in the for loop of this function:

for (reading = 0; reading <= READINGS; reading++)
{

value = temps[READINGSl * vscale;

The value being read is temps[READINGS]. The constant
READINGS must be changed to the variable reading. This error
causes the program to graph the nonexistent element temps[8].
Also, the condition <= READINGS should be < READINGS to read the
correct number of values. The first bug masks the second. Often
you can't detect a given bug until you've fixed another bug, since
the first bug prevents proper execution of the code containing the
second bug.

Here, the problem is not in the first line of the for loop, but rather
in the body:

if ((outfile = fopen(file_name, "wb")) == NULL)
perror (" \nOpen failed! ");
return;

Braces are needed to place both the perror statement and the
return statement under the jurisdiction of the if; otherwise, the
function prints "Open failed" and it returns, even if the file was
opened correctly. The compiler warns, "Unreachable code in
function save_temps", because the line following the return
statement can't ever be executed.

When you compiled read_temps, you saw the compiler warnings
"Possible use of infile before definition". Consider the following
code:

if((infile == fopen (file_name, "rb")) == NULL)

When you open a file, the file handle infile should be getting a
value from fopen; the value is tested to see if it is NULL, which
indicates fopen failed. Why isn't infile getting a value right away?

Chapter 6, Debugging in the IDE 249

The reason is that ==, rather than =, follows infile. Since ==
indicates a comparison rather than an assignment, infile isn't
getting a value.

Advanced options

250

The Run I Program Reset command stops the current debugging
session, releases memory your program has allocated, and closes
any open files your program was using. This command cancels a
debugging session, allows you to transfer programs when there's
not enough memory, and invokes a DOS shell.

The Run I Arguments command lets you give running programs
command-line arguments as if you'd typed them on the DOS
command line. DOS redirection commands are ignored. If you're
already debugging a program and want to change the arguments,
select Program Reset and Run I Run to start the program with the
new arguments. '

Turbo C++ User's Guide

c H A p T E R

7

Managing multi-file projects

Since most programs consist of more than one file, having a way
to automatically identify those that need to be recompiled and
linked would be ideal. Turbo C ++'s built-in Project Manager does
just that and more.

The Project Manager allows you to specify the files belonging to
the project. Whenever you rebuild your project, the Project
Manager automatically updates the information kept in the
project file. This project file includes

• all the files in the project

• where to find them on the disk

• the header files for each source module

• which compilers and command-line options need to be used
when creating each part of the program

• where to put the resulting program

• code size, data size, and number of lines from the last compile

Using the Project Manager is easy. To build a project,

• pick a name for the project file (from Project I Open Project)

• add source files using the Project I Add Item dialog box

• tell Turbo C++ to Compile I Make

Then, with the project-management commands available.on the
Project menu, you can

• add or delete files from your project

Chapter 7, Managing multi-file projects 251

• set options for a file in the project

• view included files for a specific file in the project

All the files in this chapter are Let's look at an example of how the Project Manager works.
in the Examples directory.

Sampling the project manager

These names can be the
same (except for the exten­

sions), but they don't have to
be. The name of your

executable file (and any
map file produced by the .

linker) is based on the project
filename.

252

Suppose you have a program that consists of a main source file,
MYMAIN.CPP, a support file, MYFUNCS.CPP, which contains
functions and data referenced from the main file, and myfuncs.h.
MYMAIN.CPP looks like this:

#include <iostream.h>
#include "myfuncs.h"

main(int argc, char *argv(])
{

char *s;

if (argc > 1)
s=argv(l];

else
s="the universe";

cout « GetString() « s « "\n";

MYFUNCS.CPP looks like this:

char ss[] = liThe restaurant at the end of ";

char *GetString(void)
{

return ss;

And myfuncs.h looks like this:

extern char *GetString(void);

These files make up the program that we'll now describe to the
Project Manager.

The first step is to tell Turbo C++ the name of the project file that
you're going to use: Call it MYPROG.PRJ. Notice that the name of
the project file is not the same as the mime of the main file
(MYMAIN.CPP). And in this.case, the executable file is
MYPROG.EXE (and if you choose to generate it, the map file is
MYPROG.MAP). .

Turbo C++ User's Guide

If the project file you load is
in another directory, the
current directory is set to

where the project file is
loaded.

You can change the file­
name specification to

whatever you want with the
Name input box; *. CPP is the

default.

If you copy the wrong file to
the Project window, press Esc

to return to the Project
window, then Del to remove

the currently selected file.

Go to the Project menu and choose Open Project. This brings up
the Open Project File dialog box, which contains a list of all the
files in the current directory with the extension .PRJ. Since you're
starting a new file, type in the name MYPROG in the Open Project
File input box.

Notice that once a project is opened, the Add Item, Delete Item,
Local Options, and Include Files options are enabled on the
Project menu. .

You can keep your project file in any directory; to put it some­
where other than the current directory, just specify the path as
part of the file name. (You must also specify the path for source
files if they're in different directories.) Note that all files and corre­
sponding paths are relative to the directory where the project file
is loaded from. After you enter the project file name, you'll see a
Project window.

The Project window contains the current project file name
(MYPROG). Once you indicate which files make up your project,
you'll see the name of each file and its path, When the project file
is compiled, the Project window also shows the number of lines in
the file and the amount of code and data in bytes generated by the
compiler.

The status line at the bottom of the screen shows which actions
can be performed at this pOint: Ft gives you help, Ins adds files to
the Project, Del deletes a file from the Project, Ctrl+O lets you select
options fora file, Spacebar lets you view information about the
include files required by a file in the Project, Enter opens an editor
window for the currently selected file, and FtO takes you to the
main menu. You can also click on any of these items with the
mouse to take the appropriate action. Press Ins now to add a file to
the project list.

The Add to Project List dialog box appears; this dialog box lets
you select and add source files to your project. The Files list box
shows all files with the .CPP extension in the current directory.
(MYMAIN.CPP and MYFUNCS.CPP both appear in this list.)
Three action buttons are available: Add, Done, and Help.

Since the Add button is the default, you can place a file in the
Project window by typing its name in the Name input box and
pressing Enter or by choosing it in the Files list box and clicking
OK. You can also search for a file in the Files list box by typing the
first few letters of the one you want. In this case, typing my should
take you right to MYFUNCS.CPP. Press Enter. You'll see that

Chapter 7, Managing multi-file projects 253

Note that the Add button
commits your change:

pressing Esc when you're in
the dialog box just puts the

dialog box away.

You can also view your
output by choosing

Window I Output.

For more information on . PRJ
and .DSK files, refer to the

section, "Configuration and
project files, " in Chapter 2.

You can specify a project to
load on the DOS command
line like this: TC myprog.prj.

254

MYFUNCS gets added to the Project window and then you're
returned to the Add Item dialog box to add another file. Go ahead
and add MYMAIN.CPP. Turbo C++ compiles files in the exact
order they appear in the project.

Close the dialog box and return to the Project window. Notice
that the Lines, Code, and Data fields in the Project window show
n/ a. This means the information is not available until the modules
are actually compiled.

After all compiler options and directories have been set, Turbo
C++ knows how to build the program called MYPROG.EXE using
the source code in I\1YI-y1AIr'.J.CPP, ~1YFU:NCS.CPP, and
myfuncs.h. Now you'll actually build the project.

Choose Compile I Make to make your project and choose Run I
Run to run it. To view your output, choose Window I User Screen,
then press any key to return to the IDE.

When you leave the IDE, the project file you've been working on
is automatically saved on disk; you can disable this by uncheck­
ing Project in the Preferences dialog box (Options I Environment).

The saved project consists of two files: the project file (.PRJ) and
the desktop file (.DSK). The project file contains the information
required to build the project's related executable. The build
information consists of compiler options, linker options, make
options, INCLUDE/LIB/OUTPUT paths, and transfer items. The
desktop file contains the state of all windows at the last time you
were using the project.

The next time you use Turbo C++, you can jump right into your
project by reloading the project file. Turbo C++ automatically
loads a project file if it is the only .PRJ file in the current directory;

Turbo C++ User's Guide

Error tracking

Changing these files makes
them out of date with their

object files, so make
recompiles them.

Stopping a make

otherwise the default project and desktop (TCDEF.*) are loaded.
Since your program files and their corresponding paths are
relative to the project file's directory, you can work on any project
by moving to the project file's directory and bringing up Turbo
C++. The correct file is loaded for you automatically. If no project
file is found in the current directory, the default project file is
loaded.

Syntax errors that generate compiler warning and error messages
in multifile programs can be selected and viewed from the
Message window.

To see this, let's introduce some syntax errors into the two files,
MYMAIN.CPP and MYFUNCS.CPP. From MYMAIN.CPP,
remove the first angle bracket in the first line and remove the c in
char from the fifth line. These changes generate five errors and
two warnings in MYMAIN.

In MYFUNCS.CPP, remove the first r from return in the fifth line.
This change produces two errors and one warning.

Since you want to see the effect of tracking in multiple files, you
need to modify the criterion Turbo C++ uses to decide when to
stop the make process. This is done by setting a radio button in
the Make dialog box (Options I Make).

You can choose the type of message you want the make to stop on
by setting' one of the Break Make On options in the Make dialog
box (Options I Make). The default is Errors,which is normally the
setting you'd want to use. However, you can have a make stop
after compiling a file with warnings, with errors, or with fatal
errors, or have it stop after all out-of-date source modules have
been compiled.

The usefulness of each of these modes is really determined by the
way you like to fix errors and warnings. If you like to fix errors
and warnings as soon as you see them, you should set Break
Make On to Warnings or maybe to Errors. If you prefer to get an
entire list of errors in all the source files before fixing them up,
you should set the radio button to Fatal Errors or to Link. To

Chapter 7, Managing multi-file projects 255

256

Syntax errors in
multiple source

files

demonstrate errors in multiple files, choose Fatal Errors in the
Make dialog box.

Since you've already introduced syntax errors into MYMAIN.CPP
and MYFUNCS.CPP, go ahead and choose Compile I Make to
"make the project." The Compiling window shows the files being
compiled and the number of errors and warnings in each file and
the total for the make. Press any key when the Errors: Press any
key message flashes.

Your cursor is now positioned on the first error or warning in the
Message window. If the file that the message refers to is in the
editor, the highlight bar in the edit window shows you where the
compiler detected a problem. You can scroll up and down in the
Message window to view the different messages. .

Note that there is a "Compiling" message for each source file that
was compiled. These messages serve as file boundaries, separat­
ing the various messages generated by each module and its in­
clude files. When you scroll to a message generated in a different
source file, the edit window only tracks in files that are currently
loaded.

Thus, moving to a message that refers to an unloaded file causes
the edit window's highlight bar to turn off. Press Spacebar to load
that file and continue tracking; the highlight bar reappears. If you
choose one of these messages (that is, press Enter when positioned
on it), Turbo C++ loads the file it references into an edit window
and places the cursor on the error. If you then return to the
Message window, tracking resumes in that file.

The Source Tracking options in the Preferences dialog box
(Options I Environment) help you determine which window a file
is loaded into. You can use these settings when you're message
tracking and debug stepping.

Note that Previous message and Next message are affected by the
Source Tracking setting. These commands always find the next or
previous error and load the file using the method specified by the
Source Tracking setting.

Turbo C++ User's Guide

Saving or deleting
messages Normally, whenever you start to make a project, the Message

window is cleared out to make room for new messages. Some­
times, however, it is desirable to keep messages around between
makes.

Autodependency
checking

Consider the following example: You have a project that has
many source files and your program is set to stop on Errors. In
this case, after compiling many files with warnings, one error in
one file stops the make. You fix that error and want to find out if
the compiler accepts the fix. But if you do a make or compile
again, you lose your earlier warning messages. To avoid this,
check Save Old Messages in the Preferences dialog box (Options I
Environment). This way the only messages removed are the ones
that result from the files you recompile. Thus, the old messages
for a given file are replaced with any new messages that the com­
piler generates.

You can always get rid of all your messages by choosing
Compile I Remove Messages, which deletes all the current

messages. Unchecking Save Old Messages and running another
make also gets rid of any old messages.

When you made your previous project, you dealt with the most
basic situation: a list of c++ source file names. The Project
Manager provides you with a lot of power to go beyond this
simple situation.

The Project Manager collects autodependency information at
compile time and caches these so that only files compiled outside
the IDE need to be processed. The Project Manager can automat­
ically ~heck dependencies between source files in the project list
(including files they themselves include) and their corresponding
object files. This is useful when a particular C++ source file
depends on other files. It is common for a c++ source to include
several header files (.h files) that define the interface to external
routines. If the interface to those routines changes, you'll want the
file that uses those routines to be recompiled.

If you've checked the Auto-Dependencies option (Options I Make),
Make obtains time-date stamps for all.CPP files and the files in­
cluded by these. Then Make compares the date / time information

Chapter 7, Managing multi-file projects 257

Important: Changing
compiler options won't

cause the Make facility to
recompile modules. When

you change a menu option,
such as Memory Model,

select Compile I Build All to
ensure all modules are

recompiled with the new
options.

of all these files with their date/time at last compile. If any
date/time is different, the source file is recompiled.

If the Auto-Dependencies option is unchecked, the .CPP files are
checked against .OBI files. If. earlier .CPP files exist, the source file
is recompiled.

When a file is compiled, the IDE's compiler and the command-line
compiler put dependency information into the .OBI files. The
Project Manager uses this to verify that every file that was used to
build the .OBI file is checked for time and date aga~st the time
and date information in the .OBI file. The .CPP source file is
recompiled if the dates are different.

That's all there is to dependencies. You get the power of more
traditional makes while avoiding long dependency lists.

Using different file translators

258

So far you've built projects that use Turbo C++ as the only
language translator. Many projects consist of both C++ code and
assembler code, and possibly code written in other languages. It
would be nice to have some way to tell Turbo C++ how to build
such modules using the same dependency checks that we've just
described. \Vith the Project ~v1anager, you don't need to worry
about forgetting to rebuild those files when you change some of
the source code, or about whether you've put them in the right
directory, and so on.

For every source file that you have included in the list in the
Project window, you can specify

• which program to use as its target file, for example Turbo C++

• which command-line options to give that program

• whether the module is an overlay

• what to call the resulting module and where it is placed (this
information is used by the project manager to locate files
needed for linking)

• whether the module contains debug information

• whether the module gets included in the link

By default, the IDE's compiler is chosen as the translator for each
module, using no command-line override options, using the
Output directory for output, assuming that the module is not an

Turbo C++ User's Guide

overlay, and assuming that debug information is not to be
excluded. If you use the IDE's compiler, you can use any
command-line option except c, Efilename, efilename. Ipath, Lpath, lx,
M, Q, and y.

Let's look at a simple example. Go to the Project window and
move to the file MYFUNCS.CPP. Now press Ctr/+Oto bring up the
Local Options dialog box for this file:

Except for Turbo C++, each of the names in the Project File
Translators list box is a reference to a program defined in the
Transfer dialog box (Options I Transfer).

Press Esc, then F10 to return to the main menu, then choose
Options I Transfer. The Transfer dialog box that appears contains a
list of all the transfer programs currently defined. Use the arrow
keys to select ,...,GREP and press Enter. (Since the Edit button is the
default, pressing Enterbrings up the Modify /New Transfer Item
dialog box.) Here you see that ,...,GREP is defined as the program
grep, found on the current path. Notice that the Translator check
box is not marked with an X; if it were this translator item would
be displayed in the Local Options dialog box. Press Esc to return
to the Transfer dialog box.

Suppose you want to modify a module using a standalone tool
instead of the IDE's compiler. To do so, you would perform the
following steps:

1. First, you need to define the tool as one of the Project File
Translators in the Transfer dialog box. Cursor past the last
entry in the Program Titles list, then press Enter to bring up the
Modify /New Transfer Item dialog box. In the Program Title
input box, type your -Tool Name; in the Program Path input

Chapter 7, Managing multi-file projects 259

box, type toolname; and in the command line, type $EDNAME
(transfer mC;lcro, name of file in active editor).

2. Select the Translator check box~ Then press Enter (New is the
default action button). Back at the Transfer dialog box, you see
that,.., Tool Name is now in the Program Titles list box (the last
part may not show). Accept the dialog box.

3. Back in the Project window, press Ctrl+O to go to the Local
Options dialog box again. Notice that ,..,Tool Name is now a
choice on the Project File Translators list for MYFUNCS.CPP
(as well as for all of your other files).

Select your,.., Tool Name from the Project File Translators list
box. Use the Command-line Options input box to add any
command':line options you want to give the tool.

Your module now uses your tool, while a~l of your other source
modules compile with TC.EXE. The Project Manager applies the
same criteria to your module when deciding whether to
recompile the module during a make as it does to all the modules
that are compiled with TC.EXE.

Overriding libraries

In some cases, ies necessary to override the standard startup files
or libraries. You override the startup file by placing a file called
COx.OBJ as the first name in your project file, where x stands for
any DOS name (for example, COMINE.OBJ). It's critical that the
name start with CO and that it is the first file in your project.

To override the standard library, choose Options I Linker and,. in
the Libraries dialog box, select None for the Standard Run-time
Library. Then add the library you want your project to use to the
project file just as you would any other item.

More Project Manager features

260

Let's take a look at some of the other features the Project Manager
has to offer. When you're working on a project that involves many
source files, you want to be able to easily view portions of those
files, and be able to record notes about what you're doing as

Turbo C++ User's Guide

you're working. You'll also want to be able to quickly access files
that are included by others.

For example, expand MYMAIN.CPP to include a call to a function
named GetMyTime:

#include <iostream.h>
#include "myfuncs.h"
#incl ude "myt ime . h"

main(int argc, char *argv[))
{

char *s;

if (argc > 1)
s=argv[l);

else
s="the universe";

cout « GetString() « s « "\n";

This code adds one new include file to MYMAIN: mytime.h.
Together myfuncs.h and mytime.h contain the prototypes that
define the GetString and GetMyTime functions, which are called
from MYMAIN. The mytime.h file contains

#define HOUR 1
#define MINUTE 2
#define SECOND 3
extern int GetMyTime(int);

Go ahead and put the actual code for GetMyTime into a new
source file called MYTIME.CPP:

#include <time.h>
#include "mytime.h"

int GetMyTime(int which)
{

struct tm
time_t

*timeptr;
secsnow;

time (&secsnow) ;
timeptr = localtime(&secsnow);
switch (which) {

case HOUR:
return (timeptr -> tm_hour);

case MINUTE:
return (timeptr -> tm_min);

Chapter 7, Managing multi-:-file projects 261

262

case SECOND:
return (timeptr -> tm_sec) i

MYTIME includes the standard header file time.h, which contains
the prototype of the time and localtime functions, and the
definition of tm and time_t, among other things. It also includes
mytime.h in order to define HOUR, MINUTE, and SECOND.

Create these new files, then use Project I Open Project to open
MYPROG.PRJ. The files MYMAIN.CPP and MYFUNCS.CPP are
still in the Project window. Now to build your expanded project,
add the file name MYTIME.CPP to the Project window. Press Ins
(or choose Project I Add Item) to bring up the Add Item dialog
box. Use the dialog box to specify the name of the file you are
adding and choose Done.

Now choose Compile I Make to make the project. MYMAIN.CPP
will be recompiled because you've made changes to it since you
last compiled it. MYFUNCS.CPP won't be recompiled, because
you haven't made any changes to it since the make in the earlier
example. MYTIME.CPP will be compiled for the first time.

In the MYPROG project window, move to MYMAIN.CPP and
press Spacebar (or Project I Include Files) to display the Include
Files dialog box. This dialog box contains the name of the selected
file, several buttons, and a list of include files and locations
(paths). The first file in the Include Files list box is highlighted; the
list box lists all the files that were included by the file
MYMAIN.CPP. If any of the include files is located outside of the
current directory, the path to the file is shown in the Location field
of the list box.

As each source file is compiled, the information about which
include files are included by which source files is stored in the
source file's .OBJ file. If you access the Include Files dialog box
before you perform a make, it might contain no files or it might
have files left over from a previous compile (which may be out of
date). To load one of the include files into an edit window,
highlight the file you want and press Enter or click the View
button.

Turbo C++ User's Guide

Notes for your
project Now that you've had a chance to see the code in MYMAIN.CPP

and mytime.h, you might decide to make some changes at a later
time. Choose Window I Project Notes to bring up anew edit
window that is kept as part of your project file. Type in any
comments you want to remember about your project.

Each project maintains its own notes file, so that you can keep
notes that go with the project you're currently working on; they're
available at the touch of a button when you select the project file.

Chapter 7, Managing multi-file projects 263

264 Turbo C++ User's Guide

c H

The command-line compiler
lets you invoke all the

functions of the IDE compiler
from the DOS command line.

A p T E R

8

The command-line compiler

As an alternative to using the IDE, you can compile and run your
programs with the command-line compiler (TCC.EXE). Almost
anything you can do within the IDE can also be done using the
command-line compiler. You can set warnings on or off, invoke
the linker to generate executable files, and so on. In fact, if you
only want to compile your C or c++ source file(s), you must use
the -c option at the command line.

This chapter is organized into two parts. The first describes how
to use the command-line compiler and provides a summary table
of all.the options. The second part, starting on page 272, presents
the options organized functionally with groups of related options.

The summary table, Table 8.1 (starting on page 267), summarizes
the command-line compiler options and provides a page-number
cross-reference to where you can find more detailed information
about each option.

Using the command-line compiler

The command-line compiler uses DPMI (DOS Protected Mode
Interface) to run in protected mode on 286,386, or i486 machines
with at least 640K conventional RAM and at least 1MB extended
memory.

Note that, although Turbo C++ runs in protected mode, it still
generates applications that run in real mode. The advantage to

Chapter 8, The command-line compiler 265

DPMIINST

For more information about
running DPMIINST, see

Chapter 7, Installing Turbo
C++.

Running Tee

You can also use a configur­
ation file. See page 277 for

details.

Using the options

Compiler options are further
divided into ten groups.

266

using Turbo C++ in protected mode is that the compiler has much
more room to run than if you were running it in real mode, so it
can compile larger projects faster and without extensive disk­
swapping.

The protected mode interface is completely transparent to the
user. Turbo C++ uses an internal database of various machine
characteristics to determine how to enable protected mode on
your machine, and configures itself accordingly. The only time
you might need to be aware of it is when running the compiler for
the first time. If your machine is not recognized by Turbo C++,
run the DPMIINST program by typing the following command at
the DOS prompt and following the program.'s instructions:

DPMIINST

DPMIINST runs your machine through a series of tests to
determine the best way of enabling protected mode.

To invoke Turbo C++ from the command line, type Tee at the DOS
prompt and follow it with a set of command-line arguments.
Command-line arguments include compiler and linker options
and file names. The generic command-line format is

TCC [option [option ...]] filename ffilename ...]

Eachcommand-line option may be preceded by either a hyphen
(-) or slash (/), whichever you prefer. Each option must be
separated from the TCC command, other options, and following
file names by at least one space.

The options are divided into three general types:

• compiler options, described starting on page 272
• linker options, described starting on page 290
• environment options, described starting on page 291

To see an onscreen list of the options, type Tee (without any
options or file names) at the DOS prompt. Then press Enter.

Turbo C++ User's Guide

Use this feature to override
settings in configuration files.

In order to select command-line options,. enter a hyphen ("'-) or
slash (/) immediately followed by the option letter (for example,
-lor II). To tum an option off, add a second hyphen after the
option letter. This is true for all toggle options (those that turn an
option on or off): A trailing hyphen (-) turns the option off, and a
trailing plus sign (+) or nothing turns it on. So, for example, -C
and -C+ both turn nested comments on, while -C- turns nested
comments off.

Option precedence
rules

The option precedence rules are simple; command-line options
are evaluated from left to right, and the following rules apply:

• For any option that is not an -lor -L option, a duplication on
the right overrides the same option on the left. (Thus an off
option on the right cancels an on option to the left.)

• The -I and -L options <?n the left, however, take precedence
over those on the right.

Table 8.1: Command-line options summary

Option

@filename
+filename
-1
-1-
-2
-A
-A-,-AT
-AK
-AU
-a
-a-
-B
-b
-b-
-C
-C-
-c
-Dname
-Dname=string
-d
-d-
-Efilename
-efilename
-Fc
-Ff
-Ff=size
-ff

Page

271
271
275
275
275
281
281
281
281
275
275
285
275
275
281
281
285
274
274
275
275
286
290
275
275
275
275

Function

Read compiler options from the response file filename
Use the alternate configuration file filename
Generate 80186 instructions
Generate 8088/8086 instructions (default)
Generate 80286 protected-mode compatible instructions
Use only ANSI keywords
Use Turbo C++ keywords (default)
Use only Kernighan and Ritchie keywords
Use only UNIX keywords
Align word
Align byte (default)
Compile and call the assembler to process inline assembly code
Make enums always word-sized (default)
Make enums byte-sized when possible
Nested comments on
Nested comments off (default)
Compile to .OBJ but do not link
Define name to the null string
Define name to string
Merge duplicate strings on
Merge duplicate strings off (default)
Use filename as the assembler to use
Link to produce filename.EXE
Generate COMDEFs
Create far variables automatically
Create far variables automatically; sets the threshold to size
Optimize floating point operations

Chapter 8, The command-line compiler 267

Table 8.1: Command-line options summary (continued)

-ff-
-Fm
-Fs
-f
-f-
-ff
-ff-
-f87
-f287
-G
-G-
-gn
-H
-H-
-Hu
-H=filename
-h
-Ipath
-in
-Jg

-Jgd

-Jgx
-jn
-K
-K-
-k
-Lpath
-Ix
-l-x
-M
-mc
-mh
-ml
-mm
-mm!
-ms

. -ms!
-mt
-mt!
-N
-npath
-0-
-0--
-ofilename
-P
-Pext
-P-
-P-ext

268

275
275
275
276
276
276
276
277
277
279
279
282
286
286
286
286
277
291
281
290

290

290
282
277
277
277
291
291
291
291
273
273
273
273
273
273
273
273
273
278
291
279
279
286
286
286
286
286

Tumoff-ff
Enables the -Fc,-Ff, and -Fs options
Assume DS = SS in all memory models
Emulate floating point (default)
Don't do floating point
Fast floating point (default)
Strict ANSI floating point
Use 8087 hardware instructions
Use 80287 hardware instructions
Select code for speed
Select code for size (default)
Warnings: stop after n messages
Causes the compiler to generate and use precompiled headers
Turns off generation and use of precompiled headers (default)
Tells the compiler to use but not generate precompiled headers
Sets the name of the file for precompiled headers
Use fast huge pointer arithmetic
Directories for include files
Make significant identifier length to be n
Generate definitions for all template instances and merge duplicates
(default)
Generate public definitions for all template instances; duplicates results in
redefinition errors
Generate external references for all template instances
Errors: stop after n messages
Default character type unsigned
Default character type signed (default)
Standard stack frame on (default)
Directories for libraries
Pass option x to the linker (can use more than one x)
Suppress option x for the linker
Instruct the linker to create a map file
Compile using compact memory model
Compile using huge memory model
Compile using large memory model
Compile using medium memory model
Compile using medium model; assume DS != SS
Compile using small memory model (default)
Compile using small model; assume DS'!= SS
Compile using tiny memory model
Compile using tiny model; assume DS != SS
Check for stack overflow
Set the output directory
Optimize jumps
No optimization (default
Compile source file to filename.obj
Perform a C t+ compile regardless of source file extension
Perform a C++ compile and set the default extension to ext
Perform a C++ or C compile depending on source file extension (default)
Perform a C++ or C compile depending on extension; set default extension
to ext·

Turbo C++ User's Guide

Table 8.1: Command-line options summary (continued)

-p
-p-
-Qe
-Qe=yyyy
-Qe-
-Qx=nnnn
-r
-r-
-rd
-S
-Tstring
-T-
-tDe
-tDc
-Uname
-u
-u-
-v,-v-
-vi, -vi-
-V
-Va
-Vb
-Vc

-Vf
-Vmv
-Vmm
-Vms
-Vmd
-Vmp
-Yo

-Vp

-Vs
-Vt
-Vv
-VO,-Vl
-w
-wxxx
-w-xxx
-x
-y
-Yo
-y
-zAname
-zBname
-zCname
-zDname
-zEname
-zFname

278
278
287
287
287
287
280
280
280
286
287
287
291
291
274
278
278
278
279
287
292
292
292

288
289
289
289
289
289
293 '

292

288
293
293
288
282
282
282
279
279
279
279
284
284
284
284
284
284

Use Pascal calling convention
Use C calling convention (default)
Instructs the compiler to use all available EMS memory (default)
Instructs the compiler to use yyyy 16K pages of EMS memory
Instructs the compiler to not use any EMS memory
Instructs the·compiler to use nnnn Kbytes of extended memory
,Use register variables on (default)
Suppresses the use of register variables.
Only allow declared register variables to be kept in registers
Produce .ASM output file
Pass string as an option to TASM or assembler specified with-E
Remove all previous assembler options
Make the target a DOS .EXE file
Make the target a DOS .COM file
Undefine any previous definitions of name
Generate underscores (default)
Disables underscores
Source debugging on
Controls expansion of inline functions
Smart C++ virtual tables
Pass class arguments by reference to a temporary variable
Make virtual base class pointer same size as 'this' pointer of the class
Do not add the hidden members and code to classes with pointers to virtual
base class members
Far C++ virtual tables
Member pointers have no restrictions (most general representation)
Member pointers support multiple inheritance
Member pointers support single inheritance
Use the smallest representation for member pointers
Honor the declared precision for all member pointer types
Enable all of the 'backward compatibility' -V switches (-Va, -Vb, -Vc, -Vp,
-Vt,-Vv)
Pass the 'this' parameter to 'pascal' member functions as the first parameter
on the stack
Local C++ virtual tables
Place the virtual table pointer after non-static data members
Do not change the layout of classes to relax restrictions on member pointers
External and Public C++ virtual tables
Display warnings on
Enable xxx warning message
Disable xxx warning message
Disable compiler autodependency output
Enable overlay code generation
Overlay the compiled files
Line numbers on
Code class
BSS class
Code segment
BSSsegment
Far segment
Far class

Chapter 8, The command-line compiler 269

Table 8.1: Command-line options summary (continued)

-zGname 285 BSS group
-zHname 285 Far group
-zPname 285 Code group
-zRname 285 Data segment
-zSname 285 Data group
-zTname 285 Data class
-zVname 285 Far virtual table segment
-zWname 285 Far virtual table class
-zX* 285 Use default name for X. (default)
-Z 280 Suppress redundant loads. (default)

Syntax and file
names Turbo C++ compiles files according to the following set of rules:

filename.asm Invoke TASM to assemble to .OBJ c++ files have the extension
. CPP; see page 286 for

information on changing the
default extension.

270

filename.obj Include as object at link time
filename. lib Include as library at link time
filename Compile FILENAME.CPP
filename.cpp Compile FILENAME.CPP
filename.c Compile FILENAME.C
filename.xyz Compile FILENAME.XYZ

For example, given the following command line

TCC -a -f -C-emyexe oldfilel oldfile2 nextfile

Turbo C++ compiles OLDFILEl.CPP, OLDFILE2.CPP, and
NEXTFILE.CPP to an .OBJ, linking them to produce an executable
program file named MYEXE.EXE with word alignment (-a),
floating-point emulation (-f), and nested comments (-C).

Turbo C++ invokes T ASM if you give it an .ASM file on the
command line or if a .C or .CPP file contains inline assembly.
Here are the options that the command-line compiler gives to
TASM:

ID __ MODEL __ ID __ LANG __ Iml IFLOATOPT

where MODEL is one of: TINY, SMALL, MEDIUM, COMPACT,
LARGE, or HUGE. The Iml option tells T ASM to assemble with
case sensitivity on. LANG is CDECL or PASCAL; FLOATOPT is r
when you've specified -f87 or -f287; e otherwise.

Turbo C++ User's Guide

Response files
Response files allow you to

have longer command
strings than DOS normally

allows.

See page 267 for what those
rules are.

Configuration files
TURBOC. CFG is not the same

as TCCONFIG. TC, which is
the default IDE version of a

configuration file.

If you need to specify many options or files on the command line,
you can place them in an ASCII text file, called a response file
(you can name it anything you like). You tell the command-line
compiler to read its command line from the file by including the
file name prefixed with @. You can specify any number of
response files, and you can mix them freely with other options
and file names.

For example, suppose the file MOON.RSP contains ST ARS.C and
RAIN.C. The following command tells Turbo C++ to compile the
files SUN.C, STARS.C, RAIN.C, and ANYONE.C.

TCC SUN.C @MOON.RSP ANYONE.C

This command expands to the following command:

TCC SUN.C STARS.C RAIN.C ANYONE.C

Any options included in a response file are evaluated just as
though they had been typed in on the command line.

If you find you use a certain set of options over and over again,
you can list them in a configuration file, called TURBOC.CFG by
default. If you have a TURBOC.CFG configuration file, you don't
need to worry about using it. When you run TCC, it automatically
looks for TURBOC.CFG in the current directory. If it doesn't find
it there, Turbo C++ then looks in the startup directory (where
TCC.EXE resides).

You can create more than one configuration file; each must have a
unique name. To specify the alternate configuration file name, in­
clude its file name, prefixed with +, anywhere on the TCC
command line. For example, to read the option settings from the
file D:\ALT.CFG, you could use the following command line:

TCC +D:\ALT.CFG

Your configuration file can be used in addition to or instea4 of
options entered on the command line. If you don't want to use
certain options that are listed in your configuration file, you can
override them with options on the command line.

Chapter 8, The command-line compiler 271

Option precedence
rules

You can create the TURBOC.CFG file (or any alternate configura­
tion file) using any standard ASCII editor or word processor, such
as Turbo C++'s integrated editor. You can list options (separated
by spaces) on the same line or list them on separate lines.

In general, you should remember that command -line options
override configuration file options. If, for example, your configu­
ration file-contains several options, including the -a option (which
you want to turn ofj), you can still use the configuration file but
override the -a option by listing -a- in the command line.
However, the rules are a little more detailed than that. The option
precedence rules detailed on page 267 apply, with these
additional rules:

1. When the options from the configuration file are combined
with the command-line options, any -I and -L options in the
configuration file are appended to the right of the command­
line options. This means that the include and library direc­
tories specified in the command line are the first ones that
Turbo C++ searches (thereby giving the command-line -I and
-L directories priority over those in the configuration file).

2. The remaining configuration file options are inserted imme­
diately after the TCC command (to the left of any command­
line options). This gives the command-line options priority
over the configuration file options.

Compiler options

Turbo C++'s command-line compiler options fall into ten groups;
the page references to the left of each group tell where you can
find a discussion of each kind of option:

See page 273. 1. Memory model options let you tell Turbo C++ which memory
model to use when compiling your program.

See page 274. 2. Macro definitions let you define and undefine macros on the
command line.

See page 275. 3. Code-generation options govern characteristics of the gen­
erated code, such as the floating-point option, calling con­
vention, character type, or CPU instructions.

See page 287. 4. Source code options cause the compiler to recognize (or
ignore) certain features of the source code; implementation-

272 Turbo C++ User's Guide

specific (non-ANSI, non-Kernighan and Ritchie, and non­
UNIX) keywords, nested comments, and identifier lengths.

See page 282. 5. Error-reporting options let you tailor which warning messages
the compiler reports, and the maximum number of warnings
and errors that can occur before the compilation stops.

See page 284. 6. Segment-naming control options allow you to rename seg-
ments and to reassign their groups and classes.

See page 285. 7. Compilation control options let you direct the compiler to

• compile to assembly code (rather than to an object module)
• compile a source file that contains inline assembly
• compile without linking
• use precompiled headers or not

See page 28j. 8. EMS options let you control how much expanded or extended
memory Turbo C++ uses.

See page 287. 9. C++ virtual table options let you control how virtual tables are
handled.

See page 289. 10. C++ member pointer options let you control how member
pointers are used.

See page 290. 11. Template generation options let you control how the compiler
gene:rates definitions or external declarations for template
instances.

See page 292. 12. Backward compatibility options let you tell the compiler to
use particular code generation strategies to insure backward
compatibility with earlier versions of Turbo C++.

Memory model

See Chapter 78 for in-depth
information on the memory

models (what they are, how
to use them).

Memory model options let you tell Turbo C++ which memory
model to use when compiling your program. The memory models
are tiny, small, med~um, compact, large, and huge.

-me Compile using compact memory model
-mh Compile using huge memory model
-ml Compile using large memory model
-mm Compile using medium memory model
-mm! Coinpile using medium model; DS != SS
-ms Compile using small memory model (the default)
-ms! Compile using small model; DS != S5
-mt Compile using tiny memory model
-mt! Compile using tiny model; D5 != 5S

Chapter 8, The command-line compiler 273

NOTE: You can't use the -N
option when using one of the

OS /= SS models.

Macro definitions

274

The net effect of the -mt!, -ms!, and -mm! options is actually very
small. If you take the address of a stack variable (auto or param­
eter), the default (when DS == SS) is to make the resulting pointer
a near (DS relative) pointer. In this way one can simply assign the
address to a default sized pointer in those models without
problems. When DS!= SS, the pointer type created when you take
the address of a stack variable is an _ss pointer. This means that
the pointer can be freely assigned or passed to a far pointer or to a
_ss pointer. But for the memory models af£ected, assigning the
address to a near or default-sized pointer produces a "Suspicious
pointer conversion" warning. Such warnings are usually errors,
and the warning defaults to on. You should regard this kind of
warning as a likely error.

Macro definitions let you define and undefine macros (also called
manifest or symbolic constants) on the command line. The default
definition is the null string. Macros defined on the command line
override those in your source file.

-Oname Defines the named identifier name to the null
string.

-Oname=string Defines the named identifier name to the string
string after the equal sign. string cannot contain
any spaces or tabs.

-Uname Undefines any previous definitions of the
named identifier name.

Turbo C++ lets you make multiple #define entries on the
command line in any of the following ways:

• You can include multiple entries after a single -0 option, sepa­
rating entries with a semicolon (this is known as "ganging"
options):

TCC -Dxxx;yyy=l;zzz=NO MYFILE.C

• You can place more than one -0 option on the command line:

TCC -Dxxx -Dyyy=l-Dzzz=NO MYFILE.C

• You can mix ganged and multiple -0 listings:

TCC -Dxxx -Dyyy=l;zzz=NO MYFILE.C

Turbo C++ User's Guide

Code-generation
options Code-generation options govern characteristics of the generated

code, such as the floating-point option, calling convention, charac­
ter type, or CPU instructions.

-1 This option causes Turbo C++ to generate extended
80186 instructions. It also generates 80286 programs
running in real mode, such as programs for the IBM
PC/ AT under DOS.

-1- Tells the compiler to generate 8088/8086 instructions
(the default).

-2 This option causes Turbo C++ to generate instructions
compatible with 80286 protected-mode.

-a This option forces integer size and larger items to be
aligned on a machine-word boundary. Extra bytes are
inserted in a structure to ensure member alignment.
Automatic and global variables are aligned properly.
char and unsigned char variables and fields can be
placed at any address; all others are placed at an even- .
numbered address. This option is off by default (-a-) ,
allowing bytewise alignment.

-b This option (which is on by default) tells the compiler to
always allocate a whole word for enumeration types.

-b- This option tells the compiler to allocate a signed or
unsigned byte if the minimum and maximum values of
the enumeration are both within the range of 0 to 255 or
-128 to 127, respectively.

-d This option tells the compiler to merge literal strings
when one string matches another, thereby producing
smaller programs. This option is off by default (-d-).

-Fc This generates communal variables (COMDEFs) for
global "C" variables that are not initialized and not
declared as static or extern. The advantage of using this
option is that header files that are included in several
source files can contain declarations of global variables.
So long as a given variable doesn't need to be initialized
to a nonzero value, you don't need to include a
definition for it in any of the source files. You can use

Chapter 8, The command-line compiler 275

276

this option when porting code that takes advantage of a
similar feature with another implementation.

-Ff When you use this option, global variables greater than
or equal to the threshold size are automatically made far
by the compiler. The threshold size defaults to 32,767;
you can change it with the -Ff=size option. This option
is useful for code that doesn't use the huge memory
model but declares enough large global variables that
their total size exceeds (or is close to) 64K. For tiny,
small, and medium models this option has no effect.

If you use this option in conjunction with -Fc, the
generated COMOEFs are far in the compact, large, and
huge models.

-ff With this option, the compiler optimizes floating-point
operations without regard for explicit or explicit type
conversions. Computations might be completed faster
with this option than they are under ANSI mode. See
Chapter 19, Mathematical operations for more
information.

-Ff=size Use this option to change the threshold size used by the

-Fm

-Fs

-f

-f-

-Ff option.

This option enables all the other -F options (-Fc, -Ff and
-Fs). You can use it as a handy shortcut when porting
code from other compilers.

This option tells the compiler to assume that OS is equal
to SS in all memory models; you can use it when porting
code originally written for an implementation that
makes the stack part of the data segment. Whenyou
specify this option, the compiler links in an alternate
startup module (COFx.OBJ) that places the stack in the
data segment.

Thisoption tells the compiler to emulate 80x87 calls at
run time if the run-time system does not have an 80x87;
if it does have one, the compiler calls the 80x87 chip for
floating-point calculations (the default).

This option specifies that the program contains no
floating-point calculations, so no floating-point libraries
are linked at the link step.

Turbo C++ User's Guide

-ff

-ff-

-f87

-f287

-h

-K

With this option, the compiler optimizes floating-point
operations without regard to explicit or implicit type
conversions. Answers can be faster than under ANSI
operating mode. See Chapter 19, "Mathematical
operations" for details.

This option turns off the fast floating-point option. The
compiler follows strict ANSI rules regarding floating­
point conversions.

This option tells the compiler to generate floating-point
operations using inline 80x87 instructions rather than
using calls to 80x87 emulation library routines. It
specifies that q math coprocessor is available at run time;
therefore, programs compiled with this option don't run
on a machine that does not have a math coprocessor.

This option is similar to -f87, but uses instructions that
are only available with an 80287 (or higher) chip.

This option offers an alternative way of calculating huge
pointer expressions; a way which is much faster but
must be used with caution. When you use this option,
huge pointers are normalized only when a segment
wraparound occurs in the offset part. This causes
problems for huge arrays ifany array elements cross a
segment boundary. This option is off by default.

Normally, Turbo C++ normalizes a huge pointer
whenever adding to or subtracting from it. This ensures
that, for example, if you have a huge array of structs
that's larger than 64K, indexing into the array and
selecting a struct field always works with structs of any
size. Turbo C++ accomplishes this by always
normalizing the results of huge pointer operations, so
that the offset part contains a number that's no higher
than 15. That way, a segment wraparound never occurs
with huge pointers. The disadvantage of this approach
is that it tends to be quite expensive in terms of
execution speed.
This option tells the compiler to treat all char
declarations as if they were unsigned char type. This
allows for compatibility with other compilers that treat
char declarations as unsigned. By default, char
declarations are Signed (-K-).

Chapter 8, The command-line compiler . 277

Unless you are an expert,
don't use -u-. See

BASMDOC for details about
underscores.

-k This option generates a standard stack frame, which is
useful when using a debugger to trace back through the
stack of called subroutines. This option is on by default.

-N This option generates stack overflow logic at the entry of
each function, which causes a stack overflow message to
appear when a stack overflow is detected. This is costly in
terms of both program size and speed but is provided as an
option because stack overflows can be very difficult to
detect. If an overflow is detected, the message "Stack
overflow!" is printed and the program exits with an exit
code of 1.

-p This option forces the compiler to generate all subroutine
calls and all functions using the Pascal parameter-passing
sequence. The resulting function calls are smaller and faster.
Functions must pass the correct number and type of
arguments, unlike normal C use, which permits a variable
number of function arguments. You can use the cdecl
statement to override this option and specifically declare
functions to be C-type. This option is off by default (-p-).

-u With -u selected, when you declare an identifier, Turbo C++
automatically puts an underscore (_) in front of the identifi­
er before saving the identifier in the object module.

Turbo C++ treats Pascal-type identifiers (those modified by
the pascal keyword) differently-they are uppercase and
are not prefixed with an underscore.

Underscores for C and C++ identifiers are optional, but on
by default. You can turn them off with "'""u-. However, if you
are using the standard Turbo C++ libraries, you'll have
problems unless you rebuild the libraries. (To do this, you
need the Turbo C++ run!.time library source code; contact
Borland for more information.)

The -v and -vi options -v This option tells the compiler to include debugging informa­
tion in the .OBJ file so that' the file(s) being compiled can be
debugged with Turbo C++'s integrated debugger. The com­
piler also passes this option on to the linker so it can include
the debugging information in the .EXE file.

278 Turbo C++ User's Guide

Optimization
options

To facilitate debugging, this option also causes C++ inline
functions to be treated as normal functions. If you want to
avoid that, use -vi.

-vi With this option enabled, C++ inline functions are expanded
inline.

-v- This option turns debugging off and inline expansion on.

-vi- This option turns inline expansion off.

So, for example, if you want to turn both debugging and inline
expansion on, you must use -v -vi.

-x This option disables generation of autodependency in­
formation in the output file. Modules compiled with this
option enabled can't use the autodependency feature of
MAKE or of the IDE. Normally this option is only used
for files that are to be put into .LIB files (to save disk
space).

-v This option generates overlay-compatible code. Every
file in an overlaid program must be compiled with this
option; see Chapter 18, "Memory management" for
details on overlays.

-Vo This option overlays the compiled file(s); see Chapter 18
for details.

-y This option includes line numbers in the object file for
use by a symbolic debugger, such as Turbo Debugger.
This increases the size of the object file but doesn't affect
size or speed of the executable program. This option is
useful only in concert with a symbolic debugger that can
use the information. In general, -v is more useful than
-y with Turbo Debugger.

Optimization options let you specify how the object code is to be
optimized; for size or speed, with or without the use of register
variables, and with or without assumptions about aliases.

-G This option causes the compiler to bias its optimization in
favor of speed over size.

Chapter 8, The command-line compiler 279

280

-G- This option, the default, causes the compiler to bias its
optimization in favor of size over speed (where smaller is
better).

-0 This option eliminates redundant jumps (such as jumps to
jumps) and multiple copies of identical code that jump to
the same location. It also suppresses redundant register
loads. .

-r This option enables the use of register variables (the
default).

Unless you ore an expert, -r­
don't use -r-.

-rd

-z

This option suppresses the use of register variables. When
you are using this option, the compiler won't use register
variables, and it won't preserve and respect register vari­
ables (Sl,Dl) from any caller. For that reason, you should
not have code that uses register variables call code which
has been compiled with -r-.

On the other hand, if you are interfacing with existing
assembly-language code that does not preserve Sl,Dl, the
-r- option allows you to call that code from Turbo C++.

This option only allows declared register variables to be
kept in registers.

This option allows the corrtpiler to assume that variables
are not accessed both directly and with a pointer in the
same function. It is effective only when used with -0. The
compiler keeps a table that reflects the current contents of
registers. If a variable had to be loaded from memory to a
register, the compiler remembers that the register now
contains a copy of the variable. If the variable is used
again, the compiler uses the copy in the register rather
than the value in memory. The ~z option determines how
the compiler handles indirect assignments. Normally it
assumes that such assignments might change a variable;
consequently, it ignores copies of register variables,
erasing the table. The -Z option tells the compiler that
indirect assignments won't change variable, and it's safe
to keep the copies. If you access a variable directly and
through a pointer within a function, erroneous code can
be generated if this option is turned on, but better
performance.and correct code might also result.

Turbo C++ User's Guide

Source code
options Source code options cause the compiler to recognize (or ignore)

certain features of the source code; implementation-specifiC (non­
ANSI, non-Kernighan and Ritchie, and non-UNIX) keywords,
nested comments, and identifier lengths. These options are most
significant if you plan to port your code to other systems.

See Chapter 7 7, "Lexical
elements" for a complete list
of the Turbo C++ keywords.

-A This option compiles ANSI-compatible code: Any of the
Turbo C++ extension keywords are ignored and can be
used as normal identifiers. These keywords include

asm - ds interrupt - ss
cdecl es loadds _saveregs - -
- cs far near _seg

huge pascal

and the register pseudovariables, such as _AX, _BX, _51,
and so on.

-A-:- . This option tells the compiler to use Turbo C++
keywords. -AT is an alternate version of this option.

-AK This option tells the compiler to use only Kernighan and
Ritchie keywords. .

-AU This option tells the compiler to use only UNIX key­
words.

-C This option allows you to nest comments. Comments may
not normally be nested.

-in This option causes the compiler to recognize only the first
n characters of identifiers. All identifiers, whether vari­
ables, preprocessor macro names, or structure member
names, are treated as distinct only if their first n char­
acters are distinct.

By default, Turbo C++ uses 32 characters per identifier.
Other systems, including some UNIX ~ompilers, ignore
characters beyond the first eight. If you are porting to
these other environments, you may wish to compile your
code with a smaller number of significant characters.
Compiling in this manner helps you see if there are any
name conflicts in long identifiers when they are truncated
to a shorter significant length.

Chapter 8, The command-line compiler 281

Error-reporting
options

For more information on
these warnings, see

Appendix C, "Error mes­
sages"

The asterisk (*) indicates that
the option is on by default.

All others are off by default.

282

Error-reporting options let you tailor which warning messages
the compiler reports, and the maximum number of warnings and
errors that can occur before the compilation stops.

-gn This option tells Turbo C++ to stop compiling after n
warning messages.

-jn This option tells the compiler to stop compiling after n
error messages.

-w This option causes the compiler to display warning
messages. You can turn this off with -w-. You can
enable or disable specific warning messages with
-wxxx, described in the following paragraphs.

-wxxx This option enables the specific warning message
indicated by xxx. The option -w-xxxsuppresses the
warning message indicated by xxx. The possible
options for -wxxx are listed here and divided into four
categories: ANSI violations, frequent errors (including
more frequent errors), portability warnings, and C++
warnings. You can also use the pragma warn in your
source code to control these options. See Chapter 14,
"The preprocessor."

ANSI violations

-wbbf
-wbig*
-wdpu*
-wdup*
-weas
-wext*
-wpin
-wret*
-wstu*
-wsus*
-wvoi*
-wzdi*

Bit fields must be signed or unsigned int.
Hexadecimal value contains more than three digits.
Declare type prior to use in prototype.
Redefinition of macro .is not identical.
Assigning type to enumeration.
Identifier is declared as both external and static.
Initialization is only partially bracketed.
Both return and return with a value used.
Undefined structure structure.
Suspicious pointer conversion.
Void functions may not return a value.
Division by zero.

Turbo C++ User's Guide

Frequent errors

~wamb
-wamp
-wasm
-waus*
-wccc*
-wdef
-weft*
-wias*
-will *
-wnod
-wpar*
-wpia*
-wpro
-wrch*
-wrvl*
-wstv
-wuse

Ambiguous operators need parentheses.
Superfluous & with function or array.
Unknown assembler instruction.
Identifier is assigned a value that is never used.
Condition is always true/ false.
Possible use of identifier before definition.
Code has no effect.
Array variable identifier is near.
Ill-formed pragma.
No declaration for function function.
Parameter parameter is never used.
Possibly incorrect assignment.
Call to function with no prototype.
Unreachable code.
Function should return a value.
Structure passed by value.
Identifier is declared but never used.

Portability warnings

-wcln
-wcpt*
-wrng*
-wrpt*
-wsig
-wucp

Constant is long.
Nonportable pointer comparison.
Constant out of range in comparison.
Nonportable pointer conversion.
Conversion may lose significant digits.
Mixing pointers to signed and unsigned char.

c++ warnings

-wbei*
-wdsz*
-whid*
-wibc*
-winl*
-wlin*
-wlvc*
-wmpc*

-wmpd*

-wncf*
-wnci*

Chapter 8, The command-line compiler

Initializing enumeration with type.
Array size for I delete' ignored.
Functionl hides virtual function function2.
Base class basel is inaccessible because also in base2.
Functions containing identifier are not expanded inline.
Temporary used to initialize identifier.
Temporary used for parameter in call to identifier.
Conversion to type fail for members of virtual base
class base.
Maximum precision used for member pointer type
type.
Non-const function function called const object.
Constant member identifier is not initialized.

283

Segment-naming
control

Don't use these options
unless you have a good

understanding of segmen­
tation on the 8086 processor.

Under normal circumstances,
you don't need to specify

segment names:

-wnst*
-wnvf*
-wobi*

-wofp*
-wovl*
-wpre

Use qualified name to access nested type type.
Non-volatile function function called for volatile object.
Base initialization without a class name is now
obsolete.
Style of function definition is now obsolete.
Overload is now unnecessary and obsolete.
Overloaded prefix operator ++ / - used as a postfix
operator.

Segment-naming control options allow you to rename segments
and to reassign their groups and classes.

-zAname This option changes the name of the code segment
class to name. By default, the code segment is
assigned to class CODE.

-zBname

-zCname

-zDname

This option changes the name of the uninitialized
data segment class to name. By default, the
uninitialized data segments are assigned to class
BSS.

This option changes the name of the code segment
to name. By default, the code segment is named
_TEXT, except for the medium, large and huge
models, where the name is filename_TEXT. (filename
here is the source file name.)

This option changes the name of the uninitialized
data segment to name. By default, the uninitialized
data segment is named _BSS, except in the huge
model, where no uninitialized data segment is
generated .

. See Chapter 78, "Memory -zEname
management" for more on

This option changes the name of the segment where
far objects are put to name. By default, the segment
name is the name of the far object followed by
_FAR. A name beginning with an asterisk (*) indi­
cates that the default string should be used.

far objects.

-zFname

284

This option changes the name of the class for far
objects to name. By default, the name is FAR_DATA.
A name beginning with an asterisk (*) indicates that
the default string should be used. '

Turbo C++ User's Guide

Compilation
control options

-zGname

-zHname

-zPname

This option changes the name of the uninitialized
data segment group to name. By default, the data
group is named DGROUP, except in the huge
model, where there is no data group.

This option causes far objects to be put into group
name. By default, far objects are not put into a group.
A name beginning with an asterisk (*) indicates that
the default string should be used.

This option causes any output files to be generated
with a code group for the code segment named
name.

-zRname This option sets the name of the initialized data
segment to name. By default, the initialized data
segment is named _DATA, except in the huge
model, where the segment is named filename_DATA.

-zSname This option changes the name of the initialized data
segment group to name. By default, the data group is
named DGROUP, except in the huge model, where
there is no data group.

-zTname This option sets the name of the initialized data
segment class to name. By default the initialized data
segment class is named DATA.

-zV name This option sets the name of the far virtual table
segment to name. By default far virtual tables are
generated in the code segment.

-zWname This option sets the name of the far virtual table
class segment to name. By default far virtual table
classes are generated in the CODE segment.

-zX* 'This option uses the default name for X. For
example, -zA * assigns the default class name CODE
to the code segment. ,

Compilation control options allow you to control compilation of
source files, such as whether your code is compiled as C or C++ or
whether to use precompiled headers. '

-8 This option compiles and calls the·assembler to
process inline assembly code.

Chapter 8, The comm,and-line compiler 285

-c

-Efi/ename

This option compiles and assembles the named.C
and .CPP, files, but does not execute a link
command.

This option uses name as the name of the
assembler to use. By default, T ASM is used.

See Appendix B for more on -H
precompiled headers.

This option causes the compiler to generate and
use precompiled headers, using the default
filename TCDEF.sYM.

-H- This option turns off generation and use of pre­
compiled headers (this is the default).

-Hu This option tells the compiler to use but not gen­
erate precompiled headers.

-H=filename This option sets the name of the file for precom­
piled headers, if you wish to save this informa­
tion in a file other than TCDEF.SYM. This option
also turns on generation and use of precompiled
headers; that is, it also has the effect of -H .

..... ofi/ename This option compiles the named file to the
specified .filename.obj.

Note that this option _p
behaves differently from the

This option causes the compiler to compile your
code as c++ always, regardless of extension. The
compiler assumes that all files have .CPP
extensions unless a different extension is
specified with the -Pext option as described later.

-p option in Turbo C++ l.x.

-Pext

-P-

-P-ext

286

This option causes the compiler to compile all
files as C++; it changes the default extension to
whatever you specify with ext. This option is
available because some programmers use .C or
another extension as their default exten:sion for
C++ code.

This option tells the compiler to compile a file as
either C or C++, based on its extension. The
default extension is .CPP. This option is the
default.

This option also tells the compiler to compile
code based on the extension (.CPP as C++ code,
all other file-name extensions as C code). It
further specifies what the default extension is to
be.

Turbo C++ User's Guide

EMS and
expanded

memory options

c++ virtual tables

-s

-Tstring

-T-

This option compiles the named source files and
produces assembly language output files (.ASM),
but does not assemble. When you use this option,
Turbo C++ includes the C or C++ source lines as
comments in the produced .ASM file.

This option passes string as an option to T ASM
(or as an option to the assembler defined with
-E).

This option removes all previously defined
assembler options.

If you have expanded (EMS) memory, you may want to make this
memory available to the compiler for "swap" space in the event
that your computer's extended (protected mode) memory is
exhausted during compilation. These options give you the ability
to control the compiler's use of EMS memory. You can also control
the amount of expanded (protected mode) memory Turbo C++
uses.

-Qe

-Qe=yyyy

-Qe-

-Qx=nnnn

This option instructs the compiler to use all EMS
memory it can find. This is on by default for the
command-line compiler (TCC). It speeds up your
compilations, especially for large source files.

This option instructs the compiler to use yyyy
pages (in 16K page sizes) of EMS memory for
itself.

This option instructs the compiler not to use any
EMS memory.

This option instructs the compiler to use nnnn
bytes of extended memory.

The -v option controls the C++ virtual tables. There are five varia­
tions of the -v option:

-v Use this option when you want to generate C++ virtual
tables (and inline functions not expanded inline) so
that only one instance of a given virtual table or inline
function are included in the program. This produces

Chapter 8, The command-line compiler 287

288

the smallest executables, but uses .OBJ and .ASM ex­
tensions only available with TLINK 3.0 and T ASM 2.0

. (or later).

-Vs Use this option when you want Turbo C++ to generate
local virtual tables (and inline functions not expanded
inline) such that each module gets its own private copy
of each virtual table (or inline function) it uses. This
option uses only standard .OBJ (and .ASM) constructs,
but produces larger executables.

-vo, -V1 These options·work together to create global virtual
tables. If you don't want to use the Smart or Local
options (-V or -Vs), you can use -vo and -V1 to
produce and reference global virtual tables. -vo
generates external references to virtual tables; -V1
produces public definitions for virtual tables.

When using these two options, at least one of the
modules in the program must be compiled with the
-V1 option to supply the definitions for the virtual
tables. All other modules should be compiled with the
-vo option to refer to that Public copy of the virtual
tables.

-Vf You can use this option independently of or in
conjunction \vith any of the other virtual table options.
It causes virtual tables tobe created in the code
segment instead of the data segment (unless changed
using the -zV and -zW options), and makes virtual
table pointers into full 32-bit pointers (the latter is done
automatically if you are using the huge memory
model).

There are two primary reasons for using this option: to
remove the virtual tables from the data segment, which
may be getting full, and to be able to share objects (of
classes with virtual functions) between modules that
use different data segments. You must compile all
modules that may share objects either entirely with or
entirely without this option. You can achieve the same
effect by using the huge modifier on a class-by-class
basis.

Turbo C++ User's Guide

c++ member
pointers The -Vm options control C++ member pointer types. There are

five variations of the -Vm option:

The Turbo C++ compiler supports three different kinds of
member pointer types, with varying' degrees of complexity and
generality. By default, the compiler uses the most general (but in
some contexts also the least efficient) kind for all member pointer
types; this default behavior can be changed via the - Vm family of
switches.

-Vmv Member pointers declared while this option is in effect
have no restriction on what members they point to;
they use the most general representation.

-Vmm Member pointers declared while this option is iIl effect
are allowed to point to members of multiple
inheritance classes, except that members of virtual base
classes cannot be pointed to.

-Vms Member pointers declared while this . option is in effect
are not allowed to point to members of some base
classes of classes that use multiple inheritance (in
general, they can be used with single inheritance
classes only).

-Vmd Member pointers declared while this option is in effect
use the smallest possible representation that allows
member pointers to point to all members of their class.
If the class is not fully defined at the point where the
member pointer type is declared, the most general
representation has to be chosen by the compiler (and a
warning is issued about this).

-Vmp Whenever a member pointer is dereferenced or called,
the compiler treat the member pointer as if it were of
the least general case needed for that particular pointer
type. For example, a call through a pointer to member
of a class that is declared without any base classes treat
the member pointer as having the simplest
representation, regardless of how it's been declared.
This works correctly (and produces the most efficient
code) in all cases except for one: when a pointer to a
derived class is explicitly cast to a pointer to member of
a 'simpler' base class, when the pointer is actually

Chapter 8, The command-line compiler 289

Template
generation

options

pointing to a derived class member. This is a non­
portable (and dubious) construct, but if you need to
compile code that uses it, use the -Vmp option. It
forces the compiler to honor the declared precision for /
all member pointer types.

The -Jg option controls the generation of template instances in
C++. There are three variations of the -Jg option:

-Jg Public definitions of all template instances encountered
when this switch value is in effect are generated, and if
more than one module generates the same template
instance, the linker merges them to produce a single
copy of the instance. This option (the default) is the
most convenient approach to generating template
instances. In order to generate the instances, however,
the compiler must have available the function body (in
the case of a template function) or the bodies of
member functions and definitions for static data
members (in the case of a template class).

-Jgd This option tells the compiler to generate public
definitions for all template instances encountered.
Unlike the -Jg option, however, duplicate instances are
not merged, causing the linker to report public symbol
redefinition errors if more than one module defines the
same template instance.

For more information about -Jgx
templates, see Chapter 73,

This option instructs the compiler to generate external
references to template instances. If you use this option
you must make sure that the instances are publicly
defined in some other module (using the -Jgd option),
so that the external references are satisfied.

"C++ specifics. "

Linker options

See the section on TUNK for a -efilename
list of linker options.

290

This option derives the executable program's name
from filename by adding the file extension .EXE (the
program name is filename.EXE). filename must
immediately follow the -e, with no intervening
whitespace. Without this option, the linker derives

Turbo C++ User's Guide

the .EXE file's name from the name of the first
source or object file in the file name list.

-tOe This specifies that the target (output) file is a DOS
.EXE file.

-tOe This specifies that the target (output) file is a DOS
.COMfile.

-Ix This option (which is a lowercase 1) passes option x
to the linker. The option -I-x suppresses option x.
More than one option can appear after the -I.

-M This option forces the linker to produce a £Ulllink
map. The default is to produce no link map.

Environment options

When working with environment options, bear in mind that
Turbo C++ recognizes two types of library files: implicit and user­
specified (also known as explicit library files). These are defined and
discussed on page 294.

-Ipath

-Lpath

-npath

Chapter 8, The command-line compiler

This option (which is an uppercase I) causes the
compiler to search path (the drive specifier or path
name of a subdirectory) for include files (in
addition to searching the standard places). A
drive specifier is a single letter, either uppercase
or lowercase, followed by a colon (:). A directory
is any valid directory or directory path. You can
use more than one -I directory option.

This option forces the linker to get the COx.OBJ
start-up object file and the Turbo C++ library files
(Cx.LIB, MATHx.LIB, EMU.LIB, and FP87.LIB)
from the named directory. By default, the linker
looks for them in the current directory.

This option places any .OBJ or .ASM files created
by the compiler in the directory or drive named
by path.

291

Backward compatibility options

Turbo C++ version 3.0 introduces a number of improvements in
the way some C++ operations are implemented, resulting in
smaller, faster code with fewer restriGtions and less overhead. In
some cases, the new implementation is not fully compatible with
previous versions of Turbo c++. Where such compatibility is
needed, the following options are provided:

-Va When an argument of type class with constructors is
passed by value to a function, this option instructs the
compiler to create a temporary variable at the calling site,
initialize this temporary with the argument value, and
pass a reference to this temporary to the function. This
behavior is compatible with previous versions of Turbo
C++. By default, version 3.0 copy-constructs such
argument values directly to the stack, thus avoiding the
introduction of the temporary (and also making access to
the argument value faster).

-Vb When a class inherits virtually from a base class, the
compiler stores a hidden pointer in the class object to
access the virtual base class subobject. The Turbo C++ 3.0
compiler makes this pointer always 'near', which allows it
to generate more efficient code. For backward
compatibility, the -Vb option directs the TC++ 3.0
compiler to match the hidden pointer to the size of the
'this' pointer used by the class itself.

-Vc To correctly implement the case when a derived class
overrides a virtual function that it inherits from a virtual
base class, and a constructor or destructor for the derived
class calls that virtual function using a pointer to the
virtual base class, the compiler may add hidden members
to the derived class, and add more code to its constructors
and destructors. This option directs the compiler not to
add the hidden members and code, so that class instance
layout is the same as with previous versions of Turbo
C++.

":'Vp This option directs the compiler to pass the 'this'
parameter to 'pascal' member functions as the first
parameter on the stack, for compatibility with previous

. versions of Turbo C++. By default, version 3.0 always

292 Turbo C++ User's Guide

Searching for
include and

library files

pushes 'this' as the last parameter regardless of calling
convention.

-Vt This option instructs the compiler to place the virtual
table pointer after any non-static data members of the
particular class, to ensure compatibility when class
instances are to be shared with non-C++ code and when
sharing classes with code compiled with previous
versions of Turbo C++. By default, version 3.0 adds this
pointer before any non-static data members of the class,
thus making virtual member function calls smaller and
faster.

-Vv This option directs the compiler not to change the layout
of any classes (which it may need to do in order to allow
pointers to virtual base class members, which were not
supported in previous versions of Turbo C++). If this
option is used, the compiler isn't able to create a pointer
to a member of a base class that can only be reached from
the derived class through two or more levels of virtual
inheritance.

-Vo This option is a "master switch" that turns on all of the
backward-compatibility options listed in this section. It
can be used as a handy shortcut when linking with
libraries built with older versions of Turbo C++.

Turbo C++ can search multiple directories for include and library
files. This means that the syntax for the library directories (-L)
and include directories (-I) command-line options, like that of the
#define option (-0), allows multiple listings of a given option.

Here is the syntax for these options:

Library directories: "':'Ldirname[;dirname; ...]
Include directories: -Idirname[;dirname; ...]

The parameter dirname used with -L and -I can be any directory
or directory path .

. You can enter these multiple directories on the command line-in
the following ways:

• You can" gang" multiple entries with a single -L or -I option,
separating ganged entries with a semicolon, like this:

Chapter 8, The command-line compiler 293

Note

File-search
algorithms

Your code written under
older versions of Turbo C or

Turbo C++ works without
problems in this version of

Turbo C++.

294

Tee -Ldirnamel;dirname2;dirname3 -linel;ine2;inc3 myfile.e

• You can place more than one of each option on the command
line, like this:

Tee -Ldirnamel -Ldirname2 -Ldirname3 -linel -line2 -line3 myfile.e

• You can mix ganged and multiple listings, like this:

Tee -Ldirnamel;dirname2 -Ldirname3 -linel;ine2 -line3 myfile.e

If you list multiple -L or -I options on the command line, the
result is cumulative: The compiler searches all the directories
listed, in order from left to right.

The IDE also supports multiple library directories through the
"ganged entry" syntax.

The Turbo C++ include-file search algorithms search for the
#include files listed in your source code in the following way:

• If you put an #include <somefile.h> statement in your source
code, Turbo C++ searches for somefile.h only in the specified
include directories.

• If, on the other hand, you put an #include "somefile.h" state­
ment in your code, Turbo C++ searches for somefile.h first in
the current directory; if it does not find the header file there, it
then searches in the include directories specified in the
command line.

The library file search algorithms are similar to those for include
files:

• Implicit libraries: Turbo C++ searches for implicit libraries only
in the specified library directories; this is similar to the search
algorithm for #include <somefile.h>. [Implicit library files are the
ones Turbo C++ automatically links in. These are ex. LIB,
EMU.LIB or FP87.LIB, MATHx.LIB, OVERLAY.LIB, COF.OBJ,
and the start-up object file (COx.OBJ).]

• Explicit libraries: Where Turbo C++ searches for explicit (user­
specified) libraries depends in part on how you list the library
file name. (Explicit library files are the ones you list on the com­
mand line or in a project file; these are file names with a .LIB
extension.) .

• If you list an explicit library file name with no drive or_ direc­
tory (like this: mylib.lib), Turbo C++ searches for that library

Turbo C++ User's Guide

An annotated
example

in the current directory first. Then (if the first search was un­
successful), it looks in the specified library directories. This is
similar to the search algorithm for #include "somefile.h" .

• If you list a user-specified library with drive and/or directory
information (like this: c :mystuff\mylibl.lib), Turbo C++
searches only in the location you explicitly listed as part of the
library path name and not in the specified library directories.

Here is an example of a Turbo C++ command line that
incorporates multiple library and include directory options.

1. Your current drive is C:, and your current directory is C: \ TC.
This example makes the following assumptions: A drive's
current position is A:\ASTROLIB; C:\ TC\BIN is in your DOS
path.

2. Your include files (.h or "header" files) are located in
C: \ TC \ INCLUDE.

3. Your startup files (COT.OBJ, COS.OBJ, ... , COH.OBJ) are in
C:\TC\LIB.

4. Your standard Turbo C++ library files (CS.LIB, CM.LIB, ... ,
MATHS.LIB, MATHM.LIB, ... , EMU. LIB, FP87.LIB, and so
forth) are in C:\ TC\LIB.

5. Your custom library files for star systems (which you created
and manage with TLIB) are in C:\ TC\STARLIB. One of these

. libraries is P ARX.LIB.

6. Your third-party-generated library files for quasars are in the
A drive in \ASTROLIB. One of these libraries is W ARP.LIB.

Under this configuration, you enter the following command:

TCC -mm -Llibistarlib -linclude orion.c urnaj.c parx.lib a:\astrolib\warp.lib

Turbo C++ compiles ORION.C and UMAJ.C to .OBJ files,
searching C: \ TC\INCLUDE for any #include files in your source
code. It then links ORION.OBJ and UMAJ.OBJ with the medium
model start-up code (COM.OBJ), the medium model libraries
(CM.LIB, MATHM.LIB), the standard floating-point emulation
library (EMU. LIB), and the user-specified libraries (P ARX.LIB and
WARP.LIB), producing an executable file named ORION.EXE.

It searches for the startup code in C:\ TC (then stops because
they're there); it searches for the standard libraries in C:\ TC\LIB
(and stops because they're there).

Chapter 8, The command-line compiler 295

296

When it searches for the user-specified library PARX.LIB, the
compiler first looks in the current directory, C: \ TC. Not finding
the library there, the compiler then searches the library directories
in order: first C: \ TC\LIB, then C:\ TC\STARLIB (where it locates
PARX.LIB).

Since an explicit path is given for the library W ARP.LIB (A: \
ASTROLIB\ WARP.LIB), the compiler only looks there.

Turbo C++ User's Guide

c H A p T E R

9

MAKE: The program manager

Borland's command-line MAKE helps you keep the executable
versions of your programs current. A program typically consists
of many source files. Each file might have to pass through prepro­
cessors, assemblers, compilers, and other utilities before being
combined with the rest of the program. Forgetting to recompile a
module that has changed or a module that's dependent on a
changed module produces erroneous results. On the other hand,
recompiling everything is time-consuming.

MAKE's usefulness extends beyond programming applications.
MAKE controls any process that involves selecting files by name
and processing them to produce a finished product, for example
text processing, automatic backups, sorting files by extension into
other directories, and cleaning temporary files out of your
directory.

How MAKE works

MAKE keeps your program up-to-date by performing the
following tasks:

• Reads a special file (called a makefile) that you created. The file
tells MAKE which .OBI and library files have to be linked in
order to create your executable file and which source and
header files have to be compiled to create each .OBI file.

Chapter 9, MAKE: The program manager 297

Starting MAKE

298

• Checks the time and date of each .OB] file against the time and
date of the source and header files it depends on. If any of these
is later than the .OBJ file, MAKE knows that the file has been
modified and that the source file must be recompiled.

• Calls the compiler to recompile the source file.

• Once all the .OBJ file dependencies have been checked, checks
the date and time of each of the .OB] files against the date and
time of your executable file.

• If any of the .OB] files is later than the .EXE file, calls the linker
to recreate the .EXE file.

MAKE relies upon the time stamp DOS places on files. For MAKE
to do its job, your system's time and date must be set correctly.
Check the system battery. Weak batteries can cause your system's
clock to lose track of the date and time, and MAKE won't work
right.

There are two versions of MAKE, MAKE.EXE, the protected­
mode version and MAKER.EXE, the real-mode version. They
work identically, except the protected-mode version processes
larger rnakefiles. Throughout this document, lviAKE refers to
either version.

To use MAKE, type make at the DOS prompt.

MAKE looks for the following files until it finds one of them, or it
halts and displays an error message:

BUILTINS.MAK (described later)
MAKE FILE
MAKEFILE.MAK

To use a file with a name other than MAKE FILE or
MAKEFILE.MAK, give MAKE the file (-f) option, as shown in
the following example: .

MAKE -f MYFILE.MAK

The general syntax for MAKE is

make [option ...] [target ...]

Turbo C++ User's Guide

Command-line
options

where option is a MAKE option (discussed later), and target is the
name of a target file to make.

Here are the MAKE syntax rules:

• The word make is followed by a space and a list of make
options.

• Each make option must be separated from its adjacent options
by a space. The order and number of options don't matter, as
long as they fit on the command line. You can type a - or a +
after options that don't specify a string, such as -S, to tum the
option off or on, respectively.

• The list of MAKE options is followed by a space, then an
optional list of targets.

• Each target must be separated from its adjacent targets by a
space. MAKE evaluates the target files in the order listed, re­
compiling their constituents if necessary.

A Ctrl-Break stops the currently executing command and MAKE as
well.

If the command line does not include any target names, MAKE
uses the first target file mentioned in an explicit rule. If one or
more targets are mentioned on the command line, they are built if
necessary.

The following table contains a list of MAKE's command-line
options. MAKE is case-sensitive. For example, the option -d isn't
a valid substitution for -D.

You can use either a - or a I to introduce the options.

Chapter 9, MAKE: The program manager 299

Table 9.1: MAKE options .

Option

-? or-h

-a

-8

-ddirectory

-Oidentifier

[-O]iden=string

-e

-f filename

-i

-I directory

-K

-m

-n

-N

-p

-r

-s

-8

-Uidentifier

-W

300

What it does

Prints a help message. The default options end with plus sign.

Causes an automatic dependency check on .OBJ files.

Builds all targets regardless of file dates.

When used with the -8 options, tells MAKE to wr~te its swap file in the specified
directory. directory can include a drive letter. Has no effect with the protected-mode
version of MAKE.

Defines the named identifier to the string consisting of the single character 1 (one).

Defines the named identifier iden to the string after the equal sign. If the string contains
any spaces or tabs, it must be enclosed in quotes. The -0 option is optional.

Ignores any attempt to redefine a macro whose name is the same an environment
variable. (In other words, causes the environment variable to take precedence.)

Uses filename as the MAKE file. If filename does not exist and no extension is given, tries
filename.MAK. The space after the -f is optional.

Does not check (ignores) the exit status of all programs run. Continues regardless of
exit status. This is equivalent to putting ,_, in front of all commands in the MAKEFILE
(described below).

Searches for include files in the indicated directory (as well as in the current directory).

Keeps (does not erase) temporary files created by MAKE. All temporary files have the
form MAKE~nnn.$$$, where nnnn ranges from 0000 to 9999. See page 305 for more on
temporary fifes.

Displays the date and time stamp of each file as MAKE processes it.

Prints the commands but does not actually perform them. This is useful for debugging
a makefile.

Increases MAKE's compatibility by resolving conflicts between MAKE's syntax and the
syntax of Microsoft's NMAKE. See the rest of this chapter and Chapter 17, "Converting
from Microsoft C" for the exact differences.

Displays all macro definitions, implicit rules, and macro definitions before executing
the makefile.

Ignores the rules (if any) defined in BUILTINS.MAK.

Does not print commands before executing. Normally, MAKE prints each command as
it is about to be executed.

Swaps MAKE out of memory while executing commands. This significantly reduces
the memory overhead of MAKE, allowing it to compile very large modules. This
option has no effect on the protected-mode version of MAKE.

Undefines any previous definitions of the named identifier.

Writes the current specified non-string options (like -s and -a) to MAKE.EXE. (This
makes them default.)

Turbo C++ User's Guide

The BUILTINS.MAK
file Certain MAKE macros and rules are used more frequently than

others and can be handled in the following ways:

ill First, you can put them in every makefile you create .

• Second, you can put them all in one file and use the !include
directive in each makefile you create. (See page 322 for more on
directives.)

• Third, you can put them all in a BUlL TINS.MAK file.

As previously mentioned, each time you run MAKE, it looks for a
BUILTINS.MAK file; however, there is no requirement that any
BUlL TINS.MAK file exist.

MAKE searches for BUILTINS.MAK in the current directory first.
Next, MAKE searches the directory where MAKE.EXE was
invoked. Put BUlL TINS.MAK in the same directory as the
MAKE.EXE file.

MAKE searches for the makefile in the current directory only.
This file contains the rules for the particular executable program
file being built. Both BUILTINS.MAK and the makefile files have
identical syntax rules.

MAKE also searches for any !include files (see page 324 for more
information) in the current directory. If you use the -I (include)
option, it searches the directory specified with the -I option, also.

A simple use of MAKE

MAKE can also back up files,
pull files out of different

subdirectories, and even
automatically run your

programs if the associated
data files are modified.

Let's look at an example of using MAKE that doesn't involve a C
program. Suppose you're writing a book and putting each chapter
of the manuscript in a separate file. The book has three chapters in
the files CHAPl.MSS, CHAP2.MSS, and CHAP3.MSS. To produce
a current draft of the book, you run each chapter through a
formatting program, called FORM.'EXE, then use the DOS COpy
command to concatenate the outputs to make a single file
containing the draft, as represented by the following diagram:

Chapter 9, MAKE: The program manager 301

302

Chap1.MSS form.~ Chapt1.TXT

Chap2.MSS form.~ Chapt2.TXT Book.TXT

Chap3.MSS form.~ Chap3.TXT

As work on the book progresses, you modify one or more of the
manuscript files. Next, you create a file, MAKEFILE, which tells
MAKE what files BOOK. TXT depends on and how to process
them. This file contains rules that explain how to rebuild
BOOK.TXTwhen some of the files it depends on have been
changed.

The. first line in your makefile is the following rule:

BOOK.TXT: CHAP1.TXT CHAP2.TXT CHAP3.TXT
COpy /A CHAP1.TXT+CHAP2.TXT+CHAP3.TXT BOOK. TXT

The line beginning with BOOK. TXT: says that BOOK. TXT depends
on the formatted text of each of the three chapters. If any of the
files that BOOK. TXT depends on are newer than BOOK. TXT itself,
MAKE must rebuild BOOK. TXT by executing the COPY com­
mand on the subsequent line.

Furthermore, each of the chapter files depends on a manuscript
(.MSS) file. If any of the CHAP?TXT files is newer than the
corresponding .MSS file, the .MSS file must be recreated. Thus,
you need to add mdre rules to the make file as follows:

CHAP1.TXT: CHAP1.MSS
FORM CHAP1.MSS

CHAP2.TXT: CHAP2.MSS
FORM CHAP2.MSS

CHAP3.TXT: CHAP3.MSS
FORM CHAP3.MSS

The rules show how to format one of the chapters, if necessary,
from the original manuscript file.

If the first file depends on the second file, MAKE updates the
second file before updating the first file. For example, if you

Turbo C++ User's Guide

Explicit and implicit rules are
discussed following the
section on commands.

change CHAP3.MSS, MAKE reformats Chapter 3 before
combining the .TXT files to create BOOK.TXT.

We can refine the example with an implicit rule. An implicit rule
shows how to make one type of file from another, based on the
files' extensions. In this case, you can replace the three rules for
the chapters with one implicit rule:

.MSS.TXT:
FORM $*.MSS

The rule says "If you need to make a . TXT file out of an .MSS file
to make things current, here's how to do it." (You'll still have to
update the first rule-the one that makes BOOK. TXT, so that

, , MAKE knows to concatenate the new chapters into the output
file. This rule makes use of a macro. See page ??? for an in-depth
discussion of macros.)

Once you create the makefile, type MAKE at the DOS command
line to update the book.

Creating makefUes

Creating a program from an assortment of program files, include
files, header files, object files, and so on, is similar to the previous
text-processing example. The main difference is that the com­
mands used at each step of the process invoke preprocessors,
compilers, assemblers, and linkers instead of a text formatter and
the DOS COpy command. Let's explore how to create makefiles­
the files that tell MAKE what to do-in greater depth.

A makefile contains the definitions and relationships needed to
help MAKE keep your program(s) up-to-date. You can cr:eate as
many makefiles as you want and name them whatever you want;
MAKE FILE is the name that MAKE looks for by default (if you
don't specify a makefile) when you run MAKE.

You create a makefile with any ASCII text editor, such as the IDE
built-in editor. All rules, definitions, and directives end at the end
of a line. If a line is too long, you can continue it to the next line
by placing a backslash (\) at the end of the line.

Use whitespace (blanks and tabs) to separate adjacent identifiers
(such as dependencies) and to indent commands within a rule.

Chapter 9, MAKE: The program manager 303

Components of a makefile

Comments

304

Creating a makefile is like writing a program, with definitions,
commands, and direCtives. The following constructs allowed in a
makefile:

• comments

• explicit rules

• implicit rules .
• macros

• directives:

• file inclusion directives
• conditional execution directives
• error detection directives
• macro undefinition directives

Let's look at each of these in more detail.

Comments begin with a pound sign (#) character; the rest of the
line following the # is ignored by MAKE. Comments can be .
placed anywhere; they don't have to start in a particular column.

A backslash does not continue a comment ontQ the next line;
instead, you must use a # on each line. In fact, you cannot use a
backslash as a continuation character in a line that has a comment.
If the backslash precedes the #, it is no longer the last character on
the line; if it follows the #, then it is part of the comment itself.

Here are some examples of comments in a makefile:

Makefile for my book

This file updates the file BOOK. TXT each time I
change one of the .MSS files

Explicit rule to make BOOK. TXT from six chapters. Note the
continuation lines.

BOOK.TXT: CHAP1.TXT·CHAP2.TXT CHAP3.TXT\
CHAP4.TXT CHAP5.TXT CHAP6.TXT
COpy fA CHAP1.TXT+CHAP2.TXT+CHAP3.TXT+CHAP4.TXT+\

CHAP5.TXT+CHAP6.TXT BOOK.TXT

Impl,icit rule to format individual chapters

Turbo C++ User's Guide

Command lists for
implicit and
explicit rules

.MSS.TXT:
FORM $*.MSS

Both explicit and implicit rules can have lists of commands. This
section describes how these commands are processed by MAKE.

Commands in a command list take the form

[prefix ...] command_body

Each command line in a comm:and list consists of an (optional) list
of prefixes, followed by a single command body.

. Prefixes The prefixes allowed in a command modify the treatment of these
commands by MAKE. The prefix is either the at-sign (@) or a
hyphen (-) followed immediately by a number.

Table 9.2
MAKE prefixes

Exit codes are status codes
returned by the executed

commands.

Command body and
operators

Prefix

@

-num

What it does

Prevents MAKE from displaying the command before
executing it. The display is hidden even if the -s option is not
given on the MAKE command line. This prefix applies only
to the command on which it appears.

Affects how MAKE treats exit codes. If a number (num) is
provided, then MAKE aborts processing only if the exit status
exceeds the number given. In this example, MAKE aborts .
only if the exit status exceeds 4:

-4 MYPROG SAMPLE.X

If no -num prefix is given and the status is nonzero, MAKE
stops and deletes the current target file.

With a hyphen but no number, MAKE doesn't check the exit
status at all. Regardless of the exit status, MAKE continues.

& The ampersand operator causes MAKE to execute the
command for each of the dependents the $** or $? macros in
an explicit rule expands to. See page 321 for more
information on these macros.

The command body is treated exactly as if it were entered as a
line to the DOS command line, with the exception that pipes (I)
are not supported.

In addition to the <, >, and» redirection operators, MAKE adds
the « and && operators. These operators create a file on the fly
for input to a command. The « operator creates a temporary file
and redirects the command's standard input so that it comes from

Chapter 9, MAKE: The program manager 305

Macros are covered starting
I on page 375 ..

The KEEP option for the «
operator in compatibility

mode tells MAKE not to
delete specific temporary
files. See the next section.

306

the created file. If you have a program that accepts input from
stdin, the command

MYPROG «!

This is a test

would create a temporary file containing the string "This is a
test \n", redirecting it to be the sole input to myprog. The excla­
mation point (!) is a delimiter in this example; you can use any
character except # or \ as a delimiter for the file. The first line
containing the delimiter character as its first character ends the
file. The rest of the line following the delimiter character (in this
case, an exclamation point) is considered part of the preceding
command.

The && operator is similar to «. It creates a temporary file, but
instead of making the file the standard input to the command, the
&& operator is replaced with the temporary file's name. This is
useful when you want MAKE to create a file that's going to be
used as input to a program. The following example creates a
"response file" for TLINK:

MYPROG.EXE: $ (MYOBJS)
TLINK Ie @&&!

COS $ (MYOBJS)
$*
$*
$ (MYLIBS) EMU.LIB MATHS.LIB CS.LIB

Note that macros (indicated by $ signs) are expanded when the
file is created. The $* is replaced with the name of the file being
built, without the extension, and $(MYOBJS) and $(MYLIBS) are
replaced with the values of the macros MYOBJS and MYLIBS.
Thus, TLINK might see a file that looks like this:

COS A.OBJ B.OBJ C.OBJ D.OBJ
MYPROG
MYPROG
W.LIB X.LIB Y.LIB Z.LIB EMU.LIB MATHS.LIB CS.LIB

All temporary files are deleted unless you use the -K command­
line option. Use the -K option to "debug" your temporary files if
they don't appear to be working correctly.

Turbo C++ User's Guide

Note that there must be no
space after the « and

before the KEEP or NOKEEP
option.

Compatibility option

If you specified -N on the MAKE command line, the « operator
changes its behavior to be more like that of the && operator; that
is, the temporary file isn't redirected to standard input, it's just
created on the fly for use mainly as a response file. This behavior
is consistent with Microsoft's NMAKE.

The format for this version of the «operator is:

command «ffilenamel] ... «ffilenameN]
text

«[KEEP I NOKEEP]
text

«[KEEP I NOKEEP]
The KEEP option tells MAKE to not delete the file after it's been
used. If you don't specify anything or specify NOKEEP, MAKE
deletes the temporary file (unless you specified the -K option to
keep temporary files).

Botching programs MAKE allows utilities that can operate on a list of files to be
batched. Suppose, for example, that MAKE needs to submit
several C files to Turbo C++ for processing. MAKE could run TCC
once for each file, but it's much more efficient to invoke TCC with
a list of all the files to be compiled on the command line. This
saves the overhead of reloading Turbo C++ each time.

MAKE's batching feature lets you accumulate the names of files to
be processed by a command, combine them into a list, and invoke
that command only once for the whole list.

To cause MAKE to batch commands, you use braces in the
command line:

command { batch-item} ... rest-oj-command

This command syntax delays the execution of the command until
MAKE determines what command (if any) it has to invoke next. If
the next command is identical except for what's in the braces, the
two commands are combined by appending the parts of the com­
mands that appeared inside the braces.

Here's an example that shows how batching works. Suppose
. MAKE decides to invoke the following three commands in
succession:

Chapter 9, MAKE: The program manager 307

Tee {filel. c }
·Tee {file2.c }
Tee {file3.c }

Rather than invoking Turbo C++ three times, MAKE issues the
single command

Tee filel.c file2.c file3.c

Note that the spaces at the ends of the file names in braces are
essential to keep them apart, since the contents of the braces in
each command are concatenated exactly as is.

Here's an example that uses an implicit rule. Suppose your
makefile had an implicit rule to compile C programs to .OBJ files:

.c.otj:
Tee -c {$< }

As MAKE uses the implicit rule on each C file, it expands the
macro $< into the actual name of the file and adds that name to
the list of files to compile. (Again, note the space inside the braces
to keep the names separate.) The list grows until one of three
things happens: '

• MAKE discovers that it has to run a program other than TCC

• there are no more commands to process

• MAKE runs out of room on the command line

If MAKE runs out of room on the command line, it puts as much
as it can on one command line, then puts the rest on the next
command line. When the list is done, MAKE invokes TCC (with
the -c option) on the whole list of files at once ..

Executing commands MAKE searches for any other command name using the DOS
search algorithm:

308

1. MAKE first searches for the file in the c'urrent directory, then
searches each directory in the path.

2. In each directory, MAKE first searches for a file of the specified
name with the extension .COM. If it doesn't find it, it searches
for the same file name with an .EXE extension. Failing that,
MAKE searches for a file by the specified name with a .BA T
extension.

3. If MAKE finds a .BAT file, it invokes a copy of COM­
MAND.COM to execute the batch file.

Turbo C++ User's Guide

Explicit rules

Note that the braces must
be included if you use the

paths parameter.

4. If MAKE can't find a .COM, .EXE, or .BAT file matching the
command to be executed, it invokes a copy of the DOS
command processor (COMMAND. COM by default) to execute
the command.

If you supply a file name extension in the command line, MAKE
searches only for that extension. Here are ~ome examples:

• This command causes COMMAND.COM to change the current
directory to C: \ INCLUDE:

cd c:\inc1ude

• MAKE uses the full search algorithm in searching for the
approPrlate files to perform this·command:

tlink lib\cOs x y,z,z,lib\cs

• MAKE searches for this file using only the .COM extension:
rnyprog.com geo.xyz

• MAKE executes this command using the explicit file name
provided:

c:\rnyprogs\fil.exe -r

The first rule in the example on page 304 is an explicit rule-a rule
that specifies complete file names explicitly. Explicit rules take the
form

target [target ...] : [{paths}] [dependent ...]
[command]

where target is the file to be updated, dependent is a file on which
target depends, paths is a list of directories, separated by
semicolons and enclosed in braces, in which dependent files
might reside, and command is any valid DOS command (including
invocation of .BAT files and execution of .COM and .EXE files).

Explicit rules define one or more target names, zero or more
dependent files, and an optional list of commands to be
performed. Target and dependent file names listed in explicit
rules can contain normal DOS drive and directory specifications;
they can also contain wildcards.

-.. Syntax here is important.

• target must be at the stC)rt of a line (in column 1).

Chapter 9, MAKE: The program manager 309

• The dependent file(s) must be preceded by at least one space or
tab, after the colon.

• paths, if included, must be enclosed in braces .

• Each command must be indented, (must be preceded by at least
one blank or tab). As mentioned before, the backslash can be
used as a continuation character if the list of dependent files or
a given command is too long for one line.

Both the dependent files and the commands are optional; it is
possible to have an explicit rule consisting only of target [target ... J
followed by a colon.

An explicit rule creates or updates target, usually using the
dependent files, from one or more commands in the makefile.
When MAKE encounters an explicit rule, it first checks to see if
any of the dependent files are themselves target files elsewhere in
the makefile. If so, MAKE evaluates that rule first.

MAKE checks for dependent files in the current directory first. If
it can't find them, MAKE checks each of the directories specified
in the path list.

Once all the dependent files have been created or updated based on
other rules, MAKE checks to see if target exists. If not, each com­
mand is invoked in the order given. If target does exist, its time
and date of last modification are compared against the time and
date for each dependent. If any dependent has been modified more
recently than target, the list of commands is executed.

A given file name can occur on the left side of an explicit rule only
once in a given execution of MAKE.

Each command line in an explicit rule begins with whitespace.
MAKE considers all lines following an explicit rule to be part of
the command list for that rule, up to the next line that begins in
column·1 (without any preceding whitespace) or to the end of the
file. Blank lines are ignored.

Special considerations An explicit rule with no command lines following it is treated a
little differently than an explicit rule with command lines.

310

• If an explicit rule includes commands, the only files that the
target depends on are the ones listed in the explicit rule.

• If an explicit rule has no commands, the targets depend on two
sets of files: the files given in the explicit rule, and any file that

Turbo C++ User's Guide

Multiple explicit rules
for a single target

matches an implicit rule for the target(s). This lets you specify a
dependency to be handled by an implicit rule. For example in

.c.obj:
Tee -c $<

prog.obj:

PROG.OB} depends on PROG.C; If PROG.OB} is out of date,
MAKE executes the command line

Tee -c prog.c

A single target may have more than a single explicit rule. You I

might use multiple explicit rules to create a module library with
TLIB, for example, since the .OB} object module files might be
built differently (for example, some with TCC and some with an
assembler such as TASM).

The format is the same as for normal explicit rules, except there
are two colons following the target. The second colon tells MAKE
to expect additional explicit rules for this target.

In the following example, MYLIB.LIB consists of four object
modules, two of which are C++ modules. The other two are
assembly modules. The first explicit rule compiles the c++
modules and updates the library. The second explicit rule
assembles the ASM files and also updates the library.

mylib.lib:: fl.cpp f2.cpp
tcc -c fl.cpp f2.cpp
tlib mylib -+fl.obj -+f2.obj

mylib.lib:: f3.asm f4.asm
tasm /mx f3.asm f4.asm
tlib mylib -+f3.obj -+f4.obj

Examples Here are some examples of explicit rules:

1. prog.exe: myprog.obj prog2.obj
Tee myprog.obj prog2.obj

2. myprog.obj: myprog.c include\stdio.h
Tee -c myprog.c

3. prog2.obj: prog2.c include\stdio.h
Tee -c -K prog2.c

The three examples are from the same makefile: Only the modules
affected by a change are rebuilt. If PROG2.C is changed, it's the
only one recompiled; the same holds true for MYPROG.C. But if

Chapter 9, MAKE: The program manager 311

Automatic
dependency checking

Implicit rules

312

the include file stdio.h is changed, both are recompiled .. (The link
step is done if any of the .OBJ files in the dependency list have
changed, which happens when a recompile results from a change
to a source file.)

Turbo C++ works with MAKE to provide automatic dependency
checking for include files. TC produces .OBJ files that tell MAKE
what include files were used to create those .OBJ files. MAKE's -a
command-line option checks this information and makes sure that
everything is up-to-date.

When MAKE does an automatic dependency check, it reads the
include files' names, times, and dates from the .OBJ file. The
autodependency check also works for include files inside of
include files. If any include files have been modified, MAKE
causes the .OBJ file to be recompiled. For example, consider the
following explicit rule:

myprog.obj: myprog.c include\stdio.h
Tee -c myprog.c

Now assume that the following source file, called MYPROG.C,
has been compiled with TC:

#include <stdio.h>
#include "del.h"

void myprog() {}

If you then invoke MAKE with the following command line

make -a myprog.obj

it checks the time and date of MYPROG.C, and also of stdio.h and
dcl.h.

MAKE allows you to define implicit rules as well as explicit ones.
Implicit rules are generalizations of explicit rules; they apply to all
files that have certain identifying extensions.

Here's an example that illustrates the relationship between the
two rules. Consider this explicit rule from the preceding example.
The rule is typical because it follows a general principle: An .OBJ
file is dependent on the .C file with the same file name and is
created by executing TC. In fact, you might have a makefile where

Turbo C++ User's Guide

The symbol $< is a special
macro. Macros are discussed
starting on page 375. The $<
macro is replaced by the full
name of the appropriate. C

source file each time the
command executes.

you have several (or even several dozen) explicit rules following
this same format.

By rewriting the explicit rule as an implicit rule, you can eliminate
all the explicit rules of the same form. As an implicit rule, it
would look like this:

.c.obj:
Tee -c $<

This rule means" Any file with the extension .C can be translated
to a file of the same name with the extension .OBJ using this
sequence of commands." The .OBJ file is created with the second
line of the rule, where $< represents the file's name with the
source (. C) extension.

Here's the syntax for an implicit rule:

[{source_dir}].source_extension.[{target_dir}]target_extension:
[command]

As before, the commands are optional and must be indented.

source_dir (which must be enclosed by braces) tells MAKE to
search for source files in the specified directory. target_dir gives
MAKE a location for the target files.

source_extension is the extension of the source file; that is, it applies
to any file having the format

fname .source _extension

Likewise, the target_extension refers to the file

fname .target_extension

where fname is the same for both files. In 'other words, this implicit
rule replaces all explicit rules having the format

fname . target _extension: fname.source _extension
[command]

for any fname.

MAKE uses implicit rules if it can't find any explicit rules for a
given target, or if an explicit rule with no commands exists for the
target.

The extension of the file name in question is used to determine
which implicit rule to use. 'The implicit rule is applied if a file is

Chapter 9, MAKE: The program manager 313

314

found with the same name as the target, but with the mentioned
source extension.

For example, suppose you had a makefile (named MAKEFILE)
whose contents were

.c.obj:
Tee -c $<

If you had a C program named RA TIO.C that you wanted to
compile to RATIO. OBI, you could use the command

make ratio.obj

MAKE would take RA TIO.OBI to be the target. Since there is no
explicit rule for creating RA TIO.OBI, MAKE applies the implicit
rule and generates the command

Tee -c ratio.c

which, of course, does the compile step necessary to create
RATIO. OBI.

MAKE also uses implicit rules if you give it an explicit rule with
no commands. Suppose you had the following implicit rule at the
start of your makefile:

.c.obj:
Tee -c $<

You could then remove the comITLand frOITL the rule:

myprog.obj: myprog.c include\stdio.h
Tee -c myprog.c

and itwould execute exactly as before.

If you're using Turbo C++ and you enable automatic dependency
checking in MAKE, you can remove all explicit dependencies that
have .OBI files as targets. With automatic dependency checking
enabled and implicit rules, the three-rule C example shown in the
section on explicit rules becomes

.c.obj:
Tee -c $<

prog.exe: myprog.obj prog2.obj
tlink lib\cOs myprog prog2, prog, , lib\cs

Turbo C++ User's Guide

Note that with the -N
compatibility option, the

searches go in the opposite
direction: from the bottom of

the makefile up.

Macros

You can write several implicit rules with the same target exten­
sion. If more than one implicit,rule exists for a given target exten­
sion, the rules are checked in the order in which they appear in
the makefile, until a match is found for the source extension, or
until MAKE has checked all applicable rules.

MAKE uses the first implicit rule that involves a file with the
source extension. Even if the commands of that rule fail, no more
implicit rules are checked.

All Jines following an implicit rule, up to the next line that begins
without whitespace or to the end of the file, are considered to be
part of the command list for the rule. .

Often, you'll find yourself using certain commands, file names, or
options again and again in your makefile. For instance, if you're
writing a C program that uses the medium memory model, all TC
commands use the option -mm, which means to compile to the
medium memory model. But suppose you wanted to switch to
the large memory model. You could go through and -change all
the -mm options to -ml. Or, you could define a macro.

A macro is a name that represents some string of characters. A
macro definition gives a macro name and the expansion text;
thereafter, when MAKE encounters the macro name, it replaces
the name with the expansion text.

Suppose you defined the following macro at the start of your
makefile:

MODEL = m

This line defines the macro MODEL, which is now equivalent to the
string ID. Using this macro, you could write each command to
invoke the C compiler to look something like this:

Tee -c -m$(MODEL) myprog,c

When you run MAKE, each macro (in this case, $ (MODEL)) is
replaced with its expansion text (here, m). The command that's
actually executed would be

Tee -c -mm myprog.c

Now, changing memory models is easy. If you change the first
line to

Chapter 9; MAKE: The program manager 315

316

MODEL = 1

you've changed all the commands to use the large memory model.
In fact, if you leave out the first line altogether, you can specify
which memory model you want each time you run MAKE, using
the -0 (define) command-line option:

make -DMODEL=l

This tells MAKE to treat MODEL as a macro with the expansion
text 1.

Defining macros Macro definitions take the form

macro_name = expansion text

where macro_name is the name of the macro. macro_name should
be a string of letters and digits with no whitespace in it, although
you can have whitespace between macro_name and the equal sign
(=). The expansion text is any arbitrary string containing letters,
digits, whitespace, and punctuation; it is ended by newline.

If macro_name has previously been defined, either by a macro
definition in the makefile or On the MAKE command line, the new
definition replaces the old.

Case is significant in macros; that is, the macro names model,
Model, and MODEL are all different.

Using macros You invoke macros in your makefile using this format

Using environment
variables as macros

$(macro_name)

You need the parentheses for all invocations, except when the
macro riame is just one character long. This construct-
$ (macro_name)-is known as a macro invocation.

When MAKE encounters a macro invocation, it replaces the
invocation with the macro's expansion text. If the macro is not
defined, MAKE replaces it with the null string.

If you invoke a macro where macro_name hasn't been defined in
the makefile or on the command line, MAKE tries to find
macro _name as a DOS environment variable. If MAKE finds it in
the environment, the expansion text is the value of the
environment variable.

Turbo C++ User's Guide

~ Macros defined in the makefile or on the command line override
environment variables of the same name unless the -e option was
specified.

Substitution within You can invoke a macro while simultaneously changing some of
macros its text by using a special format of the macro invocation format.

Note that no extraneous
whitespace should appear

between the: and =. If
spacesappearafferthe

colon, MAKE attempts to find
the string, including the

preceding space.

Special considerations

See page 0322 for information
on directives.

Instead of the standard macro invocation form, use

$(macro_name:textl=text2)

In this form, every occurrence of textl in macro_name is replaced
with text2. macro_name can also be one of the predefined macros.
This is useful if you'd prefer to keep only a single list of files in a
macro. For example, in the following example, the macro
SOURCE contains a list of all the C++ source files a target
depends on. The TLINK cOIhmand line changes all the .CPP
extensions to the matching .OBJ object files and links those.

SOURCE = fl.cpp f2.cpp f3.cpp

myapp.exe: $ (SOURCE)
tcc -c $ (SOURCE)
tlink cOs $(SOURCE:.cpp=.obj) ,myapp"cs

Macros in macros: Macros cannot be invoked on the left side
(macro_name) of a macro definition. They can be used on the right
side (expansion text), but they are not expanded until the macro
being defined is invoked. In other words, when a macro
invocation is expanded, any macros embedded in its expansion
text are also expanded.

Macros in rules: Macro invocations are expanded immediately in
rule lines.

Macros in directives: Macro invocations are expanded imme­
diately in !if and !elif directives. If the macro being invoked in an
!if or !elif directive is not currently defined, it is expanded to the
value 0 (FALSE).

Macros in commands: Macro invocations in commands are
expanded when the command is executed.

Chapter 9, MAKE: The program manager 317

318

Predefined macros MAKE comes with several special m.acros built in: $d, $*, $<, $:,
$., $&,-$@, $**, and $? The first is a test to see if a macro name is
defined; it's used in the conditional directives !if and lelif. The
others are file name macros, used in explicit and implicit rules.
Finally, MAKE defines several other macros; see Table 9.3.

Table 9.3
MAKE predefined macros

Table 9.4
MAKE filename macros

__ MSDOS __
__ MAKE __

MAKE

"1" if running MAKE under DOS
MAKE's version number in hexadecimal (for this
version, "Ox0360")
MAKE's executable filename, (usually MAKE or
MAKER)

MAKE FLAGS
MAKEDIR

Any options used on the MAKE command line
The directory from which MAKE was run

What part of the file name it returns in an
Macro implicit rule explicit rule

$*
$<
$:
$.
$&
$@
$**
$?

Dependent base with path
Dependent full with path
Dependent path only
Dependent full without path
Dependent base without path
Target full with path
Dependent full with path
Dependent full with path

Defined Test Macro ($d)

Target base with path
Target full with path
Target path only
Target full without path
Target base without path
Target full with path
All dependents
All out of date dependents

The defined test macro ($d) expands to 1 if the given macro name
is defined, or to 0 if it is not. The content of the macro's expansion
text does not matter. This special macro is allowed only in lif and
lelif directives.

For example, suppose you want to modify your makefile so that if
you don't specify a memory model, it'll use the medium one. You
could put this at the start of your makefile:

!if !$d(MODEL) # if MODEL is not defined
MODEL=m # define it to m (MEDIUM)
!endif

If you then invoke MAKE with the command line

make -DMODEL=l

then MODEL is defined as 1. If, however, you just invoke MAKE
by itself,

Turbo C++ User's Guide

make

then MODEL is defined as m, your II default" memory model.

File name macros The various file name macros work in similar ways, expanding to
some variation of the full path name of the file being built.

Base file name macro ($*)

The base file name macro is allowed in the commands for an
explicit or an implicit rule. This macro ($*) expands to the file
name being built, excluding any extension, like this:

File name is A:\P\TESTFILE.C
$* expands to A:\P\TESTFILE

For example, you could modify this explicit rule

prog.exe: myprog.obj prog2.obj
tlink lib\cOs myprog prog2, prog, , lib\cs

to look like this:

prog.exe: myprog.obj prog2.obj
tlink lib\cOs myprog prog2, $*, ,lib\cs

When the command in this rule is executed, the macro $* is
replaced by the target file name without an extension and with a
path. For implicit rules, this macro is very useful.

For example, an implicit rule might look like this:

.cpp.obj:
TCC -c $*

Full file name macrc;> ($<)

The full file name macro ($<) is also used in the commands for an
explicit or implicit rule. In an explicit rule, $< expands to the full
target file name (including extension), like this:

File name is A:\P\TESTFILE.C
$< expands to A:\P\TESTFILE.C

For example, the rule

mylib.obj: mylib.c

Chapter 9, MAKE: The program manager

copy $< \oldobjs
Tce -c $*.c

319

320

copies MYLIB.OBJ to the directory \OLDOBJS before compiling
MYLIB.C.

In an implicit rule, $< takes on the file name plus the source exten­
sion. For example, the implicit rule

.c.obj:
Tee -c $*.c

produces exactly the same result as

.c.obj:
Tee -c $<

because the extension of the target file name must be .C.

File name path macro ($:)

This macro expands to the path name (without the file name), like
this:

File name is A:\P\TESTFILE.e
$: expands to A:\P\

File name and extension macro ($.)

This macro expands to the file name~ with an extension but
without the path name; like this:

File name is A:\P\TESTFILE.e
$. expands toTESTFILE.e

File name only macro ($&)

This macro expands to the file name only, without path or exten­
sion, like this:

File name is A:\P\TESTFILE.e
$& expands to TESTFILE

Full target name with path macro ($@)

This macro expands to the full target file name with path and
extension, like this:

File name is A:\P\TESTFILE.e
$@ expands to A:\P\TESTFILE.e

Turbo; C++ User's Guide

The $@ macro is similar to the $< macro, except that $@ expands
to the full target file name in both implicit and explicit rules, which
expands to the target in an explicit rule and the dependent in an
implicit rule.

All dependents macro ($**)

In an explicit rule, this macro expands to all the dependents of the
target, including the full filename with path and extension. For
example, in the following explicit rule, the $** is replaced with
myprog.obj prog2. obj, the two dependents of prog. exe:

prog.exe: myprog.obj prog2.obj
tlink lib\eOs $**, $*, , lib\es

All out of date dependents macro ($?)

In an explicit rule, this macro expands to all the out of date
dependents of the target, including the full filename with path
and extension. Out of date dependents are those that have been
modified since the target was last made. Therefore, in the
following example explicit rule, the $? is replaced with fl. cpp
and/or f2. cpp depending on which dependent(s) were out of date:

mylib.lib: fl.epp f2.cpp
tee -e $?
&tlib mylib -+$(?:.epp=.obj)

Note the use of the & prefix so MAKE repeats the command for
each of the out-of-date dependents.

Macro modifiers If there isn't a predefined filename macro to give you the parts of
a filename you need, you can use macro modifiers to extract any
part of a filename macro. The format is:

$(macro[D I FIB I RD
where macro is one of the predefined filename macros and D, F, B;
and R are the modifiers. Note that since the macro is now longer
than a single character, parentheses are necessary. The following
table describes what each modifier does. The examples assume
that $< returns c: \OBJS\BOB. OBJ.

Chapter 9, MAKE: The program manager 321

322

Table 905
MAKE macro modifiers

Directives

Modifier What part of the filename

D
F
B
R

Drive and directory
Base and extension
Base only
Drive, directory, and base

Example

$«D) = C:\OBJS\
$(<F) = BOB.OBJ
$«B) = BOB
$«R) = C:\OBJS\BOB

Turbo's MAKE allows something that other versions of MAKE
don't: directives similar to those allowed in C, assembler, and
Turbo Pascal. You can use these directives to perform a variety of
useful and powerful actions. Some directives in a makefile begin
with an exclamation point (!) as the first character of the line.
Others begin with a period. Here is the complete list of MAKE
directives:

Table 906
MAKE directives .autodepend Turns on autodependency checking.

Conditional execution. !elif
!else
!endif
!error
!if
!ifdef
!ifndef
.ignore
!include
. nc8utcdepend
. noignore
.nosilent

.noswap

.path.ext

.precious

.silent

.swap

.suffixes

!undef

Conditional execution.
Conditional execution.
Causes MAKE to stop and print an error message.
Conditional execution.
Conditional execution.
Conditional execution.
Tells MAKE to ignore return value of a command .
Specifies a file to include in the makefile.
Turns off autodependency checking .
Turns off .ignore .
Tells MAKE to print commands before executing
them.
Tells the real mode version of MAKE, MAKER, to not
swap itself in and out of memory. Has no effect in the
protected-mode version of MAKE.
Gives MAKE a path to search for files with extension
.EXT.
Tells MAKE to not delete the specified target even if
the commands to build the target fail.
Tells MAKE to not print commands before executing
them. .
Tells the real mode version of MAKE, MAKER, to
swap itself in and out of memory. Has no effect in the
protected-mode version of MAKE.
Tells MAKE the implicit rule to use when a target's
dependent is ambiguous.
Causes the definition for a specified macro to be
forgotten.

TurboC++ User's Guide

Dot directives
Each of the following directives has a corresponding command­
line option, but takes precedence over that option. For example, if
you invoke MAKE with the following command, and if the
make file has a .noautodepend directive, then autodependency
checking is turned off:

make -a

.autodepend and .noautodepend turn on or off autodependency
checking. They correspond to the -a command-line option .

.ignore and .noignore tell MAKE whether or not to ignore the
return value of a command, much like placing the prefix - in front
of it (described earlier). They correspond to the ~i command-line
option .

. silent and .nosilent tell MAKE whether or not to print commands
before executing them. They correspond to the -s command-line
option .

. swap and .noswap tell MAKER whether or not to swap itself out
of memory. They correspond to the -S option.

,precious The syntax for the .precious directive is:

. precious: target [~ ..]

where target is one or more target files . . precious prevents MAKE
from deleting the target if the commands building the target fail.
In some cases, the target is still viable. For example, if an object
module can't be added to a library, the library shouldn't be
deleted.

,path,ext 'This directive, placed in a makefile, tells MAKE where to look for
files of the given extension. For example, if the following
instructions are in a makefile:

.path.c = C:\CSOURCE

.c.obj:
TCC -c $<

tmp.exe: tmp.obj
TCC tmp.obj

Chapter 9, MAKE: The program manager 323

MAKE looks for TMP.C, the implied source file for TMP.OBJ, in
C: \ CSOURCE instead of the current directory.

The .path is also a macro that has the value of the path.· The
following is an example of the use of .path. The source files are
contained in one directory, the .OBJ files in another, and all the
.EXE files in'the current directory. .

.path.c = C:\CSOURCE

.path.obj = C:\OBJS

.e.obj:
Tec -e -o$(.path.obj)\$& $<

.obj.exe:
Tce -e$&.exe $<

tmp.exe: tmp.obj

. suffixes In the following example, MYPROG.OBJ can be created from
MYPROG.ASM, MYPROG.CPP, and MYPROG.C.

File-inclusion

myprog.exe: myprog.obj
tlink myprog.obj

.asm.obj:
tasm /mx $<

.epp.obj:
tee -P $<

.e.obj:
tee -P- $<

If more than one of these sources is ava:ilable, the .suffixes
directive determines which are used. The syntax for .suffixes is:

.suffixes: .source_extension ...

where .source_extension is a list of the extensions for which there
are implicit rules, in order of which source extension implicit rule
should be tJ.sed.

For example, if we add . suf fixes: . asm . C • cpp to the top of the
previous makefile example, MAKE would first look for
MYPROG.ASM, then MYPROG.C, and finally MYPROG.CPP.

directive A file-inclusion directive (!include) specifies a file to be included
into the makefile for interpretation at the point of the directive. It
takes the following form: .

324 Turbo C++ User's Guide

Conditional·
execution
directives

!include filename·

filename can be surrounded by quotes (''filename'') or angle
brackets (<filename». You can nest these directives to any depth.
If an include directive attempts to include a file that has already
been included in some outer level of nesting (so that a nesting
,loop is about to start), the inner include directive is rejected as an
error.

How do you use this directive? Suppose you created the file
MODEL.MAC that contained the following:

!ifndef MODEL
MODEL=ffi
!endif

You could use this conditional macro definition in any makefile
by including the directive·

!include "MODEL.MAC"

When MAKE encounters !include, it opens the specified file and
reads the contents as if they were in the makefile itself.

Conditional execution directives (!if, !ifdef, !ifndef, !elif, !else, and
!endif) give you a measure of flexibility in constructing makefiles.
Rules and macros can be made conditional, so that a command­
line macro definition (using the -0 option) can enable or disable
sections of the makefile.

The format of these directives parallels those in C, assembly
language, and Turbo Pascal:

!if expression
[lines]

!endif

!if expression
[lines]

!else
[lines]

!endif

!if expression
[lines]

Chapter 9, MAKE: The program manager 325

326

!elif expression
[lines]

!endif

!ifdef macro
[lines]

!endif

! ifndef macro
[lines]

!endif

[lines] can be any of the following statement types:

• macro definition
• explicit rule
• implicit rule
• include directive
.if group
• error directive
• Undef directive

The conditional directives form a group, with at least an !if, !ifdef,
or !ifndef directive beginning the group and an !endif directive
closing the group.

• One !else directive can appear in the group.

• !elif directives can appear between the !if (or!ifdef and !ifndef)
and any !else directives.

• Rules, macros, and other directives can appear between the
various conditional directives in any number. Note that
complete rules, with their commands, cannot be split across
conditional directives.

• Conditional directive groups can be nested to any depth.

Any rules, commands, or directives must be complete within a
single source file.

All !if, !ifdef, and !ifndef directives must have matching !endif
directives within the same source file. Thus the following include
file is illegal, regardless of what's in any file that might include it,
because it doesn't have a matchi~g !endif directive:

Turbo C++ User's Guide

Expressions allowed in
conditional directives

!if $ (FILE_COUNT) > 5
some rules

!else
ot-her rules

<end:"'of-file>

The !ifdef directive is another way of testing whether a macro is
defined. ! ifdef MACRO is equivalent to ! if$d (MACRO). The same
holds true for !ifndef; ! ifndef MACRO is equivalent to ! if !
$d (MACRO).

Expressions are allowed in an !if or an !elif directive; they use a
C-like syntax~ The expression is evaluated as a simple 32-bit
signed integer or strings of characters.

You can enter numbers as decimal, octal, or hexadecimal
constants. If you know the C language, you already know how to
write constants in MAKE; the formats are exactly the same. These
are legal constants in a MAKE expression:

4536 # decimal constant
0677 # octal constant (distinguished by leading 0)
Ox23aF # hexadecimal constant (distinguished by leading Ox)

Any expression that doesn't follow one of those formats is
considered a string.

An expression can use any of the following operators (an asterisk
indicates the operator is also available with string expressions):

Table 9.7
MAKE operators Operator Operation Operator Operation

See Chapter 72 for complete
descriptions of these

operators.

Unary operators

Negation
Bit complement
Logical NOT

Binary operators

+ Addition

*
I
%

»
«

Subtraction
Multiplication
Division
Remainder

Right shift
Left shift

Chapter 9, MAKE: The program manager

& Bitwise AND
I Bitwise OR
1\ BitwiseXOR

&& Logical AND
II Logical OR

Greater than * >
Less than * <

>= Greater than or equal*
<= Less than or equal*
-- Equality*
!= Inequality*

Ternary operator

?: Conditional expression

. 327

Error directive

328

The operators have the same precedences as they do in the C
language. Parentheses.can be used to group operands in an
expression. Unlike the C language, MAKE can compare strings
using the normal ==, !=, >, <, >=, and => operators. You can't
compare a string expression with a numeric expression, nor can
you use numeric operators (like + or *) with strings.

A string expression may contain spaces, but if it does it must be
enclosed in quotes:

Model = "Medium model"

! if$ (Model) == "Medium model"
CFLAGS = -mm

!elif $ (Model) == "Large model"
CFLAGS = -ml

!endif

You can invoke macros within an expression; the special macro
$dO is recognized. After all macros have been expanded, the
expression must have proper syntax.

The error directive (!error) causes MAKE to stop and print a fatal
diagnostic containing the text after !error. It takes the format

This directive is designed to be included in conditional directives
to allow a user-defined error condition to abort MAKE. For
example, you could insert the following code in front of the first
explicit rule:

! if ! $d(MODEL)
if MODEL is not defined
!error MODEL not defined
!endif

If you reach this spot without having defined MODEL, then
MAKE stops with this error message:

Fatal makefile 4: Error directive: MODEL not defined

Turbo C++ User's Guide

Macro
undefinition The macro uundefinition" directive (!undef) causes any definition

directive for the named macro to be forgotten. If the macro is currently
undefined, this directive has no effect. The syntax is

!undef macro_name

The compatibility option -N

The -N command line option increases compatibility with
Microsofts's NMAKE. You should use it only when you need to
build a project using makefiles created for NMAKE tools.
Running MAKE without the -N option is preferred, since -N
introduces some subtle differences in how makefiles work:

• $$ expands to a single $ and a single $ expands to nothing.

• The caret character 1\ causes the character that follows, if a
special character, to be treated literally. For example,

TEST = this is 1\

a test

causes TEST to expand to this is \na test where the \n is the C
symbol for a new line. It's especially useful when you need to
end a line with the line continuation character:

SOURCEDIR = C:\BOB\OBJSI\\

~ . • If the caret is followed by a normal character (one without a
special meaning), the caret is ignored.

• The $d macro won't be the special defined test macro. Use the
!ifdef and !ifncief directives instead.

• Predefined macros that return paths only do not end in a
trailing backslash. For example, without the -N switch $(<D)
might return C:\OBJS\, but with the -N switch, the same $«D)
macro would return C:\OBJS.

Chapter 9, MAKE: The program manager 329

330

• Unless there's a matching .suffixes directive, MAKE searches
for implicit rules from the hottom of the makefile up .

• The $* macro always expands to the target name. (In normal
mode, $* expands to the dependent in an implicit rule.)

Turbo C++ User's Guide

c H

Appendix C, "Error mes­
sages," lists linker messages
generated by TUNK and by

the built-in IDE linker.

Invoking TLINK

Note that this version of TUNK
is sensitive to the case of its

options; If is not the same
option as IT.

A p T E R

10

TLINK: The Turbo linker

The IDE has its own built-in linker. When you invoke the
command-line compiler TCC, TLINK is invoked automatically
unless you suppress the linking stage. If you suppress the linking
stage, you must invoke TLINK manually. This chapter describes
how to use TLINK as a standalone linker.

By default, the command-line compiler calls TLINK when compil­
ation is successful; TLINK then combines object modules and
library files to produce the executable file.

You can invoke TLINK at the command line by typing tlink with
or without parameters. When invoked without parameters,
TLINK displays a summary of parameters and options. Table 10.1
briefly describes the TLINK options.

Table 10.1
TLINK options Option What it does

--------------------------------~-------------------

13 Enables processing of 32-bit modules.
You can use either a hyphen Ie Treats case as significant in symbols.
or a slash to precede TUNK's Id Warns if duplicate symbols in libraries.

commands. Ie Ignores Extended Dictionary.
Ii Initializes all segments.
II Includes source line numbers.
IL Specifies library search paths.
1m Creates map file with publics.
In Doesn't use default libraries.

Chapter 70, TUNK: The Turbo linker 331

An example of

Table 10.1: TLINK options (continued)

/0 Overlays following modules or libraries.
IP Packs code segments.
Is Creates detailed map of segments.
It Generates .COM file. (Also /Tdc.)
lTd Creates target 005 executable.
ITde Creates target 005 .COM file.
ITde Creates target DOS .EXE file.
Iv Includes full symbolic debug information.
Ix Doesn't create map file.
lye Uses expanded memory for swapping.
Iyx Configures TLINK's use of extended memory.

The general syntax of a TLINK command line is

TLINK objfiles, exefile, mapfile, libfiles

This syntax specifies that you supply file names in the given order,
separating the file types with commas.

linking If you supply the TLINK command line

File names on the
TLiNK command

line

332

tlink Ie mainline wd ln tx,fin,mfin,work\lib\eomm work\lib\support

TLINK will interpret it to mean that

• Case is significant during linking (/c).

• The .OB] Hies to be Hnked are MAINLINE.OB], WD.OB],
LN.OBJ, and TX.OBJ.

• The executable program name will be FIN.EXE.

• The map file is MFIN.MAP.
• The library files to be linked in are COMM. LIB and

SUPPORT. LIB, both of which are in subdirectory WORK\LIB.

The Icoption tells TLINK to be case-sensitive during linking.

If you don't specify an executable file name, TLINK derives the
name of the executable by appending .EXE to the first object file
name listed.

If you specify a complete file name for the executable file, TLINK
will create the file with that name, but the actual nature of that
executable depends on other options. .

Turbo C++ User's Guide

Using response
files

If no map file name is given, TLINK adds a .MAP extension to the
.EXE file name. If no libraries are included, none will be linked.

TLINK assumes or appends extensions to file names that have
none:

• .OB] for object files

• .EXE executable files when you use the It option; the executable
file extension defaults to .COM rather than .EXE

.•. MAP for map files

• .LIB for library files

All of the file names except object files are optionaL So, for
instance,

TLINK app app2

links the files APP.OB] and APP2.0B], creates an executable file
called APP.EXE, creates a map file called APP.MAP, links no
libraries.

TLINK lets you supply the various parameters on the command
line, in a response file, or in any combination of the two.

A response file is just a text file' that contains the options and file
names that you would usually type in after the name TLINK on
your command line.

Unlike the command line, however, a response file can be
continued onto several lines of text. You can break a long list of
object or library files into several lines by ending one line with a
plus character (+) and continuing the list on the next line. When a
plus occurs at the end of a line but it immediately follows one of
the TLINK options that uses + to enable the option (such as Iye+),
the. + is not treated as a line continuation character.

You can also start each of the four components/on separate lines:
object files, executable file, map file, libraries. When you do this,
you must leave out the comma used to separate components.

To illustrate these features, suppose that you rewrote the
command line

tlink Ie mainline wd In tx,fin,rnfin,work\lib\eomm work\lib\support

with the following response file, FINRE5P:

Chapter 10, TUNK: The Turbo linker 333

The TLiNK

Ie mainline wdt
In tx, fin
mfin
work\lib\eornrn work\lib\support

You would then enter your TLINK command as

tlink @finresp

Note that you must precede the file name with an Oat" character
(@) to indicate that the next name is a response file.

Alternately, you may break your link command into multiple
response files. For example, you can break the previous command
line into the following two response files:

File name

LISTOBJS

LISTLIBS

Contents

mainlinet
wdt
In tx
Iib\commt
lib \ support

You would then enter the TLINK command as

tlink Ie @listobjs,fin,mfin,@listlibs

configuration file The command line version of TLINK looks for a file called
TLINK.CFG first in the current directory, or in the directory from
which it was loaded.

334

Using TLiNK with
Turbo C++

modules

TLINK.CFG is a regular text file that contains a list of valid
TLINK options~ Unlike a response file, TLINK.CFG can't list the
groups of file names to be linked.

Turbo C++ supports six different memory models: tiny, small,
compact, medium, large, and huge. When you create an
executable Turbo C++ file using TLINK, you must include the
initialization module and libraries for the memory model being
used.

The general format for linking Turbo c++ programs with TLINK
is

Turbo C++ User's Guide

(optional)

(optional)

If you are using the tiny
model and you want TLINK to

produce a . COM file, you
must also specify the It or

/Tde option.

tlink CO[F]x myobjs, exe, [map], [mylibs]
[OVERLAY] [EMU I FP87 mathx] Cx

where

• myobjs is the .OBJ files you want linked, specify path if not in
current directory

• exe is the name to be given the executable file

• map is the name to be given the map file

• mylibs is the library files you want included at link time. You
must specify the path if not in current directory, or use IL
option to specify search paths

Be sure to include paths for the startup code and libraries (or use
the IL option to specify a list of search paths for startup and
library files). The other file names on this general TLINK com­
mand line represent Turbo C++ files, as follows:

• COx I COFx is the initialization module for DOS executable, DOS
executable written for another compiler, with memory model t,
S, C, m, I, or h.

• OVERLAY is the overlay manager library; needed only for
overlaid programs.

• EMU I FP87 is the floating-point libraries (choose one).

• MATHx is the math library for memory model s, C, m, I, or h.

• Cx is the run-time library for memory model S, C, m, I, or h.

Startup code The initialization modules have the name COx.OBJ, where x is a
single letter corresponding to the model: t for tint, s for small, c for
compact, m for medium, 1 for large, and h for huge.

The COFx.OBJ modules are provided for compatibility with source
files intended for compilers from other vendors. The COFx.OBJ
modules substitute for the COx.OBJ modules. These initialization
modules alter the memory model so that the stack segment is
inside the data segment. The appropriate COFx.OBJ module will
be used automatically if you use either the -Fs or the -Fm
command-line compiler option.

Failure to link in the correct initialization module usually results.
in a long list of error messages telling you that certain identifiers
are unresolved, that no stack has been created, or that fixup
overflows occurred.

Chapter 10, TUNK: The Turbo linker 335

336

The initialization module must also appear as the first object file
in the list. The initialization module arranges the order of the
various segments of the program. If it is not first, the program
segments may not be placed in memory properly, causing some
frustrating program bugs.

Be sure that you give an explicit name for the executable file name
on the TLINK command line. Otherwise, your program name will
be something like COx.EXE-probably not what you wanted!

. Libraries The order of objects and libraries is very important. You must
always put the Turbo C++ start-up module (COx.OBJ or COFx,)

.. first in the list of objects. Then, the library list should contain, in
this order:

• your ownHbraries (if any)

• if you want to overlay your program, you must include
OVERLAY.LIB; this library must precede the Cx.LIB library

• Cx.LIB, run-time library

• if you are using floating point math, FP87.LIB or EMU.LIB,
followed by MATHx.LIB

BGI graphics library

If you are using any Turbo C++ BGI graphics functions, you must
link in GRAPHICS. LIB anywhere in the list. The BGI graphics
library is independent of memory models.

Math libraries

If your program uses any floating-point, you must include the
math library (MATHx.LIB) in the link command. You'll also need
to include either the EMU.LIB or FP87.LIB floating-point libraries.
Turbo C++'s two floating-point libraries are independent of the
program's memory model.

• Use EMU. LIB if you want to include floating-point emulation
logic. With EMU. LIB the program will work on machines
whether they have a math coprocessor (80x87) chip or not.

• If you know that the program will always be run on a machine
with a math coprocessor chip, the FP87.LIB library will produce
a smaller and faster executable program.

Turbo C++ User's Guide

If you don't use all six
memory models, you may

want to keep only the files for
the model(s) you use.

I

Table 10.2
.OBJ and .LlB files

Note that the tiny and small
models use the same

libraries, but have different
startup files (COT.OBJ vs.

COS.OBJ).

Using TLiNK with
Tee

See Chapter 8, "The
command-line compiler," for

more on TCe.

The math libraries have the name MA THx.LIB, where x is a single
letter corresponding to the model: s, c, m, 1, h (the tiny and small
models share the library MATHS.LIB).

You can always include the emulator and math libraries in a link
command line. If you do so, and if your program does no
floating-point work, nothing from those libraries will be added to
your executable program, file. However, if you know there is no
floating-point work in your program, you can save some time in
your links by excluding those libraries from the command line.

Run-time libraries

You must always include the C run-time library for the program's
memory model. The C run-time libraries have the name Cx.LIB,
where x is a single letter corresponding to the model, as before.

Here's a list of the library files needed for each memory model
(you'll also need FP87.LIB or EMU. LIB :

Model

Tiny
Small
Compact
Medium
Large
Huge

Regular
Startup
Module

COT.OBJ
COS.OBJ
COC.OBJ
COM.OBJ
COL.OBJ
COH.OBJ

Compatibility
Startup
Module

COFT.OBJ
COFS.OBJ
COFCOBJ
COFM.OBJ
COFL.OBJ
COFH.OBJ

Math Run-time
Library Library

MATHS.LIB CS.LIB
MATHS.LIB CS.LIB
MATHCLIB CCLIB
MATHM.LIB CM.LIB
MATHL.LIB CL.LIB
MATHH.LIB CH.LIB

You can also use TCC, the standalone Turbo c++ compiler, as a
"front end" to TLINK that will invoke TLINK with the correct
startup file, libraries, and executable program name.

To do this, you give file names on the TCC command line with
explicit .OBJ and .LIB extensions. For example, given the
following TCC command line,

TCC -rnx MAINFILE.OBJ SUB1.OBJ MYLIB.LIB

TCC will invoke TLINK with the fUes COx.OBJ, EMU.LIB,
MATHx.LIB and Cx.LIB (initialization module, default 8087
emulation library, math library and run-tnne library for memory

Chapter 70, TLlNK: The Turbo linker 337

TLINK options

The TLiNK

model x). TLINK will link these along with your own modules
MAINLINE.OBJ and SUBl.OBJ, and your own library MYLIB.LIB.

When TCC invokes TLINK, it uses the Ic (case-sensitive link)
option by default. You can override this default with -I-c).

TLINK options can occur anywhere on the command line. The
options consist of a slash (/), a hyphen (-), or the DOS switch
character, followed by the option.

If you have more than one option, spaces are not significant (/m/c
is the same as 1m Ic), and you can have them appear in different
places on the command line. The following sections describe 'each
of the options.

configuration file The command-line version of TLINK looks for a file called
TLINK.CFG first in the current directory, or in the directory from
which it was loaded.

13 (32-bit code)
This option increases the
memory requirements of

TUNK and slows down linking,
so it should be used only

when necessary.

338

Ie (case
sensitivity)

TLINK.CFG is a regular text file that contains a list of valid
TLINK options. Unlike a response file, TLINK.CFG can't list the
groups of file names to be linked. W-hitespace is ignored.

The 13 option should be used when one or more of the object
modules linked has been produced by T ASM or a compatible
assembler, and contains 32-bit code for the 80386 or the i486 pro­
cessor.

The Ic option forces the case to be significant in public and
external symbols.

Turbo C++ User's Guide

Id (duplicate
symbols)

The exception to this rule is
OVERLAY.LlB. OVERLAY. LIB

does duplicate some
symbols found in other

libraries: that's why
OVERLAY. LIB must be the first
standard library specified on

the TLiNK command'line.

Ie (no extended
dictionary)

Normally, TLINK will not warn you if a symbol appears in more
than one library file. If the symbol must be included in the pro­
gram, TLINK will use the copy of that symbol in the first file on
the command line in which it is found. Since this is a commonly
used feature, TLINK does not normally warn about the duplicate
symbols. The following hypothetical situation illustrates how you
might want to use this feature.

Suppose you have two libraries: one called SUPPORT. LIB, and a
supplemental one called DEBUGSUP.LIB. Suppose also that
DEBUGSUP.LIB contains duplicates of some of the routines in
SUPPORT.LIB (but the duplicate routines in DEBUGSUP.LIB
include slightly different functionality, such as debugging ver­
sions of the routines). If you include DEBUGSUP.LIB first in the
link command, you will get the debugging routines and not the
routines in SUPPORT.LIB.

If you are not using this feature or are not sure which routines are
duplicated, you may include the Id option. TLINK will list all
symbols duplicated in libraries, even if those symbols are not
going to be used in the program.

Given this option, TLINK will also warn about symbols that
appear both in an .OB} and a .LIB file. In this case, since the
symbol that appears in the first (left-most) file listed on the com­
mand line is the one linked in, the symbol in the .OB} file is the
one that will be used.

With Turbo C++, the distributed libraries you would use in any
given link command do not contain any duplicated symbols. So
while EMU.LIB and FP87.LIB (or CS.LIB and CL.LIB) obviously
have duplicate symbols, they would never,rightfully be used
together in a single link. There are no symbols duplicated
between EMU.LIB, MATHS.LIB, and CS.LIB, for example.

The library files that are shipped with Turbo C++ all contain an
extended dictionary with information that enables TLINK to link
faster with those libraries. This extended dictionary can also be
added to any other library file using the IE option with TLIB. The
TLINK Ie option disables the use of this dictionary.

Chapter 70, TUNK: The Turbo linker 339

Ii (uninitialized
trailing segments)

II (line numbers)

IL (library search
paths)

340

1m, Is, and Ix
(map options)

Although linking with libraries that contain an extended
dictionary is faster, you might want to use the Ie option if you
have a program that needs slightly more memory to link when an
extended dictionary is used.

Unless you use Ie to turn off extended dictionary use, TLINK will
ignore any debugging information contained in a library that has
an extended dictionary.

The Ii option causes uninitialized trailing segments to be output
into the executable file even if the segments do not contain data
records. This option is not normally necessary.

The II option creates a section in the .MAP file for source code line
numbers: To use it, you must have created the .OBJ files by com­
piling with the -y or -v option. If you use the Ix to tell TLINK to
create no map at all, this option will have no effect.

The IL option lets you specify a list of directories thatTLINK
searches for libraries if an explicit path is not specified. TLINK
searches the current directory before those specified with the IL
option. For example,

TLINK /Lc:\TC\lib;c:\mylibs splash logo, "utils .\logolib

With this command line, TLINK first searches the current
directory for UTILS.LIB, then searches C:\ TC\LIB and C:\
MYLIBS. Because. \ LOGOLIB explicitly names the current
directory, TLINK does not search the libraries specified with the
IL option to find LOGOLIB.LIB.

TLINK also searches for the C or C++ initialization module
(COx.OBJ or COF.OBJ) on the specified library search path.

By default, TLINK always creates a map of the executable file.
This default map includes only the list of the segments in the
program, the program start address, and any warning or error

Turbo C++ User's Guide

Figure 10.1
Detailed map of segments

messages produced during the link. If you don't want to create a
map, turn it off with the Ix option.

If you want to create a more complete map, the 1m option will add
a list of public symbols to the map file, sorted alphabetically as
well as in increasing address order. This kind of map file is useful
in debugging. Many debuggers can use the list of public symbols
to allow you to refer to symbolic addresses when you are
debugging.

The Is option creates a map file with segments, public symbols
and the program start address just like the 1m option did, but also
adds a detailed segment map. Figure 10.1 is an example of a
detailed segment map.

For each segment in each module, this map includes the address,
length in bytes, class, segment name, group, module, and ACBP
information.

If the same segment appears in more than one module, each
module will appear as a separate line (for example, SYMB.C).
Except for the ACBP field, the information in the detailed segment
map is self-e~planatory.

Address Length Class Segment Name Group Module Al ignment/
(Bytes) Combining

0000:0000 OE5B C=CODE S=SYMB TEXT G={none) M=SYMB.C ACBP=28
00E5:000B 2735 C=CODE S=QUAL-TEXT G={none) M=QUAL.C ACBP=28
0359:0000 002B C=CODE S=SCOPV TEXT G={none) M=SCOPY ACBP=28
035B:0008 003A C=CODE S=LRSH TEXT G={none) M=LRSH ACBP=20
035F:0005 0083 C=CODE S=PADA-TEXT G={none) M=PADA ACBP=20
0367:0008 005B C=CODE S=PADD-TEXT G={none) M=PADO ACBP=20
0360:0003 0025 C=COOE S=PSBP-TEXT G={none) M=PSBP ACBP=20
036F:0008 05CE C=COOE S=BRK TEXT G={none) M=BRK ACBP=28
03CC:0006 066F C=COOE S=FLOAT TEXT G={none) M=FLOAT ACBP=20
0433:0006 OOOB C=OATA S= OATA- G=OGROUP M=SYMB.C ACBP=48
0433:0012 0003 C=OATA S=-OATA G=OGROUP M=QUAL.C ACBP=48
0433:00E6 OOOE C=OATA S=-DATA G=DGROUP M=BRK ACBP=48
0442:0004 0004 C=BSS S;-BSS G;DGROUP M;SYMB.C ACBP=48
0442:0008 0002 C=BSS S=-BSS G=OGROUP M=QUAL.C ACBP=48
0442:000A OOOE C=BSS S==BSS G=DGROUP M=BRK ACBP=48

The ACBP field encodes the A (alignment), C (combination), and B
(big) attributes into a set of four bit fields, as defined by Intel.
TLINK uses only three of the fields, the A, C, and B fields. The'
ACBP value in the map is printed in hexadecimal: The following
values of the fields must be OR'ed together to arrive at the ACBP
value printed.

Chapter 70, TUNK: The Turbo linker 341

In (ignore default
libraries)

/0 (overlays)

342

Field Value

The A field 00
(alignment) 20

40
60
80
AD

The C field 00
(combination) 08

The B field 00
(big) 02

Description

An absolute segment.
A byte-aligned segment.
A word-aligned segment.
A paragraph-aligned segment.
A page-aligned segment.
An unnamed absolute portion of storage.

May not be combined.
A public combining segment.

Segment less than 64K.
Segment exactly 64K.

When you request a detailed map with the Is option, the list of
public symbols (if it appears) has public symbols flagged with
"idle" if there are no references to that symbol. For example, this
fragment from the public symbol section ofa map file indicates
that symbols Symbol1 and Symbol3 are not referenced by the image
being linked:

OC7F:031E idle
OOOO:3EA2
OC7F:0320 idle

Symboll
Symbol2
Symbol3

The In option causes the linker to ignore default libraries specified
by some compilers. You may want to use this option when linking
modules written in another language.

The b.option causes the code in all modules or libraries specified
after the option to be overlaid. It remains in effect until the next
comma (explicit or implicit) or b- on the command line. b- turns
off overlaying. (Chapter 18, "Memory management," covers
overlays in more detail.)

The b option can be optionally followed by a segment class name;
this will cause all segments of that class to be overlaid. When no
such name is specified, all segments of classes ending with CODE
will be overlaid. Multiple b options can be given, thus overlaying
segments of several classes; all b options remain in effect until the
next comma or b-,- is encountered.

Turbo C++ User's Guide

The syntax b#xx, where xx is a two-digit hexadecimal number,
overrides the overlay interrupt number, which by default is 3FH.

Here are some examples of /0 options:

Table 10.3
TUNKoverlayopftoN _O_p_tl_o_n~~~~~R_e_s_u_H~~~~~~~~~~~~~~~~

It (tiny model
.COM file)

lTd

/0 Overlay all code segments until next comma or /0-.

/0- Stop overlaying.

/OOVY Overlay segments of class OVY until the next
comma or /0-.

/OCODE /OOVL Y

Io#FO

Overlay segments of class CODE or class OVL Y
until next comma or /0-.

Use interrupt vector OFOH for overlays.

If you use the /0 option, it will be turned off automatically before
the libraries are processed. If you want to overlay a library, you
must use another /0 right before all the libraries or right before the
library you want to overlay.

When you use It, the default extension for the executable file is .
. COM. This works the same as the ITde option.

Note: .COM files may not exceed 64K in size, cannot have any
segment-relative fixups, cannot define a stack segment, and must
have a starting address equal to 0:100H. When an extension other
than .COM is used for the executable file (.BIN, for example), the
starting address may be either 0:0 or 0:100H.

TLINK can't generate debugging information for a .COM file. If
you need to debug your program,create and debug it as an .EXE
file, then relink it as a .COM file. Alternatively, if you have Turbo
Debugger, you can use the TDSTRIP utility with the -e option;
this creates a .COM file from an .EXE.

These options are called target options. You use them (with e, e,
or d) to produce a .COM or .EXE file.

• lTd creates an .EXE file.

• ITde creates a .COM file.

• ITde creates an .EXE file.

Chapter 70, TUNK: The Turbo linker 343

344

Iv (debugging
information)

lye (expanded
memory)

,
The Iv option directs TLINK to include debugging information in
the executable file. If this option is found anywhere on the
command line, debugging information will be included
executable for all object modules that contained debugging
information. You can use the Iv+ and Iv- options to selectively
enable or disable inclusion of debugging information on a
module..,by-module basis (but not on the saine command line as
Iv). For example, this command

tlink modl Iv+ mod2 mod3 Iv- mod4

includes debugging information for modules mod2 and mod3, but
not for modI and mod4.

TLINK can't generate debugging information for a .COM file (one
created with the It or fTde options). If you need to debug your
program, create and debug it as an .EXE file, then relink it as a
.COM file. Alternatively, if you have Turbo Debugger, you can
use the TDSTRIP utility with the -c option; this creates a .COM
file from an .EXE.

This option controls TLINK's use of expanded memory for 1/0
buffering. If, while reading object fiies or while writing the
executable file, TLINK needs more memory for active data
structures, it will either purge buffers or swap them to expanded
memory.

In the case of input file buffering, purging simply means thr~wing
away the input buffer so that its space can be used for other data
structures. In the case of output file buffering, purging means
writing the buffer to its correct place in the executable file. In
either case, you can substantially increase the speed of a link by
allowing these buffers to be swapped to expanded memory.

TLINK's capacity is not increased by swapping; only its
performance is improved. By default, swapping to extended
memory is enabled, while swapping to expanded memory is
disabled. If swapping is enabled and no appropriate memory
exists in which to swap, then swapping does not occur.

Turbo C++ User's Guide

Iyx (extended
memory)

This option has several forms, shown below

lye or Iye+
Iye-

enable expanded memory swapping (default)
disable expanded memory swapping

The Iyx option controls TLINK's use of extended memory for I/O
buffering. By default, TLINK will take up to 8MB of extended
memory. You can change TLINK's use 0f extended memory with
one of the following forms of this option: .

Iyx+ Use all available extended memory.

Iyxn Use only up to n KB extended memory.

Chapter 70, TLlNK: The Turbo linker 345

346 Turbo C++ User's Guide

p A R T

2

Programming reference

347

348 Turbo C++ User's Guide

c H A p T E R

1 1

Lexical elements

This chapter provides a formal definition of the Turbo C++ lexical
elements. It is concerned with the different categories of word-like
units, known as tokens, recognized by a language. By contrast,
language structure (covered in Chapter 12) details the legal ways
in which tokens can be grouped together to form expressions,
statements, and other significant units.

The tokens in Turbo C++ are derived from a series of operations
performed on your programs by the compiler and its built-in pre­
processor.

A Turbo C++ program starts life as a sequence of ASCII
characters representing the source code, created by keystrokes
using a suitable text editor (such as the Turbo C++ editor). The
basic program unit in Turbo C++ is the file. This usually
corresponds to a named DOS file located in RAM or on disk and
having the extension.C or .CPP.

The preprocessor first scans the program text for special prepro­
cessor directives (see page 501). For example, the directive #include
<incJile> adds (or includes) the contents of the file incJile to the
program before the compilation phase. The preprocessor also
expands any macros found in the program and include files.

Chapter 7 7, Lexical elements 349

Whitespace

350

Line splicing
with \

In the tokenizing phase of compilation, the source eode file is
parsed (that is, broken down) into tokens and whitespace. White­
space is the collective name given to spaces (blanks), horizontal
and vertical tabs, newline characters, and comments. Whitespace
can serve to indicate where tokens start and end, but beyond this
function, any surplus whitespace is discarded. For example, the
two sequences

int ij float fj

and

int i
float fj

are lexically equivalent and parse identically to give the six
tokens:

1. int

2.

3.
4. float

5. f
/'
b. ;

The ASCII characters representing whitespace can occur within
literal strings, in which case they are protected from the normal
parsing process; in other words, they remain as part of the string:

char name[] = "Borland International"j

parses to seven tokens, induding the single literal-string token
"Borland International".

A special case occurs if the final newline character encountered is
preceded by a b~ckslash (\). The backslash and new line are both
discarded, allowing two physical lines of text to be treated as one
unit.

"Borland \
International"

Turbo C++ User's Guide

Comments

C comments

See page 507 for a
description of token pasting.

is parsed as "Borland International" (see page 362, "String
literals," for more information).

Comments are pieces of text used to annotate a program. Com­
ments are for the programmer's use only; they are stripped from
the source text before parsing.

There are two ways to delineate comments: the C method and the
C++ method. Both are supported by Turbo C++, with an addi­
tional, optional extension permitting nested comments. You may
use either kind of comment in both C and C++ programs.

A C comment is any sequence of characters placed after the
symbol pair /*. The comment terminates at the first occurrence of
the pair */ following the initial/*. The entire sequence, including
the four comment delimiter symbols, is replaced by one space
after macro expansion. Note that some C implementations remove
comments without space replacements.

Turbo C++ does not support the nonportable token pasting
strategy using /**/. Token pasting in Turbo C++ is performed with
the ANSI-specified pair ##, as follows:

#define VAR(i,j)
#define VAR(i,j)
#define VAR (1, j)

In Turbo C++,

(i/**/j)
(i##j)
(i ## j)

/* won't work */
/* OK in Turbo Ctt */
/*Also OK */

int /* declaration */ i /* counter */;

parses as

int i

to give the three tokens: int i ;

Nested comments ANSI C doesn't allow nested comments. Attempting to comment
out the preceding line with

/* int /* declaration */ i /* counter */; */

fails, since the scope of the first 1* ends at the first */. This gives

i ; */

which would generate a syntax error.

Chapter 7 7, Lexical elements 351

c++ comments

You can a/so use / / to create
comments in C code. This is

specific to Turbo C++.

Comment delimiters
and whitespace

Tokens

352

By default, Turbo C++ won't allow nested comments, but you can
override this with compiler options. You can enable nested com­
ments via the Source Options dialog box (0 I C I Source) in the IDE
or with the -C option (for the command-line compiler).

C++ allows a single-line comment using two adjacent slashes
(! I). The comment can start in any position, and extends until the
next new line:

class X { II this is a comment
... };

In rare cases, some whitespace before r and II, and after */,
although not syntactically mandatory, can avoid portability
problems. Forexample, this C++ code

int i = jll* divide by k*/k;
tID;

parses as int i = j tID; not as

int i = j/k;
tID;

as expected under the C convention. The more legible

int i = jl 1* divide by k*1 k;
+ill;

avoids this problel1l..

Turbo C++ recognizes six classes of tokens. The formal definition
of a token is as follows:

token:
keyword
identifier
constant
string-literal
operator
punctuator

Punctuators are also known as separators.

Turbo C++ User's Guide

Keywords

Table 11.1
All Turbo C++ keywords

Table 11.2
Turbo C++ extensions to C

As the source code is parsed, tokens are extracted in such a way
that the longest possible token from the character sequence is
selected. For example, external would be parsed as a single

-identifier, rather than as the keyword extern followed by the
identifier al.

Keywords are words reserved for special purposes and must not be
used as normal identifier names. The following two tables list the
Turbo C++ keywords. You can use options in the IDE (or
command-line compiler options) to select ANSI keywords only,
UNIX keywords, and so on; see Chapter 2, "IDE Basics" and
Chapter 8, "The command-line compiler,", for information on
these options.

_asm
asm
auto
break
case
_cdecl
cdecl
char
class
const
continue
_cs
default
delete
do
double

_cdecl
cdecl
_cs
_ds

_ds
else
enum
_es
extern
_far
far
_fastcall
float
for
friend
goto
_huge
huge
if
inline

_es
_far
far
_fastcall
huge

int
_interrupt
interrupt
_Ioadds
long
_near
near
new
operator
_pascal
pascal
private
protected
public
register
return
_saveregs

interrupt
_Ioadds

near
_pascal

_seg
short
signed
sizeof
_ss
static
struct
switch
template
this
typedef
union
unsigned
virtual
void
volatile
while

pascal
_saveregs
_seg
_ss

Table 11.3 asm operator
private
protected
public
template
this
virtual

Keywords specific to C++ class
delete
friend
inline
new

Chapter 7 7, Lexical elements 353

Table 11.4
Turbo C++ register

pseudovariables

Identifiers

Naming and length
restrictions

Identifiers in C++ programs
are significant to 32

characters.

354

Identifiers and case
sensitivity

- AH - BP - CX - OX
_AL - BX - OH - ES
_AX - CH - 01 - FLAGS
- BH - CL - OL - SI
- BL - CS - OS - SP

SS -

The formal definition of an identifier is as follows:

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of

abc d e f g h i j kim n 0 p q r stu v w x y'z _

ABC DE FG HIJK LMNO PQ RS TUVW X Y Z

digit: one of

o 1 2 3 4 5 678 9

Identifiers are arbitrary names of any length given to classes, ob­
jects, functions, variables, user-defined data types, and so on.
Identifiers can contain the letters A to Z and a to Z; the underscore
character" _", and the digits 0 to 9. There are only two restrictions:

1. The first character must be a letter or an underscore.

2. By default, Turbo C++ recognizes only the first 32 characters
as significant. The number of significant characters can be
reduced by menu and command-line options, but not in­
creased. Use the -in command-lIne option (where 1, <= n
<= 32) or Identifier Length in the Source Options dialog box
(0 I C I Source).

Turbo C++ identifiers are case sensitive, so that Sum, sum, and
suM are distinct identifiers.

Global identifiers imported from other modules follow the same
naming and significance rules as normal identifiers. However,
Turbo C++ offers the option of suspending case sensitivity to
allow compatibility when linking with case-insensitive languages.
By checking Case-sensitive Link in the Linker dialog box

Turbo C++ User's Guide

(Options I Linker I Settings), or using the Ic command-line switch
with TLINK, you can ensure that global identifiers are case
insensitive. Under this regime, the globals Sum and sum are
considered identical, resulting in a possible "Duplicate symbol"
warning during linking.

An exception to these rules is that identifiers of type pascal are
always converted to all uppercase for linking purposes.

Uniqueness and scope Although identifier names are arbitrary (within the rules stated),
errors result if the same name is used for more than one identifier
within the same scope and sh~ring the same name space. Duplicate
names are always legal for different name spaces regardless of
scope. The rules are covered in the discussion on scope starting on

Constants

page 371. .

Constants are tokens representing fixed numeric or character
values. Turbo C++ supports four classes of constants: floating
point, integer, enumeration, and character.

The data type of a constant is deduced by the compiler using such
clues as numeric value and the format used in the source code.
The formal definition of a constant is shown in Table 11.5.

Integer constants Integer constants can be decimal (base 10), octal (base 8) or hexa­
decimal (base 16). In the absence of any overriding suffixes, the
data type of an integer constant is derived from its value, as
shown in Table 11.6. Note that the rules vary between decimal
and nondecimal constants.

Decimal constants

Decimal constants from 0 to 4,294,967,295 are allowed. Constants
exceeding this limit will be truncated. Decimal constants must not
use an initial zero. An integer constant that has an initial zero is
interpreted as an octal constant. Thus,

int i = 10i /*decimal 10 */
int i = 010i /*decimal 8 */
int i = Oi /*decimal 0 = octal 0 */

Chapter 7 7, Lexical elements 355

Table 11.5: Constants-formal definitions

constant:
floating-constant
integer-cons tt:m t
enumeration-constant
character-constant

floating-constant:
fractional-constant <exponent-part> <fLoating­

suffix>
digit-sequence exponent-part <floating-suffix>

fractional-constant:
<digit-sequence> . digit-sequence
digit-sequence .

exponent-part:
e <sign> digit-sequence
E <sign> digit-sequence

sign: one of
+ -

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
. f 1 F L

integer-constant:
decimal-constant <integer-suffix>
octal-constant <integer-suffix>
hexadecimal-constant <integer-suffix>

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
o
octal-constant octal-digit

hexadecimal-constant:
o x hexadecimal-digit

Octal constants

o X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 789

octal-digit: one of ,
o 1 2 3 4 5 67

hexadecimal-digit: one of
o 1 2 3 456 789
abcdef
ABCDEF

integer-suffix:
unsigned-suffix <long-suffix>
long-suffix <unsigned-suffix>

unsigned-suffix: one of
uD

long-suffix: one of
1 L

enumeration-constant:
identifier

character-constant:
c-char-sequence

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
Any character in the source character set except
the single-quote ('), backslash (\), or newline
character escape-sequence.

escape-sequence: one of

\" \' \?
\a \b \f
\0 \00 \000

\t \v \Xh ...

\\
\n
\r
\xh ...

All constants with an initial zero are taken to be octal. If an octal
constant contains the illegal digits 8 or 9, an error is reported.
Octal constants exceeding 037777777777 will be truncated.

356 Turbo C+'+ User's Guide

Table 11.6
Turbo C++ integer constants

without L or U

Hexadecimal constants

All constants starting with Ox (or OX) are taken to be hexadecimal.
Hexadecimal constants exceeding OxFFFFFFFF will be truncated.

long and unsigned suffixes

The suffix L (or 1) attached to any constant forces it to be repre­
sented as a long. Similarly, the suffix U (or u) forces the constant
to be unsigned. It is unsigned long if the value of the number
itself is greater than decimal 65,535, regardless of which base is
used. You can use both Land U suffixes on the same constant in
any order or case: ul, lu, UL, and so on.

Decimal constants

o to 32,767
32,768 to 2,147,483,647

2,147,483,648 to 4,294,967,295

> 4294967295

Octal constants

00 to 077777
0100000 to 0177777

02000000 to 017777777777
020000000000 to 037777777777

> 037777777777

Hexadecimal constants

OxOOOO to Ox7FFF
Ox8000 to OxFFFF

Oxl0000 to Ox7FFFFFFF
Ox80000000 to OxFFFFFFFF

> OxFFFFFFFF

int
long
unsigned long

truncated

int
unsigned int
long
unsigned long

truncated

int
unsigned int
long
unsigned long

truncated

The data type of a constant in the absence of any suffix (U, u, L, or
1) is the first of the following types that can accommodate its
value:

decimal

octal

hexadecimal

int, long int, unsigned long int

int, unsigned int, long int, unsigned long int

int, unsigned int, long int, unsigne~ long int

If the constant has a U or u suffix, its data type will be the first of
unsigned int, unsigned long int that can accommodate its value.

Chapter 7 7, Lexical elements 357

358

If the constant has an Lor 1 suffix, its data type will be the first of
long int, unsigned long int that can accommodate its value.

If the constant has both u and 1 suffixes (ul, lu, Ul, lU, uL, Lu, LU,
or UL), its data type will be unsigned long int.

Table 11.6 summarizes the representations of integer constants in
all three bases. The data types indicated assume no overriding L
or U suffix has been used.

Character constants A character constant is one or more characters enclosed in single
quotes, such as 'A', '=', '\n'. In C, single character constants
have data type int; they are represented internally with 16 bits,
with the upper byte zero or sign-extended. In C++, a character
constant has type char. Multicharacter constants in both C and
C++ have data type int.

Escape sequences

The backslash character (\) is used to introduce an escape sequence,
allowing the visual representation of certain nongraphic charac­
ters. For example, the constant \n is used for the single newline
character.

A backslash is used with octal or hexadecimal numbers to repre­
sent the ASCII symbol or control code corresponding to that val­
ue; for example, '\03' for Ctrl-C or '\x3F' for the question mark.
You can use any string of up to three octal or any number of
hexadecimal numbers in an escape sequence, provided that the
value is within legal range for data type char (0 to Oxff for Turbo
C++). Larger numbers generate the compiler error, "Numeric con­
stant too large." For example, the octal number \777 is larger than
the maximum value allowed, \377, and .will generate an error.
The first nonoctal or nonhexadecimal character encountered in an
octal or hexadecimal escape sequence marks the end of the
sequence. \

Originally, Turbo C allowed only three digits in a hexadecimal
escape sequence. The ANSI C rules adopted in Turbo C++ might
cause problems with old code that assumes only the first three
characters are converted. For example, using Turbo C 1.x to define
a string with a bell (ASCII 7) followed by numeric characters, a
programmer might write:

printf (" \x0072 .1A Simple Operating System");

Turbo C++ User's Guide

Table 11.7
Turbo C++ escape

sequences

The \ \ must be used to
represent a rea/ ASCII

backs/ash, as used in DOS
paths.

This is intended to be interpreted as \x007 and "2.1A Simple
Operating System". However, Turbo C++ compiles it as the
hexadecimal number \x0072 and the literal string ".lA Simple
Operating System".

To avoid such problems, rewrite your code like this:

printf (" \x007" "2 .1A Simple Operating System") ;

Ambiguities may also arise if an octal escape sequence is followed
by a nonoctal digit. For example, because 8 and 9 are not legal oc­
tal digits, the constant \258 would be interpreted as a two­
character constant made up of the characters \25 and 8.

The next table shows the available escape sequences.

Sequence Value Char What it does

\a Ox07 BEL Audible bell
\b Ox08 BS Backspace
\f OxOC FF Formfeed
\n OxOA LF Newline (linefeed)
\r OxOD CR Carriage return
\t Ox09 HT Tab (horizontal)
\v OxOB VT Vertical tab
\\ Ox5c \ Backslash
\' Ox27 Single quote (apostrophe)
\" Ox22 Double quote
\? Ox3F ? Question mark
\0 any o = a string of up to three octal

digits
\xH any H = a string of hex digits
\XH any H = a string of hex digits

Turbo C++ special two-character constants

Turbo C++ also supports two-character constants (for example,
, An', '\n \ t' ,and '\ 007\ 007'). These constants are represented
as 16-bit int values, with the first character in the low-order byte
and the second character in the high-order byte. These constants
are not portable to other C compilers.

signed and unsigned char

In C, one-character constants, such as 'A', '\t', and' \007', are
also represented as 16-bit int values. In this case, the low-order

,byte is sign extended into the high byte; that is, if the value is
greater than 127 (base 10), the upper byte is set to -1 (=OxFF). This

Chapter 7 7, Lexical elements 359

360

Floating-point
constants

can be disabled by declaring that the default char type is un­
signed (use the -K command-line compiler option or choose
Unsigned Characters in the Options I Compiler I Code Generation
dialog box), which forces the high by;te to be zero regardless of the
value of the low byte.

Wide character constants

A character constant preceded by an L is a wide-character con­
stant of data type wchar_t (an integral type defined in stddef.h).
For example,

x = L I A';

A floating constant consists of:

• decimal integer
• decimal point
• decimal fraction
• e or E and a signed integer exponent (optional)
• type suffix: f or F or I or L (optional)

You can omit either the decimal integer or the decimal fraction
(but not both). You can omit either the decimal point or the letter e
(or E) and the signed integer exponent (but not both). These rules
allow for conventional and scientific (exponent) notations.

Negative floating constants are taken as positive constants with
the unary operator minus (-) prefixed.

Examples:

Constant

23.45e6
.0
o.
1.
-1.23
2e-5
3E+10
.09E34

Value

23.45 X 106

o
o
1.0 x 100 = 1.0
-1.23
2.0 x 10-5

3.0 X 1010

0.09 X 1034

Floating-point constants - data types

In the absence of any suffixes, floating-point constants are of type
double. However, you can coerce a floating constant to be of type

Turbo C++ User's Guide

Table 11.8
Turbo C++ floating constant

sizes and ranges

See page 477 for a detailed
look at enum declarations.

float by adding an for F suffix to the constant. Similarly, the suffix
1 or L forces the constant to be data type long double. The next
table shows the ranges available for float, double, and long
double.

Type Size (bits) Range

float \

32 3.4 x 10-38 to 3.4 X 1038

double 64 1.7 x 10-308 to 1.7 X 10308

long double 80 3.4 x 10-4932 to 1.1 X 104932

Enumeration constants

Enumeration constants are identifiers defined in enum type dec­
larations. The identifiers are usually chosen as mnemonics to
assist legibility. Enumeration constants are integer data types.
They can be used in any expression where integer constants are
valid. The identifiers used must be unique within the scope of the
enum declaration. Negative initializers are allowed.

The values acquired by enumeration constants depend on the for­
mat of the enumeration declaration and the presence of optional
initializers. In this example,

enum team { giants, cubs, dodgers }i

giants, cubs, and dodgers are enumeration constants of type
team that can be assigned to any variables of type team or to any
other variable of integer type. The values acquired by the
enumeration constants are

giants = 0, cubs = 1, dodgers = 2

in the absence of explicit initializers. In the following example,

enum team { giants, cubs=3, dodgers = giants + 1 }i

the constants are set as follows:

giants = 0, cubs = 3, dodgers = 1

The constant values need not be unique:

enum team { giants, cubs = 1, dodgers = cubs - 1 }i

Chapter 7 7, Lexical elements 361

362

String literals String literals, also known as string constants, form a special cate­
gory of constants used to handle fixed sequences of characters. A
string literal is of data type array of char and storage class static,
written as a sequence of any number of characters surrounded by
double quotes:

"This is literally a string!"

The null (empty) string is written 1111.

The characters inside the double quotes can include escape
sequences (see page 358). This code, for example,

"\t\t\"Name\"\\\tAddress\n\n"

prints out like this:

"Name" \ Address

"Name" is preceded by two tabs; Address is preceded by one tab.
The line is followed by two new lines. The \" provides interior
double quotes.

A literal string is stored internally as the given sequence of char­
acters plus a final null character ('\0'). A null string is stored as a
single '\ 0' character.

Adjacent string literals separated only by whitespace are concate­
nated during the parsing phase. In the following example,

#include <stdio.h>

int main ()
{

char *p;

p = "This is an example of how Turbo CH"

" will automatically\ndo the concatenation for"
" you on very long strings, \nresulting in nicer"
" looking programs.";

printf (p) ;
return(O) ;

The output of the program is

This is an example of how Turbo Ctt will automatically
do the concatenation for you on very long strings,
resulting in nicer looking programs.

Turbo C++ User's Guide

You can also use the backslash (\) as a continuation character in
order to extend a string constant across line boundaries:

puts ("This is really \
a one-line string");

Constants and internal
representation

ANSI C acknowledges that the size and numeric range of the
basic data types (and their various permutations) are implemen­
tation specific and usually derive from the architecture of the host
computer. For Turbo C++, the target platform is the IBM PC
family (and compatibles), so the architecture of the Intel 8088 and
80x86 microprocessors governs the choices of inner represen­
tations for the various data types. The next table lists the sizes and
resulting ranges of the data types for Turbo C++; see page 383 for
more information on these data types. Figure 11.1 shows how
these types are represented fnternally.

Table 11.9: Data types, sizes, and ranges

Size
Type (bits) Range Sample applications

unsigned char 8 o to 255 Small numbers and full PC character set

char 8 -128 to 127 Very small numbers and ASCII characters

enum 16 -32,768 to 32,767 Ordered sets of values

unsigned int 16 o to 65,535 Larger numbers and loops

short int 16 -32,768 to 32,767 Counting, small numbers,loop control

int 16 -32,768 to 32,767 Counting, small numbers, loop control

unsigned long 32 o to 4,294,967,295 Astronomical distances

long 32 -2,147,483,648 to 2,147,483,647 Large numbers, populations

float 32 3.4 x 10-38 to 3.4 X 1038 Scientific (7 -digit precision)

double 64 1.7 x 10-308 to 1.7 X 10308 Scientific (15-digit precision)

long double 80 3.4 x 10-4932 to 1.1 X 104932 Financial (19-digit precision)

near pointer 16 Not applicable Manipulating memory addresses

far pOinter 32 Not applicable Manipulating addresses outside cut:rent
segment

Chapter 7 7, Lexical elements 363

Figure 11.1
Internal representations of

data types

- Increasing significance

(2's complement)

long int 1 sl magnitude 1 (2's complement)

3~1~------------~O

i1

double lsi e~~~s~:nt I significand

63 51

significand long double lsi e~~~S~ednt 11/
7~9~----~~~63~------------------------------~

s = Sign bit (0 = positive, 1 = negative)

Position of implicit binary point

Integer bit of significand:

Stored in long double
Implicit (always 1) in float, double

Exponent bias (normalized values):

float : 127 (7FH)
double : 1023 (3FFH)
long double: 16,383 (3FFFH)

Constant expressions A constant expression is an expression that always evaluates to a
constant (and it must evaluate to a constant that is in the range of
representable values for its type). Constant expressions are evalu­
ated just as regular expressions are. You can use a constant
expression anywhere' that a constant is legal. The syntax for con­
stant expressions is

constant -expression:
Conditional-expression

364 Turbo C++ User's Guide

Punctuators

Constant expressions cannot contain any of the following
operators, unless the operators are contained within the operand
of a sizeof operator:

• assignment
• comma

.• decrement
• function call
• increment

The punctuators (also known as separators) in Turbo C++ are
defined as follows:

punctuator: one·of

[](){},;: ... *=#

Brackets [] (open and close brackets) indicate single and multidimensional
array subscripts:

char ch, str []
int mat [3] [4] ;
ch = str[3];

"Stan";
1* 3 x 4 matrix *1
1* 4th element *1

Parentheses () (open and close parentheses) group expressions, isolate condi­
tional expressions, and indicate function calls and function
parameters:

d = c * (a + b);

if (d == z) ++x;

func () ;
int (*fptr) ();
fptr = func;

void func2(int n);

1* override normal precedence *1

1* essential with conditional statement *1

1* function call, no args *1
1* function pointer declaration *1
1* no () means func pointer *1

1* function declaration with args *1

Parentheses are recommended in macro definitions to avoid po­
tential precedence problems during expansion:

#define CUBE(x) ((x) * (x) * (x))

The use of parentheses to alter the normal operator precedence
and associativity rules is covered on page 423.

Chapter 7 7, Lexical elements 365

366

Braces {l (open and close braces) indicate the start and end of a com­
pound statement:

if (d == z)
{

+tx;

func () ;

The closing brace serves as a terminator for the compound state­
ment, so a ; (semicolon) is not required after the }, except in
structure or class declarations. Often, the semicolon is illegal, as in

if (statement)
{};

else
/*illegal semicolon*/

Comma The comma (,) separates the elements of a function argument list:

void func (int n, float f, charch);

The comma is also used as an operator in comma expressions.
Mixing the two uses of comma is legal, but you must use
parentheses to distinguish them:

func(i, j); /* call func with two args */
func((expl, exp2), (exp3, exp4, exp5)); /* also calls func

with two args! */

Semicolon The semicolon (;) is a statement terminator. Any legal C or c++
expression (including the empty expression) followed by ; is
interpreted as a statement, known as an expression statement. The
expression is evaluated and its value is discarded. If the expres­
sion statement has no side effects, Turbo C++ may ignore it.

a t b;
+ta;

/* maybe evaluate a t b, but discard value */
/* side effect on a, but discard value of tta */
/* empty expression = null statement */

Semicolons are often used to create an empty statement:

for (i = 0; i < n; itt)
{

Turbo C++ User's Guide

Colon Use the colon (:) to indicate a labeled statement:

start: x=O;

goto start;

switch (a)
case 1: puts ("One") ;

break;
case 2: puts ("Two") ;

break;

default: puts ("None of the above!");
break;

Labels are covered on page 442.

Ellipsis Ellipsis·(...) are three successive periods with no whitespace inter­
vening. Ellipsis are used in the formal argument llsts of function
prototypes to indicate a variable number of arguments, or argu­
ments with varying types:

void func(int n , char ch, ...);

This declaration indicates that func will be defined in such a way
that calls must have at least two arguments,\ an int and a char, but
can also have any number of additional arguments.

~ In C++, you can omit the comma preceding the ellipsis.

Asterisk (pointer
declaration)

The * (asterisk) in a variable declaration denotes the creation of a
pointer to a type:

char *char-ptr; /* a pointer to char is declared */

Pointers with multiple levels of indirection can be declared by in­
dicating a pertinent number of asterisks:

int **int-ptr; /* a pointer to an integer array */
double ***double-ptr; /* a pointer to a matrix of doubles */

You can also use the asterisk as an operator to either dereference a
pointer or as the multiplication operator:

i = *int-ptr;

a = b * 3.14;

Chapter 7 7, Lexical elements 367

368

Equal sign (initializer) The = (equal sign) separates variable declarations from initiali­
zation lists:

Poun.d sign
(preprocessor

directive)

char array[5) = { 1, 2, 3, 4, 5 };
int x = 5;

In C++, declarations of any type can appear (with some restric­
tions) at any point within the code. In a C function, no code can
precede any variable declarations.

In a C++ function argument list, the equal sign indicates the
default value for a parameter:

int f(int i = 0) { ... } /* parameter i has default value of
zero */

The equal sign is also used as the assignment operator in
expressions:

a = b + c;
ptr = farmalloc(sizeof(float)*100);

The # (pound sign) indicates a preprocessor directive when it
occurs as the first nonwhitespace character on a line. It signifies a
compiler action, not necessarily associated with code generation.
See page 501 for more on the preprocessor directives.

and ## (double pound signs) are also used as operators to
perform token replacement and merging during the preprocessor
scanning phase.

Turbo C++ User's Guide

c H

Declarations

Scope is discussed starting on
page 377; visibility on page
373; duration on page 373;
and linkage on page 375.

Objects

A p T E R

12

Language structure

This chapter provides a formal definition of Turbo C++'s language
structure. It details the legal ways in which tokens can be grouped
together to form expressions, statements, and other significant
units. By contrast, lexical elements (described in Chapter 11) are
concerned with the different categories of word-like units, known
as tokens, recognized by a language.

This section briefly reviews concepts related to declarations:
objects, types, storage classes, scope, visibility, duration, and
linkage. A general knowledge of these is essential before tackling
the full declaration syntax. Scope, visibility, duration, and linkage
determine those portions of a program that can make legal
references to an identifier in order to access its object.

An object is an identifiable region of memory that can hold a fixed
or variable value (or set of values). (This use of the word object is
not to be confused with the more general term used in object­
oriented languages.) Each value has an associated name and type
(also known as a data type). The na1me is used to access the object.
This name can be a simple identifier, or it can be a complex
expression that uniquely "points" to the object. The type is used

Chapter 72, Language structure 369

Lvalues

370

• to determine the correct memory allocation required initially

• to interpret the bit patterns found in the object during
subsequent accesses

• in many type-checking situations, to ensure that illegal
assignments are trapped

Turbo C++ supports many standard (predefined) and user­
defined data types, including signed and unsigned integers in
various sizes, floating-point numbers in various precisions,
structures, unions, arrays, and classes. In addition, pointers to
most of these objects can be established and manipulated in
various memory models.

The Turbo C++ standard libraries and your own program and
header files must provide unambiguous identifiers (or expres­
sions derived from them) and types so that Turbo C++ can
consistently access, interpret, and (possibly) change the bit
patterns in memory corresponding to each active object in your
program.

Declarations establish the necessary mapping between identifiers
and objects. Each declaration associates an identifier with a data
type. Most declarations, known as defining declarations, also
establish the creation (where and when) of the object, that is, the
allocation of physical memory and its possible initialization.
Other declarations, known as referencing declarations, simply make
their identifiers and types known to the compiler. There can be
many referencing declarations for the same identifier, especially
in a multifile program, but only one defining declaration for that
identifier is allowed.

Generally speaking, an identifier cannot be legally used in a
program before its declaration point in the source code. Legal
exceptions to this rule, known as forward references, are labels, calls
to undeclared functions, and class, struct, or union tags.

An lvalue is an object locator: An expression that designates an
object. An example of an lvalue expression is *P, where P is any
expression evaluating to a nonnull pointer. A modifiable lvalue is an
identifier or expression that relates to an object that can be
accessed and legally changed in memory. A const pointer to a
constant, for example, is not a modifiable lvalue. A pointer to a
constant can be changed (but its dereferenced value cannot).

Turbo C++ User's Guide

Rvalues

Types and
storage classes

Scope

Historically, the 1 stood for "left," meaning that an lvalue could le­
gally stand on the left (the receiving end) of an assignment state­
ment. Now only modifiable lvalues can legally stand to the left of
an assignment statement. For example, if a and bare nonconstant
integer identifiers with properly allocated memory storage, they
are both modifiable lvalues, and assignments such as a = 1; andb
= a + b are legal.

The expression a + b is not an lvalue: a + b = a is illegal because the
expression on the left is not related to an object. Such expressions
are often called rvalues (short for right values).

Associating identifiers with objects requires that each identifier
has at least two attributes: storage class and type (sometimes
referred to as data type). The Turbo C++ compiler deduces these
attributes from implicit or explicit declarations in the source code.

Storage class dictates the location (data segment, register, heap, or
stack) of the object and its duration or lifetime (the entire running
time of the program, or during execution of some blocks of code).
Storage class can be established by the syntax of the declaration,
by its placement in the source code, or by both of these factors.

The type, as explained earlier, determines how much memory is
allocated to an object and how the program will interpret the bit
patterns found in the object's storage allocation. A given data type
can be viewed as the set of values (often implementation-depen­
dent) that identifiers of that type can assume, together with the set
of operations allowed on those values. The compile-time operator,
sizeof,lets you determine the size in bytes of any standard or
user-defined type; see page 430 for more on this operator.

The scope of an identifier is that part of the program in which the
identifier can be used to access its object. There are five categories
of scope: block (or local), function, function prototype, file, and class
(C++ only). These depend on how and where identifiers are
declared.

Chapter 72, Language structure 371

Block scope

Function scope

Function prototype
scope

File scope

Class scope (C++)

Scope and nam'e
spaces

Structures, classes, and
enumerations are in the

same name space in C++.

372

The scope of an identifier with block (Qr local) scope starts at the
declaration point and ends at the end of the block containing the
declaration (such a block is known as the enclosing block).
Parameter declarations with a function definition also have block
scope, limited to the scope of the block that defines the function.

The only identifiers having function scope are statement labels.
Label names can be used with goto statements anywhere in the
function in which the label is declared. Labels are declared impli­
citly by writing label.;:.name: followed by a statement. Label names
must be unique within a function.

Identifiers declared within the list of parameter declarations in a
function prototype (not part of a function definition) have
function prototype scope. This scope ends at the end of the
function prototype.

File scope identifiers, also known as globals, are declared outside
of all blocks and classes; their scope is from the point of
declaration to the end of the source file. .

For now, think of a class as a named collection of members, in­
cluding data structures and functions that act on them. Class
scope applies to the nmnes of the lTLelTLbers of a particular class.
Classes and their objects have many special access and scoping
rules; see pages 455 to 468.

Name space is the scope within which an identifier must be unique.
There are four distinct classes of identifiers in C:

1. goto hlbel names. These must be unique within the function in
which they are declared.

2. Structure, union, and enumeration tags. These must be unique
within the block in which they are defined. Tags declared out­
side of any function must be unique within all tags defined
externally.

3. Structure and union member names. These must be unique
within the structure or union in which they are defined. There
is no restriction on the type or offset of members with the
same member name in different structures.

Turbo C++ User's Guide

Visibility

Visibility cannot exceed
scope, but scope can

exceed visibility.

4. Variables, typedefs, functions, and enumeration members.
These must be unique within the scope in which they are
defined. Externally declared identifiers must be unique among
externally declared variables.

The visibility of an identifier is that region of the program source
code from which legal access can be made to the identifier's asso­
ciated object.

Scope and visibility usually coincide, though there are circum­
stances under which an object becomes temporarily hidden by the
appearance of a duplicate identifier: The object still exists but the
original identifier cannot be used to access it until the scope of the
duplicate identifier is ended.

int i; char Chi
i = 3;

double i;
i = 3.0e3j

ch = 'A';

i += 1;

II auto by default
II int i and char ch in scope and visible

II double i in scope and visible
II int i=3 in scope but hidden,
II char ch in scope and visible

II double i out of scope
II int i visible and = 4
II char ch still in scope & visible = 'A'

II int i and char ch out of scope

~ Again, special rules apply to hidden class names and class
member names: Special C++ operators allow hidden identifiers to
be accessed under certain conditions (see page 456).

Duration
Duration, closely related to storage class, defines the period
during which the declared identifiers have real, physical objects
allocated in memory. We also distinguish between compile-t~me
and run-time objects. Variables, for instance, unlike typedefs and
types, have real memory allocated during run time. There are
three kinds of duration: static, local, and dynamic.

Chapter 72, Language structure 373

Static duration Objects with static duration are allocated memory as soon as exe­
cution is underway; this storage allocation lasts until the program
terminates. Static duration objects usually reside in fixed data
segments allocated according to the memory model in force. All
functions, wherever defined, are objects with static duration. All
variables with file scope have static duration. Other variables can
be given static duration by using the explicit static or extern
storage class specifiers.

Local duration

An object with local duration
also has local scope, since it

does not exist outside of its
enclosing block. The con­

verse is not true: A local
scope object can have

static duration.

Static duration objects are initialized to zero (or null) in the
absence of any explicit initializer or, in C++, constructor.

Static duration must not be confused with file or global scope. An
object can have static duration and local scope.

Local duration objects, also known as automatic objects, lead a
more precarious existence. They are created on the stack (or in a
register) when the enclosing block or function is entered. They are
deallocated when the program exits that block or function. Local
duration objects must be explicitly initialized; otherwise, their
contents are unpredictable. Local duration objects always must
have local or function scope. The storage class specifier auto may
be used when declaring local duration variables, but is usually
redundant, since auto is the default for variables declared within
a block.

When declaring variables (for example, int, char, float), the
storage class specifier register also implies auto; but a request (or
hint) is passed to the compilecthat the objeCt be allocated a
register if possible. Turbo C++ can be set to allocate a register to a
local integral or pointer variable, if one is free. If no register is
free, the variable is allocated as an auto, local object with no
warning or error.

Dynamic duration Dynamic duration objects are created and destroyed by specific
function calls during a program. They are allocated storage from a
special memory reserve known as the heap, using either standard
library functions such as malloc{), or by using the C++ operator
new. The corresponding deallocations are made using free{) or
delete.

374 Turbo C++ User's Guide

Translation units

For more details, see
"External declarations and

definitions" on page 380.

Linkage

The term translation unit refers to a source code file together with
any included files, but less any source lines omitted by condi­
tional preprocessor directives. Syntactically, a translation unit is
defined as a sequence of external declarations:

. translation-unit:
external-declaration
translation-unit external-declaration

external-declaration
function-definition
declaration

The word external has several connotations in C; here it refers to
declarations made outside of any function, and which therefore
have file scope. (External linkage is a distinct property; see the
following sectIon, "Linkage.") Any declaration that also reserves
storage for an object or function is called a definition (or defining
declaration).

An executable program is usually created by compiling several in­
dependent translation units, then linking the resulting object files
with preexisting libraries. A problem arises when the same identi­
fier is declared in different scopes (for example, in different files),
or declared more than once in the same scope. Linkage is the
process that allows each instance of an identifier to be associated
correctly with one particular object or function. All identifiers
have one of three linkage attributes, closely related to their scope:
external linkage, intemallinkage, or no linkage. These attributes
are determined by the placement and format of your declarations,
together with the expFcit (or implicit by default) use of the
storage class specifier static or extern.

Each instance of a particular identifier with external linkage repre­
sents the same object or function throughout the entire set of files
and libraries making up the program. Each instance of a particu­
lar identifier with internal linkage represents the same object or
function only within one file. Identifiers with no linkage represent
unique entities.

External and internal linkage rules are as follows:

Chapter 72, Language structure 375

376

1. Any object or file identifier having file scope will have int~rnal
linkage if its declaration contains the storage class specifier
static.

For C++, if the same identifier appears with both internal and
external linkage within the same file, the identifier will have
external linkage. In C, it will have internal linkage.

2. If the declaration of an object or function identifier contains
the storage class specifier extern, the identifier has the same
linkage as any visible declaration of the identifier with file
scope. If there is no such visible declaration, the identifier has
external linkage.

3. If a function is declared without a storage class specifier, its
linkage is determined as if the storage class specifier extern
had been used.

4. If an object identifier with file scope is declared without a
storage class specifier, the identifier has external linkage.

The following identifiers have no linkage attribute:

• any identifier declared to be other than an object or a function
(for example, a typedef identifier)

• function parameters

• block scope identifiers for objects declared without the storage
class specifier extern

Name mangling When a c++ module is compiled, the compiler generates function
names that include an encoding of the function's argument types.
This is known as name mangling. It makes overloaded functions
possible, and helps the linker catch errors in calls to functions in
other modules. However, there are times when you won't want
name mangling. When compiling a C++ module to be linked with
a module that does not have mangled names, the c++ compiler
has to be told not to !pangle the names of the functions from the
other module. This situation typically arises when linking with
libraries or .OBJ files compiled with a C compiler.

To tell the C++ compiler not to mangle the name of a function,
simply declare the function as extern "C ", like this:

extern "C" void Cfunc(int) i

This declaration tells the compiler that references to the function
Cfunc() should not be mangled.

You can also apply the extern "C" declaration to a block of names:

Turbo C++ User's Guide

extern "e" {

}i

void efuncl(int) i
void efunc2(int)i

void efunc3(int)i

As with the declaration for a single function, this declaration tells
the compiler that references to the functions Cfunc1 (), Cfunc2(),
and Cfunc3() should not be mangled. You can also use this form
of block declaration when the block of function names is
contained in a header file:

extern "e" {
#include "locallib.h"

}i

Declaration syntax

Tentative

All six interrelated attributes (storage class, type, scope, visibility,
duration, and linkage) are determined in diverse ways by
declarations.

Declarations can be defining declarations (also known simply as def­
initions) or referencing declarations (sometimes known as nonde­
fining declarations) .. A defining declaration, as the name implies,
performs both the duties of declaring and defining; the nonde­
fining declarations require a definition to be added somewhere in
the program. A referencing declaration simply introduces one or
more identifier names into a program. A definition actually
allocates memory to an object and associates an identifier with
that object.

definitions The ANSI C standard introduces a new concept: that of the
tentative definition. Any external data declaration that has no
storage class specifier and no initializer is considered a tentative
definition. If the identifier declared appears in a later definition,
then the tentative definition is treated as if the extern storage class
specifier were present. In other words, the tentative definition
becomes a simple referencing declaration.

If the end of the translation unit is reached and no definition has
appeared with an initializer for the identifier, then the tentative

Chapter 12, Language structure 377

378

definition becomes a full definition, and the object defined has
uninitialized (zero-filled) space reserved for it. For example,

int Xi

int Xi

int Yi
int Y = 4i

int z = 5i
int z = 6i

/*legal, one copy of X is reserved */

/* legal, y is initialized to 4 */

/* not legal, both are initialized definitions */

_ Unlike ANSI C, C++ doesn't have the concept of a tentative
declaration; an external data declaration without a storage class
specifier is always a definition.

Possible
declarations The range of objects that can be declared includes

• variables
• functions
• classes and class members (C++)
• types
• structure, union, and enumeration tags
• structure members
• union members
• arrays of other types
• enumeration constants
• statement labels
• preprocessor macros

The full syntax for declarations is shown in the following tables.
The recursive nature of the declarator syntax allows complex
declarators. We encourage the use of typedefs to improve
legibility.

Turbo C++ User's Guide

Table 12.1
Turbo C++ declaration syntax

declaration:
<decl-specifiers> <declarator-list>;
asm-declaration
function-declaration
linkage-specification

decl-specifier:
storage-class-specifier
type-specifier
Jct -specifier
friend (C++ specific)
typedef

decl-specifiers:
<decl-specifiers> decl-specifier

storage-class-specifier:
auto
register
static
extern

Jct-specifier: (C++ specific)
inline
virtual

type-specifier:
simple-type-name
class-specifier
enum-specifier
elaborated-type-specifier
const
volatile

simple-type-name:
class-name
typedef-name
char
short

int
long
signed
unsigned
float
double
void

elaborated-type-specifier:
class-key identifier
class-key class-name
en~m enum-name

class-key: (C++ specific)
class
struct
union

enum-specifier:
enum <identifier> { <enum-list>}

enum-list:
enumerator
enumerator-list, enumerator

enumerator:
identifier
identifier = constant-expression

constant-expression:
conditional-expression

linkage-specification: (C++ specific)
extern string { <declaration-list> }
extern string declaration

declaration-list:
declaration
declaration-list; declaration

For the following table, note that there are restrictions on the
number and order of modifiers and qualifiers. Also, the modifiers
listed are the only addition to the declarator syntax that are not
ANSI C or C++. These modifiers are each discussed in greater
detail starting on page 391.

Chapter 72, Language structure 379

Table 12.2: Turbo C++ declarator syntax

declarator-list:
in it-declarator
declarator-list , init-declarator

in it-declarator:
declarator <initializer>

declarator:
dname
modifier-list
ptr-operator declarator

class-name (C++ specific)
- class-name (C++ specific)
typedef-name

type-name:
type-specifi~r <abstract-declarator>

abstract-declarator:
ptr-operator <abstract-declarator>
<abstract-declarator> (argument-declaration-list) <cv-qualifier-list>
<abstract-declarator> [<constant-expression>]

declarator (parameter-declaration-list) <cv-qualifier-list>
(The <cv-qualifier-list> is for C++ only.)

(abstract-declarator)

argument-declaration-list:
<arg-declaration-list> declarator [<constant-expression>]

(declarator)

modifier-list:
modifier
modifier-list modifier

modifier:
cdecl
pascal
interrupt
near
far
huge

ptr-operator:
* <cv-qualifier-list>
& <cv-qualifier-list> (C++ specific)

arg-declaration-list , .. .
<arg-declaration-list> ... (C++ specific)

arg-declaration-list:
argument-declaration
arg-declaration-list , argument-declaration

argument-declaration:
decl-specifiers declarator
decl-specifiers declarator = expression (C++ specific)
decl-specifiers <abstract-declarator>
decl-specifiers <abstract-declarator> = expression (C++ specific)

Jct-definition:
<decl-specifiers> declarator <ctor-initializer> Jct-body

Jct-body:
class-name :: * <cv-qualifier-list> (C++ specific) compound-statement

cv-qualifier-list:
cv-qualifier <cv-qualifier-list>

cv-qualifier
canst
volatile

dname:
name

External
declarations and

definitions

380

initializer:
= expression
= { initializer-list I
(expression-list) (C++ specific)

initializer-list:
expression
initializer-list , expression
{ initializer-list <,> I

The storage class specifiers auto and register cannot appear in an
external declaration (see "Translation units," page 375). For each
identifier in a translation unit declared with internal linkage, there
can be no more than one external definition.

An external definition is an external declaration that also defines
an object or function; that is, it also 'allocates storage. If an
identifier declared with external linkage is used in an expression
(other than as part of the operand of sizeof), there must be exactly
one external definition of that identifier somewhere in the entire
program.

Turbo C++ User's Guide

Turbo C++ allows later re-declarations of external names, such as
arrays, structures, and unions, to add information to earlier
declarations. For example,

int all i II no size
struct mystructi II tag only, no member declarators

int a[3l = {I, 2, 3}i II supply size and initialize
struct mystruct {

int i, ji
}i II add member declarators

The following table covers class declaration syntax. Page 449
covers C++ reference types (closely related to pointer types) in
detail.

Table 12.3: Turbo C++ class declarations (C++ only)

class-specifier:
class-head { <member-list> }

class-head:
class-key <identifier> <base-spec>
class-key class-name <base-spec>

member-list:
member-declaration <member-list>
access-specifier : <member-list>

member-declaration:
<decl-specifiers> <member-declarator-list> ;
junction-definition <;>
qualified-name;

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator <pure-specifier>
<identifier> : constant-expression

pure-specifier:
=0

base-spec:
: base-list

base-list:
base-specifier
base-list , base-specifier

base-specifier:
class.;.name
virtual <access-specifier> class-name

Chapter 72, Language structure

access-specifier <virtual> class-name

access-specifier:
private
protected
public

conversion-junction-name:
operator conversion-type-name

conversion-type-name:
type-specifiers '<ptr-operator>

etor -initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

mem-initializer:
class name (<argument-list>)
identifier (<argument-list>)

operator-Junetion-name:
operator operator

operator: one of
new delete sizeof

+ *
&
+= -= *=
&= 1= «
-- != <=
++
[] *

1

1=
»
>=
->*

0/0
=
0/0=
»=
&&
->

A
<>
A=
«=
II
()

381

382

Type specifiers

Type taxonomy

The type specifier with one or more optional modifiers is used to
specify the type of the declared identifier:

int ii 1/ declare i asa signed integer
unsigned char chi, ch2i // declare two unsigned chars

By long-standing tradition, if the type specifier is omitted, type
signed int (or equivalently I int) is the assumed default. However,
in C++ there are some situations where a missing type specifier
leads to syntactic ambiguity, so C++ practice uses the explicit
entry of all int type specifiers.

There are four basic type categories: void, scalar, junction, and
aggregate. The scalar and aggregate types can be further divided
as follows:

• Scalar: arithmetic, enumeration, pointer, and reference types
(C++)

• Aggregate: array, structure, union, and class types (C++)

Types can also be divided into fundamental and derived types. The
fundamental types are void, char, int, float, and double, together
with short, long, signed, and unsigned variants of some of these.
The derived types include pointers and references to other types,
arrays of other types, function types, class types, structures, and
unions.

~ A class object, for example, can hold a number of objects of
different types together with functions for manipulating these
objects, plus a mechanism to control access and inheritance from
other classes.

Given any nonvoid type type (with some provisos), you can
declare derived types as follows:

Turbo C++ User's Guide

Table 12.4
Declaring types

Note that type& var, type
&var, and type & var are 0/1

equivalent.

Type void

c++ handles func() in a
special manner. See

"Declarations and
prototypes" on page 405

and code examples on
page 406.

The fundamental
types

long, signed, and unsigned
are modifiers that can be

applied to the integral types.

type t;

type array[lO];

type *ptr;

type &ref = t;

type func(void);

void func1 (type t);

struct st {type t1; type t2};

An object of type type

Ten types: array[O] - array[9]

ptr is a pointer to type

ref is a reference to type (C++)

func returns value of type type

func1 takes a type type parar;neter

structure st holds two types

And here's how you could declare derived types in a class:

class ct { II class ct holds pointer to type plus a
II function taking a "pointer to type" parameter.

type *ptri
pUblic:
void func(type*) i

void is a special type specifier indicating the absence of any
values. It is used in the following situations: .

• An empty parameter list in a function declaration:
int func(void)i II func takes no arguments

• When the declared function does not return a value:
void func(int n) i II return value

• As a generic pointer: A pointer to void is a generic pointer to '
anything:

void *ptri II ptr can later be set to point to any object

• In typecasting expressions:

extern int errfunc() i II returns an error code

(void) errfunc() i II discard return value

The fundamental type specifiers are built from the following
keywords: .

char int
double long
float short

signed
unsigned

Chapter 72, Language structure 383

384

Integral types

Table 12,5
Integral types

From these keywords you can build the integral and floating­
point types, which are together known as the arithmetic types. The
include file limits.h contains definitions of the value ranges for all
the fundamental types. i

char, short, int, and long, together with their unsigned variants,
are all considered integral data types. The integral type specifiers
are as follows, with synonyms listed on the same line:

char, signed char Synonyms if default char set to signed
unsigned char
char, unsigned char Synonyms if default char set to unsigned
signed'char
int, signed int
unsigned, unsigned int
short, short int, signed short int
unsigned short, unsigned short int
long, long int, signed long int
unsigned long, unsigned long int

At most, one of signed and unsigned can be used with char,
short, int, or long. If you use the keywords signed and unsigned
on their own, they mean signed int and unsigned int,
respectively.

In the absence of unsigned, signed is usually assumed. An excep­
tion arises with char. Turbo C++ lets you set the default for char
to be signed or unsigned. (The default, if you don;t set it yourself,
is signed.) If the default is set to unsigned, then the declaration
char ch declares ch as unsigned. You would need to use signed,
char ch to override the default. Similarly, with a signed default for
char, you would need an explicit unsigned char ch to declare an
unsigned char.

At most, one of long and short can.be used with into The
keywords long and short used on their own mean long int and
short int.

ANSI C does not dictate the sizes or internal representations of
these types, except to insist that short, int, and long form a non­
decreasing sequence with "short <= int <= long." All three types
can legally be the same. This is important if you want to write
portable code aimed at other platforms.

In Turbo C++, the types int and short are equivalent, both being
16 bits. long is a 32-bit object. The signed varieties are all stored in
2's complement format using the most significant bit (MSB) as a

Turbo C++ User's Guide

sign bit: 0 for positive, 1 for negative (which explains- the ranges
shown in Table 3.1 on page 363). In the unsigned versions, all bits
are used to give a range of 0 - (2n -I), where n is 8, 16, or 32.

Floating-point types The representations and sets of values for the floating-point types
are implementation dependent; that is, each implementation of C
is free to define them. Turbo C++ uses the IEEE floating-point
formats. The online documentation, "ANSLDOC," tells more
about implementation-specific items.

float and double are 32- and 64-bit floating-point data types, re­
spectively. long can be used with double to declare an 80-bit pre-

" cision floating-point identifier: long double test_case, for example.

Table 3.1 on page 363 indicates the storage allocations for the
floating-point types.

Standard conversions When you use an arithmetic expression, such as a + b, where a
and b are different arithmetic types, Turbo C++ performs certain
internal conversions before the expression is evaluated. These
standard conversions include promotions of "lower" types to
"higher" types in the interests of accuracy and consistency.

Here are the steps Turbo C++ uses to convert the operands in an
arithmetic expression:

1. Any small integral types are converted as shown in Table 12.6.
After this, any two values associated with an operator are
either int (including the long and unsigned modifiers, double,
float, or long double).

2. If either operand is of type long double, the other operand is
converted to long double.

3. Otherwise, if either operand is of type double, the other
operand is" converted to double.".

4. Otherwise, if either operand is of type float, the other operand
is converted to float. "

5. Otherwise, if either operand is of type unsigned long, the
other operand is converted to unsigned long.

6. Otherwise, if either operand is of type long, then the other op-
erand is converted to long. ..

7. Otherwise, if either operand is of type unsigned, then the
other operand is converted to unsigned.

8. Otherwise, both operands are of type int.

Chapter 72, Language structure 385

Table 12.6
Methods used in standard

arithmetic conversions

Special char, int, and
enum conversions

The conversions discussed in
this section are specific to

Turbo C++.

Initialization

The result of the expression is the same type as that of the two
operands.

Type·

char

unsigned char
signed char
short
unsigned short
enum

Converts to

int

int
int
int
unsigned int
int

Method

Zero or sign-extended
(depends on default char type)
Zero-filled high byte (always)
Sign-extended (always)
Same value
Same value
Same value

Assigning a signed character object (such as a variable) to an
integral object results in automatic sign extension. Objects of type
signed char always use)~ign extension; objects of type unsigned
char always set the high byte to zero when converted to int.

Converting a longer integral type to a shorter type truncates the
higher order bits and leaves low-order bits unchanged.
Converting a shorter integral type to a longer type either sign
extends or zero fills the extra bits of the new value, depending on
whether the shorter type is signed or unsigned, respectively.

Initializers set the initial value that is stored in an object (variables,
arrays, structures, and so on). If you don't initialize an object, and
it has static duration, it will be initialized by default in the
following manner:

If it has automatic storage • to zero if it is of an arithmetic type
duration, its value is

386

indeterminate. .to null if it is a pointer type

expression

The syntax for initializers is as follows:

initializer
= expression
. = {initializer-list} <,>}
(expression list)

initializer-list

initializer-list, expression
{initializer-list} <,>}

Rules governing initializers are

Turbo C++ User's Guide

1. The number of initializers in the initializer list cannot be larger
than the number of objects to be initialized.

2. The item to be initialized must be an object type or an array of
unknown size.

3. For C (not required for C++), all expressions must be constants
. if they appear in one of these places: .

a. in an initializer for an object that has static duration

b. in an initializer list for an array, structure, or union (expres­
sions using sizeof are also allowed)

4. If a declaration for an identifier has block scope, and the
identifier has external or internal linkage, the declaration
cannot have an initializer for the identifier ..

5. If there are fewer initializers in a brace-enclosed list than there
are members of a structure, the remainder of the structure is
initialized implicitly in the same way as objects with static
storage duration.

Scalar types are initialized with a single expression, which can op­
tionally be enclosed in braces. The initial value of the object is that
of the expression; the same constraints for type and conversions
apply as for simple assignments.

For unions, a brace-enclosed initializer initializes the member that
first appears in the union's declaration list. For structures or
unions with automatic storage duration, the initializer must be
one of the following:

• an initializer list as described in the following section

• a single expression with compatible union or structure type. In
this case, the initial value of the object is that of the expression.

Arrays, structures, and You initialize arrays and structures (at declaration time, if you
unions like) with a brace-enclosed list of initializers for the members or

elements of the object in question. The initializers are given in
increasing array subscript or member order. You initialize unions
with a brace-enclosed initializer for the first member of the union.
For example, you could declare an array days, intended to count
how many times each day of the week appears in a month (and
assuming that each day will appear at least once), as follows:

int days [7] = { 1, 1, 1, 1, 1, 1, 1 }

Chapter 72, Language structure 387

388

Simple
declarations

Use these rules to initialize character arrays and wide character
arrays:

1. You can initialize arrays of character type with a literal string,
optionally enclosed in braces. Each character in the string, in­
cluding the null terminator, initializes successive elements in
the array. For example, you could declare

char name [] = { "Unknown" };

which sets up an eight-element array, whose elements are 'U'
(for name[OD, 'n' (for name[lD, and so on (and including a null
terminator) .

2. You can initialize a wide character array (one that is
compatible with wchar _t) by using a wide string literal,
optionally enclosed in braces. As with character arrays, the
codes of the wide string literal initialize successive elements of
the array.

Here is an example of a structure initialization:

struct mystruct {
int i;
char str[21];
double d;

s = { 20, "Borland", 3.141 };

Complex members of a structure, such as arrays or structures, can
be initialized with suitable expressions inside nested braces. You
can eliminate the braces, but you must follow certain rules, and it
isn't recommended practice.

Simple declarations of variable identifiers have the following
pattern:

data-type varl <=init1>, var2 <=init2>, ... ;

. where varl, var2, ... are any sequence of distinct identifiers with
optional initializers. Each of the variables is declared to be of type
data-type. For example,

int x = 1, Y = 2;

creates two integer variables called x and y (and initializes them
to the values 1 and 2, respectively).

Turbo C++ User's Guide

These are all defining declarations; storage is allocated and any
optional initiaHzers are applied.

The initializer for an automatic object can be any legal expression
that evaluates to an assignment-compatible value for the type of
the variable involved. Initializers for static objects must be
constants or constant expressions.

~ In C++, an initializer for a static object can be any expression in­
volving constants and previously declared variables and
functions.

Storage class
specifiers

Use of storage class
specifier auto

Use of storage class
specifier extern

Use of storage class
specifier register

A storage class specifier, or a type specifier, mustbe present in a
declaration. The storage class specifiers can be one of the
following:

auto
extern

register
static

typedef

The storage class specifier auto isused only with local scope
variable declarations. It conveys local (automatic) duration, but
since this is the default for all local scope variable declarations, its
use is rare.

The storage class specifier extern can be used with function and
variable file scope and local scope declarations to indicate external
linkage. With file scope variables, the default storage class
specifier is extern. When used with variables, extern indicates
that the variable has static duration. (Remember that functions
always have static duration.) See page 376 for information on
using extern to prevent name mangling when combining C and
C++ code.

The storage class specifier register is allowed only for local
variable and function parameter declarations. It is equivalent to
auto, but it makes a request to the compiler that the variable
shouid be allocated to a register if possible. The allocation of a
register can significantly reduce the size and improve the per­
formance of programs in many situations. However, since Turbo
c++ does a good job of placing variables in registers, it is rarely
necessary to use the register keyword.

Chapter 12, Language structure 389

390

Use of storage class
specifier static

Turbo C++ lets you select register variable options from the
Options I Co;rnpiler I Optimizations Options dialog box. If you
check Automatic, Turbo C++ will try to allocate registers even if
you have not used the register storage class specifiers.

The storage class specifier static can be used with function and
variable file scope and local scope declarations to indicate internal
linkage. static also indicates that the variable has static duration.
In the absence of constructors or explicit initializers, static
variables are initialized with 0 or null.

~ In C++, a static data member of a class has the same value for all
instances of a class. A static member function of a class can be
invoked independently of any class instance.

Use of storage class
specifier typedef

The keyword typedef indicates that you are defining a new data
type specifier rather than declaring an object. typedef is included
as a storage class specifier because of syntactical rather than
functional similarities.

static long int biggyi
typedef long int BIGGYi

The first declaration creates a 32-bit, long int, static-duration
object called biggy. The second declaration establishes the
identifier BIGGY as a new type specifier, but does not create any
run-time object. BIGGY can be used in any subsequent declaration
where a type specifier would be legal. For example,

extern BIGGY salarYi

has the same effect as

extern long int salarYi

Although this simple example can be achieved by #define BIGGY
long int, more complex typedef applications achieve more than is
possible with textual substitutions:

Important! typedef does not create new data types; it merely creates useful
mnemonic synonyms or aliases for existing types. It is especially
valuable in simplifying complex declarations:

typedef double (*PFD) ();
PFD array-pfd[lO);
/* array-pfd is an array of 10 pointers to functions

returning double */

Turbo C++ User's Guide

Modifiers

You can't use typedef identifiers with other data-type specifiers:

unsigned BIGGY pay; /* ILLEGAL */

In addition to the storage class specifier keywords, a declaration
can use certain modifiers to alter some aspect of the identifier /
object mapping. The modifiers available with Turbo C++ are
summarized in Table 12.7. .

The const modifier The const modifier prevents any assignments to the object or any
other side effects, such as increment or decrement. A const
pointer cannot be modified, though the object to which it points
can be. Consider the following examples:

The modifier const used
by itself is equivalent to

constint.

const float pi =3.1415926;
const maxint = 32767;
char *const str = "Hello, world" ; // A constant pointer
char const *str2 = "Hello, world" ; /* A pointer to a constant

char */

Given these, the following statements are illegal:

pi = 3.0;
i = maxint++;
str = "Hi, there!";

/* Assigns a value to a const */
/* Increments a const */
/* Points str to something else */

Note, however, that the function call strcpy (str, "Hi, there!") is
legal, since it does a character-by-character copy from the string
literal "Hi, there!" into the memory locations pointed to by sty.

~ In C++, const also hides the const object and prevents external
linkage. You need to use extern const. A pointer to a const can't
be assigned to a pointer to a non-const (otherwise, the const
value could be assigned to using the non-const pointer). For
example,

Table 12.7
Turbo C++ modifiers

C++ extends const and
volatile to include classes

and member functions.

char *str3 = str2 /* disallowed */

Only const member functions can be called for a const object.

Modifier

canst

volatile

Use with

Variables only

Variables only

Use

Prevents changes to object.

Prevents register allocation and some
optimization. Warns compiler that
object may be subject to outside
change during evaluation.

Chapter 72, Language structure 391

392

Table 12.7: Turbo C++ modifiers (continued)

Turbo C++ extensions

cdecl

cdecl

p~~cal

pascal

interrupt

near,
far,
huge

_cs,
_ds,
_es,
_seg,
_ss

near,
f
lUI,

huge

Functions

Variables

Functions

Variables

Functions

Pointer types

Pointer types

Functions

near, Variables
far

_Ioadds Functions

_saveregs Functions

_fastcall Functions

Forces C argument-passing
convention. Affects Linker and link­
time names.

Forces global identifier case-sensitivity
and leading underscores.

Forces Pascal argument-passing
convention. Affects Linker and link­
time names.

Forces global identifier case­
insensitivity with no leading
underscores.

Function compiles with the additional
register-housekeeping code needed
when writing interrupt handlers.

Overrides the default pointer
type specified by the current
memory model.

Segment pojnters.
See page 582.

Overrides the default function
type specified by the current
memory model.

. Directs the placement of
the object in memory.

Sets DS to point to the current
data segment.

Preserves all register values
(except for return values)
during execution of the function.

Forces register parameter passing
convention. Affects the linker and
link-time names.

Turbo C++ User's Guide

The interrupt function
modifier

The volatile modifier

In C++, volatile has a special
meaning for class member

functions. If you've declared
a volatile object, you can

only use its volatile member
functions.

The interrupt modifier is specific to Turbo C++. interrupt
functions are designed to be used with the 8086/8088 interrupt
vectors. Turbo C++ will compile an interrupt function with extra
function entry and exit code so that registers AX, BX, CX, DX, 51,
01, ES, and OS are preserved. The other registers (BP, SP, 55, CS,
and IP) are preserved as part of the C-calling sequence or as part
of the interrupt handling itself. The function will use an iret
instruction to return, so that the function can be used to service
hardware or software interrupts. Here is an example of a typical
interrupt definition:

void interrupt myhandler()
{

You should declare interrupt functions to be of type void.
interrupt functions can be declared in any memory model. For all
memory models except huge, OS is set to the program data
segment. For the huge model, DS is set to the module's data
segment.

The volatile modifier indicates t~at the object may be modified;
not only by you, but also by something outside of your program,
such as ah interrupt routine or an I/O port. Declaring an object to
be volatile warns the compiler not to make assumptions concern­
ing the value of the object while evaluating expressions contain­
ing it, since the value could (in theory) change at any moment. It
also prevents the compiler from making the variable a register
variable.

volatile int ticksi
interrupt timer()
{

ticks++i

wait(int interval)
{

ticks = Oi
while (ticks < interval)i II Do nothing

These routines (assuming timer() has been properly associated
with a hardware clock interrupt) implement a time~ wait of ticks

Chapter 72, Language structure 393

The cdecl and pascal
modifiers

Page 375 tells how to use
extern, which allows C

names to be referenced
from a C++ program.

The -p compiler option or
Calling Convention Pascal in

the Options I Compiler I
Entry I Exit Code dialog box

causes all functions (and
pointers to those functions)

to be treated as if they were
of type pascal.

394

specified by the argument interval. A highly optimizing compiler
might not load the value of ticks inside the test of the while loop,
since the loop doesn't change the value of ticks.

Turbo C++ allows your programs to easily call routines written in
other languages, and vice versa. When you mix languages like
this, you have to deal with two important issues: identifiers and
parameter passing.

In Turbo C++, all global identifiers are saved in their original case
(lower, upper, or mixed) with an underscore" _" prepended to the
front of the identifier, unless you have selected the -u - option or
unchecked the Generate Underbars box in the Options I
Compiler I Advanced Code Generation dialog box.

pascal

In Pascal, global identifiers are not saved in their original case,
nor are underscores prepended to them. Turbo C++ lets you
declare any identifier to be of type pascal; the identifier is con­
verted to uppercase, and no underscore isprepended. (If the iden­
tifier is a function, this also affects the parameter-passing se­
quence used; see "Function type modifiers," page 396, for more
details.) .

The pascal modifier is specific to Turbo C++; it is intended for
functions (and pointers to functions) that use the Pascal para­
meter-passing sequence. Also, functions declared to be of type
pascal can still be called from C routines, so long as the C routine
sees that the function is of type pascal.

pascal putnums(int i, int j, int k)
{

printf("And the answers are: %d, %d, and %d\n",i,j,k)i

Functions of type pascal cannot take a variable number of
arguments, unlike functions such as printfO. For this reason, you
cannot use an ellipsis (...) in a pascal function definition.

cdecl

Once you have compiled with Pascal calling convention turned
on (using the -p option or IDE Options I Compiler I Entry /Exit
Code), you may want to ensure that certain identifiers have their

Turbo C++ User's Guide

main() must be declared as
cdec/: this is because the C

start-up code always tries to
call mainO with the C calling

convention.

case preserved and keep the underscore on the front, especially if
they're C identifiers from another file. You can do so by declaring
those identifiers to be cdecl. (This also has an effect on parameter
passing for functions).

Like pascal, the cdecl modifier is specific to Turbo C++. It is used
with functions and pointers to functions. It overrides the -p
option or IDE Options I Compiler I Entry/Exit Code compiler di­
rective and allows a function to be called as a regular C function.
For example, if you were to compile the previous program with
the Pascal calling option set but wanted to use printfO, you might
do something like this:

extern cdecl printf();
void putnums(int i, int j, int k);

cdecl main ()
{

putnu[rls (L 4,9) ;

void putnums (int i, int j, int k)
{

printf("And the answers are: %d, %d, and %d\n",i,j,k);

If you compile a program with the -p option or IDE Options I
Compiler I Entry /Exit Code, all functions used from the run-time
library will need to have cdecl declarations. If you look at the
header files (such as stdio.h), you'll see that every function is
explicitly defined as cdecl in anticipation of this.

The pointer modifiers Turbo C++ has eight modifiers that affect the pointer declarator
(*); that is, they modify pointers to data. These are near, far, huge,
_cs, _ds, _es, _seg, and _ss.

C lets you compile using one of several memory models. The
model you use determines (among other things) the internal
format of pointers. For example, if you use a small data model
(tiny, small, medium), all data pointers contain a 16-bit offset from
the data segment (DS) register. If you use a large data model
(compact, large, huge), all pointers to data are 32 bits long and
give both a segment address and an offset.

Sometimes, when using one size of data model, you want to
declare a pointer to be of a different size or format than the
current default. You do so using the pointer modifiers.

Chapter 72, Language structure 395

See the discussion starting on page 576 in Chapter 18 for an in­
depth explanation of near, far, and huge pointers, and page 577
for a description of normalized pointers. Also see the discussion
starting on page 582 for more on _cs,_ds, _es,_seg, and_ss.

Function type modifiers. The near, far, and huge modifiers can also be used as function
type modifiers; that is, they can modify functions and function
pointers as well as data pointers. In addition, you can use the
_Ioadds, and _saveregs modifiers to modify functions.

396

The near, far, and huge function modifiers can be combined with
cdecl or pascal, but not with interrupt.

Functions of type huge are useful when interfacing with code in
assembly language that doesn't use the same memory allocation
as Turbo C++.

A non-interrupt function can be declared to be near, far, or huge
in order to override the default settings for the current memory
model.

A near function uses near calls; a far or huge function uses far call
instructions.

In the tiny, small, and compact memory models, an unqualified
function defaults to type near. In the medium and1arge models,
an unqualified function defaults to type far. In the huge memory
lTLodel, it defaults to type huge.

A huge function is the same as a far function, except that the DS
register is set to the data segment address of the source module
when a huge function is entered, but left ur;set for a far function.

The _Ioadds modifier indicates that a function should set the DS
register, just as a huge function does, but does not imply near or
far c~lls. Thus, _Ioadds far is equivalent to huge.

The _saveregs modifier causes the function to preserve all
register values and restore them before returning (except for
explicit return values passed in registers such as AX or DX).

The _Ioadds and _saveregs modifiers are useful for writing low­
level interface routines; such as mouse support routines.

Turbo C++ User's Guide

Complex
declqrations and

declarators

See Tab/e 72.0 on page 379
for the dec/orator syntax. The

definition covers both
identifier and function

dec/orators.

Simple declarations have a list of comma-delimited identifiers
following the optional storage class specifiers, type specifiers, and
other modifiers.

A complex declaration uses a comma-delimited list of declarators
following the various specifiers and modifiers. Within each dec­
larator, there exists just one identifier, namely the identifier being
declared. Each of the declarators in the list is associated with the
leading storage class and type specifier.

The format of the declarator indicates how the declared dname is
to be interpreted when used in an expression. If type is any type,
and storage class specifier is any storage class specifier, and if 01
and 02 are any two declarators, then the declaration

storage-class-specifier type 01,02;

indicates that each occurrence of 01 or 02 in an expression will be
treated as an object of type type and storage class storage class
specifier. The type of the dname embedded in the declarator will be
some phrase containing type, such as "type," "pointer to type,"
"array of type," "function returning type," or Upointer to function
returning type," and so on.

For example, in the declarations

int n, nao[], naf[3], *pn, *apn[], (*pan)[], &nr=n;
int f(void), *fnp(void), (*pfn) (void);

each of the declarators could be used as rvalues (or possibly
lvalues in some cases) in expressions where a single int object
would be appropriate. The types of the embedded identifiers are
derived from their declarators as follows:

Chapter 72, Language structure 397

Table 12.8: Complex declarations

Declarator
syntax

type name;

type name [] ;

type name [3] ;

type *name;

type *name[];

type *(name[]);

type (* name) [] ;

type &name;

type name () ;

Implied type of name

type

(open) array of type

Fixed array of three elements, all of type
(name[O], name[l], and name[2])

Pointer to type

(open) array of pointers to type

Same as above

Pointer to an (open) array of type

Reference to type (C++ only)

Function returning type

Example

int count;

int count[];

int count[3];

int *count;

int *counti] ;

int *(count[]);

int (*count) [] ;

int &count;

int count();

type *name () ;

type * (name ()) ;

type (*name) () ; .

Function returning pointer to type

Same as above

int *count() ;

int *(count());

Pointer to function returning type int (*count) () ;

Pointers

See page 429 for a discussion
of referencing and de­

referencing.

398

Note the need for parentheses in (*name)[] and (*name)O, since the
precedence of both the array ~eclar_ator [] and the function
declarator () is higher than the pointer declarator*. The
parentheses in *(name[D are optional.

Pointers fall into two main categories: pointers to objects and
pointers to functions. Both types of pointers are special objects for
holding memory addresses.

The two pointer classes have distinct properties, purposes, and
. rules for manipulation, although they do share certain Turbo C++

operations. Generally speaking, pointers to functions are used to
access functions and to pass functions as arguments to other
functions; performing arithmetic on pointers to functions is not
allowed. Pointers to objects, on the other hand, are regularly
incremented and decremented as you scan arrays or more
complex data structures in memory.

Turbo C++ User's Guide

Pointers to
objects

Pointers to

Although pointers contain numbers with most of the characteris­
tics of unsigned integers, they have their own rules and restric­
tions for assignments, conversions, and arithmetic. The examples
in the next few sections illustrate these rules and restrictions.

A pointer of type "pointer to object of type" holds the address of
(that is, points to) an object of type. Since pointers are objects, you
can have a pointer pointing to a pointer (and so on). Other objects
commonly pointed at include arrays, structures, unions, and
classes.

The size of pOinters to objects is dependent on the memory model
and the size and disposition of your data segments, possibly influ­
enced by the optional pointer modifiers (discussed starting on
page 395).

functions A pointer to a function is best thought of as an address, usually in
a code segment, where that function's executable code is stored;
that is, the address to which control is transferred when that func­
tion is called. The size and disposition of your code segments is
determined by the memory model in force, which in turn dictates
the size of the function pointers needed to call your functions.

A pointer to a function has a type called "pointer to function re­
turning type," where type is the function's return type.

~ Under C++, which has stronger type checking, a pointer to a
function has type "pointer to function taking argument types type
and returning type." In fact, under C, a function defined with
argument types will also have this narrower type. For example,

void (*func) ();

In C, this is a pointer to a function returning nothing. In C++, it's a
pointer to a function taking no arguments and returning nothing.
In this example,

void (*func) (int);

*June is a pointer to a function taking an int argument and return­
ing nothing.

Chapter 72, Language structure 399

Painter
declarations

See page 383 for details on
void.

Warningl You need to
initialize pOinters before using

them.

400

A pointer must be declared as pointing to some particular type,
even if that type is void (which really means a pointer to
anything). Once declared, though, a pointer can usually be
reassigned so that it points to an object of another type. Turbo
C++ lets you reassign pointers like this without typecasting, but
the compiler will warn you unless the pointer was originally
declared to be of type pointer to void. And in C, but not C++, you
can assign a void* pointer to a non-void* pointer.

If type is any predefined or user-defined type, including void, the
declaration

type *ptr; /* Danger--uninitialized pointer */

declares ptr to be of type "pointer to type." All the scoping,
duration, and visibility rules apply to the ptr object just declared.

A null pointer value is an address that is guaranteed to be
different from any valid pointer in use in a program. Assigning
the integer constant 0 to a pointer assigns a null pointer value to
it.

The mnemonic NULL (defined in the standard library header files,
such as stdio.h) can be used for legibility. All pointers can be
successfully tested for equality or inequality to NULL.

The pointer type "pointer to void" must not be confused with the
null pointer. The declaration

void *vptr;

declares that vptr is a generic pointer capable of being assigned to
by any "pointer to type" value, including null, without complaint.
Assignments without proper casting between a "pointer to type1"
and a "pointer to type2," where type1 and type2 are different
types, can invoke a compiler warning or error. If type1 is a
function and type2isn't (or vice versa), pointer assignments are
illegal. If type1 is a pointer to void, no cast is needed. Under C, if
type2is a pointer to void, no cast is needed.

Assignment restrictions also apply to pointers of different sizes
(near, far, and huge). You can assign a smaller pointer to a larger
one without error, but you can't assign a larger pointer to a
smaller one unless you are using an explicit cast. For example,

. Turbo C++ User's Guide

Pointers and

char near *ncPi
char far *fCPi
char huge *hcpi
fcp = nCPi
hcp = fCPi
fcp = hCPi
ncp = fCPi
ncp = (char near*)fcpi

II legal
II legal
II not ·legal
I I not legal.
II now legal

constants A pointer or the pointed-at object can be declared with the const
modifier. Anything declared as a const cannot be assigned to. It is
also illegal to create a pointer that might violate the nonassigna­
bility of a constant object. Consider the following examples:

int ii

int * pii
(uninitialized)

int * const cp = &ii

const int ci = 7i

const int * pcii

II i is an int

II pi is a pointer to int

II cp is a constant pointer to into

II ci is a constant int

II pci is a pointer to constant int

const int * const cpc = &cii II cpc is a constant pointer to a
II constant int

The following assignments are legal:

i = Cii

*cp = cii

+tPcii

pci = CpCi

II Assign const-int to int

II Assign const-int to
Ilobject-pointed-at-by-a-const-pointer

II Increment a pointer-to-const

II Assign a const-pointer-to-a-const to a
II pointer-to-const

The following assignments are illegal:

ci = Oi

ci-- i

*pci = 3i

cp = &cii

CpC+ti

Chapter 12, Language structure

II NO--cannot assign to a const-int

II NO--cannot change aconst-int

II NO--cannot assign to an object
II pointed at by pointer-to-const

II NO--cannot assign to a const-pointer,
II even if value would be unchanged

II NO--cannot change const-pointer

401

Pointer arithmetic
Theinternal arithmetic
performed on pointers

depends on the memory
model in force and the

presence of any overriding
pointer modifiers.

The difference between two
pointers only has meaning if
both pOinters point into the

same array.

402

pi = pci; II NO--if this assignment were allowed,
II you would be able to assign to *pci
II (a const value) by assigning to *pi.

Similar rules apply to the volatile modifier. Note that const and
volatile can both appear as modifiers to the same identifier.

Pointer arithmetic is limited to addition, subtraction, and compar-
. ison. Arithmetical operations on object pointers of type "pointer
to type" automatically take into account the size of type; that is,
the number of bytes needed to store a type object.

When performing arithmetic with pointers, it is assumed that the
pointer points to an array of objects. Thus, if a pointer is declared
to point to type, adding an integral value to the pointer advances
the pointer by that number of objects of type. If type has size 10
bytes, then adding an integer 5 to a pointer to type advances the
pointer 50 bytes in memory. The difference has as its value the
number of array elements separating the two pointer values. For
example, if ptrl points to the third element Qf an array, and ptr2
points to the tenth element, then the result of ptr2 - ptrl would
be 7.

When an integral value is added to or subtracted from a "pointer
to type," the result is also of type "pointer to type." .

There is no such element as "one past the last element", of course,
but a pointer is allowed to assume such a value. If P points to the
last array element, P + 1 is legal, but P + 2 is undefined. If P points
to one past the last array element, P - 1 is legal, giving a pointer to
the last element. However, applying the indirection operator * to a
"pointer to one past the last element" leads to undefined behavior.

Informally, you can think of P + n as advancing the pointer by
(n ~ sizeof(type)) bytes, as long as the pointer remains within the
legal range (first element to one beyond the last element).

Subtracting two pointers to elements of the same array object
gives an integral value of type ptrdiff_t defined in stddef.h (signed
long for huge and far pointers; signed int for all others). This
value represents the difference between the subscripts of the two
referenced elements, provided it is in the range of p.trdiff_t. In the
expression Pl - P2, where Pl and P2 are of type pointer to type

I

(or pointer to qualified type), Pl and P2 must point to existing
elements or to one past the last element. If Pl points to the i-th

Turbo C++ User's Guide

element, and P2 points to the j-th element, PI - P2 has the value
(i - j).

Pointer
conversions Pointer types can be converted to other pointer types using the

typecasting mechanism:

c++ reference
declarations

Arrays

char *str;
int *ip;
str = (char *)ip;

, More generally, the cast (type*) will convert a pointer to type
"pointer to type."

C++ reference types are closely related to pointer types. Reference
types create aliases for objects and let you pass arguments to func­
tions by reference. C passes arguments only by value. In C++ you
can pass arguments by value or by refererice. See page 449,
"Referencing," for complete details.

The declaration

type declarator [<constant-expression>]

declares an array composed of elements of type. An array consists
of a contiguous region of storage exactly large enough to hold all
of its elements.

If an expression is given in an array declarator, it must evaluate to '
a positive constant integer. The value is the number of elements in
the array. Each of the elements of an array is numbered from 0
through the number of elements minus one.

Multidimensional arrays are constructed by declaring arrays of
array type. Thus, a two-dimensional array of five rows and seven
columns called alpha is declared as

type alpha [!] [7];

In certain contexts, the first array declarator of a'series may have
no expression inside the brackets. Such an array is of indeter-

Chapter 72, Language structure 403

Functions

Deciarations and
definitions

In c++ you must always use
function prototypes. We

recommend that you also
use them in C.

404

minate size. The contexts where this is legitimate are ones in
which the size of the array is not needed to reserve space.

For example, an extern declaration of an array object does not
need the exact dimension of the array, nor does an array function
parameter. As a special extension to ANSIC, Turbo C++ also
allows an array of indeterminate size as the final member of a
structure. Such an array does not increase the size of the structure,
except that padding can be added to ensure that the array is
properly aligned. These structures are normally used in dynamic
allocation, and the size of the actual array needed must be
explicitly added to the size of the structure in order to properly
reserve space.

Except when it is the operand of a sizeof or & operator, an array
type expression is converted to a pOinter to the first element of the
array.

Functions are central to C and C++ programming. Languages
such as Pascal distinguish between procedure and function.
Turbo C++ functions play both roles.

Each program must have a single external function named main
marking the entry point of the program. Functions are usually de­
clared as prototypes in standard or user-supplied header files, or
within program files. Functions are external by default and are
normally accessible from any file in the program. They can be re­
stricted by using the static storage class specifier (see page 375).

Functions are defined in your source files or made available by
linking precompiled libraries.

A given function can be declared several times in a program, pro­
vided the declarations are compatible. Nondefining function
declarations using the function prototype format provide Turbo
C++ withrdetailed parameter information, allowing better control
over argument number and type checking, and type conversions.

Excluding C++ function overloading, only one definition of any
given function is allowed. The declarations, if any, must also
match this definition. (The essential difference between a

Turbo C++ User's Guide

Declarations and
prototypes

In c++, this declaration
means <type> func(void)

You can enable a warning
within the IDE or with the
command-line compiler:

"Function called without a
prototype. "

definition and a declaration is that the definition has a function
body.)

In the original Kernighan and Ritchie style of declaration, a
function could be implicitly declared by its appearance in a
function call, or explicitly declared as follows:

<type> tuncO

where type is the optional return type defaulting to int. A function
can be declared to return any type except an array or function
type. This approach does not allow the compiler to check that the
type or number of arguments used in a function call match the
declaration.

This problem was eased by the introduction of function
prototypes with the following declaration syntax:

< type> tunc(parameter-declarator-list);,

Declarators specify the type of each ~nction par~meter. The com­
piler uses this information to check fUnction calls for validity. The
compiler is also able to coerce arguments to the proper type.
Suppose you have the following code fragment:

extern long lmax(long vl, long v2); /* prototype */

foo()
{

int limit = 32;
char ch = ' A' ;

long mval;

mval = lmax(limit,ch); /* function call */

Since it has the function prototype for ImaxO, this program
converts limit and ch to long, using the standard rules of
assignment, before it places them on the stack for the call to
ImaxO. Without the function prototype, lim# and ch would have
been placed on the stack as an integer and a character,
respectively; in that case, the stack passed to ImaxO would not
match in size or content what ImaxO was expecting, leading to
problems. The classic declaration style does not allow any
checking of parameter type or number, so using function
prototypes aids greatly in tracking down programming errors.

Chapter 72, Language structure 405

406

Function prototypes also aid in documenting code. For example,
the function strcpy() takes two parameters: a source string and a
destination string. The question is, which is which? The function
prototype

char *strcpy(char *dest, const char *sourc~);

makes 'it clear. If a header file contains function prototypes, then
you can print that file to get most of the information you need for
writing programs that call those functions. If you include an
identifier in a prototype parameter, it is only used for any later
error messages involving that parameter; it has no other effect.

A function declarator with parentheses containing the single
word void indicates a function that takes no arguments at all:

func(void);

~ In C++, func() also declares a function taking no arguments.

stdarg.h contains macros
that you can use in user­

defined functions with
variable numbers of

parameters.

A function prototype normally declares a function as accepting a
fixed number of parameters. For functions that accept a variable
number of parameters (such as printf(»), a function prototype can
end with an ellipsis (...), like this:

f(int *count, long total, ...)

With this form of prototype, the fixed parameters are checked at
compile time, and the variable parameters are passed with no
type checking.

Here are some more examples of function declarators and
prototypes:

int f ();

int f ();

int f (void) ;

int p(int,long);

/* In C, a function returning an int with no
information about parameters. This is the K&R
"classic style." */

/* In C+t, a function taking no arguments */

/* A function returning an int that takes no
parameters. */

/* A function returning an int that accepts two
parameters: the first, an inti the second, a
long. * /

int pascal q(void); /* A pascal function returning an int that takes
no parameters at all. */

char far *s(char *source, int kind); /* A function returning a far
pointer to a char and accepting two parameters: the
first, a pointer to a char; the second, an into */

Turbo C++ User's Guide

Definitions

Table 12.9
External function definitions

You can mix elements from 7
and 2.

int printf(char * format , ...); 1* A function returning an int and
accepting a pointer to a char fixed parameter and
any number of additional parameters of unknown
type. *1

int (*fp) (int); 1* A pointer to a function returning an int and
accepting a single int parameter. *1

The general syntax for external function definitions is given in the
following table:

file
external-definition
file external-definition

external-definition:
function-definition
declaration
asm-statement

function-definition:
<declaration-specifiers> declarator <declaration-list>

compound-statement

In general, a function definition consists of the following sections
(the grammar allows for more complicated cases):

1. Optional storage class specifiers: extern or static. The default
is extern.

2. A return type, possibly void. The default is int.

3. Optional modifiers: pascal, cdecl, interrupt, near, far, huge,
_Ioadds, _saveregs. The defaults depend on the memory
model and compiler option settings.

4. The name of the function.

5. A parameter declaration list, possibly empty, enclosed in pa­
rentheses. In C, the preferred way of showing an empty list is
func(void). The old style of funcO is legal in C but antiquated
and possibly unsafe.

6. A function body representing the code to be executed when
the function is called.

Chapter 72, Language structure 407

Formal parameter
declarations The formal parameter declaration list follows a similar syntax to

that of the declarators found in normal identifier declarations.
Here are a few examples:

408

int func(void) { II no args

int func(Tl tl, T2 t2, T3 t3=1) { II three simple parameters, one
II with default argument

int func(Tl* ptrl, T2& tref) II a pointer and a reference arg

int func(register int i) { II request register for arg

int func(char *str, ...) { 1* one string arg with a variable
number of other args, or with a fixed number of args with
varying types *1

~ In C++, you can give default arguments as shown. Parameters
with default values must be the last arguments in the parameter
list. The arguments' types can be scalars, structures, unions, enu~
merations; pointers or references to structures and unions; or
pointers to functions or classes.

Function calls
and argument

conversions

The ellipsis (...) indicates that the function will be called with dif­
ferent sets of arguments on different occasions. The ellipsis can
follow a sub list of known argument declarations. This form of
prototype reduces the amount of checking the compiler can make.

The parameters declared all enjoy automatic scope and duration
for the duration of the function. The only legal storage class
specifier is register.

The const and volatile modifiers can be used with formal
argument declarators.

A function is called with actual arguments placed in the same se­
quence as their matching formal argument~. The actual argu­
ments are converted as if by initialization to the declared types of
the formal arguments.

Here is a summary of the rules governing how Turbo C++ deals
with language modifiers and formal parameters in function calls,
both with and without prototypes: .

Turbo C++ User's Guide

Structures

1. The language modifiers for a function definition must match
the modifiers used in the declaration of the function at all calls
to the function.

2. A function may modify the values of its formal parameters,
but this has no effect on the actual arguments in the calling
routine, except for reference arguments in C++.

When a function prototype has not been previously declared,
Turbo C++ converts integral arguments to a function call
according to the integral widening (expansion) rules described in
the section nStandard conversions," starting on page 385. When a
function prototype is in scope, Turbo C++ converts the given
argument to the type of the declared parameter as if by
assignment.

When a function prototype includes an ellipsis (...), Turbo C++
converts all given function arguments as in any other prototype
(up to the ellipsis). The compiler widens any arguments given
beyond the fixed parameters, according to the normal rules for
function arguments without prototypes.

If a prototype is present, the number of arguments must match
(unless an ellipsis is present in the prototype). The types need
only be compatible to the extent that an assignment can legally
convert them. You can always use an explicit cast to convert an
argument to a type that is acceptable to a function prototype.

Important! If your function prototype does not match the actual function def­
inition, Turbo C++ will detect this if and only if that definition is
in the same compilation unit as the prototype. If you create a
library of routines with a corresponding header file of prototypes,
consider including that header file when you compile the library,
so that any discrepancies between the prototypes and the actual
definitions will be caught. C++ prOVides type-safe linkage, so
differences between expected and actual parameters will be
caught by the linker. '

Structure initialization is
discussed on page 386.

A structure is a derived type usually representing a user-defined
collection of named members (or components). The members can
be of any type, either fundamental or derived (with some restric­
tions to be noted later), in any sequence. In addition, a structure

Chapter 12, Language structure 409

member can be a bit field type not allowed elsewhere. The Turbo
C++ structure type lets you handle complex data structures
almost as easily as single variables.

~ In C++, a structure type is treated as a class type with certain dif­
ferences: default access is public, and the default for the base class
is also public. This allows more sophisticated control over access
to structure members by using the C++ access specifiers: public
(the default), private, and protected. Apart from these optional
access mechanisms, and from exceptions as noted, the following
discussion on structure syntax and usage applies equally to C and
C++ structures.

Untagged
structures and

typedefs

Structures are declared using the keyword struct. For example,

struct mystruct { ... }i II mystruct is the structure tag

struct mystruct s, *ps, arrs[lO] i

1* s is type struct mystructi ps is type pointer to struct mystructi
arrs is array of struct mystruct. *1

If you omit the structure tag, you can get an untagged structure.
You can use untagged structures to declare the identifiers in the
comma-delimited struct-id-list to be of the given structure type (or
derived from it), but you cannot declare additional objects of this
type elsewhere:

Un tagged structure and
union members are ignored

during initialization.

struct { ... } s, *ps, arrs[lO] i II untagged structure

It is possible to create a typedef while declaring a structure, with
or without a tag:

Structure member
declarations

410

typedef struct mystruct { ... } MYSTRUCTi
MYSTRUCT s, *ps, arrs[lO] i II same as struct mystruct s, etc.
typedef struct { ... } YRSTRUCTi II no tag
YRSTRUCT y, *yp, arry[20] i

You don't usually need both a tag and a typedef: either can be
used in structure declarations.

The member-ded-list within the braces declares the types and
Aames of the structure members using the declarator syntax
shown in Table 12.2 on page 380.

Turbo C++ User's Guide

You can omit the struet
keyword in C++.

Structures and

A structure member can be of any type, with two exceptions:

1. The member type cannot be the same as the struct type being
currently declared:

struct rnystruct { rnystruct s } sl, s2; II illegal

A member can be a pointer to the structure being declared, as
in the following example:

struct rnystruct { rnystruct *ps } sl, s2; II OK

Also, a structure can contain previously defined structure
types when declaring an instance of a,declared structure.

2. Except in C++, a member cannot have the type" function
returning ... ," but the type "pointer to function returning ... " is
allowed. In C++, a struct can have member functions.

functions A function can return a structure type or a pointer to a structure
type:

Structure member

rnystruct funcl(void); II funcl() returns a structure
rnystruct *func2(void); II func2() returns pointer to structure

A structure can be passed as an argument to a function in the
following ways:

void funcl(rnystruct s);
void func2(rnystruct *sptr);
void func3(rnystruct &sref);

I I directly
II via a pointer
II as a reference (C++ only)

access Structure and union members are accessed using the selection
operators. and ->. Suppose that the object s is of struct type 5,
and sptr is a pointer to 5. Then if m is a member identifier of type
M declared in 5, the expressions s.m and sptr->m are of type M,
and both represent the member object m in s. The expression
sptr->m is a convenient synonym for (* sptr) . rn.

The operator. is called the direct member selector; the operator ->
is called the indirect (or pointer) member selector; for example,

struct rnystruct
{

Chapter 72, Language structure

int i;
char str [21) ;
double d;

411

412

} s, *sptr=&Si

s.i = 3i
sptr->d = 1. 23;

II assign to the i member of mystruct s
II assign to the d member of mystruct s

The expression 8.m is an lvalue, provided that s is not an lvalue
and m is not an array type. The expression sptr->m is an lvalue
unless m is an array type.

If structure B contains a field whose type is structure A, the
members of A can be accessed by two applications of the member
selectors:

struct A
int ji
double Xi

}i

struct B {

int ii
struct A ai

double di
s, *sptr;

s.i = 3;
s.a.j = 2;
sptr->d = 1.23;
(sptr->a).x = 3.14

II assign to the i member of B
II assign to the j member of A
II assign to the d member .of B
II assign to X member of A

Each structtlre declaration introduces a unique structure type, so
that in

struct A
int i,j;
double d;

a, a1;

struct B {
int i,j;
double d;

b;

the objects a and ql are both of type struct A, but the objects a and
b are of different structure types. Structures can be assigned only
if the source and destination have the same type:

a = a1; II OK: same type, so member by member assignment
a = b; II ILLEGAL: different types
a.i = b.ii a.j = b.j; a.d = b.d 1* but you can assign

member-by-member *1

Turbo C++ User's Guide

Structure word
alignment

Structure name

Memory is allocated to a structure member-by-member from left
to right, from low to high memory address. In this example,

struct mystruct {
int i;
char str[21];

double d;
} s;

the object s occupies sufficient memory to hold a 2-byte integer, a
21-byte string, and an 8-byte double. The format of this object in
memory is determined by the Turbo C++ word alignment option.
With this option off (the default), s will be allocated 31 contiguous
bytes.

If you tum on word alignment with the Options I Compiler I Code
Generation dialog box or with the -a compiler option, Turbo C++
pads the structure with bytes to ensure the structure is aligned as
follows:

1. The structure will start on a word boundary (even address).

2. Any non-char member will have an even byte offset from the
start of the structure.

3. A final byte is added (if necessary) at the end to ensure that
the whole structure contains an even number of bytes.

With word alignment on, the structure would therefore have a
byte added before the double, making a 32-byte object.

spaces . Structure tag names share the same name space with union tags
and enumeration tags (but enums within a structure are in a
different name space in C++). This means that such tags must be
uniquely named within the same scope. However, tag names need
not differ from identifiers in the other three name spaces: the label
name space, the member name space(s), and the single name
space (which consists of variables, functions, typedef names, and
enumerators).

Chapter 72, Language structure 413

Incomplete
declarations

Bit fields
A structure can contain any
mixture of bit field and non­

bit field types.

414

Member names within a given structure or union must be unique,
but they can share the names of members in other structures or
unions. For example,

goto s;

s:
struct s

int s;
float s;

s;

union s
int s;
float f;

f;

struct t
int s;

s;

II OK: tag and label name spaces different
II OK: label, tag and member name spaces different
II ILLEGAL: member name duplicated
II OK: var name space different. In C++, this can only
II be done if s does not have a constructor.

II ILLEGAL: tag space duplicate
II OK: new member space

II OK: var name space

II OK: different member space

II ILLEGAL: var name duplicate

A pointer to a structure type A can legally appear in the decla­
ration of another structure B before A has been declared:

struct A; II incomplete.
struct B { struct A *pa };
struct A { struct B *pb };

The first appearance of A is called incomplete because there is no
definition for it at that point. An incomplete declaration is
allowed here, since the definition of B doesn't need the size of A.

You can declare signed or unsigned integer members as bit fields
from 1 to 16 bits wide. You specify the bit field width and
optional identifier as follows:

type-specifier <bitfield-id> : width;

where type-specifier is char, unsigned char, int, or unsigned into Bit
fields are allocated from low-order to high-order bits within a
word. The expression width must be present and must evaluate to
a constant integer in the range 1 to 16.

Turbo C++ User's Guide

If the bit field identifier is omitted, the number of bits specified in
width is allocated, but the field is not accessible. This lets you
match bit patterns in, say, hardware registers where some bits are
unused. For example,

struct mystruct {

int i 2 ;
unsigned j : 5;
int 4i

int k : 1i

unsigned m : 4;
} a, b, Ci

produces the following layout:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x x x x x x x x x x x x x x x x

.. "1$i'~'0>_~---'---""'--'~ 1lIIIE • , , ... ,

m k (unused) j i

Integer fields are stored in 2's-complement form, with the leftmost
bit being the MSB (most significant bit). With int (for example,
signed) bit fields, the MSB is interpreted as a sign bit. A bit field
of width 2 holding binary II, therefore, would be interpreted as 3
if unsigned, but as -1 if into In the previous example, the legal
assignment a. i = 6 would leave binary 10 = -2 in a.i with no
warning. The signed int field k of width 1 can hold only the values
-1 and 0, since the bit pattern 1 is interpreted as-l.

.. Bit fields can be declared only in structures, unions, and classes.

Unions

Unions correspond to the
variant record types of
Pascal and Modu/a-2.

They are accessed with the same member selectors (. and -»
used for non-bit field members. Also, bit fields pose several pro­
blems when writing portable code, since the organization of bits­
within-bytes and bytes-within-words is machine dependent.

The expression &mystruct.x is illegal if x is a bit field identifier,
since there is no guarantee that mystruct.x lies at a byte address.

Union types are derived types sharing many of the syntactical
and functional features of structure types. The key difference is
that a union allows only one of its members to be "active" at any
one time. The size of a union is the size of its largest member. The

Chapter 72, Language structure 415

Anonymous

value of only one of its'members canbe stored at anytime. In the
following simple case,

union myunion
int i;
double d;
char ch;

} mu, *muptr=μ

1* union tag = myunion *1

the identifier,mu, of type union myunion, can be used to hold a 2-
byte int, an 8-byte double, or a single-byte char, but only one of
these at the same time.

sizeof(union myunion) and sizeof(mu) both return 8, but 6 bytes
are unused (padded) when mu holds an int object, and 7 bytes are
unused when mu holds a char. You access union members with
the structure member selectors (. and -», but care is needed:

mu.d = 4.016;
printf("mu.d = %f\n",mu.d); II OK: displays mu.d = 4.016
printf ("mu. i = %d\n ", mu. i) ; II peculiar result
mu.ch = 'A';
printf("mu.ch = %c\n",mu.ch); II OK: displays mu.ch = A
printf(IImu.d = %f\n",mu.d); II peculiar result
muptr->i = 3;
printf("mu.i = %d\n",mu.i); II OK: displays mu.i = 3

The second printf() is legal, since mu.i is an integer type. However,
the bit pattern in mu.i corresponds to parts of the double pre­
viously assigned, and will not usually provide a useful integer
interpretation. .

When properly converted, a pointer to a union points to each of
its members, and vice versa.

unions (C++ only) A union that doesn't have a tag and is not used to declare a
named object (or other type) is called an anonymous union. It has
the following form:

~

416

union { member-list };

Its members can be accessed directly in the scope where this
union is declared, without using the x.y or p->y syntax.

Anonymous unions can't have member functions and at file level
must be declared static. In other words, an anonymous union may
not have external linkage.

Turbo C++ User's Guide

Union
declarations The general declaration syntax for unions is pretty much the same

as that for structures. Differences are

1. Unions can contain bit fields, but only one can be active. They
all start at the beginning of the union (and remember that,
because bit fields are machine dependent, they pose several
problems when writing portable code).

~ 2. Unlike C++ structures, C++ union types cannot use the class
access specifiers: public, private, and protected. All fields of a
union are public.

3. Unions can be initialized only through their first declared
member:

union loca187
int ii
double di

} a = { 20 }i

~ 4. A union can't participate ina class hierarchy. It can't be
derived from any class, nor can it be a base class. A union can
have a constructor.

Enumerations

An enumeration data type is used to provide mnemonic
identifiers for a set of integer values. For example, the following
declaration,

enum days { sun, mon, tues, wed, thur, fri, sat} anyday;

establishes a unique integral type, enum days, a variable anyday of
this type, and a set of enumerators (sun, man, ...) with constant
integer values.

Turbo C++ is free to store enumerators in a single byte when Treat
enums as ints is unchecked (0 I C I Code Generation) or the -b flag.
The default is on (meaning enums are always ints) if the range of
values permits, but the value is always promoted to an int when
used in expressions. The identifiers used in an enumerator list are
implicitly of type signed char, unsigned char, or int, depending
on the values of the enumerators. If all values can be represented
in a signed or unsigned char, that is the type of each enumerator.

Chapter 72, Language structure 417

~ In C, a variable of an enumerated type can be assigned any value
of type int-no type checking beyond that is enforced. In C++, a
variable of an enumerated type can be assigned only one of its
enumerators. That is,

anyday = man;
anyday = 1;

II OK
II illegal, even though man == 1

The identifier days is the optional enumeration tag that can be
used in subsequent declarations of enumeration variables of type
enum days:

enum days payday, holiday; II declare two variables

~ In C++, you can omit the enum keyword if days is not the name of
anything else in the same scope.

As with struct and union declarations, you can omit the tag if no
further variables of this enum type are required:

enum { sun, man, tues, wed, thur, fri, sat} anyday;
1* anonymous enum type *1

See page 367 for more on
enumeration constants.

The enumerators listed inside the braces are also known as enum­
eration constants. Each is assigned a fixed integral value. In the
absence of explicit initializers, the first enumerator (sun) is set to
zero, and each succeeding enumerator is 'Set to one more than its
predecessor (man = 1, tues = 2, and so on).

418

vVith explicit integral initializers, you can set one or more enum­
erators to specific values. Any subsequent names without initial­
izers will then increase by one. For example, in the following
declaration,

1* initializer expression can include previously declared
enumerators *1

enum coins { penny = 1, tuppence, nickel = penny + 4, dime = 10,
quarter = nickel * nickel } smallchange;

tuppence would acquire the value 2, nickel the value 5, and quarter
the value 25.

The initializer can be any expression yielding a positive or
negative integer value (after possible integer promotions). These
values are usually unique, but duplicates are legal.

enum types can appear wherever int types are permitted.

enum days { sun, man, tues, wed, thur, fri, sat} anyday;
enum days payday;

Turbo C++ User's Guide

typedef enum days DAYSi
DAYS *daysptri
int i = tuesi
anyday = moni
*daysptr = anydaYi

II OK
II OK

man = tuesi /1 ILLEGAL: man is a constant

Enumeration tags share the same name space as structure and·
union tags. Enumerators share the same name space as ordinary
variable identifiers:

int man = 11i
{

enum days { sun, mon, tues, wed, thur, fri, sat }anydaYi
1* enumerator mon hides outer declaration of int mon *1
struct days { int i, ji}i II ILLEGAL: days duplicate tag
double sati II ILLEGAL: redefinition of sat

man = 12i II back in int man scope

~ In C++, enumerators declared within a class are in the scope of
that class. .

Expressions '

Table 72.7 7 shows how
identifiers and operators are

combined to form
grammatically legal

"phrases."

The standard conversions are
detailed in Table 72.6 on

page 386 ..

An expression is a sequence of operators, operands, and
punctuators that specifies a computation. The formal syntax,
listed in Table 12.11, indicates that expressions are defined
recursively: Subexpressions can be nested without formal limit.
(However, the compiler will report an out-of-memory error if it
can't compile an expression that is too complex.)

Expressions are evaluated according to certain conversion,
grouping, associativity, and precedence rules which depend on
the operators used, the presence of parentheses, and the data
types of the operands. The way operands and subexpressions are
grouped does not necessarily specify the actual order in which
they are evaluated by Turbo C++ (see "Evaluation order" on page
422).

Expressions can produce an lvalue, an rvalue, or no value.Ex­
pressions may cause side effects whether they produce a value or
not.

We've summarized the precedence and associativity of the
operators in Table 12.10. The grammar in Table 12.11 on page 421

Chapter 72, Language structure 419

Table 12.10
Associativity and

precedence of Turbo C++
operators

420

completely defines the precedence and associativity of the
operators.

There are sixteen precedence categories, some of which contain
only one operator. Operators in the same category have equal
precedence with each other.

Where there are duplicates of operators in the table, the first
occurrence is unary, the second binary. Each category has an
associativity rule: left to right, or right to left. In the absence of
parentheses, these rules resolve the grouping of expressions with
operators of equal precedence.

The precedence of each operator category in the following table is
indicated by its order in the table. The first category (the first line)
has the highest precedence.

Operators Associativity

() [] -> ::
! - + - ++ - - & * (typecast) sizeof new delete

Left to right
Right to left
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Leftto right
Left to right
Left to right'
Right to left
Right to left
Left to right

.* ->*
* 1 %
+ -
« »
< <= > >=
== !=
&
1\

I
&&
II
?: (conditional expression)
= *= 1= 0/0= += -= &= 1\= 1= «= »=

Turbo C++ User's Guide

Table 12.11: Turbo C++ expressions

primary-expression:
literal
this (C++ specific)
:: identifier (C++ specific)
:: operator-Junction-name (C++ specific)
::qualified-name (C++ specific)
(expression)
name

literal:
integer-constant
character-constant
floating-constant
string-literal

name:
identifier
operator-Junction-name (C++ specific)
conversion-Junction-name (C++ specific)
- class-name
qualified-name (C++ specific)

qualified-name: (C++ specific)
qualified-class-name:: name

postfix-expression:
primary-expression
postfix-expression [expression 1
postfix-expression «expression-list»
simple-type-name «expression-list» (C++ specific)
postfix-expression . name
postfix-expression -> name
postfix-expression ++
postfix-expression --

expression-list:
assignment-expression
expression-list , assignment-expression

unary-expression:
postfix-expression
++ unary-expression
- - unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name) ,
allocation-expression (C++ specific)
deallocation-expression (C++ specific)

unary-operator: one of
& * +

allocation-expression: (C++ specific)
<::> new <placement> new-type-name <initializer>
<::> new <placement> (type-name) <initializer>

placement: (C++ specific)
(expression-list)

new-type-name: (C++ specific)
type-specifiers <new-declarator>

new-declarator: (C++ specific)
ptr-operator <new-declarator>
new-declarator [<expression> 1

deallocation-expression: (C++ specific)
<::> delete cast-expression
<::> delete [1 cast-expression

cast-expression:
unary-expression

Chapter 72, Language structure

(type-name) cast-expression

pm-expression:
cast-expression
pm-expression .* cast-expression (C++ specific)
pm-expression ->* cast-eXpression (C++ specific)

multiplicative-expression:
pm-expression
multiplicative-expression * pm-expression
multiplicative-expression 1 pm-expression
multiplicative-expression % pm-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

shift-expression:
additive-expression
shift-expression « additive-expression
shift-expression » additive-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational~expression <= shift-expression
relational-expression >= shift-expression

equality-expression:
relational-expression
equality expression == relational-expression
equality expression != relational-expression

AND-expression:
equality-expression
AND-expression & equality-expression

exclusive-OR -expression:
AND-expression
exclusive-OR-expression'" AND-expression

inclusive-OR-expression:
exclusive-OR-expression
inclusive-DR-expression I exclusive-OR-expression

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-DR-expression

logical-OR-expression:
logical-AND-expression
logical-DR-expression II logical-AND-expression

conditional-expression:
logical-DR-expression •
logical-DR-expression ? expression : conditional-expression

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of

*=
«= »=

1=
&=

expression:
assignment-expression

%=
"'-

expression, assignment-expression

constant-expression:
conditional-expression

+=
1=

421

Expressions and
C++

Evaluation order

422

c++ allows the overloading of certain standard C operators, as
explained starting on page 480. An overloaded operator is defined
to behave in a special way when applied to expressions of class
type. For instance, the equality operator == might be defined in
class complex to test the equality of two complex numbers
without changing its normal usage with non-class data types. An
overloaded operator is implemented as a function; this function
determines the operand type,lvalue, and evaluation order to be
applied when the overloaded operator is used. However,
overloading cannot change the precedence of an operator.
Similarly, C++ allows user-defined conversions between class
objects and fundamental types. Keep in mind, then,.that some of
the rules for operators and conversions discussed in this section
may not apply to expressions in C++.

The order in which Turbo C++ evaluates the operands of an
expression is not specified, except where an operator specifically
states otherwise. The compiler will try to rearrange the expression
in order to improve the quality of the generated code. Care is
therefore needed with expressions in which a value is modified
more than once. In general, avoid writing expressions that both
modify and use the value of the same object Consider the
expression

i = v[ittJ; II i is undefined

The value of i depends on whether i is incremented before or after
the assignment. Similarly,

int total = 0;
• sum = (total = 3) t (tttotal); II sum = 4 or sum = 7 ??

is ambiguous for sum and total. The solution is to revamp the
expression, using a temporary variable:

int temp, total = 0;
temp = tttotal;
sum = (total = 3) t temp;

Where the syntax does enforce an evaluation sequence, it is safe to
have multiple evaluations: .

sum = (i = 3, itt, itt); II OK: sum ='4, i = 5

Turbo C++ User's Guide

Errors and
overflows

See matherr() and signal() in
oniine Help.

Operators

The Turbo C++ operators
described here are the

standard ANSI C operators.

Each subexpression of the comma expression is evaluated from
left to right, and the whole expression evaluates to the rightmost
value.

Turbo C++ regroups expressions, rearranging associative and
commutative operators regardless of parentheses, in order to
create an efficiently compiled expression; in no case will the re­
arrangement affect the value of the expression.

You can use parentheses to force the order of evaluation in ex­
pressions. For example, if you have the variables a, b, c, and f, then
the expression! = a + (b + c) forces (b + c) to be evaluated before
adding the result to a. .

We've summarized the precedence and associativity of the
operators in Table 12.10. During the evaluation of an expression,
Turbo C++ can encounter many problematic situations, such as
division by zero or out-of-range floating-point values. Integer
overflow is ignored (C uses modulo 2n arithmetic on n-bit
registers), but errors detected by math library functions can be
handled by standard or user-defined routines.

Unless the operators are overloaded, the following information is
true in both C and C++. In C++ you can overload all of these ope­
rators with the exception of. (member operator) and ?: (condi-
tional operator) (and you also can't overload the C++ operators ::
and .*).

If an operator is overloaded, the discussion may not be true for it
anymore. Table 12.11 on page 421 gives the syntax for all
operators and operator expressions.

Operators are tokens that trigger some computation when applied
to variables and other objects in an expression. Turbo C++ is espe­
cially rich in operators, offering not only the common arithmetical
and logical operators, but also many for bit-level manipulations,
structure and union component access, and pointer operations
(referencing and dereferencing) ..

~ C++ extensions offer additional operators for accessing class
members and their objects, together with a mechanism for over-

Chapter 72, Language structure 423

Overloading is covered
starting on page 479.

The operators # and ## are
used only by the preproces­

sor (see page 507).

424

loading operators. Overloading lets you redefine the action of any
standard operators when applied to the objects of a given class. In
this section, we confine our discussion to the standard operators
of Turbo C++.

After defining the standard operators, we discuss data types and
declarations, and explain how these affect the actions of each
operator. From there we can proceed with the ~yntax for building
expressions from operators, punctuators, and objects.

The operators in Turbo C++ are defined as follows:

operator: one of

[] () -> ++
& * +
sizeof 1 % « » <
> <= >= -- != A
1 && II ?: = *=
1= 0/0= += -= «= »=
&= A= 1= # ##

And the following operators specific to C++:

* ->*

Except for [], (), and ?:, which bracket expressions, the multichar­
acter operators are considered as single tokens. The same operator
token can ha'le more than one irtterpretation, dependh"'1g on the
context. For example,

A * B
*ptr

A & B
&A
int &

label:
a ? x : y

void func(int n);
a = (btc) *d;

a, b, c;
func (a, b, c);

a =-b;
-func() {delete a;}

Multiplication
Dereference (indirection)

Bitwise AND
Address operation
Reference modifier (C++)

Statement label
Conditional statement

Function declaration
Parenthesized expression

Comma expression
Function call

Bitwise negation (one's complement)
Destructor (C++)

Turbo C++ User's.Guide

Unary operators
&
*
+

++

Binary operators

Additive operators +

Multiplicative operators *
1
%

Shift operators «
»

Bitwise operators &
A

Logical operators &&
II

Assignment operators =
*=
1=
0/0=
+=
-=
«=
»=
&=

Chapter 72, Language structure

Address operator
Indirection operator
Unary plus
Unary minus
Bitwise complement (l's complement)
Logical negation
Prefix: preincrement; Postfix: postincrement
Prefix: predecrement; Postfix: postdecrement

Binary plus (addition)
Binary minus (subtraction)

Multiply
Divide
Remainder

Shift left
Shift right

Bitwise AND
Bitwise XOR (exclusive OR)
Bitwise inclusive OR

Logical AND
Logical OR

Assignment
Assign product
Assign quotient
Assign remainder (modulus)
Assign sum
Assign difference
Assign left shift
Assign right shift
Assign bitwise AND

425

Relational operators

Equality operators

Component selection
operators

Class-member
operators

Conditional operator

Comma operator

Postfix and prefix
operators

426

Array subscript
operator []

1\=

1=

<
>
<=
>=

!=

->

*
->*

a? x: y

Assign bitwise XOR
Assign bitwise OR

Less than
Greater than
Less than or equal to
Greater than or equal to

Equal to
Not equal to

Direct component selector
Indirect component selector

. Scope access/ resolution
Dereference pointer to class member
Dereference pointer to class member
Class ini tializer.

"if a then x; else y"

Evaluate; e.g., a, b, c; from left to right

The operator functions, as well as their syntax, precedences, and
associativities, are covered starting on page 419.

The six postfix operators [] () . -> ++ and - - are used to build '
postfix expressions as shown in the expressions syntax table
(Table 12.11). The increment and decrement operators (++ and --)
are also prefix and unary operator~; they are discussed starting on
page 428.

In the expression

postfix-expression [expression]

either postfix-expression or expression must be a pointer and the
other an integral type.

In C, but not necessarily in C++, the expression expl[exp2J is
defined as

Turbo C++ User's Guide

Function call
operators ()

Structure/union
member operator

. (dot)

Ivalues are defined on page
370.

Structure/union pointer
, operator ->

Postfix increment
operator ++

* ((expl) + (exp2))

where either expl is a pointer and exp2 is an integer, or expl is an
integer and exp2 is a pointer. (The punctuators [], *, and + can be
individually overloaded in C++.)

The expression

postfix-expression(<arg-expression-list»

is a call to the function given by the postfix expression. The arg­
expression-list is a comma-delimited list of expressions of any type
representing the actual (or real) function arguments. The value of
the function call expression, if any, is determined by the return
statement in the function definition. See "Function calls and
argument conversions", page 408, for more on function calls.

In the expression

postfix-expression. identifier

the postfix expression must be of type structure or union; the
identifier must be the name of a member of that structure or
union type. The expression designates a member of a structure or
union object. The value of the expression is the value of the
selected member; it will be an lvalue if and only if the postfix
expression is an lvalue. Detailed examples of the use of . and ->
for structures are given on page 411.

In the expression

postfix-expression -> identifier

the postfiX expression must be of type pointer to structure or
pointer to union; the identifier must be the name of a member of
that structure or union type. The expression designates a member
of a structure or union object. The value of the expression is the
value of the selected member; it will be an lvalue if and only if the
postfix expression is an lvalue.

In the expression

postfix-expression ++

the postfix expression is the operand; it must be of scalar type
(arithmetic or pointer types) and must be a modifiablelvalue (see
page 370 for more on modifiable lvalues). The postfix ++ is also

Chapter 72, Language structure 427

Postfix decrement
operator--

Increment and
decrement

operators

. Prefix increment
operator

Prefix decrement
operator

Unary operators

428

known as the postincrement operator. The value of the whole
expression is the value of the postfix expression before the
increment is applied. After the postfix expression is evaluated, the
operand is incremented by 1. The increment value is appropriate
to the type of the operand. Pointer types are subject to the rules
for pointer arithmetic.

The postfix decrement, also known as the postdecrement, operator
follows the same rules as the postfix increment, except that 1 is
subtracted from the operand after the evaluation.

The first two unary operators are ++ and - -. These are also
postfix and prefix operators, so they are discussed here. The
remaining six unary operators are covered following this
discussion .

In the expression

++ unary-expression

the unary expression is the operand; it must be of scalar type and
must be a modifiable lvalue. The prefix increment operator'is also
known as the preincrement operator. The operand is incremented
by 1 before the expression is evaluated; the value of the v.rhole
expression is' the incremented value of the operand. The 1 used to
increment is the appropriate value for the type of the operand.
Pointer types follow the rules of pointer arithmetic.

The prefix decrement, also known as the predecrement, operator
has the following syntax:

- - unary-expression

It follows the same rules as the prefix increment operator, except
that the operand is decremented by 1 before the whole expression
is evaluated.

The six unary operators (aside from ++ and - -) are & * + - -
and !. The syntax is

Turbo C++ User's Guide

Address operator Be

The symbol & is a/so used in
C++ to specify reference

types: see page 449.

unary-operator cast-expression

cast-expression:
unary-expression
(type-name) cast-expression

The & operator and * operator (the * operator is described in the
next section) work together as the referencing and dereferencing
operators. In the expression

& cast-expression

the cast-expression operand must be either a function designator or
an lvalue designating an object that is not a bit field and is not
declared with the register storage class specifier. If the operand is
of type type, the result is of type pointer to type.

Some non-Ivalue identifiers, such as function names and array
names, are automatically converted into "pointer to X" types
when appearing in certain contexts. The & operator can be used
with such objects, but its use is redundant and therefore dis­
couraged.

Consider the following extract:

type tl = I, t2 = 2;
type *ptr = &t1;
*ptr = t2;

II initialized pointer
II same effect as tl = t2

type *ptr = &t1 is treated as

T *ptr;
ptr = &ti;

so it is ptr, not *ptr, that gets assigned. Once ptr has been
initialized with the address &t1, it can be safely dereferenced to
give the lvalue *ptr.

Indirection operator * In the expression

* cast-expression

the cast-expression operand must have type "pointer to type,"
where type is any type. The result of the indirection is of type
type. If the operand is of type "pointer to function," the result is a
function designator; if the operand is a pointer to an object, the
result is an lvalue designating that object. In the following
situations, the result of indirection is undefined:

Chapter 72, Language structure 429

1. The cast-expression is a null pointer.

2. The cast-expression is the address of an automatic variable and
execution of its block has terminated.

Unary plus operator + In the expression

+ cast-expression

the cast-expression operand must be of arithmetic type. The result
is the value of the operand after any required integral promotions.

Unary minus operator - In the expression

Bitwise complement
operator -

Logical negation
operator!

The sizeof

- cast-expression

the cast-expression operand must be of arithmetic type. The result
is the negative of the value of the operand after any required
integral promotions.

In the expression

- cast-expression

the cast-expression operand must be of integral type. The result is
the bitwise complement of the operand after any required integral
promotions. Each 0 bit in the operand is set to 1, and each 1 bit in
the operand is set to O.

In the expression

! cast-expression

the cast-expression operand must be of scalar type. The result is of
typeint and is the logical negation of the operand: 0 if the op­
erand is nonzero; 1 i~ the operand is zero. The expression IE is
equivalent to (0 == E).

operator There are two distinct uses of the sizeof operator:

sizeof unary-expression

How much space is set aside
for each type depends on

the machine.

430

sizeof (type-name)

The result in both cases is an integer constant that gives the size in
bytes of how much memory space is used by the operand
(determined by its type, with some exceptions). In the first use,

TurQo c++ User's Guide

the type of the operand expression is determined without
evaluating the expression (and therefore without side effects).
When the operand is of type char (signed or unsigned), sizeof
gives the result 1. When the operand is a non-parameter of array
type, the result is the total number of bytes in the array (in other
words, an array name is not converted to a pointer type). The
number of elements in an array equals sizeof array / sizeof
array[O].

If the operand is a parameter declared as array type or function
type, sizeof gives the size of the pointer. When applied to
structures and unions, sizeof gives the total number of bytes,
including any padding.

sizeof cannot be used with expressions of fUnction type,
incomplete types, parenthesized names of such types, or with an
lvalue that designates a bit field object.

The integer type of the result of sizeof is size_t, defined as
unsigned int in stddef.h.

You can use sizeof in preprocessor directives; this is specific to
Turbo C++.

~ In C++, sizeof(classtype), where classtype is derived from some
base class, returns the size of the object (remember, this includes
the size of the base class).

Multiplicative
operators There are three multiplicative operators: * I and %. The syntax is

multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
1Jlultiplicative-expression I cast-expression
multiplicative-expression % cast-expression

The operands for * (multiplication) and I (division) must be of
arithmetical type. The operands for % (modulus, or remainder)
must be of integral type. The usual arithmetic conversions are
made on the operands (see page 385).

The result of (opl * op2) is the product of the two operands. The
results of (opll op2) and (opl % op2) are the quotient and remain­
der, respectively, when opl is divided by op2, provided that op2 is
nonzero. Use of lor % with a zero second operand results in an
error.

Chapter 72, Language structure 431

When opl and op2 are integers and the quotient is not an integer,
the results are as follows:

Rounding is a/ways toward
zero.

1. If opl and op2 have the same sign, opll op2 is the largest
integer less than the true quotient, and opl % op2 has the sign
of opl.

432

Additive

2. If opl and op2 have opposite signs, opll op2 is the smallest
integer greater than the true quotient, and opl % op2 has the
sign of opl.

operators There are two additive operators: + and -. The syntax is

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

The addition The legal operand types for opl + op2 are­
operator +

1. Both opl and op2 are of arithmetic type.

2. op1 is of integral type, and op2 is of pointer to object type.

3. op2 is of integral type, and opl is of pointer to object type.

In case 1, the operands are subjected to the standard arithmetical
conversions, and the result is the arithmetical sum of the
operands. In cases 2 and 3, the rules of pointer arithmetic apply.
(Pointer arithmetic is covered on page 402.)

The subtraction The legal operand types for opl - op2 are
operator-

1. Both opl and op2 are of arithmetic type.

2. Both opl and op2 are pointers to compatible object types. The
.. unqualified type type is considered to be compatible with the

qualified types const type, volatile type, and const volatile
type.

3. opl is of pointer to object type, and op2 is integral type.

In case 1, the operands are subjected to the standard arithmetic
conversions, and the result is the arithmetic difference of the
operands. In cases 2 and· 3, the rules of pointer arithmetic apply.

Turbo C++ User's Guide

Bitwise shift
operators There are two bitwise shift operators: « and ». The syntax is

Bitwise shift operators
«< and »)

The constants ULONG_MAX
and UINCMAX are defined in

limits.h.

Relational

shift-expression:
additive-expression
shift-expression «additive-expression
shift-expression »additive-expression

In the expressions El «E2 and El »E2, the operands El and E2
must be of integral type. The normal integral promotions are
performed on El and E2, and the type of the result is the type of
the promoted El.1f E2 is negative or is greater than or equal to
the width in bits of El, the operation is undefined.

The result of El « E2 is the value of El left-shifted by E2 bit posi­
tions, zero-filled from the right if necessary. Left shifts of an un­
signed long El are equivalent to multiplying El py2E2, reduced
modulo ULONG_MAX + 1; left shifts of unsigned ints are
equivalent to multiplying by 2E2 reduced modulo UINT _MAX + l.
If El is a signed integer, the result must be interpreted with care,
since the sign bit may change.

The result of El » E2 is the value of El right-shifted by E2 bit po­
sitions. If El is of unsigned type, zero-fill occurs from the left if
necessary. If El is of signed type, the fill from the left uses the
sign bit (0 for positive, 1 for negative El). This sign-bit extension .
ensures that the sign of El » E2 is the same as the sign of El.
Except for signed types, the value of El »E2 is the integral part
of the quotient El / 2E2.

operators There are four relational operators: < > <= and >=. The syntax
for these operators is:

Chapter 72, Language structure

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression> shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

433

The less-than
operator <

Qualified names are defined
on page 467.

The greater-than
operator>

The less-than or equal­
to operator <=

434

In the expression El < E2, the operands must conform to one of
the following sets of conditions:

1. Both El and E2 are of arithmetic type.

2. Both El and E2 are pointers to qualified or unqualified
versions of compatible object types.

3. Both El and E2 are pointers to qualified or unqualified
versions of compatible incomplete types.

In case 1, the usual arithmetic conversions are performed. The
result of El < E2 is of type into If the value, of El is less than the
value of E2, the result is 1 (true); otherwise, the result is zero
(false).

In cases 2 and 3, where El and E2 are pointers to compatible
types, the result of El < E2 depends on the relative locations
(addresses) of the two objects being pointed at. When comparing
structure members within the same structure, the "higher"
pointer indicates a later declaration. Within arrays, the "higher"
pointer indicates a larger subscript value. All pointers to members
of the same union object compare as equal.

Normally, the comparison of pointers to different structure, array,
or union objects, or the comparison of pointers outside the range
of an array object give undefined results; however, an exception is
made for the "pointer beyond the last element" situation as
discussed under !!Pointer arithmetic" on page 402. If P points to
an element of an array object, and Q points to the last element, the
expression P < Q + 1 is allowed, evaluating to 1 (true), even
though Q + 1 does not point to an element of the array object.

The expression El > E2 gives 1 (true) if the value of El is greater
than the value of E2; otherwise, the result is 0 (false), using the
same interpretations for arithmetic and pointer comparisons, as
defined for the less-than operator. The same operand rules and
restrictions also apply.

Similarly, the expression El <= E2 gives 1 (true) if the value of El
is less than or equal to the value of E2. Otherwise, the result is 0
(false), using the same interpretations for arithmetic and pointer
comparisons, as defined for the less-than operator. The same
operand rules and restrictions also apply.

Turbo C++ User's Guide

The greater-than or
equal-to operator >=

Equality operators

Finally, the expression El >= E2 gives 1 (true) if the value of El is
greater than or equal to the value of E2. Otherwise, the result is 0
(false), using the same interpretations for arithmetic and pointer
comparisons, as defined for the less-than operator. The same
operand rules and restrictions also apply.

There are two equality operators: == and !=. They test for equality
and inequality between arithmetic or pointer values, following
rules very similar to those for the relational operators.

-.. However, == and != have a lower precedence than the relational
operators < and >, <=, and >=. Also, == and != can compare certain
pointer types for equality and inequality where the relational
operators would not be allowed.

The equal-to
operator ==

The syntax is

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression != relational-expression

In the expression El == E2, the operands must conform to one of
the following sets of conditions:

1. Both El and E2 are of arithmetic type.

2. Both El and E2 are pointers to qualified or unqualified
versions of compatible types.

3. One of El and E2 is a pointer to an object or incomplete type,
and the other is a pointer to a qualified or unqualified version
of void.

4. One of El or E2 is a pointer and the other is a null pointer
constant.

If El and E2 have types that are valid operand types for a
relational operator, the same comparison rules just detailed for El
< E2, El <= E2, and so on, apply.

In case I, for example, the usual arithmetic conversions are per­
formed, and the result of El == E2 is of type ~nt. If the value of El
is equal to the value of E2, the result is 1 (true); otherwise, the
result is zero (false).

Chapter 72, Language structure 435

The inequality operator
1=

Bitwise AND

In case 2, E1 == E2 gives 1 (true) if £1 and E2 point to the same
object, or both point U one past the last element" of the same array
object, or both are null pointers.

If E1 and E2 are pointers to function types, E1 == E2 gives 1 (true)
if they are both null or if they both point to the same function.
Conversely, if E1 == E2 gives 1 (true), then either E1 and E2 point
to the same function, or they are both null.

In case 4, the pointer to an object or incomplete type is converted
to the type of the other operand (pointer to a qualified or
unqualified version of void).

The expression E1 != E2 follows the same rules as those for E1==
E2, except that the result is 1 (true) if the operands are unequal,
and 0 (false) if the operands are equal.

operator & The syntax is

Table 12.12
Bitwise operators truth table

Bitwise exclusive

AND-expression:
equality-expression
AND-expression & equality-expression

In the expression E1 & E2, both operands must be of integral type.
The usual arithmetical conversions are performed on E1 and E2,
and the result is the bitwise AND of E1 and E2. Each bit in the
result is determined as shown in Table 12.12.

Bit value Bit value
inEl inE2

0, 0
1 0
0 1
1 1

El &E2

0
0
0
1

Ell\ E2

0
1
1
0

Ell E2

o
1
1
1

OR operator A The syntax is

exclusive-OR -expression:
AND-expression
exclusive-OR -expression A AND-expression

436 Turbo C++ User's Guide

Bitwise inclusive

In the expression E1 1\ E2, both operands must be of integral type. -
The usual arithmetic conversions are performed on E1 and E2,
and the result is the bitwise exclusive OR of E1 and E2. Each bit in
the result is determined as shown in Table 12.12.

OR operator I The syntax is

Logical AND
operator &&

Logical OR
operator II

inclusive-OR ~expression:
exclusive-OR -expression
inclusive-OR-expression I exclusive-OR-expression

In the expression E1 I E2, both operands must be of integral type.
The usual arithmetic conversions are performed on E1 and E2,
and the result is the bitwise inclusive OR of E1 and E2. Each bit in
the result is determined as shown in Table 12.12.

The syntax is

logical-AND-expression:
inclusive-OR -expression
logical-AND-expression && inclusive-OR-expression

In the expression E1 && E2, both operands must be of scalar type.
The result is of type int, the result is 1 (true) if the values of E1 and
E2 are both nonzero; otherwise, the result is 0 (false).

Unlike the bitwise & operator, && guarantees left-to-right
evaluation. E1 is evaluated first; if E1 is zero, E1 && E2 gives 0
(false), and E2 is not evaluated.

The syntax is

logical-OR ~expression:
logical-AND-expression
logical-OR -expression II logical-AND-expression

In the expression E1 II E2, both operands must be of scalar type.
The result is of type' int, and the result is 1 (true) if either of the
'values of E1 ahd E2 are nonzero. Otherwise, the result is 0 (false).

Chapter 72, Language structure 437

Conditional

Unlike the bitwise I operator, II guarantees left-to-right evaluation.
E1 is evaluated first; if E1 is nonzero, E1 II E2 gives 1 (true), and
E2'is not evaluated.

operator?: The syntax is

conditional-expression
logical-DR -expression
logical-DR-expression ? expression: conditional-expression

In C++, the result is an Ivalue. In the expression E1 ? E2 : E3, the operand E1 must be of scalar
type. The operands E2 and E3 must obey one of the following sets

438

of rules: '

1. Both are of arithmetic type.

2. Both are of compatible structure or union types.

3. Both are of void type.

4. Both are of type pointer to qualified or unqualified versions of
compatible types.

5. One operand is of pointer type, the other is a null pointer
constant.

6. One operand is of type pointer to an object or incomplete type,
the other is of type pointer to a qualified or unqualified
version of void.

First, E1 is evaluated; if its value is nonzero (true), then E2 is eval-.
uated and E3 is ignored. If E1 evaluates to zero (false), then E3 is
evaluated and E2 is ignored. The result of E1 ? E2 : E3 will be the
value of whichever of E2 and E3 is evaluated.

In case I, both E2 and E3 are subject to the usual arithmetic con­
versions, and the type of the result is the common type resulting
from these conversions. In case 2, the type of the result is the
structure or union type of E2 and E3. In case 3, the result is of type
void.

In cases 4 and 5, the type of the result is pointer to a type qualified
with all the type qualifiers of the types pointed to by both
operands. In case 6, the type of the result is that of the
nonpointer-to-void operand.

'Turbq C++ User's Guide

Assignment
operators

The simple assignment
operator =

In C++, the result is an Ivalue.

The compound
assignment operators

There are eleven assignment operators. The = operator is the
simple assignment operator; the other ten are known as
compound assignment operators.

The syntax is

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of

= *= 1= 0/0= += -=
«= »= &= A= 1=

In the expression E1 = E2, E1 must be a modifiable lvalue. The
value of E2, after: conversion to the type of E1, is stored in the
object designated by E1 (replacing E1's previous value). The value
of the assignment expression is the value of E 1 after the
assignment. The assignment expression is not itself an lvalue.

The operands E1 and E2 must obey one of the following sets of
rules:

1. E1 is of qualified or unqualified arithmetic type and E2 is of
arithmetic type.

2. E1 has a qualified or unqualified version of a structure or
union type compatible with the type of E2.

3. E1 and E2 are pointers to qualified or unqualified versions of
compatible types, and the type pointed to by the left has all the
qualifiers of the type pointed to by the right.

4. One of E1 or E2 is a pointer to an object or incomplete type
and the other is a pointer to a qualified or unqualified version
of void. The type pointed to by the left has all the qualifiers of
the type pointed to by the right.

S. E1. is a pointer and E2 is a null pointer constant.

The compound assignments op=, where op can be anyone of the
ten operator symbols * 1 % + - « » & A I, are interpreted as
follows: .

E1 op= E2

Chapter 72, Language structure 439

Comma operator

has the same effect as ,

E1 = E1 op E2

except that the lvalue E1 is evaluated only once. For example, E1
+= E2 is the same as E1 = E1 + E2. '

The rules for compound assignment are therefore covered in the
previous section (on the simple assignment operator =).

The syntax is

expression:
assignment-expression
exp.ression , assignment-expression

In C++, the result is\an Ivalue. In the comma expression

C++ operators
See page 452 for information

on the scope access
operator ::.

440

E1,E2

the left operand E1 is evaluated as a void expression, then E2 is
evaluated to give the result and type of the comma expression. By
recursion, the expression

E1, E2, ... , En

results in the left-to-right evaluation of each Ei, with the value
and type of En giving the result of the whole expression. To avoid
ambiguity with the commas used in function argument and
initializer lists, parentheses must be used. For example,

func(i, (j = 1, j +4), k);

calls func() with three arguments, not four. The arguments are i, 5,
andk.

The operators specific to C++ are:: .* ->*. The syntax for the.*
and ->* operators is as follows:

pm-expression
cast-expression
pm expression . * cast-expression
pm expression ->* cast-expression

The . * operator dereferences pointers to class members. It binds
the cast-expression, which must be of type "pointer to member of

Turbo C++ User's Guide

Statements

Blocks

class type", to the pm-expression, which must be of class type or of a
class publicly derived from class type. The result is an object or
function of the type specified by the cast-expression.

The ->* operator dereferences pointers to pointers to class
members (no, that isn't a typo; it does indeed dereference pointers
to pointers). It binds the cast-expression, which must be of type
"pointer to member of type," to the pm-expression, which must be
of type pointer to type or of type "pointer to class publicly derived
from type." The result is an object or function of the type specified
by the cast-expression.

If the result of either of these operators is a function, you can only
use that result as the operand for the function call operator (). For
example,

(ptr2object->*ptr2mernberfunc) (10) i

calls the member function denoted by ptr2memberfunc for the
object pointed to be ptr2object.

Statements specify the flow of control as a program executes. In .
the absence of specific jump and selection statements, statements
are executed sequentially in the order of appearance in the source
code. Table 12.13 on page 441 lays out the syntax for statements:

A compound statement, or block, is a list (possibly empty) of state-
. ments enclosed in matching braces ({ }). Syntactically, a block can

be considered to be a single statement, but it also plays a role in
the scoping of identifiers. An identifier declared within a block
has a scope starting at the point of declaration and ending at the
closing brace. Blocks can be nested to any depth.

Table 12.13: Turbo C++ statements

statement:
labeled-statement
compound-statement
expression-statem~nt
selection-statement
iteration-statement
jump-statement
asm-statement
declaration (C++ specific)

Chapter 72, Language structure

asm-statement:
asm tokens newline
asm tokens;
asm {tokens; <tokens;>=

<tokens;>
}

441

Table 12.13: Turbo C++ statements (continued)

labeled-statement:
identifier : statement

selection-statement:
if (expression) statement

case constant-expression : statement
default : statement

if (expression) statement else statement
switch (expression) statement

compound-statement: iteration~stateinent:
{ <declaration-list> <statement-list> } while (expression) statement

declaration-list:
declaration
declaration-list declaration

statement-list:
statement
statement-list statement

expression-statement:
<expression> ;

Labeled

do statement while (expression);
for (jor-init-statement <expression> ; <expression» statement

for-init-statement
expression-statement
declaration (C++ specific)

jump-statement:
goto identifier;
continue;
break;
return <expression>;

statements A statement can be labeled in the following ways:

442

1. lqbel-identifier: statement
The label identifier serves as a t,arget for the unconditional
goto statement. Label identifiers have their own name space
and enjoy function scope. In C++ you can label both

-.. declaration and non-declaration statements.

Expression
statements

2. case constant-expression: statement
default : statement

Case and default labeled statements are used only in
conjunction with switch statements.

Any expression followed by a semicolon fOrIns an expression
statement:

<expression>;

Turbo C++ executes an expression statement by evaluating the ex­
pression. All side effects from this evaluation are completed
before the next statement is executed. Most expression statements
are assignment statements or function calls.

A special case is the null statement, consisting of a single semicolon
(;). The null statement does nothing. It is nevertheless useful in
situations where the Turbo C++ syntax expects a statement but
your program does not need one.

Turbo C++ User's Guide

Selection
statements Selection or flow-control statements select from alternative

courses of action by testing certain values. There are two types of
selection statements: the if. .. else and the switch.

if statements

The parentheses around
cond-expression are

essential.

The basic if statement has the following pattern:

if (cond-expression) t-st <else f-st>

The cond-expression must be of scalar type. The expression is eval­
uated. If the value is zero (or null for pointer types), we say that
the cond-expression is false; otherwise, it is true.

If there is no else clause and cond-expression is true, t-st is
executed; otherwise, t-st is ignored.

If the optional else f-st is present and cond-expression is true, t-st is
executed; otherwise, t-st is ignored and f-st is executed.

.. Unlike, say, Pascal, Turbo C++ does not have a specific Boolean
data type. Any expression of integer or pointer type can serve a
Boolean role in conditional tests. The relational expression (a > b)
(if legal) evaluates to int 1 (true) if (a> b), and to int o (false) if
(a <= b). Pointer conversions are such that a pointer can always be
correctly compared to a constant expression evaluating to O. That
is, the test for null pointers can be written if (! ptr) ... or
if (ptr == 0) ••••

The f-st and t-st statements can themselves be if statements, allow­
ing for a series of conditional tests nested to any depth. Care is
needed with nested if ... else constructs to ensure that the correct
statements are selected. There is no endif statement: Any "else"
ambiguity is resolved by matching an else with the last
encountered if-without-an-else at the same block level. For
example,

if (x == 1)

if (y == 1) puts("x=l and y=l");
else puts("x != 1");

draws the wrong conclusion! The else matches with the second if,
despite the indentation. The correct conclusion is that x = 1 and y
!= 1. Note the effect of braces:

if (x == 1) {
if (y == 1) puts("x = 1 and y = 1");

Chapter 72, Language struchlre 443

else puts("x != 1"); II correct conclusion

switch statements The switch statement uses the following basic format:

It is illegal to have duplicate
case constants in the same

switch statement.

444

Iteration
statements

while statements

The parentheses are
essential.

switch (sw-expression) case-st

A switch statement lets you transfer control to one of several
case-labeled statements, depending on the value of sw-expression.
The latter must be of integral type (in C++, it can be of class type,
provided that there is an unambiguous conversion to integral
type available). Any statement in case-st (including empty
statements) can be labeled with one or more case labels:

case const-exp-i.: case-st-i

where each case constant, const-exp-i, is a constant expression with
a unique integer value (converted to the type of the controlling
expression) within its enclosing switch statement.

There can also be at most one default label:

default: default-st

After evaluating sw-expression, a match is sought with one of the
const-exp-i. If a match is found, control passes to the statement
case-st-i with the matching case label.

If no match is found and there is a default label, control passes to
default-st. If no match is found and there is no default label, none
of the statements in case-st is executed. Program execution is not
affected when case and default labels are encountered. Control
simply passes through the labels to the following statement or
switch. To stop execution at the end of a group of statements for a
particular case, use break.

Iteration statements let you loop a set of statements. There are
three forms of iteration in Turbo C++: while, do, and for loops.

The general format for this statement is

while (cond-exp) t-st

The loop statement; t-st, will be executed repeatedly until the
conditional expression, cond-exp, compares equal to zero (false).

Turbo C++ User's Guide

The cond-exp is evaluated and tested first (as described on page
443). If this value is nonzero (true), t-st is executed; if no jump
statements that exit from the loop" are encountered, cond-exp is
evaluated again. This cycle repeats until cond-exp is zero.

As with if statements, pointer type expressions can be compared
with the null pointer, so that while (ptr) ... is equivalent to

while (ptr != NULL) ...

The while loop offers a concise method for scanning strings and
other null-terminated data structures:

char str[lO]="Borland";
char *ptr=&str[O];
int count=O;
II . ..
while (*ptr++) II loop until end of string

count++;

In the absence of jump statements, t-st must affect the value of
cond-exp in some way, or cond-exp itself must change during

. evaluation in order to prevent unwanted endless loops.

do while statements The general format is

do do-st while (cond-exp);

The do-st statement is executed repeatedly until cond-exp
compares equal to zero (false). The key difference from the while
statement is that cond-exp is tested after, rather than before, each
execution of the loop statement. At least one execution of do-st is
assured. The same restrictions apply to the type of cond-exp
(scalar).

for statements The for statement format in C is

For C++, <init-exp> can be for «init-exp>; <test-exp>; <increment-exp» statement
an expression or a

dec/oration. The sequence of events is as follows:

1. The initializing expression init-exp, if any, is executed. As the
name implies, this usually initializes one or more loop
counters, but the syntax allows an expression of any degree of
complexity (inchlding declarations in C++). Hence the claim
that any C program can be written as a single for loop. (But
don't try this at home. Such stunts are performed by trained
professionals.)

Chapter 72, Language structure 445

2. The expression test-exp is evaluated following the rules of the
while loop. If test-exp is nonzero (true), the loop statement is
executed.·An empty expression here is taken as while (1), that
is, always true. If the value of test-exp is zero (false), the for
loop terminates.

3. increment-exp advances one or more counters.

4. The expression statement (possibly empty) is evaluated and
control returns to step 2.

If any of the optional elements are empty, appropriate semicolons
are required:

for (;;) { I I same as for (; 1;)
II loop forever

~ The C rules for for statements apply in C++. However, the init-exp
in C++ can also be a declaration. The scope of a declared identifier
extends through the enclosing loop. For example,

for (int i = 1; i < 3; iii) {
if (i ...) ...

for (int x = 0; ;;)

if (i ...)
if (x ...)

II ok to refer to i here

II do nothing

II legal
II illegal; x is now out of scope

Jump statements

446

A jump statement, when exectlted, transfers control uncondition­
ally. There are four such statements: break, continue, goto, and
return.

break statements The syntax is

break;

A break statement can be used only inside an iteration (while, do,
and for loops) or a switch statement. It terminates the iteration or
switch statement. Since iteration and switch statements can be
intermixed and nested to any depth, take care to ensure that your
break exits from the correct loop or switch. The rule is that a
break terminates the nearest enclosing iteration or switch
statement.

Turbo C++ User's Guide

continue statements The syntax is

continue;

A continue statement can be used only inside an iteration
statement; it transfers control to the test condition for while and
do 'loops, and to the increment expression in a for loop.

With nested iteration loops, a continue statement is taken as
belonging to the nearest enclosing iteration.

gotQ statements The syntax is

goto label;

The goto statement transfers control to the statement labeled label
(see "Labeled statements,"page 442), which must be in the same
function.

~ In C++, it is illegal to bypass a declaration having an explicit or
implicit initializer unless that declaratio~ is within an inner block
that is also bypassed.

return statements Unless the function return type is void, a function body must
contain at least one return statement with the following format:

return return-expression;

where return-expression must be of type type or of a type that is
convertible to type by assignment. The value of the return­
expression is the value returned by the function. An expression
that calls the function, such as func (actual-arg-list), is an rvalue
of type type, not, an lvalue:

t = func(arg);
func(arg) = t;

(func(arg))++;

II OK
/* illegal in C; legal in c++ if return type of

func is a reference */
/* illegal in C; legal in c++ if return type of

func is a reference */

The execution of a function call terminates if a return statement is
encountered; if no return is met, execution continues, ending at
the final closing brace of the function body.

Chapter 72, Language structure 447

448

If the return type is void, the return statement can be written as

return;

with no return expression; alternatively, the return statement can
be omitted.

Turbo C++ User's Guide

c H

Referencing

Pointer referencing and
dereferencing is discussed on

page 429.

Chapter 73, C++ specifics

A p T E R

13

c++ specifics

c++ is basically a superset of C. This means that, generally
speaking, you can compile C programs under C++, but you can't
compile a C++ program under C if the program uses any
constructs specific to C++. Some situations need special care. For
example, the same function func() declared twice in C with
different argument types will invoke a duplicated name error.
Under C++, however, func() will be interpreted as an overloaded
function - whether this is legal,or not will depend on other
circumstances.

Although C++ introduces new keywords and operators to handle
classes, some of the capabilities of C++ have applications outside
of any class context. We first review these aspects of C++ that can
be used independently of classes, then get into the specifics of
classes and class mechanisms.

While in C you pass arguments only by value, in C++ you can
pass arguments by value or by reference. C++ reference types,
which are closely related to pointer types, create aliases for objects
and let you pass arguments to functions by reference.

449

Simple references

Note that type& var, type
&var, and type & var are 01/

equivalent.

Reference

The reference declarator can be used to declare references outside
functions:

int i = 0;
int &ir = i; II ir is an alias for i
ir = 2; II same effect as i'= 2

This creates the lvalue ir as an alias for i, provided that the
initializer is the same type as the ,reference. Any operations on ir
have precisely the same effect as operations on i. For example,
ir = 2 assigns 2 to i, and &ir returns the address of i.

arguments The reference declarator can also be used to declare reference type
parameters within a function:

450

void funcl (int i);
void func2 (int &ir);

int sum=3;
funcl (sum) ;
func2 (sum) ;

II ir is type "reference to int"

II sum passed by value
II sum passed by reference

The sum argument passed by reference can be changed directly by
func2(). On the other hand, func1 () gets a copy of the sum
argument (passed by value), so sum itself cannot be altered by
func1().

When an actual argument x is passed by value, the matching
formal argument in the function receives a copy of x. Any changes
to this copy within the function body are not reflected in the value
of x itself. Of course, the function can return a value that could be
used later to change x, but the function cannot directly alter a pa­
rameter passed by value.

The C method for changing x uses the actual argument &x, the
address of &x, rather than &X itself. Although &X is passed by value,
the function can access x through the copy of &x it receives. Even
if the function does not need to change x, it is still useful (though
subject to possibly dangerous side effects) to pass &x, especially if
x is a large data structure. Passing x directly by value involves the
wasteful copying of the data structure.

Turbo C++ User's Guide

Implementation 7

Implementation 2

Implementation 3

Chapter 13, C++ specifics

Compare the three implementations of the function treble{):

int treble_1(n)
{

return 3*n;

int x, i = 4;
x = treble_1 (i);

void treble_2(int* np)
{

*np = (*np)*3;

treble_2(int &i);

void treble_3(int& n)
{

n = 3*n;

II x now = 12, i = 4

II i now = 12

II n is a reference type

II i now = 36

The formal argument declaration type& t (or equivalently, type &t)
establishes t as type "reference to type." So, when treble_3{) is
called with the real argument i, i is used to initialize the formal
reference argument n. n therefore acts as an alias for i, so that
n.= 3*n also assigns 3 * ito i.

If the initializer is a constant or an object of a different type than
the reference type, Turbo C++ creates a temporary object for
which the reference acts as an alias:

int& ir = 6; 1* t1emporary int object created, aliased by ir, gets
value 6 *1

float f;
int& ir2 f; 1* creates temporary int object aliased by ir2; f

converted before assignment *1
ir2 = 2.0 II ir2 now = 2, but f is unchanged

The automatic creation of temporary objects permits the conver­
sion of reference types when formal and actual arguments have
different (but assignment-compatible) types. When passing by
value, of course, there are fewer conversion problems, since the
copy of the actual argument can be physically changed before
assignment to the formal argument.

451

Scope access operator

This code also works if the
global i is a file-level static.

The scope access (or resolution) operator :: (two semicolons) let~
you access a global (or file duration) name even if it is hiddenby a
local redeclaration of that name (see page 371 for more on scope):

int i;

void func (void) ;
{

int i=O;
i = 3;
: : i = 4;

printf ("%d",i);

II global i

II local i hides global i
II this i is the local i
II this i is the global i
II prints out 3

The:: operator has other uses with class types, as discussed
throughout this chapter. .

The new and delete operators

452

The new and delete operators offer dynamic storage allocation
and deallocation, similar but superior to the standard library
functions, ~alioc{) and free(). See the online Help.

A simplified syntax is

pointer-to-name = new name <name-initializer>;
delete pointer-to-name;

name can be of any type except "function returning ... " (however,
pointers to functions are allowed).

new tries to create an object of type name by allocating (if
possible) sizeof(name) bytes infree store (also called the heap).
The storage duration of the new object is from the point of
creation until the operator delete kills it by deallocating its
memory, or until the end of the program.

If successful, new returns a pointer to the new object. A null
pointer indicates a failure (such as insufficient or fragmented heap
memory). As with malloc(), you need to test for null before trying
to access the new object (unless you use a new-handler; see the
following section for details). However, unlike malloc{), new
calculates the size of name without the need for an explicit sizeof

Turbo C++ User's Guide

new and delete, being
keywords, don't need

prototypes.,

Handling errors

The operator new
with arrays

Chapter 73, C++ specifics

operator. Further, the pointer returned is of the correct type,
"pointer to name," without the need for explicit casting.

name *nameptr; II name is any nonfunction type

if (! (nameptr = new name)) {
errmsg("Insufficient memory for name");
exit (1);

II use *nameptr to initialize new name object

delete nameptr; II destroy name and deallocate sizeof(name) bytes

You can define a function that will be called if the new operator
fails (returns 0). To tell the new operator about the new-handler
function, call set_new_handler() and supply a pointer to the
new-handler. The prototype for set_new_handler() is as follows
(from new.h):

void (*set_new_handler(void (*) ())) ();

set_new_handler() returns the old new-handler, and changes the
function _new_handler() so that it, in tum, points to the new­
handler that you define. See the online Help for discussions of
set_new_handler() and _new_handler().

If name is an array, the pointer returned by new points to the first
element of the array. When creating multidimensional arrays with
new, all array sizes must be supplied (although the left-most
dimension doesn't have to be a compile-time constant):

matJ)tr = new int[3] [10] [12];
matJ)tr = new int[n] [10] [12];
matJ)tr = new int[3] [] [12];
matJ)tr = new int[] [10] [12];

II OK
II OK
I I illegal
II illegal

Although the first array dimension may be a variable, all
following dimensions must be constants.

453

The operator
delete with arrays You must use the syntax delete [l expr when deleting an array.

In C++ 2.1, the array dimension should not be specified within the
brackets:

The ::operator

char * p;

void func ()
{

p = new char[10]; II allocate 10 chars
delete[] p; II delete 10 chars

C++ 2.0 code required the array size. In order to allow 2.0 code to
compile, Turbo C++ issues a warning and simply ignores any size
that is specified. For example, if the preceding example reads
delete [10 1 p and is compiled, the warning is as follows:

Warning: Array size for ' delete' ignored in function func ()

With Turbo C++, the [] is actually only required when the array
element is a class with a destructor. But it is good programming
practice to always tell the compiler that an array is being deleted.

new When used with non-class objects, new works by calling a stand­
ard library routLlle, the global ::operator new. With class objects of
type name, a specific operator called name::operator new can be
defined. new applied to class name objects invokes the appropriate
name::operator new if present; otherwise, the standard ::operator
new is used.

Initializers with the
new operator The optional initializer is another advantage new has over

malloc() (although calloc() does clear its allocations to zero). In
the absence of explicit initializers, the object created by new
contains unpredictable data (garbage). The objects allocated by
new, other than arrays, can be initialized with a suitable
expression between parentheses:

454

int-ptr = new int(3);

Arrays of classes with constructors are initialized with the default
constructor (see page 470). The user-defined· new operator with

Turbo C++ User's Guide

Classes

Class names

Class types

Chapter 73, C++ specifics

customized initialization plays a key role in C++ constructors for
class-type objects.

C++ classes offer extensions to the predefined type system. Each
class type represents a unique set of objects and the operations
(methods) and conversions available to create, manipulate, and
destroy such objects. Derived classes can be declared that inherit
the members of one or more base (or parent) classes.

In C++, structures and unions are considered as classes with
certain access defaults.

A simplified, "first-Iook"syntax for class declarations is

class-key class-name <: base-list> { <member-list> }

class-key is one of class, struct, or union.

The optional base-list lists the base class or classes from which the
class class-name will derive (or inherit) objects and methods. If any
base classes are specified, the class class-name is called a derived
class (see page 464, "Base and derived class access"). The base-list
has default and optional overriding access specifiers that can
modify the access rights of the derived class to members of the
base classes (see page 462, "Member access control").

The optional member-list declares the class members (data and
functions) of class-name with default and optional overriding
access specifiers that may affect which fun~tions can access which
members.

class-name is any identifier unique within its scope. With
structures, classes, and unions, class-name can be omitted (see
"Dntagged structures and typedefs," page 410.)

The declaration creates a unique type, class type class-name. This
lets you declare further class objects (or instances) of this type, and
objects derived from this type (such as pointers to, references to,
arrays of class-name, and so on):

455

456

Class name

class X { ... } i
X x, &xr, *xptr, xarray[lOli
1* four objects: type X, reference to X, pointer to X and array of
X*I

struct Y { ••• } i
Y y, &yr, *yptr, yarray[lOli
II C would have
II struct Y y, *yptr, yarray[lOli

union z { ... } i
Z z, &zr, *zptr, zarray[lOli
II C would have
II union Z z, *zptr, zarray[lOli

Note the difference between C and C++ structure and union dec­
larations: The keywords struct and union are essential in C, but in
C++ they are needed only when the class names, Y and Z, are
hidden (see the following section).

scope The scope of a class name is local, with some tricks peculiar to
classes. Class name scope starts at the point of declaration and
ends with the enclosing block. A class name hides any class,
object, enumerator, or function with the same name in the enclos­
ing scope. If a class name is declared in a scope containing the
declaration of an object, function, or enumerator of the same
name, the class can only be referred to using the elaborated type
specifier. This means that the class key, class, struct, or union must
be used with the class name. For example,

struct 8 { ... }i

int 8(struct 8 *8ptr) i

void func(void)
{

8 ti

struct 8 Si

8(&s) i

II ILLEGAL declaration: no class key
II and function 8 in scope
II OK: elaborated with class key
II OK: this is a function call

C++ also allows an incomplete class declaration:

class Xi II no members, yet!

Incomplete declarations permit certain references to class name X
(usually references to pointers to class objects) before the class has

Turbo C++ User's Guide

Class objects

Class member list

Member

been fully defined (see "Structure member declarations," page
410). Of course, you must make a complete class declaration with
members before you can' define and use class objects.

Class objects can be assigned (unless copying has been restricted),
passed as arguments to functions, returned by functions (with
some exceptions), and so on. Other operations on class objects and
members can be user-defined in many ways, including member
and friend functions, and the redefinition of standard functions
and operators when used with objects of a certain class. Redefined
functions and operators are said to be overloaded. Operators and
functions that are restricted to objects of a certain class (or related
group of classes) are called member functions for that class. C++
offers a mechanism whereby the same function or operator name
can be called to perform different tasks, depending on the type or
number of arguments or operands.

The optional member;..list is a sequence of data declarations (of any
type, including enumerations, bit fields arid other classes) and
function declarations and definitions,'all with optional storage
class specifiers and access modifiers. The objects thus defined are
called class members. The storage class specifiers auto, extern, and
register are not allowed. Members can be declared with the static
storage class specifiers.

functions A function declared without the friend specifier is known as a
member function of the class. Functions declared with the friend
modifier are called friend functions.

The keyword this

Chapter 73, C++ specifics

The same name can be used to denote more than one function,
provided that they differ in argument type or number of
arguments.

Nonstatic member functions operate on the class type object with
which they are called. For example, if x is an object of class X and
fO is a member function of X, the function call x. f () operates on x.

457

Inline functions

458

Similarly, if xptr is a pointer to an X object, the function call
xptr->f () operates on *xptr. But how does fO know which instance
of X it is operating on? C++ provides f with a pointer to x called
this. this is passed as a hidden argument in all calls to nonstatic
member functions.

The keyword this is a local variable available in the body of any
nonstatic member function. this does not need to be declared and
is rarely referred to explicitly in a function definition. However, it
is used implicitly within the function for member references. If
x.f(y) is called, for example; where y is a member of X, this is set to
&x and y is set to this->y, which is equivalent to x.y.

You can declare a member function within its class and define it
elsewhere. Alternatively, you can both declare and define a
member function within its class, in which case it is called an
in line function.

Turbo C++ can sometimes reduce the normal function call
overhead by substituting the function call directly with the
compiled code of the. function body. This process, called an in line
expansion of the function body, does not affect the scope of the
function name or its arguments~ Inline expansion is not always
'possible or feasible. The inline specifier is a request (or hint) to the
cOlTlpiler that you would welcome an inlil'le expansion. As v/ith
the register storage class specifier, the compiler mayor may not
take the hint!

Explicit and implicit inline requests are best reserved for small,
frequently used functions, such as the operator functions that im­
plement overloaded operators. For example, the following class
declaration:

int i;

class X {
public:

II global int

char* func(void) { return i;} II inline by default
char* i;

};

is equivalent to:

inline char* X::func(void) { return i; }

Turbo C++ User's Guide

Static members

Chapter 73, C++ specifics

func() is defined outside the class with an explicit inline specifier.
The i returned by funcO is the char* i of class X (see "Member
scope," starting on page 460).

The storage class specifier static can be used in class declarations
of data and function members. Such members are called static
members and have distinct properties from nonstatic members.
With nonstatic members, a distinct copy "exists" for each object in
its class; with static members, only one copy exists, and it can be
accessed without reference to any particular object in its class. If x
is a static member of class X, it can be referenced as X::x (even if
objects of class X haven't been created yet). It is still possible to
access x using the normal member access operators. For example,
y.x and yptr->x, where y is an object of class X and yptr is a pointer
to an object of class X, although the expressions y and yptr are not
evaluated. In particular, a static member function can be called
with or without the special member function syntax:

class X {
int rnernbecint;

public:
static void func(int i, X* ptr);

};

void g (void) ;
{

X obj;
func(l, &obj);

X::func(l, &obj);

/1 error unless there is a global func()
II defined elsewhere

II calls the static func() in X
II OK for static functions only

obj.func(l, &obj); II so does this (OK for static and
II nonstatic functions)

Since a static member function can be called with no particular
object in mind, it has no this pointer. A consequence of this is that
a static member function cannot access nonstatic members
without explicitly specifying an object with. or ->. For example,
with the declarations of the previous example, funcO might be
defined as follows:

void X::func(int i, X* ptr)
{

459

Member scope

460

ptr->member_int = ii

II which object does member_int
II refer to? Error
II OK: now we know!

Apart from inline functions, static member functions of global
classes have external linkage. Static member functions cannot be
virtual functions. It is illegal to have a static and nonstatic
member function with the same name and argument types.

The declaration of a ,static data member in its class declaration is
not a definition, so a definition must be provided elsewhere to
allocate storage and provide initialization.

Static members of a class declared local to some function have no
linkage and cannot be initialized. Static members of a global class
can be initialized like ordinary global objects, but only in file
scope. Static members obey the usual class member access rules,
except they can be initialized.

class X {

static int Xi

}i

int X::x = 1i

The main use for static members is to keep track of data common
to all objects of a class, such as the number of objects created, or
the last-used resource from a pool shared by all such objects.
Static members are also used to

• reduce the number of visible global names

• make obvious which static objects logically belong to which
class

• permit access control to their names

The expression X::funcO in the example on page 458 uses the class
name X with the scope access modifier to signify that funcO,
although defined "outside" the class, is indeed a member function
of X, and it exists within the scope of X. The influence of X::
extends into the body of the definition. This explains why the i
returned by funcO refers to X::i, the char* i of X, rather than the
global int i. Without the X:: modifier, the function funcO would

Turbo C++ User's Guide

represent an ordinary non-class function, returning the global int
i.

All member functions, then, are in the scope of their class, even if
defined outside the class.

Data members of class X can be referenced using the selection op­
erators . and -> (as with C structures). Member functions can also
be called using the selection operators (see also "The keyword
this," page 457). For example,

class X {

public:
int i;

};

char name[20];
X *ptr1;
X *ptr2;
void Xfunc(char*data, X* left, X* right); II define elsewhere

void f (void) ;
{

X xl, x2, *xptr=&x1;
xl. i = 0;
x2.i = x1. i;
xptr->i = 1;
x1.Xfunc ("stan", &x2, xptr);

If m is a member or base member of class X, the expression X::m is
called a qualified name; it has the same type as m, and it is an lvalue
only if m is an lvalue. A key point is that even if the class name X
is hidden by a non-type name, the qualified name X::m will access
the correct class member, m.

Class members cannot be added to a class by another section of
your program. The class X cannot contain objects of class X, but
can contain pointers or references to objects of class X (note the
similarity with C's structure and union types).

Nested types In C++ 2.1, even tag or typedef names declared inside a class
lexically belong to the scope of that class. Such names can in
general be accessed only using the xxx::yyynotation, except when
in the scope of the appropriate class.

Chapter 13, C++ specifics

A class declared within another class is called a nested class. Its
name is local to the enclosing class; the nested class is in the scope
of the enclosing class. This is purely lexical nesting. The nested

461

462

class has no additional privileges in accessing members of the
enclosing Class (and vice versa).

.. Classes can be nested in this way to an arbitrary level. For
example:

Member access
control

struct outer

typedef int ti II 'outer::t' is a typedef name

struct inner II'outer: : inner' is a class

static int Xi

}i

}i

static int Xi
int f () i

int outer: :Xi

intouter: : f ()
{

Iidefine static data member

t Xi II 't' visible directly here

return Xi

int outer::inner::xi Iidefine static data member

outer::t Xi II have to use 'outer::t' here

Vvith C++ 2.0, any tags or typedei names declared inside a class
actually belong to the global (file) scope. For example:

struct foo

enum bar { X}i II 2.0 rules: 'bar' belongs to file scope
II 2.1 rules: 'bar' belongs to 'foo' scope

}i

bar Xi

The preceding fragment compiles without errors. But, because the
code is illegal under the 2.1 rules, a warning is issued as follows:

Warning: Use qualified name to access nested type 'foo::bar'

Members ·of a class acquire access attributes either by default (de­
pending on class key and declaration placement) or by the use of
one of the three access specifiers: public, private, and protected.
The significance of these attributes is as follows:

Turbo C++ User's Guide

Friend function declarations
are not affected by access

specifiers (see "friends of
classes," page 466).

Chapter 73, C++ specifics

public The member can be used by any function.

private The member can be used only by member functions
and friends of the class in which it is declared.

protected Same as for private, but additionally, the member can
be used by member functions and friends of classes
derived from the declared class, but only in objects of
the derived type. (Derived classes are explained in the
next section.)

Members of a class are private by default, so you need explicit
public or protected access specifiers to override the default.

Members of a struct are public by default, but you can override
this with the private or protected access specifier.

Members of a union are public by default; this cannot be changed.
All three access specifiers are illegal with union ~embers.

A default or overriding access modifier remains effective for all
subsequent member declarations until a different access modifier
is encountered. For example,

class X {
int i;
char ch;

public:
int j;
int k;

protected:
int 1;

};

st~uct Y {
int i;

private:
int j;

public:
int k;

} ;

union z {

II x::i is private by default
Iisoisx::ch

II next two are public

II X::l is protected

II Y::i is public by default

II Y::j is private

II Y::k is public

int i; II public by default; no other choice
double d;

} ;

The access specifiers can be listed and grouped in any convenient
sequence. You can save a little typing effort by declaring all the
private members together, and so on.

463

Base and derived
class access When you declare a derived class D, you list the base classes 81,

82, ... in a comma-delimited base-list:

Since a base class can itself
be a derived class, the

access attribute question is
recursive: You backtrack until

you reach the basest of the
base classes, those that do

not inherit.

Unions cannot have base
classes, and unions cannot

be used as base classes.

464

class-key D : base-list { <member-list> }

D inherits all the members of these base classes. (Redefined base
class members are inherited and can be accessed using scope
overrides, if needed.) D can use only the public and protected
members of its base classes. But, what will be the access attributes
of the inherited members as viewed by D? D may want to use a
public member from a base class, but make it private as far as
outside functions are concerned. The solution is to use access
specifiers in the base-list.

When declaring D, you can use the access specifier public,
protected, or private in front o~ the classes in the base-list:

class D : public Bl, private B2, ... {

\

These modifiers do not alter the access attributes of base members
as viewed by the base class, though they can alter the access
attributes of base members as viewed by the derived class.

The default is private if D is a class declaration, and public if D is
a struct declaration.

The derived class inherits access attributes from a base class as
follows:

public base class: public members of the base class are public
members of the derived class. Protected
members of the base class are protected
members of the derived class. Private
members of the base class remain private to
the base class.

protected base class: Both public and protec~ed members of the
base class are protected members of the
derived class. Private members of the base
class remain private to the base class.

private base class: Both public and protected members of the
base class are private members of the

Turbo C++ User's Guide

Chapter 73, c++ specifics·

derived class. Private members of the base
class remain private to the base class.

In both cases, note carefully that private members of a base class
are, and remain, inaccessible to member functions of the derived
class unless friend declarations are explicitly declared in the base
class granting access. For example,

clasS X : A { II default for class is private A

1* class X is derived from class A*I

class Y : B, public C { II override default for C

1* class Y is derived (multiple inheritance) from Band C
B defaults to private B *1

struct S : D { II default forstruct is public D
1* struct S is derived from D *1

struct T private D, E { II override default for D
II E is public by default

1* struct T is derived (multiple inheritance) from D and E
E defaults to public E *1

The effect of access specifiers in the base list can be adjusted by
using a qualified-name in the public or protected declarations in the
derived class. For example,

class B {
int aj

public:
int b, C;
int Bfunc(void)i

}i

class X : private B
int dj

pUblic:

}i

B: :Ci

int ei

int Xfunc(void)i

int Efunc (X& x) i

II private by default

II a, b, c, Bfunc are now private in X
II private by default, NOTE: a is not
II accessible in X

II c was private, now is public

II external to B and X

465

The function EfuncO can use only the public names c, e, and
Xfunc().

The functionXfunc() is in X, which is derived from private B, so it
has access to

• The "adjusted-to-public" c

• The "private-to-X" members from B: band Bfunc()

• X's own private and public members: d, e, and Xfunc()

However, XfuncO cannot access the "private-to-B" member, a.

virtual base classes

With multiple inheritance, a base class can't be specified more
than once in a derived class:

class B { ... } i

class D : B, B { .. ;}i II Illegal

However, a ba~e class can be indirectly passed to the derived class
more than once:

class X : public B { ... }
class Y : public B { .. , }

class Z : public X, public Y { ... } II OK

In this case, each object of class Z will have two sub-objects of
class B. If this causes problems, the keyword virtual can be added
to a base class specifier. For example,

class X : virtual public B { ... }
class Y : virtual public B { ... }
class Z : public X, public Y { .. .

B is now a virtual base class, and class Z has only one sub-object
of class B.

friends of classes

466

A friend F of a class X is a function or class that, although not a
member function of X, has full access rights to the private and
protected members of X. In all other respects, F is a normal
function with respect to scope, declarations, and definitions.

Turbo C++ User's Guide

Chapter 73, C++ specifics

Since F is not a member of X, it is not in the scope of X and it
cannot be called with the x.F and xptr->F selector operators
(where x is an X object, and xptr is a pointer to an X object).

If the specifier friend is used with a function declaration or defini­
tion within the class X, it becomes a friend of X.

Friend functions defined within a class obey the same inline rules
as member functions (see "Inline functions," page 458). Friend
functions are not affected by their position within the class or by
any access specifiers. For example,

class X {
int ii II private to X
friend void friend_func(X*, int} i

1* friend_func is not private, even though it's declared in the
private section *1

public:
void mernber_func(int} i

}i

1* definitionsi note both functions access private int i *1
void friend_func(X* xptr, int a} { xptr->i = ai }

void X::member_func(int a} { i = ai }

X xobji

1* note difference in function calls *1
friend_func(&xobj, 6} i

xobj.member_func(6}i

You can make all the functions of class V into friends of class X
with a single declaration:

class Yi

class X {
friend Yi

int ii
void member_funcX(}i

}i

class Yi {

}i

void friend_Xl (X&) i

void friend_X2(X*}i

II incomplete declaration

II complete-the declaration

The functions declared in V are friends of X, although they have
no friend specifiers. They can access the private members of X,
such as i and member_funcX.

467

It is also possible for an individual member function of class X to
be a friend of class Y:

class X {

void mernber_funcX()i

class Y {
int ii
friend void X: :member_funcX()i

}i

Class friendship is not transitive: X friend of Y and Y friend of Z
does not imply X friend of Z. However, friendship is inherited.

Constructors and destructors

468

There are several special member functions that determine how
the objects of a class are created, initialized, copied, and de­
stroyeq.. Constructors and destructors are the most important of
these. They have many of the characteristics of normal member
functions-you declare and define them within the class, or
declare them within the class and define them outside-but they
have some unique features.

1. They do not have return value declarations (not even void).

2. They cannot be inherited, though a derived class can call the
base class's constructors and destructors.

3. Constructors, like most C++ functions, can have default
arguments or use member initialization lists.

4. Destructors can be virtual, but constructors cannot. (See
"virtual destructors" on page 478.)

5. You can't take their addresses.

int main (void)
{

void *ptr = base::basei / / illegal

6. Constructors and destructors can be generated by 'Turbo C++
if they haven't been explicitly defined; they are also invoked

Turbo C++ User's Guide

Constructors

Chapter 13, C++ specifics

on many occasions without explicit calls in your program. Any
constructor or destructor generated by the compiler will be
public.

7. You cannot call constructors the way you call a normal
function. Destructors can be called if you use their fully
qualified name.

{

X *Pi

p->X: :-X() i

x: :X() i

II legal call of destructor
II illegal call of constructor

8. The compiler automatically calls constructors and destructors
when defining and destroying objects.

9. Constructors and destructors can make implicit calls to
operator new and operator delete if allocation is required for
an object.

10. An object with a constructor or destructor cannot be used as a
member of a union.

If a class X has one or more constructors, one of them is invoked
each time you define an object x of class X. The constructor
creates x and initializes it. Destructors reverse the process by
destroying the class objects created by constructors.

Constructors are also invoked when local or temporary objects of
a class are created; destructors are invoked when these objects go
out of scope.

Constructors are distinguished from all other member functions
by having the same name as the class they belong to. When an
object of that class is created -or is being copied, the appropriate
constructor is called implicitly.

Constructors for global variables are called before the main()
function is called. When the #pragma startup directive is used to
install a function prior to the main() function; global variable
constructors are called prior to the startup functions.

469

470

Constructor

Local objects are created as the scope of the variable becomes
active. A constructor is also invoked when a temporary object of
the class is created.

class X

public:
X()i II class X constructor

}i

A class X constructor cannot take X as an argument:

class X

public:
X(X) i I I illegal

The parameters to the constructor can be of any type except that
of the class of which it is a member. The constructor can accept a
reference to its own class as a parameter; when it does so, it is
called the copy constructor. A constructor that accepts no parame­
ters is called the default constructor. We discuss the default
constructor next; the description of the copy constructor starts on
page 471.

defaults The default constructor for class X is one that takes no argu­
ments; it usually has the form x: :X(). If no user-defined construc­
tors exist for a class, Turbo C++ generates a default constructor.
On a declaration such as X x, the default constructor creates the
object x.

Important! Like all functions, constructors can have default arguments. For
example, the constructor

x: :X(int , int = 0)

can take one or two arguments. When presented with one argu­
ment, the missing second argument is assumed to be a zero int.
Similarly, the constructor

X: :X(int = 5, int = 6)

could take two, one, or no arguments, with appropriate defaults.
However, the default constructor X: : X () takes no arguments and
must not be confused with, say, x: : X (int = 0), which can be called \

Turbo C++ User's Guide

The copy
constructor

Chapter 73, C++ specifics

with no arguments as a default constructor, or can take an
argument.

Take care to avoid ambiguity in calling constructors. In: the
following case, the two default constructors are ambiguous:

class X

pUblic:
X()i
X(int i =" O)i

}i

int main ()
{

X one(lO)i II OKi uses X: :X(int)
X twoi II illegali ambiguous whether to call X: :X() or

I I X: :X(int = 0)
return 0 i

A copy constructor for class X is one that can be called with a
single argument of type X as follows:

x: :X(const X&)
or

X::X(const X&,int = 0)

Default arguments are also allowed in a copy constructor. Copy
constructors are invoked when initializing a class object, typically
when you declare with initialization by another class object:

XXi

X x2 = xli
X x3 (xl) i

Turbo C++ generates a copy constructor for class X if one is
needed and no other constructor is defined in class X.

See also the discussion of member-by-member class assignment in
Section liThe assignment operator={)," on 484. The assignment
operator requires you to define the copy constructor.

471

472

Overloading
constructors

Order of calling
constructors

Constructors can be overloaded, allowing objects to be created,
depending on the values being used for initialization.

class X

int integer-part;
double double-part;

public:
X (int i) {integer-part = i; }
X(double d) { double-part = d; }

};

main()
{

X one (10) ; I I invokes X:: X(int) and sets integer-part to 10
X one(3.14); II invokes X::X(double) setting double-part

return 0;

In the case where a class has one or more base classes, the base
class constructors are invoked before the derived class con­
structor. The base class constructors are called in the order they
are declared.

For example, in this setup,

class Y { ... }
class X : public Y { ... }
X one;

the constructors are called in this order:

Y(); II base class constructor
X(); II derived class constructor

For the case of multiple base classes:

class X : public Y, public Z
X one;

the constructors are called in the order of declaration:

Turbo C++ User's Guide

Chapter 73, C++ specifics

Y(); II base class constructors come first
Z();
X() ;

Constructors for virtual base classes are invoked before any non­
virtual base classes. If the hierarchy conta~ns multiple virtual base
classes, the virtual base class constructors are invoked in the order
in which they were declared. Any non-virtual bases are then con­
structed before the derived class constructor is called.

If a virtual class is derived from a non-virtual base, that non­
virtual base will be first so that the virtual base class may be
properly constructed. The code

class X : public Y, virtual public Z
X one;

produces this order:

Z(); II virtual base class initial1tation
Y(); II non-virtual base class
X(); II derived class

Or for a more complicated example:

class base;
class base2;
class levell : public base2, virtual public base;
class leve12 : public base2, virtual public base;
class toplevel : public levell, virtual public leve12;
toplevel view;

The construction order of view would be as follows:

base();

base2();

leve12() ;
base2();
levell () ;
toplevel();

II virtual base class highest in hierarchy
II base is only constructed once
II non-virtual base of virtual base leve12
II must be called to construct leve12
II virtual base class
II non-virtual base of levell
II other non-virtual base

In the event that a class hierarchy contains multiple instances of a
virtual base class, that base class is only constructed once. If, how­
ever, there exist both virtual and non-virtual instances of the base
class, the class constructor is invoked a single time for all virtual
instances and then once for each non-virtual occurrence of the
base class.

473

Class initialization

474

Constructors for elements of an array are called in increasing
order of the subscript.

An object of a class with only public members and no constructors
or base classes (typically a structure) can be initialized with an ini­
tializer list. If a class has a constructor, its objects must be either
initialized or have a default constructor. The latter is used for
objects not explicitly initialized.

Objects of classes with constructors can be initialized with an ex-
_ pression list in parentheses. This list is used as an argument list to

the constructor. An alternative is to use an equal sign followed by
a single value. The single value can be of the type of the first
argument accepted by a constructor of that class, in which case
either there are no additional arguments, or the remaining
arguments have default values. It could also be an object of that
class type. In the former case, the matching constructor is called to
create the object. lnthe latter case, the copy constructor is called
to initialize the object.

class X
{

int ii
public:

x () ; / / function bodies ornitted for clarity

}i

X(int x) i

X(const X&)i

main()
{

X onei
X two(l) i

X three = 1i

II default constructor invoked
II constructor X: :X(int) is used
II calls X::X(int)

X four = onei II invokes X::X(const X&) for copy
X five(two)i II calls X: :X(const X&)

The constructor can assign values to its members in two ways. It
can accept the values as parameters and make assignments to the
member variables within the function body of the constructor:

class X

int a, bi
public:

Turbo C++ . User's Guide

X(int i, int j) { a = i; b = j }
};

An initializer list can be used prior to the function body:

class X

int a, b, &c; II Note the reference variable.
pUblic:

X(int i, int j) : a(i), b(j), cIa) {}
};

.. Important! The initializer list is the only place to initialize a
reference variable.

Base class constructors must
be declared as either public

or protected to be called
from a derived class.

Chapter 73, C++ specifics

In both cases, an initialization of X x (1, 2) assigns a value of 1 to
x::a and 2 to x::b. The second method, the initializer list, provides
a mechanism for passing values along to base class constructors.

class basel
{

int x;
public:

basel(int i) { x = i; }
};

class base2

int x;
pUblic:

base2 (int i) : xli) {}
};

class top: public basel, public base2
(

int a, b;
public:

top(int i, int j) : basel(i*5), base2(j+i), ali) {b = j;}

};

With this class hierarchy, a declaration of top one (1, 2) would
result in the initialization of base1 with the value 5 and base2
with the value 3. The methods of initialization can be intermixed.

As described previously, the base classes are initialized in
declaration order. Then the members are initialized, also in
declaration order, independent of the initialization list. "

class X

int a, b;

475

Destructors

476

public:
X(int i, j) : a(i), b(a+j) {}

} i

With this class, a declaration of X .x (1, 1) results in an assignment
of 1 to x::a and 2 to x::b.

Base class constructors are called prior to the construction of any
of the derived classes members. The values of the derived class
can't be changed and then have an affect on the base class's
creation.

class base

int Xi

public:
base(int i) : xli) {}

}i

class derived: base

int ai

public:
derived(int i) a(i*10), base(a) { } If, Watch out! Base will be

II passed an uninitialized a
}i

With this class setup, a call of derived d(l) will not result in a
value of 10 for the base class member x. The value passed to the
base class constructor will be undefined.

When you want an initializer list in a non-inline constructor, don't
.. place the list in the class definition. Instead, put it at the point at

which the function is defined.

derived::derived(int i) : ali)
{

The destructor for a class is called to free members of an object
before the object is itself destroyed. The destructor is a member
function whose name is that of the class preceded by a tilde (-). A
destructor cannot accept any parameters, nor will it have a return
type or value declared.

Turbo C++ User's Guide

When destructors

class X

public:
-X()i II destructor for class X

}i

If a destructor is not explicitly defined for a class, the compiler
will generate one.

are invoked A destructor is called implicitly when a variable goes out of its
declared scope. Destructors for local variables are called when the
block they are declared in is no longer active. In the case of global
variables, destructors are called as part of the exit procedure after
the main function.

atexit(), #pragma
exit, and

destructors

exit() and
destructors

Chapter 73, C++ specifics

When pointers to objects go out of scope, a destructor is not impli­
citly called. This means that the delete operator must be called to
destroy such an object.

Destructors are called in the exact opposite order from which
their corresponding constructors were called (see page 472).

All global objects are active until the code in all exit procedures
has executed. Local variables, including those declared in the
mainO function, are destroyed as they go out of scope. The order
of execution at the end of a Turbo C++ program in these regards
is as follows:

• atexitO functions are executed in the order they were inserted.

• #pragma exit functions are executed in the order of their
priority codes.

• Destructors for global variables are called.

When you call exitO.from within a program, destructors are not
called for any local variables in the current scope. Global variables
are destroyed in their normal order.

477

abort() and
destructors

virtual destructors

478

If you call abort() anywhere in a program, no destructors are
called, not even for variables with a global scope.

A destructor can also be invoked explicitly in one of two ways:
indirectly through a call to delete, or directly by using the de­
structor's fully qualified name. You can use delete to destroy
objects that have been allocated using new. Explicit calls to the de­
structor are only necessary for objects allocated a specific address
through calls to new.

class X {

~X() ;

};

void* operator new(size_t size, void *ptr)
{

return ptr;

char buffer[sizeof(X));

main()
{

X* pointer = new X;
IX* exact-pointer;

exact-pointer = new(&buffer) X; II pointer initialized at
II address of buffer

delete pointer;
exact-p.ointer->X: : ~X () ;

II delete used to destroy pointer
II direct call used to deallocate

A destructor can be declared as virtual. This allows a pointer to a
base class object to call the correct destructor in the event that the
pointer actually refers to a derived class object. The destructor of a
class derived from a class with a virtual destructor is itself virtual.

class color

public:
virtual ~color(); II virtual destructor for color

Turbo C++ User's Guide

}i

class red : public color
{

public:
-red() i

}i

II destructor for red is also virtual

class brightred: public red
{

public:
-brightred() i

} ;

II brightred's destructor also virtual

The previously listed classes and the following declarations

color *palette[3];

palette[O] = new red;
palette[l] = new brightred;
palette[2] = new colori

will produce these results

delete palette[O];
II The destructor for red is called followed by the
II destructor for color.

delete palette[l]i
II The destructor for brightred is called, followed by -red
II and -color.

delete palette[2];
II The destrudtor for color is invoked.

However, in the event that no destructors were declared as
virtual, delete palette[O], delete palette[1], and delete palette[2]
would all call only the destructor for class color. This would
incorrectly destruct the first two elements, which were actually of
type red and brightred.

Operator overloading

Chapter 73, C++ specifics

c++ lets you redefine the action of most operators, so that they
perform specified functions when used with objects of a particular
class. As with overloaded C++ functions in general, the compiler
distinguishes the different functions by noting the context of the
call: the number and types of the arguments or operands.

479/

This class was invented for
illustrative purposes only. /t
isn't the same as the class

480

complex in the run-time
library.

All the operators on page 423 can be overloaded except for

.. * ::?:

The preprocessing symbols # and ## also cannot be overloaded.

The keyword operator followed by the operator symbol is called
the operator function name; it is used like a normal function name
when defining the new (overloaded) action of the operator.

A function operator called with arguments behaves like an
operator working on its operands in an expression. The operator
function can't alter the number of arguments or the precedence
and associativity rules (Table 12.10 on page 420) applying to
normal operator use. Consider the class complex:

class complex {
double real, imag;

public:

complex() { real = imag = 0; }
complex(double r, double i = 0)

real = r; imag = i;

II private by default

II inline constructor
II another one

We could easily devise a function for adding complex numbers,
say,

complex AddComplex(complex cl, complex c2);

but it would be more natural to be able to write:

complex cl(O,l), c2(l,O), c3
c3 = c1 + c2;

than

c3 = AddComplex(cl, c2);

The operator + is easily overloaded by including the following
declaration in the class complex:

friend complex operator + (complex cl, complex c2);

, and defining it (possibly inline) as:

complex operator +(complex cl, complex c2)
{

return complex(cl.real + c2.real, cl.imag + c2.imag);

Turbo C++ User's Guide

· Overloaded
operators and

inheritance

Operators new
and delete

The type size-, is defined in
std/ib.h

Chapter 73, C++ specifics

Operator functions can be called directly, although they are
usually invoked indirectly by the use of the overload operator:

c3 = cl.operator + (c2) i II same as c3 = cl + c2

Apart from new and delete, which have, their own rules (see the
next sections), an operator function must either be a nonstatic
member function or have at least one argument of class type. The
operator functions =, (), [] and -> must be nonstatic member
functions.

With the exception of the assignment function operator =0 (see
"The assignment operator=O" on page 484), all overloaded
operator functions for class X are inherited by classes derived
from X, with the standard resolution rules for/overloaded
functions. If X is a base class for V, an overloaded operator
function for X may possibly be further overloaded for V.

The operators new and delete can be overloaded to provide alter­
native free storage (heap) memory-management routines. A user­
defined operator new must return a void* and must have a size_t
as its first argument. A user-defined operator delete must have a
void return type and void* as its first argument; a second
argument of type size_t is optional. For example,

#include <stdlib.h>

class X {

pUblic:

}i

void* operator new(size_t size) { return newalloc(size)i}
void operator delete(void* p) { newfree(p) i }

X() { 1* initialize here *1 }
X(char ch) { 1* and here *1 }

-X() { 1* clean up here *1 }

The size argument gives the size of the object being created, and
newalloc() and newfree() are user-supplied memory allocation
and deallocation functions. Constructor and destructor calls for
objects of class X (or objects of classes derived from X that do not
have their own overloaded operators new and delete) will invoke

481

482

Unary operators

the matching user-defined X::operator newO and X::operator
deleteO, respectively.

The X::operator new and X::operator delete operator functions
are static members of X whether explicitly declared as static or
not, so they cannot be virtual functions.

The standard, predefined (global) new and delete operators can
still be used within the scope of X, either explicitly with the global
scope operator (::operator new and. ::operator delete), or
implicitly when creating and destroying non-X or non-X-derived
class objects. For example, you could use the standard new and
delete when defining the overloaded versions:

void* X::operator new(size_t s)
{

void* ptr = new char[s]; II standard new called

return ptr;

void X::operator delete(void* ptr)
{

delete (void*) ptr; II standard delete called

The reason for the size argument is that classes derived from X
inherit the X::operator new. The size of a derived class object may
well differ from that of the base class.

You can overload a prefix or postfix unary operator by declaring a
nonstatic member function taking no arguments, or by declaring a
non-member function taking one argument. If @ represents a
unary operator, @x and x@ can both be interpreted as either
x.operator@O or operator@(x), depending on the declarations
made. If both forms have been declared, standard argument
matching is applied to resolve any ambiguity.

~ Under c++ 2.0, an overloaded operator++ or -- is used for both
prefix and postfix uses of the operator. For example:

struct foo
{

operator++() ;
operator--() ;

Turbo C++ User's Guide

Binary operators

Chapter 73, C++ specifics

Xi

void func ()
{

Xtti II calls x.operatort+()
+tXi II calls x.operatortt()

X--i II calls x.operator--()
--Xi II calls x.operator--()

With C++ 2.1, when an operator++ or operator-- is declared as a
member function with no parameters, or as a nonmember
function with one parameter, it only overloads the prefix
operator++ or operator--. You can only overload a postfix
operator++ or operator-- by defining it as a member functi~n
taking an int parameter or as a nonmember function taking one
class and one int parameter. For example add the following lines
to the previous code:

operatortt (int) i
operator--(int)i

When only the prefix version of an operator++ or operator-- is
overloaded and the operator is applied to a class object as a
postfix operator, the compiler issues a warning. Then it calls the
prefix operator, allowing 2.0 code to compile. The preceding
example results in the following warnings:

Warning: Overloaded prefix 'operator tt' used as a postfix operator
in function func() \

Warning: Overloaded prefix 'operator --' used as a postfix operator
in function func () .

You can overload a binary operator by declaring a nonstatic
member function taking one argument, or by declaring a non­
member function (usually friend) taking two arguments. If @

represents a binary operator, x@y can be interpreted as either
x.operator@(y) or operator@(x,y), depending on the declarations
made. If both forms have been declared, standard argument
matching is applied to resolve any ambiguity.

483

The assignment
operator=()

The function call

The assignment operator=O can be overloaded by declaring a
nonstatic member function. For example,

class String {

String& operator = (String& str);

String (String&);
-String();

This code, with suitable definitions of String::operator =(), allows
string assignments strl = str2, just like other languages. Unlike the
other operator: functions, the assignment operator function cannot
be inherited by derived classes. If, for any class X, there is no
user-defined operator =~ the operator = is defined by default as a
member-by-member assignment of the members of class X:

X& X::operator = (const X& source)
{

II memberwise assignment

operator() The function call

484

The subscript
operator

primary-expression (<expression-list>)

is considered a binary operator with operands primary-expression
and expression-list (possibly empty). The corresponding operator
function is operatorO. This function can be user-defined for a
class X (and any derived classes) only by means of a nonstatic
member function. A call x(argl, arg2), where x is an object of class
X, is interpreted as x.operator()(argl,arg2).

Similarly, the subscripting operation

primary-expression [expression]

is considered a binary operator with operands primary-expression
and expression. The corresponding operator function is operator[];
this can be user-defined for a class X (and any derived classes)

Turbo C++ User's Guide

The class member

only by means of a nonstatic member function. The expression
x[y], where x is an object of class X, is interpreted as x.operator[]
(y).

access operator Class member access using

virtual functions

virtual functions can only be
member functions.

Chapter 13, C++ specifics

primary-expression - > expression

is considered a unary operator. The function operator-> must be a
nonstatic member function. The expression x->m, where x is a
class X object, is interpreted as (x.operator->O)->m, so that the
function operator->O must either return a pointer to a class object
or return an object of a class for which operator-> is defined.

Virtual functions allow derived classes to provide different
versions of a base class function. You can use the virtual keyword
to declare a virtual function in a base class, then redefine it in any
derived class, even if the number and type of arguments are the
same. The redefined function is said to override the base class
function. You can also declare the functions int Base:: Fun (int)
and int Derived: :Fun(int) even when they are not virtual. The
base class version is available to derived class objects via scope
override. If they are virtual, only the function associated with the
actual type of the object is available.

With virtual functions, you cannot change just the function type. It
is illegal, therefore, to redefine a virtual function so that it differs
only in the return type. If two functions with the saine name have
different arguments, C++ considers them different, and the virtual
function mechanism is ignored.

If a base class B contains a virtual function vf(), and class 0,
derived from B, contains a function vfO of the same type, then if
vfO is called for an object d or O,the call made is D: :vf (), even if
t~e access is via a pointer or reference to B. For example,

struct B {
virtual void vfl();
virtual voidvf2();
virtual void vf3();
void f () ;

485

486

};

class D : public B {

};

virtual void vfl(); II virtual specifier is legal but redundant
void vf2(int); II not virtual, since it's using a different

II arg list
char vf3(); II Illegal: return-type-only change!
void f () ;

void extf ()
{

D d;

B* bp = &d;
bp->vf1 ();
bp->vf2();
bp->f() ;

II declare a D object
II standard conversion from D* to B*
I I calls D: :vf1
II call B::vf2 since D's vf2 has different args
II calls B::f (not virtual)

The overriding function vf1() in D is automatically virtual. The
virtual specifier can be used with an overriding function
declaration in the derived class, but its use is redundant.

The interpretation of a virtual function call depends on the type of
the object for which it is called; with non-virtual function calls, the
interpretation depends only on the type of the pointer or
reference denoting the object for which it is called.

.. virtual functions must be members of some class, but they cannot
be static members. A virtual function can be a friend of another
class.

A virtual function in a base class, like all member functions of a
base class, must be defined or, if not defined, declared pure:

class B {
virtual void vf(int) = 0; II = 0 means 'pure'

In a class derived from such a base class, each pure function must
be defined or redeclared as pure (see the section, "Abstract
classes").

If a virtual function is defined in the base it need not necessarily
be redefined in the derived class. Calls will simply call the base
function.

virtual functions exact a price for their versatility: Each object in
the derived class needs to carry a pointer to a table of functions in
,order to select the correct one at run time (late binding).

Turbo C++ User's Guide

Abstract classes

Chapter 73, C++ specifics

An abstract class is a class with at least one pure virtual function. A
virtual function is specified as pure by setting it equal to zero.

An abstract class can be used only as a base class for other classes.
No objects of an abstract class can be created. An abstract class
cannot be used as an argument type or as a function return type.
However, you can declare pointers to an abstract class. References
to an abstract class are allowed, provided that a temporary object
is not needed in the initialization. For example,

class shape {
point center;

pUblic:

II abstract class

where() { return center; }
move(point p) { center = p; draw(); }
virtual void rotate(int) = 0; II pure virtual function
virtual void draw() = 0; II pure virtual function
virtual void hilite () '= 0; I I pure virtual function

shape x;

shape* sptr;
shape f();

int g(shape s);

II ERROR: attempted creation of an object of
II an abstract class
II pointer to abstract class is OK
II ERROR: abstract class cannot be a return
II type
II ERROR: abstract class cannot be a
Ilfunction argument type

shape& h(shape&); II reference to abstract class as return
II value or function argument is OK

Suppose that 0 is a derived class with the abstract class B as its
immediate base class. Then for each pure virtual function pvf() in
B, if 0 doesn't provide a definition for pvf(), pvfO becomes a pure
member function of 0, and 0 will also be an abstract class.

For example, using the class shape previously outlined,

class circle: public shape { II circl'e derived from
II abstract class

int radius;

public:
void rotate(int) { }

II private

II virtual function defined:
II no action to rotate a
I I circle

487

c++ scope

Class scope

Hiding

488

void draw () i II circle::draw must be
II defined somewhere

Member functions can be called from a constructor of an abstract
class, but calling a pure virtual function directly or indirectly from
such a constructor provokes a run-time error.

'The lexical scoping rules for C++, apart from class scope, follow
the general rules for C, with the proviso that C++, unlike C,
permits both data and function declarations to appear wherever a
statement may appear. 'The latter flexibility means that care is
needed when interpreting such phrases as "enclosing scope" and
"point of declaration."

'The name M of a member of a class X has class scope "local to X;"
it can only be used in the following situations:

• In member functions of X

• In expressions such as x.M, where x is an object of.X

• In expressions such as xptr->M; where xptr is a pointer to an
object of X

• In expressions such as X::M or D::M, where D is a derived Class
of X

• In forward references within the class of which it is a member.

Names of functions declared as friends of X are not members of X;
their names simply have enclosing scope.

A name can be hidden by an explicit declaration of the same name
in an enclosed block or in a class. A hidden class member is still
accessible using the scope modifier with a class name: X::M. A
hidden file scope (global) name can be referenced with the unary
operator ::; for example, ::g. A class name X can be hidden by the
name of an object, function, or enumerator declared within the
scope of X, regardless of the order in which the names are
declared. However, the hidden class name X can still be accessed

Turbo C++ User's Guide

c++ seoping rules

by prefixing X with the appropriate keyword: class, struct, or
union.

The point of declaration for a name x is immediately after its com­
plete declaration but before its initializer, if one exists.

summary The following rules apply to all names, including typedef names
and class names, provided that C++ allows such names in the
particular context discussed:

Chapter 73, C++ specifics

1. The name itself is tested for ambiguity. If no ambiguities are
detected within its scope, the access sequence is initiated.

2. If no access control errors occur, the tYpe of the object,
function, class, typedef, and so on, is tested.,

3. If the name is used outside any function and class, or is pre­
fixed by the unary scope access operator ::, and if the name is
not qualified by the binary :: operator or the member selection
operators. and ->, then the name must be a global object,
function, or enumerator.

4. If the name n appears in any of the forms X::n, x.n (where x is
an object of X or a reference to X), or ptr->n (where ptr is a .
pointer to X), then n is the name of a member of X or the mem­
,ber of a class from which X is derived.

5. Any name not covered so far that is used in a static member
function must be declared in the block in which it occurs or in
an enclosing block, or be a global name. The declaration of a
local name n hides declarations of n in enclosing blocks and
global declarations of n. Names in different scopes are not
overloaded.

6. Any name not covered so far that is used in a nonstatic mem­
ber function of class X must be declared in the block in which
it occurs or in an enclosing block, be a member of class X or a
base class of X, or be a global name. The declaration of a local
name n hides declarations of n in enclosing blocks, members of
the function's class, and global declarations of n. The declara­
tion of a member name hides declarations of the same name in
base classes.

7. The name of a function argument in a function definition is in
the scope of the outermost block of the function. The name of a
function argument in a non-defining function declaration has
no scope at all. The scope of a default argument is determined

489

Templates

For a discussion of templates
in the container class library

see the online
documentation file

CONTAIN. DOC.

490

Function
templates

by the point of declaration of its argument, but it can't access
local variables or nonstatic class members. Default arguments
are evaluated at each point of call.

8. A constructor initializer (see ctor-initializer in the class
declarator syntax, Table 12.3 on page 381) is evaluated in the
scope of the outermost block of its constructor, so it can refer
to the constructor's argument names.

Templates, also called generics or parameterized types, allow you to
construct a family of related functions or classes. In this section,
we'll introduce the basic concept then some specific points.

Syntax:

Temp late-declaration:
template < template-argument-list > declaration

template-argument-list:
template-argument
template-argument-list, template argument

template-argument:
type-argument
argument-declaration

type-argument:
class identifier

template-class-name:
template-name < template-arg-list >

template-arg-list:
template-arg
template-arg-list , template-arg

template-arg:
expression
type-name

Consider a function max(x,y) that returns the larger of its two
arguments. x and y can be of any type that has the ability to be
ordered. But, since C++ is a strongly typed language,· it expects

Turbo C++ User's Guide

Function temp/ate definition

Chapter 73, C++ specifics

,the types of the parameters x and y to be declared at compile time.
Without using templates, many overloaded versions of max() are
required, one for each data type to be supported, even though the
code for each version is essentially identical. Each version
compares the arguments and returns the larger. For example,

int max(int x, int y)
{

return (x > y) ? x : y;

long max(long x, long y)
{

return (x> y) ? x : y;

followed by other versions of max().

One way around this problem is to use a macro:

#define max(x/y) ((x> y) ? x : y)

However, using the #define circumvents the type-checking
mechanism that makes c++ such an improvement over C. In fact,
this use of macros is almost obsolete in C++. Clearly, the intent of
max(x,y) to compare compatible types. Unfortunately, using the
macro allows a comparison between an int and a struct, which are
incompatible.

Another problem with the macro approach is that substitution
will be performed where you don't want it to be:

class Faa

pUblic:

};

int max(int , int); II Results in syntax error;
II this gets expanded!!!

/ / ...

By using a template instead, you can define a pattern for a family
of related overloaded functions by letting the data type itself be a
parameter:

template <class T> T max(T x, T y)
{

return (x > y) ? x : y;
};

491

Overriding a template
function

492

Implicit and explicit
template functions

The data type is repre~ented by the template argument: <class T>.
When used in an application, the compiler generates the
appropriate function according to the data type actually used in
the call:

int ii
Myclass a, bi

int j = max(i,O) i II arguments are integers
Myclass m = max(a,b) i II arguments are type Myclass

Any data type (not just a class) can be used for <class T>. The
compiler takes care of calling the appropriate operator>O, so you
can use maxO with arguments of any type for which operator>O is
defined.

The previous example is called. a function template (or generic
function, if you like). A specific instantiation of a function template
is called a template function. Template function instantiation occurs
when you take the function address, or when you call the function
with defined (non-generic) data types. You can override the gen­
eration of a template function for a specific type with a non­
template function:

#include <string.h>

char *max(char *x t char *y)
{

return(strcmp(xty) >0) ?X:Yi

If you call the function with string arguments, it's executed in
place of the automatic template function. In this case, calling the
function avoided a meaningless comparison between two
pointers.

Only trivial argument conversions are performed with compiler­
generated template functions.

The argument type(s) of a template function must use all of the
template formal arguments. If it doesn't, there is no way of
deducing the actual values for the unused template arguments

, when the function is called.

When doing overload resolution (following the steps of looking
for an exact match), the compiler ignores template functions that
have been generated implicitly by the compiler.

template<class T> T max(T at T b)
{

Turbo C++ User's Guide

Explicit template function.

Class templates

Closs template definition

Chapter 73, C++ specifics

return (a > b) ? a b;

void f(int i, char c)

max (i, i);
max(c, C)i

max(i, c);
max(c, i)i

II calls max(int ,int)
II calls max (char, char)
II no match for max(int,char)
II no match forimax(char,int)

This code results in the following error messages.

Could not find a match for 'max(int,char), in function f(int,char}
. Could not find a match for 'max(char,int), in function f(int,char}

If the user explicitly declares a template function, this function, on
the other hand, will participate fully in overload resolution. For
example:

template<class T> T max(T a, T b)
{

return (a > b) ? a : b;

int max(int, int); II declare max(int,int) explicitly

void f(int i, char c)

max(i, i);
max(c, c) ;
max(i, c) i

max(c, i) i

1/ calls max(int ,int)
// calls max(char,char)
/1 calls max(int,int)
II calls max(int,int)

A class template (also called a generic class or class generat()r)
allows you to define a pattern for class definitions. Generic
container classes are good examples. Consider the following
example of a vector class (a one-dimensional array). Whether you
have a vector of integers or any other type,. the basic operations
performed on the type are the same (insert, delete, index, and so
on). With the element type treated as a type parameter to the class,
the system will generate type-safe class definitions on the fly:

#include <iostream.h>

template <classT> class Vector
{

T *datai

493

494

int size;

public:
Vector(int) i
-Vector() {delete[] data;}
T& operator[] (int i) {return data[i];}

};

II Note the syntax for out-of-line definitions:
template <class T> Vector<T>::Vector(int n)
{

};

data = new T [n] ;
size = ni

main()
{

Vector<int> x(5);11 Generate a vector of ints

for (int i = 0; i < 5; tti)
xli] = ii

for (i = 0; i < 5; tti)
cout « xli] « ' 'i

cout « '\n';
return Oi

II Output will be: 0 1 2 3 4

As with function templates, an explicit template class definition
may be provided to override the automatic definition for a given
type:

class Vector<char *> { ... }i

The symbol Vector must always be accompanied by a data type in
angle brackets. It cannot appear alone, except in some cases in the
original template definition.

For a more complete implementation of a vector class, see the file
vectimp.h in the container class library source code, found in the
\ TC\CLASSLIB\INCLUDE subdirectory. Also see online
documentation, "CONTAIN.DOC."

Arguments Although these examples use only one template argument,
multiple arguments are allowed. Template arguments canalso
represent values in addition to data types:

template<class T, int size = 64> class Buffer { ... };

Turbo C++ User's Guide

Non-type template arguments such as size can have default
values. The value supplied for a non-type template argument
must be a constant expression:

const int N = 128;
int i = 256;

Buffer<int, 2*N> b1;11 OK
Buffer<float, i> b2;11 Error: i is not constant

Since each instantiation of a template class is indeed a class, it
. receives its own copy of static members. Similarly, template
functions get their own copy of static local variables.

Angle brackets Take care when using the right angle bracket character upon
instantiation:

Buffer<char, (x > 100 ? 1024 : 64) > buf;

In the preceding example, without the parentheses around the
second argument, the> between x and 100 would prematurely
close the template argument list.

Type-safe generic lists In general, when you need to write lots of nearly identical things,
consider using templates. The problems with the following class
definition, a generic list class,

Chapter 73, C++ specifics

class GList
{

pUblic:

};

void insert (void *);
void *peek();
II ...

are that it isn't type-safe and common solutions need repeated
class definitions. Since there's no type checking on what gets
inserted, you have no way of knowing what results you'll get.
You can solve the type-safe problem by writing a wrapper class:

class FooList : public GList

public:

};

void insert (Foo *f) { GList::insert(f); }
Foo *peek() { return (Foo *)GList: :peek(); }

II ...

This is type-safe. insert() will only take arguments of type
pointer-to-Foo or object-derived-from-Foo, so the underlying
container will only hold pointers that in fact point to something of

495

496

Type-safe generic list class
definition

Eliminating pointers

Template definition that
eliminates pointers

type Foo. This means that the cast in FooList::peek{) is always
safe, and you've created a true FooList. Now to do the same thing
for a BarList, a BazList, and so on, you need repeated separate
class definitions. To solve the problem of repeated class
definitions and be type-safe, once again, use' templates:

template <class T> class List : public GList
{

public:

};

void insert (T *t) (GList::insert(t); },
T *peek() { return (T *)GList::peek(); }
II ...

List<Foo> fList; II create a FooList class and an instance
named fList.

List<Bar> bListi II create a BarList class and an instance
named bList.

List<Baz> zListi II create a BazList class and an instance
named zList.

By using templates, you can create whatever type-safe lists you
want, as needed, with a simple declaration. And there's no code
generated by the type conversions from each wrapper class so
there's no run-time overhead imposed by this type safety.

Another design technique is to include actual objects, making
pointers unnecessary. This can also reduce the number of virtual
function calls required, since the compiler knows the actual types
of the objects. This is a big benefit if the virtual functions are small
enough to be effectively inlined. It's difficult to inline virtual
functions when called through pointers, because the compiler
doesn't know the actual types of the objects being pointed to.

template <class T> aBase
{

II ...
private:
T buffer;

}. I.
class anObject public aSubject , public aBase<aFilebuf>
{

II ...
}i

All the functions in aBase can call functions defined in aFilebuf
directly, without having to go through a pointer. And if any of the

Turbo C++ User's Guide

· Template
compiler switches

functions in aFilebuf can be inlined, you'll get a speed
improvement, since templates allow them to be inlined.

The -Jg family of switches control how instances of templates are
generated by the compiler. Every template instance encountered
by the compiler will be affected by the value of the switch at the
point where the first occurence of that particular instance is seen
by the compiler. For template functions the switch applies to the
function instances; for template classes, it will apply to all
member functions and static data members of the template class.
In all cases this switch applies only to compiler-generated
template instances, and never to user-defined instances, although
it can be used to tell the compiler which instances will be user­
defined so that they are not generated from the template.

-Jg Default value of the switch. All template instances first
encountered when this switch value is in effect will be
generated, such that if several compilation units generate
the same template instance, the linker will merge them to
produce a single copy of the instance. This is the most
convenient approach to generating template instances,
because it's almost entirely automatic. Note, though, that in
order to be able to generate the template instances, the
compiler must have the function body (in case of a template
function) or bodies of member functions and definitions for
static data members (in case of a template class).

-Jgd Instructs the compiler to generate public definitions for
te,mplate instances. This is similar to -Jgi but if more than
one compilation unit generates a definition for the same
template instance, the linker will report public symbol re­
definition errors.

-Jgx Instructs the compiler to generate external references to
template instances. Some other compilation unit must
generate a public definition for that template instance
(using the -Jgd switch) so that the external references can
be satisfied.

Chapter 73, C++ specifics 497

498

Using template
switches

When using the -Jg family of switches, there are two basic
approaches for generating template instances:

1. Include the function body (for a function template) or member
function and static data member definitions (for a template
class) in the header file that defines the particular template,
and use the default setting of the template switch (-Jg). If
some instances of the template are user-defined, the
declarations (prototypes, for example) for them should be
included in the same header, but preceded by #pragmaoption
-Jgx, thus letting the compiler know that it should not
generate those particular instances.

Here's an example of a template function header file:

II Declare a template function along with its body

template<class T> void sort(T* array, int size)
{

... body of template function goes here ...
}

II Sorting of 'int' elements done by user-defined instance

#pragma option -Jgx

extern void sort(int* array, int size);

II Restore the template switch to its original state

#pragma option -Jg.

If the preceding header file is included in a C++ source file, the
sortO template can be used without worrying about how the
various instances are generated (with the exception of sortO
for int arrays, which is declared as a user-defined instance, and
whose definition must be defined by the user).

2. Compile all of the source files comprising the program with
the -Jgx switch (causing external references to templates to be
generated); this way, template bodies don't need to appear in
header files. In order to provide the definitions for all of the
template instances, add a file (or files) to the program that
includes the template bodies (including any user-defined
instance definitions), and list all the template instances needed
in the rest of the program, to provide the necessary public
symbol definitions. Compile the file (or files) with the -Jgd
switch.

Here's an ,example:

Turbo c++ User's Guide

Chapter 73, C++ specifics

II vector.h

template <class elem, int size> class vector
{

elem * value;

pUblic:

vector () ;

elem & operator[] (int index) { return value [index] ; }
};

II MAIN.CPP

#include "vector.h"

II Tell the compiler that the template instances that follow
II will be defined elsewhere.

#pragma option -Jgx

II Use two instances of the 'vector' template class.

ve9tor<int,100> int_100;
vector<char,lO> char_10;

main()
{

return int_100[0] + char_10[0];

II TEMPLATE.CPP

#include <string.h>

#include "vector.h"

II Define any template bodies

template <class elem, int size> vector<elem, size>::vector()
{

value = new elem[size] ;
memset(value, 0, size * sizeof(elem));

II Generate the necessary instances

#pragma option -Jgd

typedef vector<int,lOO> fake_int_100;
typedef vector<char,lO> fake_char_10;

499

500 Turbo C++ User's Guide

c H

The independent
preprocessor is documented

online.

The preprocessor detects
preprocessor directives (a/so

known as contro/lines) and
parses the tokens '

embedded in them.

A p T E R

14

The preprocessor
Although Turbo C++ uses an integrated single-pass compiler for
its IDE and command-line versions, it is useful to retain the
terminology associated with earlier multipass compilers.

With a multipass compiler, a first pass of the source text would
pull in any include files, test for any conditional-compilation di­
rectives, expand any macros, and produce an intermediate file for
further compiler passes. Since the IDE and command-line
versions of the Turbo C++ compiler perform this first pass with
no intermediate output, Turbo C++ provides an independent pre­
processor, CPP.EXE, that does produce such an output file. The
independent preprocessor is useful as a debugging aid, letting
you see the net result of include directives, conditional compi­
lation directives, and complex macro expansions.

The following discussion on preprocessor directives, their syntax
and semantics, therefore, applies both to the CPP preprocessor
and to the preprocessor functionality built into the Turbo C++
compiler.

The Turbo C++ preprocessor includes a sophisticated macro pro­
cessor that scans your source code before the compiler itself gets
to work. The preprocessor gives you great power and flexibility in
the following areas:

• Defining macros that reduce programming effort and improve
your source code legibility. Some macros can also eliminate the
overhead of function calls.

Chapter 14, The preprocessor 501

Preprocessor directives are
usually placed at the

beginning of your source
code, but they can legally

appear at any point in a
program.

• Including text from other files, such as header files containing
standard library and user-supplied function prototypes and
manifest constants .

• Setting up conditional compilations for improved portability
and for debugging sessions.

Any line with a leading # is taken as a preprocessing directive,
unless the # is within a string literal, in a character constant, or
embedded in a comment. The initial # can be preceded or
followed by whitespace (excluding new lines).

The full syntax for Turbo C++'s preprocessor directives is given in
the next table.

Table 14.1: Turbo C++ preprocessing directives syntax

preprocessing-file:
group

group:
group-part
group group-part

group-part:
<pp-tokens> newline
if-section
control-line

if-section:
if-group <elif-groups> <else-group> endif-line

if-group:
#if constant-expression newline <group>
#ifdef identifier newline <'lrouv>
#ifndef identifier newline <group>

elif-groups:
elif-group
elif-groups elif-group

elif-group:
#elif constant-expression newline <group>

else-group:
#else newline <group>

endif-line:
#endif newline

control-line:
#include pp-tokens newline
#define identifier replacement-list newline
#define identifier lparen <identifier-list» replacement-list newline
#undef identifier newline
#line pp-tokens newline
#error <pp-tokens> newline
#pragma <pp-tokens> newline

502

#pragma warn action abbreviation newline
#pragma inline newline
newline

action: one of
+ - .

abbreviation:
nondigit nondigit nondigit

lparen:
the left parenthesis character without preceding whitespace

replacement-list:
<pp-tokens>

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

preprocessing-token:
header-name (only within an #include directive)
identifier (no keyword distinction)
constant
string-literal
operator
punctuator
each non-whitespace character that cannot be one of the preceding

header-name:
<h-char-sequence>

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any character in the source character set except the newline (\n)
or greater than (» character

newline:
the newline character

Turbo C++ User's Guide

Null directive #

The null directive consists of a line containing the single character
#. This directive is always ignored.

The #define and #undef directives

Simple #define

The #define directive defines a macro. Macros provide a mecha­
nism for token replacement with or without a set of formal,
function-like parameters.

macros In the simple case with no parameters, the syntax is as follows:

#define macro_identifier <token_sequence>

Each occurrence of macro _identifier in your source code following
this control line will be replaced in situ with the possibly empty
token_sequence (there are some exceptions, which are noted later).
Such replacements are known as macro expansions. The token se­
quence is sometimes called the body of the macro.

Any occurrences of the macro identifier found within literal
strings, character constants, or comments in the source code are
not expanded.

An empty token sequence results in the effective removal of each
affected macro identifier from the source code:

#define HI "Have a nice day! II

#define empty
#define NIL 1111

puts(HI); /* expands to puts ("Have a nice day! ") ; */
puts (NIL) ; /* expands to putS("I); */
puts("empty"); /* NO expansion of empty!*/
/* NOR any expansion of the empty within comments! */

After each individual macro expansion, a further scan is made of
the newly expanded text. This allows for the possibility of nested
macros: The expanded text may contain macro identifiers that are
su~ject to replacement. However, if the macro expands into what
looks like a preprocessing directive, such a directive will not be
recognized by the preprocessor:

Chapter 74, The preprocessor 503

504

The #undef

#define GETSTD #include <stdio.h>

GETSTD /* compiler error */

GET5TD will expand to #include <stdio.h>. However, the prepro­
cessor itself will not obey this apparently legal directive, but will
pass it verbatim to the compiler. The compiler will reject #include
<stdio. h> as illegal input. A macro won't be expanded during its
own expansion. 50 #define A A won't expand indefinitely.

directive You can undefine a macro using the #undef directive:

#undef macro_identifier

This line detaches any previous token sequence from the macro
identifier; the macro definition has been forgotten, and the macro
identifier is undefined.

No macro expansion occurs within #undef lines.

The state of being defined or undefined turns out to be an important
property of an identifier, regardless of the actual definition. The
#ifdef and #ifndef conditional directives, used to test whether any
identifier is currently defined or not, offer a flexible mechanism
for controlling many aspects of a compilation.

After a macro identifier has been undefined, it can be redefined
with #define, using the same or a different token sequence.

#define BLOCK_SIZE 512

buff = BLOCK_SIZE*blksi /* expands as 512*blks *

#undef BLOCK_SIZE
/* use of BLOCK_SIZE now would be illegal "unknown" identifier */

#define BLOCK_SIZE 128 /* redefinition */

buf = BLOCK_SIZE*blksi /* expands as 128*blks */

Attempting to redefine an already defined macro identifier will
result in a warning unless the new definition is exactly the same,
token-by-token definition as the existing one. The preferred
strategy where definitions may exist in other header files is as
follows: '

Turbo C++ User's Guide

The -0 and-U

#ifndef BLOCK_SIZE
#define BLOCK_SIZE 512

#endif

The middle line is bypassed if BLOCK_SIZE is currently defined;
if BLOCK_SIZE is not currently defined, the middle line is
invoked to define it.

No semicolon (;) is needed to terminate a preprocessor directive.
Any character found in the token sequence, including semicolons,
will appear in the macro expansion. The token sequence termin­
ates at the first non-backslashed new line encountered. Any
sequence of whitespa,ce, including comments in the token
sequence, is replaced with a single space character.

Assembly language programmers must resist the temptation to
write:

#define BLOCK_SIZE = 512 /* ?? token sequence includes the = */

options Identifiers can be defined and undefined u§ing the command-line
compiler options -0 and -U (see Chapter 8, "The command-line
compiler,"). Identifiers can be defined, but not explicitly
undefined, from the IDE Options I Compiler I Code Generation
dialog box (see Chapter 2, "IDE basics,").

The Define option

The command line

TCc -Ddebug=l; paradox=O; X -Umysym myprog.c

is equivalent to placing

#define debug 1
#define paradox 0
#define X
#undef mysym

in the program.

Identifiers can be defined, but not explicitly undefined, from the
Defines input box in the Code Generation I Options dialog box
(under a I C I Code Generation) (see Chapter 2, "IDE basics,").

Chapter 74, The preprocessor 505

Keywords and
protected words

Note the double
underscores, leading and

trailing.

Macros with
parameters

Any comma within
parentheses in an argument

list is treated as part of the
argument, not as an
argument delimiter.

506

It is legal but ill-advised to use Turbo C++ keywords as macro
identifiers:

#define int long
#define INT long

/* legal but probably catastrophic */
/* iegal and possibly useful */

The·following predefined global identifiers may not appear
immediately following a #define or #undef directive:

__ STDC __
__ FILE __
__ LlNE __

__DATE __
__ TIME __

The following syntax is used to define a macro with parameters:

#define macro_identifier(<arg_list» token_sequence

Note that there can be no whitespace between the macro identifier
and the (. The optional arg_list is a sequence of identifiers
separated by commas, not unlike the argument list of a C
function. Each comma-delimited identifier plays the role of a
formal argument or place holder.

Such macros are called by writing

macro _identifier<whitespace>(<actuaCarg_Iist>)

in the subsequent source code. The syntax is identical to that of a
function call; indeed, many standard library C Ufunctions" are
implemented as macros. However, there are some important
semantic differences and potential pitfalls (see page 508).

The optional actuaLarg_list must contain the same number of
comma-delimited token sequences, known 'as actual arguments,
as found in the formal arg_list of the #define line: There must be
an actual argument for each formal argument. An error will be
reported if the number of arguments in the two lists is different.

A macro call results in two sets of replacements. First, the macro
identifier and the parenthesis-enclosed arguments are replaced by
the token sequence. Next, any formal arguments occurring in the
token sequence are replaced by the corresponding real arguments
appearing in the actuaLarg_Iist. For example,

Turbo C++ User's Guide

#define CUBE(x) ((x)*(x)*(x))

int n,y;
n = CUBE(y);

results in the following replacement:

n = ((y) * (y) * (y));

Similarly, the last line of

#define SUM (a,b) ((a) + (b))

int i, j , sum;
sum = SUM (i, j) ;

expands to sum = ((i) + (j)). The reason for the apparent glut of
parentheses will be clear if you consider the call

n = CUBE(y+1);

Without the inner parentheses in the definition, this would
expand as n = y+ 1 *y+ 1 *y+ 1, which is parsed as

n = y ~ (l*y) + (l*y) + 1; II!= (y+1) cubed unless y=O or y = -3!

As with simple macro definitions, rescanning occurs to detect any
embedded macro identifiers eligible for expansion.

Note the following points when using macros with argument
lists:

1. Nested parentheses and commas: The actuaLarg_list may
contain nested parentheses provided that they are 1?alanced;
also, commas appearing within quotes or parentheses are not
treated like argument delimiters:

#define ERRMSG(x, str) showerr("Error",x,str)
#define SUM(x,y) ((x) + (y))

ERRMSG(2, "Press Enter, then Esc");
1* expands to showerr("Error",2, "Press Enter, then Esc");
return SUM(f(i,j), g(k,l));
1* expands to return ((f(i,j)) + (g(k,l))); *1

2. Token pasting with ##: You can paste (or merge) two tokens
together by separating them with ## (plus optional whitespace
on either side). The preprocessor removes the whitespace and
the ##, combining the separate tokens into one new token. You
can use this to construct identifiers; for example, given the
definition

#define VAR(i,j) (i##j)

Chapter 74, The preprocessor 507

508

then the call VAR(x, 6) would expand to (x6). This replaces the
older (nonportable) method of using (i/** /j).

3. Converting to strings with #: The # symbol can be placed in
front of a formal macro argument in order to convert the
actual argument to a string after replacement. So, given the
following macro definition:

#define TRACE (flag) printf(#flag "=%d\n",flag)

the code fragment

int highval = 1024;
TRACE (highval) ;

becomes

int highval = 1024;
printf("highval" "= %d\n", highval);

which, in turn, is treated as

int highval = 1024;
printf ("highval=%d\n", highval);

4. The backslash for line continuation: A long token sequence
can straddle a line by using a backslash (\). The backslash and
the following newline are both stripped to provide the actual
token sequence used in expansions:

#define WARN "This is really a single-\
line warning"

puts (WARN) ;
/* screen will show: This is really a single-line warning */

5. Side effects and other dangers: The similarities between .
function and macro calls often obscure their differences. A
macro call has no built-in type checking, so a mismatch
between formal and actual argument data types can produce
bizarre, hard-tn-debug results with no immediate warning.
Macro calls can also give rise to unwanted side effects,
especially when an actual argument is evaluated more than
once. Compare CUBE and cube in the following example:

int cube(int x) {
return x*x*x;

#define CUBE(x) ((x)*(x)*(x))

int b = 0, a = 3;
b = cube (a ++) ;
/* cube() is passed actual arg = 3; so b = 27; a now = 4 */

Turbo C++ User's Guide

Final value of b depends on
what your compiler does to

the expanded expression.

a = 3;
b = CUBE (a ++) ;
1* expands as ((a++)*(a++)*(a++)) i a now = 6 *1

File inclusion with #include

The angle brackets are real
tokens, not metasymbols that

imply that header_name is
optional.

The #include directive pulls in other named files, known as
include files, header files, or headers, into the source code. The syntax
has three forms:

#include <header_name>
#include "header_name"
#include macro_identifier

The third variant assumes that neither < nor" appears as the first
non-whitespace character following #include; further, it assumes
that a macro definition exists that will expand the macro identifier
into a valid delimited header name with either of the
<header_name> or "header _name" formats.

The first and second variant imply that no macro expansion will
be attempted; in other words, header _name is never scanned for
macro identifiers. header _name must be a valid DOS file name with
an extension (traditionally .h for header) and optional path name
and path delimiters.

The preprocessor removes the #include line and conceptually
replaces it with the entire text of the header file at that point in the
source code. The source code itself is not changed, but the com­
piler "sees" the enlarged text. The placement of the #include may
therefore influence the scope and duration of any identifiers in the
included file.

If you place an explicit path in the header_name, only that directory
will be searched.

The difference between the <header _name> and "header_name"
formats lies in the searching algorithm employed in trying to
locate the include file; these algorithms are described in the
following two sections.

Chapter 74, The preprocessor 509

Header file
search with

<header_name>

Header file
search with

" header_name"

The< header _name> variant specifies a standard include file; the
search is made successively in each of the include directories in
the order they are defined. If the file is not located in any of the
default directories, an error message is issued.

The "header _name" variant specifies a user-supplied include file;
the file is sought first in the current directory (usually the direc­
tory holding the source file being compiled). If the file is not
found there, the search continues in the include directories as in
the <header _name> situation.

The following example clarifies these differences:

#include <stdio.h>
1* header in standard include directory *1

#define myinclud "C:\TC\INCLUDE\MYSTUFF.H"
1* Note: Single backslashes OK here; within a C statement you would

need "C:\\TC\\INCLUDE\\MYSTUFF.H" *1

#include myinclud
1* macro expansion *1

#include "myinclud.h"
/* no macro expansion *1

After expansion, the second #include statement causes the prepro­
cessor to look in C:\ TC \ INCLUDE \ MYSTUFF.H and nowhere
else. The third #include causes it to look for MYINCLUD.H in the
current directory, then in the default directories.

Conditional compilation

510

Turbo C++ supports conditional compilation by replacing the ap­
propriate source-code lines with a blank line. The lines thus
ignored are those beginning with # (except the #if, #ifdef, #ifndef,
#else, #elif, and #endif directives), as well as any lines that are not
to be compiled as a result of the directives. All conditional compi­
lation directives must be completed in the source or include file in
which they are begun.

Turbo C++ User's Guide

The #it #elit #else,
and #endif

conditional
directives

The conditional directives #if, #elif, #else, and #endif work like the
normal C conditional operators. They are used as follows:

#if constant-expression-l
<section-l>
<#elif constant-expression-2 newline section-2>

<#elif constant-expression-n newline section-n>

<#else <newline> final-section>

#endif

If the constant-expression-l (subject to macro expansion) evaluates
to nonzero (true), the lines of code (possibly empty) represented
by section-1, whether preprocessor command lines or normal
source lines, are preprocessed and, as appropriate, passed to the
Turbo C++ compiler. Otherwise, if constant-expression-1 evaluates
to zero (false), section-1 is ignored (no macro expansion and no
compilation).

In the true case, after section-1 has been preprocessed, control
passes to the matching #endif (which ends this conditional
interlude) and continues with next-section. In the false case, control
passes to the next #elif line (if any) where constant-expression-2 is
evaluated. If true, section-2 is processed, after which control
moves on to the matching #endif. Otherwise, if constant­
expression-2 is false,' control passes to the next #elif, and so on,
until either #else or #endif is reached. The optional #else is used
as an alternative condition for which all previous tests have

, proved false; The #endif ends the conditional sequence.

The processed section can contain further conditional clauses,
nested to any depth; each #if must be carefully balanced with a
closing #endif.

The net result of the preceding scenario is that only one section
(possibly empty) is passed on for further processing. The
bypassed sections are relevant only for keeping track of any
nested conditionals, so that each #if can be matched with its
correct #endif.

The constant expressions to be tested must evaluate to a constant
integral value.

Chapter 14, The preprocessor 511

The operator defined The defined operator offers an alternative, more flexible way of
testing whether combinations of identifiers are defined or not. It is
valid only in #if and #elif expressions.

512

The #ifdef and
#ifndef

conditional
directives

The expression defined(identifier) or defined identifier
(parentheses are optional) evaluates to 1 (true) if the symbol has
been previously defined (using #define) and has not been
subsequently undefined (using #undef); otherwise, it evaluates to
o (false). So the directive

#if defined (mysym)

is the same as

#ifdef mysym

The advantage is that you can use defined repeatedly in a
complex expression following the #if directive, such as

#if defined (mysym) && 1 defined (yoursym)

The #ifdef and #ifndef conditional directives let you test whether
an identifier is currently defined or not, that is, whether a pre­
vious #define command has been processed for that identifier and
is still in force. The line

#ifdef identifier

has exactly the same effect as

#if 1

if identifier is currently defined, and the same effect as

#if 0

if identifier is currently undefined.

#ifndef tests true for the "not-defined" condition, so the line

#ifndef identifier

has exactly the same effect as

#if 0

if identifier is currently defined, and the same effect as

#if 1

if identifier is currently undefined.

Turbo C++ User's Guide

The syntax thereafter follows that of the #if, #elif, #else, and
#endif given in the previous section.

An identifier defined as NULL is considered to be defined.

The #line line control directive

The inclusion of stdio.h
means that the preprocessor

output will be somewhat
large.

We've eliminated most of the
stdio.h portion.

You can use the #line command to supply line numbers to a
program for cross-reference and error reporting. If your program
consists of sections derived from some other program file, it is
often useful to mark such sections with the line numbers of the
original source rather than the normal sequential line numbers
derived from the composite program. The syntax is

#line integer _constant <"filename">

indicating that the following source line originally came from line
number integer _constant of filename. Once the filename has been
registered, subsequent #line commands relating to that file can
omit the explicit filename argument.

/* TEMP.C: An example of the #line directive */

#include <8tdio.h>

#l ine 4 "j unk. c"
void main(l
{

printf (" in line %d of %8" 1 __ LINE __ I __ FILE __ l ;
#line 12 "temp.c"

printf (" \n" l ;
printf (" in line %d of %8" 1 __ LINE __ I __ FILE __ l ;

#line 8
printf ("\n" l ;
printf (" in line %d of %8" 1 __ LINE __ 1 __ FILE __ l;

If you run TEMP.C through CPP (cpp temp. c), you'll get an output
file TEMP.!; it should look something like this:

temp.c 1:
C:\TC\INCLUDE\STDIO.H 1:
C:\TC\INCLUDE\STDIO.H 2:
C:\TC\INCLUDE\STDIO.H 3:

C:\TC\INCLUDE\STDIO.H 212:
C:\TC\INCLUDE\STDIO.H 213:

Chapter 14, The preprocessor 513

temp.c 2:
temp.c 3:
junk.c 4: void main()
junk.c 5: {
junk.c 6: printf(" in line %d of %s",6,"junk.c");
junk.c 7:
temp.c 12: printf("\n");
temp.c 13: printf(" in line %d of is" ,13, "temp.c");
temp.c 14:
temp.c 8: printf("\n");
temp.c 9: printf (" in line %d of is" ,9, "temp.c");
temp.c 10: }
temp.c 11:

If you then compile and run TEMP.C, you'll get the output shown
here:

in line 6 of junk.c
in line 13 of temp.c
in line 9 of temp.c

Macros are expanded in #line arguments as they are in the
#include directive.

The #line directive is primarily used by utilities that produce C
code as output, and not in human-written code.

The #error directive

514

The #error directive has the following syntax:

#error errmsg

This gener,ates the message:

Error: filename line# : Error directive: errmsg

This directive is usually embedded in a preprocessor conditional
that catches some undesired compile-time condition. In the
normal case, that condition will be false. If the condition is true,
you want the compiler to print an error message and stop the
compile. You do this by putting an #error directive within a
conditional that is true for the undesired case.

For example, suppose you #define MYV AL, which must be either
o or 1. You could then include the following conditional in your
source code to test for an incorrect value of MYV AL:

Turbo C++ User's Guide

#if (MYVAL != 0 && MYVAL != 1)
#error MYVAL must be defined to either 0 or 1
#endif

The #pragma directive

The #pragma directive permits implementation-specific directives
of the form:

#pragma directive-name

With #pragma, Turbo C++ can define whatever directives it
desires without interfering with other compilers that support
#pragma. If the compiler doesn't recognize directive-name, it
ignores the #pragma directive without any error or warning
message.

Turbo C++ supports the following #pragma directives:

• #pragma argsused

• #pragma exit .

• #pragma hdrfile

• #pragma hdrstop
Turbo C++ only '. #pragma inline

#pragma
argsused

#pragma exit and
#pragma startup

• #pragma option

• #pragma saveregs

• #pragma startup

• #pragma warn

The argsused pragma is only allowed between function
definitions, and it affects only the next function. It disables the
warning message:

"Parameter name is never used in function func-name"

These two pragmas allow the program to specify function(s) that
should be called either upon program startup (before the main
function is called), or program exit (just before the program
terminates through _exit).

Chapter 74, The preprocessor 515

Priorities from a to 63 are
used bV the C libraries, and
should not be used bV the

user.

Note that the function name
used in pragma startup or

exit must be defined (or
declared) before the

pragma line is reached.

#pragma hdrfile

516

See Appendix B,
"Precompiled headers" ..

The syntax is as follows:

#pragma startup function-name <priority>
#pragma exit function-n'ame <priority>

The specified function-name must be a previously declared
function taking no arguments and returning void; in other words,
it should be declared as

void func (void) ;

The optional priority parameter should be an integer in the range
64 to 255. The highest priority is ,0. Functions with higher
priorities are called ·first at startup and last at exit. If you don't
specify a priority, it defaults to 100. For example,

#include <stdio.h>

void startFunc(void)
{

printf ("Startup function. \n");

#pragma startup startFunc 64
/* priority 64 --> called first at startup */

void exitFunc(void)
{

printf ("Wrapping up execution. \n") ;

#pragma exit exitFunc
/* default priority is 100 */

void main(void)
{

printf("This is main.\n");

This directive sets the name of the file in which to store precom­
piled headers. The default file name is TCDEF .SYM. The syntax is

#pragma hdrfile ''filename.SYM''

If you aren't using precompiled headers, this directive has no
effect. You can use the command-line compiler option
-H=filename or Precompiled Header (0 I C I Code Generation) to
change the name of the file used to store precompiled headers.

Turbo C++ User's Guide

#pragma hdrstop

#pragma in line

#pragma option

The command-line compiler,
options are defined in

Chapter 8.

This directive terminates the list of header files that are eligible for
precompilation. You can use it to reduce the amount of disk space
used by precompiled headers. (See Appendix B for more on
precompiled headers.) ,

This directive is equivalent to the -8 command-line compiler
option or the IDE inline option. It tells the compiler that there is
inline assembly language code in your program (see BASM.DOC).
The syntax is

#pragma inline

This is best placed at the top of the file, since the compiler restarts
itself with the -8 option when it encounters #pragma inline.

Use #pragma option to include command-line options within
your program code. The syntax is

#pragma option [options ...]

options can be any command-line option (except those listed in the
following paragraph). Any number of options can appear in one
directive. Any of the toggle options (such as -a or -K) can be
turned on and off as on the command line. For these toggle
options, you can also put a period following the option to return
the option to its command-line, configuration file, or option-menu
setting. This allows you to temporarily change an option, then
return it to its default, without you having to remember (or even
needing to know) what the exact default setting was.

Options that cannot appear in a pragma option include
-8 -H -Q
-c -lfi/ename-5
-dname -Lfi/ename - T

, -Dname ~ string -Ixset -Uname
-efilename -M -V
-E -0 -X
-Fx -p -y

Chapter 74, The preprocessor 517

See page 584 for more on
using #pragma option with

far objects.

518

#pragma
save regs

You can use #pragmas, #includes, #define, and some #ifs before

1. The use of any macro name that begins with two underscores
(and is therefore a possible built-in macro) in an #if, #ifdef,
#ifndef or #elif directive.

2. The occurrence of the first real token (the first C or C++
declaration).

Certain command-line options can only appear in a #pragma
option command before these events. These options are

-Efi/ename -m* -u
-f * -npath -z *
-i# -ofi/ename

Other options can be changed anywhere. The following options
will only affect the compiler if they get changed between
functions or object declarations:

-1 -h -r
-2 -k -rd
-a -N -v
-ff -0 -y
-G -p -Z

The following options can be changed at any time and take effect
immediately:

-A -gn -zE
-b -jn -zF
-c -K -zH
-d -wxxx

They can additionally appear followed by a dot (.) to reset the
option to its command-line state.

The saveregs pragma guarantees that a huge function will not
change the value of any of the registers when it is entered. This
directive is sometimes needed for interfacing with assembly
language code. The directive should be placed immediately
before the function definition. It applies to that function alone.

Turbo C++ User's Guide

#pragma warn
The warn directive lets you override specific -wxxxcommand-line
options or check Display Warnings settings in the Options I
Compiler I Messages dialog boxes . .
For example, if your source code contains the directives

#pragma warn tXXX

#pragma warn -yyy
#pragma warn .zzz

the xxx warning will be turned on (even if on the Options I
Compiler I Messages menu it was toggled to Ofj), the yyy warning
will be turned off, and the zzz warning will be restored to the
value it had when compilation of the file began.

A complete list of the three-letter abbreviations and the warnings
to which they apply is given in Chapter 8, "The command-line
compiler" .

Predefined macros

__ CDECL __

Turbo C++ predefines certain global identifiers, each of which is
discussed in this section. Except for __ cplusplus each of the
global indentifiers starts and ends with two underscore characters -
" __ ". These macros are also known as manifest constants.

This macro is specific to Borland's C and C++ family of compilers.
It signals that the -p flag was not used (the C radio button in the
Entry /Exit Code Generation dialog box). Set to the integer
constant 1 if calling was not used; otherwise, undefined.

The following six symbols are defined based on the memory
model chosen at compile time.

__ COMPACT __
__ HUGE __
__ LARGE __

__MEDIUM __
__SMALL __
__TINY __

Only one is defined for any given compilation; the others, by defi­
nition, are undefined. For example, if you compile with the small

Chapter 74,.The preprocessor 519

_ _ cplusplus

520

model, the __ SMALL __ macro is defiried and the rest are not, so
that the directive

#if defined(__ SMALL __)

will b~ true, while

#if defined{ __ LARGE __)

(or any of the others) will be false. The actual value for any of
these defined macros is 1.

This macro is defined as 1 if in C++ mode; it's undefined other­
wise. This allows you to write a module that will be compiled
sometimes as C and sometimes as C++. Using conditional
compilation, you can control which C and C++ parts are included.

This macro provides the date the preprocessor began processing
the current source file (as a string literal). Each inclusion of
__ DATE __ in a given file contains the same value, regardless of
how long the processing takes. The date appears in the format
mmm dd yyyy, where mmm equals the month Gan, Feb, and so
forth); dd equals the day (1 to 31, with the first character of dd a
blank if the value is less than 10), and yyyy equals the year (1990,
1991, and so forth).

This macro provides the name of the current source file being pro­
cessed (as a string literal). This macro changes whenever the
compiler processes an #include directive or a #line directive, or
when the include file is complete.

This macro provides the number of the current source-file line
being processed (as a decimal constant). Normally, the first line of
a source file is defined to be I, through the #line directive can
affect this. See page 513 for information on the #line directive.

Turbo C++ User's Guide

_ _ OVERLAY __

_ _ TCPLUSPLUS __

_ _ TEMPLATES __

This macro is specific to Borland's C/C++ family of compilers. It
provides the integer constant 1 for all compilations.

This macro is specific to Borland's C and C++ family of compilers.
It is predefined to be 1 if you compile a module with the-Y
option (enable overlay support). If you don't enable overlay
support, this macro is undefined.

This macro is specific to Borland's C and C++ family of compilers.
It signals that the -p flag or the Pascal calling convention (0 I C I
C I Exit/Entry) has been used. The macro is set to the integer
constant 1 if used; otherwise, it remains undefined.

This macro is defined as ,the constant 1 if you compile with the
ANSI compatibility flag (-A) or ANSI radio button (Source
Options); otherwise, the macro is undefined.

This macro is specific to Borland's C and C++ family of compilers.
It is only defined for C++ compilation. If you've selected C++
compilation, it is defined as Ox300, a hexadecimal constant. This
numeric value will increase in later releases.

This macro is specific to Borland's C and C++ family of compilers.
It is defined as 1 for C++ files (meaning that Turbo C++ supports
templates); it's undefined otherwise.

This macro keeps track of the time the preprocessor began
processing the current source file (as a string literal).

Chapter 74, The preprocessor 521

522

As with __ DATE_ -f each inclusion of __ TIME __ contains the
same value, regardless of how·long the processing takes. It takes
the format hh:mm:ss, where hh equals the hour (00 to 23), mm
equals minutes (00 to 59), and ss equals seconds (00 to 59).

This macro is specific to Borland's C and c++ family of compilers.
It is defined as Ox400, a hexadecimal constant. This numeric value
will increase in later releases.

Turbo C++ User's Guide

c H A p T E R

15

The main function

Every C and c++ program must have a main function; where you
place it is a matter of preference. Some programmers place main
at the beginning of the file, others at the end. Regardless of its
location, the following points about main always apply.

Arguments to main

Three parameters (arguments) are passed to main by the Turbo
c++ startup routine: argc, argv, and env .

• argc, an integer, is the number of command-line arguments
passed to main .

• argv is an array of pointers to strings (char *[D.

Chapter 75, The main function

• Under 3.0 and higher versions of DOS, argv[O] is the full path
name of the program being run.

• Under versions of DOS before 3.0, argv[O] points to the null
string ('"I).

• argv[l] points to the first string,typed on the DOS command
line after the program name.

• argv[2] points to the second string typed after the program
name.

• argv[argc-l] points to the last argument passed to main.

• argv[argc] contains null.

523

524

An example
program

• env is also an array of pointers to strings. Each element of env[]
holds a string of the form ENWAR=value .

• ENVY AR is the name of an environment variable, such as
PATH or 87 .

• value is the value to which ENVV AR is set, such as
C: \ DOS;C: \ TOOLS; (for PATH) or YES (for 87).

If you declare any of these parameters, you must declare them
exactly in the order given: argc, argv, env. For example, the
following are all valid declarations of main's arguments:

main()
main (int argc) /* legal but very unlikely */
main(int argc, char * argv[])
main(int argc, char * argv[J, char * env[])]

The declaration main (int argc) is legal, but it's very unlikely that
you would use argc in your program without also using the
elements of argv.

The argument env is also available through the global variable
environ. You can read about the environ global variable in the
online help file. Also, read about the putenv and getenv functions
in the online help for more information.

argc and argv are also available via the global variables _argc and
_argv.

Here is an example program, ARGS.EXE, that demonstrates a
simple way of using these arguments passed to main.

/* Program ARGS.C */

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[], char *env[])
{

int i;

printf("The value of argc is %d \n\n",argc);
printf("These are the %d command-line arguments passed to

main: \n\n", argc) ;

for (i = 0; i < argci i++)
printf (" argv[%d]: %s\n", i, argv[i]) i

printf("\nThe environment string(s) on this system are:\n\n")i

Turbo C++ User's Guide

Wildcard

for (i = 0; env[i] != NULL; i++)
printf(" env[%d]: %s\n", i, env[i]);

return 0;

Suppose you run ARGS.EXE at the DOS prompt with the
following command line:

C:> args first_arg "arg with blanks" 3 4 "last but one" stop!

Note that you can pass arguments with embedded blanks by
surrounding them with double quotes, as shown by "argument
with blanks" and "last but one" in this example command line.

The output of ARGS.EXE (assuming that the environment
variables are set as shown here) would then be like this:

The value of argc is 7

These are the 7 command-line arguments passed to main:

argv[O]: C:\TC\TESTARGS.EXE
argv[l]: first_arg
argv[2] :arg with blanks
argv[3]: 3
argv[4]: 4
argv[5]: last but one
argv[6]: stop!

The environment string(s) on this system are:

env[O]: COMSPEC=C:\COMMAND.COM
env[l]: PROMPT=$p $g
env[2]: PATH=C:\SPRINT;C:\DOS;C:\TC

The maximum combined length of the command-line arguments
passed to main (including the space between adjacent arguments
and the name of the program itself) is 128 characters; this is a DOS
limit.

arguments Command-line arguments containing wildcard characters can be
expanded to all the matching file names, much the same way DOS
expands wildcards when used with commands like COPY. All
you have to do to get wildcard expansion is to link your program
with the WILDARGS.OBJ object file, which is included with
Turbo C++.

Once WILDARGS.OBJ is linked into your program code, you can
send wildcard arguments of the type *.* to your main function.

Chapter 75, The main function 525

The argument will be expanded (in the argv array) to all files
matching the wildcard mask. The maximum size of the argv array
varies, depending on the amount of memory available in your
heap.

If no matching files are found, the argument is passed unchanged.
(That is, a string consisting of the wildcard mask is passed to
main.)

Arguments enclosed in quotes (" ... ") are not expanded.

An example program The following commands will compile the file ARGS.C and link it
with the wildcard expansion module WILDARGS.OBJ, then run
the resulting executable file ARGS.EXE:

, TCC ARGS WILDARGS .OBJ

ARGS C:\TC\INCLUDE*.H "*.C"

When you run ARGS.EXE, the first argument is expanded to the
names of all the *.H files in your Turbo C++ INCLUDE directory.
Note that the expanded argument strings include the entire path.
The argument *.C is not expanded as it is enclosed in quotes.

In'the IDE, simply specify a project file (from the project menu)
that contains the followu:g lines:

ARGS
IA!ILDARGS ,OBJ

Then use the Run I Arguments option to set the command-line
parameters.

-.. If you prefer the wildcard expansion to be the default, modify
your standard C?LIB library files to have WILDARGS.OBJ linked
automatically. In order to accomplish that, remove SET ARGV
from the libraries and add WILDARGS. The following commands
invoke the Turbo librarian (TLIB) to modify all the standard li­
brary files (assuming the current directory contains the standard
C and C++ libraries and WILDARGS.OBJ):

For more on TUB, see the tlib es -setargv twildargs
online document called tlib ee -setargv twildargs

UTlL.DOC. tlib em -setargv twildargs
tlib cl -setargv twildargs
tlib eh -setargv twildargs

526 Turbo C++ User's Guide

Using -p (Pascal calling conventions)

If you compile your program using Pascal calling conventions,
you must remember to explicitly declare main as a C type. Do this
with the cdecl keyword, like this:

int cdecl rnain(int argc, char * argv[], char * envp[])

The value main returns

The value returned by main is the status code of the program: an
int. If, however, your program uses the routine exit (or _exit) to
terminate, the value returned by main is the argument passed to
the call to exit (or to _exit).

For example, if your program contains the call

exit(l)

the status is l.

If you are using the IDE (as opposed to the command-line
compiler) to run your program, you can display the return value
from main by selecting File I Get Info.

Chapter 75, The main function 527

528 Turbo C++ User's Guide

c H A p T E R

16

Using C++ streams

This chapter is divided into two sections: a brief, practical over­
view of using C++ stream I/O, and a reference section to the C++
stream class library.

Stream input/output in C++ (commonly referred to as iostreams,
or merely streams) provide all the functionality of the stdio library
in C. lostreams are used to convert typed objects into readable
text, and vice versa. Streams may also read and write binary data.
The C++ language allows you to define or overload I/O functions
and operators that are then called automatically for correspond­
ing user-defined types.

What is a stream?

A stream is an abstraction referring to any flow of data from a
source (or producer) to a sink (or consumer). We also use the syno­
nyms extracting, getting, and fetching when speaking of inputting
characters from a source; and inserting, putting, or storing when
speaking of outputting characters to a sink. Classes are provided
that support console output (constrea.h), memory buffers
(iostream.h), files (fstream.h), and strings (strstrea.h) as sources or
sinks (or both). -

Chapter 76, Using C++ streams 529

The iostream library

530

The streambuf

The iostream library has two parallel families of classes: those
derived from streambuf, and those derived from ios. Both are
low-level classes, each doing a different set of jobs. All stream
classes have at least one of these two classes as a base class.
Access from ios-based classes to streambuf-based classes is
through a pointer.

class The streambuf class provides an interface to physical devices.
streambuf provides underlying methods for buffering and
handling streams when little or no formatting is required. The
member functions of the streambuf family of classes are used by
the ios:-based classes. You can also derive classes from streambuf
for your own functions and libraries. The classes conbuf, filebuf
and strstreambuf are derived from streambuf.

Figure 16.1
Class streambuf and its

derived classes

The ios class
The class ios (and hence any of its derived classes) contains a
pointer to a streambuf. It performs formatted I/O with error­
checking using a streambuf.

An inheritance diagram for all the ios family of classes is found in
Figure 16.2. For example, the ifstream class is derived from the
istream and fstreambase classes, and istrstream is derived from
istream and strstreambase. This diagram is not a simple hier­
archy because of the generous use of multiple inheritance. With
multiple inheritance, a single class can inherit from more than one
base class. (The C++ language provides for virtual inheritance to
avoid multiple declarations.) This means, for example, that all the
members (data and functions) of iostream, istream, ostream,
fstreambase, and ios are part of objects of the fstream class. All
classes in the ios-based tree use a streambuf (or a filebuf or
strstreambuf, which are special cases of a streambuf) as its source
and/or sink.

Turbo C++ User's Guide

Figure 16.2
Class ios and its derived

classes

By accepted practice, the
arrows point from the derived

class to the basfJ class.

Output

c++ programs start with four predefined open streams, declared
as objects of withassign classes as follows:

extern istream_withassign cin;
extern ostream_withassign cout;
extern ostream_withassign cerr;
extern ostream_withassign clog;

II Corresponds to stdin
II Corresponds to stdout
II Corresponds to stderr
II A buffered cerr

ostream_withassign

Stream output is accomplished,with the insertion (or put to) opera­
tor, «. The standard left shift operator, «, is overloaded for out­
put operations. Its left operand is an object of type ostream. Its
right operand is any type for which stream output has been
defined (that is, fundamental types or any types you have over­
loaded it for). For example,

Chapter 76, Using C++ streams 531

532

Fundamental
types

I/O formatting

cout « "Hello!\n";

writes the string "Hello!" to cout (the standard output stream,
normally your screen) followed by a new line.

The « operator associates from left to right and returns a
reference to the ostream object for which it is invoked. This
allows several insertions to be cascaded as follows:

int i = 8;
double d = 2.34;

cout « "i = " « i « ., d = " « d « "\n";

This will write the following to standard output:

i = 8, d = 2.34

The fundamental data types directly supported are char, short,
int, long, char* (treated as a string), float, double, long double,
and void*. Integral types are formatted according to the default
rules for printf() (unless you've changed these rules by setting
various ios flags). For example, the following two output
statements give the same result:

int i;
long 1;
cout·« i « " " « 1;
printf("%d %ld", i, 1);

The pointer (void *) inserter is used to display pointer addresses:

int i;
cout « &i; II display pointer address in hex

Read the description of class ostream (page 554) for other output
functions.

Formatting for both input and output is determined by various
format state flags contained in the class ios. The flags are read and
set with the flags(), setfO, and unsetfO member functions.

Output formatting may also be affected by the use of the fill(),
width(), and precision() member functions of class ios.

The format flags are detailed in class ios, data members, page
548.

Turbo C++ User's Guide

Manipulators

Parameterized manipulators
must be called for each

stream operation.

A simple way to change some of the format variables is to use a
special function-like operator called a manipulator. Manipulators
take a stream reference as an argument and return a reference to
the same stream. You can embed manipulators in a chain of
insertions (or extractions) to alter stream states as a side effect
without actually performing any insertions (or extractions). For
example,

#include <iostream.h>
#include <iomanip.h> II Required for parameterized manipulators.

int main(void) {
int i = 6789, j = 1234, k = 10;

cout « setw(6) « i « j « i « k « j;
cout « "\n";
cout « setw(6) « i « setw(6) « j « setw(6) « k;
return (0) ;
}

Produces this output:

678912346789101234
6789 1234 10

setw() is a parameterized manipulator declared in iomanip.h. Other
parameterized manipulators, setbase(), setfill(), setprecision(),
setiosflagsO and resetiosflags(), work in the same way. To make
use of these, your program must include iomanip.h. You can
write your own manipulators without parameters:

#include <iostream.h>

II Tab and prefix the output with a dollar sign.
ostream& money(ostream& output) {

return output « "\t$";
}

int main (void) {
float owed = 1.35, earned = 23.1;
cout « money « owed « money « earned;
return(O);
}

produces the following output:

$1.35 $23.1

Chapter 76, Using C++ streams 533

534

Table 16.1
Stream manipulators

Filling and
pa·dding

The non-parameterized manipulators dec, hex, and oct (declared
in iostream.h) take no arguments and simply change the
conversion base (and leave it changed):

int i = 36;
cout « dec « i « " " « hex «'i « " " « oct « i « endl;
cout «dec; II Must reset to use decimal base.
II displays 36 24 44

Manipulator

dec
hex
oct
ws
endl
ends
flush
setbase(int n)

resetiosflags(long j)
setiosflags(long j)
setfill(int c)
setprecision(int n)
setw(int n)

Action

Set decimal conversion base format flag.
Set hexadecimal conversion base format flag.
Set octal conversion base format flag.
Extract whitespace characters.
Insert newline and flush stream.
Insert terminal null in string.
Flush an ostream.
Set conversion base format to base n (0,8,10, or
16).0 means the default: decimal on output,
ANSI C rules for literal integers on input.
Clear the format bits specified by f.
Set the format bits specified by f.
Set the fill character to c.
Set the floating-point precision to n.
Set field width to n.

The manipulator endl inserts a newline character and flushes the
stream. You can also the flush an ostream at any time with

ostream « flush;

The fill character and the direction of the padding depend on the
setting of the fill character and the left, right, and internal flags.

The default fill character is a space. You can vary this by using the
function fillO:

int i = 123;
cout. fill (, *,) ;
cout.width(6);
cout « i; II display ***123

The default direction of padding gives right-justification (pad on
the left). You can vary these defaults (and other format flags) with
the functions setfO and unsetfO:

int i = 56;

Turbo C++ User's Guide

Input

cout.width(6);
cout.fill('#') ;
cout.setf(ios::left,ios: :adjustfield);
cout « i; . / / display 56####

The second argument, ios::adjustfield, tells setfO which bits to set.
The first argument, ios::left, tells setfO what to set those bits to.
Alternatively, you can use the manipulators setfillO, setiosflagsO,
and resetiosflagsO to modify the fill character and padding
mode. See ios data members on page 547 for a list of masks used
by setfO.

Stream input is similar to output but uses the overloaded right
shift operator, », known as the extraction (get from) operator, or
extractor. The left operand of» is an object of type class istream.
As with output, the right operand can be of any type for whjch
stream input has been defined.

By default,» skips whitespace (as defined by the isspaceO func­
tion in ctype.h), then reads in characters appropriate to the type of
the input object. Whitespace skipping is controlled by the
ios: :skipws flag in the format state's enumeration. The skipws flag
is normally set to give whitespace skipping. Clearing this flag
(with setfO, for example) turns off whitespace skipping. There is
also a special usink" manipulator, WS, that lets you discard
whitespace.

Consider the following example:

int i;
double d;
cin » i » d;

When the last line is executed, the program skips any leading
whitespace. The integer value (i) is then read. Any whitespace
following the iriteger is ignored. Finally, the floating-point value
(d) is read.

For type char (signed or unsigned), the effect of the» operator is
to skip whitespace and store the next (non-whitespace) character.
If you need to read the next character,whether it is whitespace or
not, you can use one of the getO member functions (see the
discussion ofistream, beginning on page 551).

Chapter 76, Using C++ streams 535

For type char* (treated as a string), the effect of the »operator is
to skip whitespace and store the next (non-whitespace) characters
until another whitespace character is found. A final null character
is then appended. Care is needed to avoid II overflowing" a string.
You can alter the default width of zero (meaning no limit) using
width() as follows:

char array[SIZE]i
cin.width(sizeof(array)) i
cin » arraYi II Avoids overflow.

For all input of fundamental types, if only whitespace is encoun­
tered nothing is stored in the target, and the istream state is set to
fail. The target will retain its previous value; if it was uninitial­
ized, it remains uninitialized.

I/O of user-defined types

536

To input or output your own defined types, you must overload
the extraction and insertion operators. Here is an example:

#include <iostream.h>

struct info {
char *namei
double val i
char *units;
};

II You can overload « for output as follows:
ostream& operator « (ostream& s, info&m) {

s « m.name « " " « m.val « 11 " « m.units;
return S;
}i

II You can overload » for input as follows:
istream& operator » (istream& s, info& m) {

s » m.name » m.val » m.units;
return Si

}i

int main (void)
info Xi

x.name = new char[15]i
x.units = new char[lO];

cout « "\nlnput name, value and units:"i
cin » X;

cout « "\nMy input: 11 « Xi

Turbo C++ User's Guide

Simple file I/O

return(O);
}

The class of stream inherits the insertion operations from ostream,
while ifstream inherits the extraction operations from istream.
The file-stream classes also provide constructors and member
functions for creating files and handling file I/O. You must
include fstream.h in all programs using these classes.

Consider the following example that copies the file FILE.IN to the
file FILE.OUT:

#include <fstream.h>

int I)lain(void) {
char Chi
ifstream fl("FILE.IN");
of stream f2 ("FILE.OUT");

if (! fl) cerr « "Cannot open FILE. IN for input";
if (!f2) cerr « "Cannot open FILE.OUT for output";
while (f2 && fl.get(ch))

f2 .put (ch) ;
return(O);
}

Note that if the ifstream or ofstream constructors are unable to
open the specified files, the appropriate stream error state is set.

The constructors allow you to declare a file stream without speci­
fying a named file. Later, you can associate the file stream with a
particular file:

of stream ofile; II creates output file stream

ofile. open ("payroll") ; I I ofile connects to file "payroll"
II do some payrolling ...

ofile.c1ose() ; II close the ofile stream
ofile.open("employee") i II ofile can be reused ...

By default, files are opened in text mode. This-means that on in­
put, carriage~retum/linefeed sequences are converted to the ~\n'
character. On output, the ~\n' character is converted to a carriage­
retum/linefeed sequence. These translations are not done in
binary mode. The file-opening mode is set with an optional

Chapter 16, Using C++ streams 537

second parameter to the openO function or in some constructors.
The file opening-mode constants can be used alone or they can be
logically ORed together. See class ios, data members, on page
548.

String stream processing

538

The functions defined in strstrea.h support in-memory formatting,
similar to ss.canfO and sprintfO, but much more flexible. All of the
istream member functions are available for class istrstream
(input string stream); likewise for output: ostrstream inherits from
ostream.

Given a text file with the following format:

101 191 Cedar Chest
102.1999.99 Livingroom Set

Each line can be parsed into three components: an integer ID, a
floating-point price, and a description. The output produced is:

1: 101 191.00 Cedar Chest
2: 102 1999.99 Livingroom Set

Here is the program:

#include <fstream.h>
#include <strstrea.h>
#include <iomanip.h>
#include <string.h>

int main(int argc, char **argv)
int id;
fl oa t amount;
char description[41];
ifstream.inf(argv[l]);

if (inf) {
char inbuf [81] ;
int lineno = 0;

/1 Want floats to print as fixed point
cout.setf(ios::fixed, ios::floatfield);

/1 Want floats to always have decimal point
cout. setf (ios:.: showpoint) ;

while (inf. get line (inbuC81)) {
// 'ins' is the string stream:
istrstream ins(inbuf,strlen(inbuf));

Turbo C++ User's Guide

ins » id » amount » ws;
ins.getline(description,41); II Linefeed not copied.
cout « ttlineno « ": "

« id « '\t'
« setprecision(2) « amount « '\t'
« description« "\n";

return(O);

Note the use of format flags and manipulators in this example.
The calls to setf() coupled with setprecisionO allow floating-point
numbers to be printed in a money format. The manipulator ws
skips whitespace before the description string is read.

Screen output streams

The class· con stream, derived from ostream and defined in
constrea.h, provides the functionality of conio.h for use with C++
streams. This allows you to create output streams that write to
specified areas of the screen, in specified colors, and at specific
locations.

Console stream manipulators are provided to facilitate formatting
of console streams. These manipulators work in the sameway as
the corresponding function provided by conio.h. For a detailed
description of the manipulators' behavior and valid arguments,
see online Help.

Chapter 76, Using C++ streams 539

Table 16.2
Console stream manipulators

Typical use of parameterized
manipulators.

You can create multiple
constreams, each writing to

its own portion of the screen.
Then, you can output to any

of them without having to
reset the window each time.

540

Manipulator conio function

clreol clreol

delline delline

highvideo highvideo

insline insline

lowvideo lowvideo

normvideo normvideo

setattr(int) textattr
setbk(int) textcolor
setclr(int) textcolor
setcrstype(int) _setcursortype
setxy(int, int) gotoxy

#include <constrea.h>

int main(void) {
constream winl;

Action

Clears to end of line in text
window.
Deletes line in the text
window.
Selects high-intensity
characters.
Inserts a blank line in the
text window.
Selects low-intensity
characters.
Selects normal-intensity.
characters.
Sets screen attributes.
Sets new character color.
Set the color.
Selects cursor appearance.
Positions the cursor at the
specified position.

winl.window(l, 1, 40, 20); II Initialize the desired space.
winl.clrscr(); II Clear this rectangle.

II Use the parameterized manipulator to set screen attributes.
winl «setattr((BLUE«4) I WHITE)

« "This text is white on blue.";

II Use this parameterized manipulator to specify output area .
. winl « setxy (10, 10)

« "This text is in the middle of the window.";
return(O) ;
}

#include <constrea.h>

int main(void) {
constream demo1, dem02;

demol.window(1, 2, 40, 10);
dem02.window(1, 12, 40, 20);

demol.elrscr();
dem02 . elrscr () ;

demol « "Text in first window" « endl;
dem02 « "Text in second window" « endl;

Turbo C++ User's Guide

dernol « "Back to the first window" « endli
derno2 « "And back to the second window" « endli
return(O) i

}

Stream class reference

conbuf

The stream class library in C++ consists of several classes. This
reference presents some of the most useful details of these classes,
in alphabetical organization. The following cross-reference lists
tell which classes belong to which header files.

constrea.h:

iostream.h:

fstream.h:

strstrea.h:

conb~f, constream

ios, iostream, iostream_withassign, istream,
istream_ withassign, ostream,
ostream_withassign, streambuf.

filebuf, fstream, fstreambase, ifstream,
of stream.

istrstream, ostrstream, strstream,
strstreambase, strstreambuf.

<constrea.h>

Specializes streambuf to handle console output.

constructor conbuf ()

Member
functions

Makes an unattached conbuf.

clreol void clreol ()

Clears to end of line in text window.

clrscr void clrscr ()

Clears the defined screen.

delline void delline ()

Deletes a line in the window.

Chapter 76, USing C++ streams 541

conbuf

gotoxy void gotoxy(int x, int y)

Positions the cursor in the window at the specified location.

highvideo void highvideo ()

Selects high-intensity characters.

insline void insline ()

Inserts a blank line.

lowvideo void lowvideo ()

Selects low-intensity characters.

normvideo void normvideo ()

Selects normal-intensity characters.

overflow virtual int overflow (int = EOF)

Flushes the conbuf to its destination.

setcursortype void setcursortype (int cur_type)

Selects the cursor appearance ..

textaHr void textattr (int newattribute)

Selects cursor appearance.

textbackground void textbackground (int newcolor)

Selects the text background color.

textcolor void text color (int newcolor)

Selects character color in text mode.

textmode static void textmode (int newmode)

Puts the screen in text mode.

wherex int wherex ()

Gets the horizontal cursor position.

wherey int wherey ()

Gets the vertical cursor position.

window void window(int left, int top, int right, int bottom)

Defines the active window.

542 Turbo C++ User's Guide

constream

constream <constrea. h>

Provides console output streams. This class is derived from ostream.

constructor constream ()

Member
functions

Provides an unattached output stream to the console.

. clrscr void clrscr ()

Clears the screen.

rdbuf conbuf *rdbuf ()

Returns a pointer to this constream's assigned conbuf.

textmode void textmode(int newmode)

Puts the screen in text mode.

window void window(int left, int top, int right, int bottom)

Defines the active window.

filebuf <fstrea m. h>

Specializes streambuf to handle files.

constructor f i 1 ebu f () i

Makes a filebuf that isn't attached to a file.

constructor filebuf (int fd) i

Makes a filebuf attached to a file as specified by file descriptor fd.

constructor filebuf (int fd, char *, lnt n) i

Makes a filebuf attached to a file and uses a specified n-character buffer.

Data
members

openprot static const int openprot

Chapter 76, Using C++ streams 543

filebu'

544

The default file protection. The exact value of openprot should not be of
interest to the user. Its purpose is to set the file permissions to read and

Member
functions

write. .

aHach filebuf* attach(int)

Attaches this closed filebuf to opened file descriptor.

close filebuf* close()

Flushes and closes the file. Returns 0 on error.

fd int fd()

Returns the file descriptor or EOF.

is_open int is_open () ;

Returns nonzero if the file is open.

open filebuf* open(const char *name, int mode, int prot = filebuf: :openprot);

Opens the file specified by name and connects to it. The file-opening mode
is specified by mode.

overflow virtual int overflow(int = EOF);

Flushes a buffer to its destination. Every derived class should define the
actions to be taken.

seekoff virtual streampos seekoff (streamoff, ios:: seek_dir, int);

Moves the file pointer relative to the current position.

setbuf virtual streambuf* setbuf(char*, inti;

Specifies a buffer for this filebuf.

sync virtual int sync();

Establishes consistency between internal data structures and the external
stream representation.

underflow virtual int underflow () ;

Makes input available. This is called when no more data exists in the
input buffer. Every derived class should define the actions to be taken.

Turbo C++ User's Guide

fstream

fstream <fstream,h>

This stream class, derived from fstreamb~se and iostream, provides for
simultaneous input and output on a filebuf.

constructor fstream() i

Makes an fstream that isn't attached to a file.

constructor fstream(const char *name, int mode, int prot = filebuf: :openprot) i

Makes an fstream, opens a file, and connects to it.

constructor fstream (int fd);

Makes an fstream, connects to an open file descriptor specified by fd.

constructor fstream(int fd, char *buf, int buClen);

Member
functions

Makes an fstream connected to an open file handle specified by fd.

open void open(const char *name, int mode = ios::in, int prot =
filebuf::openprot);

. Opens a fil~ specified by name for an fstream.'The file-opening mode is
specified by the variable mode.

rdbuf filebuf* rdbuf () i

Returns the filebuf used.

fstreambase <fstream.h>

This stream class, derived fromios, provides operations common to file
streams. It serves as a base for fstream, ifstream, and of stream.

constructor fstreambase () ;

Makes an fstreambase that isn't attached to a file.

constructor fstreambase (const char *, int mode, int = filebuf: :openprot) i

Makes an fstreambase, opens a file in mode specified by mode, and
connects to it.

constructor fstreambase (int fd) i

Chapter 76, Using C++ streams 545

tslreambase

Makes an fstreambase, connects to an open file descriptor specified by fd.

constructor fstreambase (int fd, char * buf, int len);

Makes an fstreambase connected to an open file descriptor specified by
fd. The buffer is specified by buf and the buffer size is len.

Member
functions

ifstream

attach void attach (int) ;

Connects to an open file descriptor.

close void close();

Closes the associated filebuf and file.

open void open(const char *name, int mode, int prot = filebuf: :openprot);

Opens a file for an fstreambase.· The file-opening mode is specified by
mode.

rdbuf filebuf* rdbuf () ;

Returns the filebuf used.

setbuf void setbuf (char*, int);

Uses a specified buffer.

<fstream.h>

This stream class, derived from fstreambase and istream, provides input
operations on a filebuf.

con~tructor ifstrearn () ;

Makes an ifstream that isn't attached to a file.

constructor ifstrearn(const char *name, int mode = ios: :in, int = filebuf: :openprot);

Makes an ifstream, opens a file for input in protected mode, and connects
to it. The existing file contents are preserved; new writes are appended.

constructor· ifstrearn(int fd);

Makes an ifstream, connects to an open file descriptor fd.

constructor ifstrearn (int fd, char * buf, int buClen);

546 Turbo C++ User's Guide

ios

Member
functions

ifstream

Makes an ifstream connected to an open file. The file is specified by its
descriptor, fd. The uses the buffer specified by buf of length buf_len.

open void open (canst char* I int lint = filebuf:: openprot) ;

Opens a file for an ifstream.

rdbuf filebuf* rdbuf () ;

Returns the filebuf used.

<iostream. h>

Provides operations common to both, input and output. Its derived
classes (istream, ostream, iostream) specialize I/O with high-level
formatting operations. The ios class is a base for istream, ostream,
fstreambase, and strstreambase.

constructor i as () ; protected

Constructs an ios object that has no corresponding streambuf.

constructor ios (strearnbuf .*) ;

Data
members

Associates a given streambuf with the stream.

The three following constants are used as the second parameter of the
setfO function.

static canst long adjustfield; / / left I right I internal
static canst long basefield; / / dec I oct I hex
static canst long floatfield; / / scientific I fixed

strearnbuf *bp; / / the associated streambuf protected
int x_fill; / / padding character on

/ / output protected
long x_flags; / / formatting flag bits protected
int xJ)recision; / / floating-point precision on

/ / output protected

Chapter 76, Using C++ streams 547

ios

548

int

ostream
int

state:

*x_tie:
x_width:

/ / current state of the
/ / streambuf

/ / the tied ostream, if any
/ / field width on output

protected
protected
protected

Stream seek direction.
enum seek_dir { beg=O I cur=l, end=2 };

Stream operation mode. These may be logically OReq..
enum open_mode {

} :

app,
ate,
in,
out,'
binary,
trunc,

nocreate,
noreplace,

Append data-always write at end of file.
Seek to end of file upon original open.
Open for input (default for ifstreams).
Open for output (default for of streams).
Open file in binary mode.
Discard contents if file exists (default if out is specified
and neither ate nor app is specified).
If file does not exist, open() fails.
If file exists, open() for output fails unless ate or app is
set.

Format flags used with flags(), setf(), and unsetfO member functions.

enUm {

} :

skipws,
left,
right,
internal,
dec,
oct,
hex,
showbase,
showpoint,
uppercase,
showpos,
scientific,

fixed,
unitbuf,
stdio,

Skip whitespace on input.
Left-adjust output.
Right-adjust output.
Pad after sign or base indicator.
Decimal conversion.
Octal conversion.
Hexadecimal conversion.
Show base indicator on output.
Show decimal point for floating-point output.
Uppercase hex output:
Show' 1+' with positive integers.
Suffix floating;:.point numbers with exponential (E)
notation on output.
Use fixed decimal point for floating-point numbers.
Flush all streams after insertion.
Flush stdout,' stderr after insertion.

Turbo C++ User's Guide

Member
functions

bad int bad() i

Nonzero if error occurred.

bitalloc static long bitalloc () i

ios

Acquires a new flag bit set. The return value may be used to set, clear, and
test the flag. This is for user-defined formatting flags.

clear void clear (int = 0) i

Sets the stream state to the given value.

eof int eof () i

Nonzero on end of file.

fail int fail () i

Nonzero if an operation failed.

fill char fill ()

Returns the current fill character.

fill char fill (char) i

Resets the fill character; returns the previous one.

flags long flags () i

Returns the current format flags.

flags long flags (long) i

Sets the format flags to be identical to the given long; returns previous
flags. Use flags(O) to set the default format.

good int good () i

Nonzero if no state bits set (that is, no errors appeared).

init void ini t (streambuf *) i protected

Provides the actual initialization.

precision int precision () i

Returns the current floating-point precision.

precision int precision (int) i

Chapter 76, Using C++ streams 549

ios

Sets the floating-point precision; returns previous setting.

rdbuf streambuf* rdbuf () ;

Returns a pointer to this stream's assign~d streambuf.

rdstate int rdstate();

Returns the stream state.

setf . long setf (long) ;

Sets the flags corresponding to those marked in the given long; returns
previous settings.

setf long setf (long _setbits, long _field);

The bits corresponding to those marked in -field are cleared, and then
reset to be those marked in _setbits.

setstate protected:void setstate(int);

Sets all status bits.

sync_with_stdio static void sync_with_stdio () ;

Mixes stdio files and iostreams. This should not be used for new code.

tie ostrearn* tie () ;

Returns the tied stream, or zero if none. Tied streams are those that are
co:nnected such that vJhen one is used, the other is affected. For example,
cin and cout are tied; when cin is used, it flushes cout first.

tie ostrearn* tie (ostrearn*) ;

Ties another stream to this one and returns the previously tied stream, if
any. When an input stream has characters to be consumed, or if an output
stream needs more characters, the tied stream is first flushed automati­
cally. By default, cin, cerr and clog are tied to cout.

unsetf long unsetf (long) i

Clears the bits corresponding to those marked in the given long; returns
previous settings.

width int width () ;

Returns the current width setting.

width int width (int) ;

Sets the width as given; returns the previous width.

xalloc static int xalloc () ;

550 Turbo C++ User's Guide

iostream

iostream

Returns an array index of previously unused words that can be used as
user-defined formatting flags.

<iostream.h>

This class, derived from istream and ostream, is simply a mixture of its
base classes, allowing both input and output on a stream. It is a base for
fstream and strstream.

constructor iostream (streambuf *);

Associates a given streambuf with the stream.

iostream_ withassign <iostream.h>

This class is an iostream with an.added assignment operator.

constructor iostream_wi thassign () ;

Member
functions

Default constructor (calls iostream's constructor).

None (although the = operator is overloaded).

istream <iostream.h>

Provides formatted and unformatted input from a streambuf. The »
operator is overloaded for all fundamental types, as explained in the
narrative at the beginning of the chapter. This ios class is a base for
ifstream, iostream, istrstream, and istream_withassign.

constructor istream(streambuf *);

Member
functions

Associates a given streambuf with the stream.

eatwhite void eatwhi te () ; protected

Extract consecutive whitespace.

Chapter 76, Using C++ streams 551

istream

552

gcount int gcount () ;

Returns the number of characters last extracted.

get int get () ;

Extracts the next character or EOF.

get istream& get (signed char*, int len, char = '\n');
istream& get (unsigned char*, int len, char = '\n');

Extracts characters into the given char * until the delimiter (third
parameter) or end-of-file is encountered, or until (len -1) bytes have been
read. A terminating null is alw'ays placed in the output string; the
delimiter never is. The delimiter remains in the stream. Fails only if no
characters were extracted.

get istream& get (signed char&);
istream& get (unsigned char&);

Extracts a single character into the given character reference.

get istream& get (streambuf&, char = '\n');

Extracts characters into the given streambuf until t~e delimiter is
encountered.

getline istream& getline(signed char *buffer, int, char = '\n');
istream& getline(unsigned char *buffer, int, char = '\n');

Same as get, except the delimiter is also extracted. The delimiter is not
copied to buffer.

ignore istream& ignore (int n = 1, int delim = EOF);

Causes up to n characters in the input stream to be skipped; stopsif delim
is encountered.

peek int peek () ;

Returns next char without extraction.

putback istream& putback(char);

Pushes back a character into the stream.

read istream& read (signed char*, int);
istream& read(unsignedchar*, int);

Extracts a given number of characters into an array. Use gcount() for the
number of characters actually extracted if an error occurred.

Turbo C++ User's Guide

istream

seekg istream& seekg(streampos);

Moves to an absolute position (as returned from tellg).

seekg istream& seekg (streamoff, seek_dir);

Moves to a position relative to the current position, following the
definition: enum seek_dir {beg, cur, end};

tellg streampos tellg () ;

Returns the current stream position.

istream_ withassign <iostream.h>

This class is an istreamwith an added assignment operator.

constructor istream_wi thassign () ;

Member
functions

Default constructor (calls istream's constructor).

None (although the = operator is overloaded).

istrstream <strstrea. h>

Provides input operations on a strstreambuf. This class is derived from
strstreambase and istream.

constructor istrstream(char *);

Makes an istrstreamwith a specified string (a null character is never
extracted).

constructor istrstream (char *, int n);

Makes an istrstream using up to n bytes of a specified string.

ofstream <fstream.h>

Provides input operations on a filebuf. This class is derived from
fstreambase and ostream.

Chapter· 76, Using C++ streams 553

ofstream

constructor of stream () i

Makes an of stream that isn't attached to a file.

constructor ofstream(const char *name, int mode = 109: :out, int prot =
filebuf::openprot)i

Makes an ofstream, opens a file, and connects to it.

constructor ofstream(int fd) i

Makes an of stream, connects to an open file descriptor specified by fd.

constructor ofstream(int fd, char *buf, int len) i

Makes an ofstream connected to an open file descriptor specified by fd.
The buffer specifi~d by buf of len is used by the of stream.

Member
functions

ostream

open void open(const char*, int = ios: :out, int = filebuf: :openprot) i

Opens a file for an of stream.

rdbuf filebuf* rdbuf () i

Returns the filebuf used.

<iostream.h>

Provides formatted and unformatted output to a streambuf. The «
operator is overloaded for all fundamental types, as explained on page
531. This ios-based class is a base for constream, iostream, of stream,
ostrstream, and ostream_withassign.

constructor ostream (streambuf *) i

Member
functions

Associates a given streambuf with the stream.

flush ostream& flush() i

Flushes the stream.

put ostream&-put(char)i

554 Turbo C++ User's Guide

ostream

Inserts the character.

seekp ostrearn& seekp (strearnpos) ;

Moves to an absolute position (as returned from tellp).

seekp ostrearn& seekp (strearnoff, seek_dir);

Moves to a position relative to the current position, following the
definition: enum seek_dir {beg, cur, end};

tellp strearnpos tellp () ;

Returns the current stream position.

write ostrearn& write (const signed char*, int n);

ostrearn& write(const unsigned char*, int n);

Inserts n characters (nulls included).

ostream_ withassign <iostream. h>

This class is an ostream with an added assignment operator.

constructor ostrearn_withassign () ;

Member
functions

ostrstream

Default constructor (calls ostream's constructor).

None (although the = operator is overloaded).

<strstrea. h>

Provides output operations on a strstreambuf. This class is derived from
strstreambase and ostream.

constructor ostrstrearn () ;

Makes a dynamic ostrstream.

constructor ostrstrearn(char *buf, int len, int mode = ios: :out);

Makes a ostrstream with a specified len-byte buffer. If·the file-opening
mode is ios::app or ios::ate, the get/put pointer is positioned at the null
character of the string.

Chapter 76, Using C++ streams 555

ostrstream

. Member
functions

pcount int pcount () ;

Returns the number of bytes currently stored in the buffer.

str char *str () ;

Returns and freezes the buffer. You must deallocate it if it was dynamic.

streambuf <iostream.h>

constructor

constructor

Member
functions

allocate

base

bien

eback

ebut

egptr

556

This is a buffer-handling class. Your applications gain access to buffers
and buffering functions through a pointer to streambuf that is set by ios.
streambuf is a base for filebuf and strstreambuf.

streambuf () ;

Creates an empty buffer object.

streambuf(char *, inti;

Uses the given array and size as the buffer.

int allocate () ; protected

Sets up a buffer area.

char *base(); protected

Returns the start of the buffer area.

int blen(); protected

Returns the length of buffer area.

char *eback(); protected

Returns the base of putback section of get area.

char *ebuf(); protected

Returns the end + 1 of the buffer area.

char *egptr(); protected

Turbo C++ User~ Guide

streambuf

Returns the end+ 1 of the get area.

epptr char *epptr()i

Returns the end + 1 of the put area.

gbump void gbump(int) ;

Advances the get pointer.

gptr char *gptr () ;

Returns the next location in get area.

in_avail int in_avail();

Returns the number of characters remaining in the input buffer.

ouCwoiting int out_waiting() i

Returns the number of characters remaining in the output buffer.

protected

protected

protected

pbose char *pbase () i protected

Returns the start of put area.

pbump void pbump (int) i

Advances the put pointer.

pptr char *pptr () i

Returns the next location in put area.

sbumpc int sbumpc () i

protected

protected

Returns the current character from the input buffer, then advances.

seekoff virtual streampos seekoff (streamoff, ios:: seek_dir,
int = (ios::in I ios: :out)i

Moves the get or put pointer (the third argument determines which one or
both) relative to the current position.

seekpos virtual streampos seekpos (streampos, int = (ios:: in I ios:: out)) i

Moves the get or put pointer to an absolute position.

setb void setb(char *, char *, int, = 0)i

Sets the buffer area.

protected

setbuf virtual streambuf* setbuf(signed char *, int)i
streambuf* setbuf(unsigned'char *, int)i

Connects to a given buffer.

Chapter 76, Using C++ streams 557

streambuf

setg void setg(char *, char *, char *);

Initializes the get pointers.

setp void setp(char *, char *);

Initializes the put pointers.

sgetc int sgetc () ;

Peeks at the next character in the input buffer.

sgetn int sgetn (char*, int n);

Gets the next n characters from the input buffer.

snextc . int snextc () ;

protected

protected

Advances to and returns the next character from the input buffer.

sputbackc int sputbackc (char) ;

Returns a character to input.

sputc int sputc (int) ;

Puts one character into the output buffer.

sputn int sputn (const char*, int n);

Puts n characters into the output buffer.

stossc void stossc () ;

Advances to the next character in the input buffer.

unbuffered void unbuffered(int);

Sets the buffering state.

unbuffered int unbuffered ();

Returns non-zero if not buffered.

protected

protected

strstreambase <strstrea.h>

558

Specializes ios to string streams. This class is entirely protected except for
the member function strstreambase::rdbuf(). This class is a base for
strstream, istrstream, and ostrstream.

constructor strstrearnbase () ; protected

Makes an emptY strstreambase.

Turbo C++ User's Guide

strstreambase

constructor strstreambase(char *, int, char *start); protected

Member
functions

Makes an strstreambase with a specified buffer and starting position.

rdbuf strstreambuf * rdbuf () ;

Returns a pointer to the strstreambuf associated with this object.

strstreambuf <strstrea. h>

Specializes streambuf for in-memory formatting.

constructorstrstreambuf () ;

Makes a dynamic strstreambuf. Memory will be dynamically allocated as
needed.

constructor strstreambuf (void * (*) (long), void (*) (void *));

Makes a dynamic buffer with specified allocation and free functions.

constructor strstreambuf (int n);

Makes a dynamic strstreambuf, initially allocating a buffer of at least n
bytes.

constructor strstreambuf(signed char *, int, signed char *strt = 0);
strstreambuf(unsigned char *, int, unsigned char *strt = 0);

Member
functions

Makes a static strstreambuf with a specified buffer. If strt is not null, it
delimits the buffer. .

doallocate virtual int doallocate () ;

Performs low-level buffer allocation.

freeze void freeze (int = 1);

If the input parameter is nonzero, disallows storing any characters in the
buffer. Unfreeze by passing a zero.

overflow virtual int overflow(int);

Chapter 76, Using C++ streams 559

strstreambuf

Flushes a buffer to its destination. Every derived class should define the
actions to be taken.

seekoff virtual streampos seekoff(streamoff, ios::seek_dir, int)i

Moves the pointer relative to the current position.

setbuf virtual streambuf * setbuf (char*, lnt);

Specifies the buffer to use.

str char *str () i' .

Returns a pointer to the buffer and freezes it.

sync virtual int sync();

Establishes consistency between internal data structures and the external
stream representation.

underflow virtual int underflow () ;

Makes input available. This is called when a character is requested and
the strstreambuf is empty. Every derived class should define the actions to
be taken.

strstream <strstrea. h>

560

Provides for simultaneous input and output on a strstreambuf. This class
is derived from strstreambase andiostream.

constructor strstream () i

Makes a dynamic strstream.

constructor strstream (char*, int sz, int mode);

Member
function

Makes a strstream with a specified sz-byte buffer. If mode is ios: :app or
ios::ate, the get/put pointer is positioned at the null character of the
string.

str char *stt () i

Returns and freezes the buffer. The user must deallocate it if it was
9-ynamic.

Turbo C++ User's Guide

c H A p T E R

17

Converting from Microsoft C

If you're an experienced C or C++ programmer, but the Turbo
C++ programming environment is new to you, then you should
read this chapter before you do anything else. We appreciate that
you want to b,e up and runriing fast with a new piece of software,
and we know that you want to spend as little time as possible
reading the manual. However, the time you spend reading this
chapter will probably save you a lot of time later. Please read on.

Environment and tools

You can find out more about
configuration and project

files in Chapters 2 and 7

The Turbo C++ IDE (integrated development environment) is
roughly the equivalent of the Programmer's Workbench, although
naturally we think you'll find the IDE much easier to use.

The IDE loads its settings from two files: TCCONFIG.TC, the
default configuration file, and a project file (.PRJ). TCCONFIG.TC
contains general environmental information. The current project
file contains information more specific to the application you're
building.

A project is the IDE's equivalent of a makefile. It includes the list
of files to be built, as well as settings for the IDE options that
control the compilation and linkage of that program. If you don't
specify a project file when you start the IDE, a nameless project is
opened and set with default compiler and linker options, but no
file name list.

Chapter 77, Converting from Microsoft C 561

Paths for .h and
.LlB files

Remember that even if you
haven't opened a project,

Turbo C++ will store the paths
in its default project file.

562

Unlike Microsoft C, however, Turbo C++ does not automatically
create and run a makefile based on settings and file names that
you give it in the project. If you want to use the IDE to set up a
project, but use MAKE to do the actual build, then you can use
the PRJ2MAK utility ~o convert a project file to a makefile.

The following sections describe the significant differences be­
tween Turbo C++'s MAKE, Project Manager, linker (TLINK), and
command-line compiler (TCC) and Microsoft C's NMAKE, LINK,
and CL.

Microsoft C works with two environment variables, LIB and
INCLUDE. The Microsoft linker uses the LIB variable to discover
the location of the run-time libraries; similarly, INCLUDE is used
to find standard header files. Turbo C++ does not use environ­
ment variables to store the path for the library or include files.
Instead, you can easily set these paths in the IDE using the envi­
ronment options. If you are working with the command-line
compiler or the linker, you can use command-line options or
configuration files. -

When you install Turbo C++, you are asked to set paths for
include files and library files. Those paths. are then the default
paths in the IDE. The include and library files paths are also
written to the default command-line compiler configuration file
TURBOC.CFG. The library path is written to the default stand­
alone linker configuration file TLINK.CFG.

In the IDE, reset default search paths for libraries and header files
with the Options I Directories command. The settings in the
Directories dialog box become a part of the current project.

For the command-line compiler, you can reset the search path for
include and library files with the -I and -L options, respectively.
These options can also be reset in the configuration file for the
command-line compiler, TURBOC.CFG.

The linker can use the IL ~ption to change search paths for
libraries and initialization code (like COS.OBJ, the startup code for
the small memory model). For instance, the option

/LC:\TC\LIBiC:\APPS\LIB

tells the linker to look in the two paths named for library and
initialization files.

Turbo C++ User's Guide

MAKE

You can also create a TLINK.CFG file. TLINK.CFG is a regular
text file that contains a list of valid TLINK options.

New! The version of MAKE supplied with Turbo C++ 3.0 contains
many new features, some of which are designed to increase
compatibility with Microsoft's NMAKE. The new command-line
switch -N turns on full NMAKE compatibility. See Chapter 9 for
more information on MAKE's options. The following list
summarizes the differences between MAKE and NMAKE.

Command-line

• NMAKE supports response files but MAKE doesn't.

• In NMAKE, you must surround strings to be compared with
quotes. MAKE doesn't have this requirement; as long as the
string to be compared doesn't contain spaces, you can compare
them without quotes.

• NMAKE predefines several implicit rules; MAKE doesn't.
However, the BUILTINS.MAK file contains several implicit
rules that you can use without specifying them in the makefile.

compiler The following table lists comparable TCC and CLcommand-line
compiler options. If an option is in one product, but not the other,
it is omitted. Some of the CPP (standalone preprocessor) options
are listed. In many multi-pass compilers, a separate pass performs
the work of the preprocessor, and the results of the pass can be
examined. Since Turbo C++ uses an integrated single-pass
compiler, we provide the standalone utility CPP to supply the
first-pass functionality found in other compilers.

Note that most CL options that take arguments allow for a space
between the option and the argument. TCC options that take
arguments are usually immediately followed by the argument or
list.

Chapter 77, Converting from Microsoft C 563

Table 17.1: CL and TCC options compared

Microsoft C
CL option

(See /Zpn)
(See /Zpn)
lAx

IC
Ic
IDid
IDicl=value
IE
IEP
IF hexnum

(By default)
(By default)
IFa [/istfi/e]
IFe exefile
IFm [mapfile]

IFo objfi/e
IFPc

IFPi

IFPi87

IGO
IG1
IG2
IGc

IGd
IGe
IGs
IGt [number]
By default
IH number
IHELP

II directory

IJ

llink options
IMAoption
IN Ddataseg

564

Turbo C++
TCC option

-a
-a-
-mx

-C
-c
-Dname
.... Dname=string
CPP-P
CPP-P-
(See note)

-Fc
-Fs
-5
-eexefile
-M

-oobjfile
(default)

-1

-187 or -1287

-1
-1-
-2
-p

-p-
-N
-N-
-Ff[=size]
-h
-inumber
TCC

-I path

-K

-I options
-Toption
-zRname

What it does

Align word.
Align byte (default).
Use memory model x. For TCC, following t, s, or m with! tells
compiler to assume DS != SS.
Nested comments on.
Compile to .OBJ but do not link.
Define name to the string consisting of the null character.
Defines name to string.
Preprocess source to standard output, include line numbers.
Preprocess source to standard output, without line numbers.
Sets stack size to hexnum bytes (hexnum must be hexadecimal). In
Turbo C++ code, initialize the global variable _stklen.
Generates COMDEFs.
Make DS == SS for all memory models.
Create assembly listing. Name for list file defaults to Source.ASM.
exefile names executable file.
Creates map file. Name defaults to Source. MAP, where source is the
first source file specified.
objfile names object file.
Emulate floating point (default for Turbo C++); coprocessor used if
present at run time).
Inlines 80x87 instructions; selects emulator library (coprocessor used
if present at run time).
Inlines 80x87 instructions; chooses coprocessor library (coprocessor
must be present at run time).
Generate 80186 instructions.
Generate 8088/8086 instructions (default).
Generate 80286 protected-mode compatible instructions.
Use Pascal calling convention. For CL, this is Pascal or FORTRAN,
but currently same calling convention.
Standard C calling conventions (default).
Check for stack overflow. (Default for CL, but not for TCC).
Turn off checking for stack overflow. (Off by default for TCe.)
Creates far variables automatically; size or number is threshold.
Use fast huge pointer arithmetic.
Restricts length of external names to number.
Calls QuickHelp. For Help on TCC, simply invoke without options
or load THELP.
Directories for include files. For CL, adds directory to the beginning
of include file search directory list. See page 562.
Changes default for char from signed to unsigned. For Turbo C++,
-K- returns to signed.
Pass options to linker when invoked.
Pass to assembler when invoked.
Sets the data segment name. For TCC, this option changes the name
of the uninitialized data segment class to name. By default, th~
uninitialized data segments are assigned to class BSS.

Turbo C++ User's Guide

Table 17.1: CL and TCC options compared (continued)

INT segname -zCname Sets code segment name. This option changes the name of the code
segment to name. By default, the code segment is named _TEXT,
except for the medium, large and huge models, where the name is
filename_TEXT. (filename here is the source file name.)

lOp -ff- Strict ANSI floating point.
lOs -G- Optimize for size (default).
lOt -G Optimize for speed.
IP CPP -ofilename Preprocesses source file and sends output to filename (CPP), or to

Source.l (CL).
IU Ident -Uldent
Iw
IWn

IWX

lZa

IZd
lZe
lZi

IZpn

-w-
(See note)

-g1

-A

Iy
-A-,-AT
Iv

(See -a, -a-)

Command-line
options and

libraries

Linker

Undefine any previous definitions of [dent.
Display warnings off.
Set warning level 0, 1,2,3, or 4. In Turbo C++ you can selectively
enable or disable any warning.
Makes all warnings fatal. No object files are generated if warning
occurs. (The -g option takes the form -gn, where n is the limit to
number of warnings.)
Enforces ANSI compatibility. Use only ANSI keywords. No vendor­
specific extension allowed.
Generates line numbers for symbolic debugger.
Enable vendor-specific extensions.
For Microsoft, generates debugger information for Code View. For
Turbo C++, generates information for IDE debugger and Turbo
Debugger.
Packs structure members on the n byte boundary. n can be I, 2, or 4.

The COFx.OB} modules are provided for compatibility with source
files intended for compilers from other vendors. The COFx.OB}
modules substitute for the COx.OB} modules. These initialization
modules are written to alter the memory model such that the
stack segment is inside the data segment. The appropriate
COFx.OB} module will be used automatically if you use either the
-Fs or the -Fm command-line compiler option ..

The -Fe (generate COMDEFs), -Ff (create far variables), -Fs
(assume D5 == 55 in all models), and -Fm (enable all-Fx options)
command-line compiler options are provided for compatibility.
These options are fully documented iri Chapter 8.

The Turbo C++ linker, TLINK, is invoked automatically from the
command-line compiler unless the -c compiler option is used.
Options such as memory model are passed from the compiler to

Chapter 77, Converting from Microsoft C 565

TLINK; TLINK links the appropriate libraries based on the
compile options.

The following table compares options common to both TLINK
and LINK. If an option is in one product, but not the other, it is
omitted. Note that Turbo C++ TLINK options are case-sensitive,
while Microsoft TLINK options are not.

Table 17.2: LINK and TLINK options compared

Microsoft C 6.0
Link option

ICO
IDOSSEG

IF

IHE
ILl
1M
INOD[:filename]
INOE
INOI
INOP
IPACKC[:number]

rr

Turbo C++
TLiNK option

Iv
(See comment)

By default

I?
II
1m
In
Ie
Ic
IP-
IP=n

, ...
/L

What it does

Include full symbolic debug information.
For assembly programs, forces a certain ordering of segments in
executable. To enable DOSSEG for an assembly program, include
DOSSEG in the source code.
For LINK, tells linker to optimize far calls to procedures in same
segment as caller. (Dsed with MS IPACKCODE option.) TLINK
optimizes far calls automatically.
Provides help on command-line options.
Include source line numbers and associated addresses in map file.
Create map file with public global symbols.
Don't use default libraries.
Ignore Extended Dictionary.
Treat case as significant in symbols.
Turn off code packing.
Pack code segments. number or n specifies maximum size of groups
formed by fP ACKC or fP.
Produce .CO~v1 files.

Source-level compatibility

MSC macro

566

The following sections tell you how to make sure that your code
is compatible with Turbo C++'s compiler and linker.

The Turbo C++ libraries contain many functions to increase
compatibility with applications originally written in Microsoft C.
If you define the macro __ MSC before you include the dos.h
header file, the DOSERROR structure will be defined to match
Microsoft's format.

Turbo C++ User's Guide

Header files

Memory models

Some nonstandard header files can be included by one of two
names, as follows.

Original name

alloc.h
dir.h
mem.h

Alias

malloc.h
direct.h
memory.h

If you are defining data in header files in your program, you
should ,use the -Fe command-line compiler option or Options I
Compiler I Advanced code generation I Generate COMDEFs IDE
option to generate COMDEFs. Otherwise you will get linker
errors. Chapter 8 provides a complete reference to the command­
line compiler options.

Although the same names are used for the standard memory
models, there are fairly significant differences for the large data
models in the standard configuration.

In Microsoft C, all large data models have a default NEAR data
segment to which DS is maintained. Data is allocated in this data
segment if the data size falls below a certain threshold, or in a far
data segment otherwise. You can set the threshold value with the
IGtn option, where n is a byte value. The default threshold is
32,767. If IGt is given but n is not specified, the default is 256.

In all other memory models under Microsoft C, both a near and a
far heap are maintained.

In Turbo C++, the large and compact models (but not huge) have
a default NEAR data segment to which DS is maintained. All
static data is allocated to this segment by default, limiting the total
static data in the program to 64K, but making all external data
references near. In the huge model all data is far.

In Microsoft's version of the huge memory model, a default data
segment for the entire program is maintained which limits total
near data to 64K. No limit is imposed on array sizes since all
extern arrays are treated as huge Chuge).

Chapter 77: Converting from Microsoft C 567

568

Keywords

Floating-point
return values

In Turbo C++'s huge memory model, each module has its own
data segment. The data segment is loaded ort function entry. All
data defined in a module is referenced as near data and all extern
data references are far. The huge model is limited to 64K of near
data in each module.

Turbo c++ supports the same set of keywords as Microsoft C 5.1
with the exception of fortran.

Turbo C++ supports the same set of keywords as Microsoft C 6.0
with the exception of:

__ based, _self, and _segname, because Turbo C++ does not
support based pointers

__ segment; Turbo C++'s keyword _seg is the equivalent of
_segment

__ emit; Turbo C++ uses the pseudofunction __ emit_ -' because
this style allows addresses of variables to be given as
arguments, and allows multiple bytes to be output; _emit, by
contrast, works like an assembly DB, allowing one immediate
byte to be output

__ fortran; use the _pascal calling convention instead

Turbo C++ provides _cs, _ds, _es, and _ss pointer types. See the
section "Mixed model programming: Addressing modifiers" in
Chapter 1/18" for more information.

In Microsoft C, _cdecl causes float and double values to be re­
turned in the __ fac (floating point accumulator) global variable.
Long doubles are returned on the NDP stack. _fastcall causes
floating point types to be returned on the NDP,stack. _pascal
causes the calling program to allocate space on the stack and pass
address to function. The function stores the return value arid
returns the address.

In Turbo C++, floating point values are returned on the NDP
stack.

Turbo C++ User's Guide

Structures
returned by value In a Microsoft C-compiled function declared with _cdecl, the

function returns a pointer to a static location. This static location is
created on a per-function basis. For a function declared with
'_pascal, the calling program allocates space on the stack for the
return value. The calling program passes the address for the
return value in a hidden argument to the function.

Turbo C++ returns 1-byte structures in AL, 2-byte structures in
AX and 4-byte structures in AX and DX. For 3-byte structures and
structures larger than 4 bytes, the compiler passes a hidden
argument (a far pointer) to the function that tells the function
where to return the structure.

Conversion hints

Write portable code. Portable code is compatible with many
different compilers and machines. Whenever possible, use only
functions from the ANSI standard library (for example, use time
instead of gettime). The portability sections in online Help will
tell you if a function is ANSI standard.

If you must use a function that's not in the ANSI standard library,
use a Unix-compatible function, if po'ssible (for example, use
chmod instead of _chmod, or signal instead of ctrlbrk). Again, the
portability sections in online Help will tell you if a function is
available on Unix machines.

Avoid the use of bit fields and code that depends on word size,
structure alignment, or memory model. For example, Turbo C++
defines ints to be 16 bits wide, but a 32-bit C++ compiler would
define 32-bit wide ints.

Insert the preprocessor statement I/#define __ MSC" in each
module before dos.h is included.

If you were using the link option ISTACK:n in your Microsoft
application, initialize the global variable _stklen with the
appropriate stack size.

Chapter 17, Converting from Microsoft C 569

570 Turbo C++ User's Guide

c H A p T E R

18

Memory management

This chapter covers the followmg topics:

• What to do when you receive Out of memory errors.

• What Memory models are, how to choose one, and why you
would (or would not) want to use a particular memory model.

• How Overlays work,and how to use them.

Running out of mem.ory

Memory models

Turbo C++ does not generate any intermediate data structures to
disk when it is compiling (Turbo C++ writes only .OBJ files to
disk); instead it uses RAM for intermediate data structures
between passes. Because of this, you might encounter the message
"Out of memory ... " if there is not enough memory available for
the compiler.

The solution to this problem is to make your functions smaller, or
to split up the file that has large functions. Deeply nested header
files might cause this problems, also.

Turbo C++ gives you six memory models, each suited for
different program and code sizes. Each memory model uses

Chapter 78, Memory management 571

See page 578 for a summary
of each memory model.

572

The iAPx86
registers

Figure 1B.1
iAPxB6 registers

General-purpose
registers

memory differently. What do you need to know to use memory
models? To answer that question, we have to take a look at the
computer system you're working on. Its central processing unit
(CPU) is a microprocessor belonging to the Intel iAPx86 family;
an 80286, 80386, or 80486. For now, we'll just refer to it as an
iAPx86.

These are some of the registers found in the iAPx86 processor.
There are other registers-but they can't be accessed directly, so
they're not shown here.

General-purpose registers

accumulator (math operations)
AX AH I AL

base (indexing)
BX BH I BL

count (Indexing)
CX CH I CL

data (holding data)
ox OH I OL

Segment address registers

CS code segment pointer

OS data segment pointer

SS stack segment pointer

ES extra segment pOinter

Special-purpose registers

SP stack pointer

BP base pointer

SI source index

01 destination Index

The general-purpose registers are the ones used most often to
hold and manipulate data. Each has some special functions that
only it can do. For example,

Turbo C++ User's Guide

Segment registers

Special-purpose
registers

• Some math operati?ns can only be done using AX.

• BX can be used as an index register.

• CX is used by LOOP and some string instructions.

• DX is implicitly used for some math operations.

But there are many operations that all these registers can do; in
many cases, you can freely exchange one for another.

The segment registers hold the starting address of each of the four
segments. As described in the next section, the 16-bit value in a
segment register is shifted left 4 bits (multiplied by 16) to get the
true 20-bit address of that segment.

The iAPx86 also has some special-purpose registers:

• The SI and DI registers can do many of the things the general­
purpose registers can, plus they are used as index registers.
They're also used by Turbo C++ for register variables.

• The SP register points to the current top-of-stack and is an
offset into the stack segment.

• The BP register is a secondary stack pointer, usually used to
index into the stack in order to retrieve arguments or automatic
variables.

Turbo C++ functions use the base pointer (BP) register as a base .
address for arguments and automatic variables. Parameters have
positive offsets from BP, which vary depending on the memory
model. BP points to the saved previous BP value if there is a stack
frame. Functions that have no arguments will not use or save BP
if the Standard Stack Frame option is Off.

Automatic variables are given negative offsets from BP. The
offsets depend on how much space has already been assigned to

-variables.

The flags register The 16-bit flags register contains all pertinent information about
the state of the iAPx86 and the results of recent instructions.

For example, if you wanted to know whether a subtraction pro­
duced a zero result, you would check the zero flag (the Z bit in the
flags register) immediately after the instruction; if it were set, you
would know the result was zero. Other flags, such as the carry and
overflow flags, similarly report the results of arithmetic and logical
operations.

Chapter 78, Memory management 573

Figure 18.2
Flags register of the iAPx86

574

Memory
segmentation

31 23

Virtual 8086 Mode
Resume

Nested Task
va Protection Level

Overflow
Direction

Interrupt Enable
Trap

15

Sign
Zero

Auxiliary Carry
Parity

Carry

I
o

I I I I I I I I I I I I I I IVIRI INllOPIOIDlllTISlzl IAI Ipi lei
'~----------~I----------~~~-------'I ------~/

80386 only 80286 All 80x86 processors
80386

Other flags control modes of operation of the iAPx86. The direction
flag controls the direction in which the string instructions move,
and the interrupt flag controls whether external hardware, such as
a keyboard or modem, is allowed to halt the current code tempo­
rarily so that urgent needs can be serviced. The trapfLag is used
only by software that debugs other software.

The flags register isn't usually modified or read directly. Instead,
the flags register is generally controlled through special assembler
instructions (such as CLO, STI, and CMC) and through arithmetic
and logical instructions that modify certain flags. Likewise, the
contents of certain bits of the flags register affect the operation of
instructions such as JZ, RCR, and MOVSB. The flags register is not
really used as a storage location, but rather holds the status and
control data for the iAPx86.

The Intel iAPx86 microprocessor has a segmented memory
architecture. It has a total address space of 1 MB, but it is designed
to directly address only 64K of memory at a time. A 64K chunk of
'memory is known as a segment; hence the phrase, Usegmented
memory architecture."

• The iAPx86 keeps track of four different segments: code, data,
stack, and extra. The code segment is where the machine
instructions are; the data segment, where information is, such
as global and static data; the stack is where function addresses
and local variables are pushed; and the extra segment is also
used for extra data.

Turbo C++ User's Guide

• The iAPx86 has four 16-bit segment registers (one for each seg­
ment) named CS, DS, SS, and ES; these point to the code, data,
stack, and extra segments, respectively .

• A segment can be located anywhere in memory-at least,
almost anywhere. For reasons that will become clear as you
read on, a segment must start on an address that's evenly
divisible by 16 (in base 10).

Address calculation A complete address on the iAPx86 is composed of two 16-bit
values: the segment address and the offset. Suppose the data
segment address-the value in the DS register-is 2F84 (base 16),
and you want to calculate the actual address of some data that has
an offset of 0532 (base 16) from the start of the data segment; how
is that done?

A chunk of 76 bytes is known
as a paragraph, so you

could say that a segment
always starts on a paragraph

boundary.

Address calculation is done as follows: Shift the value of the seg­
ment register 4 bits to the left (equivalent to one hex digit), then
add in the offset.

The resulting 20-bit value is the actual address of the data, as
illustra'ted here:

DS register (shifted): 0010 1111 1000 0100 0000 2F840
Offset: 0000 0101 0011 0010 00532

Address: 0010 1111 1101 0111 0010 = 2FD72

The starting address of a segment is always a 20-bit number, but a
segment register only holds 16 bits-so the bottom 4 bits are al­
ways assumed to be all zeros. This means-as we said-that seg­
ments can only start every 16 bytes through memory, at an
address where the last 4 bits (or last hex digit) are zero. So, if the
DS register is holding a value of 2F84, then the data segment
actually starts at address 2F840.

The standard notation for an address takes the form segment:offset;
for example, the previous address would be written as 2F84:0532.
Note that since offsets can overlap, a given segment:offset pair is
not unique; the following addresses all refer to the same memory
location:

0000:0123
0002:0103
0008:00A3

Chapter 78, Memory management 575

576

Pointers

0010:0023
0012:0003

Segments can overlap (but don't have to). For example, all four
segments could start at the same address, which means that your
entire program would take up no more than 64K-but that's all
the space you'd have for your code, your data, and your stack.

Although you can declare a pointer or function to be a specific
type regardless of the model used, by default the type of memory
model you choose determines the default, type of pointers used
for code and data. Pointers come in four flavors: near (16 bits),far
(32 bits), huge (also 32 bits), and segment (16 bits).

Near pointers A near pointer (16-bits) relies on one of the segment registers to
finish calculating its address; for example, a pointer to a function
would add its 16-bit value to the left-shifted contents of the code
segment (CS) register. In a similar fashion, a near data pointer
contains only an offset to the data segment (DS) register. Near
pointers are easy to manipulate, since any arithmetic (such as
addition) can be done without worrying about the segment.

For pointers A far pointer (32-bits) contains not only the offset within the seg­
Inent, but also the segrnent address (as another 16-bit value),
which is then left-shifted and added to the offset. By using far
pointers, you can have multiple code segments; that, in turn,
allow you to have programs larger than 64K. You can also address
more than 64K of data. The use of far pointers allows access to
code or data residing outside of the current segment.

When you use far pointers for data, you need to be aware of some
potential problems in pointer manipulation. As explained in the
section on address calculation, you can have many different
segment:offset pairs refer to the same address. For example, the
far pointers 0000:0120, 0010:0020, and 0012:0000 all resolve to the
same 20-bit address. However, if you had three different far
pointer variables-a, b, and c-containing those three values
respectively, then all the following expressions would be false:

if (a -- b)
if (b -- c)
if (a -- c)

Turbo C++ User's Guide

A related problem occurs when you want to compare far pointers
using the >, >=, <, and <=operators. In those cases, only the offset
(as an unsigned) is used for comparison purposes; given that a, b,
and c still have the values previously listed, the following expres­
sions would all be true:

if (a > b)

if (b > c) • • •

if (a > c) • • •

The equals (==) and not-equal (!=) operators use the 32-bit value
as an unsigned long (not as the full memory address). The com­
parison operators «=, >=, <, and» use just the offset.

The == and != operators need all 32 bits, so the computer can com­
pare to the NULL pointer (0000:0000). If you used only the offset
value for equality checking, any pointer with 0000 offset would be.
equal to the NULL pointer, which is not what you want.

Important! If you add values to a far pointer, only the offset is changed. If
you add enough to cause the offset to exceed FFFF (its maximum
possible value), the pointer just wraps around back to the begin­
ning of the segment. For examp.le, if you add 1 to 5031:FFFF, the
result would be 5031:0000 (not 6031:0000). Likewise, if you sub­
tract 1 from 5031:0000, you would get 5031:FFFF (not 5030:000F).

If you want to do pointer comparisons, it's safest to use either near
pointers-which all use the same segment address-or huge
pointers, described next.

Huge pointers Huge pointers are also 32 bits long. Like far pointers, they contain
both a segment address and an offset. Unlike far pointers, they are
normalized to avoid the problems associated with far pointers.

What is a normalized pointer? It is a 32-bit pointer which has as
much of its value in the segment address as possible. Since a seg­
ment can start every 16 bytes (10 in base 16), this means that the
offset will only have a value from 0 to 15 (0 to F in base 16).

To normalize a pointer, convert it to its 20-bit address, then use
the right 4 bits for your offset and the left 16 bits for your segment
address. For example, given the pointer 2F84:0532, you would
convert that to the absolute address 2FD72, which you would
then normalize to 2FD7:0002. Here are a few more pointers with,
their normalized equivalents:

Chapter 78, Memory management 577

The six memory
models

Use this model when memory
is at an absolute premium.

578

This is a good size for
average applications.

0000:0123
0040:0056
500D:9407
7418:D03F

0012:0003
0045:0006
594D:0007
811B: OOOF

There are three reasons why it is important to always keep huge
pointers normalized.

1. For any given memory address there is only one possible huge
address-segment:offset pair. That means that the == and !=
operators return correct answers for any huge pointers.

2. In addition, the >, >=, <, and <= operators are all used on the
Ju1l32-bit value for huge pointers. Normalization guarantees
that the results of these comparisons will be correct also.

3. Finally, because of normalization, the offset in a huge pointer
automatically wraps around every 16 values, but-unlike far
pointers-the segment is adjusted as well. For example, if you
were to increment 811B:OOOF, the result would be 811C:OOOO;
likewise, if you decrement 811C:OOOO, you get 811B:OOOF. His
this aspect of huge pointers that allows you to manipulate data
structures greater than 64K in size. This ensures that, for
example, if you have a huge array of structs that's larger than
64K, indexing into the array and selecting a struct field will
always work with structs of any size.

There is a price for using huge pointers: additional overhead.
Huge pointer arithmetic is done with calls to special subroutines.
Because of this, huge pointer arithmetic is significantly slower
than that of far or near pointers.

Turbo C++ gives you six memory models: tiny, small, medium,
compact, large, and huge. Your program requirements determine
which one you pick. Here's a brief summary of each:

Tiny. As you might guess, this is the smallest of the memory
models. All four segment registers (C5, D5, 55, ES) are set to the
same address, so you have a total of 64K for all of your code, data,
and stack. Near pointers are always used. Tiny model programs
can be converted to .COM format by linking with the It option.

Small. The code and data segments are different and don't over­
lap, so you have 64K of code and 64K of data and stack. Near
pointers are always used.

Turbo C++ User's Guide

Best for large programs
without much data in

memory,

Best if code is small but
needs to address a lot of

data,

Large and huge are needed
only for very lengthy

applications,

Figure 18,3
Tiny model memory

segmentation

Medium. Far pointers are used for code, but not for data. As a
result, data plus stack are limited to 64K, but code can occupy up
to 1 MB.

Compact. The inverse of medium: Far pointers are used for data,
but not for code. Code is then limited to 64K, while data has a 1
MBrange.

Large. Far pointers are used for both code and data, giving both a
1 MBrange.

Huge, Far pointers are used for both code and data. Turbo C++
normally limits the size of all static data to 64K; the huge memory
model sets aside that limit, allowing data to occupy more than
64K.

Figures 18.3 through 18.8 show how memory in the iAPx86 is
apportioned for the Turbo C++ memory models. To select these
memory models, you can either use menu selections from the
IDE, or you can type options invoking the command-line
compiler version of Turbo C++.

Segment registers: low address Segment size:
CS, OS, SS---....--------------,.

OGROUP

SP (105) ----+.,.

TEXT class 'CODE'
- code

DATA class 'DATA'
- initialized data

BSS class 'BSS'
-uninitialized data

high address

up to 64K

Chapter 78, Memory management 579

Figure 18,4
Small model memory

segmentation

Figure 18,5
Medium model memory

segmentation

CS points to only one sfile at
a time

580

Figure 18,6
Compact model memory

segmentation

Segment registers:
cs

low address Segment size:

_TEXT class 'CODE'
code

DS, SS----~~------------------------~·

SP (10S)

Multi Ie sflles:
s ile A
sfile B

CS 'f:I'

_DATA class 'DATA'
initialized data

_BSS class 'BSS'
uninltialized data

HEAP

FRee SPACE

STACK

FAR HEAP

FREe SPACE

high address

up to 64K

up to 64K

up to r~st of memory

Segment registers: Segment size:
.-----~~~~~~-------,

os, SS ----~--------------------------~,

OGROUP

SPAce

SP (10S)

~a~ng sp __ ~----------------~------~~/

Segment registers:
CS

FAR HEAP

FAEE SPACE

high address

low address

_TEXT class 'CODE'
code

OS------~r-------------------------~

SP (10S)

_DATA class 'DATA'
initialized data

S'a~ng SP---tl-----------------+--------;

high address

each slile
up to 64K

up to 64K

up to rest of memory

Segment size:

up to 64K

up to 64K

up to rest of memory

Turbo C++ User's Guide

Figure 18.7
Large model memory

segmentation

CS points to only one stile at
a time

Figure 18.8
Huge model memory

segmentation

CS and OS pOint to only one
stile at a time

CS =sfl",,-·Ie--,=Z~----,

Segment registers: low address
r----1~---------------.

XT class 'CODE'
code

Segment size:

each stile
up to 64K

os ---...... --------------l} up to 64K

_BSS class 'BSS'
uninitialized data

SS ___ ~ ____________ ----------~

FREE SPACE

SP (TOS)

STACK

Starting SP--.r----------------t---------l

HEAP

FREE SPACE

high address

.-----+-------------------,

OS

55 ____

high address

up to 64K

up to rest. of memory

Segment size:

each stile
up to 64K

each stile
up to 64K

up to 64K

up to rest of memory

The following table summarizes the different models and how
they compare to one another. The models are often grouped
according to whether their code or data models are small (64K) or
large (1 MB); these groups correspond to the rows and columns in
Table 8~

Chapter 78, Memory management 581

Table 18.1
Memory models

The models tiny, small, and
compact are small code

models because, by default,
code pointers are near;

likewise, compact, large,
and huge are large data

models because, by default,
data pointers are far.

Data size

64K

1MB

Code size

64K

Tiny (data, code overlap;
total size = 64K)

Small (no overlap;
total size = 128K)

Compact (large data,
small code)

1 MB

Medium (small data,
large code)

Large (large data, code)

Huge (same as large but
static data> 64K)

Important! When you compile a module.(a given source file with some
number of routines in it), the resulting code for that module

. cannot be greater than 64K, since it must all fit inside of one code
segment. This is true even if you're using one of the larger code
models (medium, large, or huge). If your module is too big to fit
into one (64K) 'code segment, you must break it up into different
source code files, compile each file separately, then link them
together. Similarly, even though the huge model permits static
data to total more than 64K, it ,still must be less than 64K in each
module.

Mixed-model programming: Addressing modifiers

582

Turbo C++ introduces eight new keywords not found in standard
ANSI C (near, far, huge, _CS, _ds, _es, _ss, and _seg) that can be
used as modifiers to pointers (and in some cases, to functions),
with certain limitations and warnings.

In Turbo C++, you can modify the declarations of pointers,
objects, and functions with the keywords near, far, or huge. We
explained near, far, and huge data pointers earlier in this chapter.
You can declare far objects. using the far keyword. near functions
are invoked with near calls and exit with near returns. Similarly,
far functions are called far and do far returns. huge functions are
like far functions, except that huge functions set DS to a new
value, while far functions do not.

Turbo C++ User's Guide

Table 18.2
Pointer results

Segment pointers

There are also four special near data pointers: _cs, _ds, _es, and
_ss. These are 16-bit pointers that are specifically associated with
the corresponding segment register. For example, if you were to
declare a pointer to be

char _SS *Pi

then p would contain a 16-bit offset into the stack segment.

Functions and pointers within a given program default to near or
far, depending on the memory model you select. If the function or
pointer is near, it is automatically associated with either the CS or
DS register.

Thenext table shows just how this works. Note that the size of the
pointer corresponds to whether it is working within a 64K mem­
ory limit (near, within a segment) or inside the general 1 MB
memory space (far, has its own segment address).

Memory model

Tiny
Small
Medium
Compact
Large
Huge

Function pOinters

near,_cs
near,_cs
far

. near, _cs
far
far

Data pOinters

near/_ds
near,_ds
near, _ds
far
far
far

Use _seg in segment pointer type declarators. The resulting
pointers are 16-bit segment pointers. The syntax for _seg is:

datatype _seg *identifier;

For example,

int _seg *narnei

Any indirection through identifier has an assumed offset of 0: In
arithmetic involving segment pointers the following rules hold
true:

1. You can't use the ++, - -, +=, or -= operators with segment
pointers.

2. You cannot subtract one segment pointer from another.

3. When adding a near pointer to a segment pointer, the result is
a far pointer that is formed by using the segment from the
segment pointer and the offset from the near pointer.'

Chapter 78, Memory management 583

584

Declaring far

Therefore, the two pointers must either point to the same type,
or one must be a pointer to void. There is no multiplication of
the offset regardless of the type pointed to.

4. When a segment pointer is used in an indirection expression, it
is also implicitly converted to a far pointer.

5. When adding or subtracting an integer operand to or from a
segment pointer, the result is a far pointer, with the segment
taken from the segment pointer and the offset found by
multiplying the size of the object pointed to by the integer
operand. The arithmetic is performed as if the integer were
added to or subtracted from the far pointer.

6. Segment pointers can be assigned, initialized, passed into and
out of functions, compared and so forth. (Segment pointers are
compared as if their values were unsigned integers.) In other
words, other than the above restrictions, they are treated
exactly like any other pointer.

objects You can declare far objects in Turbo C++. For example,

int far x = 5i
int far Zi

extern int far y = 4i
static long ji

The corulnand-line cornpiler options -zE, -zF, and -zH (which can
also be set using #pragma option) affect the far segment name,
class, and group, respectively. When you change them with
#pragma option, you can change them at any time and they apply
to any ensuing far object declarations. Thus you could use the
following sequence to create a far object in a specific segment:

#pragrna option -zErnysegrnent -zHrnygroup -zFrnyclass
int far Xi

#pragrna option -zE* -zH* -zF*

This will put X in segment MYSEGMENT 'MYCLASS' in the
group 'MYGROUP', then reset all of the far object items to the
default values. Note that by using these options, several far
objects can be forced into a single segment:

#pragrna option -zEcornbined -zFrnyclass
int far Xi

double far Yi
#pragrna option -zE* -zF*

Turbo C++ User's Guide

Declaring
functions to be

near or far

Both x and y will appear in the segment COMBINED 'MYCLASS'
with no group.

On occasion, you'll want (or need) to override the default func­
tion type of your memory model shown in Table 8 (page 273).

For example, suppose you're using the large memory model, but
you have a recursive (self-calling) function in your program, like
this:

double power(double x,int exp)
{

if (exp <= 0)
return(l);

else
return(x * power (x, exp-l));

Every time power calls itself; it has to do a far call, which uses
more stack space and clock cycles. By declaring power as near,
you eliminate some of the overhead by forcing all calls to that
function to be near:

double near power(double x,int exp)

This guarantees that power is callable only within the code seg­
ment in which it was compiled, and that all calls to it are near
calls.

This means that if you are using a large code model (medium,
large, or huge), you can only call power from within the module
where it is defined. Other modules have their own code segment
and thus cannot call near functions in different modules. Further­
more, a near function must·be either defined or declared before
the first time it is used, or the compiler won't know it needs to
genera te a near call.

Conversely, declaring a function to be far means that a far return
is generated. In the small code models, the far function must be
declared or defined before its first use to ensure it is invoked with
a far call.

Look back at the power example. It is wise to also declare power
as static, since it should only be called from within the current
module. That way, being a static, its name will not be available to
any functions outside the module.

Chapter 18, Memory management 585

Declaring
painters to be

near, far, or huge

Pointing to a given
segment:offset address

Using library files

586

Linking mixed
modules

You've seen why you might want to declare functions to be of a
different model than the rest of the program. Why might you
want to do the same thing for pointers? For the same reasons
given in the preceding section: either to avoid unnecessary over­
head (declaring near when the default would be far) or to refer­
ence something outside of the default segment (declaring far or
huge when the default would be near).

How do you make a far pointer point to a given memory location
(a specific segment:offset address)? You can use the macro
MK_FP, which takes a segment and an offset and returns a far
pointer. For example,

MK_FP(segment_value, offset_value)

Given a far pointer,fp, you can get the segment component with
FP _SEGlfp) and the offset component with FP _OFFlfp). For more
information about these three Turbo C++ library routines, refer to
the online Help.

Turbo C++ offers a version of the standard library routines for
each of the six rnenlory models, Turbo C++ is smart enough to
link in the appropriate libraries in the proper order, depending on
which model you've selected. However, if you're using the Turbo
C++ linker, TLINK, directly (as a standalone linker), you need to
specify which libraries to use. See Chapter la, "TLINK: The Turbo
linker" for details on how to do so.

What if you compiled one module using the small memory
model, and another module using the large model, then wanted
to link them together? What would happen? .

The files would link together fine, but the problems you would
encounter would be similar to those described in the earlier
section, "Declaring functions to be near or far." If a function in the
small module called a function in the large module, it would do
. so with a near call, which would probably be disastrous. Further­
more, you could face the same problems with pointers as de-

Turbo C++ User's Guide

scribed in the earlier section, "Declaring pointers to be near, far, or
huge," since a function in the small module would expect to pass
and receive near pointers, while a function in the large module
would expect far pointers.

The solution is to properly declare the function to be near or far in
its prototype.

What if you need to link in library routines? Your best bet is to
use one of the large model libraries and declare everything to be
far. To do this, make a copy of each header file you would

. normally include (such as stdio.h), and rename the copy to
something appropriate (such as fstdio.h).

Then edit each function prototype in the copy so that it is explicit­
ly far, like this:

int- far cdecl printf(char far * format, ...);

That way, not only will far calls be made to the routines, but the
pointers passed will be far pointers as well. Modify your program
so that it includes the new header file:

#include <fstdio.h~

main()
{

char near *mystr;
mystr = "Hello, world\n";
printf (mystr) ;

Compile your program with the command-line compiler TCC
then link it with TLINK, specifying a large model library, such as
CL.LIB. Mixing models is 1!-ricky, but it can be done; just be
prepared for some difficult bugs if you do things wrong.

Overlays (VROOMM)

Overlays are parts of a program's code that share a common
memory area. Only the parts of the program that are required for
a given function reside in memory at the same time.

Overlays can significantly reduce a program's total run-time
memory requirements. With overlays, you can execute programs

Chapter 78, Memory management -587

588

How overlays
work

that are much larger than the total available memory, since only
parts of the program reside in memory at any given time.

Turbo C++'s overlay manager (called VROOMM for Virtual Run­
time Object-Oriented Memory Manager) is highly sophisticated; it
does much of the work for you. In a conventional overlay system,
modules are grouped together into a base and a set of overlay
units. Routines in a given overlay unit may call other routines in
the same unit and routines in the base, but not routines in othe.r
units. The overlay units are overlaid against each other; that is,
only one overlay unit may be in memory at a time, and they each
occupy the same physical memory. The total amount of memory
needed to run the program is the size of the base plus the size of
the largest overlay. '

This conventional scheme is quite inflexible. It requires complete
understanding of the possible calling dependencies in the pro­
gram, and requires you to have the overlays grouped accordingly.
It may be impossible to break your program into overlays if you
can't split it into separable calling dependencies.

VROOMM's scheme is quite different. It provides dynamic segment
swapping. The basic swapping unit is the segment. A segment ,can
be one or more modules. More importantly, any segment can call
any other segment.

Memory is divided into an area for the base plus a swap area.
Whenever a function is called in a segment that is neither in the
base nor in the swap area" the segment containing the called func­
tion is brought into the swap area, possibly displacing other
segments. This isa powerful approach-it is like software virtual
memory. You no longer have to break your code into static,
distinct, overlay units . .y ou just let it run!

What happens when a segment needs to be brought into the swap
area? If there is room for the segment, execution just continues. If
there is not, then one or more segments in the swap area must be
thrown out to make room. How to decide which segment to
throw out? The actual algorithm is quite sophisticated. A simpli­
fied version: If there is an inactive segment, choose it for removal.

, Inactive segments are those without executing functions. Other...;
wise, pick an active segment and toss it out. Keep tossing out
segments until there is enough room available. This technique is
called dynamic swapping.

Turbo C++ User's Guide

The more memory you provide for the swap area, the better the
program performs. The swap area acts like a cache; the bigger the
cache, the faster the program runs. The best setting for the size of
the swap area is the size of the program's working set.

Once an overlay is loaded into memory, it is placed in the overlay
buffer, which resides in memory between the stack segment and
the far heap. By default, the size of the overlay buffer is estimated
and set at startup, but you can change it using the global variable
_ovrbuffer (see page 592). If enough memory isn't available, an
error message will be displayed by DOS (UProgram too big to fit
in memory") or by the C startup code (UNot enough memory to
run program").

One very important option of the overlay manager is the ability to
swap the modules to expanded or extended memory when they
are discarded from the overlay buffer. Next time the module is
needed, the overlay manager can copy it from where the module
was swapped to instead of reading from the file. This makes it
much faster.

When using overlays, memory is used as shown in the next
figure.

Figure 18.9: Memory maps for overlays

MEDIUM MODEL LARGE MODEL HUGE MODEL

class CODE
Resident class CODE Resident

class CODE code code
Overlay Overlay

control data control data ~e~~{ One stub One stub
are generated class STUBSEG segment for class STUBSEG segment for class STUBSEG

automatiCallY. by each overlay each overlay
the linker

segment segment

Near heap and
DATA _DATA Multiple

stack share class-DATA class DATA data segments
data segment

NEAR HEAP
Separate Separate

stack segment stack segment

STACK STACK STACK

Chapter 78, Memory management 589

Getting the best out of
Turbo C++ overlays

, 590

See page 592 fot more
information on setting the
size of the overlay buffer.

Requirements

Using overlays

To get the best. out of Turbo C++ overlays,

• Minimize resident code (resident run-time library, interrupt
handlers, and device drivers is a good starting point).

• Set overlay buffer size to be a comfortable working set (start
with 128K and adjust up and down to see the speed/ size
tradeoff).

• Think versatility and variety: Take advantage of the overlay
system to provide support for special cases, interactive help,
and other end-user benefits you could not consider before.

In order to create overlays, you'll need to remember a few simple
rules,

• The smallest part of a program that can be made into an overlay
is a segment.

• Overlaid applications must use the medium, large, or huge pro­
gramming models; the tiny~ small, and compact models are not
supported.

• Normal segment merging rules govern overlaid segments. That
is, several.OBJ modules can contribute to the same overlaid
segment.

The link-time generation of overlays is completely separated from
the run-time overlay management; the linker does not automatic­
ally include code to manage the overlays. In fact, from the linker's
point of view, the overlay manager is just another piece of code
that gets linked in. The only assumption the linker makes is that
the overlay manager takes over an interrupt vector (typically INT
3FH) through which all dynamic loading is controlled. This level
of transparency (makes it very easy to implement custom-built
overlay managers that suit the particular needs of each
application.

To overlay a program, all of its modules must be compiled with
the -v compiler option enabled. To make a particular module into
an overlay, it needs to be compiled with the -Vo option. (-Vo .
automatically enables -V.)

Turbo C++ User's Guide

The -Yo option applies to all modules and libraries that follow it
on the command line; you can disable it with -Yo-. These are the
only command line options that are allowed to follow file names.
For example, to overlay the module OVL.C but not the library
GRAPHICS. LIB, either of the following command lines could be
used:

Tee -ml -Yo ovl.c -Yo- graphics.lib

or

Tee -ml graphics. lib -Yo ovl.c

If TLINK is invoked explicitly to link the .EXE file, the Jo linker
option must be specified on the linker command line or response
file. See Chapter 10, "TLINK: The Turbo linker for details on how
to use the Jo option.

Overlay example Suppose that you want to overlay a program consisting of three
modules: MAIN.C, 01.C, and 02.C. Only the modules 01.C and
02.C should be made into overlays. (MAIN.C contains time­
critical routines and interrupt handlers, so it should stay resident.)
Let's assume that the program uses the large memory model.

The following command accomplishes the task:

Tee -ml -Y main.c -Yo ol.c o2.c

The result will be an executable file MAIN.EXE, containing two
overlays.

Overlaying in the IDE To overlay modules in the IDE, you must take the following steps:

1. Select Options I Application I Overlay

2. Select Project I Local Options to specify each module thaJ
needs to go into an overlay.

Selecting Options I Application I Overlay will also select the'
following options automatically for you:

• Options I Compiler I Entry /Exit Code I Overlay

• Options I Linker I Settings I Output I Over:laid EXE

• Project I Local options I Overlay this module

Chapter 78, Memory management 591

592

• Options I Compiler I Code generation I Modell Medium

• Options I Compiler I Code generation I Assume SS Equals DS I
Default for memory model

• Options I Linker I Libraries I Graphics library

-.. If you are building an .EXE file containing overlays, compile all
modules after selecting DOS Overlay from the Options I
Application dialog box.

-.. No module going into an ~verlay should e~er change the default
Code Class name. The IDE lets you change the set of modules
residing in overlays without having to worry about recompiling.
This can only be accomplished (with current .OBJ information) if
overlays keep default code class names.

Overlaid
programs This section discusses issues vital to well-behaved overlaid

applications.

The far call Use a large code model (medium, large, or huge) when you want
requirement to compile an overlay module. At any call to an overlaid function

in another module, you must guarantee that all currently active
functions are far.

You must compile all overlaid modules with the -Y option" which
makes the co~piler 'generate code that can be overlaid. .

Important! Failing to observe the far call requirement in an overlaid program
will cause unpredictable and possibly catastrophic results when
the program is executed.

Buffer size The default overlay buffer size is twice the size of the largest over­
lay. This is adequate for some applications. But imagine that a
particular function of a program is implemented through many
modules, each of which is overlaid. If the total size of those
modules is larger than the overlay buffer, a substantial amount of
swapping will occur if the modules make frequent calls to each
other.

The solution is to increase the size of the overlay buffer so that
enough memory is available at any given time to contain all
overlays that make frequent calls to each other. You can do this by
setting the _ovrbuffer global variable to the required size in para-

Turbo C++ User's Guide

graphs. For example, to set the overlay buffer to 128K, include the
following statement in your code:

unsigned _ovrbuffer = Ox2000j

There is no general formula for determining the ideal overlay
buffer size. Borland's Turbo Profiler, available separately, can help
provide a suitable value. .

What not to overlay Don't overlay modules that contain interrupt handlers, or small
and time-critical routines. Due to the non-reentrant nature of the
DOS operating system, modules that may be called by interrupt
functions should not be overlaid.

Debugging overlays

External routines in
overlays

Turbo C++'s overlay manager fully supports passing overlaid
functions as arguments, assigning and initializing function
pointer variables with addresses of overlaid functions, and calling
overlaid routines via function pointers.

Most debuggers have very limited overlay debugging capabilities,
if any at all. Not so with Turbo C++'s integrated debugger and
Turbo Debugger, the standalone debugger, which is available
separately. Both debuggers fully support single-stepping and
breakpoints in overlays in a manner completely transparent to
you. By using overlays, you can easily engineer and debug huge
applications-all 'from inside the IDE or by using Turbo
Debugger.

Like normal C functions, external assembly language routines
must observe certain programming rules to work correctly with
the overlay manager.

If an assembly language routine makes calls to any overlaid func­
tions, the assembly language routine must be declared FAR, and it
must set up a stack frame using the BP register. For example,
assuming that OtherFunc is an overlaid function in another mod­
ule, and that the assembly language routine ExternFunc calls it,
then ExternFunc must be FAR and set up a stack frame, as shown:

ExternFunc
push
mov
sub

call

PROC FAR
bp
bp,sp
sp,Loca18ize

OtherFunc

j8ave BP
j8et up stack frame
jAllocate local variables

jCall another overlaid module

Chapter 78, Memory management 593

Swapping

594

mov
pop
RET

sp,bp
bp

ExternFunc ENDP

iDispose local variables
iRestore BP
iReturn

where LoealSize is the size of the local variables. If LoealSize is zero,
you can omit the two lines to allocate and dispose local variables,
but you must not omit setting up the BP stack frame even if you
have no arguments or variables on the stack.

These requirements are the same if ExternFune makes indirect
references to overlaid functions. For example, if OtherFune makes
calls to overlaid functions, but is not itself overlaid, ExternFune

. must be FAR and still has to set up a stack frame.

In the case where an assembly language routine doesn't make any
direct or indirect references to overlaid functions, there are no
special requirements; the assembly language routine can be de­
clared NEAR. It does not have to set up a stack frame.

Overlaid assembly language routines should not create variables
in the code segment, since any modifications made to an overlaid
code segment are lost when the overlay is disposed. Likewise,
pointers to objects based in an overlaid code segment cannot be
expected to remain valid across calls to other overlays, since the
overlay manager freely moves around and disposes overlaid code
segments.

If you have expanded or extended memory available, you can tell
the overlay manager to use it for swapping. If you do so, when
the overlay manager has to discard a module from the overlay
buffer (because it should load a new module and the buffer is
full), it can store the discarded module in this memory. Any later
loading of this module is reduced to in-memory transfer, which is
significantly faster than reading from a disk file.

In both cases there are two possibilities: The overlay manager can
either detect the presence of expanded or extended memory and
can take it over by itself, or it can use an already detected and
allocated portion of memory. For extended memory, the detection
of the memory use is not always successful because of the many
different cache and RAM disk programs that can take over
extended memory without any mark. To avoid this problem, you
can tell the overlay manager the starting address of the extended
memory and how much of it is safe to use.

Turbo C++ User's Guide

Expanded memory The _OvrlnitEms function initializes expanded memory
swapping. Here's its prototype:

_ OvrlnitEms and ;...OvrlnitExt
are defined in dos.h. int cdecl far _OvrInitEms

. (

)i

unsigned __ emsHandle,
unsigned __ emsFirst,
unsigned __ ems Pages

If the emsHandle parameter is zero, the overlay manager checks for
the presence of expanded memory and allocates the amount (if it
can) that can contain all of the overlays minus the size of the
overlay buffer. Otherwise, emsHandle should be a legal EMS
handle, emsFirst is the first usable EMS page, and emsPages is the
number of pages usable by the overlay manager. This function
returns 0 if expanded memory is available.

Extended memory The _OvrlnitExt function initializes extended memory swapping.
Here's its prototype:

int cdecl far _OvrInitExt

)i

unsigned long __ extStart,
unsigned long __ ext Length

If the extStart parameter is zero, the overlay manager checks for
extended memory. If it can, the overlay manager uses the amount
of free memory that can contain all of the overlays minus the size
of the overlay buffer. Otherwise, extStart is the start of the usable
extended memory, with extLength bytes usable by the overlay
manager. If extlength is zero, the overlay manager will use all
available extended memory above extStart. This function returns 0
if extended memory is available. _OvrlnitExt is defined in dos.h.

Important! The use of extended memory is not standardized. Though the
overlay manager tries every known method to find out the
amount of extended memory which is already used, use this func­
tion carefully. For example, if you have a 2 MB hard disk cache
program installed (that uses extended memory), you could use
the following call to let the overlay manager use the remaining
extended memory:

Chapter 18, Memory management 595

if (_OvrlnitExt (1024L * (2048 + 1024), OL))
puts ("No extended memory available for overlay swapping")i

596 Turbo C++ User's Guide

c H A p T E R

19

Mathematical operations

This chapter covers the floating-point options and explains how
to use complex math.

Floating-point options

If you have an 80486
processor, the numeric

coprocessor is probably
already built in.

.There are two types of numbers you work with in C: integer (int,
short, long, and so on) and floating point (float, double, and long
double). Your computer's processor is set up to easily handle inte­
ger values, but it takes more time and effort to handle floating­
point values.

However, the iAPx86 family of processors has a corresponding
family of math coprocessors, the 8087, the 80287, and the 80387.
We refer to this entire familyof math coprocessors as the 80x87, or
"the coprocessor."

The 80x87 is a. special hardware numeric processor that can be
installed in your PC. It executes floating-point instructions very
quickly. If you use floating point a lot, you'll probably want a
coprocessor. The CPU in your computer interfaces 'to the 80x87 via
special hardware lines.

Chapter 19, Mathematical operations 597

· Emulating the
80x87 chip

This software resides in the
last 572 bytes of your stack,

so make allowance for it
when using the emulation

option and set you stack size
accordingly.

Using 80x8? code

No floating-point
code

Fast floating-point
option

598

The default Turbo C++ code generation option is emulation (the-f
command-line compiler option). This option is for programs that
mayor may not have floating point, and for machines that mayor
may not have an 80x87 math coprocessor.

With the emulation option, the compiler will generate code as if
the 80x87 were present, but will also link in the emulation library
(EMU.LIB). When the program runs, it will use the 80x87 if it is
present; if no coprocessor is present at run time, it uses special
software that emulates the 80x87.

If your program is only going to run on machines with an 80x87
math coprocessor, you can save a small amount in your .EXE file
size by omitting the 80x87 autodetection and emulation logic ..
Simply choose the 80x87 floating-point code generation option
(the -f87 command-line compiler option). Turbo C++ will then
link your programs with FP87.LIB instead of EMU.LIB.

If there is no floating-point code in your program, you can save a
small amount of link time by choosing None for the floating-point
code generation option (the -f- corrnnand-line cornpiler option).
Then Turbo C++ will not link with EMU. LIB, FP87.LIB, or
MATHx.LIB.

Turbo C++ has a fast floating-point option (the -ff command-line.
compiler option). It can be turned off with -ff - on the command
line. Its purpose is to allow certain optimizations thatare technic­
ally contrary to correct C semantics. For example,

double Xi

X = (float) (3.5*x) i

To execute this correctly, x is multiplied by 3.5 to give a double
that is truncated to float precision, then stored as a double in x.
Under the fast floating-point option, the long double product is
converted directly to a double. Since very few programs depend

Turbo C++ User's Guide

The 87 environ-

on the loss of precision in passing to a narrower floating-point
type, fast floating point is the default.

ment variable If you build your program with 80x87 emulation, which is the
default, your program will automatically check to see if an 80x87
is available, and will use it if it is.

There are some situations in which you might want to override
this default autodetection behavior. For example/. your own run­
time system might have an 80x87, but you need to verify that
your program will work as intended on systems without a copro­
cessor. Or your program may need to run on a PC-compatible sys­
tem, but that particular system returns incorrect information to
the auto detection logic (saying that a nonexistent 80x87 is avail-
able, or vice versa). .

Turbo C++ provides an option for overriding the start-up code's
default auto detection logic; this option is the 87 environment
variable.

You set the 87 environment variable at the DOS prompt with the
SET command, like this:

C> SET 87=N

or like this:

C> SET 87=Y

Don't include spaces to either side of the =. Setting the 87 environ­
ment variable toN (for No) tells the start-up code that you do not
want to use the 80x87, even though it might be present in the
system.

Setting the 87 environment variable to Y (for Yes) means that the
coprocessor is there, and you want the program to use it. Let the
programmer beware!! If you set 87 = Y when, in fact, there is no
80x87 available on that system, your system will hang.

If the 87 environment variable has been defined (to any value) but
you want to undefine it, enter the following at the DOS prompt:

C> SET 87=

Press Enter immediately after typing the equal sign.

Chapter 79, Mathematical operations 599

Registers and the
80x8?

600

Disabling
floating-paint

exceptions

There are a couple of points concerning registers that you should
be aware of when using floating point.

1. In 80x87 emulation mode, register wraparound and certain
other 80x87 peculiarities are not supported.

2. If you are mixing floating point with inline assembly, you may
need to take special care when using 80x87 registers. You
might need to pop and save the 80x87 registers before calling
functions that use the coprocessor~ unless you are sure that
enough free registers exist.

By default, Turbo C++ programs abort if a floating-point overflow
or divide by zero error occurs. You can mask these floating-point
exceptions by a call to _control87 in main, before any floating­
point operations are performed. For example,

#include <float.h>
main () {

_contro187(MCW_EM,MCW_EM}i

You can determine whether a floating-point exception occurred
after the fact by calling _status87() or _clear87().

Certain math errors can also occur in library functions; for 4t­
stance, if y~~ try to take the square root of a negative number. The
default behavior is to print an error message to the screen, and to
return a NAN (an IEEE not-a-number). Use of the NAN will likely
cause a floating-point exception later, which will abort the
program if unmasked. If you don't want the message to be
printed, insert the following version ·of matherr() into your
program.

#include <math.h>
int cdecl matherr(sttuct exception *e}
{

return 1i /* error has been handled */

Turbo C++ User's Guide

Any other use of matherrO to intercept math errors is not encour­
aged, as it is considered obsolete and may not be supported in
future versions of Turbo C++.

Using complex math

See the description of class
complex in online Help for

more information.

Complex numbers are numbers of the form x + yi, where x and y
are real numbers, and i is the square root of ~1. Turbo C++ has
always had a type

struct complex
{

double x, Yi
}i

defined in math.h. This type is convenient for holding complex
numbers, as they can be considered a pair of real numbers. How­
ever, the limitations of C make arithmetic with complex numbers
rather cumbersome. With the addition of C++, complex math is
much simpler.

To use complex numbers in C++, all you have to do is to include
complex.h. In complex.h, all the following have been overloaded
to handle complex numbers:

• all of the usual arithmetic operators

• the stream operators, »and«

• the usual math functions, such as sqrtO and logO

The complex l.ibrary is invoked only if the argument is of type
complex. Thus, to get the complex square root of -I, use

sqrt(complex(-l))

and not

sqrt (-1)

As an example of the use of complex numbers, the following
function computes a complex Fourier transform.

#include <complex.h>

II calculate the discrete Fourier transform of a[O], ... , a[n-1l.
void Fourier(int n, complex all, complex b[])
{

int j, ki
complex i(O,l) i II square root of -1

Chapter 19, Mathematical operations 601

Using BCD math

602

for (j = 0; j < n; ++j)
{

b[j 1 = 0;
for (k = 0; k < n; ++k)

b[j] += ark] * exp(2*M_PI*j*k*i/n);
b[j] /= sqrt(n);

Turbo C++, along with almost every other computer and
compiler, does arithmetic on binary numbers (that is, base 2). This
is sometimes confusing to people who are used to decimal (base
10) representations. Many numbers that are exactly representable
in base 10, such as 0.01, can only be approximated in base 2.

Binary numbers are preferable for most applications, but in some
situations the roundoff error involved in converting between base
2 and 10 is undesirable. The most common case is a financial or
accounting application, where the pennies are supposed to add
up. Consider the following program to add up 100 pennies and
subtract a dollar: '

#inelude <stdio.h>
int i;
float x = 0.0;
for (i = 0; i < 100; ++i)

x += 0.01;
x -= 1.0;
printf("100*.01 - 1 = %g\n",x);

The correct answer is 0.0, but the computed answer is a small
number close to 0.0. The computation magnifies the tiny roundoff
error that occurs when converting 0.01 to base 2. Changing the
type of x to double or long double reduces the error, but does not
eliminate it. '

To solve this problem, Turbo C++ offers the C++ type bcd, which
is declared in bcd.h. With bcd, the number 0.01 is represented
exactly, and the bed variable x will give an exact penny count.

#inelude <bed.h>
int i;
bed x = 0.0;
for (i = 0; i < 100; ++i)

x += 0.01;

Turbo C++ User's Guide

Converting BCD
numbers

Important!

Number of decimal
digits

x -= 1. 0 i
cout « "100*.01 - 1 = " « x « "\n"i

Here are some facts to keep in mind about bcd.

• bed does not eliminate all roundoff error: A computation like'
1.0/3.0 will still have roundoff error.

• The usual math functions, such as sqrt and log, have been
overloaded for bed arguments.

• BCD numbers have about 17 decimal digits precision, and a
range of about 1 x 10-125 to 1 X 10125•

bed is a defined type distinct from float, double, or long double;
decimal arithmetic is only performed when at least one operand is
of the type bed.

The bed member function real is available for converting a bed
number back to one of the usual base 2 formats (float, double, or
long double), though the conversion is not done automatically.
real does the necessary conversion to long double, which can then
be converted to other types using the usual C conversions. For
example,

bed a = 12.1i

can be printed using any of the following four lines of code:

double x = ai printf ("a = %g", x) i

printf("a = %Lg" , real(a)) i

printf ("a = %g", (double) real (a)) i

eout « "a = " « ai

Note that since printf does not do argument checking, the format
specifier must have the L if the long double value real(a) is
passed.

You can specify how many decimal digits after the decimal point
are to be carried in a conversion from a binary type to a bed. The
number of places is an optional second argument to the construc­
tor bed. For example, to convert $1000.00/7 to a bed variable
rounded to the nearest penny, use

bed a = bed(1000.00/7, 2)

where 2 indicates two digits following the decimal point. Thus,

Chapter 19, Mathematical operations 603

1000.00/7
bcd(1000.00/7, 2)
bcd(1000.00/7, 1)
bcd(1000.00/7, 0)
bcd(1000.00/7, -1)
bcd(1000.00/7, -2)

142.85714 ...
142.860
142.900
143.000
140.000
100.000

This method of rounding is The number is rounded using banker's rounding, which means
specified by IEEE. round to the nearest whole number, with ties being rounded to an

even digit. For example,

604

bcd(12.335, 2)
bcd(12.345, 2)
bcd(12.355, 2)

12.34
12.34 '
12.36

Turbo C++ User's Guide

c H A p T E R

Video functions

Turbo C++ comes with a complete library of graphics functions,
so you can produce onscreen charts and diagrams. This chapter
briefly discusses video modes and windows, then explains how to
program in text mode and in graphics mode.

Turbo C ++'s video functions are similar to corresponding routines
in Turbo Pascal. If you are already familiar with controlling your
PC's screen modes or creating and managing windows and view­
ports, you can skip to page 607.

Some words about video modes

Chapter 20, Video functions

Your PC has some type of video adapter. This can be a Mono­
chrome Display Adapter (MDA) for text-only display, or it can be
a graphics adapter, such as a Color/Graphics Adapter (CGA), an
Enhanced Graphics Adapter (EGA), a Video Graphics Array
adapter (VGA), or a Hercules Monochrome Graphics Adapter.
Each adapter can operate in a variety of modes; the mode speci­
fies whether the screen displays 80 or 40 columns (text mode
only), the display resolution (graphics mode only), and the dis­
play type (color or black and white).

The screen's operating mode is defined when your program calls
one of the mode-defining functions textmode, initgraph, or
setgraphmode.

605

• In text mode, your PC's screen is divided into cells (80- or 40-
columns wide by 25, 43, or 50 lines high). Each cell consists of
an attribute and a character. The character is the displayed
ASCII character; the attribute specifies how the character is dis­
played (its color, intensity, and so on). Turbo C++ provides a
full range of routines for manipulating the text screen, for writ­
ing text directly to the screen, and for controlling cell attributes .

• In graphics mode, your PC's screen is divided into pixels; each
pixel displays a single dot onscreen. The number of pixels (the
resolution) depends on the type of video adapter connected to
your system and the mode that adapter is in. You can use func­
tions from Turbo C++'s graphics library to create graphic dis­
plays onscreen: You can draw lines and shapes, fill enclosed
areas with patterns, and control the color of each pixel.

In text modes, the upper left corner of the screen is position (1,1),'
with x-coordinates increasing from left to right, and y-coordinates'
increasing from screen-top to screen-bottom. In graphics modes,
the upper left corner is position (0,0), with the x- and y-coordinate
values increasing in the same manner.

Some words about windows and viewports

606

What is a

Turbo C++ provides functions for creating and managing
windows on your screen in text mode (and viewports in graphics
mode). If you are not familiar with windows and viewports, you
should read this brief overview. Turbo C++'s window- and
viewport-management functions are explained in "Programming
in text mode" and "Programming in graphics mode" later in this
chapter.

window? A window is a rectangular area defined on your PC's video screen
when it's in a text mode. When your program writes to the screen,
its output is restricted to the active window. The rest of the screen
(outside the window) remains untouched.

The default window is a full-screen text window. Your program
can change this default full-screen text window to a text window
smaller than the full screen (with a call to the window function).
This f~nction specifies the window's position in terms of screen
coordinates.

Turbo C++ User's Guide

What is a
viewport? In graphics mode, you can also define a rectangular area on your

PC's video screen; this is a viewport. When your graphics pro­
gram outputs drawings and so on, the viewport acts as the virtual
screen. The rest of the screen (outside the viewport) remains un­
touched. You define a viewport in terms of screen coordinates
with a call to the setviewport function.

Coordinates
Exceptior these window- and viewport-defining functions, all
coordinates for text-mode and graphics-mode functions are given
in window- or viewport-relative terms, not in absolute screen co­
ordinates. The upper left corner of the text-mode window is the
coordinate origin, referred to as (1,1); in graphics modes, the
viewport coordinate origin is position (0,0).

Programming in text mode

This section briefly
summarizes the text mode

functions.

The console I/O
functions

These five text mode function
groups are covered in the

following sections.

Chapter 20, Video functions

In Turbo C++, the direct console I/O package (cprintf, cputs, and
so on) provides high;.performance text output, window manage­
ment, cursor positioning, and attribute control functions~ These
functions are·all part of the standard Turbo C++ libraries; they are
p~ototyped in the header file conio.h.

Turbo C++'s text-mode functions work in any of the six possible
video text modes. The modes available on your system depend on
the type of video adapter and monitor you have. You specify the
current text mode with a call to textmode. We explain how to use
this function later.

The text mode functions are divided into five separate groups:

• text output and manipulation
• window and mode control
• attribute control
• state query
• cursor shape

607

Text output and
manipulation

Here's a quick summary of the text output and manipulation
functions:

Writing and reading text: cprintf
cputs
getche
putch

Sends formatted output to the screen.
Sends a string to the screen.
Reads a character and echoes it to the screen.
Sends a single character to the screen.

Manipulating text (and the clreol Clears from the cursor to the end of the line.
Clears the text window.

608

cursor) onscreen: clrscr

Moving blocks of text into
and out of memory:

delline
gotoxy
insline

movetext

gettext
puttext

Deletes the line where the cursor rests.
Positions the cursor.
Inserts a blank line below the line where the cursor
rests.
Copies text from one area onscreen to another.

Copies text from an area onscreen to memory.
Copies text from memory to an area onscreen.

Your screen-output programs will come up in a full-screen text
window by default, so you can immediately write, read, and ma­
nipulate text without any preliminary mode-setting. You write
text to the screen with the direct console output functions cprintf,
cputs, and putch, and echo input with the function getche. Text
wrapping is controlled by the global variable _wscroll. If _wscroll is
1, text wraps onto the next line, scrolling as necessary. If _wscroll
is 0, text wraps onto the same line~ and there is no scrolling.
_wscroll is 1 by default. .

Once your text is on the screen, you can erase the active window
with clrscr, erase part of a line with clreol, delete a whole line
with delline, and insert a blank line with insline. The latter three
functions operate relative to the cursor position; you move the
cursor toa specified location with gotoxy. You can also copy a
whole block of text from one rectangular location in the window
to another with movetext.

You can capture a rectangle of onscreen text to memory with
gettext, and put that text back on the screen (anywhere you want)
with puttext.

Turbo C++ User's Guide

Window and mode
control

There are two window- and mode-control functions:

textmode
window

Sets the screen to a text mode.
Deffies a text-mode window.

You can set your screen to any of several video text modes with
text mode (depending on your system's monitor and adapter).
This initializes the screen as a full-screen text window, in the
particular mode specified, and clears any residual images or text.

When your screen is in a text mode, you can output to the full
screen, or you can set aside a portion of the screen~a window-to
which your program's output is confined. To create a text win­
dow, you call window, specifying the onscreen area it will occupy;

Attribute control Here's a quick summary of the text-mode attribute control func­
tions:

Setting foreground and textattr
background:

Sets the foreground and background colors
(attributes) at the same time.

textbackground
textcolor

Sets the background color (attribute).
Sets the foreground color (attribute).

Modifying intensity: highvideo
lowvideo
normvideo

Sets text to high intensity.
Sets text to low intensity.
Sets text to original intensity.

Chapter 20, Video functions

The attribute control functions set the current attribute, which is
represented by an 8-bit value: The four lowest bits represent the
foreground color, the next three bits give the background color,
and the high bit is the "blink enable" bit.

Subsequent text is displayed in the current attribute. With the at­
tribute control functions, you can set the background and fore­
ground (character) colors separately (with textbackground and
textcolor) or combine the color specifications in a single call to
textattr. You can also specify that the character (the foreground)
will blink. Most color monitors in color modes will display the
true colors. Non-color monitors may convert some or all of the at­
tributes to various monochromatic shades or other visual effects,
such as bold, underscore, reverse video, and so on.

You can direct your system to map the high-intensity foreground
colors to low-intensity colors with lowvideo (which turns off the
high-intensity bit for the characters). Or you can map the low­
intensity colors to high intensity with highvideo (which turns on

609

610

the character high-intensity bit). When you're through playing
around with the character intensities, you can restore the settings
to their original values with normvideo.

State query Here's a quick summary of the state-query functions:

gettextinfo Fills in a text_info structure with information about
the current text window.

wherex

wherey

Gives the x-coordinate of the cell containing the
cursor.
Gives the y-coordinate of the cell containing the
cursor.

Turbo C++'s console I/O functions include some designed for
state queries. With these functions, you can retrieve information
about your text-mode window and the current cursor position
within the window.

The gettextinfo function fills a text_info structure (defined in
conio.h) with several details about the text window, including:

• the current video mode

• the window's position in absolute screen coordinates

• the window's dimensions

• the current foreground and background colors

• the cursor's current position

Sometimes you might need only a few of these details. Instead of
retrieving all text window information, wherex and wherey return
just the cursor's (window-relative) position.

Cursor shape The function _setcursortype enables you to change the
appearance of your cursor. The values are _NOCURSOR, which
turns off the cursor; _SOLIDCURSOR, which gives you a solid
block (large) cursor; and _NORMALCURSOR, which gives you
the normal underscore cursor.

Text windows
The default text window is full screen; you can change this to a
smaller text window with a call to the window function. Text
windows can contain up to 50 lines and up to 40 or 80 columns.

The coordinate origin (point where the numbers start) of a Turbo
C++ text window is the upper left corner of the window. The

Turbo C++ User's Guide

coordinates of the window's upper left corner are (1,1); the
coordinates of the bottom right corner of a full-screen 80-column,
25-line text window are (80,25).

An example Suppose your 100% PC-compatible system is in 80-column text
mode, and you want to create a window. The upper left corner of
the window will be at screen coordinates (10,8), and the lower
right corner of the window will be at screen coordinates (50,21) .

. To do this, you call the window function,like this:

Figure 20.1
A window in 80x25 text mode

The text_modes
type

Chapter 20, Video functions

window(10, 8, 50, 21);

Now that you've created the text-mode window, you want to
move the cursor to the window position (5, 8) and write some text
in it, so you decide to use gotoxy and cputs. The following figure
illustrates the code.

gotoxy(5, 8);
cputs("Happy Birthday, Frank Borland");

Screen

Screen
Column 1

Line 1 -~I++HI++HI++HI++HI++H++H++H++H++++++++++++++++++++l+H-f-H+I+H-I+H-I+H-H+H1-IilI

Window
Column 1

Window
Column 41

Screen
Column 80

Screen
Line 25

You can put your monitor into one of seven PC text modes with a
call to the textmode function. The enumeration type text_modes,
defined in conio.h, enables you to use symbolic names for the
mode argument to the textmode function, instead of "raw" mode
numbers. However, with symbolic constants, you must put

611

Text colors

612

#include <conio.h>

in your source code.

The numeric and symbolic values defined by text_modes are as
follows:

Symbolic
constant

LASTMODE
BW40·
C40
BW80
C80
MONO
C4350

Numeric
value

-1
o
1
2
3
7

64

Video text mode

Previous text mode enabled
Black and white, 40 columns
16-color, 40 columns
Black and white, 80 columns
16-color, 80 columns
Monochrome, 80 columns
EGA, 80x43; VGA, 80x50 lines

For example, the following calls to textmode put your color
monitor in the indicated operating mode:

textmode(O)
textmode(BWSO)
textmode(C40)
textmode(3)
textlJlode(7)
textmode(C4350)

Black and white, 40 column
Black and white, 80 column
16-color,40 column
16-c910r, 80 column
Monochrome, 80 columns
EGA, 80x43; VGA, 80x50 lines

Use 'settextinfo to determine the number of rows in the screen
after callLng textmode in the mode C4350.

For a detailed description of how cell attributes are laid out, refer
to the textattr entry in the online Runtime Library Reference.

When a character occupies a cell, the color of the character is the
foreground; the color of the cell's remaining area is the background.
Color monitors with color video adapters can display up to 16 dif­
ferent colors; monochrome monitors substitute different visual at­
tributes (highlighted, underscored, reverse video, and so on) for
the colors. .

Turbo C++ User's Guide

High­
performance

.output

Chapter 20, Video functions

Symbolic
constant·

BLACK
BLUE
GREEN
CYAN
RED
MAGENTA
BROWN
LIGHTGRAY
DARKGRAY
LIGHTBLUE
LIGHTGREEN
LIGHTCYAN
LIGHTRED
LIGHTMAGENTA
YELLOW
WHITE
BLINK

Numeric
value

o
1
2
3
4
5
6
7
8
9

. 10
11
12
13
14
15

128

Foreground or
background?

Both
Both
Both
Both
Both
Both
Both
Both
Foreground only
Foreground only
Foreground only
Foreground only
Foreground only
Foreground only
Foreground only
Foreground only
Foreground only

The include file conio.h defines symbolic names for the different
colors. If you use the symbolic constants, you must include
conio.h in your source code.

Table 20 lists these symbolic constants and their corresponding
numeric values. Note that only the first eight colors are available
for the foreground and background; the last eight (colors 8
through 15) are available for the foreground (the characters
themselves) only. .

You can add the symbolic constant BLINK (numeric value 128) to
a foreground argument if you want the character to blink.

Turbo C++'s console I/O package includes a variable called direct­
video. This variable controls whether your program's console out­
put goes djrectly to the video RAM (directvideo = 1) or goes via
BIOS calls (directvideo = 0).

The default value is directvideo = 1 (console output goes directly to
the video RAM). In general, going directly to video RAM gives
very high performance (spelled f-a-s-t-e-r o-u-t-p-u-t), but doing
so requires your computer to be 100% IBM PC-compatible: Your
video hardware must be identical to IBM display adapters. Setting
directvideo = 0 will work on any machine that is IBM BIOS­
compatible, but the console output will be slower.

613

Programming in graphics mode

614

In this section, we give a brief summary of the functions you use
in graphics mode. For more detailed information about these
functions, refer to online help.

Turbo C++ provides a separate library of over 70 graphics func­
tions, ranging from high-level calls (like setviewport, bar3d, and
drawpoly) to bit-oriented functions (like getimage and putimage).
The graphics library supports numerous fill and line styles, and
provides several text fonts that you can size, justify, and orient
horizontally or vertically.

These functions are in the library file GRAPHICS. LIB, and they
are prototyped in the header file graphics.h. In addition to these
two files, the graphics package includes graphics device drivers
(*.BGI files) and stroked character fonts (*.CHR files); we discuss
these additional files in following sections.

In order to use the graphics functions:

• If Y0:1::1're using the IDE, check Options I Linker I Libraries I
GrapRics Library. When you make your program, the linker
automatically links in the Turbo C++ graphics library .

• If you're using the command-line compiler TCC.EXE, you have
to list GRAPHICS. LIB on the command line. For example, if
your progran-L ~v1YPROG.C uses graphics, the TCC cmnrnand
line would be

TCC MYPROG GRAPHICS.LIB

Important! Because graphics functions use far pointers, graphics are not
supported in the tiny memory model.

There is only one graphics library, not separate versions for each
memory model (in contrast to the standard libraries CS.LIB,
CC.LIB, CM.LIB, and so on, which are memory-model specific).
Each function in GRAPHICS. LIB is a far function, and those
graphics functions that take pointers take far pointers. For these
functions to work correctly, it is important that you #include
graphics.h in every module that uses graphics.

Turbo C++ User's Guide

The graphics
library functions Turbo C++'s graphics functions fall into seven categories:

\ • graphics system control

Graphics system
control

Chapter 20, Video functions

• drawing and filling
• manipulating screens and viewports
• text output
• color control
• error handling
• state query

Here's a quick summary of the graphics system control:

closegraphShuts down the graphics system.
detectgraph Checks the hardware and determines which

graphdefaults

_graphfreemem

_graphgetmem

getgraphmode
getmoderange

initgraph

installuserdriver

installuserfont

registerbgidriver

restorecrtmode

setgraphbufsize
setgraphmode

graphics driver to use; recommends a mode.
Resets all graphics system variables to their
default settings.
Deallocates graphics memory; hook for
defining your own routine.
Allocates graphics memory; hook for
defining your own routine.
Returns the current graphics mode.
Returns lowest and hIghest valid modes for
specified driver.
Initializes the graphics system and puts the
hardware into graphics mode.
Installs a vendor-added device driver to the
BGI device driver table.
Loads a vendor-added stroked font file to
the BGI character file table.
Registers are linked-in or user-loaded driver
file for inclusion at link time.
Restores the original (pre-initgraph) screen
mode.
Specifies size of the internal graphics buffer.
Selects the $pecified graphics mode, clears
the screen, and restores all defaults.

Turbo C++'s graphics package provides graphics drivers for the
following graphics adapters (and true compatibles):

615

616

• Color/Graphics Adapter (CGA)
• Multi-Color Graphics Array (MCGA)
• Enhanced Graphics Adapter (EGA)
• Video Graphics Array (VGA)
• Hercules Graphics Adapter
• AT&T 400-line Graphics Adapter
.3270 PC Graphics Adapter
• IBM 8514 Graphics Adapter

To start the graphics system, you first call the initgraph function.
initgraph loads the graphics driver and puts the system into
graphics mode.

You can tell initgraph to use a particular graphics driver and
mode, or to autodetect the attached video adapter at run time and
pick the corresponding driver. If you tell initgraph to autodetect, it
calls detectgraph to select a graphics driver and mode. If you tell
initgraph to use a particular graphics driver and mode, you must
be sure that the hardware is present. If you force initgraph to use
hardware that is not present, the results will be unpredictable.

Once a graphics driver has been loaded, you can find out the
name of the driver by using the getdrivername function and how
many modes a driver supports with getmaxmode. getgraphmode
will tell you which graphics mode you are currently in. Once you
have a mode number, you can find out the name of the mode with
getmodename. You can change graphics modes with setgraph­
mode and return the video mode to its original state (before
graphics was initialized) with restorecrtmode. restorecrtmode
returns the screen to text mode, but it does not close the graphics
system (the fonts and drivers are still in memory).

graphdefaults resets the graphics state's settings (viewport size,
draw color, fill color and pattern, and so on) to their default
values.

installuserdriver and installuserfont let you add new device dri­
vers and fonts to your BGI.

FinaIly, when you're through using graphics, call closegraph to
shut down the graphics system. closegraph unloads the driver
from memory and restores th~ original video mode (via
restorecrtmode).

Turbo C++ User's Guide

A more detailed
discussion

The previous discussion provided an overview of how initgraph
operates. In the following paragraphs, we describe the behavior of
initgraph, _graphgetmem, and _graphfreemem in some detail.

Normally, the initgraph routine loads a graphics driver by allocat­
ing memory for the driver, then loading the appropriate .BGI file
from disk. As an alternative to this dynamic loading scheme, you
can link a graphics driver file (or several of them) directly into .
your executable program file. You do this by first converting the
.BGI file to an .OBJ file (using the BGIOBJ utility-see UTIL.DOC,
included with your distribution disks), then placing calls to
registerbgidriver in your source code (before the call to initgraph)
to register the graphics driver(s). When you build your program,
you need to link the .OBJ files for the registered drivers.

After determining which graphics driver to use (via detectgraph),
initgraph checks to see if the desired driver has been registered. If
so, initgraph uses the registered driver directly from memory.
Otherwise, initgraph allocates memory for the driver and loads
the . BGI file from disk.

Note Using registerbgidriver is an advanced programming technique,
not recommended for novice programmers.

If you provide your own
_graphgetmem or

_graphfreemem, you may
get a "duplicate symbols"

warning message. Just
ignore the warning.

Drawing and filling

During run time, the graphics system might need to allocate
memory for drivers, fonts, and internal buffers. If this is neces­
sary, it calls _graphgetmem to allocate memory, and calls
_graphfreemem to free it. By default, these routines simply call
malloc and free, respectively.

You can override this default behavior by defining your own
_graphgetmem and _graphfreemem functions. By doing this, you
can control graphics memory allocation yourself. You must, how­
ever, use the'same names for your own versions of these
memory-allocation routines: They will override the default func­
tions with the same names that are in the standard C libraries.

Here's a quick summary of the drawing and filling functions:

Drawing: arc Draws a circular arc.
Draws a circle.

Chapter 20, Video functions

circle
drawpoly
ellipse
getarccoords

Draws the outline of a polygon.
Draws an elliptical arc.
Returns the coordinates of the last call to arc
or ellipse.

617

618

getaspectratio

getlinesettings

line
linerel

lineto

moveto
moverel

rectangle
setaspectratio

setlinestyle

Filling: bar
bar3d
fillellipse
fill poly
floodfill
getfill pattern
getfillsettings

pieslice
sector
setfill pattern
setfillstyle

Returns the aspect ratio of the current
graphics mode.
Returns the .current line style, line pattern,
and line thickness.
Draws a line from (xO,yO) to (xl,yl).
Draws a line to a point some relative distance
from the current position (CP) ..
Draws a line from the current position (CP) to
(x,y).
Moves the current position (CP) to (x,y).
Moves the current position (CP) a relative
distance.
Draws a rectangle.
Changes the default aspect ratio-correction
factor.
Sets the current line width and style.

Draws and fills a bar.
Draws and fills a 3-D bar.
Draws and fills an ellipse.
Draws and fills a polygon.
Flood-fills a bounded region.
Returns the user-defined fill pattern.
Returns information about the current fill
pattern and color.
Draws and fills a pie slice.
Draws and fills an elliptical pie slice.
Selects a user-defined fill pattern.
Sets the fill pattern and fill color.

With Turbo C++'s drawing and painting functions, you can draw
colored lines, arcs, circles, ellipses, rectangles, pie slices, two- and
three-dimensional bars, polygons, and regular or irregular shapes
based on combinations of these. You can fill any bounded shape
(or any region surrounding such a shape) with one of eleven pre­
defined patterns, or your own user-defined pattern. You can also
control the thickness and style of the drawing line, and the loca­
tion of the current position (CP).

You draw lines and unfilled shapes with the functions arc, circle,
drawpoly, ellipse, line, linerel, lineto, and rectangle. You can fill
these shapes with floodfill, or combine drawing/filling into one
step with bar, bar3d, fillellipse, fill poly, pieslice, and sector. You
use setlinestyle to specify whether the drawing line (and border

Turbo C++ User's Guide

Manipulating the
screen and viewport

Screen manipulation:

line for filled shapes) is thick or thin, and whether its style is solid,
dotted, and so forth, or some other line pattern you've defined.
You can select a predefined fill pattern with setfillstyle, and de­
fine your own fill pattern with setfillpattern. You move the CP to
a specified location with moveto, and move it a specified
displacement with moverel.

To find out the current line style and thickness, you call getline­
settings. For information about the current fill pattern and fill
color, you call getfillsettings; you can get the user-defined fill
pattern with getfillpattern.

You can get the aspect ratio (the scaling factor used by the graph­
ics system to make sure circles come out round) with getaspect­
ratio, and get coordinates of the last drawn arc or ellipse by
calHng getarccoords. If your circles are not perfectly round, use
setaspectratio to correct them.

Here's a quick summary of the screen-, viewport-, image-, and
pixel-manipulation functions:

cleardevice Clears the screen (active page).
setactiv~page Sets the active page for graphics output.
setvisualpage Sets the visual graphics page number.

Viewport manipulation: clearviewport
getviewsettings

Clears the current viewport.
Returns information about the current
viewport.

setviewport Sets the current output viewport for graphics
optput.

Image manipulation: getimage Saves a bit image of the specified region to
memory.

imagesize

putimage

Returns the number of bytes required to store a
rectangular reg~on of the screen.
Puts a previously saved bit image onto the
screen.

Pixel manipulation: getpixel
putpixel

Gets the pixel color at (x,y).
Plots a pixel at (x,y).

Chapter 20, Video functions

Besides drawing and painting, the graphics library offers several
functions for manipulating the screen, viewports, images, and
pixels.' You can clear the whole screen in one fell swoop with a
call to cleardevice; this routine erases the entire screen and homes
the CP in the viewport, but leaves all other graphics system set-

619

Text output in graphics
mode

620

tings intact (the line, fill, and text styles; the palette; the viewport
settings; and so on). .

Depending on your graphics adapter, your system has between
one and four screen-page buffers, which are areas in memory
where individual whole-screen images are stored dot-by-dot. You
can specify the active screen page (where graphics functions place
their output) with setactivepage and the visual page (the one dis­
played onscreen) with setvisualpage.

Once your screen is in a graphics mode, you can define a
viewport (a rectangular "virtual screen") on your screen with a
call to setviewport. You define the viewport's position in terms of
absolute screen coordinates and specify whether clipping is on .
(active) or off. You clear the viewport with clearviewport. To find
out the current viewport's absolute screen coordinates and clip­
ping status, call getviewsettings.

You can capture a portion of the onscreen image with getimage,
call imagesize to calculate the number of bytes required to store
that captured image in memory, then put the stored image back
on the screen (anywhere you want) with putimage.

The coordinates for all output functions (drawing, filling, text,
and so on) are viewport-relative.

You can also manipulate the color of individual pixels with the
functions getpixel (which returns the color of a given pixel) and
putpixel (which plots a specified pixel in a given color).

Here's a quick summary of the graphics-mode text output
functions:

gettextsettings

outtext

outtextxy

registerbgifont
settextjustify

settextstyle

setusercharsize

Returns the current text font, direction, size,
and justification.
Sends a string to the screen at the current
position (CP).
Sends a string to the screen at the specified
position.
Registers a linked-in or tiser-Ioaded font.
Sets text justification values used by outtext
and outtextxy.
Sets the current text font, style, and character
magnification factor.
Sets width and height ratios for stroked fonts.

. Turbo C++ User's Guide

Chapter 20, Video functions

textheight
textwidth

Returns the height of a string in pixels.
Returns the width of a string in pixels.

The graphics library includes an 8x8 bit-mapped font and several
stroked fonts for text output while in graphics mode .

• In a bit-mapped font, each character is defined by a matrix of
pixels .

• In a stroked font, each character is defined by a series of vectors
that tell the graphics system how to draw that character.

The advantage of using a stroked font i/s apparent when you start
to draw large characters. Since a stroked font is defined by vec­
tors, it will still retain good resolution and quality when the font
is enlarged. On the other hand, when you enlarge a bit-mapped
font, the matrix is multiplied by a scaling factor; as the scaling
factor becomes larger, the characters' resolution becomes coarser.
For small characters, the bit-mapped font should be sufficient, but
for larger text you should select a stroked font.

You output graphics text by calling either outtext or outtextxy,
and control the justification of the output text (with respect to the
CP) with settextjustify. You choose the character font, direction
(horizontal or vertical), and size (scaIQ) with settextstyle. You can
find out the current text settings by calling gettextsettings, which
returns the current text font, justification, magnification, and di­
rection in a textsettings structure. setusercharsize allows you to
modify the character width and height of stroked fonts.

If clipping is on, all text strings output by outtext and outtextxy
will be clipped at the viewport borders. If clipping is off, these
functions will throwaway bit-mapped font bUtput if any part of
the text string would go off the screen edge; stroked font output is
truncated at the screen edges.

To determine the onscreen size of a given text string, call text­
height (which measures the string's height in pixels) and textwidth
(which measures its width in pixels).

The default 8x8 bit-mapped font is built into the graphics pack­
age, so it is always available at run time. The stroked fonts are
each kept in a separate .CHR file; they can be loaded at run time
or converted to .OBJ files (with the BGIOBJ utility) and linked into
your .EXE file.

Normally, the settextstyle routine loads a font file by allocating
memory for the font, then loading the appropriate .CHR file from

621

disk. As an alternative to this dynamic loading scheme, you can
link a character font file (or several of them) directly into your
executable program file. You do this by first converting the .CHR
file to an .OBJ file (using the BGIOBJ utility-read about it in
UTIL.DOC, the online documentation included with your
distribution disks), then placing calls to registerbgifont in your
source code (before the call to settextstyle) to register the character
font(s). When you build your program, you need to link in the
.OBJ files for the stroked fonts you register.

Note Using registerbgifont is an advanced programming technique,
not recommended for novice programmers. This function is
described in more detail in UTIL.DOC, included with your
distribution disks.

Color control Here's a quick summary of the color control functions:

Get color information: getbkcolor Returns the current background color.
getcolor Returns the current drawing color.
getdefaultpalette Returns the palette definition structure;
getmaxcolor Returns the maximum color value available

in the current graphics mode.
getpalette . Returns the current palette and its size.
getpalettesize Returns the size of the palette look-up table.

Set one or more colors: seta II palette
setbkcolor
setcolor
setpalette

Changes all palette colors as specified.
Sets the current background color.
Sets the current drawing color.
Changes one palette color as specified by its
arguments.

Before summarizing how these color control functions work, we
first present a basic description of how colors are actually pro­
duced on your graphics screen.

Pixels and palettes The graphics screen consists of an array of pixels; each pixel pro­
duces a single (colored) dot onscreen. The pixel's value does not
specify the precise color directly; it is an index into a color table .
called a palette. The palette entry corresponding to a given pixel
value contains the exact color information for that pixel.

This indirection scheme has a number of implications. Though the
hardware might be capable of displaying many colors, only a sub­
set of those colors can be displayed at any given time. The num­
ber of colors that can be displayed at anyone time is equal to the

622 Turbo C++ User's Guide

Background and
drawing color

Color control on a
CGA

Chapter 20, Video functions

number of entries in the palette (the palette's size). For example,
on an EGA, the hardware can display 64 different colors, but only
16 of them at a time; the EGA palette's size is 16.

The size of the palette determines the range of values a pixel can
assume, from 0 to (size -1). getmaxcolor returns the highest valid·
pixel value (size -1) for the current graphics driver and mode.

When we discuss the Turbo C++ graphics functions, we often use
the term color, such as the current drawing color, fill color and
pixel color. In fact, this color is a pixel's value: it's an index into the
palette. Only the palette determines the true color on the screen.
By manipulating the palette, you can change the actual color dis­
played on the screen even though the pixel values (drawing color,
fill color, and so on) have not changed.

The background color always corresponds to pixel value O. When
an area is cleared to the background color, that area's pixels are
simply set to O.

The drawing color is the value to which pixels are set when lines
are drawn. You choose a drawing color with setcolor (n), where n
is a valid pixel value for the current palette.

Due to graphics hardware differences, how you actually control
color differs quite a bit between CGA and EGA, so we'll present
them separately. Color control on the AT&T driver, and the lower
resolutions of the MCGA driver is similar to CGA.

On the CGA, you can choose to display your graphics in low reso­
lution (320x200), which allows you to use four colors, or high res­
olution (640x200), in which you can use two colors.

eGA low resolution

In the low resolution modes, you can choose from four predefined
four-color palettes. In any of these palettes, you can only set the
first palette entry; entries 1,2, and 3 are fixed. The first palette
entry (color 0) is the background color. This background color can
be anyone of the 16 available colors (see table of CGA back­
ground colors below).

You choose which palette you want by the mode you select
(CGACO, CGACl, CGAC2, CGAC3); these modes use color pal­
ette 0 through color palette 3, as detailed in the following table.

623

The eGA s foreground colors
are the same as those iisted

in this tab/e.

624

The eGA drawing colors and the equivalent constants are defined
in graphics.h.

Constant assigned to color number (pixel value)
Palette
number 2 3

o CGA_LIGHTGREEN CGA_LIGHTRED CGA_YELLOW
1 CGA_LIGHTCYAN CGA_LIGHTMAGENTA CGA_WHITE
2 CGA_GREEN CGA_RED CGA_BROWN
3 CGA_CYAN CGA_MAGENTA CGA_LIGHTGRAY

To assign one of these colors as the eGA drawing color, call set­
color with either the color number or the corresponding constant
name as an argument; for example, if you are using palette 3 and
you want to use cyan as the drawing color:

setcolor(l) i

or

The available eGA background colors, defined in graphics.h, are
listed in the following table:

Numeric Symbolic Numeric Symbolic
value name value name

0 BLACK 8 DARKGRAY
1 BLUE 9 LIGHTBLUE
2 GREEN 10 LIGHTGREEN
3 CYAN 11 LIGHTCYAN
4 RED 12 LIGHTRED
5 MAGENTA 13 LIGHTMAGENTA
6 BROWN 14 YELLOW
7 LIGHTGRAY 15 WHITE

To assign one of these colors to the eGA background color, use
setbkcolor(color), where color is one of the entries in the preceding
table. For eGA, this color is not a pixel value (palette index); it
directly specifies the actual color to be put in the first palette entry.

eGA high resolution

In high resolution mode (640x200), the eGA displays two colors: a
black background and a colored foreground. Pixels can take on
values of either 0 or 1. Because of a quirk in the eGA itself, the
foreground color is actually what the hardware thinks of as its
background color; you set it with the setbkcolor routine.

Turbo C++ User's Guide

Color control on the
EGA and VGA

Error handling in
graphics mode

The colors available for the colored foreground are those listed in
the preceding table. The CGA uses this color to display all pixels
whose value equals l.

The modes that behave in this way are (:GAHI, MCGAMED,
MCGAHI, ATT400MED, and ATT400HI.

eGA palette routines

Because the CGA palette is predetermined, you should not use
the setallpalette routine on a CGA. Also, you should not use
setpalette(index, actuaLcolor), except for index = O. (This is an
alternate way to set the CGA background color to actuaLcolor.)

On the EGA, the palette contains 16 entries from a total of 64 pos­
sible colors, and each entry is user-settable. You can retrieve the
current palette with getpalette, which fills in a structure with the
palette's size (16) and an array of the actual palette entries (the
"hardware color numbers" stored in the palette). You can change
the palette entries individually with setpalette, or all at once with
seta II palette.

The default EGA palette corresponds to the 16 CGA colors, as
given in the previous color table: black is in entry 0, blue in entry
1, ... , white in entry 15. There are constants defined in graphics.h
that contain the corresponding hardware color values: these are
EGA_BLACK, EGA_WHITE, and so on. You can also get these
values with getpalette.

The setbkcolor(color) routine behaves differently on an EGA than
on a CGA. On an EGA, setbkcolor copies the actual color value
that's stored in entry #color into entry #0.

As far as colors are concerned, the VGA driver behaves like the
EGA driver; it just has higher resolution (and smaller pixels).

Here's a quick summary of the graphics-mode error-handling
functions:

grapherrormsg Returns an error message string for the
specified error code.

graphresult Returns an error code for the last graphics
operation that encountered a problem.

Chapter 20, Video functions 625

626

If an error occurs when a graphics library function is called (such
as a font requested with settextstyle not being found), an internal
error code is set. You retrieve the error code for the last graphics
operation that reported an error by calling graphresult. A call to
grapherrormsg{graphresultO) returns the error strings listed in
the following table.

The error return code accumulates, changing only when a graph­
ics function reports an error. The error return code is reset to 0
only when initgraph executes successfully, or when you call
graphresult. Therefore, if you want to know which graphics func­
tion returned which error, you should store the value of
graphresult into a temporary variable and then test it.

Error
code

a
-1

-2
-3
-4
-5
-6
-7
-8
-9
-10

-11
-12
-13
-14
-15
-18

graphics_errors
constant

grOk
grNoInitGraph

grNotDetected
grFileNotFound
grInvalidDriver
grNoLoadMem
grNoScanMem
grNoFloodMem
grFontN otFound
grNoFontMem
grInvalidMode

grError
grIOerror
grInvalidFont
grInvalidFontNum
grInvalidDeviceNum
grInvalidVersion

Corresponding
error message string

'No error
(BGI) graphics not installed (use
initgraph)
Graphics hardware not detected
Device driver file not found
Invalid device driver file
Not enough memory to load driver
Out of memory in scan fill
Out of memory in flood fill
Font file not found
Not enough memory to load font
Invalid graphics mode for selected
driver
Graphics error
Graphics I/O error
Invalid font file
Invalid font number
Invalid device number
Invalid version of file

Include the full path to your BGI directory (using couble
backslashes) in the third parameter to the initgraphO function, as
shown in the following example:

intergraph (&gdriver, &gmode, "c:\\tc\\bgi");

State query, The following table summarizes the graphics mode state query
functions:

Turbo C++ User's Guide

Table 20.1
Graphics mode state query

functions
Function

getarccoords

getaspectratio
getbkcolor
getcolor
getdrivername
getfillpattern
getfillsettings
getgraphmode
getlinesettings
getmaxcolor
getmaxmode
getmaxx
getmaxy_
getmodename
getmoderange
getpalette
getpixel
gettextsettings
getviewsettings
getx
gety

Returns

Information about the coordinates of the last call to
arc or ellipse.
Aspect ratio of the graphics screen.
Current background color.
Current drawing color.
Name of current graphics driver.
User-defined fill pattern.
Information about the current fill pattern and color.
Current graphics mode.
Current line style, line pattern, and line thickness.
Current highest valid pixel value.
Maximum mode number for current driver.
Current x resolution.
Current y resolution.
Name of a given driver mode.
Mode range for a given driver.
Current palette and its size.
Color of the pixel at x,y. _
Current text font, direction, size, and justification.
Information about the current viewport.
x coordinate of the current position (CP).
y coordinate of the current position (CP).

In each of Turbo C ++'s graphics functions categories there is at
least one state query function. These functions are mentioned
under their respective categories and also covered here. Each of
the Turbo C++ graphics state query functions is named
getsomething (except in the error-handling category). Some of
them take no argument and return a single value representing the
requested information; others take a pointer to a structure defined
in graphics.h, fill that structure with the appropriate information,
and return no value.

The state query functions for the graphics system control category
are getgraphmode, getmaxmode, and getmoderange: The first
returns an integer representing the current graphics driver and

_ mode, the second returns the maximum mode number for a given
driver, and the third returns the range of modes supported by a
given graphics driver. getmaxx and getmaxy return the maximum
x and y screen coordinates for the current graphics mode.

The drawing and filling state query functions are getarccoords,
getaspectratio, getfillpattern, getfillsettings, and getlinesettings.
getarccoords fills a structure with coordinates from the last call to
arc or ellipse; getaspectratio tells the current mode's aspect ratio,
which the graphics system uses to make circles come out round.

Chapter 20, Video functions 627

628

getfillpattern returns the current user-defined fill pattern. getfill- ,
settings fills a structure with the current fill pattern and fill color.
getlinesettings fills a structure with the current line style (solid,
dashed, and so on),line width (normal or thick), and line pattern.

In the screen- and viewport-manipulation category, the state
query functions are getviewsettings, getx, gety, and getpixel.
When you have defined a viewport, you can find out its absolute
screen coordinates and whether clipping is active by calling get­
viewsettings, which fills a structure with the information. getx
and gety return the (viewport-relative) x- and y-coordinates of the
CP. getpixel returns the color of a specified pixel.

The graphics mode text-output function category contains one
all-inclusive state query function: gettextsettings. This function
fills a structure with information about the current character font,
the direction in which text will be displayed (horizontal or
bottom-to-top vertical), the character magnification factor, and the
text-string justification (both horizontal and vertical).

Turbo C ++'s color-control function category includes three state
query functions. getbkcolor returns the current background color,
and getcolor returns the current drawing color. getpalette fills a
structure with the size of the current drawing palette and the
palette'S contents. getmaxcolor returns the highest valid pixel
value for the current graphics driver and mode (palette size -1).

Finally, getmodename and getdrivername return the name of a
given driver mode and the name of the current graphics driver,
respectively.

Turbo C++ User's Guide

A p

Table A.l
Editing commands

A word is defined as a
sequence of characters
separated by one of the
fol/owing: space < > , ;
.()()I\'*+-/$

= I ~ ? ! .. % '& ':
@ \, and aI/ control and

graphic characters.

p

Appendix A, Editor reference

E N D x

A

Editor reference

The editor has two command sets: CVA and Alternate. The tables
in this appendix list all the available commands. You can use
some commands in both modes, while others are available in only
one mode. Choose Options I Environment I Preferences and select
the command set you want in the Preferences dialog box.

Most of these commands need no explanation. Those that do are
described in the text following Table A.I.

Command Both modes CUA Alternate

Cursor movement commands

Character left ~ Ctrl+S
Character right ~ Ctrl+D
Word left Ctrl+~ Ctrl+A
Word right Ctfl+ ~ Ctrl+F
Lineup l' Ctrl+E
Line down J, Ctrl+X
Scroll up one line Ctrl+W
Scroll down one line Ctrl+Z
Page up PgUp Ctrl+R
Page down PgDn' Ctrl+C
Beginning of line Home

Ctrl+QS
End of line End

Ctrl+Q D
Top of window Ctrl+Q E Ctrl+E Ctrl+Home
Bottom of window Ctrl+QX Ctrl+X Ctrl+End
Top of file Ctrl+Q R Ctrl+Home Ctrl+PgUp
Bottom of file ctrl+Q C Ctrl+End Ctrl+PgDn
Move to previous position Ctrl+P

629

Table A.l: Editing con;mands (continued)

Command Both modes CUA Alternate

Insert and delete commands

Delete character Del Ctrl+G
Delete character to left Backspace Ctrl+H

Shift+Tab
Delete line Ctrl+Y
Delete to end of line Ctrl+Q Y Shift+Ctrl+ Y
Delete word Ctrl+T
Insert line Ctrl+N
Insert mode on/off Ins Ctrl+V

Block commands

Move to beginning of block Ctrl+Q B
Move to end of block Ctrl+Q K
Set beginning of block Ctrl+K B
Set end of block Ctrl+K K
Exit to menu bar Ctrl+K D
Hide/Show block Ctrl+K H
Mark line Ctrl+K L
Print selected block Ctrl+K P
Mark word Ctrl+KT
Delete block Ctrl+K Y
Copy block Ctrl+KC
Move block Ctrl+K V
Copy to Clipboard Ctrl+lns
Cut to Clipboard Shift+Del
Delete block Ctrl+Del
Indent block Ctrl+K I l"'t...:.t.&. ,,~ .. ,. ,

v/IIII..,.vll/..,./

Paste from Clipboard Shift+lns
Read block from disk Ctrl+K R Shift+Ctrl+R
Unindent block Ctrl+K U Shift+Ctrl+U
Write block to disk Ctrl+KW Shift+Ctrl+ W

Extending selected blocks

Left one character Shift+ f-

Right one character Shift+~
End of line Shift+End
Beginning of line Shift+Home
Same column on next line Shift+ J,
Same column on previous line Shift+ i
One page down Shift+PgDn
One page up Shift+PgUp
Left one word Shift+Ctrl+ f-

Right one word Shift+Ctrl+ ~
End of file - Shift+Ctrl+End Shift+Ctrl+PgDn
Beginning of file Shift+Ctrl+Home Shift+Ctrl+PgUp

630 Turbo C++ User's Guide

Block commands

Table Al: Editing commands (continued)

Command Both modes CUA Alternate

Other editing commands

Autoindent mode on/off Ctrl+O I
Cursor through tabs on/off Ctrl+O R
Exit the IDE Alt+F4 Alt+X
Find place marker Ctrl+Q n * Ctrl n *
Help F1
Help index Shift+F1
Insert control character Ctrl+P**
Maximize window F5
Open file F3
Optimal fill mode on/off Ctrl+O F
Pair matching Ctrl+Q (, Alt+I,Alt+J

Ctrl+Q J
Save file) Ctrl+K S F2
Search Ctrl+Q F
Search again F3 Ctrl+L
Search and replace Ctrl+QA
Set marker Ctrl+Kn* Shift+Ctrl n *

. Tabs mode on/off Ctrl+O T
Topic search help Ctrl+F1
Undo Alt+Bksp
Redo Shift+Alt+Bksp
Unindent mode on/off Ctrl+O U

* n represents a number from 0 to 9.

** Enter control characters by first pressing Ctr/+P, then pressing the desired
control character.

A block of text is any amount of text, from a single character to
hundreds of lines, that is selected on your screen. There can be
only one block in a window at atime. Select a block with your
mouse or by holding down Shift while moving your cursor to the
end of the block with the arrow keys. Once selected, the block can
be copied, moved, deleted, or written to a file. You can use the
Edit menu commands to perform these operations or you can use
the keyboard commands listed in the following table.

When you choose Edit I Copy or press Ctr/+/ns, the selected block is
copied to the Clipboard. When you choose Edit I Paste or Shift+/ns,
the block held in the Clipboard is pasted at the current cursor
position. The selected text remains unchanged and is no longer
selected.

Appendix A, Editor reference 631

If you choose Edit I Cut or press Shift+De/, the selected block is
moved from its original position and held in the Clipboard. It is
pasted at the current cursor position when you choose the Paste
command.

The copying, cutting, and pasting commands are the same in both
the CVA and Alternate command sets.

Table A.2: Block commands in depth

Command

Copy block

Copy text

Cut text

Delete block

Move block

Paste from
Clipboard

Read block
from disk

Write block
to disk

632,

CUA

Ctrl+lns,
Shift+lns

Ctrl+lns

Shift+Del

Ctrl+Del

Shift+Del, .
Shift+lns

Chil+, 'n"
VI""T"'~

Shift+Ctrl+R
Ctrl+K R

Shift+Ctrl+W
Ctrl+KW

Alternate

Ctrl+lns,
Shift+lns

Ctrl+lns

Shift+Del

Ctrl+Del

Shift+Del,
Shift+lns

Shift+lns

Ctrl+K R

Ctrl+KW

Function

Copies a previously selected block to the Clipboard
and, after you move your cursor to where you want the
text to appear, pastes it to the new cursor position. The
original block is unchanged. If no block is selected,
nothing happens.

Copies selected text to the Clipboard.

Cuts selected text to the Clipboard.

Deletes a selected block. You can "undelete" a
block with Undo.

Moves a previously selected block from its original
position to the Clipboard and, after you move your
cursor to where you want the text to appear, pastes it to
the new cursor position. The block disappears from its
original position. If no block is marked, nothing happens.

Pastes the contents of the Clipboard.

Reads a disk file into the current text at the cursor
position exactly as if it were a block. The text read is then
selected as a block. When this command is issued, you
are prompted for the name of the file to read. You can
use wildcards to select a file to read; a directory is
displayed. The file specified can be any legal file name.

Writes a selected block to a file. When you give this
command, you are prompted for the name of the file to
write to. The file can be given any legal name (the default
extension is CPP). If you prefer to use a file name without
an extension, append a period to the end of its name.

Turbo C++ User's Guide

TableA.3
Borland-style block

commands

Selected text is highlighted
only if both the beginning

and end have been set and
the beginning comes before

the end.

Other editing
commands

If you have used Borland editors in the past, you may prefer to
use the block commands listed in this table; they work in both
com:rp.and sets.

Command Keys Function

Set beginning of block Ctr/+K B Begin selection of text.

Set end of block Ctr/+K K . End selection of text.

Hides/ shows selected C(r/+K H Alternately displays and hides selected
text text.

Copy selected text
to the cursor.

Move selected text
to the cursor.

Ctr/+K C Copies the selected text to the position
of the cursor. Useful only with the
Persistent Block option.

Ctr/+K V Moves the selected text to the position
of the cursor. Useful only with the
Persistent Block option.

The next table describes certain editing commands in more detail.
The table is arranged alphabetically by command name.

Table A.4: Other editor commands in depth

Command CUA

Autoindent Ctr/+O /

Cursor through Ctr/+O R
tabs

Find place
marker

Open file

Optimal fill

Save file

Ctr/+n*
Ctr/+Q n*

Ctr/+O F

Appendix A, Editor reference

Alternate Function

Ctr/+O I

Ctr/+OR

Toggles the automatic indenting of successive lines. You can
also use Options I Environment I Editor Autoindent in the
IDE to turn automatic indenting on and off.

The arrow keys will move the cursor to the middle of
tabs when this option is on; otherwise the cursor jumps
several columns when cursoring over multiple tabs. Ctr/+O R
is a toggle.

Ctr/+Q n* Finds up to ten place markers (n can be any number in
the range 0 to 9) in text. Move the cursor to any previously
set marker by pressing Ctrl+Q and the marker numb~r.

F3 . Lets you load an existing file into an edit window~

Ctr/+O F Toggles optimal fill. Optimal fill begins every line with the
minimum number of characters possible, using tabs and
spaces as necessary. This produces lines with fewer
characters.

F2 Saves the file and returns to the editor.

633

Table A.4: Other editor commands in depth (continued)

Command CUA

Set place Shift+Ctrl n*
Ctr/+K n*

Show previous Alt+F7
error

Show next Alt+FB
error

Tab mode Ctrl+O T

Unindent Ctr/+O U

Alternate Function

Ctrl+K n* Mark up to ten places in text. After marking your location,
YO,u can work elsewhere in the file and then easily return to
your marked location by using the Find Place Marker
command (being sure to use the same marker number). You
can have ten places marked in each window.

Alt+F7 Moves the cursor to the location of the previous error or
warning message. This command is available only if there
are messages in the Message window that have associated
line numbers.

Alt+FB Moves the cursor to the location of the next error or
warning message. This command is available only if there
are messages in the Message window that have associated
line numbers.

Ctr/+O T Toggles Tab mode. You can specify the use of true tab
characters in the IDE with the Options I Environment I
Editor Use Tab Character option.

Ctr/+O U Toggles Unindent. You can turn Unindent on and off from
the IDE with the Options I Environment I Editor Backspace
Unindents option.

* n repres~nts a number from a to 9.

634 Turbo C++ User's Guide

A p p

How they work

E N o x

B

Precompiled headers

Turbo C++ can generate and subsequently use precompiled
headers for your projects. Precompiled headers can greatly speed
up compilation times.

When compiling large Cand C++ programs, the compiler can
spend up to half of its time parsing header files. When the
compiler parses a header file, it enters declarations and definitions
into its symbol table. If 10 of your source files include the same
header file, this header file is parsed 10 times, producing the same
symbol table every time.

Precompiled header files cut this process short. During one
compilation, the compiler stores an image of the symbol table on
disk in a file called TCDEF.5YM by default. (TCDEF.5YM is
stored in the same directory as the compiler.) Later,when the
same source file is compiled again (or another source file that
includes the same header files), the compiler reloads TCDEF.5YM
from disk instead of parsing all the header files again. Directly
loading the symbol table from disk is over 10 times faster than
parsing the text of the header files.

Precompiled headers will only be used if the second compilation
uses one or more of the same header files as the first one, and if a

Appendix B, Precompiled headers 635

Drawbacks·

lot of other things, like compiler options, defined macros and so
on, are also identical.

If, while compiling a source file, Turbo C++ discovers that the
first #includes are identical to those of a previous compilation (of
the same source or a different source), it will load the binary
image for those #includes, and parse the remaining #includes.

Use of precompiled headers for a given module is an all or
nothing deal: the precompiled header file is not updated for that
module if compilation of any included header file fails. .

When using precompiled headers, TCDEF.SYM can become very
big, because it contains symbol table images for all sets of
includes encountered in your sources. You can reduce the size of
this file; see "Optimizing precompiled headers" on page 637.

If a header contains any code, then it can't be precompiled. For
example, while C++ class definitions may appear in header files,
you should take care that only member functions that are inline
are defined in the header; heed warnings such as "Functions
containing for are not expanded inline".

Using precompiled hearlers

636

You can control the use of precompiled headers in any of the
following ways:

• from within the IDE, using the Options I Compiler I Code
Generation Options dialog box. The IDE bases the name of the
precompiled header file on the project name, creating
PROJECT.SYM

• from the command line using the -H, -H=filename, and -Hu
options (see page 286)

• or from within your code using the pragmas hdrfile and
hdrstop (see Chapter 14)

Turbo C++ User's Guide

Setting file names

Caution!

Establishing
identity

Optimizing
precompiled

headers

The compiler uses just one file to store all precompiled headers.
The default file name is TCDEF.5YM. You can explicitly set the
name with the -H=filename command-line option or the #pragma
hdrfile directive.

You may notice that your .sYM file is smaller than it should be. If
this happens, the compiler may have run out of disk space when
writing to the .5YM file. When this happens, the compiler deletes
the .SYM in order to make room for the .OBJ file, then starts
creating a new (and therefore shorter) .5YM file. If this happens,
just free up some .disk space before compiling.

The following conditions need to be identical for a previously
generated precompiled header to be loaded for a subsequent
compilation.

The second or later 'Source file must:

• have the same set of include files in the same order

• have the s~me macros defined to identical values

• use the same language (C or C++)

• use header files with identical time stamps; these header files
can be included either directly or indirectly

In addition, the subsequent source file must be compiled with the
same settings for the following options:

• memory model, including 55 != D5 (-mx)
• unde.rscores on externs (-u)
• maximum identifier length (-iL)
• Pascal calls (-p)
• treat enums as integers (-b)
• default char is unsigned (-K)
.virtual table control (-Vx)

For Turbo C++ to most efficiently compile using precompiled
headers, follow these rules:

Appendix 8, Precompiled headers 637

ASOURCE.C:

BSOURCE.C:

Revised BSOURCE.C:

PREFIX.C

638

• Arrange your header files in the same sequence in all source
files.

• Put the largest header files first.

• Prime TCDEF.SYM with often-used initial sequences of header
files.

• Use #pragma hdrstop to terminate the list of header files at
well-chosen places .. This lets you make the list of header files in
different sources look similar to the compiler. #pragma hdrstop
is described in more detail in Chapter 14.

For example, given the two source files ASOURCE.C and
BSOURCE.C, both of which include myhdr.h,

#include "myhdr.h"
#include "xxx.h"
< .•. >

#include "zz.h"
#include <string.h>
#include "myhdr.h"
< •.. >

You would rearrange the beginning of BSOURCE.C to:

#include "myhdr.h"
#include "zz.h"
#include <string.h>
< ... >

Note that myhdr.h are in the same order in BSOURCE.C as they
are in ASOURCE.C. You could also make a new source called
PREFIX.C containing only the header files, like this:

#include "myhdr.h"

If you compile PREFIX.C first (or insert a #pragma hdrstop in both
ASOURCE.C and BSOURCE.C after the #include "myhdr.h"
statement) the net effect is that after the initial compilation of
PREFIX.C, both ASOURCE.C and BSOURCE.C will be able to
load the symbol table produced by PREFIX.C. The compiler will
then only need to parse xxx.h for ASOURCE.C and zz.h and
string.h for BSOURCE.C.

Turbo C++ User's Guide

A p

Finding a message in
this appendix

p

Appendix C, Error messages

E N D x

c

Error messages
Turbo C++ error messages include: compile-time, DPMI server,
MAKE, run-time, TLIB, and TLINK. We explain them here; user­
interface error messages are explained in online Help.

The type of message (such as Compile-time or DPMI) is noted in the
column to the left. Most explanations provide a probable cause
and remedy for the error or warning message.

The messages are listed in ASCII alphabetic order; messages
beginning with symbols normally come first, followed by
numbers and letters of the alphabet.

Since messages that begin with a variable cannot be alphabetized
by what you will actually see when you receive such a message,
all such messages are alphabetized by the word following the
variable.

For example, if you have a C++ function goforit, you might
receive the following actual message:

goforit must be declared with no arguments

In order to look this error message up, you would need to find

function must be declared with no arguments

alphabetized starting with the word "must".

If.the variable occurs later in the text of the error message (for
example, "Address of overloaded function function doesn't match

639

Type"), you can find the message in correct alphabetical order; in
this case, under the letter A.

Types of messages

Compile-time

The kinds of messages you get are different, depending on where
they come from. This section lists each category with a table of
variables that it may contain.

messages The Turbo C++ compiler diagnostic messages fall into three
classes: fatal errors, errors, and warnings.

Fatal errors are rare. Some of them indicate an internal compiler
error. When a fatal error occurs, compilation stops immediately.
You must take appropriate action and then restart compilation.

Errors indicate program syntax errors, command-line errors, and
disk or memory access errors. The compiler completes the current
phase of the compilation and then stop. The compiler attempts to
find as many real errors in the source program as possible during
each phase (preprocessing, parsing, optimizing and code­
generating).

Warnings do not prevent the compilation from finishing. They
indicate conditions that are suspicious, but are usually legitimate
as part of the language. The compiler also produces warnings if
you use some machine-dependent constructs in your source files.

The compiler prints messages with the message class first, then
the source file name and line number where the compiler detected
the condition, and finally the text of the message itself.

Line numbers are not exact You should be aware of one detail about line numbers in error
messages: the compiler only generates messages as they are
detected. Because C and C++ do not force any restrictions on
placing statements on a line of text, the true cause of the error
may be one or more lines before or after the line number
mentioned.

640

The following variable names and values are some of those that
appear in the compiler messages listed in this appendix (most are
self-explanatory). When you get an error message, the
appropriate name or value is substituted.

Turbo C++ User's Guide

Table C.l
Compile-time message

variables

DPMI server

What you'll see
in the manual

argument
class
filename
function
group
identifier
language
member
message
module
number

, option
parameter
segment
specifier
symbol
type
XXXXh

What you'll see on your screen

An argument (command-line or other)
Ac1assname
A file name (with or without extension)
A function name
A group name
An identifier (variable name or other)
The name of a programming language
The name of a data member or member function
A message string
A module name
An actual number
An option (command-line or other)
A parameter name
A segment name
A type specifier
A symbol name
A type name
A 4-digit hexadecimal number, followed by h

messages All Dos Protected Mode Interface (DPMI) server error messages
but one relate to conditions that are out of the scope of Borland's
software control. If the program can't find your machine-type, the
message directs you to a solution. Otherwise there is a problem
with the configuration of your system, your disks, or the
hardware itself. Normally you will receive one of the common
messages but if your disk has been damaged and you receive an
undocumented message, call Technical Support.

MAKE messages

Appendix C, Error messages

The error messages are all fatal. They contain no variables and
there are no warnings.

MAKE diagnostic messages fall into two classes: errors and fatal
errors .

• Errors indicate some sort of syntax or semantic error in the
source makefile .

• Fatal errors prevent processing of the makefile. You must take
appropriate action and then restart MAKE.

The following generic names and values appear in the messages
listed in this section. When you get an error message, the
appropriate name or value is substituted ..

641

642

Table C.2 What you'll see
MAKE error message in the manual What you'll see on your screen

variables -----------------,----------

Run-time error

argument(s)
expression
filename
line number
message
target

An argument (command-line or other)
An expression
A file name (with or without extension)
A line number
A message string
A receiver

messages Turbo C++ has a small number of run-time error messages. These
errors occur after the program has successfully compiled and
while it is running.

TUB messages
TLIB has error and warning messages. The following generic
names and values appear in TLIB messages. When you get a
message, the variable is substituted.

Table C.3 What you'll see
TUB message variables in the manual What you'll see on your screen

TUNK messages

filename A file name (with or without extension)
function A function name
len An actual number
module A module name
num An actual number
path A path name
reason Reason given in warning message
size An actual number
type A type name

The linker has three types of messages: fatal errors, errors, and·
warnings.

• A fatal error causes TLINK to stop immediately; the .EXE file is
deleted.

• An error (also called a nonfatal error) does not delete .EXE or
.MAP files, but you shouldn't try to execute the .EXE file. Errors
are treated as fatal errors in the IDE.'

• Warnings are just that: warnings of conditions that you
probably want to fix. When warnings occur, .. EXE and .MAP
files are still created.

Turbo C++ User's Guide

The following generic names and values appear in the error
messages listed in this section. When you get an error message,
the appropriate name or value is substituted.

Table C.4 What you'll see
TLINK error message variables in the manual What you'll see on your screen

errorcode Error code number for internal errors
filename A file name (with or without extension)
group A group name
linenum The line number within a file
module A module name
segment A segment name
symbol A symbol name
XXXXh A 4-digit hexadecimal number, followed by h

Message expl-anations

MAKE fatal error ')' missing in macro invocation in command command
A left parenthesis is required to invoke a macro.

Compile-time error (expected
A left parenthesis was expected before a parameter list.

Compile-time error) expected
A right parenthesis was expected at the end ofa parameter list.

Compile-time error , expected
A comma was expected in a list of declarations, initializations,
or parameters.

Compile-time error : expected after private/protected/public
When used to begin a private/protected/public section of a
c++ class, these reserved words must be followed by a colon ..

Compile-time error < expected
The keyword template was not followed by a left angle bracker
(<). Every template declaration must include the template
formal parameters enclosed within angle brackets (< >),
immediately following the template keyword.

TUB error @seen, expected a response-Jiles name
The response file is not given immediately after @.

Compile-time error { expected
A left brace ({) was expected at the statt of a block or
initialization.

Appendix C, Error messages 643

Compile-time error } expected
A right brace (}) was expected at the end of a block or
initialization. .

TUNK fatal error 32-bit record encountered
An object file that contains 80386 32-bit records was
encountered, and the 13 option had not been used.

Compile-time error 286/287 instructions not enabled
Use the -2 command-line compiler option or the 80286 options
from the Options I Compiler I Code Generation I Advanced
Code Generation dialog box to enable 286/287 opcodes. Be
aware that the resulting code cannot be run on 8086- and 8088-
based machines.

DPMIINST error A20 line already enabled, so test is meaningless
Message generated by DPMIINSTwhen you run it (to locate
and add information about your machine to the kernel's
database). If CONFIG.SYS file contains the line DOS=HIGH,
comment it out. Reboot and rerun DPMIINST. When
DPMIINST runs successfully, remove the comment and reboot.
If you encounter a series of these messages, boot clean (that is,
with a plain generic CONFIG.SYS and AUTOEXEC.BAT) and
try again. See the message Machine not in database (run
DPMIINST) on page 680.

Run-time error Abnormal program termination
The program called abort because there was not enough
memory to execute. Can happen through memory overwrites.

Compile-time error Access can only be changed to public or protected
A C++ derived class may modify the access rights of a base
class member, but only to public or protected. A base class
member cannot be made private . .

TUB warning added file filename does not begin correctly, ignored
The librarian has decided that in no way, shape, or form is the

. file being added an object module, so it will not try to add it to
the library. The library is created anyway.

Compile-time error Address of overloaded function function doesn't match type
A variable or parameter is assigned/ initialized with the
addr~ss of an overloaded function, and the type of the
variable/parameter doesn't match any of the overloaded
functions with the specified name.

644 Turbo C++ User's Guide

TLIB warning module already in LIB, not changed!
An attempt to use the + action on the library has been made,
but there is already a object with the same name in the library.
If an update of the module is desired, the action should be +-.
The library has not been modified.

Compile-time error Ambiguity between function 1 and function2
Both of the named overloaded functions could be used with the
supplied parameters. This ambiguity is not allowed.

Compile-time error Ambiguous member name name
A structure member name used in inline assembly must be
unique. If it is defined in more than one structure all of the
definitions must agree in type and offset within the structures.
The member name in this case is ambiguous. Use the syntax
(struct xxx) .yyyinstead.

Compile-time warning Ambiguous operators need parentheses
This warning is displayed whenever two shift, relational, or
bitwise-Boolean operators are used together without paren­
theses. Also, an addition or subtraction operator that appears
unparenthesized with a shift operator will produce this
warning. Programmers frequently confuse the precedence of
these operators.

Command line fatal error Application load & execute error 0001
Application load & execute error FFEO

There was insufficient extended memory available for the
protected mode command line tool to load.

Compi/e-time error Array allocated using new may not have an initializer
When initializing a vector (array) of classes, you must use the
constructor that has no arguments. This is called the default
constructor, which means that you may not supply constructor
arguments when initializing such a vector.

Compile-time error Array bounds missing]
Your source file declared an array in which the array bounds
were not terminated by a right bracket.

CompJle-time error Array must have at least one element
ANSI C and c++ require that an array be defined to. have at
least one element (objects of zero size are not allowed). An old
programming trick declares an array element of a structure to
have zero size, then allocates the space actually needed with
malloc. You can still use this trick, but you must declare the
array element to have (at least) one element if you are

Appendix C, Error messages 645

compiling in strict ANSI mode. Declarations (as opposed to
definitions) of arrays of unknown size are still allowed, of
course.

For example,

char ray[];
char ray [0] i

extern char ray[] i

/* definition of unknown size-- illegal */
/* definition of 0 size -- illegal */
/* declaration of unknown size -- ok*/

Compile-time error Array of references is not allowed
It is illegal to have an array of references, since pointers to
references are not allowed and array names are coerced into
pointers.

Compile-time warning Array size for 'delete' ignored
With the latest specification of C++, it is no longer necessary to
specify the array size when deleting an array; to allow older
code to compile, the compiler ignores this construct, and issues
this warning.

Compile-time error Array size too large
The declared array is larger than 64K.

Compile-time warning Array variable identifier is near
Whenever you use either the -Ff or -Fm command-line or the
IDE Options I Compiler I Advanced Code Generation ... I Far
Data Threshold selection to set threshold limit, global variables
larger than th.e threshold size are autonlatically Ina de far by the
compiler. However, when the variable is an initialized array
with an unspecified size, its total size is not known when the
decision whether to make it near or far has to be made by the'
compiler, and so it is made near. If the number of initializers
given for the array causes the total variable size to exceed the
data size threshold, the compiler issues this warning. If the fact
that the variable is made near by the compiler causes problems
(for example, the linker reports a group overflow due to too
much global data), you must make the offending variable
explicitly far by inserting the keyword far immediately to the
left of the variable name in its definition.

Compile-time error Assembler statement too long
Inline assembly statements may not be longer than 480 bytes.

646 Turbo C++ User's Guide

Assigning type to enumeration
Compile-time warning Assigning an integer value to an enum type. This is an error in

C++, but is reduced to a warning to give existing programs a
chance to work.

Compile-time error Assignment to this not allowed, use X::operator new instead
In early versions of C++, the only way to control allocation of
class of objects was by assigning to the this parameter inside a
constructor. This practice is no longer allowed, since a better,
safer, and more general technique is to define a member
function operator new instead.

Compile~time error Attempt to grant or reduce access to identifier
A C++ derived class can modify the access rights of a base class
member, but only by restoring it to the rights in the base class.
It cannot add or reduce access rights.

Compile-time error Attempting to return a reference to a local object
In a function returning a reference type, you attempted to
return a reference to a temporary object (perhaps the result of a
constructor or a function call). Since this object will disappear
when the function returns, the reference will then be illegal.

Compile-time error Attempting to return a reference to local variable identifier
This C++ function returns a reference type, and you are trying
to return a reference to a local (auto) variable. This is illegal,
since th~ variable referred to disappears when the function
exits. You may return a reference to any static or global
variable, or you may change the function to return a value
instead.

Compile-time fatal error Bad call of intrinsic function
You have used an intrinsic function without supplying a
prototype, or you supplied a prototype for an intrinsic function
that was not what the compiler expected.

TLiNK fatal error Bad character in parameters

Appendix C, Error messages

One of the following characters was encountered in the com­
mand line or in a response file:,

II * < = > ? []

or any control character other than horizontal tab,line'feed,
carriage return, or Ctrl-l.

647

Compile-time error Bad define directive syntax
A macro definition starts or ends with the ## operator, or
contains the # operator that is not followed by a macro
argument name.

DPMI seNer fatal error bad environment params
The value for the environmental variable DPMIMEM had
incorrect syntax.

Compile-time error Bad file name format in include directive
Include file names must be surrounded by quotes
("FILENAME.H") or angle brackets «FILENAME.H». The file
name was missing the opening quote or angle bracket. If a
macro was used, the resulting expansion text is incorrect; that
is, not surrounded by < > or II ".

MAKE error Bad file name format in include statement
Include file names must be surrounded by quotes or angle
brackets. The file name was missing the opening quote or angle
bracket.

Compile-time error Bad file name format in line directive
Line directive file names must be surrounded by quotes
("FILENAME.H") or angle brackets «FILENAME.H». The file
name was missing the opening quote or angle bracket. If a
macro was used, the resulting expansion text is incorrect; that
is, not surrounded by quote marks.

TUB warning bad GCD type in GRPDEF, extended dictionary aborted
bad GRPOEF type encountered, extended dictionary aborted

The librarian has encountered an invalid entry in a group
definition (GRPDEF) record in an object module while creating
an extended dictionary. The only type of GRPDEF record that
the librarian (and linker) supports are segment index type. If
any other type of GRPDEF is encountered, the librarian won't
be able to create an extended dictionary. It's possible that an
object module created by products other than Borland tools
may create GRPDEF records of other types. It's also possible for
a corrupt object module to generate this warning.

TUB error Bad header in input LIB
When adding object modules to an existing library, the
librarian has determined that it has a bad library header.
Rebuild the library.

648 ' Turbo C++ User's Guide

Compile-time error Bad ifdef directive syntax III
An #ifdef directive must contain a single identifier (and no- Iii
thing else) as the body of the directive.

MAKE error Bad macro output translator
Invalid syntax for substitution within macros. For example:

$ (MODEL:=s) or $(MODEL:) or $ (MODEL:s)

TUNK fatal error Bad object file record in library file filename in module module
near module file offset Oxxxxxxxxx
Bad object file record in module filename near module file offset
Oxxxxxxxxx

An ill-formed object file was encountered. This is most
commonly caused by naming a source file or by naming an
object file that 'was not completely built. This can occur if the
machine was rebooted during a compile, or if a compiler did
not delete its output object file when a Gtrl-Brk was pressed.

TUB error bad, OMF record type type encountered in module module
The librarian encountered a bad Object Module Format (OMF)
record while reading through the object module. The librarian
has already read and verified the header records on the module,
so this usually indicates that the object module has become
corrupt in some way and should be recreated.

Compile-time error Bad syntax for pure function definition
Pure virtual functions are specified by appending 1/= 0" to the
declaration. You wrote something similar, but not quite the
same.

Compile-time error Bad undef directive syntax
An #undef directive must contain a single identifier (and
nothing else) as the body of the directive.

MAKE error Bad undef statement syntax
An !undef statement must contain a single identifier and
nothing else as the body of the statement.

TUNK fatal error Bad version number in parameter block
This error indicates an internal inconsistency in the IDE. If it
occurs, exit and restart the IDE. This error will not occur in the
standalone version.

Appendix C, Error messages 649

Compile-time error Base class class contains dynamically dispatchable functions
Currently, dynamically dispatched virtual tables do not
support the use of multiple inheritance. This error occurs
because a class which contains DDVT function attempted to
inherit DDVT functions from multiple parent classes.

Compile-time warning Base class class is inaccessible because also in class
It is not legal to use a class as both a direct and indirect base
class, since the members are automatically ambiguous. Try
making the base class virtual in both locations.

Compile-time error Base class class is included more than once
A C++ class may be derived from any number of base classes,
but may be directly derived from a given class only once.

Compile-time error Base class class is initialized more than once
In a C++ class constructor, the list of initializations following
the constructor header includes base class class more than once.

Compile-time error Base initialization without a class name is now obsolete
Early versions of C++ provided for initialization of a base class
by following the constructor header with just the base class
constructor parameter list. It is now recommended to include
the base class name.

This makes the code much clearer, and is required when there
are multiple base classes.

Old way:

derived: : derived (int i) (1, 10) { ... }

New way:

derived::derived(int i) : base(i, 10) { ... }

Compile-time error Bit field cannot be static
Only ordinary C++ class data members can be declared static,
not bit fields. '

Compile-time error Bit field too large
This error occurs when you supply a bit field with more than
16 bits.

Compile-time error Bit fields must be signed or unsigned int
In ANSI C, bit fields may only be signed or unsigned int (not
char or long, for example).

650 Turbo C++ User's Guide

Compile-lime warning Bit fields must be signed or unsigned int .,
In ANSI C, bit fields may not be of type signed char or iii
unsigned char; when not compiling in strict ANSI mode,
though, the compiler will allow such constructs, but flag them
with this warning.

Compile-time error Bit fields must contain at least one bit
You cannot declare a named bit field to have 0 (or less than 0)
bits. You can declare an unnamed bit field to have 0 bits, a
convention used to force alignment of the following bit field to
a byte boundary (or word boundary, if you select the -a
alignment option or IDE Options I Compiler I Code
Generation I Word Alignment). In C++, bit fields must have an
integral type; this includes enumerations.

Compile-time error Bit fields must have integral type
In C++, bit fields must have an integral type; this includes
enumerations.

Compile-time error Body has already been defined for function function
A function with this name and type was previously supplied a
function body. A function body can only be supplied once.

Compile-time warning Both return and return with a value used

Compile-time error

Compile-time warning

Compile-time error

This message used only by
IDE debugger.

Appendix C, Error messages

The current function has return statements with and without
values. This is legal in C, but almost always an error. Possibly a
return statement was omitted from the end of the function.

Call of nonfunction
The name being called is not declared as a function. This is
commonly caused by incorrectly declaring the function or mis­
spelling the function name.

Call to function function with no prototype
The "Prototypes required" warning was enabled and you
called function function without first giving a prototype for that
function.

Cannot access an inactive scope
You have tried to evaluate or inspect a variable local to a
function that is currently not active. (This is an integrated
debugger expression evaluation message.)

651

Compile-time error Cannot add or subtract relocatable symbols
The only arithmetic operation that can be performed on a
relocatable symbol in an assembler operand is addition or
subtraction of a constant. Variables, procedures, functions, and
labels are relocatable symbols. Assuming that Var is a variable
and Canst is a constant, then the instructions

MOV AX,Const+Const

and

MOV AX,Var+Const

are valid, but MOV AX, VartVar is not.

Compile-time error Cannot allocate a reference
An attempt to create a reference using the new operator has
been made; this is illegal, as references are not objects and
cannot be created through new.

Compile-time error identifier cannot be declared in an anonymous union
The compiler found a declaration for a member function or
static member in an anonymous union. Such unions can only
contain data members.

Compile-time error function1 cannot be distinguished from function2
The parameter type lists in the declarations of these two
functions do not differ enough to tell them apart. Try changing
the order of parameters or the type of a parameter in one
declaration.

Compile-time error Cannot call near class member function w.ith a pointer of type
type

Member functions of near classes (remember that classes are
near by default in the tiny, small, and medium memory
models) cannot be called using far or huge member pointers.
(Note that this also applies to calls using pointers to members.)
Either change the pointer to be near, or declare the class as far.

Compile-time error Cannot cast from type1 to type2
A cast from type typel to type type2 is not allowed. In C, a
pointer may be cast to an integral type or to another pointer.
An integral type may be cast to any integral, floating, or
pointer type. A floating type may be cast to an integral or
floating type. Structures and arrays may not be cast to or from.
You cannot cast from a void type.

652 Turbo C++ User's Guide

C++ checks for user-defined conversions and constructors, and C
if one cannot be found, then the preceding rules apply (except
for pointers to class members). Among integral types, only a
constant zero may be cast to a member pointer. A member
pointer may be cast to an integral type or to a similar member
pointer. A similar member pointer points to a data member if
the original does, or to a function member if the original does;
the qualifying class of the type being cast to must be the same
as or a base class of the original.

Compile-time error Cannot convert type1 to type2
An assignment, initialization, or expression requires the
specified type conversion to be performed, but the conversion
is not legal.

Compile-time error Cannot create instance of abstract class class
Abstract classes-those with pure virtual functions--cannot be
used directly, only derived from.

Compile-time error Cannot define a pointer or reference to a reference
It is illegal to have a pointer to a reference or a reference to a
reference.

Compile-time error Cannot find class::class (class &) to copy a vector
When a C++ class classl contains a vector (array) of class class2,
and you want to construct an object of type classl from another
object of type classl, there must be a constructor
class2::class2(class2&) so that the elements of the vector can
be constructed. This constructor takes just one parameter
(which is a reference to its class) and is called a copy constructor.

Usually the compiler supplies a copy constructor automati­
cally. However, if you have defined a constructor for class
class2 that has a parameter of type class2& and has additional
parameters with default values, the copy constructor cannot be
created by the compiler. (This is because
class2: : class2 (class2&) and class2: : elass2 (class2&, int = 1)
cannot be distinguished.) You must redefine this constructor so
that not all parameters have default values. You can then
define a copy constructor or let the compiler create one.

Compile-time error Cannot find class: :operator=(class&) to copy a vector
When a C++ class classl contains a vector (array) of class class2,
and you wish to copy a class of type classl, there must be an
assignment operator class2::operator=(class2&) so that the
elements of the vector can be copied. Usually the compiler
supplies such an operator automatically. However, if you have

Appendix C, Error messages 653

defined an operator= for class class2, but not one that takes a
parameter of type class2&, the compiler will not supply it
automatically-you must supply one.

Compile-time error Cannot find default constructor to initialize array element of type
class

When declaring an array of a class that has constructors, you
must either explicitly initialize every element of the array, or
the class must have a default constructor (it will be used to
initialize the array elements that don't have explicit
initializers). The compiler will define a default constructor for a
class unless you have defined any constructors for the class.

Compile-time error Cannot find default constructor to initialize base class class
Whenever a C++ derived class class2 is constructed, each base
class classl must first be constructed. If the constructor for
class2 does not specify a constructor for classl (as part of class2's
header), there must be a constructor class1 ::class10 for the
base class. This constructor without parameters is called the
default constructor. The compiler will supply a default
constructor automatically unless you have defined any
constructor for class classl; in that case, the compiler will not
supply the default constructor automatically-you must
supply one.

Compile-time error Cannot find default constructor to initialize member identifier
When a c++ class classl contains a member of class class2, and
you wish to construct an object of type classl but not from
another object of type classl, there must be a constructor
class2::class2() so that the member can be constructed. This
constructor without parameters is called the default
constructor. The compiler will supplya default constructor
automatically unless you have defined any constructor for class
class2; in that case, the compiler will not supply the default
constructor automatically-you must supply one.

TUNK fatal error Cannot generate COM file: data below initial CS:IP defined
This error results from trying to generate data or code below
the starting address (usually 100) of a .COM file. Be sure that
the starting address is set to 100 by using the (ORG 100H) in­
struction. This error message should not occur for programs
written in a high-level language. If it does, ensure that the
correct startup (COx) object module is being linked in.

654 Turbo C++ User's Guide

TLINK fatal error Cannot generate COM file: invalid initial entry pOint address
You used the fTdc or It option, but the program starting
address is not equal to lOOH, which is required with .COM
files.

TLINK fatal error Cannot generate COM file: program exceeds 64K
You used the fTdc or It option, but the total program size
exceeds the .COM file limit.

TLINK fatal error Cannot generate COM file: segment-relocatable items present
You used the fTdc or It option, but the program contains
segment-relative fixups, which are not ·allowed with .COM
files.

TLINK fatal error Cannot generate COM file: stack segment present
You used the fTdc or It option, but the program declares a stack
segment, which is not allowed with .COM files.

Compile-time error Cannot generate function from template function template
A call to a template function was found, but a matching
template function cannot be generated from the function
template.

Compile-time error Cannot have a near class member in a far class
All members of a C++ far class must be far. This member is in a
class that was declared (or defaults to) near.

Compile-time error Cannot have a non-in line function in a local class
Cannot have a static data member in a local class

All members of classes declared local to a function must be
entirely defined in the class definition. This means that such
local classes may not contain any static data members, and all
of their member functions must have bodies defined within the
class definition.

MAKE error Cannot ,have multiple paths for implicit rule
You can only have a single path for each of the extensions in an
implicit rule. Multiple path lists are only allowed for
dependents in an explicit rule. For example:

{path1 ipath2}.c.obj:
{path} . c. obj

Invalid
Valid

MAKE error Cannot have path list for target
You can only specify a path list for dependents of an explicit
rule. For example: ' .

{path1ipath2}prog.exe: prog.obj # Invalid
prog.exe: {path1ipath2}prog.obj # Valid

Appendix C, Error messages 655

Compile-time error Cannot initialize a class member here
Individual members of structs, unions, and c++ classes may
not have initializers. A struct or union may be initialized as a
whole using initializers inside braces. A C++ class may only be
initialized by the use of a constructor.

Compile-time error Cannot initialize type1 with type2
You are attempting to initialize an object of type typel with a
value of type type2, which is not allowed. The rules for
initialization are essentially the same as for assignment.

Compile-time error Cannot modify a const object
This indicates an illegal operation on an object declared to be
const, such as an assignment to the object.

Compile-time error Cannot overload 'main'
main is the only function which cannot be overloaded.

Compile-time error function cannot return a value
A function with a return type void contains a return statement
that returns a value; for example, an into

Compile-time error identifier cannot start an argument declaration
Undefined identifier found at the start of an argument in a
function declarator. Often the type name is misspelled or the
type declaration is missing (usually caused by not including
the appropriate header file).

TUB eriOr cannot write GRPOEF iist, extended dictionary aborted
The librarian cannot write the extended dictionary to the tail
end of the library file. This usually indicates lack of space on
the disk.

TUB error can't grow LElLIDATA record buffer
Command-line error. See out of memory reading LElLIDATA
record from object module.

Compile-time error Case bypasses initialization of a local variable
In C++ it is illegal to bypass the initialization ofa local variable
in any way. In this case, there is a case label which can transfer
control past this local variable.

656 Turbo C++ User's Guide

Compile-time error Case outside of switch
The compiler encountered a case statement outside a switch
statement. This is often caused by mismatched braces.

Compile-time error Case statement missing: '
A case statement must have a constant expression followed by
a colon. The expression in the case statement either is missing
a colon or has an extra symbol before the colon.

MAKE or compile-time error Character constant must be one or two characters long
Character constants can be only one or two characters long.

MAKE fatal error Circular dependency exists in makefile
The makefile indicates that a file needs to be up-to-date
BEFORE it can be built. Take, for example, the explicit rules:

filea: fileb
fileb: filee
filee: filea

This implies that filea depends on fileb, which depends 'on filee,
and filee depends on filea. This is illegal, since a file cannot
depend on itself, indirectly or directly.

Compile4ime error Class class may notcontain pure functions
The class being declared cannot be abstract, and therefore it
may not contain any pure functions.

Compile-time error Class member member declared outside its class
C++ class member functions can be declared only inside the
class declaration. Unlike nonmember functions, they cannot be
declared multiple times or at other locations.

Compile-time warning Code has no effect
The compiler encountered a statement with operators that have
no effect. For example the statement

has no effect on either variable. The operation is unnecessary
and probably indicates a bug in your file.

MAKE error Colon expected

Appendix C, Error messages

You have forgotten to put the colon at the end of your implicit
rule .

. c.obj:

.c.obj
Correct
Incorrect

657

MAKE error Command arguments too long
The arguments to a command were more than the 127-
character limit imposed by DOS.

MAKE error Command syntax error
This message occurs if

• The first rule line of the makefile contained any leading
whitespace.

• An implicit rule did not consist of .ext.ext:.

• An explicit rule did not contain a name before the : character.

• A macro definition did not contain a name before the =
character.

MAKE error Command too long
The length of a command has exceeded 128 characters. You
might want to use a response file.

TUNK error Common segment exceeds 64K
The program had more than 64K of near uninitialized data. Try
declaring some uninitialized data as far.

Compile-time error Compiler could not generate copy constructor for class class
The compiler cannot generate a needed copy constructor due to
language rules.

Compile-time error Compiler could not generate default constructor for class class
The cornpiler cannot generate a needed default constructor due
to language rules.

Compile-time error Compiler could not generate operator= for class class
The compiler cannot generate a needed assignment operator
due to language rules.

Compile-time fatal error Compiler table limit exceeded
One of the compiler's internal tables overflowed. This usually
means that the module being compiled contains too many
function bodies. Making more memory available to the
compiler will not help with such a limitation; simplifying the

. file being compiled is usually the only remedy.

Compile-time error Compound statement missing}
The compiler reached the end of the source file and found no
closing brace. This is often caused by mismatched braces.

658 Turbo C++ User's Guide

Compile-time warning Condition is always false
Condition is always true

The compiler encountered a comparison of values where the
result is always true or false. For example:

void proc(unsigned x)
{

if (x >= 0)
{

/* always 'true' */

Compile-time error Conflicting type modifiers
This occurs when a declaration is given that includes, for
example, both near and far keywords on the same pointer.
Only one addressing modifier may be given for a single
pointer, and only one language modifier (cdecl, pascal, or
interrupt) may be given for a function.

TLINK warning symbol conflicts with module module in module module
This indicates an inconsistency in the definition of symbol;
TLINK found one virtual function and one common definition
with the same name.

Compile-time error Constant expression required
Arrays must be declared with constant size. This error is
commonly caused by misspelling a #define constant.

Compile-time warning Constant is long
The compiler encountered either a decimal constant greater
than 32767 or an octal (or hexadecimal) constant greater than
65535 without a letter I or L following it. The constant is treated
as a long.

Compile-time error Constant member member in class without constructors
A class that contains constant members must have at least one'
user-defined constructor; otherwise, there would be no way to
ever initialize such members.

Compile-time warning Constant member member is not initialized

Appendix C, Error messages

This C++ class contains a constant member member, which does
not have an initialization. Note that constant members may be
initialized only, not assigned to.

659

Compile-time warning Constant out of range in comparison
Your source file includes a comparison involving a constant
sub-expression that was outside the range allowed by the other
sub-expression's type. For example, comparing an unsigned
quantity to -1 makes no sense. To get an unsigned constant
greater than 32767 (in decimal), you should either cast the
constant to unsigned (for example, (unsigned)65535) or append
a letter u or U to the constant (for example, 65535u).

Whenever this message is issued, the compiler will still
generate code to do the comparison. If this code ends up
always giving the same result, such as comparing a char
expression to 4000, the code will still perform the test.

Compile-time error Constant variable variable must be initialized
This C++ object is declared const, but is not initialized. Since
no value may be assigned to it, it must be initialized ,at the
point 9f declaration.

Compile-time error constructor cannot be declared const or volatile

Compile-time error

Compile-time warning

Compile-time error

This message used only by
IDE debugger.

Compile-time error

660

A constructor has been declared as const and/or volatile, and
this is not allowed.

constructor cannot have a return type specification
C++ constructors have an implicit return type used by the
compiler, but you cannot declare a return type or return a
value.

Conversion may lose significant digits
For an assignment operator or some other circumstance, your
source file requires a conversion from long or unsigned long to
int or unsigned int type. Since int type qnd long type variables
don't have the same size, this kind of cOliversion may alter the
behavior of a program.

Conversion of near pointer not allowed
A near pointer cannot be converted to a far pointer in the ex­
pression evaluation box when a program is not currently
running. This is because the conversion needs the current value
of DS in the user program, which doesn't exist.

Conversion operator cannot have a return type specification '
This C++ type conversion member function specifies a return
type different from the type itself. A declaration for conversion
function operator may not specify any return type. '

Turbo C++ User's Guide

Compile-time error Conversion to type will fail for members of virtual base class
This warning is issued in some cases when a member pointer is
cast to another member pointer type, if the class of the member
pointer contains virtual bases, and only if the -Vv option or
IDE Options I Compiler I Advanced Compiler I Deep Virtual
Bases has been used. It means that if the member point~r being
cast happens to point (at the time of the cast) to a member of
class, the conversion cannot be completed, and the result of
the cast will be a NULL member pointer.

TUB error could not allocate memory for per module data
The librarian has run out of memory.

TUB error could not create list file filename
The librarian could not create a list file for the library. This
could be due to lack of disk space.

Compile-time error Could not find a match for argument(s)
No C++ function could be found with parameters matching the
supplied arguments.

Compile-time error Could not find file filename
The compiler is unable to find the file supplied on the
command line.

TUB error Could not write output.
The librarian could not write the output file.

TUB error couldn't alloc memory for per module data
The librarian has run out of memory.

TUB warning filename couldn't be created, original won't be changed
An attempt has been made to extract an object ('*' action) but
the librarian cannot create. the object file to extract the module
into. Either the object already exists and is read only, or the
disk is full.

TUB error couldn't get LElLIDATA record buffer
Command-line error. See out of memory reading LE/LIDATA
record from object module.

TUNK warning Debug info switch ignored for .COM files
Turbo C++ does not include debug information for .COM files.
See the description of ,the Iv option on page 344.

TUNK warning Debug information in module module will be ignored
Object files compiled with debug information now have a
version record. The major version of this record is higher than

Appendix C, Error messages 661

662

what TLINK currently supports and TLINK did not generate
debug information for the module in question.

Compile-time error Declaration does not specify a tag or an identifier
This declaration doesn't declare anything. This may be a struct

. or union without a tag or a variable in the declaration. C++
requires that something be declared.

Compile-time error Declaration is not allowed here
Declarations cannot be used as the control statement for while,
for, do, if, or switch statements.

Compile-time error Declaration missing;
Your source file contained a declaration that was not followed
by a semicolon.

Compile-time error Declaration syntax error
Your source file contained a declaration that was missing some
symbol or had so~e extra symbol added to it.

Compile-time error Declaration terminated incorrectly
A declaration has an extra or incorrect termination symbol,
such as a semicolon placed after a function body. A C++ mem­
ber function declared in a class with a semicolon between the
header and the opening left brace also generates this error.

Compile-time error Declaration was expected
- A declaration was expected here but not found. This is usually
caused by a missing delimiter such as a comma, semicolon,
right parenthesis, or right brace.

Compile-time error Declare operator delete (void*) or (void*, size_t)
Declare the operator delete with a single void* parameter, or
with a second parameter of type size_t. If you use the second
version, it will be used in preference to the first version. The
global operator delete can only be declared using the single­
parameter form.

Compile-time warning Declare type type prior to use in prototype
When a function prototype refers to a structure type that has
not previously been declared, the declaration inside the proto­
type is not the same as a declaration outside the prototype. For
example,

int func(struct s *ps) i

struct s { /* ... */ }i

Since there is no struct s in scope at the prototype for func, the
type of parameter ps is pointer to undefined struct s, and is not

Turbo C++ User's Guide

the same as the struct s which is later declared. This will result
in later warning and error messages about incompatible types,
which would be very mysterious without this warning mes­
sage. To fix the problem, you can move the declaration for
struct s ahead of any prototype which references it, or add the
incomplete type declaration struct Sj ahead of any prototype
which references struct s. If the function parameter is a struct,
rather than a pointer to struct, the incomplete declaration is not
sufficient; you must then place the struct declaration ahead of
the prototype.

Compile-time warning identifier is declared but never used
Your source file declared the named variable as part of the
block just ending, but the variable was never used. The
warning is indicated when the compiler encounters the closing
brace of the compound statement or function. The declaration
of the variable occurs at the beginning of the compound
statement or function.

-Compile-time error Default argument value redeclared for parameter parameter
When a parameter of a C++ function is declared to have a
default value, this value cannot be changed, redec1ared, or
omitted in any other declaration for the same function.

Compile-time error Default expression may not use local variables
A default argument expression is not allowed to use any local
variables or other parameters. .

Compile-time error Default outside of switch
The compiler encountered a default statement outside a switch
statement. This is most commonly caused by mismatched
braces.

Compile-time error Default value missing
When a C++ function declares a parameter with a default
value, all of the following parameters must also have default
values. In this declaration, a parameter with a default value
was followed by a parameter without a default value.

Compile-time error Default value missing following parameter parameter
All parameters following the first parameter with a default
value must also have defaults specified.

Compile-time error Define directive needs an identifier

Appendix C, Error messages

The first non-whitespace character after a #define must be an
identifier. The compiler found some other character.

663

TLINK error or warning symbol defined in module module is duplicated in module
module .

There is a conflict between two symbols (either public or
communal). This usually means that a symbol is defined in two
modules. An error occurs if both are encountered in the .OBI
file(s), because TLINK doesn't know which is valid. A warning
results if TLINK finds one of the duplicated symbols in a
library and finds the other in an .OBI file; in this case, TLINK
uses the one in the .OBI file.

Compile-time error Delete array size missing]
The array specifier in an operator is missing a right bracket.

Compile-time error Destructor cannot be declared const or volatile
A destructor has been declared as const and/or volatile, and
this is not allowed.

Compile-time error Destructor cannot have a return type specification
It is illegal to specify the return type for a destructor.

Compile-time error Destructor for class is not accessible
The destructor for this C++ class is protected or private, and
cannot be accessed here to destroy the class. If a class destruc­
tor is private, the class cannot be destroyed, and thus can never
be used. This is probably an error. A protected destructor can
be accessed only from derived classes. This is a useful way to
ensure that no instance of a base class is ever created, but only

. classes derived frOln it.

Compile-time error Destructor for class required in conditional expression
If the compiler must create a temporary local variable in a
conditional expression, it has no good place to call the
destructor, since the variable mayor may not have been
initialized. The temporary variable can be explicitly created, as
with classname (val, val), or implicitly created by some other
code. Recast your code to eliminate this temporary value.

Compile-time error Destructor name must match the class name
In a C++ class, the tilde (~) introduces a declaration for the
class destructor. The name of the destructor must be the same
as the class name. In your source file, the tilde (--) preceded
some other name.

664 Turbo C++ User's Guide

Run-time error Divide error
You've tried to divide an inteper by zero. For example,

int n = 0;
n = 2 / n;

You can trap this error with the signal function. Otherwise,
Turbo C++ calls abort and your program terminates.

Compile-time error Division by zero
Your source file contained a division or remainder operator in

. a constant expression with a zero divisor.

Compile-time warning Division by zero
A division or remainder operator expression had a literal zero
as a divisor.

MAKE error Division by zero
A division or remainder operator in an !if statement has a zero
divisor.

Compile-time error do statement must have while
Your source file contained a do statement that was missing the
closing while keyword.

MAKE fatal error filename does not exist - don't know how to make it
There's a nonexistent file name in the build sequence, and no
rule exists that would allow the file name to be built.

TLINK fatal error DOS error, ax = number
This occurs if a DOS call returned an unexpected error. The ax
value printed is the resulting error code. This could indicate a .
TLINK internal error or a DOS error. The only DOS calls
TLINK makes where this error could occur are read, write,
seek, and close.

Compile-time error do-while statement missing (
In a do statement, the compiler found no left parenthesis after
the while keyword. .

Compile-time error do-while statement missing)
In a do statement, the compiler found no right parenthesis after
the test expression.

Compile-time error do-while statement missing;
In a do statement test expression, the compiler found no semi­
colon after the right parenthesis.

Appendix C, Error messages 665

Compile-time error Duplicate case
Each case of a switch statement must have a unique constant
expression value.

Compile-time error Enum syntax error
An enum declaration did not contain a properly formed list of
identifiers.

TUB error error changing file buffer size
TLIB is attempting to adjust the size of a buffer used while
reading or writing a file but there is not enough memory. It is
likely that quite a bit of system memory will have to be freed
up to resolve this error.

Compile-time fatal error Error directive: message
The text of the #error directive being processed in the source
file is displayed.

MAKE fatal error Error directive: message
MAKE has processed an #error directive in the source file, and
the text of the directive is displayed in the message.

TUB error error opening filename
TLIB cannot open the specified file for some reason.

TUB error error opening filename for output
TLIB cannot open the specified file for output. This is usually
due to lack of disk space for the target library, or a listing file.
Additionally this error will occur when the target file exists but
is marked as a read only file. .

TUB error error renaming filename to filename
TLIB builds a library into a temporary file and then renames
the temporary file to the target library file name. If there is an
error, usually due to lack of disk space, this message will be
posted.

Compile-time fatal error Error writing outp~t file
A DOS error that prevents Turbo C++ from writing an .OBJ,
.EXE, or temporary file. Check the -n or Options I Directories I
Output directory and make sure that this is a valid directory.
Also check that there is enough free disk space.

Compile-time error Expression expected
An expression was expected here, but the current symbol can­
not begin an expression. This message may occur where the
controlling expression of an if or while clause is expected or

666 Turbo C++ User's Guide

where a variable is being initialized. It is often due to an acci­
dentally inserted or deleted symbol in the source code.

Compile-time error Expression of scalar type expected
The not (!), increment (++), and decrement (-) operators re-
quire an expression of scalar type-only types char, short, int, I
long, enum, float, double, long double, and pointer types are
allowed.

Compile-time error Expression syntax
This is a catchall error message when the compiler parses an
expression and encounters some serious error. This is most
commonly caused by two consecutive operators, mismatched
or missing parentheses, or a missing semicolon on the previous
statement.

MAKE error Expression syntax error in !if statement
The expression in an !if statement is badly formed-it contains
a mismatched parenthesis, an extra or missing operator, or a
missing or extra constant.

TLiB warning reason - extended dictionary not created
TLIB could not produce the extended dictionary because of the
reason given in the warning message.

Compile-time error extern variable cannot be initialized
The storage class extern applied to a variable means that the
variable is b~ing declared but not defined here-no storage is
being allocated for it. Therefore, you can't initialize the variable
as part of the declaration.

Compile-time error Extra argument in template class r:--ame template
A template class name specified too many actual values for its
formal parameters.

Compile-time error Extra parameter in call
A call to a function, via a pointer defined with a prototype, had
too many arguments given.

Compile-time error Extra parameter in call to function
A call to the named function (which was defined with a proto­
type) had too many arguments given in the call.

Command line fatal error Failed to locate DPMI server (DPMI16BI.OVL)

Appendix C, Error messages

Failed to locate protected mode loader (DPMILOAD.EXE)
Make sure that DPMI16BLOVL and DPMILOAD.EXE are
somewhere on your path or in the same directory as the

667

668

protected mode command line tool you were attempting to
use.

Compile-time error File'must contain at least one external declaration
This compilation unit was logically empty, containing no
external declarations. ANSI C and C++ require that something
be declared in the compilation unit.

Compile-time error File name too long
The file name given in an #include directive was too long for
the compiler to process. Path names in DOS must be no more
than 79 characters long.

MAKE error File name too long
The path name in an !include directive overflowed MAKE's
internal buffer (512 bytes).

TLIB warning filename file not found
The command-line librarian attempted to add a nonexisting
object but created the library anyway.

TLIB error filename file not found
The IDE creates the library by first removing the existing
library and then rebuilding. If any objects do not exist, the
library is considered incomplete and thus an error. If the IDE
reports that an object does not exist, either the source module
has not been compiled or there were errors during compilation.
Performing either a €ompile I Make or Compile I Build should
resolve the problem or indicate where the errors have occurred.

TLINK fatal error filename (Iinenum):File read error
A DOS error occurred while TLINK read the module definition
file. This usually means that a premature end of file occurred.

TLINK error Fixup overflow at segmentxxxxh, target = segmentxxxh in
module module
Fixupoverflow at segmentxxxxh, target = symbol in module
module

Either of these messages indicate an incorrect data or code
reference in an object file that TLINK must fix up at link time.

The cause is often a mismatch of memory models. A near call
to a function in a different code segment is the most likely
cause. This error can also result if you generate a near call to a
data variable or a data reference to a function. In-either case the
symbol nameci as the target in the error message is the
referenced variable or function. The reference is in the named

Turbo C++ User's Guide

module, so look in the source file of that module for the
offending. reference.

In an assembly language program, a fixup overflow frequently
occurs if you have declared an external variable within a
segment definition, but this variable actually exists in a
different segment.

If this technique does not identify the cause of the failure, or if
you are programming in assembly language or a high-level
language besides Turbo C++, there may be other possible .
causes for this message. Even in Turbo C++, this message could
be generated if you are using different segment or group
names than the default values for a given memory model.

Run-time error Floating point error: Divide by o.
Floating point error: Domain.
Floating point error: Overflow.

These fatal errors result from a floating-point operation for
which the result is not finite.

• "Divide by 0" means the result is +INF or -INF exactly, such
as 1.0/0.0.

• "Domain" means the result is NAN (not a number), like
0.0 /0.0.

• "Overflow" means the result is +INF (infinity) or -INF with
complete loss of precision, such as assigning le200*le200 to
a double.

Run-time error Floating point error: Partial loss of precision.
Floating point error: Underflow.

These exceptions are masked by default, and the error mes­
sages do not occur. Underflows are converted to zero and
losses of precision are ignored. They can be unmasked by
calling _controI87.

Run-time error Floating point error: Stack fault.

Appendix C, £rror messages

The floating-point stack has been overrun. This error does not
normally occur and may be due to assembly code using too
many registers or due to a misdeclaration of a floating-point
function.

These floating-point errors can be avoided by masking the
exception so that it doesn't occur, or by catching the exception
with signal. See the functions _control87 and signal (in online
Help) for details.

669

In each of the above cases, the program prints the error
message and then calls abort, which prints

Abnormal program termination

and calls _exi t (3) • See abort and _exit for more details.

Compile-time error For statement missing (
In a for statement, the compiler found no left parenthesis after
the for keyword.

Compile-time error For statement missing)
In a for statement, the compiler found no right parenthesis
after the control expressions.

Compile-time error For statement missing ;
In a for statement, the compiler found no semicolon after one
of the expressions.

Compile-time error Friends must be functions or classes

Compile-time error

Compile-time error

This message used only by
IDE debugger.

A friend ofa C++ class must be a function or another class.

Function call missing)
The function call argument list had some sort of syntax error,
such as a missing or mismatched right parenthesis.

Function calls not supported
In integrated debugger expression evaluation, calls to functions
(including implicit conversion functions, constructors, destruc­
tors, overloaded operators, and inlirl€ furLctiorLs) are not
supported.

Compile-time error Function defined inline after use as extern
Functions cannot become inline after they have already been
used. Either move the inline definition forward in the file or
delete it entirely.

Compile-time error Function definition cannot be a Typedef'ed declaration
In ANSI C a function body cannot be defined using a typedef
with a function Type.

Compile-time error Function function cannot be static
Only ordinary member functions and the operators new and
delete can be declared static. Cunstructors, destructors and
other operators must not be static.

Compile-time error FUnction function should have a prototype
A function was called with no prototype in scope.

670 Turbo C++ User's Guide

In C, int faa () ; is not a prototype, but int faa (int) ; is, and so
is int faa (void) ;. In C++, int faa () ; is a prototype, and is the
same as int faa (void) ;. In C, prototypes are recommended for all
functions. In C++, prototypes are required for all functions. In
all cases, a function definition (a function header with its body)
serves as a prototype if it appears before any other mention of '
the function.

Compile-time warning Function should return a value
This function was declared (maybe implicitly) to return a val­
ue. A return statement was found without a return value or the
end of the function was reached without a return statement
being found. Either return a value or declare the function as
void.

Compile-time error Function should return a value
Your source file declared the current function to return some
type other than void in C++ (or int in C), but the compiler

, encountered a return with no value. This is usually some sort
of error. In Cint functions are exempt, since in old versions of
C there was no void type to indicate functions which return
nothing.

Compile-time error Functions function1 and function2 both use the same dispatch
number

Dynamically dispatched virtual table (DDVT) problem. When
you override a dynamically dispatchable function in a derived
class, use the same dispatch index. Each function within the
same class hierarchy must use a different dispatch index.

Compile-time warning Functions containing local destructors are not expanded inline in
function function

You've created an inline function for which Turbo C++ turns
off inlining. You can ignore this warning if you like; the
function willbe generated out of line.

Compile-time warning Functions containing reserved word are not expanded inline
Functions containing any of the reserved words do, for, while,
goto, switch, break, continue, and case cannot be expanded
inline, even when specified as inline. The function is still per­
fectly legal, but will be treated as an ordinary static (not global)
function.

Compile-time error Functions may not be part of a structor union
This C struct or union field was declared to be of type function
rather than pointer to function. Functions as fields are allowed
only in C++.

Appendix C, Error messages 671

TLiNK fatal error General error
General error in library file filename in module module near
module file offset Oxyyyyyyyy.
General error in module module near module file offset
Oxyyyyyyyy

TLINK gives as much information as possible about what
processing was happening at the time of the unknown fatal
error. Call Technical Support with information about .OBJ or
.LIB files.

Compile-time error Global anonymous union not static
In C++, a global anonymous union at the file level must be
static.

Compile-time error Goto bypasses initialization of a local variable
In C++ it is illegal to bypass the initialization of a local variable
in any way. In this case, there is a goto which can transfer
control past this local variable.

Compile-time error Goto statement missing label
The goto keyword must be followed by an identifier.

TLiNK fatal error Group group exceeds 64K
A group exceeded 64K bytes when the segments of the group
Were combined.

Compile-time error Group overflowed maximum size: group
The total size of the segments in a group (for example,
DGROUP) exceeded 64K.

TLiNK warning Group group1 overlaps group group2
This means that TLINK has encountered nested groups. This
warning only occurs when overlays are used.

Compile-time error specifier has already been included
This type specifier occurs more than once in this declaration.
Delete or change one of the occurrences.

Compile-time warning Hexadecimal value contains more than 3 digits
Under older versions of C, a hexadecimal escape sequence
could contain no more than three digits. The ANSI standard
allows any number of digits to appear as long as the value fits
in a byte. This warning results when you have a long
hexadecimal escape sequence with many leading zero digits
(such as "\x0004S"). Older versions 6f C would interpret such
a string differently.

672 Turbo C++ User's Guide

Compile-time warning
function1 hides virtual function function2

A virtual function in a base class is usually overridden by a
declaration in a derived class. In this case, a declaration with
the same name but different argument types makes the virtual
functions inaccessible to further derived classes.

Compile-time error Identifier expected
An identifier was expected here, but not found. In C, this is in a
list of parameters in an old-style function header, after the re­
served words struct or union when the braces are not present,
and as the name of a member in a structure or union (except for H
bit fields of width 0). In C++, an identifier is also expected in a
list of base classes from which another class is derived,
following a double colon (::), and after the reserved word
operator when no operator symbol is present.

Compile-time error Identifier identifier cannot have a type qualifier
A C++ qualifier class::identifier may not be applied here. A
qualifier is not allowed on typedef names, on function declara­
tions (except definitions at the file level), on local variables or
parameters of functions, or on a class member except to use its
own class as a qualifier (redundant but legal).

I Compile-time error If statement missing (
In an if statement, the compiler found no left parenthesis after
the if keyword.

Compile-time error If statement missing)
In an if statement, the compiler found no right parenthesis after
the test expression. '

MAKE error If statement too long
Ifdef statement too long
Ifndef statement too long

An If, Ifdef, or Ifndef statement has exceeded 4,096 characters.

TUB warning ignored module, path is too long
The path to a specified .obj or .lib file is greater than 64
characters. The max path to a file for TLIB is 64 characters.

Compile-time error Illegal character character (Ox value)
The compiler encountered some invalid character in the input
file. The hexadecimal value of the offending character is
printed. This can also be caused by extra parameters passed to
a function macro.

Appendix C, Error messages 673

MAKE error Illegal character in constant expression expression
MAKE encountered a character not allowed in a constant
expression. If the character is a letter, this probably indicates a
misspelled identifier.

TLiNK fatal error Illegal group definition: group in module module
This error results from a malformed GRPDEF record in an .OBJ
file. This latter case could result from custom-built .OBJ files or
a bug in the translator used to generate the .OBJ file. If this
occurs in a file created by Turbo C++, recompile the file. If the
error persists, contact Borland.

Compile-time error Illegal initialization
In C, initializations must be either a constant expression, or else
the address of a global extern or static variable plus or minus a
constant.

MAKE or compile-time error Illegal octal digit
An octal constant was found containing a digit of 8 or 9.

Compile-time error Illegal parameter to _emit_
You supplied an argument to emit which is not a constant or an
address.

Compile-time error Illegal pointer subtraction
This is caused by attempting to subtract a pointer from a non­
pointer.

Compiie-time error iiiegai structure operation
In C or C++, structures may be used with dot (.), address-of
(&), or assignment (=) operators, or be passed to or from
functions as parameters. In C or C++, structures can also be
used with overloaded operators. The compiler encountered a
structure being used with some other operator.

Compile-time error Illegal to take address of bit field
It is not legal to take the address of a bit field, although you can
take the address of other kinds of fields.

Compile-time error Illegal use of floating point
Floating-point operands are not allowed in shift, bitwise
Boolean, indirection (*), or certain other operators. The
compiler found a floating-point operand with one of these
prohibited operators.

674 Turbo C++ User's Guide

Compile-time error Illegal use of member pointer
Pointers to class members can only be used with assignment,
comparison, the .*, ->*, ?:, && and II operators, or passed as
arguments to functions. The compiler has encountered a
member pointer being used with a different operator.

Compile-time error Illegal use of pOinter
Pointers can only be used with addition, subtraction, assign­
ment, comparison, indirection (*) or arrow (-». Your source file
used a pointer with some other operator.

Compile-time warning III-formed pragma
A pragma does not match one of the pragmas expected by the
Turbo C++ compiler.

Compile-time error Implicit conversion of type1 to type2 not allowed
When a member function of a class is called using a pointer to a
derived class, the pointer value must be implicitly converted to
point to the appropriate base class. In this case, such an implicit
conversion is illegal.

Compile-time error Improper use of typedef identifier
Your source file used a typedef symbol where a variable should
appear in an expression. Check for the declaration of the sym­
bol and possible misspellings.

TUNK fatal error filename (Iinenum):' Incompatible attribute
TLINK encountered incompatible segment attributes in a
CODE or DATA statement. For instance, both PRELOAD and
LOADONCALL can't be attributes for the same segment.

Compile-time error Incompatible type conversion
The cast requested can't be done. Check the types.

MAKE fatal error Incorrect command-line argument: argument
You've used incorrect command-line arguments.

Compile-time error Incorrect command-line option: option
The compiler did not recognize the command-line parameter as
legal.

Compile-time error Incorrect configuration file option: option
The compiler did not recognize the configuration file param­
eter as ~egal; check for a preceding hyphen (-).

Compile-time error Incorrect number format

Appendix C, Error messages

The compiler encountered a decimal point in a hexadecimal
number.

675

I

676

Compile-time error Incorrect use of default
The compiler found no colon after the default keyword in a
case statement.

Compile-time warning Initializing enumeration with type
You're trying to initialize an enum variable to a different type.
For example,

enum count { zero, one, two} x = 2;

will result in this warning, because 2 is of type int, not type
enum count. It is better programming practice to use an enum
identifier instead of a literal integer when assigning to or
initializing enum types.

This is an error, but is reduced to a warning to give existing
programs a chance to work.

Compile-time error Inline assembly not allowed in inline and template functions
The compiler cannot handle inline assembly statements in a
C++ inline or template function. You could eliminate the inline
assembly code or, in case of an inline function, make this a
macro, or remove the inline storage class.

DPMI server fatal error Insufficient memory available to initialize application
You need to free some conventional memory to initialize the
DPMI server ..

MAKE error Int and string types compared
You have tried to compare an integer operand with a string
operand in an !if or !elif expression.

TUNK fatal error Internal linker error errorcode
An error occurred in the internal logic of TLINK. This error
shouldn't occur in practice, but is listed here for completeness
in the event that a more specific error isn't generated. If this
error persists, write down the errorcode number and contact
Borland.

Compile-time error Invalid combination of opcode and operands
The built-in assembler does not accept this combination of
operands. Possible causes are:

• There are too many or too few operands for this assembler
opcode; for example, INC AX,BX, or MOV AX .

• The number of operands is correct, but their types or order
do not match the opcode; for example DEC 1, MOV AX,CL,

Turbo C++ User's Guide

or MOV 1 ,AX. Try prefacing the operands with type
overrides; for example MOV AX, WORD PTR foo.

TUNK error Invalid entry point offset
This message occurs only when modules with 32-bit records
are linked. It means that the initial program entry point offset
exceeds the DOS limit of 64K.

Compile-time error Invalid indirection
The indirection operator (*) requires a non-void pointer as the
operand.

TUNK fatal error Invalid initial stack offset

Compile-time error

TUB warning

Compile-time error

Compile-time error

TUNK fatal error

Appendix C, Error messages

This message occurs only when modules with 32-bit records I
are linked. It means that the initial stack pointer value exceeds
the DOS limit of 64K.

Invalid macro argument separator
In a macro definition, arguments must be separated by
commas. The compiler encountered some other character after
an argument name.

invalid page size value ignored
Invalid page size is given. The page size must be a power of 2,
and it may not be smaller than 16 or larger than 32,768.

Invalid pointer addition
Your source file attempted to add two pointers together.

Invalid register combination (e.g. [BP+BX])
The built-in assembler detected an illegal combination of
registers in an instruction. Valid index register combinations
are [BX], [BP], [SI], [DI], [BX+SI], [BX+DI], [BP+SI], and [BP+DI].
Other index register combinations (such as [AX], [BP+BX], and
[SI+DX]) are not allowed.

Local variables.(variables declared in procedures and
functions) are usually allocated on the 'stack and accessed via
the BP register. The assembler automatically adds [BP] in
references to such variables, so even though a construct like
Local[8X] (where Local is a localvariable) appears valid, it is
not since the final operand would become Local[BP+BX].

Invalid segment definition in module module
The compiler produced a flawed object file. If this occurs in a
file created by Turbo C++, recompile the file. If the problem
persists, contact Borland.

677

Compile-time error Invalid template argument list
In a template declaration, the keyword template must be
followed by a list of formal arguments enclosed within the <
and> delimiters; an illegal template argument list was found.

Compile-time error Invalid template qualified name template::name
When defining a template class member, the actual arguments
in the template class name that is used as the le.ft operand for
the:: operator must match the formal arguments of the
template class. For example:

template <class T> class X
{

void f();
};

template <class T> void X<T>::f(){}

The following would be illegal:

template <class T> void x<int>: :f() {}

Compile-time error Invalid use of dot
An identifier must immediately follow a period operator (.).

Compile-time error Invalid use of template template
Outside of a template definition, it is illegal to use a template
class name without specifying its actual arguments. For
example, you can use vector<int> but not vector.

Compile-time fatal error Irreducible expression tree
This is a sign of some form of compiler error. Some expression
on the indicated line of the source file has caused the code gen­
erator to be unable to generate code. Whatever the offending
expression is, it should be avoided. Notify Borland if the com­
piler ever encounters this error.

Compile-time error base is an indirect virtual base class of class
A pointer to a C++ member of the given virtual base class
cannot be created; an attempt has been made to create such a
pointer (either directly, or through a cast). See page 293 for
information on the -Vv switch.

Compile-time warning identifier is assigned a value that is never used
The variable appears in an assignment, but is never used
anywhere else in the function just ending. The warning is
indicated only when the compiler encounters the closing brace.

678 Turbo C++ User's Guide

identifier is declared as both external and static
Compile-time warning This identifier appeared in a declaration that implicitly or

explicitly marked it as global or external, and also in a static
declaration. The identifier is taken as static. You should review
all declarations for this identifier.

TUNK error or warning symbol is duplicated in module module
There is a conflict between two symbols (either public or
communal) defined in the same module. An error occurs if
both are encountered in an .OBJ file. A warning is issued if
TLINK finds the duplicates in a library; in this case, TLINK
uses the first definition.

Compile-time error constructor is not a base class of class I
A C++ class constructor class is trying to call a base class
constructor constructor, or you are trying to change the access
rights of class::constructor. constructor is not a base class of class.
Check your declarations. .

Compile-time error identifier is not a member of struct
You are trying to reference identifier as a member of struct, but
it is not a member. Check your declarations.

Compile-time error identifier is not a non-static data member and can't be initialized
here

Only data members can be initialized in the initializers of a
constructor. This message means that the list includes a static
member or function member. .

Compile-time error identifier is not a parameter
In the parameter declaration section of an old-style function
definition, identifier is declared but is not listed as a parameter.
Either remove the declaration or add identifier as a parameter.

Compile-time error identifier is not a public base class of classtype
The right operand of a .*, ->*, or ::operator was not a pointer to
a member of a class that is either identical to or an
unambiguous accessible base class of the left operand's class
type.

Compile-time error member is not accessible

Appendix C, Error messages

You are trying to reference C++ class member member, but it is
private or protected and cannot be referenced from this func­
tion. This sometimes happens when attempting to call one
accessible overloaded member function (or constructor), but
the arguments match an inaccessible function. The check for
overload resolution is always made before checking for

679

accessibility. If this isthe problem, try an explicit cast of one'or
more parameters to select the desired accessible function.

Compile-time error Last parameter of operator must have type int
When a postfix operator++ or operator- ± is declared, the last
parameter must be declared with the type int.

TUB warning libra,ry contains COMDEF records - extended dictionary not
created

An object record being added to a library contains a COMDEF
record. This is not compatible with the extended dictionary
option.

TUB error library too large, please restart with IP size
library too large, restart with library page size size

The library being created could not be built with the current
library page size.In the IDE, the library page size can be set
from the Options I Librarian dialog box.

Compile-time error Linkage'specification not allowed
Linkage specifications such as extern "c" are only allowed at
the file level. Move this function declaration out to the file
level.

TUNK fatal error Linker stack overflow
TLINK uses a recursive procedure for marking modules to be
included in an executable image from libraries. This procedure
can cause stack over£lo-ws in extrerne circur!lstances. If you get
this error message, remove some modules from libraries,
include them with the object files in the link, and try again.

Compile-time error Lvalue required
The left hand side of an assignment operator must be an
addressable expression. These include numeric or pointer
variables, structure field references or indirection through a
pointer, or a subscripted array element.

DPMI seNer fatal error Machine not in database (run DPMIINST)
The Dos Protected Modelnterface (DPMI) server searched the
kernel's database and could not locate information about your
machine. Run DPMIINST (several times, if necessary) to
update the database. DPMIINST also generates a .DB file for
you to send to Borland. See also A20 line, already enabled, so
test is meaningless on page 644.

680 Turbo C++ User's Guide

Compile-time error Macro argument syntax error
An argument in a macro definition must be an identifier. The
compiler encountered some non-identifier character where an
argument was expected.

Compile-time error Macro expansion too long
A macro cannot expand to more than 4,096 characters.

MAKE error Macro expansion too long
A macro cannot expand to more than 4,096 characters. This
error often occurs if a Il}acro recursively expands itself. A
macro cannot legally expand to itself.

MAKE fatal errors Macro substitute text string is too long
Macro replace text string is too long

Compile-time error

Compile-time error

The macro substitution or replacement text string overflowed
MAKE's internal buffer of 512 bytes.

main must have a return type of int
In C++, function main has special requirements, one of which is
that it cannot be declared with any return type other than int.
See Chapter IS,

Matching base class function for function has different dispatch
number.

If a DDVT function is declared in a derived class, the 'matching
base class function must have the same dispatch number as the
derived function.

Compile-time error Matching base class function for function is not dynamic
If a DDVT function is declared in a derived class, the matching
base class function must also be dynamic.

Compile-time warning Maximum precision used for member pointer type type
When a member pointer type is declared, its class has not been
fully defined, and the -Vmd option has been used, the compiler
has to use the most general (and the least efficient)
representation for that member pointer type. This may not only
cause less efficient code to be generated (and make the member
pointer type unnecessarily large), but it can also cause
problems with separate compilation; see the -Vm compiler
switch discussion in Chapter 8, "The command-line compiler"
for details.

Appendix C, Error messages 681

Compile-time error Member function must be called or its address taken
When a member function is'used in an expression, either it
must be called, or its address must be taken using the &
operator. In this case, a member function has been used in an
illegal context.

Compile-time error Member identifier expected
The name of a structure or C++ class member was expected
here, but not found. The right side of a dot (.) or arrow (-»
operator must be the name of a member in the structure or
class on the left of the operator.

Compile-time error Member is ambiguous: member1 and member2
You must qualify the member reference with the appropriate
base class name. In C++ class class, member member can be
found in more than one base class, and was not qualified to
indicate which was meant. This happens only in multiple
inheritance, where the member name in each base class is not
hidden by the same member name in a derived class on the
same path. The C++ language rules require that this test for
ambiguity be made before checking for access rights (private,
protected, public). It is therefore possible to get this message
even though only one (or none) of the members can be
accessed.

Compile-time error Member member cannot be used without an object
This !!leanS that the user has ·written class::member where
member is an ordinary (non-static) member, and there is no class
to associate with that member. For example, it is legal to write
obj.class::member, but not to write class::member.

Compile-time error Member member has the same name as its class
A static data member, enumerator, member of an anonymous
union, or nested type may not have the same name as its class.
Only a member function or a non-static member may have a
name that is identical to its class.

Compile-time error Member member is initialized more than once
In a C++ class constructor, the list of initializations following
the constructor header includes the same member name mOre
than once.

Compile-time error Member pOinter required on right side of.* or ->*
The right side of a C++ dot-star (.*) or an arrow-star (->*)
operator must be declared as a pointer to a member of the class

682 Turbo C++ User's Guide

specified by the left side of the operator. In this case, the right
side is not a member pointer.

TUB warning Memory full listing truncated!
The librarian has run out of memory creating a library listing
file. A list file will be created but is not complete.

Compile-time error Memory reference expected
The built-in assembler requires a memory reference. Most
likely you have forgotten to put square brackets around an
index register operand; for example, MOV AX,BX+SI instead of
MOV AX,[BX+SI].

Compile-time error Misplaced break
The compiler encountered a break statement outside a switch
or looping construct.

Compile-time error Misplaced continue
The compiler encountered a continue statement outside a
looping construct.

Compile-time error Misplaced decimal point
The compiler encountered a decimal point in a floating-point I
constant as part of the exponent. Ii

Compile-time error Misplaced elif directive
The compiler encountered an #elif directive without any
matching #if, #ifdef, or #ifndef directive.

MAKE error Misplaced elif statement
An !elif directive is missing a matching !if directive.

Compile-time error Misplaced else
The compiler encountered an else statement without a
matching if statement. An extra else statement could cause this
message, but it could also be caused by an extra semicolon,
missing braces, or some syntax error in a previous if statement.

Compile-time error Misplaced else directive
The compiler encountered an #else directive without any
matching #if, #ifdef, or #ifndef directive.

MAKE error Misplaced else statement
There's an !else directive without any matching !if directive.

Appendix C, Error messages 683

Compile-time error Misplaced endif directive
The compiler encountered an #endif directive without any
matching #if, #ifdef, or #ifndef directive.

MAKE error . Misplaced end if statement
There's an !endif directive without any matching !if directive.

TUNK fatal error filename (linenum): Missing internal name
In the IMPORTS section of the module definition file there was
a reference to an entry specified via module name and ordinal
number. When an entry is specified by ordinal number an
internal name must be assigned to this import definition. It is
this internal name that your program uses to refer to the
imported definition. The syntax in the module definition file
should be:

<internalname>=<modulename>.<ordinal>

Compile-time warning Mixing pointers to signed and unsigned char
You converted a signed char pointer to an unsigned char
pointer, or vice versa, without using an explicit cast. (Strictly
speaking, this is incorrect, but it is often harmless.)

Compile-time error Multiple base classes require explicit class names
In a C++ class constructor, each base class constructor call in
the constructor header must include the base class name when
there is more than one immediate base class.

Compile-time error iviuitipie deciaration for identifier
This identifier was improperly declared more than once. This
might be caused by conflicting declarations such as int a;
double a;, a function declared two different ways, or a label
repeated in the same function, or some declaration repeated
other than an extern function or a simple variable (in C).

Compile-time error identifier must be a member function
Most C++ operator functions may be members of classes or
Qrdinary nonmember functions, but certain ones are required
to be members of classes. These are operator =, operator ->,
operator 0, and type conversions. This operator function is not
a member function but should be.

Compile-time error identifier must be a member function or have a parameter of
class type

Most C++ operator functions must have an implicit or explicit
parameter of class type. This operator function was declared

684 Turbo C++ User's Guide

outside a class and does not have an explicit parameter of class
type.

Compile-time error identifier must be a previously defined class or struct
You are attempting to declare identifier to be a base class, but
either it is not a class or it has not yet been fully defined. Cor­
rect the name or rearrange the declarations.

Compile-time error identifier must be a previously defined enumeration tag
This declaration is attempting to reference identifier as the tag of
an enum type, but it has not been so declared. Correct the
name, or rearrange the declarations.

Compile-time error function must be declared with no parameters
This C++ operator function was incorrectly declared with
parameters.

Compile-time error function must be declared with one parameter
This C++ operator function was incorrectly declared with more
than one parameter.

Compile-time error operator must be declared with one or no parameters
When operator++ or operator - - is declared as a member I
function, it must be declared to take either no parameters (for .
the prefix version of the operator) or one parameter of type int
(for the postfix version).

Compile-time error operator must be declared with one or two parameters
When operator++ or operator - - is declared as a nonmember
function, it must be declared to take either one parameter (for
the prefix version of the operatpr) or two parameters (the
postfix version).

Compile-time error function must be declared with two parameters
This C++ operator function was incorrectly declared with other
than two parameters.

Compile-time error Must take address of a memory location
Your source file used the address-of operator (&) with an
expression which cannot be used that way; for example, a
register variable (in C).

Compile-time. error Need an identifier to declare

Appendix C, Error messages

In this context, an identifier was expected to complete the
declaration. This might be a typedef with no name,or an extra
semicolon at file level. In C++, it might be a class name
improperly used as another kind of identifier.

685

686

IDE debugger error 'new' and 'delete' not supported
In integrated debugger expression evaluation, the new and
delete operators are not supported.

Compile-time error No: following the?
The question mark (?) and colon (:) operators do not match in
this expression. The colon may have been omitted, or paren­
theses may be improperly nested or missing.

Compile-time error No base class to initialize
This C++ class constructor is trying to implicitly call a base
class constructor, but this class was declared with no base
classes. Check your declarations.

MAKE error No closing quote
There is no closing quote for a string expression in a !if or !elif
expression.

Compile-time warning No declaration for function function
You called a function without first declaring that function. In C,
you can declare a function without presenting a prototype, as
in /lint funcO;". In C++, every function declaration is also a
prototype; this example is equivalent to /lint func(void);". The
declaration can be either classic or modern (prototype) style.

Compile-time error No file name ending
The file name in an #include statement was missing the correct
closing quote or angle bracket.

MAKE error No file name ending
The file name in an !include statement is missing the correct
closing quote or angle bracket.

Compile-time error No file names given
The command line of the Turbo C++ command-line compiler
(BCC) contained no file names. You have to specify a source file
name.

MAKE error No macro before =
You must give a macro a name before you can assign it a value.

MAKE error No match found for wildcard expression
There are no files matching the wildcard expression for MAKE
to expand. For example, if you write

prog.exe: *.obj

MAKE sends this error message if there are no files with the
extension .OBI in the current directory.

Turbo C++ User's Guide

TLINK warning No program starting address defined
This warning means that no module defined the initial starting
address of the program. This is almost certainly caused by
forgetting to link in the initialization module COx.OBI.

TLINK warning No stack
This warning is issued if no stack segment is defined in any of
the object files or in any of the libraries included in the link.
This is a normal message for the tiny memory model in Turbo
C++, or for any application program that will be converted to a
.COM file. For other programs (except DLLs), this indicates an
error.

If a Turbo C++ program produces this message for any but the
tiny memory model, make sure you are using the correct COx

. startup object files.

TLINK warning No stub for fixup at segmentxxxxh in module module
This error occurs when the target for a fixup is in an overlay
segment, but no stub is found for a target external. This is
usually the result of not making public a symbol in an overlay
that is referenced from the same module. .

MAKE fatal error No terminator specified for in-line file operator

Compile-time error

This message used only by
IDE debugger.

Compile-time warning

Compile-time warning

Compile-time error

Appendix C, Error messages

The makefile contains either the && or« command-line
operators to start an in-line file, but the file is not terminated.

No·type information
Debugger has no type information for this variable. Module
may have been compiled without debug switch turned on, or
by another compiler or assembler.

Non-const function function called for const object
A non-const member function was called for a const object.
This is an error, but was reduced to a warning to give existing
programs a chance to work.

Nonportable pointer comparison
Your source file compared a pointer to a non-pointer other than
the constant zero. You should use a cast to suppress this
warning if the comparison is proper.

Nonportable pointer conversion
An implicit conversion between a pointer and an integral type
is required, but the types are not the same size. This cannot be
done without an explicit cast. This conversion may not make
any sense, so be sure this is what you want to do.

687

I

Compile-time warning

Compile-time error

Compile-time error

Compile-time warning

Compile-time error

This message used only by
IDE debugger.

Compile-time error

MAKE fatal error

TUNK fatal error

TUB error

DPMI server fatal error

688

Nonportable pOinter conversion
A nonzero integral value is used in a context where a pointer is
needed or where an integral value is needed; the sizes of the
integral type and pointer are the same. Use an explicit cast if
this is what you really meant to do. ~

Nontype template argument must Qe of scalar type
A nontype formal template argument must have scalar type; it
can have an integral, enumeration, or pointer type.

Non-virtual function function declared pure
Only virtual functions can be declared pure, since derived
classes must be able to override them.

Non-volatile function function called for volatile object
In C++, a class member function was called for a volatile object
of the class type, but the function was not declared with
"volatile" following the function header. Only a volatile
member function may be called for a volatile object.

Not a valid expression format type
Invalid format specifier following expression in the debug
evaluate or watch window. A valid format specifier is an
optional repeat value followed by a format character (c, d, f[n],
h, x, m, p, r, or s).

Not an allowed type
Your source file declared some sort of forbidden type; for
example, a function returning a function or array.

Not enough memory
All your working storage has been exhausted.

Not enough memory
There is not enough memory to run TLINK. Try reducing the
size of any RAM disk or disk cache currently active. Then run
TLINK again. If you are running real mode, try using the
MAKE -8 option, removing TSRs and network drivers. If you
are using protected mode MAKE, try reducing the size of any

. ram disk or disk cache you may have active.

Not enough memory for command-line buffer
This error occurs when TLIB runs out of memory.

not enough memory for PM init
There was not enough extended memory available for the
DPMI server to initialize protected mode.

Turbo C++ User's Guide

TUB warning module not found in library
An attempt to perform either a '_' or '*' on a library has been
made and the indicated object does not exist in the library.

Run-time error Null pointer assignment
When a small or medium memory model program exits, a
check is made to determine if the contents of the first few bytes
within the program's data segment have changed. These bytes
would never be altered by a working program. If they have
been changed, the message "Null pointer assignment" is
displayed to inform you that (most likely) a value was stored to
an uninitialized pointer. The program may appear to work
properly in all other respects; however, this is a serious bug
which should be attended to immediately. Failure to correct an
uninitialized pointer can lead to unpredictable behavior
(including "locking" the computer up in the large, compact,
and huge memory models). You can use the integrated
debugger to track down null pointers.

Compile-time error Numeric constant too large
String and character escape sequences larger than hexadecimal
\xFF or octal \377 cannot be generated. Two-byte character
constants may be specified by using a second backslash. For I
example, \xOD\xOA represents a two-byte constant. A numeric
literal following an escape sequence should be broken up like
this:

printf("\xOD" "12345")i

This prints a carriage return followed by 12345.

TUB error object module filename is invalid
, The librarian could not understand the header record of the
object module being added to the library and has assumed that
it is an invalid module.

Compile-time error Objects of type type cannot be initialized with {}
Ordinary C structures can be initialized with a set of values
inside braces. c++ classes can only be initialized with construc­
tors if the class has constructors, private members, functions or
base classes which are virtual.

MAKE error Only «KEEP or «NO KEEP
You have specified something besides KEEP or NOKEEP when
closing a temporary inline file.

Appendix C, Error messages 689

Compile-time error Only member functions may be 'const' or 'volatile'
Something other thqna class member function has been
declared const and/or volatile.

Compile-time error Only one of a set of overloaded functions can be "C"
C++ functions are by default overloaded, and the compiler
assigns a new name to each function. If you wish to override
the compiler's assigning a new name by declaring the function
extern "C", you can do this for only one of a set of functions
with the same name. (Otherwise the linker would find more
than one global function with the same name.)

Compile-time error Operand of delete must be non-const pointer
It is illegal to delete a constant pointer value using operator
delete. .

Compile-time error Operator [] missing]
The C++ operator[] was declared as operator [. You must add
the missing] or otherwise fix the declaration.

Compile-time error operator -> must return a pointer or a class
The C++ operator-> function must be declared to either return
a class or a pointer to a class (or struct or union). In either case,
it must be something to which the -> operator can be applied.

Compile-time error operator delete must return void
This C++ overloaded operator delete was declared in some
other way. .

Compile-time error Operator must be declared as function
An overloaded operator was declared with something other
than function type.

Compile-time error operator new must have an initial parameter of type size_t
Operator new can be declared with an arbitrary number of

. parameters, but it must always have at least one, which is the
amount of space to allocate.

Compile-time error operator new must return an object of type void *
The C++ overloaded operator new was declared another way.

Compile-time error Operators may not have default argument values
It is illegal for overloaded operators to have default argument
values.

690 Turbo C++ User's Guide

Compile-time fatal error Out of memory
The total working storage is exhausted. Compile the file on a

. machine with more memory.

TUB error Out of memory
For any number of reasons, TLIB or Turbo C++ ran out of
memory while building the library. For many specific cases a
more detailed message is reported, leaving "Out of memory"
to be the basic catchall for general low memory situations.

If this message occurs when public symbol tables grow too
large, you must free up memory. For the command line this
could involve removing TSR's or device drivers using real
mode memory. In the IDE, some additional memory can be
gained by closing editors.

TUNK fatal error Out of memory
TLINK has run out of dynamically allocated memory needed
during the link process. This error is a catchall for running into
a TLINK limit on memory usage. This usually means that too
many modules, externals, groups, or segments have been
defined by the object files being linked together. You can try
reducing the size of RAM disks and/or disk caches that may be
active.

TUB error out of memory creating extended dictionary \ 13
The librarian has run out of memory creating an extended
dictionary for a library. The library is created but will not have
an extended dictionary.

TUB error out of memory reading LE/LIDATA record from object module
The librarian is attempting to read a record of data from the
object module, but it cannot get a large enough block of
memory. If the module that is being added has a large data
segment or segments, it is possible that adding the module
before any other modules might resolve the problem. By
adding the module first, there will be memory available for
holding public symbol and module lists later.

TUB error Out of space allocating per module debug struct
The librarian ran out of memory while allocating space for the
debug information associated with a particular object module.
Removing debugging information from some modules being
added to the library might resolve the problem.

Appendix C, Error messages 691

TUB error Output device is full
The output device is full, usually no space left on the disk.

TUNK warning Overlays generated and no overlay manager included
This warning is issued if overlays are created but the symbol
__ OVRTRAP __ is not defined in any of the object modules or
libraries linked in. The standard overlay library
(OVERLAY.LIB) defines this symbol.

Compile-time error Overlays only supported in medium, large, and huge memory
models .

As explained in ChapterJ8,"Memory management", only
programs using the medium, large, or huge memory models
may be overlaid.

Compile-time warning overload is now unnecessary and obsolete
Early versions of C++ required the reserved word overload to
mark overloaded function names. C++ now uses a "type-safe
linkage" scheme, whereby all functions are assumed over­
loaded unless marked otherwise. The use of overload should
be discontinued.

Compile-time error Overloadable operator expected
Almost all C++ operators can be overloaded. The only ones
that can't be overloaded are the field-selection dot (.), dot-star
(.*), double colon (::), and conditional expression (?:). The
preprocessor operators (# and ##) are not C or c++ language
operators and thus cannot be overloaded. Other nonoperator
punctuation, such as semicolon (;), of course, cannot be
overloaded.

Compile-time error Overloaded function name ambiguous in this context
The only time an overloaded function name can be used
without actually calling the function is when a variable or
parameter of an appropriate type is initialized or assigned. In
this case an overloaded function name has been used in some
other context.

Compile-time error

This message used only by
IDE debugger.

Overloaded function resolution not supported
In integrated debugger expression evaluation, resolution of
overloaded functions or operators is not supported, not even to
take an address.

Compile-time warning

692

Overloaded prefix 'operator operator used as a postfix operator
With the latest specification of C++, it is now possible to
overload both the prefix and postfix versions of the ++ and - -

Turbo C++ User's Guide

operators. To allow older code to compile, whenever only the
prefix operator is overloaded, but is used in a postfix context,
Turbo C++ uses the prefix operator and issues this warning.

Compile-time error Parameter names are used only with a function body
When declaring a function (not defining it with a function
body), you must use either empty parentheses or a function
prototype. A list of parameter names only is not allowed.

Example declarations include:

int func() i II declaration without prototype--OK
int func(int, int) i II declaration with prototype--OK
int func(int i, int j) i II parameter names in prototype--OK
int func(i, j)i II parameter names only--illegal

Compile-time error Parameter number missing name
In a function definition header, this parameter consisted only of
a type specifier number with no parameter name. This is not·
legal in C. (It is allowed in C++, but there's no way to refer to
the parameter in the function.)

Compile-time warning Parameter parameter is never used
The named parameter, declared in the function, was never used
in the body of the function. This mayor may not be an error
and is often caused by misspelling the parameter. This warning . •
can also occur if the identifier is redeclared as an automatic
(local) variable in the body of the function. The parameter.is
masked by the automatic variable and remains unused.

TUB error path - path is too long
This error occurs when the length of any of the library file or
module file's path is greater than 64 .

. Compile-time error Pointer to structure required on left side of -> or ->*
Nothing but a pointer is allowed on the leftside of the arrow
(-» in C or C++. In C++ a ->* operator isallowed.

Compile-time warning Possible use of identifier before definition

Appendix C, Error messages

Your source file used the named variable in an expression be­
fore it was assigned a value. The compiler uses a simple scan of
the program to determine this condition. If the use of a variable
occurs physically before any assignment, this warning will be
generated. Of course, the actual flow of the program may

) assign the value before the program uses it.

693

694

Compile-time warning Possibly incorrect assignment
This warning is generated when the compiler encounters an
assignment operator as the main operator of a conditional ex­
pression (that is, part of an if, while or do-while statement).
More often than not, this is a typographical error for the equal­
ity operator. If you wish to suppress this warning, enclose the
assignment in parentheses and compare the whole thing to
zero explicitly. Thus,

if (a = b) ...

should be rewritten as

if ((a='b) !=O) ...

TUNK error Program entry point may not reside in an overlay
Although almost all of an application can be overlaid, the
initial starting address cannot reside in an overlay. This error
usually means that an attempt was made to overlay the
initialization module COx.OBJ, for instance, by specifying the b
option before the startup module.

TUB error public symbol in module module1 clashes with prior module
module2

A public symbol·may only appear once in a library file. A
module which is being added to the library contains a public
symbol that is already in a module of the library and cannot be
added. The command-line message reports the module2 name.

TUB error public symbol in module filename clashes with prior module
A public symbol may only appear once in a library file. A
module which is being added to the library contains a public
symbol that is already in a module of the library and cannot be
added.

TUB error record kind num found, expected theadr or Iheadr in module
filename

The librarian could not understand the header record of the
object module being added to the library and has assumed that
it is an invalid module.

TUB error record length len exceeds available buffer in module module
This error occurs when the record length len exceeds the
available buffer to load the buffer in module module. This
occurs when TLIB runs out of dynamic memory.

Turbo C++ User's Guide

TLiB error record type type found, expected theadr or Iheadr in module
TLIB encountered an unexpected type type instead of the
expected THEADR or LHEADER record in module module.

Compile-time warning Redefinition of macro is not identical
Your source file redefined the named macro using text that was
not exactly the same as the first definition of the macro. The
new text replaces the old.

MAKE error Redefinition of target filename
The named file occurs on the left side of more than orie explicit
rule.

Compile-time error Reference initialized with type1, needs Ivalue of type type2
A reference variable or parameter that is not declared constant
must be initialized with an lvalue of the appropriate type. In this
case, the initializer either wasn't an lvalue, or its type didn't
match the reference being initialized.

Compile-time error Reference member member in class without constructors
A class that contains reference members must have at least one
user-defined constructor; otherwise, there would be no way to
ever initialize such members.

Compile-time error Reference member member is not initialized
References must always be initialized. A class member of refer­
ence type must have an initializer provided in all constructors
for that class. This means that you 'cannot depend on the
compiler to generate constructors for such a class, since it has
no way of knowing how to initialize the references.

Compile-time error Reference member member needs a temporary for initialization a
You provided an initial value for a reference type which was
not an lvalue of the referenced type. This requires the compiler
to create a temporary for the initialization. Since there is no
obvious place to store this temporary, the initialization is
illegal. . ~

Compile-time error Reference variable variable must be initialized
This C++ object is declared as a reference but is not initialized.
All references must be initialized at the point of their
declaration.

Compile-time fatal error Register allocation failure
This is a sign of some form of compiler error. Some expression
in the indicated function was so complicated that the code
generator could not generate code for it. Try to simplify the

Appendix C, Error messages 695

offending function. Notify Borland Technical Support if·the
compiler encounters this error.

TUNK fatal error Relocation item exceeds 1 MB DOS limit
The DOS executable file format doesn't support relocation
items for locations exceeding 1MB. Although DOS could never
load an image this big, DOS extenders can, and thus TLINK
supports generating images greater than DOS could load. Even
if the image is loaded with a DOS extender, the DOS executable
file format is limited to describing relocation items in the first
1MB of the image.

TUNK fatal error Relocation offset overflow
This error only occurs for 32-bit object modules and indicates a
relocation (segment fixup) offset greater than the DOS limit of
64K.

TUNK fatal error Relocation table overflow

Compile-time error

This message used only by
IDE debugger.

This error only occurs for 32-bit object modules. The file being
linked contains more base fixups than the standard DOS
relocation table can hold (base fixups are created mostly by
calls to far functions).

Repeat count needs an Ivalue
The expression before the comma (,) in the Watch or Evaluate
window must be a manipulable region of storage. For example,
expressions like this one are not valid:

itt, lad
x = y, 10m

TUB warning results are safe in file filename
The librarian has successfully built the library into a temporary
file, but cannot rename the file to the desired library name. The -
temporary file will not be removed (so that the library can be
preserved).

MAKE error Rule line too long
An implicit or explicit rule was longer than 4,096 characters.

TUNK fatal error Segment segment exceeds 64K
This message occurs if too much data is defined for a given
data or code segment when TLINK combines segments with
the same name from different source files.

696 Turbo C++ User's Guide

TUNK warning

Compile-time error

This message used only by
IDE debugger:

Compile-time error

Segment segment is in two groups: group1 and group2
The linker found conflicting claims by the two named groups.
Usually, this only happens in assembly language programs. It
means that two modules assigned the segment to two different
groups.

Side effects are not allowed
Side effects such as assignments, ++, or - - are not allowed in
the debugger watch window. A common error is to use x = y
(not allowed) instead of x == Y to test the equality of x and y.

Size of identifier is unknown or zero
This identifier was used in a context where its size was needed.
A struct tag may only be declared (the struct not defined yet),
or an extern array may be declared without a size. It's illegal
then to have some references to such an item (like sizeof) or to
dereference a pointer to this type., Rearrange your declaration
so that the size of identifier is available.

Compile-time error sizeof may not be applied to a bit field
sizeof returns the size of a data object in bytes, which does not
apply to a bit field.

Compile-time error sizeof may not be applied to a function
sizeof may be applied only to data objects, not functions. You
may request the size of a pointer to a function.

Compile-time error Size of the type is unknown or zero
This type was used in a context where its size was needed. For

example, a struct tag may only be declared (the struct not de­
fined yet). It's illegal then to have some references to such an
item (like sizeof) or to dereference a pointer to this type. Rear­
range your declarations so that the size of this type is available.

Compile-time error identifier specifies multiple or duplicate access I
A base class may be declared public or private1 but not both.
This access specifier may appear no more than once for a base
class.

Run-time error Stack overflow

Appendix C, Error messages

The default stack size for Turbo C++ programs is 5120 bytes.
This should be enough for most programs, but those which
execute recursive functions or store a great deal of local data
can overflow the stack. You will only get this message if you
have stack checking enabled. If you do get this message, you
can try increasing the stack size or decreasing your program's
dependence on the stack. Change the stack size by altering the

697

global variable _stklen. Try switching to a larger memory model
to fit the larger stack.

To decrease the amount of local data used by a function, look at
the example below. Thevariable buffer has been declared static
and does not consume stack space like list does.

void anyfunction(void)
{

static int buffer[2000];
int list [2000] ;

/* resides in the data segment */
/* resides on the stack */

There are two disadvan~ages to declaring local variables as
static.

1. It now takes permanent space away from global variables
and the heap. (You have to rob Peter to pay Paul.) This is
usually only a minor disadvantage.

2. The function may no longer be reentrant. What this means
is that if the function is called recursively or asynchro­
nously and it is important that each call to the function have
its own unique copy of the variable, you cannot make it
static. This is because every time the function is called, it
will use the same exact memory space for the variable,
rather than allocating new space for it on each call. You
could have a sharing problem if the function is trying to
execute from within itself (recursively) or at the same time
as itself (asynchronously). For most DOS programs this is
not a problem.

Compile-time error Statement missing;
The compiler encountered an expression. statement without a
semicolon following it.

Compile-time error Storage class storage class is not allowed here
The given storage class is not allowed here. Probably two
storage classes were specified, and only one may be given.

MAKE error String type not allowed with this operand
You have tried to use an operand which is not allowed for
comparing string types. Valid operands are ==, !=, <, >, <=,
and >=.

698 Turbo C++ User's Guide

Compile-time warning Structure passed by value
A structure was passed by value as an argument to a function
without a prototype. It is a frequent programming mistake to
leave an address-of operator (&) off a structure when passing it
as an argument. Because structures can be passed by value, this,
omission'is acceptable. This warning provides a way for the
compiler to warn you of this mistake.

Compile-time error Structure required on left side of. or.*
The left side of a dot (.) operator (or C++ dot-star operator)
must evaluate to a structure type. In this case it did not.

Compile-time error Structure size too large
Your source file declared a structure larger than 64K.

Compile-time warning Style of function definition is now obsolete
In C++, this old C style of function definition is illegal:

int func(pl, p2)
int pl, p2i
{

This practice may' not be allowed by other C++ compilers.

Compile-time error Subscripting missing]
The compiler encountered a subscripting expression which was
missing its closing bracket. This could be caused by a missing
or extra operator, or mismatched parentheses. .

Compile-time warning Superfluous & with function
An address-of operator (&) is not needed with function name;
any such operators are discarded'.

Compile-time warning Suspicious pointer conversion
The compiler encountered some conversion of a pointer which
caused the pointer to point to a different type. You should use
a cast to suppress this warning if the conversion is proper.

Compile-time error Switch selection expression must be of integral type
The selection expression in parentheses in a switch statement
must evaluate to an integral type (char, short, int, long, enum).
You may be able to use an explicit cast to satisfy this
requirement.

Appendix C, Error messages 699

700

Compile-time error Switch statement missing (
In a switch statement, the compiler found no left parenthesis
after the switch keyword.

Compile-time error Switch statement missing)
In a switch statement, the compiler found no right parenthesis
after the test expression.

TUNK fatal error filename (linenum): Syntax error
TLINK found a syntax error in the module definition file. The
filename and line number tell you where the syntax error
occurred.

TUNK fatal error Table limit exceeded
One of linker's internal tables overflowed. This usually means
that the programs being linked have exceeded the linker's
capacity for public symbols, external sy~bols, or for logical
segment definitions. Each instance of a distinct segment name
in an object file counts as a logical segment; if two object files
define this segment, then this results in two logical segments.

Compile-time error Template argument must be a constant expression
A non-type actual template class argument must be a constant
expression (of the appropriate type); this includes constant
integral expressions, and addresses of obJects or functions with
external linkage or members.

Compile-time error Template class nesting too deep: 'class'
The compiler imposes a certain limit on the level of template
class nesting; this limit is usually only exceeded through a
recursive template class dependency. When this nesting limit is
exceeded, the compiler will issue this error message for all of
the nested template classes, which usually makes it easy to spot
the recursion. This is always followed by the fatal error Out of
memory.

For example, consider the following set of template classes:

template<class T> class A
{

friend class B<T*>;
};

template<class T> class B
{

friend class A<T>;
};

A<int> x;

Turbo C++ User's Guide

This snippet will be flagged with the following errors:

Error: Template class nesting too deep: 'B<int * * * * *>'
Error: Template class nesting too deep: 'A<int * * * *>'
Error: Template class nesting too deep: 'B<int * * * *>'
Error: Template class nesting too deep: 'A<int * * *>'
Error: Template class nesting too deep: 'B<int * * *>'
Error: Template class nesting too deep: 'A<int * *>'
Error: Template class nesting too deep: 'B<int * *>'
Error: Template class nesting too deep: 'A<int *>'
Error: Tempiate class nesting too deep: 'B<int *>'
Error: Template class nesting too deep: 'A<int>'
Fatal: Out of memory

Compile-time error Template function argument argument not used in argument
types

The given argument was not used in the argument list of the
function. The argument list of a template function must use all
of the template formal arguments; otherwise, there is no way to
generate a template function instance based on actual .
argument types. .

Compile-time error Template functions may only have type-arguments
A function template was declared with a non-type argument.
This is not allowed with a template function, as there is no way
to specify the value when calling it.

Compile-time error Templates can only be declared at file level
Templates cannot be declared inside classes or functions, they
are only allowed in the global scope (file level).

Compile-time error Templates must be classes or functions
The declaration in a template declaration must specify either a
class type or a function.

Compile-time warnings Temporary used to initialize identifier

Appendix C, Error messages

Temporary used for parameter number in call to function a
Temporary used for parameter parameter in call to function
Temporary used for parameter number
Temporary used for parameter parameter

In C++, a variable or parameter of reference type must be
assigned a reference to an object of the same type. If the types
do not match, the actual value is assigned to a temporary of the
correct type, and the address of the temporary is assigned to
the reference variable or parameter. The warning means that
the reference variable or parameter does not refer to what you
expect, but to a temporary variable, otherwise unused.

701

702

For example, here function f requires a reference to an int, and c
is a char:

f(int&);

char c;
f (c) ;

Instead of calling f with the address of c, the compiler generates
code equivalent to the C++ source code:

int x = e,f (X) ;

TUNK fatal error Terminated by user
You canceled the link.

TUB error The combinations '+*' or '*+' are not allowed
It is not legal to add and extract an object module from a
library in one action. The action probably desired is a 1+_'.

Compile-time error The constructor constructor is not allowed
Constructors of the form X: :(X) are not allowed. The correct
way to write a copy constructor is X::(const X&).

Compile-time error The value for identifier is not within the range of an int
All enumerators must have values which can be represented as
an integer. You attempted to assign a value which is out of the
range of an integer. In C++ if you need a constant of this value,
use a const integer.

Compile-time error 'this' can only be used within a member function
In C++, this is a reserved word that can be used only within
class member functions.

Compile-time warning This initialization is only partly bracketed
Result of IDE Options I Compiler I Messages I ANSI violations
selection. Initialization is only partially bracketed. When
structures are initialized, braces can be used to mark the
initialization of each member of the structure. If a member
itself is an array or structure, nested pairs of braces may be
used. This ensures that your idea and the compiler's idea of
what value goes with which member are the same. When some
of the optional braces are omitted, the compiler issues this
warning.

Turbo C++ User's Guide

Compile-time error Too few arguments in template class name template
A template class name was missing actual values for some of
its formal parameters.

Compile-time error Too few parameters in call
A call to a function with a prototype (via a function pointer)
had too few arguments. Prototypes require that all parameters
be given.

Compile-time error Too few parameters in call to function
A call to the named function (decla,red using a prototype) had
too few arguments.

Compile-time error Too many decimal points
The compiler encountered a floating-point constant with more
than one decimal point.

Compile-time error Too many default cases
The compiler encountered more than one default statement in a
single switch.

Compile-time error Too many error or warning messages
A maximum of 255 errors and warnings can be set before the;
compiler stops.

TUNK error Too many error or warning messages
The number of messages reported by the compiler has
exceeded its limit. This error indicates that TLINK reached its
limit.

Compile-time error Too many exponents
The compiler encountered more than one exponent in a
floating-point constant.

Compile-time error Too many initializers
The compiler encountered more initializers than were allowed
by the declaration being initialized.

Compile-time error Too many storage classes in declaration
A declaration may never have more than one storage class.

MAKE error Too many suffixes in .SUFFIXES list
You have exceeded the 255 allowable suffixes in the suffixes
list.

Compile-time error Too many types in declaration
A declaration may never have more than one of the basic types:
char, int, float, double, struct, union, enum, or typedef-name.

Appendix C, Error messages 703

a

704

Compile-time error Too much global data defined in file
The sum of the global data declarations exceeds 64K bytes.
Check the declarations for any array that may be too large.
Also consider reorganizing the program or using far variables
if all the declarations are needed.

Compile-time error Trying to derive a far class from the huge base base
If a class is declared (or defaults to) huge, all derived classes
must also be huge.

Compile-time error Trying to derive a far class from the near base base
If a class is declared (or defaults to) near, all derived classes
must also be near.

Compile-time error Trying to derive a huge class from the far base base
If a class is declared (or defaults to) far, all derived classes must
also be far.

Compile-time error Trying to derive a huge class from the near base base
If a class is declared (or defaults to) near, all derived classes
must also be near.

Compile-time error Trying to' derive a near class from the far base base
If a class is declared (or defaults to) far, all derived classes must
also be far.

Compile-time error Trying to derive a near class from the huge base base

Compile-time error

Compile-time error

Type mismatch family

'-

If a class is 'declared (or defaults to) hugh, all derived classes
must also be hugh.

Two consecutive dots
Because an ellipsis contains three dots (...), and a decimal point
or member selection operator uses one dot (.), there is no way
two consecutive dots can legally occur in a C program.

Two operands must evaluate to the same type
The types of the expressions on both sides of the colon in the
conditional expression operator (?:) must be the same, except
for the usual conversions like char to int or float to double, or
void* to a particular pointer. In this expression, the two sides
evaluate to different types that are not automatically
converted. This may be an error or you may merely need to
cast one side to the type of the other.

When compiling C++ programs, the following messages that
refer to this note are always preceded by another message that
explains the exact reason for the type mismatch; this is usually

Turbo C++ User's Guide

"Cannat canvert 'type1' to. 'type2"', but the mismatch may be
due to. many ather reasans.

Compile-time error Type mismatch in default argument value
Type mismatch in default value for parameter parameter

The default parameter value given cauld nat be canverted to.
the type af the parameter. The first message is used when the
parameter was nat given a name.

Compile-time error Type mismatch in param~ter number
The functian called, via a functian painter, was declared with a
pratatype; the given parameter number (caunting left to. right
fram 1) cauld nat be canverted to. the declared parameter type.
See the previaus nate an Type mismatch family.

Compile-time error Type mismatch in parameter number in call to function
Yaur saurce file declared the named functianwith a pratatype,
and the given parameter number (caunting left to. right fram 1)
cauld nat be canverted to. the declared parameter type. See the
previaus nate an Type mismatch family.

Compile-time error Type mismatch in parameter parameter
Y aur saurce file declared the functian called via a functian
painter with a pratatype, and the named parameter cauld nat
be 'canverted to. the declared parameter type. See the previaus
nate an Type mismatch family.

Compile-time error Type mismatch in parameter parameter in call to function
Y aur saurce file declared the named functian with a pratatype,
and the named parameter cauld nat be canverted to. the de­
clared parameter type. See entry far Type mismatch in
parameter parameter.

Compile-time error Type mismatch in parameter parameter in template class name
template

. Type mismatch in parameter number in template class name T
template

The actual template argument value supplied far the given
parameter did nat exactly match the farmal template
parameter type. See the previaus nate an Type mismatch
family.

Compile-time error Type mismatch in redeclaration of identifier
Yaur saurce file redeclared with a different type than was
ariginally declared. This can accur if a functian is called and
subsequently declared to. return samething ather than an

Appendix C, Error messages 705

integer. If this has happened, you must declare the function
before the first call to it.

Compile-time error Type name expected
One of these errors has occurred:

• In declaring a file-level variable or a struct field, neither a
type name nor a storage class was given.

• In declaring a typedef, no type for the name was supplied.

• In declaring a destructor for a c++ class, the destructor name
was not a type name (it must be the same name as its class).

• In supplying a C++ base class name, the name was not the
name of a class.

Compile-time error Type qualifier identifier must be a struct or class name
The C++ qualifier in the construction qual::identifier is not the
name of a struct or class.

Compile-time fatal error Unable to create output file filename
The work disk is full or write-protected or the output directory
does not exist. If the disk is full, try deleting unneeded files and
restarting the compilation. If the disk is write-protected, move
the source files to a writable disk and restart the compilation.

Compile-time error Unable to create turboc.$ln
The compiler cannot create the temporary file TURBOC.$LN
because it cannot access the disk or the disk is full.

MAKE fatal error Unable to execute command
A command failed to execute; this may be because the com­
mand file could not be found, it was misspelled, there was no
disk space left in the specified swap directory, swap directory
does not exist, or (less likely) because the command itself exists
but has been corrupted.

Compile-time error Unable to execute command command
TLINK or TASM cannot be found, or possibly the disk is bad.

TUNK fatal error and TUB error Unable to open file filename
unable to open filename

This occurs if the named file does not exist or is misspelled.

TUB error unable to open filename for output
TLIB cannot open the specified file for output. This is usually
due to lack of disk space for the target library, or a listing file.
Additionally this error will occur if the target file exists but is
marked as a read only file.

706 Turbo C++ User's Guide

Compile-time error Unable to open include file filename
The compiler could not find the named file. This could also be
caused if an #include file included itself, or if you do not have
FILES set in CONFIG.SYS on your root directory (try FILES=20).
Check whether the named file exists.

MAKE error Unable to open include file filename
The compiler could not find the named file. This could also be
caused if an !include file included itself, or if you do not have
FILES set in CONFIG.5YS on your root directory (try FILES=20).
Check whether the named file exists.

Compile-time error Unable to open input file filename
This error occurs if the source file cannot be found. Check the
spelling of the name and whether the file is on the proper disk
or directory.

Command line fatal error unable to open 'dpmimem.dll'
Make sure that DPMIMEM.DLL is somewhere on your path or
in the same directory as the protected mode command line tool
you were attempting to use.

MAKE fatal error Unable to open makefile
The current directory does not contain a file named
MAKE FILE, MAKEFILE.MAK, or does not contain the file you
·specified with:f.

MAKE fatal error Unable to redirect input or output
MAKE was unable to open the temporary files necessary to
redirect input or output. If you are on a network, make sure
you have rights to the current directory.

TUB error unable to rename filename to filename
TLIB builds a library into a temporary file and then renames
the temporary file to the target library file name. If there is an
error, usually due to lack of disk space, this message will be
posted.

Compile-time error Undefined label identifier
The named label has a goto in the function, but no label
definition.

Compile-time warning Undefined structure identifier

Appendix C, Error messages

The named structure was used in the source file, probably on a
pointer to a structure, but had no definition in the source file.
This is probably caused by a misspelled structure name or a
missing declaration.

701

Compile-time error Undefined structure structure
Your source file used the named structure on some line before
where the error is indicated (probably on a pointer to a struc­
ture) but had no definition for the structure. This is probably
caused by a misspelled structure name or a missing
declaration.

Compile-time error Undefined symbol identifier
. The named identifier has no declaration. This could be caused
by a misspelling either at this point or at the declaration. This
could also be caused if there was an error in the declaration of
the identifier.

TUNK error Undefined symbol symbol in module module
The named symbol is referenced in the given module but is not
defined anywhere in the set of object files and libraries
included in the link. Check to make sure the symbol is spelled
correctly.

You will usually see this error from TLINK for Turbo C++
symbols if you did not properly match a symbol's declarations
of pascal and cdecl type in different source files, or if you have
omitted the name of an .OBJ file your program needs. If you
are linking C++ code with C modules, you might have
forgotten to wrap C external declarations in extern II C II { ••• }.

You might have a case mismatch between two symbols. See the
/ C and / C s\Alitches.

Compile-time error Unexpected}
An e;<tra right brace was encountered where none was ex­
pected. Check for a missing {.

TUB error Unexpected char X in command line
TLIB encountered a syntactical error while parsing the
command line.

MAKE error Unexpected end of file
The end of the make file was reached without a temporary
inline file having been closed.

Compile-time error Unexpected end of file in comment started on line number
The source file ended in the middle of a comment. This is nor­
mally caused by a missing close of comment (* j).

708 Turbo C++ User's Guide

MAKE or compile-time error

Compile-time error

Compile-time error

Compile-time error

Compile-time error

Compile-time warning

See BASM.DOC for more on
opcode spelling.

TUB warning

Compile-time error

Appendix C, Error messages

Unexpected end of file in conditional started on line line number
The source file ended before the compiler (or MAKE)
encountered an !endif. The !endif was either missing or
misspelled.

union cannot be a base type
A union cannot be used as a base type for another class type.

union cannot have a base type
A union cannot be derived from any other class.

Union member member is of type class with constructor
Union member member is of type class with destructor
Union member member is of type class with operator=

A union may not contain members that are of type class
with user-defined constructors, destructors, or operator=.

unions cannot have virtual member functions
A union may not have virtual functions as its members.

Unknown assembler instruction
The compiler encountered an inline assembly statement
with a disallowed opcode. Check the spelling of the opcode.
This warning is off by default.

unknown command line switch X ignored
A forward slash character (/) was encountered on the
command line or in a response file without being followed
by one of the allowed options.

Unknown language, ·must be C or C++
In the C++ construction

extern "name" type func (/* ... * /) i

The name given in quotes must be "c" or "C++"; other
language names are not recognized. For example, you can
declare an external Pascal function without the compiler's
renaming like this:

extern "e" intpascal func(/* ... */ li

A C++ (possibly overloaded) function may be declared
Pascal and allow the usual compiler renaming (to allow
overloading) like this:

extern int pascal func(/* ... */) i

709

I

TUNK fatal error Unknown option .
A forward slash character (/), hyphen (-), or DOS switch
character was encountered on the command line or ill a
response file without being followed by one of the allowed
options. This might mean that you used the wrong case to
specify an option.

Compile-time error Unknown preprocessor directive: identifier
The compiler encountered a # character at the beginning of a
line, and the name following was not a legal directive name, or
the rest of the directive was not well-formed.

MAKE error Unknown preprocessor statement
A ! character was encountered at the beginning of a line, and
the statement name following was not error, undef, if, elif,
include, else, or end if.

Compile-time warning Unreachable code
A break, continue, goto or return statement was not followed
by a label or the end of a loop or function. The compiler checks
while, do and for loops with a constant test condition, and
attempts to recognize loops which cannot fall through.

Compile-time error Unterminated string or character constant
The compiler found no terminating quote after the beginning
of a string or character constant

Compile-time error Use. or -> to cal! function
You tried to call a member function without giving an object

Compile-time error Use. or -> to call member, or & to take its address
A reference toa non-static class member without an object was
encountered. Such a member may not be used without an
object, or its address must be taken using the & operator.

Compile-time error Use:: to take the address of a member function
If f is a member function of class c, you take its address with
the syntax &c::f. Note the use of the class type name, not the
name of an object, and the :: separating the class name from the
function name. (Member function pointers are not true pointer
types, and do not refer to any particular instance of a class.)

TUB warning use Ie with TLiNK to obtain debug information from library
The library was built with an extended dictionary and also
includes debugging information. TLINK will not extract
debugging information if it links using an extended dictionary,
so in order to obtain debugging information in an executable

710 Turbo C++ User's Guide

from this library, the linker must be told to ignore the extended
dictionary using the / e switch. NOTE: The IDE linker does
NOT support extended dictionaries therefore no settings need
be altered in the IDE.

MAKE error Use of : and :: dependants for target target
You have tried to use the target in both single and multiple
description blocks (using both the: and :: operators).
Examples:

filea: fileb
filea:: filec

Compile-time warning Use qualified name to access nested type type
In older versions of the C++ specification, typedef and tag
names declared inside classes were directly visible in the global
scope. With the latest specification of C++, these names must
be prefixed with a class:: qualifier if they are to be used
outside of their class' scope. To allow older code to compile,
whenever such a name is uniquely defined in one single class,
Turbo C++ will allow its usage without class:: and issues this
warning.

TUNK or compile-time error User break
You pressed Ctrl-Breakwhile compiling or linking in the IDE,
aborting the process. (This is not an error, just a confirmation.)

DPMI server fatal error v86 task without vcpi
Another application is running, preventing the DPMI server
from switching to protected mode. Remove the interfering
application, such as.a desktop manager or debugger, then
reboot.

Compile-time error Value of type void is not allowed
A value of type void is really not a value at all, and thus may
not appear in any context where an actual value is required.
Such contexts include the right side of an assignment, an argu- U
ment of a function, and the controlling expression of an if, for,
or while statement.

Compile-time error Variable variable has been optimized.
You have tried to inspect, watch, or otherwise access a variable
which the optimizer removed. This variable is never assigned a
value and has no stack location.

Appendix C, Error messages 711

712

Compile-time error Variable identifier is initialized more than once
This variable has more than one initialization. It is legal to
declare a file level variable more than once, but it may have
only one initjalization (even if two are the same).

Compile-time error 'virtual' can only be used with member functions
A data member has been declared with the virtual specifier;
only member functions may be declared virtual.

Compile-time error Virtual function function1 conflicts with base class base
A virtual function"has the same argument types as one in a
base class, but a different return type. This is illegaL

Compile-time error virtual specified more than once
The C++ reserved word virtual may appear only once in a
member function declaration.

Compile-time error void & is not a valid type
A reference always refers to an object, but an object cannot
have the type void. Thus the type void is not allowed.

Compile-time warning Void functions may not return a value
Your source file declared the current function as returning
void, but the compiler encountered a return statement with a
value. The value of the return statement will be ignored.

Compile-time error function was previously declared with the language language
Only one language can be used with extern for a given
function. This function has been declared with different
languages in different IO,cations in the same module.

Compile-time error While statement missing (
In a while statement, the compiler found no left parenthesis
after the while keyword.

Compile-time error While statement missing)
In a while statement, the compiler found no right parenthesis
after the test expression.

TUNK fatal error Write failed, disk full?
This occurs if TLINK could not write all of the data it
attempted to write. This is almost certainly caused by the disk
being full.

Compile-time error Wrong number of arguments in call of macro macro
Your source file called the named macro with an incorrect
number of arguments.

Turbo C++ User's Guide

N

\"
escape sequence (display double quote) 359

\'
escape sequence (display single quote) 359

\? .

(display question mark) 59
escape sequence (display question mark) 359 .

\\
(display backslash) 59
escape sequence (display backslash
character) 359

/* * / (comments) 351
/** / (token pasting) 351
$** (all dependents macro) 321
\", (display double quote) 59
\', (display single quote) 59
$? (all out of date dependents macro) 321
$* (base file name macro) 319

. »(chevron) in dialog boxes 32
/ / (comments) 128, 200, 352
== (equal to operator) 73
$. (file name and extension macro) 320
$& (file name only macro) 320
$: (file name path macro) 320
$< (full file name macro) 319
$@ (full name with path macro) 320
>= (greater than or equal to operator) 73
++ (incrementoperator) 63
<= (less than or equal to operator) 73
&& (logical AND operator) 74
I I (logical OR operator) 74
-? MAKE help option 300
!= (not equal to operator) 73
--operator

decrement 425, 428
? : operator .

conditional expression 426, 438
:: (scope resolution operator) 136, 138, 158,

205,426,452

Index

D E x

-1 Tee (extended 80186 instructions) See also
80186 processor, generating extended
instructions

-2 Tee option (80286 instructions) 275
-1 Tee option (extended 80186 instructions)

275
/3 TLINK option (32-bit code) 338
& (ampersand) MAKE command (multiple

dependents) 305
.* and ->* operators (dereference pointers) 426,

440
= (assignment operator) 63
32-bit code 338·
87 environment variable 599
\ (escape sequence character) 58
/\ (exclusive OR operator) 64
; (for empty loops) 83, 203
> (greater than operator) 73
- (hyphen) MAKE command (ignore exit status)

305
: (labeled statement) 367
< (less than operator) 73
(MAKE comment character) 304
% (modulus) 61
! (NOT operator) 74
!= operator

huge pointer comparison and 578
not equal to 426, 436

&& operator
logical AND 425, 437
MAKE 305, 306

++ operator
increment 425, 427, 428

« operator
MAKE 305
overloading See overloaded operators
put to See overloaded operators,« (put to)
shift bits left 64, 425, 433

713

<= operator
less . than or equal to 426, 434

== operator
equal to 435
huge pointer comparison and 578

>= operator
greater than or equal to 426, 434

» operator
get from See overloaded operators,» (get
from)
MAKE 305
overloading See overloaded operators
shift bits right 64, 425, 433

I I operator
logical OR 425, 437

-> operator (selection) 426
overloading 485
structure member access 411, 427
union member access 427

I (OR operator) 64
* (pointer declarator) 367
- - (decrement operator) 63
; (Semi-colon)

null statement 366
; (semi-colon)

null statement 442
statement terminator 366, 442

\ (string continuation character) 363
##symbol

overloading and 480
preprocessor directives 424
token pasting 351, 507

= (System) menu 23
$ editor macros See individual names of macros
@ MAKE command 305
! operator

logical negation 425, 430
% operator

modulus 425, 431
remainder 425r 431

& operator
address 425, 429
AND 64
bitwise AND 425, 436

truth table 436
position in reference declarations 383, 450

714

* operator
fudirection 425, 429

pointers and 402
multiplication 425, 431

+ operator
addition 425, 432
overloading See overloaded operators,
addition (+)
unary plus 425, 430

, operator
evaluation 426, 440
function argument lists and 366

- operator
subtraction 425, 432
unary minus 425, 430

/ operator
division 425, 431

rounding 432
< operator

less than 426, 434
= operator

assignment 425, 439
compound 439
overloading 484

equal to 426
initializer 368

> operator
greater than 426, 434

A operator
bitwise XOR 425, 436

truth table 436
I operator

bitwise inclusive OR 425, 437
truth table 436

~ operator
1 's complement 64
bitwise complement 425, 430
destructors 174

. operator (selection) 426
structure member access 411, 427

l's complement See operators, l's complement
l's complement (~) 425,430
symbol

conditional compilation and 510
converting strings and 508
null directive 503
overloading and 480 '

Turbo C++ User's Guide

preprocessor directives 368,424, 502
symbol (directives) 46'
80x87 coprocessors See numeric coprocessors
80x86 processors
, 32-bit code 338

address segment:offset notation 575
instructions 275

extended 275
registers 572-574

~ (arrows) in dialog boxes 31
_OvrInitEms (function) 594
_OvrInitExt (function) 595

A
\a (audible bell) 59
-a command-line option (word alignment) 413
\a escape sequence (audible bell) 359
-a MAKE option (autodependency check) 300,

312
-a TCC option (align integers) 275
-A TCC option (ANSI keywords) 281,521
abort (function)

destructors and 478
abstract classes 530, See also classes, abstract
ACBP field 341
access

classes 129, 464-466
structures vs. 141

data members and member functions 129,
140, 187, 204, 462

friend classes 465
friend functions 463
functions and variables 113, 138
information hiding and 140
inheritance and 146
overriding 463
structure members 411, 427, 463
structures, classes vs. 141
unions, members 427, 463

accounting applications 602
action symbols See TLIB (librarian)
activating, menu bar 23
active page

defined 620
setting 619

active window See windows, active
adapters, video See video adapters

Index

Add Item command 253
Add Watch command

hot key 27
addition operator (+) 425, 432
address operator (&) 425,429
addresses, memory See memory addresses
adjustfield, ios data member 547
aggregate data types See data types
alert (\a) 59, 359
algorithms

#include directive 509
aliases See referencing and dereferencing
alignment

attribute 341
integers 275
word 413

alloc.h (header file)
malloc.h and 567

allocate, streambuf member function 556
allocation, memory See memory, allocation
American National Standards Institute See

ANSI
ampersand (&) MAKE command (multiple

dependents) 305
ancestors See classes, base
AND operator (&) 64,425,436

truth table 436
AND operator (&&) 425, 437
angle brackets 509
anonymous unions

member functions and 416
ANSI

Turbo C++ keywords and 281
C standard 3
compatible code 281
floating point conversion rules 277
keywords 353

option 281
predefined macro 521

violations 282
app, ios data member 548
argc (argument to main) 523
ARGS.EXE 524
argsused pragma 515
arguments 48, See also parameters

actual
calling sequence 408

715

command line, passing to main 523·
wildcards and 525

command-line compiler 265
constructors 139
conversions 408
converting to strings 508
default 139, 180

C++ 203
constructors and 183,468,470

to #define directive 506
function calls and 408
functions and 90
functions taking none 406
matching number of 409
mode 195
passing, C-language style 392
passing in C++ 165
type checking 405
variable list 278
variable number of 367

Pascal and 394
Arguments command 250
argv (argument to main) 523
arithmetic

operations 60
combining with assignment operator 63

pointers 116
arithmetic types 384
arrays 403

of classes
initializing 454

constructors for
order of calling 473

declaring and initializing 104, 106
delete operator and 454
elements 105

comparing 434
evaluating 232

number of values 233
indeterminate 403

structures and 404
indexes 119
initialization 387, 388
inspecting 230
multidimensional 106, 403
new operator and 173, 453
passing to functions 220

716

range errors 106
sizeof and 431
strings and 108
subscripts 365, 426

overloading 484
arrows (~s) in dialog boxes 31
ASCII codes

characters 69
asm (keyword)

how to use 441
.ASM files See assembly language
asm statement

inline pragma and -B TCC option and 517
aspect ratio

determining current 627
setting 619

assembly language
assembling from the command line 265
built-in assembler See The online document
UTIL.DOC
compiling 285
default assembler 286
directory 291
huge functions and 396, 518
inline

floating point in 600
inline pragma and 517
option (-B) 517

inline routines 285
options 287 .
output files 286
projects and 258
routines

overlays and 593
statement syntax 441

assembly level debugger See Turbo Debugger
assignment operator (=) 425,439

compound 439
overloading 484

assignments
assignment operator (=)

combining with other operators 63
combination 57
defined 56
multiple 57

associativity 422, See also precedence
expressions 420

Turbo C++ User's Guide

rules 67
table 68

asterisk (*) 367
-AT TCC option (Turbo c++ keywords) 281
ate, ios data member 548
atexit (function)

destructors and 477
attach

filebuf member function 544
fstreambase member function 546

attributes
ACBP 341
alignment 341
big 341
cell

blink 613
colors 612

combining 341
control functions 609
screen cells 605, 612

-AU option (UNIX keywords) 281
audible bell (\a) 59
auto (keyword) 389

class members and 457
external declarations and 380
register keyword and 374

auto variables See variables, automatic
.autodepend MAKE directive 323
autodependencies See automatic dependencies
autoindent mode 631, 633
automatic dependencies

checking 257
MAKE (program manager) 300, 312

information
disabling 279

MAKE option 323
automatic objects 374, See also objects,

automatic
automatic variables See variables, automatic
auxiliary carry flag 574
AX register 573

B
\b (backspace character) 59,359
-b command-line option (enumerations) 417
-B MAKE option (build all) 300

Index

-b TCC option (allocate whole word for enums)
275

-B TCC option (inline assembler code)
inline pragma and 517

-B TCC option (process inline assembler code)
285

background color See graphics, colors,
background

backslash character (\ \) 359
hexadecimal and octal numbers and 358
line continuation 508

, printing 59
backspace character (\b) 59,359
Backward compatibility options 292
bad, ios member function 549
bad (member function) 195
banker's rounding 604
bar See run bar
bar, title 28
base, streambuf member function 556
base address register 573
base classes See classes, base
base file name macro (MAKE) 319
_based (keyword) 568
basefield, ios data member 547
BASM (built-in assembler) See The online

document BASM.DOC
batch files, MAKE 307
BBS segment See also segments
BCD 602

converting 603
number of decimal digits 603
range 603
rounding errors and 603

beep 59
bell (\a) 59, 359
BGI See Borland Graphics Interface (BGI)
BGIOBJ (graphics coriverter) See also The online

document UTIL.DOC
initgraph function and 617

BIDS See The online document CLASSLIB.DOC
big attribute 341
binary, ios data member 548
binary coded decimal See BCD
binary files

opening 123
binary numbers 50

717

binary operators See operators
binding See C++, binding
BIOS

video output and 613
bit fields

hardware registers and 415
integer 415
portable code and 415
structures and 414
unions and 417

bit images
functions for 61·9

bit-mapped fonts See fonts
bitalloc, ios member function 549
bits

blink enable 609
color 609
manipulating 64
shifting 425, 433

bitwise
AND operator (&) 425, 436

truth table 436
complement operator (~) 425, 430
OR operator (I) 425, 437

truth table 436
XOR operator (1\) 425, 436

truth table 436
bIen, streambuf member function 556
blink enable bit 609
block

copy 630, 632
Borland-style 633

cut 632
delete 630, 632
extending 630 .
hide and show 630

Borland-style 633
indent 630
move 630, 632

Borland-style 633
print 630
read from disk 630, 632
scope 372
set beginning of 630

Borland-style 633
set end of 630

Borland-style 633

718

statements 441
unindent 630
write to disk 630, 632

block commands 631
block operations (editor) See editing, block

operations
blocks, text See editing, block operations
Boolean data type 134, 443
Borland

contacting 7
Borland C++ See also C++; integrated

environment
Borland Graphics Interface (BGI) See also

graphics
EGA palettes and See Enhanced Graphics
Adapter (EGA), pallette, IDE option (lp)
files

calling 91
using 91

Turbo C++
extensions 353

Turbo C++
keywords

as identifiers 281
boundary conditions 244
boxes See check boxes; dialog boxes; list boxes
bp, ios data member 547
BP register 573

overlays and 593
braces 365
brackets 365, 426

overloading 484
branching See if statements; switch statements
Break Make On

Make dialog box 255
break statements 84,446

loops and 446
breakpoints See watch expressions
buffers

C++ streams and 543, 545
file 195
overlays

default size 592
bugs 217
build

IDE option (lb) 20
BUILTINS.MAK 301

Turbo C++ User's Guide

buttons
choosing 31
in dialog boxes 31
radio 31

BX register 573

c
C++ 199-215,449-490, See also C language;

Turbo C++
arguments 180, 203

passing 165
binding

early vs.late 161
late 132, 160, 214, See also member
functions, virtual

example 164
C code and 520
classes See classes
comments 128, 200, 352
compiling 142
compiling files as 286
complex numbers See complex numbers
constants 202, See constants
constructors See also constructors

conbuf 541
constream 543
filebuf 543
fstream 545
fstreambase 545, 546
ifstream 537, 546
ios 547
iostream 551
iostream_withassign 551
istream 551
istream_ withassign 553
istrstream 553
of stream 537, 553, 554
of stream_ withassign 555
ostrstream 555
streambuf 556
strstream 560
strstreambase 558
strstreambuf 559

conversions See conversions, C++
data members See data members
declarations 203, See also declarations
#define and 202

Index

destructors See destructors
dynamic objects See objects
encapsulation 127

defined 126
enumerations See enumerations
examples

dictionary 204
file buffers 195
file operations See files
fill characters 534
floating-point precision 534
for loops See loops, for, C++
formatting See formatting
Fourier transforms example 601
functions See also member functions

C functions and 376
default arguments for 180
friend 187, 188,457

access 463
declaring 208, See C++, functions

inherited 158
inline 143, 179, 202, See also functions

classes and 204
command-line option (-vi) 279
debugging and 279
header files and 144
virtual tables and 287, 289

name mangling and 376
one line 202
overloading See overloaded functions
pointers to 399
taking no arguments 406
virtual 214, 485
virtual keyword and 163

graphics classes 133
header files 148, 200
hierarchies See classes
I/O 189

flushing cout 201
formatting 193
performing 200

inheritance See inheritance
initialization 206
initializers 389
inline functions See C++ / functions, inline
I/O

disk 193

719

formatting 191
put and write functions and 192

iterators See The online document
CLASSLIB.DOC

keywords 353
member functions See member functions
members See also data members; member

functions
initialization list 159

name spaces 413
objects

declaring 135
operators See operators, C++; overloaded

operators
output See output, C++
parameters See parameters
polymorphism See polymorphism
programs

compiling 142
referencing and de referencing See

referencing and dereferencing
scope See scope
Small talk vs. 127
streams See streams, C++
strings

concatenating 184
structures See structures
templates

generating 290
this

nonstatic member functions and 457
static member functions and 459

Turbo C++ implementation 3
tutorial 199-215
types

reference See reference types
unions See unions
variables

declaring anywhere 202
virtual tables See virtual tables
visibility See visibility
warnings 283

-c TCC option (compile but don't link) 285
-C TCC option (nested comments) 281
Ic TLINK option (case sensitivity) 338
COFx.OBJ 335

720

C language See also C++
argument passing 392
Turbo C++ and 278
C++ code and 520
calling conventions 519, 521

COx.OBJ 335
Call Stack

window 240
Call Stack command

hot key 27
calling conventions See parameters, passing;

Pascal
calling sequence, functions 240
calls

far, functions using 396
near, functions using 396

Cancel button 31
carriage return character 359
carriage return character (\ r) 59
carry flag 574
case

preserving 394
sensitivity

forcing 392
global variables and 392
identifiers and 354
pascal identifiers and 355

statements See switch statements
case sensitivity 58

TLINK and 338
case statements See switch statements
cast expressions

syntax 429
__ CDECL __ macro 519
cdecl (keyword) 392, 394

function modifiers and 396
_cdecl (kenvord)

Microsoft C 569
cdecl statement 278
cells, screen See screens, cells
cerr (C++ stream) 189
cerr, functions of 122
.CFG files See configuration files
characters

ASCII 69
blinking 613
carriage return (\r) 59

Turbo C++ User's Guide

char data type See data types, char
colors 612,613
constants See constants, character
control

IDE and 32
data type char See data types, char
delete 630
displaying 71
escape sequence 58
fill

setting 534
formfeed (\f) 59
getch function and 70
getche function and 70
in screen cells 605
intensity

setting 609
newline (\n) 59

inserting 534
nonprinting

Inspector window and 230
null

defined 71
strings and 108

printable 59
putch and 71
reading

from keyboard 69
set of 69
special, displaying 59
storage 69
strings and 72
tab (\t) 59
unsigned char data type

range 52, 363
whitespace

extracting 534
charts See graphics, charts
check boxes 32
chevron symbol (») 32
.CHR files See fonts, files
cin (C++ stream) 189

functions of 122
introduced 46
using 201

circles
roundness of 619

Index

,CL options
command-line compiler options and 563

class (keyword) 204
class arguments

passing by value 292
classes 455-468, See also C++.; individual class

names; inheritance; structures
abstract 487, 530
access 208, 464-466

default 464
qualified names and 465
structures vs. 141

arrays of
initialization 454

auto keyword and 457
base 145, 209

calling constructor from derived class 475
constructors 476
defined 131
pointers to, destructors and 478
private, friend keyword and 465
protected keyword and 464
unions and 464
virtual 466

constructors and 473
class keyword 204
class names and 456
constructors 137

arguments 139
defining 139
inline 139
naming 139

container See The online document
CLASSLIB.DOC

data types and 382
declarations

incomplete 456
defined 128
derived 145, 209

base class access and 464
calling base class constructor from 475
constructors 476
creating 147,211
defined 131

deriving 151
destructors 138
extern keyword and 457

721

friend fuhctions and 188, 208
friends 466-468

access 465
graphics 133
hierarchies

common attributes in 166
ios family 531
streambuf530

initialization See initialization, classes
initializing automatically 137
inline keyword and 204
instantiation and 128
istream, ostream, and iostream 189
libraries 148
member functions See member functions
members

access 204
private, accessing 208

members, defined 457
naming See identifiers
objects 455,457

initialization See initialization, classes
overloaded operators and 190
projects and 148
register keyword and 457
relative position 197
scope See scope, classes
sharing objects 288
sizeof operator and 431
streambuf 189
streams and 529

files 529
formatted 1/ 0 530
memory buffers 529, 530
strings 529

structures vs. 129
syntax 455
TUB and 148
unions and 417

_clear87 (function)
floating point exceptions and 600

clear (function)
C++ stream errors and 195

clear (function), ios member function 549
Clear command 632

hot key 26

722

Clipboard 631
copy to 630
cut to 630
paste from 630, 632

clipping, defined 621
clog (C++ stream) 189

functions of 122
close

filebuf member function 544
fstreambase member function 546

close boxes 28
Close command

hot key 26
clreol, conbuf member function 541
clrscr

conbuf member function 541
constream member function 543

code-generation
command-line compiler options 275

Code Generation dialog box 413
code models See memory models
code segment 574

group 285
naming and renaming 284
storing virtual tables in 288

colons 367
Color I Graphics Adapter (CGA) See also

graphics; graphics drivers; video adapters
background and foreground colors 624
color pqlettes 623, 624
resolution 623

high 624
colors See graphics, colors

changing IDE text 37
colors and palettes

EGA See Enhanced Graphics Adapter (EGA),
palette, IDE option Up)

columns
numbers 28

.COMfiles
generating 335

TUNK343
limitations 343
memory models and 578
size 343

combination assignments 57
combining attribute 341

Turbo C++ User's Guide

COMDEFs
generating 275, 567

comma
operator 426, 440
separator 366

command line, options See command-line
compiler, options

command-line compiler 266
arguments 265
compiling and linking with 265
configuration files See configuration files
directives See directives
INCLUDE environment variable and 562
LIB environment variable and 562
MAKE and 323
nested comments 352
options 267, 272

-1 (80186 instructions) 275
-2 (80286 instructions) 275
-A and -AT (Turbo C++ keywords) 281
-b

enumerations 417
-H (precompiled headers) 286
-0 (jump optimization) 280
-p (C++ and C compilation) 286
-x (disable auto dependency information)
279 .
-y

overlays 279
-Yo (overlays) 279
-a (align integers) 275
-AK (Kernighan and Ritchie keywords)
281
alignment (-a) 413
allocate whole word for enum (-b) 275
ANSI

compatible code 281
keywords (±A) 521
keywords (-A) 281
violations 282

assembler
code 285, 286, 287
to use (-E) 286

assume DS = SS (-Fs) 276
-AU (UNIX keywords) 281
autodependency information (-X) 279

Index

-b
allocate whole word for enums 275

-B (inline assembler code)
inline pragma and 517

-B (process inline assembler) 285
Turbo C++ keywords (-A- and -AT) 281
C++ and C compilation (-P) 286
C++ inline functions (-vi) 279
-c (compile and assemble) 285
-C (nested comments) 281
changing from within programs 517
CL options versus 563
code-generation 275
code segment

class name 284
group 285

.COM file names (-tDc) 291
comments, nesting (-C) 281
compatibility 565
compilation control 285
compile and assemble (-c) 285
compile C++ (-P) 142
configuration files and 267
-D (macro definitions) 274
-d (merge literal strings) 275
data segment

class name 285
group 284, 285
name 284, 285, 584

debugging information (±v) 278, 340
define identifiers (-D) 505
#defines 274

ganging 274
directory (-n) 291
-E (assembler to use) 286
-e (EXE program name) 290
emulate 80x87 (-f) 276
enable -F options (-Fm) 276
enumerations (-b) 417
environment 291
error reporting 282
.EXE file names 290, 291
expanded memory 287
extended 80186 instructions (-1) 275
-f287 (inline 80x87 code) 277
-f87 (inline 80x87 code) 277
-f (emulate 80x87) 276

723

724

far global variables (-Ff) 276
far objects (-zE,-zF, and -zH) 284,285,
584
far virtual table segment

class name 285
fast floating point (-ff) 276
fast huge pointers (-h) 277
-Fc (generate COMDEFs) 275
-Ff (far global variables) 276
floating point

code generation (-f87) 598'
emulation (-f) 598
fast (-ff) 598

-Fm (enable -F options) 276
frequent errors 283
Fs (assume D5 = 55) 276
functions, void 282
-G (speed optimization) 279
generate COMDEFs (-Fc) 275
generate underscores (-u) 278
gn (stop on n warnings) 282
-h (fast huge pointers) 277
identifiers, length (-i) 281
include files 294

directory (-I) 267,291
inline 80x87 code (-f87) 277
inline assembler code (±B)

inHne pragma and 517
integer alignment (-a) 275
-jn (stop on n errors) 282
jump optimization (-0) 280
-k (standard stack frame) 277
-K (unsigned characters) 277
Kernighan and Ritchie keywords (-AK)
281
-1 (linker options) 291
-L (object code and ~ibrary directory) 267,
291
libraries 294

directory (-L) 267, 291
line numbers (-y) 279
link map (-M) 291
linker (-1) 290, 291
-M (link map) 291
macro definitions (-D) 274
member pointers (-V and -Vn) 289
memory model (-mx) 273

merge literal strings (-d) 275
-n (.OBJ and .A5M directory) 291
-N (stack overflow logic) 278
nested comments (-C) 281
object code and library directory (-L) 267,'
291
object files (-0) 286
order of evaluation 272

response files and 271
overlays (-Y) 279, 521, 592
overlays (-Yo) 279, 590
-P (compile C++) 142
Pascal

calling conventions (-p) 394,395,519,
521
conventions (-p) 278
identifiers 278

pass options to assembler (-Tstring) 287
pointer conversion, suspicious 282
portability warnings 283
pragmas for 517
precedence 272

response files and 271
rules 267

precompi~ed headers (-H) 286
process inline assembler (-B) 285
prod~ce .A5M but don't assemble (-5) 286
-Q (expanded memory) 287
-rd (register variables) 280
register variables 280
remove assembler options (-T -) 287
-S (produce .A5M but don't ass~mble) 286
segment-naming control 284
speed optimization (-G) 279
stack overflow error message (-N) 278
standard stack frame (-k) 2,77
stop on n errors(-jn) 282
stop on n warnings (-gn) 282
structures and 282
symbolic debugger 279
syntax 270
-T- (remove assembler options) 287
-Tstring (pass options to assembler) 287
template (-Jg) 290
toggling 267
undefine (-U) 505
undefine (-U) 274

Turbo C++ User's Guide

underscores (-u) 278
UNIX keywords (-AU) 281
using 266
-v (debugging information) 278, 340
-vi (C++ inline functions) 279
virtual tables (-V and -Vn) 287
warnings (-wxxx) 282-284
word alignment (-a) 413
-y

overlays 521, 592
-c-y (line numbers) 279
-zV (far virtual table segments) 285
-zX (code and data segments) 284, 285,
584

Pascal calling conventions, option (-p) 527
response files 271 .
syntax 266
TLINK and 337
Turbo Assembler and 270
using 266

command-line options
IDE 20

command sets
CUA and Alternate 24
Native option 27

commands See also individual command
names; command-line compiler
choosing 23, 24
editor

block operations 630, 631-632
cursor movement 629
insert and del~te 630

printing
MAKE option 323

commas
nested

macros and 507
comments 351

/ / 128, 200, 352
/**/351
as whitespace 350, 352
in makefiles 304
nested 281,351
token pasting and 351

Common User Access (CUA) command set 24
communal variables 275
__ COMPACT __ macro 519

Index

compact memory model See memory models
compatibility

command-line options 565
initialization modules 335
MAKE 300
with Microsoft C561-569

compilation 273, See also compiler
command-line compiler options 285
conditional ,

symbol and 510
rules governing 270
speeding up 516, 517

Compile command
hot key 27

compiler
diagnostic messages 640-712

compiler directives See directives
compiling See compiler; compilation
complement

bitwise 425, 430
complex declarations See declarations
complex.h (header file)

complex numbers and 601
complex numbers

«and» operators and 601
C++ operator overloading and 601
example 601
header file 601
using 601

component selection See operators, selection
(. and -»

compound assignment operators 439
conbuf (class) 541
concatenating strings See strings, concatenating
conditional breakpoints See watch expressions
conditional compilation

symbol and 510
__ cplusplus macro and 520

conditional execution directives (MAKE) 325
expressions in 327

conditional operator (? :) 438
conditions, boundary 244
configuration files 33

command-line compiler 267, 271
creating 272
overriding 267, 271, 272
priority rules 272

725

contents of 33
IDE 33-35

TCCONFIG.TC 33
conio.h (header file)

console control and 607
, constream and 539
console

I/O
functions 607

console, 1/0
example program 220

Console stream manipulators 539, 540
const (keyword) 102,391

C++ and 391
formal parameters and 408
pointers and 391,401

constant expressions 364
constants 102,355,391, See also numbers

Turbo C++ 359
C++ 202, 391
case statement

duplicate 444
character 356, 358

extending 359
integer and 386
two-character 359
wide 360

data types 357
decimal 355, 356

data types 357
suffixes 357

enumerations See enumerations
expressions See constant expressions
floating point 356, 360, 361
fractional 356
hexadecimal 356, 357

too large 282
integer 355, 356
internal representations of 363
manifest 519, See also macros
manifest or symbolic See macros
octal 356

too large 282
pointers and 401
string See strings, literal
suffixes and 357

726

symbolic See macros
syntax 356
ULONG_MAX and UINT_MAX 433

constants used by function setf 547
constrea.h 539, 541
constream (class) 543
constructors 137,211,468-474, See also C++,

constructors; initialization
accepting default arguments 183
arguments 139
arrays

order of calling 473
base class

calling
from derived class 475
order 476

calling 469
calling with no arguments 183
class initialization and 474
classes

base 150
derived 150
virtual base 473

copy 471
class object initialization and 474

default 150
default arguments and 468, 470
defauit parameters 471
defaults 470
defining 139
delete operator and 469
derived class

order of calling 476
inheritance and 468
inline 139, 144
invoking 469
naming 139
new operator and 138, 469
non-inline

placement of 476
order of calling 472

example 159
overloaded 472
unions and 469
virtual 468

consumer (streams) 529

Turbo C++ User's Guide

Contents command
hot key 26

continue statements 84,447
loops and 447

continuing lines 350, 363, 508
_contro187 (function)

floating point exceptions and 600
control character

insert 631
control characters

entering in IDE 32
control lines See directives
conventions

typographic 6
conversion specifications See format specifiers
conversions 385 '

argument See arguments, conversions
arguments to strings 508
arrays 404
BCD 603
C++ 534

setting base for 534
character

integers and 386
decimal 534
floating point

ANSI rules 277
hexadecimal 534
integers

character and 386
octal 534
pointers 403

suspicious 282
rules 61
sign extension and 386
special 386
specifications See format specifiers
standard 386
table 62

coordinates
origin 607
returning 610
starting positions 606, 610

coprocessors See numeric coprocessors
copy and paste See editing, copy and paste
copy block

Borland-style 633

Index

Copy command
hot key 26

copy constructors See constructors, copy
copy protection 13
copy to Clipboard 630
coupling

loose 242
cout (C++ stream) 189

flushing 201
functions of 122
introduced 46

cout.precision 47 .
_ ~cplusplus macro 520
CPP (preprocessor) See The online document

UTIL.DOC
.CPP files See C +-+:
CPP.EXE (preprocessor) 501
cprn, functions of 122
CPU (central processing unit) See 80x86

processors
creating new files See files
cross-reference

IDE 37
_cs (keyword) 392, 582
CS register 574, 576
CUA command set 24
cursor See also editing

changing 610
control

header file 607
manipulating onscreen 608
position

setting 608
Cursor through tabs 631, 633
customer assistance 7
Cut command

hot key 26
cut to Clipboard 630
CWx.LIB 336
Cx.LIB 336
CX register 573

D
\D escape sequence (display a string of octal

digits) 359
$d MAKE macro (defined test) 318

expressions and 328

727

-D MAKE option (define identifier) 300,316
-D TCC option 505
-D TCC option (macro definitions) 274
-d TCC option (merge literal strings) 275
/d TLINK option (duplicate symbols) 339
data

declaring 46
hiding See access
inspecting 229
structures See also arrays; structures

naming 109
poin.ters and 112

data members See also member functions
access 129, 140, 462
defined 128
dereference pointers 426, 440
member functions and 138
private 187, 463
protected 463
public 462
scope 147, 460-463
static 459

declaration 460
definition 460
uses 460

data models See memory models
data segment

group 284, 285
naming and renaming 284, 285, 584
removing virtual tables from 288

data segments 574
data structures See arrays; structures
data types 369, See also data, See also constants;

floating point; integers; numbers
aggregate 382
arithmetic 384
BCD See BCD
Boolean 134, 443
C++ streams and 532, 536
char 384

default, changing 277
range 52, 363
signed and unsigned 359, 384
strings and 72

choosing appropriate 53
classes and 382

728

conversions See conversions
converting See conversions
declarations 383
declaring 382
default 382
derived 382
enumerations See also enumerations

range 52, 363
using 110

floating point See floating point
function return types 405
fundamental 382, 383

. creating 384
identifiers and 370, 371
integers See integers
integral 384
internal representations 384
memory use 430
new 111

defining 390
numeric 50
parameterized See templates
promotion 61
ranges 52, 363
renaming 109
scalar 382

initializing 387
size_t 431, 481, 482
table of 52, 363
taxonomy 382
template argument 491
texcmodes 611
typedef and 109
types of 382
unsigned char

range 52, 363
void 383
wchar_t 360

date See also time
macro 520

__ DATE __ macro 520
#define and #undef directives and 506

deallocation, memory See memory, allocation
Debug menu 218
debugging See also integrated debugger

breakpoints See watch expressions
Call Stack window 240

Turbo C++ User's Guide

data
changing values 234
inspecting 229

defined 217
designing programs for minimum 241
Evaluate field and 232
exercises 245

answers 248
expressions

changing values 235
functions 225
hot keys 27
information 340

command-line compiler option 278
in .EXE or OBJ files 278

inspectors and 229
locating a function 240
MAKE 300
map files 341
multiple files 241
multiple variables 234
overlays 593
PLOTEMP.C 220
Step Over command 224
syntax errors 223
TLINK and 344
Trace Into command 225
tutorials 217-250
User screen and 224
values

changing 234
watch expressions See watch expressions
windows 239

dec, ios data member 548
dec (manipulator) 192,533,534
decimal constants See constants, decimal
declarations 369

arrays 403
C++ 382

incomplete 456
complex 397

examples 397, 398
data See data, declaring
data types 382
defining 370, 375, 377, 388

extern keyword and 389
examples 383

Index

external 375, 380
storage class specifiers and 380

function 48, See functions, declaring
global 94
incomplete class 456
with initializers, bypassing 447
location, C++ 203
mixed languages 394
modifiers and 391
objects 135, 378
Pascal 394
point of 488
pointers 400
referencing 370, 377

extern keyword and 389
simple 388
static data members 460
structures See structures, declaring
syntax 377, 378
tentative definitions and 377
unions 417

declarators
pointers (*) 367
syntax 398

decrement operator (- -) 63, 425, 428
default (label)

switch statements and 444
default arguments See arguments, default
default assembler 286
default buttons 31
default constructors See constructors, default
#define directive 503

argument lists 506
command-line compiler options 274

ganging 274
constants and 102
global identifiers and 506
keywords and 506
redefining macros with 504
with no parameters 503
with parameters 506

defined operator 511
defined test macro (MAKE) 318
defining declarations See declarations, defining
definitions See also declarations, defining

function See functions, definitions·
tentative 377

729

delete (operator) 452
arrays and 454
constructors and destructors and 469
destructors and 138, 174,477,478
dynamic duration objects and 374
overloading 481
pointers and 477
syntax 174

delete block 630
delete characters 630
Delete Item command 253
delete lines 630
delete words 630
delline, conbuf member function 541
dependencies

automatic See automatic dependencies
checking, MAKE (program manager) 312

dereferencing See referencing and
dereferencing

derived classes See classes, derived
derived data types See data types
descendants See classes, derived
designing programs 87
desktop files See files, desktop
destructors 468, 476-479, See also initialization

abort function and 478
atexit function and 477
auto objects and 174
base class pointers and 478
calling 469
class initialization and 474
deallocating memory and 174
defined 206
delete operator and 138, 174,469,477,478
dynamiC objects and 174
exit function and 477
global variables and 477
implicit 174
iIfheritance and 468
invoking 469, 477

explicitly 478
new operator and 469, 478
pointers and 477
#pragma exit and 477
static objects and 174
unions and 469
virtual 468, 478

730

DI register 573
diagnostic messages

compiler 640-712
dialog boxes See also buttons; check boxes; list

boxes; radio buttons
arrows in 31
defined 31
entering text 32
Preferences 633

dictionary example 204
digits

hexadecimal 356
nonzero 356
octal 356

dir.h 567
direct.h 567
direct member selector See operators, selection

(. and -»
direct video output 613
direction flag 574
directives 304, 511, See also Individual directive

names; macros
##symbol

overloading and 480
symbol 368

overloading and 480
conditional 511

nesting 511
conditional compilation and 510
#define

c++ and 202
constants and 102

defined 46
error messages 514
#include 46
keywords and 506
line control 513
MAKE See MAKE (program manager),

directiv~s

Microsoft compatibility 566
pragmas See pragmas
sizeof and 431
syntax 502
usefulness of 501

directories
.ASM and .OBJ

command-line option 291

Turbo C++ User's Guide

include files 267, 291, 293
example 295
MAKE 300

libraries 294
command-line option 267,291
example 295

project files 34
projects 254

disk space
running out of 637

disks, distribution, defined 14
displays See screens
distribution disks 3

backing up 13
defined 14

division See floating point, division; integers,
division

division operator (/) 425,431
rounding 432

do while loops See loops, do while
do allocate, strstreambuf member function 559
DOS

commands
MAKE and 308

environment
87 variable 599

environment strings
macros and 318

paths
MAKE 323

DOS MODE command See MODE command
(DOS)

DOS Shell command 23
dot directives (MAKE) 323
dot operator (selection) See operators, selection

(. and -»
double (floating point) See floating point
double quote character

displaying 59,359
strings and 72

DPMI -
server messages 641
use of extended and expanded memory 16

DPMIINST
protected mode and 15, 266

DPMIMEM environment variable 15
DPMIRES protected mode utility 16

Index

drawing color See graphics, colors
drawing functions 617
_ds (keyword) 392, 582
DS register 574, 576
.DSK files

default 35
projects and 35

dual monitor mode 21
dual monitors See monitors, dual
duplicate case constants 444
duplicate symbols

.LIB and .OBI files and 339
TLINK and 339

duration 99, 373
dynamic

memory allocation and 374
local

scope and 374
pointers 400
static 373

DX register 573
dynamic binding See C++, binding, late
dynamic duration

memory allocation and 374
dYnamic memory allocation See memory,

allocation
dynamic objects See objects, dynamic

E
Ie IDE option (expanded memory) See

memory, expanded, IDE option (Ie)
-e MAKE option 300
-E TCC option (assembler to use) 286
-e TCC option (EXE program name) 290
Ie TLINK option 339
early binding See C++, binding
eatwhite, istream member function 551
eback, streambuf member function 556
ebuf, streambuf member function 556
Edit See also editing

windows
loading files into 256

editing See also Edit; text
block operations 630, 631-632

deleting 632
reading and writing 632

731

commands
cursor movement 629
insert and delete 630

copy and paste See also Clipboard
hot key 26

hot keys 26
miscellaneous commands 633-634
pair matching See pair matching
pasting See editing, copy and paste
selecting text 631
syntax highlighting 37

EGA See Enhanced Graphics Adapter
egptr, streambuf member function 556
elaborated type specifier 456
elements, parsing 350
elements of arrays 105
#elif directive 511
!elif MAKE directive 325

defined test macro and 318
macros and 317

ellipsis (...) 23, 31, 367
prototypes and 406, 409

else clauses See if statements
#else directive 511
!else MAKE directive 325
__ emie -0 568
_emit (keyword) 568 \
empty loops 83, 203
empty statements 442
empty strings 362
EMS See extended and expanded memory
EMU. LIB 336,337
emulating the 80x87 math coproc.essor See

floating point, emulating
emulation

80x87276
encapsulation 126, See also C++
enclosing block 372
#endif directive 511
!endif MAKE directive 325
endl (manipulator) 192, 534
ends (manipulator) 192,534
Enhanced Graphics Adapter (EGA) See also

graphics drivers; video adapters
color control on 625
palette

IDE option Up) 22

732

enum (keyword) See enumerations
enum open_mode, ios data member 548
enumerations 110, 417

C++ 418
class names and 456
command-line option (-b) 417
constants 356, 361, 418

default values 361
conversions 386
default type 417
name space 372
range 363
scope, C++ 419
structures and

name space in C++ 413
tags 418

name spaces 419
enumerations (enum)

assigning integers to 282
range 52
treating as integers 275

env (argument to main) 523
environ (global variable) 524
environment See also integrated environment

DOS
87 variable 599
macros and 318

variables 562
eof, ios member function 549
eof (member function) 195
epptr, streambuf member function 557
equal-to operator (==) 73,426,435
equality operators See operators, equality
error

show next 634 I

show previous 634
#error directive 514
!error MAKE directive 328
errors See also warnings

ANSI 282
array size 106
C++ streams

clearing 195
command line

defined 640
compiler 640-712
defined 640

Turbo C++ User's Guide

disk access 640
DPMI server 641
expressions 423
fatal 640
floating point

disabling 600
frequent 283
graphics, functions for handling 625
IDE hot keys 27
TLIB 642
MAKE 641
math, masking 600
memory access

defined 640
messages 5·

compile time 255, 256
graphics 626
list 640-712
removing 257
saving 257

next
hot key 256

out of memory 571
preprocessor directive for 514
previous

hot key 27, 256
reporting

command-line compiler options 282
run-time 642
syntax

defined 640
project files 255, 256

TLINK (list) 642
tracking

project files 255, 256
undocumented 641

_es (keyword) 392, 582
ES register 574
Esc shortcut 31
escape sequences 58, 356, 358
Evaluate command

inspectors vs. 231
Evaluate field

arrays 232, 233
copying into 234
debugging and 232
display format 233

Index

expressions in
rules governing 232

, format specifiers and 233
memory dump and 233
pointers and 233
variables 232

Evaluate/Modify command
hot key 27

evaluation order See also precedence
command-line compiler options 272

in response files 271
examples

library and include directories 295
MAKE (program manager) 301

batch files 307
relational operators 73

exclusive OR operator (") 64, 425, 436
truth table 436

.EXE files
.COM files and 344
creating 25, 27
debugging information 344
TLINK and 343
user-selected name for 290

executable files See .EXE files
execution

bar See run bar
line-by-line 225
stepping over functions 224

exit (functions)
destructors and 477

exit codes
MAKE and 305

exit pragma 515
exit the IDE 631
exiting Turbo C++ 23
expanded memory 16, See also extended and

expanded memory
controlling use of 287
IDE option See memory, expanded, IDE
option (Ie)
TLINK and 344

explicit
library files 291
rules (MAKE) 304, 309

explicit template function 493
exponents 356

733

expressions
assigning values in 68
associativity 420
cast, syntax 429
conditional 74
constant 364
conversions and 385
debugging

changing values of 235
decrementing 428
defined 56, 66
displaying value of 232
empty (null statement) 366, 442
errors and overflows 423

. evaluating 66
function

sizeof and 431
grouping 365
incrementing 428
MAKE and 327, 328
precedence 420, 422, 423
statements 366, 442
syntax 421
table 421

extended 80186 instructions 275
extended and expanded memory

_OvrInitEms and 594
_ OvrInitExt and 595
overlays and 594
RAM disk and See RAM disk, IDE option
(lr) and
swapping 594, 595

extended memory 16, 17
IDE option (Ix) and 22
TLINK and 345

extension keywords
ANSI and 281

extensions 353
extensions, file, supplied by TLINK 333
extent See duration
extern (keyword) 389, See also identifiers,

external
arrays and 403
class members and 457
const keyword and 391
linkage and 375
name mangling and 376

734

using 100
external

declarations 375
identifiers See identifiers, external
linkage See linkage

External option
C++ Virtual Tables

command-line option 288
extra segment 574
extraction operator (») See overloaded

operators, » (get from)
extractors See input, C++

F
-f287 option (inline 80x87 code) 277
-f87 command-line compiler option (generate

floating-point code) 598
-f87 option (inline 80x87 code) 277
\f (formfeed character) 59
-f command-line compiler option (emulate

floating point) 598
\f escape sequence (formfeed) 359
-f MAKE option (MAKE file name) 298, 300
-f TCC option (emulate 80x87) 276
fail, ios member function 549
fail (member function) 195
far

calls
memory model and 592
requirement 592

functions See functions, far
objects See objects, far
pointers See pointers, far
variables 276

far (keyword) 392, 576, 582
far calls 587
far objects See objects, far
far virtual table segment

naming and renaming 285
fast huge pointers 277
_fastcall (keyword) 392
fatal errors See also errors

Compile-time 640
-Fc TCC option (generate COMDEFs) 275
fd, filebuf member function 544
features of Turbo C++ 1

Turbo C++ User's Guide

-ff command-line compiler option (fast floating
point) 276, 598

-Ff TCC option (far global variables) 276
field width See formatting
field width, C++ 192
__ FILE __ macro 520

#define and #Undef directives and 506
file descriptor 544
file-inclusion directive (!include) 324
file-name macros (MAKE) 320, 321
file scope See scope
filebuf (class) 543
filename macros (MAKE) 320
files See also individual file-name extensions

ARGS.EXE 524
.ASM See assembly language
assembly language See assembly language
batch See batch files
binary 123
buffers

C++ 543, 545
buffers, C++ 195
.COM 335, 343

.EXE files and 344
TLINK and 343, 344

compiling as C++ or C 286
configuration 33, See configuration files
current

macro 520
desktop (.DSK)

default 35
projects and 35

disk
copying using C++ 193
reading 122
writing 122

editing See editing
executable See .EXE files
extensions 333
font See fonts
graphiCs driver, linking 617
header See header files
HELPME!.DOC 14, 17
I/O

example program 220
include See include files
including 509

Index

information in dependency checks 257
library (.LIB) See libraries
loading into editor 256
make See MAKE (program manager)
map See map files
modifying 18
multiple See projects
names

extensions (meanings) 333
opening 548, 631, 633

default mode 537, 543
hot key 25
openprot 543

out of date, recompiled 257
position seeking 548
project 33, See also projects

graphics library listed in 614
README 17
README.DOC 14
response See response files
saving 631, 633

hot key 25
scope See scope
source

.ASM
command-line compiler and 265

streams
C++ operations 545

.TC See configuration files, integrated
environment

using
example program 123

WILDARGS.OBJ 525, 526
fill, ios member function 549
fill characters

C++ 534
filling functions 617
financial applications 602
Find command See also searching
fixed, ios data member 548
flags

format state See also formatting
ios (class)

setting 534
ios member function 549
register 572,573

floatfield, ios data member 547

735

floating point See also data types; integers;
numbers; numeric coprocessors
ANSI conversion rules 277
constants See constants
conversions See conversions
defined 54
division 54
double

defined 55
long See floating point, long double
range 52, 363

emulating 598
exceptions

disabling 600
expressions

precedence 423
fast 276, 598
inline 80x87 operations 277
libraries 276, 597

TLINK and 336
long double

defined 55
range 52, 363

math coprocessor and 277
Microsoft C and 568
precision

setting 534
ranges 52, 363
registers and 600
using 597

flow-control statements See if statements;
switch statements

flush (manipulator) 192,534
flush, ostream member function 554
-Fm TCC option (enable -F options) 276
fonts

bit-mapped
stroked vs. 621
when to use 621

clipping 621
files

loading and registering 621
height and width 621
information on current settings 628
registering 622
setting size 621

736

stroked
advantages of 621

forloops See loops, for
foreground color See graphics
formal parameters See parameters, formal
format flags 548
format specifiers See also formatting

characters and strings and 72
Evaluate field and 233
memory dump 233
pointers and 233

format state flags See formatting, C++, format
state flags

formatting See also format specifiers
C++

classes for 530
field width 192
fill character 534
format state flags 191,548
formatting flags 547
I/O 534, See also manipulators
output 532
padding 534
put and write functions and 192
width functions See also manipulators

setting 534
C++ I/O 191, 193
escape'sequences and 58
streams and

clearing 534
formfeed character (\f) 59, 359
fortran (keyword) 568

_pascal keyword and 568
forward references 370
Fourier transforms

complex number example 601
FP87.LIB 337
FP_OFF 586
FP_SEG 586
free (function)

delete operator and 452
dynamic duration objects and 374

freeze, strstreambuf member function 559
frequent errors 283
friend (keyword) 457,466-468

base class access and 465
classes and 188

Turbo C++ User's Guide

functions and See C++, functions
friend functions See C++, functions
-Fs TCC option (assume D5 = 55) 276
fstream (class) 545
fstream.h (header file) 122
fstreambase (class) 545
full file name macro (MAKE) 319
full link map 291
function call operator See parentheses
function operators See overloaded operators
function signature 162
function template 492
functions 404-409, See also individual function

names; member functions; scope
accessing variables and. 113
arguments

no 406
attribute control 609
C-type278
calling 240, 408, See also parentheses

operators () 427
overloading operator for 484
rules 408

cdecl and 395
class names and 456
color control 622
comparing 436
console

I/O 607
debugging 224, 225
declarations

global 94
declaring 404, 405

as near or far 585
under Kernighan and Ritchie 89

default types for memory models 396
defined 45 :
defining 89
definitions 404, 407
drawing 617
duration 374
error-handling, graphics 625
exit 515
external 389

declarations 375
far 396

declaring 585

Ind~x

memory model size and 585
filling 617
finding 240
friend See C++, functions, See C++,

functions, friend
graphics See also graphics

drawing operations 617
fill operations 618
using 614-628

graphics system control 615
header 89
huge 396

assembly language and 396
_loadds and 396
saving registers 518

image manipulation 619
inline

assembly language See assembly language
C++ 179, 202, 458

classes and 204
linkage 460
precompiled headers and 636

syntax 180
inspecting 231
internal linkage 390
interrupt See interrupts
linking C and C++ 376
main 404
member See member functions
memory

models and 392
mode control 609
multiple 91
name mangling and 376
near 396

declaring 585
memory models and 585

no arguments 383
not returning values 383
one line 202
operators See overloaded operators
ordinary member See member functions,

ordinary
overloaded See overloaded functions
parameters See arguments; parameters
Pascal

. calling 394

737

passing arrays to C++ 220
pixel manipulation 619
pointers 113, 119, 399

calling overlaid routines 593
object pointers vs. 398
void 399

prototypes 88, See also prototypes
recursive

memory models and 585
return statements and 447
return types 405
return values 90
scope See scope
screen manipulation 619
signature 162
sizeof and 431
startup 515
state queries 610, 626
static 375
stdarg.h header file and 406
stepping over 224
storage class specifiers and 376
structures and 411
text

manipulation 608
output

graphics mode 620
tracing through 225
type, modifying 396
usefulness of 50
user-defined 88
viewport manipulation 619
virtual See also member functions, virtual

specifying _pure 486
void

returning a value 282
windows 609
writing your own 88

fundamental data types See data types

G
-G TCC option (speed optimization) 279
ganging

command-line compiler options
#define 274
macro definition 274

defined 274, 293

738

IDE 294
library and include files 294

gbump, streambuf member function 557
gcount, istream member function 551
generic pointers 383, 400
generic types 490
get

istream member function 552
get (function) 193

streams and 122
get, istream member function 552 -
get from operator (») See overloaded

operators, » (get from)
getch (function) 70
getche (function) 70
getline, istream member function 552
getmaxx (function)

example 95
getmaxy (function)

example 95
global declarations See declarations, global
global identifiers See identifiers, global
global menus See menus
global variables 372, See also variables

case sensitivity and 392
destructors and 477
environ 524
_ovrbuffer 589, 592
scope and 100
underscores and 392
word-aligning 275
_ wscroll 608

-gn TCC option (stop on n warnings) 282
Go to Cursor command

hot key 25, 27
good, ios member function 549
goto statements 447

labels
name space 372

gotoxy, conbuf member function 541
gptr, streambuf member function 557
grammar, tokens See tokens
graphics See also graphics drivers

buffers 620
charts 220
circles

aspect ratio 619

Turbo C++ User's Guide

classes 133
colors See also graphics, palettes

background 609
CGA 624
defined 612, 623
list 613
setting 609

CGA 623, 624
drawing 623
EGA/VGA625
foreground 609

CGA 624
defined 612
list 613
setting 609

functions 622
header file 95
information on current settings 628
symbolic names 95

coordinates 95, See also coordinates
default settings

restoring 616
displaying 623
drawing functions 617
errors

functions to handle 625
fill

operations 618
patterns 618

header file 95 .
using 627

functions
using 614-628

header file 94, 614
library 614

TLINK and 336
line style 618
memory for 617
page

active
defined 620
setting 619

visual
defined 620
setting 619

palettes See also graphics, colors
defined 622

Index

functions 622
information on current 628

pixels See also screens, resolution
colors

current 628
functions for 619
setting color of 622

setting
clearing screen and 620

state queries 626
system

control functions 615
shutting down 616
state queries 627

text and 620
viewports

defined 607
functions 619
information on current 628

graphics drivers See also Color / Graphics
Adapter (CGA); Enhanced Graphics Adapter
(EGA); graphics; video adapters; Video
Graphics Array Adapter (VGA)
current 616, 627

returning information on 628
linking 617
loading and selecting 616,617
new

adding 616
registering 617
returning information on 627, 628
supported by Turbo C++ 615
testing for presence 94

graphics.h (header file) 94, 614
greater-than operator (» 73, 426, 434
greater-than or equal to operator (>=) 73

. greater-than or equal-to operator (>=) 426, 434
GREP See The online document UTIL.DOC

H
/h IDE option (list options) See help, IDE

option (lh)
-h MAKE option (help) 300
-h TCC option (fast huge pointers) 277
-H TCC option (precompiled headers) 286

739

hardware
requirements

mouse 3
to run Turbo C++ 3

hdrfile pragma 516, 636, 637
hdrstop pragma 517, 636, 638
header files See also include files

Turbo C++ versus Microsoft C 567
C++ 148
complex numbers 601
defined 46, 97
extern keyword and 377
fstream.h 122
function prototypes and 406
graphics 614
graphics.h 94
#include directive and 509
inline C++ functions and 144
Microsoft C 567
name mangling and 377
precompiled 516, 517, See also precompiled
headers
prototypes and 404
searching for 294
stream.h vs. stdio.h 200
using 98
variable parameters 406

heap 374
extended memory for See extended memory,
IDE option (/ x) and
objects See objects, dynamic

Help 631
button 31
hot keys 25, 26
IDE and 36
IDE option (/h) 21
index 631
MAKE 300
status line 31
topic search 631

HELPME!.DOC file 14, 17
Hercules card See graphics drivers; video

adapters
hex, ios data member 548
hex (manipulator) 192, 533, 534

740

hexadecimal
constants See constants, hexadecimal
digit 356
numbers See numbers, hexadecimal

hexadecimal numbers See numbers,
hexadecimal

hidden objects 373
hiding See scope, C++
hierarchies See classes
highvideo, conbuf member function 542
history lists 32
horizontal tab character 359
horizontal tab character (\t) 59
hot keys

debugging 27
editing 26
help 25,26
make project 256
menus 24, 25
next error 256
previous error 256
using 24

huge
functions

saving registers and 518
memory model See memory models
pointers See pointers, huge

__ HUGE __ macro 519
huge (keyword) 392,576,582

assembly language and 396
hyphen (-) MAKE command (ignore exit

status) 305

-i MAKE option (igl).ore exit status) 300
-I MAKE option (include files directory) 300,

301
-i TCC option (identifier length) 281 ,
-I TCC option (include files directory) 267, 291
Ii TLINK option (uninitialized trailing

segments) 340
icons used in books 6
IDE '19, See also integrated environment;

Integrated Development Environment
command-line options 20

syntax 20
control characters and 32

Turbo C++ User's Guide

menu cross-referenced to information 37
overlays and 591
starting up 20

identifiers 57, 354
Turbo C++ keywords as 281
case 394

sensitivity and 354
classes 455
data structures 109
data types and 370, 371
declarations and 370
declaring 388
defined operator and 511
defining 316, 505
duplicate 373
duration 373
enumeration constants 361
external See also extern (keyword)

name mangling and 376
global 519

#define and #undef directives and 506
linkage 375

attributes 375
maximum length 354
mixed languages 394
name spaces See name spaces
no linkage attributes 376
Pascal 394
pascal (keyword)

case sensitivity and 355
Pascal",type 278
rules for creating 354
scope See scope
significant length of 275, 281
storage class and 371
testing for definition 512
undefining 274, 505
underscore for 278
unique 375
variables 57

IEEE
floating-point formats 385
rounding 604

#if directive 511
!if MAKE directive 325

defined test macro and 318
macros and 317

Index

if statements 74,443
else 75
nested 443
nesting 76

#ifdef directive 512
!ifdef MAKE directive 325
#ifndef directive 512
!ifndef MAKE directive 325
ifstream (class) 546

constructor 537
insertion operations 537

ignore, istream member function 552
. ignore exit status (MAKE command) 305

.ignore MAKE directive 323
implicit

library files 291
rule (MAKE) 304

in, ios data member 548
in_avail, streambuf member function 557
#include directive See also include files

angled brackets and 294
quotes and 294

!include directive (MAKE) 301, 324
INCLUDE environment variable 562
include files See also header files

automatic dependency checking (MAKE) 312
command-line compiler options 294
defined 46
directories 267, 291,293

multiple 295
#include directive and 509
MAKE 301, 324

directories 300
paths 562
projects 253
search algorithm for 509
searching for 294
user-specified 267, 291

Include Files command 253 .
#include directive 509

defined 46
search algorithm 509

inclusive OR operator (I) 425, 437
truth table 436

incomplete declarations
classes 456
structures 414

741

increment operator (++) 63, 425, 427, 428
incremental search 33
indent block 630
indeterminate arrays 403

structures and 404
Index command

hot key 26
indexes See arrays
indirect member selector See operators,

selection
indirection 120
indirection operator (*) 425, 429

pointers and 402
inequality operator (!=) 426, 436
information hiding See access
inheritance 130, 144, See also classes

access and 146
base and derived classes and 145
constructors and destructors 468
defined 126
example 209
functions and 158
multiple 132, 155

base classes and 466
defined 146

overloaded assignment operator and 484
overloaded operators and 481
rules 147

init, ios member function 549
initgraph (function)

path argument and 91
initialization 386, See also constructors;

destructors
arrays 387
classes 474

objects 474
copy constructor and 474

constructors and destructors and 137
operator 368
pointers 400
static member definitions and 460
structures 387
unions 387,417
variables 388

initialization modules 565
compatibility 335
used with TLINK 334, 335

742

initialize a reference variable 475
initialized data segment See data segment
initializer list 475
initializers

automatic objects 389
c++ 389

(:) 426
new operator and 454

initializing
arrays 104, 106
variables 55

inline
assembly language code See assembly
language, inline
expansion 458
functions See functions, inline
keyword 458
pragma 517

inline (keyword) 202
classes and 204
constructors and 139
member functions and 136

inline assembly code 285
inline code See assembly language, inline

routines; numeric coprocessors
inline functions, C++ See C++, functions, inline

, input
c++

user-defined types 536
input boxes 32
insert lines 630
insert mode 630
inserter types 532
inserters See output, C++
insertion operator See overloaded operators, «

(putto)
insertion operator «<) See overloaded

operators, « (put to)
insline, conbuf member function 542
Inspect command

hot key 26, 27
inspectors

abilities' of 229
arrays 230
data 229
Evaluate command vs. 231
functions 231

Turbo C++ User's Guide

strings 230
structures 230
unions 230

installation 14-17
on a laptop system 17

instances See classes, instantiation and; classes,
objects

instantiation See classes, instantiation and
integers 384, See also data types; floating point;

numbers
aligned on word boundary 275
assigning to enumeration 282
C++ streams and 532
constants See constants
conversions See conversions
division 54
expressions

precedence 423
long 384

range 52, 363
using 53 .

memory use 384
range 52, 363
short 384
sizes 384
suffix 356
unsigned

range 52, 363
using 52

integral data types See characters; integers
integrated debugger See also debugging

breakpoints See watch expressions
Integrated Development Environment See also

integrated environment
integrated development environment

nested comments command 352
integrated environment

configuration files See configuration files,
IDE
customizing 18
debugging See debugging
editing See editing
ganging 294
INCLUDE environment variable and 562
LIB environment variable and 562
makes 257

Index

menus See menus
multiple library directories 294
Programmer's Workbench and 561
wildcard expansion and 526

intensity
setting 609

internal, ios data member 548
internal linkage See linkage
internal representations of data types 384
interrupt (keyword) 392,393
interrupts

flag 574
functions

memory models and 393
void 393

handlers ,392
modules and 593

registers and 393
INfR02.CPP (sample program) 48
I/O

C++ See also C++, I/O
formatting 534
precision 534

disk 193
iomanip.h (header file) 192

manipulators in 533
ios (class) 530, 547

flags See formatting
ios data members 547
iostream (class) 551
iostream.h (header file) 46

manipulators in 533
iostream library 530

introduced 45
iostream_withassign (class) 551
IP (instruction pointer) register 572
is_open, filebuf member function 544
istream 189
istream (class) 551

derived classes of 537
istream_ withassign (class) 553
istrstream (class) 553
iteration statements See loops

J
-Jg family of template switches 497
-jn TCC option (stop on n errors) 282

743

jump optimization 280
jump statements See break statements; continue

statements; goto statements; return
statements

K
-K MAKE option (keep temporary files) 300,

306
-k TCC option (standard stack frame) 277
-K TCC option (unsigned characters) 277
K&R See Kernighan and Ritchie (K&R)
Keep Messages command

toggle 257
Kernighan and Ritchie (K&R)

function declarations 89
keywords 281

keyboard
choosing commands with 23,31
reading characters from 69
stream 122

keys, hot See hot keys
keywords 353, See also individual keyword

names
ANSI

command 281
predefined macro'521

auto 101
Turbo C++

using, as identifiers 281
C++ 353
class 204
combining 384
const 102
extern 100
inline 202

classes and 204
Kernighan and Ritchie

using 281
macros and 506
Microsoft C 568
new

malloc and 205
operator 184
register 102
static 101
typedef 109

744

L

UNIX
using 281

void 88

/1 IDE option (LCD screen) See LCD displays,
IDE option (/1)

-1 TCC option (linker options) 291
-L TCC option (object code and library

directory) 267,291
/1 TLINK option (line numbers) 340
labeled statements 442
labels

creating 367
default 444
function scope and 372
goto statement and 447

laptops
IDE option (/1) 22
installing Turbo C++ onto 17

__ LARGE __ macro 519
large memory model See memory models
late binding See C++, binding
LCD displays

IDE option (/1) 22
installing Turbo C++ for 17

left, ios data member 548
less-than operator «) 73, 426, 434
less-than or equal to operator «=) 73
less-than or equal-to operator «=) 426,434
lexical grammar See elements
LIB environment variable 562
. LIB files See libraries
librarian See TLIB
libraries 336

C
linking to C++ code 376

class 148
command-line compiler options 294
container class See The online document

CLASSLIB.DOC
directories 293

command-line option 267, 291
multiple 2,95

duplicate symbols in 339
explicit and implicit 291
files 267, 291

Turbo C++ User's Guide

floating point 276
TLINK and 336
using 597

graph~cs 614
TLINK and 336

iostream 530
memory models 337
numeric coprocessor 336
order of use 336
overriding in projects 260
paths 562
prototypes and 409
rebuilding 279
routines

80x87 floating-point emulation 277
run time

TLINK and 337
searching for 294
streams 188, 529
TLINK and 334, 336

ignoring 342
user-specified 291
using 98
utility See TLIB

library files See libraries
license statement 13
line

mark a 630
__ LINE __ macro 520

#define and #undef directives and 506
#line directive 513
line numbers See lines, numbering
liries

continuing 350, 363, 508
delete 630
insert 630
numbering 28

in object files 279
TLINK and 340

numbers 513
macro 520

LINK (Microsoft)
TLINK versus 566

link map, full 291
linkage 375

C and C++ programs 376
external 375

Index

C++ constants and 391
name mangling and 376

internal 375
no 375, 376
rules 375
static member functions 460
storage class specifiers and 375
type-safe 409, 493, 495

linker See also TLINK
command-line compiler options 290, 291
link map

creating 291
mixed modules and 586
options

from command-line compiler 291
using directly 586

list boxes 33
List command

hot key 26
literal strings See strings, literal
load operations

redundant, suppressing 280
_loadds (keyword) 392

huge functions and 396
uses for 396

local duration 374
local menus See menus
Local Options

C++ Virtual Tables
command-line option 288

command 253
Locate Function command 240
logical AND operator (&&) 74,425,437
logical negation operator (!) 425, 430
logical OR operator (I I) 74,425,437
long double (floating point) See floating point,

long double
long integers See integers, long
loops 444

break statement and 446
choosing 87
continue statement and 447
defined 79
do while 81, 445

exiting 84
empty 83, 203
exiting 84

745

for 82, 445
C++ 446
while loop and 84

nested 86
while 80, 444

exiting 84
for loop and 84
string scanning and 445

loose coupling 242
lowvideo, conbuf member function 542
lvalues 370, S~e also rvalues

examples 397
modifiable 370

M
/ m IDE option (MAKE) See MAKE (program

manager), IDE option (1m)
-m MAKE option (display time/date stamp)

300
-M TCC option (link map) 291
macros 87, See also MAKE (program manager),

macros
argument lists 506
calling 506
command-line compiler 274
commas and, nested 507
defining 503

conflicts 504
global identifiers and 506

DOS
environment strings and 318
path (MAKE) 323

expansion 503
far pointer creation 586
ganging 274
. invocation

defined 316
keywords and 506
MAKE See MAKE (program manager),

macros
MK_FP586
paramet~rs and 506

none 503
parentheses and

nested 507
precedence in

controlling 365

746

predefined 519, See also individual macro
names
ANSI keywords 521
C and C++ compilation 521,522
C calling conventions 519
conditional compilation 520
current file 520
current line number 520
date 520
DOS 521
memory models 519
overlays 521
Pascal calling conventions 521
templates 521
time 521

random 108
redefining 504
side effects and 508
transfer See The online document UTIL.DOC
Turbo editor See The online document

UTIL.DOC
undefining 504

global identifiers and 506
. main (function) 45, 404, 523-527

arguments passed to 523
example 524
wildcards 525

cornpiled with Pascal calling conventions 527
declared as C type 527
pascal keyword and 394
value returned by 527

MAKE (program manager)
automatic dependency checking 300, 312
batching files and 307
BUILTINS.MAK file 301
clocks and 298
commands

@'(hide commands) 305
ampersand (&) (multiple dependents) 305
hiding (@) 305
hyphen (-) (ignore exit status) 305
-num (stop on exit status num) 305

compatibility 300
debugging 300
directives

.noautodepend 323

.autodepend 323

Turbo C++ User's Guide

command-line compiler options and 323
conditional execution 325

expressions in 327
defined 322
dot 323
!elif 325

macros and 317
!else 325
!endif 325
!error 328
file inclusion 324
!if 325

macros and 317
!ifdef 325
!ifndef 325
.ignore 323
!include 324
.noignore 323
.nosilent 323
.noswap 323
.silent 323
.swap323
!undef 328

DOS commands and 308
example 301
exit codes and 305
explicit rules See MAKE (program manager),

rules
external commands and 308
functionality 297
hide commands 305
IDE option (/ m) 22
implicit rules See MAKE (program manager),

rules
!includedirective 301
integrated environment makes and 257
macros 305, 313, 315, 318

$? 305
$** 305
all dependents ($**) 321
all out of date dependents ($?) 321
base file name ($*) 319 .
defined test 318
!elif directive and 317, 318
example 313
file name and extension ($.) 320
file name only ($&) 320

Index

file name path ($:) 320
full file name ($<) 319
full name with path ($&) 320
!if directive and 317, 318
in expressions $d 328
__ MAKE __ 318
predefined 318
undefining 328 .
version number 318

__ MAKE __ macro 318
makefiles

comments in 304
creating 303
defined 302
naming 303
parts of 304

. Microsoft C and 563
multiple dependents and 305
NMAKE vs. 329
operators 327
options 299

-? (help) 300
(increase compatibility) -N 300
(print commands but don't execute) -n 300
(save options) -W 300
automatic dependency checking (-a) 312
build all (-B) 300
default (-w) 300
define identifier (-D) 300

conditional execution 325
display rules (-p) 300
display time/date stamp (-m) 300
don't print commands (-s) 300
environment variables(-e) 300
file name (-f) 298, 300
help (-? and -h) 300
ignore BUILTINS.MAK (-r) 300
ignore exit status (-i) 300
include files directory (-I) 300, 301
keep files (-K) 300, 306
saving (-w) 300
swap MAKE out of memory (-S) 300
undefine (-U) 300
using 299

.path directive 323

.precious directive 323
printing commands 323

747

redirection operators 305
rules

explicit
considerations 310
defined 309
example 304, 311

implicit 303
discussion 312
example 304
explicit rules and 313

stopping makes 255
swapping in memory 323
syntax 299
wildcards and 309

Make command, hot key 25, 27
MAKE.EXE 298
makefiles See MAKE (program manager)
malloc (function)

dynamic duration objects and 374
new and 205
new operator and 452

malloc.h (header file)
alloc.h and 567

mangled names 376
manifest constants 519, See also macros
manipulators 192, 533, See also formatting;

individual manipulator names
header file for 192
introduced 47
parameterized 192, 533
syntax 534
user-defined 197

manual, using 6
map files 291

debugging 341
generated by TLINK 340

marker
find 631, 633
set 631, 634

math
BCD SeeBCD
coprocessors See numeric coprocessors
errors

masking 600
math coprocessors See numeric coprocessors
matherr (fundion)

proper use of 600

748

MATHx.LIB 336
maximize See Zoom command
__ MEDIUM __ macro 519
medium memory model See memory models
mem.h (header file)

memory.h and 567
member functions 135,457, See also C++,

functions; data members
access 129, 140, 204, 462
access to variables 138
adding 135
calling 136
choosing type 172
constructors See constructors
data

access 129
defined 128, 457
defined outside the class 136
destructors See destructors
example 138
friend 457, See also functions, friend
inline 135, 136, See functions, inline, C++
nonstatic 457
open and close 193
ordinary

problems with inherited 161
virtual vs. 161, 167, 172

o\rerriding 159
positioning in hierarchy 166
private 463
protected 463
public 462
scope 460-463
signature 162
static 459

linkage 460-
this keyword and 459

stream state 195
structures and 411
this keyword and 457, 459
unions and 416
virtual 160, 161, 163, See also C++, binding,

late
ordinary vs. 167, 172
pros and cons 166
syntax 163

Turbo C++ User's Guide

member pointers
controlling 289

members
data See data members
functions See member functions

members, classes See data members; member
functions

members, structures See structures, members
memory See also memory addresses

allocation 374
assembly language code and huge
functions and 396
graphics system 617
new and delete operators and 452
structures 413

Turbo C++'s usage of 571
data types 430
de allocating

destructors and 174
dump

Evaluate field and 233
expanded 16

controlling 287
IDE option (Ie) 21

extended 16
extended and expanded See extended and

expanded memory
freeing

automatically 101
heap 374
memory models and 579
overlays and 589
paragraphs 575

boundary 575
protected mode and 14
RAM disk and See RAM disk, IDE option .

(lr) and
segments in 575
strings and 71
swapping MAKE in 323
word alignment and

structures 413
memory addresses See also memory

calculating 573, 575-576
constructors and destructors 468
far pointers and 576
near pointers and 576

Index

pointing to 586
segment:offset notation 575
standard notation for 575

memory.h (header file)
mem.h and 567

memory models 581, 571-587
command-line options 273
compact 579

default function type 396
comparison 582
compatibility libraries for 335
default

overriding 396
defined 578
function pointers and 399
functions

default type
overriding 392

graphics library 614
huge 579

default function type 396
illustrations 579-581
initialization modules 335
interrupt functions and 393
large 579

default function type 396
libraries 337
macros and 519
medium 578

default function type 396
memory apportionment and 579
Microsoft C and 567
mixing 586

function prototypes and 587
overlays and 590, 592
pointers 576, 583

modifiers and 395
predefined macros and 519
sma11578

default function type 396
startup modules 337
tiny 578

default function type 396
library 337

TLINK and 334, 336
menu bar See menus; run bar

749

menus See also individual menu names
(IDE) 23
commands See individual command names
hot keys 24, 25
with an ellipsis (...) 31

Message Tracking .
toggle 256

Message window 257
messages See also errors; warnings

Compile-time 640 .
DPMI641
TUB 642
MAKE 641
run-time 642
TUNK (list) '642

methods See member functions
mice See mouse
Microsoft See Microsoft C
MicrosoftC

Turbo C++ projects and 561
~cdeclkeyword569
CL options

TCC options versus 563
COMDEFs and 567
cpnverting from 561-569
environment variables and 562
floating-point return values 568
header files 567

Turbo C++ header files versus 567
keywords 568
MAKE and 563
memory models and 567
structures 569
TUNK and 565

mixed modules
linking 586

MK_FP (run-time library macro) 586
mode arguments 195
MODE command (DOS) 21
models, memory See memory models
modifiable lvalues See Ivalues
modifiable objects See objects
modifiers 391

function type 396
pointers 395, 583
table 391

Modify I New Transfer Item dialog box 259

750

Modula-2
variant record types 415

modularity See encapsulation
modules

linking mixed 586
size limit 582

modulus operator (%) 61,425,431
monitors See also screens

dual
IDE option (! d) 21

Monochrome Display Adapter See graphics
drivers; video adapters

mouse
choosing commands with 24,31
compatibility 3

mouse buttons
right and left 24

moving text See editing, moving text; editing,
block operations

__ MSC macro 566
__ MSDOS __ macro 521
multi-source programs See projects
multidimensional arrays 106, See also arrays
multiple assignments 57
multiple dependents

MAKE and 305
multiple files See projects
multiple irthcritance See irheritance
multiple listings

command-line compiler options
#define 274
include and library 294
macro definition 274

multiplication operator (*) 425,431
-mx options (memory models) 273

N
\n (newline character) 59,359
-N MAKE option (increase compatibility) 300
-n MAKE option (print commands but don't

execute) 300
..,.n TCC option (.OB] and .ASM directory) 291
-N TCC option (stack overflow logic) 278
In TLINK option (ignore default libraries) 342
name mangling 376
name spaces

scope and 372

Turbo C++ User's Guide

structures 413
C++ 413

names See also identifiers, See identifiers
qualified 461

Native command set option 27
near (keyword) 392, 576, 582
near functions See functions, near
near pointers See pointers, near
negation

logical (!) 425, 430
negative offsets 573
nested

classes 461
comments 281,351,352
conditional directives 511
if statements 76
loops 86
types 461

new (keyword)
recommended return value 205

new (operator) 452
arrays and 173, 453
constructors and 138
constructors and destructors and 469
destructors and 478
dynamic duration objects and 374
dynamic objects and 173
handling return errors 453
initializers and 454
malloc function and 205
overloading 454, 481
prototypes and 453
syntax 173

new lines
creating in output 59

__ new_handler (for new operator) 453
newline character (\n) 59
newline character's (\n)

creating in output 359
inserting 534

Next command
hot key 25, 26

next error
show 634

Next Error command
hot key 27

Index

NMAKE
'MAKE vs. 329

NMAKE (Microsoft's MAKE utility) 563
no linkage See linkage
No-Nonsense License Statement 13
.noautodepend MAKE directive 323
nocreate, ios data member 548
.noignore MAKE directive 323
nondefining declarations See declarations,

referencing
nonfatal errors See errors
nonzero digit 356
noreplace, ios data member 548
normalized pointers See pointers, normalized
normvideo, conbuf member function 542
.nosilent MAKE directive 323
.noswap MAKE directive 323
not equal to operator (!=) 73, 426, 436
NOT operator (!) 74,425,430
notation

postfix 63
prefix 63

NULL
pointers and 400
using 400

null
character See characters, null
directive (#) 503
inserting in string 534
pointers 400
statement 366, 442
strings 362

null character See characters, null
-num MAKE command 305
number of arguments 367
numbers See also constants; data types; floating

point; integers
base

setting for conversion 534
BCD SeeBCD
binary 50
converting See conversions
decimal

conversions 534
hexadecimal 356

backslash and 358

751

constants
too large 282

conversions 534
displaying 59,359

lines See lines, numbers
octal 356

backslash and 358
constants

too large 282
conversions 534
displaying 59, 359
escape sequence 359

random
generating 108

real See floating point
typecasting 62

numeric coprocessors See also floating point;
80x86 processors
auto detecting 599
built in 597
emulating 276
floating-point emulation 598
generating code for 276, 277
inline instructions 277
libraries

TLINK and 336
registers and 600

o
-0 TeC option (jump optimization) 280
-0 TeC option (object files) 286
/0 TLINK option (overlays) 342
.OBI files

compiling 286
converting .BGI files to 617
directories 291
duplicate symbols in 339
line numbers in 279

object files See .OBI files
object-oriented programming See C++
objects 369, See also c++

aliases 449
auto

destructors and 174
automatic 374

initializers 389
class names and 456

752

duration 373
dynamic 172

allocating and deallocating 174
destructors and 174
new operator and 173

far
class names 284, 584
combining into one segment 584
declaring 584
group names 285
option pragma and 584
segment names 284

hidden 373
initializers 389
list of declarable 378
modifiable 393
pointers 399

function pointers vs. 398
. static

destructors and 174
initializers 389

temporary 451
volatile 393

OBIXREF See The online document UTIL.DOC
oct, ios data member 548
oct (manipulator) 192; 533, 534
octal constants See constants, octal
octal digit 356
octal numbers See numbers, octal
offsets 576

component of a pointer 586
of stream (class) 553

base class 537
constructor 537
insertion operations 537

OK button 31
one-line functions

c++ 202
one's complement See operators, l's

complement
online help See help
OOP SeeC++
opcodes See assembly language
open

filebuf member function 544
fstream member function 545
fstreambase member function 546

Turbo C++ User's Guide

ifstream member function 547
of stream member function 554

open (function) 195
C++ formatting and 193

Open a File dialog box 633
Open command 633

hot key 25, 26
open file 631, 633, See also files
open mode See files, opening
open_mode, ios data member 548
openprot

filebuf data member 543
operating mode of screen See screens, modes
operator (keyword) 184

overloading and 480
operator functions See overloaded operators
operators 423, 423-426

1 's complement 64
l's complement (~) 425, 430
addition (+) 425, 432
address (&) 425, 429
AND (&) 64,425,436

truth table 436
AND (&&) 425, 437
arithmetic 60
assignment (=) 63, 425, 439

compound 439
overloading 484

associativity See asso.ciativity
binary 425

overloading 483
bit manipulation
. using 64

bitwise
AND (&) 425, 436

truth table 436
complement (~) 425, 430
inclusive OR (I) 425, 437

truth table 436
truth table 436
XOR (1\) 425, 436

truth table 436
C++ 424, See also overloaded operators

delete 452, See also delete (operator), See
delete (operator)
dereference pointers 426, 440

Index

get from (») See overloaded operators
new See new (operator)
pointer to member See operators, C++,
dereference pointers
put to «<) See overloaded operators
scope (::) 426, 452
scope resolution (::) 136, 138, 158

combining 63
conditional (? :) 426; 438
context and meaning 424
decrement (- -) 428
decrement (- -) 63, 425, 428
defined operator 511
division (I) 425, 431

rounding 432
equal to (==) 73
equality 426, 435
evaluation (comma) 426,440
exclusive OR (1\) 425, 436

truth table 436
exclusive OR operator (1\) 64
function call () 427
greater than (» 73
greater than or equal to (>=) 73
inclusive OR (I) 425, 437

truth table 436
increment (++) 63, 425, 427, 428
indirection (*) 425, 429

pointers and 402
inequality (!=) 426,436
less than (<) 73
less than or equal to «=) 73
list 424
logical

AND (&&) 74,425,437
negation (!) 425, 430
OR (I I) 74, 425, 437

MAKE 305, 327
manipulators See manipulators
modulus (%) 61,425,431
multiplication (*) 425, 431
NOT (!) 74
not equal to (!=) 73
one's complement See operators, l's

complement
OR (1\) 425, 436

truth table 436 ,

753

OR (I) 64, 425, 437
truth table 436

OR (I I) 425, 437
overloading See overloaded operators
postfix 426
precedence See also precedence

defined 60
rules 67
table 68

prefix 426
relational 72, 426, 433
remainder (%) 61,425,431
scope resolution (::) 205
selection (. and -» 426,427

overloading 485
structure member access and 411, 427

. shift bits «< and ») 64, 425, 433
size of 119, 430
subtraction (-) 425, 432
unary 64

overloading 482
unary minus (-) 425, 430
unary plus (+) 425, 430

Optimal Fill option 631, 633
optimizations

command':'line compiler options 279
precompiled headers 637
register usage 280

option pragma 517
far objects and 584

Options
. backward compatibility 292
C++ template generation

command-line option 290
options See spedfic entries (such as command­

line compiler, options)
OR operator 64

bitwise inclusive (I) 425, 437
truth table 436

logical (I I) 425, 437
ordinary member functions See member

functions, ordinary
ostream (class) 554

derived classes of 537
flushing 534

ostream_withassign (class) 555
ostrstream (class) 555

754

\

out, ios data member 548
out of memory error 571
ouC waiting, streambuf member function 557
output

C++
user-defined types 536

directing 613
functions 608

output formatting 548
overflow

conbuf member function 542
filebuf member function 544
strstreambuf member function 559

overflows
expressions and 423
flag 574

__ OVERLAY __ macro 521
overlays 587-596

assembly language routines and 593
BP register and 593
buffers

default size 592
cautions 593
command-line options (-Yo) 590
debugging 593
designing programs for 592
extended and expanded memory and 594
generating 279
how they work 588
large programs 587
memory map 589
memory models and 590, 592
predefined macro 521
routines, calling via function pointers 593
TLINK and 342

overloaded constructors See constructors,
overloaded

overloaded functions 132, 181
defined 457
templates and 491

overloaded operators 184,422,423,479-485
»(get from) 144, 196,535 .

complex numbers and 601
« (put to) 144, 196,200,531

complex numbers and 601
addition (+) 184
assignment (=) 484

Turbo C++ User's Guide

binary 483
brackets 484
class for 190
complex numbers and 601
creating 458
defined 200, 457
delete 481
functions and 422
inheritance and 481
new 454, 481
operator functions and 480
operator keyword and 480
parentheses 484
precedence and 422
restrictions 186
selection (-» 485
unary 482

overview
IDE menus and options 36

_ovrbuffer (global variable) 589, 592

p
-P

TCC option (C++ and C compilation) 286
TCC option (compile C++) 142

-p command-line option
Pascal calling conventions

main function and 527
-p command-line option (Pascal calling

convention) 394,519,521
cdecl and 395

Ip IDE option (EGA palette) See Enhanced
Graphics Adapter (EGA), palette, IDE option
(lp)

-p MAKE option (display rules) 300
-p MAKE option (ignore BUILTINS.MAK) 300
-p TCC option (Pascal conventions) 278
padding (C++) 534
pages

active
defined 620
setting 619

buffers 620
visual

defined 620
setting 619

Index

painting See graphics, filt operations
pair matching 631
palettes See graphics, palettes
paragraphs See memory, paragraphs
parameter-passing sequence, Pascal 278
parameterized manipulators 192
parameterized types 490
parameters See also arguments

default
constructors 471

ellipsis and 367
empty lists 383
fixed 406
formal 408

C++ 408
scope 408

function calls and 408
passing

C 392, 394
Pascal 392, 394

reference 203
variable 406

parentheses 365
as function call operators 427
macros and 365
nested

macros and 507
overloading 484

parity flag 574
parsing 350
Pascal·

calling conventions
compiler option (-p) 394
compiling main with 527

functions 394
identifiers 394

case sensitivity and 355
identifiers of type 278
parameter-passing sequence 278, 392
variant record types 415

__ P ASCAL __ macro 521
pascal (keyword) 392,394

function modifiers and 396
preserving case while using 394

_pascal (keyword)
fortran keyword and 568

755

pass-by-address, pass~by-value, and pass-by-var
See parameters; referencing and
dereferencing

Paste command
hot key 26

paste from Clipboard 630, 632
pasting See editing, copy and paste
.path directive (MAKE) 323
paths

.BGI files 91
pbase, streambuf member function 557
pbump, streambuf member function 557
pcount, ostrstream member function 556
peek, istream member function 552
period as an operator See operators, selection

(. and -» ,
PF87.LIB 336
phrase structure grammar See elements
place marker

find 631, 633
set 631, 634

PLANETS.CPP (sample program) 91
plasma displays

installing Turbo C++ for 17.
PLOTEMP.C (sample program) 220
pointer-to-member operators See operators,

C++, dereference pointers
pointers 113, 398, See also referencing and

dereferencing
advancing 402
arithmetic 116,402,577
assignments 400
base class

destructors and 478
C++ 449

reference declarations 403
to class members 426, 440
comparing 434, 436, 443, 577
, while loops 445

const 391
constants and 401
conversions See conversions
declarations 400
declarator (*) 367, 402
declaring 113,
default data 581
delete operator and 477

756

dereference 426, 440
far 392

adding values to 577
comparing 576
memory model size and 586
registers and 576

far memory model and 576
fast huge 277
format specifiers and 233
function 399

C++ 399
modifying 396
object pointers vs. 398
void 399

functions and 119
generic 383, 400
huge 277, 392, 577

comparing
!= operator 578
== operator 578

overhead of 578
huge memory model and 576
initializing 400
keywords for 392
manipulating 576
memory models and 576, 583
to memory addresses 586
modifiers 395, 582
near 392, See also segments, pointers

memory model size and 586
registers and 576

near memory model and 576
normalized 577
null 400
NULL and 400
operator (-»

overloading 485
structure and union access 411, 426, 427

overlays and 593
pointers to 399
range 52, 363
reassigning 400
referencing and dereferencing 429
segment 392, 582, 583
to self See this (keyword)
stack 573
strings and 115

Turbo C++ User's Guide

structure members as 411
structures and 116
suspicious conversion 282
typecasting 403
virtual table

32-bit 288
void 400

polymorphism 132
defined 126
example 214
virtual functions and 132, 214

pop-up menus See menus
portability warnings 283
portable code

bit fields and 415
positive offsets 573
postdecrement operator (- -) 425, 428
postfix operator ++

overload 483
postfix operator -

overload 483
postfix operators 426
postincrement operator (++) 425, 427
pptr, streambuf member function 557
pragma directives

templates and 498
#pragma exit

destructors and 477
#pragma hdrfile 636, 637
#pragma hdrstop 636, 638
#pragma directives 515

argsused 515
exit 515
hdrfile 516
hdrstop 517
inline 517
option pragma 517

far objects and 584
saveregs 518
startup 515
warn 519

precedence 422, See also associativity
command-line compiler options 267, 272

response files and 271
controlling 365
defined 60
expressions 420

Index

floating point 423
integer 423

overloading and
operators 422

rules 67
table 68

.precious directive (MAKE) 323
precision, ios member function 549
precompiled headers 635-638

command-line options 286
. controlling 636
drawbacks 636
how they work 635
inline member functions and 636
optimizing use of 637
rules for 637
storage file 516

predecrement operator (- -) 425, 428
predefined macros See macros, predeffned
Preferences dialog box 633
prefix operators 426
preincrement operator (++) 425, 428
preprocessor directives See also directives, See

directives
introduced 45

previous error
show 634

Previous Error command
hot key 27

Previous Topic command
hot key 26

printablecharacters 59
printbase characters 59
printers

streams 122
private (keyword) 140

classes and 141
data members and member functions 463
derived classes and 464
unions and 417

PRJ2MAK See The online document UTIL.DOC
.PRJ files See projects
PRJCFG See The online document UTIL.DOC
PRJCNVT See The online document UTIL.DOC
procedures See functions
producer (streams) 529
profilers 593

757

program manager (MAKE) See MAKE
(program manager)

Program Reset command 250
hot key 27

Programmer's Platform See Integrated
Development Environment

Programmer's Workbench
integrated environment and 561 .

programming
object-oriented 125

programs
basic operations 44
C++ See C++
creating 349
designing 87, 241
multi-source See projects
multifunction 91
multiple

debugging 241
performance

improving 389
prototypes and 220, 222
robust 243
size

reducing 389
solar system 91
swap 120
testing 242
transfer

. list 259
very large

overlaying 587
project files 33

contents of 34
Project Manager See projects
Project Notes window 263
projects
. automatic dependency checking and 257

building 251
changing 35
classes and 148
default 35
desktop files and 35, 33-35
directories 254
directory 34
error tracking 255, 256

758

files
adding 253
deleting 253
graphics library listed in 614
include 253
information 258
list 253
options 253
out of date 257

IDE configuration files and 34
include files 253
information in 251
libraries and

overriding 260
loading and opening 34
makes and 257
making

hot key for 256
Microsoft C and 561
naming 252
new 253
notes 263
saving 254
translators See also Transfer

default 258
example 259
multiple 258
specifying 259

promotions See conversions
protected (keyword) 141,212

data members and member functions 463
derived classes and 464
unions and 417

protected mode 14
command-line compiler 266
DPMIMEM variable 15
DPMIRES utility 16

prototypes 88, 405-407
arguments and

matching number of 409
C++ 404
ellipsis and 406, 409
examples 405, 406
function calls and 408
function definitions and

not matching 409
header files and 406

Turbo C++ User's Guide

introduced 48
libraries and 409
mixing modules and 587
new operator and 453
scope See scope

pseudovariables
register 354

using as identifiers 281
public (keyword) 141,211

data members and member functions 462
derived classes and 464
unions and 417

Public option
C++ Virtual Tables

command-line option 288
pull-down menus See menus
punctuators 365, 365-368
pure specifier 381
pure virtual functions

specifying 486
put

ostream member function 554
put (function) 192
put to operator «<) See overloaded 'operators,

«(put to)
putback, istream member function 552
putch (function)

characters and 71
puts (function)

strings and 72

Q
-Q TCC options (expanded memory) 287
qualified names 461
question mark

colon conditional operator 426, 438
displaying 59, 359

Quit
command (IDE) 23

quotes
displaying 59, 359

R
\r (carriage return character) 59,359
/ r IDE option (RAM disk) See RAM disk, IDE

option (/ r) and

Index

-r TCC option (register variables) 280
radio buttons 31
RAM

Turbo C++'s use of 571
RAM disk

IDE option (lr) and 22
random (macro) 108
random numbers See numbers, random
range errors, arrays 106
ranges

floating-point constants 361
-rd option (register variables) 280
rdbuf

constream member function 543
fstream member function 545
fstreambase member function 546
ifstream member function 547
ios member function 550
of stream member function 554
strstreambase member function 559 ,

rdstate, ios member function 550
rdstate (member function) 195
read, istream member function 552
read block 630
README 17
README.DOC 14
real numbers See floating point
rebuilding libraries 279
records See structures
recursive functions

memory models and 585
redirection

operators
MAKE 305

redo 631
Redo command

hot key 26
reference declarations 403

position of & 383, 450
reference parameters 203
reference types 165
references

forward 370
referencing and dereferencing 203, 429, See also

peinters
asterisk and 367
C++ 449

759

functions 450
simple 450

pointers 426, 440
referencing declarations See declarations
register (keyword) 389

class members and 457
external declarations and 380
formal parameters and 408
local duration and 374
using 102

registers
AX 573
base point 573
BP573

overlays and 593
BX573
C5574,576
CX573
DI573
D5574,576

_loadds and 396
DX573
E5574
flags 572, 573
hardware

bit fields and 415
iAPx86 572-574
index 573
interrupts and 393
IP (instruction pointer) 572
LOOP and string instruction 573
math operations 573
numeric coprocessors and 600
pseudovariables 354

using as identifiers 281
. saving with huge functions 518
segment 573, 574
51573
5P573
special-purpose 573
55574
values

preserving 396
variable declarations and 389
variables 280, 389

suppressed 280
toggle 280

760

relational operators See operators, relational
relative position

C++ and 197
remainder operator (%) 61,425,431
Remove Messages command 257
resetiosflags (manipulator) 192,533,534
resize corner 28
resolution See screens, resolution
response files

defined 271, 333
option precedence 271
TLINK and 333

return
statements

functions and 447
maximum number 94

types 405
values 48

functions 90
right, ios data member 548
Ritchie, Dennis See Kernighan and Ritchie

(K&R)
robust programs 243
rounding

banker's 604
direction

division 432
errorS 602

routines, assembly language See assembly
language

run bar 224
Run command

hot key 27
rvalues 371, See also lvalues

5
/s IDE option (thrash control) See thrash

control, IDE (/s) and
-s MAKE option (don't print commands) 300
-5 MAKE option (swap MAKE out of memory)

300
-5 TCC option (produce .ASM but don't

assemble) 286
sample programs

INTR02.CPP 48
PLANET5.CPP 91
PLOTEMP.C 220

Turbo C++ User's Guide

Save command
hot key 25, 26

save file 631,633
saveregs pragma 518
_saveregs (keyword) 392,396

uses for 396
sbumpc, streambuf member function 557
scalar data types See data types
scaling factor

graphics 619
scanf (function)

»operator and 535
scientific, ios data member 548
scope 99, 371-373, See also variables; visibility

block 372
block statements and 441
C++ 373, 488-490

data members 147
functions 136
hiding 488
operator (::) 426,452
rules 489

classes 372
names 456

enclosing 488
enumerations 372

C++ 419
extern keyword and 100
file 372

static storage class specifier and 375
formal parameters 408
function 372

prototype 372
function variables 90
global 372
global declarations and 94
global variables and 100
gotoand 372
identifiers and 355
local

duration and 374
members 460-463
name spaces and 372
pointers 400
resolution operator (::) 136, 138, 158,205
side effects and 100
storage class specifiers and 389-391

Index

structures 372
unions 372
variables 372
visibility and 373

screens See also graphics; text; windows
aspect ratio 619
attributes, controlling 609
cells

attributes 612
blinking 613

characters in 605
colors 612

clearing 619
colors 612, 622 ,
coordinates 607

starting positions 606
cursor

changing 610
manipulating 608

LCD
IDE option See LCD displays, IDE option
(/1)
installing Turbo C++ for 17

modes
controlling 609
defining 605
graphics 606, 614, 616
selecting 616 ,-
text 605, 611, 616

plasma
installing Turbo C++ for 17

resolution 606, See also graphics, pixels
streams 122
using two See monitors, dual
viewports See graphics

scroll bars 28, 29
Search Again command

hot key 26
search and replace See searching
search for text 631
search.h (header file) 567
searches

#include directive algorithm 509
searching

include files 294
libraries 294

seek_dir, ios data member 548

761

seekg, istream member function 553
seekoff

filebuf member function 544
streambuf member function 557
strstreambuf member function 560

seekp, ostream member function 555
seekpos, streambuf member function 557
_seg (keyword) 392, 582, 583

_segment keyword and 568
segment-naming control

command-line compiler options 284
segment:offset address notation 575

making far pointers from 586
_segment (keyword) 568
segmented memory architecture 574
segments 575, 578

component of a pointer 586
controlling 284
map of

ACBP field and 341
TLINK and 341

memory 574
pointers 392, 582, 583
registers 573, 574
uninitialized

TLINK and 340
_segname (keyword) 568
selecting text 631
selection

operators See operators, selection
statements See if statements; switch
sta.tements

self See this (keyword)
_self (keyword) 568
semicolon (for empty loops) 83
semicolons 366, 442
sequence

classes See classes, sequence
setb, streambuf member function 557
setbase (manipulator) 192,533,534
setbkcolor (function)

CGA vs. EGA 625
setbuf

filebuf member function 544
fstreambase member function 546
streambuf member function 557
strstreambuf member function 560

762

setcursortype, conbuf member function 542
_setcursortype (function) 610
setf

constants used with 547
setf (function) 534
setf, ios member function 550
setfill (manipulator) 192, 533, 534
setg, streambuf member function 557
setiosflags (manipulator) 192,533,534
set_new _handler (for new operator) 453
setp, streambuf member function 558
setprecision (manipulator) 192,533,534
setstate, ios member function 550
setw (manipulator) 192,533,534
sgetc, streambuf member function 558
sgetn, streambuf member function 558
shift bits operators «< and ») 64, 425, 433
short integers See integers, short
shortcuts See hot keys
showbase, ios data member 548
showpoint, ios data member 548
showpos, ios data member 548
51 register 573
side effects 100

macro calls and 508
sign 356

defined 53
extending 359

conversions and 386
flag 574

signature, function 162
signed (keyword) 384
.silent MAKE directive 323
single quote character

characters and 72
displaying 59,359

sink (streams) 529
size_t (data type) 431,481,482
sizeof (operator) 119,430

arrays and 431
classes and 431
example 371
function-type expressions and 431
functions and 431
preprocessor directives and 431
unions and 416

skipws, ios data member 548

Turbo C++ User'S Guide

__ SMALL __ macro 519
small code See memory models
Smalltalk

c++ vs. 127
Smart option

C++ Virtual Tables
command-line option 287,289

snextc, streambuf member function 558
software See programs
software license agreement 13
software requirements to run Turbo C++ 3
solar system

program 91
sounds

beep 59
source (streams) 529
source code 349
source files

.ASM
command-line compiler and 265

multiple See projects
source-level debugg~r See Turbo Debugger
Source Tracking options 256
SP register 573
special-purpose registers (iAPx86) 573
specifiers See type specifiers
speed

optimization 279
splicing lines 350, 363
sputbackc,. streambuf member function 558
sputc, streambuf member function 558
sputn, streambuf member function 558
SS register 574
_ss (keyword) 392,582
stack

overflow 278
pointers 573
segment 574
standard frame

generating 277
standalone utilities See MAKE (program

manager); TLIB (librarian); TLINK (linker)
standard conversions See conversions
standard library files See libraries
standard stack frame

generating 277

Index

start-up and exit
command-line compiler 266
IDE 20

startup code (TLINK) 335
startup modules for memory models 337
startup pragma 515
state, ios data member 547
state queries 626-628
statement~ 441-448, See also break statements;

if statements; switch statements, See also
individual statement names
assembly language 441
block 441

marking start and end 365
default 444
defined 46
do while See loops, do while
expression 366, 442
for See loops, for
if See if statements
iteration See loops
jump See break statements; continue

statements; goto statements; return
statements

labeled 442
null 442
syntax 441
while See loops, while

static
duration 373
functions 375
members See data members, static; member
functions, static
objects See objects, static
variables See variables, static

static (keyword) 101,390
linkage and 375

static binding See C++, binding, early
_status87 (function)

floating point exceptions and 600
status line 30
stdarg.h (header file)

user-defined functions and 406
__ STDC __ macro 521

#define and #undef directives and 506
stderr, functions of See streams
stdin, functions of See streams

763

stdio, ios data member 548
stdio.h (header file)

stream.h vs. 200
stdout, functions of See streams
Step Over command

debugging·and 224
hot key 25, 27

storage class
identifiers and 371
specifiers 389

functions and 376
linkage and 375
static

file scope and 375
stossc, streambuf member function 558
str

ostrstream member function 556
strstream member function 560
strstreambuf member function 560

strcmp (function)
example 86

stream.h
stdio.h vs. 200

streambuf 189
streambuf (class) 530, 556

derived classes of 530
streams

binary
opening 123

C++ 188-196

764

cin, cout, and cerr 189
classes and 529
clearing 534
cout

flushing 201
data types 532
defined 144, 529
errors 537
file buffers 195
file class 529
flushing 534
formatted I/O 530
library 188
manipulators and See manipulators
memory buffer class 529, 530
open function and 195
output 531

string class 529
tied 550

default 122
defined 122
functions of 122
keyboards 122
opening 122, 124
preopened 122
printers 122
screens 122
standard

table 122
text

opening 123
using

example program 123
strings

arrays and 108
characters and 72
clipping 621
concatenating 184, 362
continuing across line boundaries 363
converting arguments to 508
defined 71
displaying 71, 72
empty 362
inserting terminal null into 534
inspecting 230
instructions

registers 573
literal 71, 350, 362

merging 275
memory and 71
null 362
null character and 108
pointers and 115
puts and 72
scanning

while loops and 445
streams

C++ 538
streams and 529

strlen (function)
example 86

stroked fonts See fonts
strstrea.h (header file)

string streams and 538

Turbo C++ User's Guide

strstream (class) 560
strstreambase (class) 558
strstreambuf (class) 559
struct

default access 103
keyword

introduction 103
struct (keyword) 410, See also structures

c++ and 411, 456
structures 409-415

access
C++ 464
classes vs. 141

ANSI violations 282
bit fields See bitJields
Turbo C++ versus Microsoft C 569
C++ 455, See also classes

Cvs.456
classes vs. 129
complex 601
declaring 410
defined ·111
functions and 411
incomplete declarations of 414
indeterminate arrays. and 404
initializing 387
inspecting 230
member functions and 411
members ,

access 411, 427, 463
as pointers 411
C++ 411
comparing 434
declaring 410
defined 111
names 413

memory allocation 413
name spaces 372, 413
pointers and 116
tags 410

typedefs and 410
typedefs and 410 .
undefined 282
unions vs. 415
untagged 410

typedefs and 410
within structures 411

Index

word alignment
memory and 413

zero length 282
subscripting operator See brackets
subscripts for arrays 365, 426

overloading 484
subtraction operator (-) 425, 432
suppressing load operations 280
swap (example) 119
.swap MAKE directive 323
switch statements 77-79, 444

break See break statements
case statement and

duplicate case constants 444
default label and 444

switches See command-line compiler, options
.SYM files 635, 636

default names 636
disk space and 637
smaller than expected 637

symbolic
constants See macros
debugger See Turbo Debugger

symbols
action See TLIB
duplicate

warning (TLINK) 339
sync, filebuf member function 544
sync, strstreambuf member function 560
sync_with_stdio, ios member Junction 550
syntax

assembly language statements 441
classes 455
declara.tions 377, 378
declarator 398
delete operator 174
directives 502
errors

project files 255, 256
expressions 421
IDE command line 20
inline functions 180
MAKE 299
manipulators 534
new operator 173
statements 441
templates 490

765

TLINK332
Syntax Highlighting 42
Syntax highlighting 36
syntax highlighting

IDE 37
system

resources 121
system control, graphics 615
System menu ('=) 23
system requirements 3

T
\t (horizontal tab character) 59,359
-T- TCe option (remove assembler options)

287
It TLINK option

default to .COM 343
generate .COM file 335, 343

'this' pointer in 'pascal' member functions 292
tab (manipulator) 197
tab characters 59
Tab mode 634
tables, virtual See virtual tables
Tabs mode 631
tags

enumerations 418
name spaces 419

structure See structures, tags
TASM See Turbo Assembler
taxonomy

defined 131
types 382

TC and TCC See Turbo C++; command-line
compiler; integrated environment

TC.EXE See integrated environment
TCC.EXE See command-line compiler
TCCONFIG.TC See configuration files, IDE
TCDEF.DPR files 35
TCDEF.DSK files 35
TCDEF.SYM 286,516,635,636, See also .SYM

files
__ TCPLUSPLUS __ macro 521
lTd LINK options (target file) 343
TDSTRIP

TLINK and 344
technical support 7
tellg, istream member function 553

766

tellp, ostream member function 555
TEML See The online document UTIL.DOC
temperature-plotting program 220
template function 492
templates 490, See also syntax

angle brackets 495
arguments 494
class 493
compiler switches 497
eliminating pointers 496
function 490

implicit and explicit 492
instantiation 492
overriding 492

generation 290
macro 521
type-safe

generic lists 495
using switches 498

__ TEMPLATES __ macro 521
temporary objects 451
tentative

definitions 377
testing software 242
text See also editing

bl~c.ks See also editing, block operations, See
edItmg: bl~ck operations

movmg m and out of memory 608
capturing to memory 608 .
colors 612
entering

in dialog boxes 32
in graphics mode 620
information on current settings 628
justifying 621
manipulation

functions 608
onscreen 608
output and 608

mode types 611
output

header file 607
reading and writing 608
scrolling 608
strings

clipping 621
size 621

Turbo C++ User's Guide

writing to screen 608
text files See also editing

opening 123
textattr, conbuf member function 542
textbackground, conbuf member function 542
textcolor, conbuf member function 542
textmode

conbuf member function 542
constream member function 543

textmode (function) 607
THELP See The online document UTIL.DOC
32-bit code 338
this (keyword) 186

nonstatic member functions and 457
static member functions and 459

thrash control
IDE (Is) and 22

threshold size
far global variables

setting 276
tie, ios member function 550 .
tied streams 550
Tile command

hot key 26
time See also date

macro 521
__ TIME __ macro 521

#define and #undef directives and 506
_"':TINY __ macro 519
tiny memory model See memory models
title bars 28
TLIB (librarian)

classes and 148
TLINK (linker)

ACBP field and 341
assembler code and 338
.COM files and 343, 344
command-line compiler and 337
debugging information 344
executable file map generated by 340
floating-point libraries 336
graphics library and 336
initialization modules 335
invoking 331
LIB environment variable and 562
libraries 336
LINK (Microsoft) versus 566

Index

memory models and 334
Microsoft C and 565
numeric coprocessor libraries 336
options 338

case sensitivity (I c) 338
.COM files (It) 335,343
.COM files (lTd) 343
debugging information (Iv) 344
duplicate symbols warning (ld) 339
executable files (lTd) 343
expanded memory (lye) 344
extended dictionary (I e) 339
extended memory (I yx) 345
file extension 333, 335
libraries, ignoring (In) 342
line numbers (11) 340
map files (1m)

debugging 341
public symbols in 341
segments in 341

In
(ignore default libraries) 342

overlays (10) 342
Is

(map files) 340
source code line numbers (11) 340
target files 343
lTd

(target files) 343
32-bit assembler code and (13) 338
tiny model.COM files (It) 335
uninitialized trailing segments (Ii) 340
Iv

(debugging information) 344
Ix

(map files) 340
lye

(expanded memory) 344
Iyx

(extended memory) 345
response files 333

example 334
starting 331
startup code 335
syntax 332
target file option (lTd) 343
using directly 586

767

TLINK (linker)
segment limit 691

TLINK (linker)
warnings

defined 642
, list 642

Toggle Breakpoint command
hot key 27

tokens
continuing long lines of 508
kinds of 352
parsing 350
pasting 351, 507
replacement 503
replacing and merging 368

Topic Search command
hot key 26

Topic search in Help 631
Trace Into command

debugging and 225
hot key 25, 27

trailing segments, uninitialized 340
Transfer See also projects, translators

command 23
dialog box

projects and 259
transfer programs

list 259
translation units 375
translators See projects, translators
trap flag 574
TRIGRAPH See The online document

UTIL.DOC
trunc, ios data member 548
truth table

bitwise operators 436
-Tstring TCC option (pass string to assembler)

287
Turbo Assembler

Turbo C++ command-line compiler and 270
command-line compiler and 265
default 286
invoking 270
TLINK and 338

Turbo C++ See also C++; C language; keywords
Cand278
converting to from Microsoft C 561-569

768

exiting 14
implementation data 3
installing 14-17
project files and 258
quitting 23
starting 14
starting up 20

Turbo Debugger
described 279

Turbo Editor Macro Language compiler See
The online document UTIL.DOC

Turbo Profiler 593
__ TURBOC __ macro 522
TURBOC.CFG 271
tutorials

C++ 199-215
debugging 217-250

type-safe
lists 496

type specifiers
elaborated 456
pure 381

type taxonomy 382
typecasting

defined 62
pointers 403

typed constants See constants
typedef (keyw'ord) 109, 390

name space 372
structure tags and 410
structures and 410

typedefs
untagged structures and 410

typefaces used in these books 6
types See data types
typographic conventions 6

u
-U MAKE option (undefine) 300
-U TeC option (undefine) 274, 505
-u TCC option (underscores) 278
UINT_MAX (constant) 433
ULONG_MAX (constant) 433
unary operators 425, See operators, unary

minus (-.,.) 425,430
plus (+) 425, 430
syntax 428

Turbo C++ User's Guide

unbuffered, streambuf member function 558
unconditional breakpoints See watch

expressions
#undef directive 504

global identifiers and 506
!undef MAKE directive 328
underbars See underscores
underflow

filebuf member function 544
strstreambuf member function 560

underscores 278
generating 392
generating automatically 278
ignoring 392

undo 631
Undo command

hot key 26
unindent

block 630
mode 631, 634

uninitialized data segment See data segment
union (keyword)

c++ 456'
unions 415

anonymous
member functions and 416

base classes and 464
bit fields and See. bit fields
C++ 417,455

Cvs.456
classes and 417
constructors and destructors and 469
declarations 417
initialization 387, 417
inspecting 230
members

access 427, 463
name space 372
sizeof and 416
structures vs. 415

unitbuf, ios data member 548
units, translation See translation units
UNIX

keywords
using 281

,porting Turbo C++ files to 281
unse~f (function) 534

Index

unsetf, ios member function 550
unsigned (keyword) 384
untagged structures See structures, untagged
uppercase, ios data member 548
user-defined formatting flags 551
User Screen

command 224
debugging and 224
hot key 26

user-specified library files 291
UTIL.DOC 622
utilities See also The online document

UTIL.DOC

v
-v

option (debugging information) 340
TCC option (debugging information) 278

\ v (vertical tab character) 59, 359
-Vand-Vn TCC options (C++ virtual tables)

287
Iv TLINK option (debugging information) 344
-Va TCC option (class argument compatibility)

292
-Vb TCC option (virtual base class pointer

compatibility) 292
-V c TCC option (derived class with pointer to

inherited virtual base class member function)
292

-Vm TCC options (C++ member pointers) 289
-Vp TCC option ('this' pointer in 'pascal'

member functions compatibility) 292
-Vt TCC option (virtual table pointers) 293
- Vv TCC option (pointers to virtual base class

members) 293
value, passing by See parameters
values

comparing 433
var, passing by See parameters
varargs.h (header file) 567
variable argument list 278
variable number of arguments 367
variables See also scope

assignment statements 56
automatic 101, See also auto (keyword)

word-aligning 275
communal 275

769

declaring 55, 388
declaring anywhere (C++) 202
default values 56
evaluating 232
external 389
global See global variables

far 276
initializing 55, 388
instances and objects and 134
internal linkage 390
local 99
name space 372
naming 57, 58, 242
pointers and 112
pseudo See pseudovari"ables
register 280, See also registers, variables
sharing 94
signed and unsigned 53
static 101
volatile 393
watching 237

variant record types See unions
vectors, interrupt See interrupts
vertical tab 359
vertical tab character (\ v) 59
-vi option (C++ inline functions) 279
video adapters See also Color / Graphics

Adapter (eGA); Ep.n.anced GraprJcs ~A .. dapter
(EGA); graphics drivers; Video Graphics
Array Adapter (VGA)
graphics, compatible with Turbo C++ 615
modes 605
output

directing 613
using 605-628

Video Graphics Array Adapter (VGA) See also
graphics drivers; video adapters
color control 625

viewportsSee graphics
virtual

base classes See classes, base, virtual
destructors See destructors, virtual
functions See member functions, virtual

virtual (keyword) 163
constructors and destructors and 468

" functions and 485

770

virtual base class
hidden pointer to 292
pOinters to 293

virtual functions See also member functions,
virtual
hidden members in derived classes with
pointers to 292
specifying pure 486

virtual table pointers
compatibility 293

virtual tables
32-bit pointers and 288
controlling 287
storing in the code segment 288

visibility 373, See also scope
C++ 373
pointers 400
scope and 373

visual page
defined 620
setting 619

void (keyword) 383
defined 88
function pointers and 399
functions and 406
interrupt functions and 393
pointers 400
typecasting expressions and 383

volatile (keyword) 391, 393
formal parameters and 408

VROOMM 588, See also overlays

w
-w MAKE option (save options) 300
-wxxx TCC options (warnings) 282
warn pragma 519
warning beep 59
warnings See also errors

C++ 283
command-line options 282-284
Compile-time 640
defined 640
disabling 515
enabling and disabling 282
frequent errors 283
TLIB 642
messages 5

Turbo C++ User's Guide

options 282-284
overriding 519
portability 283
pragma warn and 519
TLINK·

defined 642
TLINK (list) 642

watch expressions 237, See also debugging
Watch menu 237
watches

deleting 239
editing 239
setting 237

wchact (wide character constants) 360
arrays and 388

wherex, conbuf member function 542
wherey, conbuf member function 542
while loops See loops, while
whitespace 350

comments and 352
comments as 350
extracting 534

wide character constants (wchar_t) 360
width, ios member function 550
WILDARGS.OBJ 525
wildcards

expansion 525
by default 526
from the IDE 526

MAKE and 309
window

conbuf member function 542
constream member function 543

window (function)
default window and 606
example 611

windows
active

erasing 608
Call Stack 240
controlling 609
creating 609
debugging 239
default type 606
defined 606

Index

Edit See Edit, window
Help See Help
Inspector 229
managing

header file 607
output in 609
scrolling 608
text

creating 611
default size 610

using IDE 26, 27, 28, 29, 30
word

delete 630
mark 630

word aligning
integers 275.

word alignment 413
memory and

structures 413
write (function) 192
write, ostream member function 555
write block 630
writing a wrapper class 495
ws (manipulator) 192, 534
_wscroll (global variable) 608
-wxxx TCC options (warnings) 282-284

warn pragma and 519

x
x_fill, ios data member 547
x_flags, ios data member 547
x_precision, ios data member 547
x_tie, ios data member 548
x_width, ios data member 548
Ix IDE option (extended memory) See

extended memory, IDE option (Ix) and
-x TCC option (disable auto dependency

information) 279
xalloc, ios member function 550
\xH (display a string of hexadecimal digits) 359
XOR operator (A) 425, 436

truth table 436

771

v
-y

command-line compiler option (compiler
generated code for overlays) 592
Tee option (overlays) 279, 521

-y Tee option (line numbers) 279
lye TLINK option (expanded memory) 344
-Yo option (overlays) 590
-Yo Tee option (overlays) 279
Iyx TLINK option (extended memory) 345

772

z
zero 'flag 574
zoom box 28, 29
Zoom command

hot key 25, 26
-zV options (far virtual table segments) 285
-zX options (code and data segments)· 284, 285,

584

Turbo C++ User's Guide

3.0

Borland®
Copyright © 1998 Borland International , Inc. All rights reserved. All Borland product names are trademarks of Borland International, Inc.
Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066·3249, (408) 431-1000. Internet: http ://www.borland~com/ Offices in :
Australia, Canada, Chile, France, Germany, Hong Kong , Japan, Latin America, The Netherlands, Singapore, Taiwan , and United Kingdom.
Part #14MN·CPP01·30 • BOR 10560

