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> FOREWORD >

We welcome Stan Kelly-Bootle’s Mastering Turbo C to the library of books
supporting Turbo language products from Borland International. Such
books help users at every experience level derive optimum benefits from
their software investments.

In this most readable exposition, Kelly-Bootle gently and logically
acquaints the novice user with the power, versatility, and simplicity of the
Turbo C integrated environment. Although Mastering Turbo C is written
specifically for readers who have never used a C, or perhaps any structured
language, the author provides chapter summaries and appendices that help
more advanced users quickly find valuable information. Particularly helpful
to all readers are a complete guide to using the graphics of Turbo C and infor-
mation on the Turbo C Runtime Library.

It is a pleasure to recommend Mastering Turbo C as an introduction to the
powerful Turbo C programming environment.

Philippe Kahn
President
Borland International, Inc.
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> INTRODUCTION »

There are three reasons for learning the C language: fun, profit, and every-
body is doing it. The recent surge in popularity is largely due to Borland
International’s president, Philippe Kahn, who pioneered the unheard-of
notion that professional-quality compilers and language-support products
should not require you to get a second mortgage.

» HISTORY LESSON »

While hardware costs had been declining dramatically since the first
UNIVAC sale, the unquestioned assumption was that software, being
human-labor intensive, was bound to move as rapidly in the opposite direc-
tion, if only to ensure that your total data-processing budget remained com-
fortably stable!

Kahn’s counterexample to this hypothesis rests on the simple notion that
you can amortize the considerable costs of developing sound, easy-to-use
software by expanding the customer base with aggressive pricing and mar-
keting. The latter is required, initially at least, to overcome the fixation that
decent systems software is expensive and accessible only to computer-
science graduates. The size of the potential user base, of course, had
expanded rapidly during the early 1980s with the advent of the IBM PC and
its many bandwagoneers.

» Success »

The legendary success of Borland’s Turbo Pascal proved that there was
indeed an untapped market for professional compilers for personal com-
puters outside the traditional software-development houses. That market,
perhaps, had been resigned to the fact that at one end of the spectrum com-
pilers were slow, free, suspect, and unsupported, while at the other end they
were competent and desirable but priced for the full-time, $50-an-hour pro-
grammer. The scene changed suddenly and irreversibly when Turbo Pascal
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appeared in 1983, breaking the $100 barrier and earning all the magazine
“product of the year” accolades.

» Turbo Pascal Rules OK! »

Turbo Pascal’s success (hundreds of thousands of copies have been sold
and Version 5.0 maintains the momentum) was due not only to the price/
performance bargain but also to the fact that a new integrated development
environment had been created for it. Source-code entry and editing, syntax
checking, compiling, linking, running, and debugging were all brought into
the one package and made available through easily navigated pop-up
menus. These activities had traditionally called for separate specialized soft-
ware packages, which were often supplied by different vendors.

» But C Is Different... »

Some cynics reacted by saying, “Ah, well, Pascal is just an educational toy,
not a real production language. | am wed to my $600 C compiler—the only
serious language for systems programming. In any case, C is so dangerous in
the wrong hands, let’s be grateful that the proletariat can’t afford the real
thing. If they want to play with C, there are plenty of freeware tiny C's to
paddle in.”

» The C Mystique »

Among all the computer languages, dead and alive, C holds a unique
place—people either love it or detest it to distraction. There are no neutral
parties here! UNIX, the operating system closely associated with C (indeed,
UNIX is largely written in C), has engendered the same dichotomy since it
emerged with C from Bell Labs in the mid-1970s and migrated to the world’s
best campuses. UNIX and C have become de facto standards in many gov-
ernment and engineering fields, and they have gradually moved from mini-
computers and mainframes into the microcomputer arena as CPUs have
become more powerful and capable of supporting larger memories.
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» Why C? »

The portability of C programs stems from C’s use of function libraries for
such machine-dependent operations as I/O—an area that bedeviled the
growth of a single Pascal standard. Since C is a small-core language (unlike,
say, PL/1 or Ada), there are surprisingly few keywords to learn. On the other
hand, C is richer in operators than most languages (there are several opera-
tors that work at the bit level).

The critics cannot gainsay C's success. The snipers usually overlook the
fact that you cannot have a powerful systems programming language with-
out some attendant dangers. C offers you access to the machine level with a
rare blend of efficiency and elegance, but sometimes the conciseness of the
language encourages a cryptic cleverness that hinders maintainability.
Despite its dangers, C is undoubtedly the language of choice for most sys-
tems programmers.

The migration of C to the PC-DOS/MS-DOS environment has not been easy.
The architecture of the Intel 8088/86 family is not ideally suited to a language like
C, in which pointers play a leading, some say frightening, role. To keep the
pointer arithmetic clean and tidy, pointers should point to large, linear memo-
ries. The segmented memory space of the PC forces compiler writers to provide
different memory models for different pointer dispositions.

Another cloud on the horizon became visible as C moved away from
UNIX to other environments and increasing progress was made on software
in general. Compilers were emerging with slight but disconcerting differ-
ences in their interpretations of the syntax and semantics of C, which had
been spelled out by Brian W. Kernighan and Dennis M. Ritchie in 1978.
Because these specifications were the work of a few talented individuals
rather than the tedious output of a committee of t-crossers and i-dotters,
ambiguities came to light that led to diverse dialectic offshoots, threatening
the prized portability of C.

A committee of the American National Standards Institute (ANSI) was
formed to resolve these differences. The task of Technical Committee X3J11
was and is to draw up a set of standards for C. As | write, ANSI C is not yet for-
mally carved in stone, but enough data have emerged to point C compiler
writers and C programmers in the right direction. Unfortunately, many
developers of new C products have played a waiting game because they
were unwilling to take the plunge until ANSI C was formally ratified.

For all these reasons, there was pessimism that a fast, inexpensive develop-
ment package conforming to ANSI C would ever become available for the
IBM PC family.
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» Enter Turbo C »

g

The release of Turbo C in May 1987 put an end to this pessimism. Borland
had again achieved the improbable—it brought to market a professional C-
language development system for the PC packaged with the familiar inte-
grated development environment that is demonstrably superior to C
packages costing three or four times as much. For the traditional UNIX-style
C programmer, Turbo C has a completely independent command-line com-
piler free from mollycoddling menus and windows.

Turbo C, like its Turbo predecessors, comes complete and ready to go. You
get an ANSI-C compatible, 7000-lines-per-minute, one-pass compiler that
generates linkable object modules compatible with the PC-DOS linker; a fast
linker; support for six memory models; math coprocessor support or FP
emulation; and a full-screen syntax-checking editor, complete with pull-
down menus and windows. Turbo C also includes Project and Make options
that check on file interdependencies and automate the compilation/linking
process following changes to one or more component source files. There is
also a more powerful, stand-alone MAKE utility that watches over file inter-
dependencies.

In addition, Turbo C allows you to link mixed modules written in assembly
language, Turbo Pascal, and Turbo Prolog.

The immediate success of Turbo C encouraged Borland to “gild the lily”
Within six months of launching Version 1, the company announced Version
1.5. The main enhancement of the latter version was a sophisticated graph-
ics toolbox that provided facilities similar to those in Turbo Pascal.

In August 1988 Borland issued another major update, Turbo C Version 2,
with an integrated source-level debugger; improved Make utility; and sev-
eral speed enhancing tweaks to the compiler, linker, and graphics routines.
With minor exceptions, all these improvements are upwardly compatible:
As you move from Version 1 to 1.5 to 2, you will not have to do any major
recoding—in the worst case, your programs will have to be recompiled/
relinked under the new regime. For serious systems programmers, Borland
now offers a package called Professional Turbo C 2 that contains the new
Turbo C as well as TASM (the new Turbo macro assembler) and the free-
standing Turbo Debugger. There are various upgrade deals available—check
with your supplier.

This second edition of Mastering Turbo C discusses various enhancements
of Version 2 in Chapter 10 and covers the new version’s debugging facilities
in Chapter 11. Although the phrase Chapter 11 has depressingly bankrupt



overtones, | assure you that the debugging features described therein will
spell profit to all Turbo C users.

» JOIN THE ELITE »

Turbo C has already attracted a wide range of programmers, including
amateur “hobbyists” as well as professional software writers. If you have
bought Turbo C, then this book will help you exploit its many features. If you
haven’t, perhaps you will be encouraged to join the club.

Of course, many Turbo C users are hardy types to whom C is the native
tongue. My book will help them pick out the features specific to Turbo C, but
the gentle pace of most of the exposition is geared toward the thousands of
newcomers to the big wide world of C. | therefore assume that you have
only a few basic DOS skills and no prior exposure to C or any other struc-
tured language.

The ever-nagging problem facing many computer-book authors is how
to enlighten the uninitiated without boring the socks off the cognoscenti.
As a possible solution, each of my chapters ends with a summary so that
readers can quickly find the sections most appropriate to their needs.
All the program examples have been kept short and sweet to focus your
attention on a particular aspect of C. My experience is that long examples
are counterproductive.

This book is really part one of “mastering” Turbo C. You and your creativ-
ity form part two. Turbo C provides the paint and brushes for your PC
canvas; this book lays out the palette and tells you which end of the brush
goes into the paint. To become a master of C in the tradition of a Ritchie,
Kernighan, Bourne, Holub, or Plauger, you need to start daubing away as
soon as possible.

Here’s to your ever-growing fluenC!

Stan Kelly-Bootle
Mill Valley, California and Bargemon, Provence

XXVii
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> CHAPTER 1 ~

Learning how to create a sequence of statements that your Turbo C com-
piler will accept as valid is clearly a good starting point. There are two
aspects to this.

First you’ll learn the mechanics of the Turbo C integrated environment,
how to navigate the menus, select options, enter and edit your source code,
and invoke the compiler and linker.

Then there are the syntactical rules of the C language, which spell out with
precision exactly which strings of symbols are permissible.

I will first cover briefly the major steps needed to create and run a Turbo C
program. Some basic vocabulary will be established, so feel free to skim and
skip according to your level of experience. The key points will be amplified
later, so beginners should not be discouraged if new words and concepts fly
by in rapid succession.

» SOURCE CODE—EXTENSION .C »

The text of a program, called its source code, is a sequence of statements
spelling out in fine detail the actions you want the machine to take. Before a
program can be run it must be translated by the Turbo C compiler and then
linked using the Turbo C linker.

C source code is usually stored in files with the extension .C. So, to find
out what source code files you have in your current directory, you can type
DIR *.C and press Enter to get

C>DIR *.C
TEMP C 352 9-11-87 7:12p
HELLO C 89 9-20-87 4:48p

FILECOMP C 11185 9-20-87 1:38a
GETOPT C 4228 5-13-87 1:00a
4 file(s) 6660096 bytes free
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» MASTERING TURBO C »

which shows the names, sizes (in bytes) and date/time stamps of each file.
Each of these files contains sequences of ASCII characters that can be dis-
played, printed, or edited, hence the general term text files. The full ASCII
code is given in Appendix A.

The ANSI C standard does not specify how the character set should be
encoded, but most implementations, including Turbo C, have opted for the
ASClI set, so characters are stored and manipulated by their numeric ASCII
codes. For now, simply note that the 7-bit ASCII code gives 128 combina-
tions, including both printable symbols and nonprintable control codes.

» DIRECTIVES AND INCLUDE FILES »

In addition to the normal program statements that you enter in the .C files,
there are several directives you can provide. They are readily recognized
since they usually appear at the start of the .C file with the prefix # followed
by the particular directive’s name and its arguments. As you might guess,
directives direct the compiler in various ways. In fact, there is a preprocess-
ing phase that handles all the directives before the compilation itself gets
under way.

An important example, familiar to most BASIC users, is the include direc-
tive with a file name as its argument.

#include <filename >

tells the preprocessor to load the contents of the text file filename as though it
formed part of vour .C file at that noint. Your .C file itself is not puyalbauy

....... IT A ual pUIniIG.

changed. You can set up your own include files to avoid repetitive typing.
Initially, though, you will be using #include with some of the twenty-five spe-
cial files provided by Borland for your convenience. These have the exten-
sion .H (for header) and they supply frequently needed definitions and
declarations in accordance with ANSI C standards. Before too long you will
come to know and love these .H files—they not only save you much drudg-
ery, they also serve in the great cause of endowing C programs with their
widely acclaimed portability.

Include files can be nested, that is, an include file may contain further
include files, and so on, to a depth of sixteen.
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You can picture the process as follows:

HELLO.C = preprocessor > HELLO.C + <included-files >

» OBJECT CODE—EXTENSION .OBJ »

The compilation process, applied to your .C and .H files, produces object
code files with the extension .OBJ. These files contain binary code that can-
not be meaningfully displayed or printed, although you might find some rec-
ognizable ASCII characters embedded therein.

Object files contain machine language instructions that make sense only to
the Intel 8088/86, 80286, or 80386 microprocessor that powers your PC.
Unless told otherwise, the compiler will produce a .OBJ file with the same
name as your principal source file as follows:

HELLO.C + <included-files> = Turbo C compiler = HELLO.OB|

You can give the compiler a different name for the .OB] file—but why add to
the confusion?

» EXECUTABLE CODE—EXTENSION .EXE »

The linking process takes one or more .OB] files and, true to its name, links
them together to produce one executable file with the extension .EXE. The'
linker can also automatically pull in code from standard precompiled
libraries provided by Borland (or specialist libraries offered by a growing
number of software vendors) to make programming easier for you. You are
also allowed to create your own libraries. Your program can use any of these
precanned library functions and leave it to the linker to incorporate their
.OB}J code into the final product, namely, the .EXE file.

In simple cases with one .C file and one .OB] file, the .EXE file is usually
named accordingly.

HELLO.C — preprocessor = HELLO.C + <included-files> —
compiler = HELLO.OBJ + <library-code > —> linker = HELLO.EXE
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Again, you are free to rename the .EXE file, but life is more pleasant if the .C,
.OBYJ, and .EXE files are all called HELLO. You can then talk about the HELLO
program without ambiguity.

When you are linking several .OB] files, you will normally find that one of
them has the key name that naturally goes with the final .EXE file name.

FILECOMPOBJ/GETOPT.OB) + <library-code > = linker =
FILECOMPEXE

Later on, you'll see how .PRJ or project files are used to tell the linker
which .OB] files to link and how to name the final .EXE file. Turbo C offers
flexibility for professional developers in areas where the beginner might pre-
fer to have no choice! We will often dogmatically insist on certain default
actions until the reasons for the alternatives emerge.

Readers with wider DOS experience may want to know here that the
linker supplied with Turbo C is compatible with and faster than the standard
DOS linker. Also, if your program meets certain size restrictions, you can use
the DOS EXE2BIN utility to translate your .EXE files into the faster, more com-
pact .COM format.

» THE MANDATORY FIRST PROGRAM »

Brian W. Kernighan and Dennis M. Ritchie, in their canonical book The C
Programming Language (Englewood Cliffs, New Jersey: Prentice-Hall, 1978)
started a tradition that most of the ten-thousand subsequent C books have
followed. K&R (as the book is widely known) offers as its “Getting Started”
program HELLO.C, the sole purpose of which is to display hello, world on
the screen.

Simple though it is, HELLO.C actually illustrates nine major elements of
the C language. Before you get to this exciting demonstration, I'll take you on
a quick tour of the Turbo C integrated environment and show you the basics
of program loading, editing, and running.

» INSTALLATION REMINDER »

You will find the file HELLO.C on your Integrated Development Diskette. If
you have followed the hard-disk installation procedures given in the Turbo C
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User’s Guide, this file should now be in your working directory C:\TURBOC. In
or under the same directory, you will also have:

1. TC.EXE (the integrated development compiler), TCINST.COM (the
installation program), and TCHELPTCH (the help files). (TCC.EXE,
the command-line version of TC.EXE, will also be here, but we will
not be using it until later.)

2. All the *.H (include) files from Diskette 3 in directory C:\TURBO-
C\INCLUDE.

3. Allthe *.LIB (library) files from Diskette 4 plus all non-.H files from
Diskette 3 in directory C:\TURBOC\LIB. (To avoid tedious digres-
sions, | am assuming the recommended hard-disk installation setup.
If you have different drive or directory names, simply adjust the fol-
lowing instructions accordingly. For details on the TCINST installation
program, see Appendix B.)

» EXPLORING THE INTEGRATED
DEVELOPMENT ENVIRONMENT »

The Integrated Development Environment (IDE) is only three keystrokes
away. Type TC or tc at the C> prompt and press Enter, and you will soon see
the screen shown in Figure 1.1, the Turbo C main menu screen. Press F10 (or
Shift-F10 in Version 2) to call up the Borland copyright notice.

» The Small Print Enlarged »

Carefully read the Borland version number and copyright notice in the
central window. If you have not studied and understood Borland’s No-
Nonsense License Statement at the front of the Turbo C User’s Guide, now is
the time to do so. Borland International has removed any of the so-called
excuses and rationalizations for piracy. If you are violating any of their condi-
tions, you should rectify the situation before proceeding. More specifically,
erase any illegal copy diskettes and purchase your own Turbo C—you will
sleep soundly tonight, and in the morning your acne will have disappeared.

5
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Edit Run Compile Project Options Debug
e Edi
Line 1 Col 1 Insert Indent Tab C:NONAME.C
Message

F1-Help F5-Zoom F6-Edit F9-Make F1@-Main Menu

» Figure 1.1: Turbo C main menu screen (Version 1.5)

Pressing any key removes the version/copyright notice. Note that there
are five basic areas in the main menu screen:

1. Main menu strip

2. Editor status strip

3. Editor window

4.  Message window

5. Hot-key quick reference strip

» Keys—Hot and Cold »

At any time Alt-F10 will redisplay the version/copyright window. (Alt-F10
means hold down the Alt key while you press the F10 function key,) Alt-F10 s
one of the many hot-key combinations you’ll encounter. A hot key is one that
works consistently wherever you are in the menu hierarchy, as opposed to
those keys for which the function depends on the particular mode or screen
position you happen to be in. Some hot keys are single F (function) keys, oth-
ers are Alt plus a function key.
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The bottom quick reference line of the main screen normally shows the
most appropriate hot function keys for your current situation. If you hold
down the Alt key by itself for a few seconds, the quick reference line will
switch to show you what Alt plus the function keys will perform. Table 1.1
gives a partial list of hot keys. A tiny warning: In most error and verify condi-
tions, the hot keys are disabled until you take the indicated recovery action.
This is for your own good.

Key(s)
F1
F2
F3

F5

F6
F7
F8
F9
F10

Alt-F1
Alt-F3
Alt-F5

Alt-F6

Alt-F7

Alt-F8
Alt-F9

Versions 1, 1.5
Context-sensitive Help
Save the current file to disk

Window to enter file name for
loading

Toggle: Zoom or Unzoom
active window

Switch to the active window
Move to previous error
Move to next error

Invoke Project-Make

Toggle: Main Menu or active
window

Redisplay previous Help screen

Pick file window

Compile current file to .OB)

Version 2

“un

“n

“n

“n

“wn

Trace

Step

“n

“un
un

“un

Toggle: TC screen or User
screen

Toggle: Message or Watch
windows; current or
previous file

move to previous error

move to next error

“n

» Table 1.1: Main Turbo C hot keys

7
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Key(s) Versions 1, 1.5 Version 2

Alt-F10 Display version/copyright —

screen

Alt-B — Pull down Break/Watch

window

Alt-C Pull down Compile menu “

Alt-D Pull down Debug menu “

Alt-E Go into Edit mode .

Alt-F Pull down File menu "

Alt-O Pull down Options menu “r

Alt-P Pull down Project-Make menu o

Alt-R Run the current menu “r

Alt-X exit from Turbo C to DOS “r

ShiftF10  — display version screen
» Table 1.1: Main Turbo C hot keys (continued)

Note that Esc, the escape key, is almost hot! Esc is a general menu-exit key
that steps you up from a sub-submenu to the previous submenu, from a sub-
menu to its main menu, or from a main menu to an active window. How-
ever, Esc is not a true-blue-blooded hot key since it is inactive unless you are
in a menu or help screen.

Esc and the hot keys will quickly become your close friends. For now, try
Alt-F10 to bring up the Version/Copyright screen, then press any key to
remove it.

» Help!

Press F1 to explore the on-line Help package. If F1 gives you an error mes-
sage, you have probably failed to copy the TCHELPTCH file into your work-
ing directory. The Help displays are context-sensitive, that is, the first F1
display will helpfully vary according to where you are in the system. Esc
always clears the help box and restores the status quo.

Help is not confined to your context. Wherever you are, you can browse
around for guidance on any other topic. Once you are in a Help screen, for
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example, a second F1 brings up a Help index from which you can select top-
ics. Also, Alt-F1 at any time will redisplay the last Help screen you accessed.
Repeating Alt-F1 keeps recalling past used Help screens up to a maximum of
twenty. Some Help screens will show highlighted keywords, indicating topics
for which amplified help is available. The arrow keys and the Home and End
keys can be used to select keywords; once a topic has been selected, press-
ing Enter will bring up the relevant help.

» Leaving Already?

Next, try Alt-X to exit from Turbo C to DOS, then enter TC again to recover
the main menu. This early exit practice is not as bizarre as you may think!
There is nothing in the whole of computerdom as frustrating as the inability
to withdraw gracefully from a program. The lack of “exit standards” has
driven more users insane than anything else. The many signing-off ploys in
use today include logoff, logout, bye, system, end, Ctrl-C, Ctrl-D, Break, and,
the last resort, turning the power off. If you forget Alt-X, Turbo C has another
mnemonic for quitting—type Q from the File menu.

» Back to TC

Entering TC invokes TC.EXE, the main Turbo C IDE program. Since you
have not yet specified a .C file name, Turbo C assumes that you are going to
edit a default program called NONAME.C, which explains the legend
appearing at the end of line 2, the editor status strip. When you load a spe-
cific file into the editor, the NONAME.C legend will be replaced by the new
file name. Later on, when you want to save your edited program, you are
free to rename it.

You can load a file and invoke TC by typing TC filename, or TC filename.C,
or TC filename.ext at the C> prompt, where filename may include full or
partial path information. In the absence of a specific extension, TC assumes
the default extension .C. If TC finds the file name, the file will be loaded for
editing; otherwise you'll get a virgin edit window. The edit window is the
large upper window. When you are in edit mode, this is where the source
text appears as you type. The name of the current file is always displayed on
line 2.

For much of this chapter you will be learning your way around the fea-
tures of the IDE main menu screen. It allows you to load, enter, save, and edit
source text, get help, switch and zoom windows, set countless options, then
compile/link/run your program. You can even return temporarily to the
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DOS level, do some DOS stuff, then type exit to return to where you left off
in Turbo C.

At various times temporary windows will appear that contain progress
reports and instructions about what to do next. Detailed error messages and
warnings appear in the bottom message window.

» Window Switching and Zooming

The normal screen disposition shows a split between the upper edit win-
dow and lower message window. If you are in edit mode with the cursor in
the edit window, the edit window is the active window. During debugging
sessions, for example, the message window may become the active win-
dow. You can switch the active window at any time using the hot key F6. This
action is known as toggling, named for those familiar lamp switches that
switch on-to-off or off-to-on with each toggle. So F6 will switch from edit-
window-active to message-window-active or vice versa with each appli-
cation. The active window is visibly marked by the presence of a double
bar on top.

Another hot-key toggle is F5, which will Zoom and Unzoom the active win-
dow with each depression. Zooming when the edit window is active expands
the edit screen to fill the whole screen, temporarily removing the message
screen. Pressing F5 again Unzooms, restoring the split screen and redisplay-
ing any previous messages. Similarly, you can Zoom the message screen
when it is active, temporarily losing the edit screen (but not, of course, losing
any data). Incidentally, when you come to the editing features you'll see that
you can scroll around the edit screen like a conventional word processor
whether the screen is Zoomed or not.

Summing up this section:

F5 to Zoom/Unzoom active window

F6 to select active window

Let’s now look in detail at the main menu, the key to further progress.

» The Main Menu »

The essential maneuvers to learn are the following:

1. Hot key F10 takes you from the active window to the main menu.
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2. Esctakes you from the main menu back to the active window.

3. Alt+letter gets a main menu selection at any time.

The main menu is the very top line showing the seven main options (which
are cleverly named so that each starts with a unique, bold letter). This allows
selection by keying the appropriate letter (together with the Alt key if you are
outside the menu) or by highlighting each option in turn using the left/right
arrow keys.

Once you have illuminated your choice, pressing Enter does the selection.
This convenient and contemporary method is used throughout Turbo C and
is easier to do than to explain. From now on, when | give an instruction such
as “Select File menu” | will leave it to your own good taste which selection
method you use: keying the letter F (or f) or highlighting the File legend and
then pressing Enter. Either will pull down the File submenu.

Five of the seven main selections operate their own pull-down menus to
offer further subselections, many of which sprout further multichoice
displays. The two exceptions are the following:

Edit moves you directly to edit mode with edit window active.

Run immediately starts trying to run the current program (it may have
to compile/link first, but this is automatic). In Version 2, selecting Run
brings up the Run menu, at which you type R.

Another neat trick to remember is that while a menu option is pulled down
the left/right arrow keys can be used to invoke the adjacent menus.

Table 1.2 gives a brief summary of the main menu selections.

When you add up all the combinations of menu and submenu choices,
you have what Philippe Kahn would call “un embarras de choix.” For the
time being, though, you will be concentrating on the File and Edit menus.

» LOADING YOUR FIRST PROGRAM »

If you are not in the main menu, use F10 to get there. You can always tell if
the main menu is active because one of the seven top-line legends will be
highlighted if it is.

From the main menu, select F for File. Your screen will appear as in Fig-
ure 1.2, with the pull-down File menu ready for your selection. You can high-
light selections using the up/down arrow keys, or you can type the unique
letter for each option, as listed in Table 1.3.
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File Load, Pick+, New, Save, Write to, Directory, Change Dir,
OS, shell, Quit

Edit Go to Edit mode

Run Run current program, [Program reset, Trace-into,

Step-over, User screen]

Compile Compile to .OBJ, Make .EXE, Link .EXE, Build all, Primary
C file, [Get info]

Project Project name, Break make on+, Clear project,
[Auto-dependencies, Remove messages]

Options Compiler+ + +, Linker+ +, Environment+, Args,
Retrieve options, Store options, [Directpries+]

Debug Track messages, Clear messages, Keep messages,
Available memory, [Replace by evaluate, Call stack, Find
function, Refresh display, Display swapping, Source
debugging]

[Break/watch] [Add watch, Delete watch, Edit watch, Remove all
watches)

» Table 1.2: Main menu selections. Items in brackets are only available in Version 2.
Each + indicates a lower level of submenu.

Test the up/down arrows by illuminating some of the File options. You now
have three ways of invoking the Load option:

i. TypelL.
2. Highlight the Load box and press Enter.
3. Press F3 (this works from anywhere).

A small window appears, prompting the entry or selection of a file name to
be loaded. The window defaults to the mask *.C, so pressing Enter will bring
up a directory window showing all your *.C files. You can also enter a spe-
cific file name or your own search mask, e.g., H22220.C or H*.*, While in
the directory window you can

1. Use the arrows to mark the target file.

2. Press F4 to change the mask.
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Edit Run

Compile Project Options Debug

Pick Alt-F3
New

Save F2
Write to
Directory
Change dir
0S shell
Quit Alt-X

Load F3 JNu Insert Indent Tab C:NONAME.C

Message

F1-Help F5-Zoom F6-Edit F9

-Make F1#-Main Menu

» Figure 1.2: File menu

Load F3
Pick Alt-F3
New

Save F2
Write to

Directory

Change dir

OS shell

Quit Alt-X

Load a file into Editor

Load a file from Pick list

Edit a new NONAME.C file

Save current file to disk

Save current file under new name
Display directories

Change drive/directory
Temporary escape to DOS

Leave Turbo C

» Table 1.3: File menu options

For now, type HELLO.C (or just HELLO or hello since .C is the default) as

shown in Figure 1.3.

Note that +— and Del allow you correct your input in the usual way. The
text of HELLO.C will now appear in the edit window as in Figure 1.4. You are

13
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Edit Run Compile Project Options Debug
e - 1 W g
]l 1 Insert Indent Tab C:NONAME.C
Load File Name
HELLO.Cwm l
Write to
Directory
Change dir
0S shell
Quit Alt-X
Message —
F1-Help Esc-Abort
» Figure 1.3: Selecting a file for loading
File Edit Run Compile Project Debug
Edit
Line 1 Col 1 Insert Indent Tab C:HELLO.C

¥* hello.c - hello, world */
#include <stdio.h>

main()

{

puts("hello, world\n");

Message

F1-Help F5-Zoom F6-Message F9-Make F1#-Main menu

» Figure 1.4: Loaded file ready for editing
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in edit mode with the cursor poised for action in the top left-hand corner.
Note the top row of double lines indicating that the edit window is active.

The main menu is inactive but can be revived with F10 or invoked directly
with Alt-letter.

» Other Loading Options »

Before we tackle HELLO.C, let’s briefly review the loading operations
available. In later sections, I'll just tell you to load a given file, leaving you to
choose your favorite method.

Loading is such a common operation that Borland has given you some
shortcut methods. The hot key F3 always gets you the load entry box without
your having to go through the File menu.

Typing P for Pick or using the hot-key combo Alt-F3 offers yet another
loading method. Pick will display up to eight file names representing previ-
ously loaded files. You then select from this pick list to reload a file—the cur-
sor will even be positioned to where it was when you last edited that file. At
the end of the pick list you’ll see an entry, “— load file —,” which works just
like the normal L for Load submenu. So, if the pick list does not contain the
target file you don’t have to go back to the Load menu. You can even save
your pick list from one TC session to the next by using the load/save-pick-list
option in the TCINST installation program (see Appendix B).

» Editing and Saving a File »

While you are editing, your changes are made to a copy of your file in
RAM, which is notoriously volatile. Power outages and other catastrophes
may nullify hours of effort, so regularly saving to disk is a sanity-preserving
habit worth developing. You can either go to the File menu and select S for
Save or use the hot key F2 from anywhere. You save your current changes
in the file being edited unless you are editing NONAME.C, in which case
Turbo C will kindly prompt you to rename before saving.

The Write to option in the File menu gives you yet another way of saving
your work. This allows you to save the contents of the editor into any new or
existing file, whether you are editing NONAME.C or not.

» Warning Before Load

Another helpful feature is that if you have a file already in the editor that
has been modified since it was last saved, you will be asked to verify if you
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wish to save it before loading a new file. Replying Y for Yes will save your
changes. Answering N for No will mean losing any changes made on the
current file since Load clears the editor RAM when the new file is loaded.

» Directory and Change Dir »

You can load a file from any drive or directory by entering the full path file
name, or you can use Change dir to change your current drive/directory to
that of your target file. The Directory option is useful for checking which
directory is current and also for listing your files. As with the DOS DIR com-
mand and the Load entry box, you can create a mask using the wildcards *
and ? to display sets of file names. As with Load, you can then select a partic-
ular file with the arrow keys, or use F4 to change the mask.

» Setting/Saving the Compiler/Linker Options »

There are three simple but essential chores to complete before you play
with HELLO.C. You need to tell Turbo C where your include and library files
are located and then save this data in the configuration file TCCONFIG.TC.
Use Alt-O to get from the edit window to the Options menu. The screen will
look like Figure 1.5.

File Edit Run Compile Project Debug
Edit

Line 1 Col 1 Insert Indent Tab C:HELLO.C
/* hello.c - hello, world */ Linker
Environment
#include <stdio.h> Directorics
Args
main() Retrieve options
Store options

puts("hello, world\n");

)

Message

F1-Help F5-Zoom F6-Edit F9-Make F1@-Main Menu

» Figure 1.5: Options menu display
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the particular option and offer you the means of changing it.

For reference, all the Options selections and submenus are listed in Table 1.4

Environment

Args

Retrieve
options

Store options

and Table 1.5.
Compiler Model, Defines, Code Generation, Optimization, Source,
Errors, Names
Linker Map file, Initialize segments, Default libraries, Warn

duplicate symbols, Stack warning, Case-sensitive link

Include dirs, Output dir, Library dir, Turbo C dir,
Auto-save edit, Backup source files, Zoomed windows

Supply command-line arguments

Load saved configuration file

Save options in configuration file

» Table 1.4: Options menu selections in Versions 1 and 1.5

Compiler
Linker

Directories

Environment

Args

Retrieve
options

Save options

[same as Versions 1., 1.5]
[same as Versions 1., 1.5] Graphics library

Include dirs, Library dirs, Output dir, Turbo C dir, Pick file
name, Current pick file

Message tracking, Keep messages, Config auto-save, Edit
auto-save, Backup files, Tab size, Zoomed windows,
Screen lines+

[same as Versions 1., 1.5]

[same as Versions 1., 1.5]

Save options in configuration file

» Table 1.5: Options menu selections in Version 2. (+ indicates a lower level of

submenu.)

17
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» Setting the Include Directories

Type E to get the Environment submenu (or D for Directories in Version 2),
then select | for Include. You then enter the directory, usually C:\INCLUDE,
where your standard include files are stored. In particular, the first include
directive in HELLO.C is

#include <stdio.h>

When you compile HELLO.C, the Turbo C preprocessor will search for the
header file C:\INCLUDE\STDIO.H. If found, it is loaded into memory with
HELLO.C, making available a series of macro definitions and function decla-
rations that form part of the C standard 1/O routines.

If you fail to set an include directory, Turbo C will look in the current
directory, and in the likely event that STDIO.H is not found you will get an
error message if and when the compiler encounters a reference to an object
defined in STDIO.H. Recall that the .H files are really a convenience that
save you from entering commonly needed source text. Certain common .H
files often get #included as a matter of habit, whether needed or not, on the
grounds that there is little or no overhead and it’s better to be safe than sorry!

For more advanced users, there is the possibility of setting up multiple
include directories. For example, C:\INCLUDE;C\SPECIAL lets the prepro-
cessor search both directories for include files.

» Setting the Library Directory

Next, select L for for Library directory and enter C:\LIB (or wherever you
have your start-up CO?.0BJ and run time library routines, *.LIB).

» Saving Your Options

Now escape back to the Options menu and select S for Store options. The
default file where your options are stored (and retrieved by Turbo C when it
fires up) is TCCONFIG.TC. This file name will appear in response to selecting
S, so just press Enter to save the options there. Later on, when you encounter
the host of options available, you will appreciate the advantage of being able
to store several different configuration files. By using the Retrieve menu, you
can switch configurations without going through a lengthy options session
each time.
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» RUNNING HELLO.C »

From the main menu select R for Run (or press Alt-R from anywhere). In
Version 2 you must make an additional selection from the Run menu. If
you've been following closely you may ask, How can Turbo C possibly run
HELLO unless it finds HELLO.EXE? And how can it produce HELLO.EXE
without HELLO.OBJ? HELLO.C by itself certainly cannot be executed.

The answer is that Turbo C is smart enough to check around and decide on
the steps needed to carry out the Run command. In the present situation Turbo
C quickly determines that HELLO.OBJ and HELLO.EXE are both missing, so it
invokes the preprocessor/compiler/linker sequence discussed earlier:

HELLO.C = preprocessor = HELLO.C + <included-files >
—> compiler = HELLO.OBJ = linker = HELLO.EXE

(The output .OBJ and .EXE files appear in the current directory and are
named HELLO by default. The menu options allowing you to change the
output directories and/or the names need not detain us here—see Environ-
ment under Table 1.4.)

» The Run Itself »

The Run menu triggers a burst of activity: Progress windows show you
each phase in the creation of HELLO.EXE, and it is then immediately run
(providing there are no errors). The screen will clear and display hello,
world, as promised ten pages ago. Hit any key and you will return to Turbo
C. (In Version 2 you use Alt-F5 to toggle between the IDE and the user
screen.)Now press Alt-X to give Turbo C a well-earned rest.

Entering DIR HELLO reveals that you have HELLO.OBJ and HELLO.EXE in
addition to HELLO.C. Type HELLO and press Enter to prove that HELLO.EXE
performs as it did from inside Turbo C (apart from the screen clearing, which
is performed by Turbo C not by HELLO.C).

If you immediately returned to Turbo C, loaded HELLO, and invoked Run,
Turbo C would naturally find no need to compile/link, and HELLO.EXE
would be executed posthaste.

» HELLO.C—ANATOMY LESSON »

We leave Turbo C, per se, to study line by line the text of HELLO.C (Pro-
gram 1.1). It reveals several major facts about every C program.
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/* hello.c--hello, world */
#include <stdio.h>
main()

printf("hello, world\n");

» Program 1.1: HELLO.C

» Comments (Line 1) »

» /* hello.c—hello, world ¥/ You are free, nay, encouraged, to sprinkle

your source with comments. Any text you care to enter between /* and */ is
ignored by the compiler (it is treated as white space). Like a REM line in
BASIC, this text is there to help you and your next of kin. Since C allows
many compact, unobvious expressions, commenting the obscurities is more
necessary than with “verbose” languages such as Modula-2. Comments also
provide a method of declaring version numbers, dates, authorship, and
copyright. Remember, too, that statements that might appear crystal clear
today can become obscure as time goes by.
Unlike BASIC's REM, C comments can straddle lines.

/*
this is a comment
so is this */

Standard C does not permit the nesting of comments. In other words, you
cannot insert comments in a piece of code that already contains comments.
If you added /* and */ as follows, hoping to effectively remove the #include
line, it would not work.

/*
/* hello.c—hello, world */

#include <stdio.h> */

The first */ encountered would be matched with the opening /*, and com-
menting would cease prematurely. Turbo C offers a nesting comment option
via the Options menu, but using it can jeopardize program portability. You'll
meet a safer way of commenting out when we discuss the #if directive.



» FIRST FALTERING STEPS » 21

» White Space (Lines 2 and 4) »

The empty lines form white space that is ignored by the compiler. Gener-
ally speaking, carriage return, line feed, space, and tab codes, apart from
serving as possible identifier separators, have no syntactic significance. In
other words, if one space is needed after an identifier then several spaces or
tabs are acceptable. The physical layout of a C program can be arranged for
maximum legibility without affecting its meaning. C contrasts sharply with
BASIC, say, in which a new line is always syntactically significant. HELLO.C
would not be compiled differently if you retyped it as

/* hello.c—hello, world */
#include <stdio.h>
main( ) {printf(“hello, world\n");}

You must move to a new line after a directive, by the way, to prevent possible
parsing problems with the preprocessor.

» Include Directive (Line 3) »

» #include <stdio.h> As explained earlier, the # symbol indicates that the
following identifier is a preprocessor directive. In this instance, #include
directs the preprocessor to add the source code of the file stdio.h to the rest
of HELLO.C prior to compilation.

You can tell the system where to find stdio.h by using full drive/path infor-
mation, or you can use angle brackets, as in <stdio.h>, meaning “look first
in the \include directory as preset in the Options menu.”

You can also write #include ““stdio.h” using double quotes. This says,
“look first in the working directory” For our purposes the <filename>
method will suffice.

We'll return to study the contents of stdio.h after we’ve looked at functions
and definitions.

» The main( ) Function (Line 5) »

» main() A C program consists of a series of functions. In C the word func-
tion is used in a wider sense than in most other languages. C functions
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subsume the notions of subroutine and procedure as well as the “conven-
tional” function of BASIC or Pascal.

With C almost any block of statements can be lumped together to define a
function to which a unique name is assigned. When that name is encoun-
tered anywhere in a program, the function is called or invoked, and the state-
ments used to define the function are obeyed.

The block of statements defining the action of a function can include calls
to other previously defined functions (including itself, recursively, as we say),
which in turn may contain calls to other predefined functions, and so on.

Functions are therefore the heart and soul of C, and much of this book is
devoted to showing how functions are built up from more primitive ele-
ments, including libraries of machine-specific functions used for 1/O and
memory management, for example.

When a function needs input data, referred to as arguments or parame-
ters, they appear within parentheses after the function name and are sepa-
rated by commas.

function name(arg1, arg2, arg3,...);

You can picture the above statement as an instruction to the system to per-
form the previously defined function, function name, using the given values
argl, arg2, and so on. Some functions take a fixed number of arguments
(including none), while others can take a varying number (including none),
depending on the circumstances.

A familiar example from mathematics would be the function, cube(N),
which calculates the cube of the single argument N. Calling cube(3) would
return 27. Nis called a formal parameter to distinguish it from the 3, which is
the actual or real parameter used when calling cube. Much more on this
important subject anon.

The action of a function will depend entirely on the statements used in its
definition and the particular values of the arguments supplied, if any. The
result may be a useful returned value, as with conventional functions, or it
may simply be an action such as displaying a message on the screen, as with
conventional procedures.

You soon learn to look on functions as black boxes—you shove values in
and get values or actions out. Life is too short to know exactly what goes on
inside every black box. Have faith!

When a function requires no arguments, C notation still requires that you
put parentheses after the function name even though there is nothing within
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them. In some circumstances to be discussed later, the absence of arguments
is made more explicit by writing function name (void). The parentheses con-
vention makes it easier for you and the compiler to spot the functions in any
piece of source code! Note that we will often write name( ) without bother-
ing to spell out the arguments to indicate that we are discussing a function
rather than some other object called name.

You can now rightly deduce that in HELLO.C main( ) is a function called
with no arguments, whereas printf() is a function called with one string argu-
ment. In HELLO.C the string argument happens to be a string constant or
string literal for the obvious reasons that its value, hello, world\n, remains
fixed and is expressed “literally” Later you'll meet string variables that can
assume different string values at the whim of the programmer. The function
printf( ) can accept both kinds of string arguments and other types of argu-
ments, by the way.

A string constant in C is any sequence of characters between double
quotes, as in “’hello, world\n”. In technical parlance a string is an array of
characters terminated by the ASCII NUL character (value 0). You don’t ever
“see” this NUL, but it’s stored at the end of every string, or, to be more accu-
rate, itis the end of every string (hence the song “Without ANUL, That String
Would Never End!”).

The strange looking \n provides a newline character and will be explained
later in this chapter.

Note in passing that under different circumstances, main( ) and printf( )
might be invoked with a different number of arguments.

The function main() has a unique role to play in all C programs. Since a C
program consists of sequences of functions, you may wonder which one
fires up first. The answer is that main(), wherever it is placed physically in the
source code, is the “leader.” Every complete C program must have just
one main( ) somewhere, and this is where C starts off when executing
the compiled/linked code. To see what main( ) does, you need to look
at the block or body of code following it. This leads us to the next feature
of HELLO.C, block markers.

» Block Markers (Lines 6 and 8) »

» { } Curly braces are used to signal the start and end of a block of code.
They play the same role as BEGIN and END in other structured languages.
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To discover what main( ) does, you need to check out all the statements
lying between the first { following main( ) and its matching final }. This is
quite simple in the case of HELLO.C since you find only the single statement

printf(“hello, world\n");

In real-world programs, main( ) could have many other blocks nested
inside the outer, or principal, { and } block markers. The number of {’s must
always match the number of }s, of course. There are typographical conven-
tions to help the eye in detecting nested blocks, and these will emerge as
we proceed.

The key point here is that any lump of code placed between matching
pairs of curly braces represents a block that tells the compiler how to break
down and process “units” of the program. In simple terms, a group of state-
ments within { and } acts like a single, compound statement. The block con-
cept will be clarified when you see more complex situations.

» The printf() Function Call (Line 7) »

» printf(“hello, world\n”’);  As you've seen, the body of main( ) contains

the single line shown above, which is a call to the function printf( ) with a
string constant as argument.

printf( ) is a precompiled library function supplied with Turbo C (and all
other conforming C compilers) that displays formatted (hence the f in printf)
strings of characters on your standard output device, which for the moment
simply means your monitor screen.

The name print is a well-entrenched archaism dating back to those syba-
ritic days when output terminals were teleprinters or Flexowriters. Now-
adays we have CRT's (also known as glass teleprinters) but the verb “print,”
meaning “display,” still survives.

The particular version of printf( ) supplied with the Turbo C library has
been written specifically for the computers in the IBM PC family (or compat-
ibles) running under DOS. The C language achieves portability by not get-
ting involved directly with all the machine- and OS-dependent tricks needed
for device and file 1/O. Your HELLO.C would compile and run on a Cray or
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VAX because their libraries contain a printf( ) written specially for their
respective hardware and operating systems.

printf( ) turns out to be quite a complex function, able to accept a variable
number of parameters. Its usage in HELLO.C hides the fact that it can be
used to display both numbers and strings in a wide range of formats. To
display a single string like hello, world you can actually use a much
simpler function called puts( ). You'll see this shortly in an exercise with the
Turbo C editor.

» The Escape Sequence (Line 7) »

» \n The escape character \ (familiar to UNIX users) is used to solve the
problem of inserting nonprintable control codes or difficult characters into a
string. For example, it’s clearly impossible to plant a new line after hello,
world by pressing Enter as in

printf(“hello, world <Enter >");

The Enter key does give a new line on the screen during input, but the com-
piler ignores it! To get a true new line you type the escape sequence \n.

Similarly, there is a problem if you want to display a string containing real
double quotes. In

printf(“l am saying “Hello"");

Turbo C would take the second * as an end to the string /I am saying .
What to do? You use the escape sequence \” for the internal double quotes
asin

printf(“l am saying \"Hello\"");

which will display, | am saying ““Hello”.

The escape character \ tells the compiler to treat the following character(s)
in an unusual way, i.e. escape from the normal interpretation. Such charac-
ters are sometimes called metacharacters since they have significance out-
side the normal set. Table 1.6 indicates how Turbo C translates the escape
sequences.
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Sequence Value ASCIl  Function

\0 0 NUL String terminator

\a 0x07 BEL Audible bell (“attention”)

\b 0x08 BS Backspace

\f 0x0C  FF Form feed

\n Ox0A LF New line (line feed)

\r 0x0D CR Carriage return

\t 0x09 HT Horizontal tab

\v 0x0B VT Vertical tab

\\ 0x5C  \ Backslash

\’ 0x27 ’ Single quote (apostrophe)

\" 0x22 " Double quote

\? Ox3F ? Question mark

\ddd 0ddd  any 1 to 3 digit octal value

\xhh Oxhh  any 1 to 2 digit hex value

» In the Value column, octal constants start with 0 and hex constants start with Ox.
This 0 is not needed after \.

» Table 1.6: Escape sequences

» Escape with Special Characters

Because the single apostrophe has the special function of designating
single character constants, you can see why \’ is needed to express a literal .
Similarly, \\ must be used to get a single literal \. The first \ protects the fol-
lowing character from being treated as a metacharacter, so "\”” means the
ASClI character 047 or 0x27 (" isillegal), and “\\" means the ASCII character
0134 or 0x5C ('\’ will not work!).

» Back to\n
Coming back to \n, note that in place of

printf(“hello, world\n");
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~ you could achieve the same result with

printf(“hello, );
printf(“world”);
printf(“\n");

The first statement displays hello, and leaves the cursor sitting after the
space, waiting for something to happen. Then world is displayed, and, finally,
printf("“\n”); provides a new line on the screen. Yes, printf("\n\n\a\a");
would give two new lines followed by two ringy-dingies (ASCII BEL character).

Once you’ve mastered the Turbo C editor, you can “ring” the changes on
HELLO.C with such variants as

printf(“\t\\hello\t\a\aworld\n\n");

This would display a tab indent followed by \hello. You would then get two
rings, and world followed by two new lines would be displayed.

» A Detour into Data Types »

Individual character constants, as opposed to strings of them, can be
expressed with single quotes: ‘A’, "\101’, \x41’, and "\X41" all represent
the same ASCII character.

You may be wondering if there is any difference between the single char-
acter ‘A’ and the one-character string ““/A”’. There are two differences worthy
of a slight detour.

1. ‘A’ and “A” are different data types. ‘A’ is of type char, stored and
treated numerically as an integer, whereas “A” is of type array of
char. It just happens that in this example the array holds one signifi-
cant character.

As in Pascal (but unlike BASIC) C requires that the data type of each
identifier be declared before it is used in a program.

The “why” of declarations is quite simple: The compiler can use them
to efficiently allocate memory for each constant and variable and possi-
bly check that your statements make sense (adding chalk and cheese
may not be allowed). The “how” of declarations is not so easy and will
be revealed as time goes by

2. Since “A” is a string, it requires a final NUL, so it’s stored in two
bytes—"’A’”” and NUL. Single character constants strictly need only

27
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one byte, but C treats them as integers as a matter of arithmetical con-
venience (permitting such tricks as (‘A" + 1) to give ‘B’). Turbo C
stores int type integers in two bytes, reflecting the 16-bit registers of
the IBM PC microprocessor. So, when you store a single character
constant as a 2-byte integer what happens to the other byte? In the
case of ‘A’, the lower byte would contain 0x41 with the upper byte
usually sign extended, i.e., filled with 0's or 1's, depending on the
value of the eighth (most significant or sign) bit of the lower byte. For
characters in the standard ASCII range (decimal values 0-127), the
sign bit is 0, so the upper byte is 0x00.

» Statement Terminator (Line 7) »

» ; The semicolon at the end of the printf( ) line indicates the end of a state-
ment. It is officially called a statement terminator in C to distinguish it from
statement separator symbols used in other languages.

In C a line of text can contain several statements, and a statement can -
straddle several lines, so the ; plays a vital role in telling the compiler how to
translate your code correctly. Note, however, that no ; is needed after the
final } block marker. The compiler already knows the statement is ended.

You can legally enter a ; without having a prior statement. This represents a
nul or empty statement, which sounds rather Zen but does prove useful in -
situations in which the syntax demands a statement but there is no action
required. (Compare this with NOP, the no operation instruction found in
assembly languages.)

Note also that no semicolon is needed after the #inciude directive. The
preprocessor has its own set of rules, one of which is that directives are ter-
minated by a new line.

» Statements and
Expressions—Another Necessary Detour »

A C program normally runs by executing each of its statements in
sequence, just as you would read them on the page. This sequential execu-
tion can be altered using various control flow or conditional statements,
such as

if (expression) {statementy(s)}
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which says, “carry out {statement(s)} only if (expression) is true. Another
example is

while (expression) {statement(s)}

which says, “’keep obeying {statement(s)} while (expression) is true. There
are no special Boolean data types in C, by the way. False simply means 0, and
true means nonzero (usually 1).

These concepts are introduced briefly here to illustrate the use of the state-
ment terminator. (The whole of Chapter 4 is devoted to C’s armory of control
flow constructs—without which, of course, programs would be confined to
dull slogging through fixed sequences.) Informally, we can offer the approxi-
mate hierarchy of C language constructs shown in Table 1.7.

C English Examples
operands words sum, total, flag
(variables & constants) “hello”, ‘A’, 3
operators verbs ==, =,% +

(arithmetic, logic, etc.)

expressions phrases (sum == total)
flag = 1
total = sum + 3

statements sentences flag = 1;
total = sum + 3;

complex statement long sentence  if (sum == total)
flag = 1;

» Table 1.7: C constructs with approximate English equivalents

The last example means, “if the values represented by sum and total are
equal, then set flag to value 1.” Note that the assignment operator (=) and
the equality operator (==) are different. In the example of a complex state-
ment, there is no ; after the expression (sum == total)—the whole statement
does not terminate until after the statement flag = 1;.

Expressions in C are unusually active creatures: They not only trigger the
appropriate activity according to the operands and operators found therein
but are also evaluated in the sense that they actually acquire a value that
reflects the operation.

29
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This is so unlike BASIC and Pascal that it can be somewhat disconcerting
to the beginner. The expression flag = 1 not only assigns the value 1 to flag
but also “takes on” the value of flag, namely 1. So, you can find busy state-
ments like

total = (sum = 2) + 3; /* set sumto 2 and total to 5 */
or
total = sum = 3; /* set sum and total to 3 */

Expressions that pack a lot of punch give C its unique flavor but can lead to
over-compact, hard-to-read code if taken to extremes.

As soon as you add the magic semicolon you complete that particular
statement. Turbo C will pause to digest, as it were, all the rubbish since the
previous ; or }, and all the expressions in the statement will be obeyed and
evaluated according to the precise rules of precedence and associativity.
Depending on any conditionals encountered, execution will resume with
the next or some other statement.

» HELLO.C Summary »

| seem to have been continually sidetracked while trying to divine the
modus operandi of my naive example, so I'll recapitulate. The key points can
be summarized as follows:

1. Source code HELLO.C plus STDIO.H compiles to form HELLO.OB].
HELLO.OB] is linked with object code in the Turbo C library to give
us the executable file HELLO.EXE.

2. You learned how to set up options on the Turbo C Integrated Devel-
opment Environment and load and run a program from the main
menu.

3. The anatomy of HELLO.C:

/* */ for comments

directives: #include <stdio.h>

new line after directives—no semicolon
white space for pretty layout

the main( ) function

the function body and block markers {}
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printf( ) and function arguments
string constants: ““hello, world\n”
escape sequences: \n for a new line
statement terminator: semicolon

» ERRORS »

Having successfully reached the stage when an .EXE file is produced, your
program is ready to run. Congratulations! Your source code has passed the
inexorable Turbo C syntax checker built into the compiler. Rest assured that
you will see Turbo C’s reaction to illegal or doubtful statements before many
moons have passed.

» Compile-Time Errors »

Unlike the BASIC interpreter you may be used to, Turbo C does not imme-
diately spot syntax errors on a line-by-line basis. Rather, being a compiler,
Turbo C inspects as much of your complete source code as possible before
reporting your errors and inviting corrections. Such errors and warnings are
referred to as compile-time problems.

Warnings are usually nonfatal, whereas errors must be corrected and
the program recompiled and relinked before further progress is possible. The
Make utility is a clever aid in such situations; using the project files men-
tioned earlier, it can help automate the recompiling and relinking process
depending on which files have changed since the last compilation.

Several C interpreters or combined interpreter/compilers are now available.
The trade-off is traditionally between the higher execution speed of compilers
and the immediate error detection of interpreters. In fact, Turbo C compiles
quickly enough to settle such arguments.

Some errors may surface during linking, such as missing or misplaced
.OBJ files, but these are easily corrected by telling the linker where to look.
The linker may also uncover discrepancies between the modules. I'll tell you
more on-this when | discuss the Turbo C menus.

» Run-Time Errors »

The completed .EXE file contains all the machine code required for load-
ing and execution by your operating system (PC-DOS or MS-DOS). Just
like the many .EXE files provided with DOS, your newly created .EXE file
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can be invoked at any time by simply typing HELLO at the C> prompt and
pressing Enter.

The fact that your code is free from syntax and other compile- and link-
time errors does not guarantee that the .EXE program will run as expected or
at all! Run-time errors come in many delicious flavors, ranging from endless
loops to total system crashes, from polite error messages to getting the
wrong results without a warning.

As with natural languages, you need to distinguish syntax (superficial con-
formity) from semantics (the deep meaning, if any). Legal statements, alas,
may compile into nonsense that the system cannot usefully execute or even
survive. The C language, you'll discover, is not especially mollycoddling as
are Ada, Pascal, or Modula-2. In providing the power and compact notation
to let you operate efficiently and close to the “machine level,” the C syntax
places fewer restrictions on the dumb and dangerous things you can do if
you really try. C, as it were, is like assembly language in that it assumes you
can handle a loaded shotgun without a safety catch. Other languages worry
about your competence and make you line up for firearm permits.

Another real possibility is that your program might run to completion but
fail to reflect your intentions. Either your original problem analysis, input
data, or algorithms are faulty, or there are errors in your coding (or all of the
above). An essential part of mastering Turbo C (and any other programming
language) is to develop debugging skills to track down and fix such prob-
lems. Some guidance on this vast subject will be provided in later chapters,
but don’t expect any magical sesames. Chapter 11 explains the tools that
Version 2 provides to help you zap those elusive insects.

Finally, with software as complex as DOS and the Turbo C package, you
cannot entirely rule out bugs (also known as unpublished features) in the sys-
tems software. Since the latter probably have been subjected to more testing
than your own programs, it is wise to double-check your work before blam-
ing others. If you feel certain that the systems software is at fault, your report
to the software vendor must be precisely documented with your program
listings, screen printouts, hardware configuration, DOS level, and the serial
numbers of your package. Unless your reported bug can be repeated under
your exact configuration and environment, it will be virtually impossible
to fix.

» USING THE TURBO C EDITOR »

Because .C and .H files are ASClI text files, you can use almost any text edi-
tor to create and modify your source files. Most word processing packages
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offer a nondocument option that avoids peculiar formatting and typesetting
codes that might upset the compiler. Since Borland includes a very flexible
text editor with Turbo C that is specially equipped to produce readable .C files, it
makes sense to try it out. This editor arrives set to work almost exactly like
the nondocument mode of the popular WordStar package from MicroPro
International, but the TCINST installation program, detailed in Appendix B,
allows you to customize the editor to suit your own bizarre prejudices.

I will not, therefore, confuse (or bore) you with a key-by-key account of
the editing process itself. When | do refer to specific editor control keys, 1 will
use the standard Turbo C versions. If you are new to any form of text editing,
the only way forward is constant practice and experiment with the following
basic maneuvers:

» Basic Editing Features »

» Cursor movement Moving right/left/up/down; moving to end/start of
words, lines, screens, blocks, and files. Scrolling and paging up and down.
Note that the line and column numbers are displayed dynamically on the
top line of the edit window, known as the edit window status line.

» Auto-indent Toggled on/off by pressing Ctrl-O I. When off, pressing Enter
gives a new line without indenting. When on, pressing Enter positions the
cursor on the next line but aligned under the first character of the previous
line. Auto-indent makes it easier to produce legible “structured” text, since
indents clearly indicate the relative level of nested blocks. The edit window
status line displays Indent when auto-indent is on.

» Insert on/off Toggled with the Ins key, determines whether your typing
will write over (insert off) or “push” (insert on) existing text. Watch for the
Insert legend on the editor window status line.

» Tab mode Toggle with Ctrl-O T. Again, the status line indicates the mode in
force. With tab mode on, the tab key inserts tab codes in the text (white
space) and tabs the cursor modulo 8 spaces. With tab mode off, the cursor
spaces to positions determined by the words of the previous line.

» Deleting Use Del and backspace to remove a character under or to the
left of the cursor. Use control combinations to erase words, whole or part
lines, or blocks.
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» Block marking Move, copy, delete, write-to-disk marked blocks.

» Search and replace Hunt for a target string with or without a replacement
string. Many options, allowing forward and backward searches with or with-
out case sensitivity, with or without prompted replacements, with or without
counted matches, with or without whole word matching, and so on.

» Saving, renaming, and quitting It is worth stressing the importance of the
hot key F2, which allows you to save work in progress during an editing ses-
sion. You can also quit without saving.

» HELLO.C VARIATIONS »

To give you some useful practice with the built-in Turbo C editor (as well as
to extend your knowledge of C) make a copy of HELLO.C called HELLO1.C.
Load HELLO1.C into the editor and try the following:

1. Alter the opening comments, changing printf to puts and removing
the \n from the “hello, world” string. Use F2 to save your changes.
Your program should now look like Program 1.2.

The function puts( ) means, “put string.” Like printf( ), it is declared in
stdio.h. puts( ) is a simpler version of printf( ), taking only a single string
argument and performing no formatting. puts( ), unlike printf( ), automati-

Iil,a
Ca!!‘/ annnds a new line after d'sp'a":r‘.g the atfn"lg Put, iike p:uu, is a com-

mon synonym in C for outputting to some device or file.
To gain familiarity with the menus, follow the procedure outlined below.

/* hellol.c--hello, world variation */
#include <stdio.h>
main()

puts("hello, world");

» Program 1.2: HELLO1.C
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» Compiling HELLO1.C »

Press Alt-C for the compile menu. Select C (Compile to .OB)) to produce
HELLO1.0BJ. You can follow the progress of the compiler in the compile
window. If all is well, a flashing Press any key message appears alongside
the success message, and you can pass to “Linking HELLO1.C,” below.

» Error Correction (If Any) »

If you have mistyped, the compile window tells you how many errors and
warnings have been generated. Hitting any key takes you to the message win-
dow where you get a highlighted error message indicating your first mistake.
Any other errors will be listed below the highlighted one. The arrow keys can be
used to highlight such errors. As you move around the message window, the
corresponding error in the source code is tracked, i.e., highlighted in the edit
window. Hitting Enter takes you to the offending line so you can correct it. You
then press F6 to get back to the message window, select another error, and so
on. Alternatively, you can press F8 (next error) or F7 (previous error) while in the
edit window, and the cursor will move to the appropriate error. Version 2 uses
Alt-F8 for next error and Alt-F7 for previous error.

When all the errors appear to have been corrected, you must recompile,
recorrect, and re-recompile until you get it right! You will soon discover that
a single source code error can often generate a host of apparently unrelated
error messages. The reason for this disconcerting phenomenon will emerge
as you learn more of the C syntax.

» Linking HELLO1.C »

Select L (Link EXE file) in the Compile menu to produce HELLO1.EXE.
Notice the progress window showing the linking process. Turbo C is busy
looking in the LIB directory for any referenced library functions. Again, suc-
cess is signaled with a Press any key message. You can now select Run in
the main menu (or Alt-R directly). Since HELLO1.EXE exists, Turbo C runs it
immediately. The action of HELLO1.EXE is exactly the same as HELLO.EXE.

» Making HELLO1.EXE »

Now select M (Make .EXE file) from the Compile menu to invoke Project-
Make. Note the name HELLO1.EXE appearing alongside the Make legend.
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Turbo C quickly checks that HELLO1.C and HELLO1.0B]J have not changed
since HELLO1.EXE was formed, so you get a message saying that the depen-
dencies check out OK, and no further action is taken.

You could have used Project-Make initially in place of separate Compile
and Link operations, but | wanted to give you some exercise. The Make
option is the simplest and safest path to the .EXE file, since in the absence of
either a .OBJ or .EXE file (or if they are relatively antiquated) the compiler/
linker will be invoked for you.

Of course, if you want to run your program immediately, the Run menu
also invokes Project-Make, checks the dependencies, calls the compiler/
liner as needed, and then executes the .EXE file.

» HELLO2.C »

The next variation to try is shown in HELLO2.C, (Program 1.3). It intro-
duces the #define directive, which is C’s basic mechanism for creating
macros and aliases.

The line added to HELLO1.C is

#define GREETING “hello, world”

and the argument for puts( ) is changed to GREETING.

As with the #include directive, the # before define triggers action by the
preprocessor. Each subsequent appearance of the identifier GREETING
anywhere in your source code will be replaced by the string ““hello, world”
before compiiation commences. So, when the preprocessor meets puts
(GREETING), the function call is changed to puts(“’hello, world”’). We have
concocted yet another way of achieving K&R’s original goal!

/* hello2.c--hello, world variant */
#include <stdio.h>

#define GREETING "hello, world"
main()

puts (GREETING) ;

» Program 1.3: HELLO2.C
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If the preprocessor encounters the sequence GREETING inside a string,
no substitution takes place. For example,

puts(“GREETINGs dear friend”);

will not be affected by the definition.

The use of #define here is somewhat artificial, but suppose that for some
obscure reason you wanted to write a longer program peppered with occur-
rences of the string “’hello, world”. The one #define directive would eventu-
ally pay off in terms of reduced keystrokes. Before we assess the other
advantages of #define, let’s review the syntax involved. The general format
for simple token substitution or aliasing is

#define identifier string

where you need at least one space or tab between each section and a final
new line immediately after string. If the string is too long to fit a single line,
you can use the escape character (backslash) before the new line, then con-
tinue typing the rest of the string on the next line as in

#define WARNING “This is a very long warning, so | need a \
to avoid going off the screen”

Remember that a semicolon is a statement terminator, so you don’t need
one at the end of a directive.

» IDENTIFIER RULES »

The identifier in the #define line (called the macro name) must conform to
the basic rules for all C identifiers:

1. ldentifiers must start with an uppercase or lowercase letter or an
underscore (_).

2. After the initial letter or underscore, you can have any number of
characters from the following set: A-Z, a-z, underscore, slash (/), or
the digits 0-9. Turbo C actually uses only the first thirty-two charac-
ters of an identifier, however, so you should really show some
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restraint. The following two identifiers would not be distinct:

This_is_long_variable_numbered_10
This_is_long_variable_numbered_ 11

Because C is case sensitive, Greeting and greeting are distinct from
GREETING and would not be affected by our #define directive.

It is customary but not mandatory to use all uppercase letters for
macro-name identifiers simply to give a visual clue that they are not
ordinary identifiers.

There are fifty-eight keywords in Turbo C that have preassigned
meanings (see Table 1.8). These either cannot or should not be used
as identifiers. Some reserved words may be used legitimately as
macro names under special circumstances (usually to allow compati-
bility with pre-ANSI compilers), but the novice should accept the fact
that keywords should only be used as nature intended. By the end of
this book you will know the purpose of each of these keywords!

An initial underscore is traditionally reserved for external identifiers.
You should avoid using such identifiers for your own internal objects.

» SUBSTITUTION STRING RULES »

There are none! You can enter any sequence of characters, and they will
be literally and exactly inserted in your source text, wherever the given iden-
tifier is found. The only exception is the line-continuation trick using a back-
siash in which the backslash is not really part of the string.

Whether the substitution makes contextual sense will be determined by
the compiler, not the preprocessor. This turns out to be an important issue
when you meet more complex situations. A good safety-first rule is to
enclose the string in parentheses to give it “syntactical” protection. The
parentheses can do no harm, and they often prevent calamitous side effects
due to C’s precedence rules when evaluating complex expressions.

» DEFINING MACROS »

The #define directive offers more than the simple substitution operation.
Used as a macro, it allows arguments to be supplied, rather as you saw with
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*asm if —cs
auto int —ds
break *interrupt —es
case long —ss
*cdecl *near - AH
char *pascal —AL
const register —-AX
continue return -BH
default short —-BL
do signed -CH
double sizeof -CL
else static -CX
enum struct - DH
extern switch -DL
*far typedef - DX
float union -BP
for unsigned -DI
goto void =Sl
*huge volatile —-SP
while
» Keywords marked with an * are exclusive to Turbo C, as are the special register
symbols (in column 3).

» Table 1.8: Turbo C keywords

functions. As with functions, you use ( and ) immediately after the macro
name as in

#define cube(x)  ((X)*(X)*(x)) /* x is formal parameter */
/* “*" is the multiplication operator */
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The string now defines how the formal parameters (just X in this case, but
there may be more than one) are applied when the preprocessor encoun-
ters the token cube in the source text. So, cube(3); would be converted to
((8)*(3)*(3)) in situ before compilation, and cube(a + b); would become
((@+b)*(a+b)*(a +Db)), which may help you see the need for the parenthe-
ses in the #define line! Without them, you would get an ambiguous or erro-
neous result sincea+b*a+b*a+bequalsa+(b*a)+(b*a) + b because C
places * higher in precedence than +. More on this anon.

» ON YOUR OWN »

Write and compile Program 1.4 as a tribute to Philippe Kahn, the president
of Borland International.

/* BONJOUR.C -- Hello, Philippe */
#include <stdio.h>
main()

puts ("Bonjour, joli monde!\n");

» Program 1.4: BONJOUR.C
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> CHAPTER 2 -

In Chapter 1, l introduced informally the concept of data types, explaining
that Turbo C needs to allocate appropriate amounts of memory to store dif-
ferent classes of objects. To keep my initial programs simple, | used only a
special and rather limited class of data types known as constants. (I used
character and string constants.) In this chapter you'll meet the arithmetical
constants known as integers, but first you'll learn how to use integers as vari-
ables. There will be a certain amount of essential theory supported with
examples before you return to the fun of TC.EXE.

To avoid repetition, many of the examples will be extracts rather than
complete, compilable programs. Such snippets will not have the proper
header files with a main() function, and so on. Complete programs are given
file names and program references, e.g., Program 2.3 is the third full pro-
gram in Chapter 2.

» WHY DATA TYPES? »

Now the compiler can determine the data types and memory require-
ments of constants from their actual typographical formats as they are
encountered in the source text. However, when we use variables, the sys-
tem needs some prior warning as to which data type we intend. Each data
type has predetermined memory requirements and an associated range of
legal values. This advanced warning is known as a data type declaration.

Data typing separates the identifiers used to denote variables into more or
less immiscible categories, allowing the compiler to detect certain errors
(like the proverbial adding of apples to pears or dividing chalk by cheese).

In strongly typed languages like Modula-2 and Ada, the data typing is
strictly enforced so that even closely related data types cannot be intermixed
without the programmer giving specific permission (or type casting). C is a
weakly typed language, meaning that in many situations the compiler will
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quietly convert your data types to achieve compatibility within a mixed
expression. It is rather like achieving apples + pears by first changing both
to fruit.

Is strong typing better than weak typing? Each language has its own ratio-
nale and its own band of voluble fans. C expects you to know its internal
data-type conversion policy and wastes little space or time in policing your
assignments and arithmetic. The strongly typed language supporters prefer
security even at the expense of compiler size and runtime efficiency.

» INTEGER VARIABLES »

Integers, or whole numbers, are either positive, negative, or zero.
With Turbo C (and other IBM PC C implementations), integer variables (and

" constants) end up in 16 or 32-bit two's-complement form, which is the natural

arithmetical mode of the 8088/8086/80286/80386 instruction sets. Because dif-
ferent computers have different register widths, though, C does not set standard
bit sizes for objects like integers, nor does it dictate how numbers should be
internally represented, for example as one’s-complement or two's-complement.
('ll explain two’s complement shortly) Outside the mainframe world, 16- and
32-bit integer representations are the general rule, so Turbo C will give you
widely portable code.

» int and long »

By declaring an identifier (sum, for example) as an int (integer data tyne) vou
warn the compiler ahead of time that sum will need 16 bits to represent its legal
range of values (from — 32,768 to + 32,767 for Turbo C). Exactly when the actual
allocation takes place depends on factors to be discussed later.

Declaring sum as a long (or, equivalently, long int), tells the compiler that
32 bits will be needed, giving sum a legal range of —2,147,483,648
to +2,147,483,647.

Officially, C does not insist that long be longer (have more bits) than int—it
insists only that long must not be shorter (have fewer bits) than int. For Turbo
C, just remember that int is 16-bit and long is 32-bit. Other systems may have
both int and long as 32-bit values, so some care is needed.
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» Short Integers »

C officially recognizes a third integer data type called short int (or short for
short). As with int and long, the ANSI standards leave it up to each individual
implementor to choose a suitable bit size for short, provided only that int is
not shorter than short. The rules for the three integer types can be expressed
informally as long >= int > = short where >= means “bit size is greater
than or equal to.”

You’ll be relieved to learn that in Turbo C short and int are indeed the
same 16-bit entities. For the moment, then, we will concentrate on int and
long. If you come across short or short int while reading a non-Turbo C pro-
gram, make a mental note that for some systems it may be smaller than int. In
the big, wide world of C, the choice of integer data types can affect program
portability.

» Signed Integers »
Note that int and long are known as signed data types because they are

stored and manipulated using the two’s-complement convention whereby
the leftmost or most significant bit (MSB) acts as a sign bit. The MSB for posi-
tive integers is 0, and for negative integers it is 1.
Under this regime, the int value -1, for example, is written and stored
as binary
i
(hex OXFFFF, decimal 2'° — 1), while — 32,768 is stored as
1000000000000000
(hex 0x8000, decimal 2"). The long version of — 2 would be binary
T I 1TIt11111111111110

(hex OXFFFFFFFE, decimal 2°* — 2). (If this section and the following one are
not absolutely clear, you should read Appendix D, Computer Math
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Roundup. You need to understand signed and unsigned binary arithmetic
since C assumes that you know what you are doing—there are few checks

on range overflow!)

» Unsigned Integers »

Each of the signed integer types has a corresponding unsigned version—
unsigned int and unsigned long. These types give non-negative ranges: 0 to
+65,535and 0to +4,294,967,295, respectively. Unsigned integers treat the
MSB as 2'° or 2%, not as a sign bit. Table 2.1 summarizes the integer data

types for Turbo C.

» INTEGER DECLARATION SYNTAX »

If the compiler meets the identifier sum before its declaration has been
made, an undefined symbol: ‘sum’ error message will be generated.
The simplest integer declarations take the following forms:

int sum;

long grand_total;
long int salary;

unsigned int count;

/* sum is declared to be of type int */

/* grand_total is of type long int */
/* longwinded version of long salary */

/* count is an unsigned integer */

Specifier Bit Size
int

short [int] 16
unsigned int

unsigned short [int] 16
long [int] 32
unsigned long [int] 32

Range

-32,768 to + 32,767

0to +65,535
—2,147,483,648 to + 2,147,483,647
0to +4,294,967,295

» [int] means int is optional.

» Table 2.1: Integer data types
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unsigned long big_count; /* big_count is unsigned and long */
unsigned long int Big_Count; /* so is Big_Count */

For the moment, | will make no distinction between declaring and defining
an identifier. Technically, a declaration simply notifies the compiler of the
name and nature of the beast (size and type), while a definition actually trig-
gers the allocation of memory. In most cases we can gloss over the distinc-
tion since the declaration also defines the variable. Later, when you start
creating your own functions, you will be declaring objects that may have
already been defined elsewhere.

» Type Specifiers »

The keywords short, int, and long are known as type specifiers. The
optional specifier unsigned can precede and modify these type specifiers, as
shown. (Signed is assumed in the absence of unsigned.)

The general syntax of simple integer declarations is

[unsigned] type-specifier identifier;

where the brackets around unsigned indicate that it is optional. | use italics
here to indicate a lexical unit that can be replaced by an appropriate set of
characters in the source code.

The identifier being declared follows the rules discussed in Chapter 1 (start
with a letter or underscore, follow with up to 31 letters, numbers, or under-
scores, and avoid reserved keywords). This identifier is called a simple
declarator to distinguish it from more complex forms used to declare
pointers and arrays.

You need some white space (at least one space or tab) between the various
elements like unsigned and int, and int and sum, and a final semicolon as a
terminator. Although a declaration is not, strictly speaking, a C statement,
it is terminated in the usual manner.

» Multiple Declaration »

You can save keystrokes by declaring several identifiers of the same type
using commas as separators.
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int sum, total; /* sum and total are of type int */
long grand_ total, bignum, X; /* three long ints */
unsigned int a, b, ¢, d; /* four unsigned ints */

The first line is entirely equivalent to

int sum;
int total;

Now that you know how to declare an integer variable, let’s look at some
of the things you can do with it in a Turbo C program.

» INTEGER VARIABLE ASSIGNMENTS »

Having been declared, the above identifiers are hereinafter known to the
program as integer variables, meaning that at any time during the course of
the program they can be assigned different values within their particular inte-
ger range. Contrast this with constants, which normally remain saddled
with their original value throughout the program. In the following, sum is

a variable:
sum = 1; /* sum now holds the value 1 */
sum = —356; /* and now, —356 */
sum = 269; /* sum changed to 269 */
sum = sum + 1; /* sum becomes 270 */

In C, the assignment operatoi (=) works from right to ieft. in
left-value = right-expression;

the right-expression is evaluated first, then the result is assigned to the left-
value. There are strict rules in C governing the kinds of objects you can
legally use on the left and right sides of an assignment. For the moment, you
need only these obvious rules:

1. The left-value must be a variable of some kind, able to “receive” the
new value coming in from the right. Such variables are officially
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known as Ivalues (pronounced “el-values”). Only Ivalues are legal on
the left, receiving end of an assignment.

2. The right-expression must be capable of providing a value compat-
ible with the Ivalue, whatever that means. In cases where right and
left are of different data types, C has its own strict rules whereby
silent, internal conversions are applied to the right-expression, if pos-
sible, to make it compatible before making the assignment. Later
you'll see that the programmer can intervene with type casts and
force nonstandard conversions.

» The Assignment Symbol »

In spite of appearances, the C assignment symbol must not be confused
with that of the conventional algebraic equals sign. For example, writing the
last statement of the previous example as the algebraic equation

sum = sum + 1

has no finite solution, while the valid algebraic lines

5=sum + 1
sum + 2 = 35

would not make sense in C, since neither 5 nor sum + 2 are Ivalues.
C uses two adjacent equals signs to distinguish the two concepts, equality
(==) and assignment (=):
if (sum == total) ....
is read as “if sum equals total ....” whereas

sum = total;

is read as “assign the value of total to the variable sum.”
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A popular mental model is to picture variables as labeled boxes. To find
the current value of sum, you open the box marked sum! The assignment

sum = sum + 1;

means: “Look in the sum box, grab the value, add one to it, and put the
new value back in the box.” Other readers may be more comfortable with
the image of sum as a 16- or 32-bit word in RAM being incremented via the
8088/8086 ADD instruction.

» INCREMENTS AND DECREMENTS »

Incrementing (and decrementing) by 1 is such a common computing pas-
time that C offers several shorthand versions of the above type of assign-
ment. To whet your appetite:

total = sum++; /* set total to sum, then inc sum by 1 */

total = sum—-—; /* set total to sum, then dec sum by 1 */

total = ++sum; /* set sum to sum + 1, then set total to new sum */
total = ~-sum; /* set sum to sum - 1, then set total to new sum */
The double symbols ++ and —— after sum are called the postincrement

and postdecrement operators respectively, implying that sum is increased or
decreased by 1 after the assignment to total. The general term postfix is used
for such operators.

Similarly, the prefix operators ++ and —— appearing before sum are
known specifically as preincrement and predecrement operators. With
these, the increment or decrement by 1 is performed on sum before the
assignment to total is made.

To illustrate these operations, consider the following snippet:

int sum, total; /* declare */

total = 5; sum = 3; /* initialize */

total = sum++; /* total now = 3 and sum = 4 post-inc */
total = ++sum; /* total now = 5 and sum = 5 pre-inc */
total = sum-—; /* total now = 5 and sum = 4 post-dec */

total = —-sum; /* total now = 3 and sum = 3 pre-dec */
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If you just want to increment or decrement without any assignment, the
postfix and prefix methods are effectively equivalent.

sum++; /* setsumtosum+1 */
++sum; /* setsumtosum+1 */
sum-—-—; /* set sumtosum—1 */
——sum; /* set sum to sum—1 */

What you cannot do is use sum + + (or the other three variants) on the left
side of an assignment. sum ++ is not an lvalue, so sum++ = total, for
example, is not allowed.

These postfix and prefix operators, by the way, can be used with variables
other than integers, but the increment or decrement produced may be other
than 1. (See Pointer Arithmetic, Chapter 6.)

» COMPOUND ASSIGNMENTS »

Another useful convention in C is the compound assignment, which sim-
plifies statements like total = total + sum asin

total += sum; I+ increase total by sum */
/* i.e. total = total + sum */

total —= sum; /* decrease total by sum */
/*i.e. total = total — sum */

Here the operators += and —= use the two symbols shown to form a com-
pound assignment. These are two forms of a more general compound assign-
ment trick,

left-value op= right-expression;
where op can be any one of the ten C compoundable operators shown in
Table 2.2 (these operators will all be explained in due course).

This general form translates into

left-value = left-value op right-expression;
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Arithmetical ~ + (add), — (subtract), * (multiply), / (divide), % (integer
remainder or modulus)

Shifts << (left shift), >> (right shift)
Bitwise & (AND), :(OR), ~ (XOR [Exclusive ORY])

» Table 2.2: Compoundable operators

assuming, of course, that op makes sense with the right and left sides of the
assignment. For example, the following pairs of lines are equivalent:

sum = sum * factor; /* multiply */
sum *= factor;

sum_of_all_sums = sum_of_all_sums / factor; /* divide */
sum_of_all_sums / = factor;

rem = rem % divisor; /* integer remainder or modulus */
rem %= divisor;

The compound assignment is one of the many features that makes C popu-
lar with programmers. If the left-value is long-winded (as in the second
example above), the notation saves much typing, reducing the chance of
error without obscuring the meaning.

» ASSICNMENT VALUES
AND MULTIPLE ASSIGNMENTS »

C also allows you to “chain” assignments as in
answer = total = sum = 0; /* clear them all */

The above multiple assignment starts at the right, setting sum to zero, and
then assigns the value of the statement (sum = 0) to total. C is rather unusual
in that assignment statements not only assign but also have a value that can
be used just like a right-expression. What, then, is the value of (sum = 0)?
It is simply the Ivalue received by sum as a result of the assignment. So
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what we pass on to total is O (the new value of sum). Likewise, the value of
(total = (sum = 0)) is the new value of total, namely 0, and this is passed to
answer.

To cut a long story short, all three variables are set to 0, just as if we had
made the three separate statements

sum = 0; total = 0; answer = 0;

In the above example, the whole multiple assignment itself has the value O,
but we make no use of this fact.

Rather than being an abstruse quirk of the language, this value property of
assignments is yet another reason for C's reputation for compactness. Con-
sider the following snippet:

answer = total + (sum = 4);
This statement is equivalent to the more verbose

sum = 4;
answer = total + sum;

» PRECEDENCE AND ASSOCIATIVITY »

Can you guess why the parentheses are important in (sum = 4)? | have
not yet broached the topic of operator precedence, mainly because only a
few operators have been discussed! However, now that we have + and =
rubbing shoulders, we must consider the problem.

All mathematical texts, whether for human or computer consumption,
need to have conventions for grouping operands with operators and possi-
bly for deciding the order in which they should be evaluated. For example,
2 x 3 + 1isambiguous (6 + 1 = 7 or 2 X 4 = 82) unless you lay down a
few rules. One simple rule is that operations enclosed in parentheses are
completed separately: (2 x 3) + 1or 2 x (3 + 1) removes the ambiguity.
You may also decree that multiplication has higher precedence than addi-
tion,i.e., 2 x 3 + 1means (2 x 3) + 1. In this case, you needn’t use paren-
theses, but they help the eye and do no harm. If you really want2 x (3 + 1),
then parentheses are essential to override the precedence rules.
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Certain commutative operators, like + and —, can have equal prece-
dence from a purely mathematical standpoint. When calculatingx + y — z,
for example, you get the same answer, in theory, whether youdo (x + y) — z
orx + (y — z) or even (x — z) + y. The same is true for x x y/z (using / to
indicate division).

However, the grouping of the operands may be relevant in practical terms
since the computer may not be able to store intermediate results with com-
plete accuracy. For example, (x * y) / z might lead to overflow before the
division is reached, whereas the grouping x * (y / z) might avoid this prob-
lem. You can see that in more complex computer work both the grouping
and order of evaluation can be relevant even if the pure mathematics reveals
no problem.

Some C operators, like ++ and ——, offer a challenge in that the
sequence of evaluation, as opposed to the grouping, can affect the result.
Take, for instance,

total = 0;
sum = (total = 3) + (++total); /* poor but legal code */

Which group, (total = 3) or (++ total), should be evaluated first? It does
make a difference: sum will equal 7 if we evaluate (total = 3) first (i.e., from
left to right) but 4 if we evaluate ( + + total) first (i.e., from right to left).

It is vital to know that the order of evaluation is not decreed by any C stan-
dards committee—each compiler writer is free to choose any convenient
evaluation sequence (there are, though, four specific operators that require
the leftmost operand to be evaluated first). For maximum sanity and portabil-
ity, therefore, you must avoid code like the above example, legal though it is,
A general rule is that if you assign to a variable, avoid reusing that variable in
the same expression. Safer versions of the example would be

total = 3;
sum = total + (total + 1);
++ total;

or

total = 0;

temp = ++total; /* a temporary variable often */
/* solves the problem */

sum = (total = 3) + temp;
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depending on your original intentions.

The pecking order for C's forty or so operators is shown in full in Appendix
E. Don’t rush to memorize them all just now. In fact, it pays to be more
rather than less generous with your parentheses for ease of mind and legibil-
ity, though you must remember that parentheses alone will not remove the
order of evaluation problem typified by the ++ example above.

» Precedence Categories »

There are fifteen precedence categories, some of which contain several
operators, while others contain just one. A lower category number indicates
higher precedence.

When C is faced with a sequence of operators of the same precedence
and no guiding parentheses, it follows certain grouping or associativity rules.
These rules effectively supply default parentheses. The rules, alas, vary
according to the precedence categories.

Most of the categories have left-to-right associativity, so it's easier to
remember the three precedence categories that associate from right to left:
categories 2, 13, and 14 in Appendix E.

Category 14 contains the assignment and all the compound assignments
(the most common right-to-left associative operators).

Now the example

answer = total = sum = 0; [* clear them all */

given in the section on multiple assignments makes more sense. It is
evaluated as

answer = (total = (sum = 0)); I* clear them all */

V'll point out the other right-to-left operators as they arise.

| stress again that associativity dictates how operands and operators are
grouped, not necessarily the order in which each group will be evaluated.
For example, the three operators *, /, and % all belong to precedence cate-
gory 3, which associates from left to right. A statement such as

x = total * temp / price * rate % factor;
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would be treated as though you had typed
X = (((((total * temp) /) price) * rate) % factor); /* not LISP */
Note the low precedence of = (category 14).

Whether this is the optimum grouping, considering accuracy or overflow,
is another question. Your own parentheses, of course, could force a different

grouping.

On this occasion, the grouping happens to dictate a unique sequence of
evaluation: (total * temp) must be calculated first, the result divided by
price, and so on.

If price were replaced with price + extras without parentheses as in

x = total * temp / price + extras * rate % factor;

you might be in for a surprise, since * (category 3) is higher precedence than
+ (category 4). The compiler supplied grouping would give you as step 1

X = (total * temp / price) + (extras * rate % factor);
and as step 2
x = ((total * temp) / price) + ((extras * rate) % factor);

We don’t know which inner piece might be evaluated first.
Here again is the example that triggered the discussion on precedence.

answer = total + (sum = 4); /* why the parentheses? */
Let's see what happens when we remove the parentheses.

Since + has a higher precedence than =, and since = associates from
right to left,

answer = total + sum = 4;

would be grouped by the compiler as follows:

answer = ((total + sum) = 4);
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resulting in a syntax error (or maybe two). Why? Because, (total + sum) is
not an lvalue, so you can’t assign anything to it. The error message would be
Ivalue required in function....

Summing up, the parentheses are essential to override C's natural associa-
tivity rules, since the latter would lead to a syntax error.

» WARNING ON THE LACK OF WARNINGS »

Before you become complacent, here are some situations in which
macho C will fail to protect you. Consider the following snippet:

unsigned int count, result; /* declare */

int sum, total;

count = 0; /* initialize */

sum = 32767;

count——; /* decrement count? */
++sum; /* increment sum? */
total = count; /* what will total be? */
result = sum; /* what will result be? */

We have declared count as unsigned, so you might expect some complaint
from the compiler when count is decremented by one “below” 0. In fact, C
will not protect you. After going through the motions of decrement (0 — 1),
the value placed in count is the erroneous bit pattern OxFFFF (2'® — 1 or
65535), which is the largest unsigned int value.

In the statement total = count; the erroneous bit pattern in count is trans-
ferred, as is, to the signed integer variable, total. C allows such assignments
between different integer types because of its weak data typing, and, as luck
would have it, total now holds the value — 1 in signed two’s-complement for-
mat! | use the word Juck somewhat cynically, but computers not using two's-
complement arithmetic would find it more difficult to preserve the correct
value, — 1, from an unsigned variable.

Incrementing sum by one “beyond” its maximum limit of Ox7FFF (32,767
or 2" — 1) is also performed without an overflow error message. The signed
result left in sum would be —32,768 (internally represented as 0x8000 or
2"%). This great shift in value can produce bizarre results for the unwary.
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The final assignment, result = sum, is made by transferring — 32,768 to
an unsigned variable without flinching, so result ends up with an unsigned
value of 2 ~ 15.

Similar considerations apply when assigning between long signed and
unsigned variables. Assigning from int to long when both are signed or both
are unsigned is always safe since the latter’s lvalue range is greater. Going the
other way, from long to int, however, must be done with care. If the value in
the long happens to be within int range, the correct transfer occurs and no
harm is done. On the other hand, if the long source exceeds the destination
int range, you will lose the upper 16 bits of the long.

long stretch;

int sum;
stretch = OxFFFFFFFF;
sum = stretch; /* sum = OxFFFF!! */

These are known as silent truncations and must be avoided like the plague
(as with cliches).
The moral is to declare integer variables according to their expected ranges.

» INITIALIZATION OF VARIABLES »

Another time saver in C is the ability to initialize a variable (give it a starting
value) during its declaration. For example,

int sum = 25; /* declare sum as int with initial value 25 */
is equivalent to

int sum; /* declare */
sum = 25; /* initialize */

You can also declare and initialize a series of variables of the same type
without repeating the type specifier as in

short int sum = 0; total = O; result = 0; /* all shorts */
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The value used to initialize is naturally known as an initializer. For most of
the numerical variables used in this chapter, the initializer can be either a
constant or a numerical expression containing previously declared and ini-
tialized variables. (Later on you’ll see some restrictions depending on stor-
age classification.) Here are some declaration and initialization examples:

int sum = 25; /* declare and initialize */
int total = sum*2; /* declare and initialize to 50 */
long grand_total = total + sum; /* declare and set to 75 */

Note that in the third line, because total + sum is within int range, a safe,
silent conversion from int to long takes place before grand_total is initial-
ized. Be aware of the fact that a right-expression containing only int values
could conceivably exceed the long range, leading to silent truncation.

Although there are exceptions, simply declaring a variable usually will not
give it an initial, predictable value such as 0. It is safer for the beginner to ini-
tialize each variable in some way before using it in the right-expression of an
assignment.

» INTEGER CONSTANTS »

In many of the previous examples we used integer constants like 1, —1,
and 269 without much ado. Remember, though, that the compiler needs to
translate the ASCIl symbols, 1,2, —, and so on, as found in the source code,
into binary before expressions like sum = 1 or sum + 269 can be evalu-
ated. Since we have not declared these constants explicitly as short, int, or
long, you may wonder how the compiler knows how many bits, 16 or 32, to
use in the conversion. The answer is that the compiler takes account of the
value of the constant. Constants with values between 0 and 32,767 become
16-bit int types, while those with values between 32,768 and 2,147,483,647
take the 32-bit long format.

» Hexadecimal, Decimal, and Octal Constants »
Constants can be expressed in hex (base 16), decimal (base 10), or octal
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(base 8) by following a few simple rules:
1. Octal constants must start with a 0 as in
mask = 017777; sum = 012345;

An error will occur if you use the numerals 8 or 9 in an octal integer.

2. Hex constants must start with Ox or 0X as in
mask = OXFFFFE; sum = 0x12345; tot = 0Xabcdef;

An error will occur if you use illegal characters in a hex constant.
After the Ox or 0X, only 0-9, A-F, or a~f are permitted.

3. Decimal constants are written conventionally with no leading 0
(otherwise they would be taken as octal).

sum = 1; total = 269;

The number 0 presents no contradiction. Whether it is octal or decimal does
not merit much angst.

The unary operator — in front of an integer constant tells the compiler to
reverse the sign by subtracting the value from 0. Constants outside the upper
limit will be silently truncated as we saw with integer variables. Constant expres-
sions, that is, combinations such as (1 + 3) or (4 — 6 * 34) are allowed and are
evaluated according to the normai operator precedence rules.

Summing up, a constant acquires both a value and a data type from the
way it appears in the source text.

The use of explicit constants as “magic numbers” should be avoided
where possible. If a disk block contains 512 bytes, say, it is better to use
#define BLKSIZE 512 (as in the following snippet) than to have the source
text sprinkled with references to the constant 512:

#define BLKSIZE 512

unsigned int rec_size = 300;
unsigned int byte_count = rec_size *BLKSIZE;
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The resulting code is more legible and can be more quickly updated should
BLKSIZE change in value.

» DISPLAYING INTEGERS »

It is time to run a few programs that will help you see the various integer
types and operators in live action on your screen rather than as dry abstrac-
tions on the page. We will use SHOWNUM.C, listed in Program 2.1, as a test
bed. Later you can experiment by editing it with values and data types of
your own choice.

Fire up by typing tc SHOWNUM.C at the C> prompt and enter the text as
shown. Use Alt-C and select the Make option from the Compile menu. After
a successful compile/link, use the < to access Run in the main menu. Let’s
see how SHOWNUM works.

» printf() Format Control Strings »

Until now, printf() has been used with a single string constant as an argument.
SHOWNUM uses a variation allowing you to display formatted integers.

Here, the first printf( ) has two arguments, separated by a comma. The first
argument, ““The value of inta is %d\n\n"’, represents a format control
string, the function of which is to control the conversion and formatting of
the following argument (or arguments). This string contains two distinct

/* shownum.c - display various integers */
#include <stdio.h>
main()

int inta = -1, intb = 3;

unsigned long uninta = 65535;

printf("The value of inta is %d\n\n",inta);

printf("Sum inta+intb = %d\n\n",inta+intb);

printf("The value of uninta is %u\n\n",uninta);

printf("uninta squared is %lu, (inta - uninta) is %1d\n",
uninta*uninta, inta-uninta);

printf("Net Profit is %d%%",intb);

» Program 2.1: SHOWNUM.C
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classes of characters:

1. Plain characters such as the familiar text and newline escape characters
that are displayed without change as in the HELLO.C of Chapter 1.

2. Conversion specifications such as %d. These are not displayed as
part of the text but act as “templates” for the following arguments
of printf().

Each conversion specification must start with a percent sign. This tells the
compiler where and how to display an argument. Each argument to be dis-
played by printf() will have an appropriate specification like %d embedded
in the format control string. The concept is similar to the PRINT USING
MASKS$ construct found in most BASICs.

There are many possible conversion specifications, offering conversions
(with specified precision) from all the arithmetical data types to ASCII dis-
plays in decimal, hex, octal, and floating-point scientific (or exponentional)
notation, with or without left or right justification, with or without zero fill, ad
nauseam. Appendix C lists all these for reference, but for now we’ll concen-
trate on the following simpler formats used to display integers, strings, and
characters with no frills:

%s for any matching string argument

%c  for any matching single character argument

%d for decimal int (signed)

%u  for decimal unsigned int

%o for octal unsigned int (note: Jeading O not displayed)

%x  for hexadecimal unsigned int (note: leading Ox not displayed)

%X  for hexadecimal (as above but giving A-F rather than a-f)

Each of d, u, 0, x or X can have a lowercase letter | prefixed to give the cor-
responding long data type conversion or a prefixed h to give short int con-
version as in

%Id for decimal long (signed)
%hd for decimal short (signed)
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%Iu  for decimal unsigned long

%ho for octal short (unsigned)

To display a real percent symbol from a format string, you need to use two
of them, that is, enter %%’ as in the old "\’ escape character trick. Only
the second % will appear.

Referring back to SHOWNUM.C, the second argument in

printf(“The value of inta is %d\n\n”,inta);

is the int variable inta. This gets matched with the %d in the format string so
that when you run SHOWNUM the top line should display

The value of intais —1

followed by two new lines. The %d interprets the bit pattern in inta as a
signed int and converts to the ASCII pair — 1 for the display.
The next printf( ) in SHOWNUM,

printf(“Sum inta +intb = %d\n\n”,inta + intb);

illustrates how the second argument can be a compound arithmetical
expression. The %d is here replaced by the sum inta +intb, again inter-
preted as an int (signed of course). However complex the expression is, it
will be evaluated and then matched by a single conversion specification
such as %d. The second line displayed by SHOWNUM will therefore be

Sum inta+intb = 2
followed by two new lines.

The %u in the third printf() converts the unsigned long variable uninta to
an unsigned int and displays

The value of uninta is 65535

without error. Try changing the %u to %lu and %d and see if you under-
stand the results. o
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The fourth printf( ) statement shows two control specifications %lu and
%Id embedded in the format string

printf(“uninta squared is %lu, (inta — uninta) is %Id\n",
uninta*uninta, inta — uninta);

Don’t be fooled by the comma in the format string—it is inside the string, so it
does not act as an argument separator. The following two arguments are
arithmetical expressions, and they will be matched in turn by the %lu
(long unsigned conversion) and %ld (long signed int conversion). The dis-
play will be

uninta squared is 4294836225, (inta — uninta) is — 65536

Reversing the conversion specifications will teach you some of the quirks of
mixing signed and unsigned integer types.

SHOWNUM.C ends with a simple demonstration of the “%%"* trick. You
should see

Net Profit is 3%

on the final line of the display.

You should play with SHOWNUM, altering values, data types and format
strings, until you are familiar with the simple conversion specifiers. Try dis-
playing in short and long hex and octal. It will increase your knowledge of
number representation as well as giving you practice with the Turbo C editor
and menus.

» MAKING YOUR OWN FUNCTIONS »

Now that you have seen a library function in action, let’s examine the
problem of creating our own personal functions. Functions arise quite natu-
rally when you find that your program is regularly doing the same or similar
things. The obvious question is, Can | avoid repetitive typing in my source
code? Let's take SHOWNUM as a simple example. Rather than entering sev-
eral similar printf() lines, we want to create a function called dispnum() that
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can take an integer argument, say n, and display
The value of n is value

At the same time, we'll introduce another function called cube( ) that takes
an integer argument and returns its cube.

SHOWNUM1.C (Program 2.2) illustrates the basic mechanics of declar-
ing, defining, and invoking these naive functions. A new type modifier called

/* shownuml.c - display and cube integers */
#include <stdio.h>
main()

const int nymph = 40;

/* this int identifier is frozen by the const modifier */
/* nymph behaves like a constant and cannot be changed */

int sum, inta = -1, intb = 3; /* automatic variables */

* these variables are of storage class auto by default *
t Y
/* i.e. they are automatically created when main starts */

/* and vanish when main ends. They are inaccessible */
/* outside their own function. More in Chapter 3. */
dispnum(inta); /* call dispnum with real var arg */

dispnum(intb);

dispnum(3*intb+inta);

sum = cube(5); /* call cube with real const arg */
dispnum(sum);

dispnum(sum++); dispnum (sum);
dispnum(-sum) ;' dispnum (sum);
sum += intb; dispnum(sum *= inta);

/* can you forecast the resulting displays? */

dispnum(cube(inta));
dispnum(cube(intb+1));
dispnum(cube(cube(inta)));

}
dispnum(n) /* declare dispnum with dummy arg */
/* A returned value of int is assured by default. */
/* However, dispnum() does not return a value. */
int n; /* declare dummy arg */
{ /* body of function */
printf("The value of n is %¥d\n\n",n);
int cube(n) /* cube() returns an int */
int n;
return n*n#*n; /* the value returned by cube() */
}

» Program 2.2: SHOWNUM1.C
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const is introduced and explained within comments. The topic of storage
classes is touched on and will be further amplified in Chapter 3.

» Anatomy of the dispnum( ) Function »
There are three parts to dispnum( ):

1.

The declaration line, dispnum(n), giving the function name and
its argument list—the single identifier n in this case. If there were no
arguments, the list would be empty [as in main()], or you could write
dispnum(void). If there were two arguments we would need dis-
pnum(n,m), and so on. Note that no statement terminator is needed.
The argument n is called a dummy or formal argument. It serves as a
place marker when the function is actually called with a real argu-
ment, as you’ll see presently.

The declaration giving the data type of the dummy argument: int n;,
The body of the function between { and }, similar to the body of
main( ), which determines (defines) the action of the function. Here
the function just performs the one action,

printf(“The value if n is %d\n\n",n);

and then ends because the final } has been reached.

» Calling the dispnum () Function »

The function dispnum( ) is called (or invoked) several times from within
main( ) by simply naming it with a particular real or actual argument that
matches the type of the dummy argument as in

dispnum(inta); /* call dispnum with real arg */

We say that the real argument inta is passed to the function dispnum( ), just
as the real argument “’hello, world”” was passed to printf( ) in HELLO.C
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(Chapter 1). The result of the call, then, is the same as that of
printf(“The value of n is %d\n\n”,inta);

In fact, dispnum( ) does not operate directly on inta but on a temporary
copy of inta. In C, all function arguments are passed by value, so that nor-
mally a function cannot alter the real argument—it knows only the copied
value of inta, not the memory location where inta resides. Even if n, the
dummy argument, is changed by dispnum(), this change cannot “get back”
to inta.

Unlike more fussy languages, C traditionally does not engage in tedious
checks to see that functions are called with matching arguments—Ilater we’'ll
see how ANSI C offers some help in this direction.

» The cube( ) Function Analyzed »

Like dispnum(), the function cube( ) also has three parts: function decla-
ration, argument declaration, and body, though there are a few differences:
cube() returns a value, as indicated by the keyword return in the function
body. The expression (n*n*n) after return represents the value returned
when the function is called. If a function does not return a value, as in the
case of dispnum( ), then no return statement is needed or you can write
return; to indicate that nothing is returned. A function like cube( ) that
does return a value can be considered as having that value when used as
part of an expression in main() (or anywhere else it gets called). The declara-
tion of cube(), in fact, indicated that its returned value would be of type int.
In the absence of a type specifier in the function definition, an int return
value is assumed.

All of this explains why cube( ) can legally be used in assignments such as

sum = cube(5);
and the use of cube(inta) as a real argument to dispnum() in

dispnum(cube(inta));



68 » MASTERING TURBO C »
CH. 2

The latter works because cube(inta) is in fact an int derived from the evalua-
tion of n*n*n using the int value of inta as the int n.
Similarly, cube(inta) is a valid int argument for cube( ) itself as in

dispnum(cube(cube(inta)));

So, cube(inta) can be used in any situation where a non-lvalue int can be used.

» Unused Variable Warnings »

| deliberately refrained from using the const int identifier nymph in
SHOWNUMT1.C in order to reveal a neat feature of Turbo C. It will issue a
friendly, nonfatal warning for each identifier declared but not referenced in
the program. This can help you clear out any deadwood at the end of a long
development session.

If you enter and run SHOWNUMT1.C, your screen should look like Fig-
ure 2.1.

The value if n is -1
The value if n is 3
The value if n is 8
The value if n is 125
The value if n is 125
The value if n is 126
The value if n is 125
The value if n is 125
The value if n is -128
The value if n is -1
The value if n is 64
The value if n is -1

Press any key to return to Turbo C . . .=

» Figure 2.1: SHOWNUMT result screen
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As with SHOWNUM, you should experiment with other values in
SHOWNUMI1. Note that cube( ) can quickly exhaust the range of int, so try
using long and unsigned long to find the maximum n before these ranges
are exceeded. Remember to alter the format strings in dispnum()!

» Duplication of Variable Identifiers »

You may have noticed that the identifier n was declared twice in
SHOWNUMT1.C. Can you declare the same identifier more than once? A
useful general answer is, “No, not for variables within the same block”; a
more accurate answer for all identifiers is, “It all depends!” Take the follow-
ing snippet:

{

int sum;
long sum; /* ERROR - sum as int still active */

}

sum is already declared as int and is still active. To understand when and
where variables are active requires a discourse on the vital topics of storage
classes, scope, and visiblity. We will introduce some of the basic concepts
now, leaving a detailed study for later.

» Storage Classes—First Steps »

Without realizing it, perhaps, you have been using a storage class called
automatic in all your variable declarations so far. The keyword auto can be
used explicitly as a storage-class specifier placed before the type specifier as in

auto int sum;

However, in the declarations used to date, auto has been the default,
implied by the context, as it were. The comments in SHOWNUMT1 indicate
the flavor of automatic identifiers. They correspond to the local identifiers of
languages like Pascal. The adjective local is perhaps more suggestive of their
property than auto since variables like sum and inta are local to main(). The
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n that is local to dispnum( ) does not clash at all with the n that is local to
cube(). Local variables are safer in the sense that changes to them are con-
fined to their own backyard. Imagine the chaos if the n being altered by
cube() somehow managed to infiltrate into the n of dispnum(). Such night-
mares are known as side effects, or rather unwanted side effects. Some side
effects turn out to be beneficial when used with care.

In contrast with local or automatic variables, most languages need global
variables, which are accessible from all parts of a program and therefore at
risk to the side-effects problem. In C the globals are sometimes called exter-
nal because they “exist” outside the functions. The storage-class specifier
extern can be used to declare a global variable as in

extern int sum;

but like auto it is often implied by the context and can be omitted.

C offers a rather daunting selection of storage classes and default rules that
determine where a variable exists (scope) and where it is accessible (visibil-
ity). These will be gradually revealed in the following chapters as we encoun-
ter more complex function schemas.

» SUMMARY OF CHAPTER 2 »

Here are the main points covered in this chapter.

<> Data typing allows the compiler to allocate the correct memory space
for constants and variables and also guides the compiler as to what
arithmetical operations and ranges of values are legal. C is not strongly
typed: it often allows different types to be mixed in expressions and will

often “silently” convert one type to another.

<> The three basic integer data types are short, int, and long. They are
treated by default as signed unless explicitly declared as unsigned.
short and int each take 2 bytes. They are the same types in Turbo C but
may be different on other implementations. long takes 4 bytes. Turbo C
uses conventional two’s complement arithmetic, so negative signed
numbers look just like large unsigned numbers! (The sign bit is the most-
significant bit.)
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Declarations need a data-type specifier followed by one or more identi-
fier names:

inti;

intj, k;

long |, J, K; /*orlongintl, J, K; */
unsigned int m, n, o;

unsigned long salary; /* or unsigned long int salary */

Variables can have values assigned to them at various stages of a pro-
gram; constants are fixed in value. Assignment is accomplished via the
= operator:

i=j /* assign value of j to Ivalue, i */
salary = 10000; /* assign a constant to Ivalue, salary */

The above lines are called assignment statements. Certain objects are
called Ivalues because they can legally exist on the left side of an assign-
ment. No constants are lvalues, and not every expression containing a
variable is an Ivalue.

C may make internal conversions during assignments, either promoting
an int before assignment to a long or truncating a long before assign-
ment to an int. The latter conversions are dangerous.

Multiple assignments are allowed:
i=j=k=20; /* all vars now equal 20 */

This is possible because the expression k = 20 itself takes a value equal
to its left-hand member, which it then passes on to j. The expression
j = k = 20 has a value that it passes to i. The value of the whole expres-
sion is also 20, but it is not used in this example. C is unusual in having
expression-statements and evaluated expressions. Any C expression can
become a statement by appending a semicolon. The value of an expres-
sion is simply discarded in most cases.

C has elaborate precedence and associativity rules that dictate how
operators are grouped in compound expressions. Appendix E lists the
fifteen categories. Parentheses can be used to override these rules—but
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the order in which terms are evaluated depends on the individual com-
piler. ANSI C allows for the unary operator + that gives some control
over evaluation sequence.

Variables can be initialized during a declaration:
inti = 3;long L = 279;

For the moment, assume that variables contain garbage until intialized
or assigned in some way.

The post- and preincrement and post- and predecrement operators
(++ and — -) let you add or subtract 1 from all integral variables. The
postfix operators return the old value before the change; the prefix
operators return the changed value:

intp=0,q =1;

p=qg++; /*p=1andq = 2 */

p = ++gq; /*p=38andqg =3 */

p=q-; /*p=38andq =2*/
= —-q; /[*p=1andq =1*/

The compound operators, +=, *=, and so on, simplify assignments by
combining them with some other operation:

i +=4; /*sameasi =i+ 4; */
j-=1 /*sameasj =] - i;*/
k *= 3; /*same as k = k*3; */

Integer constants can be expressed as decimal, hex, or octal. Their size
dictates their data types unless overridden with a suffix:

i =34 [* 34 is decimal and type int */

i = 34U; /* 34 forced to be unsigned int */

i = 34L; /* 34 forced to be long int (signed) */

i = 34UL; /* 34 forced to be unsigned long int */
/* lowercase u, | also allowed */

i =034; /* 034 is octal */

i = 0x34; /* 0x34 or 0X34 are hexadecimal */

printf( ) can display formatted variables, expressions, and constants of
different data types. A format string is used to control where and how
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each matching expression argument appears. Simple examples are
%d, %u, %lId, %lu

which format signed, unsigned, long, and unsigned long numbers.

The declaration, definition, and calling syntax for simple functions was
hinted at with examples.

[type] func([argt, arg2,...]); /* declaration only */
[type] func([arg1, arg2,...]) /* declaration/definition */
[parameter declarations]

1* body of function */
[return] [result];

main()

{

[result =] func([real_arg1, real_arg2,...]); /* call the function */
}

Real arguments in the function call are passed by value to the function

via copies to the dummy arguments used in the definition. A func-
tion may or may not return a useful value using the return statement.

Two common storage classes were mentioned briefly: auto (local) and
extern (global).
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This chapter introduces two more basic data types that allow you to work
with floating-point and character variables. I'll explain the motivation for
these types and extend the use of printf( ) to format and display them.

Character variables lead naturally into C's unusual treatment of strings as
arrays of characters referenced via pointers, so you’'ll get your first, gentle
exposure to this central bete noire of the C language. Other languages reluc-
tantly offer pointers in various guises and then strive to protect the program-
mer from the dangers of misuse. In C pointers are the primary weapons,
designed to butcher both friend and foe. You'll love them!

You will also start using simple control structures, allowing your program
to select alternative courses of action depending on the results of various
conditional tests.

» BEYOND THE INTEGERS »

The integer types introduced in Chapter 2 have the merit of complete,
whole-number accuracy, provided that you keep within their acknowledged
ranges. Although the computer works internally in binary, the conversions to
and from decimal are exact for integer values. Problems can arise, though,
when your calculations involve numbers or results with fractional parts.
Computing, say, 3.87675x 10.00234 or 1/7 cannot be readily accomplished
with integer data types unless you are happy with integer approximations
such as 3.87675x 10.00234 = 40 to the nearest whole number and 1/7 = 0.

» Integer Accuracy »

If you are willing and able to scale all your calculations, you can actually
handle all rational numbers with integer data types. (A rational number is
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one that can be expressed as the ratio of two integers, p/q, where g is non-
zero. The number 0.99 is rational since 0.99 = 99/100.) For example, it is
common to treat $199.99 as 19,999 cents (scaling by 100) thereby removing
the problem of decimal fractions. '

Even if you need to divide or take percentages of such amounts, you can
scale up again by 100 or 10,000 or whatever, depending on the accuracy
needed, and keep your intermediate results as integers until the final answer
is scaled back and possibly rounded as appropriate. However, the scaling is
a nuisance in all but the simplest cases, and, worse still, even the unsigned
long limit of ten significant digits can easily be exceeded.

Accuracy in all types of computation boils down to how many significant
figures you can retain at each step. The position of decimal (or binary) point
is irrelevant.

Note that you can concoct programs that can achieve any given degree of
precision, subject only to storage limitations. For example, the extended
multiply equation

(10xa + b)x(10xc + d) = 100xaxc + 10xaxd + 10xbxc + bxd

is an example of how you can multiply two extra long numbers without
overflow by using the proper software gymnastics. There is also the BCD
(Binary Coded Decimal) approach that allows exact arithmetic on strings of
digits of arbitary length.

» THE FLOATING-POINT SOLUTION »

C, and most other languages, offers a more compact solution: the floating-
point or FP data types. In the following sections, you will see how they let you
handle fractions, such as 3.14159 and —0.00001, as well as integers outside the
long int range. Internally, FP does a form of scaling for you automatically.
(Appendix D explains the basic rules for FP notation and manipulation.)

FP is not a general panacea. Even though FP operations extend enor-
mously the range of values you can handle there are inherent problems of
precision that require constant attention. As a simple example, the fraction
1/3 (= 0.3333... recurring) cannot be exactly represented in FP format using
a finite number of binary bits. Even if there are clever ways of storing such
rational numbers, transcendental numbers such as pi can only be stored as
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approximations. Long before the electronic computer arrived, the branch of
mathematics called numerical analysis had evolved to study the problems
of reducing the errors that accumulate when you are forced to round off and
approximate at various stages of a long calculation.

Let’s review the basic arithmetical operators and, in particular, study the
quirks of / (division) and % (integer remainder)—these are relevant to a
proper understanding of floating-point operations.

» ARITHMETICAL OPERATIONS »

You have already met the arithmetical operators + (add), — (subtract and
also unary minus), * (multiply), / (divide), and % (integer remainder) as
applied to integers (variables and constants).

We call % the integer remainder operator to remind you of the fact that it
can be used only with integer types. The other operators can be used with
both integer and FP numbers (variables and constants).

There are no problems with precision or rounding when you add, sub-
tract, and multiply positive or negative integers unless the results go out of
range. Integer division and its associated operation, integer remainder,
though, have some anomalies to be discussed in the next section.

» Integer Division, Remainder and Modulus »

Dividing an integer by an integer in C using / gives you only a whole num-
ber quotient (usually truncated and therefore incorrect), while the % opera-
tor does not always give the expected integer remainder. The normal
classroom paradigm for integer division is

dividend/divisor = quotient with remainder
or
dividend = quotientxdivisor + remainder

where the absolute value of the remainder is less than the absolute value of
the divisor. If the latter is not true, you have clearly not completed the divi-
sion process! The absolute value of x is written abs(x) or | x | , and is defined
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as follows:

If x 2 0 abs(x)
If x < 0abs(x)

X
—X

In other words, if x is signed and negative, just reverse the sign to get abs(x);
otherwise x and abs(x) are the same. (C provides such a routine, abs( ), in
stdlib.h.)

We must also rule that the divisor is nonzero. For a zero divisor, the opera-
tion is simply undefined (so forget all that 1/0 = infinity nonsense).

In C notation, with integers a and b (b being nonzero), this equation can
be written

a divided by b = (a/b) with remainder (a%b)
so you would expect that
a = (a/b)*b + (a%b) with abs(@%b) < abs(b)

would always be true (excluding overflow problems). Unfortunately, if either
a or b or both are signed you have ambiguities if either or both go negative.
Unsigned a’s and b’s, by definition, of course, cannot go negative, and no
problems arise. Look at the following examples:

1/0 illegal 1%0 illegal

0/1=0 0%1 = Ocheck: 0 = 0*0 + 0and 0 < 1 OK
4/2 = 2 4%2 = Ocheck: 4 = 2*2 + Dand 0 < 20K
3/2 =1 3%2 = 1check:3 = 1*2 + 1tand 1 < 20K
12 =0 1%2 = 1check:1 = 0*2 + 1and 1 < 20K
10/3 =3 10%3 = 1 check: 10 = 3*3 + 1and 1 < 30K

So far, with both a and b positive, there are no surprises. The % gives you the
conventional mod (or modulo) operation, which yields the remainder of a
division process. Let's see what happens if a goes negative.

-12/3 = -4 -12%3 = O check: =12 = (-4*3) + 0and 0 < 30K

No problem here, but perhaps we were lucky since — 12 is divisible exactly
by 3. Let’s try again.
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-10/3 = -3 —-10%3 = —1check: —~10 = (—=3*3) + (—1)
and
abs(—1) < 30K

Note that the unary - has higher precedence than / and %, so —10/3
means (- 10)/3 not —(10/3).
This seems fine, but what if we write

-10/3 = -4 -10%3 = 2check: —10 = (-4*3) + 2and 2 < 3ALSO
OK!

Both answers for —10/3 and — 10%3 meet the mathematical tests, so
which set is correct? And what will C do? C officially says that the result is
machine dependent, so for true portability you should avoid division and
remainder operations with negative integers.

Most C compilers, including Turbo C, opt for the values in the first example
by always taking as a/b the value nearer to zero and the a%pb with the same

sign as a.
For Turbo C then, —10/3 = -3 because — 3 is nearer to zero than —4.
This makes —10%3 = — 1. Another way of looking at Turbo C's value for

—10/3 is to think of the full answer — 3.3333... and discard the fractional part
(with no rounding).

The plot thickens if b is negative. Again, the official C reaction is that the
results are implementation dependent. Turbo C gives the following result:

10/-3 = =3 10% -3 = —1check: 10 <> (-3* —3) + (~1)?? NOT OK
but

abs(-1) < abs(-3) OK
So here we meet a potentially dangerous violation of the basic rule that
a = (a/b)xb + (a%b).

There is a similar problem with

-10/-3 =3 -10%-3 = 1check: —10 <> (8* -3) + 1?? NOT OK

79
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but
abs(1) < abs(-3) OK

The ambiguity stems from two distinct approaches to integer arithmetic:
Eulerian arithmetic, as in C, and modulo arithmetic, as in many computer
contexts. Fortunately, the two arithmetics agree for non-negative integral
dividends (the a’s) and positive integral divisors (the b’s). The moral is to use
unsigned and/or positive signed integers when using %.

C uses the one divide operator / for integers and floating-point numbers,
but with the latter there is no ambiguity regarding sign or meaning. When
both a and b are integer types, the quotient of a/b is also an integer type,
with possible truncation. But if one or both of a and b are FP a/b becomes FP
This is an example of a general rule in C that is invoked when expressions
have mixed types: internal, silent conversions are made whenever neces-
sary (and possible).

The function fmod(x,y) is provided in the Turbo C math library to calculate
(x mod y) for floating-point x and y.

» FLOATING-POINT DATA TYPES »

C offers three FP data types to handle numbers with fractional or decimal
parts. They also permit the use of numbers, both integral and fractional, out-
side the maximum long int range.

The three types, float, double, and long double, correspond to the single,
double, and extended precision formats available on many current com-
puters and math coprocessors. Table 3.1 shows their bit allocations and legal
ranges as assigned in Turbo C.

Type Specifier Bit Size  Range

float 32 —3.4e-38t0 +3.4e+38
double 64 -1.7e-308 to +1.7e+ 308
long double 64 ~1.7e-308 to +1.7e+308

» Table 3.1: Floating-point data types
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» Floating-Point Declarations »

You declare FP variables in the usual way, using a type specifier.

floatx, y, z = 2.0; /* 3 floats — one initialized */
double pi, eps; /* 2 doubles */
long double scotch; /* 1 long double */

As with integers, ANSI C leaves it to the implementor to decide exactly
how these FP types should be internally represented, provided only that

long double > double > float

where > is used informally to indicate “greater than or equal precision.”

Just as you saw with short and int, Turbo C’s double and long double turn
out to be identical in format and range. Other C systems might have an 80 or
128-bit long double, so some care is needed to ensure complete portability.
We will use only float and double in this book.

Note that there are no signed or unsigned versions of the FP data types—
they are all implicitly signed by definition.

The ranges shown in Table 3.1 use scientific notation (also called E or
signed exponent notation). Symbolically,

Mex = Mx 10*

where M is the fixed-point part or mantissa and X is the exponent. The e can
also be written as E.

A positive exponent shifts the decimal point to the right (multiplying by a
power of 10), and a negative exponent shifts the decimal point to the left
(dividing by a power of 10). A zero exponent does not affect the mantissa,
since 10° = 1 by definition. Some examples of scientific notation are shown
in Table 3.2. As you can see, there can be many different FP expressions (and
internal bit patterns) representing the same number. (Zero is an exception
because it has a unique FP bit pattern.)

» Floating-Point Pros and Cons »

The FP format is most economical. For instance, the maximum number of
type double would take 309 decimal digits to write out in full and over 1000
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120.0e+0 = 120x10° = 120
120e+1 = 12x10' = 120
1200.0E-1 = 1200x 107" = 120
1.2e+2 = 12x10° = 120

» Table 3.2: Scientific notation examples

bits if stored in conventional binary. This enormous range, however, does
not indicate the true precision available with double. Precision is a function
of the mantissa width (52 bits), which gives “only” 15 or 16 significant digits.
(Appendix D explains this in detail.)

Among the quirks of FP arithmetic are the following:

1.

Adding a small number to a large one may have no effect. The signifi-
cant bits of the small number may be lost when it is aligned prior to
addition to the larger number.

It can be misleading to test for equality between two FP numbers.
Rather than testing for equality as in

if (fp1 == p2) { ... }

it is better to test their difference as in

if (fabs(fp1 — fp2) <= delta) { ... }

where delta is a small constant reflecting the precision of the FP type,

such as 1.0e—15. fabs( ) is a standard library function giving the
absolute value of an FP argument.

» More Internal Conversions »

Because of the limited precision of float, the system always converts float
to double internally, temporarily, and silently, before evaluating any expres-
sion containing float’s. If the final result has to be assigned to a float or int
variable, another silent conversion from double to float or from double to
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int takes place before the assignment, with possible loss of accuracy.

You may ask why float is used at all. The answer is memory conservation:
each float variable uses only 32 bits compared with 64 bits for a double. If
speed and precision are more important than RAM, use double variables to
reduce the conversion time.

» Speeding FP with Math Coprocessors »

All FP arithmetic performed by software is quite heavy on CPU cycles. This
fact has motivated the invention of math coprocessors, chips specially
designed to handle the FP chores faster by hardware. As the name implies, a
coprocessor works in conjunction, and often in parallel, with the main CPU.

For the IBM PC range, the Intel 8087, 80287, and 80387 are a family of
math coprocessors compatible with the 8088/6, 80286, and 80386, respec-
tively. The improvement in performance is well worth the modest invest-
ment. Turbo C supports the 8087 and 80287 in a flexible way. If you do not
have one of these fitted, you have two options:

1. Avoid FP numbers and tell Turbo C not to link in any of the special FP
library routines. This speeds up the linking process. The Compile
menu has a Code Generation submenu that contains a Floating-Point
subsubmenu. This offers three choices: None, Emulation, and 8087/
80287. Selecting None will inhibit the FP library linkage.

2. Use FP numbers and let Turbo C link in the emulation library
(EMU.LIB). This is the default situation (Emulation on). All your FP
work will be handled by software that emulates (imitates) the action
of the 8087 or 80287. An added bonus is that if you run such pro-
grams on a system fitted with a math coprocessor, Turbo C is set by
default to detect its presence, automatically enlisting FP hardware
support and bypassing the emulation.

Normally, then, if you have a math coprocessor fitted, you can just let
Turbo C's auto-detect mechanism do its thing.

To let you test programs that may run on systems with or without a math
coprocessor, you can also force Turbo C to ignore a fitted 8087/80287 and
emulate by software.

C>SET87=N
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sets the DOS environment variable 87 to N for No, which turns off the auto-
detect and tells Turbo C to emulate. Similarly,

C>SET87=Y

tells Turbo C to use the 8087/80287 whether it's there or not! Expect big
trouble if 87 is set to Y without the physical presence of the math coproces-
sor. You can unset 87, restoring auto-detection, by typing

C> SET87=

with a = immediately after the =.

» Floating-Point Constants »

Unless followed by an F, floating-point constants are always interpreted as
double even if the value would fit in a float.

FP constants can be written in two different ways: normal decimal-point
notation or scientific.

float w, X, y; /* declare three floats */
double z; /* declare one double */
w = 3.14159; x = 4e +5; /* x = 400000.00 */

/* internal conversions: constant converted to double, then to float
before assignment */-

y = 1.0F /* F inhibits conversion to double */

z= -25e-12; /* z = —0.0000000000025 */
/* no conversions: constant and Ivalue are both double */

You can use e or E, and the + signs are optional. Notice that if you use scien-
tific notation, the decimal point is not essential: 4e +5, 4.e +5 and 4.0e +5
are identical.
For decimal-point (unscientific) notation of FP constants, the decimal point
is needed: 4., 4.0, .0, and 0. are all FP but 4 and 0 would be taken as ints.
The exponent must be a whole number and may be negative: 2.4€3.8 is
illegal.
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» Floating-Point in Action with printf() »

You may recall using the format-conversion code %d with printf() to dis-
play signed integers. The corresponding trick for both float and double is to
use %f. For example,

float height = 2500.35;
double depth = 3.12e5;
printf(“Height is %f and Depth is %f\n”,height,depth);

will display
Height is 2500.349854 and Depth is 312000.000000

(I'll cover the chief variants on %f in the following sections, but see Appen-
dix C for the whole story.)

All values are converted to double, if necessary, before the %f conversion
to ASCII takes place. This explains the slight error in the display of height.
You'll see how to control the precision of the conversion shortly.

Using %e or %E in place of %f in the previous example,

printf(“Height is %e and Depth is %E\n”,height,depth);
will give
Height is 2.500350e + 003 and Depth is 3.120000E + 005

Note the choice between e and E on display. The exponent is always signed
+ or — and displayed with three decimal digits (padded with zeroes as
required). The mantissa is always scaled to give d.ddd... but you can control
the layout and precision, as you'll see anon.

- Another useful variant is %g, which will display the shorter of the two ver-
sions %f and %e. (%G does the same but displays E rather than e.) The %f
version is used if both formats take the same space. The %g variant is useful
when you have no idea of the range of the results.

» The Precision Specifier
The default conversion for %f is rounded to six decimal places, whatever
the argument type. You can vary this precision using a decimal point and a
precision specifier as shown in Table 3.3.
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Example Displays Height As...

%f 2500.349854 (default = %.6f)
%.0f 2500

%.1f 2500.3

%.2f 2500.35

%.3f 2500.350

Example Displays Depth As...

%e 3.120000e + 005 (default = %.6e)
%.3e 3.120e + 005

» Table 3.3: Precision specifier examples

» The Width Specifier

Whether or not you have a precision specifier you may supply a width
specifier, %wf or %w.pf, where w is a number indicating the minimum
number of columns to be allocated to the display and p is the precision num-
ber just described.

Leading spaces will normally be used to pad the display, but you can pad
with leading zeroes by using %0wf or %0w.pf. Padding with leading spaces
and zeroes is known as right justification since it effectively lines up columns
of numbers to a flush right-hand margin. To indicate the layouts more clearly
in the following examples, | will use the symbol s for space.

Using too small a width value will not lead to the loss of any characters—
printf() will simply override and take the space it needs. Examples are easier
than descriptions—see Table 3.4.

The last example shows one use of the # modifier flag. In other situations it
can modify the appearance of leading or trailing zeroes.

Width and precision specifiers work in a similar way with %e, %E, %g,
and %G. With the integer conversion specifiers like %d and %u, of course,
precision is not relevant (there are no decimal places), but you can use the
width specifier to pad the field as shown above.

I have by no means exhausted the formatting possibilities, but | will con-
clude with just one more tweak—the use of — to force left justification within
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a given field width by padding with spaces (never zeroes) on the right. The
— here can be confusing unless you think of it as reversing the normal right-
justification! It has nothing to do with displaying a minus sign for negative
values. Examples are shown in Table 3.5. (See Appendix C for much more.)

» SHOWNUME.C »

To try out some of these printf(’) variations, enter SHOWNUMF.C as listed
in Program 3.1. The entry %%f is needed to display %f—it is not a format

Example Displays Height As...

%.2f 2500.35 (no width specified)

%¢6.2f 2500.35 (width ignored—too small)
%9.2f $52500.35 (pad blanks to 9 columns)
%09.2f 002500.35 (pad zeroes to 9 columns)
%14f $552500.349854 (same as %14.6f)
%14.0f $5555555552500 (note no decimal point)
%#14.0f $5555555552500. (unless you add a #)

» Table 3.4: Width specifier examples

Example Displays Height As...

%.2f 2500. 35 (no width specified)

% —6.2f 2500. 35 (width ignored—too small)

% — 9.2f 2500.35ss (pad right blanks to 9 columns)
% - 09.2f 2500.35ss (same! The zero is ignored)

% — 14f 2500.349854s s s (same as % — 14.6f)

% — 14.0f 2500s5sssssssss (note no decimal point)

% —#14.0f  2500.ssssssssss (unless you add a #)

» Table 3.5: Left justification
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main()

}

double fsquare(n)
double n;

#include <stdio.h>

double fsquare(

float height =
double depth =

printf("%%f
printf("%%.2f
printf("%%9.2f
printf("%$%-9.2f
printf("%$%09.2f
printf("%%14.0f

printf("%%-14.0f
printf("%$%#14.0f

printf("%%e
printf("%%.3e
printf("%%g

printf("%%f
printf("%%E

printf("%%f depth squared is %f\n",
printf("%%e depth squared is %e\n",
printf("%%g depth squared is %g\n",

return(n*n);

)i

2500.35;
3.12e5;

height
height
height
height
height
height
height
height

height i

height
height

depth
depth

/* shownumf.c - display fp numbers */

is
is

/* declare a function */

$f\n", height);
%.2f\n", height);
%$9.2f\n", height);
%-9.2f\n", height);
$09.2f\n", height);
%$14.0f\n", height);
$-14.0f\n" ,height);

$#14.0f\n",height);

se\n", height);
%.3e\n", height);
sg\n", height);

$f\n",depth);
$E\n",depth);

/* define the function */

fsquare(depth)
fsquare(depth)
fsquare(depth)

/* try your own format variants here, e.g. %10.4g etc. */

)i
)i
)-

T

/* the value returned by fsquare() */

» Program 3.1: SHOWNUMF.C

specifier. SHOWNUMEFC also introduces the simple function fsquare( ) to

advance your understanding of functi

Check your results against Figure 3.1

14
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» fsquare() Declaration and Definition »

The line

double fsquare( );

finitions.

in main() is a function declaration, warning main( ) that fsquare() will return
a double. The actual function definition comes later, spelling out in detail
what arguments fsquare( ) needs (just one double argument, n, in this case)
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%f height is 25@8.349854
%.2f height is 25@6.35
%9.2f  height is  2500.35
%-9.2f height is 2588.35
%39.2f height is 8825¢8.3%5
%14 .¢f height is 2
%-14.8f height is 2580

%#14 .8f height is 2508.
%e height is 2.5@¢8350e+@03
%.3e height is 2.5@@e+@07%

%g height is 25@¢8.35

%t depth is 3120080¢.000000
%E depth is 3.120@8@0E+P85

%f depth squared is 97344000000.000000
%e depth squared is 9.73440@c+@10
%g depth squared is 9.7344e+010

Press any key to return to Turbo C . . .=

= Figure 3.1: SHOWNUMEC screen output

and how the function calculates its returned value.

Note that this particular style of function declaration, known as the classi-
cal C style, has empty parentheses—it is not concerned with function argu-
ments, only with the data type of the returned value. Later you will meet the
modern variant, in which the function declaration also indicates the argu-
ment types. '

In the absence of such a declaration, main( ) will assume that fsquare( )
returns an int. In other words, unless told otherwise, int is the default data
type returned by a function. Try omitting the fsquare( ) declaration from
main( )—you will get an instructive error message. Turbo C finds a clash
between the implied int returned by its first encounter with fsquare( ) and
the double value called for in the subsequent definition.

Next, try moving the double fsquare(n) definition ahead of main(). (Use
the editor’s Wordstar-like block moves ~ KB/ ~ KK/ ~ KV/ ~ KH). You'll find
that the fsquare( ) declaration within main() can now be omitted.

This explains why you often see programs with no function declarations
within main( ): Either the function is defined first, or the nondeclared func-
tion encountered before its definition can be safely treated as though it
returned an int. (I'll get deeper into this subject in Chapter 7.)

89
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» Conversion of Arguments »

As a further experiment, try calling fsquare( ) with the float variable
height in place of the double variable depth. Although fsquare( ) officially
asks for a double argument, you'll find it works equally well with a float. This
is part of the grand internal conversion plan already discussed—passing real
to formal arguments during function calls triggers promotions and conver-
sions like those found in assignments and mixed-expression evaluations.

To return to more mundane matters, we next consider another basic data
type called char, so far encountered only in constant forms.

» DATA TYPE char »

The type specifier char is used to declare variables in the now familiar
manner.

charc, ch, flag; /* three char variables declared — not initialized */

The variables ¢, ch, and flag are each allotted one byte in memory and can
be assigned values within this range at any point in the program from which
they are visible.

» The Hidden Truth about char »

Despite its name, the data type char is best considered as a special integer
type representing the whole number values assigned internally to the com-
puter’s character set, in our case the ASCII set (see Appendix A). The ASCI!
set consists of 128 printable characters (0-9, A-Z, a-z, and punctuation
marks) and nonprintable control characters encoded in seven bits. Hence
the natural bit width for storing such characters is the 8-bit byte.

The IBM PC extends the ASCI! set, providing printable characters for the
control codes and taking advantage of the additional 128 bit patterns by
assigning special symbols that use the eighth bit. This is the IBM PC Extended
ASCII character set, full of hearts, clubs, sharps, flats, and happy faces. Some
of my examples will refer to this enlarged set.

When | describe char as a numeric type, | mean that char variables can be
manipulated just like integers.

c=‘a;ch=c+1;
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will increase the bit value in ¢ by 1 and move the resulting sum to ch. The
ASCII code chart tells us that ch now holds the bit pattern for ‘b’. A com-
mon example is the conversion of characters from lower to upper case or
vice versa:

c='2Z;c=c+‘a -‘A; /*cnowequals ‘z */
ch=c-"a + A /* ch equals ‘Z’ */

This trick works because the values of the uppercase and lowercase ASCII
characters differ by a constant: 32 (decimal) = ‘a” — ‘A’ = ‘b’ — ‘B” and so
on. You could write

c=c+ 32 /* lowercase shift — possibly! */
ch = ch - 32; /* uppercase shift — with due caution! */

but this obscures the underlying logic and will reduce portability. ‘a’” — ‘A’ =
‘b’ — ‘B’ is true for most character sets, but the value of the constant differ-
ence may not be 32.

You can multiply and divide char’s even if the results defy any character
logic (‘" times 2 equals ‘B’ for instance). C will go through the motions with-
out complaint, possibly truncating in the process.

» The Sign of a char »

The question immediately arises whether ¢ and ch in the above example
will behave like signed or unsigned integers. If ¢ reaches the value 127
(01111111 in binary), would (¢ + 1) represent 128 (unsigned) or — 128
(signed)? The answer is that, as with int, you have control over which inter-
pretation the system will make. You can use the optional type modifiers
signed and unsigned.

signed char c; /* c has therange —128to +127 */
unsigned char ch; /* ch has the range O0to +255 */

» The Default Sign for char »

The default modifier, however, can be set as an option via the Turbo C
Options menu. Select the Compiler submenu, then the Code Generation
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subsubmenu. There you will find the Default char type option. This toggles
you between signed and unsigned as the default char type.

Au naturel, the factory setting is signed, whereby char c; is equivalent to
signed char ¢;, and you would have to explicitly use unsigned char ch; for
any unsigned character variables.

Contrariwise, if the Compile/Options menu were set to unsigned, the
declaration char c; would be equivalent to unsigned char c;. In this case, a
deliberate signed char ch; would be needed to beat the default. (If you use
the command-line compiler TCC.EXE there is a — K switch option that
does the same job as the Default char type menu toggle.)

» More Arithmetic with char »

Thinking of char’s as numbers makes sense of the following type of manip-
ulation you'll frequently encounter:

if ch >= "A’ && ch <= “Z’)ch = ch + ‘a’ - ‘A";
/* convert ch to lowercase ONLY if ch is an uppercase letter */
/* The parentheses around the if (condition) are essential */

» BRIEF LOGICAL DETOUR »

The &&is C’s logical AND operator, so if is testing to see if ch is both greater
than or equal to “A” AND less than or equal to 'Z’.

Expressions like ch >= ‘A’ are called Boolean to honor the English mathe-
matician George “Kelly”-Boole (1815-64). Boolean expressions are two-
valued, either true or false, and can be combined with the Boolean logical
operators | (NOT), && (AND), and i (OR) as listed in Table 3.6.

Simple and compound Boolean expressions are regularly tested in C to
determine which course of action the program should take. Without such
program control mechanisms, of course, programs would be reduced to
predetermined, inflexible sequences. The if clause is just one method of set-
ting up a control structure. You can also perform blocks of statements while
a certain condition holds, or iterate blocks with a for loop until a certain con-
dition is false. These and other constructs will be explained as we progress.
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Operator Meaning  Examples

! NOT If X is true then /X is false.
If X is false then /X is true.

OR If either X is true or Y is true (or both) then (X |} Y)
is true, otherwise (X |, Y) is false.

&& AND If X is true and Y is true then (X && Y) is true,
otherwise (X && Y) is false.

» Table 3.6: Boolean operators

» The Truth about C »

C demands no profound wrestling with the real meanings of true and false.
Mundanely, any expression that evaluates to zero is considered false, while
any expression that evaluates to a nonzero value is taken as true. Unlike
Modula-2, there is no specific BOOLEAN data type. You can legally write if
(X) where X is any data type, variable, or constant that can legally be com-
pared with zero. (Parentheses must surround the conditional portions of
control statements.)

if(3) {....} /* legal but pointless */

means always perform the following block, since (3) is true (nonzero). More
useful is

if (ch) {...} /* if ch is non-NUL */
where chisa char. The ASCII NUL character is value zero, so the block after
the if is performed only for non-NUL characters. More long-winded equiva-
lents would be

if ch!="\0) {...} /* if ch is non-NUL */

or

if (ch!= 0) {...} /* if ch is non-NUL */

93
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since ch is promoted to an int. You can reverse the logic with
if (Ich) {...} /* if ch is NUL */

If ch is non-NUL, !ch becomes zero (false), but if ch is NUL, Ich becomes
one (true).
Here is the the character test example again.

ifch >= ‘A’ & & ch <= ‘Z’)ch = ch + ‘a’ - ‘A’;
/* convert ch to lowercase ONLY if ch is an uppercase letter */

If the first condition fails, C does not bother to test the second one since the
compound expression must be false. If the first condition succeeds, the sec-
ond one is tested. Only if both conditions hold will the statement

ch =ch + a” - ‘A’

be executed. The two conditions ensure that ch is indeed an uppercase let-
ter. Note that >= and <= work with characters in a purely numerical way,
just like the other relational operators listed in Table 3.7. For the ASCII set,
you need to remember that ‘a’ > ‘A’ and that all the control codes are less
than ” “ (a blank space).

» BACK TO DATA TYPE char »

The next piece of the char jigsaw is knowing what C actually does when
performing arithmetic on chars.

» From char to int and Back »

Before evaluating expressions, any char encountered is quietly promoted
to an int, and this is where the sign of the char comes into the picture.

For signed character types, the upper byte of the int will be sign-extended,
thereby maintaining the sign and value of the 8-bit char in the 16-bit int. With
unsigned character types, the upper byte of the int is cleared to zero. For
example, the letter “a’ (hex 0x61) is promoted to hex 0x0061 regardless of
whether it is initially represented as a signed or unsigned char. On the other
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Operator  Meaning Examples

== Equals if (x == 1) {....}

1= Not equals while (ch = EOF) {...}
< Less than if (ch <“z") {...}

<= Less than or equals while (i <= maxi) {...}
> Greater than if j > blk*siz) {...}
>= Greater than or equals if (%) >= k%]) {...}

» Table 3.7: Relational operators

hand, the Greek beta (hex OxE1) is promoted to OxOOET1 if it is unsigned but
becomes OxFFET if it is signed.

Note that inner conversions and promotions are made in temporary
registers or RAM before the evaluation. The actual sizes of the variables
are unaffected.

» The Constant char

You can now see how Turbo C’s 16-bit char constants, introduced in Chap-
ter 1, fit into the grand plan. If you set Turbo C to the unsigned default, all
single char constants will have their upper bytes clear. With the signed
default, any char constants with values over 127 (decimal) would have all
one’s in their upper byte (OxFF hex). This conversion occurs during compila-
tion as the constants are encountered in the source code.

With Turbo C’s nonstandard, nonportable double character constants
such as “A\n’, no sign extension takes place because all sixteen bits are
occupied—the ‘A’ in the lower byte and the “\n’ in the upper byte.

In the assignments

c="ajch=c+1;

the “a’ is represented as two bytes (0x0061). The upper byte will always be
zero since the eighth bit of 0x61 is zero. Whether ¢ is signed or unsigned it
will pick up the lower byte 0x61 via the assignment—internally, ¢ is tempo-
rarily promoted to int, receives 16 bits, then sheds the upper byte (which is
zero anyway).
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The net result is that you can, with care, use char variables to store small
integers (— 128 to + 127 or 0 to 255) when int might prove wasteful of RAM.
However, you are not saving any CPU cycles!

» Using int for Characters

A more common requirement is using int when you might feel that char is
more natural. This twist of fate occurs because of C's EOF (end of file) con-
vention. When your program is pulling characters from a text file using a
function such as fgetc() (a popular maneuver that you’ll learn in Chapter 8),
you need to know when the end of the file is reached. And, preferably, you
would like to detect this condition from the value returned by fgetc() since
the program is usually engaged in perusing each of these “character” values
anyhow. The alternative would be having to test some other flag or condi-
tion before each fgetc() call (“Are we there yet?”). What you need is some
unique value from fgetc( ) that says, “This is not a character because there
are no more characters available!” It is clear that no unique character from
the ASCII or extended ASCII set can meet this requirement. For portability,
such a character would have to be universally agreed upon, and it would
then be taboo except as an end of file marker. (You may know that the Ctrl-Z
[ASCII value 26] EOF convention for DOS text files causes many headaches
when handling non-DOS files.)

The conundrum is solved in C by having fgetc() and similar file and stream
I/O functions return an int rather than a char. The choice of a unique, non-
clashing, readily detectable EOF value suddenly becomes easy. That value is
traditionally — 1, but any noncharacter value would work. The price paid
is that the variable receiving characters and EOF's must be of type int, not of
type char. The price is not really high since most manipulations of the
returned value would incur a promotion to int in any case. EOF is defined as
—1in STDIO.H, so you will often find the following snippet:

#include <stdio.h>
int ch; /* the char is really an int! */

while ((ch = fgetc(stream)) ! = EOF)

/* while ch is not equal to EOF...do something with ch */
/* Its bottom byte is a character from the file since you have
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not reached the end of file */
}
/* end of file here */
Generally speaking, library functions that require a char argument are

written to accept an int argument. You saw a similar philosophy of silent pro-
motion with functions taking float and double arguments.

» Precanned char Aids »

The Turbo C library contains a set of useful routines declared in CTYPE.H
(whether they are functions or macros need not bother us—the end result
is the same) that help you classify a char variable. In fact, the test we exam-
ined earlier,

if (ch >= ‘A’ &&ch <= Z) {...}
can be written succinctly as

#include <ctype.h>
if (isupper(ch)) {...}

The macro isupper() behaves very much like a function taking an int argu-
ment: when you “call” it with a char argument, an int within ASCII range, or
an int with value EOF, isupper( ) returns nonzero (true) if the argument is an
uppercase letter. Otherwise it returns zero (false). | will use the expression
ASCII+ EOF to indicate the set of ASCII characters and equivalent ASClI inte-
gers (0-127), supplemented by the EOF value (- 1).

There are twelve such is... predicates or properties returning true or
false. One of them, isascii( ), can be called with any integer value—it tells
you if the argument is a valid ASCII value (0-127). The others work with
ASCII+ EOF arguments only. Table 3.8 lists them and their properties.

» ARRAYS »

There are many instances where you want to handle a number of related
variables of the same type. Suppose you wanted to manipulate a group of



98 » MASTERING TURBO C »
CH.3

Predicate Argument Tests True If...
isascii(ch) int 0 <ch <127
isalnum(ch) ASCII+EOF  chis a letter or digit
isalpha(ch) ASCH+EOF  chis a letter

iscntrl(ch) ASCIl+EOF  ch is control character or DEL (0x00-0x1F
or Ox7F)

isdigit(ch) ASCII+EOF  chis a digit

isgraph(ch)  ASCII+EOF  ch is printable nonspace character
(0x21-0x7E)

islower(ch)  ASCII+EOF  ch is lowercase letter
isupper(ch)  ASCII+EOF  ch is uppercase letter

isprint(ch) ASCII+EOF  ch is printable character or space
(0x20-0x7E)

ispunct(ch)  ASCII+EOF  ch is punctuation symbol (all printable
characters, excluding alphanumeric,
spacing, and control characters)

isspace(ch) ASClI+EOF  ch is white space, i.e., space, tab, CR, LF or
FF

isxdigit(ch) = ASCIl+EOF  ch is hex digit (0-9, A-F or a-f)

» Table 3.8: Character tests

eight characters with a view to creating anagrams. You could start by declar-
ing them with individual identifiers as in

char chO, ch1, ch2, ch3, ch4, ch5, ch6, ch7,
but befdre long this would prove quite restrictive and time consuming. A
more convenient approach is to declare a single entity, called an array, with
eight elements.

char ch[8]; /* ch is an array of char with 8 elements */

The syntax is simple and suggestive if you have ever used vector notation.
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The [N] immediately following the identifier tells the compiler that you are
calling for an array of N elements where N must be a positive integer. You
can now refer to the eight char elements of the array ch by using an index
fromOto 7.

unsigned int i; char ch[8];

ch[0] = ‘a’; ch[1] = b’; /* initialize 1st two chars */
ch[6] = ‘g’; ch[7] = 'h’; /* and last two chars of array */
i = 2;chfi] =c; /* set third char to ‘c” */
ch[i+2] = ch[0]; /* set fifth char to ‘a” */

You can treat each of the elements from ch[0] through ch[7] exactly as if
you had declared them individually as type char. Also, as you can see, it is
possible to use constants or integer variables and expressions as your indices
(or indexes, if you prefer the modern, dubious spelling). In fact, you can use
atype char as an index simply because char has the basic integral properties
needed for counting 0, 1, 2,.... Indices can never be float or double unless
you first force them into int’s. ch[2.3], for instance, is verboten.

The first element of an array is always indexed with O, never with 1. This
simple fact is often overlooked, much to the amusement of the compiler. The
Nth element of an array is array_name[N —1].

You can set up arrays for any of the data types discussed so far.

#define MAXVEC 1000
float grid[100]; [+ grid[0] to grid[99] are all floats */
double vector{MAXVEC]; /* 1000 doubles */
long salary[MAXVEC *2]; /* 2000 longs */

vector[MAXVEC - 1] = 3.14159; /* set last element of vector */

For the moment, we'll confine our attention to arrays of char. As | hinted
earlier, arrays of char provide us with a natural and powerful mechanism for
handling string variables.

» Initializing Arrays »
In the earlier examples we declared an array and then set individual mem-

bers of it using separate assignments. C allows a more concise way of declar-
ing and initializing arrays.



100

CH.3

» MASTERING TURBO C »

Char Ch[B] = {Iat,/bl’ICI,IdI,IeI,/fl,IgI,Ih/};
/* declare and initialize: ch[0] = ‘a’, ch[1] = 'b".... */

The sequence of constants, with commas as dividers, is enclosed in curly
braces. The resulting object is called an initializer. Each constant in the initial-
izer is assigned in turn to the elements in the array. If you have fewer con-
stants than array elements, the extra array elements are set to zero. Having
more constants than array elements will trigger an error.

If you are exceptionally lazy, you can omit the number of elements inside
the [ ]. C will then calculate this number for you from the number of con-
stants in the initializer.

char name[ | = {'S",t,/a’,/n’,/\0'};
/* name becomes an array of 5 elements i.e. name[5] */

In the above example you can see that name is looking suspiciously like a
string holding ““Stan’” with the final NUL that we discussed back in Chapter 1. In
fact, the above initialization can also be achieved with either

char name[5] = “Stan”;
or

char name[ ] = “Stan”; /* name[ ] becomes a name[5] */

using a string constant in place of an initializer. “Stan”” as a string constant is
stored with a final, invisible NUL automatically appended, so name]]
receives five characters not four.

Quick quiz: What is the value of name[4]? Yes, it is NUL ('\0’) because
name[4] is the fifth, final character of the array name.

» The Name of the Pointer »

Each of the expressions nameli], as i ranges from O to 4, is of type char.
However, the identifier name by itself (which you’ll see used shortly) is not
treated by C as either a string or as a char but as a special data type known as
pointer to char.

Unlike name[0], which is of type char because it is the first byte of the
array, name itself represents the memory address of the byte name[0]. We
say that name points to name[0]. You could find the address held in name,
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peek into the byte at that address, and confirm that is was indeed 0x53 (the
ASCII character ‘S’) as placed in name[0] by our initialization. The actual
value of name is seldom of importance.

» Pointer Size and Memory Models »

For most of the programs we’'ll be considering, the pointer types can be
considered to be simple unsigned 16-bit values that can address up to 64K of
memory.

The 8088/8086/80286 has a complicated segmented memory-addressing
scheme that is beyond our immediate scope. Briefly, Turbo C allows you to
choose between six different memory models, ranging from tiny to huge.
This choice dictates the pointer size, 16-bit or 32-bit, the compiler will use,
and this in turn determines the maximum sizes of your program and data
segments.

It turns out to be wasteful to use a larger model than you actually need
since the pointer arithmetic becomes progressively more complex. | will
assume the most efficient (tiny) model for the time being. It uses 16-bit
pointers (known as near pointers) whereby all your code and data is
assumed to occupy a 64K segment of RAM.

» Pointer Awareness »

We will be returning regularly to the topic of pointers because they play a
central role in C. Strangely enough, they can be used and enjoyed without
an intimate knowledge of how RAM is addressed.

The symbolism employed by C allows you to manipulate pointers in an
abstract, algebraic way, much as you get used to writing a*b/c without fret-
ting unduly about how the machine is multiplying and dividing, provided
that c is nonzero!

The two key symbols are &, meaning address of, and *, meaning pointed
at by. The two are complementary, as illustrated by the following informal
definitions:

&var is the address in memory of the identifier var.

*ptr is the object found in memory at address ptr provided only that ptr is
not the NULL pointer. If ptr has the value NULL (effectively zero, or false)
*ptr is undefined.
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So you can say that &var points to var and ptr points to *ptr.

The NULL exception for *ptr is extremely important (it corresponds to the
“never divide by zero” injunction). Zero or NULL pointers are perfectly
valid and legal; indeed they are as indispensible as the number 0 in
arithmetic. However, NULL pointers do not point at anything, so you cannot
use the * operator with them. Later you’ll see a typical use of the NULL
pointer as the terminator of a chain of linked lists rather as ASCII NUL is used
to terminate a string.

& is known as the address operator. * is called the indirection operator
because it expresses the idea that you get an operand indirectly by first get-
ting its address and then accessing that address.

What data types are pointers? Well, if var is of type int, we naturally say
that &var is of type pointer to int. Likewise, if ptr is of type, say, pointer to
float, then *ptr must be of type float (unless ptr is NULL, of course).

» The Big BUT... »

But, and herein lies the danger, in one sense all pointers are simply
unsigned 16-bit (we confine our attention to near pointers) addresses with
no distinguishing birthmarks. Some programmers get into the habit of using
unsigned int or long variables as pointers. C does not always object, but por-
tability suffers since there are computers with larger addressing ranges.

Pointers can be painlessly “corrupted” to point to places they shouldn’t!
You can take &var, do some pointer arithmetic, obtain a ptr, and then rashly
assign something to *ptr.

int var, *ptr; /* declare an int and a pointer to int */
/* this is explained below */
ptr = &var; /* ptr points to var */
{play around with ptr}
if (ptr) *ptr = 96 /* assign only if ptr is not NULL */

The if (ptr) screens out NULL pointers since NULL evaluates to zero (false).

But *ptr may, without due care, turn out to be part of your program or
Turbo C or even DOS rather than part of your data. A crash or something
worse may result!
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» Pointer Declarations »

I've said that when you declare an array name[5], the identifier name is
actually &namel0], a pointer to the first element of the array. You do not
have to declare name as a pointer to char—C does that for you as part of the
array declaration.

C does allow you to explicitly declare pointers to any data type (except
void) as in

int *int_ptr; char *char_ptr;
float *float_ptr; unsigned long *ul_ptr;

The presence of the * is sufficient warning to the compiler that the identifier
following is a pointer to the type specified.

Although int_ptr now exists as a variable of type pointer to int, all you
have is a 16-bit uninitialized allocation of RAM; int_ptr is not yet pointing to
anything in particular, and no int variable has been created. As you saw with
all the earlier declarations, it is possible to initialize during a pointer declara-
tion. Consider the following snippet:

inti = 1,j = 2, *int_ptr = &ij;

/* initialize int_ptr with the address of inti */
printf(“int_ptr points at %d/n”, *int_ptr);
int_ptr = &j; /* reset pointer */
printf(“int_ptr now points at %d/n”, *int_ptr);

/* what will display? */

» Pointer Power »

In spite of the dangers, pointers provide C with a certain grace and power.
One of the chief applications is when you want a function to change the
value of one or more of its arguments. | explained that C passes all argu-
ments by value—in other words, the function receives a copy of the
argument and cannot normally alter the original argument variable. (Refer
back to cube( ) in Chapter 2 to refresh your memory on this.)

However, if you pass a pointer argument, ptr say, to a function, the func-
tion makes a local copy of ptr as it does with all arguments. Using this copy
pointer, the function can actually access and alter *ptr (unless ptr is NULL).
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So we effectively achieve what is known as calling by reference. This mecha-
nism allows functions to return values in the usual way (as in X = cube(y))
and also alter the actual arguments passed to the function when desired.

The library routine scanf() is a good illustration and one | have been dying
to introduce since it allows you to get input from the keyboard. Its introduc-
tion has been delayed until now because it uses pointer arguments.

» KEYBOARD INPUT »

printf( ) and puts( ) allow you to display data on your screen (stdout or
standard output device). So far these data have been embedded in the pro-
grams themselves, which hardly leads to realistic applications! We need to
explore another, rather obvious source of data—your keyboard, also known
as the standard input device or stdin.

» Keyboard Input Using scanf() »

scanf() uses a similar format control string to printf( ). Each element of this
string determines how the elements read from the input device will be inter-
preted and where they will be stored. Take the following simple case:

inti;

char name[30];

printf(“\n Enter your number and name:");
scanf(“%d %s", &i, name);

If you respond to this by keying in the line
35 Stan

with any amount of white space between the two fields, the control string
matches the 35 with the pair %d and pointer & and then matches the
string ““Stan”” with the pair %s and pointer name. As with printf( ) the con-
version specification %d causes a conversion of the ASCII characters *“35”
to int. The resulting number is stored at the address of i, namely &i. This is a
fancy way of saying that the variable i is assigned the value 35. As explained
in the previous section, C functions cannot alter i directly. Passing i rather
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than &i to scanf( ) would not work: scanf( ) would receive only a copy of i,
and no change to i itself could be made.

Similarly, %s tells scanf( ) to expect a string pointer, name, and the input
string “Stan’’ is moved (with an appended NUL) to the array name[30].
Recall that name is a pointer to the first element of the array name[30].

As with printf(), scanf() has wide choice of control specifiers, and they are
best learned by osmotic exposure. Appendix C lists them all for reference.
The most common conversions are %f (floating point), %u (unsigned inte-
ger), and %c (single character). scanf( ) trudges along until all the conver-
sion specifications in the control string have been matched by input items.

The key to scanf( ), and the cause of most frustration, is the need to pass
pointers to the target identifiers. With &i this is visually obvious. The puzzle
for beginners is that name, which looks like a normal identifier, is in fact a
pointer to char, that is, name is an address. It therefore doesn’t need a pre-
ceding & to turn it into an address. You do not write &name (illegal), but you
can write &name[0] (which is the same as name—both are pointers to the
string variable). From my definitions of & and * it should also be clear that
*name would be a synonym for name[0] since name is the pointer and
*name is a pointee, to coin a word.

I'll end this varied chapter with GETDAT.C (Program 3.2). The comments
explain what is going on, and Figure 3.2 shows a typical screen that would
result from running GETDAT.EXE.

/* getdat.c - simple keyboard input and outpt */
#include <stdio.h>
main()

int i, j;
char name[31]}; /* declare array of char - 30 + NUL */

printf("Enter your Name and Number!: ");
j = scanf("%s %4d", name, &l);
/* scanf also returns a value! The number of successfully */
/* matched input items */
printf("Well, hello %s!\n",6name);
if (i > 99)
printf ("Your number is greater than 99!\n"0;
else
printf ("Your number is less than 100!\n"):;
printf("PS: You entered %d items\n",j):

» Program 3.2: GETDAT.C

105
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Enter your Name and Number!: Rudolf 99
Well, hello Rudolf!

Your number is less than 1¢@!

PS: You entered 2 items

Press any key to return to Turbo C . . .a

» Figure 3.2: GETDAT.C screen output

» SUMMARY OF CHAPTER 3 »

Here are the main topics covered in Chapter 3.

<>

Integer data types cannot handle decimal fractions or large numbers.
Division and remainder with integers may lead to erroneous results.

The FP (floating-point) data types extend the range and numerical precision
available by storing numbers in two parts—a mantissa and an exponent.

Three FP types are provided: float, double, and long double (although
long double happens to be the same as double in Turbo C). These type
specifiers are used in declarations in the same way as is int.

floats are promoted to double internally during all FP calculations.

The considerable software overhead in floating-point arithmetic can be
reduced with a math coprocessor such as the 8087 or 80287. Turbo C can
detect and utilize a fitted math coprocessor. If there is no coprocessor,
Turbo C performs floating-point calculations with software (emulation with
EMU.LIB).

printf( ) can format FP numbers with precision and width specifiers in
conjunction with %f, %e, and %g.
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I provided more information about function declarations and function
definitions—where they can be placed and what happens if they are
missing. This big subject will occupy much of Chapter 7.

The char data type is really a small integer—it can be signed or unsigned
by default and later specified either way with an explicit unsigned char
or signed char declaration. All chars are promoted to int (signed or
unsigned as appropriate) during arithmetic. You can add 1 to ‘A’ to get
‘B’, subtract 2 from ‘¢’ to get ‘a’, and so on.

Iintroduced C's simple approach to logic: false is zero, true is nonzero.
Almost any variable or constant can therefore be used in Boolean
expressions. Typical conditionals such as if and while simply test the fol-
lowing expression for zero or nonzero.

Compound Boolean expressions use ! (NOT), h (OR), and && (AND) in
any logical combination. Booleans can also be generated using the rela-
tional operators == (equals), = = (notequals), < (less than), <= (less
than or equals), and so on.

Character constants take up 2 bytes. The upper byte is sign extended
unless the compiler option default is unsigned char. Character con-
stants can be expressed in various formats: ‘A’, ‘\t’, "\007’ (octal), or
\X1F’ (hex). Turbo C allows nonportable double character constants,
e.g., ‘bG’ or ‘\t\a’, which are also held in 2 bytes.

You should declare as int any characters read from streams and files
since the EOF signal received at end of file is the non-char — 1.

CTYPE.H contains many precanned char testing routines such as
isupper( ) and isascci( ).

Arrays are collections of variables sharing the same base data type. They
are declared as base_type array_namelsize]; where each variable
array_namel[i] is of type base_type for i = O to size—1. The index i
must be an integral type.

Arrays can be initialized with = {val1, val2,...valn}; as part of their
declaration.

The identifier array_name is of type pointer to base_type. Hence,
array_name is a constant pointer to the first element of the
array, array_name|0].
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| presented pointer notation: &var is a pointer to var, and *ptr is the
object being pointed at by ptr unless ptr is NULL, in which case *ptr is
undefined.

Variable pointers to any nonvoid data_type can be declared and
optionally initialized using

data_type *ptr_to_data_type [ = &data_type_var];.

Pointers are powerful and dangerous. Turbo C does its best to warn you
by checking pointer and pointee types, but you can poke yourself to
death if you wish. Pointers have their own arithmetical rules (which are
covered in Chapter 4).

Pointers allow functions to alter their real arguments (via a simulated
“call by reference”), which is not otherwise possible with C’s “call by
value” regimen.

Data from the keyboard (and other sources, as you'll see later) can be
formatted and passed to variables using scanf( ). scanf( ) uses format
strings in the same way as printf( ). The arguments must be pointers to
the variables receiving the keyboard input:

int number; char name[30];
scanf(“%d %s”,&number, name);
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» CHAPTER 4 ~

The main topic in this chapter is the use of control flow statements, entail-
ing a brief homily on structure. The program examples, en passant, will
reveal other aspects of C, such as type casting, conditional expressions, string
manipulation, and pointer arithmetic.

» CONTROL FLOW STATEMENTS »

You have already seen some simple control flow examples using if, else,
and while. These use the simple fact that an expression can be tested for true
(nonzero) or false (zero), and, depending upon the result of the test, the flow
of the program execution can be varied—blocks can be bypassed or per-
formed repeatedly (looped).

In theory, you can get by with the plain vanilla if, from which the other control
effects can be derived, howbeit at the expense of clarity and code size.

C offers many control flow variants and extensions: goto, else if,
do...while, continue, break, the case/switch statement, and the for loop.

All of these except goto enforce the expression of algorithms in a logical
and legible way—the approach now generally burdened by the name struc-
tured programming.

» THE IMPORTANCE OF BEING STRUCTURED »

In a properly structured program, sets of actions are grouped together in
units that are, in a certain sense, self-contained syntactically for the compiler
and visually for the human reader.

At the top level, C encourages the division of a program into many small
routines, called functions, with well-defined interfaces and an efficient call-
ing mechanism. Functions can call other functions (including themselves).



112
CH. 4

» MASTERING TURBO C »

Unlike structured languages such as Ada and Modula-2, however, C does
not allow you to define a function within another function.

Within each function, the code is structured into blocks using { and } as
block markers. Blocks can be nested to any level, but if you concentrate
your attention on any given block, however large or small, the ideal is that
control enters only at the start of the block and emerges eventually only at
the bottom. | say “eventually” because sections of code within the block
may be iterated many times via various looping constructs.

What is frowned upon is the anarchy of, say, BASIC (excluding the more
recent structured versions) or assembly languages, in which a conditional or
unconditional GOTO or branch instruction can pass control to or from any
part of the program regardless of block structure, creating what is com-
monly known as spaghetti coding. Consider the following simple pseudo-
code with an outer and inner (nested) block:

block A label A1: initialize block A variables
label A2: process them
block B
label B1: initialize block B variables
label B2: process them
label B3: exit block B
label A3: more processing
label A4: exit block A

For block A to work safely, it is essential that control starts at label A1:. It
should be impossible to branch directly to label A2:, say, from outside A,
bypassing the initialization code at label A1:. The nested block B, which is
used in processing block A, should be completely inaccessible from cutside
A. Even from within A, B should be entered only via label B1:. Once control
is in B, we should be free to iterate via B1: and B2: but forced to exit via B3:.
Similarly, we should not be able to jump out of A except via A4:.

Hard-earned experience in programming has proved that accuracy and
maintainability are greatly improved if these rules are either followed volun-
tarily or enforced by the language specification.

Summing up the structured paradigm: From outside of A only A1: is acces-
sible. Within A, all A labels and B1: are accessible. Within B, only B labels
are accessible.

Most of C’s control flow statements enforce this regime, but there are
some minor loopholes and one major one!
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» THE goto STATEMENT »

C (like BASIC and Pascal) has a goto and label control flow mechanism.
The C goto can only transfer control within a function, but it can still violate
the rules for a strictly structured programming language by allowing jumps
in and out of blocks. The programmer, therefore, must use goto with
extreme caution. Accidentally bypassing initializations and branching into
and out of other control loops are the chief dangers.

In practice, goto is used sparingly, usually to exit from a deeply nested
block when some calamity is detected that would be difficult to handle by a
succession of exits from each enclosing block. Adding a goto to our earlier
example illustrates this situation.

block A label A1: initialize block A variables
label A2: process them
block B
label B1: initialize block B variables
label B2: process them
if (ERROR) goto A4;

label B3: exit block B
label A3: more processing
label A4: exit block A

» The goto Syntax »
The goto syntax is rather like BASIC's:

goto label,
Anywhere in the current function, you can label the target statement as follows:
label: statement;

The net result is that if and when the goto is executed, control passes to the
(possibly empty) statement appearing alongside the matching label. label
can be any identifier unique within the scope of the function. Labels can
never appear without a real or empty statement, so

goto error;

error: /* illegal — hanging label */
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is illegal, but
goto error;

error:; /* OK — empty statement at label */

is legal.

In view of the goto, we can say that, in general, the constructs offered by C
encourage structured programming but do not guarantee it!

We now goto the well-behaved control flow statements.

» THE if, else, AND else if STATEMENTS »

Any expression that can be legally evaluated (with internal conversion
when necessary) to give an integer or pointer value (zero or nonzero) can be
used as the condition-expression in the following schema:

if (condition-expression) T-statement
[else F-statement]
TF-statement

(Recall that [] surround an optional element.)

As in plain English, the if suggests a testing of the following expression in
order to determine a course of action. Many computer languages use the
format IF...THEN to stress the idea of consequence, but in C the THEN is
implied (as it often is in English: “If that’s true, [then] | quit!”). Also, as you
saw in Chapter 3, C takes a purely numeric view of Boolean variables, con-
verting the conditions (3 >= 2) to 1 (true) and (3 = 2) to O (false). Any
nonzero condition-expression will be interpreted as true, which is reflected
in the object code with the branch-not-zero instruction found in all machine
languages.

T-statement represents the piece of code (possibly the empty statement ;)
that will be followed (obeyed) only if condition-expression is true (nonzero).
If this code contains more than one statement, it will need block marker
braces to distinguish it from any following code sequences. Curly braces are
optional if the T-statement consists of just one statement as in

if(x == 1)y = 2*x; /* T is a single statement */

if(z>=51){x =0;y =3;} /*Tisamultiple statement so braces
are needed */

if (n < *ptr) {ch[n+1] = \0’;} /* braces harmless - not really needed */
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If your condition-expression is false (zero), the whole T-statement is
bypassed, ignored and forsaken. The layout of your source code should
therefore make it as clear as possible exactly where T-statements start and
end. This is by no means a trivial problem since T-statements often contain
many lines (and possibly pages) of complex code with embedded (nested)
conditions. In such cases, indents and comments should be used to indicate
the different nesting levels. (Examples will follow shortly.)

Returning to the basic paradigm,

if (condition-expression) T-statement
[else F-statement]
TF-statement

if T-statement is executed, control passes to TF-statement whether there is an
else clause or not, and we are back into the main program sequence again.

If condition-expression evaluates to false, T-statement is ignored, and if
there is an else clause F-statement will be executed. After F-statement,
which may be empty, single, or multiple, we continue normal service with
TF-statement. In summary,

» T-statement is obeyed only if the condition-expression is true.
» F-statement (if any) is obeyed only if the condition-expression is false.
» TF-statement is obeyed if condition is true or false.

(To be super pedantic, of course, the program may actually terminate rather
than meet a TF-statement.)

» Poor Dangling Else—The if...else Pitfall »

Since the T- and F-statements may contain further if and else clauses, great
care is needed to avoid faulty logic. The problem is in deciding which else
belongs with which if.

The golden rule is that an else matches the previous innermost unmatched if
that is nearest. This matching may not always be immediately apparent. Take the
following snippet:

if (x == 1)
if (y == 1) puts(“x=1andy=1");
else puts(“x I= 17); /* wrong conclusion */

/* reminder: puts( ) displays arg string plus newline */
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At first sight you might be misled by the indentation to think that the else
branch is taken only if x is not equal to 1. However, the else syntactically
“belongs” toif (y == 1).

Recall that the C compiler is unaware of your pretty (but possibly pretty
wrong) indents. Correct versions, both logically and typographically, are

if(x == 1)
if(y == 1) puts("x=1andy=1");
else ; /* an empty F-statement is
legal but wasteful */
else puts(“x!= 1 andy = don‘t care”);  /* correct conclusion */

or
if(x == 1)
if (y == 1) puts(“x=1andy=1");
else puts(“"x = 1andy != 17); /* good conclusion */

else puts(“x != 1 andy = don‘tcare”); /* also good */
or

if(x == 1) {
if(y == 1) puts("x=1andy=1");
/* note: the added braces
make a difference here */
else puts(“x != 1 andy = don‘t care”);  /* correct conclusion */

depending on your intentions.

In the third version, if (y == 1)... is surrounded with braces and becomes
a complete block with no else option. C therefore matches the else with the
if (x == 1)... condition. Curly braces are optional in the second version
since the T- and F-statements are both single statements.

Mismatched or dangling elses often occur when a piece of good code is
patched up with some additional nested if tests, disturbing the previous
indentations or block markers.

Another common and frustrating error is putting a spurious semicolon
after the condition-expression.

if(x == 1);y = 2*x; /* T is now the empty statement */
/*y = 2*x becomes the TF-statement */

The syntax is impeccable, but the results may not be as intended.
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» The else if Format »

The else if is really a combination already covered by the foregoing syn-
tax. In this case the F-statement happens to start with an if that may sprout
further elses and ifs!

Because this is a common construction, though, it deserves a special note.
You often need a series of if...else if to cover a multichoice situation:

int x;
if

(x == 1) puts(“x = 1”);
else if

(x == 2) puts(“x = 2);
else if

(x == 3) puts(“x = 3");
else if

(x == 4) puts("x = 4”);
else

puts(“x is none of the above!”);
/* resume here for all cases */

Note the optional final else that traps any value of x not already matched
by the chain of tests. Also observe that the layout clearly reveals the pro-
gram’s intention. Unless you had multiple T-statements, spurious braces
would simply obscure matters.

» ANALYSIS OF CHKIP.C WITH EXPERIMENTS »

Program 4.1, CHKIPC, will give you some practice with if and else, as well
as introducing you to getche( ), a standard library 1/O routine declared in
CONIO.H. The program also illustrates the use of a type cast in a typical situ-
ation. Figure 4.1 shows the screen output from a typical session with CHKIP.

» Type Casting »

In the statement

ratio = (float)i/j;
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/* chkip.c - simple conditional flow control */
#include <stdio.h>

#include <ctype.h>

#include <conio.h>

/* conio.h defines getche() */

main()
int i =0, j =0;
double ratio = 0.0;

char ch, *cp;
/* we could also use int ch, see text */

printf("\tEnter two smallish numbers: ");
scanf("d %d", &i ,&j);
if (3 1= 0)

{
ratio = (float) i / j:
/* force conversion of int i to float before division */
/* further silent conversions occur - see text *x/
printf("sd / %d equals %f\n", i, j, ratio);
} /* end if (j !'= 0) */
else printf("sd / %d is undefined\n", i, j):

if (1 == 3)

puts("Your two numbers are equal");
else if (i > j)

puts("First number is larger");
else

puts("Second number is larger");

printf("\tEnter a character: ");
ch = getche();

/* getche() is "get char with echo" *x/

/* It waits for a keystroke, echoes it and returns its
char'value, which is then assigned to ch */

/* No <enter> is needed with getche() */

cp = &ch; /* assign the pointer &ch to cp
which is a char pointer */

/* *cp now is the same as ch - so the maneuver serves only
to illustrate pointer manipulation. You could replace
*cp with ch in each of the following statements *x/

printf("\nYou entered \"gc\"\n",*cp);
if (isalpha(*cp))
printf("'sc' is alpha\n",*cp);
else if (isdigit(*cp))
printf("'sc' is a digit\n", *cp);
else if (ispunct(*cp))
printf("'sc' is punctuation\n",*cp);

if (isalnum(*cp) && !isdigit(*cp) && !islower(*cp))
printf("'sc' is uppercase letter\n",b*cp):;

if (isgraph(*cp) || *cp == 040)
printf("'sc' 1s printable or space\n",*cp);

» Program 4.1: CHKIPC
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Enter two smallish numbers: 2 @
2 [/ 8 is undefined
First number is larger
Enter a character: $
You entered "$"
*$’ is punctuation
’$’ is printable or space

Press any key to return to Turbo C . . .a

» Figure 4.1: CHKIP screen output

we force (or coerce) the compiler to cast or convert (internally and tempo-
rarily) the int i to type float before the division by int j is attempted. Type cast-
ing allows you to do this conversion trick between variables of most data
types by using the target type specifier in parentheses followed by the vari-
able to be converted.

(type specifier T) var,

will internally and temporarily convert var to data type T.

The type specifier, considered as an operator, is in precedence category 2,
so it has higher precedence than *, /, and %, which are in category 3. This
explains why (float) i /j is interpreted as ((float) i)/j rather than (float) (i/j).

Casting can be used to influence the result of an arithmetic expression or
to avoid type-mismatching errors, when passing arguments to functions,
for example.

The following is a mixed bag of examples that are mostly legal but are not
all equally useful:

inti, *int_ptr;
char c; *char_ptr;
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unsigned long ul;
double d;
float f;

¢ = (char)i; /* castint to char */
/* (char)i = ¢; NO, NO — (char)iis not an Ivalue */

i = (int) *char_ptr /* cast char to int */
/* assuming char_ptr points somewhere */

int_ptr = (int *) char_ptr;

char_ptr = (char *) int_ptr;
/* convert a char pointer to an int pointer and vice versa */
/* note the syntax */

i =(int)f + (int) c; /* cast float,char to int */

i = (int) (f + c); /* cast the float sum to int */
f = (float) d; /* cast double to float */

d = (double) i; /* cast int to double */

ul = (unsigned long) i; /* cast int to unsigned long */
(void) func(); /* the value returned by

func() is discarded */

The data type void was introduced in ANSI C to remove some potential
trouble spots in K&R. The default return value of a function is int even if the
definition does not explicitly return a value. Further, all functions, technically
speaking, do return values of some kind whether you use them or not. void
allows you and the complier to distinguish between a declaration such as
func(); [which is the lazy way or writing int func()] and void func();. The lat-
ter says “discard the returned value of func().” Objects of type void do not
have values like the other types (even NULL is excluded as a value). A similar
problem in K&R is distinguishing between functions taking arguments and
those taking no arguments. A K&R declaration such as char func( ); can be
legally followed by definitions such as char func() or char func(arg1,arg2).
The ANSI C prototype declaration format removes this ambiguity by allow-
ing char func(void); when declaring a function with no arguments or char
func(type1 arg1,type2 arg2); when declaring a function with two argu-
ments. The complier can now check that the function definitions and calls
match the declarations.

Now some of the above examples of type casting are wasteful insofar as C
already implicitly performs certain internal conversions (promotions and
truncations) when evaluating expressions and making assignments.
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For example, ¢ = i; will truncate the int i from 16 to 8 bits in order to
make the assignment to char c. The type cast ¢ = (char) i simply makes
this conversion explicit without altering the net result. So when are type
casts essential?

Try omitting the (float) coercion in CHKIPC. C will first perform the inte-
ger division i/j and then internally convert the integer quotient to double in
order to make the assignment ratio = i/j. The result will be nnnn.000000,
correct only to the nearest whole number. With (float) i you get a dramatic
change. int i is converted to float and immediately promoted to double
(since all FP calculations in C are performed with double precision). Next, int
j is automatically promoted to double to match the data type of the dividend.
The quotient is therefore a double before the assignment to ratio. printf()
will therefore show the answer correct to 6 decimal places (the default preci-
sion of %f).

Now try replacing (float) i/j with (double) i/j. If you have followed the pre-
vious discussion, you will realize that this will not alter the actual result; in
fact, using (double) i is more logical and slightly faster. | had you use (float) i
to illustrate the underlying theory.

Note carefully the difference between

i = (int)f + (int) c; /* cast float,char to int */
and
i =(int)(f + c); /* cast the FP sum toint */

The answers might be different. In the second line, char ¢ and float f will
each be converted to double before the addition, then the sum will be
rounded and truncated to int. The first line converts each to int and then per-
forms an integer addition.

» DETOUR TO FORMAL CONVERSION RULES »

It is time to list C’s conversion policy during arithmetic evaluation a little
more formally. There are rules for unary conversion (in which just a single
operand is involved) and rules for binary conversion (in which two operands
need to conform before the operation is carried out). We can combine these



122
CH. 4

» MASTERING TURBO C »

rules as follows:

Any operands of type short or char are converted to int.

Any operands of unsigned char or unsigned short are converted to
unsigned int. '

All floats are promoted to doubles.
Types “array of T” are converted to types “pointer to T.”

If either operand is double, the other is converted to double, giving a
double result.

Else if either operand is unsigned long [int], the other is converted to
unsigned long [int], giving an unsigned long [int] result.

Else if one operand is long [int] and the other is unsigned [int], they
are both converted to unsigned long [int], giving an unsigned long
[int] result.

Else if either operand is long [int], the other (which must by now be
an int) is converted to long [int], giving a long [int] result.

Else if either operand is unsigned [int] the other is converted to
unsigned [int], giving an unsigned [int] result.

10. Else both operands must be int, and the result is int.

This seems a formidable list to remember, but most of the conversions are
logical when you consider the internal representations of each data type.

With a complex right-expression made up of mixed data types, variables,
or constants, you can picture the above rules being applied successively to
pairs of operands according to the precedence and associativity rules. It is
quite easy to simulate the compiler with pencil and paper, and often there
is one dominating type, such as double, that simplifies the process of decid-
ing the type of the final result.

» Assignment Conversions »

For assignment conversions the rules are much simpler. If the lvalue has
the same type as the evaluated right-expression, the assignment is trivial.
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If the types differ, C attempts to convert the type of the right-expression to
match that of the Ivalue. With arithmetic types, this can always be done
either by extension, as in int to long (safe), or by truncation, as in double to
long (probably dangerous). Later you’ll meet more complex data types that
just refuse to be mixed or assigned. Following are examples of conversion of
arithmetic types:

char c; unsigned char uc;
short s; unsigned short us;
int i; unsigned u;

long I; unsigned long ul;
float f; double d;

d=(c + ul)*@c -s + f)/uc + I);
/* using a shorthand notation:
Conversion rules for right-hand expression:

rules 1and 2: cand s —> int; uc —> ui
d=(@G+ub*@i—-i+9H/ui+l

rule3:f —>d
d=(@+ub*@ —i+d/(ui+]

rules5:dandx ->d
d = (i + u)*d)/(ui +1)

rule 6: uland x —> ul
d = (u)*(d)/(ui + 1)

rule 7: 1 and ui => ul
d = (ul)*(d)/(ul)

rule5:dandx ->d
d = (d)*(d)/(d)

Assignment is double to double, no conversion */

/* Note: the order of evaluation is compiler dependent */

i =d; [* truncation */

d=i /* int converted to double - safe */

d=f; /* float converted to double — safe */

f=d; /* f converted to double, double
assigned to double, then double
truncated to float */
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» BACK TO CHKIP.C—
PROTOTYPES AND getche() »

Rather than use scanf( ) with a %c conversion string, CHKIPC (Pro-
gram 4.1) uses a useful standard library facility, getche(). This is declared in
CONIO.H as

int getche(void);

This form of declaration is known as a function prototype—it provides both
the user and the compiler with a clear indication of what arguments (if any)
are legal and what value is returned (if any).

The prototype concept is one of the many important additions made to C
as a result of the new ANSI standards. It allows the compiler writer greater
scope to check that function calls are made with the correct number and
types of arguments. There are special prototype formats to indicate when a
variable number of arguments is allowed. For example,

int printf(char *format,...);

in STDIO.H shows that printf( ) has one string argument (pointer to char).
The comma and three periods indicate that any number of arguments
(including none) can follow.

The traditional (classic) pre-ANSI method of declaring and defining func-
tions will still work, but it offers less protection. Pre-ANSI declarations of
printf( ) and getche( ) might have looked thus:

printf(); /* returns int by default */
getche(); /* returns int by default */

giving no indication that their argument requirements were widely different.

Turbo C, of course, allows both approaches, and | used the classic style in
earlier chapters to avoid digressions. There may be some temporary porta-
bility problems with non-ANSI systems, so you need to know both styles. You
will still encounter the classic style in much of the literature and published
C source code.

You are free (and encouraged) to browse around the *.H files to see
the prototypes of the various functions together with macro definitions and
conditional compilation directives. The definition and working code for
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getche(), however, is buried within the Turbo C libraries—out of sight, out of
mind, and beyond tamperage!

The int getche(void) prototype tells you that it takes no arguments and
returns an int value. You might have expected a char value, since the role
of getche( ) is to capture and display a keyboard character. Even though
getche() cannot return the EOF (- 1) that we discussed in Chapter 3, never-
theless it does return an int. In CHKIPC, it is quite safe to assign

ch = getche();

where chis type char, in view of the assignment rules just covered. The zero
upper byte of the int is discarded in any case—so it’s no big loss.

CONIO.H, derived from the DOS abbreviation CON (for console), con-
tains several related routines for console 1/O. They overlap the I/O routines
in STDIO.H to some extent, reflecting the separate historical strands of UNIX
and MS-DOS. For now, notice that many of the get variants work with input
from files or streams, of which stdin (your keyboard) is just one particular
example. This will become clearer when we tackle file 1/O in Chapter 8.

Try replacing getche() in CHKIPC with getch( ). The only difference is that
getch() does not echo your keystroke on the screen. This is useful in many
situations, such as selecting from a menu—you want to capture the chosen
key without disturbing the menu layout.

It is instructive to add the following line after getche():

printf(“The ASCII value is %d\n”,ch);

Now try keying some control-key combinations and see if you understand
the results. Ctrl-R will display 18 (i.e., 82 — 64) confirming that pressing Ctrl
subtracts 64 from the corresponding letter code. You will also see some of
the IBM extended ASCII symbols. Ctrl-C, by the way, will interrupt your pro-
gram prematurely. The Alt-key combinations will give bizarre results since
they emit special scan codes giving pairs of characters.

» CONDITIONAL EXPRESSIONS—
SHORTHAND USING ? AND : »

Ever searching for compact notation, C offers the conditional expression as
a shorthand way of writing the commonly occurring if (X) { Y} else {Z} type
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of statement. It is well worth mastering its peculiar syntax since it can simplify
your source code in many situations. In

max = (x >y)?x:y;

the right side of the assignment is a conditional expression, signaled by the con-
ditional operator symbols ? and :. The complete statement is equivalent to

if (x >y)
max = X;
else
max =y;

which results in max being set to the larger of x and y (or to y if they are the
same). The conditional expression consists of three expressions separated by
? and : (plus optional white space).

test-expression ? T-expression : F-expression;
This ternary (three-part) form is evaluated as follows:

1. If the test-expression evaluates to nonzero (true), the T-expression is
evaluated, and this becomes the value of the conditional expression.

2. Ifthe test-expression evaluates to zero (false), the F-expression is eval-
uated, and this becomes the value of the conditional expression.

Since the whole conditional expression ends up with a value, it can be
used just like any other non-lvalue C expression. You can use it as the right-
expression in an assignment as we did with max, or it can be part of a com-
pound expression as in

i=((X>Y)?2x:y)*([j>=07?j: -))I3;

This highlights the advantage of the conditional expression. The above line
would take two ifs, two elses, four assignments, and possibly additional tem-
porary variables. Do you lose too much in legibility? This is a subjective
issue. Once the conditional expression is familiar to you, you quickly spot
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that the expression
j>=07j: —j

evaluates to the absolute value of jsince it evaluates to —j only if j is negative.

A few details need attention. The precedence of ? and : is very low (cate-
gory 13), just above the assignment operators (category 14), and well below
the relational operators (categories 6 and 7). This means that parentheses are
not strictly needed in

max = (x >y)?x:y;
as they would be in

if(x >y){..}

You should go with what the bible says: “...they [parentheses] are advisable
anyway, however, since they make the condition part of the expression
easier to see.” (The C Programming Language, page 48).

Since the conditional expression is a single entity, C performs the usual
conversions and promotions during evaluation, taking note of both the
T-expression and the F-expression. There is a potential pitfall here. Take
the following snippet:

int i;
double d;

i=(>07i:d:

You might expect that if i were greater than zero, the right-expression would
evaluate to type int with value i, which could then be assigned to the
int lvalue without conversion. In fact, the presence of the double d, even when
it is not directly involved in the i-positive case, forces the right-expression to
double under all conditions. In this example, of course, the assignment
immediately triggers a conversion back from double to int, so error-prone
truncation only occurs in the i < 0 case. You can see that care is needed if
conditional expressions are embedded in more complex code—remember
to watch the data types of all three components.



128

CH. 4

» MASTERING TURBO C »

Here are a few more examples of ?...: in action.

#define MAX(x,y) () >®?20:(y))
#define MIN(x,y) ()>W?2W:)
#define MY_DIV(x,y) ((y) ? ((x)/(y)) : BIG_QUO)

The compactness of the conditional expression is especially useful in para-
metrized macro definitions, as shown above. The parenthetical profusion is
absolutely essential, allowing the macros to be called with complex argu-
ments as in

d = MAX(a+2*b, (n—m)/(k+ MIN@4*p,q(r—1))));

Here the formal parameters x and y in MIN(x,y) would be replaced in situ by
the actual parameters as follows:

(@*p) > (ar-1) ?(q(r-1)): (4*p))

This is known as token replacement. In man