
Kelly-Bootle 

s 

i: y 

> B 
en E ....._ 
rrl x ::a -z 
C') 

-I c: 
::a 
m 
0 
n 

595-6 



MASTERING 
TURBOC 







Cover design by Thomas Ingalls + Associates 
Cover photography by David Bishop 
Book design by Julie Bilski 
Illustrations by Jeff Giese 
Screen reproductions produced by XenoFont 

AT&T and UNIX are trademarks of American Telephone and Telegraph Co. (Bell Laboratories). 
Turbo C is a trademark of Borland International, Inc. 
Hercules Graphics Adapter is a trademark of Hercules Computer Technology. 
Intel is a trademark of Intel Corporation. 
IBM, IBM PC, PC/AT, PC/XT, PS/2, PC-DOS, and PCjr are trademarks of International Business 
Machines Corporation. 
Microsoft and MS-DOS are trademarks of Microsoft Corporation. 
WordStar is trademark of MicroPro International Corporation. 
Spartan XX is a trademark of Supreme Technetronics Corporation. 
XenoFont is a trademark of XenoSoft. 

SY BEX is a registered trademark of SYBEX Inc. 

SYBEX is not affiliated with any manufacturer. 

Every effort has been made to supply complete and accurate information. However, SYBEX assumes 
no responsibility for its use, nor for any infringements of patents or other rights of third parties which 
would result. 

First edition copyright©l 988 by SYBEX, Inc. 

Copyright©l 989 SYBEX Inc., 2021 Challenger Drive #100, Alameda, CA 94501. World rights 
reserved. No part of this publication may be stored in a retrieval system, transmitted, or reproduced 
in any way, including but not limited to photocopy, photograph, magnetic or other record, without 
the prior agreement and written permission of the publisher. 

Library of Congress Card Number: 89-80007 
ISBN 0-89588-595-6 
Manufactured in the United States of America 
109876 



To my wife, lwonka 





~ ACKNOWLEDGMENTS ~ 

I would like to thank a wonderful crew at SYBEX who used sticks and car­
rots in the gentlest fashion. Dr. Rudolph Langer, one of those rare executives 
in computer-book publishing who knows computers and loves all books, 
first trapped me into this project. Now that it's complete, I am glad he was so 
persuasive. 

Vincent Leone was my developmental editor; my thanks to him for his 
constant support and guidance, not excluding the spotting of all my missing 
semicolons (I hope) and unwanted commas. 

A word of praise to artists Julie Bilski and Charlotte Carter, Cheryl Vega in 
typesetting, and Sylvia Townsend for proff-redink. Appendix G received spe­
cial help from Michael J. Young, whose own SYBEX book, Systems Program­

ming in Turbo C, is a natural sequel to mine. I am grateful to Rhoda 
Simmons, Eric Stone, Hilda Van Genderen, and Nancy O'Donnell for their 
copyediting and proofreading and to Ted Laux, king of the DP indexers. 
Wayne Black was the technical reviewer for this book, Chris Mackel pro­
vided timely typing, and Jocelyn Reynolds and Bob Myren did the word 
processing. 

The SYBEX people who worked on the second edition were Vincent 
Leone, developmental editor; Rhoda Simmons, copy editor; Chris Mackel 
and Jocelyn Reynolds, word processors; Olivia Shinomoto, typesetter; Ami 
M. Knox, proofreader; Helen Bruno, artist; Jon Forrest, technical reviewer; 
and Ted Laux, indexer. 

Finally, I want to thank the good people at Borland International, Brad 
Silverberg, Pat Williams, and Nan Borreson in particular, for their fine prod­
ucts and unfailing support. 





..... TABLE OF CONTENTS ..... 

... Foreword ... 

... Introduction ... 
History Lesson 

Success 
Turbo Pascal Rules OK! 

But C Is Different... 
The C Mystique 
WhyC? 

Enter Turbo C 
Join the Elite 

... CHAPTER 1: First Faltering Steps ... 
Source Code-Extension .C 
Directives and Include Files 
Object Code-Extension .OBJ 
Executable Code-Extension .EXE 

The Mandatory First Program 
Installation Reminder 
Exploring the Integrated Development Environment 

The Small Print Enlarged 
Keys-Hot and Cold 
The Main Menu 

Loading Your First Program 
Other Loading Options 
Editing and Saving a File 

Directory and Change Dir 
Setting/Saving the Compiler/Linker Options 

Running HELLO.C 

The Run Itself 
HELLO.C-Anatomy Lesson 

Comments (Line 1) 

xxi 

xxiii 

xxiii 
xxiii 
xx iv 

xx iv 
xx iv 
xxv 
xxvi 

xxvii 

1 

2 
3 
3 
4 
4 
5 
5 
6 

10 
11 

15 

15 

16 
16 
19 

19 
19 

20 



x 

White Space (Lines 2 and 4) 21 
Include Directive (Line 3) 21 
The main() Function (Line 5) 21 
Block Markers (Lines 6 and 8) 23 
The printf() Function Call (Line 7) 24 
The Escape Sequence (Line 7) 25 
A Detour into Data Types 27 
Statement Terminator (Line 7) 28 
Statements and Expressions-Another Necessary Detour 28 

HELLO.C Summary 30 
Errors 31 

Compile-Time Errors 31 
Run-Time Errors 31 

Using the Turbo C Editor 32 
Basic Editing Functions 33 

HELLO.C Variations 34 
Compiling HELLOl .C 35 
Error Correction (If Any) 35 
Linking HELLOl .C 35 
Making HELLOl .EXE 35 

HELL02.C 36 
Identifier Rules 37 
Substitution String Rules 38 
Defining Macros 38 
On Your Own 40 

... CHAPTER 2: Data Typology ... 43 

Why Data Types? 43 
Integer Variables 44 

int and long 44 
Short Integers 45 
Signed Integers 45 
Unsigned Integers 46 

Integer Declaration Syntax 46 
Type Specifiers 47 
Multiple Declaration 47 

Integer Variable Assignments 48 
The Assignment Symbol 49 



Increments and Decrements 
Compound Assignments 
Assignment Values and Multiple Assignments 
Precedence and Associativity 

Precedence Categories 
Warning on the Lack of Warnings 
Initialization of Variables 
Integer Constants 

Hexadecimal, Decimal, and Octal Constants 
Displaying Integers 

printf() Format Control Strings 
Making Your Own Functions 

Anatomy of the dispnum() Function 

Calling the dispnum( ) Function 
The cube() Function Analyzed 

Unused Variables Warning 
Duplication of Variable Identifiers 
Storage Classes-First Steps 

Summary of Chapter 2 

~ CHAPTER 3: Real Numbers and Strange Characters 
Beyond the Integers 

Integer Accuracy 

The Floating-Point Solution 
Arithmetical Operations 

Integer Division, Remainder and Modulus 
Floating-Point Data Types 

Floating-Point Declarations 

Floating-Point Pros and Cons 
More Internal Conversions 
Speeding FP with Math Coprocessors 
Floating-Point Constants 
Floating Point in Action with printf() 

SHOWNUMF.C 
fsquare() Declaration and Definition 
Conversion of Arguments 

Data Type char 
The Hidden Truth about char 

xi 

50 
51 
52 
53 
55 
57 
58 
59 
59 
61 
61 
64 
66 
66 
67 
68 
69 
69 
70 

~ 75 

75 
75 
76 
77 
77 
80 
81 
81 
82 
83 
84 
85 
87 
88 
90 
90 
90 



xii 

The Sign of a char 91 
The Default Sign for char 91 
More Arithmetic with char 92 

Brief Logical Detour 92 
The Truth about C 93 

Back to Data Type char 94 
From char to int and Back 94 
Precanned char Aids 97 

Arrays 97 
Initializing Arrays 99 
The Name of the Pointer 100 
Pointer Size and Memory Models 101 
Pointer Awareness 101 
The Big BUT. .. 102 
Pointer Declarations 103 
Pointer Power 103 

Keyboard Input 104 
Keyboard Input Using scanf() 104 

Summary of Chapter 3 106 

... CHAPTER 4: Controlling the Flow ... 111 

Control Flow Statements 111 
The Importance of Being Structured 111 
The goto Statement 113 

The goto Syntax 113 
The if, else, and else if Statements 114 

Poor Dangling Else-the if ... else Pitfall 115 
The else-if Format 117 

Analysis of CHKIP.C with Experiments 117 
Type Casting 117 

Detour to Formal Conversion Rules 121 
Assignment Conversions 122 

Back to CHKIP.C-Prototypes and getche() 124 
Conditional Expressions-Shorthand Using? and : 125 
The while Loop 128 
Analysis of KEYCNT.C 131 

The Busy while 132 
Pointer Arithmetic and the sizeof Operator 134 



xiii 

Portability and sizeof 135 
Pointer Sums with sizeof 135 

Philosophical Interlude 135 
The do ... while Loop 136 
The switch Statement 137 

switch Caveats 140 

The for Loop 140 
The for Loop-Step by Step 141 
The Endless Loop Revisited 142 
Nested for Loops 143 

Comma Expressions 144 
Analysis of REVSTR.C 145 

A Peep at STRING.H 145 

Summary of Chapter 4 148 

... CHAPTER 5: Complex Data Types: Tapping 
the Power of C ... 151 

Arrays and Pointers-A Fresh Look 151 
Analysis of VECSUM.C 152 
Arrays and Pointers-The Differences 154 
Setting Pointers 154 
The Pointer Having Been Set... 158 
Handles or Pointers to Pointers 158 
The Pointer as an Array 159 
More Pointer Arithmetic 160 

Pointers to Functions 161 
Pointers-Near and Far 161 

Arrays of Pointers and Pointers to Arrays 165 
Pointers to Arrays 168 

Multidimensional Arrays 169 
Matrices in Action 170 

Dimensions Unlimited 171 

Multidimensional Arrays as Function Arguments 172 

Enumerations 172 
Enumeration Tags 174 

Type Definition and Conditional Compilation 175 

The typedef Mechanism 175 

Conditional Compilation Commands 178 



xiv 

.... 

.... 

The #undef Directive 
Conditional Compilation in Action 

Summary of Chapter 5 

CHAPTER 6: Structures and Unions: Adapting Data Types 
to Your Applications .... 

The Structure Declared 
The Structure Analyzed 

Effects of Word and Byte Alignment 
Accessing the Structure Components 
Structure Assignments 
Structure Initializers 

Nesting Structures 
Restrictions on Nested Structures 

A Simple Linked List 
The Structure Pointer Member Operator(-->) 
Advantages of Linked Lists 

Pointers to Structures 
Allocating Dynamic Memory for Structures 
Unions 

Unions in Action 
Analysis of MYTAB.C 
Caveats about Unions 

Going down to the Bit Level 
Bitwise Operators 

Bitwise Applications 
Shifts in Action 

Bit Fields 

Summary of Chapter 6 

CHAPTER 7: Storage Classes: Strategies for Data 
Integrity .... 

Storage Class Specifiers 

Scope 
Scope of Top-Level Declarations 
Scope of Declarations within Functions 

Visibility 

181 
181 
186 

189 

189 
192 
192 
194 
195 
196 
197 
199 
200 
201 
202 
203 
204 
210 
210 
212 
214 
215 
216 
218 
219 
220 
222 

227 

227 
229 
230 
230 
230 



xv 

Extent 234 
Extent and the Memory Map 236 

Scope and Extent Relationships 236 
Scope and Separately Compilable Files 237 

The Role of the Linker 238 
External Identifiers 238 

Referencing and Defining Declarations 239 
External Functions 240 
Static Functions 240 
External Variables 243 
Static Variables 244 

Static Variables in Action 245 
Summary-The Importance of Scope and Extent 246 

The register Storage Class 247 
Register Variables and Optimization 249 
Optimization Problems and the volatile Modifier 250 

Analysis of PLAYER.C 251 

Miscellaneous Notes on PLAYER.C 252 
Summary of Chapter 7 254 

.. CHAPTER 8: File 1/0: Full Stream Ahead .. 257 

C, ANSI C and 1/0 257 
When Is a File Not a File? 258 
The Logical and the Physical 259 

UNIX and Device Files 259 
Illegitimate Son of UNIX? 259 
Text and Binary Files 260 
Buffering 261 

Streams 262 

File Pointers and the FILE Structure 262 
Opening and Closing Streams 263 
Stream Types 265 
The Standard Streams 267 
Console and Stream 1/0 Functions 268 
The getc( ) Routine 269 
Testing for EOF and File Errors 270 
The Current Pointer Moves ... 271 
The putc( ) Routine 273 



xvi 

Streams in Action 
Analysis of KOPY.C 
Using main() with Command-Line Arguments 
The env Argument 
Your Environment Revealed 

The get...() and put...() Families 
The Macro getc( ) 

More on Buffering 
Non-ANSI C Routines 

Block 1/0 
Summary of Chapter 8 

.... CHAPTER 9: The Graphics Toolbox Opened Wide 
The Display Adapter 
Raster Scan 
Display Memory Maps 

Text Mapping 

Graphics Mapping 
Text-Text and Graphics-Text 

Graphics-Text 

Displaying Texts 
Some Popular Display Adapters 
IBM Compatibility and Direct Video 
Linking the Graphics Library 
Setting the Text Modes 

Text Color 
The Intensity Bit !so!ated 
Delayed Effects 
The Monochrome Attribute 

Text Window Management 
Analysis of TWINDOW.C 

Summary of Text-Mode Functions 
Graphics Modes 

The initgraph() Function 

The Auto-Detect Feature 
The closegraph( ) Function 
Switching Modes 
Graphics-Mode Applications 

Keeping Track of the Old CP 

274 
275 
276 
278 
278 
279 
282 
284 
284 
285 
289 

.... 291 

291 
292 
292 
293 
296 
300 
301 
302 
303 
304 
306 
307 
309 
.... 1 .... 
.:>IL 

312 
313 
314 
314 
319 
321 
321 
323 
325 
325 
326 
332 



xvii 

Loading Fonts with BGIOBJ 333 

More Queries on the Graphics Status 334 

Drawing Lines and Filling Polygons 335 

The Bar-Chart and pieslice() Functions 346 

Saving Bit Images 349 

The Active and Visual Pages 350 

Graphics Color 352 

CGA Color Schemes 353 

EGA/VGA Color Schemes 355 

Summary of Chapter 9 358 

.... CHAPTER 10: Odds && Sods .... 361 

Summary of Additions and Enhancements in Version 1.5 361 
The CREPS of Wrath 362 

The GREP Command Line 362 

The GREP Options in Action 365 
The TUB Object-Code Librarian 367 

What Is a Library? 368 
Why Use Libaries? 368 

On the Make 370 

Exploiting Your Function Files 371 

What Is a Librarian? 372 

Creating and Adding to a Library 372 
The TUB Syntax 374 

TUB Response Files 377 

The getopt() Utility 378 
The Option-String Syntax 379 
getopt() in Action 381 

Functions at Work 383 
Pointers to Functions 385 
Recursion 387 

Summary of Enhancements and Changes in Version 2 388 

Summary of Chapter 10 393 

.... Chapter 11: Debugging with Turbo C .... 397 

The New Source Code Debuggers 397 
For All You Do, This Bug's for You! 398 
Types of Error 399 



xviii 

Source-Level Debugging 
Using the Version 2 Integrated Debugger 

Single-Stepping 

Tracing and Stepping 

Evaluating Expressions 

Bug Number 1 
Bug Number 2 

Setting and Using Breakpoints 

The Watch Window and Watch Expressions 

Editing the Watch Expressions 
Watching the Loop 

Bug Number 3 

Summary of Debugging Commands 

Variables and Their Qualifications 
Evaluation Formats 

What Next? 

.,.. APPENDIX A: ASCII Code Chart .,.. 

.... APPENDIX 8: Installation Summary .... 

Getting Started 
Hardware Needs 

Rapid Installation 

Change Your PATH 

TCINST.EXE-Setting the IDE Defaults 
Testing, Tesiing ... 

An Introduction to Configuration Files 

Other TCINST.EXE Features 

Moving on 

Advanced Default Management 
Default Management 

IDE Configuration Files 

Recap of Setting and Changing Defaults 

Keeping Your Options 

The TC.EXE IC Option 

Configuration Files and TCCONFIG.EXE 

400 
401 
404 
405 
407 
408 
409 
412 
414 
415 
415 
416 
418 
419 
420 
421 

425 

427 

427 
427 
427 
428 
428 
430 
430 
431 
432 
432 
433 
435 
435 
436 
437 
438 



xix 

.... APPENDIX C: printf() and scanf() Formats .... 439 

The printf() Family 439 
The printf() Family Format String 440 
Examples of printf( ) 444 

The scanf( ) Family 447 
The scanf() Format String 448 

.,.. APPENDIX D: Computer Math Basics .,.. 453 

Number Systems 453 
Binary 453 
Octal 453 
Hexadecimal 454 

Storage Conventions 454 
Unsigned and Signed Numbers 454 
Byte, Word, and Long Word Ranges 456 
Carry and Overflow 457 
Floating-Point Format 458 

The float Format 458 
The double Format 459 
FP Constants 460 
FP Precision 460 

Absolute Values 431 
General Mathematical Functions 431 
Useful Limits 433 

.... APPENDIX E: Precedence and Associativity Table .... 465 

.,.. APPENDIX F: 8088/8086 Registers: Low-Level Stuff .,.. 469 

Preamble 469 
Memory Addressing and the 808X 469 

Segment Registers 470 
Pointer and Index Registers 470 
Data Registers 471 
Instruction Pointer 471 
Status Flags 473 



xx 

Pointers and the Memory Models 
Pseudovariables for Register Access 

Assembly language and Turbo C 

• APPENDIX G: Complete Function Reference • 
Prototypes of Standard Functions 

Descriptions of Graphics Functions 

• APPENDIX H: Turbo C Reference list • 

• Index • 

473 
474 
476 

479 

479 
525 

585 

587 



..,.. FOREWORD..,.. 

We welcome Stan Kelly-Bootle's Mastering Turbo C to the library of books 
supporting Turbo language products from Borland International. Such 
books help users at every experience level derive optimum benefits from 
their software investments. 

In this most readable exposition, Kelly-Bootle gently and logically 
acquaints the novice user with the power, versatility, and simplicity of the 
Turbo C integrated environment. Although Mastering Turbo C is written 
specifically for readers who have never used a C, or perhaps any structured 
language, the author provides chapter summaries and appendices that help 
more advanced users quickly find valuable information. Particularly helpful 
to all readers are a complete guide to using the graphics of Turbo C and infor­
mation on the Turbo C Runtime Library. 

It is a pleasure to recommend Mastering Turbo C as an introduction to the 

powerful Turbo C programming environment. 

Philippe Kahn 
President 

Borland International, Inc. 

xxi 





~INTRODUCTION~ 

There are three reasons for learning the C language: fun, profit, and every­
body is doing it. The recent surge in popularity is largely due to Borland 
lnternational's president, Philippe Kahn, who pioneered the unheard-of 
notion that professional-quality compilers and language-support products 

should not require you to get a second mortgage. 

~ HISTORY LESSON ~ 
While hardware costs had been declining dramatically since the first 

UNIVAC sale, the unquestioned assumption was that software, being 
human-labor intensive, was bound to move as rapidly in the opposite direc­
tion, if only to ensure that your total data-processing budget remained com­

fortably stable! 
Kahn's counterexample to this hypothesis rests on the simple notion that 

you can amortize the considerable costs of developing sound, easy-to-use 
software by expanding the customer base with aggressive pricing and mar­
keting. The latter is required, initially at least, to overcome the fixation that 

decent systems software is expensive and accessible only to computer­
science graduates. The size of the potential user base, of course, had 
expanded rapidly during the early 1980s with the advent of the I BM PC and 
its many bandwagoneers. 

~Success ~ 

The legendary success of Borland's Turbo Pascal proved that there was 
indeed an untapped market for professional compilers for personal com­

puters outside the traditional software-development houses. That market, 
perhaps, had been resigned to the fact that at one end of the spectrum com­
pilers were slow, free, suspect, and unsupported, while at the other end they 

were competent and desirable but priced for the full-time, $50-an-hour pro­
grammer. The scene changed suddenly and irreversibly when Turbo Pascal 

xx iii 



xxiv 

appeared in 1983, breaking the $100 barrier and earning all the magazine 
"product of the year" accolades. 

..... Turbo Pascal Rules OK! ..... 
Turbo Pascal's success (hundreds of thousands of copies have been sold 

and Version 5.0 maintains the momentum) was due not only to the price/ 
performance bargain but also to the fact that a new integrated development 
environment had been created for it. Source-code entry and editing, syntax 
checking, compiling, linking, running, and debugging were all brought into 
the one package and made available through easily navigated pop-up 
menus. These a~tivities had traditionally called for separate specialized soft­
ware packages, which were often supplied by different vendors. 

..... But C Is Different... ..... 
Some cynics reacted by saying, "Ah, well, Pascal is just an educational toy, 

not a real production language. I am wed to my $600 C compiler-the only 
serious language for systems programming. In any case, C is so dangerous in 
the wrong hands, let's be grateful that the proletariat can't afford the real 
thing. If they want to play with C, there are plenty of freeware tiny C's to 
paddle in." 

..... The C Mystique ..... 
Among all the computer languages, dead and alive, C holds a unique 

place-people either love it or detest it to distraction. There are no neutral 
parties here! UNIX, the operating system closely associated with C (indeed, 
UNIX is largely written in C), has engendered the same dichotomy since it 
emerged with C from Bell Labs in the mid-1970s and migrated to the world's 
best campuses. UNIX and C have become de facto standards in many gov­
ernment and engineering fields, and they have gradually moved from mini­
computers and mainframes into the microcomputer arena as CPUs have 
become more powerful and capable of supporting larger memories. 



~ WhyC? ~ 
The portability of C programs stems from C's use of function libraries for 

such machine-dependent operations as 1/0-an area that bedeviled the 

growth of a single Pascal standard. Since C is a small-core language (unlike, 
say, PL/1 or Ada), there are surprisingly few keywords to learn. On the other 

hand, C is richer in operators than most languages (there are several opera­
tors that work at the bit level). 

The critics cannot gainsay C's success. The snipers usually overlook the 
fact that you cannot have a powerful systems programming language with­
out some attendant dangers.Coffers you access to the machine level with a 

rare blend of efficiency and elegance, but sometimes the conciseness of the 
language encourages a cryptic cleverness that hinders maintainability. 
Despite its dangers, C is undoubtedly the language of choice for most sys­
tems programmers. 

The migration of C to the PC-DOS/MS-DOS environment has not been easy. 
The architecture of the Intel 8088/86 family is not ideally suited to a language like 
C, in which pointers play a leading, some say frightening, role. To keep the 
pointer arithmetic clean and tidy, pointers should point to large, linear memo­
ries. The segmented memory space of the PC forces compiler writers to provide 
different memory models for different pointer dispositions. 

Another cloud on the horizon became visible as C moved away from 
UNIX to other environments and increasing progress was made on software 
in general. Compilers were emerging with slight but disconcerting differ­
ences in their interpretations of the syntax and semantics of C, which had 

been spelled out by Brian W Kernighan and Dennis M. Ritchie in 1978. 
Because these specifications were the work of a few talented individuals 
rather than the tedious output of a committee oft-crossers and i-dotters, 
ambiguities came to light that led to diverse dialectic offshoots, threatening 
the prized portability of C. 

A committee of the American National Standards Institute (ANSI) was 
formed to resolve these differences. The task of Technical Committee X3J11 
was and is to draw up a set of standards for C. As I write, ANSI C is not yet for­
mally carved in stone, but enough data have emerged to point C compiler 
writers and C programmers in the right direction. Unfortunately, many 
developers of new C products have played a waiting game because they 
were unwilling to take the plunge until ANSI C was formally ratified. 

For all these reasons, there was pessimism that a fast, inexpensive develop­

ment package conforming to ANSI C would ever become available for the 
IBM PC family. 

xxv 



xxvi 

.,.. f nter Turbo C .,.. 
The release of Turbo C in May 1987 put an end to this pessimism. Borland 

had again achieved the improbable-it brought to market a professional C­

language development system for the PC packaged with the familiar inte­
grated development environment that is demonstrably superior to C 
packages costing three or four times as much. For the traditional UNIX-style 
C programmer, Turbo Chas a completely independent command-line com­
piler free from mollycoddling menus and windows. 

Turbo C, like its Turbo predecessors, comes complete and ready to go. You 
get an ANSl-C compatible, 7000-lines-per-minute, one-pass compiler that 
generates linkable object modules compatible with the PC-DOS linker; a fast 

linker; support for six memory models; math coprocessor support or FP 
emulation; and a full-screen syntax-checking editor, complete with pull­
down menus and windows. Turbo C also includes Project and Make options 
that check on file interdependencies and automate the compilation/linking 
process following changes to one or more component source files. There is 
also a more powerful, stand-alone MAKE utility that watches over file inter­
dependencies. 

In addition, Turbo Callows you to link mixed modules written in assembly 
language, Turbo Pascal, and Turbo Prolog. 

The immediate success of Turbo C encouraged Borland to "gild the lily." 
Within six months of launching Version 1, the company announced Version 
1.5. The main enhancement of the latter version was a sophisticated graph­
ics toolbox that provided facilities similar to those in Turbo Pascal. 

In August 1988 Borland issued another major update, Turbo C Version 2, 

with an integrated source-level debugger; improved Make utility; and sev­
eral speed enhancing tweaks to the compiler, linker, and graphics routines. 

With minor exceptions, all these improvements are upwardly compatible: 
As you move from Version 1 to 1.5 to 2, you will not have to do any major 
recoding-in the worst case, your programs will have to be recompiled/ 
relinked under the new regime. For serious systems programmers, Borland 
now offers a package called Professional Turbo C 2 that contains the new 
Turbo C as well as TASM (the new Turbo macro assembler) and the free­
standing Turbo Debugger. There are various upgrade deals available-check 
with your supplier. 

This second edition of Mastering Turbo C discusses various enhancements 
of Version 2 in Chapter 10 and covers the new version's debugging facilities 

in Chapter 11. Although the phrase Chapter 11 has depressingly bankrupt 



overtones, I assure you that the debugging features described therein will 
spell profit to all Turbo C users. 

~ JOIN THE ELITE ~ 
Turbo C has already attracted a wide range of programmers, including 

amateur "hobbyists" as well as professional software writers. If you have 
bought Turbo C, then this book will help you exploit its many features. If you 
haven't, perhaps you will be encouraged to join the club. 

Of course, many Turbo C users are hardy types to whom C is the native 
tongue. My book will help them pick out the features specific to Turbo C, but 
the gentle pace of most of the exposition is geared toward the thousands of 
newcomers to the big wide world of C. I therefore assume that you have 
only a few basic DOS skills and no prior exposure to C or any other struc­
tured language. 

The ever-nagging problem facing many computer-book authors is how 
to enlighten the uninitiated without boring the socks off the cognoscenti. 
As a possible solution, each of my chapters ends with a summary so that 
readers can quickly find the sections most appropriate to their needs. 
All the program examples have been kept short and sweet to focus your 
attention on a particular aspect of C. My experience is that long examples 
are counterproductive. 

This book is really part one of "mastering" Turbo C. You and your creativ­
ity form part two. Turbo C provides the paint and brushes for your PC 
canvas; this book lays out the palette and tells you which end of the brush 
goes into the paint. To become a master of C in the tradition of a Ritchie, 
Kernighan, Bourne, Holub, or Plauger, you need to start daubing away as 
soon as possible. 

Here's to your ever-growing fluenC! 

Stan Kelly-Bootle 
Mill Valley, California and Bargemon, Provence 

xxvii 



FIRST 
FALTERING 

STEPS 



.... CHAPTER 1 ~ 

Learning how to create a sequence of statements that your Turbo C com­
piler will accept as valid is clearly a good starting point. There are two 
aspects to this. 

First you'll learn the mechanics of the Turbo C integrated environment, 
how to navigate the menus, select options, enter and edit your source code, 
and invoke the compiler and linker. 

Then there are the syntactical rules of the C language, which spell out with 
precision exactly which strings of symbols are permissible. 

I will first cover briefly the major steps needed to create and run a Turbo C 
program. Some basic vocabulary will be established, so feel free to skim and 
skip according to your level of experience. The key points will be amplified 
later, so beginners should not be discouraged if new words and concepts fly 
by in rapid succession . 

..,. SOURCE CODE-EXTENSION .C ..,. 
The text of a program, called its source code, is a sequence of statements 

spelling out in fine detail the actions you want the machine to take. Before a 
program can be run it must be translated by the Turbo C compiler and then 
linked using the Turbo C linker. 

C source code is usually stored in files with the extension .C. So, to find 
out what source code files you have in your current directory, you can type 
DIR *.C and press Enter to get 

C>DIR *.C 
TEMP C 352 9-11-87 7:12p 
HELLO C 89 9-20-87 4:48p 
FILECOMP C 11185 9-20-87 1 :38a 
GETOPT C 4228 5-13-87 1 :OOa 

4 file(s) 6660096 bytes free 



2 .,. MASTERING TURBO C .,. 
CH.1 

which shows the names, sizes (in bytes) and date/time stamps of each file. 
Each of these files contains sequences of ASCII characters that can be dis­
played, printed, or edited, hence the general term text files. The full ASCII 
code is given in Appendix A. 

The ANSI C standard does not specify how the character set should be 
encoded, but most implementations, including Turbo C, have opted for the 
ASCII set, so characters are stored and manipulated by their numeric ASCII 
codes. For now, simply note that the 7-bit ASCII code gives 128 combina­

tions, including both printable symbols and nonprintable control codes . 

..,. DIRECTIVES AND INCLUDE FILES ..,. 
In addition to the normal program statements that you enter in the .C files, 

there are several directives you can provide. They are readily recognized 
since they usually appear at the start of the .C file with the prefix# followed 
by the particular directive's name and its arguments. As you might guess, 

directives direct the compiler in various ways. In fact, there is a preprocess­

ing phase that handles all the directives before the compilation itself gets 

under way. 
An important example, familiar to most BASIC users, is the include direc­

tive with a file name as its argument. 

#include <filename> 

tells the preprocessor to load the contents of the text file filename as though it 
formed part of your .C fi!e at that point. Your .C file itself is not physicaHy 
changed. You can set up your own include files to avoid repetitive typing. 

Initially, though, you will be using #include with some of the twenty-five spe­
cial files provided by Borland for your convenience. These have the exten­
sion .H (for header) and they supply frequently needed definitions and 
declarations in accordance with ANSI C standards. Before too long you will 
come to know and love these .H files-they not only save you much drudg­
ery, they also serve in the great cause of endowing C programs with their 

widely acclaimed portability. 

Include files can be nested, that is, an include file may contain further 
include files, and so on, to a depth of sixteen. 



.. FIRST FAl.TERING STEPS .. 3 

You can picture the process as follows: 

HELLO.C-+ preprocessor-+ HELLO.C + <included-files> 

~ OBJECT CODE-EXTENSION .OBJ ~ 
The compilation process, applied to your .C and .H files, produces object 

code files with the extension .OBJ. These files contain binary code that can­
not be meaningfully displayed or printed, although you might find some rec­
ognizable ASCII characters embedded therein. 

Object files contain machine language instructions that make sense only to 
the Intel 8088/86, 80286, or 80386 microprocessor that powers your PC. 
Unless told otherwise, the compiler will produce a .OBJ file with the same 
name as your principal source file as follows: 

HELLO.C + <included-files>-+ Turbo C compiler-+ HELLO.OBJ 

You can give the compiler a different name for the .OBJ file-but why add to 
the confusion? 

~ EXECUTABLE CODE-EXTENSION .EXE ~ 
The linking process takes one or more .OBJ files and, true to its name, links 

them together to produce one executable file with the extension .EXE. The 
linker can also automatically pull in code from standard precompiled 
libraries provided by Borland (or specialist libraries offered by a growing 
number of software vendors) to make programming easier for you. You are 
also allowed to create your own libraries. Your program can use any of these 
precanned library functions and leave it to the linker to incorporate their 
.OBJ code into the final product, namely, the .EXE file. 

In simple cases with one .C file and one .OBJ file, the .EXE file is usually 
named accordingly. 

HELLO.C-+ preprocessor-+ HELLO.C + <included-files> -+ 
compiler-+ HELLO.OBJ + <library-code> -+ linker-+ HELLO.EXE 



4 ~ MASTERING TURBO C ~ 
CH. I 

Again, you are free to rename the .EXE file, but life is more pleasant if the .C, 
.OBJ, and .EXE files are all called HELLO. You can then talk about the HELLO 
program without ambiguity. 

When you are linking several .OBJ files, you will normally find that one of 
them has the key name that naturally goes with the final .EXE file name. 

FILECOMP.OBJ/GETOPT.OBJ + <library-code>-+ linker-+ 
FILECOMP.EXE 

Later on, you'll see how .PRJ or project files are used to tell the linker 
which .OBJ files to link and how to name the final .EXE file. Turbo C offers 
flexibility for professional developers in areas where the beginner might pre­
fer to have no choice! We will often dogmatically insist on certain default 
actions until the reasons for the alternatives emerge. 

Readers with wider DOS experience may want to know here that the 
linker supplied with Turbo C is compatible with and faster than the standard 
DOS linker. Also, if your program meets certain size restrictions, you can use 
the DOS EXE2BIN utility to translate your .EXE files into the faster, more com­
pact .COM format. 

..,.. THE MANDATORY FIRST PROGRAM ..,.. 
Brian W Kernighan and Dennis M. Ritchie, in their canonical book The C 

Programming Language (Englewood Cliffs, New Jersey: Prentice-Hall, 1978) 
started a tradition that most of the ten-thousand subsequent C books have 
followed, K&R (as the book !s \AJ!de!y kno\A/n) offers as its "Getting Started" 
program HELLO.C, the sole purpose of which is to display hello, world on 
the screen. 

Simple though it is, HELLO.C actually illustrates nine major elements of 
the C language. Before you get to this exciting demonstration, I'll take you on 
a quick tour of the Turbo C integrated environment and show you the basics 
of program loading, editing, and running . 

..,.. INSTALLATION REMINDER ..,.. 
You will find the file HELLO.Con your Integrated Development Diskette. If 

you have followed the hard-disk installation procedures given in the Turbo C 



~ FIRST FALTERING STEPS ~ 5 

User's Guide, this file should now be in your working directory C:\ TURBOC. In 
or under the same directory, you will also have: 

1. TC.EXE (the integrated development compiler), TCINST.COM (the 
installation program), and TCHELP.TCH (the help files). (TCC.EXE, 
the command-line version of TC.EXE, will also be here, but we will 
not be using it until later.) 

2. All the *.H (include) files from Diskette 3 in directory C:\TURBO­
C\INCLUDE. 

3. All the *.LIB (library) files from Diskette 4 plus all non-.H files from 
Diskette 3 in directory C:\ TURBOC\LIB. (To avoid tedious digres­
sions, I am assuming the recommended hard-disk installation setup. 
If you have different drive or directory names, simply adjust the fol­
lowing instructions accordingly. For details on the TCINST installation 
program, see Appendix B.) 

..,. EXPLORING THE INTEGRATED 
DEVELOPMENT ENVIRONMENT ..,. 

The Integrated Development Environment (IDE) is only three keystrokes 
away. Type TC or tc at the C > prompt and press Enter, and you will soon see 
the screen shown in Figure 1.1, the Turbo C main menu screen. Press F10 (or 
Shift-F10 in Version 2) to call up the Borland copyright notice. 

.... The Small Print Enlarged ..,. 
Carefully read the Borland version number and copyright notice in the 

central window. If you have not studied and understood Borland's No­
Nonsense License Statement at the front of the Turbo C User's Guide, now is 
the time to do so. Borland International has removed any of the so-called 
excuses and rationalizations for piracy. If you are violating any of their condi­
tions, you should rectify the situation before proceeding. More specifically, 
erase any illegal copy diskettes and purchase your own Turbo C-you will 
sleep soundly tonight, and in the morning your acne will have disappeared. 



6 .,. MASTERING TURBO C .,. 
CH.1 

ID!il Edit Run Compile Proj net Options Debug 
--- ... ·-···"···~···-····~~~~~~ Edit ~-·--·~·-~~~~~~~~~"= 

Line 1 Col 1 Insert Indent Tab C:NONAMF .C 

r------------- Message 

F1-Help F5-Zoom F6-Edit F9-Make F19-Main Menu 

~ Figure 1.1: Turbo C main menu screen (Version 1.5) 

Pressing any key removes the version/copyright notice. Note that there 
are five basic areas in the main menu screen: 

1. Main menu strip 

2. Editor status strip 

3. Editor window 

4. Message window 

5. Hot-key quick reference strip 

.... Keys-Hot and Cold .... 
At any time Alt-Fl 0 will redisplay the version/copyright window. (/\/t-FJO 

means hold down the Alt key while you press the Fl 0 function key.) Alt-Fl 0 is 

one of the many hot-key combinations you'll encounter. A hot key is one that 
works consistently wherever you are in the menu hierarchy, as opposed to 
those keys for which the function depends on the particular mode or screen 
position you happen to be in. Some hot keys are single F (function) keys, oth­
ers are Alt plus a function key. 



.. FIRST FALTERING STEPS .. 7 

The bottom quick reference line of the main screen normally shows the 
most appropriate hot function keys for your current situation. If you hold 
down the Alt key by itself for a few seconds, the quick reference line will 
switch to show you what Alt plus the function keys will perform. Table 1.1 
gives a partial list of hot keys. A tiny warning: In most error and verify condi­
tions, the hot keys are disabled until you take the indicated recovery action. 
This is for your own good. 

Key(s) Versions 1, 1.5 Version 2 

F1 Context-sensitive Help 

F2 Save the current file to disk 

F3 Window to enter file name for 
loading 

FS Toggle: Zoom or Unzoom 
active window 

F6 Switch to the active window 

F7 Move to previous error Trace 

F8 Move to next error Step 

F9 Invoke Project-Make 

F10 Toggle: Main Menu or active 
window 

Alt-Fl Redisplay previous Help screen 

Alt-F3 Pick file window 

Alt-FS Toggle: TC screen or User 
screen 

Alt-F6 Toggle: Message or Watch 
windows; current or 
previous file 

Alt-F7 move to previous error 

Alt-F8 move to next error 

Alt-F9 Compile current file to .OBJ 

... Table 1.1: Main Turbo C hot keys 



8 .,. MASTERING TURBO C ... 
CH.1 

Key(s) 

Alt-F10 

Alt-8 

Alt-C 

Alt-D 

Alt-E 

Alt-F 

Alt-0 

Alt-P 

Alt-R 

Alt-X 

Shift-FlO 

Versions 1, 1 .5 

Display version/copyright 
screen 

Pull down Compile menu 

Pull down Debug menu 

Go into Edit mode 

Pull down File menu 

Pull down Options menu 

Pull down Project-Make menu 

Run the current menu 

exit from Turbo C to DOS 

... Table 1.1: Main Turbo C hot keys (continued) 

Version 2 

Pull down Break/Watch 
window 

display version screen 

Note that Esc, the escape key, is almost hot! Esc is a general menu-exit key 
that steps you up from a sub-submenu to the previous submenu, from a sub­
menu to its main menu, or from a main menu to an active window. How­

ever, Esc is not a true-blue-blooded hot key since it is inactive unless you are 
in a menu or help screen. 

Esc and the hot keys will quickly become your close friends. For now, try 
Alt-F10 to bring up the Version/Copyright screen, then press any key to 
remove it. 

.,... Help! 

Press F1 to explore the on-line Help package. If F1 gives you an error mes­
sage, you have probably failed to copy the TCHELP.TCH file into your work­

ing directory. The Help displays are context-sensitive, that is, the first F1 
display will helpfully vary according to where you are in the system. Esc 
always clears the help box and restores the status quo. 

Help is not confined to your context. Where~er you are, you can browse 
around for guidance on any other topic. Once you are in a Help screen, for 



~ FIRST FALTERING STEPS ,. 9 

example, a second Fl brings up a Help index from which you can select top­
ics. Also, Alt-Fl at any time will redisplay the last Help screen you accessed. 
Repeating Alt-Fl keeps recalling past used Help screens up to a maximum of 

twenty. Some Help screens will show highlighted keywords, indicating topics 
for which amplified help is available. The arrow keys and the Home and End 
keys can be used to select keywords; once a topic has been selected, press­
ing Enter will bring up the relevant help. 

~ Leaving Already? 
Next, try Alt-X to exit from Turbo C to DOS, then enter TC again to recover 

the main menu. This early exit practice is not as bizarre as you may think! 
There is nothing in the whole of computerdom as frustrating as the inability 

to withdraw gracefully from a program. The lack of "exit standards" has 
driven more users insane than anything else. The many signing-off ploys in 

use today include logoff, logout, bye, system, end, Ctrl-C, Ctrl-D, Break, and, 
the last resort, turning the power off. If you forget Alt-X, Turbo Chas another 
mnemonic for quitting-type Q from the File menu. 

~ Back to TC 
Entering TC invokes TC.EXE, the main Turbo C IDE program. Since you 

have not yet specified a .C file name, Turbo C assumes that you are going to 
edit a default program called NONAME.C, which explains the legend 
appearing at the end of line 2, the editor status strip. When you load a spe­
cific file into the editor, the NONAME.C legend will be replaced by the new 
file name. Later on, when you want to save your edited program, you are 
free to rename it. 

You can load a file and invoke TC by typing TC filename, or TC filename.C, 
or TC filename.ext at the C> prompt, where filename may include full or 
partial path information. In the absence of a specific extension, TC assumes 
the default extension .C. If TC finds the file name, the file will be loaded for 
editing; otherwise you'll get a virgin edit window. The edit window is the 
large upper window. When you are in edit mode, this is where the source 
text appears as you type. The name of the current file is always displayed on 
line2. 

For much of this chapter you will be learning your way around the fea­
tures of the IDE main menu screen. It allows you to load, enter, save, and edit 

source text, get help, switch and zoom windows, set countless options, then 
compile/link/run your program. You can even return temporarily to the 



10 ~ MASTERING TURBO C ~ 
CH.1 

DOS level, do some DOS stuff, then type exit to return to where you left off 
in Turbo C. 

At various times temporary windows will appear that contain progress 
reports and instructions about what to do next. Detailed error messages and 

warnings appear in the bottom message window. 

~ Window Switching and Zooming 
The normal screen disposition shows a split between the upper edit win­

dow and lower message window. If you are in edit mode with the cursor in 
the edit window, the edit window is the active window. During debugging 

sessions, for example, the message window may become the active win­
dow. You can switch the active window at any time using the hot key F6. This 
action is known as toggling, named for those familiar lamp switches that 
switch on-to-off or off-to-on with each toggle. So F6 will switch from edit­

window-active to message-window-active or vice versa with each appli­
cation. The active window is visibly marked by the presence of a double 
bar on top. 

Another hot-key toggle is FS, which will Zoom and Unzoom the active win­
dow with each depression. Zooming when the edit window is active expands 

the edit screen to fill the whole screen, temporarily removing the message 
screen. Pressing FS again Unzooms, restoring the split screen and redisplay­
ing any previous messages. Similarly, you can Zoom the message screen 
when it is active, temporarily losing the edit screen (but not, of course, losing 

any data). Incidentally, when you come to the editing features you'll see that 
you can scroll around the edit screen like a conventional word processor 
whether the screen is Zoomed or not. 

Summing up this section: 

FS to Zoom/Unzoom active window 

F6 to select active window 

Let's now look in detail at the main menu, the key to further progress. 

~ The Main Menu ~ 
The essential maneuvers to learn are the following: 

1. Hot key FlO takes you from the active window to the main menu. 



.- FIRST FALTERING STEPS .- 11 

2. Esc takes you from the main menu back to the active window. 

3. Alt+/etter gets a main menu selection at any time. 

The main menu is the very top line showing the seven main options (which 
are cleverly named so that each starts with a unique, bold letter). This allows 
selection by keying the appropriate letter (together with the Alt key if you are 
outside the menu) or by highlighting each option in turn using the left/right 
arrow keys. 

Once you have illuminated your choice, pressing Enter does the selection. 
This convenient and contemporary method is used throughout Turbo C and 
is easier to do than to explain. From now on, when I give an instruction such 
as "Select File menu" I will leave it to your own good taste which selection 
method you use: keying the letter F (or f) or highlighting the File legend and 
then pressing Enter. Either will pull down the File submenu. 

Five of the seven main selections operate their own pull-down menus to 

offer further subselections, many of which sprout further multichoice 
displays. The two exceptions are the following: 

Edit moves you directly to edit mode with edit window active. 

Run immediately starts trying to run the current program (it may have 

to compile/link first, but this is automatic). In Version 2, selecting Run 
brings up the Run menu, at which you type R. 

Another neat trick to remember is that while a menu option is pulled down 
the left/right arrow keys can be used to invoke the adjacent menus. 

Table 1.2 gives a brief summary of the main menu selections. 
When you add up all the combinations of menu and submenu choices, 

you have what Philippe Kahn would call "un embarras de choix." For the 
time being, though, you will be concentrating on the File and Edit menus . 

..,_ LOADING YOUR f IRST PROGRAM ..,_ 
If you are not in the main menu, use F10 to get there. You can always tell if 

the main menu is active because one of the seven top-line legends will be 
highlighted if it is. 

From the main menu, select F for File. Your screen will appear as in Fig­

ure 1.2, with the pull-down File menu ready for your selection. You can high­
light selections using the up/down arrow keys, or you can type the unique 
letter for each option, as listed in Table 1.3. 



12 ~ MASTERING TURBO C ~ 
CH.1 

File 

Edit 

Run 

Compile 

Project 

Options 

Debug 

[Break/watch] 

Load, Pick+, New, Save, Write to, Directory, Change Dir, 
OS, shell~ Quit 

Go to Edit mode 

Run current program, [Program reset, Trace-into, 
Step-over, User screen] 

Compile to .OBJ, Make .EXE, Link .EXE, Build all, Primary 
C file, [Get info] 

Project name, Break make on+, Clear project, 
[Auto-dependencies, Remove messages] 

Compiler+++, Linker++, Environment+, Args, 
Retrieve options, Store options, [Directories+] 

Track messages, Clear messages, Keep messages, 
Available memory, [Replace by evaluate, Call stack, Find 
function, Refresh display, Display swapping, Source 
debugging] 

[Add watch, Delete watch, Edit watch, Remove all 
watches] 

~ Table 1.2: Main menu selections. Items in brackets are only available in Version 2. 
Each + indicates a lower level of submenu. 

Test the up/down arrows by illuminating some of the File options. You now 
have three ways of invoking the Load option: 

1. Type L. 

2. Highlight the Load box and press Enter. 

3. Press F3 (this works from anywhere). 

A small window appears, prompting the entry or selection of a file name to 
be loaded. The window defaults to the mask * .C, so pressing Enter will bring 
up a directory window showing all your *.C files. You can also enter a spe­
cific file name or your own search mask, e.g., H????O.C or H*.*· While in 
the directory window you can 

1. Use the arrows to mark the target file. 

2. Press F4 to change the mask. 



.- FIRST FAl.TERING STEPS .- 13 

[llD Edit Run Compile Project Options Debug 

~'"iimiiiiiiir~~~~ · Edit ~~~~~~~~~~~--~ 
1 iliUi iW 1 1 Inscr't Indent Tab C: NONAME. C 

Pick Alt-F3 
New 
Save F2 
Write to 
Directory 
Change dir 
OS shell 
Quit Alt-X 

I 
L~--~-

-- Message---------------

F1-Help F5-Zoom F6-Edit F9-Make F10-Main Menu 

~ figure 1.2: File menu 

Load 

Pick 

New 

Save 

Write to 

Directory 

Change dir 

OS shell 

Quit 

F3 

Alt-F3 

F2 

Alt-X 

~ Table 1.3: File menu options 

Load a file into Editor 

Load a file from Pick list 

Edit a new NONAME.C file 

Save current file to disk 

Save current file under new name 

Display directories 

Change drive/directory 

Temporary escape to DOS 

Leave Turbo C 

For now, type HELLO.C (or just HELLO or hello since .C is the default) as 
shown in Figure 1.3. 

Note that+-- and Del allow you correct your input in the usual way. The 
text of HELLO.C will now appear in the edit window as in Figure 1.4. You are 



14 .,. MASTERING TURBO C .,. 
CH. 1 

Edjt Run 
~ 

Compile 
Edit 

IMi uh 1 Insert Indent Tab 
~ Load File Name 

I ~LLO.C. 

Write to 
Directory 
Change dir 
OS shell 
Quit Alt-X 

Message 

F1-Help Esc-Abort 

.. Figure 1.3: Selecting a file for loading 

Project Options 
..---· '""'-''k"'" 

c, NONAME. c 

--

File Edit Run Compile Project Options 
F"°~~~~~~~~~~~~~~~~ Edit 

Line Col 1 Insert Indent Tab C:HELLO.C 
~* hello.c - hello, world */ 

#include <stdio.h> 

main() 
{ 

puts(''hello, world\n"); 

F1-Help F5-Zoom F6-Message F9-Make F1~-Main menu 

.. Figure 1.4: Loaded file ready for editing 

Dotrng 

Debug 



.- FIRST FALTERING STEPS .- 15 

in edit mode with the cursor poised for action in the top left-hand corner. 
Note the top row of double lines indicating that the edit window is active. 

The main menu is inactive but can be revived with F10 or invoked directly 
with Alt-letter . 

..... Other Loading Options ..... 
Before we tackle HELLO.C, let's briefly review the loading operations 

available. In later sections, I'll just tell you to load a given file, leaving you to 
choose your favorite method. 

Loading is such a common operation that Borland has given you some 
shortcut methods. The hot key F3 always gets you the load entry box without 
your having to go through the File menu. 

Typing P for Pick or using the hot-key combo Alt-F3 offers yet another 
loading method. Pick will display up to eight file names representing previ­
ously loaded files. You then select from this pick list to reload a file-the cur­
sor will even be positioned to where it was when you last edited that file. At 
the end of the pick list you'll see an entry, " - load file - ,"which works just 
like the normal L for Load submenu. So, if the pick list does not contain the 
target file you don't have to go back to the Load menu. You can even save 
your pick list from one TC session to the next by using the load/save-pick-list 
option in the TCINST installation program (see Appendix B). 

..... Editing and Saving a File ..... 
While you are editing, your changes are made to a copy of your file in 

RAM, which is notoriously volatile. Power outages and other catastrophes 
may nullify hours of effort, so regularly saving to disk is a sanity-preserving 
habit worth developing. You can either go to the File menu and select S for 
Save or use the hot key F2 from anywhere. You save your current changes 
in the file being edited unless you are editing NONAME.C, in which case 
Turbo C will kindly prompt you to rename before saving. 

The Write to option in the File menu gives you yet another way of saving 
your work. This allows you to save the contents of the editor into any new or 
existing file, whether you are editing NONAME.C or not. 

~ Warning Before Load 
Another helpful feature is that if you have a file already in the editor that 

has been modified since it was last saved, you will be asked to verify if you 



16 ~ MASTERING TURBO C ~ 
CH.1 

wish to save it before loading a new file. Replying Y for Yes will save your 
changes. Answering N for No will mean losing any changes made on the 

current file since Load clears the editor RAM when the new file is loaded. 

.... Directory and Change Dir .... 
You can load a file from any drive or directory by entering the full path file 

name, or you can use Change dir to change your current drive/directory to 
that of your target file. The Directory option is useful for checking which 
directory is current and also for listing your files. As with the DOS DIR com­

mand and the Load entry box, you can create a mask using the wildcards * 
and ? to display sets of file names. As with Load, you can then select a partic­
ular file with the arrow keys, or use F4 to change the mask . 

.... Setting/Saving the Compiler/Linker Options .... 
There are three simple but essential chores to complete before you play 

with HELLO.C. You need to tell Turbo C where your include and library files 
are located and then save this data in the configuration file TCCONFIG.TC. 
Use Alt-0 to get from the edit window to the Options menu. The screen will 
look like Figure 1.5. 

File Edit Run Compile Project ~ Debug 

~----~~~----~ Edit ~~~~'-iimmiiiiiiii1~-I Line 1 Col 1 Inse·rt Indent Tab C:HELLO.C 1•i•lni1Fii§ 
/* hello.c - hello, world *i Linker 

Environment 
#include <stdio.h> Directcric~ I 

Args 
main() Retrieve options 
{ Store options 

puts("hello, world\n"); 

>------------- Message --------------1 

F1-Help F5-Zoom F6-Edit F9-Make F1S-Main Menu 

~ Figure 1.5: Options menu display 



... FIRST FALTERING STEPS ... 17 

Most of the Options offer submenus that show you the existing status of 

the particular option and offer you the means of changing it. 

For reference, all the Options selections and submenus are listed in Table 1.4 

and Table 1.5. 

Compiler 

Linker 

Environment 

Args 

Retrieve 
options 

Store options 

Model, Defines, Code Generation, Optimization, Source, 
Errors, Names 

Map file, Initialize segments, Default libraries, Warn 
duplicate symbols, Stack warning, Case-sensitive link 

Include dirs, Output dir, Library dir, Turbo C dir, 
Auto-save edit, Backup source files, Zoomed windows 

Supply command-line arguments 

Load saved configuration file 

Save options in configuration file 

... Table 1.4: Options menu selections in Versions 1 and 1.5 

Compiler 

Linker 

Directories 

Environment 

Args 

Retrieve 
options 

Save options 

[same as Versions 1., 1.5) 

[same as Versions 1 ., 1.5) Graphics library 

Include di rs, Library dirs, Output dir, Turbo C dir, Pick file 
name, Current pick file 

Message tracking, Keep messages, Config auto-save, Edit 
auto-save, Backup files, Tab size, Zoomed windows, 
Screen lines+ 

[same as Versions 1., 1.5] 

[same as Versions 1., 1.5] 

Save options in configuration file 

... Table 1.5: Options menu selections in Version 2. ( + indicates a lower level of 
submenu.) 



18 .,. MASTERING TURBO C .,. 
CH. 1 

... Setting the Include Directories 
Type E to getthe Environment submenu (or D for Directories in Version 2), 

then select I for Include. You then enter the directory, usually C:\INCLUDE, 
where your standard include files are stored. In particular, the first include 
directive in HELLO.C is 

#include <stdio.h> 

When you compile HELLO.C, the Turbo C preprocessor will search for the 
header file C:\INCLUDE\STDIO.H. lffound, it is loaded into memory with 
HELLO.C, making available a series of macro definitions and function decla­
rations that form part of the C standard 1/0 routines. 

If you fail to set an include directory, Turbo C will look in the current 
directory, and in the likely event that STDIO.H is not found you will get an 
error message if and when the compiler encounters a reference to an object 
defined in STDIO.H. Recall that the .H files are really a convenience that 
save you from entering commonly needed source text. Certain common .H 
files often get #included as a matter of habit, whether needed or not, on the 
grounds that there is little or no overhead and it's better to be safe than sorry! 

For more advanced users, there is the possibility of setting up multiple 
include directories. For example, C:\INCLUDE;C\SPECIAL lets the prepro­
cessor search both directories for include files. 

... Setting the Library Directory 
Next, select L for for Library directory and enter C:\LIB (or wherever you 

have your start-up CO?.OBJ and run time library routines, *.LIB). 

... Saving Your Options 
Now escape back to the Options menu and select S for Store options. The 

default file where your options are stored (and retrieved by Turbo C when it 
fires up) is TCCONFIG.TC. This file name will appear in response to selecting 
S, so just press Enter to save the options there. Later on, when you encounter 
the host of options available, you will appreciate the advantage of being able 
to store several different configuration files. By using the Retrieve menu, you 
can switch configurations without going through a lengthy options session 

each time. 



... FIRST FALTERING STEPS ... 19 

..... RUNNING HELLO.C ..... 
From the main menu select R for Run (or press Alt-R from anywhere). In 

Version 2 you must make an additional selection from the Run menu. If 
you've been following closely you may ask, How can Turbo C possibly run 
HELLO unless it finds HELLO.EXE? And how can it produce HELLO.EXE 
without HELLO.OBJ? HELLO.C by itself certainly cannot be executed. 

The answer is that Turbo C is smart enough to check around and decide on 
the steps needed to carry out the Run command. In the present situation Turbo 
C quickly determines that HELLO.OBJ and HELLO.EXE are both missing, so it 
invokes the preprocessor/compiler/linker sequence discussed earlier: 

HELLO.C-+ preprocessor-+ HELLO.C + <included-files> 

-+compiler-+ HELLO.OBJ-+ linker._ HELLO.EXE 

(The output .OBJ and .EXE files appear in the current directory and are 

named HELLO by default. The menu options allowing you to change the 
output directories and/or the names need not detain us here-see Environ­
ment under Table 1.4.) 

..... The Run Itself ..... 
The Run menu triggers a burst of activity: Progress windows show you 

each phase in the creation of HELLO.EXE, and it is then immediately run 
(providing there are no errors). The screen will clear and display hello, 
world, as promised ten pages ago. Hit any key and you will return to Turbo 
C. (In Version 2 you use Alt-FS to toggle between the IDE and the user 
screen.)Now press Alt-X to give Turbo C a well-earned rest. 

Entering DIR HELLO reveals that you have HELLO.OBJ and HELLO.EXE in 

addition to HELLO.C. Type HELLO and press Enter to prove that HELLO.EXE 
performs as it did from inside Turbo C (apart from the screen clearing, which 
is performed by Turbo C not by HELLO.C). 

If you immediately returned to Turbo C, loaded HELLO, and invoked Run, 
Turbo C would naturally find no need to compile/link, and HELLO.EXE 
would be executed posthaste . 

..... HELLO.C-ANATOMY LESSON ..... 
We leave Turbo C, per se, to study line by line the text of HELLO.C (Pro­

gram 1.1 ). It reveals several major facts about every C program. 



20 ~ MASTERING TURBO C ~ 
CH.1 

/* hello.c--hello, world */ 
#include <stdio.h> 
main() 
{ 

printf("hello, world\n"); 

... Program 1.1: HELLO.C 

~ Comments (Line 1) ~ 

~ I* hello.c-hello, world *I You are free, nay, encouraged, to sprinkle 
your source with comments. Any text you care to enter between/* and *I is 
ignored by the compiler (it is treated as white space). Like a REM line in 
BASIC, this text is there to help you and your next of kin. Since Callows 

many compact, unobvious expressions, commenting the obscurities is more 
necessary than with "verbose" languages such as Modula-2. Comments also 
provide a method of declaring version numbers, dates, authorship, and 
copyright. Remember, too, that statements that might appear crystal clear 

today can become obscure as time goes by. 
Unlike BASIC's REM, C comments can straddle lines. 

/* 
this is a comment 
so is this*/ 

Standard C does not permit the nesting of comments. In other words, you 
cannot insert comments in a piece of code that already contains comments. 
If you added/* and *I as follows, hoping to effectively remove the #include 

line, it would not work. 

/* 
/* hello.c-hello, world*/ 

#include <stdio.h> */ 

The first*/ encountered would be matched with the opening/*, and com­
menting would cease prematurely. Turbo Coffers a nesting comment option 

via the Options menu, but using it can jeopardize program portability. You'll 
meet a safer way of commenting out when we discuss the #if directive. 



... FIRST FALTERING STEPS ... 21 

• White Space (Lines 2 and 4) • 
The empty lines form white space that is ignored by the compiler. Gener­

ally speaking, carriage return, line feed, space, and tab codes, apart from 
serving as possible identifier separators, have no syntactic significance. In 
other words, if one space is needed after an identifier then several spaces or 
tabs are acceptable. The physical layout of a C program can be arranged for 
maximum legibility without affecting its meaning. C contrasts sharply with 
BASIC, say, in which a new line is always syntactically significant. HELLO.C 
would not be compiled differently if you retyped it as 

I* hello.c-hello, world *I 
#include <stdio.h > 
main() {printf("hello, world\n");} 

You must move to a new line after a directive, by the way, to prevent possible 

parsing problems with the preprocessor. 

• Include Directive (Line 3) • 

... #include <stdio.h > As explained earlier, the# symbol indicates that the 
following identifier is a preprocessor directive. In this instance, #include 
directs the preprocessor to add the source code of the file stdio.h to the rest 
of HELLO.C prior to compilation. 

You can tell the system where to find stdio.h by using full drive/path infor­
mation, or you can use angle brackets, as in <stdio.h >, meaning "look first 
in the \include directory as preset in the Options menu." 

You can also write #include "stdio.h" using double quotes. This says, 
"look first in the working directory." For our purposes the <filename> 
method will suffice. 

We'll return to study the contents of stdio.h after we've looked at functions 
and definitions. 

• The main() function (Line 5) • 

... main() AC program consists of a series of functions. In C the word func­
tion is used in a wider sense than in most other languages. C functions 



22 ~ MASTERING TURBO C ~ 
CH.1 

subsume the notions of subroutine and procedure as well as the "conven­
tional" function of BASIC or Pascal. 

With C almost any block of statements can be lumped together to define a 
function to which a unique name is assigned. When that name is encoun­
tered anywhere in a program, the function is called or invoked, and the state­
ments used to define the function are obeyed. 

The block of statements defining the action of a function can include calls 
to other previously defined functions (including itself, recursively, as we say), 
which in turn may contain calls to other predefined functions, and so on. 

Functions are therefore the heart and soul of C, and much of this book is 
devoted to showing how functions are built up from more primitive ele­
ments, including libraries of machine-specific functions used for 1/0 and 
memory management, for example. 

When a function needs input data, iefeiied to as arguments or parame­
ters, they appear within parentheses after the function name and are sepa­
rated by commas. 

function name(arg1, arg2, arg3, ... ); 

You can picture the above statement as an instruction to the system to per­
form the previously defined function, function name, using the given values 
argl, arg2, and so on. Some functions take a fixed number of arguments 
(including none), while others can take a varying number (including none), 
depending on the circumstances. 

A familiar example from mathematics would be the function, cube(N), 
which calculates the cube of the single argument N. Calling cube{3) would 
return 27. N is called a formal parameter to distinguish it from the 3 .. which is 
the actual or real parameter used when calling cube. Much more on this 
important subject anon. 

The action of a function will depend entirely on the statements used in its 
definition and the particular values of the arguments supplied, if any. The 
result may be a useful returned value, as with conventional functions, or it 
may simply be an action such as displaying a message on the screen, as with 
conventional procedures. 

You soon learn to look on functions as black boxes-you shove values in 
and get values or actions out. Life is too short to know exactly what goes on 
inside every black box. Have faith! 

When a function requires no arguments, C notation still requires that you 
put parentheses after the function name even though there is nothing within 



,.. FIRST FALTERING STEPS ,.. 23 

them. In some circumstances to be discussed later, the absence of arguments 
is made more explicit by writing function name (void). The parentheses con­
vention makes it easier for you and the compiler to spot the functions in any 
piece of source code! Note that we will often write name() without bother­
ing to spell out the arguments to indicate that we are discussing a function 
rather than some other object called name. 

You can now rightly deduce that in HELLO.C main() is a function called 
with no arguments, whereas printf() is a function called with one string argu­
ment. In HELLO.C the string argument happens to be a string constant or 
string literal for the obvious reasons that its value, hello, world\n, remains 
fixed and is expressed "literally." Later you'll meet string variables that can 
assume different string values at the whim of the programmer. The function 
printf() can accept both kinds of string arguments and other types of argu­
ments, by the way. 

A string constant in C is any sequence of characters between double 
quotes, as in "hello, world\n". In technical parlance a string is an array of 
characters terminated by the ASCII NUL character (value 0). You don't ever 
"see" this NUL, but it's stored at the end of every string, or, to be more accu­
rate, it is the end of every string (hence the song "Without A NUL, That String 
Would Never End!"). 

The strange looking \n provides a newline character and will be explained 
later in this chapter. 

Note in passing that under different circumstances, main() and printf() 
might be invoked with a different number of arguments. 

The function main() has a unique role to play in all C programs. Since a C 
program consists of sequences of functions, you may wonder which one 
fires up first. The answer is that main(), wherever it is placed physically in the 
source code, is the "leader." Every complete C program must have just 
one main( ) somewhere, and this is where C starts off when executing 
the compiled/linked code. To see what main() does, you need to look 
at the block or body of code following it. This leads us to the next feature 
of HELLO.C, block markers. 

~ Block Markers (Lines 6 and 8) ~ 

~ { } Curly braces are used to signal the start and end of a block of code. 
They play the same role as BEGIN and END in other structured languages. 



24 .. MASTERING TURBO C .. 
CH.1 

To discover what main() does, you need to check out all the statements 
lying between the first { following main( ) and its matching final } . This is 
quite simple in the case of HELLO.C since you find only the single statement 

{ 

} 
printf("hello, world\n"); 

In real-world programs, main( ) could have many other blocks nested 
inside the outer, or principal, {and} block markers. The number of {'s must 
always match the number of }'s, of course. There are typographical conven­
tions to help the eye in detecting nested blocks, and these will emerge as 
we proceed. 

The key point here is that any lump of code placed between matching 
pairs of curly braces represents a block that tells the compiler how to break 
down and process "units" of the program. In simple terms, a group of state­
ments within {and} acts like a single, compound statement. The block con­
cept will be clarified when you see more complex situations. 

... The printf() Function Call (Line 7) ... 

~ printf("'hello, world\n"); As you've seen, the body of main( ) contains 
the single line shown above, which is a call to the function printf() with a 
string constant as argument. 

printf() is a precompiled library function supplied with Turbo C (and a!! 
other conforming C compilers) that displays formatted (hence the fin printf) 
strings of characters on your standard output device, which for the moment 
simply means your monitor screen. 

The name print is a well-entrenched archaism dating back to those syba­
ritic days when output terminals were teleprinters or Flexowriters. Now­
adays we have CRT's (also known as glass teleprinters) but the verb "print," 
meaning "display," still survives. 

The particular version of printf( ) supplied with the Turbo C library has 
been written specifically for the computers in the IBM PC family (or compat­
ibles) running under DOS. The C language achieves portability by not get­
ting involved directly with all the machine- and OS-dependent tricks needed 
for device and file 1/0. Your HELLO.C would compile and run on a Cray or 



~ FIRST FALTERING STEPS ~ 25 

VAX because their libraries contain a printf( ) written specially for their 
respective hardware and operating systems. 

printf() turns out to be quite a complex function, able to accept a variable 
number of parameters. Its usage in HELLO.C hides the fact that it can be 
used to display both numbers and strings in a wide range of formats. To 
display a single string like hello, world you can actually use a much 
simpler function called puts(). You'll see this shortly in an exercise with the 
Turbo C editor. 

~ The Escape Sequence (Line 7) ~ 

~ \n The escape character \ (familiar to UNIX users) is used to solve the 
problem of inserting nonprintable control codes or difficult characters into a 
string. For example, it's clearly impossible to plant a new line after hello, 
world by pressing Enter as in 

printf("hello, world< Enter>"); 

The Enter key does give a new line on the screen during input, but the com­
piler ignores it! To get a true new line you type the escape sequence \n. 

Similarly, there is a problem if you want to display a string containing real 

double quotes. In 

printf("I am saying "Hello""); 

Turbo C would take the second " as an end to the string "I am saying ". 
What to do? You use the escape sequence\" for the internal double quotes 
as in 

printf("I am saying \"Hello\""); 

which will display, I am saying "Hello". 
The escape character\ tells the compiler to treat the following character(s) 

in an unusual way, i.e. escape from the normal interpretation. Such charac­
ters are sometimes called metacharacters since they have significance out­
side the normal set. Table 1.6 indicates how Turbo C translates the escape 
sequences. 



26 .,.. MASTERING TURBO C .,.. 
CH.1 

Sequence Value ASCII 

\0 0 NUL 

\a Ox07 BEL 

\b Ox OB BS 

\f OxOC FF 

\n OxOA LF 

\r OxOD CR 

\t Ox09 HT 

\v Ox OB VT 

\\ Ox SC \ 

\' Ox27 

\" Ox22 

\? Ox3F 

\ddd Oddd any 

\xhh Oxhh any 

Function 

String terminator 

Audible bell ("attention") 

Backspace 

Form feed 

New line (line feed) 

Carriage return 

Horizontal tab 

Vertical tab 

Backslash 

Single quote (apostrophe) 

Double quote 

Question mark 

1 to 3 digit octal value 

1 to 2 digit hex value 

.... In the Value column, octal constants start with 0 and hex constants start with Ox. 
This 0 is not needed after\. 

~ Table 1.6: Escape sequences 

.... Escape with Special Characters 

Because the single apostrophe has the special function of designating 
single character constants, you can see why\' is needed to express a literal'. 
Similarly, \ \ must be used to get a single literal \.The first\ protects the fol­
lowing character from being treated as a metacharacter, so '\" means the 
ASCII character 047 or Ox27 ('"is illegal), and'\\' means the ASCII character 
0134 or Ox5C ('\'will not work!) . 

.... Back to \n 
Coming back to \n, note that in place of 

printf("hello, world\n"); 



you could achieve the same result with 

printf("hello, "); 
printf("world"); 
printf("\n"); 

,.. FIRST FALTERING STEPS ,.. 27 

The first statement displays hello, and leaves the cursor sitting after the 
space, waiting for something to happen. Then world is displayed, and, finally, 
printf("\n"); provides a new line on the screen. Yes, printf("\n\n\a\a"); 
would give two new lines followed by two ringy-dingies (ASCII BEL character). 

Once you've mastered the Turbo C editor, you can "ring" the changes on 
HELLO.C with such variants as 

printf("\t\ \hello\t\a\aworld\n\n"); 

This would display a tab indent followed by \hello. You would then get two 
rings, and world followed by two new lines would be displayed . 

.,.. A Detour into Data Types ..... 
Individual character constants, as opposed to strings of them, can be 

expressed with single quotes: 'A', '\101', '\x41', and '\X41' all represent 
the same ASCII character. 

You may be wondering if there is any difference between the single char­
acter' A' and the one-character string" A". There are two differences worthy 
of a slight detour. 

1. 'A' and "A" are different data types. 'A' is of type char, stored and 
treated numerically as an integer, whereas "A" is of type array of 
char. It just happens that in this example the array holds one signifi­
cant character. 

As in Pascal (but unlike BASIC) C requires that the data type of each 
identifier be declared before it is used in a program. 

The "why" of declarations is quite simple: The compiler can use them 
to efficiently allocate memory for each constant and variable and possi­
bly check that your statements make sense (adding chalk and cheese 
may not be allowed). The "how" of declarations is not so easy and will 
be revealed as time goes by. 

2. Since "A" is a string, it requires a final NUL, so it's stored in two 
bytes-" A" and NUL. Single character constants strictly need only 



28 .,. MASTERING TURBO C .,. 
CH.1 

one byte, but C treats them as integers as a matter of arithmetical con­
venience (permitting such tricks as ('A' + 1) to give '8'). Turbo C 

stores int type integers in two bytes, reflecting the 16-bit registers of 
the IBM PC microprocessor. So, when you store a single character 
constant as a 2-byte integer what happens to the other byte? In the 
case of 'A', the lower byte would contain Ox41 with the upper byte 
usually sign extended, i.e., filled with O's or l's, depending on the 

value of the eighth (most significant or sign) bit of the lower byte. For 
characters in the standard ASCII range (decimal values 0-127), the 
sign bit is 0, so the upper byte is OxOO . 

.... Statement Terminator (Line 7) ..,... 

~ ; The semicolon at the end of the printf() line indicates the end of a state­

ment. It is officially called a statement terminator in C to distinguish it from 
statement separator symbols used in other languages. 

In C a line of text can contain several statements, and a statement can 
straddle several lines, so the ; plays a vital role in telling the compiler how to 

translate your code correctly. Note, however, that no ; is needed after the 
final } block marker. The compiler already knows the statement is ended. 

You can legally enter a; without having a prior statement. This represents a 
nul or empty statement, which sounds rather Zen but does prove useful in 
situations in which the syntax demands a statement but there is no action 
required. (Compare this with NOP, the no operation instruction found in 
assembly languages.) 

Note also that no semicolon is needed afi:er the #inciude directive. The 
preprocessor has its own set of rules, one of which is that directives are ter­
minated by a new line . 

.... Statements and 
Expressions-Another Necessary Detour ..,... 

A C program normally runs by executing each of its statements in 
sequence, just as you would read them on the page. This sequential execu­
tion can be altered using various control flow or conditional statements, 

such as 

if (expression) {statement(s)} 



~ FIRST FALTERING STEPS ~ 29 

which says, "carry out {statement(s)} only if (expression) is true. Another 

example is 

while (expression) {statement(s)} 

which says, "keep obeying { statement(s)} while (expression) is true. There 

are no special Boolean data types in C, by the way. False simply means 0, and 

true means nonzero (usually 1 ). 

These concepts are introduced briefly here to illustrate the use of the state­

ment terminator. (The whole of Chapter 4 is devoted to C's armory of control 
flow constructs-without which, of course, programs would be confined to 

dull slogging through fixed sequences.) Informally, we can offer the approxi­

mate hierarchy of C language constructs shown in Table 1.7. 

c English Examples 

operands words sum, total, flag 
(variables & constants) "hello", 'A', 3 

operators verbs ==, =, * ,+ 
(arithmetic, logic, etc.) 

expressions phrases (sum ==total) 
flag = 1 
total = sum + 3 

statements sentences flag = 1; 
total = sum + 3; 

complex statement long sentence if (sum = = total) 
flag = 1; 

... Table 1.7: C constructs with approximate English equivalents 

The last example means, "if the values represented by sum and total are 

equal, then set flag to value 1." Note that the assignment operator ( =) and 

the equality operator (==)are different. In the example of a complex state­

ment, there is no ; after the expression (sum = = total)-the whole statement 

does not terminate until after the statement flag = 1 ;. 

Expressions in Care unusually active creatures: They not only trigger the 

appropriate activity according to the operands and operators found therein 

but are also evaluated in the sense that they actually acquire a value that 

reflects the operation. 



30 • MASTERING TURBO C • 
CH.1 

This is so unlike BASIC and Pascal that it can be somewhat disconcerting 
to the beginner. The expression flag = 1 not only assigns the value 1 to flag 
but also "takes on" the value of flag, namely 1. So, you can find busy state­
ments like 

total = (sum = 2) + 3; /*set sum to 2 and total to 5 */ 

or 

total = sum = 3; /*set sum and total to 3 */ 

Expressions that pack a lot of punch give Cits unique flavor but can lead to 
over-compact, hard-to-read code if taken to extremes. 

As soon as you add the magic semicolon you complete that particular 
statement. Turbo C will pause to digest, as it were, all the rubbish since the 
previous ; or } , and all the expressions in the statement will be obeyed and 
evaluated according to the precise rules of precedence and associativity. 
Depending on any conditionals encountered, execution will resume with 
the next or some other statement. 

...,. HELLO.C Summary .... 
I seem to have been continually sidetracked while trying to divine the 

modus operandi of my naive example, so I'll recapitulate. The key points can 
be summarized as follows: 

1. Source code HELLO.C plus STDIO.H compiles to form HELLO.OBJ. 
HELLO.OBJ is linked with object code in the Turbo C library to give 
us the executabie fiie HELLO.EXE. 

2. You learned how to set up options on the Turbo C Integrated Devel­
opment Environment and load and run a program from the main 
menu. 

3. The anatomy of HELLO.C: 

I* *I for comments 
directives: 1.#include <stdio.h> 
new line after directives-no semicolon 
white space for pretty layout 
the main() function 
the function body and block markers {} 



~ FIRST FALTERING STEPS ~ 31 

printf() and function arguments 
string constants: "hello, world\n" 
escape sequences: \n for a new line 
statement terminator: semicolon 

~ERRORS~ 

Having successfully reached the stage when an .EXE file is produced, your 
program is ready to run. Congratulations! Your source code has passed the 
inexorable Turbo C syntax checker built into the compiler. Rest assured that 
you will see Turbo C's reaction to illegal or doubtful statements before many 

moons have passed. 

~ Compile-Time Errors ~ 
Unlike the BASIC interpreter you may be used to, Turbo C does not imme­

diately spot syntax errors on a line-by-line basis. Rather, being a compiler, 
Turbo C inspects as much of your complete source code as possible before 
reporting your errors and inviting corrections. Such errors and warnings are 

referred to as compile-time problems. 
Warnings are usually nonfatal, whereas errors must be corrected and 

the program recompiled and relinked before further progress is possible. The 
Make utility is a clever aid in such situations; using the project files men­
tioned earlier, it can help automate the recompiling and relinking process 
depending on which files have changed since the last compilation. 

Several C interpreters or combined interpreter/compilers are now available. 
The trade-off is traditionally between the higher execution speed of compilers 
and the immediate error detection of interpreters. In fact, Turbo C compiles 
quickly enough to settle such arguments. 

Some errors may surface during linking, such as missing or misplaced 
.OBJ files, but these are easily corrected by telling the linker where to look. 
The linker may also uncover discrepancies between the modules. I'll tell you 

more on this when I discuss the Turbo C menus. 

~ Run-Time Errors ~ 
The completed .EXE file contains all the machine code required for load­

ing and execution by your operating system (PC-DOS or MS-DOS). Just 
like the many .EXE files provided with DOS, your newly created .EXE file 



32 .- MASTERING TURBO C .­
CH. I 

can be invoked at any time by simply typing HELLO at the C> prompt and 
pressing Enter. 

The fact that your code is free from syntax and other compile- and link­
time errors does not guarantee that the .EXE program will run as expected or 
at all! Run-time errors come in many delicious flavors, ranging from endless 
loops to total system crashes, from polite error messages to getting the 
wrong results without a warning. 

As with natural languages, you need to distinguish syntax (superficial con­

formity) from semantics (the deep meaning, if any). Legal statements, alas, 
may compile into nonsense that the system cannot usefully execute or even 
survive. The C language, you'll discover, is not especially mollycoddling as 

are Ada, Pascal, or Modula-2. In providing the power and compact notation 
to let you operate efficiently and close to the "machine level," the C syntax 
places fewer restrictions on the dumb and dangerous things you can do if 
you really try. C, as it were, is like assembly language in that it assumes you 
can handle a loaded shotgun without a safety catch. Other languages worry 
about your competence and make you line up for firearm permits. 

Another real possibility is that your program might run to completion but 
fail to reflect your intentions. Either your original problem analysis, input 
data, or algorithms are faulty, or there are errors in your coding (or all of the 
above). An essential part of mastering Turbo C (and any other programming 

language) is to develop debugging skills to track down and fix such prob­
lems. Some guidance on this vast subject will be provided in later chapters, 
but don't expect any magical sesames. Chapter 11 explains the tools that 
Version 2 provides to help you zap those elusive insects. 

Finally, with software as complex as DOS and the Turbo C package, you 
cannot entirely rule out bugs (also known as unpuhli~hPd features) in the sys­

tems software. Since the latter probably have been subjected to more testing 
than your own programs, it is wise to double-check your work before blam­
ing others. If you feel certain that the systems software is at fault, your report 
to the software vendor must be precisely documented with your program 
listings, screen printouts, hardware configuration, DOS level, and the serial 
numbers of your package. Unless your reported bug can be repeated under 
your exact configuration and environment, it will be virtually impossible 
to fix. 

~ VS/NG THE TURBO C EDITOR ~ 
Because .C and .H files are ASCII text files, you can use almost any text edi­

tor to create and modify your source files. Most word processing packages 



~ FIRST FALTERING STEPS ~ 33 

offer a nondocument option that avoids peculiar formatting and typesetting 
codes that might upset the compiler. Since Borland includes a very flexible 
text editor with Turbo C that is specially equipped to produce readable .C files, it 
makes sense to try it out. This editor arrives set to work almost exactly like 

the nondocument mode of the popular WordStar package from MicroPro 
International, but the TCINST installation program, detailed in Appendix B, 
allows you to customize the editor to suit your own bizarre prejudices. 

I will not, therefore, confuse (or bore) you with a key-by-key account of 
the editing process itself. When I do refer to specific editor control keys, I will 
use the standard Turbo C versions. If you are new to any form of text editing, 
the only way forward is constant practice and experiment with the following 
basic maneuvers: 

~ Basic Editing features ~ 

... Cursor movement Moving right/left/up/down; moving to end/start of 
words, lines, screens, blocks, and files. Scrolling and paging up and down. 
Note that the line and column numbers are displayed dynamically on the 
top line of the edit window, known as the edit window status line . 

... Auto-indent Toggled on/off by pressing Ctrl-0 I. When off, pressing Enter 
gives a new line without indenting. When on, pressing Enter positions the 
cursor on the next line but aligned under the first character of the previous 
line. Auto-indent makes it easier to produce legible "structured" text, since 
indents clearly indicate the relative level of nested blocks. The edit window 
status line displays Indent when auto-indent is on . 

... Insert on/off Toggled with the Ins key, determines whether your typing 
will write over (insert off) or "push" (insert on) existing text. Watch for the 

Insert legend on the editor window status line. 

... Tab mode Toggle with Ctrl-0 T. Again, the status line indicates the mode in 
force. With tab mode on, the tab key inserts tab codes in the text (white 

space) and tabs the cursor modulo 8 spaces. With tab mode off, the cursor 
spaces to positions determined by the words of the previous line. 

... Deleting Use Del and backspace to remove a character under or to the 

left of the cursor. Use control combinations to erase words, whole or part 
lines, or blocks. 



34 ~ MASTERING TURBO C ~ 
CH.1 

.... Block marking Move, copy, delete, write-to-disk marked blocks. 

.... Search and replace Hunt for a target string with or without a replacement 

string. Many options, allowing forward and backward searches with or with­

out case sensitivity, with or without prompted replacements, with or without 

counted matches, with or without whole word matching, and so on . 

.... Saving, renaming, and quitting It is worth stressing the importance of the 

hot key F2, which allows you to save work in progress during an editing ses­
sion. You can also quit without saving. 

~ HELLO.C VARIATIONS ~ 
To give you some useful practice with the built-in Turbo C editor (as well as 

to extend your knowledge of C) make a copy of HELLO.C called HELL01.C. 

Load HELL01.C into the editor and try the following: 

1. Alter the opening comments, changing printf to puts and removing 

the \n from the "hello, world" string. Use F2 to save your changes. 

Your program should now look like Program 1.2. 

The function puts( ) means, "put string." Like printf( ), it is declared in 

stdio.h. puts() is a simpler version of printf( ), taking only a single string 

argument and performing no formatting. puts(), unlike printf( ), automati-

ca!!y appends a ne\"I line after displaying the string. Put, like p;int, is a com-

mon synonym in C for outputting to some device or file. 

To gain familiarity with the menus, follow the procedure outlined below. 

/* hellol.c--hello, world variation */ 
#include <stdio.h> 
main() 
{ 

puts("hello, world"); 
} 

~Program 1.2: HELL01.C 



~ FIRST FAl.TERING STEPS ~ 35 

• Compiling HELL01.C • 
Press Alt-C for the compile menu. Select C (Compile to .OBJ) to produce 

HELL01.0BJ. You can follow the progress of the compiler in the compile 
window. If all is well, a flashing Press any key message appears alongside 

the success message, and you can pass to "Linking HELL01.C," below. 

• Error Correction (If Any) • 
If you have mistyped, the compile window tells you how many errors and 

warnings have been generated. Hitting any key takes you to the message win­

dow where you get a highlighted error message indicating your first mistake. 
Any other errors will be listed below the highlighted one. The arrow keys can be 
used to highlight such errors. As you move around the message window, the 

corresponding error in the source code is tracked, i.e., highlighted in the edit 
window. Hitting Enter takes you to the offending line so you can correct it. You 

then press F6 to get back to the message window, select another error, and so 
on. Alternatively, you can press F8 (next error) or F7 (previous error) while in the 

edit window, and the cursor will move to the appropriate error. Version 2 uses 

Alt-F8 for next error and Alt-F7 for previous error. 

When all the errors appear to have been corrected, you must recompile, 

recorrect, and re-recompile until you get it right! You will soon discover that 

a single source code error can often generate a host of apparently unrelated 
error messages. The reason for this disconcerting phenomenon will emerge 

as you learn more of the C syntax. 

• Linking HELL01.C • 
Select L (Link EXE file) in the Compile menu to produce HELL01.EXE. 

Notice the progress window showing the linking process. Turbo C is busy 

looking in the LIB directory for any referenced library functions. Again, suc­

cess is signaled with a Press any key message. You can now select Run in 
the main menu (or Alt-R directly). Since HELL01.EXE exists, Turbo C runs it 

immediately. The action of HELL01.EXE is exactly the same as HELLO.EXE. 

• Making HELL01.EXE • 
Now select M (Make .EXE file) from the Compile menu to invoke Project­

Make. Note the name HELL01.EXE appearing alongside the Make legend. 



36 .,. MASTERING TURBO C .,. 
CH.1 

Turbo C quickly checks that HELL01.C and HELL01.0BJ have not changed 
since HELL01.EXE was formed, so you get a message saying that the depen­

dencies check out OK, and no further action is taken. 
You could have used Project-Make initially in place of separate Compile 

and Link operations, but I wanted to give you some exercise. The Make 
option is the simplest and safest path to the .EXE file, since in the absence of 
either a .OBJ or .EXE file (or if they are relatively antiquated) the compiler/ 
linker will be invoked for you. 

Of course, if you want to run your program immediately, the Run menu 
also invokes Project-Make, checks the dependencies, calls the compiler/ 
liner as needed, and then executes the .EXE file. 

~ HELL02.C ~ 
The next variation to try is shown in HELL02.C, (Program 1.3). It intro­

duces the #define directive, which is C's basic mechanism for creating 
macros and aliases. 

The line added to HELL01.C is 

#define GREETING "hello, world" 

and the argument for puts() is changed to GREETING. 
As with the #include directive, the# before define triggers action by the 

preprocessor. Each subsequent appearance of the identifier GREETING 
anywhere in your source code will be replaced by the string "hello, world" 
before compiiation commences. So, when the preprocessor meets puts 
(GREETING), the function call is changed to puts("hello, world"). We have 
concocted yet another way of achieving K&R's original goal! 

/* hello2.c--hello, world variant*/ 
#include <stdio.h> 
#define GREETING "hello, world" 
main() 
{ 

puts(GREETING); 

.. Program 1.3: HELL02.C 



.- FIRST FALTERING STEPS .- 37 

If the preprocessor encounters the sequence GREETING inside a string, 
no substitution takes place. For example, 

puts("GREETINGs dear friend"); 

will not be affected by the definition. 

The use of #define here is somewhat artificial, but suppose that for some 

obscure reason you wanted to write a longer program peppered with occur­

rences of the string "hello, world". The one #define directive would eventu­

ally pay off in terms of reduced keystrokes. Before we assess the other 

advantages of #define, let's review the syntax involved. The general format 

for simple token substitution or aliasing is 

#define identifier string 

where you need at least one space or tab between each section and a final 

new line immediately after string. If the string is too long to fit a single line, 

you can use the escape character (backslash) before the new line, then con­

tinue typing the rest of the string on the next line as in 

#define WARNING "This is a very long warning, so I need a\ 
to avoid going off the screen" 

Remember that a semicolon is a statement terminator, so you don't need 

one at the end of a directive . 

..,... IDENTIFIER RULES ..,... 
The identifier in the #define line (called the macro name) must conform to 

the basic rules for all C identifiers: 

1. Identifiers must start with an uppercase or lowercase letter or an 

underscore (_). 

2. After the initial letter or underscore, you can have any number of 

characters from the following set: A-Z, a-z, underscore, slash (/), or 

the digits 0-9. Turbo C actually uses only the first thirty-two charac­

ters of an identifier, however, so you should really show some 



38 ~ MASTERING TURBO C ~ 
CH.1 

restraint. The following two identifiers would not be distinct: 

This_is_long_ variable_numbered_ 10 
This_is_long_variable_numbered_ 11 

3. Because C is case sensitive, Greeting and greeting are distinct from 
GREETING and would not be affected by our #define directive. 

4. It is customary but not mandatory to use all uppercase letters for 
macro-name identifiers simply to give a visual clue that they are not 
ordinary identifiers. 

5. There are fifty-eight keywords in Turbo C that have preassigned 
meanings (see Table 1.8). These either cannot or should not be used 
as identifiers. Some reserved words may be used legitimately as 
macro names under special circumstances (usually to allow compati­
bility with pre-ANSI compilers), but the novice should accept the fact 
that keywords should only be used as nature intended. By the end of 
this book you will know the purpose of each of these keywords! 

6. An initial underscore is traditionally reserved for external identifiers. 
You should avoid using such identifiers for your own internal objects. 

~ SVBSTITVTION STRING RULES~ 
There are none! You can enter any sequence of characters, and they will 

be literally and exactly inserted in your source text, wherever the given iden­
tifier is found. The only exception is the line-continuation trick using a back­
slash in which the backslash is not really part of the string. 

Whether the substitution makes contextual sense will be determined by 
the compiler, not the preprocessor. This turns out to be an important issue 
when you meet more complex situations. A good safety-first rule is to 
enclose the string in parentheses to give it "syntactical" protection. The 
parentheses can do no harm, and they often prevent calamitous side effects 
due to C's precedence rules when evaluating complex expressions. 

~ DEFINING MACROS ~ 
The #define directive offers more than the simple substitution operation. 

Used as a macro, it allows arguments to be supplied, rather as you saw with 



• FIRST FALTERING STEPS • 39 

*asm if -cs 

auto int -ds 

break *interrupt -es 

case long -SS 

*Cdecl *near -AH 

char *pascal -AL 

con st register -AX 

continue return -BH 

default short - BL 

do signed -CH 

double sizeof -CL 

else static -CX 

en urn struct -DH 

extern switch -DL 

*far typedef -DX 

float union -BP 

for unsigned -DI 

goto void -SI 

*huge volatile -SP 

while 

• Keywords marked with an * are exclusive to Turbo C, as are the special register 
symbols (in column 3). 

~ Table 1.8: Turbo C keywords 

functions. As with functions, you use ( and ) immediately after the macro 

name as in 

#define cube(x) ((x)*(X)*(x)) /*xis formal parameter*/ 
/*"*"is the multiplication operator*/ 



40 .,. MASTERING TURBO C .,. 
CH.1 

The string now defines how the formal parameters (just x in this case, but 
there may be more than one) are applied when the preprocessor encoun­
ters the token cube in the source text. So, cube(3); would be converted to 
((3) * (3) * (3)) in situ before compilation, and cube(a + b); would become 
((a+ b)*(a + b)*(a + b)), which may help you see the need for the parenthe­
ses in the #define line! Without them, you would get an ambiguous or erro­
neous result since a+ b*a + b*a + b equals a+ (b*a) + (b*a) + b because C 
places * higher in precedence than +.More on this anon. 

~ ON YOUR OWN ~ 
Write and compile Program 1.4 as a tribute to Philippe Kahn, the president 

of Borland International. 

/* BONJOUR.C -- Hello, Philippe */ 
#include <stdio.h> 
main() 
{ 

puts("Bonjour, joli monde!\n"); 

~Program 1.4: BONJOUR.C 





DATA 
TYPOLOGY 



~CHAPTER 2 ~ 

In Chapter 1, I introduced informally the concept of data types, explaining 
that Turbo C needs to allocate appropriate amounts of memory to store dif­
ferent classes of objects. To keep my initial programs simple, I used only a 
special and rather limited class of data types known as constants. (I used 
character and string constants.) In this chapter you'll meet the arithmetical 
constants known as integers, but first you'll learn how to use integers as vari­
ables. There will be a certain amount of essential theory supported with 
examples before you return to the fun of TC.EXE. 

To avoid repetition, many of the examples will be extracts rather than 
complete, compilable programs. Such snippets will not have the proper 
header files with a main() function, and so on. Complete programs are given 
file names and program references, e.g., Program 2.3 is the third full pro­
gram in Chapter 2. 

~ WHY DATA TYPES? ~ 
Now the compiler can determine the data types and memory require­

ments of constants from their actual typographical formats as they are 
encountered in the source text. However, when we use variables, the sys­
tem needs some prior warning as to which data type we intend. Each data 
type has predetermined memory requirements and an associated range of 
legal values. This advanced warning is known as a data type declaration. 

Data typing separates the identifiers used to denote variables into more or 
less immiscible categories, allowing the compiler to detect certain errors 
(like the proverbial adding of apples to pears or dividing chalk by cheese). 

In strongly typed languages like Modula-2 and Ada, the data typing is 
strictly enforced so that even closely related data types cannot be intermixed 
without the programmer giving specific permission (or type casting). C is a 
weakly typed language, meaning that in many situations the compiler will 



44 .,. MASTERING TURBO C .,. 
CH. 2 

quietly convert your data types to achieve compatibility within a mixed 

expression. It is rather like achieving apples + pears by first changing both 
to fruit. 

Is strong typing better than weak typing? Each language has its own ratio­

nale and its own band of voluble fans. C expects you to know its internal 

data-type conversion policy and wastes little space or time in policing your 

assignments and arithmetic. The strongly typed language supporters prefer 

security even at the expense of compiler size and runtime efficiency. 

~ INTEGER VARIABLES ~ 
Integers, or whole numbers, are either positive, negative, or zero. 
With Turbo C (and other IBM PC C implementations), integer variables (and 

· constants) end up in 16 or 32-bit two's-complement form, which is the natural 

arithmetical mode of the 8088/8086/80286/80386 instruction sets. Because dif­

ferent computers have different register widths, though, C does not set standard 

bit sizes for objects like integers, nor does it dictate how numbers should be 

internally represented, for example as one's-complement or two's-complement. 

(I'll explain two's complement shortly.) Outside the mainframe world, 16- and 

32-bit integer representations are the general rule, so Turbo C will give you 

widely portable code. 

~ int and long ~ 
By declaring an identifier (sum, for example) as an int (integer data type) you 

warn the compiler ahead of time that sum will need 16 bits to represent its legal 

range of values (from - 32,768 to + 32,767 for Turbo C). Exactly when the actual 

allocation takes place depends on factors to be discussed later. 

Declaring sum as a long (or, equivalently, long int), tells the compiler that 

32 bits will be needed, giving sum a legal range of - 2, 147,483,648 

to + 2, 147,483,647. 

Officially, C does not insist that long be longer (have more bits) than int-it 

insists only that long must not be shorter (have fewer bits) than int. For Turbo 

C, just remember that int is 16-bit and long is 32-bit. Other systems may have 

both int and long as 32-bit values, so some care is needed. 



.,. DATA TYPOLOGY .,. 45 

.... Short Integers .... 
C officially recognizes a third integer data type called short int (or short for 

short). As with int and long, the ANSI standards leave it up to each individual 
implementor to choose a suitable bit size for short, provided only that int is 
not shorter than short. The rules for the three integer types can be expressed 
informally as long > = int > = short where > = means "bit size is greater 
than or equal to." 

You'll be relieved to learn that in Turbo C short and int are indeed the 
same 16-bit entities. For the moment, then, we will concentrate on int and 

long. If you come across short or short int while reading a non-Turbo C pro­
gram, make a mental note that for some systems it may be smaller than int. In 
the big, wide world of C, the choice of integer data types can affect program 
portability. 

.... Signed Integers .... 
Note that int and long are known as signed data types because they are 

stored and manipulated using the two's-complement convention whereby 
the leftmost or most significant bit (MSB) acts as a sign bit. The MSB for posi­
tive integers is 0, and for negative integers it is 1. 

Under this regime, the int value -1, for example, is written and stored 
as binary 

1111111111111111 

(hex OxFFFF, decimal i 6 - 1 ), while - 32,768 is stored as 

1000000000000000 

(hex Ox8000, decimal i5). The long version of - 2 would be binary 

11111111111111111111111111111110 

(hex OxFFFFFFFE, decimal 232 - 2). (If this section and the following one are 

not absolutely clear, you should read Appendix D, Computer Math 



46 ._ MASTERING TURBO C ._ 
CH. 2 

Roundup. You need to understand signed and unsigned binary arithmetic 
since C assumes that you know what you are doing-there are few checks 

on range overflow!) 

.- Unsigned Integers .-
Each of the signed integer types has a corresponding unsigned version­

unsigned int and unsigned long. These types give non-negative ranges: 0 to 
+ 65,535 and 0 to+ 4,294,967,295, respectively. Unsigned integers treat the 
MSB as i 5 or l31, not as a sign bit. Table 2.1 summarizes the integer data 

types for Turbo C. 

..,.. INTEGER DECLARATION SYNTAX ..,.. 
If the compiler meets the identifier sum before its declaration has been 

made, an undefined symbol: 'sum' error message will be generated. 

The simplest integer declarations take the following forms: 

int sum; 

long grand_total; 
long int salary; 

unsigned int count; 

Specifier 

int 
short [int] 

unsigned int 
unsigned short [int] 

long [int] 

unsigned long [int] 

Bit Size 

16 

16 

32 

32 

._ [int] means int is optional . 

... Table 2.1: Integer data types 

I* sum is declared to be of type int *I 

/* grand_total is of type long int */ 
I* longwinded version of long salary *I 

I* count is an unsigned integer *I 

Range 

- 32,768 to + 32,767 

Oto +65,535 

- 2, 147,483,648 to + 2, 147,483,647 

0 to + 4,294,967,295 



unsigned long big_count; 
unsigned long int Big_ Count; 

~ DATA TYPOLOGY ~ 47 

/* big_count is unsigned and long*/ 
/*so is Big_Count */ 

For the moment, I will make no distinction between declaring and defining 

an identifier. Technically, a declaration simply notifies the compiler of the 
name and nature of the beast (size and type), while a definition actually trig­

gers the allocation of memory. In most cases we can gloss over the distinc­

tion since the declaration also defines the variable. Later, when you start 

creating your own functions, you will be declaring objects that may have 

already been defined elsewhere. 

~ Type Specifiers ~ 
The keywords short, int, and long are known as type specifiers. The 

optional specifier unsigned can precede and modify these type specifiers, as 

shown. (Signed is assumed in the absence of unsigned.) 

The general syntax of simple integer declarations is 

{unsigned] type-specifier identifier; 

where the brackets around unsigned indicate that it is optional. I use italics 

here to indicate a lexical unit that can be replaced by an appropriate set of 

characters in the source code. 

The identifier being declared follows the rules discussed in Chapter 1 (start 

with a letter or underscore, follow with up to 31 letters, numbers, or under­

scores, and avoid reserved keywords). This identifier is called a simple 
declarator to distinguish it from more complex forms used to declare 

pointers and arrays. 
You need some white space (at least one space or tab) between the various 

elements like unsigned and int, and int and sum, and a final semicolon as a 

terminator. Although a declaration is not, strictly speaking, a C statement, 
it is terminated in the usual manner. 

~ Multiple Declaration ~ 
You can save keystrokes by declaring several identifiers of the same type 

using commas as separators. 



48 ._ MASTERING TURBO C ._ 
CH. 2 

int sum, total; 
long grand_total, bignum, X; 
unsigned int a, b, c, d; 

The first line is entirely equivalent to 

int sum; 
int total; 

I* sum and total are of type int *I 
I* three long ints *I 
/*four unsigned ints */ 

Now that you know how to declare an integer variable, let's look at some 
of the things you can do with it in a Turbo C program . 

..,.. INTEGER VARIABLE ASSIGNMENTS..,.. 
Having been declared, the above identifiers are hereinafter known to the 

program as integer variables, meaning that at any time during the course of 
the program they can be assigned different values within their particular inte­
ger range. Contrast this with constants, which normally remain saddled 
with their original value throughout the program. In the following, sum is 
a variable: 

sum= 1; 
sum = -356; 
sum= 269; 
sum= sum+ 1; 

/* sum now holds the value 1 *I 
/*and now, -356 */ 
I* sum changed to 269 *I 
I* sum becomes 270 *I 

!n C, the assignment operator (=)works from right to ieft. in 

left-value = right-expression; 

the right-expression is evaluated first, then the result is assigned to the /eft­
value. There are strict rules in C governing the kinds of objects you can 
legally use on the left and right sides of an assignment. For the moment, you 
need only these obvious rules: 

1. The left-value must be a variable of some kind, able to "receive" the 
new value coming in from the right. Such variables are officially 



.. DATA TYPOLOGY .. 49 

known as /values (pronounced "el-values"). Only !values are legal on 
the left, receiving end of an assignment. 

2. The right-expression must be capable of providing a value compat­
ible with the !value, whatever that means. In cases where right and 
left are of different data types, C has its own strict rules whereby 

silent, internal conversions are applied to the right-expression, if pos­
sible, to make it compatible before making the assignment. Later 
you'll see that the programmer can intervene with type casts and 
force nonstandard conversions. 

~ The Assignment Symbol ~ 
In spite of appearances, the C assignment symbol must not be confused 

with that of the conventional algebraic equals sign. For example, writing the 
last statement of the previous example as the algebraic equation 

sum= sum+ 1 

has no finite solution, while the valid algebraic lines 

5 =sum+ 1 
sum+ 2 = 35 

would not make sense in C, since neither 5 nor sum + 2 are !values. 
C uses two adjacent equals signs to distinguish the two concepts, equality 

( = =) and assignment ( = ): 

if (sum == total) .... 

is read as "if sum equals total .... " whereas 

sum =total; 

is read as "assign the value of total to the variable sum." 



50 ... MASTERING TURBO C ... 
CH. 2 

A popular mental model is to picture variables as labeled boxes. To find 
the current value of sum, you open the box marked sum! The assignment 

sum =sum + 1; 

means: "Look in the sum box, grab the value, add one to it, and put the 
new value back in the box." Other readers may be more comfortable with 
the image of sum as a 16- or 32-bit word in RAM being incremented via the 
8088/8086 ADD instruction. 

~ INCREMENTS AND DECREMENTS ~ 
Incrementing (and decrementing) by 1 is such a common computing pas­

time that C offers several shorthand versions of the above type of assign­
ment. To whet your appetite: 

total = sum++; 
total = sum -- ; 

total= ++sum; 
total= --sum; 

/* set total to sum, then inc sum by 1 *I 
/*set total to sum, then dee sum by 1 */ 

/*set sum to sum+ 1, then set total to new sum */ 
/* set sum to sum -1, then set total to new sum *I 

The double symbols + + and - - after sum are called the postincrement 

and postdecrement operators respectively, implying that sum is increased or 
decreased by 1 after the assignment to total. The general term postfix is used 
for such operators. 

Similarly, the prefix operators + + and - - appearing before sum a;e 
known specifically as preincrement and predecrement operators. With 
these, the increment or decrement by 1 is performed on sum before the 
assignment to total is made. 

To illustrate these operations, consider the following snippet: 

int sum, total; 
total = 5; sum = 3; 

total = sum++; 
total = ++sum; 
total =sum--; 
total= --sum; 

I* declare *I 
/*initialize*/ 

I* total now = 3 and sum = 4 post-inc *I 
I* total now = 5 and sum = 5 pre-inc *I 
I* total now = 5 and sum = 4 post-dee *I 
I* total now = 3 and sum = 3 pre-dee *I 



.,. DATA TYPOLOGY .,. 51 

If you just want to increment or decrement without any assignment, the 
postfix and prefix methods are effectively equivalent. 

sum++; 
++sum; 

sum--; 
--sum; 

/* setsumtosum+1 */ 
/*set sum to sum+ 1 */ 

/* setsumtosum-1 */ 
/*set sum to sum-1 */ 

What you cannot do is use sum++ (or the other three variants) on the left 
side of an assignment. sum++ is not an !value, so sum++ = total, for 
example, is not allowed. 

These postfix and prefix operators, by the way, can be used with variables 
other than integers, but the increment or decrement produced may be other 
than 1. (See Pointer Arithmetic, Chapter 6.) 

...,. COMPOUND ASSIGNMENTS ...,. 
Another useful convention in C is the compound assignment, which sim­

plifies statements like total = total + sum as in 

total += sum; 

total -= sum; 

I* increase total by sum *I 
/* i.e. total = total + sum */ 

I* decrease total by sum *I 
/*i.e. total =total - sum*/ 

Here the operators + = and - = use the two symbols shown to form a com­
pound assignment. These are two forms of a more general compound assign­
ment trick, 

left-value op= right-expression; 

where op can be any one of the ten C compoundable operators shown in 
Table 2.2 (these operators will all be explained in due course). 

This general form translates into 

left-value = left-value op right-expression; 



52 ~ MASTERING TURBO C ~ 
CH. 2 

Arithmetical + (add), - (subtract), * (multiply), I (divide), % (integer 
remainder or modulus) 

Shifts < < (left shift), > > (right shift) 

Bitwise & (AND),: (OR), A (XOR [Exclusive OR]) 

.. Table 2.2: Compoundable operators 

assuming, of course, that op makes sense with the right and left sides of the 
assignment. For example, the following pairs of lines are equivalent: 

sum = sum * factor; 
sum * = factor; 

I* multiply *I 

sum_of_all_sums = sum_of_all_sums I factor; 
sum_of_all_sums I= factor; 

/*divide*/ 

rem = rem % divisor; 
rem O/o= divisor; 

/* integer remainder or modulus*/ 

The compound assignment is one of the many features that makes C popu­
lar with programmers. If the left-value is long-winded (as in the second 
example above), the notation saves much typing, reducing the chance of 
error without obscuring the meaning. 

• A.SSIGNMENT V,.t\LUES 
AND MULTIPLE ASSIGNMENTS ..... 

C also allows you to "chain" assignments as in 

answer = total = sum = O; I* clear them all *I 

The above multiple assignment starts at the right, setting sum to zero, and 
then assigns the value of the statement (sum = 0) to total. C is rather unusual 
in that assignment statements not only assign but also have a value that can 
be used just like a right-expression. What, then, is the vi}lue of (sum = 0)? 
It is simply the !value received by sum as a result of the assignment. So 



~ DATA TYPOLOGY ~ 53 

what we pass on to total is 0 (the new value of sum). Likewise, the value of 
(total = (sum = 0)) is the new value of total, namely 0, and this is passed to 

answer. 
To cut a long story short, all three variables are set to 0, just as if we had 

made the three separate statements 

sum = O; total = O; answer = O; 

In the above example, the whole multiple assignment itself has the value 0, 

but we make no us.e of this fact. 
Rather than being an abstruse quirk of the language, this value property of 

assignments is yet another reason for C's reputation for compactness. Con­

sider the following snippet: 

answer = total + (sum = 4); 

This statement is equivalent to the more verbose 

sum= 4; 
answer = total + sum; 

~ PRECEDENCE AND ASSOCIATIVITY ~ 
Can you guess why the parentheses are important in {sum = 4)? I have 

not yet broached the topic of operator precedence, mainly because only a 
few operators have been discussed! However, now that we have + and = 
rubbing shoulders, we must consider the problem. 

All mathematical texts, whether for human or computer consumption, 
need to have conventions for grouping operands with operators and possi­
bly for deciding the order in which they should be evaluated. For example, 
2 x 3 + 1 is ambiguous (6 + 1 = 7 or 2 x 4 = 8?) unless you lay down a 
few rules. One simple rule is that operations enclosed in parentheses are 
completed separately: (2 x 3) + 1 or 2 x (3 + 1) removes the ambiguity. 
You may also decree that multiplication has higher precedence than addi­
tion, i.e., 2 x 3 + 1 means (2 x 3) + 1. In this case, you needn't use paren­
theses, but they help the eye and do no harm. If you really want 2 x (3 + 1), 
then parentheses are essential to override the precedence rules. 



54 • MASTERING TURBO C • 
CH. 2 

Certain commutative operators, like + and - , can have equal prece­

dence from a purely mathematical standpoint. When calculatingx + y - z, 

for example, you get the same answer, in theory, whether you do (x + y) - z 
or x + (y - z) or even (x - z) + y. The same is true for x x y/z (using I to 

indicate division). 

However, the grouping of the operands may be relevant in practical terms 

since the computer may not be able to store intermediate results with com­

plete accuracy. For example, (x * y) I z might lead to overflow before the 

division is reached, whereas the grouping x * (y I z) might avoid this prob­

lem. You can see that in more complex computer work both the grouping 

and order of evaluation can be relevant even if the pure mathematics reveals 

no problem. 

Some C operators, like + + and - - , offer a challenge in that the 

sequence of evaluation, as opposed to the grouping, can affect the result. 

Take, for instance, 

total = O; 
sum = (total = 3) + (++total); I* poor but legal code *I 

Which group, (total = 3) or (++total), should be evaluated first? It does 

make a difference: sum will equal 7 if we evaluate (total = 3) first (i.e., from 

left to right) but 4 if we evaluate (++total) first (i.e., from right to left). 

It is vital to know that the order of evaluation is not decreed by any C stan­

dards committee-each compiler writer is free to choose any convenient 

evaluation sequence (there are, though, four specific operators that require 

the leftmost operand to be evaluated first). For maximum sanity and portabil­

ity, therefore, you must avoid code like the above px;irnp!e, !ega! though it is. 

A general rule is that if you assign to a variable, avoid reusing that variable in 

the same expression. Safer versions of the example would be 

or 

total = 3; 
sum = total + (total + 1); 
++total; 

total = O; 
temp = ++total; 

sum = (total = 3) + temp; 

I* a temporary variable often *I 
I* solves the problem *I 



., DATA TYPOLOGY ., 55 

depending on your original intentions. 
The pecking order for C's forty or so operators is shown in full in Appendix 

E. Don't rush to memorize them all just now. In fact, it pays to be more 
rather than less generous with your parentheses for ease of mind and legibil­
ity, though you must remember that parentheses alone will not remove the 
order of evaluation problem typified by the + + examµle above. 

~ Precedence Categories ~ 
There are fifteen precedence categories, some of which contain several 

operators, while others contain just one. A lower category number indicates 

higher precedence. 
When C is faced with a sequence of operators of the same precedence 

and no guiding parentheses, it follows certain grouping or associativity rules. 
These rules effectively supply default parentheses. The rules, alas, vary 

according to the precedence categories. 
Most of the categories have left-to-right associativity, so it's easier to 

remember the three precedence categories that associate from right to left: 

categories 2, 13, and 14 in Appendix E. 
Category 14 contains the assignment and all the compound assignments 

(the most common right-to-left associative operators). 
Now the example 

answer = total = sum = O; I* clear them all *I 

given in the section on multiple assignments makes more sense. It is 
evaluated as 

answer = (total = (sum = O)); I* clear them all *I 

I'll point out the other right-to-left operators as they arise. 
I stress again that associativity dictates how operands and operators are 

grouped, not necessarily the order in which each group will be evaluated. 
For example, the three operators*,/, and% all belong to precedence cate­
gory 3, which associates from left to right. A statement such as 

x = total * temp I price * rate % factor; 



56 .. MASTERING TURBO C .. 
CH. 2 

would be treated as though you had typed 

x = (((((total * temp) /) price) * rate) % factor); 

Note the low precedence of = (category 14). 

/* not LISP *I 

Whether this is the optimum grouping, considering accuracy or overflow, 

is another question. Your own parentheses, of course, could force a different 

grouping. 

On this occasion, the grouping happens to dictate a unique sequence of 

evaluation: (total * temp) must be calculated first, the result divided by 

price, and so on. 

If price were replaced with price + extras without parentheses as in 

x = total * temp I price + extras * rate % factor; 

you might be in for a surprise, since * (category 3) is higher precedence than 

+ (category 4). The compiler supplied grouping would give you as step 1 

x = (total * temp I price) + (extras * rate % factor); 

and as step 2 

x = ((total * temp) I price) + ((extras * rate) % factor); 

We don't know which inner piece might be evaluated first. 

Here again is the example that triggered the discussion on precedence. 

answer = total + (sum = 4); I* why the parentheses? *I 

Let's see what happens when we remove the parentheses. 

Since + has a higher precedence than =, and since = associates from 

right to left, 

answer = total + sum = 4; 

would be grouped by the compiler as follows: 

answer = ((total + sum) = 4); 



.. DATA TYPOLOGY .. 57 

resulting in a syntax error (or maybe two). Why? Because, (total + sum) is 
not an lvalue, so you can't assign anything to it. The error message would be 
lvalue required in function .... 

Summing up, the parentheses are essential to override C's natural associa­
tivity rules, since the latter would lead to a syntax error. 

~ WARNING ON THE LACK OF WARNINGS ~ 
Before you become complacent, here are some situations in which 

macho C will fail to protect you. Consider the following snippet: 

unsigned int count, result; 
int sum, total; 

count= O; 
sum= 32767; 

count--; 
++sum; 
total = count; 
result = sum; 

I* declare *I 

I* initialize *I 

I* decrement count? *I 
/*increment sum?*/ 
I* what will total be? *I 
I* what will result be? *I 

We have declared count as unsigned, so you might expect some complaint 
from the compiler when count is decremented by one "below" 0. In fact, C 
will not protect you. After going through the motions of decrement (0 - 1 ), 
the value placed in count is the erroneous bit pattern OxFFFF (i 6 - 1 or 
65535), which is the largest unsigned int value. 

In the statement total = count; the erroneous bit pattern in count is trans­
ferred, as is, to the signed integer variable, total. Callows such assignments 
between different integer types because of its weak data typing, and, as luck 
would have it, total now holds the value - 1 in signed two's-complement for­
mat! I use the word luck somewhat cynically, but computers not using two's­
complement arithmetic would find it more difficult to preserve the correct 
value, -1, from an unsigned variable. 

Incrementing sum by one "beyond" its maximum limit of Ox7FFF (32,767 
or 215 - 1) is also performed without an overflow error message. The signed 
result left in sum would be - 32,768 (internally represented as Ox8000 or 
i5). This great shift in value can produce bizarre results for the unwary. 



58 ~ MASTERING TURBO C ~ 
CH. 2 

The final assignment, result = sum, is made by transferring - 32,768 to 
an unsigned variable without flinching, so result ends up with an unsigned 
value of 2A15. 

Similar considerations apply when assigning between long signed and 
unsigned variables. Assigning from int to long when both are signed or both 
are unsigned is always safe since the latter's !value range is greater. Going the 
other way, from long to int, however, must be done with care. If the value in 

the long happens to be within int range, the correct transfer occurs and no 
harm is done. On the other hand, ifthe long source exceeds the destination 
int range, you will lose the upper 16 bits of the long. 

long stretch; 
int sum; 
stretch = OxFFFFFFFF; 
sum = stretch; I* sum = OxFFFF!! *I 

These are known as silent truncations and must be avoided like the plague 
(as with cliches). 

The moral is to declare integer variables according to their expected ranges. 

~ INITIALIZATION OF VARIABLES ~ 
Another time saver in C is the ability to initialize a variable (give it a starting 

value) during its declaration. For example, 

int sum = 25; 

is equivalent to 

int sum; 
sum= 25; 

/*declare sum as int with initial value 25 */ 

I* declare *I 
I* initialize *I 

You can also declare and initialize a series of variables of the same type 

without repeating the type specifier as in 

short int sum = O; total = O; result = O; I* all shorts *I 



~ DATA TYPOLOGY ~ 59 

The value used to initialize is naturally known as an initializer. For most of 
the numerical variables used in this chapter, the initializer can be either a 

constant or a numerical expression containing previously declared and ini­
tialized variables. (Later on you'll see some restrictions depending on stor­
age classification.) Here are some declaration and initialization examples: 

int sum = 25; /*declare and initialize */ 
int total = sum*2; /* declare and initialize to 50 *I 
long grand_total = total + sum; /*declare and set to 75 */ 

Note that in the third line, because total + sum is within int range, a safe, 
silent conversion from int to long takes place before grand_total is initial­
ized. Be aware of the fact that a right-expression containing only int values 
could conceivably exceed the long range, leading to silent truncation. 

Although there are exceptions, simply declaring a variable usually will not 
give it an initial, predictable value such as 0. It is safer for the beginner to ini­
tialize each variable in some way before using it in the right-expression of an 
assignment . 

..,. INTEGER CONSTANTS..,. 
In many of the previous examples we used integer constants like 1, -1, 

and 269 without much ado. Remember, though, that the compiler needs to 
translate the ASCII symbols, 1, 2, - , and so on, as found in the source code, 

into binary before expressions like sum = 1 or sum + 269 can be evalu­
ated. Since we have not declared these constants explicitly as short, int, or 
long, you may wonder how the compiler knows how many bits, 16 or 32, to 
use in the conversion. The answer is that the compiler takes account of the 
value of the constant. Constants with values between 0 and 32,767 become 
16-bit int types, while those with values between 32,768 and 2, 147,483,647 
take the 32-bit long format. 

.... Hexadecimal, Decimal, and Octal Constants .... 
Constants can be expressed in hex (base 16), decimal (base 10), or octal 



60 ~ MASTERING TURBO C ~ 
CH. 2 

(base 8) by following a few simple rules: 

1. Octal constants must start with a 0 as in 

mask = 017777; sum = 012345; 

An error will occur if you use the numerals 8 or 9 in an octal integer. 

2. Hex constants must start with Ox or OX as in 

mask = OXFFFFE; sum = Ox12345; tot = OXabcdef; 

An error will occur if you use illegal characters in a hex constant. 
After the Ox or OX, only 0-9, A-F, or a-fare permitted. 

3. Decimal constants are written conventionally with no leading 0 
(otherwise they would be taken as octal). 

sum = 1; total = 269; 

The number 0 presents no contradiction. Whether it is octal or decimal does 
not merit much angst. 

The unary operator - in front of an integer constant tells the compiler to 
reverse the sign by subtracting the value from 0. Constants outside the upper 
limit will be silently truncated as we saw with integer variables. Constant expres­
sions, that is, combinations such as (1 + 3) or (4 - 6 * 34) are allowed and are 
evaluaied according to the normai operator precedence rules. 

Summing up, a constant acquires both a value and a data type from the 
way it appears in the source text. 

The use of explicit constants as "magic numbers" should be avoided 
where possible. If a disk block contains 512 bytes, say, it is better to use 
#define BLKSIZE 512 (as in the following snippet) than to have the source 
text sprinkled with references to the constant 512: 

#define BLKSIZE 512 

unsigned int rec_size = 300; 
unsigned int byte_count = rec_size*BLKSIZE; 



.- DATA TYPOl.OGY .- 61 

The resulting code is more legible and can be more quickly updated should 
BLKSIZE change in value . 

...,_ DISPLAYING INTEGERS ...,_ 
It is time to run a few programs that will help you see the various integer 

types and operators in live action on your screen rather than as dry abstrac­
tions on the page. We will use SHOWNUM.C, listed in Program 2.1, as a test 
bed. Later you can experiment by editing it with values and data types of 
your own choice. 

Fire up bytypingtc SHOWNUM.C attheC> prompt and enter the text as 
shown. Use Alt-C and select the Make option from the Compile menu. After 
a successful compile/link, use the+- to access Run in the main menu. Let's 
see how SHOWN UM works. 

~ printf() Format Control Strings ~ 
Until now, printf() has been used with a single string constant as an argument. 

SHOWN UM uses a variation allowing you to display formatted integers. 
Here, the first printf() has two arguments, separated by a comma. The first 

argument, "The value of inta is O/od\n\n", represents a format control 
string, the function of which is to control the conversion and formatting of 
the following argument (or arguments). This string contains two distinct 

/* shownum.c - display various integers */ 

#include <stdio.h> 

main() 
{ 

int inta = -1, intb = 3: 
unsigned long uninta = 65535; 
printf("The value of inta is %d\n\n",inta); 
printf("Sum inta+intb = %d\n\n",inta+intb); 
printf("The value of uninta is %u\n\n",uninta); 
printf("uninta squared is %lu, (inta - uninta) is %ld\n", 

uninta*uninta, inta-uninta); 
printf("Net Profit is %d%%",intb); 

~Program 2.1: SHOWNUM.C 



62 .. MASTERING TURBO C .. 
CH. 2 

classes of characters: 

1. Plain characters such as the familiar text and newline escape characters 
that are displayed without change as in the HELLO.C of Chapter 1. 

2. Conversion specifications such as O/od. These are not displayed as 
part of the text but act as "templates" for the following arguments 

of pri ntf( ) . 

Each conversion specification must start with a percent sign. This tells the 
compiler where and how to display an argument. Each argument to be dis­
played by printf() will have an appropriate specification like O/od embedded 
in the format control string. The concept is similar to the PRINT USING 
MASK$ construct found in most BASICs. 

There are many possible conversion specifications, offering conversions 
(with specified precision) from all the arithmetical data types to ASCII dis­
plays in decimal, hex, octal, and floating-point scientific (or exponentional) 
notation, with or without left or right justification, with or without zero fill, ad 

nauseam. Appendix C lists all these for reference, but for now we'll concen­
trate on the following simpler formats used to display integers, strings, and 
characters with no frills: 

O/os for any matching string argument 

O/oc for any matching single character argument 

O/od for decimal int (signed) 

O/ou for decimal unsigned int 

%0 for octal unsigned int (note: Jeading O not displayed) 

O/ox for hexadecimal unsigned int (note: leading Ox not displayed) 

%X for hexadecimal (as above but giving A-F rather than a-f) 

Each of d, u, o, x or X can have a lowercase letter I prefixed to give the cor­

responding long data type conversion or a prefixed h to give short int con­
version as in 

%Id for decimal long (signed) 

O/ohd for decimal short (signed) 



O/olu for decimal unsigned long 

%ho for octal short (unsigned) 

~ DATA TYPOLOGY ~ 63 

To display a real percent symbol from a format string, you need to use two 
of them, that is,. Pnter "%%" as in the old '\\'escape character trick. Only 
the second% will appear. 

Referring back to SHOWNUM.C, the second argument in 

printf("The value of inta is O/od\n\n",inta); 

is the int variable inta. This gets matched with the O/od in the format string so 
that when you run SHOWN UM the top line should display 

The value of inta is - 1 

followed by two new lines. The O/od interprets the bit pattern in inta as a 
signed int and converts to the ASCII pair -1 for the display. 

The next printf() in SHOWN UM, 

printf("Sum inta + intb = O/od\n\n",inta + intb); 

illustrates how the second argument can be a compound arithmetical 
expression. The O/od is here replaced by the sum inta + intb, again inter­
preted as an int (signed of course). However complex the expression is, it 
will be evaluated and then matched by a single conversion specification 
such as O/od. The second line displayed by SHOWN UM will therefore be 

Sum inta+intb = 2 

followed by two new lines. 
The O/ou in the third printf() converts the unsigned long variable uninta to 

an unsigned int and displays 

The value of uninta is 65535 

without error. Try changing the O/ou to O/olu and O/od and see if you under-
stand the results. · 



64 ~ MASTERING TURBO C ~ 
CH. 2 

The fourth printf( ) statement shows two control specifications O/olu and 
%Id embedded in the format string 

printf("uninta squared is O/ofu, (inta - uninta) is O/old\n", 
uninta * uninta, inta- uninta); 

Don't be fooled by the comma in the format string-it is inside the string, so it 
does not act as an argument separator. The following two arguments are 
arithmetical expressions, and they will be matched in turn by the O/olu 
(long unsigned conversion) and %Id (long signed int conversion). The dis­

play will be 

uninta squared is 4294836225, (inta - uninta) is - 65536 

Reversing the conversion specifications will teach you some of the quirks of 
mixing signed and unsigned integer types. 

SHOWN UM.C ends with a simple demonstration of the"%%" trick. You 

should see 

Net Profit is 3% 

on the final line of the display. 
You should play with SHOWN UM, altering values, data types and format 

strings, until you are familiar with the simple conversion specifiers. Try dis­
playing in short and long hex and octal. It will increase your knowledge of 
number representation as well as giving you practice with the Turbo C editor 
and menus . 

..,.. MAKING YOUR OWN FUNCTIONS ..,.. 
Now that you have seen a library function in action, let's examine the 

problem of creating our own personal functions. Functions arise quite natu­
rally when you find that your program is regularly doing the same or similar 

things. The obvious question is, Can I avoid repetitive typing in my source 
code? Let's take SHOWN UM as a simple example. Rather than entering sev­

eral similar printf() lines, we want to create a function called dispnum() that 



~ DATA TYPOLOGY ~ 65 

can take an integer argument, say n, and display 

The value of n is value 

At the same time, we'll introduce another function called cube() that takes 
an integer argument and returns its cube. 

SHOWNUM1 .C (Program 2.2) illustrates the basic mechanics of declar­

ing, defining, and invoking these naive functions. A new type modifier called 

/* shownuml.c - display and cube integers */ 

#include <stdio.h> 

main() 
{ 

canst int nymph = 40; 

/* this int identifier is frozen by the canst modifier */ 
/* nymph behaves like a constant and cannot be changed */ 

int sum, inta = -1, intb = 3; /* automatic variables */ 

/* these variables are of storage class auto by default */ 
/* i.e. they are automatically created when main starts •/ 
/* and vanish when main ends. They are inaccessible */ 
/* outside their own function. More in Chapter 3. */ 

dispnum(inta); /•call dispnum with real var arg */ 
dispnum( intb); 
dispnum(3*intb+inta); 
sum= cube(5); /*call cube with real canst arg */ 
dispnum (sum) ; 

dispnum(sum++); dispnum (sum); 
dispnum(-sum); dispnum (sum); 
sum+= intb; dispnum(sum *= inta); 

/* can you forecast the resulting displays? */ 

dispnum(cube(inta)); 
dispnum(cube(intb+l)); 
dispnum(cube(cube(inta))); 

dispnum(n) /* declare dispnum with dummy arg */ 
/* A returned value of int is assured by default. */ 
/*However, dispnum() does not return a value. */ 

int n; /* declare dummy arg */ 
{ /* body of function */ 

printf( "The value of n is %d\n\n" ,n); 
} 
int cube(n) 
int n; 
{ 

return n*n*n; 

/*cube() returns an int*/ 

/*the value returned by cube() */ 

~Program 2.2: SHOWNUMJ.C 



66 ~ MASTERING TURBO C ~ 
CH. 2 

const is introduced and explained within comments. The topic of storage 

classes is touched on and will be further amplified in Chapter 3 . 

..... Anatomy of the dispnum() function ..... 
There are three parts to dispnum( ): 

1. The declaration line, dispnum(n), giving the function name and 
its argument list-the single identifier n in this case. If there were no 

arguments, the list would be empty [as in main()], or you could write 

dispnum(void). If there were two arguments we would need dis­

pnum(n,m), and so on. Note that no statement terminator is needed. 

The argument n is called a dummy or formal argument. It serves as a 
place marker when the function is actually called with a real argu­

ment, as you'll see presently. 

2. The declaration giving the data type of the dummy argument: int n;. 

3. The body of the function between { and } , similar to the body of 

main(), which determines (defines) the action of the function. Here 

the function just performs the one action, 

printf("The value if n is %d\n\n",n); 

and then ends because the final } has been reached . 

..... Calling the dispnum ()function ..... 
The function dispnum() is called (or invoked) several times from within 

main() by simply naming it with a particular real or actual argument that 

matches the type of the dummy argument as in 

dispnum(inta); /*call dispnum with real arg */ 

We say that the real argument inta is passed to the function dispnum( ), just 

as the real argument "hello, world" was passed to printf( ) in HELLO.C 



~ DATA TYPOLOGY ~ 67 

(Chapter 1). The result of the call, then, is the same as that of 

printf("The value of n is O/od\n\n",inta); 

In fact, dispnum( ) does not operate directly on inta but on a temporary 
copy of inta. In C, all function arguments are passed by value, so that nor­
mally a function cannot alter the real argument-it knows only the copied 
value of inta, not the memory location where inta resides. Even if n, the 
dummy argument, is changed by dispnum( ), this change cannot "get back" 
to inta. 

Unlike more fussy languages, C traditionally does not engage in tedious 
checks to see that functions are called with matching arguments-later we'll 
see how ANSI Coffers some help in this direction. 

.... The cube() function Analyzed .... 
Like dispnum( ), the function cube() also has three parts: function decla­

ration, argument declaration, and body, though there are a few differences: 
cube() returns a value, as indicated by the keyword return in the function 

body. The expression (n * n * n) after return represents the value returned 
when the function is called. If a function does not return a value, as in the 
case of dispnum( ), then no return statement is needed or you can write 
return; to indicate that nothing is returned. A function like cube( ) that 
does return a value can be considered as having that value when used as 

part of an expression in main() (or anywhere else it gets called). The declara­
tion of cube(), in fact, indicated that its returned value would be of type int. 
In the absence of a type specifier in the function definition, an int return 
value is assumed. 

All of this explains why cube() can legally be used in assignments such as 

sum = cube(5); 

and the use of cube(inta) as a real argument to dispnum() in 

dispnum(cube(inta)); 



68 ~ MASTERING TURBO C ~ 
CH. 2 

The latter works because cube(inta) is in fact an int derived from the evalua­
tion of n*n*n using the int value of inta as the int n. 

Similarly, cube(inta) is a valid int argument for cube() itself as in 

dispnum(cube(cube(inta))); 

So, cube(inta) can be used in any situation where a non-lvalue int can be used . 

..,.. Unused Variable Warnings ..... 
I deliberately refrained from using the const int identifier nymph in 

SHOWNUM1 .C in order to reveal a neat feature of Turbo C. It will issue a 
friendly, nonfatal warning for each identifier declared but not referenced in 
the program. This can help you clear out any deadwood at the end of a long 
development session. 

If you enter and run SHOWNUM1 .C, your screen should look like Fig­
ure 2.1. 

The value if n is -1 

The value if n is 3 

The value if n is 8 

The value if n is 125 

The value if n is 125 

The value if n is 126 

The value if n is 125 

The value if n is 125 

The value if n is -128 

The value if n is -1 

The value if n is 64 

The value if n is -1 

Press any key to return to Turbo C 

.. Figure 2.1: SHOWNUMl result screen 



~ DATA TYPOLOGY ~ 69 

As with SHOWNUM, you should experiment with other values in 
SHOWNUMl. Note that cube() can quickly exhaust the range of int, so try 
using long and unsigned long to find the maximum n before these ranges 
are exceeded. Remember to alter the format strings in dispnum( )! 

~ Duplication of Variable Identifiers ~ 
You may have noticed that the identifier n was declared twice in 

SHOWNUMl .C. Can you declare the same identifier more than once? A 
useful general answer is, "No, not for variables within the same block"; a 
more accurate answer for all identifiers is, "It all depends!" Take the follow­
ing snippet: 

int sum; 
long sum; /*ERROR - sum as int still active*/ 

sum is already declared as int and is still active. To understand when and 
where variables are active requires a discourse on the vital topics of storage 
classes, scope, and visiblity. We will introduce some of the basic concepts 
now, leaving a detailed study for later. 

~ Storage Classes-First Steps ~ 
Without realizing it, perhaps, you have been using a storage class called 

automatic in all your variable declarations so far. The keyword auto can be 
used explicitly as a storage-class specifier placed before the type specifier as in 

auto int sum; 

However, in the declarations used to date, auto has been the default, 
implied by the context, as it were. The comments in SHOWNUMl indicate 
the flavor of automatic identifiers. They correspond to the local identifiers of 
languages like Pascal. The adjective local is perhaps more suggestive of their 
property than auto since variables like sum and inta are local to main(). The 



70 .,. MASTERING TURBO C .,. 
CH. 2 

n that is local to dispnum() does not clash at all with the n that is local to 
cube(). Local variables are safer in the sense that changes to them are con­
fined to their own backyard. Imagine the chaos if the n being altered by 
cube() somehow managed to infiltrate into then of dispnum( ). Such night­
mares are known as side effects, or rather unwanted side effects. Some side 
effects turn out to be beneficial when used with care. 

In contrast with local or automatic variables, most languages need global 
variables, which are accessible from all parts of a program and therefore at 

risk to the side-effects problem. In C the globals are sometimes called exter­

nal because they "exist" outside the functions. The storage-class specifier 
extern can be used to declare a global variable as in 

extern int sum; 

but like auto it is often implied by the context and can be omitted. 
Coffers a rather daunting selection of storage classes and default rules that 

determine where a variable exists (scope) and where it is accessible (visibil­
ity). These will be gradually revealed in the following chapters as we encoun­
ter more complex function schemas. 

~ SUMMARY OF CHAPTER 2 ~ 
Here are the main points covered in this chapter . 

....... Data typing allows the compiler to allocate the correct memory space 
for constants and variables and a!so guides the compiler as to what 
arithmetical operations and ranges of values are legal. C is not strongly 
typed: it often allows different types to be mixed in expressions and will 

often "silently" convert one type to another . 

....... The three basic integer data types are short, int, and long. They are 
treated by default as signed unless explicitly declared as unsigned. 
short and int each take 2 bytes. They are the same types in Turbo C but 
may be different on other implementations. long takes 4 bytes. Turbo C 
uses conventional two's complement arithmetic, so negative signed 
numbers look just like large unsigned numbers! (The sign bit is the most­
significant bit.) 



• DATA TYPOl.OGY • 71 

.... Declarations need a data-type specifier followed by one or more identi­

fier names: 

inti; 
int j, k; 
long I, J, K; 
unsigned int m, n, o; 
unsigned long salary; 

/*or long int I, J, K; */ 

I* or unsigned long int salary *I 

.... Variables can have values assigned to them at various stages of a pro­

gram; constants are fixed in value. Assignment is accomplished via the 

= operator: 

i = j; I* assign value of j to lvalue, i *I 
salary = 10000; I* assign a constant to Iva I ue, salary *I 

The above lines are called assignment statements. Certain objects are 

called !values because they can legally exist on the left side of an assign­

ment. No constants are lvalues, and not every expression containing a 

variable is an lvalue . 

.... C may make internal conversions during assignments, either promoting 

an int before assignment to a long or truncating a long before assign­

ment to an int. The latter conversions are dangerous . 

.... Multiple assignments are allowed: 

i = j = k = 20; /*all vars now equal 20 */ 

This is possible because the expression k = 20 itself takes a value equal 

to its left-hand member, which it then passes on to j. The expression 

j = k = 20 has a value that it passes to i. The value of the whole expres­

sion is also 20, but it is not used in this example. C is unusual in having 

expression-statements and evaluated expressions. Any C expression can 

become a statement by appending a semicolon. The value of an expres­

sion is simply discarded in most cases . 

.... C has elaborate precedence and associativity rules that dictate how 

operators are grouped in compound expressions. Appendix E lists the 

fifteen categories. Parentheses can be used to override these rules-but 



72 • MASTERING TURBO C • 
CH. 2 

the order in which terms are evaluated depends on the individual com­

piler. ANSI C allows for the unary operator + that gives some control 

over evaluation sequence . 

..... Variables can be initialized during a declaration: 

int i = 3; long L = 279; 

For the moment, assume that variables contain garbage until intialized 

or assigned in some way. 

..... The post- and preincrement and post- and predecrement operators 

( + + and - - ) let you add or subtract 1 from all integral variables. The 

postfix operators return the old value before the change; the prefix 

operators return the changed value: 

int p = 0, q = 1; 
p = q++; 
p = ++q; 
p = q-; 
p = -q; 

I* p = 1 and q = 2 *I 
I* p = 3 and q = 3 *I 
/* p = 3 and q = 2 */ 
/* p = 1 and q = 1 *I 

..... The compound operators, + =, *=,and so on, simplify assignments by 

combining them with some other operation: 

i += 4; 
j - = i; 
k *= 3; 

I* same as i = i + 4; *I 
I* same as j = j - i; *I 
/*same ask = k*3; */ 

..... Integer constants can be expressed as decimal, hex, or octal. Their size 

dictates their data types unless overridden with a suffix: 

i = 34; 
i = 34U; 
i = 34L; 
i = 34UL; 

/*lowercase u, I also allowed*/ 
i = 034; 
i = Ox34; 

/* 34 is decimal and type int*/ 
/* 34 forced to be unsigned int*/ 
I* 34 forced to be long int (signed) *I 
/* 34 forced to be unsigned long int */ 

/* 034 is octal *I 
I* Ox34 or OX34 are hexadecimal *I 

.... • printf( ) can display formatted variables, expressions, and constants of 

different data types. A format string is used to control where and how 



~ DATA TYPOLOGY ~ 73 

each matching expression argument appears. Simple examples are 

O/od, O/ou, %Id, O/olu 

which format signed, unsigned, long, and unsigned long numbers . 

... ~ The declaration, definition, and calling syntax for simple functions was 

hinted at with examples. 

[type] func([arg1, arg2, ... )); /*declaration only*/ 

[type] func([arg1, arg2, ... )) /*declaration/definition */ 

/* 

main() 
{ 

[parameter declarations) 

body of function 
[return) [result]; 

*/ 

[result =) func([real_arg1, real_arg2, ... ]); 

} 

I* call the function *I 

... ~ Real arguments in the function call are passed by value to the function 

via copies to the dummy arguments used in the definition. A func­

tion may or may not return a useful value using the return statement. 

... ~ Two common storage classes were mentioned briefly: auto (local) and 

extern (global). 



REAL NUMBERS 
AND STRANGE 
CHARACTERS 



~CHAPTER 3 ~ 

This chapter introduces two more basic data types that allow you to work 
with floating-point and character variables. I'll explain the motivation for 
these types and extend the use of printf() to format and display them. 

Character variables lead naturally into C's unusual treatment of strings as 

arrays of characters referenced via pointers, so you'll get your first, gentle 
exposure to this central bete noire of the C language. Other languages reluc­
tantly offer pointers in various guises and then strive to protect the program­

mer from the danger? of misuse. In C pointers are the primary weapons, 
designed to butcher both friend and foe. You'll love them! 

You will also start using simple control structures, allowing your program 
to select alternative courses of action depending on the results of various 
conditional tests. 

~BEYOND THE INTEGERS~ 
The integer types introduced in Chapter 2 have the merit of complete, 

whole-number accuracy, provided that you keep within their acknowledged 
ranges. Although the computer works internally in binary, the conversions to 
and from decimal are exact for integer values. Problems can arise, though, 
when your calculations involve numbers or results with fractional parts. 

Computing, say, 3.87675 x 10.00234 or 1 /7 cannot be readily accomplished 
with integer data types unless you are happy with integer approximations 
such as 3.87675x 10.00234 = 40 to the nearest whole number and 1 /7 = 0. 

~ Integer Accuracy ~ 
If you are willing and able to scale all your calculations, you can actually 

handle all rational numbers with integer data types. (A rational number is 



76 ~ MASTERING TURBO C ~ 
CH. 3 

one that can be expressed as the ratio of two integers, p/q, where q is non­
zero. The number 0.99 is rational since 0.99 = 99/100.) For example, it is 
common to treat $199.99 as 19,999 cents (scaling by 100) thereby removing 
the problem of decimal fractions. 

Even if you need to divide or take percentages of such amounts, you can 
scale up again by 100 or 10,000 or whatever, depending on the accuracy 

needed, and keep your intermediate results as integers until the final answer 
is scaled back and possibly rounded as appropriate. However, the scaling is 
a nuisance in all but the simplest cases, and, worse still, even the unsigned 
long limit of ten significant digits can easily be exceeded. 

Accuracy in all types of computation boils down to how many significant 
figures you can retain at each step. The position of decimal (or binary) point 
is irrelevant. 

Note that you can concoct programs that can achieve any given degree of 
precision, subject only to storage limitations. For example, the extended 

multiply equation 

(10xa + b)x(10xc + d) = lOOxaxc + 10xaxd + 10xbxc + bxd 

is an example of how you can multiply two extra long numbers without 
overflow by using the proper software gymnastics. There is also the BCD 
(Binary Coded Decimal) approach that allows exact arithmetic on strings of 

digits of arbitary length. 

~ THE FLOATING-POINT SOLUTION ~ 
C, and most other languages, offers a more compact solution: the floating­

point or FP data types. In the following sections, you will see how they let you 
handle fractions, such as 3.14159 and - 0.00001, as well as integers outside the 
long int range. Internally, FP does a form of scaling for you automatically. 
(Appendix D explains the basic rules for FP notation and manipulation.) 

FP is not a general panacea. Even though FP operations extend enor­
mously the range of values you can handle there are inherent problems of 
precision that require constant attention. As a simple example, the fraction 
1 /3 ( = 0.3333 ... recurring) cannot be exactly represented in FP format using 
a finite number of binary bits. Even if there are clever ways of storing such 

rational numbers, transcendental numbers such as pi can only be stored as 



~ REAl. NUMBERS AND STRANGE CHARACTERS ~ 77 

approximations. Long before the electronic computer arrived, the branch of 
mathematics called numerical analysis had evolved to study the problems 
of reducing the errors that accumulate when you are forced to round off and 
approximate at various stages of a long calculation. 

Let's review the basic arithmetical operators and, in particular, study the 
quirks of I (division) and % (integer remainder)-these are relevant to a 
proper understanding of floating-point operations . 

..,.. ARITHMETICAL OPERATIONS..,.. 
You have already met the arithmetical operators + (add), - (subtract and 

also unary minus), * (multiply), I (divide), and% (integer remainder) as 
applied to integers (variables and constants). 

We call % the integer remainder operator to remind you of the fact that it 
can be used only with integer types. The other operators can be used with 
both integer and FP numbers (variables and constants). 

There are no problems with precision or rounding when you add, sub­
tract, and multiply positive or negative integers unless the results go out of 
range. Integer division and its associated operation, integer remainder, 
though, have some anomalies to be discussed in the next section . 

.... Integer Division, Remainder and Modulus .... 
Dividing an integer by an integer in C using I gives you only a whole num­

ber quotient (usually truncated and therefore incorrect), while the% opera­
tor does not always give the expected integer remainder. The normal 
classroom paradigm for integer division is 

dividend/divisor = quotient with remainder 

or 

dividend = quotientxdivisor + remainder 

where the absolute value of the remainder is less than the absolute value of 
the divisor. If the latter is not true, you have clearly not completed the divi­
sion process! The absolute value of xis written abs(x) or I x I , and is defined 



78 ~ MASTERING TURBO C ~ 
CH. 3 

/ 

as follows: 

If x ~ 0 abs(x) = x 

If x < 0 abs(x) = - x 

In other words, if x is signed and negative, just reverse the sign to get abs(x); 
otherwise x and abs(x) are the same. (C provides such a routine, abs(), in 
stdlib.h.) 

We must also rule that the divisor is nonzero. For a zero divisor, the opera­
tion is simply undefined (so forget all that 1 /0 = infinity nonsense). 

In C notation, with integers a and b (b being nonzero), this equation can 
be written 

a divided by b = (alb) with remainder (a"lob) 

so you would expect that 

a = (a/b)*b + (a"lob) with abs(a"lob) < abs(b) 

would always be true (excluding overflow problems). Unfortunately, if either 

a orb or both are signed you have ambiguities if either or both go negative. 
Unsigned a's and b's, by definition, of course, cannot go negative, and no 
problems arise. Look at the following examples: 

1/0 illegal 
0/1 = 0 
4/2 = 2 
3/2 = 1 
1/2 = 0 
10/3 = 3 

1%0 illegal 
0%1 = O check: O = O*O + O and O < 1 OK 
4%2 = o check: 4 = 2*2 + O and O < 2 OK 
3%2 = 1 check: 3 = ·1 *2 + 1 and 1 < 2 OK 
1 %2 = 1 check: 1 = O * 2 + 1 and 1 < 2 OK 
10%3 = 1check:10 = 3*3+1and1<30K 

So far, with both a and b positive, there are no surprises. The% gives you the 
conventional mod (or modulo) operation, which yields the remainder of a 
division process. Let's see what happens if a goes negative. 

-12/3 = -4 -12%3 = Ocheck: -12 = (-4*3) + OandO < 30K 

No problem here, but perhaps we were lucky since -12 is divisible exactly 
by 3. Let's try again. 



.. REAL NUMBERS AND STRANGE CHARACTERS .. 79 

-10/3 = -3 -10%3 = -1 check: -10 = (-3*3) + (-1) 

and 

abs(-1) < 30K 

Note that the unary - has higher precedence than I and %, so -10/3 
means ( - 10)/3 not - (10/3). 

This seems fine, but what if we write 

-10/3 = -4 -10%3 = 2 check: -10 = (-4*3) + 2 and 2 < 3 ALSO 
OK! 

Both answers for -10/3 and - 10%3 meet the mathematical tests, so 
which set is correct? And what will C do? C officially says that the result is 
machine dependent, so for true portability you should avoid division and 

remainder operations with negative integers. 
Most C compilers, including Turbo C, opt for the values in the first example 

by always taking as alb the value nearer to zero and the aO/ob with the same 
sign as a. 

For Turbo C then, - 10/3 = - 3 because - 3 is nearer to zero than - 4. 
This makes - 10%3 = - 1. Another way of looking at Turbo C's value for 
- 10/3 is to think of the full answer - 3.3333 ... and discard the fractional part 

(with no rounding). 
The plot thickens if b is negative. Again, the official C reaction is that the 

results are implementation dependent. Turbo C gives the following result: 

10/-3 = -3 10%-3 = -1check:10 <>(-3*-3) + (-1)??NOTOK 

but 

abs(-1) < abs(-3) OK 

So here we meet a potentially dangerous violation of the basic rule that 

a= (a/b)xb + (a%b). 

There is a similar problem with 

-10/-3 = 3 -10%-3 = 1 check: -10 <>(3*-3) + 1??NOTOK 



80 .,.. MASTERING TURBO C .,.. 
CH. 3 

but 

abs(1) < abs(-3) OK 

The ambiguity stems from two distinct approaches to integer arithmetic: 

Eulerian arithmetic, as in C, and modulo arithmetic, as in many computer 

contexts. Fortunately, the two arithmetics agree for non-negative integral 

dividends (the a's) and positive integral divisors (the b's). The moral is to use 

unsigned and/or positive signed integers when using%. 

C uses the one divide operator I for integers and floating-point numbers, 

but with the latter there is no ambiguity regarding sign or meaning. When 

both a and b are integer types, the quotient of alb is also an integer type, 

with possible truncation. But if one or both of a and bare FP, a/b becomes FP. 

This is an example of a general rule in C that is invoked when expressions 

have mixed types: internal, silent conversions are made whenever neces­

sary (and possible). 

The function fmod(x,y) is provided in the Turbo C math library to calculate 

(x mod y) for floating-point x and y. 

~ FLOATING-POINT DATA TYPES ~ 
Coffers three FP data types to handle numbers with fractional or decimal 

parts. They also permit the use of numbers, both integral and fractional, out­

side the maximum long int range. 

The three types, float, double, and long double, correspond to the single, 
double, and extended precision formats available on many current com­

puters and math coprocessors. Table 3.1 shows their bit allocations and legal 

ranges as assigned in Turbo C. 

Type Specifier 

float 

double 

long double 

Bit Size Range 

32 - 3.4e- 38 to + 3.4e+ 38 

64 - 1.7e- 308 to + 1.7e+ 308 

64 - 1.7e- 308 to + 1.7e+ 308 

~ Table 3.1: Floating-point data types 



~ REAL NUMBERS AND STRANGE CHARACTERS ~ 81 

.... Floating-Point Declarations .... 
You declare FP variables in the usual way, using a type specifier. 

float x, y, z = 2.0; 
double pi, eps; 
long double scotch; 

/* 3 floats - one initialized*/ 
/* 2 doubles *I 
I* 1 long double *I 

As with integers, ANSI C leaves it to the implementor to decide exactly 
how these FP types should be internally represented, provided only that 

long double > double > float 

where > is used informally to indicate "greater than or equal precision." 
Just as you saw with short and int, Turbo C's double and long double turn 

out to be identical in format and range. Other C systems might have an 80 or 

128-bit long double, so some care is needed to ensure complete portability. 
We will use only float and double in this book. 

Note that there are no signed or unsigned versions of the FP data types­
they are all implicitly signed by definition. 

The ranges shown in Table 3.1 use scientific notation (also called E or 
signed exponent notation). Symbolically, 

Mex= Mx H.f 

where Mis the fixed-point part or mantissa and Xis the exponent. Thee can 

also be written as E. 
A positive exponent shifts the decimal point to the right (multiplying by a 

power of 10), and a negative exponent shifts the decimal point to the left 
(dividing by a power of 10). A zero exponent does not affect the mantissa, 
since 70° = 1 by definition. Some examples of scientific notation are shown 
in Table 3.2. As you can see, there can be many different FP expressions (and 
internal bit patterns) representing the same number. (Zero is an exception 
because it has a unique FP bit pattern.) 

.... Floating-Point Pros and Cons .... 
The FP format is most economical. For instance, the maximum number of 

type double would take 309 decimal digits to write out in full and over 1000 



82 .- MASTERING TURBO C .­
CH. 3 

120.0e+O 120x 10° 

12.0e+ 1 12x 101 

1200.0E-1 1200x 10- 1 

1.2e+2 1.2x 102 

120 

120 

120 

120 

• Table 3.2: Scientific notation examples 

bits if stored in conventional binary. This enormous range, however, does 
not indicate the true precision available with double. Precision is a function 
of the mantissa width (52 bits), which gives "only" 15 or 16 significant digits. 

(Appendix D explains this in detail.) 
Among the quirks of FP arithmetic are the following: 

1. Adding a small number to a large one may have no effect. The signifi­
cant bits of the small number may be lost when it is aligned prior to 

addition to the larger number. 

2. It can be misleading to test for equality between two FP numbers. 

Rather than testing for equality as in 

if (fp1 = = fp2) { ... } 

it is better to test their difference as in 

if (fabs(fp1 - fp2) <= delta) { ... } 

where delta is a small constant reflecting the precision of the FP type, 
such as 1.0e- 15. fabs( ) is a standard library function giving the 

absolute value of an FP argument. 

.... More Internal Conversions .... 
Because of the limited precision of float, the system always converts float 

to double internally, temporarily, and silently, before evaluating any expres­
sion containing float's. If the final result has to be assigned to a float or int 
variable, another silent conversion from double to float or from double to 



.,. REAL. NUMBERS AND STRANGE CHARACTERS .,. 83 

int takes place before the assignment, with possible loss of accuracy. 
You may ask why float is used at all. The answer is memory conservation: 

each float variable uses only 32 bits compared with 64 bits for a double. If 
speed and precision are more important than RAM, use double variables to 
reduce the conversion time. 

~ Speeding FP with Math Coprocessors ~ 
All FP arithmetic performed by software is quite heavy on CPU cycles. This 

fact has motivated the invention of math coprocessors, chips specially 
designed to handle the FP chores faster by hardware. As the name implies, a 
coprocessor works in conjunction, and often in parallel, with the main CPU. 

For the IBM PC range, the Intel 8087, 80287, and 80387 are a family of 
math coprocessors compatible with the 8088/6, 80286, and 80386, respec­
tively. The improvement in performance is well worth the modest invest­
ment. Turbo C supports the 8087 and 80287 in a flexible way. If you do not 
have one of these fitted, you have two options: 

1. Avoid FP numbers and tell Turbo C not to link in any of the special FP 
library routines. This speeds up the linking process. The Compile 
menu has a Code Generation submenu that contains a Floating-Point 
subsubmenu. This offers three choices: None, Emulation, and 8087/ 
80287. Selecting None will inhibit the FP library linkage. 

2. Use FP numbers and let Turbo C link in the emulation library 
(EMU.LIB). This is the default situation (Emulation on). All your FP 
work will be handled by software that emulates (imitates) the action 
of the 8087 or 80287. An added bonus is that if you run such pro­
grams on a system fitted with a math coprocessor, Turbo C is set by 
default to detect its presence, automatically enlisting FP hardware 
support and bypassing the emulation. 

Normally, then, if you have a math coprocessor fitted, you can just let 
Turbo C's auto-detect mechanism do its thing. 

To let you test programs that may run on systems with or without a math 
coprocessor, you can also force Turbo C to ignore a fitted 8087/80287 and 
emulate by software. 

C> SET87=N 



84 ... MASTERING TURBO C ... 
CH. 3 

sets the DOS environment variable 87 to N for No, which turns off the auto­
detect and tells Turbo C to emulate. Similarly, 

C> SET87=Y 

tells Turbo C to use the 8087/80287 whether it's there or not! Expect big 
trouble if 87 is set to Y without the physical presence of the math coproces­

sor. You can unset 87, restoring auto-detection, by typing 

C> SET87= 

with a +-I immediately after the = . 

.... Floating-Point Constants .... 
Unless followed by an F, floating-point constants are always interpreted as 

double even if the value would fit in a float. 
FP constants can be written in two different ways: normal decimal-point 

notation or scientific. 

float w, x, y; 
doublez; 

w = 3.14159; x = 4e+5; 

I* declare three floats *I 
I* declare one double *I 

/* x = 400000.00 */ 

/* internal conversions: constant converted to double, then to float 
before assignment *I 

y = 1.0F /* F inhibits conversion to double*/ 

z = - 2.5e - 12; I* z = - 0.0000000000025 *I 
I* no conversions: constant and lvalue are both double *I 

You can use e or E, and the + signs are optional. Notice that if you use scien­
tific notation, the decimal point is not essential: 4e + 5, 4.e + 5 and 4.0e + 5 
are identical. 

For decimal-point (unscientific) notation of FP constants, the decimal point 
is needed: 4., 4.0, .0, and 0. are all FP, but 4 and 0 would be taken as ints. 

The exponent must be a whole number and may be negative: 2.4e3.8 is 
illegal. 



.,. REAL NUMBERS AND STRANGE CHARACTERS .,. 85 

..,.. Floating-Point in Action with printf() ..... 
You may recall using the format-conversion code O/od with printf() to dis­

play signed integers. The corresponding trick for both float and double is to 
use O/of. For example, 

float height = 2500.35; 
double depth = 3.12e5; 
printf("Height is O/of and Depth is O/of\n",height,depth); 

will display 

Height is 2500.349854 and Depth is 312000.000000 

(I'll cover the chief variants on O/of in the following sections, but see Appen­
dix C for the whole story.) 

All values are converted to double, if necessary, before the O/of conversion 

to ASCII takes place. This explains the slight error in the display of height. 

You'll see how to control the precision of the conversion shortly. 

Using O/oe or O/oE in place of O/of in the previous example, 

printf("Height is O/oe and Depth is %E\n",height,depth); 

will give 

Height is 2.500350e + 003 and Depth is 3.120000E + 005 

Note the choice between e and Eon display. The exponent is always signed 

+ or - and displayed with three decimal digits (padded with zeroes as 
required). The mantissa is always scaled to give d.ddd ... but you can control 

the layout and precision, as you'll see anon. 

Another useful variant is O/og, which will display the shorter of the two ver­

sions O/of and O/oe. (O/oG does the same but displays E rather than e.) The O/of 

version is used if both formats take the same space. The O/og variant is useful 

when you have no idea of the range of the results. 

... The Precision Specifier 
The default conversion for O/of is rounded to six decimal places, whatever 

the argument type. You can vary this precision using a decimal point and a 

precision specifier as shown in Table 3.3. 



86 .,. MASTERING TURBO C .,. 
CH. 3 

Example 

%f 

%.Of 

%.1f 

%.2f 

%.3f 

Example 

O/oe 

%.3e 

Displays Height As ... 

2500.349854 (default = %.6f) 

2500 

2500.3 

2500.35 

2500.350 

Displays Depth As .•. 

3.120000e + 005 (default = %.6e) 

3.120e +005 

~ Table 3.3: Precision specifier examples 

... The Width Specifier 
Whether or not you have a precision specifier you may supply a width 

specifier, O/owf or O/ow.pf, where w is a number indicating the minimum 

number of columns to be allocated to the display and p is the precision num­
ber just described. 

Leading spaces will normally be used to pad the display, but you can pad 

with leading zeroes by using %0wf or %Ow.pf. Padding with leading spaces 
and zeroes is known as right justification since it effectively lines up columns 
of numbers to a flush right-hand margin. To indic::1tP the layouts more c!ear!y 
in the following examples, I will use the symbols for space. 

Using too small a width value will not lead to the loss of any characters­

printf() will simply override and take the space it needs. Examples are easier 
than descriptions-see Table 3.4. 

The last example shows one use of the# modifier flag. In other situations it 
can modify the appearance of leading or trailing zeroes. 

Width and precision specifiers work in a similar way with O/oe, O/oE, O/og, 
and O/oG. With the integer conversion specifiers like O/od and O/ou, of course, 
precision is not relevant (there are no decimal places), but you can use the 
width specifier to pad the field as shown above. 

I have by no means exhausted the formatting possibilities, but I will con­
clude with just one more tweak-the use of - to force left justification within 



~ REAi. NUMBERS AND STRANGE CHARACTERS ~ 87 

a given field width by padding with spaces (never zeroes) on the right. The 
- here can be confusing unless you think of it as reversing the normal right­
justification! It has nothing to do with displaying a minus sign for negative 
values. Examples are shown in Table 3.5. (See Appendix C for much more.) 

~ SHOWNUMF.C ~ 
To try out some of these printf() variations, enter SHOWN UMF.C as listed 

in Program 3.1. The entry %0/of is needed to display O/of-it is not a format 

Example Displays Height As ... 

%.2f 2500.35 (no width specified) 

%6.2f 2500.35 (width ignored-too small) 

%9.2f ss2500.35 (pad blanks to 9 columns) 

%09.2f 002500.35 (pad zeroes to 9 columns) 

%14f sss2500.349854 (same as %14.6f) 

%14.0f ssssssssss2500 (note no decimal point) 

%#14.0f ssssssssss2500. (unless you add a#) 

.. Table 3.4: Width specifier examples 

Example Displays Height As ... 

%.2f 2500.35 (no width specified) 

% - 6.2f 2500. 35 (width ignored-too small) 

% -9.2f 2500. 35ss (pad right blanks to 9 columns) 

% -09.2f 2500. 35ss (same! The zero is ignored) 

%-14f 2500.349854sss (same as %-14.6f) 

%-14.0f 2500ssssssssss (note no decimal point) 

%-#14.0f 2500.ssssssssss (unless you add a#) 

.. Table 3.5: Left justification 



88 ~ MASTERING TURBO C ~ 
CH. 3 

/* shownumf.c - display fp numbers */ 

#include <stdio.h> 

main() 
{ 

double fsquare(); /* declare a function */ 

float height 2500.35; 
double depth = 3.12e5; 

printf("%%f height 
printf("%%.2f height 
printf("%%9.2f height 
printf("%%-9.2f height 

height 

is 
is 
is 
is 
is 

%f\n"' height) 
%.2f\n'', height) 
%9 .2f\n", height) 
%-9 .2f\n", height) 
%09 .2f\n", height) printf("%%09.2f 

printf("%%14.0f height is %14. Of\n'', height) 
printf("%%-14.0f height is %-14.0f\n",height) 

%#14.0f\n",height) printf("%%#14.0f 

printf("%%e 
printf("%%.3e 
printf("%%g 

height is 

height is %e \n", 
height is %.3e\n", 
height is %g\n", 

height); 
height); 
height); 

printf("%%f depth is %f\n",depth); 
printf("%%E depth is %E\n",depth); 

/* try your own format variants here, e.g. %10.4g etc. */ 

printf("%%f depth squared is %f\n", 
printf( "%%e depth squared is %e\n", 
printf("%%g depth squared is %g\n", 

double fsquare(n) 
double n; 

/* define the function */ 

fsquare(depth)); 
fsquare(depth)); 
fsquare(depth)); 

{ 
/*the value returned by fsquare() */ return(n*n); 

... Program 3.1: SHOWNUMF.C 

specifier. SHOWNUMF.C also introduces the simple function fsquare() to 
advance your understanding of function declaiations and definitions. 

Check your results against Figure 3.1 . 

..,.. fsquare() Declaration and Definition ..... 
The line 

double fsquare( ); 

in main() is a function declaration, warning main() that fsquare() will return 
a double. The actual function definition comes later, spelling out in detail 
what arguments fsquare() needs (just one double argument, n, in this case) 



.. REAi. NUMBERS AND STRANGE CHARACTERS .. 89 

%f height is 2500.349854 
%.2f height is 2500.35 
%9.2f height is 2500.35 
%-9.2f height is 2500.35 
%09.2f height is 002500.35 
%14. 0f heiqht is 2500 
%-14.0f height is 2500 
%#14.0f height is 2500. 
%e height is 2.500350c•003 
%.3e height is 2.500e+003 
%g height is 2500.35 
%f depth is 312000.000000 
%E depth is 3.120000[+005 
%f depth squared is 97344000000.000000 
%e depth squared is 9.7344000•010 
%g depth squared is 9.7344et010 

Press any key to return to Turbo C 

... Figure 3.1: SHOWNUMF.C screen output 

and how the function calculates its returned value. 
Note that this particular style of function declaration, known as the classi­

cal C style, has empty parentheses-it is not concerned with function argu­
ments, only with the data type of the returned value. Later you will meet the 
modern variant, in which the function declaration also indicates the argu­
ment types. 

In the absence of such a declaration, main() will assume that fsquare() 
returns an int. In other words, unless told otherwise, int is the default data 
type returned by a function. Try omitting the fsquare( ) declaration from 
main( )-you will get an instructive error message. Turbo C finds a clash 
between the implied int returned by its first encounter with fsquare() and 
the double value called for in the subsequent definition. 

Next, try moving the double fsquare(n) definition ahead of main(). (Use 
the editor's Wordstar-like block moves "KB/" KK/" KV/" KH). You'll find 
that the fsquare() declaration within main() can now be omitted. 

This explains why you often see programs with no function declarations 
within main(): Either the function is defined first, or the nondeclared func­
tion encountered before its definition can be safely treated as though it 
returned an int. (I'll get deeper into this subject in Chapter 7.) 



90 ~ MASTERING TURBO C ~ 
CH. 3 

.... Conversion of Arguments .... 
As a further experiment, try calling fsquare( ) with the float variable 

height in place of the double variable depth. Although fsquare() officially 

asks for a double argument, you'll find it works equally well with a float. This 

is part of the grand internal conversion plan already discussed-passing real 

to formal arguments during function calls triggers promotions and conver­

sions like those found in assignments and mixed-expression evaluations. 

To return to more mundane matters, we next consider another basic data 

type called char, so far encountered only in constant forms . 

..,.. DATA TYPE char ..,.. 
The type specifier char is used to declare variables in the now familiar 

manner. 

char c, ch, flag; /* three char variables declared - not initialized *I 

The variables c, ch, and flag are each allotted one byte in memory and can 

be assigned values within this range at any point in the program from which 

they are visible. 

.... The Hidden Truth about char .... 
Despite its name, the data type char is best considered as a special integer 

type representing the whole number values assigned internally to the com­

puter's character set, in our case the ASCII set (see Appendix A). The ASCII 

set consists of 128 printable characters (0-9, A-Z, a-z, and punctuation 

marks) and nonprintable control characters encoded in seven bits. Hence 

the natural bit width for storing such characters is the 8-bit byte. 

The IBM PC extends the ASCII set, providing printable characters for the 

control codes and taking advantage of the additional 128 bit patterns by 

assigning special symbols that use the eighth bit. This is the IBM PC Extended 

ASCII character set, full of hearts, clubs, sharps, flats, and happy faces. Some 

of my examples will refer to this enlarged set. 

When I describe char as a numeric type, I mean that char variables can be 

manipulated just like integers. 

c = 'a'; ch = c + 1 ; 



.. REAi. NUMBERS AND STRANGE CHARACTERS .. 91 

will increase the bit value in c by 1 and move the resulting sum to ch. The 
ASCII code chart tells us that ch now holds the bit pattern for 'b'. A com­
mon example is the conversion of characters from lower to upper case or 
vice versa: 

c = 'Z'; c = c + 'a' - 'A'; 
ch = c - 'a' +'A' 

I* c now equals 'z' *I 
I* ch equals 'Z' *I 

This trick works because the values of the uppercase and lowercase ASCII 
characters differ by a constant: 32 (decimal) = 'a' - 'A' = 'b' - '8' and so 

on. You could write 

c = c + 32; 
ch =ch - 32; 

I• lowercase shift - possibly! *I 
I• uppercase shift - with due caution! *I 

but this obscures the underlying logic and will reduce portability. 'a' - 'A'= 
'b' - 'B' is true for most character sets, but the value of the constant differ­
ence may not be 32. 

You can multiply and divide char's even if the results defy any character 

logic('!' times 2 equals 'B' for instance). C will go through the motions with­
out complaint, possibly truncating in the process. 

~ The Sign of a char ~ 
The question immediately arises whether c and ch in the above example 

will behave like signed or unsigned integers. If c reaches the value 127 
(01111111 in binary), would (c + 1) represent 128 (unsigned) or - 128 

(signed)? The answer is that, as with int, you have control over which inter­
pretation the system will make. You can use the optional type modifiers 
signed and unsigned. 

signed char c; 
unsigned char ch; 

~ The Default Sign for char ~ 

I* c has the range - 128 to + 127 *I 
/*ch has the range Oto +255 */ 

The default modifier, however, can be set as an option via the Turbo C 
Options menu. Select the Compiler submenu, then the Code Generation 



92 .,.. MASTERING TURBO C .,.. 
CH. 3 

subsubmenu. There you will find the Default char type option. This toggles 

you between signed and unsigned as the default char type. 

Au nature/, the factory setting is signed, whereby char c; is equivalent to 

signed char c;, and you would have to explicitly use unsigned char ch; for 

any unsigned character variables. 

Contrariwise, if the Compile/Options menu were set to unsigned, the 

declaration char c; would be equivalent to unsigned char c;. In this case, a 

deliberate signed char ch; would be needed to beat the default. (If you use 

the command-line compiler TCC.EXE there is a - K switch option that 

does the same job as the Default char type menu toggle.) 

~ More Arithmetic with char ~ 
Thinking of char's as numbers makes sense of the following type of manip­

ulation you'll frequently encounter: 

if (ch >= 'A' && ch <= 'Z') ch = ch + 'a' - 'A'; 
/*convert ch to lowercase ONLY if ch is an uppercase letter*/ 
/*The parentheses around the if (condition) are essential *I 

~ BRIEF LOGICAL DETOUR ~ 
The && is C's logical AND operator, so if is testing to see if ch is both greater 

than or equal to 'A' AND less than or equal to 'Z'. 

Expressions like ch > = 'A' are called Boolean to honor the English mathe­

matician George "Kelly"-Boole (1815-64). Boolean expressions are two­

valued, either true or false, and can be combined with the Boolean logical 

operators! (NOT), && (AND), and:: (OR) as listed in Table 3.6. 
Simple and compound Boolean expressions are regularly tested in C to 

determine which course of action the program should take. Without such 

program control mechanisms, of course, programs would be reduced to 

predetermined, inflexible sequences. The if clause is just one method of set­

ting up a control structure. You can also perform blocks of statements while 

a certain condition holds, or iterate blocks with a for loop until a certain con­

dition is false. These and other constructs will be explained as we progress. 



~ REAi. NUMBERS AND STRANGE CHARACTERS ~ 93 

Operator Meaning Examples 

II 
II 

&& 

NOT If X is true then IX is false. 

OR 

AND 

If Xis false then IX is true. 

If either Xis true or Y is true (or both) then (X:: Y) 
is true, otherwise (X:: Y) is falsP. 

If X is true and Y is true then (X && Y) is true, 
otherwise (X && Y) is false. 

~ Table 3.6: Boolean operators 

._ The Truth about C ._ 
C demands no profound wrestling with the real meanings of true and false. 

Mundanely, any expression that evaluates to zero is considered false, while 

any expression that evaluates to a nonzero value is taken as true. Unlike 

Modula-2, there is no specific BOOLEAN data type. You can legally write if 
(X) where Xis any data type, variable, or constant that can legally be com­

pared with zero. (Parentheses must surround the conditional portions of 

control statements.) 

if (3) { .... } I* legal but pointless *I 

means always perform the following block, since (3) is true (nonzero). More 

useful is 

if (ch){ ... } /* if ch is non-NUL *I 

where ch is a char. The ASCII NUL character is value zero, so the block after 

the if is performed only for non-NUL characters. More long-winded equiva­

lents wou Id be 

if (ch!= '\O') { ... } /*if ch is non-NUL */ 

or 

if (ch ! = O) { ... } /*if ch is non-NUL */ 



94 .,. MASTERING TURBO C .,. 
CH. 3 

since ch is promoted to an int. You can reverse the logic with 

if (!ch){ ... } /*if ch is NUL */ 

If ch is non-NUL, !ch becomes zero (false), but if ch is NUL, !ch becomes 
one (true). 

Here is the the character test example again. 

if (ch >='A' && ch<= 'Z') ch =ch + 'a' - 'A'; 
/*convert ch to lowercase ONLY if ch is an uppercase letter*/ 

If the first condition fails, C does not bother to test the second one since the 

compound expression must be false. If the first condition succeeds, the sec­

ond one is tested. Only if both conditions hold will the statement 

ch = ch + 'a' - 'A'; 

be executed. The two conditions ensure that ch is indeed an uppercase let­

ter. Note that > = and <= work with characters in a purely numerical way, 

just like the other relational operators listed in Table 3.7. For the ASCII set, 

you need to remember that 'a' >'A' and that all the control codes are less 

than'' (a blank space). 

~ BACK TO DATA TYPE char ~ 
The next piece of the char jigsaw is knowing what C actually does when 

performing arithmetic on chars. 

~ From char to int and Back ~ 
Before evaluating expressions, any char encountered is quietly promoted 

to an int, and this is where the sign of the char comes into the picture. 

For signed character types, the upper byte of the int will be sign-extended, 
thereby maintaining the sign and value of the 8-bit char in the 16-bit int. With 

unsigned character types, the upper byte of the int is cleared to zero. For 

example, the letter 'a' (hex Ox61) is promoted to hex Ox0061 regardless of 

whether it is initially represented as a signed or unsigned char. On the other 



~ REAL NUMBERS AND STRANGE CHARACTERS ~ 95 

Operator Meaning Examples 

Equals if (x = = 1) { .... } 

!= Not equals while (ch!= EOF) { ... } 

< Less than if (ch < 'z') { ... } 

<= Less than or equals while (i <= maxi){ ... } 

> Greater than if U > blk*siz) { ... } 

>= Greater than or l'quals if (i%j >= k%1) { ... } 

~ Table 3.7: Relational operators 

hand, the Greek beta (hex OxE1) is promoted to OxOOE1 if it is unsigned but 
becomes OxFFE1 if it is signed. 

Note that inner conversions and promotions are made in temporary 
registers or RAM before the evaluation. The actual sizes of the variables 
are unaffected. 

... The Constant char 
You can now see how Turbo C's 16-bit char constants, introduced in Chap­

ter 1, fit into the grand plan. If you set Turbo C to the unsigned default, all 

single char constants will have their upper bytes clear. With the signed 
default, any char constants with values over 127 (decimal) would have all 

one's in their upper byte (OxFF hex). This conversion occurs during compila­
tion as the constants are encountered in the source code. 

With Turbo C's nonstandard, nonportable double character constants 

such as 'A\n', no sign extension takes place because all sixteen bits are 
occupied-the 'A' in the lower byte and the '\n' in the upper byte. 

In the assignments 

c = 'a'; ch = c + 1; 

the 'a' is represented as two bytes (Ox0061). The upper byte will always be 
zero since the eighth bit of Ox61 is zero. Whether c is signed or unsigned it 

will pick up the lower byte Ox61 via the assignment-internally, c is tempo­
rarily promoted to int, receives 16 bits, then sheds the upper byte (which is 
zero anyway). 



96 .,. MASTERING TURBO C .,. 
CH. 3 

The net result is that you can, with care, use char variables to store small 

integers (- 128 to + 127 or 0 to 255) when int might prove wasteful of RAM. 

However, you are not saving any CPU cycles! 

.... Using int for Characters 
A more common requirement is using int when you might feel that char is 

more natural. This twist of fate occurs because of C's EOF (end of file) con­

vention. When your program is pulling characters from a text file using a 

function such as fgetc() (a popular maneuver that you'll learn in Chapter 8), 

you need to know when the end of the file is reached. And, preferably, you 

would like to detect this condition from the value returned by fgetc() since 

the program is usually engaged in perusing each of these "character" values 

anyhow. The alternative would be having to test some other flag or condi­

tion before each fgetc() call ("Are we there yet?"). What you need is some 

unique value from fgetc() that says, "This is not a character because there 

are no more characters available!" It is clear that no unique character from 

the ASCII or extended ASCII set can meet this requirement. For portability, 

such a character would have to be universally agreed upon, and it would 

then be taboo except as an end of file marker. (You may know that the Ctrl-Z 

[ASCII value 26] EOF convention for DOS text files causes many headaches 

when handling non-DOS files.) 

The conundrum is solved in C by having fgetc() and similar file and stream 

110 functions return an int rather than a char. The choice of a unique, non­

clashing, readily detectable EOF value suddenly becomes easy. That value is 

traditionally -1, but any noncharacter value would work. The price paid 

is that the variable receiving characters and EOF's must be of type int, not of 

type char. The price is not really high since most manipulations of the 

returned value would incur a promotion to int in any case. EOF is defined as 

-1 in STDIO.H, so you will often find the following snippet: 

#include <stdio.h > 

int ch; /*the char is really an int! */ 

while ((ch = fgetc(stream)) ! = EOF) 

{ 
/*while ch is not equal to EOF. .. do something with ch*/ 
I• Its bottom byte is a character from the file since you have 



~ REAi. NUMBERS AND STRANGE CHARACTERS ~ 97 

not reached the end of file *I 

I* end of file here *I 

Generally speaking, library functions that require a char argument are 
written to accept an int argument. You saw a similar philosophy of silent pro­
motion with functions taking float and double arguments. 

.... Precanned char Aids .... 
The Turbo C library contains a set of useful routines declared in CTYPE.H 

(whether they are functions or macros need not bother us-the end result 
is the same) that help you classify a char variable. In fact, the test we exam­
ined earlier, 

if(ch >= 'A'&&ch <= 'Z') { ... } 

can be written succinctly as 

#include <ctype.h > 

if (isupper(ch)) { ... } 

The macro isupper() behaves very much like a function taking an int argu­
ment: when you "call" it with a char argument, an int within ASCII range, or 
an int with value EOF, isupper() returns nonzero (true) if the argument is an 
uppercase letter. Otherwise it returns zero (false). I will use the expression 

ASCII+ EOFto indicate the set of ASCII characters and equivalent ASCII inte­
gers (0-127), supplemented by the EOF value (- 1 ). 

There are twelve such is ... predicates or properties returning true or 
false. One of them, isascii( ), can be called with any integer value-it tells 
you if the argument is a valid ASCII value (0-127). The others work with 
ASCII+ EOF arguments only. Table 3.8 lists them and their properties . 

..,. ARRAYS.,.. 
There are many instances where you want to handle a number of related 

variables of the same type. Suppose you wanted to manipulate a group of 



98 • MASTERING TURBO C • 
CH. 3 

Predicate Argument 

isascii(ch) int 

isalnum(ch) ASCll+EOF 

isalpha(ch) ASCll+EOF 

iscntrl(ch) ASCll+EOF 

isdigit(ch) ASCll+EOF 

isgraph(ch) ASCll+EOF 

islower(ch) ASCll+EOF 

isupper(ch) ASCII+ EOF 

isprint(ch) ASCll+EOF 

ispunct(ch) ASCll+EOF 

isspace{ch) ASCll+EOF 

isxdigit(ch) ASCll+EOF 

~ Table 3.8: Character tests 

Tests True If ... 

o <ch < 127 

ch is a letter or digit 

ch is a letter 

ch is control character or DEL (OxOO-Oxl F 
or Ox7F) 

ch is a digit 

ch is printable nonspace character 
(Ox21-0x7E) 

ch is lowercase letter 

ch is uppercase letter 

ch is printable character or space 
(Ox20-0x7E) 

ch is punctuation symbol (all printable 
characters, excluding alphanumeric, 
spacing, and control characters) 

ch is white space, i.e., space, tab, CR, LF or 
FF 

ch is hex digit (0-9, A-For a-f) 

eight characters with a view to creating anagrams. You could start by declar­

ing them with individual identifiers as in 

charch0,ch1,ch2,ch3,ch4,ch5,ch6,ch7; 

but befdre long this would prove quite restrictive and time consuming. A 
more convenient approach is to declare a single entity, called an array, with 

eight elements. 

char ch[8]; I* ch is an array of char with 8 elements *I 

The syntax is simple and suggestive if you have ever used vector notation. 



~ REAL NUMBERS AND STRANGE CHARACTERS ~ 99 

The [NJ immediately following the identifier tells the compiler that you are 

calling for an array of N elements where N must be a positive integer. You 

can now refer to the eight char elements of the array ch by using an index 
from 0 to 7. 

unsigned inti; char ch[8]; 

ch(O] = 'a'; ch[1) = 'b'; 
ch[6] = 'g'; ch(?] = 'h'; 
i = 2; ch(i) = 'c'; 
ch[i + 2) = ch[O]; 

I* initialize 1st two chars *I 
I* and last two chars of array *I 
/*set third char to 'c' */ 
/* set fifth char to 'a' *I 

You can treat each of the elements from ch[O] through ch[7] exactly as if 

you had declared them individually as type char. Also, as you can see, it is 

possible to use constants or integer variables and expressions as your indices 

(or indexes, if you prefer the modern, dubious spelling). In fact, you can use 

a type char as an index simply because char has the basic integral properties 

needed for counting 0, 1, 2, .... Indices can ·never be float or double unless 

you first force them into int's. ch[2.3], for instance, is verboten. 

The first element of an array is always indexed with 0, never with 1. This 

simple fact is often overlooked, much to the amusement of the compiler. The 

Nth element of an array is array _name[N - 1 ]. 

You can set up arrays for any of the data types discussed so far. 

#define MAXVEC 1000 

float grid(100]; 
double vector[MAXVEC]; 
long salary(MAXVEC*2]; 
vector[MAXVEC-1] = 3.14159; 

I* grid(O] to grid[99] are all floats *I 
/* 1000 doubles*/ 
I* 2000 longs *I 
I* set last element of vector *I 

For the moment, we'll confine our attention to arrays of char. As I hinted 

earlier, arrays of char provide us with a natural and powerful mechanism for 

handling string variables. 

~ Initializing Arrays ~ 
In the earlier examples we declared an array and then set individual mem­

bers of it using separate assignments.Callows a more concise way of declar­

ing and initializing arrays. 



100 • MASTERING TURBO C • 
CH. 3 

char ch[8] = {'a','b','c','d','e','f','g','h'}; 
/•declare and initialize: ch[O] = 'a', ch[1] = 'b' .... */ 

The sequence of constants, with commas as dividers, is enclosed in curly 
braces. The resulting object is called an initializn. Each constant in the initial­
izer is assigned in turn to the elements in the array. If you have fewer con­
stants than array elements, the extra array elements are set to zero. Having 
more constants than array elements will trigger an error. 

If you are exceptionally lazy, you can omit the number of elements inside 

the [ ]. C will then calculate this number for you from the number of con­
stants in the initializer. 

char name[ ] = {'S','t','a','n','\O'}; 
I* name becomes an array of 5 elements i.e. name[5] *I 

In the above example you can see that name is looking suspiciously like a 

string holding "Stan" with the final NUL that we discussed back in Chapter 1. In 
fact, the above initialization can also be achieved with either 

char name[5] = "Stan"; 

or 

char name[ ] = "Stan"; I* name[ ] becomes a name(5] *I 

using a string constant in place of an initializer. "Stan" as a string constant is 
stored with a final, invisible NUL automatically appended, so name[] 
receives five characters not four. 

Quick quiz: What is the value of name[4)? Yes, it is NUL ('\0') because 
name(4) is the fifth, final character of the array name. 

~ The Name of the Pointer ~ 
Each of the expressions name[i], as i ranges from 0 to 4, is of type char. 

However, the identifier name by itself (which you'll see used shortly) is not 
treated by C as either a string or as a char but as a special data type known as 
pointer to char. 

Unlike name[O], which is of type char because it is the first byte of the 
array, name itself represents the memory address of the byte name[O]. We 
say that name points to name[O). You could find the address held in name, 



• REAL NUMBERS AND STRANGE CHARACTERS • 101 

peek into the byte at that address, and confirm that is was indeed Ox53 (the 
ASCII character 'S') as placed in name[O] by our initialization. The actual 
value of name is seldom of importance. 

~ Pointer Size and Memory Models ~ 
For most of the programs we'll be considering, the pointer types can be 

considered to be simple unsigned 16-bit values that can address up to 64K of 
memory. 

The 8088/8086/80286 has a complicated segmented memory-addressing 
scheme that is beyond our immediate scope. Briefly, Turbo Callows you to 
choose between six different memory models, ranging from tiny to huge. 

This choice dictates the pointer size, 16-bit or 32-bit, the compiler will use, 
and this in turn determines the maximum sizes of your program and data 
segments. 

It turns out to be wasteful to use a larger model than you actually need 
since the pointer arithmetic becomes progressively more complex. I will 
assume the most efficient (tiny) model for the time being. It uses 16-bit 
pointers (known as near pointers) whereby all your code and data is 

assumed to occupy a 64K segment of RAM. 

~ Pointer Awareness ~ 
We will be returning regularly to the topic of pointers because they play a 

central role in C. Strangely enough, they can be used and enjoyed without 
an intimate knowledge of how RAM is addressed. 

The symbolism employed by C allows you to manipulate pointers in an 

abstract, algebraic way, much as you get used to writing a*b/c without fret­
ting unduly about how the machine is multiplying and dividing, provided 
that c is nonzero! 

The two key symbols are &, meaning address of, and *, meaning pointed 

at by. The two are complementary, as illustrated by the following informal 
definitions: 

&var is the address in memory of the identifier var. 

* ptr is the object found in memory at address ptr provided only that ptr is 
not the NULL pointer. If ptr has the value NULL (effectively zero, or false) 

*ptr is undefined. 



102 .,. MASTERING TURBO C .,. 
CH. 3 

So you can say that &var points to var and ptr points to *ptr. 
The NULL exception for * ptr is extremely important (it corresponds to the 

"never divide by zero" injunction). Zero or NULL pointers are perfectly 
valid and legal; indeed they are as indispensible as the number 0 in 

arithmetic. However, NULL pointers do not point at anything, so you cannot 
use the * operator with them. Later you'll see a typical use of the NULL 
pointer as the terminator of a chain of linked lists rather as ASCII NUL is used 
to terminate a string. 

& is known as the address operator. * is called the indirection operator 
because it expresses the idea that you get an operand indirectly by first get­
ting its address and then accessing that address. 

What data types are pointers? Well, if var is of type int, we naturally say 
that &var is of type pointer to int. Likewise, if ptr is of type, say, pointer to 
float, then *ptr must be of type float (unless ptr is NULL, of course) . 

.,... The Big BUT... .,... 
But, and herein lies the danger, in one sense all pointers are simply 

unsigned 16-bit (we confine our attention to near pointers) addresses with 
no distinguishing birthmarks. Some programmers get into the habit of using 

unsigned int or long variables as pointers. C does not always object, but por­
tability suffers since there are computers with larger addressing ranges. 

Pointers can be painlessly "corrupted" to point to places they shouldn't! 
You can take &var, do some pointer arithmetic, obtain a ptr, and then rashly 

assign something to *ptr. 

int var, * ptr; 

ptr = &var; 
{play around with ptr} 
if (ptr) * ptr = 96 

/* declare an int and a pointer to int *I 
/*this is explained below*/ 

I* ptr points to var *I 

I* assign only if ptr is not NULL *I 

The if (ptr) screens out NULL pointers since NULL evaluates to zero (false). 

But *ptr may, without due care, turn out to be part of your program or 
Turbo C or even DOS rather than part of your data. A crash or something 
worse may result! 



.,. REAL NUMBERS AND STRANGE CHARACTERS .,. 103 

~ Pointer Declarations ~ 
I've said that when you declare an array name[5), the identifier name is 

actually &name[O), a pointer to the first element of the array. You do not 
have to declare name as a pointer to char-C does that for you as part of the 
array declaration. 

C does allow you to explicitly declare pointers to any data type (except 
void) as in 

int *int_ptr; char *char_ptr; 
float *float_ptr; unsigned long *ul_ptr; 

The presence of the* is sufficient warning to the compiler that the identifier 
following is a pointer to the type specified. 

Although int_ptr now exists as a variable of type pointer to int, all you 
have is a 16-bit uninitialized allocation of RAM; int_ptr is not yet pointing to 
anything in particular, and no int variable has been created. As you saw with 
all the earlier declarations, it is possible to initialize during a pointer declara­
tion. Consider the following snippet: 

inti = 1, j = 2, *int_ptr = &i; 
I* initialize int_ptr with the address of int i *I 

printf("int_ptr points at %d/n", *int_ptr); 
int_ptr = &j; /*reset pointer*/ 
printf("int_ptr now points at %d/n", *int_ptr); 

I* what will display? *I 

~ Pointer Power ~ 
In spite of the dangers, pointers provide C with a certain grace and power. 

One of the chief applications is when you want a function to change the 
value of one or more of its arguments. I explained that C passes all argu­
ments by value-in other words, the function receives a copy of the 
argument and cannot normally alter the original argument variable. (Refer 
back to cube(} in Chapter 2 to refresh your memory on this.) 

However, if you pass a pointer argument, ptr say, to a function, the func­
tion makes a local copy of ptr as it does with all arguments. Using this copy 
pointer, the function can actually access and alter *ptr (unless ptr is NULL). 



104 .,. MASTERING TURBO C .,. 
CH. 3 

So we effectively achieve what is known as calling by reference. This mecha­
nism allows functions to return values in the usual way (as in x = cube(y)) 
and also alter the actual arguments passed to the function when desired. 

The library routine scant() is a good illustration and one I have been dying 
to introduce since it allows you to get input from the keyboard. Its introduc­
tion has been delayed until now because it uses pointer arguments . 

..,. KEYBOARD INPUT ..,. 
printt() and puts() allow you to display data on your screen (stdout or 

standard output device). So far these data have been embedded in the pro­
grams themselves, which hardly leads to realistic applications! We need to 
explore another, rather obvious source of data-your keyboard, also known 
as the standard input device or stdin . 

..,... Keyboard Input Using scanf() ..,... 
scant() uses a similar format control string to printt( ). Each element of this 

string determines how the elements read from the input device will be inter­
preted and where they will be stored. Take the following simple case: 

inti; 
char name[30); 
printf("\n Enter your number and name:"); 
scanf("O/od O/os", &i, name); 

If you respond to this by keying in the line 

35 Stan 

with any amount of white space between the two fields, the control string 

matches the 35 with the pair %d and pointer &i and then matches the 
string "Stan" with the pair %sand pointer name. As with printt() the con­
version specification %d causes a conversion of the ASCII characters "35" 
to int. The resulting number is stored at the address of i, namely &i. This is a 
fancy way of saying that the variable i is assigned the value 35. As explained 

in the previous section, C functions cannot alter i directly. Passing i rather 



.- REAi. NUMBERS AND STRANGE CHARACTERS .- 105 

than &i to scanf() would not work: scanf() would receive only a copy of i, 
and no change to i itself could be made. 

Similarly, O/os tells scanf() to expect a string pointer, name, and the input 
string "Stan" is moved (with an appended NUL) to the array name[30]. 
Recall that name is a pointer to the first element of the array name[30]. 

As with printf( ), scanf() has wide choice of control specifiers, and they are 
best learned by osmotic exµosure. Appendix C lists them all for reference. 
The most common conversions are O/of (floating point), O/ou (unsigned inte­
ger), and O/oc (single charactC'r). scanf() trudges along until all the conver­
sion specifications in the control string have been matched by input items. 

The key to scanf( ), and the cause of most frustration, is the need to pass 
pointers to the target identifier<,. With &i this is visually obvious. The puzzle 

for beginners is that name, which looks like a normal identifier, is in fact a 
pointer to char, that is, name is an address. It therefore doesn't need a pre­
ceding & to turn it into an address. You do not write &name (illegal), but you 

can write &name[O] (which is the same as name-both are pointers to the 
string variable). From my definitions of & and * it should also be clear that 
*name would be a synonym for name[O] since name is the pointer and 
*name is apointee, to coin a word. 

I'll end this varied chapter with GETDAT.C (Program 3.2). The comments 
explain what is going on, and Figure 3.2 shows a typical screen that would 
result from running GETDAT.EXE. 

/* getdat.c - simple keyboard input and outpt */ 

#include <stdio.h> 

main() 
{ 

int i, j; 
char name[31]; /*declare array of char - 30 + NUL */ 

printf("Enter your Name and Number!: 11 ); 

j = scanf(''%s %d 11 , name, &l); 
/* scanf also returns a value! The number of successfully */ 
/* matched input items */ 

printf("Well, hello %s!\n",name); 
if ( i > 99) 

printf("Your number is greater than 99!\n°0; 
else 

printf("Your number is less than 100!\n"); 
printf("PS: You entered %d items\n",j); 

.. Program 3.2: GETDATC 



106 .,. MASTERING TURBO C .,. 
CH. 3 

Enter your Name and Number!: Rudolf 99 
Well, hello Hudolf! 
Your number is loss than 100! 
PS: You entered 2 items 

Press any key to return to Turbo C ...• 

.. figure 3.2: CETDAIC screen output 

..,. SUMMARY OF CHAPTER 3 ..,. 
Here are the main topics covered in Chapter 3. 

..... Integer data types cannot handle decimal fractions or large numbers. 

Division and remainder with integers may lead to erroneous results. 

..... The FP (floating-point) data types extend the range and numerical precision 

available by storing numbers in two parts-a mantissa and an exponent. 

.... Three FP types are provided: float, double, and long double (although 

long double happens to be the same as double in Turbo C). These type 

specifiers are used in declarations in the same way as is int. 

.... floats are promoted to double internally during all FP calculations. 

..... The considerable software overhead in floating-point arithmetic can be 

reduced with a math coprocessor such as the 8087 or 80287. Turbo C can 

detect and utilize a fitted math coprocessor. If there is no coprocessor, 

Turbo C performs floating-point calculations with software (emulation with 
EMU.LIB) . 

.... printf() can format FP numbers with precision and width specifiers in 

conjunction with O/of, O/oe, and O/og. 



.- REAL NUMBERS AND STRANGE CHARACTERS .- 107 

..... I provided more information about function declarations and function 
definitions-where they can be placed and what happens if they are 
missing. This big subject will occupy much of Chapter 7 . 

..... The char data type is really a small integer-it can be signed or unsigned 
by default and later specified either way with an explicit unsigned char 
or signed char declaration. All chars are promoted to int (signed or 
unsigned as appropriate) during arithmetic. You can add 1 to' A' to get 
'B', subtract 2 from 'c' to get 'a', and so on. 

..... I introduced C's simple approach to logic: false is zero, true is nonzero. 
Almost any variable or constant can therefore be used in Boolean 

expressions. Typical conditionals such as if and while simply test the fol­

lowing expression for zero or nonzero. 

--.. Compound Boolean expressions use! (NOT),:: (OR), and && (AND) in 

any logical combination. Booleans can also be generated using the rela­

tional operators = = (equals),!= = (not equals), < (less than), <= (less 
than or equals), and so on . 

..... Character constants take up 2 bytes. The upper byte is sign extended 

unless the compiler option default is unsigned char. Character con­
stants can be expressed in various formats: 'A', '\t', '\007' (octal), or 
'\x1 F' (hex). Turbo C allows non portable double character constants, 
e.g., 'bG' or '\t\a', which are also held in 2 bytes . 

..... You should declare as int any characters read from streams and files 
since the EOF signal received at end of file is the non-char - 1 . 

..... CTYPE.H contains many precanned char testing routines such as 
isupper() and isascci( ) . 

..... Arrays are collections of variables sharing the same base data type. They 
are declared as base_type array_name[size]; where each variable 
array_name[i] is of type base_type for i = 0 to size-1. The index i 
must be an integral type . 

..... Arrays can be initialized with = {val1, val2, ... valn}; as part of their 

declaration . 

..... The identifier array_name is of type pointer to base_type. Hence, 
array_name is a constant pointer to the first element of the 

array, array_name[O). 



108 .,. MASTERING TURBO C .,. 
CH. 3 

.... I presented pointer notation: &var is a pointer to var, and * ptr is the 
object being pointed at by ptr unless ptr is NULL, in which case *ptr is 
undefined . 

.... Variable pointers to any nonvoid data_type can be declared and 
optionally initialized using 

data_type *ptr_to_data_type [ = &data_type_var]; . 

.... Pointers are powerful and dangerous. Turbo C does its best to warn you 
by checking pointer and pointee types, but you can poke yourself to 
death if you wish. Pointers have their own arithmetical rules (which are 
covered in Chapter 4) . 

.... Pointers allow functions to alter their real arguments (via a simulated 
"call by reference"), which is not otherwise possible with C's "call by 
value" regimen . 

.... Data from the keyboard (and other sources, as you'll see later) can be 
formatted and passed to variables using scant( ). scant( ) uses format 
strings in the same way as printt( ). The arguments must be pointers to 
the variables receiving the keyboard input: 

int number; char name[30]; 
scanf("O/od O/os",&number, name); 





CONTROLLING 

THE FLOW 



.... CHAPTER 4 ... 

The main topic in this chapter is the use of control flow statements, entail­
ing a brief homily on structure. The program examples, en passant, will 
reveal other aspects of C, such as type casting, conditional expressions, string 
manipulation, and pointer arithmetic . 

..,. CONTROL FLOW STATEMENTS ..,. 
You have already seen some simple control flow examples using if, else, 

and while. These use the simple fact that an expression can be tested for true 
(nonzero) or false (zero), and, depending upon the result of the test, the flow 
of the program execution can be varied-blocks can be bypassed or per­
formed repeatedly (looped). 

In theo~y, you can get by with the plain vanilla if, from which the other control 
effects can be derived, howbeit at the expense of clarity and code size. 

C offers many control flow variants and extensions: goto, else if, 
do ... while, continue, break, the case/switch statement, and the for loop. 

All of these except goto enforce the expression of algorithms in a logical 
and legible way-the approach now generally burdened by the name struc­
tured programming . 

..,. THE IMPORTANCE Of BEING STRUCTURED ..,. 
In a properly structured program, sets of actions are grouped together in 

units that are, in a certain sense, self-contained syntactically for the compiler 

and visually for the human reader. 
At the top level, C encourages the division of a program into many small 

routines, called functions, with well-defined interfaces and an efficient call­
ing mechanism. Functions can call other functions (including themselves). 



112 ~ MASTERING TURBO C ~ 
CH. 4 

Unlike structured languages such as Ada and Modula-2, however, C does 
not allow you to define a function within another function. 

Within each function, the code is structured into blocks using { and } as 
block markers. Blocks can be nested to any level, but if you concentrate 
your attention on any given block, however large or small, the ideal is that 
control enters only at the start of the block and emerges eventually only at 
the bottom. I say "eventually" because sections of code within the block 
may be iterated many times via various looping constructs. 

What is frowned upon is the anarchy of, say, BASIC (excluding the more 
recent structured versions) or assembly languages, in which a conditional or 
unconditional GOTO or branch instruction can pass control to or from any 
part of the program regardless of block structure, creating what is com­
monly known as spaghetti coding. Consider the following simple pseudo­
code with an outer and inner (nested) block: 

block A label A 1: initialize block A variables 
label A2: process them 
block 8 
label 81: initialize block 8 variables 
label 82: process them 
label 83: exit block 8 

label A3: more processing 
label A4: exit block A 

For block A to work safely, it is essential that control starts at label A 1:. It 
should be impossible to branch directly to label A2:, say, from outside A, 
bypassing the initialization code at label A 1 :. The nested block B, which is 
used in processing block A, should be comp!ete!y inaccessible from outside 
A. Even from within A, B should be entered only via label 81 :. Once control 
is in B, we should be free to iterate via 81: and 82: but forced to exit via 83:. 
Similarly, we should not be able to jump out of A except via A4:. 

Hard-earned experience in programming has proved that accuracy and 
maintainability are greatly improved if these rules are either followed volun­
tarily or enforced by the language specification. 

Summing up the structured paradigm: From outside of A only A 1: is acces­
sible. Within A, all A labels and 81: are accessible. Within B, only B labels 
are accessible. 

Most of C's control flow statements enforce this regime, but there are 
some minor loopholes and one major one! 



~ CONTROLLING THE Fl.OW ~ 113 

..,.. THE goto STATEMENT..,.. 
C (like BASIC and Pascal) has a goto and label control flow mechanism. 

The C goto can only transfer control within a function, but it can still violate 

the rules for a strictly structured programming language by allowing jumps 
in and out of blocks. The programmer, therefore, must use goto with 
extreme caution. Accidentally bypassing initializations and branching into 
and out of other control loops are the chief dangers. 

In practice, goto is used sparingly, usually to exit from a deeply nested 
block when some calamity is detected that would be difficult to handle by a 
succession of exits from each enclosing block. Adding a goto to our earlier 
example illustrates this situation. 

block A label A 1 : initialize block A variables 
label A2: process them 
block 8 
label 81: initialize block 8 variables 
label 82: process them 
if (ERROR) goto A4; 

label 83: exit block 8 
label A3: more processing 
label A4: exit block A 

..... The goto Syntax ..... 
The goto syntax is rather like BASIC's: 

goto label; 

Anywhere in the current function, you can label the target statement as follows: 

label: statement; 

The net result is that if and when the goto is executed, control passes to the 
(possibly empty) statement appearing alongside the matching label. label 
can be any identifier unique within the scope of the function. Labels can 
never appear without a real or empty statement, so 

goto error; 

error: I* illegal - hanging label *I 



114 ~ MASTERING TURBO C ~ 
CH.4 

is illegal, but 

goto error; 

error:; 

is legal. 

/*OK - empty statement at label */ 

In view of the goto, we can say that, in general, the constructs offered by C 

encourage structured programming but do not guarantee it! 

We now goto the well-behaved control flow statements . 

..,.. THE if, else, AND else if STATEMENTS ..,.. 
Any expression that can be legally evaluated (with internal conversion 

when necessary) to give an integer or pointer value (zero or nonzero) can be 

used as the condition-expression in the following schema: 

if (condition-expression) T-statement 
[else F-statement] 
TF-statement 

(Recall that[] surround an optional element.) 
As in plain English, the if suggests a testing of the following expression in 

order to determine a course of action. Many computer languages use the 

format IF. .. THEN to stress the idea of consequence, but in C the THEN is 

implied (as it often is in English: "If that's true, [then] I quit!"). Also, as you 

saw in Chapter 3, C takes a purely numeric view of Boolean variables, con­

verting the conditions (3 >= 2) to 1 (true) and (3 = 2) to 0 (false). Any 

nonzero condition-expression will be interpreted as true, which is reflected 

in the object code with the branch-not-zero instruction found in all machine 

languages. 

T-statement represents the piece of code (possibly the empty statement;) 

that will be followed (obeyed) only if condition-expression is true (nonzero). 

If this code contains more than one statement, it will need block marker 

braces to distinguish it from any following code sequences. Curly braces are 

optional if the T-statement consists of just one statement as in 

if (x == 1) y = 2*x; 
if (z > = 5.1) { x = O; y = 3; } 

if (n < *ptr) {ch(n + 1] = '\O';} 

/*Tis a single statement*/ 
I* T is a multiple statement so braces 

are needed *I 
I* braces harmless - not really needed *I 



~ CONTROLLING THE Fl.OW ~ 115 

If your condition-expression is false (zero), the whole T-statement is 

bypassed, ignored and forsaken. The layout of your source code should 

therefore make it as clear as possible exactly where T-statements start and 

end. This is by no means a trivial problem since T-statements often contain 

many lines (and possibly pages) of complex code with embedded (nested) 

conditions. In such cases, indents and comments should be used to indicate 

the different nesting levels. (Examples will follow shortly.) 

Returning to the basic paradigm, 

if (condition-expression) T-statement 
[else F-statement] 
TF-statement 

if T-statement is executed, control passes to TF-statement whether there is an 

else clause or not, and we are back into the main program sequence again. 

If condition-expression evaluates to false, T-statement is ignored, and if 

there is an else clause F-statement will be executed. After F-statement, 
which may be empty, single, or multiple, we continue normal service with 

TF-statement. In summary, 

~ T-statement is obeyed only if the condition-expression is true. 

~ F-statement (if any) is obeyed only if the condition-expression is false. 

~ TF-statement is obeyed if condition is true or false. 

(To be super pedantic, of course, the program may actually terminate rather 

than meet a TF-statement.) 

.,... Poor Dangling Else-The if ... else Pitfall .,... 
Since the T- and F-statements may contain further if and else clauses, great 

care is needed to avoid faulty logic. The problem is in deciding which else 

belongs with which if. 

The golden rule is that an else matches the previous innermost unmatched if 
that is nearest. This matching may not always be immediately apparent. Take the 

following snippet: 

if (x == 1) 
if (y = = 1) puts("x = 1 and y = 1 "}; 

else puts("x ! = 1 "}; I* wrong conclusion *I 

I* reminder: puts() displays arg string plus newline *I 



116 .. MASTERING TURBO C .. 
CH.4 

At first sight you might be misled by the indentation to think that the else 
branch is taken only if x is not equal to 1. However, the else syntactically 

"belongs" to if (y = = 1 ). 
Recall that the C compiler is unaware of your pretty (but possibly pretty 

wrong) indents. Correct versions, both logically and typographically, are 

or 

or 

if (x == 1) 
if(y == 1)puts("x=1 andy=1"); 
else; 

else puts("x ! = 1 and y = don't care"); 

if(x == 1) 
if (y = = 1) puts("x = 1 and y = 1 "); 
else puts("x = 1 and y ! = 1 "); 

else puts("x ! = 1 and y = don't care"); 

if (x == 1) { 
if (y = = 1) puts("x = 1 and y = 1"); 

} 

I* an empty F-statement is 
legal but wasteful *I 

I* correct conclusion *I 

/*good conclusion */ 
/* also good *I 

/* note: the added braces 
make a difference here *I 

else puts("x I= 1 and y = don't care"); /*correct conclusion */ 

depending on your intentions. 
In the third version, if (y = = 1 ) ... is surrounded with braces and becomes 

a complete block with no else option. C therefore matches the else with the 
if (x = = 1) ... condition. Curly braces are optional in the second version 

since the T- and F-statements are both single statements. 
Mismatched or dangling elses often occur when a piece of good code is 

patched up with some additional nested if tests, disturbing the previous 
indentations or block markers. 

Another common and frustrating error is putting a spurious semicolon 

after the condition-expression. 

if (x == 1); y = 2*x; I* T is now the empty statement *I 
/* y = 2*x becomes the TF-statement */ 

The syntax is impeccable, but the results may not be as intended. 



.- CONTROL.LING THE Fl.OW .- 117 

~ The else if format ~ 
The else if is really a combination already covered by the foregoing syn­

tax. In this case the F-statement happens to start with an if that may sprout 
further elses and ifs! 

Because this is a common construction, though, it deserves a special note. 
You often need a series of if ... else if to cover a multichoice situation: 

int x; 

if 
(x = = 1) puts("x = 1 "); 

else if 
(x == 2) puts("x = 2"); 

else if 
(x == 3) puts("x = 3"); 

else if 
(x == 4) puts("x = 4"); 

else 
puts("x is none of the above!"); 

I* resume here for all cases *I 

Note the optional final else that traps any value of x not already matched 
by the chain of tests. Also observe that the layout clearly reveals the pro­
gram's intention. Unless you had multiple T-statements, spurious braces 
would simply obscure matters. 

~ ANALYSIS OF CHKIP.C WITH EXPERIMENTS ~ 
Program 4.1, CHKIP.C, will give you some practice with if and else, as well 

as introducing you to getche( ), a standard library 1/0 routine declared in 
CONIO.H. The program also illustrates the use of a type cast in a typical situ­
ation. Figure 4.1 shows the screen output from a typical session with CHKIP. 

~ Type Casting ~ 
In the statement 

ratio = (float) i I j; 



118 ,... MASTERING TURBO C ,... 
CH.4 

/* chkip.c - simple conditional flow control */ 
#include <stdio.h> 
#include <ctype.h> 
#include <conio.h> 
/* conio.h defines getche() */ 

main() 
{ 

int i = 0, j = O; 
double ratio = 0.0; 
char ch, *cp; 

/* we could also use int ch, see text */ 

printf ( "\ tEnter two smallish numbers: ") ; 
scanf("%d %d", &i ,&j); 
if (j != 0) { 

ratio = (float) i / j; 
/* force conversion of int i to float before division */ 
/* further silent conversions occur - see text */ 

printf("%d / %d equals %f\n", i, j, ratio); 
} /* end if (j != 0) */ 
else printf("%d /%dis undefined\n", i, j); 

if ( i -- j) 
puts("Your two numbers are equal"); 

else if (i > j) 
puts("First number is larger"); 

else 
puts("Second number is larger"); 

printf("\tEnter a character: "); 
ch = getche(); 

/* getche() is "get char with echo" */ 
/* rt waits for a keystroke, echoes it and returns its 

char·value, which is then assigned to ch */ 
/* No <enter> is needed with getche() */ 

cp = &ch; /* assign the pointer &ch to cp 
which is a char pointer */ 

/* *cp now is the same as ch - so the maneuver serves only 
to illustrate pointer manipulation. You could replace 
*cp with ch in each of the following statements */ 

printf ( "\nYou entered \"%c\"\n", *cp); 
if (isalpha(*cp)) 

printf("'%c' is alpha\n",*cp); 
else if (isdigit(*cp)) 

printf('"%c' is a digit\n",*cp); 
else if (ispunct(*cp)) 

printf("'%c' is punctuation\n",*cp); 

if (isalnum(*cp) && !isdigit(*cp) && !islower(*cp)) 
printf("'%c' is uppercase letter\n",*cp); 

if (isgraph(*cp) I I *cp == 040) 
printf("'%c' is printable or space\n",*cp); 

.... Program 4.1: CHKIP.C 



Enter two smallish numbers: 2 0 
2 / 0 is undefined 
First number is larger 

Enter a character: $ 
You entered "$ 11 

'$' is punctuation 
'$' is printable or space 

Press any key to return to Turbo C 

.. figure 4.1: CHKIP screen output 

~ CONTROLLING THf FLOW ~ 119 

we force (or coerce) the compiler to cast or convert (internally and tempo­
rarily) the inti to type float before the division by intj is attempted. Type cast­

ing allows you to do this conversion trick between variables of most data 
types by using the target type specifier in parentheses followed by the vari­

able to be converted. 

(type specifier T) var; 

will internally and temporarily convert var to data type T. 
The type specifier, considered as an operator, is in precedence category 2, 

so it has higher precedence than *,I, and%, which are in category 3. This 
explains why (float) i /j is interpreted as ((float) i)/j rather than (float) (i/j). 

Casting can be used to influence the result of an arithmetic expression or 
to avoid type-mismatching errors, when passing arguments to functions, 

for example. 
The following is a mixed bag of examples that are mostly legal but are not 

all equally useful: 

inti, *int_ptr; 
char c; *char_ptr; 



120 • MASTERING TURBO C • 
CH.4 

unsigned long ul; 
doubled; 
float f; 

c = (char) i; I* cast int to char *I 

/* (char) i = c; NO, NO - (char) i is not an lvalue •/ 

i = (int) •char_ptr /* cast char to int */ 
I* assuming char _ptr points somewhere *I 

int_ptr = (int *) char_ptr; 
char_ptr = (char *) int_ptr; 

I* convert a char pointer to an int pointer and vice versa *I 
I* note the syntax *I 

i = (int) f + (int) c; 
i = (int) (f + c); 
f = (float) d; 
d = (double) i; 
ul = (unsigned long) i; 
(void) func( ); 

I* cast float, char to int *I 
/*cast the float sum to int*/ 
/*cast double to float•/ 
I* cast int to double *I 
I* cast int to unsigned long *I 
I* the value returned by 

func( ) is discarded *I 

The data type void was introduced in ANSI C to remove some potential 

trouble spots in K&R. The default return value of a function is int even if the 

definition does not explicitly return a value. Further, all functions, technically 
speaking, do return values of some kind whether you use them or not. void 
allows you and the complier to distinguish between a declaration such as 

tune(); [which is the lazy way or writing int tune()] and void tune();. The lat­

ter says "discard the returned value of tune()." Objects of type void do not 

have values like the other types (even NULL is excluded as a value). A similar 

problem in K&R is distinguishing between functions taking arguments and 

those taking no arguments. A K&R declaration such as char tune(); can be 

legally followed by definitions such as char tune() or char tune(arg1 ,arg2). 
The ANSI C prototype declaration format removes this ambiguity by allow­

ing char tune(void}; when declaring a function with no arguments or char 

tune(type1 arg1 ,type2 arg2); when declaring a function with two argu­

ments. The complier can now check that the function definitions and calls 

match the declarations. 

Now some of the above examples of type casting are wasteful insofar as C 

already implicitly performs certain internal conversions (promotions and 

truncations) when evaluating expressions and making assignments. 



~ CONTROU.ING THE FLOW ~ 121 

For example, c = i; will truncate the int i from 16 to 8 bits in order to 
make the assignment to char c. The type cast c = (char) i simply makes 
this conversion explicit without altering the net result. So when are type 
casts essential? 

Try omitting the (float) coercion in CHKIP.C. C will first perform the inte­
ger division i/j and then internally convert the integer quotient to double in 
order to make the assignment ratio = i/j. The result will be nnnn.000000, 
correct only to the nearest whole number. With (float) i you get a dramatic 
change. int i is converted to float and immediately promoted to double 
(since all FP calculations in Care performed with double precision). Next, int 
j is automatically promoted to double to match the data type of the dividend. 
The quotient is therefore a double before the assignment to ratio. printf( ) 
will therefore show the answer correct to 6 decimal places (the default preci­
sion of O/of). 

Now try replacing (float) i/j with (double) i/j. If you have followed the pre­
vious discussion, you will realize that this will not alter the actual result; in 
fact, using (double) i is more logical and slightly faster. I had you use (float) i 
to illustrate the underlying theory. 

Note carefully the difference between 

i = (int) f + (int) c; I* cast float, char to int *I 

and 

i = (int) (f + c); I* cast the FP sum to int *I 

The answers might be different. In the second line, char c and float f will 
each be converted to double before the addition, then the sum will be 
rounded and truncated to int. The first line converts each to int and then per­
forms an integer addition. 

~ DETOUR TO FORMAL CONVERSION RULES ~ 
It is time to list C's conversion policy during arithmetic evaluation a little 

more formally. There are rules for unary conversion (in which just a single 
operand is involved) and rules for binary conversion (in which two operands 
need to conform before the operation is carried out). We can combine these 



122 .,. MASTERING TURBO C .,. 
CH. 4 

rules as follows: 

1. Any operands of type short or char are converted to int. 

2. Any operands of unsigned char or unsigned short are converted to 
unsigned int. 

3. All floats are promoted to doubles. 

4. Types "array of T" are converted to types "pointer to T." 

5. If either operand is double, the other is converted to double, giving a 
double result. 

6. Else if either operand is unsigned long [int], the other is converted to 
unsigned long [int], giving an unsigned long [int] result. 

7. Else if one operand is long [int] and the other is unsigned [int], they 
are both converted to unsigned long (int], giving an unsigned long 
[int] result. 

8. Else if either operand is long [int], the other (which must by now be 
an int) is converted to long [int], giving a long [int] result. 

9. Else if either operand is unsigned [int] the other is converted to 
unsigned [int], giving an unsigned [int] result. 

10. Else both operands must be int, and the result is int. 

This seems a formidable list to remember, but most of the conversions are 
logical when you consider the internal representations of each data type. 

With a complex right-expression made up of mixed data types, variables, 
or constants, you can picture the above rules being applied successively to 
pairs of operands according to the precedence and associativity rules. It is 

quite easy to simulate the compiler with pencil and paper, and often there 
is one dominating type, such as double, that simplifies the process of decid­
ing the type of the final result. 

~ Assignment Conversions ~ 
For assignment conversions the rules are much simpler. If the !value has 

the same type as the evaluated right-expression, the assignment is trivial. 



.. CONTROi.LiNG THE Fl.OW .. 123 

If the types differ, C attempts to convert the type of the right-expression to 

match that of the !value. With arithmetic types, this can always be done 

either by extension, as in int to long (safe), or by truncation, as in double to 

long (probably dangerous). Later you'll meet more complex data types that 

just refuse to be mixed or assigned. Following are examples of conversion of 

arithmetic types: 

char c; unsigned char uc; 
short s; unsigned short us; 
int i; unsigned u; 
long I; unsigned long ul; 
float f; double d; 

d = (c + ul)*(c - s + f)/(uc + I); 
/* using a shorthand notation: 

Conversion rules for right-hand expression: 

rules 1 and 2: c ands ->int; uc -> ui 
d = (i + ul)*(i - i + f)/(ui + I) 

rule 3: f -> d 
d = (i + ul)*(i - i + d)/(ui + I) 

rule5:dandx ->d 
d = (i + ul)*(d)/(ui + I) 

rule 6: ul and x -> ul 
d = (ul)*(d)/(ui + I) 

rule 7: I and ui -> ul 
d = (ul)*(d)/(ul) 

rule 5: d and x -> d 
d = (d)*(d)/(d) 

Assignment is double to double, no conversion *I 

/* Note: the order of evaluation is compiler dependent*/ 

i = d; 
d = i; 
d = f; 
f = d; 

I* truncation *I 
I* int converted to double - safe *I 
I* float converted to double - safe *I 
I* f converted to double, double 

assigned to double, then double 
truncated to float *I 



124 ~ MASTERING TURBO C ~ 
CH.4 

..,.. BACK TO CHKIP.C­
PROTOTYPES AND getche() ..,.. 

Rather than use scanf() with a O/oc conversion string, CHKIP.C (Pro­
gram 4.1) uses a useful standard library facility, getche(). This is declared in 
CONIO.H as 

int getche(void); 

This form of declaration is known as a function prototype-it provides both 
the user and the compiler with a clear indication of what arguments (if any) 
are legal and what value is returned (if any). 

The prototype concept is one of the many important additions made to C 
as a result of the new ANSI standards. It allows the compiler writer greater 
scope to check that function calls are made with the correct number and 
types of arguments. There are special prototype formats to indicate when a 
variable number of arguments is allowed. For example, 

int printf(char *format, ... ); 

in STDIO.H shows that printf() has one string argument (pointer to char). 
The comma and three periods indicate that any number of arguments 
(including none) can follow. 

The traditional (classic) pre-ANSI method of declaring and defining func­
tions will still work, but it offers less protection. Pre-ANSI declarations of 
printf() and getche() might have looked thus: 

printf( ); 
getche( ); 

/* returns int by default*/ 
/* returns int by default*/ 

giving no indication that their argument requirements were widely different. 
Turbo C, of course, allows both approaches, and I used the classic style in 

earlier chapters to avoid digressions. There may be some temporary porta­
bility problems with non-ANSI systems, so you need to know both styles. You 
will still encounter the classic style in much of the literature and published 
C source code. 

You are free (and encouraged) to browse around the *.H files to see 
the prototypes of the various functions tpgether with macro definitions and 
conditional compilation directives. The definition and working code for 



.- CONTROLLING THE fl.OW .- 125 

getche( ), however, is buried within the Turbo C libraries-out of sight, out of 
mind, and beyond tamperage! 

The int getche(void) prototype tells you that it takes no arguments and 

returns an int value. You might have expected a char value, since the role 
of getche() is to capture and display a keyboard character. Even though 
getche() cannot return the EOF (-1) that we discussed in Chapter 3, never­
theless it does return an int. In CHKIP.C, it is quite safe to assign 

ch = getche( ); 

where ch is type char, in view of the assignment rules just covered. The zero 

upper byte of the int is discarded in any case-so it's no big loss. 
CONIO.H, derived from thl' DOS abbreviation CON (for console), con­

tains several related routines for console 1/0. They overlap the 1/0 routines 
in STDIO.H to some extent, reflecting the separate historical strands of UNIX 
and MS-DOS. For now, notice that many of the get variants work with input 

from files or streams, of which stdin (your keyboard) is just one particular 
example. This will become clearer when we tackle file 1/0 in Chapter 8. 

Try replacing getche() in CHKIP.C with getch( ). The only difference is that 
getch() does not echo your keystroke on the screen. This is useful in many 
situations, such as selecting from a menu-you want to capture the chosen 
key without disturbing the menu layout. 

It is instructive to add the following line after getche( ): 

printf("The ASCII value is O/od\n",ch); 

Now try keying some control-key combinations and see if you understand 
the results. Ctrl-R will display 18 (i.e., 82 - 64) confirming that pressing Ctrl 

subtracts 64 from the corresponding letter code. You will also see some of 
the IBM extended ASCII symbols. Ctrl-C, by the way, will interrupt your pro­
gram prematurely. The Alt-key combinations will give bizarre results since 
they emit special scan codes giving pairs of characters. 

~CONDITIONAL EXPRESSIONS­
SHORTHAND USING ? AND : ~ 

Ever searching for compact notation, Coffers the conditional expression as 
a shorthand way of writing the commonly occurring if (X) { Y} else {Z} type 



126 .,. MASTERING TURBO C .,. 
CH.4 

of statement. It is well worth mastering its peculiar syntax since it can simplify 
your source code in many situations. In 

max = (x > y} ? x : y; 

the right side of the assignment is a conditional expression, signaled by the con­

ditional operator symbols? and:. The complete statement is equivalent to 

if (x > y} 
max= x; 

else 
max= y; 

which results in max being set to the larger of x and y (or toy if they are the 
same). The conditional expression consists of three expressions separated by 
? and : (plus optional white space). 

test-expression ? T-expression : F-expression; 

This ternary (three-part) form is evaluated as follows: 

1. If the test-expression evaluates to nonzero (true), the T-expression is 
evaluated, and this becomes the value of the conditional expression. 

2. If the test-expression evaluates to zero (false), the F-expression is eval­
uated, and this becomes the value of the conditional expression. 

Since the whole conditional expression ends up with a value, it can be 
used just like any other non-lvalue C expression. You can use it as the right­
expression in an assignment as we did with max, or it can be part of a com­
pound expression as in 

i =((x>y}?x:y}*O>=O?j: -j)/3; 

This highlights the advantage of the conditional expression. The above line 
would take two ifs, two elses, four assignments, and possibly additional tem­
porary variables. Do you lose too much in legibility? This is a subjective 
issue. Once the conditional expression is familiar to you, you quickly spot 



.- CONTROi.UNG THE Fl.OW .- 127 

that the expression 

i>=O?j:-j 

evaluates to the absolute value of j since it evaluates to - j only if j is negative. 
A few details need attention. The precedence of? and : is very low (cate­

gory 13), just above the assignment operators (category 14), and well below 
the relational operators (categories 6 and 7). This means that parentheses are 
not strictly needed in 

max = (x > y) ? x : y; 

as they would be in 

if (x > y) { ... } 

You should go with what the bible says: " ... they [parentheses] are advisable 
anyway, however, since they make the condition part of the expression 
easier to see." (The C Programming Language, page 48). 

Since the conditional expression is a single entity, C performs the usual 
conversions and promotions during evaluation, taking note of both the 
T-expression and the F-expression. There is a potential pitfall here. Take 
the following snippet: 

inti; 
doubled; 

i = (i > 0)? i: d; 

You might expect that if i were greater than zero, the right-expression would 
evaluate to type int with value i, which could then be assigned to the 
int lvalue without conversion. In fact, the presence of the doubled, even when 
it is not directly involved in the i-positive case, forces the right-expression to 
double under all conditions. In this example, of course, the assignment 
immediately triggers a conversion back from double to int, so error-prone 
truncation only occurs in the i < 0 case. You can see that care is needed if 
conditional expressions are embedded in more complex code-remember 
to watch the data types of all three components. 



128 • MASTERING TURBO C • 
CH. 4 

Here are a few more examples of? ... : in action. 

#define MAX(x,y) ( (x) > (y) ? (x) : (y)) 
#define MIN(x,y) ( (x) > (y) ? (y) : (x) ) 
#define MY _DIV(x,y) ( (y)? ((x)/(y)): BIG_ QUO) 

The compactness of the conditional expression is especially useful in para­

metrized macro definitions, as shown above. The parenthetical profusion is 

absolutely essential, allowing the macros to be called with complex argu­

ments as in 

d = MAX(a+2*b,(n-m)/(k+ MIN(4*p,q(r-1)))); 

Here the formal parameters x and yin MIN(x,y) would be replaced in situ by 

the actual parameters as follows: 

( (4*p) > (q(r-1))? (q(r-1)): (4*p)) 

This is known as token replacement. In many cases, the parentheses may 

prove to be redundant, but it is better to use them since we have no advance 

knowledge of the relative precedences of the operators used in the actual 

parameters and the macro definition. Omitting the parentheses in a macro is 

extremely hazardous-bugs can lie dormant for years. 

Macros are often used in libraries as alternatives to functions. They avoid 

the overhead of function calls but are less flexible since you cannot take the 

address of a macro. Pointers to functions, on the other hand, allow you to 

pass functions as arguments to other functions. 

~ THE while LOOP ~ 
Like if, while corresponds to normal English usage. You can repeatedly 

execute a statement or block of statements while a certain condition is true: 

while (condition-expression) 
T-statement 

TF-statement 

First of all, condition-expression is evaluated. If it is zero (false) control 

passes immediately to TF-statement. If condition-expression is nonzero 



~ CONTROU.ING THE Fl.OW ~ 129 

(true), T-statement, consisting of one or more possibly empty statements, is 
executed. 

If a break statement is executed during the T-statement, control immedi­
ately passes to the TF-statement, and you exit the loop. 

If a continue statement is executed during the T-statement, control moves 
back to the while condition, which is retested to determine whether the loop 
will repeat (if true) or terminate (if false). 

If neither break nor continue are encountered, the T sequence is com­
pleted normally, and the while condition-expression is reevaluated. Again 
depending on this test, you either reexecute the T sequence or drop through 
to the TF-statement. 

In less fancy verbiage, we say that Tis looped until the while condition is 
false or a break is made. 

Note that there is one exceptional situation in which looping ends regard­
less of condition tests: within a function definition the return statement 

always terminates execution and returns control to the calling routine. I will 
exclude this possibility for the moment to simplify the exposition. 

If there is no break and the condition remains true forever, the loop is 
endless-your needle is stuck in the groove until you interrupt manually, 

reboot, or lose power. 
Normally, though, some action within the loop or within the condition 

itself is geared to render the condition false or induce a break sooner or 
later. When that occurs, you exit the loop and resume normal, sequential 
execution. Take the following simple case: 

int count = 1 O; 

while (count >= O) { 
printf("Countdown is O/od\n",count); 
count = count - 1; 

} 
puts("BLAST OFF!); 

As you saw with if, a compound T-statement requires block markers. The 

above snippet will display 

Countdown is 10 
Countdown is 9 

Countdown is 0 
BLASTOFF! 



130 .,. MASTERING TURBO C .,. 
CH.4 

Within the T-statement, we are reducing the value of count, ensuring that 
when count reaches - 1 the while condition will fail. Let's make this pro­
gram more like real C. 

int count = 1 O; 

while (count >= 0) 
printf("Countdown is O/od\n",count--); 

puts("BLAST OFF!); 

The postdecrement saves a line, saves a pair of braces, and incidentally saves 
a little time since count - - translates into a faster machine code instruction 
than count = count - 1 or count - = 1. Consider also the following: 

int count = 11; 

while (--count + 1) 
printf("Countdown is O/od\n",count); 

puts("BLAST OFF!); 

Here the countdown loop will end when - -count + 1 reaches 0 (false), 
i.e., after Countdown is 0 has been displayed. 

An artificial variant to show how break works might be 

int count = 1 O; 

while (count >= 0) 
if (count = 3) { 

puts(" ABORT!"); 
break; 

} 
printf("Countdown is O/od\n",count--); 

puts("BLAST OFF!); 

The loop exits when count reaches 3. Usually, though, break is used to exit 
upon some abnormal or error condition not immediately involved in the 
while condition being tested. 

Often you will find deliberate endless loops that rely on internal tests or 
events to exit or abort. Rather than construct a complex while condition, 
some loops start with while(1) or while(true), which clearly mean loop for­

ever. Within such loops you are bound to find some terminating mecha­
nism! In addition to the built-in break and return statements, the C library 



~ CONTROLLING THE FLOW ~ 131 

offers the exit() and abort() facilities in PROCESS.H. These are machine­
dependent functions or macros that terminate not only the loop but the 
whole program. exit{) is the more graceful termination-it will close files, 
flush buffers, and perform similar housekeeping chores. exit() takes an inte­
ger argument that indicates the status of the exit as in 

if (calamity) exit (n); 

The status number, n, is transmitted to DOS as the reason for program termi­
nation. A status of 0 indicates normal termination. A variant of exit(), written 
_exit(), exits without any prior housekeeping. The abort{) facility also termi­
nates without housekeeping but writes an error message to a designated 
device called stderr (usually your screen) before calling _exit() to perform 
the emergency termination. 

exit(), unlike abort(), allows you to invoke your own exit functions. You 
set up a pointerto the first exit function using atexit{) in STDLIB.H. Each call 
to an exit function can chain to another up to a total of thirty-two functions. 
These allow you to perform your own "cleaning up" operations before the 
standard ones are invoked by exit(). 

These program termination facilities are essential in the real world, where 
a disk-full or printer-not-ready condition can occur at precisely the wrong 
time. 

Since while loops can be nested, you have to watch your indents, braces, 
and the scope of any break statements. Just like the nested if ... else situa­
tion outlined earlier, break will terminate the innermost, enclosing while. 
KEYCNT.C (Program 4.2) offers a simple test bed to try out nested whiles. 

~ ANALYSIS OF KEYCNT.C ~ 
The outer loop can be invoked only four times since count decrements 

from 3 to - 1 before the outer while condition becomes zero. The inner loop 
cycles until either a q or x is keyed. Avoiding these two characters keeps 
you forever in the inner loop. So, to exit the outer loop and thence the pro­
gram, you need to type four qs or xs in any combination (e.g., three qs and 
one x). You might find this useful one day! 

KEYCNT.C illustrates again the power of C's expressions. The function 
getch() is invoked, converted to char, assigned to ch, and compared with 



132 .,. MASTERING TURBO C ... 
CH.4 

/* keycnt.c -- test nested while loops */ 
#include <stdio.h> 
#include <conio.h> 

main () 
{ 

int count = 3; 
char ch= '\0'; 

while (count---- >= 0) { 

} 

while ((ch= (char) getch()) !·· 'q') { 
printf( "ch = %c\n" ,ch); 
if (ch == 'x') break; 

} 
puts("Inner loop ends!"); 

puts("Outer loop ends!"); 

~Program 4.2: KEYCNIC 

'q' all within the while condition. Try replacing the printf() line with 

printf("ch = O/oc\n",ch = (char) getch( )); 

and remove the getch() from the while condition expression to get 

while (ch!= 'q') 

The second argument in printf() is an assignment expression and function 

call neatly rolled into one. 

~ The Busy while ~ 
Since you can pack a lot of action inside the while condition-expression, 

you often see examples of code where the while T-statement is empty: 

while ((ch = getche( )) = = SPACE); 

will simply ignore any keystrokes giving ch equal to SPACE (a predefined 

value). Notice that one; after the) is all you need to indicate an empty state­

ment. Beginners are sometimes tempted to write 

while ((ch = getche()) == SPACE);; /*surplus; */ 



... CONTROl.UNG THE HOW ... 133 

This is legal but wasteful since it gives you two empty statements, one within 
the while loop and one outside it. 

Another instructive example is 

int count; 
char *ch_ptr; 
char name[ ] = "Borland"; 
ch_ptr = &name[O]; 

count = O; 
while {*ch_ptr++) 

count++; 

I* pointer to char *I 
I* initialize array of char *I 
/*or ch_ptr = name;! */ 

/*advance pointer to end of string, count the number of chars 
excluding final NUL *I 

The intriguing condition-expression (*ch_ptr ++)will evaluate to false only 
when the final ASCII NUL is reached in the string "Borland\O". Or will 
it? Astute readers may notice that the operators * (indirection) and + + 
(postincrement) have equal precedence (both in category 2-see Appen­
dix E). So do we take 

{*ch_ptr) ++ 

to mean "add 1 to the char at address ch_ptr" or do we interpret it as 

*(ch_ptr + +) 

meaning "take the char at the pointer given by ch_ptr + + "? Clearly, it 
makes a difference, and we need to be told! 

The answer lies in the associativity rules for category 2 operators like* and 
++.They associate from right to left, so *(ch_ptr + +) is the correct inter­
pretation. But does the indirection occur before or after the pointer is incre­
mented? You need to note very carefully how the postdecrement works. 
Although + + increments ch_ptr as a side effect, the expression ch_ptr + + 
returns the old, non-incremented value. So the sequence of events for 
*(ch_ptr ++)is as follows: 

1. ch_ptr + + is evaluated first, returning old value of ch_ptr. 

2. The variable ch_ptr is incremented. 

3. The * operator "grabs" the char at old ch_ptr. 



134 .,. MASTERING TURBO C ... 
CH.4 

I spell out this example in detail because it is the source of much confusion. 

The convolutions are not yet over. What increment does ch_ptr + + actu­

ally achieve? Pointers in C have their own special arithmetical rules. 

~ POINTER ARITHMETIC 
AND THE sizeofOPERATOR ~ 

When we write ch_ptr + + or - - ch_ptr or ch_ptr + 3, we are certainly 

changing the value of the pointer variable ch_ptr. C helpfully (some say 

unhelpfully) takes into account the size of what the pointer is pointing at 

before doing the arithmetic. 

Each data type and variable in C has an associated size, expressed as a 

number of basic storage units. This basic unit is machine dependent, but in 

most systems, including IBM PC Turbo C, data-type size is measured in bytes. 

Thus char is of size 1, int and short are size 2, float is size 4, and so on. 

Furthermore, larger objects like arrays (and structures and unions to be 

seen later) have sizes that depend on their particular declarations and assign­

ments. Remember, too, that all these sizes may differ between different C 

implementations. We therefore need some mechanism to ease the writing of 

portable code. 

The solution is the operator sizeof that determines the size of any data 

type or object: 

inti, size, *int_ptr, table[10); 
char ch, *chr_ptr, name[30); 
doubled, grid[20); 

size = sizeof(int); 
size = sizeof(ch); 
size = sizeof(size); 
size = sizeof(ch_ptr); 

size = sizeof(float); 
size = sizeof(d); 

/*size now = 2 */ 
/*size now = 1 */ 
/*size now = 2 since size is int*/ 
/*size = 2 or 4 depending on memory 

model*/ 
I* size now = 4 (32 bits) *I 
I* size now = 8 (64 bits) *I 

size = sizeof(name); /*size now= 30 */ 
I* NOTE: sizeof treats name as a 30-byte array NOT as the pointer 

to an array *I 
size = sizeof(&name[O)); /*size = 2 or 4 depending on memory 

model*/ 



.- CONTROU.ING THE FLOW .- 135 

/*above gets the pointer size */ 

size = sizeof(table); 
size = sizeof(grid); 

/*size now = 10*2 = 20 */ 
/*size now = 20*8 = 160 */ 

~ Portability and sizeof ~ 
You are sometimes tempted to use the "fac;:t" that int is 16 bits. For 

example, the function malloc(N) in ALLOC.H allocates N bytes of memory 
(the details are not important), so to allocate enough memory for 12 integers 
you could write malloc(24);. This works fine with Turbo C, but you have 
unnecessarily constrained your program. By writing malloc(12*sizeof(int)); 
you achieve portability to systems that may have 32-bit ints. 

~ Pointer Sums with sizeof ~ 
When you add 1 to a pointer, you are really adding (sizeof) storage units, 

so the actual increment depends on the size of the object being pointed at. 
The same logic applies to subtraction. 

i = *int_ptr + +; 
ch = * --chr_ptr; 
j = *(int_ptr + 2); 

/* int_ptr incremented by sizeof(int) = 2 */ 
/* chr_ptr decremented by sizeof(char) = 1 */ 
/* int_ptr incremented by 2*2 = 4 */ 

The general idea behind pointer arithmetic can be summarized in the fol­
lowing manner: for 

T *ptr_to_ T; I* T is a type specifier. Declare a pointer to T *I 

(ptr_to_ T + i) evaluates as (ptr_to_ T + i *(sizeof(T)) 

(ptr_to_ T ++)evaluates to (ptr_to_ T + sizeof(T)) 

(ptr_to_ T - - ) evaluates to (ptr_to_ T - sizeof(T)) 

~ PHILOSOPHICAL INTERLUDE ~ 
Some people complain that C encourages opaque code, while others 

praise the language for offering compact notation. The truth is that C's 



136 ~ MASTERING TURBO C ~ 
CH. 4 

powerful expression/statement approach can be misused. Theoretically, you 
might be able to cram most of your program into one C statement, but there 
is a commonsense limit beyond which your intentions become clouded and 
your code becomes not just illegible but also impossible to alter without 
painful side effects. C's philosophy is to break problems down into a large 
number of simple, easy-to-analyze functions. Within each function, your 
statements should also be kept as simple and clear as possible. 

Meanwhile, back in the loop .... 

~ THE do ... while LOOP ~ 
A normal while loop is only entered if the leading condition turns out to 

be true. It is useful to have another construct, called REPEAT. .. UNTIL in 
other languages, in which the loop condition is tested at the end of the loop. 
This approach ensures that the loop is always performed at least once. The C 
syntax is 

do 
loop-statement 

while (loop-condition) 

A loop-statement can be empty, single, or multiple with braces. It is always 
executed before the while loop-condition is evaluated. Remember that 
parentheses are mandatory around the loop-condition. If this is zero (false) 
the loop is over, otherwise control returns to the keyword do, and we 
loop again. 

If a break statement is executed during a dq ... while loop, a premature exit 
occurs, and control passes to the statement beyond the matching while. 

A continue statement will send control forward to retest the condition. 

Although less common than the normal while loop, the do ... while is con­
venient when some input or event must be established at least once and then 
possibly repeated. For example 

int choice; 

do { 
puts("Enter Menu item# 1 - 8 (9 to exit): "); 
scanf("O/od",&choice); 
if (choice == 9) break; 



.,. CONTROLLING THE FLOW .,. 137 

if (choice == 1) { 
I* process choice 1 *I 

break; 

/*handle other valid choices*/ 

}.while (choice < 1 : : choice > 9); 

Here the menu prompt always appears at least once and keeps appearing if 
an invalid choice is made. Within the loop we can break as soon as a good 
choice has been processed. 

The above sequence of ifs to process choices is effective enough, but is 
considered somewhat inelegant in C, which provides a specific switch ... 
case ... break ... default construct for multiway branches. 

~ THE switch STATEMENT ~ 
Before discussing the formal syntax of the switch statement, let's revamp 

the above menu example. 

int choice; 

do { 
puts("Enter Menu item# 1 - 8 (9 to exit): "); 
scanf("O/od", &choice); 
switch (choice) { 

case 9: break; 
I* choice 9 will exit switch - no action *I 

case 1: func_1(); 
break; 

I* choice 1 will invoke func_ 1 ()then exit *I 
case 2: func_2( ); 

break; 
case 3: func_3( ); 
case 4: tune_ 4( ); 

break; 
I* choice 3 will invoke func_3() followed by tune_ 4() *I 
/*choice 4 will invoke just tune_ 4() */ 

case 5: 
case 6: 



138 • MASTERING TURBO C • 
CH. 4 

case 7: 
case 8: func_x( ); 

break; 
/*choices 5 - 8 will invoke func_x() */ 

default: puts("Bad choice!); 
break; 

} /*end of switch */ 
} while (choice < 1 l: choice > 9); 

I* repeat menu display for bad choices *I 

/*reach here after a good choice 1 - 9 has been processed */ 

There are several new keywords at work here. 
First, the switch (choice) statement establishes the integer variable choice 

as the control expression for the following multiway choices. C evaluates the 
current value of choice and searches sequentially for a match in the list of 

case n: labels. 
Each case n: line acts like the named label you saw in the goto syntax at 

the beginning of this chapter. You can picture the machine performing a 
goto label case n: whenever choice equals the integer value n. The state­
ment or statements following the case n: label will be executed until a break 
is encountered or until we reach the end of the whole switch sequence, sig­

naled by the final matching, enclosing}. 
Note that there is no need to list the case n: labels in any particular order 

apart from grouping common-action cases like 5-8. Each case n: will be 
found no matter where it is positioned. On the other hand, you must avoid 

case label duplications within the same switch sequence. 
If choice is 9, a match is made at the line case 9:, and execution of the 

break statement occurs-leading to an instant exit from the switch sequence 
down to the while statement. The while condition is false, so we also exit the 
do ... while loop. Note carefully that break is now terminating the switch, not 
the do ... while as in the previous menu example. 

Suppose you entered choice as 1. It would then match the case 1: label 
and obey whatever statements are found there, namely a call to func_ 1{) 
(assumed to be declared and defined elsewhere) followed by a switch-break 

and thence a do loop exit as with the case 9:. 
The choice 3 is especially instructive. After the case 3: label we find 

func_3{ );, so this function will be called. Since there is no break statement 

following, the program carries on and obeys the statements for case 4:. As 
in BASIC, control passes by intervening labels, picking up all instructions in 
its path. So, a choice of 3 will perform func_3{) followed by func_ 4() and 



~ CONTROi.LiNG THE Fl.OW ~ 139 

then meet a break to exit. Choice 4, of course, invokes only func_ 4( ). 
I cannot overstress the action of choice 3-it is the source of many bugs. 

Unless you want a choice to trigger the work for other, later choices, you 
must put in breaks to prevent the code from running on. 

Now look at at choices 5-8. Here we have the situation where the same 
action, func_x( ), is needed for different choices. Hence the labels case 5: 
to case 7: are empty. Control will end up at case 8: for all choices in the 
range 5-8. 

The special label default: is optional. If it is used, it will attract the attention 
of any case not covered by specific case n: labels. In my example, any inte­
ger entered as choice outside the range 1 <= choice <= 9 will be trapped 
by default:, giving a warning display. When control exits to the while condi­
tion test, the do loop will be reinvoked, and the menu prompt will reappear. 

In the absence of a default: label, any unmatched cases will simply filter 
down to the final } of the switch sequence with no particular action being 
triggered. 

The final break after the puts("Bad choice!)" is not actually needed-the 
end has been reached already! However, it is considered good style: if you 
ever go back and enlarge the switch choices, that final break serves as 
a sentinel. 

After that informal breeze through a fairly complex construction, let's 
recap switch, giving the syntax with more precise notation. 

switch (control-expression) { 
case constant-expression-1: 

statement-sequence-1; 
[break]; 

case constant-expression-2: 
statement-sequence-2; 
[break]; 

[default:] 
default-statement-sequence; 
[break]; 

The value of the control-expression must be integer compatible, i.e., of 
type int, char, or any of the int variants (short, long, signed, or unsigned). 



140 ~ MASTERING TURBO C ~ 
CH. 4 

Later you will meet a data type called enum that is also integer compatible. 
float and double are absolutely verboten. 

The control-expression itself can be any constant (not too useful!), vari­
able, or function returning an int-like value. 

The case labels, though, must be constants or constant-expressions. case 'A': 
and case (1 +4}: are valid, but case choice: and case (2*i}: are not. The 
colon is C's standard way of indicating a label as you saw earlier. 

~ switch Caveats ~ 
Note that continue, unlike break, has no impact on the switch sequence. 

If you have a switch embedded in some other control loop, however, a 
rashly used continue might cause strange aberrations. It will affect only the 
nearest enclosing control loop, not the switch. 

Because switch is really a multiple goto, it is possible to write code that vio­
lates the structured rules presented earlier in the section on goto. The case n: 
labels can be legally positioned alongside any statement in the switch body just 
as goto labels can go anywhere within a function. If your case n: labels are 
badly placed, they can result in initialization code being bypassed or branches 
into or out of nested control loops. 

I have saved the best control loop to the end. The for loop, well known to 

BASIC and Pascal users, provides a powerful and concise method of loop 
iteration under a wide variety of conditions. 

~ THE for LOOP ~ 
Let's start with a simple example before the laying on of the syntax. 

int count; 

for (count = O; count < = 1 O; count++) 

printf("Countup is O/od\n",count); 

puts("That's all!"); 

This will display the fascinating sequence 

Countup is 0 
Countup is 1 

/* body of loop*/ 

I* first statement after loop *I 



Countup is 2 

Countup is 1 O 
That's all! 

~ CONTROi.i.iNG THE HOW ~ 141 

After the keyword for there are always three expression statements within 
the parentheses (some or all of which may be empty), representing in order 

of appearance: 

1. The for loop counter initialization (count = 0 in the above example). 
You can also have multiple initialization expressions separated by 

commas as in 

for (count = 0, i = 100; count <= 1 O; count++) 

(See section on comma expressions below.) 

2. The for loop test condition (count<= 10). Unlike while (count<= 10) 
the parentheses are optional. 

3. The for loop modifier (count++) sometimes called the reinitializer. 
This may also contain multiple expressions separated by commas 
as in 

for (count = 0, i = 100; count<= 10; count++, i--) 

Following the for line is the body of the loop, which comprises a 

single- or multiple-statement block (possibly empty). In the above 
example the body consists of the single statement, 

printf("Countup is O/od\n",count); /*body of loop*/ 

so no curly braces are required. 

~ The for Loop-Step by Step ~ 
When the for in my example is encountered, the following sequence of 

events occurs: 

1. The initialization statement is executed (count is initialized to zero). 

This step occurs only once. 



142 ~ MASTERING TURBO C ~ 
CH. 4 

2. The loop condition (count < = 10) is evaluated. 

If loop condition is zero (false), 

exit the for loop and resume control after the last statement in the 

loop, displaying That's all!. 

If loop condition is nonzero (true), 

the body of the for loop is executed, displaying the current value of 

count. Then execute the loop modifier, expression statement 3, to 

reinitialize the loop. count is postincremented by 1. The loop now 

repeats from step 2 and the test condition is re-evaluated. 

If you trace this sequence in the example, it is clear that count < = 10 is 

true until count has been incremented from 0 to 11. After 11 iterations of the 

for loop body, the condition test gives false, and the looping ends. Hence you 

get a simple counted loop, just one of the many applications of the for loop. 

The for loop flow can always be simulated with a longwinded while. 

int count; 

count = O; 
while (count < = 10) { 

printf("Countup is O/od\n",count); 
count++; 
} 
puts("That's all!"); 

/* initialize */ 
/*loop condition*/ 
/* body of loop */ 
I* loop modifier *I 

I* first statement after loop *I 

Note carefully the position of the loop-modifer statement-it follows the 

loop body. 

.-. The Endless Loop Revisited .-. 
As with while loops, the break and continue statements can be used to 

exit a for loop or force an early reevaluation of the for loop-modify expres­

sion. Recall, too, that within a function definition, a return always preempts a 

loop of any kind, sending control back to the statement after the function 

call. The dreaded goto may also be used to exit the loop. 



.,. CONTROHING THf FLOW .,. 143 

In the absence of such abnormal exits, it is important that the loop condi­

tion contains variables that are altered either in the modifier statement, in 

the loop body, or both. Iterations that do not somehow converge to a false 

loop condition will loop forever. 

tor(i = O; i <= 20;j++) /* ??? */ 
puts("This show will run and run!"); 

Since i remains at 0, the test i <= 20 is forever true. 

The body of the loop often provides the loop modifier and/or the exit con­

dition. In fact, you can have a for with one or more empty statements. Here 

are three examples: 

intj = O; 

for (;j <= 3;) I* no in it, no modifier *I 
printf("j = O/od\n",j + + ); 

int j; 
for U = 0; ;j + +) I* no condition means true *I 

if U <= 3) printf("j = O/od\n",j); 
else break; 

intj = O; 
for(;;) 

printf("j = O/od\n",j ++ ); 
if U > = 3) break; 

I* no in it, no condition, no modifier *I 

An empty loop condition is taken as being always true. The last snippet is 

similar to the deliberate while (1) you saw earlier. It deliberately sets up an 

endless loop condition and relies (hopefully) on a break or return to termi­

nate. In fact, a common macro in the C world is #define forever for(;;). 

~ Nested for Loops ~ 
By now you will be unsurprised to learn that for loops can be, and often 

are, nested. 

inti, j; 
for (i = O; i <= 1 O; i + +) 

forU = O;j <= 10,j++) 
printf("i = O/od, j = O/od\n",i,j); 

puts(" All done!"); 



144 .,. MASTERING TURBO C .,. 
CH.4 

will display the following 121 lines: 

i = O,j = 0 
i = 0, j = 1 

i = 1, j = 0 
i=1,j=1 

i = 10, j = 0 
i=10,j=1 

i = 10, j = 10 

It is easy to add unwanted semicolons after the for( ... ). If you write 

inti, j; 
for(i = O; i <= 10; i++); 

for Q = O; j <= 10, j + +) 
printf("i = O/od, j = O/od\n",i,j); 

puts(" All done!"); 

I* ????? semicolon ????? *I 

the syntax is good, but the first for loop body is now an empty statement that 
will be pointlessly "obeyed" 11 times. The printf() will be invoked only 11 
times, not 11x11 as intended. 

An interesting point arises: what will be the value of i when the first loop 
ends? In Modula-2 there is no guarantee that FOR loop counters preserve 
useful values outside the loop. C, on the other hand, imposes no such limita­

tions, soi has the usable value 11 when the loops ends. 

~ COMMA EXPRESSIONS ~ 
I mentioned earlier that a for loop could start with multiple expressions in 

the initializer and modifier (reinitializer) sections. 

for (count = 0, i = 100; count <= 1 O; count++, i - ) 

would initialize count and i as shown, and each iteration would increment 
count and decrement i. These are particular cases of a construct called the 



,.. CONTROLLING THE FLOW ,.. 145 

comma expression. Generally, you can have any number of expressions sep­

arated by commas as in 

exp1, exp2, exp3, ... expn 

C always evaluates these one by one, from left to right, but only the data type 

and value of the final, rightmost evaluation are preserved and returned as 

the type and value of the whole comma expression. The comma in this con­

text has the lowest precedence of all the C operators (see group 15 in Appen­

dix E), so parentheses are only rarely needed to avoid ambiguity with 

function-argument commas. For example, 

k = j++, i-=; 

would increment j, decrement i, and then assign the old value of i to k. In the 

above for loop, the two comma expressions are used purely for their side 

effects-their resulting values are discarded. This is a common situation in C. 

Unless the resulting value of an expression evaluation is assigned to an lvalue, it 

simply disappears. i + + certainly increments the variable i, but the value of 

the comma expression, namely the value of i + +, is discarded. 

~ ANALYSIS OF REVSTR.C ~ 
The comma expression can pack a lot of punch into a for loop. You can often 

avoid nested loops by processing several indices together. Try REVSTR.C 

(Program 4.3) as an exercise in using for to reverse the characters in a string. 

The for loop here is typical of many array manipulating loops. In this particu­

lar case, the array is a character string. 

~ A Peep at STRING.H ~ 
The library function strlen( ) is introduced in REVSTR.C to obtain the 

length of the string name. strlen() is one of 30 or so string handling func­

tions defined in STRING.H. You should locate this in \turboc\include and 

print out the prototype declarations. Most of these functions take arguments 



146 .,. MASTERING TURBO C .,. 
CH. 4 

/* revstr.c - reverse a string using for loop */ 

#include <stdio.h> 
#include <string.h> 
/* get prototype declaration of strlen() */ 

main () { 

unsigned i, j; 
int ch; 
char name[] "aibohphobia"; /* the fear of palindromes */ 

for (i = O, = strlen(name)-1; i < j; i++, j- { 
/* i selects chars from starl: t:o mlddle, j seleci:s them from end 

to middle. Loop stops when i >= j */ 
ch = name[i]; 
name[i) = name[j]; 
name[j J = ch; 

} 
printf("\'aibohphobia\' spelled backwards is %s\n",name); 

... Program 4.3: REVSTR. C 

of type pointer to char, e.g., 

unsigned strlen(char •str); 
I* returns length of string as unsigned int excluding the final NUL *I 

char * strcpy(char *destin, char *source); 
/*copies source string to destination string. Returns a pointer 

value = destin *I 

int strcmp(char *str1, char *str2); 
I* compare the two strings str1 and str2 *I 
I* returns an int < O if str1 < str2 

= O if str1 = str2 
> 0 if str1 > str2 

where the comparison is made lexicographically as in a 
dictionary sequence *I 

As you can see the returned values vary according to function. 

C does not have a data type string per se, like BASIC, but when you get 

acquainted with the STRING library, you'll find that you can do anything 

with strings just as easily as in BASIC. You can't copy strings with A$ = 8$ as 

in BASIC, but you simply write strcpy(a,b) where a and bare array names or 

pointers to char. 
For the moment we'll need only strlen( ), which returns an unsigned int, 

namely the length of the string excluding the final NUL. Because I set j to 



.. CONTROLl.ING THE FLOW .. 147 

strlen(name) - 1 in the for loop initialization expression, j indexes the last 
character in name. ch is used as a temporary variable while name[i] and 

nameLi] are swapped. 

The chief lesson of REVSTR.C is the use of i + + and j - - in the for loop­

they allow a single loop to pick out characters from either end of the string. 

Once you have mastered the logic of REVSTR.C, enter and run PALIN.C (Pro­

gram 4.4). It defines a function, rev(), based on the for loop in REVSTR.C. You 

can use this to experiment further with reversing strings and finding palindromes 

(words or phrases that read the same in both directions). With rev() you should 

be able to modify the program so that any string entered via the keyboard using 

scant() can be displayed in both directions. Then you could use strcmp() to 

compare the two. 

Note that the definition of rev() uses the ANSI prototype style, with the for­

mal argument declared within the parentheses. The logic of PALIN.C should 

be plain sailing, apart (possibly) from the use of global variables. In Chapter 7 

we'll be looking at these and other storage classes in more detail. 

/* palin.c - reverse a string */ 
#include <stdio.h> 
#include <string.h> 
/*get prototype declaration of strlen() */ 

#define MAXLEN 80 

void rev(char *str); 
/* function declaration */ 

char name[] = "able was i ere i saw elba"; 
char copy[MAXLEN]; 

/*these are global variables declared outside main() */ 

main () { 

strcpy(copy,name); 
rev(copy); 
printf ( "\' %s\' spelled backwards is \' %s\' \n", name, copy) ; 

void rev(char *str) 
{ 

unsigned i, j; 
int ch; 

for (i = O, j = strlen(str) - l; i < j; i+~ j-) { 
/* i selects chars from start to middle, j selects them from end 

to middle. Loop stops when i >= j */ 
ch= str[i]; 
str[i] str[j]; 
str[j] = ch; 
} 

.. Program 4.4: PALIN.C 



148 .. MASTERING TURBO C .. 
CH. 4 

~ SUMMARY OF CHAPTER 4 ~ 
Summing up, the key point of Chapter 4 is how to control the flow of pro­

gram execution while maintaining legible, structured source code. The goto 
with named labels (label_name:) should be used with care to avoid the tra­
ditional problems of unstructured programs . 

..... You met the conditional tests of if and else, which select alternative 
blocks of statements depending on C's purely arithmetic evaluation of 
Boolean expressions (true is nonzero, false is zero or NULL). Nested if 
and else clauses demand clear logic and matching indentations to avoid 
the dangling-else pitfall. The else if form allows a legible sequence of 
multichoice selections . 

..... Two of the basic library 1/0 routines from CONIO.H, getche() and 
getch( ), were introduced as alternatives to scant() when you want to 
grab a single char from the keyboard. A detour on type casting showed 

how you can coerce variables from one data type to another, overriding 
C's standard rules for internal arithmetical and assignment conversion. 
The latter were listed and their dangers analyzed . 

..... The new void data type lets you override the normal int default return 

value of a function. void also distinguished functions declared with no 
arguments, e.g., func(void);, from K&R functions with unspecified argu­
ments, e.g., tune(); . 

..... The rationale and syntax of function prototyping was illustrated with 

int getch(void) and int printf(char *format, ... ), and I stressed the impor­
tance of studying the prototypes in the various header files supplied with 
Turbo C. 

..... The ternary conditional expression, Iva/ = X? Y; Z;, offers a compact 
alternative to if (X) (/val = Y,") else (/val = Z;). 

..... Parametrized macros behave rather like functions without the calling 
overheads, but, unlike functions, macros cannot be passed via pointer 
as arguments to other, generic functions. The formal arguments 

in macros are replaced in situ, token by token, with the corresponding 
real arguments, so protecting parentheses are de riguer to avoid 
diabolical bugs . 

..... while (condition){ loop} loops until (coridition) becomes false or until 
some abnormal exit statement, such as break, goto, exit( ), abort( ), or 



.- CONTROi.UNG THE Fl.OW .- 149 

return is encountered. continue forces a premature reevaluation of 
(condition). while(1) is used to generate an endless loop that relies on 
abnormal termination, while loops can be nested, and the (condition) 
often packs in many expression statements for their side effects . 

.. .. C interprets *ptr + + as * (ptr + +) because of the right-to-left associativ­
ity of the equal-precedpnce operators, * and + +. 

.... Pointer arithmetic is based on the size of the pointee. Expressions like 
ptr + + and ptr - 3 can only be understood if you know how many 
bytes are used to store* ptr. sizeof() ensures portability. ptr + N evalu­
ates to ptr + N*sizeof(7) where * ptr is of type T . 

.... do {loop} while (condition); is a variant of while that guarantees at least 
one attempt to execute {loop} before (condition) is tested. Premature 
termination is possible as with the while loop . 

.... The switch (n) statement offers a concise, legible multiway choice 
mechanism, using case n: labels. n is restricted to integral values. 
break must be used to prevent unwanted running-on from a matching 
label to the next label. default: is used to trap any unmatched switches . 

.... The for loop offers flexible "counted" loops sensitive to many different 
termination criteria. The generic form is for (init; condition; reinit) 
{loop_body}. Theoretically, a C program can be packed into a for loop 
with an empty body since each of the three expression statements can 
be as complex as you wish, using comma expressions with side effects . 

.... Comma expressions are evaluated left to right and evaluate to their 
rightmost expression . 

.... All the control flow structures can be inter-nested to any depth. Nested 
for loops are common for scanning multidimensional arrays . 

.... C does not have a specific string data type like BASICs. Strings are real­
ized as arrays of char, and a suite of library functions declared in 
STRING.Hallows all the usual string and substring manipulations found 
in other languages. 



COMPLEX 
DATA 
TYPES 



.... CHAPTER 5 ~ 
TAPPING THE POWER OF C 

The data types used so far have been either simple, atomic types like int, 
float, and char, or pointers to them. You also met the one-dimensional array 
based on these types.Callows more complex data types based on arbitrary 
combinations of the basic types, and you can even define your own personal 
data types using the keyword typedef. 

In this chapter you'll meet multidimensional arrays, enumerated types, 
typedefs, and conditional directives. 

Before I discuss higher-dimensional arrays, there are some new facts 
about the relationship between arrays and pointers to be mastered. 

~ARRAYS AND POINTERS-A FRESH LOOK~ 
The one-dimensional array x[n] defined in Chapter 4 lets you reference a 

series of n variables x(O] to x[n-1] (all of the same data type) by means of 
a single integer-type index or subscript. 

int vec[100], i, sum; 

I* here you set values in vec *I 

for ( i = 0, sum = O; i < 100; i + +) 
sum += vec[i]; 

I* total the elements vec[O] to vec[99] *I 

Whenever C encounters the identifier vec without a subscript, it is inter­
preted as a pointer to int (as a pointer to the first int of the array vec(100], 
in particular). 

The major advantage of treating arrays as pointers shows up when you 
want to pass an array as an argument to a function. By passing a pointer to 
the first array element rather than passing the whole array, the function can 

be written without prior knowledge of the size of the array. In the program 



152 ~ MASTERING TURBO C ~ 
CH. 5 

VECSUM.C (Program 5.1 ), I establish a function intvecsum(n,array) that will 
sum the first n elements of any integer array. 

..,. Analysis of VECSVM.C ..,. 
The function intvecsum() has int_ array[] as its second dummy argument, 

and there is no specific reference to the array dimension. The empty brack­
ets indicate an open array-the number of elements is left open, 
as it were. 

/* VECSUM.C - calling a function with an array argument */ 
/* Program 5.1 */ 

long intvecsum(unsigned long n, int int_array (]); 
/* use modern style function declaration * / 

/* declaration needed because function is encountered (in main) 
before its definition _and_ it returns a non-int */ 

int vec[B] • {O, 1, 2, 3, 4, 5, 6, 7}; 
int arr[6] • {23, 27, 24, O, 8, 123}; 

/* define/declare and initialize two external arrays */ 

void main() 
{ 

long vecsum; 
unsigned long s iz; 
printf( "\n\tSize of vec array is %u bytes", sizeof(vec)); 
siz = sizeof(vec)/sizeof(int); 
printf( "\tNumber of elements in vec = %u\n" ,siz); 
vecsum = intvecsum(siz, vec); 
printf("\n\tThe vec elements total== Zld\nn, vecsum); 
printf(n\n\tFirst 3 arr elements total .. %ld\nn,intvecsum(3,arr)); 

/* define intvecsum() */ 

long intvecsum(unsigned long n, int int_array[]) 
/* use modern style function definition format * / 

/* intvecsum() takes two args: 
number of elements to be summed 
an 'open 1 array of int 

intvecsurn() returns a long int value */ 

long sum = O; 
unsigned long i; 

/* vars local to function * / 

for ( i = O; i < n; i ++) 
sum += int_array[i]; 

/* total the elements int_array[O] to int_array(n-1] */ 
return sum; 

• Program 5.1: VE CSU M. C 

' 



.,. COMPLEX DATA TYPES .,. 153 

The array(] form is allowed when declaring formal arguments and also 
when a declaration is immediately followed by an initializer. The compiler 
can fill in the array size from the number of elements in the initializer. 

As you can see, the function has been invoked with vec (an 8-element 
array) and arr (a 6-element array), proving that intvecsum() will work with 
variable-length arrays. You may wish to test this for yourself by setting up 
other arrays. 

What really gets passed to intvecsum() is a pointer value, namely a 
copy of vec (&vec[O]) or arr (&arr[O]). The function then blindly sums 
a certain number of elements, counting up from this base. Try invoking 
intvecsum(1 O,arr). You will probably get a spurious answer with no warning 
that arr only has 6 elements. You will be adding to the true sum of arr[6] 
whatever lies in memory at the addresses (arr+ 6), (arr+ 7), ... ,(arr + 9). 

Keep in mind that by receiving a copy of the constant pointer vec as an 
argument, the function has direct access to the array elements. intvecsum() 
simply reads the array elements, but there is nothing to stop you from chang­
ing the function so that it writes new values into any part of the array. Such 
side effects can be exploited or they can be a nuisance. Passing pointers, 
then, is a mixed blessing. It allows you to handle open arrays, but it exposes 
the array to side effects. Since C always passes arguments by value, you have 
to pass a copy of a pointer if you want to simulate passing by reference in 
order to change the real argument. 

The sizeof() operator is used to derive the actual number of elements in 
an array. The general strategy for any type Tis 

number_of_array_elements = sizeof(array_of_ T)/sizeof(T); 

Using unsigned long for these variables is a possible overkill! I used it as a 
reminder that arrays can exceed 65,535 elements. 

sizeof(array_of_ T), you should notice, provides a quirky exception to the 
rule that array names are interpreted as pointers. When used with sizeof( ), 
an array argument is taken as the whole array, not as the pointer. Otherwise 
sizeof(array_name) would be interpreted as sizeof(&array_name[O]), 
which would always return the size of a pointer (2 or 4 bytes)! 

In VECSUM.C, try replacing int int_array[] with int *int_array in both the 
declaration and definition of intvecsum( ). You will find no difference in 
operation, providing another illustration that intvecsum() is actually treating 
the argument as a pointer. 



154 ~ MASTERING TURBO C ~ 
CH.5 

~ Arrays and Pointers-The Differences ~ 
In spite of the intimate relation between pointers and arrays, there are sub­

tle differences that can undoubtedly be a source of confusion. At the risk of 
boring the cognoscenti, let's delve deeper into this subject. Take the follow­
ing declarations: 

int vec[100], *ip, * *ih; 
I* an array of ints, a pointer to an int, and a pointer to a pointer to an int *I 

double table[50], *dp, * *dh; 
/*an array of doubles, a pointer to a double, and a pointer to a pointer 

to a double *I 

Both vec and ip are pointers to int. However, vec[100] has 200 bytes of 
contiguous storage allocated at a memory location that is fixed at run time, 
so during execution vec is effectively a pointer constant, namely the fixed 
address &vec[O]. In spite of appearances, vec is not an lvalue; it cannot be 

changed or assigned to. Each of the vec[i] are int lvalues, though-otherwise 
the array would hardly be useful! When you initialize vec[100] you are set­
ting values in each vec[i], but the pointer vec is unchanged. Keep in mind 
that whether you initialize vec[100] or not, vec receives a real pointer value 
as a result of the declaration, and 200 bytes are definitely allocated. 

The pointer ip, on the other hand, is a variable awaiting some assignment 
before it becomes useful. Potentially, ip can address any byte in the system 
(subject only to the pointer constraints of the memory model in force). But 

immediately after the declaration, ip is not pointing anywhere in particular­
it may contain some (possibly legal) old garbage, or it may have a 0 (NULL) 

value, which is C's way of saying that ip is definitely not pointing at anything. 
If C meets the expression * ip, it tries to access the int at address ip. This 

attempt will be illegal if ip is NULL or outside the legal addressing range, and 

you will get a run-time error message. If ip holds residual rubbish, so will * ip, 
and you may not get any warning. A very high proportion of programming 
errors turn out to be due to misdirected pointers, and they are often quite 
difficult to trace. The lesson is clear: avoid using *ip until ip is assigned a valid 
address. How to do this will now be considered. 

~ Setting Pointers ~ 
There are two common ways of setting a useful address in a virgin pointer: 

dynamic memory allocation and assignment from an existing address. Let's 
look at each in turn. 



• COMPLEX DATA TYPES • 155 

.... Dynamic Memory Allocation 

You can dynamically allocate some contiguous memory, using calloc() or 

malloc( ). These library functions in ALLOC.H or STDLIB.H grab and clear 

(set to 0) the number of bytes requested, provided there is sufficient free 

memory in the heap. 

The heap is a section of RAM set aside for such allocations. In fact, the 

heap is what's left of your 640K when all the other memory demands, such 

as the OS, TSR (terminate and stay resident) programs and data, and the cur­

rent program code, data, and stack have been met. 
During execution there may be many malloc() and calloc() calls request­

ing memory for a variety of reasons. Allocations are made in multiples of 

16-byte paragraphs. They can sometimes fail because of fragmentation even 

if the total of free memory in the heap exceeds your request, so you should 
always check for success after each call. 

The key to malloc() and calloc() is thatthey return a generic pointer value 

that represents either the address of the first byte of the region allocated or 

NULL if the heap cannot meet the demand. By casting this returned value to 
type pointer to int, say, then testing for NULL and assigning it to ip, you have 

a definite target to point at-just as if you had declared an array of int, in fact. 

Using expressions such as ip[N] or *(ip + N), you can write and read the 

(N + 1)th integer in the allocated memory. Dare I stress that if you make N 
too large (plus or minus), you can recklessly intrude outside the allocated 

region with bizarre results? 
To free a malloc() or calloc() memory allocation and return it to the heap, 

you call the free( ) function using the original pointer as the argument: 

free(ip);. This ability to grab and return blocks of RAM of variable sizes dur­

ing a program explains the term dynamic memory allocation (in contrast to 

static memory allocations determined by the compiler/linker and main­

tained until the program exits). 

An example of malloc() in action follows: 

#include <stdio.h > 
#include <alloc.h > 
#include <stdlib.h > 
/* exit() and malloc() are in STDLIB.H. malloc() is also in ALLOC.H. 

calloc() is in ALLOC.H. puts() is in STDIO.H */ 

int *ip, ints_req = 100; 

ip = (int*) malloc(ints_req*sizeof(int)); 



156 ~ MASTERING TURBO C ~ 
CH. 5 

/*try to allocate 100*2 bytes in memory heap. A NULL (zero) pointer is 
returned if allocation fails, else a pointer to the allocated 
memory is returned *I 

/* malloc returns a generic 'pointer to void' so the (int*) is an essential 
type cast forcing malloc's pointer to be a 'pointer to int' before the 
assignment to ip *I 

if (ip = = NULL) { 
puts("lnsufficient memory for allocation!"); 
exit (1); 

/* exit (n) terminates the program, telling DOS the reason, e.g. exit (0) for 
normal termination, exit (1) for error type 1. *I 

} 

I* The same effect with calloc() would require: 

ip = (int *) calloc(ints_req,sizeof(int)); 
*/ 

I* now you can use ip as a valid pointer to a 100 int block *I 
I* Note that all 200 bytes are cleared to O *I 

This example introduces two new constructs briefly explained in the com­

ments: type casting of pointers, and the exit() function. For the moment, 

just note the general concepts and syntax-they will be covered in more 

detail later. 

The prototype declarations for malloc() and calloc() follow, together with 

those of two related memory-management functions: 

void *malloc(unsigned memsiz_chars); 
I* malloc returns a 'pointer to void' value. You have to type cast this to 

'pointer to T' before assignment, where T is the data type of the 
target block contents. Pre-ANSI systems use char *malloc( ), so 
watch for possible portability snags *I 

void *calloc(unsigned number_elements, 
unsigned element_size); 

/*as for malloc, except that two args are required. Their product gives the 
memory size allocated in bytes *I 

void free(void *Original_ptr); 
/* return the original malloc or calloc allocation to the heap*/ 

unsigned coreleft(void); I* or unsigned long *I 



.. COMPLEX DATA TYPES .. 157 

/* returns the number of unused memory units in the heap. 
Results and usage depend on the memory model in force *I 

void *realloc(void *original_ptr, unsigned newsize); 
/* used after malloc or calloc, realloc expands or shrinks the original 

block, copying the previous contents if possible. Returns a 
pointer to new block - this may be a different value from 
the original allocation* I 

I* There are far versions: farmalloc( ), farcalloc( ), farfree( ), 
farcoreleft() and farrealloc() for handling allocations 
over 64KB in the larger memory models with 32 - bit far 
pointers and a far heap. */ 

Now you can look at the second, more direct method of setting pointer 

values. 

~ Direct Pointer Assignment 
You can simply assign an existing, initialized, valid pointer to ip during or 

after its declaration as in 

intvec[100], *ip = vec; /*equivalent to ip = &vec[O) */ 
I* * ip and vec[O) now represent the same integer *I 

The assignment *ip = vec; can be rather puzzling at first sight. If this was a 

normal assignment statement rather than part of a declaration initializer, you 

would appear to be trying to assign a pointer value to the *ip (an int)! What, 

in fact, is happening is 

int vec[100); 
int *ip = vec; 

Written this way, you can take the second line to be equivalent to (int *)ip = 
vec, where (int *) plays the role of the type specifier, pointer to int. The 

assignment is now seen in its true light: ip = vec-you are assigning pointer 

to pointer. I'll have more to say on C's declaration syntax quite soon. 

~ Type Casting with Pointers 
The idea of (int *)as a type specifier has already cropped up as the type 

cast applied to the pointer (void *)returned by malloc( ). 



158 .,. MASTERING TURBO C .,. 
CH. 5 

Generally speaking, Turbo C will warn you without aborting if you try to 
assign ptr_to_T1 to ptr_to_T2where T1 and T2 are incompatible types. The 

onus is on the programmer to heed or ignore the warnings. The problems 
can be quite subtle, depending on the legal address boundaries for different 
data types. For example, ptr_to_char can legally take any odd or even num­
ber within the memory model limits, but more complex types may be con­

strained to byte addresses that are multiples of 2, 4, or 8. The safest course is 
to type cast the right-hand pointer. 

int *ip; 
char *cp; 

ip = (int *)cp; 
cp = (char *)ip; 

The malloc() and calloc() pointers to void must always be type cast before 

assignment as shown in the earlier examples. Similarly, when passing pointer 
arguments to a function, you must ensure that they match the pointer types 
in the function prototype. 

~. The Pointer Having Been Set... ~ 
Once you have assigned an address to ip, *ip will be interpreted as an int 

even if ip has been wrongly made to point at a float or double. Also, 
arithmetic on ip will be automatically based on sizeof(int) = 2, so (ip + 1} 

will advance the pointer by 2 bytes to point to the next integer (or whatever 
lies ahead!). Similarly, with pointer to double, once dp is given an address 
*dp will betaken as the 8 bytes at address dp, with bizarre results if these are 
not in fact in double-precision FP format. Also, --dp will predecrement dp 
by the sizeof(double), namely 8. All of which underlines the importance of 
getting the pointer type correct. 

~ Handles or Pointers to Pointers ~ 
The declaration int * *ih; means 

(int *) *ih; 

so * ih is a pointer to int. Therefore, ih is a pointer to a pointer to an int. 



~ COMPLEX DATA TYPES ~ 159 

* * ih represents an int, but before using it as such you now have to check 
that both ih and *ih are non-NULL. 

Multiple indirection like this can be extended to any depth (until RAM or 
paper or reason runneth out). 

It is often useful to have a master pointer or handle pointing to a table of 

pointers that, in turn, point to objects of interest. As the objects move about 
in memory, the table of pointers is updated, but access is guaranteed via the 
fixed handle. (The word handle has acquired other meanings in the com­
puter world, so take care. Some handles are simply integers or channel 
numbers, not pointers to pointers.) 

You'll shortly meet another application for * *ih as I pursue the relation­
ship between pointers and arrays. 

~ The Pointer as an Array ~ 
Now that you've seen the array as a pointer, you are ready for the obverse 

of the coin-the concept of the pointer as an array. Consider again the famil­
iar snippet 

char ch, *Cp, name[30] = "Borland"; 
/*a char, a pointer to char and an array of char*/ 

cp =name; 
ch = name[4]; 

I* same as cp = &name[ OJ *I 
/*ch now = 'a'*/ 

When you write ch = name[4), some internal pointer arithmetic is gener­
ated to evaluate the right-expression: 

name[4)-+ *(name + 4*sizeof(char))-+ *(name + 4)-+ 'a'-+ ch 

where name is the pointer &name[O) and -+ indicates the direction of the 
evaluation. The name pointer is advanced 4 bytes, then dereferenced to 
give the fifth character of "Borland". This process is a simple example of the 

storage mapping function that C uses to evaluate all array subscripts. Now 
the same result arises if you write 

ch = *(cp + 4*sizeof(char)); /*ch now = 'a'*/ 

since you have assigned cp = name. 



160 ~ MASTERING TURBO C ~ 
CH.5 

As you may guess from this, Callows you to treat the pointer cp as an array 

identifier and write 

ch = cp[4]; /* ch again = 'a' */ 
/* if you think this should be ch = *cp[4), reread the previous 

paragraph. Note that x[4) implies indirection on x after 
the pointer addition *I 

In other words, the notation x[i], whether xis considered an array of Tor a 

pointer to T, really means *(x + i*sizeof(T)). As always, the onus is on you, 
the programmer, to ensure that x and i are meaningfully defined. In the 
above example, name(31] and cp[69] may well return rubbish without 
complaint from memory locations beyond the region allocated to name. 

~ More Pointer Arithmetic ~ 
You've seen that 

ptr2_to_T = (ptr1_to_T + int_value); 

and 

ptr2_to_T = (ptr1_to_T - int_value); 

give new pointer values depending on the size of the underlying type, T. You 
may correctly guess from this that it is also legal and useful to subtract pointer 
values if they share the same underlying type. 

int_tvalue = ptr2_to_T - ptr1_to_T; 
/*assuming ptr2_to_T >= ptr1_to_T */ 

int_lvalue = ptr1_to_T - ptr2_to_T; 
/*assuming ptr1_to_T >= ptr2_to_T */ 

Provided that the noted inequalities hold, the difference between two com­
patible pointers represents the number of elements of type T (each of 
sizeof(T)) that lie between the pointers. Watch out for this potential stum­

bling block: If you picture the two pointers merely as byte addresses, you 
can be deceived into thinking that their "numeric" difference represents the 



~ COMPLEX DATA TYPES ~ 161 

number of bytes between them. Nothing could be further from the truth 
unless sizeof(T) is 1 byte! 

Adding and multiplying two pointers is not a fruitful exercise, so avoid it. 

~ Pointers to Functions ~ 
The pointer arithmetic covered so far does not apply to all pointer types. 

For example, Callows pointers to functions but these are excluded from the 
pointer arithmetic you've seen with arrays. A pointer to a function is best 
viewed as the address in memory where control jumps to when the function 
is called. Clearly, it makes no sense to add or subtract integers to such 
addresses, and, incidentally, it is illegal to apply sizeof() to a function. The 
main application of pointers to functions arises when you want to pass a 
function as an argument to another function-as with arrays, C achieves this 
with a pointer argument. 

~ Pointers-Near and Far ~ 
Pointer arithmetic with far pointers has some quirks that I'll cover in the 

next few sections. (You may wish to skip these first time round and proceed 
to the section entitled Arrays of Pointers and Pointers to Arrays.) 

Turbo Coffers three classes of pointers to cope with the vagaries of the 
8088/6 segmented addressing scheme. These are near (16-bit), far (32-bit), 
and huge (also 32-bit). 

The default classes of pointer you get when you write T *ptr_to_ T, 
(declare a pointer to data type T) depend on the prevailing memory model, 
which is tiny, small, medium, compact, large, or huge. These are selected 
from the Options/Compiler/Model subsubmenu in the IDE main menu. 

The default model is small, which automatically provides near pointers 
stored in 16 bits (sufficient to address 64KB of code and 64KB of data without 
overlap). All the example programs so far have assumed this small model 
default, so your pointer declarations were near by default. You could have 
used the addressing modifier near as follows: 

int near *ip; 
char near *ch_ptr; 

I* exp I icitly declare near pointers *I 

without affecting the pointers generated. 



162 ~ MASTERING TURBO C ~ 
CH. 5 

Regardless of the memory model in force, you are allowed (with due care) 
to override the default pointer class by using the modifiers near, far, or huge 
in the pointer declaration (and in certain function declarations also). The rea­
son you need to know something about these different pointer classes is that 
the pointer manipulations I have been discussing are radically affected. 

Appendix F gives a brief technical summary of the 8088/6 registers and ex­

plains why these three pointer variants and six memory models are needed. 

... The Four Segments 

The key point is that the 8088/6 uses four 16-bit registers, known as seg­
ment registers: CS (code segment), OS (data segment), SS (stack segment), 

and ES (extra segment). These registers hold the base addresses of their 
respective segments. Without further support, a 16-bit segment register 
could only access a 64KB address space, but the IBM PC can actually address 
1 megabyte via a 20-bit address bus. 

The trick works like this. Imagine the segment register shifted left by 4, giv­

ing a 20-bit value. The "shifted" register can be envisaged as addressing 
64KB distinct paragraphs of 16 bytes each. If the contents of a 16-bit offset 

register are added to the 20-bit segment address, the 8088/6 can now access 

any byte in the full 1-megabyte address space. (The address calculation, by 
the way, is done internally by the chip.) We often refer to the address 
segment:offset as a shorthand for the byte address (segment* 7 6) + offset. 

You are actually using 32 bits to obtain a 20-bit addressing space; the 

extra addressing capacity is lost because many different segment:offset pairs 
can represent the same byte address. For example, Table 5.1 shows seven­
teen valid representations of the same byte address. Obviously, before you 
start using conditionals like (ptr1 = = ptr2) or (ptr1 > = ptr2) you need to 
know exactly how your pointers relate to segment:offset pairs. Similarly, add­
ing integers to pointers can become problematical near segment bounda­

ries. Turbo C's memory models and pointer classes offer the most reason­
able solution short of switching to the linear addressing mode of the 80386 
(protected mode) or any of the Motorola M68000 family! 

... Small and Tiny Models 

The four segment registers can keep track of four (possibly overlapping) 
64KB segments, each of which must start on a paragraph (16-byte) bound­

ary. With the 16-bit near pointer you can consider, say, the OS register fixed 



Segment: Offset 

0000:0100 

0001:00FO 

0002:00EO 

0010:0000 

~ COMPl.EX DATA TYPES ~ 163 

Real Address 

0100 

0100 

0100 

0100 

... Table 5.1: Hex representations of a single byte address 

while the pointer supplies the offset, giving a 64KB upper limit to the pro­
gram's data. You can see that pointer arithmetic and comparisons are simpli­

fied with this arrangement: you manipulate only the 16-bit offset from 0000 
to FFFF (just like an unsigned int), and all is well provided you don't over­
flow. (Overflow will not affect the segment.) 

Likewise, if the CS register is fixed, a near pointer can cope with programs not 
exceeding 64KB of code. In fact, by restricting both code and data to 64KB each 
(without overlap), the default small memory model can operate with near 
pointers throughout. With the small model, three of the segment registers-OS, 
SS, and ES-all start at the same address, while the CS is set so that the code seg­
ment cannot clash with the common data/stack/extra segment. 

The tiny model also uses near pointers, but all four segment registers are 
given the same starting address-meaning that both code and data together 

cannot exceed 64KB. Programs within the tiny model limit have the advan­
tage that the .EXE code produced can be converted to the economical .COM 

version using the DOS utility EXE2BIN. 

.... The Larger Memory Models 

The other models vary in having far pointers for some or all of their seg­
ments, allowing either data or code, or both, to beat the 64KB barrier-,but 
the pointer arithmetic required is more complex. 

The far pointer is the default for all pointers in the large and huge models. 
In the intermediate models, you get the following mixed defaults: medium 

gives far for code, near for data; compact gives near for code, far for data. 
Table 5.2 summarizes the model-pointer defaults. 



164 .- MASTERING TURBO C .­
CH. 5 

Model 

Tiny 

Small 

Medium 

Compact 

Large 

Huge 

Data Segments 
pointer size 

near 

near 64KB 

far 1MB 

near 64KB 

far 1MB 

far 1MB 

Code Segment 
pointer size 

near 64KB (code and data) 

near 64KB 

near 64KB 

far 1MB 

far 1MB 

far 1MB 

... Table 5.2: Memory models and default pointer classes 

~ The far Pointer 
The 32-bit far pointer contains both the segment:offset values, but because of 

the address ambiguities mentioned above, the test if (far_ptr1 = = far_ptr2) 
may fail even when the same effective address is being compared, e.g., 

0000:0100 does not equal 0001 :OOFO, although both represent address 0100. 

The = = and ! = = operators are applied to the 32-bit segment:offset as 

though it were an unsigned long. The reason for testing all 32 bits for equal­

ity and inequality stems from the essential need to correctly compare 

pointers with NULL, the pointer represented as 0000:0000. As you have 

seen, non-NULL addresses may well have their offsets zero. 

On the other hand, far-pointer arithmetic and the comparisons >, > =, 
<,and <= are applied only to the offsets. If you add or subtract too much to 

a far pointer, then, you simply overflow the offset without affecting the seg­

ment: (OOOO:FFFF + 2) will give you 0000:0001 with possibly unfortunate 

results and no forewarning! 

~ The huge Pointer 
The huge pointer comes to the rescue! Although stored as segment:offset in 

32-bits like far, the huge pointers are automatically normalized to allow safe 

comparisons and arithmetic. The secret is to convert each segment:offset in 

such a way that the offset lies in the range 0 to F (hex, of course). If you followed 

the derivation of a real address from a segment:offset pair, you will see that for 

each real address there can be only one normalized segment:offset. For 



~ COMPLEX DATA TYPES ~ 165 

example, real address 100 is uniquely normalized as 0100:0000 because none 
of the other pairs has an offset between 0 and F. 

When you increment a huge pointer offset past a 16-byte paragraph, it is 
automatically renormalized, updating the segment part. You can now safely 
move your pointers around data structures exceeding 64KB. Likewise, com­
parisons are applied to the full 32-bits, giving a true test of equality, inequality, 
and relative size. 

I leave you to verify that arithmetic on huge pointers is well behaved. You can 

safely compare if (huge_ptr1 > = huge_ptr2) and so on, without worrying 
about segments and offsets. But as you can imagine, the price paid for this ease 
of pointer manipulation is some CPU overhead for the normalizations. 

Note the default pointer is far even in the huge model, so you always have 
to ask for huge pointers if you want them as in 

int huge *ip; /* ip is a huge pointer to int */ 

... Modules and the 64KB Limit 
You should keep in mind that the larger memory models can only beat 

the 64KB total code and data limits when you break your programs into 

suitable modules or source files. Regardless of memory model, each 
compilable module is limited to one code segment and one data segment. 
By definition, these are each limited to 64KB. However, if you divide a big 
program into smaller source files, compile them separately, and then link 
them, you can have many distinct segments. What the larger models with 

32-bit pointers allow is the resetting of CS and DS so that these separate 64KB 
segments can be accessed from anywhere in the program. 

I now return to the pleasant world of small models and nice, normal, near 
pointers . 

..,. ARRAYS OF POINTERS 
AND POINTERS TO ARRAYS ..,. 

The base type of an array can be any type, excluding void and functions. 
When the base type is a pointer, some interesting situations arise. An array of 
pointers is declared as follows: 

char *ptr[30); /* ptr[O) ... ptr[29) are pointers to char*/ 



166 ~ MASTERING TURBO C ~ 
CH. 5 

The C syntax for such declarations is rather opaque compared with, say, 

Modula-2's 

ptr: ARRAY[0 .. 29] OF POINTER TO CHAR; 
(*or more legibly, with intermediate types: 

PointerToChar = POINTER TO CHAR; 
ArrayOfPointers = ARRAY[0 .. 29] OF PointerToChar; 
ptr: ArrayOfPointers; *) 

In C, the type of ptr is indicated "indirectly" by a declarator showing 

how ptr is used preceded by a type specifier showing the data type being 

pointed at. As you saw earlier with int *ip, you can look on char *ptr[30] 

as (char *)ptr[30], which stresses the fact that ptr[30] is an array with base 

type (char *), namely pointer to char. To get a better feel for C declarators, 

compare the following declarations: 

intx; I* x is an int *I 

int *X; I* x is pointer to int - *X indicates usage *I 

int x[20]; /*xis an array of 20 ints */ 
int x[ ]; I* x is an open array of ints *I 

/*the number of elements is left 'open' - used in prototype declarations 
of formal arguments *I 

int *X[ ]; /*xis an array of pointers to ints */ 
/*above could be written int *(x[]) but []is higher precedence 

than '*' so parentheses are optional *I 

int (*x)[ ]; /*xis a pointer to an array of ints */ 
/*these parentheses are essential - see next paragraph*/ 

int x( ); I* x is a function returning an int *I 

int *x( ); I* x is a function returning a pointer to an int *I 
/*above could be written (int *)(x( )), but the function call ()is 

higher precedence than'*' so extra parentheses are optional */ 

int (*x)( ); /*xis a pointer to a function returning an int*/ 
I* The parentheses ( *x) are essential here *I 

int (*x[ ])( ); /*xis an array of pointers to functions returning ints */ 

Not all of these declarations will be of immediate significance; they are 

listed together to indicate the variety of declarators allowed in C. The two 



• COMPLEX DATA TYPES • 167 

declarations I will concentrate on are those for arrays of pointers and 
pointers to arrays. 

Returning to the declaration 

char *ptr[30]; /* ptr[O] ... ptr[29] are pointers to char *I 

note first that the precedence of the array brackets is higher (category 1) than 
that of the indirection operator (category 2), so char *ptr[30] is taken as 
(char *){ptr[30]), whence ptr is an array of pointers to char. 

Each variable ptr[i] is a pointer to char, but remember that the declaration 
simply allocates space for 30 pointers-they cannot be used until useful 
addresses have been assigned to them. 

char name[25] = "Borland"; 
char *ptr[30]; /* array of pointers to char *I 
ptr[3) = name; /*or = &name[O) */ 

I* ptr[3) can now be used - the other ptr[i) not yet defined *I 

/*or using malloc: */ 
for (i = O; i < 30; i + +) { 

} 

ptr[i) = (char *) malloc(25*sizeof(char)); 
if (ptr[i] == NULL) exit (1); 

/*give each ptr[i) 25 chars (bytes) to point at*/ 

A common use for arrays of pointers is storing a set of variable-length mes­

sages. Rather than waste space using fixed-length arrays of characters to 
match the longest string, the array of pointers approach allows each string to 

be just as long as needed. The following snippet illustrates this: 

char *err_ptr[] = { 
/* O */ "All's Well!", 
/* 1 */ "Insufficient Memory", 
I* 2 *I "Drive A not Fitted" , 
/* 3 */ "Power Off", 
/* 4 */ "Wrong Version", 
/* 5 */ "Read the Manual"}; 

/*the declaration could have been written char *err_ptr[6), but 
the [ ) notation is sufficient, and allows future addition 



168 ~ MASTERING TURBO C ~ 
CH. 5 

of more error messages. The array will be set to [n] if 
you supply n string constant initializers. *I 

int err_code = O; 

I* some event here may set err_ code *I 

if (err_code < 0 : : err_code > 5) { 
puts("\n\tUnknown Error Code\n"); 
exit(9); } 

else { puts(err_ptr[err_code]); 
exit(err_code); } 

Each err_ptr[i] receives the address of the start of a particular string con­
stant, and this is exactly the type of argument that puts() expects. The final 
ASCII NUL for each string is quietly supplied by the compiler when the string 
constants are stored. To perform more complex operations that depend on 
the value of err_code, the case ... switch construct would be a natural 
choice. For simple string selection, as illustrated above, the array of pointers 
to char is ideal. 

~ Pointers to Arrays ~ 
Next, contrast char *(ptr[30]), an array of pointers, with 

char (*ptr_a)(30]; /* pointer to array of char *I 

The parentheses here dictate that ptr_a is a pointer to an array of 30 chars, 
not ever to be confused with an array of 30 pointers to char! 

Once ptr_a has been properly initialized, you can dereference it with 
{*ptr_a) to give you an array of 30 characters. Then you can access individ­

ual chars with(* ptr_a)[O], (* ptr_a)[1 ], and so on. Since the array is really a 
pointer to char, the real nature of ptr_a is "pointer to pointer to char." This 
explains the assignment ptr_a = &name in the following snippet illustrating 
the differences between arrays of pointers and pointers to arrays: 

char name(30] = "Borland"; /*initialize an array of 30 chars*/ 
I* name(O) = 'B'; name(1] = 'o',. . ., name(?] = '\O' final NUL *I 
/*The identifier name is interpreted as &name(O], a pointer*/ 
/*to the first char of name[] */ 



char *ptr_c; 
char *(a_ptr[30]); 
char (*ptr_a)[30]; 
char **cpp; 

.,. COMPLEX DATA TYPES .,. 169 

I* pointer to a char *I 
I* array of 30 pointers *I 
I* pointer to array of 30 chars *I 
I* pointer to pointer of char *I 

ptr_c = name; /*set pointer to start of name[30] */ 
a_ptr[O] = ptr_c; /*set first pointer of array*/ 
cpp = &ptr_c; /* bothsidesare'ptrtoptrtochar' */ 
ptr _a = &name; I* both sides are 'ptr to array' *I 

/* NOT ptr_a = &name[O] since right-hand is only 'ptr to char' *I 

ch = (*ptr_a)(O]; /*ch now = "8" */ 
/*since name is array of 30 char, &name is ptr to array of 30 char, just like 

ptr_a. (*ptr_a)[O] is same as name[O] */ 

puts( name); 
puts(ptr_c); 
puts(a_ptr[O]); 
puts(*ptr_a); 
puts( *cpp); 

/*all five statements will display Borland*/ 

ptr_c ++; /*advance ptr_c by 1 byte*/ 
cpp + + ; I* advance cpp by 2 or 4 bytes 

depending on pointer size *I 
ptr_a++; /*advance ptr_a by 30 bytes! */ 

I* Note that ptr _ T + + increments ptr _ T by sizeof(T) *I 

Until you hit the last three statements and comments, you may have been 
lulled into thinking that ptr_c, cpp, and ptr_a were pretty much the same 
kind of beast! They do happen to get you to the "Borland" string in their 
own fashion, but their underlying data types are different. 

ptr_c is a pointer to char, sizeof(*ptr_c) = 1 
cpp is a pointer to (char *), sizeof(*cpp) = 2 or 4 
ptr_a is a pointer to array of char, sizeof(*ptr_a) = 30 

The implications should be digested before proceeding . 

..,. MULTIDIMENSIONAL ARRAYS ..,. 
You have seen the array base type as simple (char, int, and so on) and 

as "pointer to simple." The next step is to see that the base type of an array 



170 • MASTERING TURBO C .,. 
CH.5 

can itself be an array. The array of arrays provides the basic mechanism 

for handling multidimensional data. For example, you can declare a two­

dimensional matrix by writing 

int mat[4][3]; I* mat is a 4 x 3 matrix of integers *I 

Each of the twelve elements of mat[4][3] can be referenced via the int vari­

ables mat[ i J[j] where the row subscript i ranges from 0 to 3, and the column 
subscript j ranges from 0 to 2 . 

.... Matrices in Action .... 
Nested for loops are commonly used for processes that need to access all 

the elements of a matrix, for example 

int max, row, col, sum, mat[4][3); 

I* program here sets the values for mat[ i )[j) *I 

max = mat[O)[O]; 
for (row = 0, sum = O; row< 4; row~+) 

for (col = O; col < 3; col++) { 

} 

if (mat[row][col] > max) max = mat[row][col]; 
sum += mat(row,col); 

/*find max element and get total of all 12 elements*/ 

Exactly how the elements of mat[4][3] are stored in RAM is rarely of inter­

est to the programmer-you just set up the subscripts and use mat[i][j] like 

any other int variable. In fact, C stores multidimensional arrays in row­
co/umn sequence as follows, with mat[O][O] at the lowest memory location: 

mat[OJ[O), mat [0)[1), mat [0)[2), mat[0)[3] 
mat[1)[0), mat [1)[1), mat [1][2), mat[1][3) 
mat[2][0], mat [2][1], mat [2][2], mat[2)[3) 

Occasionally, you can make use of this fact, by treating mat[4)[3] as a linear 

array of 12 elements. 



.- COMPLEX DATA TYPES .- 171 

int mat[4][3], *pm, i; 
pm = &mat[O][O]; I* point to first row, first col *I 
pm(1] = O; /* mat[0][1] now zero*/ 
i = pm(2]; /* i now = mat[0][2] */ 

/*You can now use a single, faster 'for' loop to initialize the elements 
of mat[4][3] *I 

for (i = O; i < 12, i + +) 
pm[i] = O; 

You can also initialize a matrix during its declaration as in: 

int mat[4][3) = { {11, 10, 9}, 
{ 8, 7, 6}, 
{5, 4,3}, 
{ 2, 1,0} }; 

This sets mat(O][O] to 11, mat[0][1] to 10, and so on. If you omit the [4][3] 
ranges by writing [ ][ ], C will set the ranges for you according to the initializer 

list. 

As with single array initialization, the number of initializers may be less than 

the stated number of elements-if so, the unassigned elements are set to 0. Hav­

ing too many initializers will trigger an error message. Note how the curly 

braces are used to group the rows and columns of the initializer matrix. 

~ Dimensions Unlimited ~ 
Higher dimensional arrays are defined by a simple extension of the above 

scheme. 

float galactic_temp[100][100][100]; 
/*the temperature measured at each of the 1,000,000 cartesian test 

points (x,y,z) in the galaxy *I 

unsigned int hits(10][24][30][24][100]; 
I* the number of hits in season O - 9, for club O - 23, by player O - 29, 

at stadium O - 23, against pitcher O - 99 *I 

Before declaring such arrays, you should make sure that you have enough 

RAM (for example, 34MB for the baseball database!). In fact, when you study 



172 • MASTERING TURBO C • 
CH. 5 

disk file 1/0 in Chapter 8, you'll see that there are more practical ways of 
handling large amounts of data . 

..... Multidimensional 
Arrays as function Arguments ..... 

As with simple arrays, you can pass multidimensional array arguments to 

functions by passing a base pointer to the first element. However, to permit 
the compiler to compute element addresses, you must supply additional 
information in the formal argument definition. In VECSUM.C, intvecsum() 
was declared as 

long intvecsum(unsigned Jong n, int int_array[ ]); 

which allowed any size of array to be passed. But if you want a function to 
operate on matrices, you cannot get away with 

long intmatsum(unsigned Jong n, int int_mat( ]( ]); /*NO*/ 

It is necessary to specify the second dimension range, for example, 

long int3matsum(unsigned long n, int int_mat( ][3]); /*OK*/ 

This would allow you to pass any [x][3] matrix to a suitably coded function. 
Similarly, for a 3-dimensional array, you need to spell out the second and 
third dimension bounds, for example, [ ][4][5]. The first dimension range can 
vary in the actual array argument, but subsequent dimension ranges must be 
fixed and matched in both actual and formal arguments. There are several 
ways around this restriction-using int * ptr arguments for the start of the 
array and passing the array bounds as separate arguments. I will not pursue 
them here. Rather, I want to quickly cover enumerations, one of the remain­
ing data types that Coffers. I'll give you the flavor with some example pro­
grams and defer the formal definition until later . 

..,.. f NUMERATIONS ..,.. 
The basic idea behind enumerations is to increase source code legibil­

ity by providing mnemonic identifiers for small classes of related objects, 



• COMPLEX DATA TYPES • 173 

for example, 

enum days { mon, tue, wed, thu, fri, sat, sun } 
today, holiday; 

/*declare a new enumeration type: 'enum days' and also declare two 
variables of type 'enum days' viz. today and holiday*/ 

enum days workday; 
/*later, declare another variable, workday, as type 'enum days'*/ 

You can now assign any of the enumerated values, mon, tue, and so on, to 

variables of enum type days. 

today = tue; 
holiday = sun; 

You can now test and compare values and/or variables in many obvious ways. 

if (holiday = = wed) 
puts("Wednesday is a holiday"); 

if (sun > sat) 
puts("Sunday follows Saturday"); 

Notice first that the values mon, tue, ... , sun resulting from the above decla­

ration are treated internally as int constants 0 to 6, the values being assigned 

in the sequence entered. You are allowed to vary this natural assignment at 

the time of declaration, but the values are fixed thereafter. 

en um days { mon = 1, tue = 2, wed = 3, thu = 4, fri = 5, sat = 6, 
sun = O} deadline, freeday; 

Once they are declared and given integer values, the enumerated value iden­

tifiers are not !values, so you cannot assign values to them later in the program. 

The variables of enum type days can be also be considered as internally taking 

any of the declared int values, so with the previous declaration you could write 

either deadline = 1 or deadline = mon with the same result. However, the 

whole point of enumeration types is to increase legibility. 

long total_expenses = 0, expenses[?]; 
enum days { mon, tue, wed, thu, fri, sat, sun } 

today, special; 
special = sun; 

/*set the expenses here for each day*/ 



174 .,. MASTERING TURBO C .,. 
CH. 5 

I* now total them for whole week *I 
for (today = mon; today <= sun; today++) { 

if (today = = special) 
expenses[today] *= 2; /*up a notch!*/ 

total_expenses += expenses[today]; 

printf("\n\tTotal expenses for week = 
O/old\n",total_expenses); 

Other popular enumerations are the names of months, the graphics 
modes and colors of your monitor, file error states, and so on. The original 
K&R C did not offer enumeration types-they were added later to "keep up 
with the Wirths." You still find C programs that use the #define method of 
creating mnemonics, i.e., 

#define MON 1 
#define TUE 2 

where an enumeration would offer more flexibility. The above #define does 
not create a data type, which would allow dedicated days type variables, 
but simply replaces occurrences of MON with the constant 1. Without 
enum, your day variables would be int or perhaps unsigned char. It is 
largely a matter of personal taste and style. 

~ Enumeration Tags ~ 
In the declaration 

enum days { mon, tue, wed, thu, fri, sat, sun } today, holiday; 

the identifier days is known as the enumeration tag-a word that will crop 
up again when you meet structures and unions. The tag turns out to be 
optional. If today and holiday are the only enum variables you'll ever need 
to declare, there is no strict need to declare a tag. 

enum { mon, tue, wed, thu, fri, sat, sun } 
today, holiday; 

/*no tag, so all vars must be listed here*/ 



~ COMPLEX DATA TYPES ~ 175 

In this case, you could not declare further variables later in the program 
because enum tag var1, var2 is required. Tag names and enumeration value 
identifiers follow the same rules as normal variable identifiers regarding 
duplications. They need only be unique within their scope . 

...,. TYPE DEFINITION 
AND CONDITIONAL COMPILATION ...,. 

I'll conclude this chapter with a brief look at two related topics: typedef, 
the useful type definition facility for creating your own names for data types, 
and conditional compilation operators. Both facilities can increase the porta­
bility of your programs. 

..... The typedef Mechanism ..... 
Consider the declarations 

unsigned char ch; /*ch is a variable */ 
typedef unsigned char BYTE; I* BYTE is a data type *I 

The presence of the keyword typedef alters the interpretation of the follow­
ing declaration. The identifier BYTE is not a variable like ch, but rather a 

synonym for the type specifier unsigned char. In subsequent lines you can 
write, for example, 

BYTE flag, marker; /*declare two vars of type BYTE */ 
BYTE *byte_ptr; /* declare a pointer to BYTE *I 
byte_ptr = (BYTE *)malloc(n *sizeof(BYTE)); 

I* type cast (void *) to pointer to BYTE *I 

with exactly the same effect as writing 

unsigned char flag, marker; 
unsigned char *byte_ptr; 
byte_ptr = 

(unsigned char *)malloc(n*sizeof(unsigned char)); 

The use of uppercase letters for the data-type synonym is not mandatory, but 

it does improve legibility. 



176 ,... MASTERING TURBO C ,... 
CH. 5 

Note that typedef cannot create new data types; it simply adds new names 
as aliases for existing types. With the simple examples shown so far, I could 
have used the #define directive as in 

#define BYTE unsigned char 

which, you'll recall from Chapter 1, causes the preprocessor to replace all 
occurrences of BYTE with unsigned char. typedef, on the other hand, is a 
compile-time construct, so BYTE actually joins the "list" of data types. This 
difference shows up when you use typedef with more complex declarations 
beyond the scope of simple textual substitutions. 

typedef char *STRING; 
typedef double (*PTR_FUNC_D)( ); 

Here we have created a mnemonic synonym, STRING, for the type pointer 

to char. The second line gives us the single data type name PTR_FUNC_D 
for the type "pointer to function returning double." The new names greatly 
simplify declarations. Rather than write 

char *menu_heading, *buffer; 
double (*func_p1)(char *), (*func_p2)(unsigned char), (*array_fp[10])( ); 

you can use the more intuitive declarations 

STRING menu_heading, buffer; 
PTR_FUNC_D func_p1(STRING), func_p2(BYTE), array_fp[10]; 

Here, func_p1 is a pointer to a function taking a "pointer to char" as an argu­
ment and returning a double. func_p2 is a pointer to a function taking an 
unsigned char as an argument and returning a double. In the final example, 
you have an array of ten pointers to functions (with unspecified arguments), 
each returning a double. The typedef version eases the undoubted pain of deci­

phering complicated declarators like (*array_fp(10])( )-and you can readily 
concoct even worse cases. If the data type calls for additional modifiers such as 
far, the source text clutter can be reduced even more. 



.,. COMPLEX DATA TYPES .,. 177 

~ Portability and typedef 

In addition to simplifying complex declarations, typedef is a wonderful aid 

in improving portability. Suppose you have a Motorola M68000-based C 

program using many 32-bit int variables. (Recall that C mandates only the 

relative sizes of short, int, and long.) Moving this program unchanged to 

Turbo C, where int is 16-bit, could prove hazardous. You might be reduced 

to replacing several hundred int declarations with long to preserve the pro­

gram's precision and prevent overflow. It is therefore common practice to 

start programs with some typedefs (or tuck them in a header file). In a pro­

gram with 

typdef int M_INT; 
typedef long M_LONG; 
typedef short M_SHORT; 

all ints would be declared as M_INT i, j, k;, while pointers to int would be: 

M_INT *ip, *iq;, and so on. Porting is now simplified by changing some or 

all of these three type definitions to match the target system: 

typedef long M_INT; 

All the M_INT declarations would be magically transformed from int to 

long, as would any type casts you may have used. 

M_INT *ip; 
char *cp; 
ip = (M_INT *)cp; 

I* cast cp from "pointer to char" to "pointer M_INT" *I 

Of course, there may be other tweaks required. Each C implementation has 

its private quirks, pace the ANSI committees. Even within a complex pack­

age like Turbo C, there are options that might require subtle changes in the 

source code. For example, running a program in a different memory model 

might call for different pointer declarations. C offers a flexible mechanism 

called conditional compilation that allows you to write one version of your 

source code that can respond to different situations. 



178 .,.. MASTERING TURBO C .,.. 
CH. 5 

..... Conditional Compilation Commands ..... 
Coffers several preprocessor conditional commands that can help to auto­

mate the changes mentioned in the previous section. The compiler can be 

made to conditionally bypass any portion of the source code by using #if, 
#else, #elif, #endif, #ifdef, or #ifndef. 

These directives work rather like the familiar if...else if...else conditional 
statements, but there are important differences. In the following schema, the 
process-sections can represent any sequence of source code, including other 
preprocessor lines. They need not be statements or blocks as with if ... else 
if...else (although they usually are). 

#if constant-expression-1 
process-section-1 

[#elif constant-expression-2 
process-section-2] 

[#elif ... 
... ] 

[#else 
process-section-n) 

#end if 
normal-compilation-section 

As might be obvious from the layout, you are telling the preprocessor to 
bypass process-section-1 if constant-expression-1 evaluates to zero 
(false)-in which case, each optional #elif (note the spelling) is evaluated in 
turn until a nonzero (true) expression is encountered or the optional #else is 

reached. Once a "true" section is processed, "control" passes to the #endif 
line and normal preprocessing resumes. The net result is that only one of the 
sections will be processed and the rest will be ignored. The impact of all this 

is that the preprocessor passes on to the compiler only those sections of your 
source code that meet your various #if...#elif...#else conditions. You can 
spread these tests all over your source text, and they can be nested just like 
normal program conditionals. When nesting, you need a matching #endif 
for each #if loop. Since the process-sections are quite arbitrary (not neces­
sarily block structured with {}),the #endif is an essential sign to the prepro­
cessor that the matching #if condition is ended. 

#if x 
section - x - true 

#ify 
section - x - true - y- true 



#else 
section - x - true - y- false 

#end if 
/*ends if y */ 
#else 

section - x - false 
#end if 
/*ends if x */ 

~ COMPLEX DATA TYPES ~ 179 

The #if ... #endif sequence cannot straddle different files. You cannot, for 

instance, pull in parts of the sequence from #include files. 

~ The #if ... #elif Constant Expression 

The various constant expressions shown in the #if ... #elif tests must obvi­

ously consist of constants or calculable combinations of constants that evalu­

ate to zero or nonzero integer-compatible values. To form such expressions, 

you can use any or all of the following binary operators: 

*I% + - << >> == != < <= > >= & ~ : && :: 

together with the unary operators 

- - ! 

and the ternary, conditional operator 

x? y: z 

Turbo C also allows the use of sizeof( ), although this is not required by the 

ANSI C standards and risks portability. 

#if (sizeof(int) == 4) 
typedef int M_INT; 

I* any other 32-bit int code here *I 
#elif (sizeof(int) == 2 && sizeof(long) == 4) 

typedef long M_INT; 
I* any other 16-bit int code here *I 
#else 

call - for - help - here! 
#endif 



180 • MASTERING TURBO C • 
CH. 5 

.... The #ifdef and #ifndef Directives 

The ifdef (if defined) and ifndef (if not defined) test whether an identifier 
has been previously defined as a preprocessor macro name. #ifdef name is 
exactly the same as #if 1 (true) provided that name is already known to the 
preprocessor from some earlier, current #define name xxxx directive. If 
name is not currently defined then #ifdef name is treated exactly like #if 0 
(false). Because of this translation, #ifdef can be used with #elif and #else, 
and it must be terminated with a matching #endif. 

#ifndef works the other way round: If name is currently undefined then 
#ifndef name behaves like #if 1 (true). If name is defined then #ifndef name 
is the same as #if 0 (false). 

.... The defined Operator 

You can also use the new ANSI C keyword defined as follows: 

#if defined name 
compile - if- name - defined 

#else 
compile - if- name - undefined 

#endif 

where defined name evaluates to 1 (true) if name is currently defined, oth­
erwise it evaluates to O (false). 

At first sight, if defined seems to be a superfluous duplication of the #ifdef 
directive. However, you can combine Boolean expressions with defined 
name in ways not possile with #ifdef and #ifndef. 

#if defined name : : defined(tag) : : defined title 
section - if - either - name - or - tag - or - title - defined 

#elif defined unix && defined !msdos 
section - if- unix - defined -AND - msdos - NOT - defined 

#endif 

The optional parentheses shown around tag are for legibility only-they are 
not part of the macro name. You can mix defined name with other Boolean 

expressions as in 

#if defined(tag) && (sizeof(int) = = 4)) 
compile - this - section 

#endif 



• COMPLEX DATA TYPES • 181 

~ The #undef Directive ~ 
To add to the merriment, you can undefine any macro (whether previ­

ously defined or not) by using the directive undef name. You are free to 
redefine name later if you so desire. Undefining an undefined name, by the 
by, is pointless but legal. 

You must distinguish carefully between an undefined macro name and an 

empty macro name. For example, 

#define name xxxx 
#undef name 
#ifdef name 

this - section - bypassed 
#end if 
#ifndef name 

this - section - compiled 
#end if 
#define name 
#ifdef name 

this - section - is - processed 
#end if 
#ifndef name 

this - section - bypassed 
#end if 

At this point, name is defined but empty (not to be confused with ASCII NUL 
or pointer NULL). Any subsequent occurrence of name will be ignored 
(replaced by nothing at all): 

#define name "Stan" 
puts( name); 

#undefine name 
puts( name); 

#define name 
puts(name); 

/*display "Stan" and new line*/ 

I* error - undefined identifier *I 

I* puts() will display a new line *I 

~ Conditional Compilation in Action ~ 
You may be wondering what you can do with all this defining, undefining, 

and testing for defined macros. Here are some practical examples. 



182 ~ MASTERING TURBO C ~ 
CH. 5 

... Default Macro Values 

When you have a large collection of .H include files together with #defines 
scattered around your program files (modules), which macro names are 

defined or what values have been assigned to them often may be uncertain. 
The actual order in which include files are #include' d can clearly be signifi­
cant. Some discipline is called for. A typical plan may use a special include 
file called LOCAL.Hor DEFAULT.H with lines, such as 

#ifndef BUFF _SIZE 
#define BUFF _SIZE 512 
#end if 

The idea here is that if no earlier .H file has defined BUFF _SIZE then the 
default value of 512 is supplied. If any earlier definition is current the above 
#define is safely ignored. This widely used example illustrates the important 
point that conditional compilation should more correctly be called "condi­

tional preprocessing and/or conditional compilation." If you browse around 
the Turbo C .H files, you will meet many instructive applications of the condi­
tional directives. 

... Commenting Out the Comments 
Another simple application is to "comment out" a whole section of source 

code that may already include comments. Since you cannot normally nest 
comments in C, you cannot simply surround arbitrary sections of code with 

/* and *I. (Turbo Coffers a nested-comment option but this is not portable.) 
The following snippet illustrates the problem in trying to comment-out two 
lines that include a comment: 

/* 
/* messages.c */ 

printf("hello, world!\n"); *I 
printf("how are you?\n"); 

The first *I pair terminates the attempt prematurely. Now look at this solution: 

#if 0 
/* messages.c */ 

printf("hello, world!\n"); 
#endif 

printf("how are you?\n"); 



.,.. COMPl.EX DATA TYPES .,.. 183 

I deliberately entered a false expression so that everything between #if 0 and 
#endif will be ignored by the compiler. 

.... Optional Debugging Aids 
A similar ploy can be used when you have optional sections of code to dis­

play debugging data during program development. Once the program is 
running well, you want to suspend these displays but keep the debugging 
code around just in case! 

#define DEBUG 1 
/* change this to Oto suspend debugging code *I 

#if DEBUG 
printf("ptr1 = O/op, name = %s\n",ptr1 ,name); 

#end if 

.... Setting Macros Externally 

In fact, you could switch debugging on and off without touching the 
source code. Both TC.EXE (the integrated development compiler) and 

TCC.EXE (the command-line compiler) allow you to define macro names 
and optionally pass their values to your program at compile time. With 
TC.EXE you select Defines in the Options menu and type 

DEBUG= 1 

or 

DEBUG= 0 

With this strategy, your program would not heed a #define DEBUG 

directive-you would just retain the if DEBUG test. 
Multiple defines are separated with semicolons, and equated values are 

optional. 

DEBUG = 1; STAN_ TEST; VERSION = 1.5 

Here, #ifdef STAN_ TEST would return true even though no value has been 

assigned. 



184 .,. MASTERING TURBO C .,. 
CH. 5 

With TCC.EXE you can include a - Dname or - Dname =value switch to 

the command line that invokes the compiler: 

tee - DDEBUG = 1 myprog 

.... Selecting Pascal and C Function Declarations 
For a more exciting application of conditional compilation, here is an 

extract from the Turbo C header file, ALLOC.H. 

#ifdef __ STDC __ 
#define _Cdeel 
#else 
#define _Cdeel edeel 

void *Cdeel ealloe(unsigned nitems, unsigned size); 

#ifdefinedL_COMPACT) :: definedL_LARGE) :: definedL_HUGE _ _J 
unsigned long _Cdeel eoreleft(void); 
#else 
unsigned _Cdecl coreleft(void); 
#end if 

To understand what is going on here, you need to know that Turbo C 

allows you to compile and run C programs in Pascal mode and that you can 
link in program modules written in Pascal. Pascal functions pass their argu­

ments in a manner diametrically opposite to C's argument-passing conven­

tion. When you invoke Pascal mode (via the Code Generation submenu of 
the Options menu or the - p switch with TCC.EXE), the Pascal conventions 
will apply to all functions unless you explicitly override with the cdecl modi­

fier. The declarations 

int cdecl func1 (arg1 ,arg2); 
void func2(arg3,arg4); 

tell Turbo C that func1 ()must be treated as a C function, regardless of Pascal 

mode, whereas func2() can betreated as Pascal or C depending on the mode in 

force. 

There are other differences between C and Pascal, such as the naming and 

case-sensitivity of variables, which need not detain us here. Suffice it to know 

that variables can be declared with the modifiers pascal or cdecl to warn 



.,. COMPLEX DATA TYPES .,. 185 

the compiler of your intentions. If you are wondering why anyone would 
want to run in Pascal mode, it turns out that in some situations Pascal func­

tions run faster (though they are restricted to a fixed number of arguments as 
a result of the left-to-right passing convention). 

Most of the standard library functions need the cdecl modifier so that they 
can link with your program correctly in Pascal mode. With this background, 

look again at the ALLOC.H extract. 

#ifdef __ STDC __ 
#define _Cdecl 
#else 
#define _Cdecl cdecl 

When you are running in normal, standard C mode (the default), the macro 
name __ STDC __ is defined to the compiler, so the macro name _Cdecl is 

defined as empty. 
In Pascal mode, _Cdecl is defined as the modifier cdecl. You can now see 

that two different declarations of calloc() are generated depending on the 
mode selected. 

void * calloc(unsigned nitems, unsigned size); 
I* standard C mode *I 

void *cdecl calloc(unsigned nitems, unsigned size); 
I* Pascal mode *I 

In the declaration of coreleft( ), a further consideration arises. Depending 
on the memory model in force, we want coreleft( ) to return either an 
unsigned int or an unsigned long int. A Boolean expression using #if 
defined does this selection automatically. 

#if definedL_COMPACT _ _J :: definedL_LARGE _ _J :: 
definedL _HUGE _ _J 

unsigned long _Cdecl coreleft(void); 
#else 
unsigned _Cdecl coreleft(void); 
#end if 

The macro name __ COMPACT __ , for example, is defined automatically 

by the compiler only if the compact model is selected. Note also that _Cdecl 
is still there to protect you in Pascal mode. 



186 .. MASTERING TURBO C .. 
CH. 5 

..,.. SUMMARY OF CHAPTER 5 ..,.. 
Here are the key points covered in Chapter 5. 

..... The array int vec[1 O] consists of ten int elements vec[O] to vec[9]. The 
identifier vec is the base pointer &vec[O] . 

..... A function can take an open array, vec[], as a dummy argument without 
prior knowledge of the size of the real array argument used in the func­
tion call. Arrays are passed to functions via their base pointers . 

..... sizeof(array_ T} gives the total number of bytes in the array, while 
(sizeof( array_ T}/sizeof(T)) gives the tota I number of elements of type T 
in array_T . 

..... The declarations int vec[10]; and int *ip; both create integer pointers, 
vec and ip. However, the constant pointer vec points to a definite, fixed 
memory location, whereas the variable pointer ip points "nowhere," 
and *ip cannot be used until ip is initialized. · 

..... You can initialize a pointer using the dynamic memory allocation functions 
malloc(mem_size) and calloc(elem_number, elem_size). 
Before assignment, you must type cast the generic (void *) pointers 
returned by malloc() and calloc( ): ip = (int *)malloc (mem_size), 
then test (ip = = NULL) . 

..... Pointer assignments such as ip = vec; require that the pointer types are 
compatible, otherwise you get a "Doubtful pointer conversions in 
function ... " warning. Type casting allows incompatible pointer assign­
ments: ptr_ T1 = (T1 *)ptr_ T2 . 

..... int * *ih; declares a pointer to a pointer to integer, sometimes called a 
handle . 

..... A pointer can be indexed like an array: t = ptr_ T[i];, which is the same 
as t = *(ptr_ T + i*sizeof(T)) . 

..... All sums on pointers depend on the size of the pointer type. Pointers of 
the same type can be subtracted but cannot be usefully added: 
num_elems_ptr2_ptr1 = (ptr1_T - ptr2_T); 

..... The declaration int *X( ); declares a function, x( ), returning a pointer to 
integer. By contrast, the declaration int (*x)( ); declares that xis a pointer 
to a function returning an integer. Functions can be passed as argu­
ments to functions by means of pointers (rather like passing arrays to 
functions). 



.,. COMPLEX DATA TYPES .,. 187 

....... Turbo C pointers come in three flavors: near, far, and huge. Unless 
explicitly specified, the pointer class is defaulted according to the mem­
ory model set up by menu options or TCC.EXE switches. The six models 
are tiny, small, medium, compact, large, and huge. They determine the 
sizes of the code and data segments available . 

....... near pointers are 16-bit offsets with fixed segments. far and huge 
pointers are 32-bit with variable segment:offset values. huge pointers 
have normalized offsets, allowing safer pointer arithmetic . 

....... int *ip[10]; declares an array often pointers to int, while int (*ip)[10]; is 
a pointer to an array of 10 ints . 

....... Multidimensional arrays are declared int mat[3][4], hype[3][4][5]; . 

....... Pass multidimensional array arguments to functions via base pointer. 
You need to specify every dimension except the first. 

....... Enumerations are declared by enum [tag] { e1, e2, e3} x1, x2;. The 
listed identifiers, e1, e2, ... behave like integers, 0, 1, .... The en um vari­
ables x1, x2, ... can be assigned any of the e1, e2, ... values. Enum vari­
ables can also be declared by enum tag v1, v2;. 

....... typedef gives you synonyms for any existing data type: 

typedef char *STRING; 
typedef int *PTR_FUNC_INT( ); 

....... Conditional compilation is controlled by the directives #if, #elif, 
#else, #endif, #ifdef, #ifndef, #if defined xxx in conjunction with 
#define xxxx, #undef xxxx, and constant-expressions. External macro 
names can be defined and assigned values via the TC.EXE menu or the 
TCC.EXE command line . 

....... The cdecl modifier with variables or functions overrides the Pascal con­
version and argument-passing conventions when running in Pascal 
mode. 



STRUCTURES 
AND UNIONS 



~CHAPTER 6 ~ 
ADAPTING DATA TYPES TO YOUR APPLICATIONS 

C's most versatile data type is the structure. It allows you to create and manipu­

late sets of objects of mixed types, including other structures and pointers of any 

kind. If you have used the records of Pascal or Modula-2, you will already be 

familiar with the general concept, although the details differ. 

As you grapple with the syntax for declaring and manipulating structures, 

keep in mind that data structures form one of the two basic abstract elements 

of contemporary computer science. As Niklaus Wirth puts it, "Programs = 

Algorithms + Data Structures." In C language terms, this could be restated 

as, "Programs = Functions + Pointers to Structures." Being able to assign 

single identifiers to complex collections of data and then compose functions 

that operate on them was a major step forward in software engineering. 

Learning which data structures to employ is as least as important as knowing 

which algorithms to use. In fact, the two often appear as inextricably bound 

together as the chicken and the egg. 

~ THE STRUCTURE DECLARED ~ 
Until now your arrays have been restricted to holding elements of any one 

base type: integers, characters, pointers, and other arrays of a fixed base 

type. The structure lifts this restriction. You declare a structure using the key­

word struct followed by a list declaring each of the components (also known 

as members or fields) required in the structure. 

The layout of the declaration aims at legibility. For smaller structures, you 

often find the following one-line format: 

struct employer {char name[MAXN]; int id, ext; } emp; 
I* structure has 3 fields: one array, two ints *I 
/*one variable, emp, declared */ 



190 .,.. MASTERING TURBO C .,.. 
CH.6 

For larger structures use the following layout: 

#define NAME_ SIZE 30 

struct player { I* optional tag *I 
char name[NAME_SIZE); /*field 1 */ 
unsigned char player_number; /*field 2 */ 
float batting_average; /*field 3 */ 
BOOL active; I* field 4 *I 

} pl 1, pl2; I* struct vars *I 
I* pl1 and pl2 are two variables of type 'struct player' *I 

The components listed between the curly braces can be as numerous as 
you like and of any data type except void and function. The component 
types can be the basic ones like char and float, user-named types from ear­
lier typedefs, pointers to any of these, or arrays of any of these. The type 
BOOL, for example, comes from an earlier typedef unsigned char BOOL, 
as explained in Chapter 5. 

The variables pl1 and pl2, once initialized, can be envisaged as each hold­
ing values for each of the four component variables. Before I explain how 
these four members are set up and accessed, let's explore the implications of 
the struct declaration. 

The user-supplied tag player, appearing after struct, can be used later in 
your program to declare more variables of type struct player: 

struct player pl3, pinch_hitter; 
/*declare two more player structures*/ 

In other words, struct player represents a type specifier that acts just like int 
or unsigned long when declaring variables of the type specified. 

As with enum, the tag can be omitted when you want to declare all your 
structure variables in one fell swoop: 

#define NAME_SIZE 30 

struct { 
char name[NAME_SIZE]; 
unsigned char player_number; 
float batting_average; 
BOOL active; 

} pl1, pl2, pl3, pinch_hitter; 
I* four variables of this 'struct' type - no more needed *I 



.,. STRUCTURES AND UNIONS .,. 191 

The above declaration is effectively the same as the two previous declara­

tions combined, but you won't be able to declare more variables with this 

structure type because you don't have a type specifier called struct player. 

You could, of course, edit your program to add some variables after 

pinch_hitter. 

Even when you have no more structure variables in mind, though, a mne­

monic tag identifier such as player is often useful as an aid to documentation 
and discussion. 

Another common alternative is to use typedef to create a synonym for 

struct player. Consider the following snippet: 

typedef struct { 
char name[NAME_SIZE]; 
unsigned char player_number; 
float batting_average; 
BOOL active; 

} PLAYER_REC; 
I* no memory allocated yet! *I 

/* now we can declare structure variables */ 
PLAYER_REC pl1, pl2, outfielder; 

I* memory now reserved *I 

/*or declare pointers to structure variables*/ 
PLAYER_REC *player_ptr; 

I* no structure memory allocated here *I 

/*and arrays of pointers to player structures */ 
#define TEAM_SIZE 45 

PLAYER_REC *team[TEAM_SIZE); 
/*TEAM_ SIZE pointers only - no structures created. 

Each team[i), i =Oto i = 44, is a pointer to a PLAYER_REC *I 

I* and arrays of player structures *I 
PLAYER_REC squad[TEAM_SIZE); 

I* each squad[i], i = O to i = 44, represents a player structure *I 

/* perhaps arrays of arrays of PLAYER_REC structures */ 
#define LEAGUE_ SIZE 28 

PLAYER_REC league[LEAGUE_SIZE][TEAM_SIZE); 
/*declares LEAGUE_SIZE x TEAM_SIZE separate players*/ 

A tag such as player can still be inserted after typedef struct, but is now less 

useful since PLAYER_REC plays the role of struct player. If you do use a 



192 ~ MASTERING TURBO C ~ 
CH.6 

tag, you simply have two equivalent ways of declaring further variables. 

typedef struct player { 
char name[NAME_SIZE]; 
unsigned char player_number; 
float batting_average; 
BOOL active; 

} PLAYER_REC; 

struct player pl 1 ; 
/*same as PLAYER_REC pl1; */ 

struct player *player _ptr; 
/*same as PLAYER_REC *player_ptr */ 

In the early days of C, before typedef was introduced, the structure tag 

played a more important role. Nowadays, as you can guess, it is often omit­

ted in favor of the more economical and legible typedefs. 

Confusing tags with typedef names is a common source of bugs, so make 

sure you understand the examples. I have used the uppercase convention 

for my typedef name, but you'll encounter code in which tags and type 

names look very similar. 

I have introduced pointers to structures and some more exotic variants to 

whet your appetite. You'll see them in action shortly. 

..,. THE STRUCTURE ANALYZED ..,. 
Let's see what the various struct player and PLAYER_REC declarations 

have achieved. First of all, for each variable of this structure type, C reserves 

enough memory to hold the listed components. (The actual timing of this mem­

ory allocation need not concern you for the moment.) How much memory 

is enough? Well, you can simply add up the bytes for each component, or you 

can use sizeof(struct player} to determine the total allocation more accurately. 

~ Effects of Word and Byte Alignment ~ 
The theoretical and actual memory sizes of structures can differ between 

the various C implementations and between different options within the 



~ STRUCTURES AND UNIONS ~ 193 

same implementation. This is because of possible byte-alignment restrictions 

of certain struct components. For example, some C's would quietly add a 

dummy byte to place the float on an even address. 

With Turbo C, you have an Alignment option in the Options/Compiler/Code 

Generation menu. This toggles you between word alignment, whereby non­

char variables are always placed on even-byte boundaries, and byte alignment, 

whereby all variables are placed at odd- or even-byte addresses according to the 

next space available. Byte alignment packs the components one after the other, 

and this is the normal default when you first invoke TC. Word alignment may 

take up a little more memory, but the 16-bit data transfers of the 8086/80286 will 

work faster. With word alignment, the PLAYER_REC structure would have a 

dummy byte before the float and a dummy byte after the BOOL to ensure an 

even total size, namely 38 bytes. With the command-line compiler (TCC.EXE), 

use the - a switch to get word alignment and the switch - a- (default setting) 

to get byte alignment. Table 6.1 should clarify the situation. 

So far you have seen how to declare structures and how to determine their 

size. It is time to examine the vital process of accessing the member variables 

within the structure. 

Component 

char name(30] 

unsigned char player_number 

float batting_average 

BOOL active 

sizeof(struct player) 
(with byte-alignment option) 

sizeof(struct player) 
(with word-alignment option) 

Range 

0-255 

fp number 

1 =active 
0= inactive 

Size 

30 bytes 

1 byte 

4 bytes 

1 byte 

Total (theoretical) 
36 bytes 

Total (actual) 
36 bytes 

38 bytes 

~ Table 6.1: Using sizeof() to determine memory a/location 



194 .,. MASTERING TURBO C .,. 
CH.6 

..,.. ACCESSING THE STRUCTURE COMPONENTS ..,.. 
The variable pl 1 of type PLAYER_REC (or equivalently, of type struct player) 

represents a set of four variables of the types declared in the struct 

list. You can access these individually using the mt>rnber, or selection, operator (a 
period) as follows: 

pl1.player_number = 29; 
pl1.batting_average = 0.335; 
pl1.active = TRUE; 

/*TRUE is #defined earlier as 1 */ 

strcpy(pl1.name,"Clark"); 
/* remember that pl1.name is an array- name, i.e. a constant pointer. So 

pl1.name = "Clark" is illegal; you must use the string copy function *I 

The general format is struct_var.member _var. You use this joint identifier 

just as if it were a variable of the type of member _var as declared in the 

structure's member list, and you can therefore do anything that's legal for 

that type. Here are a few examples. 

strcpy(pinch_hitter.name,pl1.name); 
/*copy pl1.name to pinch_hitter.name */ 

pl2.batting_average += 0.001; 
I* notch up pl2's average *I 

fptr = &pl1.batting_average 
/*get a pointer to a component*/ 

pl2.player_number = pl3.player_number++; 
/*assign pl3's old number to pl2, then increment*/ 

pinch_hitter.active = FALSE; 
/*deactivate the PH */ 

pl2.active = !date_sick; 
I* right- hand evaluates to TRUE if date_sick is O *I 

printf("Player #0/od is hitting O/of\n", 
pl1.player_number,pl1.batting_average); 

if (pl2.active) printf("Player O/os is active\n", 
pl2.name); 

(Pascal and Modula-2 programmers should note the absence of a with con­

struct in C. You must write out the struct_var.member _var in full each time.) 



.,. STRUCTURES AND UNIONS .,. 195 

..,.. STRUCTURE ASSIGNMENTS ..,.. 
A major convenience for the programmer is the ability to assign all the 

component values of one structure variable to those of another structure 
variable of the same type. For example, 

pinch_hitter = pl1; 

will move the four component values sitting in pl1 over to the corresponding 
four members of pinch_hitter. Th is single structure assignment is the eq u iva­
lent of the four separate assignments 

strcpy(pinch_hitter.name,pl1.name); 
/*this is effectively an assignment of one array to another*/ 

pinch_hitter.player_number = pl1.player_number; 
pinch_hitter.batting_average = pl1.batting_average; 
pinch_hitter.active = pl1.active; 

Observe that this structure assignment has achieved the "assignment" of one 
array to another-a feat that cannot be accomplished outside of a structure 

without the strcpy() function (or some equivalent character-copying code). 
This economical structure-assignment maneuver is only possible if the left 

and right structures are declared as the same type. If you declare two struc­
tures with exactly the same size and format but different types, you lose 
structure assignment compatibility. 

struct giant { 
char g_name[NAME_SIZE); 
unsigned char g_player_number; 
float g_batting_average; 
BOOL g_active; 

} g_pl1, g_pl2, g_pl3, g_pinch_hitter; 

g_pinch_hitter = g_pl3; 
pl1 = g_pl2; 
pl1.active = g_pl2.active 

I* OK - same struct types *I 
I* ILLEGAL - different struct types *I 
/*OK - members are compatible*/ 

As this example shows, however, the individual components of different 
structures can be assigned just like any other compatible variables. To 

achieve pl1 = g_pl2;, therefore, you would need to make four separate 



196 .,. MASTERING TURBO C .,. 
CH.6 

assignments. Better still, ask yourself if you really need a separate struct 
giant. Since the data formats are identical, you could save time and trouble 
by declaring 

PLAYER_REC g_pl1, g_pl2, g_pl3, g_pinch_hitter; 

Before we relinquish struct giant, there is a useful observation to make. 
Within struct giant I went to the trouble of naming each component differ­

ently from PLAYER_REC. In fact, component names need only be unique 
within a structure. It is legal to have 

struct player { 
char name[30); 
unsigned char player_number; 

. float batting_average; 
BOOL active; 

} pl1, pl2, pl3, pinch_hitter; 

struct giant { 
BOOL active; 
unsigned char player_number; 
float batting_average; 
char name[30); 

} g_pl1, g_pl2, g_pl3, g_pinch_hitter; 

At first sight it would appear unseemly to have two variables called name, 

two named active, and so on, in adjacent declarations. Indeed, the K&R 
1978 C specification expressly forbade the above kind of component-name 
duplications. (This restriction was relaxed, though, if the components had 
the same types and relative positions within the two structures.) Nowadays it 

is legal to duplicate component names in different structures since the 
struct_var.member _var format ensures uniqueness . 

..,. STRUCTURE INITIALIZERS..,. 
As with arrays, you can initialize structure variables during their declaration: 

PLAYER_REC mays {"Willie Mays", 45, 0.333, FALSE}; 



~ STRUCTURES AND UNIONS ~ 197 

(Some compilers are less tolerant than Turbo C and will not initialize auto­
matic arrays or structures.) The now-familiar rules for initializers apply. Each 

constant expression within the curly braces is assigned in turn to each com­
ponent of the structure. If there are too many initializers, or if they are not 
assignment-compatible, you get an error. If there are insufficient initializers, 
the unmatched components are cleared to zero. (I use the word zero to 
cover all the possible internal forms that C can generate to clear different 

component data types, including int 0, char '\xO', long int OL, double 0.0, 
and pointer NULL.) 

..,.. NESTING STRUCTURES ..,.. 
Once a structure is declared, variables of that type can be used within 

another structure. Take the following simple example: 

typedef struct { I* no tag *I 
unsigned char month, day;/* fields 1 & 2 */ 
unsigned int year; I* field 3 *I 

} DATE; I* structure type name *I 

DATE signing_date = { 9, 15, 1929 }; 
I* declare & initialize a DATE variable *I 

I* sizeof(DATE) is 4 *I 

typedef struct { 
char name[NAME_SIZE]; 
unsigned char player_number; 
float batting_average; 
BOOL active; 
DATE date_joined; /*new field 5 is a struct */ 

} PLAYER_REC; 
I* sizeof(PLAYER_REC) now = 40 (byte aligned) or 42 (word aligned) *I 

PLAYER_REC pl1, pinch_hitter; 
/* pl1 and pinch_hitter are two PLAYER_REC variables*/ 

First I typedefed a simple structure type called DATE. Then I declared and ini­
tialized a variable, signing_date. Next I added a new variable of type DATE, 
date_joined, to the player record. Within date_joined the components are ref­
erenced via the variable names date_joined.month, date_joined.day, and 



198 .,. MASTERING TURBO C .,. 
CH. 6 

date_joined.year. Within pl1, the new components must now be accessed 
using 

pl1.date_joined.month 
pl1.date_joined.day 
pl1.date_joined.year 

Note the positions of the two member operators. This format arises quite 

naturally whenever the struct1 _member in struct1 _var.struct1 _member 
is itself of the form struct2_var.struct2_member. Substituting the latter 
value gives 

struct1 _var.struct2_var.struct2 member 

This nesting of structures can be continued to any depth, and the rules for 
accessing the lower level components are obvious extensions of our two­
level example. You can end up with as many member operators as the nest­

ing depth as in 

struct1 var.struct2_var.struct3 _ var.struct3 _member 

In spite of the length and complexity of such constructs, the simple fact to 
remember is that the the whole expression behaves exactly like a variable of 
the type of the last named member. Using our new PLAYER_REC, here are 
some valid statements. 

pl1.date_joined.month = 3; 
pl1.date_joined.day = 25; 
if (pl1.date_joined.year <= 1950 && pl1.active) { 

pl1.active = FALSE; 

pinch_hitter.date_joined.month += 2; 
signing_date.year = pl1.date_joined.year; 

switch (pl1.date_joined.month) { 
case 1: puts(" January"); break; 
case 2: puts("February"); break; 

default: 
puts("Month error"); 
exit(1 ); 



ro- STRUCTURES AND UNIONS ro- 199 

Nested structures can be initialized using nested initializers! If we add 

PLAYER_REC ruth = {"Babe Ruth", 1, 0.389, FALSE, 
{ 10, 18, 1925} }; 

the three fields of the date_joined structure are initialized with the nested 
expression, { 10, 18, 1925 } . Having too many initializers at any level will 
give you an error signal. Having too few initializers results in the surplus 
members being cleared to zero. 

~ Restrictions on Nested Structures ~ 
There is one important restriction on nested structures: you cannot 

include a structure variable within its own structure. For example, 

/*ILLEGAL declaration*/ 
struct bad { 

int a; 
struct bad no_no; /*NOT ALLOWED*/ 
double c; 

} none_such; 

is illegal because it could lead to an infinite sequence of memory allocations! 
If this limitation depresses you, you will be pleased to hear that C does allow 

a structure to hold a pointer to variables of its own type: 

I* This declaration is LEGAL *I 
struct good { 

int a; 
struct good *yes_yes; /*pointer to struct is ALLOWED */ 
double c; 

} any_such; 

The compiler can make sense of this. The component yes_yes is a fixed­
length pointer (16 or 32 bits depending on the memory model) of type 
pointer to struct good. The memory allocation is therefore predetermined. 

It turns out that many important abstract data structures can be realized in 
C using this mechanism. Linked lists and trees, for example, require structure 
elements to contain one or more pointers to other structure elements of the 
same type. 



200 .,. MASTERING TURBO C .,. 
CH. 6 

~ A SIMPLE LINKED LIST ~ 
To give you the flavor of this approach, let's revamp the PLAYER_REC 

structure as follows: 

typedef struct player { 
char name(NAME_SIZE); 
unsigned char player_number; 
float batting_average; 
BOOL active; 
DATE date_joined; 
struct player *next; /* new field 6 is pointer to next record */ 

} PLAYER_REC; 

PLAYER_REC clark, ruth, mays; 

The new field next is of type pointer to struct player. By setting various 
addresses in this field for different PLAYER_REC variables, we can create 
a linked list of player records. I'll fill in the details later, but for now assume 
that the variable mays has been initialized with appropriate values for 
mays.name, mays.player_number, and so on. We set mays.next to NULL 
to indicate that this record does not point anywhere. This is the normal con­
vention for indicating that there is no next, in other words, mays is the last 
player in the linked list. We now enter Babe Ruth's data into the structure 
variable ruth, ending with the assignment 

ruth.next = &mays; 

Informally, you can say that ruth points to mays. Using the next field as a 
pointer or link explains the term linked list. To complete our list, we put Jack 
Clark's data into clark and set 

clark.next = &ruth; 

What we now have is a very simple linked list of three players. Starting 
with clark, we can scan the list by picking up pointers to the next player 
record until a NULL pointer is reached. For example, from Clark.next 
we can access ruth as *Clark.next provided that clark.next is not NULL. 
You can even access mays directly using the construct *(*clark.next).next 
since this is equivalent to *ruth.next (we know that ruth.next isn't NULL). 



.. STRUCTURES AND UNIONS .. 201 

..,. THE STRUCTURE POINTER 
MEMBER OPERATOR(->) ..,. 

Note that the member operator (.) has higher precedence (category 1) 
than the indirection operator, (*,category 2). (See Appendix E for complete 
listing.) Therefore, *Clark.next is treated as *(clark.next), which is precisely 
what we seek, i.e., the structure being pointed at by clark.next. In the case 
of *(*clark.next).next, the parentheses are needed. The member operators 
associate left to right, while direction operators associate right to left. To 
make the code even more legible, you may want to write 

* ( * ( clark. next). next) 

which highlights the sequence of events. 
Now suppose you have a pointer to PLAYER_REC called player_ptr. To 

access the components of *player_ptr, the structure being pointed at, you 
would need expressions like 

(*player _ptr). name 
(*player_ptr).player_number 
(*player _ptr). batting_ average 

and so on. The parentheses here are essential in view of the previous 
remarks about precedence. Because this method of component access is so 
common in C, K&R wisely provided a special operator called structure 
pointer member, or right arrow, to simplify your typing. The two symbols 
- (minus) and > (greater than) are combined (with no white space) to give 
the operator ->. This has the same category 1 precedence as the normal 
member operator. The previous three expressions can be written more 
concisely as 

player _ptr ->name 
player_ptr->player_number 
player _ptr - >batting_ average 

( * player_pointer).name 
(*player _pointer). player _number 
( * player_pointer).batting_average 

Parentheses are not required with -> since the compiler dereferences 
player_ptr first as part of the ->operation. When you mix ->with more 
complex expressions, of course, parentheses may be needed. 

Using our linked-list declarations, here are some examples of -> in action. 



202 ~ MASTERING TURBO C ~ 
CH.6 

(clark.next)->batting_average = 0.450; 

/*since "clark.next = &ruth" and "*Clark.next = ruth" 
the above is the same as (&ruth)->batting_average = 0.450; 
which is the same as ruth.batting_average = 0.450; */ 

((clark.next->next)->active = FALSE; 

/*since "(*clark.next).next = ruth.next = &mays" 
the above is the same as 

((*clark.next).next)->active = FALSE; 
which is the same as 

(*(*clark.next).next).active = FALSE; 
which is the same as 

mays.active = FALSE *I 

/* since"." and"->" are equal precedence and associate left to 
right, you can also write: 

clark.next->next->active = FALSE; 
with no parentheses! *I 

~ ADVANTAGES OF LINKED LISTS ~ 
The neat thing about this type of data structure is that you can easily insert 

and delete records. Changing clark.next to &mays, for example, effectively 

strikes out ruth! Changing ruth.next to &aaron and then setting aaron.next 
to &mays adds aaron to the list. 

For more complex manipulations such as forward and reverse scanning of 

a list, the double-linked list is often used. This adds another pointer to point to 

the previous record. 

typedef struct player { 
char name[NAME_SIZE]; 
unsigned char player_number; 
float batting_average; 
BOOL active; 
DATE date_joined; 
struct player *next; 
struct player * prev; 

} PLAYER_REC; 

PLAYER_REC clark, ruth, mays; 

I* field 6 is pointer to next record *I 
/* new field 7 is pointer to previous 

record*/ 



~ STRUCTURES AND UNIONS ~ 203 

Under this dispensation clark.prev would be NULL, indicating that this is 
the first record in the list, while mays.prev would be set to &ruth. 

My examples are hardly realistic, of course. Since the three player records 
have known identifiers, we can access them directly without scanning the 
linked list. I've used these examples to establish the general technique and 
terminology that we'll use later with more realistic applications employing 
arrays of pointers to structures. 

~ POINTERS TO STRUCTURES ~ 
Pointers, as you can see, play a central role in C. This role is underlined 

when you consider pointers to structures and pointers to functions. The 
previous section showed how structure elements can be linked together 
in various ways by means of pointers embedded in the structure itself. 
A further use of pointers arises because structures are usually passed to func­
tions indirectly as pointers just as you saw with array and function argu­
ments to functions. At one time, in fact, structures could only be passed 
to functions as pointers, but this restriction is now lifted. Although you 
can have a fune(PLAYER_REC pl) in Turbo C taking a structure argument, 
only a copy of the structure is passed (C always passes by value), so tune() 
cannot change the actual argument. Also, it can put a strain on available 
memory if the structure is a large one. 

Similarly, although a function defined as PLAYER_REC tune() can return 
a structure value directly, it is more common to return a pointer to a struc­
ture as with PLAYER_REC *tune(). 

You will recall that an array identifier like name is actually a pointer to the first 
element of the array name[]. In the same way, a function identifier tune used 
without the ()is taken as a pointer to tune(). This is not the case with structure 
variables. The variable pl1, declared to be of type PLAYER_REC, is not a 
pointer to anything. You must apply the address operator to get &pl1, the 
address of pl1, as with simple variables. You can also declare variables of type 
pointer to structure X as well as arrays of structures and arrays of pointers to 
structures. A few examples will help clarify these distinct objects. 

typedef struct player { 
char name[NAME_SIZE]; 
unsigned char player_number; 



204 ~ MASTERING TURBO C ~ 
CH. 6 

float batting_average; 
BOOL active; 
DATE date_joined; 
PLAYER_REC *next; 

} PLAYER_REC; 
I* PLAYER_REC is type 'struct player' •I 

I* sizeof(PLAYER_REC) is now 42 (byte alignment) *I 

PLAYER_REC pl1, pl2, outfielder; 

PLAYER_REC *player_ptr; 
I* declare a pointer to struct player *I 

player_ptr = &pl1; 
pl2.next = player_ptr; 

I* assign pointer values *I 
player_ptr ->active = TRUE; 

I* assign a component value *I 
PLAYER_REC *team[TEAM_SIZE]; 

I* declare an array of 'pointers to struct player'* I 

if (&out_fielder) team[O] = &out_fielder; 
/*the first pointer of this array now points to the struct 

variable outfielder - if not-NULL*/ 
team[O] -> player_number = 39; 

/*assign a component value*/ 
PLAYER_REC squad[TEAM_SIZE]; 

/*declare an 'array of type struct player'*/ 

squad[2] = pl2; 
/*the third element of squad is now pl2 

complete assignment of all fields •I 

PLAYER_REC *trade(PLAYER_REC *pl_ptr); 
/*declare a function, trade, that takes as argument a 'pointer 

to struct player' and returns a value 'pointer to struct player'* I 

..,.. ALLOCATING DYNAMIC 
MEMORY FOR STRUCTURES ..,.. 

When I declared pl1, C established a fixed amount of RAM to hold the 

member variables of PLAYER_REC. Declaring a pointer to a structure, 



~ STRUCTURES AND UNIONS ~ 205 

however, does not allocate any memory for that structure, nor is the pointer 
set to point at anything in particular! As you saw in Chapter 5, pointers need 
to be initialized in some way before they are usable. In my previous 
examples, I did this with assignments of known addresses of existing struc­
ture variables such as &ruth. 

Using malloc() is another way of creating real space for a structure and at 
the same time establishing a pointer to that space. 

When allocating dynamic memory for structures with malloc( ), using 
sizeof() is always safer, easier, and more portable than "manually" counting 
bytes. Writing malloc(42) to get one PLAYER_REC allocation is clearly 
dangerous in view of my earlier comments on alignment boundaries. 

The argument for sizeof() should be the data type struct player, or its 
typedef synonym PLAYER_REC, or another variable of that type. So 
sizeof(PLAYER_REC) or sizeof(pinch_hitter) will each give you the right 
structure size, but sizeof(player) is illegal since player is a tag not a type or 
variable. Examine the following snippet: 

PLAYER_REC *player_ptr; /*declare a pointer to struct player*/ 

if ((player_ptr = (PLAYER_REC *)malloc(sizeof(PLAYER_REC))) 
==NULL) { 

puts("\n\tlnsufficient memory for player allocation\n"); 
exit(1 ); 

} 
/* here we have player_ptr pointing to first byte of allocated 

memory - all ready to 'take in' player values *I 

Here we have a typically "busy" piece of C code. The if statement first 
invokes malloc( ), then type casts its (void *)returned value to type pointer 
to PLAYER_REC, assigns that pointer to player_ptr, and finally tests for 
NULL! Remember that the value being tested is the value of the assignment 
statement, namely the lvalue resulting from the assignment. 

You should now read through PLAYER.C (Program 6.1). It's a somewhat 
longer example than usual, so don't expect to digest it all at once. A detailed 
analysis appears in Chapter 7 since PLAYER.C relies on the static storage 
specifier to control scope and visibility. 



206 
CH.6 

• MASTERING TURBO C • 

Program 6.1 

/• PLAYER.C - a simple, volatile player diltabase */ 
/*Program 6.1 */ 
/* overall strategy due to N. Gehani, A'l'&'l' !Jell Labs */ 

tinclude <stdio.h> 
#include <alloc.h> 
#include <ctype.h> 
#include <string.h> 

#define FOUND 1 
#define MISSING 0 

fdef ine PL MAX 2 
#define NAME MAX 25 
tdefine HDG "Plf Name 

/* max number of player */ 
/* max name + 1 null */ 

Posn RBI ERA 

typedef struct { 
unsigned char month, day; 
unsigned int year; 

} DATE; 

typedef unsigned char BOOL; 

typedef enum { 
X, P, C, I, S, O, D 

} POSITION; 

typedef struct player 

char name[NAME_MAX]; 
unsigned char player_number; 
POSITION player_position; 
unsigned int rbi; 
double era; 
DATE date_joined; 
BOOL active; 

PLAYER_REC; 

static PLAYER REC *pptr[PL MAX]; 
/* global to all functions in this file, 

but not accessible elsewhere. 

DATE Active" 

Declares an array of 'pointers to PLAYER_REC structure' */ 

static int pind; 
/* player index used with pptr[] */ 

static int db size; 
/* number of players in-database */ 
/*----------------------------------------*/ 
/* INIT_PLAY - set up player database */ 
/* data in memory only - until Chapter 81 */ 
/*----------------------------------------*/ 

void init_play(void) 
{ 

int dbind; 
char pas; 

/* local var - scans the database */ 
/*ASCII player position */ 

if (coreleft() < sizeof(PLAYER_REC)*(PL_MAX+B)) { 
puts("\n\tlnsufficient Memory for Player DB"); 
exit(l); 

~Program 6.1: PLAYER.C 



.,. STRUCTURES AND UNIONS .,. 

for (dbind = O; dbind < PL_MAX; dbind++) { 
if ((pptr[dbind]=(PLAYER_REC *)malloc(sizeof(PLAYER_REC))) 

==NULL) { 
puts("Memory Allocation Failure"); 
exit(l); 

/* here pptr[dbind) points to an allocated record awaiting input */ 

printf("\nll%3d Enter Player Number <99=exit>: ",dbind); 
scanf( "%d" ,&(pptr[dbind)->player_number) ) ; 

if (pptr[dbind]->player_number == 99) break; 

printf("\n Enter Player Name:"); 
scanf( "%s" ,pptr[dbind]->name ) ; 

/*Next item could be entered with getch() but I want to*/ 
/* show scanf() with %s */ 

printf("\n Enter Player Position: "); 
scanf ( "%s", &pas); 
pas= toupper(pos); 
switch (pos) { 

} 

case 'P': pptr[dbind]->player_position 
case 'C': pptr[dbind]->player_position 
case 'I': pptr[dbind]->player_position 
case 'S': pptr[dbind)->player_position 
case 'O': pptr[dbind]->player_position 
case 'D': pptr[dbind]->player_position 
default: pptr[dbind]->player_position 

if (pptr[dbind]->player_position != P) { 
pptr[dbind]->era = 0.0; 
printf("\n Enter Runs Batted In:"); 
scanf( "%d" ,&(pptr[dbind)->rbi) ) ; 

} 
else { 

P; break; 
C; break; 
I; break; 
S; break; 
O; break; 
D; break; 
X; 

pptr[dbind]->rbi = O; 
printf("\n Enter Earned Run Average: "); 
scanf( "%lf" ,&(pptr[dbind)->era) ) ; 

~rintf ( "\n Enter Date Joined (mm/ dd/yyyy) : " ) ; 
scanf( "%2d/%2d/%4d", &( (pptr[dbind]->date_joined) .month), 

&((pptr[dbind]->date_joined).day), 
&((pptr[dbind]->date_joined).year) ); 

printf("\n Active=Y or N? :"); 
scanf( "%s" ,&pas); 
pptr[dbind]->active = ( 'Y' toupper(pos)); 
} /* end for loop */ 
db size = dbind; /* set current size of database */ 

} -
/*--------------end init_player--------------------*/ 

/*-------------------------------------------*/ 
/* ASC_POS() converts position code to ASCII */ 
/*-------------------------------------------*/ 

char *asc_pos(POSITION x) 
{ 

switch (x) { 
case P: return "P 11 ; 

case C: return 11 C11 ; 

case I: return "!"; 

~ Program 6.1: PLAYER.C (continued) 

207 



208 
CH. 6 

_. MASTERING TURBO C _. 

case S: return "S"; 
case 0: return "0 11 ; 

case D: return "D"; 
default: return "X"; 

} 
} 
/*-------------------end asc_pos----------------*/ 

/*----------------------------------•/ 
/* LIST PLAYER - lists the database */ 
/*-----=----------------------------*/ 
void list_play(int start) 
{ 
int dbind; 

puts (HDG); 
for (dbind = (start>=O ? start O); 

dbind < db size; 
dbind++) C 

printf 
("\n%3d %-26s %ls %3d %7.3f %2d/%2d/%4d %s\n", 
pptr[dbind]->player_number, pptr[dbind]->name, 
asc_pos(pptr(dbind]->player_position), pptr[dbind]->rbi, 
pptr[dbind]->era, pptr(dbind]->date joined.month, 
pptr[dbind]->date_joined.day, pptr[dbind]->date_joined.year, 
(pptr[dbind)->active) ? "Y":"N"); 

} 
/*-------------------end list_player------------------*/ 

/*---------------------------------------------------*/ 
/* GET_STR returns a pointer to a copy of arg string */ 
/*---------------------------------------------------*/ 
char •get_str(char str[]) 
{ 

char *ptr; 

if ((ptr = (char *)malloc(strlen(str)+l)) ==NULL) { 
puts("Insufficient Memory for get_str"); 
exit( 1); 

} 
else 

strcpy(ptr, str); 
return ptr; 

} 
/*---------------------- end get_str -------------------*/ 

/*--------------------------------------------------------*/ 
/* GET_NAME() sets global index pind to pptr[] array */ 
/* such that pptr(pind] points at record with target name */ 
/* Returns FOUND or MISSING */ 
/*--------------------------------------------------------*/ 

static int get_name(char target_name(]) 
{ 

if (strcmp(target_name, pptr(pind]->name) 0) 
return FOUND; 

/* first test if previous find is still useful */ 

for (pind = O; pind < db_size; pind++) 
if (strcmp(target_name, pptr(pind]->name) 0) 

~ Program 6.1: PLAYER.C (continued) 



... STRUCTURES AND UNIONS ... 

} 

return FOUND; 
pind = O; 
return MISSING; 

/*---------------------end get_name--------------------------*/ 

/*----------------------------------------------------------*/ /* GET_NUMBER() sets global index pind to pptr[] array */ 
/* such that pptr[pind] points at record with target number */ 
/* Returns FOUND with good pind or MISSING with pind=O */ 
/*----------------------------------------------------------*/ 

static int get_number(unsigned char target_number) 
{ 

if (target_number == pptr[pind]->player_number) 
return FOUND; 

/* first test if previous find is still useful */ 

} 

for (pind = O; pind < db_size; pind++) 
if (target_number == pptr[pind]->player_number) 

return FOUND; 
pind = O; 
return MISSING; 

/*---------------------end get_number--------------------------*/ 

/* ---------------*/ 
/* NUMBER_TO_NAME */ 
/*----------------*/ 
char *number_to_name(unsigned char tn) 
{ 

return get_number(tn) ? get_str(pptr(pind]->name) 
} 
/*-----------------*/ 
/* NAME_TO_NUMBER */ 
/*-----------------*/ 
unsigned char name_to_number(char tname(]) 
{ 

return get_name(tname) ? pptr[pind]->player_number 

void main() 
{ 

} 

char *tname = "5"; 
unsigned char tnumber = O; 
while (tnumber != 99) { 

printf("\nEnter Target Number <99=Exit>: "); 
scanf( "%d" ,&tnumber); 
if (tnumber == 99) break; 
if ((tname = number_to_name(tnumber)) l= NULL) 

printf("\tName is %s\n",tname); 
else puts("\tNo such Player Number"); 

while (strcmp(tname, "X") != 0) { 
printf("\nEnter Target Name: "); 
scanf( "%s" ,tname); 
if (strcmp(tname,"X") == 0) exit (O); 
if ((tnumber =name to number(tname)) !=NULL) 

printf( "\tNumber Is %d\n" ,tnumber); 
else puts ( "\tNo such Player Name"); 

• Program 6.1: PLAYER.C (continued) 

NULL; 

MISSING; 

209 



210 .. MASTERING TURBO C .. 
CH.6 

..,.. UNIONS..,.. 
A union in C corresponds to the variant record of Pascal and Modula-2. 

The basic idea is to create a structurelike object in which only one set of 
components is active at any particular moment. Unions are declared using 
the keyword union with a similar syntax to struct: 

union stats { 
unsigned int rbi; /* runs batted in */ 
float era; I* earned-run average *I 

} player_stats; 
/*declare player_stats a variable of type 'union stats:*/ 

The first point to realize is that the variable player_stats does not occupy 6 
bytes (2 for unsigned int and 4 for float). Unlike a structure, a union allo­
cates only enough memory for the largest component-in this case 4 bytes 
for the float era. The union variable player_stats can hold either rbi or era 
but not both simultaneously. If you assign, say, player_stats.rbi = 120;, only 
two of the four bytes will be occupied, so, if you tried to display the variable 
player_stats.era before some other assignment came along, you would 
get bizarre results. Similarly, after player_stats.era = 4. 70;, accessing 
player_stats.rbi would give you nonsense. The moral is to use only the 
active variable of the two. 

There are two main reasons for using unions. First, you can save memory 
since two (or more) fields are effectly overlaid. If the program is such that 
only one component is active at any given time, the system does not have to 
allocate space for each individual component. The player_rec example 
hardly justifies a union on this basis, but consider 

union results { 
int grid[2000]; 
double test[500]; 

} lab_test; 

If lab_test.grid and lab_test.test results are never processed at the same 
time, you save 4KB. 

.. Unions in Action .. 
The second reason for unions is that they allow you to change the interpre­

tation of a group of bits, rather like a supercharged type-casting operation. 



~ STRUCTURES AND UNIONS ~ 211 

A major application for this is writing portable libraries. If you have a union 

such as 

union x { 
type1 a; 
type2 b; 

} combo; 

you can load combo.a with a value and then read it as combo.b. Depending 

on the particular types oftype1 and type2, you can perform many advanced 

tricks such as fooling functions as to the real nature of your arguments. 

Remember that unions are manipulated like structures, so you can use 

pointers to unions for argument passing, arrays of pointers, and so on. The 

->operator works in the same way. Look at the following snippet: 

type1 rval; 
type2 lval; 

/* type1 and type2 are previously defined types *I 
typedef union x { 

type1 a; 
type2 b; 

} COMBO; 

COMBO *COmbo_ptr; 
I* declare a 'pointer to type union x' *I 

combo_ptr->a = rval; 
lval = combo_ptr->b; 

Without worrying about the deep meaning of this, observe the use of -> 

and how the bit-patterns for rval have been coerced into an entirely different 

format. The types involved will often be structures. A good example of this 

appears in DOS.H in the Turbo C \include subdirectory. 

/*Copyright (c) Borland International Inc., 1987 
All Rights Reserved 

*/ 

struct WORDREGS 
{ 
unsigned int ax, bx, ex, dx, si, di, cflag, flags; 
} ; 

struct BYTEREGS 
{ 



212 .,. MASTERING TURBO C .,. 
CH. 6 

unsigned char al, ah, bl, bh, cl, ch, di, dh; 
}; 

union REGS { 
struct WORDREGS x; 
struct BYTEREGS h; 
}; 

(Appendix F outlines the 8088/86 register model, but to follow this next sec­
tion you need some technical DOS background.) 

You can declare variables of type union REGS and then set values in 
either the 16-bit registers (AX, BX, ... ) or in their upper or lower halves (AH, 
AL, ... ). 

Turbo C offers several functions for direct access to DOS. For example, 
intdos() can call any of about 80 DOS "universal" functions using interrupt 
33 (Ox21). You set a function number in register AH, set various values in 
other registers, and call intdos( ). After the particular action is invoked, 
which can range from setting the time to creating a file, back comes a set of 
register values as a result of the call. The union REGS allows considerable 
flexibility in handling the many function-call variations. The simplified 
intdos( ) prototype 

int intdos(union REGS *inregs, union REGS *outregs); 

indicates that you send intdos() a pointer to union argument, inregs, and 
get one (outregs) back. The outregs set of values includes the carry flag 
cflag that you can test for errors. In addition, the int returned by intdos() 
is the value DOS puts in register AX (usually an error number). MYTAB.C 
(Program 6.2) offers a brief example as a test bed for further experiments 
with other DOS functions. It would not normally be necessary to check the 
carry flag after such a simple call-I do so merely to show how union REGS 
is used . 

..,.. Analysis of MYTAB.C ..,.. 
DOS function 2 of interrupt Ox21 will display whatever single ASCII char­

acter is placed in DL before the call. Since regs is the union of two struc­
tures, you need two member operators, regs.h.ah, to access the ah 
component of the h structure. You pass a pointer to union, &regs, as the 
inregs argument. The outregs argument is passed via the same pointer­
although you could have declared a separate union REGS variable for this. 



~ STRUCTURES AND UNIONS ~ 213 

Program 6.2 

/* MYTAB.C - using DOS Ox21 interrupts */ 

finclude <dos.h> 
finclude <stdio.h> 

#define FAIL 0 
fdef ine OK 1 

/• mytab() displays one tab on screen; returns nonzero for 
success */ 

int mytab() 
{ 

union REGS regs; 

regs.h.ah = Ox02; /* DOS function 2 is display a char */ 
regs.h.dl = '\t'; /* set DL to Horizontal Tab */ 
intdos(&regs, &regs); /*call the function*/ 
return(regs.x.cflag 7 FAIL : OK); 

void main() 
{ 

puts("It's mytab, I believe!"); 
mytab()? puts("Waiter!"): puts("Error!"); 

~ Program 6.2: MYTAB.C 

In this trivial example, once the inregs registers are set using the regs.h 
member of the union, you have no further use for them. Remember that 
&regs is essential for outregs because the function actually alters regs 
(C simulates "passing by reference" by using "passing by pointer value"). 

Note especially that outregs uses the x structure of the union from which 

we pick up cflag. The value returned by mytab() is either FAIL or OK 
depending on regs.x.cflag: 

return(regs.x.cflag ? FAIL : OK); 

This is a good illustration of the economical a? b : c operator. Achieving this 
returned value using if (regs.x.cflag = = 0) { ... } else { ... } would be awk­
ward and not in the best C traditions! 

Similarly, 

mytab() ? puts("Waiter!") : puts("Error!"); 

relies on the fact that mytab() not only invokes the function but also returns 
FAIL (0) or OK (1). 



214 .,.. MASTERING TURBO C .,.. 
CH. 6 

~ Caveats about Unions ~ 
Unlike the variant records of Pascal and Modula-2, the unions in C do not 

have a CASE tag mechanism for distinguishing the components. In C, there­

fore, you must take care that any writing or reading of union variables is 

done using the appropriate component variants-unless, of course, you are 

deliberately coercing the two fields. In other words, you must remember 

which component is currently active. If I revamp PLAYER_REC to be 

typedef struct player { 
char name[30]; 
unsigned char player_number; 
union { 

unsigned int rbi; 
float era; } stats; 

800L active; 
} PLAYER_REC; 

PLAYER_REC pitcher, dh, player; 

the intent is to store either era (earned-run average) for pitchers or rbi (runs 

batted in) for dh's (designated hitters). You've already seen structures inside 

unions. Here you have unions inside structures! Assuming that a given 

player (in the American League, presumably) never needs both statistics, the 

above structure simplifies the creation of a player database. C will allocate 

memory for the worst case, namely 4 bytes for a pitcher's era variant. For 

dh's, only 2 of these bytes will be occupied. You can write and read values as 

follows: 

pitcher.stats.era = 5.21; 
dh.stats.rbi = 56; 
tot_rbi += dh.stats.rbi; 
team_era = (pitcher.stats.era * inns + x)/tot_inns; 

without danger. If you have a general variable such as player, however, you 

may have no a priori knowledge of which component is active. One obvious 

answer to this is to add a player-position field to RECORD_PLAYER. One 

way of doing this uses an enumeration type. 

typedef enum { 
X, P, C, 81, 82, 83, SS, LF, CF, RF, DH } POSITION; 



typedef struct player { 
char name[30]; 
unsigned char player_number; 
POSITION player_position; 
union { 

unsigned int rbi; 
float era; } stats; 

DATE date_joined; 
BOOL active; 

} PLAYER_REC; 

PLAYER_REC pitcher, dh, player; 

if (player.player_position == P) { 
I* use the era field here *I 

} 

~ STRUCTURES AND UNIONS ~ 215 

else if (player.player_position == DH) { 
I* use the rbi field here *I 

Before leaving unions, I should mention that they share most of the syntac­

tical rules of structures. You can omit the tag identifier, you can use typedef, 
you can pass unions or pointers to unions as function parameters, and func­
tions can return unions or pointers to unions. 

~ GOING DOWN TO THE BIT LEVEL ~ 
Since C is a systems programming language it has features for manipulat­

ing at the bit level not usually found in high-level languages. In applications 
programs you are primarily concerned with bytes (characters) or groups of 
bytes (strings, integers, floating point numbers, pointers, or addresses). You 
are seldom interested in the individual bits that make up these variables. 

When you tackle the problems of writing compilers, operating systems, 
communications packages, or device drivers (to name but a few possibili­

ties), the need to set, clear, or test a particular bit within a field or register 
arises in many contexts. To give two concrete examples, a stored sequence 
of O's and 1 's, called a bit map, is often used to represent the state of a disk. 

Each free sector is mapped to a 0 in the bit map, while an occupied sector is 
signaled by a 1. The operating system must constantly monitor and update 
the bit map as files are created and deleted. A simpler example is the use of a 



216 .. MASTERING TURBO C .. 
CH. 6 

byte as a status flag, where groups of bits indicate some property, for 

example, bit 7 ON equals "read-only"; bit 6 ON equals "busy"; bits 0-2 

equal "interrupt level 0-7," and so on.Chas a set of bitwise operators and a 

means of defining bit fields. 

.... Bitwise Operators .... 
The bitwise operators work only on integerlike objects such as int and 

char. Table 6.2 lists their names, symbols and operation. What is probably 

the most common mistake in using these operators stems from a confusion 

between the bitwise operators & and J and their logical operator twins && 
and JJ. Also, - is often confused with! (logical negation). A few examples are 

worth pages of exposition. I'll use 8-bit char variables for simplicity-the 16-

and 32-bit extensions follow naturally. Table 6.3 shows examples based on a 
and b with the following bit patterns: 

a = 00010110 = 18 decimal 

b = 10011010 = 158 decimal 

Symbol Name Operation 

& Bitwise AND c = a & b. Each bit inc is the bitwise AND of 
the corresponding bits in a and b. 

Bitwise OR c = a J b. Each bit inc is the bitwise OR of 
the corresponding bits in a and b. 

Bitwise XOR c = a ~ b. Each bit inc is the bitwise XOR of 
the corresponding bits in a and b. 

Bitwise Negate c = - a. Each bit in c is the bitwise negation 
of the corresponding bit in a. 

>> Bit Right Shift c >> n. The bit pattern inc is shifted to the 
right by n places. 

<< Bit Left Shift c << n. The bit pattern inc is shifted to the 
left by n places. 

~ Table 6.2: Bitwise operators 



Left shift 

Right shift 

If b is unsigned 

If b is signed 

• STRUCTURES AND UNIONS • 217 

a & b = 00010010 
a: b = 10011110 

a Ab= 10001100 
- a= 11101001 
- b = 01100101 

a < < 1 = 00101100 (0 pushed in at right) 
a<< 2 = 01011000 
a<< 3 = 10110000 
a < < 4 = 01100000 (1 overspill discarded on left) 

a>> 1 = 00001011 
a>> 2 = 00000101 (1 overspill discarded on right) 
a >> 3 = 00000010 

' 
b > > 1 = 01001101 (0 pushed in at left) 

b >> 1=11001101 (sign bit= 1 pushed in at left) 

• a ~ 00010110, b ~ 10011010 

~ Table 6.3: J/lustrations of bitwise operations 

The rules for each bit-by-bit composition are shown in Table 6.4. 
Right shifts vary with signed and unsigned variables. To maintain the cor­

rect sign when shifting signed values, the sign bit is pushed in from the left as 
the bits are shifted right. In all cases, any bits that spill out from either end 

during a shift are discarded and lost. 
Now look at a and b as decimal values (18 and 158, respectively) rather 

than as bit patterns. The logical, non-bitwise operators give the following 

results: 

(a && b) is equivalent to 1 (true) since a is true (nonzero) AND bis true 

(nonzero). 
(a : : b) is also 1 (true) while !a = !b = 0 (false). 

The logical parallel to the bitwise XOR is!=, since (a!= b) evaluates to 1 if 
either a is zero and bis nonzero or a is nonzero and b is zero but evaluates 

to 0 if both a and b are zero or if both are nonzero. 



218 ,.. MASTERING TURBO C ,.. 

CH.6 

AND (&) 0 & 0 = O; 1 & 0 = O; 0 & 1 ~ O; 1 & 1 = 1; 
(i.e., both must be 1 to give a 1) 

OR (:) 0: 0 = O; 1 : 0 = 1; 0: 1 = 1; 1 : 1 = 1; 
(i.e., either or both must be 1 to give a 1) 

XOR ( A ) 0 A 0 = O; 1 A 1 = O; 1 A 0 = 1; 0 A 1 = 1; 
(i.e., either but not both must be 1 to give 1, hence the 
name eXclusive OR) 

NEGATE(-) -0=1;-l=O 
(i.e., reverse or invert each bit) 

~ Table 6.4: Rules for bit-by-bit composition 

~ Bitwise Applications ~ 
The bitwise operators are often used to clear, set, or invert individual 

bits within a flag or bit map. The idea here is to create a certain constant bit 
pattern called a mask and then perform operations such as (a = a & mask), 
(a = a: mask), or (a = a A mask) in order to update the bit pattern in a. 
These manipulations are so commonplace that the shorthand op=, as you 

saw with + =, is available: 

I 
a&= mask; a 1= mask; a A= mask; 

The choice of masks requires some practice, but once you are familiar with 
the following rules, things are quite logical: 

1. Use & with mask-bit = 0 to clear a bit to 0. 

2. Use & with mask-bit = 1 to leave a bit unchanged. 

3. Use : with mask-bit = 1 to set a bit to 1. 

4. Use : with mask-bit = 0 to leave a bit unchanged. 

5. Use A with mask-bit = 1 to invert a bit. 

6. Use A with mask-bit = 0 to leave a bit unchanged. 

Suppose the char status has the bit flags defined as shown in Table 6.5. 



Bit Number 

0 

2 

3 

4 

5 

6 

7 

Meaning 

0 = file closed; 1 = file open 

0 = read-only; 1 = read/write 

0 = random; 1 = sequential 

0 = private; 1 = public 

reserved 

reserved 

reserved 

0 = floppy; 1 = hard disk 

~ Table 6.5: Sample status byte 

~ STRUCTURES AND UNIONS ~ 219 

To create legible masks, you can start with some #defines. 

#define OPEN_ CLOSED 1 
#define READ_WRITE (1 << 1) 
#define RAND_SEQ (1 << 2) 
#define PRIV_PUB (1 << 3) 
#define FLOP _HARD (1 << 7) 
/*these give you a 1 in each bit position. 

You can build masks from them as follows *I 
I I 

status 1= (RAND_SEQ 1 PRIV_PUB); 
I* set bits 2 and 3, leaving the others unchanged *I 

status&= (OPEN_CLOSED); 
/*clear bit-0, leaving others unchanged */ 

I 
status A= (FLOP _HARD 1 OPEN_ CLOSED); 

/*reverse bits 0 and 7, leaving others unchanged*/ 
if (status & OPEN_ CLOSED) {/*do something if bit-0 set*/} 

.... Shifts in Action .... 
The shifts offer a faster alternative to multiplication and division by powers 

of 2. For example, a<< 2 is equivalentto a*4, while a>> 3 gives the same 

result as a/8. The same care over truncation and overflow is needed, and 



220 .,. MASTERING TURBO C .,. 
CH. 6 

you should note that>> and << have lower precedence (category 5) than 

+ and - (category 4). Shifts associate from left to right, so you sometimes 

find strange expressions like 

inti; 
i << 4 >> 8; 

used to extract the middle 8 bits from a 16-bit integer. Note also that 

a = a<< 2 can be shortened to a<<= 2, and so on . 

..,.. BIT f IE LDS ..,.. 
The bit field facility allows you to name structure components as individual 

groups of bits within a 16-bit field (maximum). As with the status byte listed 

above, bit fields allow you to pack a lot of information in a small space. The 

syntax is as follows: 

struct status { 
unsigned open 
unsigned read 
unsigned random 
int permit 
unsigned 
unsigned pointer 

} freg, greg, *reg_ptr; 

: 1 ; I* width of bit field *I 
:2; 
: 1; 
:4; I* int is allowed *I 
:3; /* unused - so no name*/ 
:5; 

The above 16-bit structure allocates six groups of bits and names five of 

them. Apart from the bit width specifier (:n) the usual rules for structure dec­

laration apply. There are a few minor quirks, as you'll see soon. The member 

selection operators are used to access structure components. 

The component freg.open would occupy bit 0, the first, low-memory bit 

of the structure. The reg_ptr ->read component would be 2 bits in bit posi­

tions 1-2, and so on. The :n; after each declaration indicates the width of that 

field. A zero bit width, (:0), is legal-it tells C to align the next field on an even 

address (padding, if necessary). Identifiers are optional, as shown in the fifth, 

unused field above. 

Although bit fields can occupy odd or even bit positions within a structure, 

they cannot straddle integer boundaries. You can form arrays of structures 

containing bit fields, but arrays of bit-field variables are not allowed. It is also 



~ STRUCTURES AND UNIONS ~ 221 

illegal to form the address of a bit-field variable with & since there is no guar­

antee that it has a byte address. 

Only signed and unsigned ints are allowed, but note carefully that the 

actual valid range of each irlentifier is dictated by its bit width. One conse­

quence of this is thata bit field of width 1 must be declared as unsigned since 

it can never hold a negative value! When you extract and manipulate a bit­

field component, it will be treated as declared (signed or unsigned int) in 

the obvious way. For example, a bit field of width 2 holding the binary value 

11 would be taken as 3 if unsigned but as -1 if signed. The sign bit is always 

taken as the leftmost bit of the field. Bizarre results can occur if you overflow 

the real bit-field range: 

greg.read = 3; 
greg.read * = 2; 

I* the 2-bit field now holds 4 (binary 10), not 6 *I 

Bit fields are commonly used to match the peculiar storage layouts of 

hardware devices-a communications interface, for instance, may provide 

signals and data via groups of bits within a 16-bit register. With memory­

mapped 1/0, such registers are actual memory locations. Rather than use 

bitwise operators to extract these values, bit fields can be used for elegance 
and legibility. 

Portability of such code may be a problem, though, mainly because differ­

ent systems have different conventions with respect to how bytes are stored 

within words in memory. The "low-byte/low-address" scheme, favored by 

DEC and National Semiconductor, contrasts with the "high-byte/low­

address" convention of Intel and Motorola. (The fierce proponents of each 
approach have been labeled "little endians" and "big endians" in honor of 

Swift's Gulliver's Travels.) The following program by Samuel P. Harbison and 

Guy L. Steele Jr. in C: A Reference Manual (Englewood Cliffs, New Jersey: 

Prentice-Hall Inc., 1987) is worth knowing if you plan to port your code to 
alien machines. It also provides an excellent insight into unions. 

#include <stdio.h> 

union { long Long; char Char[sizeof(long)]; } u; 
I* u can be viewed as a long or as a sequence of byte *I 

int main() 
{ 



222 .,. MASTERING TURBO C .,. 
CH. 6 

} 

u. Long = 1 ; I* low-order byte of long set to 1 *I 
if (u.Char(O] == 1) /*check which char has the 1 */ 

puts(" Addressing is right - to - left (little - endian)"); 
else if (u.Char[sizeof(long)-1]) == 1) 

puts(" Addressing is left - to - right (big - endian)"); 
else puts(" Addressing is strange"); 
return (O); 

The byte order will affect how bit fields exceeding 8 bits are organized. 
Another machine-dependent factor can be the maximum bit fields 
allowed-this is normally dictated by the word size of the CPU. 

Finally, it is perfectly legal to mix bit fields with normal variables within a 
structure or union. If file size was a critical factor, for example, you could 
pack three fields into one byte of the PLAYER_REC structure. 

typedef struct player { 
char name[29]; 
unsigned char player_number; 
unsigned position :4; /* 16 positions 0-15 */ 
unsigned doctor :3; /* 8 doctor codes 0-7 */ 
unsigned active :1; /* O=inactive 1 =active*/ 
union { 

unsigned int rbi; 
float era; } stats; 

DATE date_joined; 
} PLAYER_REC; 

~ SUMMARY OF CHAPTER 6 ~ 
..... A structure is a record containing a list of arbitrary variables. The decla­

ration syntax is 

struct [tag] { 
type1 var1; 
type2 var2; 

typen varn; 
} [struct_var1, struct_var2, ... ]; 



.- STRUCTURES AND UNIONS .- 223 

This allows you to declare structure variables immediately as above or 

later with 

struct tag struct_var3, struct_var4, ... ; 

if a tag has been named . 

.... Components are referenced as struct_var.member _var. If struct_ptr is 

a pointer to a structure, the components can be referenced as 

(*struct_ptr).member_var) 

or more economically as 

struct_ptr - >member_ var 

.... Structures of the same type can be assigned: 

struct_var1 = struct_var2; 

This transfers all components, including any arrays within the structure. 

.... Structures cannot contain themselves as a member, but they can con­

tain nested structures and pointers to themselves. This opens the door to 

interlinked data structures of all kinds. 

struct node { 
type1 data; 
struct facts { 

type2 data2; 
type3 data3; 

} 
struct node *next; 
struct node *previous;. 

} list1 , list2, ... ; 

struct tree { 
type1 data; 
struct tree *left; 
struct tree *right; 

} tree1, *tree_ptr1 , ... ; 



224 .- MASTERING TURBO C .­
CH.6 

...... Callows certain forward references to "pointers to structures" before 
the structure has been declared: 

struct s1 { type1 data1; struct s2 *s2_ptr;} struct_s1; 
/*forward reference to (struct2 *) • struct2 not yet declared */ 

struct s2 { type2 data2; struct s1 *s1_ptr;} struct_s2; 

...... The size of a structure can depend on the word- or byte-alignment 
option chosen. Dynamic memory for structures can be allocated using 
struct_ptr = (struct * )malloc(sizeof(struct)) . 

...... Unions are a special form of structure. (They are similar to the variant 
records of Pascal.) The two components of a union "share" the same 
memory allocation, but only one of them can be accessed at any 
moment. Unions are declared and accessed using the same syntax as 
for structures: 

union [tag] { 
type1 member_var1; 
type1 member_var2; 

} [union_var1, union_var2, *union_ptr1 , ... ]; 

union tag another_one; /*if tag available*/ 

union_var1.member_var1 = x; 
union_var2.member_var2 = union_var1 .member_var1; 
union_ptr->member_var1 = y; 

sizeof(union tag) is the maximum of sizeof(type1) and sizeof(type2). 
Unions can be nested in structures and vice versa. 

...... Bitwise operators perform bit-by-bit, Boolean operations on integer 
types. The bitwise AND(&)' must not be confused with the logical AND 
(&&). Likewise, bitwise OR (:)is not the same as logical OR ( l l ). The 

bitwise XOR does not have a logical "" sibling (you use I= for logical 
XOR). The two shift operators, << and >>, can be used to multiply, 
divide, and extract bit patterns. 

...... Bit fields are special structure components that allow you to have int 
variables of specified bit width (0-16). They enable you to access device­
dependent bit positions within bytes or words; they can also reduce 

record sizes by using bits as flags or small numeric fields. 







~CHAPTER 7 ~ 

I have touched on the subject of storage classes several times, hinting that 
they govern the accessibility and life span of the objects you declare and 

define in C. In this short chapter, I will knit together the various strands of this 
important subject and introduce some new storage classes. I will then ana­
lyze PLAYER.C (from Chapter h), in which storage classes play a leading role. 
· Before attempting to establish a formal terminology and syntax, I will show 

you some of the storage classes in action. Be aware of the fact that prior to 
ANSI C there were several ambiguities in this area, and different implemen­

tors still use different interpretations of K&R. The use of terms such as scope, 
external, and extent is also inconsistent in the C literature. I plan to converge 
to the truth by a series of approximations! 

Every variable and function in Chas an associated type and storage class. 
You have already seen how the type of an object establishes its memory 
requirements and its range of legal operations. The storage class determines 
other essential properties of the object such as scope (where is its declar(ltion 
active?), visibility (from which parts of the program is it accessible?), and 
extent (when is it created, initialized, and destroyed?). In addition, the stor­

age class can indicate whether selected integral variables should be stored in 
registers (if any are available) to improve execution speed. As you'll see, 
these properties are not exclusive-they overlap in various ways. 

~ STORAGE CLASS SPECIFIERS ~ 
A single storage class specifier can be used when you declare or define an 

object in order to establish (or request) certain storage class properties for 
that object. In most cases these properties have defaults that depend on 
whether the object is a variable or function and on where the declaration or 
definition is made. Explicit storage class specifiers are relatively rare, but 
don't be fooled! Storage classes, whether specified up front or not, are 
always assigned and always play a vital role in how your program behaves. 



228 • MASTERING TURBO C • 
CH. 7 

For those important occasions when you do need to alter the defaults, the 

storage class specifier goes in front of the data type specifier and modifier(s), 

if any. Here are some typical declarations/definitions that use the four basic 

storage class specifiers, auto, static, extern, and register. The comments 

will be expanded as I proceed. 

auto long sum = 3; 

/*sum is defined long int, storage class automatic. 
sum will be created and reinitialized each time this 
block is executed. sum disappears outside the block. 
The specifier auto is the default and can be omitted 
in this context *I 

static char ch = '\O'; 
/*ch is defined/initialized as a char with static extent. 

ch is 'private' to a block, function or file *I 

static int func(void); 
/*tune() declared: it returns an int and will be defined 

as static later in this file - - see below *I 

static int func(void) 
{ I* function body *I } 

/*tune() defined, but will not be exported to linker. 
tune() is therefore 'private' to this file *I 

extern int count; 
/*count is declared int, storage class external. 

No storage allocated -- count will be 
defined in another file *I 

extern void func2(double d); 
/* func2() is declared external; its returned value is discarded; 

its name will be passed to the linker. func2() is 
accessible from other files *I 

/* NOTE: extern is always assumed with function declarations 
in the absence of the static specifier *I 

register unsigned i; 



.- STORAGE CLASSES .- 229 

I* i is unsigned int; same as auto except that if possible 
i will be stored in a register rather than RAM *I 

(This selection should be considered as isolated examples rather than as a 
contiguous sequence you might expect to find in a legal program. It is 
intended to illustrate the variety of combinations available.) 

Technically speaking, the keyword typedef is also a storage class specifier, 
but I will confine my discussion to the four classes listed above for the 
time being. 

The word default in relation to storage classes must be treated with cau­
tion. With type specifiers it makes no difference whether you write 
unsigned or unsigned int since int is the true default. But you'll meet situa­
tions in which a variable "defaults" to external because of the placement of 
its declaration, and yet the apparently innocent, superfluous use of the 
extern specifier materially affects the situation! In other words, there are 
occasions when you must omit the default storage specifier. I'll point out 
these quirks as we continue. 

To appreciate the differences between the four storage classes, you need 
to carefully distinguish the related concepts of scope, visibility, and extent . 

..,.. SCOPE..,.. 
The declaration of an identifier is active over a certain region of the source 

code text, known as its scope. With one major and two minor exceptions, an 
identifier cannot be legally referenced outside its scope. These exceptions 
allow what are known as forward references. 

The two minor anomalies are 

1. goto label is valid before the label: is encountered. 

2. struct, union, and enum tags can be forward referenced under some 
circumstances (see Chapter 6). 

The major exception is that the C compiler will supply the implicit declara­

tion int func( ); if you call func() before its explicit declaration. The use of 
prototype declarations, encouraged under ANSI C and Turbo C, can elimi­

nate this potentially dangerous situation. 



230 ~ MASTERING TURBO C ~ 
CH. 7 

So, in the majority of cases, the scope starts with the declaration. Where 
the scope ends depends on where the declaration is made in relation to the 
source text, i.e., outside or inside a function definition . 

.... Scope of Top-Level Declarations .... 
Declarations made at the head of a program file, before any of the func­

tion definitions, are called top-level declarations. The scope of these is from 
the point of declaration until the end of the source file. This is often called 
global scope (but there are some caveats about this description that I'll 

explain later) . 

.... Scope of Declarations within Functions .... 
Declarations made within a function definition fall into two categories. 

They can occur as formal parameter declarations, in which case their scope 

is from the point of declaration to the end of the function definition, or they 
can occur at the start (or head) of any block within a function definition. A 
head-of-block declaration has a scope from the point of declaration to the 

end of that block. 
Both formal parameters and head-of-block variables are said to have local 

scope. The scope of a formal parameter is local to the function, while the 
scope of a head-of-block variable is local to its block. (Be careful not to mis­

use the term local-it has different meanings when applied to scope and 
extent. You will see later that a variable with local scope need not have local 
extent. Unless the context is absolutely clear, avoid statements such as "xis 
local." The correct usage is, "x has local scope," or, "x has local extent.") 

Program 7.1 is a generic C source file to illustrate how scope is affected by 
the location of the declaration. 

Note the absence of storage class specifiers! In GENERIC.C the scope has 
been determined completely by the placement of the declarations. The vari­
ables global_int and global_ch_ptr can be used freely within main() and 
any of the functions . 

..,. VISIBILITY ..,. 
Normally an identifier is visible throughout its scope, that is, references to 

that identifier will be related by the compiler to the original declaration in 



~ STORAGE CLASSES ~ 

/* GENERIC. c *I 

/* top--level ---- outside any function definitions */ 

/*---------- - --- ------- -- - - .. . - - - - - -----------*I 
/* include header files * / 
/*- - ---- - --- - -- ---------- - - - - - - - - - - -- -- - -- - ---*I 

#include <any.h> 
/* any declarations pulled ln here are top--level with scope 

extending to the end of Uit• file GENERIC.C */ 

/*-- --- - --- --- -- --*I 
/* macros * / 
/*- - - --- - -- --- ----*I 

#define X Y 
/* any macro names here have ~~co1w until end of file or until an 

#unde f unde fines them * / 

/* #includes and #defines can lw placed anywhere, but they are 
usually safer as shown to g i VP maximum scoping * / 

/*-- --- --- -- - ---- ----- --- ---- - - - - - - - ----------------------*I 
/* funcZ prototype declaration * / 
/*-------- -- --- --------"----- - - - - - - - ----------------------*I 

void func2(int a, char *b) i /* note the ; for a func 
declaration * / 

/* vars a and b are not formally declared hete -- they provide a 
'template' so that calls to func2 () made before its definition 
can be checked for valid arg types and numbers * / 

/* you are still at top--level I * / 

int global_int; /* two top--level declarations */ 
char *global_ch_ptr; /* scope is the whole source file */ 

/*- - ---------- -- - - - --- --- --- ----------- --- *I 
/* funcl (} definition * / 
/*- -- ---------- -- -------- --- ------- -- -----*I 

int funcl(a,b,c) /*no ; after a func definition*/ 
/* now inside funcl () definition * / 
/* formal parameters classic style declarations * / 

int a,b,c; 
/*scope of a,b,c is local---- from here until the end of the 

function definition */ 
/* a and b have no connection with the prototype args of 

func2 () * / 
{ 

/* head--of--block A */ 
int local_int_A; /* scope is block A * / 

/* head--of--inner--block B */ 
int local int_B; /* scope is block B */ 

/* scopes of local_int_A and local_int_B overlap here * / 

} /* end block B */ 

/* end block A, also end funcl() definition 

~ Program7.1:GENERIC.C 

231 



232 ~ MASTERING TURBO C ~ 
CH. 7 

/*- ----- --------- - -- -- - -- -- - ----------end of funcl () definition---------- --- - - -- -- ---
--- --------• / 
/*- - - -- - - - -- --- -- - - - - - - - - - - - - --- - - --- - -- - -*I 
/* main() starts here */ 
/*------------------ -- --------------------• / 
void main (void) 
{ 
/* head--of--block * / 

int local int main; /* 2 local--scope vars * / 
char *loc;l_ch_ptr_main; /* scope is main() */ 

func2(local_int_main, local_ch_ptr_main); /* call func2() */ 
func2(global_var, global_ch_ptr); /* call func2() */ 

/* both calls valid, since actual args are assignment compatible with those of the 
prototype; also, the actual args are used within scope */ 

int local main • func3 (local int main); 
/* call to an ;;ndeclared function-;- fu;;c3 ()I 

} 

The compiler will make an implicit declaration: 
extern int func(); hoping that func3 will be defined eventually ---- see note on 
implicit declarations above. 
If func3 () is not defined elsewhere, a link--time error occurs. If func3 () is 
defined as returning a non--int results may be bizarre */ 

/*------------------------------------------end of main()---------------------------­
-----------------*I 

/*-- - -- - - ---- - -- --- - -- - - -- ---- -- - - - - - - - - - - --*I 
/* func2 () definition * / 
/*-- --- - - ------- -- - --- - - -- -- - -- - - - -- - - -- -- - -• / 

void func2(int a, char *b) /*modern style fomal parameter declaration */ 
/* scope of a and b is whole of func2 () body ---- unrelated to earlier a' s and b, s * / 
{ 

/* global_int and global_ch_ptr could be used here, as well as a 
and b */ 

} 
/*------------------------------end of func2 () definition-------------- - ---- ---------

* / 

/**********************I 
/* end of source file */ 
/**":*******************I 

~Program 7.1: GENER/CC (continued) 

order to determine data type and current value. The annoying exceptions 
occur when the same name is legally used to declare a new identifier within 
the scope of the original identifier. If duplicate identifier names were ruth­
lessly banned, scope and visibility would coincide! 

Visibility therefore relates to the region of a source text in which an identi­
fier reference refers to the object as originally declared or defined. An 
identifier is never visible outside its scope, but it may become invisible dur­
ing its scope! 



~ STORAGE Cl.ASSES ~ 233 

As you read through a source text, you will see identifiers coming in and 
out of scope according to the scoping rules outlined above. If all the identifi­
ers are uniquely named, then scope and visibility coincide throughout. 

When identifier names in the same name space are duplicated, however, 
one declaration may hide a previously declared identifier. 

ANSI C specifies five name spaces: macros, labels, tags (for struct, union, 
and enum), components (of struct and union), and all others (variables, 
functions, typedef names, and enum constants). Name spaces are also 

called overloading classes. C keeps a separate table of names for each of 
these, so the five objects called same in the following bizarre snippet are all 
distinct and can share the sanw scope level without clashing. 

#define same = = 
if (x same y) { ... } 

#undef same 

int same; 
struct same { 

int same; 
} Same; 
same: 
Same.same = same; 

I* macro name *I 

I* variable name *I 
/*tag*/ 
I* component *I 
I* 'same' here would be illegal *I 
/* label */ 
/* ! *I 

Pre-ANSI C compilers may have different name spaces, so for maximum 
portability (and common sense) you should avoid excessive duplications 
regardless of class. 

An illegal duplication occurs if you try to redeclare an identifier belonging 
to the same name space while still at the same scope level as the original 
identifier. Replacing Same with same in the previous snippet would result in 

an error since the int variable same is still in scope and struct variables share 
the same name space as other variables. 

Once you move into a distinct scoping level, though, the same identifier 
can be legally redeclared. The original identifier is hidden until the new dec­
laration's scope ends. Rather than attempting a rigorous definition of scope 

levels, I offer an example that should clarify the situation. 

main() 
{ 

int i = 9; I* top - level *I 



234 .,.. MASTERING TURBO C .,.. 
CH. 7 

} 

float i; 
char ch; 
i = 3.141; 

void func1 (void) 
{ 

i = 3; 

ch = 'A'; 

void func2(void) 
{ 

char i; 

/* i is a float throughout main() *I 
/* inti is now hidden but still in 

scope with value 9 *I 

I* i reverts to int *I 
I* float i is out - of - scope and 

therefore invisible *I 
I* ILLEGAL reference! ch not visible *I 

I* i is a char throughout func2( ) *I 
/*inti is hidden again but still in 

scope with value 3 *I 

I* char i is now out - of - scope and therefore inaccessible *I 
/* More on this when extent of variables is dicussed */ 
I* i reverts to int here if any further references *I 

Since Turbo C supports identifiers that comprise as many as thirty-two 

characters (allowing more choices than there are atoms in the solar system) 

you may wonder why programmers cannot avoid such confusing duplica­

tions. I wonder too. It may be that certain small "temporary" identifiers such 

as i, sum, and count are irresistible. It is also the case that individual func­

tions are often developed in isolation, so hiding does serve as a useful pro­
tection against unplanned duplications. 

The key point is that a reference to an identifier must be interpreted as 

applying to the currently visible declaration. 

~EXTENT~ 

The extent of an object refers to the period of time during which the object 

is allocated storage. Extent is therefore a run-time property. As with scope, 

though, your source code controls extent by means of storage classes and 



~ STORAGE CLASSES ~ 235 

the placement of declarations and definitions. Extent applies only to vari­
ables and functions since other objects, like data types and typedef names, 
are not run-time entities. 

There are three classes of extent: 

1. Static extent applies to those objects that are allocated fixed memory 

locations when the program executes and retain those allocations 
until the program ends. All functions have static extent, as do vari­
ables declared at the top level. Variables declared elsewhere are not 
normally of static extent, but some can be made so with the static 
and extern storage class specifiers. A static-extent variable is initial­
ized only when it is first created. If no explicit initializer accompanies 
its declaration/definition, a static-extent variable is cleared to zero. 

The two key properties of static-extent variables are that they 
endure throughoutthe program and they retain their values between 

function calls regardless of their scope and visibility. (In addition to 
this correlation between static and the property of "permanence" 
you'll meet in C a less obvious connotation, namely "private." This 
will be clarified when I explain the static storage class.) 

2. Local or automatic extent applies only to variables, never to func­
tions. Local-extent variables are allocated memory (and given values, 
if initialized) as their local function or block is executed. At the end of 

this execution, local-extent variables are destroyed, their memory is 
deallocated, and their values are lost. If the function or block is reex­
ecuted, local-extent variables are automatically re-created at the 
point of declaration and any initializers are reapplied. This explains 
the term automatic extent. In the absence of explicit initializers, auto­

matic variables will contain garbage when created. Contrast this with 
static-extent variables, which are always initialized either to zero or 

to your specific instructions. 
Formal parameters are always of local extent, but other variables 

can have either static or local extent depending on the declaration 
format and placement. The general rule is that top-level variables 
have static extent and head-of-block variables have local extent. You 
can vary these defaults only by using storage class specifiers. 



236 • MASTERING TURBO C • 
CH. 7 

3. Dynamic extent applies only to temporary, user-generated objects 
allocated with malloc( ) (or a similar dynamic memory-allocation 

library function) and deallocated using free(). The dynamic classifi­
cation is not strictly a part of C's scoping or extent rules. Keep in mind 
that although malloced objects are created and destroyed at arbi­
trary moments in your program, the pointers you use to access them 
are represented by variables subject to the scoping and extent rules 

under discussion. 

~ Extent and the Memory Map ~ 
From a RAM point of view, it is useful to picture three areas of user mem­

ory defined at run time: the text or code area holding the .EXE file (machine 
instructions), the data area storing all the static objects, and the dynamic area 
holding the automatic and dynamic variables. 

The layout of the text and data areas depends on the memory model. The 
small model limits you to two 64KB segments, one for text and one for static 
data. With the larger memory models the text and data areas may each 
occupy several distinct 64KB segments. 

The dynamic area contains both the stack and the heap. The stack is a con­

stantly changing LIFO (Last In First Out) data structure in which automatic 
variables (including any local parameters being passed to functions) are tem­
porarily created, accessed, and discarded. The heap is the area from which 
malloc() grabs its memory allocations. Its size will vary with memory model, 

the amount of user RAM, and the size of your program and data areas. 
You should now have a feel for scope, visibility, and extent. Their proper­

ties are as summarized in Table 7.1 . 

..,.. SCOPE AND EXTENT RELATIONSHIPS..,.. 
Now I come to the tricky parts: how do these properties affect program­

ming strategies, and how do you establish each property for any given object 

in a C program? 
Though extent and scope are closely related, they are distinct properties. 

Callows you to have objects with static extent that are not accessible from all 
parts of the program. In other words, although scope cannot "exceed" 
extent (there's nothing there to access), extent can "exceed" scope (it's there 
but you can't access it). To explain the implications of this, I need to discuss 

how C programs are constructed from several files. 



.. STORAGE CLASSES .. 237 

Declaration Point 

Outside Function 
(top-level) 

Inside Function 

Formal parameter 

Head-of-block 

Scope/VisibilitY* 
(from declaration 
to end of. .. ) 

File 

Function 

Block 

* Scope equals visibility unless hidden by duplicate name. 

Extent 

Static 

Local 

Local or Static** 

** All functions have static extent Extent of variables depends on storage class 
specifier. 

~ Table 7.1: Scope, visibility, and extent 

~ Scope and Separately Compilable Files ~ 

I mentioned earlier that top-level and inside-function scopes are often 
called global and local scopes respectively. As in Pascal, top-level declara­

tions extend to the end of the file, while the inside-function declarations are 
confined to their local function or block. 

In C, however, the word global has somewhat different connotations than 

in Pascal. As in Pascal, a global C identifier is certainly "available" to all fol­
lowing sections of its file, but, unlike standard Pascal, a C program may con­
sist of several separately compilable files (often referred to as modules). 

Indeed, unless you want to forgo the assistance of the C library functions, 
your final programs will definitely contain code pulled in from many files. 

Apart from the fact that you supply a unique file holding the function 
main(), all the component files are technically equal-there is no built-in pri­
ority scheme for modules. 

main() always starts the ball rolling. It can process any visible data and call 

any accessible function. A called function in turn can process its own visible 

data and call any of its accessible functions. The process continues until the 
final statement, which is usually back in main(), is reached. 

Four types of data are available to a function: local parameters (copies of 

actual arguments passed to the function); local "working" variables declared 
within the function; dynamic variables created with malloc( ); and, finally, 



238 .- MASTERING TURBO C .­
CH. 7 

any visible global variables. The latter may be top-level-declared/defined 
objects global to a particular file, or they may be set up to be global to several 
files. Some authors use the term semiglobal for identifiers limited to a particu­
lar file, reserving global for identifiers that can straddle several files. 

How do scope and extent fit into this grand plan? The answer lies with the 
interaction between storage classes and the linking process. 

~ The Role of the Linker ~ 
The linker combines the various .OBJ files (some of which may be embed­

ded in standard or user-supplied libraries) to produce the final executable 
.EXE file. 

You can see immediately that this complicates the simple division of identi­
fiers into local and global scopes. Some objects may be global for a particular 

file, and others may need to be accessed from several files. You may also 
wish to hide the details of a data structure but allow its manipulation via cer­
tain functions. (This is known as data abstraction and has the further merit 
that the data can be restructured without the user being bothered.) Con­
versely, selected functions within the same module may need to be hidden 
while some variables are freely exported. (These problems do not arise with 

standard Pascals, which do not support separate compilability, but Modula-2 
and Ada programmers will recognize the situation.) 

For these and other reasons, C lets you vary the accessibility of objects 

with the extern and static storage class specifiers. During separate compila­
tions you' II want to suspend the identifier unknown message by explicitly or 
implicitly tagging certain objects as external, thereby exporting their names 
to the linker. 

~ EXTERNAL IDENTIFIERS ~ 
C uses the physical file as a basic mechanism to establish the scoping of 

objects, but objects within any file can be made external (explicitly or by 
default). Now automatic variables come and go with no fixed abode, so we 
certainly exclude these from being external. Only static-extent objects can 
be sensibly passed to the linker, thereby allowing other files to access them. 

Remember that all functions have static extent (you cannot alter this prop­
erty), so they are obvious candidates for exporting to the linker. In fact, 

unless you take special action, a function defaults to external, meaning that 



~ STORAGE Cl.ASSES ~ 239 

functions in any file are usually callable from any file linked to it. As you'll 
see, you can select which static-extent identifiers, functions, or variables, are 
exported, but there are complications if the same object is declared in sev­
eral files. 

Summing up, whatever scope an object may enjoy within its own file, it 
can only be referenced by other files if it has static extent and if its identifier is 
known to the linker. The function of the extern storage class specifier 
(whether explicit or implied) is to give a variable static extent and to export its 
identifier to the linker. By cont r<1st, the static specifier (which must always be 
stated explicitly) conveys static E'Xtent but witholds the identifier from the 
linker, thereby reducing its anl'ssibility to a particular file, function, or block 
(depending on the scope). This is the "private" connotation of static that I 
mentioned earlier. 

(This terminology, already suffering from two connotations for the word 

static, has become further confused because some books refer to top-level 

static declarations as external or external static, [meaning that they are exter­
nal to the functions in a file] as opposed to internal static, [which would mean 
static declarations made at head-of-block within a function]. I will reserve 
the designation external for those externed objects available to several files.) 

The same external object can be declared (no storage allocated) in several 

files but must be defined (storage allocated) in only one of the .OBJ files pre­
sented to the linker. The linker first has to check for consistency among these 
independent declarations of the object and its unique definition and then 
make sure that all references in the component .OBJ files are made to the 
defined object (the "real" one, i.e., the one with memory allocated at a 
known run-time location). 

Even with our simple HELLO.C, these machinations have been involved 
behind the scenes! The #include directive in HELLO.C brought into your 
source code various function and variable declarations. The compiler 

passed the external function name printf to HELLO.OBJ, and the linker 
checked it against the appropriate precompiled definition in one of the .LIB 
collections of .OBJ files. 

~ Referencing and Defining Declarations ~ 
It will become increasingly important to keep in mind the fundamental 

difference between referencing declarations and defining declarations of 
identifiers. 



240 • MASTERING TURBO C • 
CH. 7 

With functions it is easy to spot the difference. Function definitions have 
bodies containing the necessary code, whereas function declarations 

have no bodies. Functions can be declared at the top level or at head-of­
block within another function's definition, but it is illegal to define a function 
within a function definition. (Pascal users may consider this a strange limita­
tion since Pascal allows the nesting of procedure definitions.) Remember, 

though, that a function can be called recursively from within its own defining 
body. This is a direct result of the scoping rules stated earlier-the scope of a 
function stretches from its definition or declaration point to the end of its 
containing file. 

~ EXTERNAL FUNCTIONS ~ 
All C functions are external by default no matter where they are declared 

or defined. The storage class specifier extern is assumed unless you use 

static, which is the only other legal specifier for a function. When you 
declare an external function, you are telling the compiler/linker that some­
where, in this file or in another to be linked, this external function will be 
defined just once. A function is made external simply by omitting the storage 
class specifier. You are allowed to add a redundant extern to a declaration or 
definition of an external function. 

By passing all the external function names (including possible duplicate 
declarations) to the linker, you ensure that all calls to tune() will be associ­
ated with the unique definition of tune(). This simply means that the exter­
nally defined tune() becomes freely accessible by linking its .OBJ file with 

your own .OBJ files. By accessible, of course, I mean callable-the source 
code for tune() may·well be under lock and key beyond your reach, and 
you may just have the minimum written explanation of what the function 
does and how to call it. 

~ STATIC FUNCTIONS ~ 
What the static specifier does with functions is to limit this accessibility 

by withholding the function name from the linker. If you create the file 
MYPROG.C as follows: 

/* MYPROG.C */ 



.- STORAGE CLASSES .- 241 

static int secret( char ch) I* function defined as static *I 
I* ch is local scope, local extent *I 
{ I* body of secret() *I 

inti = O; 

return i; 
} 

int public(char ch) /*function defined as external*/ 
I* extern storage class specifier by default *I 
I* ch is local scope, local extent *I 
{/*body of public()*/ 

return 2*secret(char ch); 
/* Legal call to secret() since scope of secret() is from definition point 

to end of MYPROG.C *I 
} 
I* end of file MYPROG.C *I 

you can compile it to MYPROG.OBJ and let other programmers link it to 
their .OBJ files. You offer them MYPROG.H, which contains the prototype 
declaration int public(char ch); with some comments on how to call it 
and what it does. The secret() function cannot be called directly by other 
users even if they know of its existence. When they write THEIRPRG.C, com­
pile it to THEIRPRG.OBJ, and then link it with MYPROG.OBJ to get 
THEIRPRG.EXE, any attempted calls on secret() other than the ones made 
within MYPROG.OBJ would result in a link-time error. The static specifier 
has prevented the export of the name secret to the linker. The function 
public() was declared as external (by default) in MYPROG.H and defined as 
external in MYPROG.C with matching arguments and returned values. The 
compilation of THEIRPRG.C would "warn" the linker that an externally 

defined function called public() is expected somewhere, and this expecta­
tion would be eventually fulfilled. 

The following snippet recaps the syntax of extern and static with function 
declarations and definitions: 

[extern] [type] func1([arglist]); 
/*the declared function is known to the linker - it will be 

defined as external elsewhere *I 

/*WARNING: you cannot omit both extern and type*/ 
/* [type] will default to int and storage class will default to 

extern - BUT you cannot omit BOTH lest the resulting 
declaration looks like the func1 call: func1( ); ! */ 



242 .,. MASTERING TURBO C .,. 
CH. 7 

static [type] func2([arglist]); 
/* the declared function will be defined later in this file with 

storage class static and matching type and arglist *I 
[extern] [type] func1 ([arglist]) 

[parameter declarations] 
{ function_body 

[return var;] 
} 
/*define an external function - NO storage class specifier 

implies extern; other files can reference this function *I 

/*[type] defaults to int*/ 
/* NOTE: extern and type can BOTH be omitted in a definition -

there is no possible confusion with a call to func1( ); */ 

static [type] func2([arglist]) 
[parameter declarations) 

{ function_body 
(return var;] 

} 
I* define a static function - explicit storage class specifier 

is required; this function can be referenced within current 
file only - name not exported to linker *I 

I* [type] defaults to int safely, because the storage class is explicit. *I 

The first example above carries a warning. Consider the following variants: 

I* classical declarations *I 
extern int myfunc( ); 
extern myfunc( ); 
int myfunc( ); 

myfunc( ); 

/*[type] defaults to int OK*/ 
I* defaults to extern OK *I 

I* NOT a declaration but a CALL *I 

In other words, you cannot default both the storage class and the returned 
type. I recommend that you always supply both storage class and type to 
provide increased legibility and peace of mind. 

As I mentioned earlier, the keyword static is often a source of confusion. 
All defined functions, whether extern or static, have static extent. Both 
func1 ()and func2() (above) are assigned storage throughout the run life of 
the linked program, and the defining names func1 and func2 are pointer 
constants that hold the addresses of their respective implementation codes. 
Their scopes differ as stated, however. func2( ) can only be called from 
within its own file, and func1() can be called from any file that declares 
func1() consistently and is linked to the defining file. 



11> STORAGE Cl.ASSES 11> 243 

~ EXTERNAL VARIABLES ~ 
As with functions, you can control whether variable identifiers names are 

passed to the linker or not. The basic principle is the same: If a variable is to 
be accessible from other files, it must have static extent. It must also be 
declared external in each client file and defined as external somewhere just 
once. Unlike functions, variables only default to external when declared/ 
defined at the top level, outside the functions. Elsewhere, the explicit speci­
fier extern is needed with the declaration to request linkage with the 
variable's definition in some other file. 

The definition of the external variable is distinguished from any of its decla­
rations by the absence of the specifier extern! Also, to avoid chaos, only the 
defining declaration can have an optional initializer attached. When you 
think about it, initialization only makes sense for a static-extent variable at 
the time it is created, that is, at run time when the definition is encountered. 
Keep in mind that static-extent variables are initialized only once, either to 
zero in the absence of an explicit initializer or to the constants of the evalu­
ated initializer. 

Before ANSI C clarified the distinction between external-variable referenc­
ing declarations (no storage allocated, no initializer) and defining declara­
tions (storage allocated, optional initializer), different compilers used 

different strategies. Fortunately, Turbo C follows the ANSI C proposal that 
external variables be declared and defined as follows: 

I* start of file A *I 

extern int x; I* this is a referencing declaration *I 
/*compiler knows that xis an external int to be defined 

elsewhere. No memory yet, so no initializer *I 
/* location of this declaration will determine its scope in file 

A. Regardless of scope, x will have static extent *I 

x++; I* reference to x is OK if visible in A *I 

/*end of file A*/ 
/*****************/ 

I* start of file B *I 

I* top - level only *I 
int x = 3; I* this is the defining declaration *I 

/*Note absence of extern. Note optional initializer*/ 
/*Scope of xis whole of file B */ 



244 ~ MASTERING TURBO C ~ 
CH. 7 

I* end of file B •I 
/*****************/ 

The variable x defined in file Bis truly global in the sense that any function 

in any file like A that declares extern int x; can access x within that declara­

tion's scope. As with external functions, the linker must check that any exter­

nal variable declarations encountered are consistent with the unique 

variable definition. Such global variables are clearly exposed to inadvertent 

changes in unexpected places that can make debugging even more painful. 

~ STATIC VARIABLES ~ 
You can protect a variable from abuse by using the static specifier, just as 

you saw with functions. static int x; tells the compiler not to pass the name x 

to the linker. static also performs the important task of giving x static extent, 

no matter whether the declaration occurs at the top level or head-of-block. 

Note that formal parameters cannot be declared as static since they exist 

only for argument passing and must clearly be of local scope and extent. 

The presence of static in a declaration also indicates that it is a defining 

declaration, so memory is allocated. Any explicit initiaiization is performed 

just once-when the declaration is encountered. In the absence of an 

explicit initializer, static variables are cleared to zero. It is important to note 

that static variables can only be initialized with constants or constant expres­

sions, whereas auto variables can be initialized using constants or other pre­

viously declared variables. 

The once-only static initialization must be understood-it contrasts funda­

mentally with the reinitializations that occur each time an auto (or local­

extent) declaration is executed. Consider the following snippet: 

{ inti = 1; 
static int j = 6; 

i++;j++; 
printf("i = O/od, j = O/od\n", i, j); 

} 

I• auto implied *I 

If the above block were executed three times in succession, the resulting dis­
play would be 

i = 2, j = 7 
i = 2, j = 8 
i = 2, j = 9 



.,. STORAGE Cl.ASSES .,. 245 

You can see that i is set to one each time round, while j retains its previous 
value once it has been initialized. 

~ Static Variables in Action ~ 
This example highlights a common application for static variables: Often 

you simply want to preserve a value between function calls or block exe­
cutions, and the other implications of static (nonexport and privacy) are 
incidental. An oft-used illustration is that of calculating a seed for a random­
number generator. Each call calculates a new seed based on the previous 
value, so either a global variablP or an internal static variable must be used. 
The latter is safer, as explained Parlier. 

Although Turbo C contains the library functions rand() and srand() in 
STDLIB.H, it is instructive to write your own pseudorandom-number gener­
ator. LOTIERY.C (Program 7.2) keeps picking three lucky numbers until you 

enter a Q to quit. 

/* lottery.c - picks three lucky numbers */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 

#define FIRST SEED 17 
#define MULTIPLIER 5 
#define INCREMENT 1 
#define MODULUS 4096 

int randy(void); 
void show3rand(void); 

void main(void) 
{ 

do { 
show3rand(); 
printf ( "\nHit a key for more - Q to Quit: "); 

} 
while (getche() != 'Q'); 

int randy(void) 
{ 

static int seed = FIRST SEED; 
seed = (seed*MULTIPLIER-+ INCREMENT) % MODULUS; 
return seed; 

void show3rand(void) 
{ 

printf( "\n\tLucky Numbers are %d,%d,%d\n" ,randy() ,randy() ,randy()); 

... Program 7.2: LOTTERY.C 



246 ,.. MASTERING TURBO C ,.. 
CH. 7 

~ Analysis of LOTTE RY.C 
I refer you to Donald Knuth's definitive text on random number genera­

tors, The Art of Computer Programming (Volume 2: Seminumerical Algo­

rithms. 2d ed. Reading, Mass.: Addison-Wesley, 1981). My extremely naive 
example is a linear congruential formula explained on page 170 of that book. 
The key point is that the first time randy() is called, seed is initialized with 

the constant FIRST _SEED. Subsequent calls bypass the initializer, and 
seed retains the same value it had when randy() was last exited. 

Because randy() itself is extern by default, other files could access it by 
declaring int randy(void);. On the other hand, the variable seed cannot 
be accessed or altered except via calls to randy(). Even main{) and 
show3rand() cannot access seed directly even though they are in the same 
file as randy(). By defining randy() as static, you could block access to seed 
from any function outside LOTIERY.C. 

..,. SUMMARY-
THE IMPORTANCE OF SCOPE AND EXTENT ..,. 

The key to program security and robustness is local and global scope. 
Local variables are protected from deliberate or accidental change by func­

tions or blocks of code outside their own bailiwick. Global variables are 
more at risk in that they can be legally changed by any statement in any func­
tion within their scope. Globals must therefore be used sparingly and only 

where functions need to share and modify the same variables. 
I have some bad news and some less bad news on how a function can 

access a global variable. First, the bad news: the global variable might 
appear in the body of the function. If so, it is possible for the function to mod­

ify the variable quite independently of the normal argument passing mecha­
nism. This reduces the modularity of the program and should be avoided. 

The less bad news is that you can pass a global variable as an argument to 
the function. In this case, remember that the formal parameters of a function 
have local scope so that the function acts on a local copy of the real argu­
ment. Any side effects are therefore confined to the called function, but you 

may be able to make use of the returned value back in the calling function. 
The only other way to directly change a global is to pass a pointer as argu­
ment. This has its dangers, but at least the format of the function indicates 



~ STORAGE CLASSES ~ 247 

what is going on. The following snippet shows the three possibilities: 

I* how functions can attack a global variable *I 

inti = O; 

void inci(void); 
int inc1 (int i); 
void inc2(int *i); 

void main() 
{ 

inci( ); 

I* top - level global *I 

printf("\ni = O/od",i); /* i now= 1 */ 
i = inc1 (i); 
printf("\ni = O/od",i); /* i now = 2 */ 
inc2(&i); 
printf("\ni = O/od",i); /* i now = 3 */ 

void inci(void) I* increments i in body- not a good idea *I 
{ 

++i; 
} 

int inc1 (int j) 
{ 

return ++j; 

void inc2(int * j) 
{ 

++(*j); 
} 

I* increments a copy of i & returns value *I 

I* takes &i as arg and increments i *I 

~ THE register STORAGE CLASS ~ 
The final storage class specifier to consider is register. It is applicable only 

to automatic variables (both head-of-block and formal parameters) of integer 

type, such as int, unsigned, short, char, and 16-bit pointers. Unlike the 

other specifiers I have discussed, register is entirely a suggestion to the com­

piler. The suggestion in 



248 • MASTERING TURBO C • 
CH. 7 

{register inti; /*set to auto if no register free*/ 
for (i = O; i < 10000; i + +) 
{ . " } 

I* i no longer exists here *I 

is that since i is heavily used it should be allocated to a register, if possible, 

rather than to the usual RAM of the stack. If there is no spare register the dec­
laration is taken as auto inti;. 

All data movements and arithmetical operations are much faster with data 
in registers than when memory has to be accessed. Using registers, then, is a 
good thing, and the more frequently a candidate variable is accessed during 
its lifetime the more the savings will show. 

On the other hand, the 8088/86 family is not excessively endowed with 
registers! Because of all the other jobs that registers have to do during execu­
tion (holding temporary values, keeping track of segments and stacks, and so 
on) SI and DI are usually the only ones available for holding register vari­

ables. Recall that SI and DI are each 16-bit, which explains the restriction to 
integer and near-pointer data types. These two registers will be assigned on a 

first-come, first-served basis, so you should position your register declara­
tions accordingly. 

The scope of a register variable is exactly the same as that of the corres­
ponding auto variable. In the above example, i ceases to be a register vari­
able as soon as the for loop ends. The register, if one was assigned, is then 
free for any subsequent register requests. 

Under some unusual circumstances it is possible that the same register 
declaration could be encountered a second time with a different register 
allocation prevailing, so your variable could be register on one occasion 
and auto on another. 

One important limitation applies to register variables. You cannot apply 
the address operator (&) since a register variable does not have a memory 
address. Even if a register is not found, Turbo C would signal an error after 
processing the following snippet: 

int *kp; 
register int k; 
kp = &k; I* ILLEGAL even if k is non-register *I 

This makes sense portability-wise in view of the fact that you can never be 
certain whether a register would be found for k on any particular system 
or invocation. 



.,.. STORAGE Cl.ASSES .... 249 

~ Register Variables and Optimization ~ 
Using registers for autom<Jtic variables, including formal parameters with 

functions, is a common ploy undertaken by optimizing compilers. Uncon­
trolled optimization can haw ~ome bizarre, self-defeating effects, so sensible 
compilers like Turbo Callow you to select from various optimizing strategies 
or to disable optimization completely. Since one of these options affects the 
register specifier, this is a good opportunity to review the optimization 
aspects of Turbo C. 

If you browse through the IDF Options/Compiler menu, you'll find the 
Optimization submenu with th<' following selections: 

..... Optimize for: Toggles betw<'('ll Size and Speed. Compiler will choose 
either the smallest or the fast<'st code sequence. The equivalent TCC.EXE 
command-line options are - G for Speed and - G - for Size. 

..... Use register variables: Toggles between on and off. When on, the com­
piler will try to use register for auto variables; when off, the register speci­
fier is ignored (except that & is still illegal with a register variable). Apart from 
timing exercises and interfacing with certain assembly-language routines, 
this option is better left on (the default). The TCC.EXE equivalents are - r (on) 
and - r - (off). 

..... Register optimization: Toggles between on and off. Do not confuse this 
with the previous option. Register optimization, when on, attempts to save 

unnecessary data movements between RAM and registers. If a compiler has 
already assigned a certain value to a register, and a subsequent expression 
that needs this value is encountered, a less clever compiler would waste 
some CPU cycles by generating an unnecessary fetch from memory. An opti­
mizing compiler can often recognize this situation and go straight to the 
appropriate register, thereby suppressing redundant load instructions. This 
feature must be used with care because a variable can be changed via a 
pointer without updating the register holding the original value. The 
TCC. EXE switches for register optimization are - Z (on) and - Z - (off) . 

..... Jump optimization: This also toggles on and off. When on, the compiler 

will try to reduce code size by eliminating redundant branch operations, 
tightening up loops and switch ... case statements. The TCC.EXE equivalents 
are - 0 (on) and - 0 - (off). 



250 .. MASTERING TURBO C .. 
CH. 7 

.... Optimization Problems 
and the volatile Modifier .... 

An example of inappropriate optimization is revealed in benchmark 
results issued in regard to another well-known C compiler. A certain LOOP 

benchmark took 11.0 seconds on the nonoptimized version and 0.0** sec­
onds(** time was negligible) on the optimized version. Assuming the LOOP 
tested was something like 

int i; I* or register int i; *I 

for (i =0; i < BIG_LIMIT; i ++ ); /*empty loop body*/ 

which simply loops BIG_LIMIT times without doing anything, the optimized 

version clearly detected that i was not gainfully employed and replaced the 
statement with what Thomas R. Clune has called the "moral equivalent," e.g., 

i = BIG_LIMIT; 

The time to execute this is proudly announced as negligible! Now if the loop 
was used in a real, nonbenchmark program to create a deliberate pause 
(there is hardly another possible reason) the optimization would be a nui­

sance, to say the least. On the other hand, you may well want all the optimiz­
ing tricks to be available elsewhere in the program. ANSI C comes to the 
rescue with the volatile data type modifier. It is also available on Turbo C, 
(but it is not implemented semantically on the LOOP benchmarked com­
piler). You declare a volatile variable in the obvious way, i.e., 

volatile int i; 

volatile contrasts with the const (constant) modifier. It warns the compiler that i 
may be subject to unexpected changes from outside the immediate program, 
perhaps by an interrupt routine or by accessing an 1/0 port. This warning will 
prevent an optimizing compiler from assigning i to a register, and it will inhibit 
other types of register and loop optimizations. Using volatile inti in the pause 

loop, for example, would prevent the unwanted optimization. 

I should also mention the interrupt function modifier, a non-ANSI C 
feature of Turbo C that is often used in conjunction with volatile. When 

you want to write special functions called interrupt handlers to create a 



.,.. STORAGE CLASSES .,.. 251 

memory-resident program that responds to some outside event, for 
example, you declare such functions with 

return_type interrupt inthandler(reg_list); 

This simplifies life by making the compiler take care of many of the house­
keeping chores, such as saving and restoring registers as you enter and exit 

from the interrupt. 

~ ANALYSIS OF PLAYER.C ~ 
Now that you have a better understanding of storage classes, you can look 

at PLAYER.C in Chapter 6 with more comprehension. Note first that the 

main() function is set up simply to test the basic functions. 

init_play() enters the player data. 
list_play() lists the database. 
nurnber_to_narne() finds the name of a given player's number. 
narne_to_nurnber() finds the number of a given player's name. 

These and several other functions are all extern by default, so you can 
envisage them being collected together, compiled, and set up as a library to 
be incorporated into applications programs. 

Other variables and functions, including the database array of pointers to 

the PLAYER_REC structure, have been declared as static: 

static PLAYER_REC *pptr[PL_MAX); 
/*global to all functions in this file, 

but not accessible elsewhere. 
Declares an array of 'pointers to PLAYER_REC structure' *I 

static int pind; 
I* player index used with pptr[ ] *I 

static int db_size; 
I* number of players in database *I 

static int get_name(char target_name[ ]) 
{/*body*/} 



252 .,.. MASTERING TURBO C .,.. 
CH. 7 

static int get_number(unsigned char target_ number) 
{ /* body *I } 

This division between external and static objects is a simple example of 
data abstraction. You provide a set of primitive functions to initialize, 
access, list, and maintain the database. Other programmers can build up 
applications programs based on these primitives without any knowledge 

of how the database is implemented. One obvious advantage is that the 
applications programmer cannot accidentally or maliciously violate the 
abstract data structure's integrity; less obvious is the flexibility you enjoy in 
changing the structure. If the function names are unaltered, the application 
programs can run with minimum disturbance. (Often relinking is all that's 
needed.) 

The global variable pind is directly changed in the bodies of get_number( ) 
and get_name( ), apparently disregarding my earlier warnings. However, 

pind and these two functions are static, which confines the danger. pind 

also plays an important role in reducing the amount of searching required. 

Assuming that successive inquiries often apply to the same player, I preserve 
that last found index, and check a match there before embarking on the 
admittedly inelegant for-loop search. A larger database, of course, would 
call for either a binary search on a sorted array or some form of indexing. 

Remember that the data abstraction approach allows such enhancements 
without affecting the applications software . 

..... Miscellaneous Notes on PLAYER.C ..... 

... The function toupper(pos) declared in CTYPE.H returns the upper­

case of pos if pos is a lowercase ASCII letter, otherwise it returns 
the argument unchanged. There is a slightly faster macro version, 
_toupper( ), which works correctly only when the argument is a low­
ercase letter. In the present context, the function is safer-I trap non­
matching entries as position X. Note that CTYPE.H also contains 
tolower( ), _tolower( ), and toascii( ). The latter simply clears all but 
the bottom 7 bits from an integer argument to guarantee that you 
have a valid ASCII code, 0-127. 

... The machinations between the enum values P, C, etc., and the 
ASCII symbols "P", "C", etc., should drive home the point that 



,... STORAGE CLASSES ,... 253 

enumerations are simply synonyms for integers. Displaying P 
directly would give a misleading 0. 

.... The format scant( "%2d/%2d/%4d", ... ); is best understood by 
reading Appendix C, but I'll cover it briefly here. The characters"/" 
in the format string are set to match the same character in the input 
date. The %2d indicates that a maximum of two digits is expected. A 
proper program would test for sensible date input. There is an official 
MS-DOS date structure defined in DOS.H, 

struct date { 
int da_year; 
char da_day; 
char da_mon; 
}; 

with many functions for capturing and converting the current time 
and date to strings and UNIX formats (see Appendix G). 

.... The expression (pptr[dbind] - >active)? "Y" : "N" as an argument 
in printf() is another illustration of C's compact notation. 

.... get_str() is another security mechanism. Database queries are given 
pointers to a copy of the answer string, rather than as pointers into 
the database itself. Corruption of the database is made more difficult. 

.... BASIC users need to get used to strcmp() and strcpy() for comparing 
and copying strings! 

.... The fact that a function like number_to_name() is defined in one 
line as in 

char *number_to_name(unsigned char tn) 
{ 

return get_number(tn)? get_str(pptr[pind]- >name): NULL; 

highlights the general principle that C favors a large number of simple 
functions rather than a small number of complex functions. There 
are no magic rules for the ideal division of a program into functions, 
but one clue here is that number_to_name() is extern, while 
get_number() is static. 



254 ... MASTERING TURBO C ... 
CH. 7 

~ SUMMARY OF CHAPTER 7 ~ 

~ ... The most succinct summary of Chapter 7 is Table 7.1 coupled with Table 

7.2, below. Together they provide an overall picture of C's scoping, visibility, 

and extent rules and how they are related to the storage class specifiers. 

~ ... You also saw how static and extern were used to control the modularity 

of programs in conjunction with separately compilable source files and 

the linkage operation. 

~ ... The difference between static and auto variables can be summed up 

as follows: 

Static-extent variables, scalar or array, can only be initialized dur­

ing declaration/definition with constants or constant expressions. 

In the absence of explicit initializers, static variables are cleared to 

Storage Class Where What Default Action 

auto head block vars yes defining; local 
extent 

[auto] formal-par ms vars [omit] defining; local 
extent 

extern top-level, vars no declaring; static 
head-block funcs yes extent, export to 

linker 

[extern] top-level, vars [omit] defining; static 
head-block funcs [omit] extent, export to 

linker 

static top-level, vars no defining; static 
head-block funcs no extent, no export 

to linker 

register func parms, vars no defining; local 
head-block extent, register if 

possible, else auto 

... Table 7.2: Storage class specifier summary 



----· -- ~-------· -

• STORAGE CLASSES • 255 

zero. Such initializations are applied only once, prior to program 
execution. A static variable retains its value between function calls. 

Automatic scalar variables must be initialized explicitly, using any 
assignment-compatible expression, constant, or variable. Auto­
matic arrays cannot be initialized. These initializations will be 
applied each time the automatic variable is created. An automatic 
variable loses it value between function calls. 





~CHAPTER 8 .... 
FULL STEAM AHEAD 

So far you have been communicating with the computer via the screen 
and keyboard. Both your input data and the output results of your programs 
have disappeared after each session. No great loss, to be sure, with the pos­
sible exception of the PLAYER.C database! 

Turbo C, of course, has been busy saving your programs in permanent 
disk files, and it's time to show you how you can do the same for your data. I 

was tempted to do this earlier, but until I had covered structures and storage 
classes I felt that a reasonable exposition of C's file input/output (1/0) opera­
tions would leave too much unexplained and "on trust." 

• C, ANSI C, AND 1/0 ..,. 
Languages such as BASIC and Pascal provide predefined, built-in 1/0 

operations invoked with SAVE, PRINT, and WRITELN, for example. The 
C language proper has no such keywords, but ANSI C has specified a com­
plete set of standard library routines that all conforming implementations 
must offer. 

In the K&R bible similar libraries were implied, mainly based on the UNIX 
concepts of device files and hierarchical directories, but they were never, 
strictly speaking, an integral part of the language definition. Over the years, 
library routines have tended to diverge in name, number, and functionality 
in spite of efforts by various groups to standardize. (This has been especially 
true of 1/0 routines.) The ANSI C committee has decreed a set of library 
functions, weeding out some of the less portable UNIX-only routines. 

The names of these functions and macros (and to a large extent, the names 
of the libraries themselves) are reserved in principle. Further, ANSI Callows 
any library function to be additionally implemented as a "safe" macro (one 
that evaluates each argument just once), possibly allowing the direct genera­
tion of assembly-language code by the compiler. This approach removes the 



258 ~ MASTERING TURBO C ~ 
CH. 8 

function-calling overhead and further blurs the distinction between built-in 
and library routines. 

So, one could say that C is as at least as well endowed with 1/0 and similar 
operations as any other language. Whether getche() or some equivalent is 
"inside" Corin an approved linkable library might be counted as irrelevant 
from a practical point of view as long as the function performs efficiently and 
as specified. It is source-code portability that matters-no one expects object 
code to run unchanged on disparate systems! 

Implementors can add to the library to their heart's content, but printf( ), 
getche() and all the old favorites must be available and perform according 
to the book in order to qualify as ANSI C conformists. Programs using only 
the standard library routines are as portable as anyone can expect in this 
mad, mad world. The ANSI C standard is not yet engraved in stone, but 
Borland has both taken great pains to provide routines that conform to the 
latest draft and retained some of the older functions that may be useful dur­
ing the interregnum. 

This chapter will concentrate on the most useful, MS-DOS oriented 1/0 

functions found in Turbo C's STDIO.H, but first I'll briefly review the basic 
vocabulary. 

~ WHEN IS A FILE NOT A FILE? ~ 
What is a file? As with most questions in computerdom, there is no single 

answer for all seasons. At the average end-user level, a computer file is the 
electronic version of the eponymous manila folders that refuse to go away. 

Files are simply collections of data given a unique name by which the data 
can be referenced and updated. Files are usually stored on disks or tapes 
from which particular characters, blocks, or records can be transferred tem­
porarily to RAM for display, updates, and subsequent rewrites to permanent 
mass storage. 

The type of access available is often used to characterize a file or the file 
storage medium. Sequential files require byte-by-byte scanning to reach any 
given record, while random files allow some mechanism for moving directly 
to the target. Disks can handle both sequential and random files, but tapes 

are by nature confined to sequential access. 



~ FILE 1/0 ~ 259 

~ THE LOGICAL AND THE PHYSICAL ~ 
Users are not usually concerned with a file's physical disposition, i.e., how 

the data is encoded (ASCII or EBCDIC), the sectors and tracks allocated, and 
so on. The task of translating from the "logical" (file name) to the "physical" 
(a set of bytes residing on some mysterious surfaces) is given to the operating 
system. (I will use the terms file name or file specification to indicate the 
drive, path, name, and extension, unless any of these are specifically 
excluded.) 

This translation process is extremely machine- and OS-dependent, not to 
mention OS-version dependent! (Although I will not get too involved with 
MS-DOS technicalities, I will assume that you are working with MS-DOS/ 
PC-DOS version 2.00 or later since this version marked a significant turning 
point in MS-DOS file organization.) 

DOS has to locate a directory entry that matches the file name, check its 
file size and attributes (read-only, hidden, etc.), and find the starting cluster 

number from the FAT (file allocation table). Then it has to allocate a file han­

dle, which is a pointer to an FCB (file control block). From this point onward, 
the operating system can perform most of the basic operations (such as read­
ing and writing) in terms of the file handle. 

~ UNIX and Device Files ~ 
The UNIX operating system, developed with, by, and for C, extended the 

traditional concept of a file to almost anything that can be treated as a data 
source (input) and/or as a data sink (output or destination). From this philos­
ophy emerged the idea of device files, which allow programmers to treat 
devices such as keyboards and screens as though they were files. Files 
and devices are effectively treated as abstract streams or unstructured 
sequences of bytes, regardless of contents, origin, or destination. 

~ Illegitimate Son of UNIX? ~ 
MS-DOS gradually adopted the file-directory structure, the device file, 

and the stream from UNIX. They allow a wide range of generalized stream 



260 ~ MASTERING TURBO C ~ 
CH.8 

1/0 commands that work ifthe data is being input from keyboards, joysticks, 

communications ports, or conventional disk files, or if it's being output to 
screens, printers, modems, or disk files. You can even fool the system into 
thinking that a designated region of RAM is a disk with directories and files. 

Clearly, all these "files" have their individual physical quirks and buffering 
requirements, but the beauty of the device-file concept is that both UNIX 

and MS-DOS let you write code that is largely device independent, leaving 
the user to redirect and pipeline input and output as required. 

For example, A>DIR *.C will display the directory listing by sending data 
to the standard output "file" (the screen), while 

A>DIR *.C >FILENAME.EXT 

redirects the data to the disk file called FILENAME.EXT. Similarly, you can 
send the output of one command to the input of another using the pipe oper­

ator:, as in A>DIR *.C :soRT > DIRECT.LST. Here, the output of DIR is sent 
to SORT, and the sorted output written to the disk. Pipes can be chained as in 

A> TYPE FILENAME.EXT: SCRUB: NOPARITY > PRN. 

Programs in these chains are often called filters for obvious reasons. The 
multitasking UNIX and singletasking MS-DOS pipeline mechanisms differ 
considerably, but the overall effects are the same. 

~ Text and Binary Files ~ 
In one important respect, MS-DOS deviates from UNIX in its treatment of 

files. UNIX takes the view that the content and format of a file is not the con­

cern of the operating system but should be entirely determined by the indi­
vidual programs using the file. The files created by UNIX utilities are "flat" 
sequences of bytes that start at the beginning and end at the end! There is no 
special byte placed at the end of a file as a flag since this would violate the 
notion that all 0-255 byte values are democratically equal. 

A UNIX programmer is free to create formatted files using special byte 
values as delimiters, fixed fields, or whatever-this is a private matter 

between the programmer and the file. The UNIX kernel keeps track of each 
file's length, so as you read these bytes it can signal when there are no more 



~ FILE 110 ~ 261 

left. This signal is the EOF discussed in Chapter 3. EOF must be a value 

impossible to find by reading any byte. The value is defined in STDIO.H: 

#define EOF ( - 1) I* end of file indicator *I 

MS-DOS, on the other hand, uses Ctrl-Z (decimal 26) as a unique text-file 
terminator, and this raises the problem of how to handle binary files (such as 
object-code files) that may contain this value at any point. The net result is 
that, unlike UNIX, MS-DOS has to make a distinction between binary files 
(anything goes) and text files (ASCII plus terminator). This and other differ­

ences led to various extensions to the C file 1/0 library routines. I'll point 
these out as we proceed. 

The difference between DOS text and binary files shows up in the treat­
ment of newline characters. In text mode the CR/LF pair, generated by many 
devices when Enter is keyed, is internally translated into a single LF or 
newline character '\n' (octal 012) with a converse translation in the other 
direction. With binary files, no such translation is made-you have a simple 

one-to-one transmission of each byte. 

~ Buffering ~ 
When you have streams of data moving to and from diverse devices in a 

system, matching speeds becomes a major headache. As a naive example, it 

would not be sensible to transfer to a disk file each of my keystrokes one by 
one as I peck at the keyboard. An area of memory called a buffer is used, and 
my typed characters rest there until a suitable moment when they can be 
economically transferred to disk. 

The optimum size of a buffer depends on the relative speeds of the two 
devices and how they respond to each other. You don't want the buffer filling 
up too often, forcing frequent writes, nor should it be so large thata power 
failure wipes out eight hours of work. Flushing a buffer, by the way, is the 
essential final operation that you use to write out what's left before moving 
on to other things, possibly reassigning the buffer to some other purpose. 

A similar situation occurs when you're reading from a disk. You could cer­
tainly display a text file _by grabbing one byte at a time from the disk and 
sending it to the screen, but it is more rational to fill a buffer (typically by 
reading a disk sector) and then pull from the buffer as required. Note that in 



262 ~ MASTERING TURBO C ~ 
CH. 8 

multiuser systems great care is needed since your buffer data will be out of 
date if the disk file is changed by some other action. Note also that the same 
buffer can often be used for transfers in either direction, depending on the 
nature of the two devices. Further, there are many situations where a hierar­
chy of buffers is needed. For example, you might need to have a disk buffer 
feeding a printer buffer. 

You'll also meet different buffering strategies. Should you flush a buffer only 
when full, after each newline character, or on demand? The C libraries provide 

the tools for setting buffer behavior if the default strategies are unacceptable. 
Throughout an 1/0 system there are a myriad of buffering needs, the exact 

forms of which will vary with the source and destination. You need to have a 
general feel for what a buffer is (a first-in-first-out queue), but the C functions 
covered in this chapter, with help from DOS, usually take care of the details. 

When you write something to a file, you can safely picture it as going 
straight there. In the current jargon we say that the buffering is transparent. 
For advanced programming, you can dig down nearer to the operating sys­

tem and forgo the luxury of the power tools provided. 

~STREAMS~ 

I defined a stream as a potentially endless sequence of bytes that you can 
associate with a particular physical device or file. Once a stream is estab­
lished, you interface with it in a uniform way whether it represents a disk file 
or some 1/0 device. For your added convenience, as they say, all streams 
can be treated identically even though the associated device might vary 
from a keyboard to a plotter not yet invented. 

I can now show you the C code needed to create streams, attach them to a 
device file, and perform 1/0. 

~ File Pointers and the FILE Structure ~ 
In Ca stream is represented by a file pointer of type FILE * where FILE is a 

structure defined in STDIO.H. FILE defines nine fields that represent the 

current status of a stream. 

I* Copyright (c) Borland International 1987 
All Rights Reserved 



~ FILE 110 ~ 263 

Extract from STDIO.H Turbo C version 1.5 

*/ 
#include <stdio.h > 

typedef struct { 
short level; /*fill/empty level of buffer*/ 
unsigned flags; I* File status flags *I 
char fd; I* File descriptor *I 
unsigned char hold; /* Ungetc char if no buffer*/ 
short bsize; /* Buffer size*/ 
unsigned char *buffer; I* Data transfer buffer *I 
unsigned char *curp; I* Current active pointer *I 
unsigned istemp; /*Temporary file indicator*/ 
short token; /* Used for validity checking */ 

} FILE; I* Th is is the Fl LE object *I 

The significance of each component will emerge as I proceed. For now it is 

sufficient to get a feel for how streams are set up. 

~ Opening and Closing Streams ~ 
A variable of type FILE is established by opening a stream. The usual 

ethod uses fopen() from STDIO.H. This associates a stream with a named 

iable of type FILE and returns a pointer to it (known as 

all of C's standard 1/0 is performed with file pointers. 

uments, a file name and a stream type, as follows: 

/*string representing full file name*/ 
I* string controls type of stream *I 
/*declare a pointer to FILE structure*/ 

e and type here before calling fopen() *I 

lename, type); 
e according to value of type and return fp. 
"r" (read - only), "w" (write - only), "a" (append), 
8.1 for full list *I 



264 • MASTERING TURBO C • 
CH. 8 

fp = fopen("hello,c","r"); 
I* open hello.c for reading only (input) *I 

fclose(fp); 
/*close hello.c */ 

Once a stream is attached to a real file, it becomes a little pedantic to distin­

guish the two, so you can talk about reading a file or reading a stream inter­

changeably. 

~ fopen() Failures 

If the fopen(} call is unsuccessful, a NULL pointer will be returned, and an 

error code is placed in the global variable errno. The following snippet will 

crop up frequently in various guises and is definitely worth remembering: 

if ((fp = fopen(filename, type)) == NULL) { 
printf("/nCannot open O/os/n",filename); 

/* or use perror(errmsg); to get a more specific error message 
based on value of errno *I 

exit (1); 

Apart from when it encounters illegal file names, inactive drives, and missing 

files, fopen() can also fail because MS-DOS sets an upper limit on the number of 

streams that can be open at any given moment. The CONFIG.SYS file deter­

mines this upper limit with FILES= <number>, where <number> defaults 

to 8 and must not exceed OPEN_MAX in STDIO.H (usually 20). 

~ fclose() and fcloseall() 

Because of the limit on the number of streams that can be open simultane­

ously, it is important to dose streams when you've finished with them. This 

frees up various system resources and reduces the risk of exceeding the 

limit. Closing a stream also flushes out any associated buffers, an important 

operation that prevents loss of data when writing to a disk. You close a 

stream as follows: 

fclose(fp); I* close the stream with file pointer fp *I 

fclose( ) returns an int value; 0 for successful closure, EOF if the closure 

failed for any reason. The function fcloseall{) is worth knowing when you 



want to exit a program with many open streams. 

inti; 

i = fcloseall( ); 
/*flush and close all open streams except stdin, stdout. 

Return the number of streams closed *I 
printf("\nWe had O/od files open\n",i); 

Note that fcloseall() is a Turbo C extension to ANSI C. 

~ Stream Types ~ 

.,.. FILE 110 .,.. 265 

The type variable or constant in fopen() can be any of eighteen strings. 
These strings determine the mode and type of stream you want, as shown in 
Table 8.1. Cutting through the morass, you can see that there are really three 
basic stream types, "r'' (read), "w" (write), and "a" (append). The variants 

are formed by tagging on " + ", "t", or "b". 
Since text mode is the default, the most common types you'll encounter 

are the following: 

"r"- Open an existing text file for reading only. Signals an error if the 

file doesn't exist. 
"w" -Erase file if existing one found; create and open a file for writing 

only. 
"a" - Open a text file for appending (write at the end) or create a new 

file if one with the given name does not exist. 

The dangers of "w" should be familiar to you BASIC users-OPEN 
#3 FILENAME, OUTPUT will erase an existing file with the name FILENAME 
before creating a new, empty file of that name. 

The filename in fopen() can be any string constant or variable that evalu­
ates to a legal DOS file specification. The pleasant news is that once you have 
your file pointer from fopen( ), the file name is no longer needed for subse­
quent 1/0. 

~ fflush() and flushall() 
You saw that fclose( ) and fcloseall( ) performed any necessary buffer 

flushing. There are two functions that will flush without closing the stream­
fflush() and flushall( ). The action of flushing depends on the file type-a file 



266 .,. MASTERING TURBO C .,. 
CH.8 

Type Stream 
Text or Binary Files 

"r" Read only (input)-existing file 

"w" Write only (output)-create new file 

"a" Append mode (output)-write at end of existing file or create new 
file 

"r +" Update. Read/Write (input/output)-existing file. 

"w +" Update. Read/Write (input/output)-create new file. 

"a+" Update. Append mode (input/output)-update at end of existing 
file or create new file. 

... Where x represents one of the types above, "x" 

defaults to "xt" (text file) if _fmode equals O_TEXT. 

defaults to "xb" (binary file) if _fmode equals O_BINARY. 

... _fmode is the file-translation global variable, normally set to O_TEXT. 

~ O_TEXTand O_BINARY are defined in FCNTL.H. 

Text Only Files 
Type Stream 

"rt" Read only (input)-existing file 

"wt" Write only (output)-create new file 

"at" Append mode (output)-write at end of existing file or create new 
file 

"r + t" Update. Read/Write (input/output)-existing file. 

"w + t" Update. Read/Write (input/output)-create new file. 

"a+ t" Update. Append mode (input/output)-update at end of existing 
file or create new file . 

.,. The "xt" forms give text file modes regardless of _fmode settings . 

... Table 8.1: Stream types in fopen() 



.,. FILE 1/0 .- 267 

Binary Only Files 
Type Stream 

"rb" Read only (input)-existing file 

"wb" Write only (output)-create new file 

"ab" Append mode (output)-write at end of existing file or create new 
file 

"r + b" Update. Read/Write (input/output)-existing file 

"w + b" Update. Read/Write (input/output)-create new file 

"a+ b" Update. Append mode (input/output)-update at end of existing 
file or create new file 

... The "xb" forms give binary file modes regardless of _fmode settings . 

... Table 8.1: Stream types in fopen() (continued) 

open for reading will have its input buffer cleared, while a file open for writ­
ing gets its output buffer written out to the file. 

fflush(fp); I* flush buffer but leave stream open *I 
I* returns int = O for success, EOF for failure *I 

flushall( ); /*flush all buffers of all open files but 
leave them open *I 

I* returns int = number of buffers flushed *I 

Note that flushall( ), like fcloseall( ), is a Turbo C extension to ANSI C. The 
following simplified extract from STDIO.H will remind you of the impor­
tance of conditional directives in achieving portability: 

#if!_STDC_ 
int 
int 

#endif 

fcloseall(void); 
flushall (void); 

.... The Standard Streams .... 

I* defined = 1 for ANSI C conformists *I 

There are five special streams that you never have to open or close since 
the system does it for you. Looking again at STDIO. H, observe the identifiers 
stdin, stdout, and stderr (ignore stdaux and stdprn for now). 



268 .,. MASTERING TURBO C .,. 
CH. 8 

extern FILE 

#define stdin 
#define stdout 
#define stderr 
#define stdaux 
#define stdprn 

_streams[ ); 

(&_streams[O]) 
(&_streams(1]) 
(&_streams(2]) 
(&_streams[3]) 
(&_streams[4]) 

/*external array of FILE structs */ 

They are defined as fixed pointers of type FILE *,so they certainly fit the bill 
as far as defining streams are concerned. Whenever a Turbo C program 
runs, these three pointers are internally initialized so that stdin is associated 
with your standard input device (the keyboard), and stdout and stderr are 

both associated with the standard output device (your screen). Not only can 
you use these identifiers wherever a file pointer is legal (and sensible, of 
course-you can't write a file to your keyboard), but these pointers can also 
be effectively transferred to other streams or device files whenever redirec­
tion or piping is invoked (typically from a DOS command). And that, briefly, 
is how redirection is achieved. 

The reason for stderr (standard error output) is that you normally want error 
messages from functions such as perror()to appear on your screen. If such mes­
sages were sent out on stdout they would run the risk of being redirected to a 

disk file. Of course, there are situations where you may want error messages in a 
file-if so, you can always redirect stderr to another stream. 

.... Console and Stream 110 Functions .... 
Although any stream 1/0 can be directed to the three standard streams, 

the C libraries contain a mix of functions. Some of these are general stream 
1/0 functions (for files or the console) and others are dedicated to con­
sole 1/0. Recognizing this fact can simplify your mastery of the somewhat 
daunting list of 1/0 routines. For example, 

printf() sends formatted output to stdout (wherever that is pointing). 
cprintf() always sends formatted output to the console (scr~en). 
fprintf() sends formatted output to any stream. 
vprintf() works like printf() with a variable argument list. 
vfprintf() works like fprint() with a variable argument list. 



• Fll.E 1/0 • 269 

The scant() family that gets formatted input from a keyboard or file shows a 
similar pattern. 

scanf() gets formatted data from stdin (wherever that is). 

cscanf() always gets formatted data from the console (keyboard). 
fscanf() gets formatted data from any stream. 
vscanf() works like scant() with a variable argument list. 

vfscanf() works like fscanf( ) with a variable argument list. 

The f suffix in many 1/0 functions indicates that you will find a file-pointer 

argument in addition to the normal arguments. Here is an example. 

int fprintf (FILE *fp, cons! char *format, ... ); 
int printf ( const char *format, ... ); 

Once you have mastered printf( ) and scant(), the other variants follow 
quite readily. 

To get some useful work out of this preamble, I will introduce two simple 
buffered 1/0 routines, getc() and putc( ). These handle only one byte at a 
time, but you can do a lot of fruitful work despite that limitation. 

~ The getc() Routine ~ 
Given the declarations 

#include <stdio.h > 
int ch; 
FILE *fp; 

the statement 

ch = getc(fp); 

I* essential for macros *I 

I* treated as a char but allow for EOF *I 
I* file pointer *I 

I* read a byte and return it as int *I 

simply reads a byte from the stream given by the file pointer fp, assuming 
that the stream is open for reading or update. The word simply is perhaps an 

exaggeration! There are a number of subtleties in getting a single byte from a 
stream. There may not be such a byte, or there could be a byte in the stream 
that for some reason is reluctant to be read. So let's discuss EOF conditions 
(no more bytes to read) and real error conditions (the byte cannot be read). 



270 .,. MASTERING TURBO C ... 
CH. 8 

~ Testing for EOF and File Errors ~ 
As explained in Chapter 3, I declare ch as an int because if getc() tries to 

read beyond the last byte in the stream it will return the special value EOF, 
defined as (-1) in STDIO.H. Normally, getc() returns a byte representing 
the character read (whether the stream is text or binary) into the lower byte 

of the int ch with no sign extension. 
Declaring ch as a char is fairly safe with text files but dangerous with 

binary files. Meeting the byte OxFF, which is quite legal and not unusual in a 
binary file, would signal a spurious EOF. 

You need a useful macro called feof( ), which can be used under any con­
ditions to test if a true end-of-file condition occurred on the last input opera­
tion. The unsigned int flags component in the FILE structure holds the 

following status flags, defined mnemonically in STDIO.H: 

#define _F _RDWR 
#define _F _READ 
#define _F _WRIT 
#define _F _BUF 
#define _F _LBUF 
#define _F _ERR 
#define _F _EOF 
#define _F _BIN 
#define _F _IN 
#define _F _OUT 
#define _F _TERM 

Ox0003 
Ox0001 
Ox0002 
Ox0004 
Ox0008 
Ox0010 
Ox0020 
Ox0040 
Ox0080 
Ox0100 
Ox0200 

I* Read/write flag *I 
/* Read only file */ 
/*Write only file */ 
/* Malloc'ed Buffer data*/ 
I* line - buffered file *I 
I* Error indicator *I 
/* EOF indicator*/ 
I* Binary file indicator *I 
I* Data is incoming *I 
I* Data is outgoing *I 
I* File is a terminal *I 

These flags are best left for the 1/0 functions to manipulate. I show them to 
indicate the range of data stored in the FILE structure and to explain the EOF 

and file-error macros. 
The flags bits of each active stream are being constantly monitored using 

expressions such as 

if (fp->flags & _F _OUT) { ... } 
I* test outgoing flag with bitwise AND *I 

... I 

(fp->flags) 1= _F _TERM; 
I* set terminal flag with bitwise OR *I 

The feof() macro is defined as 

#define feof(f) ((f) ->flags & _F _EOF) 



• FILE 110 • 271 

so if the _F _EOF flag (bit 5) is set (indicating a genuine end-of-file situation) 

feof() returns 1 (True). The following snippet shows feof() in action: 

/*assume fp open stream for input*/ 
ch = getc(fp); I* grab a char - int *I 
if (feof(fp)) { 

/*macro expands to if (((fp)->flags & _F _EOF)) */ 
puts("No more! Fini!"); 
fcloseall( ); 
exit (1); 

} 
/* returns TRUE if non-spurious end-of-file was 

detected on the last input from stream fp *I 

Note that the _F _EOF flag remains set until the stream is closed or 

rewound (I'll explain rewind() in a minute), so further attempts with getc() 
are blocked. 

The macro ferror() works similarly but tests the _F _ERR flag, which gets 
set for a host of hardware- and software-related reasons. 

#define ferror(f) ((f)->flags & _F _ERR) 

I strongly urge you to test ferror(fp) after each stream 1/0 operation, but, 
to be honest, it is a "custom more honored in the breach .... " 

I* after each read or write: *I 
if (ferror(fp)) { 

puts("File read or write error!"); 
fcloseall( ); 
exit (1); 

The _F _ERR flag remains set until clearerr() or rewind() is called or the 
stream closed. If you want to program repeats after a file error, you should 

call clearerr(fp); first. 

..,. The Current Pointer Moves ... ..,. 
Each call to getc() advances a pointer in the *fp FILE structure called 

curp, the current active pointer. You can picture curp as tracking progress in 



272 ~ MASTERING TURBO C ~ 
CH. 8 

the stream-the next 1/0 operation will usually take place at the current 
active pointer. 

Most 1/0 functions refer to curp for some reason or other, and many 
update it after reading or writing to the stream. In terms of the given file 
pointer, fp, the 1/0 routine accesses fp->curp. You should never idly fool 
around with this member! 

The simple function ftell() will return the long int value of curp as follows: 

long file_pos = OL; 
file_pos = ftell(fp); /*where are we in stream fp? */ 

I* if ftell fails it returns - 1 L and sets errno *I 

If you have awfully long streams, you get curp mod 232 ! 
There are two functions that allow you to alter curp without you having to 

access fp ->curp. You can use them to get random access to certain streams 
(usually binary and on disk) provided that you know how they are format­
ted. I am more concerned now with sequential streams, in which curp sol­
diers on from byte to byte, but let me show you briefly how curp can be 
made to point at arbitrary bytes in a stream . 

.... Setting the Current Active Position 
Immediately after opening a stream, the current active pointer is zero and 

points to the first byte of the stream. rewind(fp) winds curp back to the start 
of the stream, returning an int value of 0 if successful and a nonzero value if 
unsu.ccessful. This unnatural reversal of "false equals success" and "true 
equals failure" should be noted-it is quite common in 1/0 functions. 
rewind() also clears the _F _EOF and _F _ERR flags, as noted in the feof() 
discourse. 

For more exotic changes, you use fseek() on an opened stream as shown 
in the following snippet: 

#include <stdio.h > 
/* defines SEEK_SET = O; SEEK_ CUR = 1; SEEK_END = 3 

as possible values for 'fromwhere' */ 

long recsiz = OL, offset = OL; 
int fromwhere, seek_fail; /* O = success*/ 
FILE *fp; 



I* open the stream here *I 

offset = recsiz; 
fromwhere = SEEK_CUR; 
seek_fail = fseek(fp, offset, fromwhere); 

/* move curp offset bytes from current position *I 
if (seek_fail) { 

puts("\nSeek Failure!"); 
fcloseall( ); 
exit (1) 

.,.. FILE 110 .,.. 273 

fseek() repositions curp by offset bytes from either the start, the current 
position, or the end of the stream, depending on the value of fromwhere 
(0, 1, or 3, respectively). You can use the mnemonics defined in STDIO.Has 
shown. Note that rewind(fp) has the same effect as fseek(fp, OL, 
SEEK_SET). 

.... The pule() Routine .... 
The call 

putc(ch, fp); I* write the lower byte of ch to stream *I 

will output ch to the stream at the current position with the same declara­
tions I used for getc( ), 

#include <stdio.h > 

int ch; 
FILE •fp; 

I* essential for macros *I 

I* treated as a char but allow for EOF *I 
I* file pointer *I 

but with the stream opened for write, append, or update modes. putc( ) 
also returns an int value-either the byte just written (top byte cleared) if the 
write was successful or an EOF if an error occurred. Writing to an output 
stream cannot cause a normal end-of-file error since sequential files usually 
just grow on you. However, many possible hazards such as device-full, 
write-protect, and parity-fail problems can interfere with progress. The 
terror() macro can be usefully called, or you can test the value of putc() 
after each call. 



274 .,. MASTERING TURBO C .,. 
CH. 8 

.... Variants fgetc() and fputc() 

Note that STDIO.H also defines fgetc() and fputc( ). These are operation­
ally equivalent to getc() and putc( ) but are true functions not macros. The 
difference is only important if you ever want to pass these as arguments to 
another function. Remember that the identifier fgetc, unlike getc, is a 
pointer to a function type and can be used as an argument. 

..,. STREAMS IN ACTION ...,. 
Here is KOPY.C (Program 8.1), a simple program that will copy the file 

HELLO.C to HELLO.CSK. Later on this will be generalized to allow each 
file name to be entered on the command line from the DOS prompt. 

/* kopy.c -- simple file copy program Program 8.1 */ 
#include <stdio.h> 

void main(void) 
{ 

FILE *infile, *outfile; /* two stream pointers */ 
int ch = 0, bytes = O; /* count the bytes copied */ 

/* try to open HELLO.C for read--only, binary file */ 

if ((infile = fopen("hello.c","rb")) ==NULL) 
perror("Sorry about HELLO.C"); 
exit (1); 

/* try to create/open HELLO.CBK for write--only, binary file. 
If file exists, delete old one first */ 

if ((outfile = fopen("hello.cbk","wb")) ==NULL) { 
perror( "Sorry about HELLO.CBK"); 
exit ( 1); 

/* both files open, so copy infile to outfile until EOF */ 
while ((ch= getc(infile)) != EOF) { 

putc(ch, outfile); 
++bytes; 

} 
/* close both to flush stream */ 

fclose(infile); 
fclose(outfile); 

/* report completion and stats */ 

printf("\nTotal of %d bytes KOPY'd",bytes); 

~Program 8.1: KOPY.C 



... FILE 1/0 .,. 275 

.... Analysis of KOPY. C .... 
I declare two file pointers with the suggestive names infile and outfile. The 

fopen( )s are combined with the test for success. Note the literal strings for 
the file names and modes. HELLO.C is opened for "r" (read-only), while 
HELLO.CBK is opened for "w" (write-only). If a file called HELLO.CBK is 
found in the current directory, KOPY.C will erase it. If HELLO.C is not found, 
perror("Sorry about HELLO.C"); will display 

Sorry about HELLO.C : No such file or directory 

The second part of the above message is triggered by the value set in the 
global variable called errno. A colon is displayed after your optional mes­
sage string argument to perror( ). Using perror() is a neat way of letting Turbo 
C do the error analysis. 

Both files are opened as binary to solve the problem of copying the end-of­
file (Ctrl-Z) code. Try changing the modes to "r" and "w" (or whatever) to 
check this out. 

The actual copying is done with 

while ((ch = getc(infile)) != EOF) { 
putc( ch, outfile); 
++bytes; 

There are more concise ways of doing this without using the ch, but my 

version is legible. Try putc(getc(in,file), outfile) for fun-but you must watch 
the parentheses. 

I did not use the file name HELLO.BAK since this extension is used by DOS 
and Turbo C-it would be impolite to erase a possibly useful file. Nor did I 

call the program COPY.C for obvious reasons! 
When you have KOPY.EXE working, rename your HELLO.C and test the 

error message. You can try opening HELLO.CSK in mode "ab". If the file 
already exists, you will copy (append) HELLO.C to the end of HELLO.CSK. 

Next I'll show you how to make KOPY.C a tad more flexible. The new ver­

sion is VKOPY.C (Program 8.2). The argc and argv indentifiers are explained 
in the following section. 

Do not run VKOPY from within the IDE menu. Compile and Link to 

VKOPY.EXE and exit to DOS. Read the next section before running VKOPY 

from the DOS prompt. 



276 ,.. MASTERING TURBO C ,.. 
CH. 8 

/* vkopy.c -- improved file copy program Prog8.2 */ 
#include <stdio.h> 

void main( int argc, char *argv[ ]) /*new! args for main() */ 
{ 

FILE *infile, *outfile; 
int ch = O, bytes = O; 

if (argc != 3) { 
puts("\nUsage is VKOPY filename! filename2\n"); 
exit ( 1); 

if ( ( infile = fopen( argv[ 1], "rb")) == NULL) { 
printf("\nsorry %s",argv[l]); 
perror( ""); 
exit ( 1); 

if ((outfile = fopen(argv[2],"wb")) ==NULL) { 
printf("\nSorry %s",argv[2]); 
perror ( " " ) ; 
exit ( 1); 

while ((ch= getc(infile)) I= EOF) { 
putc(ch, outfile); 
++bytes; 

fclose(infile); 
fclose(outfile); 

printf("\nTotal of %d bytes VKOPY'd",bytes); 

~Program 8.2: VKOPY.C 

~ Using main() with Command-Line Arguments ~ 
C has an indispensible mechanism through which main( ) can obtain 

parameters entered at the DOS command level. If I type VKOPY file 1 file2 at 

the DOS prompt, it would be nice to pass the two file names to VKOPY.EXE, 

making it more flexible and more like the official DOS command COPY. Any 

data entered after the command or program name can be considered as a 

command-line argument, but some conventions must be agreed on in order 

to cope with the variety of formats encountered. DOS and C consider each 

string, including the command name itself, to be a distinct argument. Obvi­

ously, strings are separated by spaces or tabs. 

Two special identifiers, argc and argv, are used to pass to main() the num­

ber of command-line arguments and pointers to each argument. You have to 

set up main() as follows: 

main(int argc, char *argv[]) 
{ ... } 



• fll.E 110 • 277 

argc will then provide the number of command-line arguments, including 
the command itself-so argc is never less than 1. The argv[] is our old friend 
from Chapter 5, an array of pointers to char, or, equivalently, an array of 
strings. Each of argv[O], argv[1], ... up to argv[argc-1] is a pointer to a 
command-line argument, namely a NUL-terminated string. The pointer 
argv[argc] is set to NULL to mark the end of the array. 

You may now execute VCOPY by typing VKOPY HELLO.C HELLO.CSK 
on the command line (or you can choose two files of your own). main() will 

access the following values: 

argc = 3 (command plus 2 arguments). 

argv[O] points to empty string,,,, (DOS 2.x or earlier). 

argv[O] points to "C:\ VKOPY\O" (DOS 3.0 or later. Note that drive 
and directory have been added). 

argv[1] points to "HELLO.C\O". 
argv[2] points to "HELLO.CBK\O". 
argv[3] is NULL. 

VKOPY will also work with full-file path specifications, but, unlike the DOS 

COPY command, it will not default the output file name and path or handle 
wild cards. 

Using an array of strings (or an array of pointer to char) solves the problem 
of variable-length arguments. You will sometimes see argv declared as 
char* *argv, which is also an array of strings (see Chapter 5). 

It is important to know that all the argv[] arguments are passed as strings, 
so a command line such as C >SEND 12 350.45 will not get you an integer 
and a floating-point number. You would have to convert "12" and "350.45" 
from ASCII to numeric using atoi() (ASCII to integer) and atof() (ASCII to 
FP double). 

The white space between arguments is essential: the familiar commas 
used in C functions will not delimit command-line arguments. Quotation 
marks can be used to produce a single argument from entries containing 
white space. The following line has three arguments including SEND: 

C>SEND "nice day" fish,chips 



278 ~ MASTERING TURBO C ~ 
CH. 8 

..... The env Argument ..... 
main() will not accept any old arguments. Apart from argc and argv, the only 

other legal argument allowed is env, from which you can find out the DOS envi­

ronment parameters (established with the DOS SET command). You can define 

main() as follows: 

main(int argc, char *argv[ ], char *env[]) 
{ ... } 

Each env[i] returns a string of the form 

"environment_var = environment_val" 

until you reach a NULL pointer, which means that no more environment 

values have been SET. 

You can also use getenv( ) and putenv() within a program to access, 

change, or delete an environment value. They are declared like this: 

char *getenv(char *environment_var); 
/* if arg is "PATH" for example, getenv returns the string found 

in the environment, eg "C:\;C:\ TURBOC" or O if PATH not SET *I 
int putenv(char *environment_string); 

I* the arg string eg "PATH = B:\" will be added to the environment, 
or will overwrite an existing PATH setting. "PATH =" will 
clear any existing setting *I 

When you spawn child processes using the exec ... () family of functions to 

load and run other programs, you can also pass new environment values . 

..... Your Environment Revealed ..... 
Here is SHOALL.C (Program 8.3), which displays all the arguments men­

tioned. This can be run from the IDE, but run it from the DOS prompt with 

some dummy arguments to test the command-line display. MS-DOS 3.0 and 

later versions will produce different displays than previous versions. 

Figure 8.1 shows the screen display I get from SHOALL. The PROMPT 

shown has become very popular-it displays the date, time, and directory in 

reverse video at the top of the screen. 

I now return to the standard 1/0 library routines. 



~ Fll.E 1/0 ~ 279 

/* shoall.c -- display command line & environment Prog8.3 */ 
#include <stdio.h> 

void main(int argc, char *argv[], char *env[]) 
{ 

int i; 

if (argc == 1) 
puts("\nSHOALL has no arguments"); 

else { 
puts("\nSHOALL has following arguments:"); 
for ( i=O; i<argc; i++) 

printf( "%d:\t'!s\n" ,i,argv[i]); 

puts("\nDOS Environm,,nt Values:"); 
for ( i=O; env[ i] != NULL; i++) 

printf( "%d:\tis\n" ,i,env[i]); 

,. Program 8.3: SHOALL.C 

141.1.wo10Ut;f;W#..l~*MWlipt:MMMH11 

C>shoall jim joe stan 

SHOALL has following arguments: 
0, 
1: j im 
2: joe 
3: stan 

DOS Environment Values: 
0, COMSPEC=A' \COMMAND. COM 
1' PATH=C,\;C,\TURBOC;C,\TB;A,\ 
2, PROMPT=$e[s$e[1;1H$e[0m$e[K$e[7m $d / $t $p $e[0m$e[u$n$g 

.- figure 8. 1: SHOALL screen output 

~ THE get. .. () AND put ... () FAMILIES ~ 
There are several variants on getc() and putc( ), some of which you have 

already encountered. I list them all here with their revealing prototypes or 

macros and brief notes. 



280 .,.. MASTERING TURBO C .,.. 
CH. 8 

... fgetc() 

int fgetc(FILE *fp); is a real function version of the getc() macro. 

... fgetchar() 
int fgetchar(void); is not in ANSI C and is the same as fgetc(stdin). It grabs 

a byte from the standard input, which is usually the keyboard unless redirec­
tion is in force . 

... getchar() 

getchar() is a simple macro defined as 

#define getchar() getc(stdin) 

so it takes no argument but simply returns a character as in int (or EOF on a 
failure) from stdin. This is an excellent illustration of the use of the special 
predefined file pointer stdin-this stream and its pointer are already 
fopened for you and do not have to be fclosed! getchar( ) is a holdover 
from the old line-buffered UNIX terminal days. getch() and getche() are 
more convenient for the PC console input. 

... getch() 

int getch(void); also returns a single integer-character (or EOF) from the 
keyboard, regardless of where stdin is pointing. The character does not 
echo to the screen . 

... getche() 

int getche(void); works exactly like getch() except that the keyed charac­
ter echoes to the screen . 

... ungetc() 

int ungetc(char ch, FILE *fp); "undoes" a getc() by pushing the char ch 
back on the argument stream, fp. ungetc() is useful in many "look ahead" 
situations-you can grab a byte, test it, and reject it or push it back for the 



~ FILE 1/0 ~ 281 

next getc( ). Without ungetc() many scanning loops prove quite tricky to 
implement. ungetc( ) always returns the integer-character you have 
pushed. Ungetting an EOF (but who would want to?) does not affect the 
stream and returns an EOF. If you ungetc( ) twice without a getc( ) in 
between you effectively remove the first ungetted character from the 
stream. Several operations, like fseek() and rewind(), also remove the effect 
of an ungetc( ). 

~ ungetch() 

int ungetch(int ch); is the console-only version of ungetc( ). Redirection 
is ignored. 

~ getw() 

int getw(FILE *fp); is not in ANSI C and works like getc() but reads a 2-
byte integer from the stream. You must be careful with getw() for two rea­
sons. First, the function will not worry about byte boundaries-you get the 
two bytes as found whether they represent a genuine int or not. Second, 
although getw() returns EOF at the end of a stream, just testing for EOF is 
insufficient since -1 is a legitimate int value. You must use feof() or terror() 
as discussed in the getc() section. 

~ gets() 

char *gets(char *str); reads a string into str from stdin until a newline 
character is received. The newline is replaced by a NUL in the returned 
string. A NULL pointer is returned on errors. 

~ cgets() 

You must place the maximum string length needed in str[O] before calling 
cgets( ), which is defined as 

char *cgets(char *str); 

cgets( ) always reads from the console (keyboard) and plays some tricks by 
returning the length of the input string into str[1 ]. The string type goes into 
str[2], str[3],. ... If the maximum is reached before a newline character, input 



282 ~ MASTERING TURBO C ~ 
CH.8 

stops. A newline is converted to a NUL. The final string is always at least 
str[O] + 2 bytes long. The function returns &str[2]-there is no error signal. 

... fgets() 

char *fgets(char *Str, int n, FILE *fp); is a stream version of cgets() that 
will read at most n - 1 bytes from the stream into str. An earlier newline 
character will terminate but goes into the string. A NUL is always added at 
the end of str. A NULL pointer is returned on errors. 

Before leaving all these get...( )s, take a quick look at the definition of getc( ), 
the one I started out with. 

.... The Macro getc() .... 

#define getc(f) \ 
((--((f)->level) >= O) \ 
? (unsigned char)(++ (f) ->curp)[ - 1] : _fgetc (f)) 

You may have forgotten the\ symbol. It acts as a line break for long macro 
lines, since a newline character is syntactically significant in a #define 
sequence. The level component of FILE is a short int marking the buffer­
refill level. Each call on getc( ) predecrements the level; while it is non­
negative, the first part of the ?: clause is invoked. This advances curp, the 
stream active position pointer, and grabs the previous (i.e., current) byte by 
using the array trick [ -1 ]. The byte is type cast to unsigned char. If the level 
goes negative, an internal function _fgetc() is invoked to fill the buffer. 

See if you can decipher the putc() macro. 

#define putc(c,f) \ 
(( ++ ((f )->level) < 0) \ 
? (unsigned char)((++ (f) ->curp)[ -1] = (c)) : \ 
_fputc ((c),f)) 

I now give you all the put. .. () variants with few comments since they fol­
low, mutatis mutandis, the get...() routines . 

... putchar() 

This macro is defined in STDIO.H as 

#define putchar(c) putc((c), stdout) 



~ FILE 110 ~ 283 

meaning that putchar() will place a byte argument on the standard output. 
Note the essential parentheses in (c). EOF is returned on errors . 

.... fputc() 

int fputc(int ch, FILE *fp); is the function version of the macro putc( ). 
EOF is returned on errors. 

.... fputchar() 

int fputchar(int ch); /*non-ANSI C*/ is the same as fputc(int ch,stdout). 
EOF is returned on errors . 

.... putch() 

int putch(int ch) is the console version of putc( ). No errors are signaled . 

.... putw() 

int putw(int w, FILE *fp); is not in ANSI C and writes was two bytes into 
the stream, ignoring any alignment problems. EOF is returned on errors, but 
ferror() should be used since EOF is a valid int. 

.... puts() 

int puts(char *str); is an old friend from Chapter 1. It displays the string 
plus a new line on the active stdout. On success, it returns the last character 
displayed; on failure you get an EOF. 

.... cputs() 

void cputs(char *str); works only on the console (screen) and with NUL 
terminated strings. No newline character is appended and no value is 
returned whether it's successful or not. 

.... fputs() 

Like cputs( ), fputs() writes the NUL-terminated string with no newline 
character, but it writes to the designated stream. It's defined as 

int fputs(char *str, FILE *fp); 



284 .,.. MASTERING TURBO C .,.. 
CH.8 

Like puts() it signals success by returning the last character, with EOF being 
returned on failures. 

~ MORE ON BUFFERING ~ 
In the FILE structure you will see the fields 

short bsize; /* buffer size*/ 
/*short is same as int in Turbo C - used here to increase portability*/ 

unsigned char *buffer; 
I* data transfer buffer *I 
/*buffer points to first byte of buffer! */ 

Each open (active) stream has a pointer, file_var.buffer, to access its private 
buffer of size file_ var.bsize, where file_ var is of type FILE. Since file_ var is usu­

ally referenced via a file pointer (for example, fp of type FILE *) you would be 
more likely to see expressions such as fp - >buffer, or fp - >bsize. 

As you've seen, the standard 1/0 functions set up and control the mem­
bers of *fp for you, so you rarely need direct access to the buffers. The 
STDIO.H functions therefore offer what is known as buffered 110. You 
should, however, be aware of the fact that there are many /ow-/eve/ 1/0 rou­

tines available in Turbo C that offer only the basic read/write tools for file 
access, leaving you to set up your own buffering strategy and attend to most 
of the housekeeping chores. 

Some confusion arises when these latter routines are called unbuffered 
since, at some level or other, all 1/0 is buffered with either software or 
hardware-even a single-byte buffer is a buffer! Low-level 1/0 functions, as 

opposed to standard 1/0 functions, are declared in 10.H. 
For advanced work, setbuf() and setvbuf() allow you to set up your own 

buffers and buffering strategy. 

~ NON-ANSI C ROUTINES ~ 
The following are non-ANSI C routines provided by Borland to maintain 

continuity in areas where many 1/0 versions prevail or because they are use­
ful on the PC. 



.... 

~ FILE 110 ~ 285 

int fcloseall (void); 
FILE *fdopen (int handle, char *type); 
int fgetchar (void); 
int flushall (void); 
int fputchar (int c); 
int getw (FILE *fp); 
int putw (int w, FILE *fp); 
char *strerror (const char *string); 
int unlink (const char *filename); 
#define fileno (f) ((f)->fd) 
#define remove (filename) unlink(filename) 

BLOCKl/O..,. 
There are two important stream routines still to cover. They allow you to 

read and write whole blocks of data with one deft function call. They are 

declared in STDIO.Has follows: 

size_t tread (void *ptr, size_t size, size_t n, FILE *fp); 
size_t fwrite (const void *ptr, size_t size, size_t n, FILE *fp); 

The data type size_t is an ANSI C addition to improve portability. It is prede­

fined as an integer type large enough to hold sizeof() results. For most sys­
tems it can be taken as int. 

The tread() is given the usual stream argument, assumed to be open for 
reading or updating. In addition you tell it to read n items of data each of size 
bytes. The destination for all n•size bytes is the area pointed at by the 

generic ptr. You may recall that void *ptr allows ptr to be type cast to a 
pointer to any data type. 

So, there are four arguments: 

1. The source of the transfer is a stream opened for input equals fp. 

2. The number of chunks equals n. 

3. The size of each chunk equals size. 

4. The receiving area (a pointer to memory) equals ptr. 

Items 3 and 4 are closely related. If you are sending ints, then ptr must be of 
type pointer to int, so size must be sizeof (*ptr), namely 2 bytes for Turbo C. 



286 ~ MASTERING TURBO C ~ 
CH. 8 

It is your responsibility to ensure that the destination can hold the total num­

ber of bytes being sent, namely (n * sizeot(•ptr)). 
The returned value of tread() is the number of items sent, not the number 

of bytes. 
fwrite( ) works similarly but in the opposite direction; from ptr as the 

source to the stream opened for output. The number and size of the ele­

ments being written are defined in exactly the same way. 
A small difference you may have spotted in the declaration is that ptr is 

declared as const. The idea is that the source pointer is not changeable. This 
is not the same as saying that the objects being pointed at are invariant! 

Block 1/0 gets exciting when you consider that the n items to be transfer­

red from, say, memory to disk or disk to screen, can be records defined as 
arrays, structures, or unions of any complexity. A lot can be done with a 
single tread and fwrite. Indeed, I will conclude this chapter with SPLAYER.C 
(Program 8.4), a partial version of PLAYER.C that saves the player database to 

disk. The functions not reprinted here are exactly as found in PLAYER.C. The 
function save_play() has been added, and init_play has been modified to 

call save_play after each record is entered. 

/* SLAYER.C - a simple, disk version of PLAYER.C database */ 
/* Program 8.4 -- requires functions and main() from Program 6.1 */ 
/* overall strategy due to N. Gehani, AT&T Bell Labs */ 
#include <stdio.h> 
#include <malloc.h> 
#include <ctype.h> 
#include <string.h> 

Jldefine FOUND 1 
#define MISSING 0 

#define PL MAX 2 
#define NAME MAX 25 
#define HDG "Pl# Name 

/* max number of player - vary for tests */ 
/* max name + 1 null */ 

Posn RBI ERA DATE Active" 

typedef struct { 
unsigned char month, day: 
unsigned int year: 

} DATE: 

typedef unsigned char BOOL: 

typedef enwn { 
X, P, C, 1 1 S, O, D 

} POSITION: 

.. Program 8.4: SPLAYER.C 



typedef struct player { 

char name(NAME_MAX]; 
unsigned char player number; 
POSITION player__position; 
unsigned int rbi; 
double era; 
DATE date·> joined; 
BOOL active; 

PLAYER_REC; 

~ FILE 110 ~ 287 

static PLAYER REC *pptr[PL MAX]; 
/* global to all functions in this file, 

but not accessible elsewhere. 
Declares an array of 'pointers to PLAYER_REC structure' */ 

static int pind; 
/*player index used with pptr[] */ 

static int db size; 
/* number of players in-database */ 

/•--------------------------------------------------*/ 
/* SAVE_PLAY - write n player records to PLAYER.DAT */ 
/*-----~~~~~~---------------------------*/ 

int save__play(PLAYER_REC *play__ptr, int n) 
{ 

FILE *play fp; 
int saved;-

play_fp = fopen("PLAYER.DAT","ab"); 
/* open binary file for append - each player is added at end */ 

if (play_fp == NULL) { 
perror( "PLAYER.DAT"); 
exit( 1); 

} 
saved= fwrite(play__ptr, sizeof(PLAYER_REC), n, play_fp); 

/* number of player recs actually saved - n were requested */ 
/* return 0 if error */ · 

fclose(play_fp); 
if (saved == n) 

return saved; 
else 

return O; 

/•----------------------------------------•/ 
/* INIT_PLAY - set up player database */ 
/* data in memory only */ 
;•----------------------------------------•/ 
void init__play(void) 
{ 

int dbind; 
char pos; 

/* local var - scans the database */ 
/* ASCII player position */ 

if (coreleft() < sizeof(PLAYER_REC)*(PL_MAX+B)) { 
puts("\n\tinsufficient Memory for Player DB"); 
exit(l); 

} 
for (dbind = O; dbind < PL_MAX; dbind++) { 

if ((pptr[dbind]=(PLAYER_REC *)malloc(sizeof(PLAYER_REC))) 
==NULL) { 

puts("Memory Allocation Failure"); 
exit(l); 

~ Program 8.4: SPLAYER.C (continued) 



288 
CH. 8 

.,.. MASTERING TURBO C .,.. 

/* here pptr[dbind] points to an allocated record awaiting input */ 

printf( "\n#\3d Enter Player Number <99=exit>: ",dbind); 
scanf( "%d",&(pptr[dbind]->player_number) ); 

if (pptr[dbind]->player_number == 99) break; 

printf ( "\n Enter Player Name: "); 
scanf ( "%s" ,pptr[dbind]->name ) ; 

/*Next item could be entered with getch() but 
/* show scanf() with %s 

I want to */ 
*/ 

print£ ( "\n Enter Player Position: "); 
scanf( "%s" ,&pas); 
pas = toupper(pos); 
switch (pas) { 

} 

case 'P': pptr[dbind]->player__position P; break; 
case 'C': pptr[dbind]->player__position C; break; 
case 'I': pptr[dbind]->player__position I; break; 
case 'S': pptr[dbind]->player__position = S; break; 
case 'O': pptr[dbind]->player__position O; break; 
case 'D': pptr[dbind]->player__position D; break; 
default: pptr[dbind)->player__position X; 

if (pptr[dbind)->player__position I= P) { 
pptr[dbind)->era = o.o; 
print£ ( "\n Enter Runs Batted In 1 "); 

} 
scanf( "%d",&(pptr[dbind]->rbi) ); 

else { 

} 

pptr[dbind)->rbi = O; 
print£ ( "\n Enter Earned Run Average: "); 
scanf( "%1£" ,&(pptr(dbind)->era) ) ; 

printf ( "\n Enter Date Joined (mm/dd/yyyy) : ") ; 
scanf ( "%2d/%2d/%4d", & ( (pptr[dbind)->aate_joined) .month), 

&((pptr[dbind]->date_joined) /day 
&((pptr[dbind]->date_joined).year)); 

printf("\n Active=Y or N? :"); 
scanf ( 11 %s 11 , &pos); 
pptr[dbind]->active = ('Y' == toupper(pos)); 

/* save one player rec in PLAYER.DAT */ 
/* save__play allows future enhancement - save several records */ 

if (save_play(pptr(dbind],l)) 

} 

puts("\nSaved in PLAYER.DAT"); 
else 

puts("\nRecord not saved??"); 

} /* end for loop */ 
db_size = dbind; /* set current size of database */ 

/*--------------end init__player--------------------*/ 

~ Program 8.4: SPLAYER.C (continued) 



.,.. FILE 1/0 .,.. 289 

..,.. SUMMARY OF CHAPTER 8 ..,.. 
....... Files and devices come in all shapes and sizes, but C and DOS allow you 

to control them via a uniform logical concept called the stream . 

....... Input and output between different elements require buffering-much 
of which is done behind the scenes . 

....... Streams can be redirected and piped by attaching them to files and 
devices. Many 1/0 functions can operate on streams with no prior 
knowledge of the physical devices or applications . 

....... Coffers a rich array of 1/0 routines, both buffered and unbuffered, for­
matted and unformatted . 

....... Text and binary streams require different treatment for EOF detection 
and CR/LF to new-line translation . 

....... getc() and putc() are single-byte 1/0 routines, but from these over 30 
variations can be understood . 

....... Random access is obtained by setting a pointer to scan the stream. 
fseek( ) and simple calculations can direct the pointer to any given 
record. 

....... Block 1/0 is accomplished via frea.d() and fwrite( ). 



THE GRAPHICS 

TOOLBOX 

OPENED WIDE 



.... CHAPTER 9 ~ 

At the end of 1987, Borland released Version 1.5 of Turbo C. For most 

users, the most exciting addition of Version 1.5 is a graphics library, so this 

chapter is devoted to graphics programming. I will cover other additions of 

the new version in Chapter 10. 

I recall reading a magazine article complaining of the lack of graphics tools 

in Turbo Con the very day my copy of Version 1.5 arrived, just a few weeks 

before the official launch. In the relatively brief reign of Version 1.00 several 

outside vendors released graphics "enhancer" packages for Turbo C (see 

Appendix H). Some of these may still be useful, but on the whole Version 1.5 

is remarkably complete and economical. I will cover a selection of the Turbo 

C functions to give you a feel for what is available. More complete specifica­
tions and examples can be found in Appendix G. 

I'll give you enough geometrical and PC video-hardware knowledge to 

master the Turbo C graphics routines, but don't expect any more here than 

the basics. The jungle starts when you try listing all the different adapters and 

monitors. This is an area, the cynics say, where there are so many standards 
you are bound to find one you like. If you find references to objects irrele­

vant to your own installation, please be patient. 

The Turbo C graphics tools are broadly similar to those provided with 

Turbo Pascal and will therefore be familiar to many readers. For those new 
to the graphics world, I provide a few basic notes . 

.... THE DISPLAY ADAPTER ~ 
Every PC has a special display adapter circuit board containing some dis­

play memory (or video memory) that is physically distinct from your main 

RAM but nevertheless part of the address space of the CPU. The starting and 

ending absolute addresses of the display memory vary with model and are 

usually of no direct interest to the user-the system knows where to find the 

video memory, and with some boards the programmer is actively discour­
aged from peeking and poking. 



292 • MASTERING TURBO C • 
CH. 9 

The size of the display memory, though, and its logical division into pages 

(or planes) is of importance since these dictate the sort of graphics tricks you 

can accomplish. The simplest adapters provide 4KB, with more expensive 
models offering 16KB, 64KB, 1 MB, and ever upward. 

The cathode ray tube (CRT) display unit (or monitor), is fed from the dis­
play memory via a programmable black box called the CRT controller chip. 
You can imagine one of the pages of the display memory being transformed 
in various ways to generate signals for your particular CRT screen. This page 

is called the visual page. 

When you have more than one page of display memory available, you 
can independently load data into another page, the active page, which is 
ready to display almost instantly as required. Note that "active" refers to the 

invisible page, which is being replenished by the program, not the visual 
page, which is generating the display. The visual page must be not be written 
to during the display cycle. Animation effects depend on flipping between 

active and visual pages . 

..... RASTER SCAN ..... 
The transfer from memory to screen, in the form of a raster scan, is 

repeated 60 times per second (or 50 in some countries) giving the illusion of 

a steady display. Video memory is specially wired with multiple 1/0 ports to 
the CPU and the CRT controller. Simultaneous access by the CPU and CRT 
controller leads to a display aberration known as snow. 

Between each refresh cycle an important event takes place: the electron 
beam painting the screen has to switch off and get from the bottom right cor­
ner back to the starting point at the top left corner (see Figure 9.1 ). This verti­

cal retrace provides an important opportunity for the display memory tb be 
updated by your program without causing snow. This is especially important 
if you have only one page of display memory. The key design elements rele­
vant to all graphics applications are the vertical retrace period (typically a 
millisecond or so), the memory-to-memory transfer rate, and the number 
of pages . 

..... DISPLAY MEMORY MAPS ..... 
Groups of bits or groups of bytes in memory are mapped to positions and 

attributes on the screen. The mapping varies according to which video mode 

is operative. Display adapters and monitors vary in the number and types of 

modes they can support. 



.,. THE GRAPHICS TOOLBOX OPENED WIDE .,. 293 

ve~~fca1 {~::::::::::::::::::::::::::::::::.".:::::::::::::::::::::::::::::::::::::::::::~:::::::::::::::::::::::::::::::i 
overscan ~ - =~-- right horizontal 

horizontal 
retrace 

(blanked) 

l~-~~~~~~--~~~~~~~I ::1 
1_ 

~~~~~~~~::~1 __ 
r ~cl 

c+------- =: visible screen 

c____________ ------------~-----
,- -----<>-------+=I } 

::~""-
::+------- -=====~;::::::::::7~~..,c_-_=="_-' __.'+_, """ vertical 
-+------<------ - ----7--'"---~:1 retrace 

overscan 

-+-_:::...._,._ ____ -~~-------::_::-,,,.-~_-_-;-_-_-_ ++--_ -_ ++::1 (blanked for approx. 1 msec) 
;: ____ ::::<:.,_.._z_..c::-"____ ::1 

,_-:..,._ .... - - '-:+' ::1 

visible lines 

~ Figure 9.1: Raster scan and vertical retrace 

There are many different modes, but they can be classified into two dis­

tinct groups-text and graphics. 

~ Text Mapping ~ 
With text mapping, two adjacent bytes in display memory map to a region 

of the screen large enough to display a single character. One byte specifies 
the character, (you have 256 combinations with IBM Extended ASCII) 
and the other byte controls the character's attributes (intensity, underlining, 
reverse video, suppression, blinking, and, possibly, color). Each character is 

generated by hardware and takes up a fixed area of the screen. The usual 
maxima are 80 characters per line and 25 lines per screen, as shown in Fig­
ure 9.2. A simple calculation shows that for an 80 x 25 text display you need 
2 x 80 x 25 = 4000 bytes per page. 

~ Text Coordinate Systems 
Figure 9.2 also shows the Cartesian coordinate system used for text in 

Turbo C: X, the column position, runs from 1 through 80 from left to right on 



294 .,.. MASTERING TURBO C .,.. 
CH. 9 

each line, and Y, the line or row position, runs from 1 through 25 from top to 
bottom. You refer to a screen position as (X, Y). The top left corner of the text 
screen is (1, 1 ), and the bottom right corner is (80,25). (Note that Y runs in the 
opposite direction to conventional graphs.) 

The relation between row, column, and character position in a page of 
display memory is 

character_offset = (row x 80 x 2) + (column x 2) 
attribute_offset = character_offset + 1 

You will also encounter text formats with 40 characters per line. The map­
ping principle is the same with these. 

(X,Y)=(1,1) 

rowt 

row2 

Yaxis 

row25 

page 1 

column column 
1 2 

r-1 

__L l 

Xaxis 

2 bytes J 
per character 

I 

column 
80 

I 

-

scree 

byte N byte N+ 1 

byteO byte1 byte2 byte3 J~ --
_j I 

"'--- I7 I 

-I 
I 

(X,Y) = (80, 25) 

display mem ory 

ASCII value attribute 
byte 

~ figure 9.2: Memory-mapped display for normal text 



.,.. THE GRAPHICS TOOLBOX OPENED WIDE .,.. 295 

Pages usually start on even kilobyte boundaries, so there are often unused 
bytes between pages. Finding the address of a character in the second and 
subsequent pages must allow for these gaps. 

Now that you know something of text mapping, I'll show you how Turbo C 
handles text windows . 

.... Text Windows 

A text window is a mapping of display memory to a rectangular area of 

the screen. The minimum window is 1 row by 1 column, and the maxi­
mum is the whole screen, which is the default when your program starts. 

The window() function specifies four coordinates, two for the top left corner 
and two for the bottom right corner. 

window(20, 10, 30, 15); 
I* active text window has corners at (20, 10), (30, 10), (30, 15) and (20, 15) 

going in a clockwise direction. *I 

will create an active text window as shown in Figure 9.3. A call to window() with 
illegal coordinates will be ignored, and no error message will be generated 
(window() returns void). window() does not create borders, so you have 
to draw your own (Program 9.1, will show you how). window() simply alters 
the effect of certain CONIO.H console-display functions such as cprintf() and 
cputs( ) by sending output to the active window. The vital point to remember 

is that a window, once created, establishes a new set of local coordinates. 
As with all coordinate systems in mathematics, there are absolute and rela­

tive addressing methods. window() itself uses the absolute coordinates for 
the window corners, but many of Turbo C's window functions use coordi­
nates relative to the top left corner of the window, taking this position as 

(1, 1 ). You get from relative to absolute coordinates by adding a displacement 
to each coordinate. This translation is illustrated in Figure 9.3. 

Turbo C allows you to save, restore, and move any rectangular areas of 
screen text with gettext( ), puttext( ), and movetext() without regard to any 

windows you may have set up. Even if you have the MDA text-only adapter, 
the Turbo C window-management functions will allow to spice up your pro­
grams. With gettext() and puttext( ), for example, you can save and restore 
arbitrary rectangular areas of the screen (including the whole screen). 



296 .- MASTERING TURBO C .­
CH. 9 

(1,1) (20,1) (30,1) 

I I 
I I 
I I 
I I 
I I 
I I 
I I 

(80,1) 

t----- edge of Screen 

(1,10) 
(20,10):abs=(1,1) rel l 

--------- ---.,..-------... ------------ (80,10) 

window ---11---~ 
top left 

I I I 
I I I 

t~~~2*~s_:=j~~~e!_i 
I I I 
I I I 
I I I 
I I I 

~-----t--- window 
bottom right 

(1,15) 
_________ .., ___ • _______ ------------ (80 15) 

l (30,15):abs=(11, 6) rel ' 

(1, 25) 

I I 
I I 
I I 
I I 
I I 
I I 
I I 

(20,25) (30, 25) 

Xabs = 20 + Xrel - 1 
Yabs = 10 + Yrel - 1 

(80,25) 

.. Figure 9.3: Absolute and relative text window coordinates 

.... Graphics Mapping .... 
The graphics memory map is fundamentally different from the text map. 

As shown in Figure 9.4, the screen in graphics mode is conceptually divided 
into a fine mesh of individual dots or pixels (picture elements). The dots are 

not, of course, Euclidean points, although it is often convenient to treat them 
as such. 

Any particular pixel can be suppressed or illuminated, which is the whole 
foundation for creating graphical images. The resolution of the display is 
described in terms of the number of pixels per line and the number of pixels 
per column. A 640 x 200 display, for example, is considered hi-res (high res­
olution) and will allow more detailed images than a 160 x 200 lo-res (low­
resolution) display. Some raster-scanning systems use interlacing whereby 
odd- and even-numbered lines are displayed on successive scans. The 
viewer is not aware of this trickery and the programmer is only involved if 



.,.. THE GRAPHICS TOOi.BOX OPENED WIDE .,.. 297 

top left 
(O, 0) 

row 199 -

column 
0 

__, 

320pixels 

... . . . . . 

each~ 
maps 

8 pixels 
in a row 
r-

byte 1 byte 2 byte 3 byte N 

display RAM I I I I ~ :; M ~ 

linear map 

.. Figure 9.4: Memory-mapped display for graphics 

row 0 

200 pixels 

15 

(319,199) bottom right 

pixels 

byte 

non·linear map 

interlacing affects the memory mapping. Even then, the graphics functions 
often hide you from the underlying complexity. 

.... The Impact of Resolution 

Resolution is important when you want smooth curves and diagonal lines. 
Also, since monitor screens are wider than their height (or vice versa) and/or 
have pixels that are not perfect squares, there exists the aspect-ratio prob­
lem. The pixels I am looking at now as I type have an aspect ratio of 4:3 
(4 units high and 3 units wide). This is especially noticeable when I try to 
draw exact squares and pleasant circles. To reduce distortion, certain scaling 
corrections have to be made in one direction or another. Most drawing 



298 ,... MASTERING TURBO C ,... 
CH. 9 

functions include some aspect-ratio scaling, but you can provide your own 

corrections as well. 
All the popular graphics adapter/monitor combinations offer a choice of 

resolutions. Turbo C gives programmers functions such as detectgraph( ), 
getgraphmode, setgraphmode( ), and restorecrtmode( ) to test which 
modes are available and to set, change, or restore the mode. 

,.... Pixel Encoding 
To represent a pixel state as "on" or "off" requires only 1 bit of display 

memory, but a pixel may take from 1 to 16 bits when you take into account 
the possible coding of the pixel attributes. The actual number of bits depends 

on the palette, that is to say, the range of colors available. The words attribute 
and color are often used loosely and interchangeably to include such factors 
as intensity or shades of gray. Do not worry if you see color-coding schemes 
used with "monochrome" adapters and displays. 

The display-memory requirements for a 320 x 200 resolution 4-color sys­

tem, taking 2 bits per pixel, would be 2 x 320 x 200 = 128,000 bits = 16KB 
per page. The same resolution on a 16-color display with 4 bits per pixel 
would need 32KB per page. If you want more colors and more pages the 
memory requirements build up quite nicely, which explains the growth of 

EMS-the extended memory system devised by Intel, Lotus, and others to 
beat the PC's 1 MB addressing-space limit. There are also special ways of 
addressing display memory that conserve the PC's own address space. 

The different ways that the bits for each pixel can be stored in memory 
provide more complications. For some modes the mapping is linear, for oth­
ers you find noncontiguous groups of bits representing banks of odd- and 
even-numbered lines. Tracking all these and masking off queer bits is a pro­

grammer's nightmare. Luckily, the Turbo C graphics functions do most of the 
hard work. You'll see that once you have passed certain parameters to 
the initialization function, initgraph( ), you work with the same set of high­
level tools, however complex the pixel mapping happens to be. 

,.... Device Drivers 
The secret to interfacing software with so many different adapters and 

monitors is an intercessory program called the graphics device driver, writ­
ten specially for each group of adapters. You are familiar with other device 

drivers such as disk and mouse drivers. They perform all the nasty little signal 

translations between logical and physical objects. 



._ THE GRAPHICS TOOi.BOX OPENED WIDE ._ 299 

At this point, all you need to know about these esoteric driver programs is 
that you must have one (or more)! Turbo C supplies drivers for ten of the 

most popular graphics boards. They all have helpful file names with 
the extension .BGI. When your program is executed, the appropriate driver 
must be available for dynamic loading from disk or for incorporation into 
your .EXE file with the help ofTurbo Cs BGIOBJ.EXE utility (to be explained 
later in this chapter) . 

... Graphics Coordinates 
As with text mappings, you refer to positions on the graphics screen in 

terms of (X,Y) coordinates. With text modes, there is a definite, hardware­

generated cursor that reminds us of the current (X,Y) position. With graphics 
modes there is no preordained cursor, but we still refer to the next writing 
position on the screen as the CP, though in this case it stands for current posi­
tion rather than cursor position. If you want a visible cursor on a graphics dis­
play, you have to generate one. 

There are two other differences between graphics coordinates and text 
coordinates: in graphics, (X,Y) refers to a pixel "point" rather than to a char­
acter position, and the top left pixel is (0,0) not (1, 1 )-compare Figures 9.3 
and 9.4. 

The resolution of the mode you are in dictates the legal range of values for 
X and Y. For a 640 x 200 resolution, X ranges from 0-639 (left to right) and Y 

ranges from 0-199 (top to bottom). The functions getmaxx() and getmaxy() 
return these X and Y upper limits for the graphics mode in force. You'll meet 
many such get...() routines that, like sizeof( ), simplify the writing of port­

able code. 

... Pixel Geometry 
All the drawing primitives rely ultimately on selecting pixels according to 

some relation derived from analytical geometry. Y = aX + b (a, b < > 0), for 
instance, represents all the pixels on the unique straight line through the 
points (0, b) and (-b/a, 0). Y = b represents a horizontal line through (0, b), 
and X = bis the vertical line through (b, 0). Similarly, the equation (X-a)2 + 
(Y- b) 2 = R2 represents a circle of radius R centered at (a,b), and so on. 
Euclidean planes and points, of course, cannot be represented on a finite 
screen with discrete pixels, so you constantly have to decide whether images 
are to be scaled, clipped, wrapped around, scrolled, or made to reappear 

on the opposite edge. 



300 ... MASTERING TURBO C ... 
CH. 9 

Enormous effort has been expended by graphics programmers to devise 
plotting algorithms that work in fast integer arithmetic, avoiding slow 
floating-point sums . 

.... Viewports 

In graphics modes, you can assign a rectangular area of pixels to a virtual 
screen called a viewport to distinguish it from a text window. In fact, the con­
cepts and applications of windows and viewports are quite similar, and for 
example, you use four coordinates (top, left, bottom, right) when defining a 
viewpoint with setviewport( ), or when writing pixels within a viewport. The 
difference is that the coordinates are absolute with the former and relative 
with the latter. For each window function there is a comparable viewport 
function-you just have to learn which is which! 

Viewports, however, offer more sophisticated features such as clipping, 
which allows you to cut drawings at viewport boundaries. (In text windows, 
characters usually wrap around and scroll as though they were in normal, 
but smaller, screens.) You can also produce special effects by applying 
bit-wise operations on sets of images. Neither viewports nor text windows 
come with visible surrounding rectangles, but in graphics mode you can 
draw pretty frames around a viewport simply by selecting a line style with 
setlinestyle() and then calling rectangle() as in 

setlinestyle(line_type, line_pattern, line_thickness); 
rectangle(top, left, right, bottom); 

Unlike the text-mode user-supplied rectangle, which is limited to using the 
IBM extended ASCII line and corner symbols, the graphics frames can be 
Louvres or Guggenheim to taste. 

As with text modes, you can move arbitrary rectangles of graphics 
data between screen and memory with functions such as getimage() and 
putimage( ), regardless of any viewports you may have defined . 

..,. TEXT-TEXT AND GRAPHICS-TEXT..,. 
Having seen a little of the theory behind text and graphics memory maps, let's 

return to the different adapter/monitor combinations available. They fall into 
two main groups-those capable of text mode only, such as the IBM MDA, and 
those that can handle both text and graphics modes, such as the Hercules DA, 



,... THE GRAPHICS TOOLBOX OPENED WIDE ,... 301 

and the IBM CGA and EGA lx)ards. The dual purpose models can be switched 
between several different modes, some of which use text mappings and others 

of which use graphics mappings with different resolutions. 
The standard IBM PC range provides internal hardware and ROM BIOS 

support for five distinct text modes and seven graphics modes (I exclude 
three graphics modes assigned exclusively to the PCJr). Which of these you 
can access depends initially on the adapter fitted and the drivers available. If 

you have the proper adapter and drivers, exploitation of the features pro­
vided in each mode then rests with your monitor. 

I have to choose my words carefully. All multi mode systems are capable of 
displaying text in text mode (normal ASCII plus attribute mapping) as well as 

text in graphics mode (using pixels to create characters in various ways). I'll 
call the latter graphics-text to avoid confusion . 

.,... Graphics-Text .,... 
There are two types of graphics-text: bit-mapped fonts and stroked fonts. A 

bit-mapped font defines a fixed pixel pattern for each text symbol within a 

small rectangle. Turbo C provides a predefined bit-mapped font with charac­
ters based on an 8 x 8-pixel grid. In theory this provides an astronomical 264 

distinct symbols, but in practice a working set of 128 or 256 is selected to 
match the keyboard. You can intermix these character bit patterns with nor­

mal graphics elements in display memory to provide legends for your 

graphs, pie-slices, and bar charts. 
You can use software to do creative (not to mention hideously unattrac­

tive) things with a graphics-text that you can't do with text-mode text. Some 
examples are justification, rotation, inversion, magnification, Hebrew vowel 
pointing, and accenting. The bit-mapped approach has severe limitations, 
however, such as the well-known invasion of the "jaggies" when characters 

are enlarged beyond a certain size. Scaling up a bit-mapped character 
quickly reveals the rough edges. 

The stroked-font approach reduces these problems. Each character in a 
stroked font is coded as a drawing, using line and curve segments, rather 

than as a small set of pixels. Deep down, of course, everything displayed is 
really a set of pixels, and ultimately the resolution of the monitor sets the 

limit. With advanced splining techniques, however, the typographic disas­
ters of magnification can be reduced. 

Turbo C provides four stroked fonts: Triplex, Small, Sans Serif, and Gothic, 
which are stored in the files TRIP.CHR, LITT.CHR, SANS.CHR, and 



302 ,... MASTERING TURBO C ,... 
CH. 9 

GOTH.CHR, respectively. As with .BGI driver files, you have to make them 
available to any program that calls on them. They can be dynamically loaded 
from disk as required or converted to .OBJ files with BGIOBJ.EXE and linked 
into your .EXE code. The trade-off, as with drivers, is program size versus 
execution speed. The built-in 8 x 8 bit-mapped font is always available at 
run time, so you don't have to worry about loading or linking it. 

Specialist vendors provide more exotic fonts that include foreign-language 
character sets. (See Appendix H.) In addition, the technique of scanning and 
digitizing from artwork has simplified the problem of creating fonts (espe­
cially when compared with the old manual bit-picking methods). 

~ Displaying Texts ~ 
The special display functions putch( ), cputs( ), and cprintf() in CONIO.H 

work only with text-text. Version 1.00 of Turbo C did not support text win­
dows, so the CONIO.H routines have been modified in Version 1.5. to out­
put to the active text window. If the latter is the whole screen (as it is by 
default when you fire up), then they work just like their cousins from 
STDIO.H. If you have a smaller text window active, then putch( ), cputs( }, 
and cprintf() output is displayed differently-scrolling and word wrap occur 
within the confines of the window. Even getche( ) has been modified 
because it echoes on the keyed character to the screen in window fashion. 

If you use the STDIO.H display functions printf() and puts() (no leading c 
for console), windows are ignored-output just appears from wherever the 
CP is and plows on regardless. 

Graphics-text, as you may guess, requires special treatment. The CONIO.H 
functions handle only text-mode ASCII strings. With graphics-text you need 
to allow for different style sizes, and both the height and length of the text 
become relevant. 

The function outtext() is the graphics-text equivalent of cputs( )-it sends a 
string of graphics-text to the active viewport. Its operation is subject to many 
parameters that set the font style and size, justification mode, and orien­
tation. The latter allows you to display both horizontally (left to right) and 
vertically (bottom to top, with the characters rotated 90 degrees counter­
clockwise). outtextxy() works in the same way as outtext() but it first sets the 
CP to a given (X,Y). 

These parameters are tested and changed with the functions gettext 
settings(}, settextjustify( ), and settextstyle( ). In the absence of a graphics­
text equivalent to cprintf( ), you cannot immediately format numbers 



,.. THE GRAPHICS TOOL.BOX OPENED WIDE ,.. 303 

and strings on the screen in the traditional text-mode way. You can use 

sprintf( ) to send formatted output to a string and then massage the string 
for outtext( ). 

To summarize, with text-tPxt you are relying on a hardware character gen­
erator that takes an ASCII byte plus an attribute byte and forms its own char­
acter image for the monitor. Most computer printers are set up to handle 
text-text with just minor tweaks for attribute changes (bold, italics, underlin­
ing, and so on). 

The graphics mapped fonts do it all with software. They take extra mem­
ory and CPU cycles but offer much in return-scaling, sloping, style­
changing, proportional-spacing, and WYSIWYG (what you see is what you 

get) displays for desktop publishing. Printing graphics fonts is more difficult 
since the mappings and resolutions of screen and printer seldom match. 

The Turbo C tools reflect the dichotomy between graphics and text. Each 
function in the graphics library works only in one of the two modes . 

..,.. SOME POPULAR DISPLAY ADAPTERS..,.. 
Adapters such as IBM's monochrome display adapter (MDA) work only 

with a single color in text mode. With the IBM extended ASCII code you do 
get several line-segment symbols from which you can build up simple rec­
tangular shapes and bar charts that a lay onlooker might consider to be 
"graphical." Although the MDA can only handle ASCII text, it excels at this 

task with crisp, high-resolution characters ideal for the mainstream of office 
word processing. The MDA has been widely cloned and imitated. 

The IBM Color/Graphics Adapter (CGA) can operate in seven modes, four 

for text and three for graphics. The IBM Enhanced Color Adapter (EGA) pro­
vides four more graphics modes. 

The Hercules Display Adapter (DA) offers an excellent compromise, offer­
ing a monochrome version of the CGA for graphics and a text mode with the 

quality of the MDA. 
It is quite feasible to have more than one adapter board fitted as long as 

each knows its place. 
Table 9.1 lists the properties of each of the modes assigned in the video 

byte at address Ox40:0x49 of all true blue PC's. The mode numbers in Table 
9.1 relate to the internal values of the IBM video byte-Turbo C uses a differ­
ent convention, although the numbers do coincide for the text modes. 



304 .. MASTERING TURBO C .. 
CH. 9 

Since several adapters can share the same mode value, there is another 

byte at address Ox40:0x87, the equipment byte, which is used to encode, 
inter alia, the type of adapter. In theory, software can poll these bytes to dis­

cover what video boards are fitted. In practice, there are many clones and 
compatibles out there to muddy the waters . 

...,. IBM COMPATIBILITY AND DIRECT VIDEO ...,. 
The official IBM-recommended method of accessing the PC video facilities 

is via a set of ROM BIOS or DOS services (or with high-level language com­
mands that call on these services). I gave you a glimpse of this approach by 
using int86() and intdos() in Chapter 6. For maximum speed and control, 

Mode Type Resolution Colors/ Attributes Adapters 

0 Text 40 x 25 16 g CGA, EGA 

Text 40 x 25 16 f 
8b CGA, EGA 

2 Text 80 x 25 16 g CGA, EGA, 
Compaq 

3 Text 80 x 25 16 f 
8b CGA, EGA 

4 Graphics 320 x 200 4 CGA, EGA, 
Compaq 

5 Graphics 320 x 200 4g CGA, EGA, 
Compaq 

6 Graphics 640 x 200 2 CGA, EGA, 
Compaq 

7 Text 80 x 25 mono EGA, MDA, 
Hercules* 

8 N/A (PCjr) 

9 N/A (PCjr) 

10 N/A (PCjr) 

.. Table 9. 1: Standard I BM PC video modes 



Mode Type 

11 Reserved 

12 Reserved 

13 Graphics 

14 Graphics 

15 Graphics 

16 Graphics 

= foreground color 

b = background color 

.- THE GRAPHICS TOOLBOX OPENED WIDE .- 305 

Resolution 

320 x 200 

640 x 200 

640 x 350 

640 x 350 

Colors/ Attributes Adapters 

16 EGA 

16 EGA 

2 EGA 

4/16** EGA 

g = shades of gray in the color-suppressed modes on composite output. 

However, the RCB output carries full-color signals. 

* also provides 720 x 348 monochrome graphics mode 

* * depends on video memory available 

... Table 9.1: Standard IBM PC video modes (continued) 

though, many programs bypass these services and send data directly to dis­

play RAM. 

The BIOS approach is safer since it improves portability across different PC 

models from IBM and other BIOS-compatible suppliers. Minor hardware 

deviations from the official IBM PC standard can vitiate the direct-video 

methods and force expensive recoding. Since the world is full of true and 

false PC clones and incompatible "compatibles," Borland offers you a simple 

solution. The global variable directvideo can be set to enlist the BIOS for 

console output services or it can be set to shun these services in favor of the 

direct memory approach: 

directvideo = O; 

directvideo = 1; 

/*use the IBM BIOS calls*/ 

I* output directly to video RAM *I 

Only you can determine which setting is better for your equipment. My own 

Spartan XX clone works fine both ways with a Hercules DA clone! Once you 



306 .,.. MASTERING TURBO C .,.. 
CH. 9 

determine your optimum setting, remember to include the statement near 
the start of each main( ). Note that it is a statement, not a declaration, so it 
must follow any top-level declarations in a function . 

..,.. LINKING THE GRAPHICS LIBRARY ..,.. 
Another chore to do before you start drawing pie charts all over the 

screen concerns GRAPHICS.LIB, the collection of over seventy compiled 
.OBJ graphics functions. There is only one GRAPHICS.LIB for all the mem­
ory models, unlike the case with the other main libraries, which exist in 
unique versions: CS.LIB (small model), CM.LIB (medium model), and so on. 
Turbo Clinks the appropriate C?.LIB library automatically, but you must tell 
the system if you need GRAPHICS.LIB. 

To ensure that your graphics programs are linked correctly you must add 

GRAPHICS.LIB to each of your .PRJ project files. Even for single-file pro­
grams that do not usually have explicit .PRJ files, you must create one. For 
example, to compile and link TWINDOWC (which you'll see shortly) under 
TC.EXE, a TWINDOWPRJ file must exist with the entry 

twindow graphics.lib 

With TC.EXE you would use the command line, 

C>TCC TWIN DOW GRAPHICS.LIB. 

Forgetting to add GRAPHICS.LIB is a real pain because the error messages 
may not show up until after a long compile-and-link session. 

To work with all the memory models, the GRAPHICS.LIB functions are proto­
typed in GRAPHICS.Has far functions, and all pointer arguments are declared 
with far pointers. This, and the presence of many essential structure, enumera­
tion, and mnemonic definitions, makes it vital to 

#include <graphics.h > 

with all graphics programs. Similarly, CONIO.H must be #included for all 
text-mode work. 



.. THE GRAPHICS TOOLBOX OPENED WIDE .. 307 

..,.. SETTING THE TEXT MODES ..,.. 
Summing up so far, your video board can work in two distinct modes­

text mode and graphics mode. They are both supported by GRAPHICS.LIB 

(there is no separate TEXT.LIB). I'll concentrate on text modes for a while 
since they provide a painless (or less painful?) introduction to the Turbo C 

graphics toolbox. 

You use the textmode() function with a single mode argument to put you 

into one of the five text modes. CONIO.H declares an enumeration, 

en um text_modes { LASTMODE = - 1, BW40 = 0, C40, BWSO, 
MON0=7 }; 

/* recall that enumerations increment by 1 from O unless otherwise 
explicitly initialized. So C40 = 1, BWSO = 2 *I 

allowing you to write 

#include <conio.h > 

textmode(BW40); 
textmode(BWSO); 

/*vital*/ 

/*same as textmode(O); */ 
/*same as textmode(2); */ 

I* assume you switch to graphics here *I 

textmode(LASTMODE); I* or textmode( - 1) *I 
I* this will restore you to the previous text mode, namely BWSO *I 

textmode() does not return a value or signal an error. It does reset any text 

window, making the whole screen your current text window. It also clears 

any text attributes to normal, as though you had called normvideo( ). 
The text-mode mnemonics are explained in Table 9.2. Once you are in text 

mode, you can check the status of various parameters with gettextinfo( ). 
This loads the following text_info structure with pertinent data: 

struct text_info { 
unsigned char winleft 
unsigned char wintop 
unsigned char winright 
unsigned char winbottom 

I* left window coordinate *I 
I* top window coordinate *I 
I* right window coordinate *I 
/*bottom window coordinate*/ 



308 .. MASTERING TURBO C .. 
CH. 9 

/*window corners are in absolute coordinates*/ 

}; 

unsigned char attribute /*text attribute */ 
unsigned char normattr /*normal attribute*/ 
unsigned char currmode I* current mode *I 
unsigned char screenheight /*bottom - top*/ 
unsigned char screenwidth I* right - left *I 
unsigned char curx I* X coord relative to window *I 
unsigned char cury /* Y coord relative to window*/ 

The following snippet shows gettextinfo() in action with some simple, mis­

cellaneous text-mode functions that are self-explanatory: 

struct text_info my_text I* declare a structure *I 

textmode(BW80); I* set text mode *I 

window(10, 20, 29, 23); 
I* reset window from 80 x 25 to 20 x 4 *I 

gotoxy(1, 1); 
I* move CP to (1 , 1) relative to current window *I 

gettextinfo( &my _text); 
/* CP = (10,20) in absolute coordinates*/ 

cprintf("Cursor is at (%2d,%2d)",my_text.curx,my_text.cury); 
/*but curx = 1 and cury = 1 */ 

clrscr(); 

Symbol Enum Value 

LASTMODE -1 

BW40 0 

C40 

BWBO 2 

cao 3 

MONO 7 

... Table 9.2: Graphics-text modes 

/*clear the active window*/ 

Text Mode 

Restore previous 

Black and White (16 gray). 40 x 25 

Color (16 f, 8 b). 40 x 25 

Black and White (16 gray). 80 x 25 

Color (16 f, 8 b). 80 x 25 

Monochrome. 80 x 25 



~ THE GRAPHICS TOOLBOX OPENED WIDE ~ 309 

cprintf("winleft is %2d,wintop is %2d", 
my_text.winleft,my_text.wintop); 

I* displays 10,20 absolute *I 

gotoxy(10, 1 ); 
clreol( ); 

delline( ); 

gotoxy(1, 1 ); 

/*move to (19,20) absolute*/ 
I* and clear to end of line *I 

/*now clear the whole line that contains 
the CP */ 

cputs("This is line 1 of I* no newline with cputs( ) *I 
window"); 

insline( ); 
/* insert a blank line by pushing down the line with the CP. 

All lower lines are pushed down. The bottom line will scroll 
out of the window. Line 1 is now blank, line 2 is old line 1 */ 

cprintf("I am now at (%2d,%2d)\n",wherex( ),wherey( )); 
I* display the window relative coordinates *I 

textmode(BW40); 

textmode(my_text.currmode); /*restore to BW80 */ 
I* or use textmode(LAST _MODE) *I 

The above snippet shows the simple gotoxy() call moving the cursor using 

window-relative coordinates. The window() function effectively reduces the 

screen size as far as any CONIO.H output is concerned, so cprintf() would 

display in a box 20-characters wide and 4-characters deep. A string exceed­

ing 20 characters would spill over to the following line. Calls on window() 

with inappropriate corners are ignored, and no warnings are generated. 

clrscr() clears the area defined by the active window. The CP is moved to 

(1, 1 ), the top left corner. The three editing functions, clrol( ), delline( ), and 

insline() operate as is indicated in the comments. 

wherex() and wherey() return integer values telling you the current posi­

tion relative to the active window. They duplicate the curx and cury mem­

bers of the text_info structure, but they save you from calling the more 

complex gettextinfo() just to find out where you are on a screen. 

To understand the attribute field in struct text_info, you need to look at 

the colors available in text mode. 

~ Text Color ~ 
The text modes that offer color work as follows (provided you have a color 

monitor, of course). You will recall that a text character and its attribute are 



310 • MASTERING TURBO C • 
CH. 9 

encoded in adjacent bytes. The screen cell displaying the character can have 
a selected background color upon which the character appears in a fore­

ground color. The attribute byte encodes both these colors and a blink­
enable flag as follows: 

Bits Meaning 

0-3 4 bits = 16 foreground colors possible 

4-6 3 bits = 8 background colors possible 

7 1 bit = blink-enable flag (0 = off, 1 = on) 

It is instructive to look a little deeper at the color-encoding bits: 

Bit Meaning 

0 Blue foreground 

Green foreground 

2 Red foreground 

3 Intensity bit (0 = off, 1 = on) 

4 Blue background 

5 Green background 

6 Red background 

Sir Isaac Newton showed that mixing the three primary colors, red, green, 
and blue, in different proportions could produce all the colors of the visible 
spectrum. With the aid of the single intensity bit, the eight simple mixes of 
the foreground primaries provide sixteen different colors, eight of which 
(low intensity) are also available as background colors. Clearly the same 
combination of low-intensity background and foreground colors is 
unacceptable-the character merges with its background! Even with a high­
intensity foreground, some of the background colors do not work very well 
(brown behind yellow, for example). The default attribute-byte setting, by 
the way, is Ox7, which gives white on black. 

The colors derived from these combinations are defined symbolically in 
CONIO.H, as shown in Table 9.3. 

The richer sixty-four-color palettes available with the EGA boards arise 
from the addition of an intensity bit to each of the three primary colors. I will 
limit this discussion to the sixteen-color systems. 



~ THE GRAPHICS TOOLBOX OPENED WIDE ~ 311 

Value Symbol Foreground/ Background? 

0 BLACK both 

BLUE both 

2 GREEN both 

3 CYAN both 

4 RED both 

5 MAGENTA both 

6 BROWN both 

7 LIGHTGRAY both (white on some monitors) 

8 DARKGRAY foreground only (or black) 

9 LIGHTBLUE foreground only 

10 LIGHTGREEN foreground only 

11 LIGHTCYAN foreground only 

12 LIGHTRED foreground only 

13 LIGHTMAGENTA foreground only 

14 YELLOW foreground only (or bright yellow) 

15 WHITE foreground only 

128 BLINK foreground only 

• Table 9.3: Color codes 

Three functions accept the symbols in Table 9.3 as arguments to set the 

color attributes for all characters subsequently displayed until the attribute is 

changed (or you exit text mode). They are declared as follows: 

void textbackgound{int color); 
I* use only colors O - 7 for background *I 

void textcolor(int color); 
I* use any color O - 15 for foreground *I 

void textattr(int attribute); 
I* sets both background & foreground but needs care if you use the color 

symbols - see example *I 



312 .,.. MASTERING TURBO C .,.. 
CH. 9 

These functions are called as follows: 

#include <conio.h > 
/*to get the #defined color symbols */ 

textmode(C80); I* set color text mode 80x25 *I 

textbackground(RED); 
/* set background color to red. Turbo C shifts color value left by 4 before 

updating attribute byte. No effect on current display, but subsequent 
cprintf( ), cputs() output to screen will reflect new color *I 

textcolor(WHITE); 
I* set foreground color to white *I 

cputs("This is WHITE on RED"); 

textattr(WHITE + (RED << 4)); 
/*same effect as the two previous calls combined. You have to shift the 

background bit pattern yourself as shown */ 

textbackground(RED + BLINK); 
I* set background color to blinking red! *I 

._ The Intensity Bit Isolated ._ 
You can independently control the intensity bit without affecting the fore­

gound or background colors: 

lowvideo( ); 
I* reduce brightness only by turning off intensity bit *I 

highvideo( ); 
/*increase brightness only by setting the intensity bit*/ 

To restore the text attribute to its original state, you use normvideo() as follows: 

normvideo( ); 
/*restore background and foregound to attribute in force when the program 

started */ 

._ Delayed Effects ._ 
Note that changing attributes and modes seldom affects the current 

display-you are setting things up to change the text that you output 



.,. THE GRAPHICS TOOLBOX OPENED WIDE .,. 313 

subsequently. Plan ahead! (One rare exception is when you change a palette 
index on the EGA adapter. The colors are immediately changed on the exist­
ing display, providing an opportunity for psychedelic effects that some users, 
alas, find hard to resist.) 

~ The Monochrome Attribute ~ 
If you use these color-change calls on a monochrome adapter/monitor, 

the attribute bit pattern will be interpreted somewhat differently. The inten­
sity and blinking bits work identically, but color bits allow only four distinct 
com bi nations: 

... Normal "white-on-black" corresponds to attribute value Ox07, 
which means that you can usually use normvideo() to restore mono­
chrome displays to "normal." In Program 9.1 you'll see that text 
color(WHITE); and textbackground(BLACK); also work. 

... Underline, obtained with attribute value Ox01, corresponds to text 
color(BLUE); and textbackground{BLACK);. 

... Reverse video, obtained with attribute value Ox70, corresponds to 
textcolor(BLACK); and textbackground(WHITE);. 

... Hidden, relates to attribute value OxOO, the same as textcolor 
(BLACK); and background{BLACK);. This can be useful for certain 
animated titling tricks. 

On each of these you can superimpose high intensity and blinking, 
although it's hardly useful with hidden characters! You should experiment 
on your system to see the effect of combinations such as flashing reverse 
video, highlighted underlines, ad nauseam. The following all work as you 
might expect: 

normvideo( ); 
lowvideo( ); 
highvideo( ); 

I* set to normal *I 
I* set to low intensity *I 
/*set to high intensity*/ 

As with color, these functions set the attributes for all subsequent characters 
displayed with cprintf( ) or whatever. When you see the TC menu letters 
highlighted, you know that someone has programmed a sequence such as 

textmode(MONO); 
highvideo( ); 



314 .. MASTERING TURBO C .. 
CH. 9 

cputs("C"); 
normvideo( ); 
cputs("ompile"); 

/* unlike puts() no newline with cputs( )! */ 
I* or lowvideo( ) *I 

If you are doing a lot of this, you could write a general function to display any 
string with the first letter highlighted. 

~ TEXT WINDOW MANAGE ME NT ~ 
Even if you have a text-only monochrome adapter you can still have fun 

with the Turbo C window tools. TWINDOWC (Program 9.1) lets you experi­

ment with the basic text and window functions. It also introduces the func­
tions that move whole regions of text around the screen. 

~Analysis of TWINDOW.C ~ 
Did you remember to add GRAPHICS.LIB to the TWINDOWPRJ file? The 

comments should explain most of the tricks. Once you have TWINDOW.C 
running, it's a good idea to create a header file, MYGRAPH.H, with your 

own defines and macros. You can put #include <conio.h> and #include 

<graphics> in MYGRAPH.H so that the one #include <mygraph.h> 
pulls in the lot. 

I have used just some of the available IBM extended ASCII symbols to 
create two window-framing styles. Since I use gotoxy( ) to draw borders, 
some care is needed when you define the rectangle corners within or with­

out a window. 
The only reason for linking GRAPHICS.LIB in TWINDOWC was to allow 

the use of detectgraph() and getmoderange( ). (All other functions used are 
text-mode functions from CONIO.H.) These functions reveal what adapters 
are fitted without actually moving into graphics mode. I'll defer a full discus­

sion until the section on graphics modes. 

~ The gettext() and puttext() Functions 

These functions are used to switch the contents of my two windows. The 
prototypes reveal their usage. 

int gettext(int left, int top, int right, int bottom, void *destination); 

int puttext(int left, int top, int right, int bottom, void *source); 



.,.. THE GRAPHICS TOOLBOX OPENED WIDE .,.. 

You define a rectangle using absolute coordinates, and it may or may not 
coincide with an active window. For gettext( ), you name a pointer to 

/* twindow.c -- test text window functions */ 

#include <conio.h> 
#include <graphics.h> 

#define 
#define 
/ldef ine 
#define 

#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 

H LINE 
V-LINE 
DH LINE 
DV=LINE 

TLC 
TRC 
BLC 
BRC 
DTLC 
DTRC 
DBLC 
DBRC 

'\xC4' 
'\xB3' 
'\xCD' 
'\xBA' 

'\xDA' 
'\xBF' 
'\xCO' 
'\xD9' 
'\xC9' 
'\xBB' 
'\xca' 
'\xBC' 

#define SINGLE_BORDER 1 
#define TWIN_BORDER 2 

/* IBM Extended ASCII */ 

/* top left corner etc */ 

/* double-edged borders */ 

#define UNDERLINE textcolor(BLUE); textbackground(BLACK); 
/*alternative to underline() */ 

~truct text info mytext; 
/* global: gives status of window, attributes, etc. */ 

/* the following functions show how the text attributes interpret 
* those used for color selection 

*./ 
void underline(void) 
{ 

textcolor{BLUE); 
textbackground(BLACK); 

void reversevideo(void) 
{ 

lextcolor(BLACK); 
textbackground(WHITE); 

void hide{void) 
{ 

textcolor(BLACK); 
textbackground{BLACK); 

/* TEXT MODES ONLY */ 
1* MY_HLINE{) draws selected char from (startx,starty) to 
* (endx,starty) = horizontal line. Returns number of chars 
* drawn. startx may be greater than endx, Cursor ends up 
* in position following last char displayed. 
* coordinates are relative to active window 
*t 

int my_hline(int startx, int starty, int endx, char line_char) 
{ 

~Program 9.1: TWINOOWC 

315 



316 
CH. 9 

• MASTERING TURBO C • 

int i; 
gotoxy(startx, starty); 
if (startx == endx) return(O); 
if (startx < endx) ( 

for ( i•startx; i <= endx; i++) 
putch(line char); 

return (i-startx); 
) 

gotoxy(endx,starty); 
for ( i=endx; i <= startx; i++) /* endx < startx */ 

putch(line char); 
return (i-endx); 

/* TEXT MODES ONLY */ 
/*MY VLINE() draws a vertical line from (startx,starty) 

• to- (startx,endy). starty can be greater than endy. 
• line_char is selected line symbol 
* coordinates are relative ·to active window 
•/ 

int my_vline(int startx, int starty, int endy, char line_char) 
( 

int i; 
/* no gotoxy needed here */ 

if (starty == endy) return(O); 
if (starty < endy) ( 

) 

for ( i=starty; i <=endy; i++) 
gotoxy(startx,i); 
putch(line_char); 

return (i-starty); 

for ( i=endy; i <= starty; i++) { 
gotoxy(startx,i); 
putch(line_char); 

) 
return (endy - i); 

/* TEXT MODES ONLY */ 
t* MY RECT draws a rectangle for top--left = (tlx.tlv) 

*bottom--right = (brx,bry). style=l gives single border 
• style=2 gives double border 
•/ 

int my_rect(int tlx, int tly, int brx, int bry, int style) 
{ 

int w, h; 
char hline ch, vline ch, tlc, trc, brc, blc; 
switch(style) { -

case 1; 
case O; 

hline ch = H LINE; 
vline=ch = V=LINE; 
tlc = TLC; trc TRC; 
brc = BRC; blc = BLC; 
break; 

case 2: 
hline ch = DH_LINE; 
vline-ch = DV LINE; 
tlc =-DTLC; trc DTRC; 
brc = DBRC; blc = DBLC; 
break; 

default: 
return(O); 

~ Program 9.1: TWINDOWC (continued) 



gotoxy(tlx,tly); 
putch (tlc) ; 

~ THE GRAPHICS TOOLBOX OPENED WIDE ~ 

w =my hline(tlx+l,tly,brx-1,hline ch); 
putch (trc) ; -
h = my_vline(brx,tlytl,bry-1,vline_ch); 
gotoxy(brx,bry); 
putch(brc); 
my_hline (brx-1, bry, t· 1 xt-1 ,hline_ch); 
gotoxy(tlx,bry); 
putch(blc); 
my_ vline (tlx, bry-1, t l y •-1, vline_ch) ; 
return(w*h); /* area enclosed */ 

void main(void) 
{ 

int graphmode; 
int graphdriver; 
int himode, lomode; 
char savewin1[300], savewin2[300]; 

dire.ct video = 1; 
/* = 0 means use ROM-BIOS calls; = 1 means use video RAM directly 

r-,' 

detectgraph(&graphdriver, &graphmode); 
/* check the video hardware -- find highest resolution mode */ 

getmoderange(graphdriver, &lomode, &himode); 
textmode(MONO); 

/* set to 80 x 25 monochrome -- normal text-only, non--graphics DA 
*/ 

gettextinfo(&mytext); 
/* get current text mode and window position */ 

uoy_rect(9, 7, 49, 20, SINGLE_BORDER); 

my_rect(10, 8, 46, 11, TWIN_BORDER); 

window ( 11 1 9, 4 7 1 1 0); 

gotoxy(2, 1 ); /*relative coordinates */ 
reversevideo(); 
cprintf("driver %d, max mode = %d",graphdriver, graphmode); 
gettext(12, 9, 47, 9, savewin1 ); 

/* save window text in array savewin1 */ 
normvideo(); 

I* 

window(1,1 ,60,25); 
my _rect ( 1 0, 1 4, 46, 1 7, TWIN BORDER) ; 
window( 11, 15, 47, 16); -

gotoxy(2,1 ); /* • 12,15 absolute */ 
underline(); or try the macro*/ 
UNDERLINE 
cprintf("TxtMode 
mytext.currmode, 
gotoxy(2,2); 
normvideo(); 

= %d,Winleft = %d,Wintop = %d", 
mytext.winleft, mytext.wintop); 

/* = 12,16 absolute */ 

cprintf("Lomode = %d, Himode 
gettext(12, 15, 47, 16, savew 

%d",lomode,himode); 
n2); 

t* save the given screen text area 
normvideo(); highvideo(i; 
cputs(" <CR> •• "); getch(); 

n array savewin2 */ 

~ Program 9.1: TWINDOWC (continued) 

317 



318 ~ MASTERING TURBO C ~ 
CH. 9 

I* temp pause - hit any key */ 
gotoxy( 1, 1); 
clrscr(); /*clear text window 2 */ 
puttext(12, 15, 47, 15, savewin1); 

I* switch window 1 to window 2 *I 
window( 11, 9, 47, 10); 
gotoxy ( 1 , 1 ) ; 
clrscr(); 
puttext(12, 9, 47, 10, savewin2); 

I* switch window 2 to window 1 */ 
} 

... Program 9.1: TWINDOWC (continued) 

receive a copy of the display RAM holding this text area. Be clear on the fact 
that this includes both ASCII and attribute bytes for each character. The desti­
nation must therefore be large enough, i.e., at least 2 x height x width of 
the text area. 

puttext() reverses the process by sending the bytes starting at *source to 
the display RAM representing the rectangle. As you can see in TWIN­
DOW.C, this allows text to be moved without losing its attributes. The source 

and destination memory can be arrays or malloced. puttext() sends the 
text sequentially, so if you are sending text to an active window you may get 
scrolling and a different physical layout. Try changing the window sizes to 

see the impact of this. 
The returned int value for both functions is 1 for success, 0 for failure. Fail­

ure usually indicates that illegal rectangles for the particular mode were 
specified. You can guess that programs meant to operate on many different 
video boards would have to check text_info.screenheight and the other 
parameters to avoid illegal coordinates. 

There is a simpler function, movetext( }, which displays a copy of a rectan­
gle of text in another region of the screen. movetext() is really a copy-text 

function. It assumes that your destination area is the same size as the source, 
so you need to specify only the source rectangle and one corner of the desti­
nation rectangle. The source display is not affected unless the rectangles 

overlap. A typical call might be 

movetext(10, 1, 14, 3, 16, 12); 
/*copy text in rectangle (10, 1)/(14,3) to (16, 12/(20, 14) */ 

All coordinates are absolute. The last two give the destination top left posi­
tion, so simple arithmetic supplies the other corners. If the destination 



.,.. THE GRAPHICS TOOLBOX OPENED WIDE .,.. 319 

rectangle is all or part of an active window you may get bizarre results. 

Because of scrolling, the copy text may not appear the same as the source. 

~ SUMMARY OF TEXT-MODE FUNCTIONS ~ 
I now list the prototypes and summarize each text function in related 

groups. (As an additional aid, Appendix G contains a description of each text 
and graphics function with cross references and brief examples of use when 
appropriate.) 

... Text Mode Control 

void textmode(int mode); 
I* set text mode - set full screen window - set normvideo *I 

... Text-Window Control 

void window(int abs_top_left_x, int abs_top_left_y, 
int abs_bottom_right_x, int abs_bottom_right_y); 

I* define active window *I 

... Text 1/0 

int cprintf(const char *format_string[,args ... ]); 
/*formatted output to active window - return number of bytes*/ 

int cputs(const *string); 
/*output string to active window - return last char*/ 

int putch(char ch); 
I* output char to active window - return same char *I 

int getche(void); 
/* returns a keyboarded char with echo to active window *I 

... Text Manipulation 

void gotoxy(int rel_x, int rel_y); 
/* move cursor to window-relative cell if possible, else ignore */ 

void clrscr(void); 
/*clear the active window - then gotoxy(1, 1); I 



320 ~ MASTERING TURBO C ~ 
CH. 9 

void clreol(void); 
/* clear from CP to end of line in active window - CP unchanged *I 

void delline(void); 
/*delete whole line in active window containing CP - move up any lower 

lines - CP unchanged *I 

void insline(void); 
/*generate blank line in active window at CP with current background color. 

Scroll down any lower text lines *I 

int movetext(abs_top_left_x, abs_top_left_y, abs_bottom_right_x, 
abs_bottom_right_y, 
abs_new_top_left_x, abs_new_top_y); 

/* copy screen text from one rectangle to another of the same size. 
Returns TRUE for success, FALSE for failure */ 

~ Text Screen-Memory Transfers 

int gettext(abs_top_left_x, abs_top_left_y, abs_bottom_right_x, 
abs_ bottom_right_y, 
void *destination); 

I* copy from screen rectangle to memory at destination pointer. Two bytes 
transferred per cell, character and attribute, so Height*width*2 bytes 
are transferred. Returns TRUE for success, FALSE for failure *I 

int puttext(abs_top_left_x, abs_top_left_y, abs_bottom_right_x, 
abs_bottom_right_y, 
void *source); 

/*copy from memory at source pointer to screen rectangle. Two bytes 
needed per cell, character and attribute. Height*width*2 bytes are 
transferred. Returns TRUE for success, FALSE for failure */ 

~ Text Attribute Controls 

void textcolor(int color); 
I* select cell foreground color O - 15 with optional BLINK *I 

void textbackground(int color); 
/*select cell background color O - 7 */ 

void textattr(int attribute_byte); 
/*set cell attributes, foreground and background with optional BLINK*/ 



.,.. THE GRAPHICS TOOi.BOX OPENED WIDE .,.. 321 

void highvideo(void); 
/* set high intensity bit of current foreground color *I 

void lowvideo(void); 
/* clear high intensity bit of current foreground color *I 

void normvideo(void); 
I* restore background and foreground attributes to normal state *I 

~ Text-Mode Status Queries 

void gettextinfo(struct text_info * info_ptr); 
/*set the fields in the text_info structure pointed at by info_ptr. The fields 

give you winleft, wintop, winright, winbottom, attribute, normattr, 
currmode, screenheight, screenwidth, curx, and cury */ 

int wherex(void); 
I* returns window - relative column coordinate of CP *I 

int wherey(void); 
I* returns window - relative row coordinate of CP *I 

..,.. GRAPHICS MODES ..,.. 
Getting into a graphics mode is slightly more difficult than getting into text 

modes because there are more choices. Corresponding to textmode() is the 
function initgraph( ), which initializes the system for the graphics board and 
mode of your choice and loads the appropriate driver. 

~ The initgraph() Function ~ 
initgraph() needs three arguments: 

.... int *graphdriver The graphics driver is given by an integer or enumera­
tion mnemonic. This must be passed as a pointer to an int variable since 
initgraph() can alter its value under certain circumstances. If you pass the 
special driver argument DETECT, or 0, initgraph() auto-detects a driver to 
match your hardware and tells you which driver, if any, was loaded. I'll tell 
you more about this when I discuss the detectgraph() function. 



322 ~ MASTERING TURBO C ~ 
CH. 9 

~ int *graphmode The graphics mode is also an integer or mnemonic 
passed as a pointer to int. This parameter can also be set automatically using 
the DETECT driver argument. 

~ char *driver_path_string The path string indicates where the driver .BGI 
file can be found. If the driver file is not found in the indicated directory, a 
search is made in your current directory. If all your .BGI files are in the cur­
rent directory, you can use the NULL string path,"" (two double quotes). If 

you invoke any of the stroked graphics fonts this path will also be used to 
locate the .CHR files, so it's wise to keep all .BGI and .CHR files in the same 
directory (usually \turboc). Remember that the DOS path symbol\ must be 

written"\\" inside the driver path string. (The use of"\" as an escape char­
acter was explained in Chapter 1.) 

The initgraph() prototype in GRAPHICS.His 

void far initgraph(int far *graphdriver, int far *graphmode, 
char far *driver _path_string); 

The far modifiers are needed because the one graphics library serves all 
Turbo C memory models. 

The following snippet provides a useful template for simple graphics 
work. Two simple graphics functions, graphresult() and closegraph( ), 
are introduced. 

#include <stdio.h > 
#include <graphics.h > 

int graphdriver; 
int graphmode; 
int graph_error; 

graphmode = CGACO; graphdrive = CGA; 
/*enumerated in graphics.h */ 
/*vary these settings to suit your hardware*/ 

initgraph(&graphdriver, &graphmode, "c:\ \turboc\ \"); 
/*initialize system for CGA graphics 320x200, palette CO. 

graph mode is set to - 2 thru - 5 to indicate errors. 
Or you can call graph result( ) to test for success *I 

graph_error = graphresult( ); 
/*sets graph_error to zero if initgraph was successful. 



.,.. THE GRAPHICS TOOLBOX OPENED WIDE .,.. 323 

Negative results of - 2 thru -15 indicate diverse errors. 
graph result( ) reports errors after any graphics operation *I 

if (graph_error < 0) { 
puts( grapherrormsg(graph_error)); 

I* converts graph_error to proper error message string *I 
exit(1); 

} 
I* here you can do your graphics stuff *I 

closegraph( ); 
I* free all graphics memory allocations and revert to previous 

(pre- initgraph) mode *I 

CGA and CGACO are driver and mode mnemonics as enumerated in 
GRAPHICS.H. Turbo C supplies ten graphics drivers supporting a wide 
range of modes, as shown in the description of initgraph() in Appendix G. 

..... The Auto-Detect Feature ..... 
It is not easy to write universal PC programs that will work without prior 

knowledge of the adapter or monitor fitted. About the only lowest common 
device you can rely upon is the text-only MDA. 

Turbo Coffers the detectgraph() to give you some help. It detects which 
graphics adapter is fitted (if any) and tells you the highest resolution mode on 
that adapter's driver. detectgraph() can be called directly or indirectly. The 
direct call is made as follows: 

#include <stdio.h > 
#include <graphics.h > 

int graphdriver; 
int graphmode; 

detectgraph(&graphdriver, &graphmode); 
if (graphdriver < 0) { 

} 

puts("Cannot detect a graphics card!"); 
exit(1 ); 

I* graphdriver and graph mode now set with highest resolution mode on 
adapter fitted *I 

printf("\nCard detected is #0/od, Hi-res mode is #0/od", 
graphdriver, graphmode); 

/* BUT graphics mode not initialized until you call initigraph() */ 



324 ~ MASTERING TURBO C ~ 
CH. 9 

The indirect call to detectgraph() occurs as follows: 

#include <stdio.h > 
#include <graphics.h > 

int graphdriver; 
int graphmode; 
int graph_ error; 

graphdriver = DETECT; 

initgraph(&graphdriver, &graphmode, " "); 
I* initgraph() will call detectgraph() for you and initialize 

system for the autodetected adapter. graphdriver is set to 
the selected driver and graphmode is set to mode with highest 
resolution for that driver *I 

I* BUT if no graphics card fitted, graphdriver set to - 2. So test here, 
either: if (graphdriver < 0) or use graph result( ) *I 

graph_error = graphresult( ); 
if (graph_error < 0) { 

puts( grapherrormsg(graph_ error)); 
exit(1 ); 

I* now you can do your graphics stuff *I 

closegraph( ); 

When you call initgraph() with graphdriver set to the value DETECT, 
initgraph() calls detectgraph() internally to determine the available adap­
ter. If it finds one, initgraph() goes ahead and initializes on that basis. The 

chosen driver and mode are returned in graphdriver and graphmode­
which explains why you have to use &graphdriver and &graphmode 
as arguments. 

In view of this inner call, you may well ask if a direct call to detectgraph() 
is ever needed. The answer is that you may wish to determine which adapter 

is fitted but not select its highest resolution mode. Consider the following: 

/*same declarations as previous snippet*/ 
detectgraph( &graphd river, &g raphmode); 
if (graphdriver < 0) { 

puts("Cannot detect a graphics card!"); 
exit(1 ); 



~ THE GRAPHICS TOOLBOX OPENED WIDE ~ 325 

/* graphdriver and graphmode now set with highest resolution mode on 
adapter fitted *I 

printf("\nCard detected is #0/od, Hi-res mode is #0/od", 
graphdriver, graphmode); 

/* BUT graphics mode not yet initialized until you initigraph() *I 

if (graphdriver == CGA && graphmode == CGAHI) 
graphmode = CGAC3; 

else if (graphdriver = = EGA && graphmode = = EGAHI) 
graphmode = EGALO; 

I* override the detectgraph selection *I 
initgraph(&graphdriver, &graphmode, ""); 

~ The closegraph() function ~ 
The closegraph{ ) function simply terminates the graphics mode estab­

lished by initgraph( ). The memory allocated to the driver, fonts, and buffers 

is deallocated, and the original video mode is restored. 

~Switching Modes ~ 
To switch to another graphics mode for the same driver you do not have 

to closegraph( ) and reinitialize. Three functions, getgraphmode{ ), 

setgraphmode( ), and restorecrtmode( ) give you flexible control when 

switching and restoring modes. Consider the following extract: 

I* usual #includes *I 

int curr_mode; 
int graphdriver = ATT400; 
int graphmode = ATT 400C1; 

/*program starts in text mode*/ 
/* now initgraph with ATT400 driver*/ 

initigraph(&graphdriver, &graphmode, ""); 
curr_mode = getgraphmode( ); 

I* save the current mode *I 

/*do something in ATT400C1 mode*/ 
restorecrtmode( ); 

/*temporary switch to text mode ruling before initgraph. 



326 .- MASTERING TURBO C .­
CH. 9 

Screen cleared *I 
puts("Now in text mode!"); 

setgraphmode(curr_mode); 
/*Screen is again cleared and mode restored to ATI400C1 */ 

graphmode = ATI400CO; 
setgraphmode(graphmode); 

/*switch modes - provided graphmode is valid for current driver. Screen is 
cleared and all graphics parameters set to their defaults *I 

/*do something in ATI400CO mode ... */ 
setgraphmode(curr_mode); 

I* Screen is again cleared and all graphics parameters set to their defaults. 
Mode restored to ATI 400C1 *I 

As you can see, it is possible to switch graphics modes and also slip back 
into text mode without the overhead of initgraph( ). 

..... Graphics-Mode Applications ..... 
Once you have successfully called initgraph( ), you have at your com­

mand all the spectacular display effects provided in the Turbo C toolbox: 
lines, arcs, polygons, bars in two and three dimensions, circles, ellipses, and 
any creative combinations possible. You can set colors (if you have them), 
line styles, and fill patterns from a given repertory or design your own. You 
can write text in any of the five fonts, horizontally or vertically, with various 
magnifications and justification formats. 

As a starter, TFONT.C (Program 9.2) determines a few facts about the 
adapter you have, then explores the various fonts available. 

TFONT.C reveals some new functions that require some explanation . 

... The getmaxx() and getmaxy() Functions 

getmaxx() and getmaxy() return int values for the maximum X and Y 
coordinates for the current resolution. On my Hercules clone, maxx equals 
719, and maxy equals 347 [remember the screen starts at (0,0)]. 



.,.. THE GRAPHICS TOOLBOX OPENED WIDE ... 

/* Program 9--2 */ 
/* tfont -- check your ;;dapter & play with graphics fonts */ 

#include <conio.h> 
#include <graphics.h> 
#include <stdlib.h> 

void maintvoid) 
{ 

int nexty = O; 

int graphmode, graphdriver; 
int curr_mode; 

int font, direction, charsize = O; 

int xasp, yasp, maxx, maxy; 
/* aspect ratios and max coordinates */ 

directvideo = 1; 
/* try = 1 or 0 to see if you are fully IBM PC compatible */ 

textmode (MONO) ; 

/* see what cards you have in there */ 
detectgraph(&graphdriver, &graphmode); 
clrscr(); 
gotoxy(l0,12); 
cprintf("\nMy driver= %d, Hires mode= %d\n", 

graphdriver, graphmode); 
/* above gets me 7 (hercmono) and 0 (720x348 2 color) */ 

gotoxy(l0,20); 
puts ("Hit any key ... "); getch(); 

/* pause to note values */ 
clrscr(); 
graphmode = HERCMONOHI; 
graphdriver = HERCMONO; 

/* set your own here -- or leave detectgraph's settings */ 

initgraph(&graphdriver, &graphmode, "c:\\turboc\\"); 
/* gotcherl the\ needs the\ escape char, so\\ for paths */ 

curr mode = graphmode; 
/* save mode for later */ 

maxx = getmaxx(); maxy = getmaxy(); 
/* find max values of x and y coordinates */ 

getaspectratio(&xasp, &yasp); 
/* get aspect ratio */ 

restorecrtmode(); 
/* temp flip back to text mode */ 

/* to 

gotoxy(20,10); 
cprintf("\nMax coordinates: X = %d, Y = %d\n", 
cprintf("\nAspect ratio is %d:%d = %6.4f\n", 
yasp,xasp,(float)yasp/xasp); 
display values */ 

gotoxy(12,23); 
puts ("Hit any key ... "); getch(); 

maxx, maxy) ; 

setgraphmode(curr_mode); 
/* back to previous graphics mode with clear screen */ 

... Program 9.2: TFONT.C 

327 



328 .,. MASTERING TURBO C .,. 
CH. 9 

font = DEFAULT FONT; 
direction = HORIZ DIR; 
charsize = 3; -

/* magnifies only the bit-mapped font. For stroked fonts, 
charsize = 0 allows setusercharsize() to do fine 
width/height adjustments */ 

moveto(SO,l); 
/* graphics modes do not use gotoxy! */ 

for (font = DEFAULT_FONT; font <= GOTI!IC_FONT; font++) { 
if (font > DEFAULT_FONT) { 

charsize = O; 
setusercharsize(4, 3, 3, 2); 

/* increase font height 4:3, increase width 3:2 */ 
if (font== SMALL_FONT) setusercharsize (2, 1, 7, 5); 

/* give the small font an extra boost */ 
} 
settextstyle(font, direction, charsize); 

/* set font, horizontal, size */ 
outtext("Hello Graphics Font World!"); 
nexty += textheight ( "H"); 

/* you have to create your own newlines according to font heights 
*/ 

moveto(SO,nexty + 10); 

moveto(S0,300); 
/*you are still in gothic_font here ... */ 

outtext("Can you see this? Hit any key .. "); 
getche(); 
cleardevice(); 

/* clear graphics screen -- ready for more fun? */ 
/* try the vertical direction display with various fonts */ 
/*Always end with ... */ 

closegraph(); 

~ Program 9.2: TFONIC (continued) 

.... The getaspectratio() Function 
getaspectratio(&xasp, &yasp); sets two integer values from which you can 

calculate the aspect ratio. The yasp value is normalized to 10,000. Most pixels 

are taller than they are wide, so xasp is usually less than 10,000. My value of 

xasp is 7,500, giving an aspect ratio of 1.3333. You have to multiply the width of 

a square by this number in order to draw a rectangle that really looks square! 

For example, the following snippet will display a rectangular square, 

int xasp, yasp; 
long width, side; 

getaspectratio(&xasp, &yasp); 
width = side * (long)yasp / long(xasp); 

I* improve on int/int accuracy. Aliter: you could cast to float *I 
rectangle(O, 0, (int)width, (int)side); 

Note that you have to be in graphics mode to get aspect ratios, hence the 

flip back to text mode to use cprintf() in TFONT.C. 



... THE GRAPHICS TOOi.BOX OPENED WIDE .,.. 329 

.... The moveto() Function 

You must use moveto() to change the CP in graphics modes (in contrast to 
gotoxy() for text modes). moveto( ) and gotoxy share an important 
property-their (X,Y) arguments are relative, not absolute. The moveto() 
arguments operate relative to a viewport (the graphics equivalent to a text 
window). TFONT.C has not used an explicit setviewport( ), so it operates 
with the default viewport, namely the whole screen. moverel(dx, dy) is a 
related function that is CP-relative. It moves the CP dx pixels along the X axis 
and dy pixels along the Y axis. 

setviewport() works much like its text cousin, window(). You give it four 

coordinates for the top left and bottom right corners, but you also provide a 
clip flag that determines if drawings are clipped at the viewport boundaries 
(clip flag nonzero) or not (clip flag zero). To find out all about the currently 
active viewport you call getviewsettings( ), which fills up a structure defined 

as follows: 

struct viewporttype { 
int left, top, right, bottom; 
int clipflag; 
{ 

struct viewporttype my_view; 

getviewsettings( &my_ view); 
/* now look at my_view.left etc. */ 

.... The settextstyle() and Allied Functions 

settextstyle() is best studied alongside the three related functions 

gettextsettings( ), setusercharsize( ), and settextjustify( ). Despite their 
names these are all graphics functions (graphics-text, not text-text). The pro­
totypes are 

void far gettextsettings 
(struct textsettingstype far *textinfo); 

void far settextjustify(int horiz, int vert); 

void far settextstyle(int font, 
int direction, int charsize); 

void setusercharsize(int xmul, int xdiv, 
int ymul, int ydiv); 



330 ~ MASTERING TURBO C ~ 
CH. 9 

As a general rule, there is a get...() for every set...() (or group of set ... ()s) in 
the graphics library. get..( )s serve two purposes-finding out what's been 
set and saving settings for a quick restoration later on. The structure textset 
tingstype is declared as follows: 

struct textsettingstype { 
int font; 

} ; 

int direction; 
int charsize; 
int horiz; 
int vert; 

When you call gettextsettings() with a pointer to a variable of this structure 
type, the member variables are set with the current values: 

struct textsettingstype my_text; 

gettextsettings(&my_text); 
/*now my_text.font, etc. gives the current settings */ 

The setting functions control how outtext( ) and outtextxy( ) display 
strings, in terms of size, direction, and placement relative to the CP. 

GRAPHICS.H has several useful enumerations giving the mnemonics 
listed in Tables 9.4, 9.5, and 9.6. 

Justification operates in conjunction with the direction setting. "Justifica­
tion" in this context refers to how each character is positioned relative to the 
CP and must not be confused with the more common process of ensuring 
that a line of text is stretched to give a flush margin. 

You call settextjustify( ) with two int arguments indicating the hori­
zontal and/or vertical justification required. If there is no such call, the sys­
tem takes its defaults from the direction value used in settextstyle( ). In the 
absence of a settextstyle() call, the system assumes DEFAULT _FONT with 
HORIZ_DIR. You should experiment with these values in TFONT.C to see 
their effects. 

The charsize argument magnifies all fonts unless set to 0, when it affects 
only the stroked fonts. Setting charsize to 2, for example, will display the 
default font on a 16 x 16 grid. The maximum magification is 10. If charsize 
is 0, the stroked fonts only can be more finely tuned by applying fractional 



.. THE GRAPHICS TOOLBOX OPENED WIDE .. 331 

Font Name 

DEFAULT _FONT 

TRIPLEX_FONT 

SMALL_FONT 

SANS_SERIF _FONT 

GOTHIC_FONT 

• Table 9.4: Font names 

Direction Name 

HORIZ_DIR 

VERT_DIR 

Value 

0 

2 

3 

4 

Value 

0 

• Table 9.5: Direction names 

Justification Name 

LEFT_TEXT 

CENTER_ TEXT 

RIGHT_TEXT 

BOTTOM_ TEXT 

TOP_TEXT 

Value 

0 

2 

3 

4 

• Table 9.6: Justification names 

Meaning 

8 x 8 bit-mapped font (default) 

Stroked triple font 

Stroked small font 

Stroked sans-serif font 

Stroked gothic font 

Meaning 

Display left to right 

Display bottom to top 

Meaning 

Horizontal justification 
Default for HORIZ_DIR 

Horizontal and vertical justification 

Horizontal justification 

Vertical justification 

Vertical justification 
Default for VERT _DIR 

adjustments to either height or width, or both. TFON1C shows how the 
function setusercharsize() is called with four integers. 



332 .,. MASTERING TURBO C .,. 
CH. 9 

if (font> DEFAULT_FONT) { 
charsize = O; 
setusercharsize(4, 3, 3, 2); 

I* increase font height 4:3, increase width 3:2 *I 
if (font = = SMALL_FONT) setusercharsize (2, 1, 7, 5); 

/*give the small font an extra boost*/ 
} 

The general format is 

setusercharsize(xmul, xdiv, ymul, ydiv); 

which applies the factor (xmul/xdiv) to the current character width and 

(ymul/ydiv) to the current character height. Make sure that charsize is 0 

and that both xdiv and ydiv are nonzero! 

~ Keeping Track of the Old CP ~ 
Because of all these different character-size possibilities, you can have a 

hard time deciding where the CP is after an outtext() display. The following 

functions help you keep track of the CP. 

.... The getx() and gety() Functions 
getx( ) and gety( ) return the viewport-relative pixel coordinates. They 

correspond to the wherex() and wherey() text functions . 

.... The textheight() and textwidth() Functions 
textheight(string) and textwidth(string) return the number of pixels in the 

argument string in the Y and X directions, respectively. They look at the cur­

rent font style and size and calculate the number of pixels in either direction. 

When outtext() displays a string in the horizontal direction with LEFT_ TEXT 

justification, the X coordinate of the CP advances by textwidth(string). In all 

other cases the CP is unchanged. 

TFONT.C uses textheight() to simulate a new line that depends on the font 

style used. Liberal use of textheight() and textwidth() is recommended to 

keep programs font independent. 



.- THE GRAPHICS TOOLBOX OPENED WIDE .- 333 

..... Loading Fonts with BG/OBJ ..... 
I mentioned earlier that the .BGI and .CHR files must be loaded dynami­

cally from disk as the program calls on them. They must be either in the 
driver default path of initgraphg() or in your current directory. To save time, 
you can use the BGIOBJ utility to convert any .BGI or .CHR file into an .OBJ 
file at the expense of larger .EXE files. You do this as follows: 

C>BGIOBJ TRIP.CHR 

which will create TRIP.OBJ from the triplex font file. To tell the linker that 
TRIP.OBJ must be linked to TFONT.OBJ, you can add TRIP.OBJ to 
GRAPHICS.LIB as follows: 

TLIB GRAPHICS+ TRIP 

where the .OBJ extension of TRIP is implied by default. TUB.EXE is the new 
library manager supplied with Version 1.5 ofTurbo C. As shown above, one 
of its functions is to incorporate .OBJ files into an existing library. TUB can 
also build new libraries and maintain them by adding and deleting .OBJ files 
as required. (I'll explain TUB in greater detail in Chapter 10.) 

Alternatively, you can add the name TRIP.OBJ to your .PRJ file. With the 
TCC.EXE command-line compiler you can add TRIP.OBJ on either the TCC 
or TUNK command. Exactly the same process is involved if you want to 
incorporate a driver file into a library. 

One more task is needed to warn your program that TRIP.OBJ is available. 
You must register TRIP and any other font or driver modules involved by 
invoking the routine registerbgifont() (for fonts) or registerbgidriver() (for 
drivers) before calling initgraph( ). The single argument for the registering 
routines is one of the symbolic array names defined as follows: 

Driver File (.BGI) registerbgidriver() arg 

CGA CGA_driver 

EGAVGA EGAVGA_driver 

HERC Herc_driver 

An ATT_driver 

IBM8514 IBM8514_driver 

PC3270 PC3270_driver 



334 .. MASTERING TURBO C .. 
CH. 9 

Font File (.CHR) 

TRIP 

un 
SANS 

GOTH 

registerbgifont( ) arg 

triplex_font 

small_ font 

sansserif_font 

gothic_font 

Note carefully that the lowercase spellings differ from the font and driver 

enumerations used in initgraph() and settextstyles( ). 
The registering routines return a negative number to signal an error (such 

as font not found). Otherwise they return a driver or font number, so you test 
for success as follows: 

if(registerbgifont(triplex_font) ! = TRIPLEX_ FONT) exit(1 ); 

initgraph(&graphdriver, &graphmode, "" ); 

On the smaller memory models you may run into the 64KB barrier if you 
try linking too many fonts and drivers. 

Once TRIP.OBJ and CGA.OBJ, say, are linked into TFONT.EXE, they are 
available without the disk-access overhead, and the program can run on sys­
tems that do not have the TRIP.CHR or CGA.BGI files available (providing 
added security, in fact). 

... More Queries on the Graphics Status ... 
Here are a few more simple functions that report on what you have, 

where you are, and so on. 
Note first that the Turbo C mode values listed under initgraph() in Appen­

dix G do not correspond in every case with the IBM video-byte values given 
in Table 9.1. For each driver the Turbo C mode numbers range from lomode 
(lowest resolution, usually 0) to himode (highest resolution). Some boards, 
of course, offer only one resolution. These limits can be found using the 

function getmoderange( ), while getgraphmode() tells you the mode you 
are in. 

int graphmode, my_mode; 
int graphdriver; 
int himode, lomode; 



~ THE GRAPHICS TOOLBOX OPENED WIDE ~ 335 

detectgraph(&graphdriver, &graphmode); 
I* check the video hardware - find highest resolution mode *I 

initgraph( &graphdriver, &graph mode, "''); 
/*go for it*/ 

getmoderange(graphdriver, &lomode, &himode); 
/*gives 0- 5 for ATT400; 0 - 0 for HERC; 0 - 4 for CGA etc*/ 

my_mode = getgraphmode( ); 
I* save it for later *I 

.. Drawing Lines and filling Polygons .. 
The most pleasurable aspect of computer graphics is seeing pages of bor­

ing code spring to life on the screen. There's no way I can do justice to this 

vast subject, on which whole libraries and industries have been built. Once 

you see how the functions for each pictorial element are invoked, it is really 

up to your artistic imagination to take over. Let's start with a simple example, 

TGRAF.C (Program 9.3) which fills the screen with randomly shaded circles. 

It introduces many of the basic functions. 

To understand the drawing functions, you must know how to set the style 

and thickness of the line elements. 

/* Program 9--3 */ 
/* tgraf -- check your adapter & draw/fill concentric circles */ 
#include <conio.h> 
#include <graphics.h> 

#include <time.h> 
/*needed for random() */ 

#include <stdlib.h> 

void main(void) 
{ 

int i; 
int ex, cy, er, cf = 0, dr· 

/* parameters for the circles - ~enter coordinates & radii */ 

int max_try; 
/* number of iterations */ 

int graphmode, graphdriver; 
int curr_mode; 

int xasp, yasp, maxx, rnaxy; 

/* aspect ratios and max coordinates */ 
textmode(MONO); 
directvideo = O; 

/* try = 1 or 0 to see if you are fully IBM PC compatible */ 

~ Program 9.3: TGRAF.C 



336 
CH. 9 

.,. MASTERING TURBO C .,. 

if (registerbgidriver(Herc_driver) < 0) exit(l); 
/* omit this line if you have not created HERC.OBJ with BGIOBJ 

Remember to name graphics.lib and here.obj in your TGRAF.PRJ 
file -- or use TLIB to add here.obj to graphics.lib */ 

detectgraph(&graphdriver, &graphmode); 
/* gets highest res mode for detected driver */ 

graphmode = HERCMONOHI; 
graphdriver = HERCMONO; 

/* set your own here -- or leave detectgraph's settings */ 

initgraph( &graphdriver, &graphmode, "c: \\turboc\ \"); 
/* gotcherl the \ needs the \ escape char, so \\ for paths */ 

#if 0 
/* comment out trick! Code below may be useful for debugging */ 

curr_mode = graphmode; 
/* save mode for later */ 

maxx = getmaxx(); maxy = getmaxy(); 
/* find max values of x and y coordinates */ 

getaspectratio(&xasp, &yasp); 
/* get aspect ratio */ 
#endif 

randomize(); 
max try = 37; 

/* set number of circles to be drawn and filled */ 

for (i=O; i<=max_try; i++) 

ex 40 + random(660); 
cy 40 + random(280); 
er 20 + random(20); 
cf 1 + random(lO); 
dr 5+random(20); 

/* play with above numbers for different effects */ 
circle(cx,cy,cr+dr); 

/* outer circle radius cr+dr */ 
circle(cx, cy, er); 

/* inner circle radius er */ 
setfillstyle(cf,WHITE); 

/* random fill pattern 1 -- 10 */ 
floodfill(cx,cy,WHITE); 

/* floodfill inner circle */ 
setfillstyle(l + random(lO),WHITE); 

/* get another fill pattern */ 
floodfill((cx+cr+2),cy,WHITE); 

/* floodfill between the two circles. Any point in area will 
seed the flood */ 

} 

moveto(S0,300); 
outtext("Can you see this? Hit any key .. "); 

/* this will display in default font */ 
getche(); 
cleardevice(); 

/* clear graphics screen -- ready for more fun */ 

closegraph(); 

~ Program 9.3: TGRAF.C (continued) 



.. THE GRAPHICS TOOLBOX OPENED WIDE .. 337 

~ What's My Line? 
Before calling any drawing function such as line() or circle(), you have the 

option to set the line style, using the appositely named function setlinestyle( ). 

This lets you choose one of two line thicknesses and one of five preset line 

styles, or you can construct your own line texture from a 2-byte bit pattern. 

setlinestyle() is called like this. 

int linestyle, thickness; 
unsigned upattern; 

setlinestyle(linestyle, upattern, thickness); 

The line style and line thickness can be set using the enumeration menomics 

listed in Tables 9.7 and 9.8. 

When line style is set to USERBIT _LINE (4), the upattern variable must 

contain your choice of bits to define a line pattern. Bits set to 1 will show, and 

Name Value 

SOLID_LINE 0 

DOTTED_LINE 

CENTER_LINE 2 

DASHED_LINE 3 

USERBIT _LINE 4 

~ Table 9.7: Line-style mnemonics 

Name 

NORM_ WIDTH 

THICK_ WIDTH 

Value 

3 

~ Table 9.8: Line-thickness mnemonics 

Meaning 

Solid line (default) 

Dotted line 

Centered line 

Dashed line 

User-defined line style 

Meaning 

one pixel wide (default) 

three pixels wide 



338 ~ MASTERING TURBO C ~ 
CH. 9 

bits set to 0 will be hidden as the upattern is repeated along the line or curve 

being drawn. The solid line corresponds to upattern = OxFFFF, and a 

dashed line could be created with upattern = Ox3333. If you are using a 

precanned shape you must supply a dummy argument in upattern. Here 

are a few examples. 

setlinestyle(DOTIED_LINE, 0, THICK_ WIDTH); 
rectangle(100,50, 200, 100); 

I* draw thick, dotted rectangle *I 
unsigned my_pattern = OxOF03 
setlinestyle(USERBIT _LINE, my_pattern, NORM_WIDTH); 
circle(getmaxx( )/2, getmaxy( )/2, 50); 

/*draw special pattern circle, 1 pixel wide*/ 
I* Center of circle is center of screen; radius is 50 pixels *I 

Setting line styles does not affect the color attributes in any way. Remember 

that changing a line style does not affect the screen immediately-the impact 

is on lines still to be drawn. 
The get...() function corresponding to setlinestyle{) is called getline 

settings(). It fills a structure defined in GRAPHICS.Has follows: 

struct linesettingstype { 
int linestyle; 
unsigned upattern; 
int thickness; 

struct linesettingstype my_line 

getlinesettings(&my_line); 
/* my_line.linestyle, my_line.upattern, my_line_thickness now give you 

current line settings. Useful for restoring values later *I 

Passing illegal arguments in any of these functions will set the internal error 

flag, which you can test by calling graphresult as explained earlier. 

~ Drawing the Line 
All the coordinates used in the drawing functions are specified relative to 

the current viewport, the top left corner of which is taken as (0,0). The three 



~ THE GRAPHICS TOOLBOX OPENED WIDE ~ 339 

functions for drawing linear segments are 

line(int start_x, start_y, end_x, end_y); 
/*draws a line in current style/thickness/color from start point to end point 

- the CP can be anywhere and it is unchanged *I 

lineto(int end_x, int end_y); 
/*draw a line in current style/thickness/color from CP to endpoint specified 

in window-relative coordinates. The CP moves to this endpoint *I 

linerel(int disp_x, int disp_y); 
/*draw a line in current style/thickness/color from CP to a point displaced 

disp_x pixels in the X direction and disp_y pixels in the Y direction. The 
CP moves to this endpoint, given by the coordinates (CPx + disp_x, 
CPy + disp_y) */ 

linerel() is easy to remember if you think of a line relative to the current CP. 
The arguments are not coordinates but relative displacements and are there­
fore independent of the viewport. 

In this context you may remember moverel(dx, dy), which moves the CP 
dx pixels along the X axis and dy pixels along the Y axis. Like the linerel() 
function, it can be considered CP relative, rather than absolute or window 
relative. 

~ Polygons 
You could concoct your own triangles and trapezia with the above line 

segment primitives-but Turbo C makes life easier with a general polygon 

function. drawpoly( ) takes two arguments, the number of points to be 
joined and an array giving their viewport-relative coordinates. An example 
will explain. 

int triangle[]= {55, 120,90, 100, 140, 130,55, 120}; 
int trapezium[] = {80, 100, 100, 100, 

120, 150,65, 150,80, 100}; 
int open_thing[] = {20, 15, 50, 50, 30, 60, 30, 55}; 

drawpoly(sizeof(triangle)/(2*sizeof(int), triangle); 
d rawpoly(sizeof(trapeziu m)/ (2 * sizeof(i nt), trapezium); 
drawpoly(sizeof(open_thing)/(2*sizeof(int), open_thing); 

/*even in simple cases it's better to let the machine calculate the number 
of points. Note: there are two args for each point *I 



340 .- MASTERING TURBO C .­
CH. 9 

The above shapes are drawn in the current line style and color, of course, 
and the coordinates are viewport relative. A closed n-sided polygon needs n 
+ 1 points since you have to repeat the starting point's coordinates for the 
end point. In the third example the "polygon" is open, proving that draw 
poly() simply joins up points in the sequence indicated and gives no 
thoughts to the geometry of the situation . 

.... Circles, Arcs, and Ellipses 
You met the circle() function in TRGRAF.C. It takes three int arguments­

the center coordinates and the radius. In TGRAF.C I deliberately let some 
of the circles overflow the screen. By means of getmaxx( ), getmaxy( ), 
getx( ), and gety() you can reject circles with (ex + er) > maxx and 
(ex - er) < 0, and so on. No harm is done if a drawing exceeds the borders 
of a viewport, whether it is the whole screen or part of the screen. (A full­
screen viewport always clips no matter what the clip flag says!) 

The arc{ ) function draws circular arcs, but by setting the parameters 
in a certain way you can achieve a closed circle. An arc needs five param­
eters as follows: 

arc(int x, int y, int st_angle, int end_angle, 
int radius); 

Figure 9.5 shows the significance of these numbers. x, y, and radius give 
the center and size of the circle of which the arc is a part. The starting and 

ending angles of the arc are measured in degrees, where 0 degrees is the 
west-east line and 90 degrees is the south-north direction. If st_angle is 0 
and end_angle is 360, the arc forms a complete circle. 

The ellipse( ) function actually draws elliptical arcs, but by setting the 
parameters you can get a closed ellipse. An ellipse needs six parameters 
as follows: 

ellipse(int x, int y, int st_angle, int end_angle, 
int xradius, int yradius); 

(See Figure 9.5.) x and y give the center of the ellipse, and xradius and 
yradius are the horizontal and vertical axes. The starting and ending angles 
are measured in degrees in the same orientation as given for arc(). 



... THE GRAPHICS TOOLBOX OPENED WIDE ... 341 

Yet another useful structure-filling and fact-finding get...() routine is 
getarccoords( ). You set a pointer to the following structure: 

struct arccoordstype { 
int x,y; 
int xstart, ystart, xend, yend; 

and get details about the hst call to arc() as in 

struct arccoordstype noah; 
getarccoords( &noah); 

/* noah.x, noah.y give you the center of the last arc drawn. noah.xtart etc. 
tell you where the last arc started and ended *I 

... Figure 9.5: Arcs and ellipses 

goo 

270° 
arc(x,y,30,85,radius); 

1000 goo 

end angle 
85° 

(X,Y)'----.-ra-d-ius--+oo 
center 

270° 
ellipse(x,y, 100, 1go,xradius,yradius); 



342 .. MASTERING TURBO C .. 
CH. 9 

Note carefully that the data obtained include translations of the arguments 
used in the previous call to arc( )-the angles have been converted to give 

you the window-relative coordinates of the arc's starting and ending points. 
This information is extremely useful when you are joining arc segments 
together or are joining them with line segments. 

PGRAF.C (Program 9.4) shows you some of these functions in action. Adjust 
the parameters to suit your monitor and increase your understanding. 

/*Program 9--4 */ 
/* pgraf -- play with polygons */ 

#include <conio.h> 
#include <graphics.h> 

#include <time.h> 
/* needed for random() */ 

#include <stdlib.h> 

void main(void) 
{ 

int graphmode, graphdriver; 
int curr_mode; 

int triangle[] = {SS, 20, 60, 200, 340, 30, SS, 20}; 
int trapezium(] = {280, 100, SOO, 100, 

620, 2SO, 200, 2SO, 280, 100}; 
int open_thing(] = {20, lS, 6SO, lSO, 30, 260, 100, SS}; 

struct arccoordstype noah; 

textmode (MONO) ; 
directvideo = O; 

/* try = 1 or 0 to see if you are fully IBM PC compatible */ 

if (registerbgidriver(Herc_driver) < 0) exit(l); 
/* omit this line if you have not created HERC.OBJ with BGIOBJ 

Remember to name graphics.lib and here.obj in your PGRAF.PRJ 
file - or use TLIB to add here.obj to graphics.lib */ 

detectgraph(&graphdriver, &graphmode); 
/* gets highest res mode for detected driver */ 

graphmode = HERCMONOHI; 
graphdriver = HERCMONO; 

/* set your own here -- or leave detectgraph's settings */ 

initgraph(&graphdriver, &graphmode, "c:\\turboc\\"); 
/* gotcher! the \ needs the \ escape char, so \\ for paths */ 

setlinestyle(DOTTED_LINE, o, NORM_WIDTH); 
drawpoly(sizeof(triangle)/(2*sizeof(int)), triangle); 
moveto(S0,300); 
out text ("Hit any key .• "); 
getche(); 

~Program 9.4: PCRAF.C 



• THE GRAPHICS TOOLBOX OPENED WIDE • 343 

cleardevice(); 
setlinestyle(USEH!lIT_LINE, 0xFF3A, NORM_WID'l'H); 
drawpoly(sizeof(trnpezium)/(2*sizeof(int)), trapezium); 
out text ("Hit any key .. "); 
getche(); 

cleardevice(); 
circle(350,150,200); 
ellipse(350,150,135,275,200,100); 
arc(550,150,90,180,300); 
getarccoords(&noah); 
line(noah.xend,noah.yend,noah.xend+50,noah.yend); 
out text( "Hit any key .. "); 
getche(); 

cleardevice(); 
setlinestyle(DASHED __ I,INE, 0, THICK_WIDTH); 
drawpoly( sizeof ( op<'n_thing) / ( 2*sizeof (int)), open_thing); 
moveto(S0,300); 
settextstyle(GOTHIC__FONT ,HORIZ_DIR, 4); 
out text ("Hit any key .. "); 
getche(); 
cleardevice(); 

/* clear graphics screen -- ready for more fun */ 

closegraph(); 

~ Program 9.4: PCRAF.C (continued) 

~ Filling In 
In TGRAF.C I filled in sections of each circle using the functions setfillstyle() 

and floodfill( ). The prototypes are shown below. The section of getfill 
settings() in Appendix G contains a table showing the mnemonics for the fill 
patterns that you can use. 

void setfillstyle{int fill_pattern, int fill_color); 
I* set the fill pattern and color. fill_pattern can be a preset or 

user-defined pattern *I 

void far floodfill{int x, int y, int border_color); 
/*flood from {x,y) with curent fill pattern and color 

until a region with border_color is reached*/ 

The principle is that when you move the CP to any point within a closed 
figure {known as the flood seed) and call floodfill( ), the interior of the figure is 
flooded with the prevailing pattern and color. These parameters are deter­
mined by calls to setfillpattern( ) that use the pattern values shown under 
getfillsettings() in Appendix G together with color values appropriate to 
your adapter and palette range (more on color graphics later). 



344 ~ MASTERING TURBO C ~ 
CH. 9 

If your CP is outside the closed figure, you get the disconcerting phenome­
non known as overfill, in which all or part of the surrounding screen is 
flooded. This also happens if the figure is not strictly closed-the floodfill 

leaks out and invades more of the screen than you bargained for! 
A strict topological definition of "closed" is beyond the scope of this book, 

but you can imagine that with complex figures made up of arc sequences, 

overlapping circles and rectangles, and so on, the flood radiates out in all 
directions until it meets pixels of the color specified by border_color or the 
edge of the current viewport, whichever is nearer. The limits usually coin­
cide with lines and arcs you have previously drawn, but the extent of the 
floodfill is actually controlled by the enclosing color, not by shapes per se. 

EMPTY _FILL can be used to "unfill" by flooding with the current back­
ground color. 

In TGRAF.C I used WHITE as the floodfill border color for my monograph­
ics Hercules adapter since this is the "color" used to draw the circles. Simi­

larly, I used WHITE as the fill color. The background color for mono displays 
is treated as BLACK, hence the confusing use of the term "2-color" for 

monochrome systems. The first fill pattern in TGRAF.C was a random num­
ber between 1 and 10, and I simply added 1 to this to get the second fill pat­

tern between 2 and 11, thereby avoiding fill pattern 12. The latter is the 
USER_FILL pattern that, like the user-defined line style, has to be created 

with bit patterns of your own choosing. 

To keep track of the current fill pattern and color you use the structure 
fillsettingstype, defined as follows: 

struct fillsettingstype { 
int pattern; 
int color; 

} ; 

I* current fill pattern *I 
I* current fill color *I 

Calling getfillsettings() will load this structure with the current values. This 
typical get...(} function is declared as 

void getfillsettings(struct fillsettingstype far *fillinfo); 

so a typical sequence might be 

struct fillsettingstype curr_fill; 

setfillstyle(XHATCH_FILL, RED); 



~ THE GRAPHICS TOOLBOX OPENED WIDE ~ 345 

I* fill something with heavy red cross hatch *I 

getfillsettings(&curr_fill); 
/*saves curr_fill.pattern and curr_fill.color */ 

setfillstyle(LINE_FILL, BLUE); 

I* fill something with blue lines *I 

setfillstyle(curr _fill.pattern, curr _fill .color); 
I* restore previous fill pattern and color *I 

~ User-Defined Fill Patterns 
To establish and retrieve a personal fill pattern, you must use the functions 

setfillpattern( ) and getfillpattern( ), which are declared as follows in 

GRAPHICS.H: 

void getfillpattern(char far *far upattern); 
I* copy your 8 - byte pattern to memory at pointer upattern *I 

void far setfillpattern(char far *upattern, int color); 
I* upattern is an 8 - byte array defining your fill pattern *I 

The upattern is usually declared as an 8-byte array, in which you set bits to 1 

for pixel-on positions, as in the following snippet, 

struct fillsettingstype curr_fill; 

char save_pattern(8]; 
char my_pattern[8] = { 

OxAA,Ox55,0xAA,Ox55,0xAA,Ox55,0xAA,Ox55}; 
I* bit pattern is 10101010 01010101 repeated *I 

getfillsettings(&curr_fill); 
/*saves curr_fill.pattern and curr_fill.color */ 

if (curr_fill.pattern == USER_FILL) 
getfillpattern(save_pattern); 

/* if current fill is user -defined you need this step to save 
the pattern *I 

setfillpattern(my _pattern, YELLOW); 
/*fill something with my_pattern, yellow*/ 

if (curr_fill.pattern == USER_FILL) 
setfillpattern(save_pattern, curr _fill.color); 

else 



346 .,. MASTERING TURBO C .,. 
CH. 9 

setfillstyle(curr_fill.pattern,curr_fill.color); 
I* note different call needed to set a user pattern *I 

... The fillpoly() Variant 
A simpler filling method is available for polygons. The fillpoly() function draws 

a polygon just as drawpoly() does and then proceeds to fill it using the current fill 

pattern and color. You do not have to position the CP within the closed figure, 

but the leak problem will emerge if your polygon is not closed. 
fillpoly() is declared with the same arguments as drawpoly( ): 

void far fillpoly(int numpoints, int far *polypoints); 

The border color does not have to be stated explicity since this is implied by 

the current drawing color (which is set via setcolor() as you'll see shortly). 

Here is an example of fillpoly() in action. 

/* fillpoly() *I 
int trapezium[] = {280, 100, 500, 100, 

620,250,200,250,280, 100}; 

setcolor(BLUE); 
/*set drawing color to blue */ 

setfillstyle(SOLID_FILL, RED); 
setlinestyle(SOLID_LINE, 0, NORM_WIDTH); 
fillpoly(sizeof(trapezium)/(2*sizeof(int)), trapezium); 

/* draw blue trapezium and fill with solid red *I 

... The Bar-Chart and pies/ice() Functions ... 
To add some graphical pizzazz to you statistical reports, Turbo Coffers two 

bar-chart functions as follows: 

void far bar(int left, int top, int right, int bottom); 
/* draws and fills a rectangle with current fill pattern and color, but without 

outline */ 

void far bar3d(int left, int top, int right, int bottom, int depth, int topflag); 
/* draws a 3-dimensional bar with outline given by current line style 

setting and current drawing color. The depth is given in pixels. The 
topflag is set non-zero if you want a top drawn on your bar. topflag = O 



~ THE GRAPHICS TOOLBOX OPENED WIDE ~ 

/* Program 9--5 */ 
/* stats -- display bar charts and pieslices */ 
/*must LINK graphics.lib*/ 
#include <conio.h> 
#include <graphics.h> 
#include <stdlib.h> 

/* scale() * / 
/* calculate bar length for given screen */ 

int scale(value, factor) 
int value, factor; 
{ 

int maxx; 
maxx = getmaxx(); 
return (int)((float)(value)*factor/maxx); 

void main(void) 
{ 

int graphmode, graphdriver, cenx, ceny; 
int curr mode; 
int salesx, i=O; /* index sales * / 
int sales[] = {100, 680, 345}; 

/.* set up a test array of 3 sales values * / 
int stangle(2], endangle(2], salestot; 
double anglefactor; 

/* for pieslice calculations */ 
int f illpattern; 
textmode(MONO); 
directvideo = 1; 

/* try = 1 or 0 to see if you are fully IBM PC compatible */ 

if (registerbgidriver(Herc_driver) < 0) exit(l); 
/* omit this line if you have not created HERC.OBJ with BGIOBJ 

Remember to name graphics.lib and here.obj in your PGRAF.PRJ 
file - or use TLIB to add here.obj to graphics.lib */ 

detectgraph(&graphdriver, &graphmode); 
/* gets highest res mode for detected driver */ 

graphmode = HERCMONOHI; 
graphdriver = HERCMONO; 

/* set your own here -- or leave detectgraph's settings */ 

initgraph(&graphdriver, &graphmode, "c:\\turboc\\"); 
/* setcolor(); here as required for drawing color*/ 

cleardevice(); 
setlinestyle(SOLID_LINE, 0, NORM_WIDTH); 
setfillstyle(CLOSE_DOT_FILL, WHITE); 

/* vary fill color to suit your palette! */ 
for (i=O; i<=2; ++i) { 

salesx = scale(sales[i],400); 
bar(O, 10+i*25, salesx, (i+1)*25); 

} 
outtextxy(50, 300, "Hit any key .. "); 
getche(); 

cleardevice(); 

for (i=O; i<=2; ++i) { 
salesx = scale(sales(i],400); 
bar3d(O, 10+i*25, salesx, (i+l)*25, 4 

/* depth 

.- Program 9.5: STATS.C 

'1); 
cap */ 

347 



348 ~ MASTERING TURBO C ~ 
CH. 9 

} 
outtextxy(SO, 300, "Hit any key .. "); 
getche(); 
cleardevice ( ) ; 
cenx = getmaxx()/2; ceny = getmaxy()/2; 
salestot = sales[O] +sales[!] + Sdles[2]; 
anglefactor = (double)360/salestoL; 

stangle[O] = O; endangle[O] = 0 + (int)(sales[O]*anglefactor); 
stangle[l] = endangle[O]; endangle[l] = 

stangle [l]+ (int)(sales[l]*anglefactor) 
stangle[2] = endangle[l]; endangle[2] = 360; 

fillpattern = LINE FILL; 
for (i=O; i <= 2; ~+i) { 

} 

setfillstyle(++fillpattern, WHITE); 
pieslice(cenx,ceny,stangle[ij,endangle[i],200); 

outtextxy(SO, 300, "Hit any key .. "); 
getche(); 
cleardevice(); 

closegraph(); 

.- Program 9.5: STATS.C (continued) 

suppresses the top. The 3d bar is also filled with the current fill pattern 
and color*/ 

You can play some pretty tricks with these routines. If you want a two­
dimensional bar with its outline drawn, simply use the three-dimensional 
version with a zero depth. The bars can be made horizontal or vertical, of 
course, by setting the appropriate corner coordinates. 

The pieslice( ) function is an extension of arc( ) and takes the same 
arguments-the center of a circle, the start and end angles, and the radius in 
pixels. It draws the specified arc together with the two radii forming the slice. 
pieslice() also fills automatically using the current fill pattern and color Uust 
like fillpoly() does). 

void far pieslice{int x, int y, int stangle, int endangle, int radius); 
/*draw an arc with center {x,y), viewport relative, join the end radii to form 

a slice, then floodfill *I 

STATS.C (Program 9.5) shows how some simple sales figures can be trans­
lated into bar charts and pie slices. 

Now that you've seen most of the drawing and filling functions, I want to 
move on to the important task of saving and moving graphics images. 



~ THE GRAPHICS TOOLBOX OPENED WIDE ~ 349 

~ SAVING BIT IMAGES ~ 
Corresponding to the text-moving functions used earlier in TWINDOWC 

are similar but more complex routines available in graphics mode. If you 

understood the basic ideas behind pixel mapping, you will appreciate that 
moving parts of a graphics screen to memory and back again is not as simple 

as handling a predictable number of ASCII and attribute bytes. The basic func­

tions getimage( ) and putimage( ) correspond to gettext( ) and puttext( ) and 

work in a very similar manner, but you need another funciion, imagesize( ), 
to help you with the counting of bits. 

void far getimage(int left, int top, int right, int bottom, 
void far *bitmap); 

/*save the image in given rectangle (absolute coordinates) into the 
memory area pointed at by bitmap *I 

unsigned far imagesize(int left, int top, 
int right, int bottom); 

/* return the number of bytes needed to store the given rectangle. If more 
than 64KB needed, return - 1 *I 

void far putimage(int left, int top, 
void far *bitmap, int putimage_op); 

I* send the bit image stored at bitmap to the screen starting at top, 
left - putimage_op determines how the screen image and new image 
combine bitwise - logically *I 

As you can see, when you move a bit image from memory to screen you 

have a choice as to how the newly arriving pixels combine with the corres­

ponding pixels already on the screen. putimage_op is an integer parame­
ter that controls this interaction. GRAPHICS.H defines the possibilities with 

the mnemonic enumerations listed under putimage() in Appendix G. 

The visual result of all these bit confrontations is hardware dependent and 

is especially so with complex color graphics adapters and monitors. The fol­
lowing snippet will help you experiment on your own machine. 

#include <graphics.h > 
/*lest you forget - also remember graphic.lib in 

your .PRJ file*/ 

int graphdriver = DETECT; /* pass the buck*/ 
int graphmode 



350 .,.. MASTERING TURBO C .,.. 
CH. 9 

void *buffer; 
int image_size; 

/*for malloc() */ 

initgraph(&graphdriver, &graphmode, "c:\ \turboc\ \"); 
/* detectgraph() will be called internally to find hires mode 

for your driver *I 

/*create some screen images here*/ 

image_size = imagesize(10, 20, 30, 40); 
I* get number of bytes in the screen rectangle image *I 

if (image_size == -1) { 
outtext("lmage > 64Kb"); 
exit(1 ); 

} 
buffer = malloc(image_size); 
getimage(10, 20, 30, 40, buffer); 

!•buffer gets image_size bytes*/ 
cleardevice( ); 

/ • do some more creative screen play *I 
putimage(10, 20, buffer, XOR_PUT); 

I• send original bit image to screen and XOR with current image. 
Coinciding bits will cancel out (0 xor O = 1 xor 1 = 0), other positions 
willbeset(Oxor1=1xorO=1) */ 

/*try the other putimage_op values*/ 

free(buffer); 
closegraph( ); 

I• deallocate *I 
/*close down graphics*/ 

..... The Active and Visual Pages ..,.. 
Check the listing under initgraph() in Appendix G to see if you are lucky 

enough to have more than one page of video RAM. The number of pages 

potentially available depends on the total video RAM assigned and on the 

mode selected. The general formula is 

bytes per screen = (number of bits per pixel) x (number of pixels per 

screen) x 8 

number of pages = (total bytes video RAM) I (bytes per screen) 

with suitable rounding to the lowest integer. 



~ THE GRAPHICS TOOLBOX OPENED WIDE ~ 351 

The mode dictates both the number of bits per pixel (palette size) and the 
number of pixels per screen (resolution). For example, a simple four-color 
palette uses only 2 bits per pixel, allowing more pages than a sixteen­
color palette. Similarly, a 640 x 200 resolution allows more pages than a 
640 x 480 resolution. Some adapters use the video-RAM allocation by 
offering increased resolution modes rather than extra pages. 

The standard CGA board has only one 16KB page for all its modes. 
Depending on the amount of video RAM and the selected mode, the EGA 
boards can have from one to four pages, and the VGA board can have one 
or two pages. The Hercules adapter provides two 32KB pages. There are 
now hundreds of special graphics boards available with every conceivable 
combination. 

If your adapter supports pages, there are two important functions in the 
Turbo C toolbox to examine. Look at the following declarations from 
GRAPHICS.H: 

void far setactivepage(int pagenum); 
/*make pagenum the active page - send all graphics output to this section 

of video RAM. Pages are numbered from Oto maxpage -1 *I 

void far setvisualpage(int pagenum); 
/*make pagenum the visual page - screen displays come from the this 

section of video RAM *I 

I explained the basic principles of video pages earlier in this chapter. To 
recap, all graphics output is directed to the active page, and all screen dis­

plays come from the visual page. When you first fire up in graphics mode, 
the default active and visual pages are both the same, usually 0. Unless you 
change this state of affairs, the various drawing routines will display their 
images immediately. 

When you call setactivepage(N);, the active page is switched to page N if 
you have one, otherwise the call is ignored, and no error message is gener­
ated. Subsequent calls to any graphics output functions will not affect the 
screen, but the images build up in page N behind the scenes. If you now call 
setvisualpage(N);, the contents of page N immediately appear, replacing 
the original display. If you time these calls properly, you can create many spe­
cial effects, including primitive animation. As a simple test bed here is 
PAGE.C (Program 9.6). 



352 
CH. 9 

.. MASTERING TURBO C .. 

..,.. GRAPHICS COLOR ..,.. 
Even if your hardware is strictly monochromatic, it is well worth reading 

the following sections to get a general grasp of the subject-it may tempt you 

/* Program 9--6 */ 
/* page -- switching active & visual pages */ 

#include <conio.h> 
#include <graphics.h> 
#include <stdlib.h> 

void main(void) 
{ 

int i,j; 
int graphmode, graphdriver; 
int curr_mode; 

int trianglel[] ={SS, 20, 100, 200, 340, 100, SS, 20}; 
int triangle2[] = {SS,100, 340, 30, 100, 200, SS, 100}; 

/* both images contained in rectangle SS,20 340,200 */ 

/* void *buffer; 
int image_size; */ 

textmode(MONO); 
directvideo = 1; 

/* try = 1 or 0 to see if you are fully IBM PC compatible */ 

if (registerbgidriver(Herc_driver) < 0) exit(l); 
/* omit this line if you have not created HERC.OBJ with BGIOBJ 

Remember to name graphics.lib and here.obj in your PGRAF.PRJ 
file -- or use TLIB to add here.obj to graphics.lib */ 

detectgraph(&graphdriver, &graphmode); 
/* gets highest res mode for detected driver */ 

graphmode = HERCMONOHI; 
graphdriver = HERCMONO; 

/* set your own here -- or leave detectgraph's settings */ 

initgraph( &graphdriver, &graphmode, "c: \\turboc\ \ ••); 
/* gotcherl the \ needs the \ escape char, so \\ for paths */ 

cleardevice(); 
/* clear screen optional here -- initgraph does it also */ 

settextstyle(DEFAULT_FONT,HORIZ_DIR,2); 
/* double bitmapped font size */ 

setvisualpage(O); 
setactivepage(O); 

/* defaults -- so not strictly needed */ 

setlinestyle(SOLID_LINE, 0, THICK_WIDTH); 
rectangle(SS,20, 340,200); 
drawpoly(sizeof(trianglel)/(2*sizeof(int)), triangle!); 

/* triangle! is in page 0 and is displayed */ 

setactivepage(l); 
rectangle(SS,20, 340,200); 
drawpoly(sizeof(triangle2)/(2*sizeof(int)), triangle2); 

/* triangle2 drawn in page 1 -- not displayed */ 
setactivepage(O); 
moveto(S0,300); 
outtext("Hit any key .• "); 
getch(); 
setvisualpage(l); 

... Program 9.6: PAGE.C 



... THE GRAPHICS TOOLBOX OPENED WIDE .,. 353 

/* triangles flip a la Spielberg! */ 

setactivepage(l); 
moveto(S0,300); 
outtext("Hit any koy .. "); 
getch(); 
cleardevice(); 

/* clear graphics screen */ 
closegraph(); 

~ Program 9.6: PAGE.C (continu<'d! 

to acquire the necessary equipment and put some color 1n your me. 

Although controlling color in graphics mode is more complex than in text 
mode, the Turbo C tools do most of the hard work. 

The first point to remember is that in a graphics mode each individual pixel 

has a color attribute. Rather than having a character cell with a foreground 
and background color (as with the text modes) you now think in terms of a 
background color for the whole screen plus a color set for the pixel, which 

I'll call the drawing color. Two rarely used functions can handle individual 
pixel colors: 

unsigned far getpixel(int x, int y); 
I* returns the color value of the pixel at (x,y) *I 

void far putpixel(int x, int y, int pix_color); 
/*set the pixel at (x,y) to the color value pix_color */ 

However, you are usually more interested in setting up background and 
drawing colors. 

The values associated with a pixel's color are not usually absolute values­
they often index into a table of colors representing the current palette avail­
able (the CGA has some exceptions, as you'll see). Most color adapters and 
monitors permit a wide range of color possibilities, but at any given time only 
a subset of these is available, namely the current or active palette. 

~ CGA Color Schemes ~ 
The palettes for the CGA are as listed in Table 9.9. The CGA mode entries 

relate to the mnemonic used when you set the mode (see initgraph() in 
Appendix G). These are the low-resolution CGA modes that allow 320 x 
200 resolution and any one of the sets of four-color palettes listed above for 



354 ~ MASTERING TURBO C ~ 
CH. 9 

the drawing color. (The hi-res 640 x 200 CGA mode is two color only. I'll 

cover this later.) 

You can see from this list that if you set a color value of 1, say, with set 

color(1); the actual pixel color you get depends on which mode you are in. 

To switch from light green to cyan, for example, you would have to change 

modes with setgraphmode(CGA3); and then set the color to 1 again (since 

setgraphmode() restores all color settings). The color values 1-3 are the 

drawing colors. What about the background color? The background color 

has the value 0, and this can represent any of the sixteen different colors 

listed in Table 9.10. 

To set a CGA background color you use setbkcolor{co/or), where color is 

any value listed in Table 9.10. So in CGAC1 mode, the following lines would 

give you light cyan on a red background: 

setcolor(1); 
setbkcolor(RED); 

CGA Mode Palette 

CGACO 0 

CGCA1 

CGCA2 2 

CGCA3 3 

~ Table 9.9: CCA palettes 

Colors and Values 

2 3 

Light Green Light Red Yellow 

Light Cyan Light Magenta White 

Green Red Brown 

Cyan Magenta Light Gray 



.,. THE GRAPHICS TOOLBOX OPENED WIDE .,. 355 

Mnemonic Numeric Value 

BLACK 0 

BLUE 

GREEN 2 

CYAN 3 

RED 4 

MAGENTA 5 

BROWN 6 

LIGHTGRAY 7 

DARKGRAY 8 

LIGHTBLUE 9 

LIGHTGREEN 10 

LIGHTCYAN 11 

LIGHTRED 12 

LIGHTMAGENTA 13 

YELLOW 14 

WHITE 15 

~ Table 9.10: CCA background colors 

To check the current drawing and background colors, you use getcolor() 

and getbkcolor( ), which are declared as follows: 

int far getbkcolor(void); 
/* return current background color value *I 

int far getcolor(void); 
/* return current drawing colr *I 

~ EGANGA Color Schemes ~ 
Both the EGA and VGA adapters have a true, user-changeable palette, 

offering sixteen color values from a total range of sixty-four colors. The 



356 ~ MASTERING TURBO C ~ 
CH. 9 

functions covered in this section apply equally to both boards, so I will not 
refer specifically to the VGA. The default palette gives you the sixteen CGA 
colors listed in Table 9.10 so if you don't do anything to change things with 

setpalette( ), setcolor(O) gives black, setcolor(1) gives blue, and so on. To 
manipulate the palette you need to distinguish color indices and actual (or 
hardware) color numbers. Table 9.11 lists the actual EGA color numbers and 
their mnemonics as defined in GRAPHICS.H. 

As you can guess, it's easier and safer to use the defined names than play 
around with the numbers. 

Mnemonic Numeric Value 

EGA_BLACK 0 

EGA_ BLUE 

EGA_ GREEN 2 

EGA_ CYAN 3 

EGA_ RED 4 

EGA_MAGENTA 5 

EGA_ BROWN 20 

EGA_LIGHTGRAY 7 

EGA_DARKGRAY 56 

EGA_LIGHTBLUE 57 

EGA_LIGHTGREEN 58 

EGA_LIGHTCYAN 59 

EGA_LIGHTRED 60 

EGA_LIGHTMAGENTA 61 

EGA_ YELLOW 62 

EGA_WHITE 63 

~ Table 9.11: EGA actual color numbers 



.- THE GRAPHICS TOOLBOX OPENED WIDE .- 357 

The structure palettetype and the related function getpalette( ) are 
declared as follows in GRAPHICS.H: 

#define MAXCOLORS 15 
struct palettetype { 
unsigned char size; 
signed char colors[MAXCOLORS + 1 ]; 

}; 
void far getpalette(struct palettetype far *palette); 

If you call getpalette( }, you S<'<' can how the palette is currently organized: 

struct palettetype curr_palette; 

getpalette( &cu rr _palette); 
/* curr_palette.size gives the maximum index + 1 into the palette, 16 in the 

case of EGA. Each curr_palette.colors[i] gives you the actual color 
number currently active at index i *I 

The array colors is indexed from 0 to MAXCOLOR (15). Of course your 
adapter may have fewer than sixteen colors, so some entries may be 
unused. The simple function getmaxcolor(), called with no arguments, will 

return an int telling you your real MAXCOLOR. 
The color at index 0 is by definition the background color. You can change 

the background color with setbkcolor( }, but it works differently from the 
CGA system. With the EGA, setbkcolor(N) will copy the actual color found 
in curr_palette.colors(N] into curr_palette.colors[O]. At any given 
moment, the actual color you get when you use setcolor(N) is determined 
by the entry found in colors[N] in the palette structure. 

The nice thing is that you can independently change these entries using 

setpalette( ) and setallpalette( ). This immediately alters the colors being 
displayed. The pixel values have not altered, but their interpretation by the 
hardware undergoes a sudden mutation. Look at the following prototypes: 

void far setpalette(int colornum, int act_ color); 
/*change palette color indexed at colornum to actual color act_color */ 

void far setallpalette(struct palettetype far *new_palette_ptr); 
/* replace all the current palette structure with the new one found at the 

pointer new_palette_ptr *I 



358 .. MASTERING TURBO C .. 
CH. 9 

void far setrgbpalette(int colornum,int red, int green, int blue); 
/* included for completeness - sets a mix of red/green/blue for rgb 

signals, a subject beyond the scope of this chapter *I 

As my comments indicate, you can change individual color-number-to­

actual-color assignments or you can set up a brand new palette structure. One 

trick in setallpalette() is that if you put a -1 in any index position of the new pal­

ette structure it tells the system not to alter that entry during the transfer. set 

palette() and setallpalette() do not return values, but the graphresult() func­

tion will return the generic error value - 11 to signal failure. 

Although I have mentioned this kind of error checking before, this is a good 

opportunity to recap the situation. Some graphics routines return values signal­

ing success or failure, but most rely on you calling graphresult() to test if the 

previous graphics function call worked as planned. The function call 

grapherrormsg(error _code), where error _code is the int returned by 

graphresult( ), will display a real, legible error message based on the mne­

monics listed under graphresult() in Appendix G. 

Although I urge you to make frequent calls on graphresult( ), I hope that 
errors do not intrude too often as you explore the wonderful world of graph­
ics now accessible with Turbo C. 

...,. SUMMARY OF CHAPTER 9 ...,. 

..... The chief enhancement in Version 1.5 of Turbo C is the graphics library, 

GRAPHICS.LIB, which contains over 300 new functions . 

..... The basics of video-display technology were covered. Key concepts are 

raster scanning, mapping video RAM to the screen, display adapters, 

color and monochrome monitors, text and graphics modes . 

..... Turbo C provides drivers for all the popular graphics boards and has 

functions that can detect the hardware fitted and initialize the graphics 

system [detectgraph() and initgraph( )] . 

..... Text mode and graphics mode have different video mapping schemes, 
but parallel sets of functions handle most of the bit- and byte-counting 

operations for you. 



~ THE GRAPHICS TOOi.BOX OPENED WIDE ~ 359 

.. ~ The functions can be classified as follows: 

Text Modes: 

Graphics Modes: 

Text Output and Manipulation 

Window and Mode Control 

Attribute Control 

State Query 

Systems Control 

Drawing and Filling 

Screen and Viewport control 

Gr,1phics-text output 

Color and Palette control 

Error handling 

State Query 

.. ~ Appendix G has a handy alphabetical listing of all the graphics and text 
functions with prototypes and brief descriptions . 

.. ~ BGIOBJ can be used to convert driver (.BGI) and font (.CHR) files into 
.OBJ files. These can be linked into individual programs with TLINK or 
incorporated into GRAPHICS.LIB using TLIB. 





~ CHAPTER 10 .... 

This chapter covers several topics that for various reasons did not quite fit 
in the mainstream of my exposition so far. There were many moments when 
I had to resist the temptation of making "just another little detour!" 

Most of this chapter is dt>voted to additions and enhancements that 
became available with Versions 1.5 and 2 ofTurbo C (excluding the graphics 
library covered in Chapter 9 and the integrated debugging facilities covered 
in Chapter 11). First I cover GREP and explain regular expressions, and then I 
discuss how and why large programs are divided into separately compilable 
files. This involves a study of the Project-Make facility as well as a deeper look 
at the TUB librarian (new with Version 1.5). The getopt() function, which 
retrieves switches and options from a command line, will also be revealed. 

Finally, I'll present some more advanced topics including the use of recur­
sion and pointers to functions. These will give you some practice in reading 

C programs, a vital path to honing your writing skills. 

~ SUMMARY OF ADDITIONS AND 
ENHANCEMENTS IN VERSION 1.5 ~ 

The Turbo C package received a major upgrade from Version 1.0 to 1.5 at 
the end of 1987. Here is a brief summary of the differences between the two 
versions. 

The main additions are 

.. TUB.EXE, an object-code librarian 

.- video functions-over 100 new routines that offer powerful and flexi­
ble window-based text and graphics facilities (see Chapter 9) 

.- the BGIOBJ utility, which converts graphics drivers and font files to 
.OBJ files so you can link them into .EXE programs (see Chapter 9) 

.. GREP.COM, a file-search utility based on the UNIX grep program 



362 .. MASTERING TURBO C .. 
CH. 10 

The enhancements include 

.. new options in the TC integrated environment 

.. extended syntax and features for the TCC.EXE command-line com­
piler (matching the TC enhancements) 

.. TCINST.EXE installation-customization program 

.. TCCONFIG.EXE (formerly CNVRTCFG) for converting configuration 

files from and to TC and TCC formats 

.. header-file revisions for the latest ANSI C data and function 
specifications 

..,.. THE GREPS OF WRATH ..,.. 
The GREP utility introduced with Versions 1.5 and 2 is based on the UNIX 

grep command. (Grep is an acronym for global regular expression print.) 

Turbo C's GREP syntax does not follow all the UNIX rules and adds some 
new options, so UNIX users should take care. 

GREP lets you search selected files for various string matches or mis­
matches. It turns out to be a valuable programmer's tool as well as being use­

ful in more general contexts. If you have ever wanted to find out which of 
your programs contain identifiers matching wildcards such as tax_* _paid 
or call the function init_ <no letter a here>???(<arg starting with a, e or 
x>), you will appreciate the power of GREP over the simple FIND com­
mand supplied with DOS. 

Given that DOS file names can be unhelpfully cryptic, you may use GREP 

most often to do tasks such as locating all those .LET files that contain the 
string "alimony". GREP is more than a string-matching routine, however-it 
gives you a myriad of options for locating sets of characters in different 

places, and you can also customize it with your own default options. In some 
ways, you can think of GREP as a miniature programming language . 

.... The GREP Command Line .... 
You set up a search by entering a command based on the following syntax: 

C>GREP [options] string filespec [filespec ... filespec] 

with spaces or tabs between the arguments. For example, 

C>GREP overdue *.LET STAN?.* 



.,. ODDS && SODS .,. 363 

will locate all files in the current directory with the extension .LET or named 
STAN? (with any extension) that contain the string overdue. Matches are 
confined to lines in the target file, so over<newline character>due would 
not be located. You can switch on the ignore-case option if you want to 
match Overdue, overDue, OVERDUE, and the like. Here is the command 
line that you would use to do this. 

C>GREP -i overdue *.LET STAN?.* 

The - i is one of many such options that will soon be unveiled. 
Each file specification can contain complete specifications for drive and 

path; otherwise the search defaults to the current drive and directory. There 
are options that allow the search to be extended to lower subdirectories. 

Using redirection, you can direct GREP's output to files, ports, or printers; 
otherwise you get a screen display. With other filter commands you can 
create many useful pipes not available with the standard DOS FIND com­
mand. The type of output you get is determined by the option switches. If 
you set no options, GREP will simply output each line that contains the 
search string. 

The search string can be either a literal string or a set of so-called regular 
expressions. Regular expressions contain certain reserved symbols that 
direct the search. Before I explain these, let's see how the option switches 
work. Table 10.1 lists the options and explains their actions. The leading 
minus sign is mandatory. Some find it confusing that - i, for example, turns 
the i option on, but that's UNIX for you. Options can be combined in any 
way, so - i - I -v, - ilv, - i - Iv, and - ii -v will each switch on all three 
options. Certain options can override others, however, and I'll explain 
this shortly. 

Options are turned off with a trailing minus: e.g., - i- will turn off the 
ignore-case option, giving you case-sensitive searches. By the way, you can 
use an optional trailing+ to switch on an option: - i+ is the same as - i. 

~ Literal String Searches 
When the - r (regular expression) option is off, the search pattern is taken 

literally as a normal string of characters. If the string contains spaces or tabs 
you must enclose it with quotation marks as in 

C>GREP -di "#ifdef_STDC_" \TURBOC\*.C 



364 .- MASTERING TURBO C .­
CH. 10 

- c Count only. Displays each file name that has at least one matching 
occurrence and shows the number of matches in each. 

- d Directories. Extends the search to include the target file 
specifications in the stated directory and any of the same name in 
their lower subdirectories. A specification of\*·* means search all 
files in the root directory of the current drive and all files in all 
subdirectories. 

- i Ignore case. When this switch is on, uppercase and lowercase 
letters are not distinguished. (This is also known as case folding.) 

- I List match files. Once the target string is matched, the file is listed 
and the search moves on to the next file (if any). 

- n Numbers. Displays line numbers alongside any matching lines. 

- r Regular expression search. The expression for the target string is 
interpreted as a regular expression rather than as a literal string. 
The symbols ", $, ., *, +,[,],and\ are treated specially unless 
preceded with the escape character\. 

-v Non-match. Reverses the sense of the search so that lines not 
containing the search string are displayed or counted. 

-w Write options. Configures GREP by setting selected options as 
defaults for subsequent invocations of GREP. 

-z Verbose. Combines -c (count), - I (list matches), and - n (line 
numbers). In addition, all file names are displayed as they are 
searched, whether a match is found or not. 

.. Table 10.1: CREP option switches 

This example would match the whole string regardless of case and would 
look through all the .C files in \ TURBOC and its subdirectories. 

... Regular Expressions 
When the - r option is on, the search pattern is interpreted as a regular 

expression. (This term originated with Ken Thompson's early UNIX editor 
called ed; since then regular expressions have spread to sed, grep, awk, and 
other UNIX commands.) The metacharacters listed in Table 10.2 have non li­
teral meanings as shown, while all other characters are taken literally. 



Metacharacter 

$ 

* 

+ 

[ ... ] 

\ 

... ODDS && SODS ... 365 

Meaning 

Matches dt start of a line when A precedes pattern. 

Matches dl end of a line when $follows pattern. 

Matches any character. 

expression* matches zero or more occurrences of 
expression where expression is any expression. 

expression+ matches one or more occurrences of 
expression where expression is any expression. 

Matches any single character in the enclosed string. 
Ranges are allowed, e.g., [a-zABZ ]. All characters inside 
the brackets have their literal meaning except for A 

when A is the first character after the [(see below). 

Matches any single character provided it is not in the 
enclosed string following the A • 

Escape character. Following metacharacter is treated as 
literal, e.g.,\$ will match a real dollar sign . 

... Table 10.2: GREP regular expressions 

Any combination of these can be devised and juxtaposed to give matching 
criteria of daunting complexity. The examples in Table 10.3 will help clarify 
the situation! I assume case-sensitive matches, i.e., that the - i option is off. 

~ The GRE P Options in Action ~ 
The GREP.COM you receive from Borland has all the option defaults set to 

off, but GREP can modify itself using the -w option. For example, if you 
always want to ignore case differences, you can use the following com­
mand line: 

C>GREP -w -i 

GREP will then default to "Ignore case on," that is, case insensitive. If you 
need to restore case sensitivity for a particular session, you must do so with 



366 ~ MASTERING TURBO C ~ 
CH. 10 

Regular Expression 

ADear 

sincerely$ 

Acontents$ 

i.m 

HEL* 

* 

Porn+ 

[a-z,ABZ] 

[a-km-z:] 

["a--zA--Z] 

[$.A] 

[A--Za--z]. *[:%] 

array[02--9]\[n--s]\J 

Matches 

"Dear", "iJl',w/', etc. at the start of any 
line 

"sincerely", "xxsincerely", etc. at the end 
of any line 

Any line containing only the string 
"contents" 

Empty lines (newline character only) 

"iAm", "ibm", "Siamese" / etc. 

"HE'', "HEL", "HELL'', "HELLL'', etc. 

Every string ( ~ DOS use of*). Note 
especially the non-DOS interpretation of 
* as a wildcard. 

"Porn", "PomPom", "PomPomPom", 
etc. 

Any one of "a", "b" ... "z", "/!\', "B", or 
"Z" 

Any lowercase letter (except I) followed 
by a colon 

Any nondigit 

Any nonalphabetic character 

"$",".",or "M' (since A is not the first 
character and $ and . are not 
metacharacters inside [ ]) 

Any string starting with an alphabetic 
character followed by zero or more 
anythings, and ending with : or % 

"array7[6]", "arrayO[O]", "array3[9]", etc. 
Note that the second [ is treated literally 
because of the backslash . 

... Table 10.3: Examples of CREP's regular expressions in use 



Regular Expression 

[Aa-zA-Z]stan[Aa-zA-Z] 

"stan" 

\ \ \ *[A-F]:'"' * 

A[U "\" ' ( l 

• ODDS && SODS • 367 

Matches 

An isolated "stan", so usually finds the 
word "stan" (however, will also match 
"stan!" and "8stan-") 

A better way to find the word "stan" 

"\" followed by any number of spaces, 
followed by any one of"/'\' to "F", 
followed by":" and any number of 
spaces. This shows two ways of matching 
spaces. You can escape with \ <space> 
or enclose <space> with double 
quotes. The first\ escapes the second\, 
of course. 

Any line that starts with space,", ',or(. 
The double quotes must be escaped to 
get a literal match. 

~ Table 10.3: Examples of CREP's regular expressions in use (continued) 

the - i- switch: 

C>GREP -i- tax *.C 

GREP will then match "tax" but not "Tax" in any .C file in the current drive 
and directory. Notice that as the GREP line is scanned the rightmost switch 
may override an earlier switch. In 

C>GREP -d -i- -d- -i tax *.C 

The -d and - i- are overridden by the following -d- and - i. You can pic­
ture each option being switched on or off from left to right. Recall that - i + is 
equivalent to - i. 

You obviously need to remember which default options you have set, and 
it's a good idea to make a backup copy before modifying GREP with -w. 

~ THE TLIB OBJECT-CODE LIBRARIAN ~ 
You met TLI B. EXE in Chapter 9, in which it was used as a method for incor­

porating driver and font .OBJ files into GRAPHICS.LIB. TUB is a full-blown 



368 • MASTERING TURBO C • 
CH. 10 

library manager that will help you in other ways as your programs become 
larger and need to be broken down into separately compiled files of func­
tions. TUB also makes it easier to incorporate other vendors' .OBJ files into 
your programs. To appreciate these advantages you need to understand 

what a library is and how the linker works . 

.,... What Is a Library? .,... 
A library is a file with the extension .LIB that contains a set of .OBJ modules 

together with lists of identifiers to aid the linker. (TUB can handle library files 

with extensions other than .LIB, but Project-Make expects the .LIB, so it's 
safer to keep to this rule.) 

Your Turbo C system comes equipped with complete libraries for each 
memory model. For example, CS.LIB contains all the object code to support 
the tiny and small models, CM.LIB supports the medium model, and so on. 
When you compile/link, Turbo C automatically links CS.LIB, CM.LIB, etc. for 
you. You may recall from Chapter 9 that GRAPHICS.LIB had to be explicitly 
linked because it covers all memory models. When you create your own 
libraries you must also adopt a suitable linking strategy. 

.,... Why Use Libraries? .,... 
Suppose you write a program called MYMAIN.C that calls functions you 

have coded in files MYFUNCS1 .C and MYFUNCS2.C. Presumably, these 

functions are considered to be of general use; otherwise they might as well 
reside in MYMAIN.C. One way of proceeding is to precompile the two func­
tion files, giving MYFUNCS1 .OBJ and MYFUNC2.0BJ. When you compile/ 
link MYMAIN.C, you tell the system to link these .OBJ files. The most 
convenient way to do this with the IDE is to create a project file, namely an 
ASCII text file called MYMAIN.PRJ, which contains the lines 

MYMAIN.C 

MYFUNC1 .OBJ 
MYFUNC2.0BJ 

The extension .C is optional, but you must add the .OBJ extensions. If they 
are not in your current directory, you can supply path specifications. The 
.OBJ files can be listed in any order. 



A more sophisticated MYMAIN.PRJ file would be 

MYMAIN.C (MYFUNCl .OBJ MYFUNC2.0BJ) 

MYFUNC1 .OBJ 

MYFUNC2.0BJ 

~ ODDS && SODS ~ 369 

which informs Project-MakP that MYMAIN.C depends on the two support­

ing function programs. The last two lines control the linkage, while the files 

listed in parentheses spell out the dependencies. 

Briefly, this means that Turbo C will automatically recompile/relink 

MYMAIN.C if either MYFUNCl or MYFUNC2 has been changed since the 

last recompile/relink. Project-Make always checks the date/time stamps on 

various files before deciding what needs to be done to produce a good 
MYMAIN.EXE. 

If any supporting file has changed, certain recompilations or relinks are 

triggered on the dependent files; otherwise time is saved by avoiding redun­

dant processing. In addition to the implicit dependencies, you have given 

Project-Make two explicit dependencies. Note carefully that the above .PRJ 

file does not contain any reference to MYFUNC1 .C or MYFUNC2.C, so 

don't expect it to recompile these. It simply checks the date/times of the two 

function .OBJ files in relation to MYMAIN.C, MYMAIN.OBJ (if it exists) and 

MYMAIN.EXE (if it exists) to see which is the most current. Another neat fact 

is that Project-Make also checks the relative date/time of MYMAIN.PRJ! Oth­

erwise some vital steps could be missed. 

Before we leave the subject of dependencies, consider the very common situ­

ation in which you examine your MYFUNC1 .C file and find that it starts with a 

whole bunch of #includes and #defines, many of which occur also in 

MYFUNC2. It is meet ana proper to consider creating a MYOWN.H header file. 

/* myown.h --includes & defines for myfunc1, myfunc2 */ 
#include <stdio.h > 
#include <stdlib.h > 
#include <conio.h > 
#ifndef BUFSIZ 
#define BUFSIZ 512 
#end if 
I* more of the same *I 

extern double anyfunc(char *chptr, struct mine *sptr); 
/*and so on */ 



370 .,. MASTERING TURBO C .,. 
CH. 10 

Your function source files can now start with 

/* myfunc1 .c - -set of widget-splining functions *I 
#include <myown.h> 

/* more includes, defines, declarations unique to this module*/ 
I* all your functions come here *I 
I* end of myfunc1 .c *I 

I* myfunc2.c - - set of widget - extrusion functions *I 
#include <myown.h > 

f * more includes, defines, declarations unique to this module *I 
/*all your functions come here */ 
/*end of myfunc2.c */ 

but now it pays to revise MYMAIN.PRJ as follows: 

MYMAIN.C (MYOWN.H MYFUNCl .OBJ MYFUNC2.0BJ) 

MYFUNCl .OBJ 
MYFUNC2.0BJ 

widening the dependencies of MYMAIN.C. This is a good idea since even a 
minor change to MYOWN.H could affect MYMAIN.C. 

You might be tempted to add (MYOWN.H) alongside MYFUNCl .OBJ and 
MYFUNC2.0BJ. Resist the urge, even though the .OBJs do depend on 
MYOWN.H! Only source files can have explicit dependency lists. The .OBJ 

lines are there purely to ensure correct linkage. What you can do, though, is 
create MYFUNCl .PRJ and MYFUNC2.PRJ for use when these two are com­
piled. MYFUNCl .PRJ would contain 

MYFUNCl .C (MYOWN.H) 

and MYFUNC2.PPJ would contain 

MYFUNC2.C (MYOWN.H) 

... On the Make ... 
Whenever you invoke Project-Make for MYMAIN.PRJ, whether you do so 

directly with F9 or indirectly with Alt-R, the .PRJ file ensures that MYFUNCl .OBJ 
and MYFUNC2.0BJ are included in the list of files to be linked. (The appropriate 
C?.LIB is added to this list for you.) You now have MYFUNC.EXE. 



.- ODDS && SODS .- 371 

You can also compile MYMAIN.C and link in your two function files with a 
TCC command line: 

C>TCC MYMAIN MYI UNC1 .OBJ MYFUNC2.0BJ 

or you could compile MYMAIN.C separately and then use TLINK with the 
three .OBJ files as follows: 

C>TLINK MYMAIN MYFUNC1 MYFUNC2, MYMAIN 

With TLINK the default extt'nsion for all files before the comma is .OBJ. The 
name after the comma determines the name of the .EXE file. 

The end result of all three' methods is MYMAIN.EXE, all ready to run and 
amaze your family. 

.... Exploiting Your function files .... 
So far, so good. But suppose you now write NEWMAIN.C and compile 

it to NEWMAIN.OBJ. It may or may not call functions in MYFUNC1 .OBJ 
and/or MYFUNC2.0BJ. How should you link NEWMAIN.OBJ? As proj­
ects get larger and more complex, you can spend much time poring over 
your listings trying to remember which functions are in which files so you 
can decide which .OBJ files need to be linked. Taking the safe and easy 
way out by always linking all possible .OBJ files has the disadvantage of 
inflating NEWMAIN.EXE. 

TLIB comes to the rescue. If you use TLIB to create a MYFUNC.LIB file 
from MYFUNC1 .OBJ and MYFUNC2.0BJ (and possibly others), you can 
link NEWMAIN.OBJ with MYFUNC.LIB without worrying about which .OBJ 
file contains which functions. The linker will pull in only those .OBJ modules 
needed by NEWMAIN.OBJ. A .LIB file is so organized that TLINK (or any 
compatible linker) can determine the module in which any referenced func­
tion or external variable is located. An added bonus is that the size of the col­
lected .OBJ modules is nearly always smaller than the sum of the individual 
.OBJ files. (You'll see shortly that there is no need to keep an .OBJ file sepa­
rately on disk after it's safely incorporated in a library.) 

Once they are embedded in MYFUNC.LIB, the .OBJ sets of code are more 
correctly referred to as modules rather than as files. As modules within a 
library they are still referenced by their original .OBJ names (MYFUNC1 and 
MYFUNC2), but you don't name the drive, path, or extension. 



372 .,.. MASTERING TURBO C .,.. 
CH.10 

...... What Is a Librarian? ...... 
TUB can create new .LIB files, add modules to existing libraries, and delete 

modules from existing libraries. It can extract a module from a library and 
recover the original .OBJ file, and it can also add all the modules of one 
library to another. Finally, but not least, TUB lets you examine the contents of 
a library by creating a list file. These tasks are known as library maintenance. 
The software that performs them is called a librarian or library manager. 

...... Creating and Adding to a Library ...... 
To create the MYFUNC.LIB file you use TUB at the DOS command level 

as follows: 

C>TLIB MYFUNC[.LIBJ +MYFUNC1[.0BJJ +MYFUNC2[.0BJJ 

TUB assumes the obvious extensions shown as defaults. Wildcards are 
not allowed. The plus signs immediately before the .OBJ file names indi­
cate additions to the library. If MYFUNC.LIB already exists, the above line 
would add both .OBJ files to it, otherwise TUB creates a new file called 
MYFUNC.LIB and then adds the .OBJ files. This example assumes that all 
three files are in the current directory. If they are elsewhere, you must spec­
ify their drives and paths-but remember that TUB stores only the module 
names after stripping off any extraneous rubbish. 

You could later add a module called MYFUNC3 to\ TB, remove the origi­
nal MYFUNC2, and add in all the modules from another library called 
OEM.LIB with one command line: 

C>TLIB MYFUNC +\TB\MYFUNC3 -MYFUNC2 +OEM.LIB 

Notice the minus sign used for module deletion. No path or extension is 
needed with a - (delete) action since module names are just module names! 
If you unnecessarily add paths or extensions, TUB will quietly remove them. 
The \TB\ is needed for adding MYFUNC3 because TUB needs to locate the 
.OBJ file (.OBJ is the default). Inside the library, though, the module retains 
no clue to its original directory. 

You can present these + and - actions in any sequence because TUB 
sorts them before processing your requests. The removals are always 



,._ ODDS && SODS ,._ 373 

performed before the additions. The following linL' appears pointless yet is 
very common and sensible: 

C>TUB MYFUNC -MYFUNCl + MYFUNCl 

Yes, you are replacing MYrUNCl with a new version. The following line 
would have the same effect: 

C>TUB MYFUNC +MYFUNCl -MYFUNCl 

This operation is so common that TLI B allows you to use the following short­
hand equivalents: 

C>TLIB MYFUNC - +MYFUNCl 

and 

C>TLIB MYFUNC + -MYFUNCl 

If you try to remove a module that isn't there, TUB will inform you of the 
irresolvable quandary it faces. Similarly, TUB balks at adding a module that 
already exists, forcing you to do the - + trick. 

Ahl But what if you remove MYFUNC2 from MYFUNC.UB but do not 
have MYFUNC2.0BJ somewhere as a separate file? Alas, unless MYFUNC2 
exists within another library, it has now disappeared. If you kept 
MYFUNC2.C, of course, no lasting harm is done-you can always recom­
pile. TUB offers module extraction as an alternative to recompilation. What 
TLIB putteth together, TUB can also pulleth asunder! In 

C>TLIB MYFUNC *MYFUNC2 

The* (extract) operator recovers the MYFUNC2 module and writes it out to 
MYFUNC2.0BJ, either creating this file or overwriting any existing file of that 
name. This recovers the .OBJ file in the exact format it had during the origi­
nal addition operation. If the requested module is not found, you get a suit­
able message and no new file is created. 

As you may guess, a safe way to remove a module without losing it is to 
combine * and - as follows: 

C>TLIB MYFUNC *-MYFUNC2 



374 .,. MASTERING TURBO C .,. 
CH. 10 

This creates MYFUNC2.0BJ and then removes the module MYFUNC2 from 
MYFUNC.LIB. In this case, indicating the drive and path makes sense if you 

want to extract the module and save it in another directory. The drive and 
path would be used by the* but ignored by the - . Again, the order in which 
you present these actions is irrelevant-the extractions always precede the 
removals, and any additions are always performed last. 

The following lines are all equivalent to the previous example: 

C>TLIB MYFUNC -*MYFUNC2 
C>TLIB MYFUNC *MYFUNC2 -MYFUNC2 
C>TLIB MYFUNC -MYFUNC2 *MYFUNC2 

.. The TUB Syntax .. 
The full TUB syntax is 

C >TUB libfile [IC] [ops_list] [,/istfile] 

Libfile can be a full file specification, with the default extension being .LIB. As 
I mentioned earlier, you should avoid other extensions since both TC and 

TCC look for .LIB automatically. 

.... TLIB Operations List 
The optional ops_list is any sequence of file names (with or without drive 

and paths) preceded by combinations of the action symbols + (add a mod­
ule), - (delete a module), and* (extract a module), as described earlier. The 

legal combinations are - *, * - (both extract and then remove) and - +, 
+ - (both remove and then add). Suitable error messages are given if you try 
to remove or extract a nonexistent module or add an existing module. You 
should be careful with *since it could overwrite a later .OBJ version with an 
earlier version without warning. 

Only the + action is possible with a library file name. You can add all the 
modules in one library to another, but you can only remove and extract 
single modules. To rename a module, you have to extract it, rename the .OBJ 
file, and then add the renamed file . 

.... Listing the TLIB Contents 
The optional file name (/istfi/e) appearing after a comma at the end of the 

command line receives a listing of the library modules in alphabetical order 



.. ODDS && SODS .. 375 

with their sizes in bytes. After each module a list of the public symbols 
defined in that module appears, also in alphabetical sequence. 

These public symbols represent all the external identifiers you studied in 
Chapter 7: function names, global variables, and externed variables defined 
in the original source files. The compiler passes these to the .OBJ files (for 
direct linking purposes) and TLIB passes them to the .LIB files (for selective 
linkage). 

TLIB listings are only produced if you enter a comma followed by a file 
name or the device-file names CON (screen display) or PRN (direct printer 
output). For example, if you ;11·e logged into\ TURBOC\LIB, 

C>TLIB EMU.LIB, CON 

will display the modules in the FP emulation library, as shown in Figure 10.1. 

Similarly, 

C>TLIB MYFUNC, MYLIB.PRT 

will create a file called MYLIB.PRT that contains the module names and pub­

lic symbols. You can study this file at your leisure (using GREP, perhaps). You 

!'cl'Jm'H"~'!PW*M"'f!1'tss .5,11 a 
1 File(s) 2072576 bytes free 

C>erase *.cap 

C>tlib \turboc\lib\emu, con 
Turbo Lib 1. 0 Copyright (c) 1987 Borland International 
Publics by module 

EMU0B6 size = 9742 
e086 Entry 
emws:control 

EMU0B7 size = 1262 

EMU IN IT 

C> • 

e087_Entry 

FIARQQ 
FIDRQQ 
FISRQQ 
FJARQQ 
FJSRQQ 

size == 319 

e086 Shortcut 
emw(::status 

e087 _Shortcut 

FICRQQ 
FIERQQ 
FIWRQQ 
FJCRQQ 
_EMURESET 

.. figure 10.1: TUB listing of EMU.LIB modules 



376 .,. MASTERING TURBO C .,. 
CH.10 

will find it instructive to list the modules in CS.LIB, the small memory model 
support library, and you will see many familiar names in the symbol list. 

In normal, default Turbo C operation, these identifiers retain their upper­

case and lowercase source-code spellings but have an underscore (_) pre­
pended. When mixing C and case-insensitive Pascal code, as discussed in 
Chapter 5, you have to use options to suppress the underscore (using Gener­
ate underscores ... Off in the Options menu or - u - in TCC) and force con­
versions to uppercase (with the pascal modifier). These conversions are 
important in understanding the /C option in TLIB. 

~ The TLIBITLINK Case-Sensitivity Problem 

The optional IC flag provides compatibility with both case-insensitive lan­
guages and non-Turbo C, case-insensitive linkers. 

As I mentioned, TLIB maintains a table of all the public symbols (such as 

function names and global variables) defined in its member modules. This 
table is consulted by TLINK or some alien linker to determine which mod­
ules to pull in. We clearly cannot allow duplicates in any set of tables, so 
whenever you add a module to a library, TLIB has to check that the new sym­
bols being added are unique. If they are not, an error is signaled and the new 
module is rejected. 

The question arises, Is case relevant? Are the entries _sum and _SUM, for 
instance, different? As far as the C language and Turbo C's TLINK linker are 
concerned, they are indubitably distinct; however, many old-fashioned link­
ers and languages are case-insensitive and cannot differentiate! Remember 
that a linker is not really concerned about the origin of the .OBJ files (they 
can come from almost any high- or low-level language) as long as they follow 
an agreed format. 

If you omit the IC flag, you force TLIB to be case-insensitive as a sop to the 
older regimes. TLIB would therefore reject a new module defining _sum (or 
sum if underscore suppression is active) if the symbol _SUM (or SUM) 
already existed in that library's symbol table. In Pascal mode, in fact, this 
would be a genuine error. 

In non-Pascal situations, TLIB warns you of possible trouble should you or 
somebody else try to link with a case-insensitive linker. This feature may not 

concern you, but it is important for software developers who may have no 
control over the linkers used by their customers. 



~ ODDS && SODS ~ 377 

Summing up, if you include the IC flag, TLIB becomes case-sensitive and 
your library is less portable because many linkers match the early single-case 
computer languages. 

If you intend to use only TLINK and case-sensitive languages, you can 
safely add the IC option; otherwise it is wiser to omit it. Yes, you can use 
either le or IC. 

Incidentally, if you ever gPI a long list of identifier unknown linker-error 
messages showing names with underscores, it probably indicates that you 
failed to include a .LIB file. The likely candidate is GRAPHICS.LIB (since it is 
outside the normal C?.LIB collection). 

~ TLIB Response Files ~ 
The final TLIB feature to be covered is the response file-an ASCII text file 

you can create to help you automate repetitive maintenance operations on 
your libraries. The idea is that if you have a response file called UPDATE.RSP, 
say, containing the line 

MYLIB - +NEW.OBJ - +REV.OBJ 

its contents can be pulled into the command line by typing 

TLIB @UPDATE.RSP 

at the prompt. The leading@ causes the following file name to read into the 

command line, exactly as if you had typed 

TUB MYLIB - +NEW.OBJ - +REV.OBJ 

at the prompt. I gave the response file an extension .RSP as a recognition 
aid-in fact, any extension or none is OK. Apart from saving keystrokes, the 
response file solves the problem that DOS command lines are limited to 127 
characters. A response file can be as long as you like provided that you use a 
& to indicate a continuation line: 

MYLIB + - REVISED1 .OBJ + - REVISED2.0BJ + - REVISED3.0BJ & 

+ NEWONE.OBJ - OLDONE *REVIEW.OBJ 



378 .. MASTERING TURBO C .. 
CH. 10 

The response file need not contain the entire command entry-you can 
enter some fields by hand and have the rest pulled in from the response file. 
You can even use several response files in the same command. If REVRSP 

was the file holding the previous lines, and you set up files MYPATH and 
LIBLST to contain 

\ TURBOC\NEWLIB\ 

and 

, LIBLST.LST 

respectively, you could type 

TLIG @REVRSP *-@MYPATH SPECIAL @LIBLIST 

at the prompt. The response file shortcut is also available with TLINK, and 
the syntax is identical. 

~ THE getopt() UTILITY ~ 
You have now seen quite a few command-line switches in action with 

GREP, TCC, TLINK, and TLIB. It is instructive to see how these options are 

programmed in C. You saw in Chapter 8 how 

main(int argc, char *argv[ ), char *argenv[)) 

allowed C to access the whole command line. Borland supplies getopt( ), a 

useful function that lets you parse the argument strings in a general way, 
returning information on what options may have been selected. main() can 
still access the normal nonoption arguments, but getopt( ) does the tricky 
work of picking out options and possible arguments embedded in the 
options. 

Diskette 5 of Version 1.5 has a file called GETOPT.C. It is listed here as Pro­
gram 10.1 (which you'll see in full shortly) by kind permission of Borland 
International. I have edited their comments to suit my exposition. 

Here is the definition of getopt( ). 

int getopt(int argc, char *argv[ ), char *options) 



• ODDS && SODS • 379 

This function picks up via main() the number of arguments on the command 
line in argc and the set of string pointers, argv[] (one for each argument string). 
You also need to give it a string, options, which represents all the legal switches 
allowed for the command. It is this option string that gives getopt( ) its 
flexibility-you can set it up for almost any pattern of command line. 

..... The Option-String Syntax ..... 
The option string is a user-defined string of ASCII characters with the fol­

lowing format: 

SW[optLetter] ... [argLetter space ... argument] ... [SW .. ] ... 

where SW is the switch character, either I or - , according to the current MS­

DOS setting of switchar. DOS usually uses I to indicate a switch option, as in 

C >CH KDSK A:/F 

but to please UNIX programmers it can be changed to - using interrupt 21 h 

function 37h. 
Do not confuse the option string with the various strings, including actual 

options, picked up from the command line. The differences will emerge as 

I proceed. 

The square brackets indicate that an entry can be omitted, and the ellipses 

indicate that repetitions are possible, including repeats of the basic 
sequence. (I told you it was a very generalized function.) 

optLetter indicates legal alphabetic options, so any option letters encoun­
tered during the parse need to match one of the optletters. argLetter indi­
cates that an argument follows each matching occurrence in the command 
line. In an option string argletters have a colon immediately following to dis­

tinguish them from optletters. Arguments can contain the switch character; 
they are delimited by white space, but argletters and optletters must not 
have any preceeding spaces. Uppercase and lowercase letters are distinct. 

As an example, suppose the switch character is I (the MS-DOS default). If 
you set the option string to A:F:PuU:wXZ: then P, u, w, and X are optletters 
(because no colons follow them). If these letters are encountered, they are 
taken as simple on/off switches to be interpreted as you see fit. The letters A, 
F, U, Z are argletters. When they are found in the command line getopt() 



380 .. MASTERING TURBO C .. 
CH. 10 

they will extract the following strings as arguments. With these settings, the 

following command line 

AnyCommand luPFPi IX IA L SomeFileName 

would return the following sequence of values: 

'u' and 'P' as isolated option letters 
'F' as an argletter with Pi as its argument string 
'X' as an isolated option letter 
'A: as an argletter with Las its argument 

SomeFileName terminates getopt( ). It is not an option and must be pro­
cessed via *argv[] along with any subsequent arguments in the usual way. 

As this example shows, the first nonoption argument, marked by the 
absence of a leading switch character, terminates the parsing scan. getopt() 
returns EOF to signal this and leaves the global optind as an index to the next 
argv[] string not yet processed. optind starts life as 1 (remember that argv[O] 
is the name of the command itselO and moves on as each distinct argument 
is processed. Within these conventional, space-delimited arguments, of 

course, getopt() may well uncover a whole bunch of options and option 
arguments. 

There can be any number of option clusters starting with switch charac­
ters, but a final, solitary switch is definitely taboo. Duplicate occurrences of 
optletters and argletters are allowed since, as we saw with TLIB, that may 
be legal and sensible. It is up to the program using getopt() to decide how to 
handle duplicated options. 

If getopt() encounters the sequence SWSW (!I or -- ), these two charac­
ters and the rest of the line are ignored, leaving main() to extract the subse­
quent arguments. This allows you to have nonoption arguments containing 
the switch character by using the old estape-character approach. 

To recap, the option string, *options, allows valid option and argument 
letters to be recognized. When an argletter is discovered, the global optarg 
is set to point at its associated argument string, bypassing any intervening 

white space. getopt() itself returns the optletter or EOF if no more remain. 
If a switch precedes an unknown letter, getopt() returns a ? and an error 

message appears via perror() unless the global variable opterr has been set 
to zero (false). 



,... ODDS && SODS ,... 381 

Study GETOPTC (Program 10.1) carefully to see if you can match its logic 

with the above description. Then I'll show you an extract from a program 
called FILECOMP.C that calls getopt( ). This should clarify the situation and 
give you some practice in digesting larger pieces of code than those found in 
earlier chapters. 

~ getopt() in Action ~ 
The following extract from Fl LECOMP.C (used with permission of Borland 

International) shows how getopt() is called repeatedly until all the option 
switches have been diagnosed. I will not say too much about FILECOMP.C. 
All you need to know is that it compares two files, like the DOS COMP com­

mand, but it provides informative displays of where the files differ. The 

/* getopt.c -- Turbo C */ 

Copyright (c) 1986,1987 by Borland International Inc. 
All Rights Reserved. 
*/ 
#include <errno.h> 
/*needed for global errno, used by perror() to print error 

messages. errno is set to a specific value whenever a library 
call fails, giving the reason for failure */ 

#include <string.h> 
/*needed for strchr() */ 

#include <dos.h> 
/*needed for geninterrupt() which calls on DOS via interrupts •/ 

#include <stdio.h> 
/* nearly always needed! */ 

int optind = l; /* index of which argument is next */ 
char *optarg; /*pointer to argument of current option */ 
int opterr = l; /* allow error message */ 
/*set to 0 to suppress perror() displays */ 

static char *letP = NULL; 
/*remember next option char's location*/ 

static char SW = O; 
/*DOS switch character, will be set to '--' or '/' */ 
/* notice the use of 2 static variables here */ 

int getopt(int argc, char •argv[], char *optionS) 
{ 

unsigned char ch; 
char •optP; 

/* local, automatic variables */ 

~Program 10.1: GETOPTC 



382 
CH. 10 

~ MASTERING TURBO C ~ 

if (SW == 0) { 

} 

AX = Ox3700; 
geninterrupt(Ox21); 
SW = _DL; 

/* get SW using DOS 2lh interrupt, function Ox37 */ 
/* once set, this routine will be skipped •/ 

/* first test if any more args to examine •/ 
if (argc > optind) { 

/* then test if any char left in current arg */ 
if (letP == NULL) { 

} 

if ((letP = argv[optind]) ==NULL I I 
*(letP++) != SW) goto gopEOF; 

if (*letP == SW) { 
optind++; goto gopEOF; 

if (0 == (ch= *(letP++))) { 
optind++; goto gopEOF; 

} 
if ( ':' ==ch I I (optP 

goto gopError; 

strchr(optionS, ch)) 
== NULL) 

/* strchr(string, ch) scans a string looking for the first 
occurrence of ch; at first match from left it returns a 
pointer to match. If no match, it returns NULL */ 

/* a rare sight of the dreaded goto, used here legitimately to 
exit a loop in terminating or error situation */ 

} 
gopEOF: 

if ( ' : ' == * ( ++optP) ) 
optind++; 

} 

if (0 == *letP) { 

} 

if (argc <= optind) goto gopError; 
letP = argv(optind++]; 

optarg = letP; 
letP = NULL; 

else { 
if (0 == *letP) 

optind++; 
letP = NULL; 

} 
optarg = NULL; 

return ch; 

optarg = letP 
return EOF; 

NULL; 

gopError: 
optarg = NULL; 
errno = EINVAL; 

/* perror() will display "Invalid argument: <message>" if opterr 
set to 1 */ 

if (opterr) 
perror ("get command line option"); 

return ( '?'); 

/****************END of GETOPT() ******************/ 

... Program 10.1: CETOPTC (continued) 



.. ODDS && SODS .. 383 

options dictate how the comparisons are made and how much is displayed. 
FILECOMP.C is based on the UNIX diff utility and is especially useful 
when two files are almost the same (such as versions 1.1 and 1.2 of one of 
your programs). 

The command format is 

C>FILECOMP [options] filespec1 filespec2 

The options are 

If show full lines 

It expand tabs before comparing 

/b ignore trailing blanks 

!w ignore spaces and tabs 

/y case-insensitive compare 

You can combine options, as in /fwy or If /bw or If lb, in any order or combi­
nation, with or without white space-which explains why getopt() is so use­
ful! The default settings are 

no If 

no It 

no/b 

no/w 

no /y 

show just first 34 characters of lines 

don't expand tabs before comparing 

don't ignore trailing blanks 

compare spaces and tabs 

case-sensitive compare 

You clearly can set any defaults you like-getopt() simply tells you what 
option letters were found in the command line. Program 10.2 is the extract 
from FILECOMP.C. 

~FUNCTIONS AT WORK~ 
In this final section I want to touch on two important aspects of functions: 

functions as arguments to other functions and recursive functions. These are 
big subjects that fill many esoteric volumes, so, like the Winchester read­

head, I can only scratch the surface. 



384 
CH. 10 

• MASTERING TURBO C • 

/* Extracts from FILECOMP.C */ 

/* Copyright (c) Borland International 1987 
All Rights Reserved. */ 

#define FULL 
#define TABS 
#define TRIM 
#define WHITE 
#define CASE 
#define BLANK 

#define TRUE 
#define FALSE 

Ox80 
Ox40 
Ox20 
OxlO 
Ox08 
Ox04 

1 
0 

/* sets bit */ 
/* sets bit 6 •/ 
/* etc. •/ 

unsigned char flag! WHITE; 

void givehelp(void) 
{ 

printf("Usage is: FILECOMP (options] filespecl filespec2\n"); 
printf("Options:\n"); 
printf(" /f\tshow full lines.\n"); 
printf(" /t\texpand tabs before comparing.\n"); 
printf(" /b\tignore trailing blanks.\n"); 
printf (" /w\tignore spaces and tabs. \n"); 
printf(" /y\tcase insensitive compare.\n"); 
printf("filespec2 can be a drive or directory name.\n"); 

/* main program */ 
int cdecl main(int argc, char •argv(]) 
/* cdecl allows you to run Pascal mode •/ 
{ 

int i,j,k,opt; 

extern int getopt(int argc, char •argv[], char *optionS); 
extern int opterr, optind; 

/* declared here but defined in getopt.c */ 

if ( argc<3) { 
givehelp(); 
return O; 

} 
/* typical check on argc =number of arguments */ 

/* get options */ 

opterr = FALSE; 
/*turn off the perror() display -- handle errors yourself*/ 

while ( (opt = getopt ( argc, argv, "ftbwy" ) ) I= EOF) 

/* sets option string for lowercase optLetters only. Only these 
five choices are valid. No argLetters with colon, so no args 

expected after the option switches. The loop keeps going 
until parse scan reaches first nonopt arg namely filespecl */ 

/*opt is set to the letter returned by getopt() -- natural for 
the switch-case mechanism */ 

... Program 10.2: F/LECOMPC extract 



.,. ODDS && SODS .,. 385 

switch (opt) 
casC::~ ·? ' : 

printf("Invalid command line option \n" ) ; 
givehelp(); 
return(l); 

case 'f' : 
flagl \= FULL; break; 

case 't': 
flagl \= TABS; break; 

case 'b': 
flagl \= TRIM; break; 

case 'w': 
flagl &= -wHITE; break; 

case 'y': 
flagl \= CASE; break; 

} 
/* note how flagl is progressively set with bitwise OR: 

flagl = flagl \ FULL sets bit 7; a further option might set 
bit 3, and so on. flagl reveals all options set and duplicate 
options would be OK */ 

/* Later in program flagl is tested with & to decide on strategy */ 

/*************rest of main() comes here**************/ 

/* Following snippet is instructive -- each tab is changed to 
spaces -- the number of spaces is j mod 8 */ 

/* expand tabs -- called if /t option selected */ 
void tabex(unsigned char *sl, unsigned char *s2) 
{ 

int i; 
unsigned char j; 
for (i=j=O; sl(i]; i++J { 

} 

if (sl[i] != '\t') { 
s2[j++] = sl[i]; 
continue; 

} 
do s2[j++] = ' '; while(j%8 l= 0); 

s2 [j] O; 

/*How to kill spaces and tabs */ 
/* input string sl -- output string s2 less white-space */ 
void zapwhite(unsigned char *sl, unsigned char *s2) 
{ 

int i, j; 

for (i=j=O; sl[i]; i++) { 
if (sl[i] != ' ' && sl[i] != '\t') 

s2[j++] = sl(i]; 
} 
s2 [ j] 0; 

... Program 10.2: FILECOMP.C extract (continued) 

.... Pointers to Functions .... 
When the compiler meets the declaration of an array such as char 

name[30]; you know that the identifier name is translated as a pointer 



386 ~ MASTERING TURBO C ~ 
CH. 10 

(the constant pointer to the char at address &name[O]). So name plays a 

dual role as array name and pointer. 

In the same way, the names of declared functions also play a second 

role as pointers. The syntax distinguishes between tunc(arg); as a call to 

tune and the isolated identifier tune as a pointer. If you encounter the follow­

ing declaration: 

int (*func_ptr)(void); 

you can deduce that (*tunc_ptr) is playing the role of a function taking no 

arguments and returning an int. C's declaration syntax is based on the "tem­

plate for action" principle. What the declaration has achieved is similar to 

the other pointer declarations you have encountered, e.g., int * ptr; does not 

create an int but creates an uninitialized variable of type pointer to integer. 

Similarly, the tunc_ptr declaration creates not a function but an uninitialized 

variable of type 'pointer to function of type F' where F is 'takes no arg and 

returns an integer.' Before being used this pointer must be initialized with an 

appropriate value. If you define 

int myfunc(void) 
{/*body here*/ 
} 

then myfunc is a respectable candidate for tunc_ptr: 

func_ptr = myfunc; 
i = *func_ptr( ); 

I* same as i = myfunc( ); *I 

In the first assignment it is tempting but wrong to use &myfunc on the right 

side. This is as wrong as using &name rather than the true pointer, name. 

Since tunc_ptr now has a valid, non-NULL value, the indirection is valid and 

*tunc_ptr() is a legal invocation of a function. 

Function pointers can be used just like other pointers. You can store them 

in arrays, structures, and unions. For example, you can have 

struct action_table { 
int (*func1)( ); 

float ( *func2)( ); 
action_ table *node; 

} my_table; 



,.. ODDS && SODS ,.. 387 

Here you can store function pointers representing actions to be taken under 

different circumstances. Saving formulae in spreadsheet cells can be 

achieved with this approach. 

Function pointers can be arguments to functions, and they can be 

returned as values by functions. Functions cannot return arrays or functions 

per se, but they can return pointers for these objects. When all the dust from 

the pointer controversy settles, you can say that the dangers are offset by the 

power and elegance of being able to pass and effectively return arrays and 

functions to and from functions. 

A simple but instructive example is qsort( ), which is prototyped in 

STDLIB.H as follows: 

void qsort( void *base, size_t nelem, size_t width, 
int ( *fcmp)() ); 

The arguments are as follows: 

base is the pointer to the first (0th) element of the table to be sorted. 

nelem is the number of entries in the table. 

width is the size in bytes of each element to be sorted. 

Ah ha-what is the final parameter? Yes, it's a pointer to a user-supplied func­

tion called the comparison function. You tell qsort() how to sort by indica­

ting what you mean by "greater," "equal," and "less than." Your fcmp() must 

be defined so that fcmp(ptr1, ptr2) returns -1 if * ptr1 is less than * ptr2, 0 if 

* ptr1 equals * ptr2, and + 1 if ptr1 is greater than * ptr2. ptr1 and ptr2 are 

declared as pointers to elements of the table to be sorted. 

The sort, based on C. A. R. Hoare's quicker-sort, is therefore applicable to 

any numerical or symbolic ordering sequence you can possibly dream up. 

For simple lexicographic string sorts you can use any of the strcmp() vari­

ants in STRING.H because these return the prescribed int values. For more 

complex sorts you write my_comp( ) and pass my_comp as the pointer 

argument. 

~ Recursion ~ 
(Recursive adj. See Recursive [Kelly-Bootle, Stan. The Devil's DP Dictio­

nary. New York: McGraw-Hill, 1981.]) 



388 ~ MASTERING TURBO C ~ 
CH. 10 

C shares a valuable property with most modern structured languages in its 
support of recursion both for functions and data structures. 

You saw recursive data structures in Chapter 5 where a structure member 
was a pointer to its own structure. 

I mentioned in Chapter 7 that a function can call any function within its 
scope, and that this allows func() to call func() recursively. To avoid an infi­
nite regress you need to ensure that each call to func() somehow converges 

to some measurable, terminating goal. Recursion also occurs when A calls 
B, B calls C, and C calls A. This is equally allowed in C provided the scoping 
rules are followed. Recursion offers an elegant solution to many problems 
where each stage of computation is defined in terms of the same function, 
although in theory any recursive solution has an equivalent nonrecursive 
formulation. The classic illustration is factorial(N), which is defined as 
(N * factorial(N -1)) unless N equals 0 [factorial(O) is defined as 1). Another 
example is the exponentiate or power function, since XN = X*~- 1 ). Con­

sider the function exp(X, N) for non-negative N, defined as follows: 

double exp(double X, int N) 
{ 

if (N < O) return (-1); /*error*/ 
if (N = 0) return (1 ); 
else return (X*exp(X, N -1); 

Each time exp() calls itself, the exponent argument is reduced by 1, guaran­
teeing an end to the sequence. You should try this with different values, not­

ing that for very large values of N you may get stack overflow. Program 10.3, 
MYEXP.C, gives you a bare-bones platform to experiment with. 

MATH.H contains the standard power function 

double pow(double x, double y); 
I* toil and trouble? *I 

for more exotic calculations of xY. You might want to compare its accuracy 
with myexp() when y is a whole number . 

..,. SUMMARY OF ENHANCEMENTS 
AND CHANGES IN VERSION 2 ..,. 

As discussed in more detail in Chapter 11, Borland again upgraded the 
Turbo C package from Version 1.5 to 2 in August 1988. Chapter 11 discusses 
the integrated debugging facilities of Turbo C 2. Here I'll run through some 



/* myexp.c - tests recursion */ 
#include <stdio.h> 

double myexp(double X, int N) 
{ 

if (N < 0) return (-1); 
if (N == 0) re~urn (l); 
else return (myr•xp(X,N-l)*X); 

void main() 
{ 

double x = O; int n ~ O; char ch= '\0'; 

do { 
puts( "Enter N ancl X: "); 
scanf("%d %lf",&n, &x); 
printf("N=%d, X 11\n",n,x); 
printf("X"N=%f\n",myexp(x,n));} 

while ( (ch = getch ( ) ) I~ 'X' ) ; 

~ Program 10.3: MYEXP.C 

i. ODDS && SODS i. 389 

of the other enhancements and changes you'll find when you step up from 
Version 1.5 to Version 2. 

To accommodate the new features, some of the menu layouts and hot-key 
assignments have been revised. These changes have been indicated in 
Chapter 1 but will be explained further in this section and in Chapter 11. 

When you run a program from within the IDE, the program returns you to 
the IDE screen. There is no hit any key message on the program output 
screen (also known as the user screen) allowing you to examine your results 
before returning to the main TC screen. You need to use the new hot-key 
combination Alt-F5 to toggle between the TC screen and the user screen. 

Compiling and linking are faster by 20 to 30 percent, and execution times 
have been improved using faster functions and floating-point emulations. 
Also, support for extended memory systems allows you to allocate extra 
memory to the edit buffer. Up to 64KB additional memory can be provided 
for compiling and running. 

The BGI (Borland Graphics Interface) library has several new functions, 
including installable drivers and fonts. The routines for EGA and VGA dis­
plays have been made faster, and you can now flood-fill elliptical shapes. The 
Version 2 * .BGI files are all different, so you will have to relink your Version 
1.5 graphics programs before they will run correctly under Version 2. 

The gsignal() and ssignal() software signal-handling functions have been 
replaced by the ANSI C-conforming raise() and signal() functions. 

A new function, __ emit __ (), lets you insert machine code directly into 
the object code generated by the compiler. This hairy alternative to in-line 



390 .,. MASTERING TURBO C .,. 
CH. 10 

assembly-language code (using the asm keyword) has the advantage that it is 
available on both the TC (integrated) and TCC (command line) compilers. 
The asm construct works only with TCC. The arguments to __ emit __ () are 
"literal" bytes representing raw 808x machine instructions rather than the 
assembly-language mnemonics used with asm, so don't expect any gentle 
error messages! 

OBJXREF.COM is a new utility for listing cross-references from a specified 
set of object and library files. A wide range of reports can be generated, 
including lists of public names and the modules in which they are defined as 
well as lists of modules and each of their external references. 

Support is now provided for the ANSI C long double data type. The long 
double gives you an 80-bit precision compared with the 64-bit precision 
of double. Long doubles conform to the IEEE 80-bit, double-precision, 
floating-point standard. The range of a long double is 3.4E-4932 to 
1.1E+4932, giving an accuracy of approximately 19 significant decimal dig­
its. Of course, you pay in terms of speed and memory usage for this extra 
precision, so use long doubles only when your sums really need them. Both 
the 8087 and 80287 math coprocessors support the 80-bit format. The printf( 
) statement and its variants now accept the input-size modifier L to display 
numbers in long double format. 

The stand-alone Make utility has been greatly improved to provide auto­
dependencies. Once you have created a suitable Make file that lists the com­
ponent *.OBJ and *.H files together with the compiler and linker 
commands needed to create your final *.EXE file, Make will check the 
dependencies and the relative date stamps of all files. Make then performs 
the minimum recompilation and linkage to ensure that all changes are incor­
porated into your *.EXE file. The improvements in Make stem from the new 
ways of writing your Make file. You can now incorporate both explicit and 
implicit rules regarding dependencies and the actions needed to update the 
final *.EXE file. Implicit rules can include command-line variables and 
macros. The Make file can also use C-like directives, such as !include and !if, 
as well as C-like numerical and conditional operators. Make can even obey 
DOS commands, such as cd and copy, in a Make file, or you can include a 
complete batch file (*.BAT) so that your action lists can make backups as 
well as performing the usual recompiles and relinks. So, writing a Make file is 
very much like writing a C program or UNIX shell script; yes, you can add 
comments with a preceding#. 

The Project-Make facility built into the IDE also offers a new auto­
dependency check feature that you can toggle on or off using the new Auto 



,.. ODDS && SODS ,.. 391 

Dependencies switch in the Project menu. When this feature is on, TC will 
look at the .OBJ files corresponding to each .C file listed in the .PRJ file. Each 
.OBJ file compiled by either TC or TCC contains information on any files 
included in the original source code. TC can therefore check the relative 
date/time stamps of all the constituent files and automatically recompile any 
dependent files that may have changed since the last compilation. The auto­
dependency feature saves you from having to enter explicit dependencies in 
the .PRJ file. You can still list explicit dependencies, as discussed later in this 
chapter in the section entitled "Why Use Libraries?," but these will simply be 
ignored if you are running with Auto Dependencies on. 

The editor has some new features such as block indent/unindent and opti­
mal fill. 

THELP.COM lets you access the Turbo C context-sensitive help data from 
any program. Running THELP.COM loads a RAM-resident TSR (terminate 
and stay resident) program that can be "popped-up" via the numeric 5 key. 

The IDE help support has been extended. Fl still brings up context­
sensitive Help windows; in addition, Ctrl-F1 triggers the display of informa­
tion on the library functions. You simply position the editor cursor on any 
library function name in your source code, then press Ctrl-F1. 

Installing Turbo Chas been made easier in Version 2. If you are upgrading 
from Version 1.5, you can use CINSTXFR.EXE, which guides you through 
diskette insertion and replaces all the appropriate files while preserving any 
options you may have saved under Version 1.5. To install Version 2 from 
scratch, you use INSTALL.EXE. Version 2 comes on six floppies, and even 
then Borland had to compress (archive) all the example files. An UNPACK 
utility is provided so that you can restore (unarchive) the *.ARC files at any 
time. INSTALL will do the unpacking for you if you ask it. INSTALL will also 
run CINSTXFR for you if you wish, or you may prefer to set up your own 
directories/subdirectories and copy away. 

Note that TCINST.COM has grown to TCINST.EXE. Make sure that your old 
TCINST is erased, or else you might suffer from a familiar quirk of DOS: If 
you have two files called AM.COM and AM.EXE, typing AM will invoke 
AM.COM. 

TC now has additional command-line switches. Version 1.5 offered the IC 
switch (see Appendix B) whereby 

C >TC /CMYCON FIG 

for example, fires up the IDE with the configuration file MYCONFIG.TC 
replacing the default TICONFIG.TC. Version 2 allows the following extra 



392 ... MASTERING TURBO C ... 
CH. 10 

switches: 

... The Build Switch, /B Subject to certain conditions 

C>TC MYPROG /B 

will compile and link MYPROG.C, then return to DOS. Any mes­
sages generated by the compiler will be displayed on the standard 
output device. The B stands for Build, meaning compile/link regard­
less of date/stamps and dependencies. The /B switch can be used in 
conjunction with IC switch so that you can load a special configura­
tion file specifying a project file to be built or a primary file.to be 
compiled/linked-for example: 

C>TC /CMYCONFIG /B 

The /B switch is useful when you want to invoke TC in a batch file 
without displaying the IDE screens and menus. 

... The Make Switch, /M The /M switch works like the /B switch but 
invokes a make rather than a build: 

C>TC /CMYCONFIG /M 

This means that date/time stamps are tested and only antiquated files 
are compiled. For both/Band /M, TC searches for a target file in the 
following sequence: a .PRJ file in the loaded .TC file, then a primary 
file in the loaded .TC file. In the absence of these, TC looks for a file 
name in the command line, failing which, TC takes the file currently 
loaded in the TC editor. 

... The Dual Monitor Switch, ID The /D switch lets you use two moni­
tors: one for the normal TC screen menu activity (called the inactive 
screen); the other for program output (called the active screen). Of 
course, you'll need two display adapter cards that can coexist, typi­
cally one monochrome DA and one color or multifunction board, 
such as the Everex EGA or the Video-7 VEGA. The main point is that 
the two boards must access distinct video RAM addresses. When you 



~ ODDS && SODS ~ 393 

type a TC ID command, it will appear on the active screen together 
with subsequent program output, whereas the TC menus will come 
up on the inactive screen. You can select which monitor is active 
either by using the DOS MODE command or by using the programs 

supplied with your graphics adapter board. The /D switch is a god­
send for debugging certain graphics programs because you can iso­
late the IDE activity from the all the weird effects of bugs on the 
graphics screen. 

~ SUMMARY OF CHAPTER 10 ~ 
... ~ GREP is a flexible FIND-like utility able to scan sets of files for complex 

string matches. Matches can be simple strings or UNIX-type regular 
expressions using A (line start), $ (line end), * and + (multiple occur­
rences),\ (escape), and [ ... ] (ranges) . 

... ~ TLIB is a simple but effective object-code library manager. You can 
create and maintain .LIB files using command-line option switches and/ 
or response files. You can + (add), - (remove), or * (extract) .OBJ files 
to any .LIB file. TLIB also lets you display, print, or write to disk the mem­
bers of a .LIB file. The IC switch gives you compatibility with case­
insensitive languages and linkers. The Turbo C supplied TLINK linker 
syntax was explained . 

... ~ You saw how and why libraries are used in C-both for efficiency and 
control of large projects. Project-Make was also explained in the context 
of maintaining multifile programs .. PRJ files allow you to express the 
interdependencies of .C, .OBJ and .H files . 

... ~ The getopt() function was explained and dissected, throwing more light 

on the main(int argc, char *argv[], char *argenv[ )) mechanism for 
extracting data from a command line. Extracts from FILECOMP.C 

showed how getopt() is used in a real-life application . 

... ~ The pointer to function allows you to write "generic" functions such as 

qsort() that take a function as an argument. The syntactical key is that 
tune as an identifier is taken as the pointer to the function, whereas fun­
c(args) is used to declare, define, or invoke the function. 



394 ... MASTERING TURBO C .,. 
CH. 10 

....... Recursion-I gave you a brief, tantalizing peek at a topic of great impor­
tance. Recursive data structures are widely used in C, allowing a struct 
member to point to itself (in a manner of speaking). Recursive functions 
call themselves directly or indirectly. To avoid infinite loops and 
exhausted stacks, some tested criterion in the recursion must ensure an 
exit. The function XY (exponentiate) was coded recursively as a simple 
example. 

...... I introduced you to the changes and enhancements (other than the 
debugging facilities) of Version 2. 





DEBUGGING 
WITH TURBOC 



~ CHAPTER 11 

"Stan, have you considered Chapter 11 ?" -Don Shaw, CPA 

On August 29, 1988, Borland announced a wide range of new and 

improved products under the slogan "Programming Without Compromise." 

In fact, Borland chairman and CEO Philippe Kahn described the unveiling as 
the single most important announcement in Borland's history. In addition 

to the all-new Turbo macro assembler (TASM) and stand-alone Turbo Debug­

ger, Borland released upgraded versions of existing products: Turbo Pascal 5 

and Turbo C 2. Both Turbo Pascal 5 and Turbo C 2 offer built-in source-level 

debugging, accessible via the IDE (Integrated Development Environment) 
menus, as well as support for the new, more sophisticated freestanding 

Turbo Debugger. Borland offers special packaged combinations of these 

new products; for example, the Turbo C Professional package includes 

Turbo C 2 plus TASM and the separate Turbo Debugger. 

This chapter is devoted to the exciting, new integrated debugging facilities 
of Turbo C 2. The new version also offers some other enhancements and 

changes, which are summarized in Chapter 10 . 

..,. THE NEW SOURCE CODE DEBUGGERS ..,. 
In the ongoing Microsoft/Borland C wars, one of Microsoft's key advan­

tages has been its Quick C integrated debugger and the freestanding Code­

View debugger supplied with Microsoft C. Version 2 of Turbo C was clearly 
aimed at Quick C, whereas Borland's stand-alone Turbo Debugger offers a 

counterchallenge to CodeView. In fact, the Turbo Debugger supports 

CodeView-compatible *.EXE files and in addition offers multiple overlapping 

views (you can observe code and data at CPU or source levels), 386 virtual-

86 mode debugging,. remote terminal debugging, full data-structure debug­
ging, and session logging. 

To avoid confusion, note that the freestanding Turbo Debugger offers fea­

tures beyond those found in the Version 2 integrated debugger. In fact, the 



398 ~ MASTERING TURBO C ~ 
CH.11 

freestanding Turbo Debugger can be used with many languages, both 
Borland's and otherwise, and is not confined to Turbo C. In the following 
exposition I will assume that you just have Turbo C 2-however, many of the 
basic debugging strategies will prove useful if and when you move up to 
the independent Turbo Debugger . 

..,.. FOR ALL YOU DO, THIS BUG'S FOR YOU! ..,.. 
First, let's step back and consider the nature of the beast. What exactly are 

bugs, and how can they be squashed? If you have tried any of the examples 
in this book, you have almost certainly encountered unexpected results 
from time to time, just as I did when devising the programs! Bugs are the crit­
ters that take the blame for a program misbehaving in some way. 

The entomological taxonomy of bugs, though, is quite complicated and still 
the subject of intense computer scientific debate. To say that a program misbe­

haves implies that you have a firm and formal picture of what constitutes "cor­
rect" behavior. A program intended to compute factorial N, for instance, may 
give erroneous results (or loop forever with no results) if you input too big an N 
or a negative or fractional value of N. It is even possible to envisage a bizarre fac­

torial N program that works fine for all values of N < 50 except for N = 7 and 
N = 39. 

Is the problem with the program for failing to trap such input, or with the 

definition of factorial N, or with the limited capacity of your registers, or with 
the user of the program? Furthermore, the "defect" may not be discovered 

for many years because it was never subjected to "dubious" input, remind­
ing us that bugs can and do "lurk" undetected simply because it may be 
impossible to test a large program with all possible input combinations. Test­
ing each module as it is developed is mandatory, of course, but there is no 
automatic guarantee that your modules will cooperate as planned. 

You may have also heard the ironic in-joke that bugs are simply "undocu­
mented features." The truth is that as your program grows in complexity, it 
becomes increasingly difficult to define exactly how it should behave under 
all circumstances. Certain nonfatal quirks may surface, and it is often 
cheaper to change the program specifications than modify the code. There 
are limits to this, of course. If your factorial program tells you that 4! (pro­
nounced "factorial 4") is 23 rather than 24, no amount of redefinition and 
redocumentation will save you from the scorn of your potential user base. 



.,. DEBUGGING WITH TURBO C .,. 399 

Studies of large software projects reveal two frightening facts: 

1 . As the number of bugs is reduced, it becomes exponentially harder to 

remove the residual bugs-whence the old saw "Let sleeping bugs lie." 

2. The code used to remove bugs, often called a patch, has a higher pro­
pensity for error than the original code owing to the possibility of sub­
tle side effects. 

Remember too that a program can run correctly with a given compiler/ 
OS/hardware mix and yet fail when ported to some other system. More 
often than you may imagine, a version change of the OS or compiler, or a 
change in the parameters and defaults used during compilation/linking, can 

dramatically affect the behavior of your code. In these cases, where exactly 
is the "bug"? 

~ TYPES OF ERROR ~ 
The mere act of typing, whether you are copying from a list or transferring 

your inward thoughts, is remarkably error-prone. And so is the task of proof­

reading when you compare two documents. The study of this problem goes 
back many centuries before the advent of computer programs. Even the 
most conscientious scribes copying revered manuscripts slipped up occa­

sionally, as any biblical commentary will confirm. Two classes of error are 
common enough to attract special nomenclature by textual scholars: ditto­
graphy and haplography. 

With dittography, the scribe, possibly because of some interruption, 

copies a piece of text for the second time. A modern version of this occurs 
with word processors when a block of text is wrongly duplicated. Haplo­
graphy is the opposite problem: When copying text that contains repetitive 
phrases, the eye moves ahead and a section is inadvertently omitted. It is sur­
prisingly difficult sometimes to spot such aberations (such as the missing r) in 
your own work but not when you are reading someone else's efforts. The 

actual perception, that is to say, the message sent from eye to brain, of what 
you have written is so easily colored by what you intended to write. It may 
seem a trite observation, but you may not be the best person to debug your 
own code. If, however, you are working alone, then you must develop the 

concentration needed to achieve clinical objectivity. 



400 • MASTERING TURBO C • 
CH.11 

I have already mentioned the differences between syntactical (compile 
time) and semantic (run time) errors in a program (Chapter 1). In real life, 

these two classes of errors can overlap in disconcerting ways. You can some­
times make "syntax" errors that generate legal code with unintended 

"semantic" side effects. 
Gross syntax errors are trapped by the compiler but may generate a rash 

of "misleading" error messages. This is because the impact of a syntax error 
may extend beyond its immediate neighborhood. It may take several state­
ments, for example, before a misspelling, such as typing far or fur in place of 
for, can be diagnosed by the compiler! 

There are far more ways of getting a program wrong than there are ways of 

getting it right, so it is difficult to formulate precise rules for debugging. If the final, 
erroneous output of the program is your only guide, you need a lot of luck to 
locate the bug immediately. It can be useful to embed various display statements 
in a program under development so that intermediate results can be observed. 
The aim is to work back from the known faulty result to the prime cause or 

causes. 
If the computed value (a* b I c) is wrong, for example, you make sure that 

you did not enter (a I b * c), then trace back to see whether a, b, and c were 

computed correctly. In many cases, these three variables are set from other 
calculations, and you enter a confusing maze of possibilities. The only advice 
here is the obvious need for patient, logical detective work with large sheets 
of plain paper to note the effect of single changes to the program. Changing 
too many parameters at once is a common temptation. In the above 

example, you might try setting a = 1 and bypassing the function that com­
putes a. This approach involves lots of time editing and recompiling. Source­
level debugging offers several time-saving tricks, as you'll shortly see. 

Before I show you some real examples, let me explain the principles of the 
source code debugger and establish some of the jargon you will need . 

..,.. SOURCE-LEVEL DEBUGGING..,.. 
It is worth stressing, first of all, that debuggers do not actually debug your 

code! You alone must determine why the program is misbehaving and make 
the corrections. Apart from locating syntax errors, the compiler, linker, and 
run-time support system have no innate ability to guess your intentions. It 



~ DEBUGGING WITH TURBO C ~ 401 

can even be proved that no general metaprogram exists that can detect end­
less loops. What debuggers can do is allow you to inspect and interact with a 
program while it is executing, thereby giving you useful clues pointing to the 
problems. 

Before the advent of the source-level debugger, debugging high-level­
language run-time errors was a major problem. The most you could expect 
was a core dump showing you the contents of memory and registers at 
selected moments of execution. The rather gloomy sounding postmortem 
dump was often triggered automatically when the program abended (i.e., 
ended through abortion). Relating pages ofobscure octal or hex listings back 
to your legible source code was a real pain. 

The popularity of interpreters over compilers can be traced to their obvi­
ous advantages in debugging: Each line of code is interpreted and executed 
immediately, pinpointing most errors for an instant fix. Reduced execution 
speed, however, is the price to be paid. A compromise that is emerging 
offers a C interpreter for program development, after which you switch to a 
compiler to get your final *.EXE. 

The source-level debugger still remains the most popular approach to 
debugging, offering major advantages over the old core-dump approach. 
First, symbol table data is made available in various ways so that, during exe­
cution, variables can be referenced by their original source code names 
rather than via memory locations. 

Second, breakpoints can be set at the source code level, allowing you to 
run a program up to a selected line or statement. When the program stops, 
you can peek at variables, expressions, and registers and optionally change 
their values. Finally, you can step through the program, statement by state­
ment, optionally performing function calls as one step or stepping through 
each statement defining the function. You can then go full-speed ahead to 
the next breakpoint. Let's see how these maneuvers are performed with the 
Turbo C 2 menus and hot keys. 

~ USING THE VERSION 2 
INTEGRATED DEBUGGER ~ 

The Debug and Break/watch menus control various aspects of the new 
integrated debugger. The first selection needed before you can use the 



402 ~ MASTERING TURBO C ~ 
CH.11 

debugger is made with the Debug menu. Fire it up with Alt-D, then select 
Source debugging. This offers a choice of three settings: 

On: Programs compiled/linked in this mode can be 
debugged using either the integrated debugger or the 
stand-alone Turbo Debugger. 

Standalone: Programs compiled/linked in this mode can be 
debugged only with the stand-alone Turbo Debugger. 

None: Programs compiled/linked in this mode cannot be 
debugged. 

Note the shorthand for uniquely specifying a sequence of menu selections: 

D/S/O: 

D/S/S: 

D/S/N: 

selects On 

selects Standalone 

selects None 

Make sure that Debug/Source debugging is on (the default set by Borland). 
Next, invoke the Options menu with Alt-0, and select Compiler, then 

Code generation, then OBJ debug information. The shorthand description 
of these selections is O/C/C/O. The possible choices are on and off. You 
need to set OBJ debug information on before proceeding with the following 
exercise. 

The key point here is that the *.OBJ and *.EXE programs you create with 
these two modes set on carry additional debugging data. This does not affect 
their normal execution, but once you have debugged a program, you 
should relink with the D/S/N option set (Debug/Source = None) and the 
0/C/CIO toggle off to reduce *.EXE file sizes. 

To simplify our discourse I will refer to *.EXE programs that have been 
compiled/linked with both debug options on as debuggable programs. 

Now, enter Program 11.1, SIGMA.C, then compile and link it in the usual 
way. SIGMA.C contains some deliberately instructive errors, ranging from 
the obvious to the less obvious. 

Now type Alt-R to run SIGMA from within the IDE. Notice that Alt-R now 
brings up a Run menu, whereas under Turbo C 1.0/1.5, Alt-R triggered a run 
immediately. The new Version 2 Run menu has several run variations, but for 



,.. DEBUGGING WITH TURBO C ,.. 403 

/* SIGMA.C purports to sum first n integers: 1+2+ ... +n */ 
/*WARNING: this program has deliberate bugs */ 

#include <stdio.h> 

int sumn( int m); 

void main() 
{ 

/* declaration */ 

unsigned int n; 
printf("\nEnLer a number:"); 
scanf("%u", &n); 
printf( "\nSigma %u = %lu", n, sumn(n) ) ; 

/*Function sumn() */ 
int sumn(int m) 

unsigned i; 

/* definition */ 

long unsigned sum; 

for (i=O; i < m; i++) 
sum =+ i; 

return sum; 

.. Program 11.1: S/GMA.C 

now use the first menu selection, called Run. This corresponds to the Ver­
sion 1.0/1.5 Alt-R selection. To save you typing R/R, you can use the new hot 
key Ctrl-F9. 

Since you have not yet set any breakpoints, the program will run normally, 
stopping only for scant() keyboard input. The user screen will display Enter 
a number:. Type 3 and press Enter. The user screen will flash the result and 
return to the IDE screen, possibly before you can read the ouput. Use Alt-F5 
to toggle back to the user screen. Note that this is a new feature on Version 2. 

The final answer should be 3 + 2 + 1 = 6, but SIGMA is not behaving as it 
should. Run the program again with different input and see if you can dis­

cern any pattern in the erroneous output. 
The answers given by SIGMA.C are 

Sigma 1 = 65536 

Sigma 2 = 131073 

Sigma 3 = 196610 

not so good-should be 1 

terrible-should be 3 

worse-should be 6 

You should always keep a note of the results with simple inputs-such as 1, 
2, or 3-then look through the source code first for any obvious errors. The 



404 .. MASTERING TURBO C .,. 
CH. 11 

wrong answers here immediately suggest that we have somehow mixed up 
signed and unsigned numbers. Because this is an artificial debugging exer­

cise, I will assume that you do not immediately spot the bugs responsible. 
To give you some practice with the debugging features, I'll show you first 

how to single-step through the program . 

..,.. SINGLE-STEPPING ..,.. 
Select Step-over from the Run menu, or use the handy hot key F8. The first 

thing that happens is that Turbo C will check the program's dependencies 
and, if necessary, recompile/relink to obtain the latest .EXE file. In other 
words, Step-over (F8) initially behaves just like Run (Ctrl-F9). With Step-over, 
however, execution is now under the control of the debugger: The program 

will be executed one step at a time. 
Your IDE screen will now show a highlighted band, known as the execu­

tion band, positioned over the main() line, indicating that you are beginning 
the debugging session from the start of SIGMA (see Figure 11.1 ). The execu­

tion band always shows you the statement line about to be executed. Notice 
that nonexecutable lines, such as comments and #includes are skipped, so 

the debugger stopped at the first executable line, the function main(). 

File Edit Run Compile Project Options Debug Break/watch 
~~~~~~~~~~~~~Edit~~~~~~~~~~~~~ 

Line 7 Col 30 Insert Indent Tab Fill Unindent * C:SIGMA.C 

{ 
unsigned int n; 
printf("\nEnter a number: "); 
scanf{ "%u", &n); 
printf("\nSigma %u = %lu", n, sumn(n) ): 

/*Function sumn() */ 
int sumn(int m) /* definition */ 
{ 

unsigned i; 
long unsigned sum; 

for (i=0: i < m; i++) 
sum =+ i; 

return sum; 

F1-Help F5-Zoom F6-Switch F7-Trace F8-Step F9-Make F18-Menu 

.. figure 11.1: The Edit Screen with execution band on main() 



.,. DEBUGGING WITH TURBO C .,. 405 

F8 is just one of several ways of initiating a debugging session. You canter­
minate a debugging session with Run/Program reset, or its hot key, Ctrl-F2. 

You should now use Run/Trace-into or, more conveniently, the equivalent 

hot key, F7, to single-step the program. Notice how the execution band 
moves through successive lines for each F7 Trace-into operation. Of course, 
the execution band follows the actual run sequence. This seldom matches 

the physical sequence of the source code statement, so show no surprise 
when the band jumps around during while, for, and other control loops. 

Just like F8, F7 can be used to initiate a debugging session. Turbo C will 
check dependencies and recompile/relink in exactly the same way. So, how 
do F7 and F8 differ? 

~ Tracing and Stepping ~ 
F7 (Trace-into) and F8 (Step-over) both single-step in the same way until 

you reach a statement calling a user-supplied function. As the names imply, 
F7 single-steps into the function's statements, whereas F8 steps over the func­
tion, executing it as a single step. Note that F7 can only trace into a debug­
gable function-that is, a function whose source code is available to the 
debugger. Also, of course, the function must have been compiled/linked 

originally with the debug options on. 
For example, a Turbo C-supplied library function such as printf() cannot 

usually be traced ir)to because it was not compiled in debug mode. As you 

have seen, this would bloat the library without due cause. Both F7 and F8, 
then, will simply execute printf() as a single step. Normally, of course, there 

would be no practical point in stepping through the individual statements of 
printf() or any other supplied library function. You are really interested in 
debugging your code not Borland's! 

If you have purchased the library source from Borland, you may wish to 
create debuggable versions of standard functions simply as an educational 
exercise, but for now I will assume that you will always step over standard 
functions rather than trace into them. 

Note the vital difference between the cursor position and the execution band 
position. These two are quite independent. The cursor indicates your current 
position in the IDE editor, whereas the execution band indicates the next state­
ment to be executed by the debugger. Later on you'll meet the Go to cursor 
command in the Run menu (hot key F4), which allows you to execute all state­
ments between the execution band and the line holding your current cursor. 

Also, the cursor lets you edit your code in the usual manner during a debugging 



406 .. MASTERING TURBO C .. 
CH.11 

session. Remember, though, to use F2 (File/Save) and rebuild (compile/link) 
before resuming the debugging session. More on this later. 

For now, just keep pressing F7to step line by line, noticing how the execu­
tion band follows the source code. When you pass the printf() statement, 
the user screen will momentarily display the prompt and then return to the 
IDE screen with the scanf() line highlighted. When you press F7 to execute 
the scanf() statement, you return automatically to the user screen and the 
system waits for you to enter a number, just as if you were running normally. 

After entering n, you are returned to the JOE screen with the execution 
band on the next line: 

printf("\nSigma O/ou = O/olu", n, sumn(n) ); 

If you press F7 now, execution of printf( ) calls the function sumn( ). It is 
important to note that although the execution band tracks line by line, a typi­
cal C line may contain several statements, possibly including calls to func­
tions. The debugger will execute these in the correct sequence, as specified 
by the C syntax. 

Because sumn( ) is a debuggable function and in the same module as 
main(), you will see the execution band move down into the sumn() source 
code. Had you used F8, all the steps of the function sumn() would have 
been invoked in one fell swoop. 

As you press F7 to step through sumn( ), notice that the single statement 
within the for loop will be invoked as many times as the parameters dictate. 
In our simple example, the execution band seems to remain on the same 

statement, sum = + i;, but be not alarmed! The statement is being executed 
each time you press F7-indeed, this sequence gives you a useful clue as to 
whether the for loop is correctly coded (in fact, you've probably spotted 
some gross errors in the for loop already). 

Keep pressing F7 until the for loop terminates; then on through the return 

statement; then back to main(}, where the printf() is completed. Again, you 
wi 11 see a momentary flash to the user screen before you land back in the I DE 
screen. Alt-FS allows you to inspect the output by toggling you back to the 
user screen. Jot down the results, then press Ctrl-F2 to end the debugging 
session. 

The foregoing drill was intended to give you a feel for the single-stepping 
hot keys. However, we have not yet tackled the bugs-we have simply been 
running a buggy program in slow motion! In the next session, you will learn 

how to peek and poke or, more politely, how to evaluate and reset expres­
sions at selected points in the run sequence. 



.,. DEBUGGING WITH TURBO C .,. 407 

~EVALUATING EXPRESSIONS~ 

Repeat the previous debugging session and enter n = 2, then stop atthe for 
loop in sumn( }: 

for(i=O; i < m; i+ +) 
sum =+ i; 

return sum; 

Now select Debug/Evaluate, or use the more convenient hot key Ctrl-F4. 

Figure 11.2 shows the Edit screen with the Debug menu pulled down, ready 
for you to select Evaluate. The Evaluate window pops up (see Figure 11.3), 
displaying three fields as follows: 

Evaluate field 

Result field 

New Value field 

Enter the variable or expression to be evaluated. 

The debugger displays the requested value here. 

You can optionally enter here a new value for the 
selected variable or expression. 

The Evaluate field displays a default expression corresponding to the word 
at your current cursor position. You can edit or change this expression in 
various ways. 

File Edit Run Compile Project Options l!Zil!llJ Break/watch 
Edit ~ 

Line 22 Col 33 Insert Indent Tab ...... a .•. , 
void main() Call stack Ctrl-F3 
{ Find function 

unsigned int n. Refresh display 
printf( 11 \nEnter a number: " Oisplay swapping Smart 
scanf( "%u", &n); Source debugging On 
printf(''\nSigma %u = %lu", 

} 

/• Function sumn() •/ 
int sumn(int m) /• definition •/ 
{ 

unsigned i; 
long unsigned sum; 

for ( i=0; i < m; i++) 

r-eturn sum; 
} 

Watch -

F1-Help F5-Zoom F6-Switch F7-Trace FB-Step F9-Make F11-Menu 

• Figure 11.2: The pull-down Debug menu 



408 .. MASTERING TURBO C .. 
CH. 11 

File Edit Run Compile Project Optior1s Debug Break/watch 

Line 22 Col 33 Insert Inden~d~!b Fill .. -.. l;~-:-;~-~ent * C:SIGMA.C =====i 
Void main() 

' - ~~ I unsigne IUllM' 
printf( 
scanf(" Result I 
printf( 2228683310 _ 

/* Function sumn() * / 
int sumn(int m) 

~------ New value ---------,, 

{ ~------------------~ 
unsigned i; 
long unsigned sum; 

for (i"'0; i < m; i++) 

return sum; 

r-------------- Watch ---

Fl Help F7-Trace F8-Step F1e-Menu TAB· Cycle <_J-Evaluate 

~ Figure 11.3: The Evaluate window 

You can exit from and clear the Evaluate window by pressing Esc, or you 
can simply press F7 or F8, which clears the Evaluate window and resumes 
the single-stepping. 

For now, type sum in the Evaluate field and press Enter. The value of sum 
will appear in the Result field. I get 2209415726; your value may be different. 
Can you explain the weird value revealed? Yes, the local variable sum has 
not been initialized. Since the aim is to accumulate 1+2 + ... in sum, clearly 
we should set sum to 0 before the for loop . 

..... Bug Number 1 ..... 
We have uncovered our first bug-an instructive one to be sure. Most 

bugs are bugs of omission rather than bugs of commission. Here, we failed 
to initialize a local variable. The probability that the rubbish found in sum 
will be 0 is too low to form the basis of a sound program! There are four 
ways to correct this bug: 

1. Define sum as a static variable, so that it is set to 0 automatically. 



~ DEBUGGING WITH TURBO C ~ 409 

2. Initialize sum in the definition as follows: 

long unsigned sum= O; 

3. Initialize sum in the for loop as follows: 

for(i =0,sum =0; i < m; i ++) 

4. As a temporary patch, without changing the source code, you can 
change the value of sum using the New Value field of the Evaluate 
window. 

Enter sum in the Evaluate field, press Enter to get the value, then 
use the down arrow key to reach the New Value field. You can now 
enter 0 (or any other constant) and press Enter, then press Esc to get 
back to the IDE screen. Or you can enter expressions such as 
sum+ 1 or sum/(i*3}, provided that the variables used are currently 
defined and within the scope of the current function. (Later on, you'll 
see how to qualify out-of-scope variables to make them accessible.) 
Such expressions are evaluated according to the normal rules of C, 
then assigned to sum. When you resume execution, the new value of 
sum will be in force. If you type a new value then change your mind, 
you can edit or escape, but once you press Enter, the new value will 
be assigned. The New Value field, like the Evaluate field, can be 
scrolled left or right to accommodate long expressions using the left 
and right arrows and the Home and End keys. Setting new values 
during a run allows you to probe and test a program in many ways 
without changing the source code. It is often the only way to deliber­
ately pass invalid-parameter data to a function in order to test your 
error-trapping routines. 

For the moment, though, let's press on without correcting this sum initiali­
zation bug. I want to reveal another common, diabolical situation in 
debugging-how one bug can mask the presence of another. 

~ Bug Number 2 ~ 
Press F7 once through the sum = + i; statement, and use Ctrl-F4 again to 

reevaluate sum. The plot gets thicker: sum is now O! Had we not bothered 



410 • MASTERING TURBO C • 
CH.11 

to evaluate sum before entering the loop, this result-sum equals 0-might 
have led to complacency. 

Look carefully at the following statement in the for loop: 

sum=+ i; 

Of course-this should read sum + = i;, as explained in the discussion of 
compound assignments in Chapter 2. In the early days of C, the compound 
assignments were actually written = +, =/,and so on. This led to some syn­

tactic ambiguities: Does sum = + i; mean sum = ( + i); or sum ( = +) i;? So 
the compound assignments were revamped from =op to op= . 

Correct this line to show sum + = i;, and while you are at it, add sum= 0 

in the for loop initialization, as discussed in the previous section. Now press 
F2 to save your changes, then F7 again. Turbo C will cleverly recompile/ 

relink before resuming the Trace-into. 
Program 11.2 shows the current state of SIGMA.C. 
Alas, you will still find that n = 1 gives Sigma 1 as 65536, yet if you evalu­

ate sum just before the return statement, you find that sum is 0. 

This directs our attention to the line 

printf("\nSigma O/ou = O/olu", n, sumn(n) ); 

/* SIGMA.C purports to sum first n integers: 1+2+ ... +n */ 
/* WARNING: this program still has bugs */ 

#include <stdio.h> 

int sumn(int m); 

void main() 
{ 

unsigned int n; 

/* declaration */ 

printf ( "\nEnter a number: "); 
scanf ( "%u", &n) ; 
printf( "\nSigma %u = %lu", n, sumn(n) ) ; 

/*Function sumn() */ 
int sumn(int m) /* definition */ 
{ 

unsigned i; 
long unsigned sum; 

for (i=O,sum=O; i < m; i++) /* initialize sum */ 
sum += i; /* was =+ */ 

return sum; 

~Program 11.2: SIGMA.C (stage 2) 



.. DEBUGGING WITH TURBO C .- 411 

in main(). Yes, sumn() has been defined as returning an int, yet sum is a 

long unsigned and the format string uses O/olu for a long unsigned variable. 
We must either change sum to int and change the O/olu to O/od or, preferably, 
redefine sumn() to return a long unsigned. Sigman would benefit from the 
larger range, and we know the answer is always nonnegative. You need to 
alter both the declaration and definition of sumn() to show 

long unsigned sumn(int m); 

long unsigned sumn(int m) 
{ 

Program 11.3 shows SIGMA.C after these corrections. 

Now use F2 to save your changes, use Ctrl-F2 to reset the program, and 
rerun it by typing Alt-R/R (or Ctrl-F9). Are we any closer to o·ur elusive target? 

Well, now we get the less wild results 

Sigma 1 = O 

Sigma2 = 1 

Sigma3 = 3 

should be 1 

should be 3 

should be 6 

/* SIGMA.C purports to sum first n integers: 1+2+ ... +n */ 
/* WARNING: this program still has a bug */ 
#include <stdio.h> 

long unsigned sumn(int m); 

void main() 
{ 

unsigned int n; 

/* declaration */ 

printf ( "\nEnter a number: "); 
scanf ( "%u", &n) ; 
printf ( "\nSigma %u = %lu", n, sumn(n) ) ; 

/*Function sumn() */ 

*/ 

long unsigned sumn(int m) 
{ 

unsigned i; 
long unsigned sum; 

/* definition */ 
/* return type now matches sum 

for (i=O,sum=O; i < m; i++) /* initialize sum */ 
sum+= i; /* was =+ */ 

return sum; 

.. Program 11.3: S/GMA.C (stage 3) 



412 ... MASTERING TURBO C ... 
CH.11 

The answers are still wrong, but because Sigma 2 is showing the correct 

value for Sigma 1, and Sigma 3 gives us the proper value for Sigma 2, we 
can hazard a guess that the for loop is terminating too soon. Of course, you 
might spot the reason for this right away by examining the source, but to 
reveal more debugging tricks, I will show you how to set up breakpoints and 
watch windows . 

..,.. SETTING AND VS/NG BREAKPOINTS ..,.. 
Load the latest SIGMA.C (stage 3), if you haven't already done so, press F8 

(setting the execution band on main()), then position the cursor on the for 
loop line. Now select Break/watch with Alt-B. The lower part of the menu 

(see Figure 11.4) shows the breakpoint options 

Toggle breakpoint 

Clear all breakpoints 

View next breakpoint 

Ctrl-F8 

File Edit Run Compile Project Options Debug 1=111!111!11111 
Edit~ 

Line 22 Col 25 Insert Indent Tab Fill •·•nwmn• ••••• { Delete watch 
unsigned int n; Edit watch 
printf(''\nEnter a 
scanf{"%u", &n); 

number; "); Remove all watches 

i I 
Add Watch 

1
su Toggle breakpoint Ctrl-F8 - Clear all breakpoints 

View next breakpoint 
/* Function sumn{) •/ 

long unsigned sumn(int m) /* definition •I 
{ /* return type now matches sum •I 

unsigned i; 
long unsigned sum; 

for ( i•IJ, sum=IJ; 1 < m; 1++) /* 1n1 t1al1ze sum *( 
l!uMM Wf#;MRW 

return sum; 
) 

Watch 
• i: 0 

m; 3 

F1-Help F5-Zoom F6-Switch F7-Trace FB-Step F9-Make F11J-Menu •-More text 

~ Figure 11.4: The Break/watch menu with Add Watch selected 



... DEBUGGING WITH TURBO C .. 413 

Selecting Twill set a breakpoint on the line where the current cursor is situ­
ated, namely, the for loop. Escape back to the Edit screen and note that each 
character of the breakpoint line is individually highlighted. The hot key Ctrl­
F8, of course, allows you to toggle a breakpoint more conveniently without 
leaving the Edit screen. 

You really cannot confuse a breakpoint highlight with an execution band 
because the latter illuminates the whole line in a band of reverse video. Be 
warned, however, that when an execution band passes over a breakpoint 
line, the execution band temporarily "swamps" the highlight on the break­
point line. 

If you now select Run/Run (or press Ctrl-F9), the program will run at nor­
mal speed, stopping for scant(} input and then coming to rest at the break­
point line, with the execution band and breakpoint line coinciding. You can 
now evaluate expressions (with Ctrl-F4) or use F7 (Trace-into), F8 (Step-over), 
Ctrl-F9 (Run), or F4 (Run until cursor position-also known as Go to cursor). 
Turbo C will always monitor your dependencies, so if you have changed any 
constituent module, a recompile/relink occurs. 

If you edit a file with breakpoints and then try to continue the debugging 
session, you get the prompt Source modified, rebuild Y/N? As you might 
guess, it can be tricky for Turbo C to maintain breakpoints during certain 
edits-for example, when you delete a breakpoint line. Note, though, that if 
you use F2 to save a file, load another file, then reload the original file, it will 
retain any previously set breakpoints. This is a great help when you are 
debugging across several different modules. But if you leave the IDE, the 
breakpoints disappear. You can also clear breakpoints individually by posi­
tioning the cursor and using the Ctrl-F8 toggle. Or you can clear all your 
breakpoints using Break/watch/Clear all breakpoints (there is no hot key for 
this operation). One minor warning: Before you compile, it is possible (but 
pointless) to set breakpoints on nonexecutable lines, such as comments and 
#defines. Once you have compiled/linked and started debugging, however, 
Turbo C knows what's going on and will disallow invalid breakpoints. 

The View next breakpoint submenu selection simply moves the cursor to 
the next breakpoint without execution. "Next" is determined by the order in 
which the breakpoints were set, not the order in which they might be 
encountered during program execution. 

Play around with the breakpoint facilities by setting and clearing break­
points and running in different modes. 

Because we have narrowed down the remaining bug (or bugs) in 
SIGMA.C to the for loop, it would be nice if we could monitor all the 



414 .. MASTERING TURBO C .. 
CH. 11 

involved variables-namely, m, i, and sum-without having to flip to and 
from the Evaluate window. Well, there is such a feature, known as the Watch 
window. Let's see how it works . 

... THE WATCH WINDOW 
AND WATCH EXPRESSIONS ... 

The Watch window allows you to peek at any number of variables or 
expressions as your program is running. It works rather as if you had 
selected a whole set of expressions in the Evaluate field of the Evaluate win­

dow, except that the debugger constantly monitors your list and displays 
each value as the program unfurls. 

To invoke the Watch mechanism select Break/watch/Add watch, or use the 
hot keyCtrl-F7 (see Figure 11.4). A box appears into which you type the name of 
the expression to be watched. As with the Evaluate field, the default expression 
appearing in the box is the word (if any) over the editor cursor. You can edit this 
word or type a new word, which then appears in the Watch window at the bot­
tom part of the IDE screen (the area usually occupied by the Message window 

when you are not debugging) together with its current value. 
Each time you invoke Ctrl-F7 and add a watch expression, that expression 

joins the previous list in the Watch window. If you add too many watch 
expressions, they will scroll down out of sight, just as error messages can dis­

appear from an active Message window. 
To help you keep track of the Edit, Message, and Watch windows in Ver­

sion 2, the Version 1.5 hot keys have been supplemented as follows: 

F6 toggles the active window from Edit to Watch when debugging 
but toggles the active window from Edit to Message when 

compiling/linking. 

FS zooms and unzooms the active window. 

Alt-F6 toggles between the Watch and Message windows, provided 

one or the other is active. 

Warning: Alt-F6 has an entirely different function if the Edit window is active: 
It reloads the previously loaded file! 



.- DEBUGGING WITH TURBO C .- 415 

~ Editing the Watch Expressions ~ 
So, if the Watch window overflows, you can use F6 and FS to get a full 

screen's worth. When the Watch window is active, you can edit and delete 

from the watch expression list in a natural way. The Home, End, up arrow, and 

down arrow keys move you around the Watch window, highlighting the 

selected watch expression. You then invoke the Watch editor with Break/ 

watch/Edit watch. An Edit box appears containing the selected watch expres­

sion. You then retype the expression and press Enter; the edited watch 

expression then replaces the previous version in the Watch window. 

You can delete a watch expression by highlighting it, then selecting Break/ 

watch/Delete or, alternatively, by using Ctrl-Y or Del. To delete all your watch 

expressions, you can save time by selecting .Remove all watches from the Break/ 

watch menu. 

~ WATCHING THE LOOP ~ 
To get the feel of all this, load and use F8 on the latest version of SIGMA.C. 

Press Ctrl-F7 (Add watch) and enter m. Repeat this for i and sum, and see 

how the expressions build up in the Watch window at the bottom of your 

screen (see Figure 11.4). Now, depending on where the execution band is, 

you may find that some or all of your variables are out of scope. If so, you'll 

see, for example: 

sum: 'Undefined symbol 'sum' 

If the variable is in scope, you will see, for example: 

sum:O 

as is shown in Figure 11.5. 
Now press F7 (Trace-into), enter n = 3 at the scant() statement, then use F7 to 

trace into the for loop. You will observe the three variables' values in the Watch 

window. The variable m, of course, will remain equal to 3, the value passed 

from main(). Now for some serious debugging! Note the values of i and sum as 



416 .,. MASTERING TURBO C .,. 
CH. 11 

File Edit Run Compile Project Optior1s Debug Break/watch 
---~~~~~Edit~-·---

Line 22 Col 2'.J Insert Indent Tab Fill lJn1r1cJent * C:SIGMA.C 
{ 

uw~ l gned int n; 
pr·intf("\nEnter a number: 11 ); 

sc;u1f("%u 11 , &n); 
pnntf("\nSigma %u = %lu", n, s111nn(n) ); 

/* Function sumn() */ 
long unsigned sumn(int m) /* definition */ 

•sum: 0 
1: 0 
m: 3 

{ /* return type now matches sum */ 
unsigned i; 
long unsigned sum; 

for {i=l,sum=S; i < m; i++) /* initialize sum */ 
SliuMM >m&iww 1 

return sum; 

Fl-Help F5-Zoom F6-Switch F7-Trace F8-Step F9-Make F1S-Menu 

~ figure 11.5: The Watch list shows sum= 0. 

you use F7 to step through the for loop. The bug will be readily exposed: 

loop 1: 

loop2: 

loop 3: 

m = 3, i = 0, sum= O 

m =3, i = 1, sum= 1 

m = 3, i = 2, sum= 3 

The loop now exits with sum= 3 and i = 3 because (i < m) is now false . 

.... Bug Number 3 .... 
It should be clear (at long last!) that the loop is ending too soon: The condi­

tion (i < m) terminates the loop after Sigma (m-1) has been accumulated. 
The easiest fix is to change the loop condition to (i < = m). (See Chapter 4 for 
more details on the for loop). Alternatively, you could change the initializer 
to i = 1, but if so, you must watch out for the special case n = 0 (see later). 

Change SIGMA.C as shown in Program 11.4. If you still have a breakpoint 
on the for statement, you can Ctrl-F9 (triggering a rebuild), enter n = 3 at the 

scant( ), then run up to that breakpoint. Now use F7 to step through 



~ DEBUGGING WITH TURBO C ~ 417 

the loop. You should see the following more promising sequence in the 
Watch window: 

loop 1: 

loop 2: 

loop 3: 

loop4: 

m=3, i=O, sum=O 

m=3, i=1, sum=1 

m=3, i=2, sum=3 

m =3, i =3, sum =6 

The loop now exits with sum= 6 and i = 4 because (i <= m) is now false. Try 
a few other values of n to convi nee yourself that SIGMA is now correct. 

There still remains a "philosophical" problem with SIGMA. How do we 
define Sigman for n < = 0? Sigma 0 could reasonably be defined as 0 (the 
sum of the first 0 integers); if so, then SIGMA.C works for n = 0. For n < 0, it 
would be wiser to say that Sigma n is undefined. Because n has been 
declared an unsigned int, SIGMA.C as it stands would generate misleading 
rubbish for n < 0. I will leave you to revamp SIGMA.C to trap negative 
input. Hint: change n to signed int to allow the test if n <0. 

SIGMA.C was a short, artificially doctored program to illustrate debugging 
some common errors. Turbo C comes with a more complex example, 
WRDCNT.C, that you should try, but be warned that Borland's earlier users' 
guide has a few textual errors when describing the Debug menu operations. 

/* sumn() sums first n integers: 1+2+ ... +n */ 

finclude <stdio.h> 

long unsigned sumn(int m); 

void main() 
{ 
unsigned int n; 
printf("\nEnter a number: "); 
scanf ( 11 %u" , &n) ; 
printf( "\nSigrna %u = %lu", n, sumn(n) ) ; 
} 

long unsigned sumn(int m) 
{ 
unsigned i; 
long unsigned sum; 

for (i=O,sum=O; i <= m; ++i) 
sum += i; 

return sum; 
} 

... Program 11.4: S/GMA.C (stage 4) 



418 .,. MASTERING TURBO C .,. 
CH.11 

...,. SUMMARY OF DEBUGGING COMMANDS ...,. 
Table 11.1 provides a brief summary of the debugging commands pro­

vided with Version 2. 

Menu Sequence Hot Key Function 

Run/Run Ctrl-F9 Run program until breakpoint 

Run/Program reset Ctrl-F2 Reset program and end debugging 
session 

Run/Go to cursor F4 Run program from execution band 
to current cursor 

Run/Trace-into F7 Single-step, including functions 

Run/Step-over F8 Single-step over functions 

Run/User screen Alt-FS Toggle between Edit and user 
screens 

Debug/Evaluate Ctrl-F4 Pop up Evaluate window 

Debug/Call stack Ctrl-F3 Display call stack 

Debug/Find function none Display a function definition 

Debug/Refresh 
display none Restore Edit screen 

Debug/Display 
swapping none Smart/ Always/None 

Debug/Source 
debugging none On/Standalone/None 

Break/watch/ Add 
watch Ctrl-F7 Add watch expression 

Break/watch/Delete 
watch none Delete watch expression 

Break/watch/Edit 
watch none Edit watch expression 

.. Table 11.1: Debugging commands 



Menu Sequence Hot Key 

Break/watch/Remove 
all watches none 

Break/watch IT oggle 
breakpoint Ctrl-F8 

Break/watch/Clear all 
breakpoints none 

Break/watch/View 
next breakpoint none 

Options/Compiler/Code 
generation/OBJ 
debug information none 

none FS 

none F6 

none F10 

none Ctrl-F1 

none Alt-F6 

none Alt-F6 

..,. DEBUGGING WITH TURBO C ..,. 419 

Function 

Clear all watch expressions 

Turn breakpoint on/off 

Turn off all breakpoints 

Move cursor to next breakpoint 

On/Off 

Zoom/unzoom active window 

Switch active window 

Toggle menu/active window 

Context function help 

Switch Watch/Message windows (if 
active) 

Reload previous file (if Edit 
window active) 

• Table 11.1: Debugging commands (continued) 

.... VARIABLES AND THEIR QUALIFICATIONS .... 
I have mentioned several times that expressions to be evaluated or 

watched may contain variables outside the scope of the current function or 
module. Clearly, if you have several variables each legally named-say, 
count in different scopes-the debugger needs some help in determining 
which one you want to evaluate. Turbo C offers a trick known as qualifica­
tion that will be familiar to Pascal and Modula-2 programmers. The basic 
idea is to create a unique expression by appending the name of the function 
or module (or both) to the target variable. The syntax is 

[.module_name.]function_name. variabfe_flame 



420 ... MASTERING TURBO C ... 
CH. 11 

where module_name is optional and the various elements are separated by 
.'s (periods). 

For example, to evaluate the static variable count in the function random 
in the module called exmod, you would enter 

.exmod. random.count 

in the Evaluate field. If the target variable sum (static or auto) is in the same 
module but in a different function, say-sumn( )-you need only enter 

sumn.sum 

..,.. EVALUATION FORMATS ..,.. 
Finally, there are several options available to format the evaluations you 

see in the Result field. Fortunately, these are not as complex as the printf() 
format specifiers. The general syntax is 

expression[,repeat_ count] ,[format_ char] 

Here, repeat_count is an integer specifying the number of consecutive vari­
ables to be evaluated (such as elements of an array). format_char is a single 

letter indicating the format, as follows: 

c 
s 
D 

H orX 

Fn 

M 

p 

R 

Character display. 

String display. 

Decimal display. 

Hexadecimal display. 

Floating point (with n significant digits where 2 < = n < = 18). 

Memory dump starting with the address of the target expres­
sion. Can be used in conjunction with D, C, S, H, or X. 

Pointer display in segment:offset format with additional infor­
mation such as the variable pointed at. 

Structure and union displays with field names and values. 



.. DEBUGGING WITH TURBO C .. 421 

You can evaluate arrays, structures, and unions. For example, if your pro­
gram contained the following declarations: 

struct { 
int cusno; 
char cusname[25]; 

} customer = { 1000, "Kelly"}; 

intchecks(4] = {100, 101, 102, 103}; 

int * int_ptr = checks; 

main() 

you could display the following evaluations: 

Evaluate Field 

checks 

checks[1 ],2 

checks[1],1 H 

customer 

customer,R 

int_ptr 

int_ptr,P 

.... WHAT NEXT? .... 

Result Field 

{100, 101, 102, 103} 

101, 102 

Ox65 

{ 1000, "Kelly\0\0\0\..\0"} 

{ cusno: 1000, cusname:"Kelly\0\0\0\..\0"} 

08:0200 

08:0200 [_checks] 

As you have seen, the Turbo C package provides an inexhaustible treasure 
of features to help you develop your own programs quickly and effectively. 

An area I have barely touched on is the brilliant integration of C and 
assembly-language tools in Turbo C. This answers the common criticism that 
C is inefficient for certain time-critical tasks. TCC lets you examine the 

assembly-language source of your C code and lets you embed your own 
optimized in-line, low-level code wherever this is needed. 



422 .,. MASTERING TURBO C .,. 
CH.11 

In spite of all the layers of complexity and potential frustration, program­
ming in general (and coding in C in particular) has no rival as an activity in 
which your skill and patience can bring such rich rewards-not only finan­
cially in a rapidly growing, programmer-hungry marketplace but also at a 
personal-achievement level. 

By the time this book appears it is likely that Borland will have launched 
further support products to simplify the creation of programs for database 
management, text editors, and telecommunications. 

If you have stayed the course this far, I dare to hope that your appetite has 
been whetted for a deeper study of C. Appendix H lists some useful 
resources for consolidation and more advanced work. To do serious work 
with Turbo C you definitely need to purchase the run-time library source 
code-a software bargain rivaled only by the Turbo C package itself. Cur­
rently priced at $150, the run-time library source comes on two diskettes, 
but when the .ARC files are UNPACKed you have over 1.5 MB of C and 
assembly-language source that will teach you more about professional pro­
gramming than any set of books I know of. 

Having said that, there are a few books you should have. From the hun­
dreds of works on C available, I recommend the three listed in Appendix H. 

Although there is much to learn, I have tried to ensure that you will not 
have too much to unlearn. When a language passes a certain threshold of 
usage, there is very little that can dislodge it-as shown by BASIC, Cobol, 
and Fortran. C has certainly achieved this degree of immortality, so good C 
programmers will never be short of job opportunities. 

To some programmers, the ANSI C standard, like all standards, threatens a 
rather moribund immortality without the fun of diversity and innovation. Yet 
Chas already been postincremented with the arrival of Bjarne Stroustrup's 
C++, which comes from the same AT&T Bell Labs that gave us the original 
K&R C. Mastery of Turbo C will prepare you for this bright future. 





. . ·.· ... ~.· 
······:· .. ::••::_·~~~~, ................. "'"" ..... ... APPENDICES 
'.····~:.•:• .. ;·~~~~-····~· "'"'"~~ ....... . 

', ' :-<_::'. ,' ' '', : ';,>:', ", '~" 
~~~~~-'·ill--~ .• ~>+-~+-~.~::.:~ .. -~~,: .. ·~<~.,:-~z:~·.~~.::.~.>;~ .. ~ .. ~.~ .. -.. ~.~ .. ~~~~...,......,......,.......,.~~~~~~~~~~~~~--i~ 
~~~~-~~......:........:........:..~....,.;..,;~....,.;..,;_;__;_~~~;....:.,_;_~--......... _._--.......... ~---+ 
;'o ,';:"':'';: ,('<<:\':'O~ ,", (o<' , ':'»,:~,::, ,<: ,'"~'.':',''.,' 
~·~~~~~~ .. ~ .• ~.~...-..~ ......... ~-t-t._.,.......;._;__;_....,.;..,;....,.;..,;...-..;....:.,::......:-.....;......;.,;.;...~~-'-~-'-"""' 

. </·~~~~·~~~~-t~......:..~___,.......:......_......:..~......:......,.;..,;....,.;..,;..:...........:..~~..:...........:.......:._;_.,.. 
~.~~~~·..;;_;,......:..~......:........:..~......:....;..._;__;_~..:..........;.;....:.,.....;.::..:::......:..;....:.,.....:.------------_..;. 



~ APPENDIX A ~ 
ASCII CODE CHART 

0- 1- 2- :l- · 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-

0 p p 

A Q ± 

2 • B R 

3 • c 
4 • D T 

5 E u N =i + cr J 

6 • & F v ~I I= C' µ 

7 G w 
8 a H X 

9 0 y 

A z 
B + K • .J 
c L 

D M ¥ JI 

E N A Pt d • 
F 0 0 A f 

~ Table A.1: U.S. ASCII table 

HE:<I'. 

D'"'" "' 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- A- B- C- D- E- F-
2od 

0 p p a -;- L 6 

.... A Q 
_L 

D ± 

2 • B R b 6 
3 • II # c u I t 6 

4 • D T fi -I 
5 % E u N A + 
6 • - & 6 F V f v µ 

7 • I u ' A A i 

8 D I H x 
9 0 I y 0 ® ~I _:re_- (J 

A z 0 (J 

B + K ti 

c L 

D 
) - M m 0 i ~ 

E N x • 
F 0 A f » ' 

0 -
~ Table A.2: Multilingual ASCII table 





.... APPENDIX B .... 
INSTALLATION SUMMARY 

This appendix gives a quick, "get-you-started" Turbo C installation guide 
followed by a discussion of the many facilities for customizing your develop­
ment environment . 

..,.. GETTING STARTED ..,.. 
Have you already made backup copies of all your Turbo C diskettes? If not, 

do so now . 

.... Hardware Needs .... 
You need an IBM PC, PC/XT, PC/AT, or PS/2 or genuine compatible with 

PC-DOS (or MS-DOS) 2.0 or later with at least 384KB of RAM. 
Although you can run most of Turbo C with two floppy drives (or even 

with one drive if you forgo the TCC command-line compiler and don't mind 
swapping disks), a hard disk with one or two floppies makes life so much 
sweeter. You got a bargain with Turbo C, so treat yourself to a 20MB hard 
disk-they are cheaper now than many C compilers and certainly cheaper 
than floppy drives were five years ago . 

.... Rapid Installation .... 
The simplest way to install Turbo Con a hard-drive system is to use the 

INSTALL batch file supplied on the IDE (integrated development environ­
ment) diskette. (With Version 1.0 you have to create your directories with 
MKDIR and then type a few COPY commands.) 

Although you can put the various Turbo C files almost anywhere, the 
sensible thing to do is to follow Borland's suggestion of having a working 



428 • MASTERING TURBO C ... 
APP. B 

directory\ TURBOC on your hard disk with subdirectories containing the 
following files: 

\TURBOC holds *.EXE, *.TCH, *.COM, *.C, *.BGI, *.CHR, *.PRJ 

\TURBOC\LIB holds *.ASI, *.ASM, *.BAT, *.LIB, *.OBJ 
\TURBOC\INCLUDE holds *.H (except STAT.H) 
\ TURBOC\INCLUDE\SYS holds STAT.H 

(The* is the DOS wildcard symbol matching every file name.) In this scheme 
\ TURBOC is called the working directory. 

Assuming you have a floppy drive A and a hard disk drive C, you can 
achieve the above configuration as follows: 

1. Boot up and get the A> prompt. 

2. Place the IDE diskette into drive A. 

3. Type INSTALL A: C:\ TURBOC and press Enter. 

(Vary the A: and C: arguments if your drives are different.) 
The batch file will prompt you to insert each of the five Turbo C diskettes as 

it proceeds. INSTALL creates the directories and subdirectories for you, then 
copies the files listed above . 

.... Change Your PATH .... 
Next, add C:\TURBOC to the PATH command in your AUTOEXEC.BAT: 

PATH C:\;C:\BOOK;A:\;C:\ TURBOC 

(Note the semicolon separators.) 
This change, which will not become effective until your next boot, is 

optional but worthwhile since it allows you to run Turbo C from directories 

other than \TU RBOC. 

.... TCINST.EXE-Setting the IDE Defaults .... 
Before you start using the Turbo C IDE you have to set certain basic envi­

ronmental characteristics and values as defaults. The important defaults tell 



~ INSTALLATION SUMMARY ~ 429 

TC where to find things by listing the directories (paths) of include files 
needed during compilation and .LIB files needed during linkage. Versions 
1.5 and later allow multiple directories for the .LIB file search; Version 1.0 
allows a single library directory. 

You can set these defaults in several ways but for now I'll show you the 
simplest-the TCINST installation/customization program. It is a .COM file 
in Version 1.0 but has grown to TCINST.EXE in Versions 1.5 and later. The dif­
ferences will emerge later, but they do not affect the following instructions 
except as noted. 

1. Log to the working directory with CD\ TURBOC (be sure that you 
have TCINST.EXE there-if not, reread and repeat the INSTALL 
instructions). 

2. Type TCINST TC.EXE to bring up the main TCINST menu (see Fig­
ure B.1). 

3. Select Turbo C directories. Select the submenus and enter the paths 
shown in step 4. 

4. Set \TURBOC\INCLUDE in the Include directories. 
Set\ TURBOC\LIB in the Library directories. 

,- Installation Menu -...•.. ,,,., ..... 
Edi tor commands 
Setup environment 
Display mode 
Colors 
Resize windows 
Quit/save 

Turbo C Installation Program 1 . 5 

~ Figure B.1: TCINSIEXE main menu (Version 1.5) 



430 .,. MASTERING TURBO C .,. 
APR B 

Set\ TURBOC in the Output directory. 
Set\ TURBOC in the Turbo C directory. 
Set TCPICK.TCP in the Pick file name. 

5. Escape back to main TCINST menu and select the Setup Environ­
ment Option menu. Check that Config auto save is toggled ON (Ver­
sion 1.5 only). If not, toggle it ON. 

6. Escape to main TCINST menu. Quit and answer Y(es) to the question, 
"Save changes to TC.EXE? (Y/N)?" 

I'll explain the significance of these settings in the section entitled 
Advanced Default Management later in this appendix. For now, notice that 
all the above choices, except for the Turbo C directory selection, match 
choices offered in the IDE menu. 

The general idea is that TCINST sets the default defaults, as it were, which 
you can change during a session in several ways. In addition to using the TC 
menu directly, you'll see later that you can use configuration files to override 
some of the TCINST defaults for some or all TC runs. The exception men­
tioned earlier is important: the Turbo C directory can only be set and 

changed by TCINST. It tells TC where to find the help file, TCHELP.TCH, 
and the default configuration file TCCONFIG.TC (to be explained anon) . 

.... Testing, Testing ... .... 
Type TC and press Enter. You should see the IDE main menu. Press Fl to 

check that the help file is installed correctly, then press ALT-X or Files/Quit 
to exit. 

.... An Introduction to Configuration Files .... 
Because Config auto save was ON, you will now find that a configuration 

file called TCCONFIG.TC has been created. This non-ASCII file encodes 

most of your TCINST settings. Briefly, if you make changes to your defaults 
from the IDE menu, you can save them with the Store option command or 
let TC save them automatically when you exit. If you don't give TC a specific 

configuration file name (with the default extension being .TC), TC uses the 
default name TCCONFIG.TC. When you next run TC, you can tell it to read 
a given configuration file, but if you don't, TC will read TCCONFIG.TC to 



.- INSTAl.l.ATION SUMMARY .- 431 

pick up the defaults found there. TC.EXE is not physically changed by a .TC 
file-it simply behaves that way! 

To know exactly what defaults are in force you need to combine the two 
separate influences: how TCINST has changed TC.EXE (permanent), and the 
contents of the configuration file that TC.EXE has just read (temporary). In 
the case of those defaults alterable by both TCINST and a .TC file, the .TC file 
has the last word; its influence overrides the TCINST default settings even 
though TC.EXE itself retains the TCINST defaults.Table B.1, which you'll see 
shortly, lists the TCINST defaults and indicates which of them are also influ­
enced by a .TC file. 

~ Other TCINST.EXE Features ~ 
As you probably noticed while running TCINST, there were many other 

parameters and options open to change. The largest choice involves person­
alizing the TC editor (see Figure B.2). This comes with quasi-WordStar key/ 
command preassignments that I personally find acceptable. If you just 
cannot bear the WordStar commands, do what you have to do. The Editor 

menu selection brings up the Install Editor screen. From this you can remap 

Command name 

New Line 
Cursor Left 
Cursor Right 
Word Left 
Word Right 
Cursor Up 
Cursor Down 
Scroll Up 
Scroll Down 
Page Up 
Page Down 
Left of Line 
Right of Line 
Top of Screen 
Bottom of Screen 
Top of File 
Bottom of File 
Move to Block Begin 
Move to Block End 

Primary 

• <Ctrllll> 
* <CtrlS> 
• <CtrlD> 
• <CtrlA> 
* <Ctrlf> 
• <CtrlE> 
* <CtrlX> 
• <CtrlW> 
• <CtrlZ> 
• <CtrlR> 
* <CtrlC> 

Install Edi tor 

• <CtrlQ><CtrlS> 
• <CtrlQ><CtrlD> 
• <CtrlQ><CtrlE> 
• <CtrlQ><CtrlX> 
• <CtrlQ><CtrlR> 
• <CtrlQ><CtrlC> 
• <CtrlQ><CtrlB> 
• <CtrlQ><CtrlK> 

Secondary 

: 7r1':0 
• <Rgt> 
• <Ctrllft> 
• <CtrlRgt> 
• <Up> 
• <Dn> 

• <PgUp> 
• <PgDn> 
• <Home> 

<End> 
<CtrlHome> 
<CtrlEnd> 
<CtrlPgUp> 
<CtrlPgDn> 

~-select PgUp-PgDn-page CJ-modify R-restore factory defaults 
F'i=Key modes: (•)-WordStar-like (1 )-Ignore case (·}-Verbatim 

.. figure 8.2: Editor menu 

ESC-exit 



432 ... MASTERING TURBO C ... 
APP. B 

keystrokes to text-edit functions in a self-explanatory way. If you get mixed 
up, you can Restore all key settings to the factory defaults. 

The Setup Environment menu used in step 5 above also gives you various 
editor default choices like Insert mode on/off, Screen size, Autoindent mode 
on/off, and so on. I'll return to these later in this appendix . 

.... Pick Files 
The TCINST menu allows you to set a default Pick-file name. The factory 

default is TCPICK.TCP. The latter defines a file where TC will save data on the 
state of the editor for each file in your Pick list. Pick files also keep track of all 
the file names you have been loading by maintaing a Pick list. The Pick list is 
accessed via the File/Pick list menu. The Pick list shows you the most 
recently loaded files, which is useful if you are editing several files in one 
session. The Pick file lets you switch the file being edited, edit another file, 
then return to the original file exactly where you left off. 

~ MovingOn ~ 
For the moment, let's leave all the other TCINST settings at their factory 

defaults-they represent sensible choices for the beginner. Many defaults 
can be changed via the IDE menu, or you can use TCINST again. If you ever 
get confused over the state of TC.EXE just copy from the original distribution 
version and start again. 

You are now ready for some Turbo C action. Once you have gained more 
experience you will be in a better position to personalize your TC.EXE to 
suit your programming style. The rest of this appendix explains how defaults 
and .TC files work and how TCINST can be used to further customize 
your TC.EXE . 

..,. ADVANCED DEFAULT MANAGEMENT ..,. 
A default is usually defined as some value or environmental characteristic 

that the system will implicitly assume in the absence of any contrary input. 

I need to extend this definition to include the two additional cases in which 
the default is "no default-input must be supplied" and "default value 
requires confirmation." 



~ INSTAU.ATION SUMMARY ~ 433 

Some defaults, like the small memory model default, can be far-reaching, 
generating a whole slew of further defaults (such as pointer sizes and run­
time library selections), while others are quite specific and local, like a 
Project-Make file name or a default path to a file. 

You should be aware of the difference between changing a default and 
overriding a default. Many Turbo C features can be temporarily or locally 
modified by overriding a clefault. A typical example is the declaration 
unsigned char ch; when the default is signed char. This affects ch but not 
the default. 

The general rule is that a cJpfault is set for the most frequently used disposi­
tion in order to reduce typing. For instance, the .OBJ file name defaults to the 
.C name, and pointers default to near in the smaller memory models. 

Often, though, it is safer to be redundant, as in the case of char declara­
tions. Declaring all chars explicitly as signed or unsigned makes your code 
default-dependent and (possibly) more portable. 

~ Default Management ~ · 
With literally thousands of option permutations flying about, the user 

needs some help in managing defaults. Perfectly valid programs can sud­
denly misbehave when compiled, linked, or executed under inappropriate 
conditions. Turbo C provides many useful features to help you keep track of 
your defaults, rather as Project-Make watches out for file dependencies. 

TCINST uses the following syntax: 

C>TCINST [IC] [path] 

The IC switch here is only needed if you have a color monitor and want the 
TCINST menus to be displayed in color. Without the switch you will get 
black and white. The path entry is only needed if TC.EXE is not located in 
your current directory. It is not unusual for Turbo C users to keep several dis­
tinct copies of TC.EXE (in different directories, of course), each customized 
differently with TCINST for different applications. By adding the path argu­
ment they can access these variants. 

When you ran TCINST earlier it actually modified TC.~XE so that from 
now on when TC fires up it will carry the paths, and any other settings you 
entered, as built-in defaults. Table B.1 lists the options available from TCINST 
and indicates the default defaults built into the original TC.EXE. 



434 .,. MASTERING TURBO C ... 
APP. B 

Default Choice 

Turbo C Directories Option 

Include directories 

Library directories 

Output directory 

Turbo C directories 

Pick file name 

Editor Command Option 

Set via TCINST or .TC 

both [none] 

both* [none] 

both [none] 

TCINST only [none] 

both* [TCPICK.TCP] 

Special menu for keystroke changes TCINST only [factory] 

Setup Environment Option 

Backup source file 

Edit auto save 

Config auto save 

Zoom state 

Insert mode 

Autoindent mode 

Use tabs 

Screen size 

Display Mode Option 

Default 

Color 

Black and white 

Monochrome 

Resize Windows Option 

Up down arrow adjustments 

both [on] 

both** [off] 

both* [on] 

both [off] 

TCINST only [on] 

TCINST only [on] 

both (.TC sets tab size)[on] 

both [hardware dependent] 

TCINST only [on] 

TCINST only [hardware dependent] 

TCINST only [hardware dependent] 

TCINST only [hardware dependent] 

TCINST only [factory] 

.,. Any /DE menu items not listed above are .TC only. 

* new or modified with Version 1.5 

**name changed with 1.5, same function 

[ J indicates default default 

~ Table 8.1: TCINST.EXE and. TC options (Versions 1 and 1.5) 



~ INSTAU.ATION SUMMARY ~ 435 

(The TCC command-line compiler, by the way, has different default strate­
gies and configuration files that are outside the scope of this book.) 

The defaults you have set up so far with TCINST might be called the sensi­
ble minimal set to run TC. In theory, only the Turbo C directory needs 
TCINST since there's no other way to set that. Without it the TC help system 
cannot be invoked. But we could have set the include and library directories 
from the I DE Options menu. 

TC will create or update the standard configuration file, TCCONFIG.TC, 
when you exit, provided that you leave the Config auto save option in its 
default ON state. TC will refer to this configuration file next time you run TC 
in order to reestablish your environmental defaults. A .TC file can only affect 
some of the defaults, as indicated in Table B.1. 

,.... IDE Configuration Files ,.... 
To understand the finer points of environmental control you must know a 

little more about default selection and configurations files. As your projects 
become more ambitious you may want to keep several configuration files, 
each preset for particular sessions. 

The TC you now have has certain built-in defaults, some from the factory 
and some that you entered. You can look on these as now providing a new 
set of default defaults. 

For example, Turbo C will assume until you say otherwise that you want 
the small memory model, that all chars are signed, that your code will be 

optimized for size, that your ouput code will go to the current directory, that 
your help file is in \ TURBOC, that your .LIB files are in \ TURBOC\LIB, 
that you want to backup your source code, and so on. 

,.... Recap of Setting and Changing Defaults ,.... 
To recap, there are three interrelated ways of changing the TC defaults: the 

IDE menu, the TCINST.EXE utility, and configuration files. 

The menu method is the one described in Chapter 1: you pull down a par­
ticular menu, confirm or enter a value, or toggle a switch. This sets the envi­
ronment for the current session. The new defaults, though, may or may not 
be "remembered." The other two methods offer more permanent control. 



436 .,.. MASTERING TURBO C .,.. 
APP. B 

TCINST.EXE, the Turbo C installation program, customizes your IDE by 
directly changing TC.EXE. This is the only way of setting and changing certain 
defaults (such as the location of the Turbo C directory, your preferred editor 
keyboard, and color-monitor assignments). TCINST.EXE is a large program 
with its own Turbo C-like menu. You used just a small section of this menu 
during the installation sequence earlier in this appendix. 

Configuration files are optional files that are stored and read by TC.EXE to 
alter your defaults temporarily. TC.EXE itself is not modified. Configuration 
files usually have the extension .TC and can be used to override some of the 
TCINST.EXE settings for particular IDE sessions. 

There is a special CTOPAS.TC file on the IDE distribution disk for mixed C 
and Pascal work-if you need any other configuration files, you have to 
create them yourself using the Store menu command or make sure thatthe 
Config auto save toggle is ON. 

~ Keeping Your Options ~ 
During your first session with the TCINST.EXE-modified TC you can 

change any or all of the menu defaults. Your program might need the huge 
memory model with unsigned char as the default, for example. Under Ver­
sion 1.0, unless you specifically saved these settings using the Store options 
command, they would be lost when you exited TC. Your next encounter 
with TC would start again with the original default options. If you did store 

them, a .TC configuration file would be created and called TCCONFIG.TC 
by default. The next session with TC would pick up the default settings from 
TCCONFIG.TC. 

The difference in Versions 1.5 and later is that you have a new Options 
menu item-the Config auto save toggle. If this is toggled OFF, the old and 
new versions work the same. You must use Store to create or update your 
configuration file. If Config auto save is toggled ON, Versions 1.5 and later 
will create or update a .TC file automatically whenever you use Run, exit to 

DOS, or Quit. 
The auto saved file takes its name from the last .TC file loaded or retrieved. 

In the absence of any such file name, the auto save is to TCCONFIG.TC. 
In my suggested install procedure, I recommended that Config auto save 

should default to ON, but there's nothing to stop you toggling it OFF during a 
session if you don't want to save a particular bunch of defaults. 



.,. INSTALLATION SUMMARY ... 437 

Whether Config auto save is on or not, you can use the Store option. 
When you save your defaults you can provide a name such as MYCON­
FIG.TC, or you can use the default name TCCONFIG.TC. 

How do you recover these saved configurations? The Retrieve command 
in the Options menu lets you pull in any .TC file to switch d~faults in mid­
stream. Alternatively, you can provide a .TC file name to replace the 
TCCONFIG.TC when you invoke TC. The latter method requires the IC 
option. 

~ The TC.EXE IC Option ~ 
If you just enter TC or TC FILENAME at the prompt, the system first looks for 

TCCONFIG.TC in various places (I'll explain where and how in a moment). 
lfTCCONFIG.TC is found, TC assumes any defaults that are stored in it, oth­
erwise TC assumes all the default defaults. However, if you invoke TC with 
the IC option, as in 

C>TC ICMYCONFIG 

or 

C>TC ICMYCONFIG FILENAME 

a search is made for a configuration file called MYCONFIG.TC. Note that 
there is no space between IC and MYCONFIG. If MYCONFIG.TC is not 
found, you get a warning message and TC fires up with its own defaults-it 
does not bother to search for TCCONFIG or any other .TC file. If MYCON­
FIG.TC is found, TC.EXE assumes all its defaults during the session (or until 
you change them in some way). 

The IC option lets you call up specific configuration files for different 
TC sessions. It also provides a trick method of ignoring a TCCONFIG.TC 
and getting back to your TC defaults-you use IC with a nonexistent 
.TC file name! 

As mentioned, you can also load or switch configuration files during a ses­
sion using Restore from the Options menu. The window shows you the pre­
viously loaded .TC file (or *.TC the first time round). You type the name of 
the .TC file you need (or press Enter to confirm) and TC.EXE switches the 
defaults accordingly. Restore can give you a directory listing to help you 
select a .TC file (the same method used when loading source files). 



438 .,. MASTERING TURBO C .,. 
APP. B 

~ Configuration Files and TCCONFIG.EXE ~ 
Configuration files are not ASCII text files like .PRJ files, so you cannot 

create or modify them with a text editor. TCC configuration files, however, 
are ASCII text, which opens the door to another way of generating TC con­
figuration files. Turbo C provides a utility called TCCONFIG.EXE that will 
convert TCC configuration files (the default extension is .CFG) to TC format 
and vice versa. This is a great help when you want to use the IDE for program 
development and then switch to the command-line compiler for compiling/ 
linking (some jobs can only be done with TCC). The TCC and TC defaults 
overlap so an exact correlation may not be possible. The TCC options are 
beyond the scope of this book. 

... Configuration-File Searching Methodology 
Do I have your attention now? I am about to reveal how TC.EXE looks for 

configuration files. You can guess why it is important-you can have any 
number of .TC files in different directories, and some may have the same 
name; indeed, you may have several files called TCCONFIG.TC. When TC 
looks for TCCONFIG.TC in the absence of a IC switch, which file gains con­
trol of your default schema? 

Configuration files store search-path information for files-so there is a 
whiff of recursive Zen in the air! Must we find something in order to know 
where it is located? 

The solution for IC switched .TC files such as /CMYCONFIG has to be 
quite mundane-TC looks only in the current directory (if it's not there, you 
fire up with the defaults found in TC.EXE). 

For TCCONFIG.TC searches, TC looks first in the current directory. Then, 
if not found, TC looks in a directory known as the Turbo C directory pro­
vided that you have previously designated one. If you haven't defined a 
Turbo C directory, or if the one defined has no TCCONFIG.TC, you start up 
with the defaults found in TC.EXE. How do you designate a Turbo C direc­
tory? You will recall that it can only be done with TCINST.EXE, the utility that 
actually changes TC.EXE. Further, the Turbo C directory can only be altered 
using TCINST. 

The alternative of allowing a .TC file to determine its own search path 
could lead to great uncertainty. A TCCONFIG.TC in \MYDIR might give you 
a search path of\ YOURDIR, while the TCCONFIG.TC in\ YOURDIR might 
say the search path is \MYDIR. 



.... APPENDIX C ... 
printf() AND scanf() FORMATS 

... THE printf() FAMILY ..-
All the printf() variants send formatted data to some device or destination: 

the screen, the standard output device (stdout), a specified stream, or a 
specified string or buffer. Once you understand how printf() works, the vari­
ants follow quite naturally. 

Here is a brief summary of each variant with its prototype as defined in 
STDIO.Hor CONIO.H. The notation, ... is the official ANSI C prototyping 
syntax to indicate a variable number of arguments of undetermined data 
type. (I have omitted the _Cdecl modifier for clarity.) All these functions 
return the total number of bytes outputted, but this number is rarely used . 

.... printf() 

int printf (const char *format, ... );outputs to stdout. A more helpful syn­
tax is 

printf("[text)[O/oformat][text] [%format] ... ", [ arg 1 ,arg2, ... ]); 

where each %format is matched with an argN. The arguments can be con­
stants, variables or expressions . 

.... cprintf() 

int cprintf (char *format, ... );outputs to console. LFs are not translated as 
newline characters . 

.... fprintf() 

int fprintf (FILE *fp, const char *format, ... );outputs to stream fp. 



440 • MASTERING TURBO C • 
APP. C 

,.. sprintf() 

int sprintf (char *buffer, canst char *format, ... ); outputs to buffer (NUL­

terminated string). 

,.. vprintf() 

int vprintf (canst char *format, va_list arglist); outputs to stdout with 
arguments from va_arg array. 

,.. vfprintf() 

int vfprintf (FILE *fp, canst char *format, va_list arglist); outputs to 
stream fp with arguments from va_arg array. 

,.. vsprintf() 

int vsprintf (char *buffer, canst char *format, va_list arglist); outputs to 
buffer (NUL-terminated string) with arguments from va_arg array. 

The V. .. variants allow you to supply variable-argument functions that use 
the formatting features of printf( ). They are listed here for completeness but 
are beyond the scope of this book. 

~ The printf() family format String ~ 
The char *format indicates a special string that you supply to control 

formatting, i.e., how each argument is converted and displayed. For each 
argument to be formatted there must be a corresponding element in the for­
mat string. 

The format string can contain any number of the following groups of items: 

1. Literal text (displayed unchanged) 

2. Format specifications-a sequence of symbols preceded by% 

A format specification (FS) looks like this. 

% [flags] [width] {.precision] [F: N : h : IJ type 



• printf( ) AND scanf( ) FORMATS • 441 

where : means select one only, and the square brackets indicate that the 

enclosed item is optional. The [F: N : h: IJ is called the size field. 

A minimal FS would be O/od with type d indicating that a single integer 

argument would be converted to ASCII and displayed as follows: 

printf("O/od" ,my _int); 

printf("O/od\n",my_int); 

printf("This = O/od\n",my_int); 

/*display my_int- no newline*/ 

/*display my_int plus newline*/ 

/*display This= my_int plus newline*/ 

~ The Conversion-Type Field 
Although appearing last in the syntax list, the conversion type is the main 

element (and often the only one you need). It specifies the data type of the 

argument to be converted. In the absence of any overriders from the other 

fields (see below), you will get the following conversions: 

Type Input Output 

'"d'' integer signed decimal integer 

''i'' integer signed decimal integer 

"o" integer unsigned octal integer 

nu" integer unsigned decimal integer 

"x" integer unsigned hex with "a", "b", etc. 

''X'' integer unsigned hex with "A", "B", etc. 

''f'' FP signed decimal: { - Jdd ... d.dddddd. (all FP argu-

ments can be float or double) 

I.le" FP signed scientific: { - Jd.dddd e [ + : - Jddd 

'"E'' FP signed scientific: { - Jd.dddd E { + : - Jddd 

"'g'' FP signed: either "f" or "e" depending on size 

''G'' FP signed: either "f" or "E" depending on size 

"'c" char Single character display 

"s" *char Sequence of characters until NUL or precision limit 

reached. The pointer argument is taken as near or 

far depending on the memory model. 



442 .,.. MASTERING TURBO C .,.. 
APP. C 

"0/o" 

*int 

''p'' pointer 

~ The Size Field 

"%%" needed to display "%" 

Special argument to capture number of characters 
displayed. The pointer argument is taken as near or 
far depending on the memory model. 

Displays near pointers as 0000 (offset only). Dis­
plays far pointers as SSSS:OOOO (segment:offset). 
The pointer argument is taken as near or far depend­
ing on the memory model. Size field may override. 

The next thing to look for is the optional size field, a single letter in front of 
the type field used to indicate a short or long integer argument or a near or 
far pointer argument. There are four possibilities: 

Size Action 

"F" Affects pointer arguments only: treats them as far. Used only 
with O/op, O/on, and O/os. 

"N" Affects pointer arguments only: treats them as near. Used only 
with O/op, O/on, and O/os. 

"h" Ford, i, o, u, x, X: treat as a short int. Overrides the default size 
for numeric input. 

"I" Ford, i, o, u, x, X: treat as a long int. Overrides the default size 
for numeric input. For e, E, f, F, g, G: treat as a long double. 
Overrides the default size for FP numbers. 

~ Size and Type Examples 

Typical combinations encountered are 

"O/old" for decimal long int 
"O/olf" for decimal long double. (Note that "O/of" works with both float 

and double.) 
"O/olu" for decimal unsigned long int 
"O/ohd" for decimal short int 
"O/oho" for octal unsigned short int 



.- printf( ) AND scanf( ) FORMATS .- 443 

i.. The Flags Field 
This is a sequence of characters controlling the following features: 

,, +,, 

blank 

''#'' 

Left justification: pad with spaces to right. If omitted, right justifi­
cation: pad left with spaces or zeroes. 

If a signed value is being formatted, always show a leading sign 
symbol("+" or" - "). 

Omit"+" if value is >= 0. Always show" - " if value is < 0. 

Specifies an "alternative form" conversion (see below) usually 
involving whether O's or decimal points will appear. 

i.. The Width Field 
This field contains either a number or a"*". 

"N" At least N characters will appear. If less are needed, pad right or 
left according to the flag field (see above). 

"ON" At least N characters will appear. If less are needed pad left with 
zeros. 

,, * ,, The argument preceding the one to be formatted contains the 
width field to be used, i.e., you supply an extra argument Nor ON. 

i.. The Precision Field 
The precision field, if present, always starts with a period. It governs the 

maximum number of characters to be displayed and the minimum number 
of digits to be displayed. 

Precision Action 
Field 

none Default precision depending on the type. 1 ford, i, o, u, x, X; 
6 fore, E, f. All significant figures for g, G. Until NUL for s. c 
types are unaffected. 

".O" Use default ford, i, o, u, x, X. Omit decimal point fore, E, f. 



444 .,. MASTERING TURBO C .,. 
APP. C 

,, .N'' Ford, i, o, u, x, X at least N digits will display. Left pad with 0 if 
necessary. No truncation ever. Fore, E, f you get N digits after 
the decimal point. The last digit is rounded. For g, G types you 
get at most N significant digits. For c types there is no effect. 
Fors types no more than N characters will appear. 

As for width, the field is to be found in the argument list pre­
ceding the value to be converted. 

... The /,(#"Alternative Forms 

As noted earlier, # appearing in the flags field modifies the conversion. 
Here's how. 

Type Field Effect of# Flag 

c, s, d, i, u No effect 

o 0 prepended to a nonzero argument 

x, X Ox or OX prepended to argument 

e, E, f Always display a decimal point 

g, G As withe and E, but trailing zeroes will not be removed 

~ f xamp/es of printf() ~ 
I'll divide my examples into appropriate categories. 

... Characters and Strings 
Given char ch = 'A'; and char name[S] ="Stan";: 

printf("ch = O/oc",ch); displays ch = A 
printf("ch = %5c",ch); displays ch = ssssA (leading spaces) 
printf("ch = %-Sc",ch); displays ch = Assss (trailing spaces) 
printf("ch = %05c",ch); displays ch = OOOOA 
printf("Name = O/os",name); displays Name = Stan 
printf("Name = %6s",name); displays Name = ssStan 
printf("Name = O/o*s",6,name); displays Name = ssStan 

(* means "take next int arg as width") 



~ printf( ) AND scanf( ) FORMATS ~ 445 

printf("Name = %06s",name); displays Name = OOStan 
printf("Name = % - 6s" ,name); displays Name = Stanss 
printf("Name = %.3s",name); displays Name = Sta 

(a small precision truncates) 

printf("Name = %2s",name); displays Name = Stan 
(a small width never truncates) 

~ Integers 
Given int i = 453;, int j = - 89; and long int Ii = 78998: 

printf("i = O/od",i); displays i = 453 
printf("i = %2d" ,i); displays i = 453 
printf("i = %3d" ,i); displays i = 453 
printf("i = %4d" ,i); displays i = s453 
printf("i = % -5d",i); displays i = 453ss 
printf("i = % + d",i); displays i = + 453 
printf("i = % + 05d",i); displays i = + 0453 
printf("i = % + - 6d" ,i); displays i = + 453ss 

printf("i = %5.1 d" ,i); displays i = 453 (precision ignored) 
printf("i = %.6d" ,i); displays i = 000453 

printf("i = O/oo",i); displays i = 705 (octal) 
printf("i = O/o#o" ,i); displays i = 0705 (leading 0 octal) 
printf("i = %050",i); displays i = 00705 (pad octal) 
printf("i =O/ox",i); displays i = 1c5 (hex) 
printf("i = O/oX",i); displays i = 1C5 (hex) 
printf("i = O/o#x" ,i); displays i = Ox1 c5 (hex) 
printf("i = %06x" ,i); displays i = 0001 c5 (hex) 

printf("j = O/od",j); displays j = - 89 
printf("j = % + d" ,j); displays j = - 89 
printf("j = %2d",j); displays j = - 89 
printf("j = %4d" ,j); displays j = s - 89 
printf("j = % - 5d" ,j); displays j = - 89ss 
printf("j = %06d" ,j); displays j = - 00089 
printf("j = %.8",j); displays j = -000089 



446 ~ MASTERING TURBO C ~ 
APP. C 

printf("li =%Id" ,Ii); displays Ii = 78998 
printf("li = % + ld",li); displays Ii = + 78998 
printf("li = %81d",li); displays Ii = sss78998 
printf("li = %081d",li); displays Ii = 00078998 
printf("li = %.81d",li); displays Ii = 00078998 
printf("li = % - 81d",li); displays Ii = 78998sss 

~ Floating Point 
The type "O/of" works with float or double arguments since floats are con­

verted to double before formatting is performed. Assuming that float height 
or double height contains 2500.3498537, 

printf("Height = % T" ,height); 

will display as shown below given the listed width/precision/type combinations 

Combinations Screen Display and Notes 

"O/of" Height = 2500.349854 (default = "%.6f" rounded) 

"%.Of" Height = 2500 (no decimal point) 

"% + .Of' Height = + 2500 (sign always shown "+" or " - ") 

"% .Of' Height = 2500 (sign only if" - ") 

"%.1 f" Height = 2500.3 (rounded) 

"%.2f" Height = 2500.35 (rounded) 

"%.3f" Height = 2500.350 (rounded) 

"%6.2f" Height = 2500.35 (width ignored-too small) 

"%9.2f" Height = ss2500.35 (pad blanks to 9 columns) 

"%09.2f" Height = 002500.35 (pad zeroes to 9 columns) 

"% 14f" Height = sss2500.349854 (same as "% 14.6f") 

"%14.0f' Height =Ssssssssss2500 (no decimal point) 

"%#14.0f" Height =ssssssssss2500. ("#"gives decimal point) 

"% - 6.2f" Height = 2500.35 (width ignored-too small) 

"% - 9.2f" Height = 2500.35ss (pad right spaces to 9 columns) 



.,.. print(( ) AND scanf( ) FORMATS .,.. 447 

"% - 09.2f" Height = 2500.35ss (zero is ignored) 

"% - 14f" Height = 2500.349854sss (default is"% - 14.6f") 

"%-14.0f" Height = 2500ssssssssss (no decimal point) 

"%-#14.0f" Height = 2500.ssssssssss ("#"gives decimal point) 

(If height were declared as long double you would replace each "f" in the 
above with If. The displays would be the same.) 

" 0/oe" 

" 0/o.3e" 

" 0/o.3g" 

"%15.4E" 

"%015.4E" 

Height = 2.5003499e + 003 (default = %.6e) 

Height = 2.SOOe + 003 

Height = 2.SOOe + 003 

Height = ssss2.5003E + 003 (leading spaces) 

Height = 00002.5003E + 003 

"% + 015.4E" Height = + 0002.5003E + 003 

"% - 15.4e" Height = 2.5003e + 003ssss (trailing spaces) 

"% - + 15.4E" Height = + 2.5003E + 003sss (trailing spaces) 

(Exponent always displays sign symbol and 3 digits. Mantissa is always 
d.dddd .... ) 

~ THE scanf() FAMILY ~ 
The functions in the scant() family all perform formatting operations on 

input from the keyboard, standard input (stdin), a stream, or a string. The 
formatted data is placed in arguments given by &arg1, &arg2, and so on. 
Their prototypes from STDIO.Hare listed below. (I have omitted the _Cdecl 
modifier for clarity.) 

~ scanf() 

int scant (canst char *format, ... );accepts input from stdin. Returns num­
ber of input characters successfully converted. 



448 .,. MASTERING TURBO C ... 
APP. C 

... cscanf() 

int cscanf (const char *format, ... );accepts input from keyboard . 

... fscanf() 

int fscanf (FILE *fp, const char *format, ... ); accepts inputs from stream fp . 

... sscanf() 

int sscanf (const char* buffer, const char *format, ... );accepts data from 
buffer . 

... vscanf() 

int vscanf (const char *format, va_list arglist); accepts data from stdin­
uses arguments from va_arg array. 

... vfscanf() 

int vfscanf (FILE *fp, const char *format, va_list arglist); accepts data 
from stream fp-uses arguments from va_arg array. 

... vsscanf() 

int vsscanf (const char *buffer, const char *format, va_list arglist); 
accepts data from buffer-uses arguments from va_arg array. 

The V. .. variants allow you to supply variable-argument functions that use 
the formatting features of scant(). They are listed here for completeness but 
are beyond the scope of this book. 

.... The scanf() Format String .... 
The format string is used to control how each input packet is converted, 

formatted, and saved in the matching argument. The rules generally follow 
a similar pattern for printf( ) but in the opposite direction, as it were! 
.For example, "O/od" takes a decimal integer and converts it to an int. The 



.,.. print(( ) AND scan(( ) FORMATS .,.. 449 

matching argument must be a pointer to int, say, &int_arg, whereupon 
int_arg will receive the converted value: 

int int_arg; 

scanf("O/od" ,&int_arg); 
/*if you key in 345, int_arg will receive 345 */ 

Staying with this simple case, two inputs would be handled as follows: 

int int_arg1, int_arg2; 

scanf("O/od%d",&int_arg1, &int_arg2); 
/* if you key in 345 whitespace 67, 

int_arg1 will receive 345 and int_arg2 will get 67 *I 

The idea is that scant() parses the input received under the control of the 
format string. The format string can hold groups of the following objects: 

1. Format specifications signaled by the"%" symbol. 

2. Literal text: any symbols, including white space, other than"%". The 
function of these is not to display [as with printf( )], but to match and 
discard identical characters being keyed. Any mismatch here causes 
scant() to terminate. 

Any white space in a literal section serves to discard any amount of white 
space being keyed, but other literals must be matched on a one by one basis. 
As soon as you key a character other than white space it enters the scant() 
parser. It either matches a literal in the format string and gets discarded or 
starts a conversion process depending on the next"%" sequence encoun­
tered. Subsequent keystrokes contribute to the input until one of several 
events occurs: 

1. If it's a stream input, EOF may be reached. 

2. A white space is encountered. 

3. An inappropriate character is keyed, for example, an alphabetic in a 
numeric field. 

4. The number of characters exceeds a specified width. 



450 .,. MASTERING TURBO C ... 
APP.C 

In the simple case above, I keyed 345 followed by a space. This told 
scant() to process the input, and since there was a "O/od" in situ the conver­
sion was made to decimal. The same happened when I entered the second 
number, 67, followed by a new line. Again the conversion was triggered, this 
time with the second "O/od". Each packet of input, therefore, must match 
something in the format string. In the next example, I alter scant() to accept 
two fixed field numbers separated by I 

int int_arg1, int_arg2; 

scanf("%3d/%2d",&int_arg1, &int_arg2); 
/* if you key in 345/67 return 

int_arg1 will receive 345 and int_arg2 will get 67 *I 

The format string now converts three digits, discards the/, and then converts 

two digits. 
Two important warnings: you must use pointer arguments, and you must 

balance the format string with the number and type of entries. Unpredicta­

ble calamities will occur otherwise. 
The syntax of the format string is 

% [*][width] [F: N: hi IJ type 

Let's look at the type first-there are important differences from printt( ). 

Type Input Output Argument 

.I.Id'' decimal integer int *arg 

''D'' decimal integer long int *arg 

uo" octal integer int *arg 

110'' octal integer long int * arg 

''i'' any integer int *arg 

''I'' any integer long int *arg 



~ printf( ) AND scanf( ) FORMATS ~ 451 

"U" unsigned decimal unsigned int * arg 

''U'' unsigned decimal unsigned long int * arg 

"x" hex integer int *arg 

''X'' hex integer long int * arg 

"e" FP float •arg 

''E'' FP double •arg 

''f'' FP float *arg 

''g'' FP float *arg 

"G'' FP double *arg 

"s" string char array[] (Allow for final NUL) 

"c" character char * arg (if width is given use char 
arg[width].) Converts next character input 
including white space. Use "%1c" to skip 
one white space character. 

"0/o" No conversion with "%%". The second 
"%" is stored. 

"n" none int *arg will store the number of successful 
characters up to the "O/on". 

... Selective Conversion 
You can use regular expressions as explained in Chapter 10 to allow 

ranges of input to be matched and converted. For example, 

"O/o[A-Z]" will catch all uppercase input. 
"[ "a-c]" will catch all ASCII except "a", "b", and "c". 



452 ~ MASTERING TURBO C ~ 
APP. C 

.... Assignment Suppression 

A"%* T" combination (where"*" is not the pointer sign!) causes the 
matching input field of type T to be scanned but discarded. 

.... Width Specifier 

This sets the number of characters to be scanned and converted . 

.... Size and Type Modifiers 

The [N:F:h :IJ field works like printf(), allowing you to override the default 
or declared size of the argument. 

Size Action 

"F" Treat argument pointer as far. 

"N" Treat argument pointer as near. 

"h" For d, i, o, u, x, X: convert to short int. 
Ignored for D, I, 0, U, X. 

ul" Ford, i, o, u, x, X: convert to long int. Ignored for D, I, 0, U, X. 
Fore, f: convert to double. 



~APPENDIX D ~ 
COMPUTER MATH BASICS 

~ NUMBER SYSTEMS ~ 
The decimal integer (whole number) 562 represents 5 x 102 + 6 x 101 + 

2 x 10°. 

xn = x x x x ... (n factors) 

X0 = 1 for all x because xm IX" = xm-n 
x-n = 1 /X" 
X" x xm = xm+n 

The base of decimal notation is 10. This means that the contribution of C, 
the nth numeral from the right, is C x 1 O" (n starts from 0 not 1, so you often 

see the strange notation 0th position). C is a numeral in the range 0-9. 

More generally, a number Zin base B notation is expressed asZ = Cn x B" 
+ C-1 x B"-1 + .... + C1 x 8 1 + C0 x 8° where each C; is in the range 0 
to (8-1). 

If B > 9 you have to invent extra symbols to represent the decimal values 

10, 11,and so on. 

The most common bases used in computer math are 2 (binary notation), 8 

(octal), and 16 (hexadecimal or hex). 

~ Binary ~ 
If the base is 2, the only permitted values for C; are 0 and 1. The bit is the 

basic "binary digit" taking the values 0 (off, clear, or reset) and 1 (on or set). 

Counting up in binary goes 0, 1, 10, 11, 100, 101, 110, 111, 1000, and so 

on. Decimal 12 = binary 1100 = 23 + i + 0 + 0 = 8 + 4 + 0 + 0 = 12. 

~Octal~ 

When the base is 8, only the numerals 0-7 are used: 

Decimal 12 = octal 014 = 1 x 81 + 4 x 8° 



454 ... MASTERING TURBO C ... 
APP. D 

C distinguishes octal constants with a leading 0, which is why the octal equiv­
alent of decimal 12 is 014. (This convention can easily trap the unwary.) 

..,.. Hexadecimal ..... 
If the base is 16, you need six more symbols than with decimal notation. 

Hex Decimal 

A 10 

B 11 

c 12 

D 13 

E 14 

F 15 

Decimal123= 7x 161 +11x16°= hex7B. CusesOxtodistinguishhex 
constants from decimal and octal constants, for example, hex Ox56 = 
5 x 162 + 6 x 16° = 86 decimal. 

..,.. STORAGE CONVENTIONS ..,.. 
Most computers store numbers internally in binary form in fixed units of 4 

(nibble), 8 (byte), 16 (word), or 32 (long word) bits. Numbers are usually 
stored without a specific + or - symbol to indicate whether they are posi­
tive or negative. (One exception is binary-coded decimal (BCD), in which 4 
bits are used to encode each decimal digit or sign.) 

..,.. UNSIGNED AND SIGNED NUMBERS ..,.. 
Distinguishing postive and negative numbers relies on special modes and 

conventions. In unsigned mode all values are taken as positive, and you sim­
ply add up all bit values as powers of 2. In signed mode various conventions 
can apply to signal a negative value. 



.,.. COMPUTER MATH BASICS .,.. 455 

The most common conventions are one's complement and two's comple­
ment, where the most significant bit (MSB) in position 3, 7, 15, or 31 is a sign 
bit: 0 for positive, 1 for negative. These conventions evaluate binary num­
bers to decimal values as shown in Table D.1. The table just lists nibbles, but 
bytes, words, and long words follow the same pattern. 

Two's complement is used on the IBM PC family and most other systems. 

One's complement is quite rare, but C does not specify any particular inter­
nal number representation. Note that one's complement has two ways of 
recording 0 ( + 0 and - 0), whereas two's complement has a unique 0 but 

Binary Signed Unsigned 

One's Complement Two's Complement 

0111 7 7 7 

0110 6 6 6 

0101 5 5 5 

0100 4 4 4 

0011 3 3 3 

0010 2 2 2 

0001 

0000 0 0 0 

1111 -0 -1 15 

1110 -1 -2 14 

1101 -2 -3 13 

1100 -3 -4 12 

1011 -4 -5 11 

1010 -5 -6 10 

1001 -6 -7 9 

1000 -7 -8 8 

~ Table D.1: Decimal values of nibbles 



456 .,. MASTERING TURBO C .,. 
APP. D 

more negative numbers than positive numbers ( + 8 is outside and - 8 is 
inside the legal range of a nibble). From here on, signed numbers will be 

assumed to be in two's complement format. 

..,.. BYTE, WORD, AND LONG WORD RANGES ..,.. 
It is vital to have a feel for the legal ranges of groups of bits in the various 

modes since they are directly related to C's integer data types. 

char (1 byte) 

unsigned range: 

signed range: 

(short) int (2 bytes) 

unsigned range: 

signed range: 

long (4 bytes) 

unsigned range: 

0 to + 255 decimal 

0 to + 0377 octal 

0 to + OxFF hex 

- 128 to + 127 decimal 

- 0200 to + 0177 octal 

- Ox80 to + Ox7F hex 

0 to + 65535 decimal 

0 to + 0177777 octal 

0 to OxFFFF hex 

- 32768 to + 32767 decimal 

- 0100000 to + 077777 octal 

- Ox8000 to + Ox7FFF hex 

0 to + 4294967295 decimal 

0 to + 037777777777 octal 

0 to + OxFFFFFFFF hex 



.,. COMPUTER MATH BASICS .,. 457 

signed range: - 2147483648 to+ 2147483647 decimal 

- 020000000000 to + 017777777777 octal 

- Ox80000000 to + Ox7FFFFFFF hex 

..,. CARRY AND OVERFLOW ..,. 
Unsigned addition follows the normal rules until you reach the upper lim­

its. If you add 1 to OxFFFF the answer flips to OxOOOO, but the carry bit 
"emerging" from the top is stored by the CPU in a condition code register 
(CCR). The C language does not mandate any specific warning-it assumes 
all unsigned calculations are performed modulo 2n where n is the number of 

bits in the data type. The modulo or remainder operator is explained in 
Chapter 3. 

Signed arithmetic in two's complement format does not suffer from carry. 
It so happens that the sums turn out correctly if you ignore the carry: 

Decimal 

5 
+ -3 

2 ignore carried 1 

Binary 

0101 

+ 1101 

0010 (decimal 2) 

However, signed arithmetic can suffer from overflow, meaning that a 
number can be generated that exceeds the signed range for the data type: 

Decimal 

4 

+ 5 

9 

Binary 

0100 
+ 0101 

1001 (decimal - 7 in signed mode) 

In this example + 9 is not expressible in 4 bits. C mandates that overflow 
create "an undefined result," leaving the implementor to decide on the 
appropriate action. The CPU's CCR has a flag to indicate overflow. 

If you mix signed and unsigned arithmetic, several subtle errors can arise. 
For example, ch = -128 is legal for a signed char, but if you negate it with 

- ch the result is not + 128 since that would exceed + 127, the maximum 
valid value for signed chars. 



458 ~ MASTERING TURBO C ~ 
APP. D 

~ FLOATING-POINT FORMAT ~ 
The basic FP notation expresses any number X, integral or fractional, as 

X=MxBn 

where M is called the mantissa, B is the base, and n is the exponent. In base 

10, you could write 3.7 = 37 x 10- 1 or 3.7 = 0.37 x 101, so there is no 

unique FP expression for a given number. 

In base 10, this notation is shortened to X = MEn or Men, e.g., 3.7 = 
37E-1 = 3.7E1 = 37e-1 = 37e1 = 0.37E2 and so on. This is called scien­
tific or E notation. 

Internally, base 2 is used. In base 2 the "decimal" point is really a binary point, 

so 0.1 (binary) = 1h = 1 x T 1• Bits to the right of a binary point represent 1h, 
1/4, 1/a, and so on. Multiplying by 2 is equivalent to shifting the binary point to the 

left; dividing by 2 is the same as shifting the binary point to the right. This follows 

the familiar operation with decimal points and powers of 10. 

C has two FP formats: single precision (float) and double precision (double). 
(A third format, long double, exists, but in Turbo C this is the same as double, 
as allowed by the ANSI C standards.) 

.... The float Format .... 
The data type float takes up four bytes (32 bits) as follows: 

sign bit 

exponent 

mantissa 

1 bit (0 = positive, 1 = negative) 

8 bits (range 0-255, but 127 is subtracted from this field to 

give actual exponents in the range - 127 to + 128. This is 

called "excess 127 format.") 

23 bits to the right of the binary point with an implied 1.0 to 

the left, so effectively 24 bits (see below) 

To ensure a unique internal representation for each FP number, the expo­

nent is adjusted so that the mantissa has a single 1 before its binary point. For 

example, 2 is stored as (1.0) x i rather than as (0.1) x 22 • This normalization 



~ COMPUTER MATH BASICS ~ 459 

means that the 1 in front of the binary point need not be stored! (It is always 

there, so why waste a bit?) Nor do you waste space with leading O's-just 

shift left until you hit the first 1. If you don't rind a 1, then you have a zero FP. 

Zero FP's are stored specially with O's in all positions. (If the normal rules 

were applied to a float with 32 O's, they would give a value of + 1.0 x r 127, 

which is small but nonzero! A zero mantissa with a zero exponent therefore 

needs special decoding to give a true zero.) 

For nonzero FP numbers the implied bit is added back before the mantissa 

is used in a calculation. So, although there are 23 bits in the mantissa, it really 

provides a precision of 24 significant bits. 

The largest mantissa value is 1.11111 ... (23 1 's after the binary point). This 

is approximately equal to 2, so the largest float is approximately 2 x i 28 or 

3.4E+ 38. The smallest positive float has a mantissa of 1.0000 ... 01 and expo­
nent -127, so its value is approximately 1 x r 127 = 1.0E- 38. The smallest 

negative float is - 3.4+ 38. 
The "excess 127" trick in the exponent gives a wider range for the absolute 

value of large numbers: i 28 compared with T 127 for small numbers. A 

simple signed, or "excess 128," exponent would reverse this, giving 2127 for 

large and r 128 for small numbers. The IBM BASIC FPformat uses the latter, a 

fact that you might find invaluable one rainy night. 

The 32 bits thus allocated for a float have fields that straddle byte bounda­

ries. The resulting bit twiddling adds to the FP-management overhead and 
stresses the advantage of a dedicated math coprocessor such as the 8087. 
Although C has bit-field operators, emulating the 8087 by software is one 

area where the speed and tightness of assembly language is essential. 

~ The double Format ~ 
Double-precision values take 8 bytes (64 bits) allocated as follows: 

sign bit 

exponent 

mantissa 

1 bit (0 = positive, 1 = negative) 

11 bits (range 0-2048, but 1023 is subtracted from this field 

to give actual exponents in the range - 1023 to + 1024. 
This is called "excess 1023 format.") 

52 bits to the right of the binary point with an implied 1.0 to 

the left, so effectively 53 bits 



460 ~ MASTERING TURBO C ~ 
APP. D 

Following the same logic as for float, you can see that the ranges for double 
are thus: 

Maximum positive: 2 x i 024 = 1.8E308 (approximately) 

Minimum negative: -1.8E308 

Minimum positive: 1 x T 1023 1.0E- 309 (approximately) 

.... FP Constants .... 
C treats the constant 2 as an int and 2.0 or 2. as a double even though a 

float would be adequate. To force 2.0 into the smaller float format, use 2.0F. 
This saves RAM but not CPU cycles since floats are internally promoted to 
doubles before any expression is evaluated. You can also use scientic nota­

tion for FP constants. 

.... FP Precision .... 
The enormous range of double variables disguises the true precision avail­

able. The width of the mantissa, effectively 53 bits, is the real guide. When 
you add FP numbers their exponents must be adjusted so that their true 
binary points are aligned. This often leads to the loss of significant figures in 
the smaller number as it is shifted to the right. In an extreme case, adding B to 
A will not alter Al float gives you the equivalent precision of 7 decimal 
places, while double boosts this to about 17 places. 

Programmers need to be constantly aware of the precision of the numbers 
used in expressions. It is quite easy to have a variable x holding, say, 1.999999 
that is displayed as 2.00000 (printf( ) rounds up for display purposes only), 

yet the conditional test if (x = = 2.0) { ... } fails. Testing for equality between FP 
numbers is nearly always hazardous, and even testing for y > x will some­
times deceive you. It is useful to define a constant, EPSILON, representing 

the smallest significant number for the precision being aimed at. If you are 
using numbers with only 3 reliable decimal places, you could set EPSILON 
to 0.0005. You would then test if (fabs(x - y) < EPSILON) { ... } . Numbers 

differing by less than EPSILON are effectively equal. 



~ COMPUTER MATH BASICS ~ 461 

~ ABSOLUTE VALVES ~ 
tabs() gets you the absolute value (also known as the modulus) of an FP 

number or expression by setting the sign bit to zero. In other words, 
tabs( - 2.0) equals fabs(2.0) equals 2.0. 

There are variants of the function tabs() for other data types, for example, 
int abs(int_arg) is the variant for ints. abs(-1) returns +1, but 
abs( - 32768) will not work! Why not? Because + 32768 is not a valid int, as 
I warned you earlier. long labs(long_arg) gives you the absolute value of a 
long int. The macro cabs(Z) returns the absolute value of the complex num­
ber Z. The struct complex is declared as 

struct complex { 
doubleX, Y; 

}; 

The variable Z would be written as Z = X + iY, (where i is one of the square 
roots of -1) in traditional mathematics. X represents the real component 
and Y the imaginary component of the complex number Z. cabs() returns 
mod Z, written I Z I , which is the distance from (0,0) to()(, Y) in the complex 
plane, namely the positive square root of (X2 + Y2). The calculation is 
achieved like this 

#define cabs{z) {hypot {{z).x, (z).y)) 

~ GENERAL MATHEMATICAL FUNCTIONS ~ 
Turbo C offers all the standard mathematical functions specified by the 

ANSI C draft. Their declarations can be found in MATH.H, STLIB.H, and 
FLOAT.H. Appendix G gives their prototypes. 

It is also worth knowing that MATH.H defines mnemonics for all the 
important mathematical constants, such as e (the base of natural logarithms), 
greek pi, and so on, to 18 decimal places: 

#define M_E 2.71828182845904524 
#define M_PI 3.14159265358979324 



462 ... MASTERING TURBO C ... 
APP. D 

In addition to logarithmic functions (both natural and base 10), and expo­
nential and power routines, Turbo Coffers the usual trigonometric functions 
cos(), sin(), tan(), their inverses acos( ), asin( ), atan( ), and their hyper­
bolic cousins cosh( ), sinh( ), and tanh( ). They all take and return double 
values. These routines are invaluable for many graphics and image­
processing applications, which are unfortunately beyond the range of 
this book. 

What is worth knowing, in general terms, is how Turbo C handles FP 
errors. The function _matherr() is called internally whenever an FP error 
is detected: 

double _matherr (_mexcep why, char *fun, double *arg1 p, 
double *arg2p, double retval); 

Typical errors include illegal arguments (domain errors) and illegal return 
values (range errors). Many of the standard math functions have singulari­
ties, for example, tan(x) increases rapidly as x approaches 90 degrees, at 
which value it is officially infinite. An enumeration typedef in MATH.H gives 
you the following mnemonics: 

typedef enum 
{ 

DOMAIN= 1, 
SING, 
OVERFLOW, 
UNDERFLOW, 
TLOSS, 
PLOSS, 

} _mexcep; 

/*argument domain error: log (-1) */ 
/* argument singularity: pow (0, - 2)) *I 
/*overflow range error: exp (1000) */ 
I* underflow range error : exp ( - 1000) *I 
I* total loss of significance : sin(1 Oe70) *I 
/*partial loss of signif.: not used*/ 

_matherr() fills an exception structure giving you the function name, an 
error code, and, if possible, the offending values: 

struct exception 
{ 

int 
char 
double 

} ; 

type; 
*name; 
arg1, arg2, retval; 



... COMPUTER MATH BASICS ... 463 

If these values are above MAXDOUBLE or below MINDOUBLE, _matherr() 
substitutes HUGE_VAL (the FP equivalent to infinity) or 0, respectively. 
_matherr() then calls matherr( }, a user-modifiable function that you set up 
to handle the errors, 

int matherr (struct exception *e); 

where e is a pointer to the exception structure filled by _matherr( ). 

~ USEFUL LIMITS ~ 
I conclude this brief survey of computer math with some excerpts from 

LIMITS.H. They are worth studying, especially the section handling limits for 
signed and unsigned char-the compiler needs to know what defaults have 
been set. Notice, too, that the spirit of C's portability is enshrined in this kind 

of code. 

#define CHAR_BIT 8 

#if (((int)((char)Ox80)) < 0) 
#define CHAR_MAX 
#define CHAR_MIN 
#else 
#define CHAR_MAX 
#define CHAR_MIN 
#end if 

#define SCHAR_MAX 
#define SCHAR_MIN 
#define UCHAR_MAX 

#define SHRT _MAX 
#define SHRT_MIN 
#define USHRT _MAX 

#define INT _MAX 
#define INT _MIN 
#define UINT_MAX 

#define LONG_MAX 
#define LONG_MIN 
#define ULONG_MAX 

Ox7F 
Ox BO 

OxFFU 
OxOO 

Ox7F 
Ox BO 
OxFFU 

Ox7FFF 
((int)OxBOOO) 
OxFFFFU 

Ox7FFF 
((int)Ox8000) 

OxFFFFU 

Ox7FFFFFFFL 
((long)OxBOOOOOOOL) 
OxFFFFFFFFU L 





... APPENDIX E ~ 
PRECEDENCE AND ASSOCIATIVITY TABLE 

Table E.1 groups Turbo Cs operators according to their precedence and 

direction of association and gives examples of the operators in use. Opera­

tors in the same group have equal precedence. In the absence of grouping 

parentheses, operators of equal precedence are grouped according to the 

associativity rule of that group (left to right or right to left). The higher 
the group, the lower the precedence. 

Group 1 (associates left to right) 

() Function arguments: func(arg1, arg2) 

[ ] Array elements: array[20] 

struct,union member: player.name 

-> struct,union pointer member: sptr ->name 

Group 2 (associates right to left) 

Logical NOT: !FULL 

One's complement: - i 

Unary minus: - x 

++ Increment: i++; ++j 

& 

* 

(type) 

sizeof 

Decrement: i - - ; - - j 

Address of: ptr = &x 

Indirection: *ptr 

Type cast: (char) x 

Size (in bytes): sizeof(int) 

~ Table E.1: Precedence and associativity of Turbo Cs operators 



466 • MASTERING TURBO C • 
APP. E 

Group 3 (associates left to right) 

* Multiply: x * 4 

I Divide: y I z 

% Remainder: tab % 8 

Group 4 (associates left to right) 

+ Add: a+ b 

- Subtract: a - b 

Group 5 (associates left to right) 

<< Left Shift: x << 2 

>> Right Shift: z >> i 

Group 6 (associates left to right) 

< Less than: if (x < y) 

<= Less than or equal: while (a <= 2) 

> Greater than: if (x > max) 

>= Greater than or equal: while O > = k) 

Group 7 (associates left to right) 

-- Equality: if (x = = y) 

!= Inequality: while (x ! = y) 

Group 8 (associates left to right) 

& Bitwise AND: x & y 

Group 9 (associates left to right) 

" Bitwise exclusive OR: x " y 

.. Table E.1: Precedence and associativity of Turbo Cs operators (continued) 



.,.. PRECEDENCE AND ASSOCIATIVITY TABLE .... 467 

Group 10 (associates left to right) 

Bitwise OR: x : y 

Group 11 (associates left to right) 

&& Logical AND: x && y 

Group 12 (associates left to right) 

I I 
I I Logical OR: x : : y 

Group 13 (associates right to left) 

? ... : Conditional: x? y: z 

Group 14 (associates right to left) 

= assignment: i = j 

* = * assignment: k * = 2 (k = k* 2) 

I= I assignment: m I= n (m = m/n) 

O/o= % assignment: i %= d (i = iO/od) 

+= +assignment: x += y (X = x+y) 

-= - assignment: w -= x (w = w-x) 

<< = <<assignment: z << = 2 (z = z<<2) 

>> = >>assignment: z >> = 3 (z = z>>3) 

& = & assignment: a & = b (a = a&b) 

A= A assignment: c A= d (c = c A d) 

:= :assignment:e:= f(e = e:f) 

Group 15 (associates left to right) 

Comma expressions: exp1, exp2, exp3 

~ Table E.1: Precedence and associativity of Turbo Cs operators (continued) 





.... APPENDIX f .... 
8088/8086 REGISTERS: LOW-LEVEL STUFF 

..,. PREAMBLE..,.. 
How much do you really need to know about the CPU in your PC? For 

writing reasonably sized programs entirely in Turbo C, the answer is, "Very 
little, but it never hurts to have a general feel for what's going on inside!" 

If your program size exceeds certain limits or if you want to do some 
macho low-level programming with Turbo C's pseudo register variables or 
assembly language in order to improve control and speed, then you must 
become more (and more) familiar with your CPU's architecture and instruc­
tion set. 

The term systems programming is often used to describe delving into the 
chip's registers or tapping directly into DOS, as opposed to applications pro­
gramming, in which you usually rely on the standard functions to hide the 
inner details. Turbo C blurs this distinction somewhat by providing interme­
diate tools. For instance, you can call DOS and BIOS services directly with­
out needing a great deal of knowledge of how interrupts work. 

This appendix gives you an introductory overview of the 808x registers 
and their role in Turbo C. It may help you decide how much deeper you 
want to swim. 

Creating large programs requires some knowledge of the Turbo C 
memory models, which in turn calls for an understanding of the 808x 
addressing modes . 

..,.. ME MORY ADDRESSING AND THE 808X ..,.. 
Turbo C, like other C compilers for the IBM PC family, has to accommo­

date the architectural quirks of the Intel 808x and 80x86 families of CPUs, in 
particular the segment:offset addressing scheme (see Figure F.1 ). 

As shown, the effective address comes out 20 bits wide, giving a 1 MB (220} 

address space of overlapping 64KB segments, but two 16-bit values, a seg­
ment and an offset, are needed to address each byte. Let's see how registers 
are used to store these. 



470 ~ MASTERING TURBO C ~ 
APP. F 

15 

16-bit offset address 

plus 
.j, 

15 0 

segment register I 
equals 

.j, 

19 

20-bit effective address 

~ figure F.1: Segment:offset addressing 

... Segment Registers ... 

0 

0000 16-bit segment 
address shifted left 

4 places 

0 

offset plus 
shifted segment 

A register can be viewed as a small, superfast storage device built into the 
CPU. The 808x has 14 registers, each 16 bits wide. Most machine instruc­
tions use these registers in one way or another for arithmetic, control, and 

memory access. 
Your PC keeps track of code, data, stack, and "extra" segments by storing 

their current segment addresses in four special-purpose registers: 

CS code segment register 
DS data segment register 
SS stack segment register 
ES extra segment register 

... Pointer and Index Registers ... 
The offset values from which the effective address is calculated can come 

from a variety of registers. Typical arrangements are shown below. 

CS + IP (instruction pointer) = instruction address, e.g., pointer to a 

function 



.,. 8088/8086 REGISTERS: LOW-LEVEi. STUFF .,. 471 

DS + BX (base register) 

SS + SP (stack pointer) 

= address of data in RAM, e.g., a static 

variable 

= address of data on stack, e.g., a local 

variable 

ES + DI (destination index) = address of a string in RAM 

(DS is also often combined with an index register, either SI [source index] or 

DI [destination index]. SS can also be combined with BP [base pointer].) 

The above is just a selection of the many ways the offset value is derived. 

For a fixed segment address, the offset register can index any byte of the 64 

kilobytes associated with that segment address, which is often called the base 
address. 

~ Data Registers ~ 
The 808x has four 16-bit data registers, each of which can also be treated 

as two 8-bit registers. AX, for example, is a 16-bit accumulator that can also 

be referenced as AH (high byte) and AL (low byte). The other registers have 

specialized duties: CX is for loop counting, BX is for indexing, and DX is for 

arithmetic and 1/0, but these roles can vary depending on the instruction. 

The complete register disposition is shown in Figure E2. 

15 7 0 

AH AL AX accumulator 

BH BL BX base 

CH CL ex count 

DH DL DX data 

~ figure F.2: 808x registers 



472 ~ MASTERING TURBO C ~ 
APP. F 

15 

SP 

BP 

SI 

DI 

15 

cs 

DS 

SS 

ES 

IP 

.. Figure f.2: 808x registers (continued) 

..... Instruction Pointer ..... 

0 

I stack pointer 

base pointer 

source index 

destination index 

0 

code segment 

data segment 

stack segment 

extra segment 

instruction pointer 

status flags 

The IP is the approximate equivalent of the PC (program counter) in other 

CPUs. When added to the CS it gives the execution address of the next 

instruction. Because of the built-in instruction pipeline, this is not quite 

the "next-fetch-address" found in conventional program counters (since the 

instruction has already been fetched!). 



.- 8088/8086 REGISTERS: LOW-LEVEl. STUFF .- 473 

..,.. Status flags .... 
The status flags register uses 9 of the 16 bits to flag various processor or 

arithmetical states: carry, parity, auxiliary carry, zero, sign, trap (single-step 
mode), interrupt enable, direction (for string increment/decrement), and 
overflow. The other 7 bits are unused . 

..,.. Pointers and the Memory Models ..,.. 
Pointers to data can be simple 16-bit objects (called near pointers) pro­

vided that your data fits in one 64KB segment. This is because the segment 
part of the address is fixed and you need specify only the offset in order to get 
the effective address of an operand. Similarly, pointers to functions can be 
16-bit near pointers if your code fits in a 64KB segment. In order to exceed 
these limits for either data, code, or both, two additional types of 32-bit 
pointers, known as far and huge pointers, are needed to specify both the seg­
ment and offset values. 

Turbo C offers six memory models: tiny, small, medium, compact, large, 
and huge. Each of these determines a default pointer type for data and code 
references. 

The default model is small and uses near pointers for data and code, allow­
ing you a 64KB maximum for data and a 64KB maximum for code. You need 
not fret about pointer size unless you exceed either limit. 

Even when you have programs beyond the limits, you can let Turbo C 
adjustthe pointer types by selecting the appropriate memory model. You do 

this via the IDE Options/Model submenu or by adding - mx to the TCC com­
mand line, where x can be t, s, m, c, I, or h (the first letter of the memory 
model needed). 

Each memory model gives you one of the four following combinations: 
(near-data, near-data), (near-data, far-code), (far-data, near-code), or (far­
data, far-code). 

The default pointer type, near or far, may not always be the most economi­

cal. If you understand how pointers relate to your code and data segments, 
you can safely use the type modifiers near and far to override the defaults. 
The huge modifier is always needed explicitly. Huge pointers are normal­
ized to allow simpler arithmetic. Far pointers cannot readily be compared 

for size since the same effective address can have many segment:offset rep­
resentations (see Chapter 5). 



474 ... MASTERING TURBO C .,. 
APP. F 

The basic principle here is that near pointers can only access data in the 
current segment, and near functions can only be called from within their 
own code segment. 

The reason Turbo C provides you with separate start-up .OBJ files and run­
time libraries for each memory model is that functions and pointer argu­
ments need to be declared as near or far for optimum performance. (The 
tiny and small models, though, share the same library-CS.LIB). 

You will find in Chapter 9 that the graphics library, GRAPHICS.LIB, is used 
for all models. Its functions are all declared as far for this reason. (Also, a 
graphics function may have to access video memory outside the near 
pointer range.) 

..... Pseudovariables for Register Access ..... 
Turbo C is unique in offering direct programmer access to registers with­

out the need for assembly language. The so-called pseudovariables _CS, 
_DS, _ES, and _SS can be used in C expressions to represent the current 
values in the four segment registers. They are not true variables since many 
C operators are not applicable. For example, you cannot write &_CS to get 
the address of the code segment address! All the other registers, except for 
IP and status flags, are available in the mnemonic form _AH, _AL, _AX, 
and so on. 

You can read from and write into registers using the pseudovariables as 
though they were global variables declared as unsigned int (the 16-bit regis­
ters like _AX) or as unsigned byte (the 8-bit, "half" registers like _AL). 

char ch = '\n'; 
inti = 34; 
_AH= ch; 
_BX= i+3; 
_DX= _BX; 
ch= _BL; 

Two caveats: You need to know what you are doing! Changing _CS with­
out due cause and attention is guaranteed to haunt you. Further, most func­
tion calls change most registers, so you can not expect your register 
assignment to survive very long. 



.,.. 8088/8086 REGISTERS: LOW-l.EVEl. STUFF .,.. 475 

_AX= 629; 
puts("\nYou are here"); 
/*AX no longer = 629 */ 

Some registers are not changed (either unused or saved and restored) by 
function calls, namely _CS, _BP, _SI, and _DI. Still, care is needed since SI 
and DI are the likely candidates for being assigned to variables of storage 

class register (see Chapter 7). 

Pseudovariables are useful when calling low-level systems routines. 

(mytab( ) in Chapter 6 explained one approach using int86( ) with union 
REGS.) You select the service code via _AH and then slot in the prescribed 

register values before calling geninterrupt(Ox10), which triggers the I NT 1 Oh 

ROM-BIOS service. 

To scroll up a window using INT 1 Oh, service 5, you need to set seven reg­

isters before the call: 

_AH= 5; 
_AL = lines_to_scroll; 
_BH = filler_attribute; 
_CH = upper_row; 
_CL = left_column; 
_DH = lower_row; 
_DL = right_column; 
geninterrupt(Ox1 O); 

I* service code to AH *I 

/*call INT 10h service */ 

The DOS reference books list hundreds of such services, so it's easy to tap 

the resources of DOS directly and build up your own set of functions. Many 
INT calls return values by setting a register. All you need is a line after the call 

as in 

unsigned char *disk_status; 

_AH = Ox01; /* service code 1, INT 13h *I 
geninterrupt(Ox13); 
*disk_status = _AL; 

I* AL returns 1 (bad command); 3 (write - protect violation) etc *I 

You will probably be reinventing the wheel, of course, since Turbo C 

has most of these routines neatly dressed up in the library somewhere. 



476 .,.. MASTERING TURBO C .,.. 
APP. F 

Nonetheless, it's a good way to become familiar with the ROM-BIOS services 

before attempting to improve Turbo C. 

~ ASSEMBLY LANGUAGE AND TURBO C ~ 
For more advanced control, you can combine assembly-language code with 

Turbo C in two distinct ways. First, using MASM (the official Microsoft macro 

assembler) or TASM (Borland's Turbo assembler), you write and assemble your 

code to an .OBJ module, then TLINK it with Turbo C .OBJ files. 

Second, you can supply in-line assembly code, which turns out to be sim­

pler but slightly less versatile than linking full-blown assembled modules. In­

line assembly code, as the name implies, is written directly into the C source. 

You need to prefix each such line with the keyword asm (non-ANSI C) to 

give the compiler fair warning. The code following an asm is treated as a line 

of normal 808x assembly code until either a newline character or semicolon 

is reached: 

asm mov ax, my- int-var; 
asm xor di,di; 

puts("\nThis is normal Turbo C"); 

I* you can use C variables! *I 
/*you must use C style comments. 

MASM style comments are illegal *I 

Since I am not teaching assembly language here, I cannot go into much 

detail. Suffice it to say that the asm lines are embedded in the assembly code 

that Turbo C is producing from the C code, creating an .ASM file. Turbo C 

then invokes the Microsoft assembler MASM (so you need to make it avail­

able) to produce the final .OBJ file. The advantages of being able to mix 

assembly-language symbols and normal C variables, including structures, 
should be obvious. Less obvious are the savings compared with indepen­

dent assembly modules, which need countless housekeeping details to set 

up for TLINK and memory-model compatibility. 

Programs with asm sections need a special directive called #pragma. 
ANSI C introduced this as way of sending nonportable information to the 

compiler. If #pragma is not defined on a particular system it is just ignored. 

Turbo C uses two #pragma directives: 

#pragma inline 
/*Advanced warning of asm lines ahead*/ 



.. 8088/8086 REGISTERS: I.OW-LEVEL STUFF .. 477 

#pragma warn +pro 
/*Turn on warning to report any function without a prototype. 

There are several variants, e.g., - pro will cancel warnings *I 





~APPENDIX G ~ 
COMPLETE FUNCTION REFERENCE 

PROTOTYPES Of STANDARD FUNCTIONS 

~ abort ~ 
abort abnormally terminates a process 

Prototype void abort(void); 

Prototype in stdlib.h 
process.h 

~abs~ 
abs absolute value 

Prototype int abs{int i); 

Prototype in stdlib.h (abs, labs) 
math.h (cabs, fabs) 

~ absread ~ 
absread reads data 

Prototype int absread(int drive, int nsects, int sectno, void *buffer); 

Prototype in dos.h 

~ abswrite ~ 
abswrite writes data 

Prototype int abswrite(int drive, int nsects, int sectno, void *buffer); 

Prototype in dos.h 



480 .,.. MASTERING TURBO C .,.. 
APP. G 

.... access .... 
access determines accessibility of a file 

Prototype int access( char *filename, int amode); 

Prototype in io.h 

.... acos .... 
a cos trigonometric function 

Prototype double acos(double x); 

Prototype in math.h 

.... a//ocmem .... 
allocmem 

Prototype 

allocates DOS memory segment 

int allocmem(unsigned size, unsigned *seg); 

Prototype in dos.h 

.... _argc, _argv .... 
_argc, _argv count of command-line arguments 

array of command-line arguments 

Prototype extern int_argc; 

extern char** _argv; 

Prototype in dos.h 

.... asctime .... 
asctime converts date and time to ASCII 

Prototype #include <time.h > 
char *asctime(struct tm *tm); 

Prototype in time.h 



i.- COMPLETE FUNCTION REFERENCE i.- 481 

~ asin ~ 
asin trignometric function 

Prototype double asin(double x); 

Prototype in math.h 

~assert ~ 

assert 

Prototype 

tests a condition and possibly aborts 

#include <assert.h > 

#include <stdio.h > 
void assert(int test); 

Prototype in assert.h 

~ atan ~ 
atan 

Prototype 

trigonometric arctangent function 

double atan(double x); 

Prototype in math.h 

~ atan2 ~ 
atan2 trigonometric function 

Prototype double atan2(double y, double x); 

Prototype in math.h 

~ atexit ~ 
atexit registers termination function 

Prototype #include <stdlib.h >int atexit(atexit_t tune) 

Prototype in stdlib.h 



482 ... MASTERING TURBO C ... 
APP.G 

.... atof .... 
atof 

Prototype 

converts a string to a floating point number 

double atof(char *nptr); 

Prototype in math. h 
stdlib.h 

.... atoi .... 
atoi 

Prototype 

converts a string to an integer 

int atoi{char *nptr); 

Prototype in stdlib.h 

.... atol .... 
atol 

Prototype 

converts a string to a long 

long atol(char *nptr); 

Prototype in stdlib.h 

.... bdos .... 
bdos 

Prototype 

MS-DOS system call 

int bdos(int dosfun, unsigned dosdx, unsigned dosal); 

Prototype in dos.h 

.... bdosptr .... 
bdosptr 

Prototype 

MS-DOS system call 

int bdosptr(int dosfun, void *argument, unsigned dosa/); 

Prototype in dos.h 



~ COMPLETE FUNCTION REFERENCE ~ 483 

~ bioscom ~ 
bioscom communications 1/0 

Prototype int bioscom(int cmd, char byte, int port); 

Prototype in bios.h 

~ biosdisk ~ 
biosdisk hard disk/floppy 1/0 

Prototype int biosdisk(int cmd, int drive, int head, int track, int sector, int 

nsects, void *buffer); 

Prototype in bios.h 

~ biosequip ~ 
biosequip 

Prototype 

checks equipment 

int biosequip(void); 

Prototype in bios.h 

~ bioskey ~ 
bioskey keyboard interface 

Prototype int bioskey(int cmd); 

Prototype in bios.h 

~ biosmemory ~ 
biosmemory returns memory size 

Prototype int biosmemory(void); 

Prototype in bios.h 



484 .,. MASTERING TURBO C .,. 
APP. G 

~ biosprint ~ 
biosprint 

Prototype 

printer 1/0 

int biosprint(int cmd, int byte, int port); 

Prototype in bios.h 

~ biostime ~ 
biostime returns time of day 

Prototype long biostime(int cmd,long newtime); 

Prototype in bios.h 

~ brk ~ 
brk 

Prototype 

changes data-segment space allocation 

int brk(void *endds); 

Prototype in alloc.h 

~ bsearch ~ 
bsearch 

Prototype 

binary search 

#include <stdlib.h > 
void *bsearch(const void *key, const void *base, size_t 
nelem, size_t width, int(*fcmp)(const void* ,const void*)); 

Prototype in stdlib.h 

~ cabs ~ 
cabs 

Prototype 

absolute value of complex number 

#include <math.h > 
double cabs(struct complex znum); 

Prototype in math.h 



.,.. COMPLETE FUNCTION REFERENCE .,.. 485 

.... calloc .... 
ca/toe 

Prototype 

allocates main memory 

#include <stdlib.h > 
void *Calloc(size_t nelem, size_t elsize); 

Prototype in stdlib.h and alloc.h 

.... ceil .... 
ceil rounds up 

Prototype double ceil(double x); 

Prototype in math.h 

.... cgets .... 
cgets reads string from console 

Prototype char *cgets(char *string); 

Prototype in conio.h 

.... chdir .... 
chdir changes working directory 

Prototype int chdir(char *path); 

Prototype in dir.h 

.... _chmod .... 
_ch mod 

Prototype 

changes access mode of file 

#include <dos.h > 
int _chmod(char *filename, int tune [,int attrib]); 

Prototype in io.h 



486 ... MASTERING TURBO C .,. 
APP.G 

... chmod ... 
ch mod 

Prototype 

changes access mode of file 

#include <sys\stat.h > 
int chmod(char *filename,int permiss); 

Prototype in io.h 

... chsize ... 
ch size changes file size 

Prototype int chsize(int handle, long size); 

Prototype in io.h 

... _clear87 ... 
_clear87 

Prototype 

clears floating-point status word 

unsigned int_clear87 (void); 

Prototype in float.h 

... clearerr ... 
clearerr resets error indication 

Prototype #include <stdio.h> 
void clearerr(FILE *stream); 

Prototype in stdio.h 

... _close ... 
_close 

Prototype 

closes a file handle 

int_close(int handle); 

Prototype in io.h 



.,.. COMPLETE FUNCTION REFERENCE .,.. 487 

~ close ~ 
close 

Prototype 

closes a file handle 

int close(int handle); 

Prototype in io.h 

~ _contro/87 ~ 
_contro/87 manipulates floating-point control word 

Prototype unsigned int _control87(unsigned int newvals, unsigned int 
mask); 

Prototype in float. h 

~ coreleft ~ 
coreleft 

Prototype 

returns a measure of unused memory 

in the tiny, small, and medium models: 
unsigned coreleft(void); 
in the compact, large, and huge models: 
unsigned long 
coreleft(void); 

Prototype In alloc.h 

~cos~ 

cos 

Prototype 

trigonometric function 

double cos( double x); 

Prototype in math.h 

~ cosh ~ 
cosh hyperbolic functions 

Prototype double cosh(double x); 

Prototype in math.h 



488 • MASTERING TURBO C • 
APP. G 

.... country .... 
country 

Prototype 

returns country-dependent information 

#include <dos.h> 
struct country *country(int countrycode, struct country 
*countryp); 

Prototype in dos.h 

.... cprintf .... 
cprintf 

Prototype 

sends formatted output to the console 

int cprintf(const char *format[,argument, ... )); 

Prototype in conio.h 

.... cputs .... 
cputs 

Prototype 

sends a string to the screen 

int cputs(const char *string); 

Prototype in conio.h 

.... _creat .... 
_creat 

Prototype 

creates a new file or rewrites an existing one 

#include <dos.h > 

int _creat(char *filename, int attrib); 

Prototype in io.h 

.... creat .... 
creat 

Prototype 

creates a new file or rewrites an existing one 

#include <sys\stat.h > 
int creat(char *filename, int permiss); 

Prototype in io.h 



.,. COMPLETE FUNCTION REFERENCE .,. 489 

~ creatnew ~ 
creatnew creates a new file 

Prototype #include <dos.h > 
int creatnew(char *filename, int attrib); 

Prototype in io.h 

~ creattemp ~ 
creattemp creates a new file or rewrites an existing one 

Prototype #include <dos.h > 
int creattemp(char *filename, int attrib); 

Prototype in io. h 

~ cscanf ~ 
cscanf 

Prototype 

performs formatted input from console 

int cscanf(char *format[,argument, ... ]); 

Prototype in conio.h 

~dime~ 

ctime 

Prototype 

converts date and time to a string 

char •ctime(long *clock); 

Prototype in time.h 

~ drlbrk ~ 
ctrlbrk 

Prototype 

sets control-break handler 

void ctrlbrk(int( *fptr)(void)); 

Prototype in dos.h 



490 ~ MASTERING TURBO C ~ 
APP.G 

.... delay .... 
delay suspends execution for interval (milliseconds) 

Prototype void delay(unsigned milliseconds); 

Prototype in dos. h 

.... difftime .... 
difflime computes difference between two times 

Prototype #include <time.h > 
double difftime(time_t time2, time_t time1); 

Prototype in time.h 

.... directvideo .... 
directvideo direct output to video RAM flag 

Prototype extern int directvideo; 

Prototype in conio.h 

.... disable .... 
disable disables interrupts 

Prototype #include <dos.h> 
void disable(void); 

Prototype in dos.h 

.... div .... 
div divides two integers, returning quotient and remainder 

Prototype #include <stdlib.h > 
div_t div(int numer, int denom); 

Prototype in stdlib.h 



~ COMPLETE FUNCTION REFERENCE ~ 491 

... dosexterr .,. 
dosexterr gets extended error 

Prototype #include <dos.h> 
int dosexterr(struct DOSERR *eblkp); 

Prototype in dos.h 

.,. dostounix .,. 
dostounix converts date and time to UNIX time format 

Prototype #include <dos.h > 
long dostounix(struct date *dateptr, struct time *timeptr); 

Prototype in dos.h 

.,. dup.,. 
dup 

Prototype 

duplicates a file handle 

int dup(int handle); 

Prototype in io.h 

.,. dup2 ... 
dup2 

Prototype 

duplicates a file handle 

int dup2(int oldhandle, int newhandle); 

Prototype in io.h 

... ecvt ... 
ecvt converts a floating-point number to a string 

Prototype char *ecvt(double value, int ndigit, int *decpt, int *sign); 

Prototype in stdlib.h 



492 .,.. MASTERING TURBO C .,.. 
APP. G 

.... eof .... 
eof 

Prototype 

detects end-of-file 

int eof(int *handle); 

Prototype in io.h 

.... exec ... .... 
exec ••• 

Prototype 

functions that load and run other programs 

int execl(char *pathname, char *argO, arg1, ... ,argn! NULL); 

int execle(char *pathname, char *arg0,arg1, ... , argn, NULL, 

char *envp[ ]); 
int execlp(char *pathname, char *argO, arg1, ... , argn, 

NULL); 

int execlpe(char *pathname, char *argO, arg1, ... , argn, 

NULL, char *envp[) ); 
int execv(char *pathname, char *argv{ ]); 

int execve(char *pathname, char *argv[ ], char *envp[] ); 

int execvp(char *pathname, char *argv[]); 

int execvpe(char *pathname, char *argv[}, char *envp[ ]); 

Prototype in process.h 

.... _exit .... 
_exit 

Prototype 

terminates program 

void _exit(int status); 

Prototype in process.h 

.... exit .... 
exit 

Prototype 

terminates program 

void exit(int status); 

Prototype in process.h 



• COMPLETE FUNCTION REFERENCE • 493 

~exp~ 

exp 

Prototype 

exponential function; returns ex 

double exp( double x); 

Prototype in math.h 

~ fabs ~ 
fabs absolute value 

Prototype double fabs(double x); 

Prototype in math.h 

~ farca//oc ~ 
farcalloc allocates memory from the far heap 

Prototype void far *farcalloc(unsigned long nunits, unsigned long 

unitsz); 

Prototype in alloc.h 

~ farcore/eft ~ 
farcore/eft returns measure of unused memory in far heap 

Prototype long farcoreleft(void); 

Prototype in alloc.h 

~ farfree ~ 
farfree frees a block from far heap 

Prototype void farfree(void far *block); 

Prototype in alloc.h 



494 ~ MASTERING TURBO C ~ 
APP.G 

.... farmalloc .... 
farmalloc 

Prototype 

allocates from far heap 

void far *farmalloc(unsigned long size); 

Prototype in alloc.h 

.... farrealloc .... 
farrealloc 

Prototype 

adjusts allocated block in far heap 

void far *farrealloc(void far *block, unsigned long newsize); 

Prototype in alloc.h 

.... fclose .... 
fclose 

Prototype 

closes a stream 

#include <stdio.h > 
int fclose(FILE *stream); 

Prototype in stdio.h 

.... fcloseal/ .... 
fcloseal/ 

Prototype 

closes open streams 

int fcloseall(void); 

Prototype in stdio.h 

.... fcvt .... 
fcvt 

Prototype 

converts a floating-point number to a string 

char *fcvt(double value, int ndigit, int *decpt, int *sign); 

Prototype in stdlib.h 



-. COMPLETE FUNCTION REFERENCE -. 495 

~ fdopen ~ 
fdopen 

Prototype 

associates a stream with a file handle 

#include <stdio.h > 
FILE *fdopen(int handle, char *type); 

Prototype in stdio.h 

~ feof ~ 
feof 

Prototype 

detects end-of-file on stream 

#include <stdio.h > 
int fflush(FILE *stream); 

Prototype in stdio.h 

~ ferror ~ 
ferror detects errors on stream 

Prototype #include <stdio.h > 
int ferror(FILE *stream); 

Prototype in stdio.h 

~ fflush ~ 
fflush flushes a stream 

Prototype #include <stdio.h> 
int fflush(FILE *stream); 

Prototype in stdio.h 

~ fgetc ~ 
fgetc 

Prototype 

gets character from stream 

#include <stdio.h > 
int fgetc(FILE *stream); 

Prototype in stdio.h 



496 .,.. MASTERING TURBO C .,.. 
APP.G 

.... fgetchar .... 
fgetchar 

Prototype 

gets character from stream 

int fgetchar(void); 

Prototype in stdio.h 

.... fgetpos .... 
fgetpos gets the current file pointer 

Prototype #include <stdio.h > 
int fgetpos(FILE*stream, fpos_t, *pos); 

Prototype in stdio.h 

.... fgets .... 
fgets gets a string from a stream 

Prototype #include <stdio.h > 
char *fgets(char *string, int n, FILE *stream); 

Prototype in stdio.h 

.... filelength .... 
filelength gets file size in bytes 

Prototype long filelength(int handle); 

Prototype in io.h 

.... fileno ..... 
fileno gets file handle 

Prototype #include <stdio.h > 
int fileno(FILE *stream); 

Prototype in stdio.h 



• COMPLETE FUNCTION REFERENCE • 497 

..... findfirst ..... 
findfirst searches disk directory 

Prototype #include <dir.h > 

#include <dos.h > 

int findfirst(char *pathname, struct ffblk *ffblk, int attrib); 

Prototype in dir.h 

..... findnext ..... 
findnext fetches files which match findfirst 

Prototype #include <dir.h> 

int findnext(struct ffblk *ffblk); 

Prototype in dir.h 

..... floor ..... 
floor 

Prototype 

rounds down 

double floor( double x); 

Prototype in math.h 

..... f/usha/I ..... 
flushall 

Prototype 

clears all buffers 

int flushall(void); 

Prototype in stdio.h 

..... fmod ..... 
fmod 

Prototype 

calculates x modulo y, the remainder of x/y 

double fmod(double x, double y); 

Prototype in math. h 



498 ~ MASTERING TURBO C ~ 
APP.G 

~ fnmerge ~ 
fnmerge 

Prototype 

makes new file name 

#include <dir.h > 
void fnmerge(char *path, char *drive, char *dir, char *name, 
char *ext); 

Prototype in dir.h 

~ fnsplit ~ 
fnsplit 

Prototype 

splits a full path name into its components 

#include <dir.h > 
int fnsplit(char *path, char *drive, char *dir, char *name, 
char *ext); 

Prototype in dir.h 

~ fopen ~ 
fopen 

Prototype 

opens a stream 

#include <stdio.h > 
FILE *fopen(char *filename, char *type); 

Prototype in stdio.h 

~ FP_OFF ~ 
FP _OFF gets a far address offset 

Prototype #include <dos.h > 
unsigned FP _OFF(void far *farptr); 

Prototype in dos.h 



.. COMPLETE FUNCTION REFERENCE .. 499 

~ FP_SEG ~ 
FP_SEG 

Prototype 

gets far address segment 

#include <dos.h > 
unsigned FP _SEG(void far *farptr); 

Prototype in dos.h 

~ _fpreset ~ 
_fpreset 

Prototype 

reinitializes floating-point math package 

void _fpreset( ); 

Prototype in float.h 

~ fprintf ~ 
fprintf 

Prototype 

sends formatted output to a stream 

#include <stdio.h > 
int fprintf(FILE *Stream, char *format[, argument, ... ]); 

Prototype in stdio.h 

~ fputc ~ 
fputc 

Prototype 

puts a character on a stream 

#include <stdio.h > 
int fputc(int ch, FILE *stream); 

Prototype in stdio.h 

~ fputchar ~ 
fputchar 

Prototype 

puts a character on stdout 

int fputchar(char ch); 

Prototype in stdio.h 



500 .- MASTERING TURBO C .­
APP. G 

.... fputs .... 
fputs 

Prototype 

puts a string on a stream 

#include <stdio.h > 
int fputs{char*string, FILE*stream); 

Prototype in stdio.h 

.... fread .... 
fread 

Prototype 

reads data from a stream 

#include <stdio.h > 
int fread{void *ptr, int size, int nitems, FILE *stream); 

Prototype in stdio.h 

.... free .... 
free 

Prototype 

frees allocated block 

void free{void *ptr); 

Prototype in stdlib.h and alloc.h 

.... freemem .... 
freemem 

Prototype 

frees a previously allocated DOS memory block 

int freemem{unsigned seg); 

Prototype in dos.h 

.... freopen .... 
freopen 

Prototype 

replaces a stream 

#include <stdio.h > 
FILE *freopen{char *filename, char *type, FILE *stream); 

Prototype in stdio.h 



"' COMPLETE FUNCTION REFERENCE "' 501 

~ frexp ~ 
frexp 

Prototype 

splits a double number into mantissa and exponent 

double frexp(double value, int *eptr); 

Prototype in math.h 

~ fscanf ~ 
fscanf performs formatted input from a stream 

Prototype #include <stdio.h > 
int fscanf(FILE *stream, char *format[, argument, ... ]); 

Prototype in stdio.h 

~ fseek ~ 
fseek 

Prototype 

repositions a file pointer on a stream 

#include <stdio.h > 
int fseek(FILE *stream, long offset, int fromwhere); 

Prototype in stdio.h 

~ fsetpos ~ 
fsetpos 

Prototype 

positions the file pointer on a stream 

#include <stdio.h > 
int fsetpos(FILE *stream, const fpos_t *pos); 

Prototype in stdio.h 

~ fstat ~ 
fstat 

Prototype 

gets open file information 

#include <sys\stat.h > 
int fstat(char *handle, struct stat *buff) 

Prototype in sys\stat.h 



502 ... MASTERING TURBO C ... 
APP.G 

.... ftell .... 
ftell returns the current file pointer 

Prototype #include <stdio.h> 
long ftell{FILE *stream}; 

Prototype in stdio.h 

.... fwrite .... 
fwrite writes to a stream 

Prototype #include <stdio.h > 
int fwrite{void *ptr, int size, int nitems, FILE *stream}; 

Prototype in stdio.h 

.... gcvt .... 
gcvt converts floating-point number to string 

Prototype #include <dos.h > 
char *gcvt{double value, int ndigit, char *buf}; 

Prototype in stdlib.h 

.... geninterrupt .... 
geninterrupt generates software interrupt 

Prototype #include <dos.h > 
void geninterrupt{int intr _num}; 

Prototype in dos.h 

.... getc .... 
getc 

Prototype 

Prototype in 

gets character from stream 

#include <stdio.h > 
int getc{FILE *stream}; 

stdio.h 
conio.h (getch, getche, ungetch) 



.,.. COMPLETE FUNCTION REFERENCE .,.. 503 

.... getch .... 
getch 

Prototype 

gets character from console, no echoing 

int getch(void); 

Prototype in conio.h 

.... getchar .... 
getchar gets character from stream 

Prototype #include <stdio.h > 
int getchar(void); 

Prototype in stdio.h 

.... getche .... 
getche 

Prototype 

gets character from keyboard, echoes to screen 

int getche(void); 

Prototype in conio.h 

.... getcurdir .... 
getcurdir 

Prototype 

gets current directory for specified drive 

int getcurdir(int drive, char *direc); 

Prototype in dir.h 

.... getcwd .... 
getcwd 

Prototype 

gets current working directory 

char *getcwd(char *but, int n); 

Prototype in dir.h 



504 .,.. MASTERING TURBO C .,.. 
APP.G 

..... getdate ..... 
getdate gets MS-DOS date 

Prototype #include <dos.h > 
void getdate(struct date *dateblk); 

Prototype in dos.h 

..... getdfree ..... 
getdfree gets disk free space 

Prototype #include <dos.h > 
void getdfree(int drive, struct dfree *dfreep); 

Prototype in dos.h 

..... getdisk ..... 
getdisk gets current drive 

Prototype int getdisk(void); 

Prototype in dir.h 

..... getdta ..... 
getdta gets disk transfer address 

Prototype char far *getdta(void); 

Prototype in dos.h 

..,.. getenv..,.. 
getenv gets string from environment 

Prototype char *getenv(char *envvar); 

Prototype in stdlib.h 



.,.. COMPLETE FUNCTION REFERENCE .... 505 

~ getftime ~ 
getftime 

Prototype 

gets file date and time 

#include <dos.h> 
int getftime(int handle, struct ftime *ftimep); 

Prototype in dos.h 

~ getpass ~ 
getpass 

Prototype 

reads a password 

char *getpass(char *prompt); 

Prototype in conio.h 

~ getpsp ~ 
getpsp gets the program segment prefix 

Prototype unsigned getpsp(void); 

Prototype in dos. h 

~gets~ 

gets 

Prototype 

gets a string from a stream 

char *gets(char *string); 

Prototype in stdio.h (fgets, gets) 
conio.h (cgets) 

~ gettime ~ 
gettime 

Prototype 

gets system time 

#include <dos.h > 
void gettime(struct time *timep); 

Prototype in dos.h 



506 • MASTERING TURBO C • 
APP.G 

..... getw ..... 
getw 

Prototype 

gets integer from stream 

#include <stdio.h > 
int getw(FILE *stream); 

Prototype in stdio.h 

..... gmtime ..... 
gmtime 

Prototype 

converts date and time to Greenwich Mean Time 

#include <time.h > 
struct tm *gmtime(long *clock); 

Prototype in time.h 

..... int86 ..... 
int86 

Prototype 

general 8086 software interrupt interface 

#include <dos.h > 
int int86(int intr_num, union REGS *inregs, union REGS 

*outregs); 

Prototype in dos.h 

..... int86x ..... 
int86x 

Prototype 

general 8086 software interrupt interface 

#include <dos.h > 
int int86x(int intr_num, union REGS *inregs, union REGS 
*outregs, struct SREGS *segregs); 

Prototype in dos. h 

..... intdos ..... 
intdos 

Prototype 

general MS-DOS interrupt interface 

#include <dos.h > 
int intdos(union REGS *inregs, union REGS *outregs); 

Prototype in dos.h 



.,.. COMPLETE FUNCTION REFERENCE .,.. 507 

~ intdosx ~ 
intdosx 

Prototype 

general MS-DOS interrupt interface 

#include <dos.h > 
int intdosx(union REGS *inregs, union REGS *outregs, 

struct SREGS *segregs); 

Prototype in dos.h 

~ intr ~ 
intr 

Prototype 

alternate 8086 software interrupt interface 

#include <dos.h > 
void intr(int intr _num, struct REGPACK *preg); 

Prototype in dos.h 

~ is ... ~ 
is •.. 

Prototype 

character classification macros 

#include <ctype.h > 
int isalpha(int ch); 
int isalnum(int ch); 
int isascii(int ch); 

int iscntrl(int ch); 
int isdigit(int ch); 
int isgraph(int ch); 
int islower(int ch); 
int isprint(int ch); 

int ispunct(int ch); 
int isspace(int ch); 
int isupper(int ch); 
int isxdigit(int ch); 

Prototype in io.h 

~ isatty ~ 
isatty 

Prototype 

checks for device type 

int isatty(int handle); 

Prototype in io.h 



508 .. MASTERING TURBO C .. 
APP.G 

~ itoa ~ 
itoa 

Prototype 

converts an integer to a string 

char *itoa(int value, char *string, int radix); 

Prototype in stdlib.h 

~ kbhit ~ 
kbhit 

Prototype 

checks for recent keystrokes 

int kbhit(void); 

Prototype in conio.h 

~ labs ~ 
labs gives long absolute value 

Prototype long labs(long n); 

Prototype in stdlib.h 

~ ldiv ~ 
/div 

Prototype 

divides two longs, returns quotient and remainder 

#include <stdlib.h > 
ldiv_t ldiv(long lnumer,long ldenom): 

Prototype in stdlib.h 

~ lfind ~ 
/find 

Prototype 

performs a linear search 

#include <stdlib.h > 
void *lfind(const void *key, const void *base, 
size_t*pnelem, size_t width, int(*fcmp)(const void*, const 

void*)); 

Prototype in stdlib.h 



~ COMPLETE FUNCTION REFERENCE ~ 509 

~ localtime ~ 
localtime 

Prototype 

converts date and time to a structure 

#include <time.h > 
struct tm * localtime(long *clock); 

Prototype in time.h 

~log~ 

log logarithm function in(x) 

Prototype double log( double x); 

Prototype in math.h 

~ log10 ~ 
log10 logarithm function log10 (X) 

Prototype double log10(double x); 

Prototype in math. h 

~ _/rot/ ~ 
_lrotl rotates an unsigned long value to the left 

Prototype unsigned long _lrotl(unsigned long lvalue, int count); 

Prototype in stdlib.h 

~ _lrotr ~ 
_lrotr rotates an unsigned long value to the right 

Prototype unsigned long _lrotr(unsigned long lvalue, int count); 

Prototype in stdlib.h 



510 • MASTERING TURBO C • 
APP.G 

.... /search .... 
/search 

Prototype 

linear search 

#include <stdlib.h > 
void *lsearch(const void *key, void *base, size_t *pnelem, 
size_t width, int(*fcmp)(const void* ,const void*)); 

Prototype in stdlib.h 

.... /seek .... 
/seek 

Prototype 

moves read/write file pointer 

#include <io.h > 
long lseek(int handle, long offset, int fromwhere); 

Prototype in io.h 

.... ltoa .... 
ltoa 

Prototype 

converts a long to a string 

char *ltoa(long value, char *string, int radix); 

Prototype in stdlib.h 

.... ma//oc .... 
ma/toe 

Prototype 

allocates main memory 

#include <stdlib.h > 
void*malloc(size_t size); 

Prototype in stdlib.h and alloc.h 

.... mem ... .... 
mem .•• manipulates memory arrays 

Prototype in string.h 
mem.h 



~ COMPLETE FUNCTION REFERENCE ~ 511 

~ mkdir ~ 
mkdir 

Prototype 

creates a directory 

int mkdir(char *pathname); 

Prototype in dir.h 

~ mktemp ~ 
mktemp 

Prototype 

makes a unique file name 

char *mktemp(char *template); 

Prototype in dir.h 

~ modf ~ 
modf splits into integer part and fraction 

Prototype double modf(double value, double *iptr); 

Prototype in math.h 

~ movedata ~ 
movedata 

Prototype 

copies bytes 

void movedata(int segsrc, int offsrc, int segdest, int offdest, 
unsigned numbytes); 

Prototype in mem.h 
string.h 

~ movmem ~ 
movmem moves a block of bytes 

Prototype void movmem(void *source, void *destin, unsigned /en); 

Prototypein mem.h 



512 ... MASTERING TURBO C ... 
APP. G 

... nosound ... 
nosound turns PC speaker off 

Prototype void nosound(void); 

Prototype in dos.h 

.,. _open ... 
_open 

Prototype 

opens a file for reading or writing 

#include <fcntl.h > 
int_open(char *pathname, int access); 

Prototype in io.h 

.,. open ... 
open 

Prototype 

opens a file for reading or writing 

#include <fcntl.h > 
#include <sys\stat.h > 
int open(char *pathname, int access(,intpermiss]); 

Prototype in io.h 

.,. putc.,. 
putc 

Prototype 

outputs a character to a stream 

#include <stdio.h > 
int putc(int ch, FILE *stream); 

Prototype in stdio.h 

.,. putch ... 
putch 

Prototype 

puts character on screen 

int putch(int ch); 

Prototype in conio.h 



.,. COMPLETE FUNCTION REFERENCE ... 513 

.... putchar .... 
putchar 

Prototype 

puts character on a stream 

#include <stdio.h> 
int putchar(int ch); 

Prototype in stdio.h 

.... putenv .... 
putenv 

Prototype 

adds string to current environment 

int putenv(char *envvar); 

Prototype in stdlib.h 

.... puts .... 
puts 

Prototype 

puts a string on a stream 

int puts(char *string); 

Prototype in stdio.h (fputs and puts) 
conio.h (cputs) 

.... putw .... 
putw 

Prototype 

puts character or word on a stream 

#include <stdio.h > 
int putw(int w, FILE *stream); 

Prototype in stdio.h 

.... qsort .... 
qsort 

Prototype 

sorts using the quick sort routine 

void qsort(void *base, int nelem, int width, int(*fcmp)( )); 

Prototype in stdlib.h 



514 .. MASTERING TURBO C .. 
APP. G 

.... rand .... 
rand 

Prototype 

random number generator 

int rand(void); 

Prototype in stdlib.h 

.... random .... 
random 

Prototype 

random number generator 

#include <stdlib.h > 
int random(int num); 

Prototype in stdlib.h 

.... randomize .... 
randomize initializes random number generator 

Prototype #include <stdlib.h > 
void randomize(void); 

Prototype in stdlib.h 

.... _read .... 
_read 

Prototype 

reads from file 

int_read(int handle, void *buf, int nbyte); 

Prototype in io.h 

.... read .... 
read 

Prototype 

reads from a file 

int read(int handle, void *but.unsigned nbyte); 

Prototype in io.h 



.,. COMPLETE FUNCTION REFERENCE .,. 515 

~ realloc ~ 
realloc 

Prototype 

reallocates main memory 

#include <stdlib.h > 

void *realloc(void *ptr,size_t newsize); 

Prototype in stdlib.h, alloc.h 

~ registerbgidriver ~ 
registerbgidriver registers linked-in graphics driver code 

Prototype #include <graphics.h> 
int registerbgidriver(void( * driver)(void)); 

Prototype in graphics.h 

~ registerbgifont ~ 
registerbgifont 

Prototype 

Prototype in 

~rename~ 

registers linked-in stroked font code 

#include <graphics.h > 
int registerbgifont(void ( *font)(void)); 

graphics.h 

rename renames a file 

Prototype int rename(char *o/dname, char *newname); 

Prototype in stdio.h 

~rewind~ 
rewind repositions a stream 

Prototype #include <stdio.h > 
int rewind(FILE *stream); 

Prototype in stdio.h 



516 .,. MASTERING TURBO C .,. 
APP.G 

.... rmdir .... 
rmdir removes directory 

Prototype int rmdir(char *pathname); 

Prototype in dir.h 

.... _rot/ .... 
_rotl 

Prototype 

rotates a value to the left 

unsigned _rotl(unsigned value, int count); 

Prototype in stdlib.h 

.... _rotr .... 
_rotr 

Prototype 

rotates a value to the right 

unsigned _rotr(unsigned value,int count); 

Prototype in stdlib.h 

.... setdate .... 
setdate sets MS-DOS date 

Prototype #include <dos.h> 
void setdate(struct date *dateblk); 

Prototype in dos.h 

.... setdisk .... 
setdisk sets current disk drive 

Prototype int setdisk(int drive); 

Prototype in dir.h 



.. COMPLETE FUNCTION REFERENCE .. 517 

.... setftime .... 
sethime 

Prototype 

gets file date and time 

#include < io.h > 
int setftime(int handle, struct ftime *ftimep); 

Prototype in io.h 

.... setmem .... 
setmem assigns a value to memory 

Prototype void setmem(void *addr, int fen, char value); 

Prototype in mem.h 

.... setmode .... 
set mode sets mode of open file 

Prototype int setmode(int handle, unsigned mode); 

Prototype in io.h 

.... settime .... 
settime 

Prototype 

sets system time 

#include <dos.h > 
void settime(struct time *timep); 

Prototype in dos.h 

.... sleep .... 
sleep 

Prototype 

suspends execution for interval 

unsigned sleep(unsigned seconds); 

Prototype in dos.h 



518 ... MASTERING TURBO C ... 
APP.G 

~sound~ 
sound 

Prototype 

turns PC speaker on at specified frequency 

void sound(unsigned frequency); 

Prototype in dos.h 

~ spawn ..• ~ 
spawn .•• 

Prototype 

functions that create and run other programs 

#include <process.h > 
int spawnl(int mode, char *pathname, char *argO, arg1, 
... ,argn, NULL); 

int spawnle(int mode, char *pathname, char *argO, 
arg1 , ... ,argn,NULL,char *envp[] ); 
int spawnlp(int mode,char *pathname, char 
*arg0,arg1 , ... ,argn,NULL; 
int spawnlpe(int mode.char *pathname, char 
*arg0,arg1, ... ,argn, NULL,char *envp{]); 
int spawnv(int mode, char *pathname.char * argv[] ); 
int spawnve(int mode, char *pathname.char *argv[ ], char 

*envp[]); 
int spawnvp(int mode, char *pathname.char * argv[] ); 
int spawnvpe(int mode, char *pathname, char *argv{ ],char 

*envp[ ]); 

Prototype in process.h 

~ sprintf ~ 
sprintf 

Prototype 

sends formatted output to a string 

int sprintf(char *string, char *format[,argument, ... ]); 

Prototype in stdio.h 

~sqrt ~ 

sqrt 

Prototype 

calculates square root 

double sqrt(double x); 

Prototype in math.h 



.,. COMPLETE FUNCTION REFERENCE .- 519 

~ srand ~ 
srand 

Prototype 

initializes random number generator 

void srand(unsigned seed); 

Prototype in stdlib.h 

~ sscanf ~ 
sscanf performs formatted input from a string 

Prototype int sscanf(char *string, char *format[,argument, ... ]); 

Prototype in stdio.h 

~ stat ~ 
stat 

Prototype 

gets information about open file 

#include <sys\stat.h > 
int stat(char *pathname, struct stat *buff) 

Prototype in sys\stat.h 

~ stime ~ 
stime sets time 

Prototype int stime(long *tp); 

Prototype in time.h 

~ stpcpy ~ 
stpcpy 

Prototype 

copies one string into another 

char *stpcpy(char *destin, char *source); 

Prototype in string.h 



520 .,. MASTERING TURBO C .,. 
APP.G 

.... str •.• .... 
str... family of string manipulation functions 

Prototype char * stpcpy(char *destin, char *source); 

char * strcat(char *destin, char *source); 

char * strchr(char *str, char c); 

int strcmp(char * str1, char * str2); 

char * strcpy(char *destin, char *source); 

int strcspn(char *str1, char *str2); 

char * strdup(char *str); 

int stricmp(char * str1, char *str2); 

int strcmpi(char *str1, char *str2); 

unsigned strlen(char * str); 

char * strlwr(char *str); 

char * strncat(char *destin, char *source, int max/en); 

int strucmp(char *str1, char *str2, int max/en); 

char * strncpy(char *destin, char *source, int 
max/en); 

int strnicmp(char *str1, char *str2, unsigned 
max/en); 

int strncmpi(char *str1, char *str2, unsigned 
max/en); 

char * strnset(char *str, char ch, unsigned n); 

char * strpbrk(char * str1 ,char * str2); 

char * strrchr(char *str,char c); 

char * strrev(char *str); 

char * strset(char *str,char ch); 

int strspn(char *str1,char *str2); 

char * strstr(char *str1, char *str2); 

double strtod(char *str,char * *endptr); 

long strtol(char *str,char * *endptr,int base); 

char * strtok(char *str1, char *str2); 

char * strupr(char *str); 

Prototype in string.h 



... COMPLETE FUNCTION REFERENCE ... 521 

..,. strerror ..,. 

strerror 

Prototype 

returns pointer to error message string 

char *Strerror(int errnum); 

Prototype in string.h 

.... _strerror .... 
_strerror 

Prototype 

returns pointer to error message string 

char * _strerror(const char *string); 

Prototype in string.h 

.... strtoul .... 
strtoul 

Prototype 

converts a string to an unsigned long 

unsigned long strtoul(const char *str,char * *endptr,int 
radix); 

Prototype in stdlib.h 

.... swab .... 
swab 

Prototype 

swaps bytes 

void swab(char(from, char *to, int nbytes); 

Prototype in stdlib.h 

.... system .... 
system 

Prototype 

issues an MS-DOS command 

int system(char *command); 

Prototype in stdlib.h 



522 ~ MASTERING TURBO C ~ 
APP.G 

~tan~ 

tan trigonometric tangent function 

Prototype double tan( double x); 

Prototype in math.h 

~ tell ~ 
tell 

Prototype 

gets current position of file pointer 

long tell(int handle); 

Prototype in io.h 

~ time ~ 
time gets time of day 

Prototype long time(long *t/oc); 

Prototype in time.h 

~ tmpfile ~ 
tmpfile 

Prototype 

opens a binary "scratch" file 

#include<stdio.h > 
FILE *tmpfile(void); 

Prototype in stdio.h 

~ tmpnam ~ 
tmpnam creates a unique file name 

Prototype char *tmpnam(char *sptr); 

Prototype in stdio.h 



.,. COMPLETE FUNCTION REFERENCE .,. 523 

~ toascii ~ 
toascii translates characters to ASCII format 

Prototype int toascii(int c); 

Prototype in ctype.h 

~ _tolower ~ 
_tolower 

Prototype 

translates characters to lowercase 

#include <ctype.h > 
int _tolower(int c); 

Prototype in ctype.h 

~ tolower ~ 
tolower translates characters to lowercase 

Prototype int tolower(int c); 

Prototype in ctype.h 

~ _toupper ~ 
_toupper 

Prototype 

translates characters to uppercase 

#include <ctype.h > 
int _toupper(int c); 

Prototype in ctype.h 

~ toupper ~ 
toupper 

Prototype 

translates characters to uppercase 

int toupper(int c); 

Prototype in ctype.h 



524 .,. MASTERING TURBO C .,. 
APP.G 

.... ultoa .... 
ultoa 

Prototype 

converts an unsigned long to a string 

char *ultoa(unsigned long value, char *string, int radix); 

Prototype in stdlib.h 

.... ungetc .... 
ungetc 

Prototype 

pushes a character back into input stream 

#include <stdio.h > 
int ungetc(char c, FILE *stream); 

Prototype in stdio.h 

.... ungetch .... 
ungetch 

Prototype 

pushes a character back to the keyboard buffer 

int ungetch(int c); 

Prototype in conio.h 

.... unlink .... 
unlink 

Prototype 

deletes a file 

int unlink(char *filename); 

Prototype in dos.h 

.... _write .... 
_write writes to a file 

Prototype int _write(int handle, void *but, unsigned nbyte); 

Prototype in io.h 



,.. COMPLETE FUNCTION REFERENCE ,.. 525 

.... vvrit~ .... 
write writes to a file 

Prototype int write(int handle, void *but, int nbyte); 

Prototype in io.h 

.,... DESCRIPTIONS OF GRAPHICS FUNCTIONS .,... 

.... arc .... .... graphics .... 
arc draws a circular arc 

Prototype #include <graphics.h > 
void far arc(int x, int y, int stangle, int endangle, int radius); 

Prototype in graphics.h 

~ Description 
This function draws a circular arc on a graphics screen, using the current 

drawing color and line style. The center is at the coordinates given by x and 

y, and the radius is given by radius. The parameters stangle and endangle 
specify the starting and stopping angles in degrees, where 0 degrees is at the 

3 o'clock position, 90 degrees is at 12 o'clock, and so on. 

For example, the following code draws an arc and connects the end­

points: 

struct arccoordstype arccoords; 

arc (100, 100,0, 180,75); 
getarccoords ( &arccoords); 
Ii ne ( arccoords.xstart, arccoords. ystart, 
arccoords.xend ,arccoords. yend); 

See also getarccoords( ), line() 

.... bar .... .... graphics .... 
bar draws a bar 

Prototype #include <graphics.h > 
void far bar(int left, int top, int right, int bottom); 

Prototype in graphics.h 



526 ~ MASTERING TURBO C ~ 
APP.G 

~ Description 
This graphics function draws a bar on the screen by filling the specified 

r 

rectangular area with the current fill color and fill pattern. It does not draw 
an outline around the bar (to draw an outline, you can use bar3d() with a 
depth value of 0). The first two parameters give the coordinates of the upper­
left corner of the bar, and the second two parameters specify the lower­

right corner. 
bar() could be used, for example, to construct bar charts. The following 

code draws a vertical bar: 

bar (50,50, 75, 150); 

See also bar3d( ) 

.... bar3d..,. .... graphics .... 
bar3d 

Prototype 

draws a 3-0 bar 

#include <graphics.h > 
void far bar3d(int left, int top, int right, int bottom, int depth, 

int topflag); 

Prototype in graphics.h 

~ Description 
bar3d( ) draws the outline for a three-dimensional bar on a graphics 

screen, using the current drawing color and line style, and then fills the 
enclosed area with the current fill color and pattern. The first four parame­
ters give the upper-left and lower-right corners of the bar, and the depth 
parameter specifies the depth in pixels. You should set topflag to 1 if you 
want a top drawn on the box and to 0 if you do not want a top. 

This function can be used to create attractive three-dimensional bar 
charts. The following lines generate a bar that is filled with slanted lines: 

setfillstyle (LTSLASH_FILL,1); 
bar3d (50,50, 75, 150,5, 1 ); 

See also bar(), setfillstyle() 



~ COMPLETE FUNCTION REFERENCE ~ 527 

~ circle ~ ~graphics ~ 

circle draws a circle 

Prototype #include <graphics.h > 
void far circle(int x, int y, int radius); 

Prototype in graphics.h 

~ Description 
circle() draws a circle on the graphics screen with a center given by x and 

y and a radius specified by radius. The function uses the current drawing 
color and line style. For example, the following line draws a circle in the cen­
ter of the screen, with a radius of 75 pixels: 

circle (getmaxx () I 2, getmaxy () I 2, 75); 

See also getmaxx( ), getmaxy() 

~ cleardevice ~ 
cleardevice clears the graphics screen 

Prototype #include <graphics.h > 
void far cleardevice(void); 

Prototype in graphics.h 

~ Description 

~graphics ~ 

This function clears the entire graphics screen and moves the current posi­

tion to (0,0). You should use the function clearviewport() to clear only the 
current viewport on a graphics screen and clrscr() to clear the screen when 
you are in a text mode. 

See also clearviewport( ), clrscr() 



528 .,. MASTERING TURBO C .,. 
APP. G 

~ clearviewport ~ 
c/earviewport clears the current viewport 

Prototype #include <graphics.h > 
void far clearviewport(void); 

Prototype in graphics.h 

... Description 

~graphics~ 

This function clears only the current viewport on a graphics screen and 
moves the current position (CP) to (0,0). You should use cleardevice( ) to 
clear the entire graphics screen or clrscr() to clear the screen when you are 

in a text mode. 

See also cleardevice( ), clrscr( ), getviewsettings() 

~ closegraph ~ 
c/osegraph shuts down the graphics system 

Prototype #include <graphics.h > 
void far closegraph(void); 

Prototype in graphics.h 

... Description 

~graphics ~ 

You should call closegraph() when you have finished using the Turbo C 
graphics routines. This function releases the memory allocated by the graph­
ics system and restores the screen to the video mode that was active before 
initgraph() was called. 

See also initgraph() 

~ dreo/ ~ 
c/reo/ 

Prototype 

clears to end of line in text windows 

void clreol(void); 

Prototype in conio.h 

~ text ~ 



.,. COMPLETE FUNCTION REFERENCE .,. 529 

~ Description 
You should use this function only when you are in a text mode. It clears all 

characters from the cursor position to the end of the line within the current 
text window. clreol() does not move the cursor. 

See also clrscr( ), delline( ), window() 

~ c/rscr ~ ~ text ~ 
clrscr clears text mode windows 

Prototype void clrscr(void); 

Prototype in conio.h 

~ Description 
clrscr() should be used only in a text mode. This function clears the cur­

rent window and places the cursor at position (1, 1) within this window. To 
clear the entire screen, the current window must be defined to encompass 
the full screen. To clear a graphics screen, use either cleardevice() or clear­
viewport( ). 

See also cleardevice( ), clreol( ), clearviewport( ), delline( ), window() 

~ de/line ~ 
de/line 

Prototype 

deletes line in text window 

void delline(void); 

Prototype in conio.h 

~ Description 

~ text ~ 

You should use delline() only in a text mode. This function deletes the line 
containing the cursor and fills the gap by moving up all lines thatare below it. 
delline() affects only lines within the current text window. 

See also clreol( ), window() 



530 .. MASTERING TURBO C .. 
APP.G 

~ detectgraph ~ ~graphics ~ 

detectgraph determines graphics driver and mode to use by checking 
the hardware 

Prototype #include <graphics.h> 
void far detectgraph(int far *graphdriver, int far *graphmode); 

Prototype in graphics.h 

... Description 
This function determines the type of graphics adapter installed in the com­

puter and the highest resolution graphics mode supported by the adap­

ter. detectgraph() assigns the graphics adapter type to *graphdriver and 
the graphics mode to *graphmode. Constant definitions for all graphics 
adapter types and modes are furnished in the header file graphics.h. If 
detectgraph( ) detects none of the supported graphics adapter types, it 
assigns a value of - 2 to *graphdriver. 

For example, the following code will print the current video adapter type 
and highest resolution mode: 

int graphdriver; 
int graphmode; 

detectgraph (&graphdriver,&graphmode); 
printf ("driver = O/od; mode = O/od", graphdriver, 

graph mode); 

See also initgraph() 

~ drawpoly ~ 
drawpo/y 

Prototype 

draws the outline of a polygon 

#include <graphics.h> 

~graphics ~ 

void far drawpoly(int numpoints, int far *polypoints); 

Prototype in graphics.h 



~ COMPLETE FUNCTION REFERENCE ~ 531 

... Description 
This function draws a sequence of connected line segments on the graph­

ics screen and can be used to construct a polygon. The first parameter, num­
points, gives the number of endpoints, and the second parameter, 

polypoints, contains the address of a sequence of integer pairs that specify 

each endpoint. The function uses the current drawing color and line style 

and draws a line segment from the first endpoint to the second endpoint, 

from the second endpoint to the third, and so on through the last end­

point. For example, the following code draws a triangle: 

int triangle [ ) = 

{ 
300,100, 
400,190, 
200,190, 
300,100 
} ; 

drawpoly (4, triangle); 

Note that to draw a closed figure consisting of three lines, this example 

must specify four endpoints. You do not need to draw a polygon with this 

function-you can construct any sequence of connected line segments. 

See also fillpoly() 

~ ellipse ~ ~graphics ~ 

ellipse 

Prototype 

draws an elliptical arc 

#include <graphics.h > 
void far ellipse(int x, int y, int stangle, int endang/e, int 

xradius, int yradius); 

Prototype in graphics.h 

... Description 
This function draws an elliptical arc on the graphics screen, using the cur­

rent drawing color and line style. The first two parameters specify the x and y 



532 ,.. MASTERING TURBO C ,.. 
APP.G 

coordinates of the center of the ellipse, and stangle and endangle give the 

starting and ending angles of the arc in degrees, where 0 degrees is at the 

3 o'clock position, 90 degrees is at 12 o'clock, and so on. The parameters 

xradius and yradius provide the lengths of the horizontal and vertical axes 

(that is, one half the total horizontal and vertical dimensions). 
For example, the following command draws an elliptical arc that consists 

of half an ellipse: 

ellipse (300,200,0, 180, 100,50); 

.... fillpo/y .... .... graphics .,.. 
fillpoly 

Prototype 

draws and fills a polygon 

#include <graphics.h > 
void far fillpoly(int numpoints, int far *po/ypoints); 

Prototype in graphics.h 

... Description 
This function draws a polygon using the current drawing color and line 

style and then fills the polygon using the current fill color and pattern. See 

the description of drawpoly() for an explanation of the parameters. 

.... floodfill .... 
floodfill 

Prototype 

flood-fills a bounded region 

#include <graphics.h > 
void far floodfill(int x, int y, int border); 

Prototype in graphics.h 

... Description 

.,.. graphics .,.. 

This function fills the area on a graphics screen surrounding the point given by 

x and y with the current fill color and pattern until a border consisting of the 

color border is encountered. Note that to fill a discrete area of the screen, the 



.- COMPLETE FUNCTION REFERENCE .- 533 

surrounding border must be continuous; if there are any gaps, the filling will leak 

out, possibly encompassing the entire screen. floodfill() returns - 7 if an error 

occurs. For compatibility with future versions of the graphics package, Borland 

recommends that you use fillpoly() whenever possible. 

For example, the following code draws a circle and then fills the area with 

cross-hatching. 

circle (360, 174,200); 
setfillstyle (HATCH_FILL, 1); 
floodfill (360,174,1); 

Note that although this example specifies the coordinates of the center of the 

circle, any point within the circle could have been chosen. 

See also fillpoly() 

~ getarccoords ~ ~graphics ~ 
getarccoords gets coordinates of the last call to arc 

Prototype #include <graphics.h > 
void far getarccoords(struct arccoordstype far *arccoords); 

Prototype in graphics.h 

.... Description 
getarccoords() loads the arccoordstype structure with information regard­

ing the last call to arc(). This structure is defined in graphics.has follows: 

struct arccoordstype 
{ 
int X, y; 
int xstart, ystart, xend, yend; 
}; 

See the example given under the description of arc(). 

See also arc() 



534 .,. MASTERING TURBO C .,. 

APP. G ' 

..,. getaspectratio ..,. .... graphics .... 
getaspectratio returns the current graphics mode's aspect ratio 

Prototype #include <graphics.h > 
void far getaspectratio(int far * xasp, int far * yasp); 

Prototype in graphics.h 

~ Description 
This graphics function returns the relative horizontal and vertical spacings 

between pixels on the screen. The relative horizontal spacing is assigned to 

*xasp and the relative vertical spacing to *yasp. On a CGA system, for 

example, the horizontal spacing is less than the vertical spacing; therefore 

the value assigned to *xasp is smaller than that assigned to *yasp (in high­

resolution graphics, there are 640 pixels across the screen but only 200 from 

top to bottom). Note that the function does not actually return the aspect 

ratio; rather, you must calculate the ratio from the relative values that are 

returned (by performing a division). 

This function can be used to specify horizontal and vertical pixel dimen­

sions that will generate equal dimensions on the screen. For example, the 

following code uses getaspectratio() to generate a rectangle that will 

appear on the screen with four equal sides: 

int xasp, yasp; 
int xdim, ydim; 

getaspectratio (&xasp,&yasp); 
xdim = 200; 
ydim = (200L * xasp) I yasp; 
rectangle (0,0,xdim,ydim); 

..,. getbkcolor ..,. 
getbkcolor returns the current background color 

Prototype #include <graphics.h> 
int far getbkcolor(void); 

Prototype in graphics.h 

..,. graphics..,. 



~ COMPl.ETE FUNCTION REFERENCE ~ 535 

... Description 
This function returns the current background color used in graphics 

modes. For VGA, EGA, and low-resolution CGA graphics modes, the back­
ground color is the color displayed for a pixel value of 0 (in other words it is 
color number 0 in the current palette). The following colors are available in 

these modes (the constants are defined in graphics.h): 

Constant Numeric Value 

BLACK 0 

BLUE 

GREEN 2 

CYAN 3 

RED 4 

MAGENTA 5 

BROWN 6 

LIGHTGRAY 7 

DARKGRAY 8 

LIGHTBLUE 9 

LIGHTGREEN 10 

LIGHTCYAN 11 

LIGHTRED 12 

LIGHTMAGENTA 13 

YELLOW 14 

WHITE 15 

The values returned by this function for two-color graphics modes, such as 
high-resolution CGA and Hercules graphics, seem to be meaningless (they 
only reflect the last value passed to setbkcolor( ); see the description of 
setbkcolor( )). 

See also setbkcolor( ) 



536 .. MASTERING TURBO C .. 
APP. G 

... getcolor ... ... graphics ... 
get color 

Prototype 

returns the current drawing color 

#include <graphics.h > 
int far getcolor(void); 

Prototype in graphics.h 

... Description 
This function returns the color used to draw objects in graphics modes. 

The possible return values range from 0 to the maximum color value sup­
ported by the graphics mode (returned by getmaxcolor( )). The return value 
represents the actual pixel value written to video memory. For VGA, EGA, 
and low-resolution CGA graphics modes, a pixel value is an index into the 
current color palette; therefore, for these modes the actual color corres­
ponding to the value returned by getcolor() depends upon the current pal­
ette. For example, if the video mode is CGACl (CGA palette 1 ), then a pixel 
value of 2 indicates light magenta. The default EGA palette (which can be 
modified) contains the 16 basic colors listed in the descriptions of getbkco­
lor() and getpalette( ). See the detailed explanation of color palettes in the 
Turbo C Additions and Enhancements manual. (In a Hercules graphics 
mode, the only pixel values are 0 for black and 1 for white. For high­
resolution CGA graphics, the actual color that corresponds to a pixel value 
of 1 depends upon the value passed to the setbkcolor() function.) 

See also getmaxcolor( ), setbkcolor() 

... getfillpattern ... ... graphics ... 
getfi/lpattern copies a user-defined fill pattern into memory 

Prototype #include <graphics.h > 
void far getfillpattern(char far *upattern); 

Prototype in graphics.h 

... Description 
This function copies the current user-defined fill pattern, if one has been 

defined, into the 8-byte array upattern. getfillpattern() allows you to save a 



.,.. COMPLETE FUNCTION REFERENCE ... 537 

user-defined fill pattern so that it can later be restored. See the explanation of 

setfillpattern() for a description of how a user-defined fill pattern is created. 

See also getfillsettings( ), setfillpattern( ), setfillstyle() 

.... getfillsettings .... .... graphics .... 
getfillsettings gets information about current fill pattern and color 

Prototype #include <grahics.h > 
void far getfillsettings(struct fillsettingstype far *fillinfo); 

Prototype in graphics.h 

~ Description 
This function returns the current graphics fill pattern and fill color. The fill 

pattern and color are those used to fill areas of the graphics screen by the 

functions bar(), bar3d( ), fillpoly( ), floodfill( ), and pieslice( ). 

getfillsettings() returns these values by assigning the fields of a 

fillsettingstype structure, which is defined in graphics.h as follows: 

struct fillsettingstype 
{ 
int pattern; 
int color; 
}; 

The pattern field contains a code for one of the following predefined patterns: 

Pattern 

Constant Number Type of Pattern 

EMPTY_FILL 0 background color 

SOLID_FILL solid color 

LINE_FILL 2 horizontal lines 

LTSLASH_FILL 3 111 pattern 

SLASH_FILL 4 111 pattern (thick lines) 

BKSLASH_FILL 5 \ \ \ pattern (thick lines) 



538 ~ MASTERING TURBO C ~ 
APP.G 

LTBKSLASH_FILL 

HATCH_ FILL 

XHATCH_FILL 

INTERLEAVE_FILL 

WIDE_DOT _FILL 

CLOSE_ DOT _FILL 

USER_FILL 

6 \\\pattern 

7 light cross hatch 

8 heavy cross hatch 

9 interleaving lines 

10 sparse dots 

11 densely packed dots 

12 user-defined fill pattern 

If the value USER_FILL is returned, then the current fill pattern is 
user-defined. User-defined patterns are created through the function set 
fillpattern( ). 

The co/or field identifies the color value used to fill areas. See the descrip­
tion of getcolor() for an explanation of color values. 

See also getfillpattern( ), setfillpattern( ), setfillstyle() 

~ getgraphmode ~ ~graphics ~ 
getgraphmode returns the current graphics mode. 

Prototype #include <graphics.h > 
int far getgraphmode(void); 

Prototype in graphics.h 

.- Description 
This function returns the current graphics mode. A list of all graphics 

modes supported by Turbo C is provided in the description of the function 
initgraph( ). 

getgraphmode() is useful for saving the graphics mode set by initgraph( ), 
so that this mode may later be restored by calling setgraphmode( ). Note 
that you must call initgraph( ) before you can successfully call getgraph 
mode(). See the description of setgraphmode() for a program example. 

See also getmoderange( ), initgraph( ), restorecrtmode( ), setgraphmode() 



~ COMPLETE FUNCTION REFERENCE ~ 539 

..,.. getimage ..... ..... graphics ..... 
getimage 

Prototype 

saves a bit image of the specified region into memory. 

#include <graphics.h > 
void far getimage(int left, int top, int right, int bottom, void far 

*bitmap); 

Prototype in graphics.h 

.- Description 

This function saves a rectangular area of a graphics screen in the buffer 

pointed to by the parameter bitmap. The first two parameters specify the 

upper-left corner of the area, and the second two parameters give the lower­

right corner. To determine the correct buffer size, you should first call the 

function imagesize( ). To write the block of data back to the screen, use 

the function putimage( ). (Note that the function uses the first two words 

of the buffer to hold the width and height of the rectangle.) 

As an example, the following code writes a rectangle in the upper-left cor­

ner of the screen and then copies the block to another location, using get 
image( ) to save the image in a buffer and then putimage( ) to write the 

image to the new position: 

char *bitmap; 

rectangle (0,0,50,75); 
bitmap = malloc (imagesize (0,0,50, 75)); 
getimage (0,0,50, 75,bitmap); 
putimage (100,0,bitmap,COPY _PUT); 

See also imagesize( ), putimage() 

..,.. getlinesettings ..,.. ..... graphics ..... 
getlinesettings gets the current line style, pattern, and thickness 

Prototype #include <graphics.h > 

Prototype in 

void far getlinesettings(struct linesettingstype far 

* lineinfo); 

graphics.h 



540 ~ MASTERING TURBO C ~ 
APP. G 

... Description 

This function returns the current line style and thickness used by graphics 

drawing functions. The returned values are assigned to the linesettingstype 

structure pointed to by the parameter lineinfo. This structure is defined in 
graphics.h as follows: 

struct linesettingstype 
{ 
int linestyle; 
unsigned upattern; 
int thickness; 
} ; 

The linestyle field is set to one of the following possible line styles: 

Numeric 

Constant Value Meaning 

SOLID_LINE 0 solid line 

DOTTED_LINE dotted line 

CENTER_LINE 2 center line 

DASHED_LINE 3 dashed line 

USERBIT _LINE 4 user-defined line style 

A center line is one consisting of alternate long and short line segments. If the 
value USERBIT _LINE is returned, then the current line style is user-defined 

(via the function setlinestyle( )); in this case, the upattern field contains the 

bit pattern corresponding to the line style (see setlinestyle( )). 

The field thickness provides the current line thickness and is assigned one 

of the following values: 

Constant 

NORM_ WIDTH 

THICK_ WIDTH 

Numeric 

Value 

11 

33 

Meaning 

1 pixel wide 

3 pixels wide 



,.. COMPl.ETE FUNCTION REFERENCE ,.. 541 

The following are examples of functions that use the line settings returned 
by getlinesettings( ): arc(), circle(), drawpoly( ), ellipse(), line(), lineto( ), 
pieslice( ), and rectangle( ). 

See also setlinestyle() 

~ getmaxcolor ~ 
getmaxcolor returns maximum color value 

Prototype #include <graphics.h > 
int far getmaxcolor(void); 

Prototype in graphics.h 

~ Description 

~graphics ~ 

This function returns the highest color number available for the current 
graphics mode. For each mode the available colors are numbered begin­
ning with 0 and ending with the value returned by getmaxcolor( ). There­
fore, if getmaxcolor() returns n, there are n+ 1 colors available in the 
current mode. For VGA, EGA, and low-resolution CGA graphics modes, 
the color value is an index into the current palette. Consequently, for these 
modes, the value returned by getmaxcolor() is also the size of the palette 
minus 1. See the explanation of getcolor() for a description of color values. 

See also getcolor( ), getpalette( ), setcolor() 

~ getmaxx ~ 
getmaxx 

Prototype 

returns maximum x screen coordinate 

#include <graphics.h. > 
int far getmaxx(void); 

Prototype in graphics.h 

~graphics ~ 



542 ,.. MASTERING TURBO C ,.. 
APP. G 

~ Description 
This function returns the maximum horizontal screen coordinate for the 

current graphics mode. Because horizontal coordinates are given in terms 
of pixel numbers beginning with 0, the value returned by getmaxx() equals 

the number of horizontal pixels minus 1. For example, in a Hercules graph­
ics mode, getmaxx() returns 719 (Hercules resolution is 720 x 348 pixels). 

Using getmaxx() in conjunction with getmaxy() provides a convenient 
means for writing code that does not depend upon the particular graphics 

mode. For example, the following function call draws a circle in the center of 
the screen that has a radius equal to one-third the height of the screen and 
should produce consistent results with any graphics mode: 

circle (getmaxx ()I 2, getmaxy () I 2, getmaxy () I 3); 

See also getmaxy( ) 

~ getmaxy ~ ~graphics~ 
getmaxy 

Prototype 

returns maximum y screen coordinate 

#include <graphics.h > 
int far getmaxy(void); 

Prototype in graphics.h 

~ Description 

This function returns the maximum vertical screen coordinate for the cur­
rent graphics mode. See the description of getmaxx( ) for an explanation 
and a programming example. 

See also getmaxx() 

~ getmoderange ~ ~graphics ~ 
getmoderange gets the range of modes for a given graphics driver 

Prototype #include <graphics.h > 

Prototype in 

void far getmoderange(int graphdriver, int far */omode, int 

far *himode); 

graphics.h 



~ COMPl.ETE FUNCTION REFERENCE ~ 543 

~ Description 
This function returns the range of graphics modes available under a speci­

fied graphics driver. You should set graphdriver to the number of the driver; 

getmoderange() will then assign the lowest mode number to */omode 
(generally 0) and the highest mode number to *himode. If you pass an 

invaljd driver through the graphdriver parameter, getmoderange() will set 

both * lomode and * himode to - 1. 
The numbers and corresponding constant definitions for all graphics and 

modes are listed under the description of initgraph( ). 

See also getgraphmode( ), initgraph() 

~ getpalette ~ 
getpalette 

Prototype 

returns information about the current palette 

#include <graphics.h > 
void far getpalette(struct palettetype far *palette); 

Prototype in graphics.h 

~ Description 

~graphics ~ 

This function returns information regarding the color palette for the cur­

rent graphics mode and the current graphics driver. The function assigns the 

fields of the palettetype structure pointed to by the palette parameter. palet­

tetype is defined in graphics.has follows: 

#define MAXCOLORS 15 

struct palettetype 
{ 
unsigned char size; 
signed char colors[MAXCOLORS + 1]; 
} ; 

The size field is assigned the number of colors in the current palette and 

the colors array is loaded with a list of the actual color numbers in the cur­

rent palette. Note that these color numbers are the actual raw color num­

bers and should not be confused with the color values passed to functions 

such as setcolor( ), which are actually indices into the current color palette. 



544 • MASTERING TURBO C • 
APP. G 

See the description of getcolor() for an explanation of colors and palettes. 
For EGA and VGA systems, one of 64 possible color values can be 

assigned to a given palette element. The colors in the default EGA palette are 
the same as those available in CGA systems and have the following numeric 
values (constants are defined in graphics.h): 

Numeric 

Constant Value 

EGA_BLACK 0 

EGA_ BLUE 

EGA_ GREEN 2 

EGA_ CYAN 3 

EGA_ RED 4 

EGA_MAGENTA 5 

EGA_ BROWN 20 

EGA_LIGHTGRAY 7 

EGA_DARKGRAY 56 

EGA_LIGHTBLUE 57 

EGA_LIGHTGREEN 58 

EGA_LIGHTCYAN 59 

EGA_LIGHTRED 60 

EGA_LIGHTMAGENTA 61 

EGA_YELLOW 62 

EGA_WHITE 63 

For CGA and Hercules graphics modes, the getpalette( ) function does 
not seem to return meaningful values. 

See also getbkcolor( ), getcolor( ), getmaxcolor( ), setallpalette( ), 
setpalette( ) 



.,. COMPLETE FUNCTION REFERENCE .,. 545 

.... getpixel .... .... graphics .... 
getpixel 

Prototype 

gets the color of a specified pixel 

#include <graphics.h > 
int far getpixel(int x, int y); 

Prototype in graphics.h 

~ Description 

getpixel() returns the value of the pixel at the location given by the coordi­
nates x and y. Note that the return value is the actual number written to 
video memory, which is an index into the current color palette. See the 
description of getcolor() for an explanation of color values. 

See also getcolor( ), putpixel( ) 

.... gettext .... .... text .... 
gettext 

Prototype 

copies text from text-mode screen to memory 

int gettext(int left, int top, int right, int bottom, void *destin); 

Prototype in conio.h 

~ Description 
This function can be used only in text mode. It copies a block of screen 

data to destin. The first two parameters give the column and row coordi­
nates of the upper-left corner of the block, and the second two parameters 
give the coordinates of the lower-right corner. Note the following: 

... The coordinates are absolute positions on the full screen (they are 
not window-relative). 

... The target buffer must be large enough to contain the data. Because 
each character on the screen requires 2 bytes of storage (one for the 
character and one for the attribute), the size of the buffer in terms of 



546 • MASTERING TURBO C • 
APP.G 

the parameters is given by the following expression: 

(right - left+ 1) * (bottom - top+ 1) * 2 

• gettext() returns 1 if successful and 0 if an error occurs. 

Once the screen information has been stored in the buffer, it can be writ­

ten back to the screen, optionally at a different location, using the function 

puttext( ). The function movetext() provides an alternative means for mov­
ing screen data immediately from one location on the screen to another. 

See also movetext( ), puttext() 

~ gettextinfo ~ ~ text ~ 
gettextinfo gets text mode video information 

Prototype #include <conio.h > 
void gettextinfo(struct text_info * inforec); 

Prototype in conio.h 

~ Description 
This function supplies a wealth of information on the current state of the 

text mode screen. The function assigns values to the fields of a text_info 

structure, the address of which is passed as a parameter. This structure is 

defined in conio.h as follows: 

struct text_info 
{ 
unsigned char winleft; 
unsigned char wintop; 
unsigned char winright; 
unsigned char winbottom; 
unsigned char attribute; 
unsigned char normattr; 
unsigned char currmode; 
unsigned char screenheight; 
unsigned char screenwidth; 
unsigned char curx; 
unsigned char cury; 
}; 

/* left coordinate of window*/ 
I* top coordinate of window *I 
I* right coordinate of window *I 
/* bottom coordinate of window*/ 
I* current text attribute *I 
I* normal attribute *I 
I* current text mode *I 
I* number of rows on screen *I 
/* number of columns on screen */ 
I* x coordinate in window *I 
/* y coordinate in window*/ 



.,. COMPLETE FUNCTION REFERENCE .,. 547 

~ gettextsettings ~ ~graphics ~ 
gettextsettings returns information about the current text settings 

Prototype #include <graphics.h > 
void far gettextsettings(struct textsettingstype far 
* textinfo); 

Prototype in graphics.h 

~ Description 
This function returns the current settings for text displayed in graphics 

modes. The information is returned by assigning the fields of a textsettings 
type structure, the address of which is passed to gettextsettings( ). This 
structure is defined in graphics.h as follows: 

struct textsettingstype 
{ 
int font; 
int direction; 
int charsize; 
int horiz; 
int vert; 
}; 

I* current graphics character font *I 
/* horizontal or vertical direction */ 
I* size of text characters *I 
I* justification for horizontal characters *I 
I* justification for vertical characters *I 

The first three parameters are set by the function settextstyle( ), and the 
last two are set by settextjustify( ). 

The font field can have one of the following values (constants are defined 
in graphics.h): 

Numeric 

Constant Value Meaning 

DEFAULT _FONT 0 default: 8x 8 bit-mapped font 

TRIPLEX_FONT stroked triplex font 

SMALL_FONT 2 stroked small font 

SANS_SERIF _FONT 3 stroked sans serif font 

GOTHIC_FONT 4 stroked gothic font 

DEFAULT _FONT is the default font and is built into the graphics library; 

the characters in this font are based upon an 8 x 8-pixel bit map, and as the 
characters are enlarged they become coarser. The remaining fonts are often 



548 .,. MASTERING TURBO C .,. 
APP.G 

read at run time from corresponding font files (which have a .CHR exten­
sion). These fonts are based upon vector graphics and retain their resolution 
when enlarged. 

The direction field specifies whether the text is to be displayed horizontally 
or vertically. It should be assigned one of the following values: 

Constant 

HORIZ_DIR 

VERT_DIR 

Numeric 

Value 

0 

Meaning 

default: horizontal text 

vertical text 

The charsize field specifies a magnification factor for the graphics charac­
ters. A value of 1 signifies the default size (for DEFAULT _FONT this is an 
8 x 8-pixel matrix); a value of 2 indicates a magnification of 2 times the 
default size; and so on. If charsize is assigned 0, then the font size is regu­
lated by calling setusercharsize( ); this option, however, affects the stroked 
fonts only. Use the functions textheight() and textwidth() to determine the 
actual size of a string displayed on the screen. 

The horiz field specifies the style of justification used for horizontal text. It 
can be assigned one of the following values: 

Numeric 

Constant Value Meaning 

LEFT_TEXT 0 default: left-justified text 

CENTER_ TEXT centered text 

RIGHT_TEXT 2 right-justified text 

Finally, the vert field specifies the style of justification used for vertical text. 
It can be assigned one of the following values: 

Numeric 

Constant Value Meaning 

BOTTOM_ TEXT 0 bottom-justified text 

CENTER_ TEXT centered text 

TOP_TEXT 2 default: top-justified text 



~ COMPLETE FUNCTION REFERENCE ~ 549 

Note that justification is performed relative to the current position (CP); for 
example, bottom-justified vertical text would begin at the current position 

and extend upward. 

See also settextstyle( ), settextjustify( ), textheight( ), textwidth( ) 

~ getviewsettings ~ ~graphics ~ 
getviewsettings returns information about the current viewport 

Prototype #include <graphics.h > 
void far getviewsettings(struct viewporttype far *viewport); 

Prototype in graphics.h 

.... Description 
getviewsettings() returns information about the current graphics view­

port. The function assigns values to the fields of a viewporttype structure, the 

address of which is passed as a parameter. This structure is defined in 
graphics.h as follows: 

struct viewporttype 
{ 
int left, top, right, bottom; 
int clip; 
} ; 

The first four fields give the coordinates of the current viewport. The view­
port is a rectangular area on the screen that serves as a reference frame for 
many graphics functions. For example, all x and y coordinates passed to 
drawing functions are relative to the upper-left corner of the current view­
port; also, functions such as getimage( ), putimage( ), and clearviewport() 
affect only the area within the current viewport. However, the coordinates 
passed to certain functions, such as getviewsettings() and setviewport( }, 
use absolute screen coordinates rather than viewport-relative coordinates. 
When a viewport is defined, the current position (CP) is assigned to the posi­

tion (0,0) with respect to the new viewport. The default viewport established 
by initgraph() and setgraphmode() is the entire graphics screen. 



550 .,. MASTERING TURBO C .,. 
APP.G 

If the clip flag is nonzero, then all portions of drawings that extend beyond 
the dimensions of the current viewport are eliminated, or clipped. 

See also clearviewport( ), setviewport() 

.... getx .... .... graphics .... 
getx returns the current position's x coordinate 

Prototype #include <graphics.h > 
int far getx(void); 

Prototype in graphics.h 

~ Description 
This function returns the x coordinate of the current position (CP) on the 

graphics screen. The current position is a reference point used by many 
graphics functions, such as lineto( ), moverel( ), and outtext( ), and is relative 
to the current viewport. The current position can be setthrough the function 
moveto(). 

As an example, the following code saves the current position, sets the cur­
rent position to another value, and then restores the original position: 

int cpx, cpy; 

cpx = getx (); /*save current position */ 
cpy = gety ( ); 
moveto (getmaxx ( )/2,getmaxy ( )/2); 
settextjustify (CENTER_ TEXT,TOP _TEXT); 
outtext ("This is centered on the screen."); 
moveto (cpx,cpy); /*restore current position */ 
settextjustify (LEFT_ TEXT,TOP _TEXT); 
outtext ("This string starts at the original current position."); 

See also gety( ), moveto( ) 



~ COMPl.ETE FUNCTION REFERENCE ~ 551 

..... gety ..,.. ..... graphics ..... 
gety returns the current position's y coordinate 

Prototype #include <graphics.h > 
int far gety(void); 

Prototype in graphics.h 

~ Description 
This function returns they coordinate of the current position (CP) on the 

graphics screen. See the description of the analogous function getx() for an 
explanation . 

....,. gotoxy ....,. 
gotoxy 

Prototype 

positions cursor in text window 

void gotoxy(int x, int y); 

Prototype in conio.h 

~ Description 

..... text ..... 

This function positions the cursor on the screen in a text mode. The x and 
y parameters specify the desired column and row positions. Rows 
and columns are numbered beginning with 1 and are relative to the current 
window. If you pass a coordinate outside the current window, the function 
will do nothing. 

See also wherex( ), wherey( ) 

..... graphdefaults ..... 
graphdefaults resets all graphics settings to their defaults 

Prototype #include <graphics.h > 
void far graphdefaults(void); 

Prototype in graphics.h 

..... graphics ..... 



552 .,. MASTERING TURBO C .,. 
APP. G 

.. Description 
This function resets all graphics settings to their default values. Specifically, 

graphdefaults( ): 

... sets the current viewport to the entire screen (see getviewsettings( )) 

... sets the current position to (0,0) (see getx() and gety( )) 

... sets the current palette to the default colors (see getpalette( )) 

... sets the drawing color and background color to the default values 
(see getcolor( ) and getbkcolor( )) 

... sets the fill pattern and color to the default values (see getfillpattern() 
and getfillsettings( )) 

... sets graphics text to the default font and justification style (see gettext 
settings( )) 

..,.. grapherrormsg ..,.. ..,.. graphics ..,.. 
grapherrormsg returns an error message string 

Prototype #include <graphics.H. 
char far*far grapherrormsg(int errorcode); 

Prototype in graphics.h 

.. Description 
This function returns a pointer to a descriptive string that corresponds to a 

graphics error code. You can call the function graphresult( ) immediately 
after calling any graphics function to obtain an error status code. You can 
then pass this error code to grapherrormsg() to obtain a string that 
describes the error condition. See the description of graphresult() for a list 
of the error status codes and corresponding error strings returned by 
grapherrormsg( ). 

See also graphresult() 



... COMPLETE FUNCTION REFERENCE ... 553 

~ _graphfreemem ~ ~graphics ~ 
graphfreemem user-modifiable graph memory deallocation 

Prototype #include <graphics.h > 
void far _graphfreemem(void far *ptr, unsigned size); 

Prototype in graphics.h 

~ Description 
This function is used internally by the functions of the Turbo C graphics 

library for freeing memory that has been allocated through the function 
_graphgetmem( ). If you want to take control over the dynamic allocation 
of memory by the Turbo C graphics library, you should write your own ver­
sions of _graphgetmem() and _graphfreemem( ). 

See also _graphgetmem() 

~ graphgetmem ~ ~graphics ~ 
graphgetmem user-modifiable graphics memory allocation 

Prototype #include <graphics.h > 
void far * far _graphgetmem(unsigned size); 

Prototype in graphics.h 

~ Description 
This function is used internally by the functions of the Turbo C graphics 

library for dynamically allocating memory. _graphgetmem() is declared in 
graphics.h not so that you can call it from your program but rather so that 
you can write an alternative routine that replaces the original function. You 
should provide your own version of this routine if you want to control the 
allocation of memory for the graphics library. You can also control the rou­
tine for freeing this memory by writing a replacement for the 
_graphfreemem() function. 

See also _graphfreemem( ) 



554 ,.. MASTERING TURBO C ,.. 
APP. G 

..,.. graphresult ..... ..... graphics ..,.. 
graphresult returns an error code for the last unsuccessful graphics 

operation 

Prototype #include <graphics.h> 
int far graphresult(void); 

Prototype in graphics.h 

.,... Description 
This function returns an error status code for the last graphics function that 

was called. You can then pass the error status to the function graph 
errormsg() to obtain a string describing the error condition. The following 
are the error status codes reported by graphresult() and the corresponding 
strings returned by grapherrormsg() (the constants are defined in 
graphics.has fields of the enumeration type graphics_ errors): 

Constant Value Descriptive String 

grOk 0 no error 

grNolnitGraph -1 (BGI) graphics not installed 

grNotDetected -2 graphics hardware not detected 

grFileNotFound -3 device driver file not found 

grlnvalidDriver -4 invalid device driver file 

grNoLoadMem -5 not enough memory to load driver 

grNoScanMem -6 out of memory in scan fill 

grNoFloodMem -7 out of memory in flood fill 

grFontNotFound -8 font file not found 

grNoFontMem -9 not enough memory to load font 

grlnvalidMode -10 invalid graphics mode for selected 
driver 

grError -11 generic graphics error 

grlOerror -12 graphics 1/0 error 

grlnvalidFont -13 invalid font file 



.,. COMPLETE FUNCTION REFERENCE ... 555 

grlnvalidFontNum 

grlnvalidDeviceNum 

-14 

-15 

invalid font number 

invalid device number 

Note that after you call graphresult( ), the graphics error status is reset to O; 
therefore, you can obtain a meaningful error status only the first time you 
call this function. 

The following code illustrates the use of graphresult( ) and graph 
errormsg( ): 

int graphdriver = DETECT; 
int graphmode; 
int errorstat; 

initgraph (&graphdriver,&graphmode,""); 
errorstat = graphresult ( ); 
if ( errorstat) 

{ 
restorecrtmode ( ); 
printf (grapherrormsg (errorstat)); 
exit (1); 
} 

See also grapherrormsg( ) 

~ highvideo ~ 
high video 

Prototype 

selects high intensity text characters 

void highvideo(void); 

Prototype in conio.h 

... Description 

~ text ~ 

Calling this function turns on the high-intensity display attribute for all sub­
sequent screen output through direct-video display functions such as 
cprintf( ). Note that highvideo() affects only the foreground color (or mono­
chrome attribute) of subsequent output and does not alter data already dis­
layed on the screen. 

See also lowvideo( ), normvideo( ) 



556 .. MASTERING TURBO C .. 
APP.G 

..,. imagesize ..,. .... graphics ..,. 
imagesize 

Prototype 

returns the number of bytes required to store a bit image 

#include <graphics.h > 
unsigned far imagesize(int left, int top, int right, int bottom); 

Prototype in graphics.h 

~ Description 
This function returns the buffer size, in bytes, required to store a rectangu­

lar block of graphics data on the screen using the function getimage( ). The 

first two parameters specify the upper-left corner of the area, and the second 
two parameters give the lower-right corner. Once you have determined the 
necessary buffer size, you should call getimage() to copy the graphics data 
into the buffer and then call putimage() to write the data back to the screen. 

Note that the size returned by imagesize() includes the two words used by 
getimage() and putimage() to store the width and height of the screen area. 
If the required size is equal to or greater than 64KB, imagesize() returns the 
value Oxffff. See the description of getimage() for a programming example. 

See also getimage( ), putimage() 

..,. initgraph ..,. ..,. graphics ..,. 
initgraph 

Prototype 

initializes the graphics system 

#include <graphics.h > 
void far initgraph(int far *graphdriver, int far *graphmode, 

char far * pathtodriver); 

Prototype in graphics.h 

~ Description 

You should call initgraph() before using any of the graphics display func­
tions. This function: 

.. loads the appropriate graphics driver from a disk file 

.. places the system in the requested graphics mode 

.. sets all graphics settings to their default values (see graphdefaults( )) 



• COMPl.ETE FUNCTION REFERENCE • 557 

Note that the first two parameters passed to initgraph() are the addresses 
of integer variables. Therefore, you cannot pass numeric constants but 
rather must first declare integers, assign appropriate values, and then pass 
the addresses of the integers. 

The first parameter, graphdriver, specifies the graphics driver. The follow­
ing are the available drivers (constants are defined in graphics.h): 

Constant Value Description 

DETECT 0 auto-detect the adapter type 

CGA Color Graphics Adapter (CGA) 

MCGA 2 Multicolor Graphics Array (MCGA) 

EGA 3 Enhanced Graphics Adapter (EGA) 

EGA64 4 EGA with 64KB RAM 

EGAMONO 5 EGA with monochrome monitor 

IBM8514 6 IBM-8514 graphics card 

HERC MONO 7 Hercules Monochrome Graphics card 

ATT400 8 AT&T 400-line Graphics Adapter 

VGA 9 Video Graphics Array (VGA) 

PC3270 10 3270 PC Graphics Adapter 

You must use the appropriate driver for the type of graphics adapter installed 
in the machine. However, if you pass a value of DETECT = 0, then the init­
graph() function will automatically detect the type of adapter and load the 
appropriate driver. (Note, however, that auto-detect will not work with the 
IBM-8514 graphics adapter; you must specify the IBM8514 driver explicitly.) 
Note that if you specify the auto-detect option, initgraph( ) will assign the 

value of the selected driver to *graphdriver. 
The second parameter, graphmode, allows you to choose one of the 

graphics modes supported by the selected graphics driver. The following are 
the graphics modes supported by each of the drivers (constants are defined 

in graphics.h): 

Constant 

CGA driver 

CG A CO 

CGAC1 

Value 

0 

Description 

320x 200 palette o·' 1 page 

320x 200 palette 1 *, 1 page 



558 ,.. MASTERING TURBO C ,.. 
APP.G 

CGAC2 2 320x200 palette 2*, 1 page 

CGAC3 3 320x 200 palette 3*, 1 page 

CGAHI 4 640x 200, 1 page 

MCGA driver 

MCGACO 0 320x 200 palette o·' 1 page 

MCGAC1 320 x 200 palette 1 *, 1 page 

MCGAC2 2 320x200 palette 2*, 1 page 

MCGAC3 3 320x 200 palette 3*, 1 page 

MCGAMED 4 640x 200, 1 page 

MCGAHI 5 640x480, 1 page 

EGA driver 

EGALO 0 640x 200, 16 color, 4 pages 

EGAHI 640x 350, 16 color, 2 pages 

EGA64 driver 

EGA64LO 0 640x 200, 16 color, 1 page 

EGA64HI 640x 350, 4 color, 1 page 

EGAMONO driver 

EGAMONOHI 3 640x 350 64KB on card, 1 page 256KB 
on card, 4 pages 

HERCMONO driver 

HERCMONOHI 0 720x 348, 2 pages 

ATT400 driver 

ATI400CO 0 320x 200 palette o*' 1 page 

ATI400C1 320x 200 palette 1 *, 1 page 

ATI400C2 2 320x 200 palette 2*, 1 page 

ATI400C3 3 320x 200 palette 3*, 1 page 



... COMPLETE FUNCTION REFERENCE ... 559 

ATT400MED 

ATT400HI 

VGA driver 

VGALO 

VGAMED 

VGAHI 

PC327 driver 

PC3270HI 

IBM8514 driver 

IBM8514LO 

IBM8514HI 

4 

5 

0 

2 

0 

0 

640x 200, 1 page 

640x400, 1 page 

640x20016 color, 4 pages 

640x 35016 color, 2 pages 

640x48016 color, 1 page 

720x 350, 1 page 

640x480, 256 colors 

102 x 768, 256 colors 

*These four predefined palettes contain the following colors: 

Palette Colors 

0 2 3 

0 background light green light red yellow 

background light cyan light magenta white 

2 background green red brown 

3 background cyan magenta light gray 

Note that if you have chosen the auto-select feature by passing DETECT 
as the first parameter, then you do not need to assign a value to 
*graphmode. In this case, initgraph() will automatically select the highest 
resolution mode supported by the driver and assign the number of this 

mode to *graphmode. 
The final parameter, pathtodriver, specifies the path to the directory con­

taining the graphics driver files (files with the .BGI extension). initgraph first 
looks in this directory, and then in the current directory. If you assign this 
parameter a Null value('"'), then only the current directory is searched. The 
function settextstyle() also searches the path specified by this parameter for 

its font files (*.CHR). 



560 "' MASTERING TURBO C ... 
APP.G 

.... insline .... 
insline inserts blank line in text window 

Prototype void insline(void); 

Prototype in conio.h 

~ Description 

.... text .... 

This function can be used in text mode only. It inserts a blank line within a 
text window at the current cursor position. All lines within the current win­
dow that are below the inserted line scroll down, and the bottom line in the 
window disappears. 

See also clreol( ), delline( ), window( ) 

.... line .... .... graphics .... 
line draws a line between two specified points 

Prototype #include <graphics.h > 
void far line(int xO,int yO,int x1 ,int y1); 

Prototype in graphics.h 

~ Description 
This function draws a line in graphics mode from the point specified by the 

first two parameters to the point specified by the second two parameters (rel­
ative to the viewport). The line is drawn using the current line style and thick­
ness and the current drawing color. The current position (CP) is not updated. 

See also getcolor( ), getlinesettings( ), linerel( ), lineto() 

.... linerel .... .... graphics .... 
linerel 

Prototype 

draws a line a relative distance from the current position 
(CP) 

#include <graphics.h > 
void far linerel(int dx,int dy); 

Prototype in graphics.h 



.,.. COMPLETE FUNCTION REFERENCE .... 561 

.... Description 

This function draws a line in graphics mode from the current point (CP) to 
a point that is a specified distance away. The parameter dx gives the horizon­
tal distance, and dy gives the vertical distance. The line is drawn using the 
current line style and thickness and the current drawing color. The CP is 
moved to the end of the line drawn. 

See also getcolor( ), getlinesettings( ), line( ), lineto( ) 

..... lineto ..... ..... graphics ..... 
lineto 

Prototype 

draws a line from the CP to (x,y) 

#include <graphics.h > 
void far lineto(int x,int y); 

Prototype in graphics.h 

.... Description 
This function draws a line in graphics mode from the current point (CP) to 

the point specified by the parameters x and y. The line is drawn using the 
current line style and thickness and the current drawing color. The CP is 
moved to the specified point at the end of the line drawn . 

..... lowvideo ..... 
lowvideo 

Prototype 

selects low-intensity characters 

void lowvideo(void); 

Prototype in conio.h 

.... Description 

..... text ..... 

lowvideo( ) works only in text mode. Calling this function turns off the 
high-intensity display attribute for all subsequent screen output through 
direct-video display functions such as cprintf( ). Note that lowvideo() affects 
only the foreground color (or monochrome attribute) of subsequent output 
and does not alter data already dislayed on the screen. 

See also highvideo( }, normvideo() 



562 • MASTERING TURBO C • 
APP.G 

..,. moverel..,. 
movere/ 

Prototype 

moves the current position (CP) a relative distance 

#include <graphics.h > 
void far moverel(int dx,int dy); 

Prototype in graphics.h 

~ Description 

..,. graphics..,. 

This function moves the current graphics point (CP) by the specified dis­
placement. The parameter dx gives the horizontal displacement, and dy 
gives the vertical displacement. 

See also moveto( ) 

..,. movetext..,.. .... text ..,. 
movetext copies text on-screen from one rectangle to another 

Prototype int movetext(int left, int top,int right,int bottom.int newleft,int 

newtop); 

Prototype in conio.h 

~ Description 
This function applies to text mode only. It moves a rectangular block of 

screen data from one position to another. The first two parameters, left and 
top, give the column and row coordinates of the upper-left corner of the 
source block, and the second two parameters, right and bottom, give 
the lower-right corner. The last two parameters, newleft and newtop, spec­
ify the upper-left corner of the target location. Note that all coordinates are 
absolute (not window-relative); therefore, this function ignores the current 
text window. If successful, movetext() returns 1, and if an error occurs, it 

returns 0. 



~ COMPLETE FUNCTION REFERENCE ~ 563 

~ moveto ~ 
mo veto 

Prototype 

moves the CP to (x,y) 

#include <graphics.h> 

void far moveto(int x,int y); 

Prototype in graphics.h 

... Description 

~graphics ~ 

This function moves the current graphics point (CP) to the position speci­

fied by the parameters x and y. 

See also moverel( ) 

~ normvideo ~ ~ text ~ 
normvideo selects normal intensity characters 

Prototype void normvideo(void); 

Prototype in conio.h 

... Description 
This function restores the default text mode display attributes that were in 

effect when the program began running. Both the foreground and back­

ground attributes are restored. The function alters the display attributes only 

for characters that are subsequently displayed; it does not affect data already 

written to the screen. 

See also highvideo( ), lowvideo() 

~ outtext ~ 
outtext 

Prototype 

displays a string in the viewport 

#include <graphics.h > 
void far outtext(char far *textstring); 

Prototype in graphics.h 

~graphics ~ 



564 ... MASTERING TURBO C ... 
APP. G 

... Description 
The outtext() function displays a string in graphics mode at the current posi­

tion (CP). The characters are displayed according to the current font, direction, 
size, and justification style set by settextjustify( ) and settextstyle( ). See the 
description of gettextsettings() for an explanation of these settings. Note 
that if the text is displayed horizontally and is left-justified, then the current 
point (CP) will be moved to the end of the string. 

See also gettextsettings( ), outtextxy( ), settextjustify( ), settextstyle( ), tex­
theight( ), textwidth() 

..... outtextxy ..... ..... graphics ..... 
outtextxy 

Prototype 

sends a string to the specified location 

#include <graphics.h > 
void far outtextxy(int x,int y,char far *textstring); 

Prototype in graphics.h 

... Description 
This function is the same as outtext() except that it displays text at the point 

specified by the x and y parameters and does not move the current graphics 
point (CP). 

See also outtext( ) 

..... pies/ice ..... 
pies/ice 

Prototype 

draws and fills in pie slice 

#include <graphics.h > 

..... graphics ..... 

void for pieslice(int x,int y,int stangle,int endangle,int radius); 

Prototype in graphics.h 

... Description 
This function draws a pie-slice-shaped figure in graphics mode using the 

current drawing color and filling the figure with the current fill pattern and 



~ COMPLETE FUNCTION REFERENCE ~ 565 

color. The x and y parameters specify the center of the encompassing circle 

and radius its radius. Stangle and endangle give the starting and stopping 

angles in degrees, where 0 is at the 3 o'clock position and 90 is at 12 o'clock. 

See also arc(), getlinesettings( ) 

~ putimage ~ 
putimage 

Prototype 

puts a bit image onto the screen 

#include <graphics.h > 

~graphics ~ 

void far putimage(int x,int y,void far *bitmap,int op); 

Prototype in graphics.h 

~ Description 

putimage() writes a buffer containing graphics data saved by the function 

getimage() to a given location on the screen. The first two parameters give 

the upper-left corner of the target location, and bitmap supplies the address 

of the buffer containing the data saved by getimage( ). The parameter op 
specifies the manner in which putimage() combines the data in the buffer 

with the data already on the screen; the following are the possible values 
for op: 

Constant Value Action 

COPY_PUT 0 overwrite the existing pixels 

XOR_PUT XOR with existing bits 

OR_PUT 2 OR with existing bits 

AND_PUT 3 AND with existing bits 

NOT_PUT 4 invert data and overwrite existing pixels 

Options 0 and 4 simply overwrite the existing screen data at the target 

location. The other options combine each bit in the buffer with each bit 

on the screen using a specific logical operator. For example, by calling 

putimage() with the XOR option, you can display a figure on top of an image 

on the screen and then restore the original image by calling putimage() a 

second time. (The XOR operator causes each 1 bit in the buffer to toggle the 

corresponding bit on the screen; this feature is useful for producing anima­

tion effects.) 



566 .,. MASTERING TURBO C .,. 
APP.G 

If the entire rectangle specified by getimage() is unable to fit on the screen 
at the target location, putimage() has no effect. See the description of geti­

mage() for a programming example. 

See also getimage( ), imagesize() 

.... putpixel .... .... graphics .... 
putpixel 

Prototype 

plots a pixel at a specified point 

#include <graphics.h > 
void far putpixel(int x,int y,int pixelcolor); 

Prototype in graphics.h 

~ Description 
This function plots a point in a graphics mode at the coordinates given by x 

and y and using the color specified by pixelco/or. Note that pixelco/or 
should contain the actual number that is written to video memory and is an 
index into the current color palette. See the description of getcolor() for an 
explanation of color values. 

See also getcolor( ), getpixel() 

.... puttext .... 
putt ext 

Prototype 

copies text from memory to screen 

int puttext(int /eft,int top, int right, int bottom,void *source); 

Prototype in conio.h 

~ Description 

.... text .... 

The puttext() function is effective only in text mode. It displays a block of 
text that has been saved in a buffer by the function gettext( ). The first four 
parameters specify the target location on the screen and are absolute screen 



.,. COMPLETE FUNCTION REFERENCE .,. 567 

coordinates. The parameter source is the address of the buffer containing 

the data. See the function gettext() for more details. 

See also gettext() 

~rectangle ~ 
rectangle 

Prototype 

draws a rectangle 

#include <graphics.h > 
void far rectangle(int /eft,int top,int right, int bottom); 

Prototype in graphics.h 

~ Description 

~graphics ~ 

This graphics function draws a rectangle on the screen using the current 

drawing color and line style and thickness. The first two parameters specify 
the coordinates of one corner of the rectangle, and the second two parame­

ters give the position of the opposite corner. 

See also arc(), bar(), getlinesettings() 

~ restorecrtmode ~ ~graphics ~ 

restorecrtmode restores the screen mode to its pre-initgraph setting 

Prototype #include <graphics.h> 
void far restorecrtmode(void); 

Prototype in graphics.h 

~ Description 
You should use this function only when you are in graphics mode; it allows 

you to escape temporarily to text mode. To return to graphics mode, you can 

call setgraphmode( ). If you want to end the graphics mode permanently, call 

closegraph{ ), which frees all allocated memory. Note that when you escape to 

text mode, all graphics data is erased from the screen; either you can regenerate 



568 • MASTERING TURBO C • 
APP. G 

this data when you return to graphics mode, or you can save and restore the 
screen data using the functions getimage() and putimage( ). 

See also closegraph( ), getimage( ), setgraphmode( ), putimage() 

..,.. setactivepage ..,.. .... graphics..,.. 
setadivepage sets active page for graphics output 

Prototype #include <graphics.h > 
void far setactivepage(int pagenum); 

Prototype in graphics.h 

~ Description 
This graphics function allows you to set the current active page for graph­

ics modes that support multiple pages. All graphics output is sent to the cur­
rent active page. The visual page is the page that is currently being displayed 

on the screen and can be set by calling setvisualpage( ). By default, the 
active page and visual page are the same, and therefore all graphics output 

becomes immediately visible. By maintaining separate visual and active 
pages, however, you can gradually build up a graphics display in an active page 
that is not visual and then quickly display the entire screen by calling set 

visualpage() to switch visual pages. See the description of graphics modes 
under initgraph() to determine the number of pages available for a given 
graphics mode. 

See also initgraph( ), setvisualpage() 

.... seta//pa/ette .... .... graphics .... 
seta/lpalette changes all palette colors as specified 

Prototype #include <graphics.h > 
void far setallpalette(struct palettetype far *palette); 

Prototype in graphics.h 



.- COMPLETE FUNCTION REFERENCE .- 569 

... Description 
This function is useful for modifying several palette colors or the entire pal­

ette under EGA and VGA graphics modes. You should first assign the fields of 
a palettetype structure to indicate the number of palette entries and the 
desired palette colors and then pass the address of this structure to setall 
palette(). See the description of getpalette() for the layout of palettetype( ), and 
the description of setpalette for an explanation of the color values you may 
assign. This function is useful only for CGA and EGA graphics modes, which 
allow you to dynamically reset any element of the current palette . 

..... setbkco/or ..... ..... graphics ..... 
setbkcolor sets the current background color using the palette 

Prototype #include <graphics.h > 
void far setbkcolor(int color); 

Prototype in graphics.h 

... Description 
This function sets the current background color used in graphics modes. 

For VGA, EGA, and low-resolution CGA graphics modes, the background 
color is the color displayed for a pixel value of 0, or, in other words, it is color 
number 0 in the current palette. The following colors are available in these 

modes (the constants are defined in graphics.h): 

Constant Color Number 

BLACK 0 

BLUE 

GREEN 2 

CYAN 3 

RED 4 

MAGENTA 5 

BROWN 6 



570 .,. MASTERING TURBO C .,. 
APP. G 

LIGHTGRAY 7 

DARKGRAY 8 

LIGHTS LUE 9 

LIGHTGREEN 10 

LIGHTCYAN 11 

LIGHTRED 12 

LIGHTMAGENTA 13 

YELLOW 14 

WHITE 15 

You can pass either a numeric value or use one of the predefined con­

stants. Note that because of a perversity of the BIOS interface, setbkcolor() 

actually sets the foreground color used by the high-resolution CGA mode. 

This function has no effect in the Hercules graphics mode. 

See also getbkcolor( ) 

~ setcolor ~ ~graphics~ 

setcolor 

Prototype 

sets the current drawing color using the palette 

#include <graphics.h > 
void far setcolor(int color); 

Prototype in graphics.h 

... Description 
This function sets the current drawing color to the value given by color. 

The numbers you may assign to this parameter range from 0 to the maxi­

mum color value supported by the graphics mode (returned by getmax 

color()). For VGA, EGA, and low-resolution CGA graphics modes, the color 

value is an index into the current palette and is the same as the number 

returned by getcolor( ). See the explanation of getcolor() for a description of 

color values. 

See also getcolor( ) 



.- COMPLETE FUNCTION REFERENCE .- 571 

.,.. setfHlpattern .,.. .,.. graphics.,.. 
setfillpattern selects a user-defined fill pattern 

Prototype #include <graphics.h > 
void far setfillpattern(char far *upattern,int color); 

Prototype in graphics.h 

~ Description 
This function allows you to create a user-defined fill pattern. The parame­

ter upattern points to an 8-byte array that specifies the pattern of pixels that 

will be used to fill areas of the screen. Each bit equal to 1 represents an on 

pixel, and each bit equal to 0 represents an off pixel. The total pattern you 

specify is 8 pixels wide and 8 pixels high; this pattern is repeated throughout 

the filled area. The pattern given by the second byte goes under the pattern 

specified by the first byte, the pattern given by the third byte goes under that 

given by the second, and so on. For example, the following code fills a circle 

with a checkered pattern: 

char pattern [ ] = 
{ 
OxfO,OxOf,OxfO,OxOf,OxfO,OxOf,OxfO,OxOf 
}; 

circle (360, 174,200); 
setfillpattern (pattern, 1 ); 
floodfill (360,174,1); 

You can temporarily store a user-defined fill pattern by calling the function 

getfillpattern( ). The function setfillstyle() also allows you to set the current 

fill style; however, with this function you must use one of the predefined fill 

patterns. 

.... setfillstyle .,.. 
setfillstyle 

Prototype 

sets the fill pattern and color 

#include <graphics.h > 
void far setfillstyle(int pattern,int color); 

Prototype in graphics.h 

.,.. graphics .,.. 



572 ... MASTERING TURBO C ... 
APP. G 

~ Description 
This function sets the current graphics fill pattern and fill color. See the 

description of the function getfillsettings() for an explanation of the prede­
fined fill patterns and a list of values you can assign to the pattern parameter. 
Note, however, that you should not assign a value of USER_FILL; rather, 
you must use the function setfillpattern( ) to create a user-defined fill pat­
tern. Also, see the description of getcolor() for an explanation of the color 
values you can assign to the parameter color; all the predefined patterns are 
drawn in the color specified by this parameter except EMPTY _FILL, which 
uses the current background color. 

If one of the values you pass to setfillstyle( ) is invalid, the function 
graphresult() will return - 11 and the current fill pattern and color will not 
be altered. 

See also getcolor( ), getfillpattern( ), getfillsettings( ), fillpoly( ), floodfill() 

..... setgraphbufsize ..... ..... graphics ..... 
setgraphbufsize changes the size of the internal graphics buffer 

Prototype #include <graphics.h > 
unsigned for setgraphbufsize(unsigned bufsize); 

Prototype in graphics.h 

..... setgraphmode ..... ..... graphics ..... 
setgraphmode sets the system to graphics mode,clears the screen 

Prototype #include <graphics.h > 
void far setgraphmode(int mode); 

Prototype in graphics.h 

~ Description 
This function switches the system into the graphics mode specified by the 

parameter mode. You may specify any mode available under the current 
graphics driver. See the description of the initgraph() function for a list of 



.,.. COMPLETE FUNCTION REFERENCE .,.. 573 

supported modes (also, the function getmoderange( ) returns the range 
of valid graphics modes for a given driver). The graphics mode is initially set 
by initmode( ). You might want to use setgraphmode() in the course of your 
program for the following two reasons: 

... to switch into graphics mode other than the one set by initgraph() 

... to restore the original graphics mode after you have temporarily 
switched into text mode using the function restorecrtmode() 

As an example, the following code draws a graphics figure, saves the 
graphics mode set by initgraph( ), temporarily switches into text mode, and 
then restores the original graphics mode with a call to setgraphmode( ): 

int graphmode; 

circle (360, 174,200); 
delay (3000); 

I* create a graphics image *I 

graph mode = getgraphmode ( ); I* save graphics mode *I 
restorecrtmode ( ); I* switch into text mode *I 
printf ("The system is temporarily in text mode"); 
delay (3000); 
setgraphmode (graphmode); 
circle (360, 174,200); 

I* restore original graphics mode *I 
I* restore graphics image *I 

Note that when the system switches into text mode, the screen data is lost 
and must be restored after returning to graphics mode. You must call 
initgraph() before you may successfully call setgraphmode( ). 

See also getgraphmode( ), getmoderange( ), initgraphmode( ), restorecrt­
mode() 

~ setlinestyle ~ ~graphics ~ 
setlinestyle sets the current line width and style 

Prototype #include <graphics.h > 
void far setlinestyle(int /inesty/e,unsigned upattern,int 

thickness); 

Prototype in graphics.h 



574 ~ MASTERING TURBO C ~ 
APP.G 

~ Description 

This function sets the current line style and thickness used by graphics 
drawing functions. The parameter linestyle should be given one of the fol­
lowing values: 

Numeric 

Constant value Meaning 

SOLID_LINE 0 solid line 

DOTTED_LINE dotted line 

CENTER_LINE 2 center line 

DASHED_LINE 3 dashed line 

USERBIT _LINE 4 user-defined line style 

You should pass one of the first four constants if you want to select a prede­
fined line style. If you want to define your own line style, pass the value 
USERBIT _LINE; in this case the next parameter, upattern, should contain a 
sequence of on and off bits representing the pattern of on and off pixels used 
for drawing the line. For example, the value OxOfOf will create a dashed line. 

Note that if you are not assigning a user-defined line style (that is, 
linestyle is not equal to USERBIT _LINE), the value assigned to upattern is 
ignored. 

The parameter thickness should be given one of the following values: 

Constant 

NORM_ WIDTH 

THICK_ WIDTH 

Numeric 

Value 

3 

Meaning 

one pixel wide 

three pixels wide 

Note that passing a value of 2 has the same effect as passing 1 
(NORM_ WIDTH), and lines will be drawn only 1 pixel wide. 

If you pass an invalid value to setlinestyle( ), graphresult() will return a 
value of -11 and the current line style will be unaltered. See the description 
of getlinesettings() for a list of functions that are affected by this command. 
The following lines of code display the two line thicknesses by drawing both 



.,. COMPl.ETE FUNCTION REFERENCE .,. 575 

horizontal and vertical lines in each thickness: 

setlinestyle (SOLID _LINE,O,NORM_ WIDTH); 
line (0,0,0,50); 
line (0,100,50,100); 
setlinestyle (SOLID_LINE,O,THICK_WIDTH); 
line (25,0,25,50); 
line (0, 125,50, 125); 

See also getlinesettings() 

.... setpalette .... 
setpalette 

Prototype 

changes one palette color 

#include <graphics.h > 
void far setpalette(int index, int actua/_co/or); 

Prototype in graphics.h 

~ Description 

.... graphics .... 

This function changes the colors in the current color palette. The parame­

ter index should contain the index of the palette entry you want to change, 

and actua/_color should be assigned the raw color number for the new 

color you want to assign. The change is made immediately on-screen. 

For EGA and VGA systems, one of 64 possible color values may be 

assigned to a given palette element (0 through 63). The colors in the default 

EGA palette are the same as those available in CGA systems and have the fol­

lowing numeric values (constants are defined in graphics.h): 

Numeric 

Constant Value 

EGA_BLACK 0 

EGA_BLUE 

EGA_ GREEN 2 

EGA_ CYAN 3 



576 .,. MASTERING TURBO C .,. 
APP.G 

EGA_RED 

EGA_ MAGENTA 

EGA_BROWN 

EGA_LIGHTGRAY 

EGA_DARKGRAY 

EGA_LIGHTBLUE 

EGA_LIGHTGREEN 

EGA_LIGHTCYAN 

EGA_LIGHTRED 

EGA_LIGHTMAGENTA 

EGA_ YELLOW 

EGA_ WHITE 

4 

5 

20 

7 

56 

57 

58 

59 

60 

61 

62 

63 

For the low-resolution CGA modes, you may change only palette entry 0, 
which is the background color. Modifying palette entry 0 has the same effect 
as calling the function setbkcolor( ). Under these modes, the only way to 
change the other palette colors is to switch to another of the four predefined 
color palettes; to change to another palette, you must switch to the appropri­
ate mode (using setgraphmode( )-see initgraph() for a list of these modes). 

Note that for the high-resolution CGA mode, modifying palette entry 0 
changes the foreground color (because of the same system perversity that 
causes setbkcolor() to alter the foreground color for this mode). Also, this 
function has no effect under the Hercules graphics mode. 

See also getpalette( ), setallpalette() 

~ settextjustify ~ 
settextjustify sets text justification 

Prototype #include <graphics.h > 
void far settextjustify(int horiz,int vert); 

Prototype in graphics.h 

~graphics ~ 



.. COMPLETE FUNCTION REFERENCE .. 577 

~ Description 
This function sets the current style of justification used for displaying hori­

zontal and vertical graphics characters. See the description of the function 

gettextsettings() for an explanation of these settings and a list of possible 

values. 

See also gettextsettings( ) 

.... settextstyle .... .... graphics .... 
settextstyle sets the current text characteristics 

Prototype #include <graphics.h > 
void far settextstyle(int font, int direction,int charsize); 

Prototype in graphics.h 

~ Description 
This function sets the font, direction, and character size used for graphics 

mode text display. See the description of gettextsettings() for an explana­

tion of these settings and a list of possible values. 

See also gettextsettings() 

.... setusercharsize .... .... graphics .... 
setusercharsize user-defined character magnification factor for stroked fonts 

Prototype 

Prototype in 

#include <graphics.h > 
void far setusercharsize(int mu/tx,int divx,int mu/ty,int 

divy); 

graphics.h 

~ Description 

This graphics function allows you to control the size and proportions of 

text displayed using stroked fonts only. The first two parameters specify the 



578 ... MASTERING TURBO C ... 
APP.G 

horizontal multiplication factor, where multx is the numerator and divx is 

the divisor. For example, if multx is set to 2 and divx is set to 3, then the multi­

plication factor is 2/3. Similarly, multy and divy specify the vertical multiplica­

tion factor. 

Before using this function, you must call settextstyle( }, setting the charsize 
field to 0. Note that settextstyle( } also allows you to modify the character 

size, but you can specify only a single integral multiplier. 

See also gettextsettings( }, settextstyle(} 

~ setviewport ~ ~graphics ~ 
setviewport sets the current viewport for graphics output 

Prototype #include <graphics.h > 
void far setviewport(int left, int top, int right,int bottom,int 

clipflag); 

Prototype in graphics.h 

~ Description 
This function defines the current viewport on the graphics screen. The first 

four parameters are the dimensions of the rectangle on the screen that con­

stitutes the viewport. The last parameter, clipflag, should be set to a nonzero 

value if you want drawings to be clipped at the viewport boundaries and 

should be set to zero if you do not want clipping. See the description of get 
viewsettings(} for more information on viewports and clipping. 

See also getviewsettings(} 

~ setvisualpage ~ ~graphics ~ 

setvisualpage sets the visual graphics page number 

Prototype #include <graphics.h > 
void far setvisualpage(int pagenum); 

Prototype in graphics.h 



.,.. COMPLETE FUNCTION REFERENCE .,.. 579 

... Description 
This graphics function sets the video page that is currently displayed and is 

useful only for graphics modes that support multiple pages. See the descrip­
tion of setactivepage() for an explanation of how this function is used. 

See also setactivepage() 

.... textattr .... 
textattr 

Prototype 

sets text attributes 

void textattr(int attribute); 

Prototype in conio.h 

... Description 

.... text .... 

You can use this function only when you are in a text mode. It allows you 
to set both the foreground and background colors (or monochrome display 
attributes) used for screen output. textattr( ) does not affect characters 

already displayed on the screen but only those subsequently written using a 

direct console output function, such as cprintf( ). See the explanation of dis­
play attributes in Chapter 9. 

See also textbackground( ), textcolor() 

.... textbackground .... 
textbackground selects new text background color 

Prototype 

Prototype in 

void textbackground(int co/or); 

conio.h 

... Description 

.... text .... 

This text mode function allows you to set the background color (or mono­
chrome display attribute) to be used for screen output. textbackground( ) 
does not affect characters already displayed on the screen but only those 



580 ,.. MASTERING TURBO C ,.. 
APP. G 

subsequently written using a direct console output function, such as cprintf( ). 

See the explanation of display attributes in Chapter 9. 

See also textattr( ), textcolor() 

.... textcolor .... 
textcolor 

Prototype 

selects new character color in text mode 

#include <conio.h > 
void textcolor(int color); 

Prototype in conio.h 

.... Description 

.... text .... 

This text mode function allows you to set the foreground color (or mono­

chrome display attribute) to be used for screen output. textcolor() does not 

affect characters already displayed on the screen but only those subse­

quently written using a direct console output function, such as cprintf( ). See 

the explanation of display attributes in Chapter 9. 

See also textattr( ), textbackground() 

.... textheight .... .... graphics .... 
textheight returns the height of a string, in pixels 

Prototype #include <graphics.h > 
int far textheight(char far *textstring); 

Prototype in graphics.h 

.... Description 
This graphics function returns the height (in pixels) of a string displayed on 

the screen. textheight( ) incorporates the current font size and multiplica­

tion factor into its calculation of the height. 

See also textwidth( ) 



.- COMPLETE FUNCTION REFERENCE .- 581 

~ textmode ~ 
text mode 

Prototype 

puts screen in textmode 

void textmode(int mode); 

Prototype in conio.h 

~ Description 

~ text ~ 

You should call this function to change to another text mode only when 
you are already in a text mode. If you are in a graphics mode and you want 
to return permanently to text mode, call closegraph( ); if you want to return 
temporarily to text mode, call restorecrtmode( ). The following are the pos­

sible values you can pass to this function (constants are defined in conio.h): 

Constant Value Description 

LASTMODE -1 return to last active text mode 

BW40 0 black and white, 40 columns 

C40 color, 40 columns 

BW80 2 black and white, 80 columns 

cao 3 color, 80 columns 

MONO 7 monochrome, 80 columns 

See also closegraph( ), restorecrtmode() 

~ textwidth ~ 
textwidth 

Prototype 

returns the width of a string, in pixels 

#include <graphics.h > 
int far textwidth{char far *textstring); 

Prototype in graphics.h 

~ Description 

~graphics ~ 

This graphics function returns the width (in pixels) of a string displayed on 

the screen. textwidth() incorporates the string length, the current font size, 



582 ~ MASTERING TURBO C ~ 
APP.G 

and the multiplication factor into its calculation of the height. 

See also textheight( ) 

.... wherex .... 
wherex 

Prototype 

gives horizontal cursor position within windows 

int wherex(void); 

Prototype in conio.h 

~ Description 

.... text .... 

This function can be used only in text mode. It returns the current horizon­
tal (column) position of the cursor within the text window. 

See also wherey( ) 

.... wherey .... 
wherey 

Prototype 

gives vertical cursor position within windows 

int wherey(void); 

Prototype in conio.h 

~ Description 

.... text .... 

This function can be used only in text mode. It returns the current vertical 
(row) position of the cursor within the text window. 

See also wherex( ) 

.... window .... .... text .... 
window defines active text mode windows 

Prototype void window(int left, int top, int right, int bottom); 

Prototype in conio.h 



• COMPLETE FUNCTION REFERENCE • 583 

.,.. Description 
This function defines the current text mode window on the screen. The 

first two parameters specify the column and row coordinates of the upper­
left corner of the window, and the second two coordinates give the lower­
right corner. If you pass invalid coordinates,. the function will have no effect. 
By default, the current window encompasses the entire screen. 

See also gettextinfo() 





.... APPENDIX H .... 
TURBO C RESOURCE LIST 

...- BOOKS..,.. 

Harbison, Samuel P., and Steele, Guy L. Jr. C: A Reference Manual. 2nd ed. Engle­
wood Cliffs, N.j.: Prentice-Hall Inc., 1987. 

Kernighan, Brian W., and Ritchie, Dennis M. The C Programming Language. Engle­
wood Cliffs, N.j.: Prentice-Hall Inc., 1978. 

Young, Michael J. Systems Programming in Turbo C. Alameda, Calif.: SYBEX, 1988. 
(This book has a comprehensive bibliography.) 

..,.. FONTS..,.. 

Multi-Lingual Scholar and specialized software for exotic alphabets. Gamma Produc­
tions Inc., 710 Wilshire Boulevard, Santa Monica, CA 90401; (213) 394-8622 . 

..,.. MAGAZINES ..,.. 

The following have regular coverage of C topics with source-code listings: 

BYTE. One Phoenix Mill Lane, Peterborough, NH 03458; (603) 924-9281. (See espe­
cially "AC Language Primer" by James Joyce in the August 1983 issue.) 

Computer Language. 500 Howard Street, San Francisco, CA 94105; (415) 397-1881. 
(See especially Programming On Purpose, the monthly column by P. J. Plauger 
and Bit by Bit by Stan Kelly-Bootle.) 

Dr. Dobb's Journal of Software Tools. 501 Galveston Dr., Redwood City, CA 94063; 
(415) 366-3600. 

Structured Language World. 175 Fifth Avenue, New York, NY 10010. 



586 ... MASTERING TURBO C ... 
APP. H 

UNIX REVIEW. 500 Howard Street, San Francisco, CA 94105; (415) 397-1881. (See 
especially the monthly column C Advisor by Eric P. Allman and Ken Arnold.) 

..,.. MISCELLANEOUS..,.. 

The C Users' Group, The C User's journal, 2120 W 25th St., Ste. B, Lawrence, KS 
66046; (913) 841-1631 . 

..,.. MISCELLANEOUS SOFTWARE PRODUCTS ..,.. 

Complete set of software tools with source code, separate library for each memory 
model. There are two diskettes and the price is $29.50. The tools are fully 
described in Systems Programming in Turbo C (see above). Michael J. Young, 
P.O. Box 5068, Mill Valley, CA 94942. 

C Programmer's Tool Box, Volumes I and II. A variety of productivity aids and utilities. 
MMC AD Systems, P.O. Box 360845, Milpitas, CA 95035; (408) 263-0781. 

C-scape/ Look & Feel. Interface management system including screens, menus, help 
support, data capture/verification. Oakland Group, 675 Massachusetts Ave­
nue, Cambridge MA 02139; (800) 233-3733. 

The Heap Expander. Interface for expanded heaps up to 8 MB. The Tool Makers, P.O. 
Box 8976, Moscow, ID 83843; (208) 883-4979. 

PEGA Functions. EGA toolkit with 90 enhanced graphics functions. Prototype Sys­
tems Ltd., 637 17th Street, Boulder, CO 80302; (800) 628-2828, extension 493. 

Screen Maker. Code generator for text files and input/output screens. SoftScience 
Corp., P.O. Box 42905, Tucson, AZ 85733-2905; (800) 453-5000. 

Turbo C Tools. Function Support for Turbo C including strings, screens, graphics, win­
dows, menus, keyboards, files, printers, memory management, interrupt serv­
ice support, intervention code, utilities, and macros. Blaise Computing Inc., 
2560 Ninth Street, Suite 316, Berkeley, CA 94710; (415) 540-5441. 

Vitamin C. Screen painter/code generator; window/data, entry/menu manager; 
help handler. Creative Programming, P.O. Box 112097, Carrollton, TX 75011; 
(214) 416-6447. 

(All the above product names are trademarks of the suppliers.) 



! See exclamation point 
" See double quotation marks 
#See number sign 
$See dollar sign 
% See percent sign 
& See ampersands 
'See single quotation marks 
( )See parentheses 
* See asterisks 
+ See plus sign 
, See commas 
- See minus sign 
. See periods 
I See slashes 
: See colons 
; See semicolons 
< See less than sign 
- See equal sign 
> See greater than sign 
? See question mark 
@See at sign 
D See square brackets 
\See backslashes 
A See carets 
_See underscore symbol 
{} See curly braces 
- See tilde 
I See vertical bars 

\a escape sequence, 26 
A with hexadecimal numbers, 454 
a stream type, 265-267 
abort() function, 131, 479 
abs() function, 77-78, 479 
absolute screen addressing, 295-296 
absolute value, 77-78, 479 

of complex numbers, 461 
for floating-point numbers, 82, 461, 493 
for longs, 508 

absread() function, 479 
abswrite() function, 479 
access() function, 480 
accumulator, 471 
acos( ) function, 462, 480 

~INDEX~ 

active page, 292, 350-351, 568 
active screen, 392 
active window, 9-10 
actual parameters, 22, 66, 73 
adapters. See display adapters 
addition operation(+), 77 

carry with, 457 
compound assignment with ( + - ), 52 
precedence and associativity of, 466 

address operator(&), 101-105, 248, 468 
addresses 

and pointers, 100-101 
segment:offset, 162 

addressing 
of memory, 469-476 
of screen· display, 295 

AH register, 212, 471, 474-475 
AL register, 471, 474-475 
aliases and #define directive, 36 
alignment option, 192-193 
ALLOC.H file, 135, 155, 184-185 
allocmem() function, 480 
alt-key combinations, 6-7, 125 
ampersands (&) 

as address operator, 101 
for bitwise AND(&), 216-218 
with compound assignments, 52 
for logical AND(&&), 92-93 
precedence and associativity of, 465-467 

AND bitwise operator(&), 52, 216-218, 466 
AND logical operator(&&), 92-93, 107, 467 
AND_PUT constant with bit images, 565 
animation, 292, 351 
ANSl.C, xxv-xxvi 

defined operator, 180 
and prototype formats, 124 
and void data type, 120 

apostrophe('), 25-27 
applications programming, 469 
arccoordstype structure, 341, 533 
arcs and arc() function, 340-342, 525, 533 
argc arguments, 276-277, 379, 480 
arguments 

arrays as, 152-153, 172 
command-line, 276-279 



588 ... MASTERING TURBO C .,. 

conversion of, 90 
with functions, 22, 66, 73 
functions as, 383-388 
precedence and associativity of, 46S 
with void data type, 120 

argv arguments, 276-277, 379, 480 
arithmetic operations, 77-80 

with characters, 91-92 
compound assignments for, 52 
with pointers, 134-13S, 160-161, 16S 

arrays, 97-98, 107 
conversion of, 122 
initialization of, 99-100 
memory, manipulation of, S10 
multidimensional, 169-172, 187 
and pointers, 100-104, 1S1-154, 159-160, 

16S-168 
strings as, 23, 27 

Art of Computer Programming, The (Knuth), 246 
ASCII code, 2, 42S 

conversion with, 277, 480, S23 
extended, 90-91 

asctime() function, 480 
asin() function, 462, 481 
asm keyword, 390, 476 
aspect ratio, 297, 328, S34 
assembly language, 421, 476-477 
assert() function, 481 
assignments and assignment operators (- ), 

29-30 
compound, 51-S2, 410 
conversion with, 122-124 
of integer variables, 48-Sl, 71 
multiple, S2-S3, 71 
precedence and associativity of, SS, 467 
structure, 19S-196 
suppression of, with scanf( ), 4S2 

associativity of operators, 5S-S7, 133, 46S-467 
asterisks(*) 

for assignment suppression, 4S2 
for comments(/* */), 20 
in compound assignments(*=), S2 
with GREP, 365-367 
as indirection operator, 101 
for module extraction, 373-374 
for multiplication, 77 
precedence and associativity of, SS, S6, 133, 

46S-467 
with printf() 443-444 
for wildcard characters, 16 

at sign(@) with response files, 377-378 
atan() function, 462, 481 
atan2() function, 481 
atexit() function, 131, 481 

atof() function, 277, 482 
atoi() function, 277, 482 
atol() function, 482 
AT&T adapters, 333, 354, SS7-SS9 
attributes 

file, 2S9 
pixel, 298 
text, 293, 313-314, 320-321, S79 

auto and automatic storage classes, 69-70, 73, 
228, 2S4 

extent of, 23S 
initialization of, 244 
and register storage class, 247 

auto-dependencies, 390-391 
auto-detect 

for coprocessors, 83-84 
for graphics, 323-325 

AX register, 212, 471 

\b escape sequence, 26 
/b FILECOMP option, 383 
B with hexadecimal numbers, 4S4 
b stream types, 265-267 
B for TC Build Switch, 392 
background color, 310 

with CGA, 3S4 
with EGA, 3S7 
as fill pattern, S37 
getting of, S34-S3S 
setting of, S69-S70 
text, selection of, S79-580 

backslashes (\) 
for character constants, 27 
with #define directive, 37, 282 
as escape character, 23-2S 
escape sequence for, 25-27, 322 
in fill pattern, S37-S38 
with GREP, 364-367 
with PATH command, 322, 428 

backspace, escape sequence for, 26 
bar() function, 346, S25-S26, S37-S38 
bar3d() function, 346, 348, S26, 537-S38 
base, with floating-point numbers, 4S8 
base address, 471 
base pointer, 472 
.BAT files, 428 

in Make files, 390 
bdos() function, 482 
bdosptr( ) function, 482 
bell, escape sequence for, 26 
.BGI files and BGIOBJ.EXE utility, 299, 322 

for CHR files, 302 
loading fonts with, 333-334 



in version 2, 389 
_BH pseudovariable, 475 
binary conversions, 121-122 
binary files, 260-261 
binary number system, 453-454 
binary search, 484 
BIOS, 301, 304-10fl 
bioscom() function, 483 
biosdisk( ) function, 483 
biosequip() function, 483 
bioskey() function, 483 
biosmemory() function, 483 
biosprint() function, 484 
biostime() function, 484 
bit fields, 220-222, 224 
bit images 

displaying of, 565-566 
saving of, 349-351, 539 
size of, getting, 556 

bit-mapped fonts, 301 
bit maps, 215 
bitwise operations, 215-222, 224 

compound assignments for, 52 
precedence and associativity of, 466-467 

BKSLASH_FILL pattern, 537 
BLACK color codes, 311 

for background, 355, 535, 569 
for EGA, 356 

blank lines, insertion of, 560 
BLINK code, 310, 311, 313 
block 1/0, 285-288 
block markers, 23-24, 112 

for editing, 34 
with if statements, 114 
with while loops, 129 

BLUE color codes, 311 
for background, 310, 355, 535, 569 
for EGA 356 
for foreground, 310 

books, list of, 585 
Boolean expressions and operators, 92-94, 107, 

180 
BOTIOM __ TEXT justification name, 331, 548 
BP (base pointer), 472, 475 
braces({}). See curly braces 
brackets (0). 52e square brackets 
break statements 

with do while loops, 136-137 
with for loops, 142--143 
with switch statements, 138-139, 149 
in while loops, 129-130 

Break/watch debugger command, 418-419 
breakpoints with debugger, 412-414 

brk() function, 484 
BROWN color codes, 311 

.. INDEX .. 589 

for background 355, 535, 569 
for EGA, 356 

bsearch() function, 484 
bsize field in FILE structure, 263 
*buffer field in FILE structure, 263 
buffers for files, 261-262 

flushing of, 264-265, 267, 497 
graphics, setting of, 572 
input from, 448 
keyboard, 524 
output to, 440 
and stream closing, 264 
user-controlled, 284 

bugs, system software, 32 
See a/so debugging; source-code debugger 

Build Switch with TC, 392 
BW40 text mode, 307-308, 581 
BW80 text mode, 307-308, 581 
BX register, 471 
byte alignment, 192-193 
BYTEREGS structure, 211-212 
bytes, 454 

range of, 456 
swapping of, 521 

%c conversion specification, 62, 105, 441, 444, 
451 

.C extensions, 1-2 
C in evaluation formats, 420 
-c GREP option, 364 
C with hexadecimal numbers, 454 
C: A Reference Manual (Harbison and Steele), 

221-222 
C Programming Language, The (Kernighan and 

Ritchie), 4 
IC TC.EXE option, 437 
C Users' Group, 586 
C40 text mode, 307-308, 581 
C80 text mode, 308, 581 
cabs() macro, 461, 484 
calloc() function, 155, 158, 185, 186, 485 
carets (A) 

for bitwise XOR operator, 216-218 
compound assignments with (A=), 52 
with GREP, 365-367 
precedence and associativity of, 466-467 
for selective conversion, 451 

carriage return, 21, 26 
carry with computer math, 457 
carry flag, 212 
case labels with switch statements, 138 



590 .,. MASTERING TURBO C .,. 

case sensitivity 
of command-line options, 379, 383 
with GREP, 363-364 
of identifiers, 38 
and portability, 376-377 

CCR (condition code register), 4S7 
cdecl modifier, 184-18S, 187 
ceil() function, 48S 
CENTER_LINE style, 337, S40, S74 
CENTER_ TEXT justification name, 331, S48 
cflag, 212 
CGA. See Color/Graphics Adapter 
CGACO mnemonics, 323 
cgets() function, 281-282, 48S 
_CH pseudovariable, 475 
character generator, 303 
characters and char data type, 107 

arithmetic with, 91-92 
classification macros for, 507 
constants for, 27, 95-96 
conversion of, to ASCII, 523 
conversion specification for, 62, 105, 441, 444, 

451 
in evaluation formats, 420 
input of, 280-281, 495-496, 502-503 
as integers, 28, 90-91, 94-97 
intensity of, 312-313, 321, SSS 
lowercase conversion of, 523 
output of, 282-283, 512-513, 524 
range of, 456 
single quotes(') for, 27-28 
size of, 134 
and strings, 23 
testing function for, 97-98 
uppercase conversion of, 523 

charsize argument for fonts, 330 
chdir() function, 485 
child processes and environmental values, 278 
CHKIP.C program, 117-121, 124-125 
chmod( ) function, 486 
_ch mod() function, 485 
CHR files for fonts, 301-302, 322 
chsize() function, 486 
CINSTXFR.EXE file, 391 
circles and circle() function, 337, 340-341, 527 
_CL pseudovariable, 475 
classes. See storage classes 
Clear all breakpoints debugger option, 412-413 
_clear87() function, 486 
cleardevice() function, 527 
clearerr() function, 271, 486 
clearviewport() function, 528 
clipping of viewports, 300 

close() function, 487 
CLOSE_DOT_FILL pattern, 538 
_close() function, 486 
closegraph() function, 322, 325, 350, 528 
clreol() function, 309, 320, 528-529 
clrscr() function, 308-309, 319, 529 
Clune, Thomas R., quoted, 250 
clusters, 2S9 
CM.LIB file, 368 
code segment register, 162-163, 470, 472, 

474-47S 
CodeView files, debugger for, 397 
colons(:) 

with bit fields, 220 
in command-line options, 379 
as conditional operator, 126-127 
with labels, 113, 138 
with perror( ), 275 
precedence and associativity of, 467 

Color/Graphics Adapter, 300, 303-304 
background colors for, 535 
color with, 353-355 
driver constants for, 323, 557-558 
driver file for, 333 
and getpalette(), 544 
pages with, 351 
resolution of, 353-354 

colors 
codes for, 311 
getting of, 536-538 
with graphics, 352-358 
maximum value of, 357, 541 
of pixels, 545 
setting of, 346, 570-572 
for text, 309-312, 580 

columns in text displays, 294 
command line 

arguments in, 276-279, 480 
switches for, 378-383, 391-393 

commands, debugging, 418 
commas(,) 

with array initialization, 100 
with command-line arguments, 277 
expressions using, 144-145, 149 
in for loops, 141 
for multiple declarations, 47-48 
with parameters, 22 
precedence and associativity of, 145, 467 
with printf(), 61 
in prototype formats, 124 
in TUB command line, 374-376 

comments, 20 
with if statements, 115 



in Make files, 390 
nesting of, 182-183 

communications 1/0, function for, 483 
compact memory model, 163-164, 473 
comparisons of strings, 146, 253 
compile-time errors, 31, 400 
compiler/linker options, setting of, 16-18 
compilers 

and debugging, 401 
optimizing, 249-250 
and version 2, 389 

complex numbers, absolute value with, 461, 484 
complex statements, 29 
compound assignments, 51-52, 54, 72 

bugs with, 410 
condition code register, 457 
conditional compilation, 178-185, 187 
conditional operators, 125-128, 148 

precedence and associativity of, 467 
with return, 213 

conditional statements. See control flow 
statements 

configuration files, 16, 430-438 
CONIO.H file, 124, 125, 148, 306 
console 

input from, 269, 485, 489, 503 
output to, 268, 439, 489 

constants and canst, 65-66 
character, 27, 95-96 
and #define, 60-61 
floating-point, 84, 460 
integer, 59-61 , 72 
pointer, 154, 186 
string, 23, 100 
and volatile modifier, 250 

context-sensitive help, 391 
continue statement 

with do while loops, 136 
with for loops, 142-143 
with switch statements, 140 
in while loops, 129 

control-break handler, function for, 489 
control characters, testing for, 98 
control codes, 25-26 
control expressions, 138, 140 
control flow statements, 28-30, 111-112 

do while loops, 136-137, 149 
for loops, 140-145, 149 
goto, 113-114, 148 
if, 114-121, 148 
switch statement, 137-140, 149 
while loops, 128-134, 148-149 

_control87() function, 487 

~ INDEX ~ 591 

conversion specifications 
for FP numbers, 85, 105-106 
with printf( ), 62-64, 441-442 
with scanf{), 104-105, 451-452 

conversions 
assignment, 121-124 
internal, floating-point, 82-83 

coordinates, screen display 
of arcs, 341 
for graphics, 299-300, 326, 541-542 
for text, 293-295 
See a/so cursor 

coprocessors, 83-84, 106, 459 
and long double, 390 

COPY _PUT constant, 565 
copying 

of bytes, 511 
of files, 274-279 
of strings, 146, 253, 519 
oftext,295, 318, 320,545-546, 562, 566-567 

core dumps, 401 
coreleft() function, 487 
cos() function, 462, 487 
cosh( ) function, 462, 487 
country() function, 488 
counts with GREP, 364 
CP (current position), 321, 322, 329, 550-551, 

562-563 
cprintf() function, 268, 302, 309, 319, 439, 488 
cputs() function, 283, 302, 319, 488 
CR/LF pair in text files, 261 
creat() function, 488 
_creat() function, 488 
creatnew() function, 489 
creattemp() function, 489 
cross-reference listings, 390 
CRT controller chip, 292 
CS register, 162-163, 470, 472, 47 4-475 
CS.LIB file, 368 
cscanf() function, 269, 448, 489 
ctime() function, 489 
ctrl-key combinations, 125 
ctrl-Z as end-of-file indicator, 96, 261 
ctrlbrk() function, 489 
CTYPE.H file, 97, 107, 252 
curly braces ({}) 

for array initialization, 100 
as block markers, 23-24, 112 
with do while loops, 136 
with functions, 66 
with if statements, 114, 116 
with matrix initialization, 171 
and semicolons, 28 



592 .. MASTERING TURBO C .-

with structures, 190, 197 
with switch statements, 138 

curp (current active pointer), 271-273, 282 
*curp field in FILE structure, 263 
current file, 9 
current position, 299, 321, 329, 332, 550-551, 

562-563 
cursor 

and execution band, 405 
getting position of, 332, 550-551, 582 
setting position of, 33, 309, 551 

curx variable, 309 
cury variable, 309 
ex register, 471 
CYAN color codes, 311 

for background 355, 535, 569 
for EGA, 356 

%d and %D conversion specifications, 62-63, 
104, 441, 450 

D in evaluation formats, 420 
-d GREP option, 364 
D with hexadecimal numbers, 454 
D TC Dual Monitor Switch, 392-393 
DASHED_LINE style, 337-338, 540, 574 
data abstraction, 238, 252 
data segment register, 162-163, 470-472, 474, 

484 
data types, 27-28, 44-45, 70 

of functions, default, 89 
and typedef, 175-178 
See also specific data types 

date 
conversions with, 480, 489, 509 
displaying of, 278-279 
file, 505, 517 
getting of, 504 
setting of, 516 
UNIX, 491 

date stamps with file linking, 369 
date structure, 253 
Debug debugger command, 418 
Debug menu, 401-402 
debugging 

with conditional compilation, 183 
of graphics program, 393 
See also source-code debugger 

decimal constants, 59-60, 72 
decimal numbers, 453 

in evaluation formats, 420 
declarations, 44-45, 59 

of arrays, 99-100 
compared to definitions, 47 

defining, 239-240, 243 
of external variables, 243 
of floating-point data types, 81 
of functions, 88-89, 240 
implicit, 229 
of integers, 44-50, 71 
of pointers, 103, 157 
referencing, 239-240, 243 
and storage classes, 228 
of structures, 189-192, 223-224 
top-level, scope of, 230, 237-238 

declarators, 47, 166-167 
decrement operators(--), 50-51, 54, 72, 465 
default, in switch statements, 139 
default class specifiers, 229 
DEFAULT _FONT constant, 330-331, 547 
defaults 

for char sign, 91-92 
environment, 432-438 
graphics, 551-552 

#define directive, 36-37 
and constants, 60-61 
and #ifdef, 180 
and macros, 38-40 
for mnemonic creation, 174 

defined operator, 180 
defining declarations, 239-240, 243 
definitions 

compared to declarations, 47 
of external variables, 243 
offunctions, 88-89 
and storage classes, 228 

delay( ) function, 490 
delline() function, 309, 320, 529 
dependencies, implicit rules on, 390 
destination index register, 248, 471-472, 475 
DETECT constant, 321-322, 324, 557 
detectgraph() function, 298, 314, 323-324, 530 
device drivers. See graphics device drivers 
device files, 259-260 
device types, checking for, 507 
_DH pseudovariable, 475 
DI register, 248, 471-472, 475 
difftime() function, 490 
digits, test macro for, 98 
direct video, 304-306, 490 
direction of text, 548, 577 
directives, preprocessor, and include files, 2-3, 

21 
See also #define directive 

directories 
changing of, 485 
checking of, 259 



creation of, 511 
current, 503 
displaying of, 278-279 
and GREP, 364 
include, 18 
removal of, 516 
searching of, 497 

Directory option, 16 
directvideo() function, 490 
directvideo global variable, 305 
disable() function, 490 
disk drives and disk 1/0 

and biosdisk( ), 483 
free space on, 504 
setting of, 516 
transfer address for, 504 
See also files; streams 

display. See screen display 
display adapters, 291-292, 303-304 

See also specific display adapters 
display memory, 291-300 
Display Mode Option, 434 
dittography errors, 399 
division and div() function, 77, 490 

compound assignment with, 52 
of longs, 508 
precedence and associativity of, 466 
by shifting, 219-220 

_DL pseudovariable, 475 
do while loops, 136-137, 149 
dollar sign ($)with GREP, 365-366 
domain errors, 462 
DOS commands in Make files, 390 
dosexterr() function, 491 
dostounix() function, 491 
dots in fill pattern, 538, See also pixels 
DOTIED_LINE style, 337, 540, 574 
double data type, 80, 83-84, 106 

conversion of ASCII to, 277 
conversion specification for, 85, 447 
format of, 459-460 
long, 390 

double-linked lists, 202-203 
double quotation marks (") 

with .BGI files, 322 
with command-line arguments, 277 
escape sequence for, 25-26 
with include files, 21 
for string constants, 23 

drawing, 335-348 
drawpoly() function, 339-340, 530-531 
*driver_path_string argument, 322 

,.. INDEX ,.. 593 

drivers 
device. See graphics device drivers 
installable, in version 2, 389 

DS register, 162-163, 440-442, 444, 454 
Dual Monitor Switch with TC, 392-393 
dummy arguments. See formal arguments 
dummy bytes for alignment, 193 
dumps, core and postmortem, 401 
dup() function, 491 
dup2( ) function, 491 
duplications 

of structure member names, 196 
of variable identifiers, 69, 233-234 

DX register, 471 
dynamic extent, 235-236 
dynamic memory allocation, 154-157, 204-205 
dynamic memory area, 236 

e (base of natural logarithms), 461 
%e and %E conversion specification, 85, 441, 

447,451 
e and E for floating-point numbers, 84 
E with hexadecimal numbers, 454 
ecvt() function, 491 
edit window, 10 
editing 

of files, 15 
of Watch expressions, 415 

Editor, command, 431, 434 
Turbo C, 32-34 

editor status strip, 9 
EGA. See Enhanced Graphics Adapter 
EGA driver constants, 557-558 
EGAMONO driver constants, 557-558 
EGAVGA driver file, 333 
elements, array, 160-161, 465 
#elif directive, 178-179 
ellipses and ellipse() function, 340-341, 531-532 

filling of, 389 
#else directive, 178 
else statements, 114-121, 148 
_emit_() function, 389-390 
EMPTY _FILL pattern, 344, 537 
empty statements, 28 
emulation library for coprocessors, 83 
end-of-file, 261, 492 

and characters, 96, 107 
for streams, 495 
testing for, 270-271 

#end if directive, 178 
endless loops, 129-130, 142-143 



594 ,. MASTERING TURBO C ,. 

Enhanced Graphics Adapter, 300, 303-305 
background colors for, 535 
color for, 355-358 
driver constants for, 558 
pages with, 351 
palette colors for, 310, 544, 576 

enhancements 
version 1.5, 361-362 
version 2, 388-393 

enumerated data type, 172-175, 187, 252-253 
env command-line argument, 278 
environment 

adding strings to, 513 
menu selection for, 16-17 
parameters for, 278-279 
setting of, 428-436 
strings from, 504 

eof( ) function, 492 
EOF signal for files, 261 
equal sign ( =) 

as assignment operator(=), 29-30, 48-51, 71 
as equality operator ( = = ), 29, 49-50, 95 
precedence and associativity of, 56, 466-467 
with relational operators ( < =, > = ), 94 

equality of FP numbers, 82, 460 
equality operator(==), 29, 49-50, 95, 466 
equipment, 304, 483 
errno global variable, 264, 275 
errors, 31-32 

clearing of, 486 
extended, 491 
with files, 264, 270-271 
floating-point, 462 
with graphics, 322-323, 338, 358, 552, 

554-555 
and message windows, 35 
overflow, 57-58, 457 
pointers for, 521 
stderr device for, 131, 268 
on streams, 495 
types of, 399-400 
See also debugging; source-code debugger 

ES register, 162-163, 440-442, 444 
escape key and and escape key sequences, 8, 

24-25,364 
Evaluate debugger window, 407-412 
Evaluate field with debugger, 407-409 
evaluation formats, 420 
evaluation of expressions 

with debugger, 407-412 
formats for, 420-421 

exception structure, 462-463 

exclamation point(!) 
with inequality operator (! = ), 95 
for logical NOT(!), 92-93 
precedence and associativity of, 465, 466 

.EXE files, 3-4, 31 
EXE2BIN utility, 163 
exec() function, 278, 492 
execution bands with debugger, 404-406 
execution times in version 2, 389 
exit() function, 131, 156, 492 
_exit() function, 131, 492 
exiting from Turbo C, 9 
exp() function, 493 
explicit rules on dependencies, 390 
exponents 

with double format, 459 
with float format, 458-459 
and frexp(), 501 
with printf() function, 85 
in scientific notation, 81 

expressions, 28-30 
evaluation of, 407-412, 420-421 

extended ASCII code, 90 
extended memory system and graphics, 298 

version 2 support of, 389 
extensions, 1-2, 9, 123 
extent of objects, 227, 234-236, 246-247 

and scope, 230, 236-238 
extern class specifier, 228, 254 

and extent, 235 
with functions, 240 
with identifiers, 70, 73, 238-240, 243, 252 
and scope, 238-239 

extra segment register, 162-163, 470-472, 474 

%f and %F conversion specification, 85, 105, 
441-442,446-447,451 

\f escape sequence, 26 
Fin evaluation formats, 420 
If FILECOMP option, 383 
F for floating-point numbers, 84 
F with hexadecimal numbers, 454 
F for size field, 452 
fabs() function, 82, 461, 493 
factorials, 388 
false, 29, 93, 107 
far address segment, function for, 499 
far modifiers with graphics library, 322 
far offset address, function for, 498 
far pointers, 161-165, 187, 473-474 

size field for, 442, 452 



farcalloc() function, 493 
farcoreleft() function, 493 
farfree() function, 493 
farmalloc() function, 494 
farrealloc() function, 494 
FAT (file allocation table), 259 
FCB (file control block), 259 
fclose() function, 264, 494 
fcloseall() function, 264-265, 285, 494 
fcvt() function, 494 
fd field in FILE structure, 263 
fdopen() function, 285, 495 
_F _EOF flag, 271, 272 
feof() macro for EOF, 270-271, 495 
_F _ERR flag, 271, 272 
ferror() macro, 271, 273, 495 
fflush() function, 265, 267, 495 
fgetc() function, 96, 274, 280, 495 
fgetchar() function, 280, 285, 496 
fgetpos() function, 496 
fgets() function, 282, 496 
fields, bit, 220-222, 224 
file allocation table (FAT), 259 
file control block, 259 
file handles, 158-159, 186, 259, 496 

closing of, 486-487 
duplication of, 491 
for streams, 495 

file pointers, 262-263, 269 
getting position of, 496, 502, 522 
positioning of, on streams, 501 
setting of, 510 

FILE structure, 262-263 
FILECOMP.C program, 381-385 
filelength() function, 496 
fileno() macro, 285, 496 
files, 258-259, 289 

accessibility of, 480 
attributes for, 259 
binary, 260-261 
copying of, 274-279 
creation of, 265, 488-489 
current, 9 
date and time on, 505, 517 
editing of, 15 
end of. See end-of-file 
erasing of, 265, 524 
errors with, 264, 270-271 
executable, 3-4 
and findnext( ), 497 
with fstat( ) , 501 
handles for. See file handles 
header, 2, 369-370 

include, 2-3, 18, 21, 239 
linking of, 367-383 
loading of, 11-16 

,. INDEX ,. 595 

menu selection for, 11-14 
modes for, setting of, 485, 517 
names for, 259, 498, 511, 522 
object. See .OBJ files and object code 
opening of, 512, 522 
pointers for. See file pointers 
project, 4, 368 
reading from, 514 
renaming of, 515 
response, 377-378 
saving of, 15 
searching through, with GREP, 362-367 
size of, 259, 486, 496 
source, 1-2 
stat() for, 519 
text, 96, 260-261 
writing to, 524-525 
See also streams 

fill patterns, 537-538, 571-572 
filling of shapes, 343-345 

ellipses, 389 
fillpoly() function, 346, 532, 537-538 
fillsettingstype structure, 344 
filters with piping, 260 
findfirst() function, 497 
find next() function, 497 
flag field in FILE structure, 263, 270 
flags 

and bitwise operations, 218 
with printf() family, 443 
status, 471-472 

FLOAT.H file, 461 
floating-point numbers and float data type, 

80-83, 106 
constants for, 84, 460 
control word for, 486-487 
conversion of 

to double, 122 
from strings, 482 
to strings, 491, 494, 502 

conversion specification for, 85, 105, 441-442, 
446-447,451 

errors with, 462 
in evaluation formats, 420 
format of, 458-460 
math with, reinitialization of, 499 
size of, 134 
variables for, 75-76 

floodfill() function, 343, 532-533, 537-538 
floor() function, 497 



596 ~ MASTERING TURBO C ~ 

flushall() function, 265, 267, 285, 497 
flushing of buffers, 261, 265, 267, 495, 497 
fmod() function, 80, 497 
fnmerge() function, 498 
fnsplit() function, 498 
fonts, 301, 326-332, 547 

loading of, 333-334 
registering of, 515 
setting of, 330, 577-578 
source of, 585 
in version 2, 389 

fopen() function, 263-265, 498 
for loops, 140-145, 149, 170 

debugging of, 415-417 
foreground color, 310, 354 
foreign language character sets, 302, 425 
form feed, escape sequence for, 26 
formal arguments, 22, 66, 73 

declarations of, and scope, 230, 244 
extent of, 235 

format control strings, 61-62, 72-73 
for evaluation of expressions, 420-421 
for printf() family, 24, 61-64, 440-447 
for scanf() family, 448-452 

forward references, 224, 229-230 
FP _OFF() function, 498 
_fpreset( ) function, 499 
fprintf() function, 268, 269, 439, 499 
FP _SEG() function, 499 
fputc() function, 274, 283, 499 
fputchar() function, 283, 285, 499 
fputs() function, 283-284, 500 
fragmentation of heap, 155 
fread() function, 285-286, 500 
free() function, 155, 236, 350, 500 
freemem() function, 500 
freopen() function, 500 
frexp() function, 501 
fscanf() function, 269, 448, 501 
fseek() function, 272-273, 501 
fsetpos() function, 501 
fstat() function, 501 
ftell() function, 272, 502 
function keys, 6-8 
functions 

as arguments, 383-388 
and arrays, 151-153, 172, 186 
calling of, while tracing, 405 
creation of, 64-70 
definitions of, vs. declarations, 240 
extent of, 235, 238-239 
external, 240 
and global variables, 246-247 

help files for, 391 
main(), 21-23 
Pascal, 184-185 
pointers to, 151, 161, 385-387 
prototypes for, 124, 148 
and readability, 136 
scope of declarations within, 230 
static, 240-242 
and structured programming, 111-112 
and structures, 203 
See also arguments 

fwrite() function, 285-286, 502 

-G command-line option, 249 
%g and %G conversion specification, 85, 441, 

451 
gcvt() function, 502 
GENERIC.C program, 230-232 
gen interrupt() function, 475, 502 
getarccoords() function, 341, 533 
getaspectratio() function, 328, 534 
getbkcolor() function, 355, 534-535 
getc() macro, 269-271, 279-284, 502 
getch() function, 125, 280, 503 
getchar( ) macro, 280, 503 
getche() function, 124-125, 148, 280, 302, 319, 

503 
getcolor() function, 355, 536 
getcurdir() function, 503 
getcwd() function, 503 
GETDATA.C program, 105-106 
getdate( ) function, 504 
getdfree() function, 504 
getdisk() function, 504 
getdta( ) function, 504 
getenv() function, 278, 504 
getfillpattern() function, 345, 536-537 
getfillsettings() function, 343-345, 537-538 
getftime() function, 505 
getgraphmode() function, 298, 325-326, 334, 

538 
getimage() function, 300, 349-350, 539 
getlinesettings() function, 338, 539-541 
getmaxcolor() function, 357, 541 
getmaxx() function, 299, 326, 340, 541-542 
getmaxy() function, 299, 326, 340, 542 
getmoderange() function, 314, 334, 542-543 
getopt( ) uti I ity, 3 78-383 
getpalette() function, 357, 543-544 
getpass() function, 505 
getpixel() function, 353, 545 
getpsp( ) function, 505 



gets() function, 281, SOS 
gettext() function, 29S, 314-31S, 320, S45-S46 
gettextinfo() function, 307-308, 321, S46 
gettextsettings() function, 302, 329-330, S47-S49 
gettime() function, SOS 
getviewsettings() function, 329, S49-SSO 
getw() function, 281, 28S, S06 
getx() function, 332, 340, SSO 
gety() function, 332, 340, SS1 
global variables and scope, 70, 237-238, 244, 

246-247 
gmtime() function, S06 
gothic stroked font, 301 

constant for, 331, 334, S47 
files for, 302, 334 

goto statement, 113-114, 142, 148, 229 
gotoxy() function, 308-309, 319, SS1 
graphdefaults() function, 5Sl-S52 
graphdriver argument, 321 
grapherrormsg() function, 3S8, SS2 
_graphfreemem() function, 553 
graphgetmem() function, SS3 
graphics and graphics modes 

applications with, 326-332 
closing of, 528 
color with, 3S2-3S8 
current position, 332 
debugging of, 393 
detection of, 323-32S, 530 
device drivers for. See graphics device drivers 
drawing with, 33S-348 
errors in, 322-323, 338, 3S8,SS2, SS4-55S 
and fonts, 333-334 
getting of, S38 
initialization of, 321-323, 556-559 
libraries for, linking of, 306 
mapping of, 296-300 
range of, 542-543 
screen display coordinates of, 299-300 
setting of, 572-573 
switching of, to text, 325-326 
as text, 300-303 

graphics device drivers, 321-322 
constants for, 557-559 
detection of, 323-325, 530 
registering of, 515 
resetting of, 551-552 

graphics program, debugging of, 393 
*graphmode argument, 322 
graphresult() function, 322-323, 338, 358, 

554-555 

greater than sign ( >) 
with compound assignment(>>=), 52 

... INDEX ~ 597 

with include files, 21 
with member operator (- >), 201 
precedence and associativity of, 465-467 
as relational operator ( >), 95 
for right shift operator ( > >), 216 

GREEN color codes, 311 
for background, 310, 355, 535, 569 
for EGA, 356 
for foreground, 310 

Greenwich Mean Time, 506 
GREP utility, 362-367, 393 
gsignal( ) function, 389 

H in evaluation formats, 420 
H for size field, 62, 442, 452 
handles, pointer, 158-159 

See also file handles 
haplography errors, 399 
Harbison, Samuel P., C: A Reference Manual 

221-222 ' 

HATCH_FILL pattern, S38 
head-of-block declarations, 230 
header files, 2, 369-370 
heap, 155,236 
HELLO.C program, 4, 18-31, 34-36 
Help package, 8-9, 391 
HERC driver file, 333 
HERCMONO driver constants, 557-558 
Hercules Display Adapter, 300-301, 303-304, 

3Sl, S44 
hexadecimal numbers, 454 

constants for, 59-60, 72 
conversion specification for, 62, 441, 451 
escape sequence for, 26 
in evaluation formats, 420 
test macro for, 98 

hidden attribute, 313 
high resolution, 296 
highvideo() function, 313, 321, 555 
Hoare, C. A. R., sort by, 387 
hold field in FILE structure, 263 
HORIZ_DIRconstant, 330-331, 548 
hot-key combinations, 6-8 

with version 2, 7-8, 389, 414 
huge memory model and huge pointers, 101, 

161-165, 187, 473 

% i and &I conversion specifications, 441, 
445-446,450 

-i GREP option, 363-364 
IBM8514, 333,557, 5S9 



598 ._ MASTERING TURBO C ._ 

IDE (Integrated Development Environment), xxiv, 
5-11, 435-436 

identifiers 
duplication of, 69, 232-234 
external. See extern class specifier 
rules for, 37-38 

#if directive, 178-179 
if statements, 28-29, 114-121, 126, 148 
#ifdef directive, 178, 180 
#ifndef directive, 178, 180 
imagesize() function, 349-350, 556 
implicit declarations, 229 
implicit rules on dependencies, 390 
implied bits in FP format, 459 
in-line assembly code, 476 

alternative to, 389-390 
inactive screen, 392 
#include directive, 2-3, 21, 239 
include directories, 16-17 
increment operators(++), 50-51, 54, 72, 123, 

465 
indentation for if statements, 115 
index registers, 470-472 
indices for array elements, 99 
indirection operator(*), 101-102, 158-159, 201, 

465 
inequality operator (! =), 466 
initgraph() function, 167, 298, 321-324, 333, 

556-559 
initialization 

of arrays, 99-100 
and extent, 235 
with for loops, 141-142, 144-145 
of graphics. See initgraph() function 
of matrices, 171 
of pointers, 103 
of static variables, 235, 243, 244 
of structures, 196-197 
of variables, 58-59, 72 

input/output. See console; files; keyboard; 
printf() function and family; scanf() 
function and family; screen display; streams 

insert on/off editing feature, 33 
insline() function, 309, 320, 560 
INSTALL batch file, 391, 427-428 
installable drivers and fonts in version 2, 389 
installation ofTurbo C, 4-5, 427-438 

with version 2, 391 
instruction pointer, 470-472 
int86() function, 506 
int86x() function, 506 
intdos() functions, 212, 506 
intdosx( ) function, 507 

integer boundaries and bit fields, 220 
integers and int data type, 70 

accuracy of, 75-76 
assignment of, 48-50 
characters as, 28, 90-91, 94-97 
constants for, 59-61, 72 
conversion of 

from ASCII, 277 
from strings, 482 
to strings, 508 

conversion specification for, 62-63, 104, 441, 
445-446,450 

declaration of, 44-48 
displaying of, 61-64, 283 
input of, 281, 506 
range of, 456-457 
and register storage class, 247 
size of, 134 
variables for, 44-50 

integrated debugger. See source-code debugger 
Integrated Development Environment, xxiv, 

5-11,435-436 
intensity bit, 310, 312 
INTERLEAVE_FILL pattern, 538 
internal conversions, 82-83 
interpreters compared to compilers, 401 
interrupt 10h, 475 
interrupts 

disabling of, 490 
function modifier for, 250-251 
generation of, 475, 502 
and intdos() functions, 212 
interface for, 506-507 

intr( ) function, 507 
IP (instruction pointer), 470-472 
is ... () functions, 507 
isascii() macro, 97 
isatty( ) function, 507 
istemp field in FILE structure, 263 
isupper( ) macro, 97 
itoa() function, 508 

jaggies, 301 
jump optimization, 249 
justification 

with printf(), 86, 443 
of text, 330, 548, 576-577 

Kahn, Philippe, xxiii 
on version 2, 397 

kbhit() function, 508 



Kernighan, Brian W., The C Programming 
Language, xxv, 4 

keyboard 
as file, 259 
input from, 104-106, 269, 448, 503, 524 
interface for, 483 
standard stream for, 268 
See also scanf() function and family 

KEYCNT.C program, 131-134 
keystrokes, checking for, 508 
keywords, 38 
Knuth, Donald, The Art of Computer 

Programming, 246 
KOPY.C program, 274-279 

-I GREP option, 364 
L modifier, 390 
I for size field, 62, 64, 442, 452 
labels 

and forward references, 229 
with goto statements, 113-114 
and name spaces, 233 
with switch statements, 138 

labs() function, 508 
large memory model and pointers, 163-164, 473 
LASTMODE text mode, 307-308, 581 
ldiv() function, 508 
leading zeroes, 60, 86, 454 
left justification, 86-87, 443 
left shift operators ( < <), 52, 216-217, 219-220, 

466 
LEFT_ TEXT justification name, 331, 332, 548 
length of strings, 145-147 
less than sign ( <) 

for bitwise left shift operator ( < <), 216 
with compound assignment(<<=), 52 
with include files, 21 
precedence and associativity of, 466-467 
as relational operator ( <), 95 

lfind() function, 508 
library files, xxv, 3, 393 

BGI, in version 2, 389 
creation of and adding to, 372-374 
directory for, 18 
emulation, 83 
extension for, 368 
graphics, 306 
for 1/0, 257-258 
management of, 367-383 
source codes for, 422 
and unions, 211 

LIMITS.H file, 463 

.,. INDEX ... 599 

line breaks with macros, 37, 282 
LINE_FILL pattern, 537 
linear search functions, 508, 510 
linerel() function, 339, 560-561 
lines and line() function 

blank, insertion of, 560 
deletion of, 309, 320, 529 
drawing of, 338-339, 560-561 
setting style and width of, 300, 335-338, 

539-541, 573-575 
linesettingstype structure, 338 
lineto() function, 339, 561 
linked lists, 200, 202-203 
linking of files, 4, 35 

of graphics library, 306 
of object files, 3, 368-383 
andscope,238-240 
in version 2, 389 

LITT.CHR file, 301, 334 
loading of programs, 11-18 
local extent and scope, 70, 230, 235, 237-238, 

246 
localtime() function, 509 
log() function, 509 
log10() function, 509 
logical files, 259 
logical operators, 92-94, 107, 467 
long data type, 44, 46, 70 

absolute value of, 508 
conversion of 

from int, 122 
from strings, 482, 521 
to strings, 510, 524 

conversion specification for, 62, 64, 442, 452 
division of, 508 
double, 80, 106, 390 
range of, 456-457 
silent truncation of, 58 

long double data type, 80, 106 
long words, 454, 456-457 
loop condition and modifiers, 141-145 
loops. See do while loops; endless loops; for 

loops; while loops 
LOTIERY.C program, 245-246 
low resolution, 296 
lowercase, conversion to, 523 
lowvideo() function, 312-313, 321, 561 
_lrotl() function, 509 
_lrotr() function, 509 
lsearch() function, 510 
lseek() function, 510 
LTBKSLASH_FILL pattern, 538 
ltoa() function, 510 



600 • MASTERING TURBO C • 

LTSLASH_FILL pattern, 537 
!values with assignments, 49, 57, 71 

M in evaluation formats, 420 
M TC Make Switch, 392 
machine level instructions and C, xxv, 3 

in version 2, 389-390 
macros 

and conditional operations, 128, 148 
default values for, 182 
and #define directive, 36, 38-40 
and #ifdef directive, 180 
library functions as, 257 
line breaks with, 37, 282 
and name spaces, 233 
setting of, 183 
undefined vs. empty, 181 

magazines, list of, 585-586 
MAGENTA color codes, 311 

for background 355, 535, 569 
for EGA, 356 

main() function, 21-23, 379 
command-line arguments for, 276-279, 480 

Make Switch with TC, 392 
Make utility, 390 
malloc() function, 135, 155-158, 186, 510 

and dynamic extent, 235-236 
with structures, 205, 224 

mantissas, 81, 85, 458-459, 501 
masks, 16, 218 
MASM assembler, 476-477 
math coprocessors, 83-84, 106, 459 

and long double, 390 
_matherr() function, 462-463 
MATH.H file, 461 
mathematical functions, 461-463 
matrices with arrays, 170-171 
MAXCOLOR, 357 
MCGA adapters, 354, 557-558 
MDA (Monochrome Display Adapter), 300, 

303-304, 313-314 
M_E constant for logarithms, 461 
medium memory model and pointers, 163-164, 

473 
mem ... () functions, 510 
members 

of structures, 189, 194, 201, 224, 465 
of unions, 211, 465 

memory 
addressing of, 469-476 
assignment of values to, 517 
available, 487 

display, 291-300 
dumps of, in evaluation formats, 420 
extended, support of, 389 
moving of, 511 
size of, 483 

memory allocation 
with allocmem( ), 480 
with calloc( ), 155-157, 485 
and definitions, 47, 70 
dynamic, 155-157 
and extent, 235-236 
far routines for, 493-494 
with free(), 236, 500 
with freemem(), 500 
for graphics, 553 
for integers, 454 
with malloc( ). See malloc() function 
maps of, 293-300 
reallocation of, 515 
with structures, 199, 204-205 
and unions, 210 

memory arrays, 510 
memory models, 101, 161-162, 187, 368, 

473-474 
metacharacters, 26, 364-367 
microprocessors. See registers, microprocessor 
Microsoft C, debugging with, 397 
minus sign (-) 

with command-line options, 379-380 
in compound assignments (- =), 51-52 
for decrementing (- ), 50, 72 
with GREP options, 363 
for left justification, 85-87, 443 
with member operator (- >J, 201 
with metacharacters, 365-367 
for module deletion, 372-374 
precedence and associativity of, 54, 465-467 
for selective conversion, 451 
for subtraction, 77 
as unary operator, 60 

mkdir() function, 511 
mktemp() function, 511 
modes. See graphics and graphics modes; text 

and text modes 
modf() function, 511 
modules 

and bugs, 398 
linking of, xxvi, 367-383 
memory limit for, 165 
and scope, 237-238 

modulus operation, 52, 77-80, 497 
monitors, 292 

TC switch for, 392 



MONO text mode, 307-308, 581 
Monochrome Display Adapter, 300, 303-304, 

313-314 
moral equivalency, 250 
movedata() function, 511 
moverel() function, 329, 339, 562 
movetext() function, 295, 318, 320, 562 
moveto() function, 329, 563 
movmem() function, 511 
M_PI constant for pi, 461 
MS-DOS system calls, 482 
multidimensional arrays, 169-172, 187 
multilingual ASCII table, 425 
multiple assignments, 52-53, 71 
multiplication and multiplication operation(*), 

52, 77, 466 
by shifting, 219-220 

multiuser systems and flushing, 261 
MYTAB.C program, 212-213 

-n GREP option, 364 
\n for newline character, 23-26 
N for size field, 442, 451-452 
name spaces, 233 
near pointers, 101, 161-163, 187, 442, 452, 

473-474 
negate operator(!), bitwise, 216-218 
nesting 

of blocks, 24, 112 
of comments, 20, 182-183 
of conditional compilation commands, 178 
of for loops, 143-144, 149 
of functions, 112 
of if statements, 115 
of include files, 2-3 
of structures, 197-199, 224 
of while loops, 131 

New Value field with debugger, 407, 409 
newline character, 23-26, 261, 476 
nibbles, 454-455 
normalization of FP numbers, 458-459 
normvideo() function, 312-313, 321, 563 
NORM_ WIDTH line thickness, 337, 540, 574 
nosound() function, 512 
NOT logical operator (!), 92-93, 107, 465 
NOT_PUT constant with bit images, 565 
NUL character, 23, 26, 27 
nul statements, 28 
NULL with linked lists, 200 
NULL pointers, 102, 155, 164 
number sign (#) 

for directives, 2, 21 

for Make comments, 390 
as modifier flag, 86-87 
with printf() 443-444 

number systems, 453-454 

.. INDEX .. 601 

-0 command-line option, 249 
°loo and %0 conversion specification, 62, 441, 

450 
.OBJ files and object code, 3, 238-239, 367-383 

and auto-dependencies, 391 
OBJXREF.COM file, 390 
octal number system, 26, 453-454 

constants for, 59-60, 72 
conversion specification for, 62, 441, 450 

offset register, 162 
one's complement notation, 455, 465 
open arrays, 152 
open() function, 512 
_open() function, 512 
operands, 29 
operators, 29 

address, 101-105, 248, 465 
arithmetic, 77-80 
assignment, 29-30, 467 
bitwise, 215-222 
conditional, 125-128, 148 
with conditional compilation, 179 
decrement, 50-51, 72, 465 
defined, 180 
equality, 29, 466 
increment, 50-51, 72, 465 
indirection, 101-102, 201, 465 
logical, 92-94, 107 
member, 201 
precedence and associativity of, 53-57, 71-72, 

465-467 
relational, 94-95 
sizeof. See sizeof( ) operator 
type specifier, 119 
unary, 60 

optimization, 249-251 
options 

command-line, 378-383 
loading, 15 
saving of, 434-435 

Options debugger command, 419 
OR bitwise operator ( I ), 52, 216-218, 466-467 
OR logical operator (I I), 92-93, 107, 467 
OR_PUT constant with bit images, 565 
outtext() function, 302-303, 330, 332, 563-564 
outtextxy() function, 302, 330, 564 
overfill, 344 



602 • MASTER/NC TURBO C • 

overflow errors, 57-58, 457 
overloading classes, 233 

%p conversion specification, 442 
P in evaluation formats, 420 
PAGE.C program, 351-353 
pages in memory, 292, 295, 350-351 
palettes, 298, 313, 559 

and background color, 535 
for CGA, 353-354 
for EGA adapters, 310, 355-356 
getting of, 543-544 
and setcolor( ), 570 
setting of, 568-569, 575-576 
for VGA adapters, 355-356 

palettetype structure, 357 
PALIN.C program, 147 
paragraphs, 162 
parameters. See arguments 
parentheses ( ) 

with conditional control statements, 93 
with conditional operators, 127 
with do while loops, 136 
with functions, 22-23 
with macros, 39-40 
with pointers, 168 
precedence and associativity of, 53, 55, 56, 

71-72, 465 
with structures, 201 
with substitution strings, 38 
with typecasting, 119 

Pascal functions, 184-185 
passwords, reading of, 505 
patches for bugs, 399 
PATH command, 428 
path names, splitting of, 498 
patterns 

for filling, 343 
for lines, 337-338, 539-541 
setting of, 571-572 
user-defined, 345-346, 536-537 

PC3270, 333, 557, 559 
percent sign(%) 

in compound assignments (% = ), 52 
displaying of, 63-64, 442, 451 J 
for format specifiers, 62-64, 86, 440, 449, 45 
precedence and associativity of, 55, 467 
for remainder operation, 77 

periods(.) 
with floating-point numbers, 81, 84 

, with GREP, 365-366 
precedence and associativity of, 465 

for precision specification, 85, 443 
in prototype formats, 124 
as structure member operator, 194 

perror() function, 268, 275 
PGRAF.C program, 342-344 
physical files, 259 
pi, constant for, 461 
pick lists, 15, 432 
picture elements. See pixels 
pieslice() function, 348, 537-538, 564-565 
piping, 260, 268, 363 
pixels, 296 

aspect ratio of, 297-298 
color of, 353-354, 545 
coordinates of, 332 
encoding of, 298 
geometry of, 299-300 
plotting of, 566 
size of, 332 

planes, 292, 295, 350-351 
PLAYER.C program, 251-253 
plus sign ( +) 

for addition, 77 
in compound assignments(+=), 51-52 
with GREP options, 363, 365-366 
for incrementing ( + + ), 50, 72 
for module additions, 372-374 
precedence and associativity of, 54, 56, 

465-467 
with printf( ), 85, 443 
with stream types, 265-267 
as unary operator, 72 

pointers, 100-102, 107 
arithmetic with, xxv, 134-135, 149, 160-162, 

165, 186 
and arrays, 151-154, 159-160, 165-168 
calling by reference with, 103-104 
constants for, 154, 186 
conversion specification for, 442, 449-450 
declarations of, 103 
in evaluation formats, 420 
far, 161-165, 187, 442, 452, 473-474 
and functions, 151-153, 161, 385-387 
handles for, 158-159 
huge, 161-162, 164-165, 187,473 
initialization of, 103, 157 
and linked lists, 200, 202-203 
and memory models, 101, 161-162, 187, 

473-474 
names of, 100-101 
near, 101, 161-163, 187, 442, 452, 473-474 
postincrement operators with, 133 
precedence and associativity of, 465 



registers for, 470-472 
with scanf() family, 449-4SO 
setting of, 1 S4-1 S7 
to structures, 203-204 
type casting of, 1 S7-1 S8 
variables for, 1 S4 

polygons, 339-340, S30-S32 
portability of programs, xxv 

and bit fields, 221-222 
and bugs, 399 
and case sensitivity, 376-377 
and character constants, 9S 
and characters as integers, 91 
and conditional directives, 267 
and direct video, 304-306 
and end-of-file indicator, 96 
graphics functions for, 299 
and header files, 2 
and 1/0, 24-2S, 2S8 
and LIMITS.H, 463 
and long double data type, 81 
and modulus operation, 79 
and name spaces, 233 
and nesting of comments, 20 
and pointers, 102 
and #pragma directive, 476 
and prototype formats, 124 
and register variables, 248 
and short data type, 4S 
and size_t data type, 28S 
and sizeof() operator, 13S, 179 
and typedef, 177 

postdecrementoperator (- -), SO-Sl, 72 
postincrement operator ( + + ), SO-Sl, 72, 133 
postmortem dumps, 401 
pound sign (#).See number sign 
power function, 388 
#pragma directive, 476 
precedence of operators, S3-S7, 71-72, 46S-467 

of array brackets, 167 
of comma expressions, 14S 
of conditional operators, 127 
of indirection operator, 201 
of member operator, 201 

precision, 7S-76, 82-83, 460 
of long double type, 390 
specifiers for, 8S-86, 443-444 

predecrement operator(- - ), SO-Sl, 72 
preincrement operator ( + + ), SO-S1, 72 
preprocessor directives, 2-3, 21, 36-37 

See also conditional compilation 
printer and biosprint( ), 484 

~ INDEX ~ 603 

printf() function and family, 23-2S, 72-73, 439 
for floating-point numbers, 8S-87, 106 
format of, 61-64, 440-447 
precision specifiers for, 8S-86, 443-444 
and stdout, 268 
width specifiers for, 86-87, 443 
and windows, 302 

.PRJ files, 4, 306 
and auto-dependencies, 391 

PROCESS.H files, 131 
program segment prefix, SOS 
project files, 4, 368 
Project-Make utility, xxvi, 31, 3S-36, 369-371 
proofreading errors, 399 
prototype formats, 124, 148 
pseudorandom-number generator, 24S-246 
punctuation symbols, test macro for, 98 
putc() function, 273-274, 282-284, S12 
putch() function, 283, 302, 319, 512 
putchar() macro, 282-283, Sl 3 
putenv() function, 278, S13 
putimage() function, 300, 349-3SO, S6S-S66 
putpixel() function, 3S3, S66 
puts() function, 34, 283, 302, Sl 3 
puttext() function, 295, 314-315, 318-320, 

S66-S67 
putw() function, 283, 28S, Sl 3 

qsort() function, 387, S 13 
qualification of variables for debugging, 419-420 
question mark (?) 

as conditional operator, 126-127 
escape sequence for, 26 
precedence and associativity of, 467 
for wildcard characters, 16 

quicksort, 387, Sl 3 
quotation marks (" ').See double quotation 

marks; single quotation marks 

-r command-line option, 249 
\r escape sequence, 26 
R in evaluation formats, 420 
-r GREP option, 363-364 
r stream type, 26S-267 
raise() function, 389 
RAM as file, 260 
rand() function, S14 
random-access memory as file, 260 
random files, 2S8 
random() function, S14 
random-number generator, 24S-246 



604 ~ MASTERING TURBO C ~ 

randomize() function, 514 
ranges 

of computer numbers, 456-457, 460 
errors in, 462 
with metacharacters, 365-367 
of modes, 542-543 
with scanf( ) , 451 

raster scan, 292-293 
read( ) function, 514 
_read() function, 514 
readability, program, 136, 172-173, 175 
real numbers. See floating-point numbers and 

float data type 
real parameters, 22, 66, 73 
realloc() function, 515 
records. See struct and structures 
rectangle() function, 300, 567 
recursion, 240, 387-388, 394 
RED color codes, 311 

for background, 310, 355, 535, 569 
for EGA, 356 
for foreground, 310 

redirection, 260, 268, 363 
reference, calling by, with pointers, 103-104, 

108, 153 
referencing declarations, 239-240, 243 
register storage class and specifier, 228, 247-251, 

254 
registerbgidriver() function, 333, 515 
registerbgifont() function, 333, 515 
registers, microprocessor, 162, 469-477 

pseudovariables for, 474-476 
storage class for, 228, 247-251 
structures for, 212 

REGS union, 212-213 
regular expressions, 363-365 
reinitializer, 141-145 
relational operators, 94-95 
relative screen addressing, 295-296 
remainder operation. See modulus operation 
remove( ) macro, 285 
rename() function, 51 S 
Resize Window Option, 434 
resolution of screen display, 296-299, 350-351, 

353-354 
response files, 377-378 
restorecrtmode() function, 298, 325, 567-568 
Result field with debugger, 407 
return statement, 67, 73, 129, 142-143, 213 
returned values with functions, 22 
reverse video, 313 
REVSTR.C program, 145-146 

rewind() function, 271-273, 515 
right justification, 86, 443 
right shift operators(>>), 216-217 

compound assignment with(>>+), 52 
division with, 219-220 
precedence and associativity of, 466 

RIGHT_ TEXT justification name, 331, 548 
Ritchie, Dennis M., The C Programming 

Language, xxv, 4 
rmdir() function, 516 
rotate functions, 509, 516 
_rotl() function, 516 
_rotr() function, 516 
rounding, 485, 497 
rows in text displays, 294 
Run debugger command, 418 
Run menu,402-403 
runtime errors, 31-32, 400 
runtime library source code, 422 

%s conversion specification, 62, 105, 441, 
444-445,451 

S in evaluation formats, 420 
SansSerif stroked font, 301 

constant for, 331, 334, 547 
file for, 301, 334 

scaling corrections, 297-298 
scanf() function and family, 104-106, 108 

format of, 253, 447-452 
and stdin, 269, 447 

scientific notation, 81, 85, 441, 447, 451 
scope, 246-247 

and debugging, 419-421 
and extent, 236-238 
of variables, 229-230 
and visibility, 230-234 

screen display 
clearing of, 527, 529 
copying of, to memory, 320 
direct video for, 304-306 
as files, 259 
intensity of characters on, 312-313, 321, 555, 

561, 563 
modes for, 292-293, 567-568 
outputto, 302-303, 330, 332,512, 563-564 
resolution of, 296-299, 350-351, 353-354 
restoring of, 567-568 
saving of, to memory, 349-351 
standard stream for, 268-269 
See also coordinates, screen display; display 

adapters 



searches 
binary, 484 
linear, 508, 510 
with replace, 34 
for strings, 362-367 

seeds, flood, 343 
>egrnent registers, 162, 470 
segrnent:offset addresses, 162, 164, 469-476 
semantic errors, 400 
semicolons (;) 

with asm, 476 
in for loops, 141, 143-144 
with if statements, 116 
with macro definitions, 183 
with PATH command, 428 
for statement terminators, 28 
with type specifiers, 47 

semiglobal identifiers, 238 
separately compilable files, 237-238 
sequential files, 258 
setactivepage() function, 351, 568 
setallpalette() function, 357-358, 568-569 
setbkcolor() function, 354, 357, 569-570 
setbuf() function, 284 
setcolor() function, 346, 570 
setdate() function, 516 
setdisk() function, 516 
setfillpattern() function, 343, 345, 571 
setfillstyle() function, 343, 345, 571-572 
setftime() function, 517 
setgraphbufsize() function, 572 
setgraphmode() function, 298, 325-326, 354, 

354, 572-573 
setlinestyle() function, 300, 337, 573-574 
setmem() function, 517 
setmode() function, 517 
setpalette() function, 356-358, 575-576 
settextjustify() function, 302, 329-330, 576-577 
settextstyle() function, 302, 329-330, 577 
settime() function, 517 
Setup Environment Option, 434 
setusercharsize() function, 329-331, 577-578 
setvbuf() function, 284 
setviewport() function, 300, 329, 578 
setvisualpage() function, 351, 578-579 
shift operators ( < <, > > ), bitwise, 52, 

216-217,219-220 
SHOALL.C program, 278-279 
short data type, 45, 46, 70 

conversion of, to integer, 122 
conversion specification for, 62, 442, 452 
range of, 456 
size of, 134 

• INDEX • 605 

SHOWNUM.C program, 61 
SHOWNUMl.C program, 65 
SHOWNUMF.C program, 87-90 
SI register, 248, 471-472, 475 
side effects, 70, 153, 246 

from patches, 399 
SIGMA.C program, debugging of, 402-421 
sign bits, 45, 455 

and bit fields, 221 
with double format, 459 
with float format, 458 
and shift operations, 217 

signal() function, 389 
signed characters, 91-92, 95, 107 
signed integers, 45-46, 70, 454-456 

conversion specification for, 441 
and modulus operation, 78-80 

silent conversions, 82-83 
silent truncations, 58-60 
sin() function, 462 
single quotation marks('), 26-27 
single-stepping for debugging, 404-406 
sinh() function, 462 
size field with printf() family, 442 
size modifier for scanf() family, 452 
size_t data type, 285 
sizeof() operator 

with arrays, 153, 186 
and conditional compilation, 179 
and pointer arithmetic, 134-135, 149 
and portability, 299 
precedence and associativity of, 465 
with structures, 192, 205, 224 

SLASH_FILL pattern, 537 
slashes(/) 

with command-line options, 379-380 
for comments(/* */), 20 
with compound assignment(/=), 52 
for division, 77 
as fill pattern, 537 
precedence and associativity of, 55, 466-467 
in scanf( ), 253 

sleep() function, 517 
SMALL_FONT constant, 331, 334, 547 
small memory model, 161-164, 473 
small stroked font, 301 
snow, screen display, 292 
software interrupts, 475, 502, 506-507 
software products, 586 
SOLID_FILL pattern, 537 
SOLID_LINE style, 337-338, 540, 574 
sorting, 260, 387, 513 
sound() function, 518 



606 • MASTERING TURBO C • 

source code, 1-2 
for run-time libraries, 422 

source-code debugger, 397-399 
breakpoints with, 412-414 
commands for, 418-420 
and error types, 399-400 
evaluating expressions with, 407-412 
evaluation formats for, 420-421 
integrated, 401-404 
single-stepping with, 404-406 
watch windows with, 414-418 

Source debugging options, 402 
source index register, 471-472 
SP (stack pointer), 471-472 
spaces 

in command line, 276 
with #define directive, 37 
with GREP arguments, 362 
as white space, 21 

spawn ... () functions, 518 
special characters,, 25-27 
speed, optimizing for, 249 
SPLAYER.C program, 286-288 
sprintf() function, 303, 440, 518 
sqrt() function, 518 
square brackets ([]) 

for array elements, 99, 152, 167 
with GREP, 36S-367 
precedence and associativity of, 46S 
with selective conversion, 4S1 

srand() function, S19 
SS register, 162-163, 470-472, 474 
sscanf() function, 448, S19 
ssignal() function, 389 
stack and memory, 236 
stack pointer, 471-472 
stack segment register, 162-163, 470-472, 474 
standalone debugger, 397-398 
standard streams, 267-268 
stat() function, S19 
statements, 28-30 
static storage class specifier, 228, 2S4 

extent with, 235 
functions with, 240-242 
and linking, 243-244 
for objects, 244-247, 2S2 
and scope, 238-239 

STATS.C program, 347-348 
status flags, 270, 471-472 
stdaux stream, 267-268 
stderr stream, 131, 267-268 
stdin stream, 104, 267-268, 104, 447-448 
stdio.h file, 34 

STDLIB.H file, 131, 1 SS 
stdout stream, 24, 267-268, 439-440, 499 
stdprn stream, 267-268 
Steele, Guy L., Jr., C: A Reference Manual, 221-222 
step-over debugging option, 404 
stime() function, S19 
STLIB.H file, 461 
storage classes, 69-70, 227, 254-2S5 

and extent, 234-238, 246-247 
external, 238-240, 243-244 
register, 247-2S 1 
andscope,229-230,236-238, 246-247 
specifiers for, 227-229 
static, 240-242, 244-246 
and visibility, 230-234 

storage mapping function, 1 S9 
stpcpy() function, 519 
strcmp() function, 146, 2S3, S20 
strcpy() function, 146, 2S3, S20 
streams, 262-26S 

block 1/0 with, 28S-288 
closing of, 264-265, 494 
for console, 268-269 
end-of-file with, 495 
errors with, 49S 
file handles for, 495 
files as, 2S9 
flushing of, 261, 26S, 267, 49S, 497 
input from, 448, 49S-496, SOO-S03, SOS 
integers from, S06 
opening of, 263-267, 498 
outputto,439-440,499,S02, S12-S13,S24 
positioning file pointer on, 501 
replacement of, SOO 
repositioning of, Sl S 
standard, 267-268 
types of, 26S-267 
words on, S 13 
See also files 

strerror() function, 28S, S21 
STRING.H file, 14S-147, 149 
strings 

in command line, 276-277 
compared to characters, 27 
comparison of, 146, 253 
constants as, 23, 100 
conversion of 

to date and time, 489 
with floating-point, 482, 491, 494, S02 
with integers, 482, S08 
with long, 482, 510 

conversion specification for, 62, 105, 441, 
444-44S,4Sl 



copying of, 146, 253, 519 
displaying of, 34, 283-284, 488, 563-564 
for environment, 504, 513 
in evaluation formats, 420 
format control, 61-64, 72-73, 440-454 
input of, 281-282, 485, 496, 505, 519 
length of, 145-147 
output to, 500, 513, 518 
reversing characters in, 145-146 
searching for, with GREP, 362-367 
substitution, with #define, 38-40 
variable length, in arrays, 167 
variables as, 23 

strlen() function, 145-147 
stroked fonts, 301, 330, 515, 577-578 
strtoul() function, 521 
struct and structures 

assignments of, 195-196 
conversion of date and time to, 509 
declaration of, 189-192, 222-223 
in evaluation formats, 420 
FILE, 262-263 
initialization of, 196-197 
memory allocation with, 192-193, 199, 

204-205 
nesting of, 197-199, 224 
pointer member operator for, 201-202 
pointers to, 203-204 

structured programming, 111-112 
style of lines, 335, 337, 539-541, 573-575 
substitution strings with #define, 38-40 
subtraction operation(-), 51-52, 77, 466 
swab{) function, 521 
switch statement, 137-140, 149 
switches, command-line, 378-383 
symbol table data with source-code debugger, 

401 
syntax errors, 400 
system calls, 482 
system() function, 521 
systems programming, 469 

\t escape sequence, 26 
It FILECOMP option, 383 
t stream types, 265-266 
tabs 

in command line, 276 
with #define directive, 37 
with editor, 33 
escape sequence for, 26 
with GREP arguments, 362 
as white space, 21 

tags 
enumeration, 17 4-175 

.,. INDEX .. 607 

and forward references, 229 
and name spaces, 233 
with structures, 190-192 
with unions, 216 

tan() function, 462, 522 
tanh() function, 462 
TC.EXE file, 9, 183, 433-438 

command-line switches with, 391-393 
TC Build Switch, 392 
TC Dual Monitor Switch, 392-393 
TCC.EXE command line, 183, 249, 473 
TCCONFIG.EXE file, 438 
TCCONFIG.TC file, 16, 18, 430-431, 435-438 
TCINST.COM file, 391 
TCINST.EXE file, 391, 428-436 
TCPICK.TCP, 432 
tell() function, 522 
ternary operator, 126, 148 
text and text modes, 319-321, 329-332, 358-359 

background color of, 579 
characteristics of, 577, 579 
color for, 309-312, 580 
copying of, 295, 318, 320, 545-546, 562, 

566-567 
files of, 96, 260-261 
graphics as, 300-303 
height of, 580 
information on, getting, 546-549 
1/0 of, 319 
justification of, 330, 548, 576-577 
mapping of, 236, 293-296 
setting of, 307-314, 517 
switching of, 325-326 
windows for, 295-296, 314-319, 582-583 

text_info structure, 307, 309 
textattr() function, 312, 320, 579 
textbackground() function, 312-313, 320, 

579-580 
textcolor() function, 312-313, 320, 580 
textheight( ) function, 332, 580 
textmode() function, 307, 312, 319, 581 
textsettingstype structure, 330 
textwidth() function, 332, 581-582 
TFONT.C program, 326-333 
TGRAF.C program, 335-336 
THELP.COM file, 391 
THICK_WIDTH line thickness, 337, 540, 574 
thickness of lines, 335, 337, 539-541 
three-dimensional bars, 346, 348, 526 
tilde(-) for bitwise negate operator, 216-218, 

465 
time 

and biostime( ),454 
conversions with, 480, 489, 509 



608 • MASTERING TURBO C • 

and difftime( ), 490 
displaying of, 278-279 
file, getting of, SOS, Sl 7 
getting of, SOS, S22 
Greenwich Mean, S06 
setting of, Sl 7, S19 
UNIX, 491 

time() function, S22 
time stamps with file linking, 369 
tiny memory model, 101, 473 
TUB.EXE file, 333, 367-383, 393 
TLINK, 371, 476 
tmpfile() function, S22 
tmpname() function, S22 
toascii( ) function, 2S2, S23 
Toggle breakpoint debugger option, 412-413 
token field in FILE structure, 263 
token replacement, 128 
tolower( ) fundion, 2S2, S23 
_tolower() macro, 2S2, S23 
top-level declarations, 230, 237-238 
TOP_ TEXT justification name, 331, S48 
toupper() function, 2S2, S23 
_toupper() macro, 2S2, S23 
Trace-into debugging option, 40S 
tracing for debugging, 40S-406 
TRIP.CHR file, 301, 334 
triplex stroked font, 301, 331, 334, S47 
true, 29, 93, 107 
truncation, S8-60, 123 
Turbo C, release of, xxvi 
Turbo Pascal, xxiii-xxiv, xxvi 
Turbo Prolog and Turbo C, xxvi 
TURBOC files, 428 
TWINDOW.C program, 314-319 
two's complement notation, 4S, 70, 4SS, 4S7 
typecasting, 117, 119-120, 148, 465 

of pointers, 1 S6-1 S8, 186 
type specifiers, 47 
typedef, 17S-178, 187 

as storage class specifier, 229 
with structures, 191-192 

%u and %U conversion specifications, 62, lOS, 
441,4S1 

unary conversions, 121-122 
unary operators, 60, 46S 
unbuffered 1/0, 284 
#undef directive, 181 
underline attribute, 313 
underscore symbol(_), 37-38, 376 
undocumented features, bugs as, 398 
ungetc() function, 280-281, S24 

ungetch() function, 281, S24 
unions, 210-21S, 224, 46S 

in evaluation formats, 420 
UNIX 

and C, xxiv 
and device files, 2S9-260 
time format of, 491 

unlink() function, 28S, S24 
UNPACK utility, 391 
unsigned data types 

characters, 91-92, 9S, 107, 122 
conversion of, with strings, S21, S24 
conversion specification for, 62-63, lOS, 441, 

4S1 
integers, 46, 70, 4S4-4S6 

unused variable warning, 68-69 
upattern, 337-338,34S-346,S71 
uppercase conversion, 94, 2S2, S23 
USER_FILL pattern, S38 
USERBIT_LINE style, 337, S40, S74 

\ v escape sequence, 26 
-v GREP option, 364 
value, passing arguments by, 67 
variables 

data type declarations for, 44-4S 
and debugging, 419-421 
duplication of, 69 
external, 243-244 
floating-point, 7S-·76 
initialization of, S8-S9, 72 
integer, 44-SO, 71 
pointer, 1 S4 
scope of. See scope 
static, 244-246 
string, 23 
structure, 190-192, 197-199 
unused, warning for, 68-69 
visibility of, 227, 230-234 

VECSUM.C program, 1 S2-1 S3 
Version 1.S, 361-362 
Version 2, 388-393 

hot-key combinations in, 7-8, 389, 414 
installation of, 391 

VERT_DIR constant, 331, S48 
vertical bars ( I ) 

for bitwise OR (I), 216-218 
with compound assignment ( I = ), S2 
for logical OR ( I I ), 92-93 
as pipe operator, 260 
precedence and associativity of, 467 

vertical retrace, 292-293 
vfprintf() fundion, 268, 440 



vfscanf() function, 269, 448 
VGA, 355-358, 535, 557, 559 
video. 75ee screen display 
video byte, 303 
Video Graphics Array, 355-358, 535, 557, 559 
View next breakpoint debugger option, 412-413 
view ports 

clearing of, 528 
displaying of strings in, 563-564 
getting of, 549-550 
setting of, 300, 329, 578 

visibility of variables, 227, 230-234 
visual page, 292, 350-351, 578-579 
void data type, 120, 148 
volatile modifier, 250-251 
vprintf() function, 268, 440 
vscanf( ) function, 269, 448 
vsprintf() function, 440 
vsscanf() function, 448 

lw FILECOMP option, 383 
-w GREP option, 364, 365 
w stream type, 265-267 
warnings, 31, 57-58, 68-69 
Watch expressions, editing of, 415 
Watch windows for debugger, 414-418 
wherex() function, 309, 321, 582 
wherey() function, 309, 321, 582 
while loops, 29, 128-134, 148-149 
WHITE color codes, 311 

for background, 355, 535, 570 
for EGA, 356 

white space, 21 
with command-line arguments, 277 
with scanf( ), 104, 449 
test macro for, 98 
with type specifiers, 47 

WIDE_DOT_FILL pattern, 538 
width and width specifiers, 86-87 

bit, 220-222 
of lines, 573-575 
with printf() family, 443 

~ INDEX ~ 609 

for scanf() family, 452 
of text, getting, 581-582 

wildcards for loading files, 16 
window() function, 295, 308-309, 319, 582-583 
windows 

adjacent, 11 
clearing of, 529 
edit, 10 
message, 10, 35 
switching of, 10 
text, 295-296, 302, 314-319 
zooming of, 10 

word alignment, 192-193 
WORDREGS structure, 211-212 
words, 454, 456, 513 
write( ) function, 525 
_write() function, 525 

%x and %X conversion specification, 62, 441, 
451 

X in evaluation formats, 420 
x with hexadecimal numbers, 60, 454 
XHATCH_FILL pattern, 538 
XORoperator(A), 52, 216-218 
XOR_PUT constant with bit images, 565 

/y FILECOMP option, 383 
YELLOW color codes, 311 

for background color, 355, 535, 570 
for EGA, 356 

-Z command-line option, 249 
-z GREP option, 364 
\0 escape sequence, 26 
zeroes 

floating-point representation of, 459 
for hexadecimal numbers, 60, 454 
leading, displaying of, 86, 443 
for octal numbers, 60, 454 

zooming of active windows, 10 



SYBEX Computer Books 
are different. 

Here is why. • • 

At SYBEX, each book is designed with you in mind. Every manuscript is 
carefully selected and supervised by our editors, who are themselves 
computer experts. We publish the best authors, whose technical expertise 
is matched by an ability to write clearly and to communicate effectively. 
Programs are thoroughly tested for accuracy by our technical staff. Our 
computerized production department goes to great lengths to make 
sure that each book is well-designed. 

In the pursuit of timeliness, SYBEX has achieved many publishing firsts. 
SYBEX was among the first to integrate personal computers used by 
authors and staff into the publishing process. SYBEX was the first to 
publish books on the CP/M operating system, microprocessor interfacing 
techniques, word processing, and many more topics. 

Expertise in computers and dedication to the highest quality product 
have made SYBEX a world leader in computer book publishing. Trans­
lated into fourteen languages, SYBEX books have helped millions of 
people around the world to get the most from their computers. We hope 
we have helped you, too. 

For a complete catalog of our publications: 

SYBEX, Inc. 2021 Challenger Drive, #100, Alameda, CA 94501 
Tel: (415} 523-8233/(800) 227-2346 Telex: 336311 
Fax: (415) 523-2373 



e· TO JOIN THE SYBEX MAILING LIST OR ORDER BOOKS 
PLEASE COMPLETE THIS FORM 

NAME ------------~ COMPANY -------------­

STREET ----------------- STATE __ ZIP -------

D PLEASE MAIL ME MORE INFORMATION ABOUT SYBEX TITLES 

ORDER FORM (There is no obligation to order) 

PLEASE SEND ME THE FOLLOWING: 

TITLE QTY PRICE 

SHIPPING AND HANDLING PLEASE ADD $2.00 
PER BOOK VIA UPS 

FOR OVERSEAS SURFACE ADD $5.25 PER 
BOOK PLUS $4.40 REGISTRATION FEE 

FOR OVERSEAS AIRMAIL ADD $18.25 PER 
BOOK PLUS $4.40 REGISTRATION FEE 

CALIFORNIA RESIDENTS PLEASE ADD 
APPLICABLE SALES TAX 

TOTAL AMOUNT PAYABLE 

D CHECK ENCLOSED D VISA 
D MASTERCARD D AMERICAN EXPRESS 

ACCOUNTNUMBER ----------

TOTAL BOOK ORDER $__ EXPIR. DATE __ DAYTIME PHONE ___ _ 

CUSTOMER SIGNATURE ---------------------------

CHECK AREA OF COMPUTER INTEREST: 

D BUSINESS SOFTWARE 

D TECHNICAL PROGRAMMING 

D OTHER: 

THE FACTOR THAT WAS MOST IMPORTANT IN 

YOUR SELECTION: 

D THE SYBEX NAME 

D QUALITY 

D PRICE 

D EXTRA FEATURES 

D COMPREHENSIVENESS 

D CLEAR WRITING 

DOTHER -------------

OTHER COMPUTER TITLES YOU WOULD LIKE 

TO SEE IN PRINT: 

OCCUPATION 

D PROGRAMMER D TEACHER 

D SENIOR EXECUTIVE D HOMEMAKER 

D COMPUTER CONSULTANT D RETIRED 

D SUPERVISOR D STUDENT 

D MIDDLE MANAGEMENT D OTHER: 

D ENGINEER/TECHNICAL 

D CLERICAL/SERVICE 

D BUSINESS OWNER/SELF EMPLOYED 



CHECK YOUR LEVEL OF COMPUTER USE 

I , NEW TO COMPUTERS 

!~I INFREQUENT COMPUTER USER 

D FREQUENT USER OF ONE SOFTWARE 

PACKAGE 

NAME-------------

0 FREQUENT USER OF MANY SOFTWARE 

PACKAGES 

D PROFESSIONAL PROGRAMMER 

OTHER COMMENTS: 

PLEASE FOLD, SEAL, AND MAIL TO SYBEX 

SYBEX, INC. 
2021 CHALLENGER DR. #100 
ALAMEDA, CALIFORNIA USA 

94501 

SEAL 

D 



MASTERING 

TURBO C 
Mastering Turbo C is an engaging, hands-on guide to programming with 
Turbo C, now in its Second Edition-fully revised and expanded to 
include Turbo C Version 2. This book is an absolute must for 
newcomers to the C language-even if you have no previous experience 
with structured programming-and for anyone seeking an up-to-date, 
thorough, and entertaining approach to mastering the Turbo 
implementation. 

Learn the ins and outs of working in the Turbo environment-with 
step-by-step instructions and plenty of hands-on examples. 

Understand the theory behind the unique character of C, as you learn to 
put its features to work in efficient, powerful code. 

Create a useful collection of structured C programs-building on a first 
simple routine-while you learn the fundamentals of the language. 
Carefully explained, progressively extended program examples are used 
throughout to illustrate such topics as 

• understanding data typology 

• working with real numbers and characters 

• techniques for controlling program flow 

• using complex data types, structures and unions 

• controlling the scope and security of data variables 

• file 1/0 operations 

Produce spectacular color displays using the Graphics Toolbox 
routines-for pie charts, bar graphs, and much more. 

Save hours of programming time using Version 2's powerful new 
debugging capabilities to pinpoint and correct coding errors. 

You'll also find: 

Concise chapter summaries-to help you review familiar material and 
turn directly to the sections you need. 

Complete programmer's reference information in eight appendices, 
including an installation summary, explanations of computer math and 
808X registers, and a reference guide to all Turbo C functions. 

COMPUTER BOOK SHELF CATEOORY 

v Intermediate How-To 

Reference 

About the Author 

Stan Kelly-Bootle has pioneered 
computer development since the 
1950s. After graduating in Pure 
Mathematics from Cambridge 
University, he did postgraduate work 
on the EDSAC I computer. He is a 
contributing editor to UNIX Review 
and Computer Language, and is 
author of numerous books, including 
The Devil's DP Dictionary. He is also 
an accomplished songwriter whose 
works have been recorded by Judy 
Collins, Cilia Black, and himself. 

S YBEX books bring you skills­
not just information. 

90000 

9 780895 885951 

LANGUAGES/TECHNICAL: C ISBN 0-89588-595-6 U.S. $27.95 


