S

R w
« Ly
m 2,

-— C
| —) 2 - M,_u
* - =
h, & W m =
n = g |
, Y M
Zls
D |

Turbo C® Programmer’s
Library

Kris Jamsa

BORLAND-OSBORNE/McGRAW-HILL
PROGRAMMING SERIES

Osborne MceGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the U.S.A.,
please write to Osborne McGraw-Hill at the above address.

A complete list of trademarks appears on page 671.

Turbo C® Programmer’s Library

Copyright © 1988 by McGraw-Hill, Inc. All rights reserved. Printed in the
United States of America. Except as permitted under the Copyright Act of
1976, no part of this publication may be reproduced or distributed in any form
or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher, with the exception that the program list-
ings may be entered, stored, and executed in a computer system, but they may
not be reproduced for publication.

1234567890 DODO 898

ISBN 0-07-881394-8

Information has been obtained by Osborne McGraw-Hill from sources believed to be reliable. How-
ever, because of the possibility of human or mechanical errors by our sources, Osborne McGraw-Hill,
or others, Osborne MeGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any
information and is not responsible for any errors or omissions or the results obtained from use of such
information.

Contents

Foreword

Preface

Getting Started with the Turbo C Library

Turbo C Run-Time Library 2
Routine Presentation 3
Understanding Function Prototypes 6
Assembly Language Routines 8

A Final Word 9

String Manipulation
Getting Started 12

Strings as Parameters 14
Array Bounds 15
Minimizing Source Code 18
String Copy 19

String Append 21

String Insertion 23

Case Manipulation 26
String Reversal 28
Exchanging Strings 30
String Padding 33
Character Manipulation 36
White Space 41

String Comparision 43
Substring Manipulation 47
Pattern Matching 53

vii

ix

1

10

Pointer Manipulation 55
Getting Started 56

Pointers and Functions 59

Pointers and Strings 62

String-Manipulation Routines 64

Conversion Routines 76

Arrays of Pointers 79

Command-Line Processing 80

Accessing Environment Entries 82

Far Pointers 84

Recursion 89

Getting Started with Recursion 90
Considerations for Recursive Functions 114

Pipe and I/0 Redirection 115
Getting Started with I/O Redirection 120

Using Standard Error (stderr) 132

DOS Interface 135

8088 Registers 136

INT 21H 138

DOS System Services 140
Using the Programs 190

Turbo C BIOS Interface 191
Turbo C ANSI Support 207
Cursor-Manipulation Routines 210

Erasing 215

Screen Attributes 216
Keyboard Reassignment 222

File-Manipulation Routines 225

Understanding find__first and find_next 226
File-Manipulation Routines 232
Utility Programs 234

Array Mantpulation 247

Array Considerations 248
Array-Manipulation Routines 253

1

12

13

14

15

Variance and Standard Deviation 261
Least Squares Fit 265

Using Macros 269

Multidimensional Arrays 271

Searching and Sorting

Searching 274
Sorting 284
Arrays of Character Strings 305

Input/Output Routines
Output Routines 321
Input Routines 329
User-Consistent I/0 336

Dynamic Memory

Dynamic Lists 347
Maintaining a Sorted List 355
Doubly Linked Lists 363
Binary Trees 366

Memory Mapping
Video Display Pages 3890

Menus and Special 1/0

Menu Structure 407

Framing a Menu 408

Displaying and Using a Menu 411
Pop-Up Menus 417

Advanced Video Pop-Up Menus 425

ASCII Codes
Turbo C Run-Time Library 435
Index

273

319

345

381

405

431

To my grandparents:

For your unmatched support, encouragement, and love.

Foreword

It is a pleasure to present—with our co-publisher Osborne/McGraw-
Hill —Turbo C Programmer’s Library for the benefit of the many
users of Borland’s Turbo C.

The power, flexibility, and portability of Turbo C have won this
complete, interactive development environment an enthusiastic
acceptance by the programming community. We have responded to
that endorsement with a commitment to support professional pro-
grammers and developers in every way possible: with a technically
superior product, outstanding technical and customer support ser-
vices, and quality books that help them expand their uses of Turbo C.

vii

viii TURBO C PROGRAMMER'S LIBRARY

Turbo C Programmer’s Library by veteran author Kris Jamsa is,
therefore, an integral piece in our Turbo C support program. Here,
in one indispensable volume, are the examples of good code and the
techniques programmers and developers need to develop a library of
hundreds of powerful Turbo C routines. In addition, Jamsa provides
insight into the development of the run-time library to help users
take full advantage of the library’s routines.

We recommend Turbo C Programmer’s Library as the perfect
companion for developing programs with Turbo C.

Philippe Kahn
President
Borland International, Inc.

Preface

Developing a library of Turbo C routines is one of the best ways to
enhance the productivity of programmers. If you work with other
programmers, keeping a library of functions will increase every-
one’s productivity, for several reasons. First, programmers often
spend a significant amount of time developing routines that already
exist in other applications. A library of routines can minimize
duplication of effort because programmer has access to the routines
in the library. Second, programming skills are improved through
exposure to “good” coding techniques. another programmer’s code
provides an important opportunity for information and learning new
techniques. In addition, you can standardize code and documenta-

ix

X TURBO C PROGRAMMER’S LIBRARY

tion and minimize errors. If you are programming at home, placing
your routines into a library will greatly improve the organization of
your disks.

This book provides an extensive library of Turbo C routines.
Each routine was developed to simplify its integration into your
application programs. This library meets the needs of both the
novice and experienced Turbo C programmer. The novice can create
useful programs in just minutes, and the experienced programmer
can learn how to increase the flexibility of applications through
memory mapping and pop-up menus. All programmers will learn
how to write routines that support the DOS pipe, DOS wildcard
characters, and the DOS and BIOS system services.

Turbo C Run-Time Library

For those of you who are already familiar with the Turbo C run-
time library, you will be pleased to find many routines presented
here for the first time. By experimenting with the routines in this
book, you can add significant power to your Turbo C programs.
manipulation. In other cases, they are provided to increase your
appreciation of Borland’s routines and to teach you how to use them
more effectively.

For those of you who are already familiar with the Turbo C run-
time library, you will be pleased to find many routines presented
here for the first time. By experimenting with the routines in this
book, you can add significant power to your Turbo C programs.

Development Philosophy

This book was written with two major goals. First, the routines had
to offer new capabilities to Turbo C programmers at all levels of
experience. For the novice, this book offers valuable information and
an opportunity to extend his or her knowledge of Turbo C. To meet

PREFACE xi

the diverse needs of advanced programmers, it offers routines for
dynamic memory manipulation, pop-up menus, memory-mapped
1/0, and support for DOS wildcard characters.

The second (and more important) goal was to illustrate good pro-
gramming practice. Thus, each routine presented in this text has
the following attributes:

o Complete documentation
« Consistent usage

o Well-structured code

e Thorough error detection

« Restriction of side effects

As you examine the routines in this text, you should note their
consistent documentation. Since you must examine hundreds of rou-
tines, consistent documentation is more important than you may at
first realize. You will also note that the code is quite structured.
There are no goto statements, and, when applicable, functions have
only one entry and exit point. Turbo C prototypes have been used
extensively throughout the text to help the compiler locate as many
errors as possible. If you have not yet developed your own program-
ming standards, use the ones in this text for your foundation.

Chapter Contents

This text assumes that you are familiar with, or are in the process of
learning, Turbo C. It is not intended to be a tutorial on Turbo C.

Chapter 1 provides you with an overview of the Turbo C run-time
library, introduces C function prototyping, and discusses the conven-
tions used throughout the text.

Chapter 2 is a detailed presentation of string manipulation. Sev-
eral of the functions normally found in the Turbo C run-time library
are enhanced to provide additional functionality.

xii

TURBO C PROGRAMMER'’S LIBRARY

Chapter 3 discusses string manipulation using pointers. Many of
the routines presented in Chapter 2 are greatly simplified by the use
of pointers. Because string manipulation is common in Turbo C, this
chapter is critical to understanding the language.

Chapter 4 examines recursion. Simply stated, a recursive func-
tion invokes itself to perform a specific task.

Chapter 5 shows how to develop Turbo C programs that support
the DOS pipe and I/O redirection.

Chapter 6 introduces the DOS system services. All of the com-
mands that you normally issue from the DOS prompt (such as those
used for subdirectory manipulation) can be called by your Turbo C
programs. This chapter teaches you how to get the most from DOS.

Chapter 7 presents the BIOS system services that perform the
basic input/output services for your computer. You can gain consid-
erable flexibility by using the BIOS for I/O processing instead of
standard Turbo C functions.

Chapter 8 introduces the ANSI driver that is available to your
Turbo C programs once ANSI.SYS is installed during system start-
up. The ANSI driver provides enhanced screen output capabilities
along with keyboard redefinition.

Chapter 9 demonstrates advanced file-manipulation techniques
with Turbo C. You will learn how to support DOS wildcard charac-
ters as well as multiple command-line parameters.

Chapter 10 presents array-manipulation routines. It also presents
several techniques including the use of macro procedures, to help
you keep your routines as generic as possible.

Chapter 11 demonstrates several sorting and searching algo-
rithms. You will learn the bubble, selection, Shell, and quick sorts as
well as use sequential and binary searches.

Chapter 12 examines advanced I/O routines. You will develop
routines that prompt for and validate integer, floating, and charac-
ter string values.

Chapter 13 looks at dynamic memory manipulation. You will
learn to program singly linked lists, doubly linked lists, and binary
trees.

Chapter 14 presents mapped video in Turbo C. Because many of
the routines update the video display, the chapter presents two

PREFACE xiii

assembly language routines that synchronize video memory refer-
ences to the horizontal screen refresh.

Chapter 15 examines menu manipulation. It includes several rou-
tines that work for essentially any menu, and discusses video pop-up
menus. '

Appendix A provides an ASCII chart. Appendix B provides the
calling sequence and notes for each of the routines in the Turbo C
run-time library.

Disk Packages

There are thousands of lines of code in this book. All the routines are
presented in their entirety, so you can type them at your computer as
you need them. To save you time and testing, a disk package contain-
ing all of the routines in this book is available for $39.95 plus ship-
ping and handling.

The Turbo C Help disk package provides you with on-line help
for Turbo C statements, reserved words, and constructs, as well as
the complete calling sequence and notes on each Turbo C run-time
library routine. This package allows you to put your Turbo C docu-
mentation back on the shelf. Turbo C Help is available for $29.95
plus shipping and handling.

To order these packages, use the coupons on the following page.

Please send me the disk package for Turbo C Programmer’s Library.
My payment of $42.45 (39.95 plus $2.50 shipping and handling) is
enclosed. (For orders to Canada and Europe, please include $7.50 for
shipping and handling ($47.45).

check
money order
Name
Address
City State ZIP

Kris Jamsa Software, Inc. Box 26031 Las Vegas, Nevada 89126

This is solely the offering of Kris Jamsa Software, Inc. Osborne/ McGraw-Hill takes no
responsibility for the fulfillment of this order.

Please send me Turbo Help on disk. My payment for $32.45 ($29.95
plus $2.50 shipping and handling) is enclosed. For orders to Canada
and Europe, please include $5.00 for shipping and handling
($34.95).

check
money order
Name
Address
City State ZIP

Kris Jamsa Software, Inc. Box 26031 Las Vegas, Nevada 89126

This is solely the offering of Kris Jamsa Software, Inc. Osborne/McGraw-Hill takes no
responsibility for the fulfillment of this order.

Getting Started with
the Turbo C Laibrary

This book was written to save you time —development time, coding
time, and testing time —as you write your Turbo C programs. This
book provides you with a library (or, specifically, a collection of rou-
tines) that you can use to complete your Turbo C programs. Because
the routines in this text are already written, you can simply insert
them into your Turbo C programs, and, because each routine has
been thoroughly tested, you can greatly reduce the testing time
normally associated with program development. If you are new to
Turbo C, DOS, or the IBM PC, these routines can teach you a great

2 TURBO C PROGRAMMER’S LIBRARY

deal about these topics. By examining the source code presented
here, your Turbo C programs should improve. Considerable time
and effort has been spent to maintain the readability, modifiability,
and generic characteristics of each routine.

As you progress through each chapter, keep in mind that these
routines are only the start of your Turbo C library. Build on these
routines and you will find that your library of Turbo C functions
never seems to stop growing. Feel free to modify any of these rou-
tines to meet your individual needs. Only by experimenting with
each function can you fully understand its processing. Libraries

exist to make your programs easier to develop. Programming in
Turbo C should be easy and fun.

Turbo C Run-Tvme Library

A major function of any programming library is to reduce the
duplication of code. After all, if someone else has written code to
perform a specific task, why reinvent the wheel? Borland Interna-
tional, Inc., provides you with a powerful collection of routines called
the run-time library that you should use whenever possible. Borland
developed Turbo C and employs many of the true Turbo C experts.
All of the routines in the run-time library are well written and
highly optimized. You should spend considerable time becoming
familiar with these routines. Each of these routines is listed in
Appendix B. The time you spend now becoming conversant with the
run-time library routines will save you much more time in the
future.

In some cases, you may wonder why routines in this text appear
to duplicate functions in the run-time library. In most cases, the
answer is simply for instruction. In the case of strings, Turbo C pro-
vides a powerful collection of string-manipulation routines in the
run-time libraries. Because strings are so widely used, you should
fully understand string manipulation. The only way to accomplish
this is by examining source code. Without source code for these rou-

GETTING STARTED WITH THE TURBO C LIBRARY 3

tines, you could never modify them to meet your individual needs.
By examining the routines in this text, you will gain a much better
understanding of the Turbo C run-time library.

If you are performing serious Turbo C development, you should
strongly consider purchasing the run-time library source code from
Borland. This source code provides excellent examples of how to get
the most from Turbo C.

Routine Presentation

All of the routines in this text are presented in the same fashion:
first pictorially and then in source code. For example, consider the
routine sum that receives two values and returns their sum. This
routine is presented pictorially as follows:

int a = 300; —=

int b = 625; —m Sum

= 925 Sum of the
two parameters

First, note the two variables passed to the routine:

int a = 300, —

Sum
int b = 625, —f

4

TURBO C PROGRAMMER'’S LIBRARY

This illustration tells you that both of the variables are of type int
and gives you possible values that can be assigned to each. In this
case, the values 300 and 625 will be added.

Next, note how the returned value is presented:

Sum

L 925 Sum of the

two parameters

Each routine that returns a value will show the return value coming
out of the bottom of the box. Consider the routine add_and_—
display. Rather than returning the result of the addition, this rou-
tine instead displays it to the screen, as shown here:

int a = 300; —»

_and__displa o
int b = 625; add_an play 925

00

Any routine that writes data to the screen will be presented in this

manner.
Similarly, if the routine get_—a__character uses the keyboard, it

is presented as follows:

GETTING STARTED WITH THE TURBO C LIBRARY 5

I \\\

get__a__character

L Character entered by the user

If a routine modifies one or more of its parameters, the updated
parameter is shown exiting the right-hand side of the box, as follows:

| — —
char str[80];——-{ get__a__string]—— “string entered”

The goal of presenting each routine pictorially, is to build in your
mind an image of the processing of the routine before you examine
the source code. In many cases, you will find that you really do not
need to know how a routine works, but rather what the routine does.
These illustrations are meant to aid you in understanding the pro-
cessing involved.

The source code for each routine is also presented in a consistent
manner. Given the routine sum presented previously, the code will
contain the following:

/*
* sum (a, b)
*

* Return the sum of the two integer values specified.
*
* a (in): First value to sum.

6 TURBO C PROGRAMMER’S LIBRARY

* b (in): Second value to sum.
*
* result = sum {6, 7);
*
*/
sum (a, b)
int a, b;
{

return (a + b);
}

Note the descriptive header that precedes the function code:

~

* Ok O Ok K Ok %k R Ok XX

sum (a, b)
Return the sum of the two integer values specified.

a (in): First value to sum.
b (in): Second value to sum.

result = sum (6, 7);

/

By examining this header information, you should be able to under-
stand the routine’s function, variables, and usage before you exam-
ine the source code that follows. Note that each parameter in the
descriptive block is labeled as either (in) or (out). A parameter that
does not change within a function is an (in) parameter. A function
that does not use the original parameter value (but rather changes
it) is an (out). If the function uses and then modifies the parameter,
it is labeled (in/out).

Understanding Function
Prototypes

For those who have never worked with Turbo C prototypes, you are
in for a real treat. Turbo C allows you to define and declare a func-

GETTING STARTED WITH THE TURBO C LIBRARY 7

tion. When you define a function, you provide its source code, as
shown here:

float sum (a, b, c)
float a, b, c;

{

return (a + b + c);

When you declare a function, you tell another function information
about the first function.

float sum ();

For years, many C programmers declared C functions only when
the functions returned a value of a type other than int. By proto-
typing your functions, you can prevent many run-time errors simply
because the errors are caught by the compiler.

Consider the following example:

float sum (a, b, c)
float a, b, c;

{

return (a + b + c);

main ()
{
float sum ();

printf ("%$f\n", sum (1.2, 2.4));
}

In this case, the routine sum expects three parameters, but only two
are present. Because the compiler has no knowledge about sum, the
program code is acceptable. Hence, a possibly difficult-to-detect run-
time error will occur.

By using prototypes you can prevent this error from occurring.
Notice how you can change the function header for sum. You move
the location of the parameter definitions within the parentheses, as
shown here:

8 TURBO C PROGRAMMER’S LIBRARY

float sum (float a, float b, float c¢)
{

return (a + b + ¢);

Within main, you must declare sum as a function and specify the
type of each parameter, as shown here:

float sum (float a, float b, float c¢)

{
return (a + b + c);

}
main ()
float sum (float, flocat, float);

printf ("%$f\n", sum (1.2, 2.4));
}

Because main has knowledge about sum, it detects the invocation

printf ("%f\n", sum (1.2, 2.4));

as an error during compilation time.

During the development of this text, function prototyping saved
me an immeasurable amount of time. You should always declare
each routine you will use, along with the types of each of the rou-
tine’s arguments. You will save considerable testing and debugging
time in the future.

Assembly Language Routines

Chapters 14 and 15 present several functions based on two assembly
language routines that provide a hardware interface. In order to use
these routines, you must have either the Microsoft macro assembler
or the object code library disk discussed in the Preface. A goal in
any program development is to write as much of the software as
possible in a high-level language. That goal has been met here.

GETTING STARTED WITH THE TURBO C LIBRARY 9

Unfortunately, for the routines to execute fast enough to prevent
snow on the screen display, the two interface routines must be writ-
ten in assembly language.

To compile routines that contain in-line assembly language code,
you must use the TCC command-line compiler (as opposed to the TC
integrated environment).

A Final Word

Have fun and experiment. You have hundreds of routines with which
to work. Your program development time should be drastically
reduced. Make use of this time by studying the source code pre-
sented in this text.

String
Manipulation

The most widely used routines in any C programmer’s library are
those that perform string manipulation. Most C compilers provide a
solid library of general-purpose string-manipulation functions and
Turbo C is no exception. Because of the tremendous use of strings,
however, you must fully understand how C stores and manipulates
strings.

This chapter examines strings in detail. Many possible imple-
mentations could be used to solve the problems presented in this
chapter. By the end of this chapter, you should be able to recognize
the factors that make one solution "better” than another. This chap-
ter will help you understand how some of Turbo C’s standard library
functions work while providing you with a complete set of string-
manipulation routines. Your programs will exploit each of these rou-
tines on a regular basis.

11

12 TURBO C PROGRAMMER’S LIBRARY

Getting Started

A character string is a sequence of one or more characters. The C
language stores character strings as arrays, in which each character
in the string resides in contiguous memory locations. For example,
consider the string declaration shown here:

char some_string [255];

In this case, C creates a character string variable with storage space
for 255 characters. Like all C arrays, C strings are indexed begin-
ning at offset 0. As such, the previous declaration creates an array of
characters indexed as shown in Figure 2-1.

By default, C contains no built-in method to determine the
number of characters contained in a C string. Instead, the standard

some__string[0]

some__string[1]

some__string[2]
some__string[3]

some__string[251]

some__string[252]

some__string[253]

some__string[254]

some__string

Figure 2-1. Indexed array of characters

STRING MANIPULATION 13

is to place a null character (ASCII 0) immediately following the last
character in the string. Thus, C stores the string "Turbo C” as char-
acters in an array with the null character appended (see Figure
2-2).

Because each character string terminates with the null charac-
ter, you can determine the number of characters in the string s
simply by searching for the null character (\0), as shown here:

for (1 = 0; s[i] !'= '\0’; i++)

Each time you specify a character string within double quotation
marks, Turbo C places the null character at the end of the string for
you. For example:

#define COMPILER "Turbo C"

c |-

-

o

\0

Figure 2-2. Placement of null character in a string

14 TURBO C PROGRAMMER’S LIBRARY

In most cases, however, ensuring that a character string is ter-
minated by a null character becomes the responsibility of the pro-
grammer, as shown here:

main ()
char alphabet [27]; /* 26 letters and space for null */
char letter;

int index;

for (index = 0, letter = 'A’; letter <= ’'Z’; index++, letter++)
alphabet [index] = letter;
alphabet [index] = '\0'; /* append the null character */

printf ("$s\n", alphabet);

Strings as Parameters

One of the contributing factors that helps you write generic string-
manipulation routines is the manner in which C treats arrays passed
to functions. Assume that you have a function called string__length
that returns the number of characters in a string. Invoke it from
your program, as shown here:

count = string_length (strvar);

Since you are passing a character array, you can declare the string
within the function with no array bounds:

string_length (char str(])

/* code here */
}

All of the routines in the remainder of this chapter declare the
formal string parameters in this manner.

STRING MANIPULATION 15

String Length

The following routine returns the length of a string by examining
succeeding characters for the null character:

~

*

: string_length (string)

: Return the number of characters in the string.
: string (in): string to return the length of.

* count = string length (string);

“

int string length (char stringl[])

{
int 1i;
for (1 = 0; string[i]; i++)

’

return (i);

}

Array Bounds

In most programming applications, time is always a tradeoff against
other factors. In some cases, the tradeoff becomes time versus space.
String-manipulation routines are no exception.

Consider this routine, which copies the contents of one string to

another:

LR B R S

void first_copy (source, target)
Copy the contents of the source string to the target.

sl (in): source string containing characters to copy.
s2 (out): string receiving characters copied.

first copy ("This is a test", stringvar);

first _copy does not perform bounds checking.

16 TURBO C PROGRAMMER’'S LIBRARY

void first copy (char sl[], char s2[])
{int i;
for (i = 0; sl1[i] != '\0’; ++i)
s2[i] = sl[i];
s2[i] = '\0’;

This routine copies characters from the first string (s7) to the second
(s2), one at a time, until the null character is found (see Figure 2-3).

This routine will work properly in most cases. However, con-
sider this program, which uses first__copy:

main ()
s2(5];

first_copy ("long string", s2);

Here, first_copy appears to copy characters from sI to s2, as
desired. Actually, however, the copy has exceeded the array bounds
of s2. The character string "long string” contains 11 characters

a -

e - e
i

o

u

\0

s s2

Figure 2-3. Copying characters from first string to second string

STRING MANIPULATION 17

(including the null character), while s2 only has space for 5. As a
result, first_copy overwrites the contents of the routine’s stack
space and produces an error. To remedy this problem, you can
include a parameter that defines the maximum number of charac-
ters to be assigned to the target string, as shown here:

second_copy ("long string", s, sizeof(s));

The following routine implements second_—copy:

int second_copy (source, target, array bound)
Copy the source string to the target string variable.
sl (in): Contains the characters to be copied.
s2 (out): Receives the characters copied.
maxchar (in): specifies the maximum number of characters
that s2 can store.
status = second copy ("This is", stringvar, sizeof (stringvar));

If the array bounds are exceeded, second_copy returns the value
1; otherwise it returns the value 0.

/

O Ok Ok O R R R O X X X Ok % Ok F

int second copy (char sl[], char s2[], int maxchar)
{
int index;
maxchar--; /* leave space for null */

for (index = 0; (sl[index] != ’\0’) && index < maxchar; index++)
s2[index] = sl[index];

s2[index] = '\0’;

return (sl[index] && (index == maxchar));

}

This routine indeed allows you to prevent the error that previously
occurred. However, because you must now include the second test

(sl[index] != ’\0’) && (index < maxchar)

you increase the required processing time for each iteration of the
loop.

18 TURBO C PROGRAMMER'S LIBRARY

Mintmizing Source Code

Although the previous routines were quite readable (assuming that
you are familiar with C arrays), you can simplify (reduce) the code
required to implement them.

Consider this code fragment:

for (i = 0; sl[i] != ’'\0’; ++i)
s2[1i] = sl(i];

s2[i] = '\0’;

C allows you to change this code, as shown here:

for (i = 0; (s2[i] = sl1[i]) != ’\0’; ++i)

In both cases, each fragment performs the identical function. In
the second code fragment, Turbo C will test the value that is
assigned to s2 with each iteration of the loop. If that value is null, C
terminates the loop. If not, C simply assigns the next character in s1
to s2, thus repeating the test. Once the null character has been
assigned to s2, the loop terminates. Since the code contained within
the for loop has already assigned the null character to s2, you can
eliminate the line

s2[i] = '\0’;

When this code assigns the null character to s2, the value
returned from the test

(s2[i] = s1[i]) != ’'\0O’

is 0 (null is the ASCII 0). Since C equates the Boolean false to 0, you
can again modify this code as follows:

for (1 = 0; (s2[i] = sl[i]) ; ++i)

STRING MANIPULATION 19

As you develop your C string-manipulation routines, keep the
following in mind:

» Is execution speed more important than reliability?
 Is the code as simple as possible?

e Does the code maintain readability?

As you develop your library of string-manipulation routines, you
should constantly attempt to balance the tradeoffs between speed,
reliability, and readability. Actual implementation will likely be
based upon your programming requirements. As such, the decision
of which routine to use can often have as great an impact on your
program as the code that actually implements the routine.

String Copy

Two functions implement a string copy routine. The first, fast__copy,
copies the contents of the first string specified to the second without
bounds checking. The second, copy_string, also performs the same
processing, but with bounds checking enabled.

char *s="TEST" —=] fast "TEST"
char *s2; —] ast—copy L . "TEST"

Warning: fast_copy does not perform bounds checking.

void fast_copy (source, target)

Copy the contents of the source string to the target.

L A

sl (in): source string containing characters to copy.

20 TURBO C PROGRAMMER’S LIBRARY

* s2 (out): string receiving characters copied.
: fast_copy ("This is a test", stringvar);
: fast_copy does not perform bounds checking.
“
void fast_copy (char sl[], char s2[])

(int i;

for (1 =.0; (s2[i] = sl[i]) ; ++i)

, ;

If the routine cannot successfully complete the copy, it returns

the value 1. Otherwise, it returns the value 0.

char *s="TEST" —] . .
char =s1 —1 copy—string "TEST"
int maxchar=sizeof(s1) — > "TEST

L

0 Successful copy
1 Incomplete copy

int copy_string (source, target, array_bound)
Copy the source string to the target string variable.
sl (in): contains the characters to be copied.
s2 (out): receives the characters copied.
maxchar (in): specifies the maximum number of characters
that s2 can store.
status = copy_string ("This is", stringvar, sizeof (stringvar));

If the array bounds are exceeded, string copy returns the value
1; otherwise it returns the value 0.

/

¥k R Ok R Ok % OF R % R % Ok X X H

int copy_string (char sl1[], char s2[], int maxchar)
{

int i;
maxchar--; /* leave space for null */
for (i = 0; (s2[i] = s1[i]) && i < maxchar; i++)
;
if (i == maxchar && sl[i]) /* see if characters remain in sl */

{
s2[i] = ’\o’;

STRING MANIPULATION 21

return (1);
}
else
return (0);
}

String Append

The following two routines append the contents of the first string
specified to the second. The routine first locates the end of the
second string (the null character) and then begins appending char-
acters from the first string at that point. Once the null character
from the first string is appended to the second string, the loop ter-
minates. As before, the routine called fast_append does not perform
bounds checking, but the routine called append_—string does.

char *s="ONE" —>
fast__append
char *s1="PART" — PP — "PART ONE"

Warning: fast_append does not perform bounds checking.

void fast_append (source, target)
Append the contents of the source string to the target.

sl (in): source string containing characters to append.
s2 (out): string receiving characters copied.

fast_append ("This is a test", stringvar);
fast_append does not perform bounds checking.

/

¥ % X O O O F % H % ¥ %

void fast_append (char sl[], char s2[])
{
int i, 3;
for (i = 0; s2[i] ; ++i) /* find the end of s2 */

’

for (3 0; s2[i] = s1[3j]; i++, j++) /* append sl */

’

}

22 TURBO C PROGRAMMER’S LIBRARY

If the following routine cannot successfully append the string, it
returns the value 1. Otherwise, it returns the value 0.

int maxchar=sizeof(s2)—=] "PART ONE"
char *s="ONE" —=| append _string
char *s2="PART" —

|-> 0 Successful

1 Incomplete

insert_string (source, target, location, array_bounds)

Insert the contents of the source string to the target
at the index location specified.

sl (in): source string containing characters to copy.
s2 (out): string receiving characters copied.

index (in): location within target to insert sl at.
maxchar (in): maximum number of characters in s2.

insert_string ("Pocket", stringvar, 6, sizeof (stringvar));

insert_string returns one of the following:
-1 insufficient memory 0 successful insertion 1 incomplete

Ok OF R R % F R Ok F F ¥ Ok X % F %

~

int insert_string (char sl[], char s2[], int start_index, int maxchar)
int i, j, lenl, len2;

char *temp;
void *calloc(unsigned, unsigned);

for (lenl = 0; sl[lenl]; ++lenl) /* get length of sl */

’

for (len2 = 0; s2({len2]; ++len2) /* get length of s2 */

if (start_index > len2) start_index = len2; /* append */

if ((temp = (char *) calloc (1, lenl+len2+1)) == '\0')
return (-1); /* unable to allocate memory */

for (i = 0; i1 < start_index; ++1i)

temp([i] = s2[i];

for (3 = 0; temp([i+]] sLEgT; ged)
;

while (temp[i+j] = s2(i])

++1i;

STRING MANIPULATION 23

for (i = 0; (s2[i] = temp[i]) && 1 < maxchar; itt)

;
free (temp):;
if (i == maxchar && s2[1i]) /* dinsertion is incomplote */

{

s2[i] = ’'\0’;

return (1);
else

return (0);
}

String Insertion

One of the keys to successful input-and-output (I/O) routines is the
ability to insert one series of characters into another. The routine
fast__insert does just that, but without bounds checking. If you are
sure that inserting the new characters within the target string will
not exceed the required storage space, this routine will indeed pro-
vide excellent performance. If you are not sure of this, you should
use the routine insert_string instead.

char *s1="DEF" —
char *s2="ABCGHI”" —= fast__insert —="ABCDEFGHI"
int index =3 —

0 Successful
—1 Insufficient memory

Warning: fast__insert does not perform bounds checking.

int fast_insert (source, target, index)

Insert the contents of the source string to the target
at the index location specified.

sl (in): source string containing characters to copy.
s2 (out): string receiving characters copied.
index (in): location within target to insert sl at.

fast_insert ("Pocket", stringvar, 6);
fast_insert does not perform bounds checking. If an error

occurs during processing, fast_insert returns -1. If the
insertion is successful, fast_insert returns 0.

H Ok Ok Ok H Ok R R X E X F X N X ¥ F*

24 TURBO C PROGRAMMER’S LIBRARY

int fast_insert (char sl[], char s2[], int start_index)
{
int i, j, lenl, len2;

char *temp;
void *calloc(unsigned, unsigned);

for (lenl = 0; sl[lenl]; ++lenl) /* get the length of sl */

’

for (len2 = 0; s2[len2]; ++len2) /* get the length of s2 */

r
if (start_index > len2) start_index = len2; /* append */

if ((temp = (char *) calloc (1, lenl+len2+l)) == ’\0’)
return (-1); /* unable to allocate memory */

for (i = 0; i < start_index; ++i)
temp[i] = s2[1i];

for (j = 0; temp([i+]j] = sl[j]; Jj++)

’

while (temp[i+j] = s2[i])
++i;

for (1 = 0; s2[i] = temp[i]; i++)
free (temp);

return (0); /* successful insertion */

If this routine cannot insert the string without overwriting the
array bounds, it returns the value 1. If the routine cannot allocate
sufficient memory, it returns —1. If the insertion is successful, the
routine returns the value 0.

)

char *s1="DEF" —
char *s2="ABCGHI|" —»
int index=3 —
maxchar=sizeof(s2) —»

insert__string [—"ABCDEFGHI"

I——» 0 Successful

1 Bounds error
—1 Insufficient memory

STRING MANIPULATION 25

insert_string (source, target, location, array_ bounds)

Insert the contents of the source string to the target
at the index location specified.

s1 (in): source string containing characters to copy.
s2 (out): string receiving characters copied.

index (in): location within target to insert sl at.
maxchar (in): maximum number of characters in s2.

insert_string ("Pocket", stringvar, 6, sizeof (stringvar));

insert_string returns one of the following:
-1 insufficient memory 0 successful insertion 1 incomplete

Ok O Ok R R Ok R % % F X R X X X X

/

int insert_string (char sl[], char s2[], int start_index, int maxchar)
{

int i, j, lenl, len2;

char *temp;
void *calloc(unsigned, unsigned);

for (lenl = 0; sl[lenl]; ++lenl) /* get length of sl */

’

for (len2 = 0; s2([len2); ++len2) /* get length of s2 */

r
if (start_index > len2) start_index = len2; /* append */

if ((temp = (char *) calloc (1, lenl+len2+l)) == 7\0')
return (-1); /* unable to allocate memory */

for (i = 0; i < start_index; ++i)
temp[i] = s2[i];

for (j = 0; temp([i+3] = s1[3]; 3++)
while (temp([i+j] = s2[i])
++1i;

for (i = 0; (s2[i] = temp[i]) && 1 < maxchar; i++)

r
free (temp);

if (i == maxchar && s2[i]) /* insertion is incomplete */

s2[i] = '\0’;
return (1);

else
return (0);

26 TURBO C PROGRAMMER'S LIBRARY

Case Manipulation

Many programmers often choose to convert a string of characters to
either uppercase or lowercase in order to simplify future processing.
Although the methods for converting characters in this manner are
many, you can use a simple fact about ASCII characters to speed up
conversion routines: All ASCII characters use a byte (8 bits) of stor-
age. The sixth-bit location determines the character’s case. For
example, if you examine the lowercase letter "a”

"a” ASCII 97 Binary 0110 0001
along with the character "A,”
"A" ASCII 65 Binary 0100 0001
you note that the only difference between them is the sixth bit:

"a/ Binary 0110 0001
"A” Binary 0100 0001

With this in mind, you can use C bitwise operators to perform quick
comparisons:

IAI : 32 — lal
0100 0001 | 0010 0000 = 0110 0001

‘a’ & ~32 ="'A’
0110 0001 & 1101 1111 = 0100 0001

The following routines convert a character string from upper-
case to lowercase, and vice versa:

STRING MANIPULATION

char *s= "AAAA"—»lTn_to_Iowercase I—-— "aaaa”

void str_to_uppercase (s)

Convert a string to UPPERCASE characters.

s (in/out): string to convert to UPPERCASE.
str_to_uppercase (filename);

str_to_uppercase uses bit manipulation to convert characters
to uppercase.

/

Xk % Ok Ok Ok % Ok Ok % Ok Ok O

void str_to_uppercase (char s[])
{

int i;

for (i = 0; s[i]; i++)
if (s[i] >= 'a’ && s[i] <= 'z')
s[i] = s[i] & ~32;

char *s= "aaaa"—-[str_to__uppercase II—»"AAAA”

void str_to_lowercase (s)

Convert a string to lowercase characters.

s (in/out): string to convert to lowercase.
str_to_lowercase (filename);

str_to_lowercase uses bit manipulation to convert characters
to lowercase.

/

R R N N N N

void str_to_lowercase (char s[])
{

int i;

28 TURBO C PROGRAMMER’S LIBRARY

for (i = 0; s[i]; i++)
if (s[i] >= 'A’ && s[i] <= '2')
s[i] = s[i] | 32;

String Reversal

When a program manipulates a mathematical expression as a
string, the result shows the string reversed. Just as you have many
ways to convert a string from uppercase to lowercase, you also have
many ways to reverse the contents of a character string.

Consider two alternatives. The first method, reverse_string,
begins swapping characters in the string starting with the first and
last characters, then the second and next to last, and so on. This
effective method results in 1.5 * n exchanges, where » is the number
of array elements.

char *s="EDCBA"—--| reverse __string I—-—“ABCDE"

void reverse string (s)

Reverse the contents of the character string specified.
s (in/out): string to reverse the contents of.
reverse_string (binary result);

This method requires 1.5 * n exchanges.

/

¥ % % X X % % H % ¥ % N

void reverse_string (char s[])
{
char temp;

int i, 3j;

for (3 = 0; s[3l; ++3J) /* find the end of string */

’

STRING MANIPULATION 29

for (i = 0, j——; i < J; i++, j--)

temp = s[i];
s[i] = s[3l;
s[]j] = temp;

}

The second method has additional overhead in the form of a call
to allocate memory large enough to buffer the string contents. Once
this space is allocated, the first string is simply copied to the buffer
and then back to the string in reverse order.

~
*

int reverse_string (s)

Reverse the contents of the character string specified.
s (in/out): string to reverse the contents of.

result = reverse string (binary result);

This method requires 2.0 * n exchanges. If an error in
processing occurs, reverse_ string returns -1.

/

X Ok % Ok Ok Ok X X X X X %

int reverse_string (char s[])
{
char *temp;
void *calloc (unsigned, unsigned);

int i, 3;

for (j = 0; s[3l; ++3) /* find the end of string */
if ((temp = (char *) calloc (1, j)) == "\0')
return (-1); /* couldn’t allocate memory */

for (i = 0, j--; j >= 0; i++, j--)
temp(i] = s[Jj]:

for (3
s[3]

0; j < 1i; j++)
temp(]];

return (0);
}

This method results in 2 * n exchanges.

Given a string of 512 characters, the first method requires 768
exchanges, while the second method requires 1024. The first method
is clearly superior. Your algorithm decision (even for simple rou-
tines) can have a significant impact on the performance of your
program.

30 TURBO C PROGRAMMER’S LIBRARY

Exchanging Strings

Based on the preceding analysis of the string reverse routine, you
can conclude that the fastest way to exchange two strings is by using
a three-variable swap (see Figure 2-4).

A a
E e
. .
]
(@] 0
U
\0 \0
a a
E e
(@) 0
U u
\Q \0
a A
: e
| i
(o]
U u
\0 \0

Figure 2-4. Three-variable swap

STRING MANIPULATION 31

The following routines do just that. However, you must again
consider the possibility that the user did not allocate the same
amount of space for each string, as shown here:

char s1(32], s2[64];

To exchange two strings whose boundaries are not identical
could have devastating results. Again, you have two alternative
routines —fast__exchange, which does not perform bounds checking,
and string__exchange, which does.

char »s1="AAAA" —= " > "BBBB"
char *s2="BBBB" —| 12SI—6XCNaNge | __ . ppaA”

Warning: fast__exchange does not perform bounds checking.

void fast_exchange (sl, s2)
Exchange the characters contained in two character strings.

sl (in/out) : contains characters to exchange.
s2 (in/out): contains characters to exchange.

fast_exchange (oldname, newname);

/

L S R

void fast_exchange (char sl[], char s2[])
{
int i, 3j;
char temp;

for (i = 0; s1[i] && s2[i]; i++)
{
temp = sl[i];
sl[i] = s2[i];
s2[i] = temp;
}

if (s1[i])
{
T 3= i
while (s1([i])

s2[i] = sl[i++];
s2[i] = '\0’;

32

TURBO C PROGRAMMER'’S LIBRARY

s1[3] = '\0’;
else if (s2[i])
{

j=1i;

while (s2[i])
s1[i] = s2[i++];

sl[i] \0’;

s2[3] '\0’;

The following routine performs bounds checking, which pre-
vents it from exceeding the array bounds:

char *s1="AAAA" —m —»= "BBBB"
char »s2="BBBB" —={ —="AAAA"
int size1=sizeof(s1)—m] StiN9—exchange
int size2=sizeof(s2) —m=i

=0 Successful
1 Bounds error

string_exchange (sl, s2, sizel, size2)

Exchange the contents of two character strings.

sl (in/out): contains characters to exchange.

s2 (in/out): contains characters to exchange.

sizel (in): maximum number of characters in sl.

size2 (in): maximum number of characters in s2.

result = string_exchange (name, a, sizeof (name), sizeof (a));

string_exchange returns one of the following:
0 successful exchange -1 Insufficient memory 1 Incomplete

/

H % H H O OF ¥ % Ok ¥ % ¥ % H ¥ ¥

int string_exchange (char sl[], char s2[], int sizel, int size2)
int i, 3j;
char temp;
for (i = 0; sl[i]; i++) /* get length of sl */

’

if (1 >=
return

for (1 =

’

if (1 >=
return

for (1 =
{
temp
sl[i]
s2[1)

if (s1[i]
£

size2) /* too large for s2
(1);
0; s2[i}; i++) /* get length of s2
sizel) /* too large for sl
(1);

0; s1[i] && s2[1i]; i++)

= sl{i];
s2[i]);
temp;

)

j o= 1i;
while (sl1[i])

s2[
s2[i]
s1[j]

i] = sl[i++];

(']
~
~
o
<

}
else if (s2[i])

{

j=1i;)
while (s2[1i])
sl[i] = s2[i++];

s1[i]
s2([3]

= I\Olo

N

return (0);

STRING MANIPULATION 33

2 */

*/

2 */

If the exchange is successful, the routine returns the value 0. If
one string contained too many characters, the routine returns the

value 1.

String Padding

Many reports that appear aligned on the computer screen often
require one or two leading blanks so that they will be aligned prop-
erly on printed output. The following routine enables you to place
additional blanks in front of a string. Once again, bounds checking
is a concern when producing the routines fast__pad and pad—string,
as shown here:

34 TURBO C PROGRAMMER’S LIBRARY

char *s1="AAA" —= fast__pad — "AAA"
int num_blanks=3 —= —Pp

— = 0O Successful
-1 Insufficient memory

Warning: fast_—pad does not perform bounds checking.

* % ¥ % A A F F ¥ X A Ok X X* *

int fast_pad (s, num_blanks)

Place the number of blanks specified at the front of a
string.

s (in/out): string to pad
num_blanks (in): number of blanks to insert.

result = fast pad (s, 33);

pad_string returns the value -1 if insufficient memory
prevented the insertion.

/

int fast_pad (char s[], int num_blanks)

{

}

int i, j;
char *temp;
void *calloc(unsigned, unsigned);

for (1 = 0; s[i]; i++) /* get the length of s */

;

if ((temp = (char *) calloc (1, i + num blanks + 1)) == '\0")
return (-1); /* couldn’t get memory */

for (i = 0; i < num blanks; i++)
temp [i] ="' /;

for (j = 0; temp [i] = s[J]; ++3, ++i)

temp [i] = '\0';

for (i = 0; s[i] = temp([i]; i++)

;
free (temp):;

return (0);

STRING MANIPULATION 35

If the padding is successful, the following routine returns the value
0. If insufficient memory is available, the routine returns a value —1.
If the array bounds are exceeded, the routine returns 1.

char *s1="AAA" — = "AAA"
int num_blanks==3 —== pad__string

int maxchar=sizeof(s1) —m=
l—> 0 Successful

1 Bounds error
—1 Insufficient memory

int pad_string (s, num blanks, maxchar)

Place the number of blanks specified at the front of a
string.

s (in/out): string to pad

num_blanks (in): number of blanks to insert.
maxchar (in): maximum number of characters in s.
result = pad_string (s, 33, sizeof (s));

pad_string returns one of the following values:
-1 Insufficient Memory O Successful 1 Incomplete

/

H Ok Rk E OF R % % % X % A X % %

int pad_string (char s[], int num blanks, int maxchar)
int i, 3J;
char *temp;
void *calloc (unsigned, unsigned);

for (i = 0; s({i]; i++) /* get length of s */

if (i + num blanks >= maxchar) /* will blanks fit */
return (1);

else if ((temp = (char *) calloc (1, i + num blanks + 1)) == ’\0’
return (-1); /* can’t get memory */

for (i = 0; i < num blanks; i++)
temp [i] =" ';

for (j = 0; temp [i] = s[J]; ++3, ++i)

’

36 TURBO C PROGRAMMER’S LIBRARY

temp [i] = ’\0’;

for (i = 0; s[i] = temp[i]; i++)

’
free (temp);

return (0);

Character Manipulation

Before discussing the more difficult routines that perform string
comparisons and substring matching, you should first consider rou-
tines that manipulate a single character within a string. The follow-
ing routines locate, replace, or delete a specific character within a
string.

The first function, char_count, returns the number of occur-
rences of a character within a string:

char *s="AAAaaa" —»

char letter="A’ —) char_count

L= 3 A occurs three times in AAAaaa
0 If letter not found

char _count (s, letter)
Return the number of occurrences of letter in s.

s (in): string to search.
letter (in): letter to search for.

count = char_cnt ("This is a test", ’'s’);

/

* X X X X kR X X X X X

char_count (char s[], char letter)
{

int i, count = 0;

STRING MANIPULATION 37

for (i = 0; s[il; i++)
if (s[i] == letter)
count++;

return (count);

}

Similarly, the routine remove__character removes each occurrence
of the specified character:

char *s="AaAaAa"—»1 — "AAA"
char letter="a’ —iremove __character

L—- 0 Successful

—1 Insufficient memory

remove_character (s, letter)
Remove each occurrence of letter from s.

s (in/out): string to remove the letter from.
letter (in): letter to remove.

remove_character (s, ’'a’);

remove character returns the value -1 if insuffient memory
prevented the removal, otherwise, 0.

/

PR I R R I

int remove_character (char s[], char letter).
(int i, j»
char *temp;
void *calloc(unsigned, unsigned);

for (1 = 0; s[il; i++)

7

if ((temp = (char *) calloc (1, 1)) == ’'\0’)
return (-1);

for (1 =0, j = 0; s[i]; i++)
if (s[i] != letter)

temp[j++] = s[i];

38 TURBO C PROGRAMMER’S LIBRARY

for (temp[j] = ’'\0’, i = 0; s[i] = temp[i]; i++)

free (temp);

return(0) ;

The function char__index returns the first occurrence of a char-
acter string within a string. If the character is not found, the routine
returns the value —1.

char *»s="ABab"

", char_—index
char letter="'a’ —sy{ de

L 2 alis at offset 2
—1 If letter not found

char_index (s, letter)
Return the location of the first occurrence of letter in s.

s (in): string to search for letter.
letter (in): letter to search for.

index = char_index (s, letter):;

char_index returns -1 if the letter is not found.

ROk Ok Ok Ok O Ok Ok O X % X %

/

int char_index (char s[], char letter)
{

int i, location = -1;;
for (1 = 0; s[i] && (location == =1); i++)
if (s[i] == letter)

location = i;

return (location); /* -1 if not found */

Similarly, the routine right_char__index returns the last occur-
rence of the character specified in a string or the value —1 if the
character is not found.

STRING MANIPULATION

39

char »s="ABAB" —»=

char letter='A’ right__char__index

I—» 2 Second A appears at offset 2
—1 If letter not found

right_char_index (s, letter)
Returns the rightmost occurrence of letter in s.

s (in): string to search for the letter.
letter (in): letter to search for.

result = right_char_index (s, 'A’);
right_char_index returns -1 if the letter is not found.

/

¥ Ok % % R Ok X Ok O F N X *

int right_char index (char s[], char letter)
{
int i, location = -1;

for (i = 0; s[i]; i++)
if (s[i] == letter)
location = i;

return (location); /* =1 if not found */
}

The routine replace_—char replaces each occurrence of the first

specified character with the second specified character.

char *s="Hill"” = "Hall"
char letter 1='i" —»=~{ replace —char
char letter2='a’ —»

void char_replace (s, source letter, target_letter)

Replace each occurrence of source_letter with target_letter
within the string s.

* % F X X X

40 TURBO C PROGRAMMER’S LIBRARY

s (in/out): string to replace characters in.
source_letter (in): letter to replace.
target_letter (in): replacement letter.

char replace (s, 'A’, 'a’);

/

R N

void char_replace (s, source letter, target_ letter)
char s[];
int source_letter, target_letter;
{
int i;

if (source_letter != target_letter)
for (i = 0; s[i]; i++)

if (s[i] == source_letter)
s[i] = target letter;

The routine fill _string fills a character string with a specific
number of occurrences of the specified character. The routine per-
forms bounds checking to ensure that it does not overwrite the array
bounds. If the assignment is successful, the routine returns the value
0. Otherwise, the routine returns the value 1.

char *s=" ") "AAAAA"
char letter="A’ —]

int count=5 —a] fill_string

omy ,scvjst=sizeof(s) —m=

I-» 0 Successful

1 Bounds error

fill string (s, letter, count, maxchar)

Place count occurrences of letter into the string s.
s (in/out): string to fill.

letter (in): letter to place into the string.

count (in): number of times to insert the letter.
maxchar (in): maximum number of characters in s.

fill string (s, ’'A’, 10, sizeof (s));

* % % Gk R Ok R O O % X X

STRING MANIPULATION 41

* fill string returns 1 if the fill was unsuccessful, 0 if
* successful.
*

*x/

int fill string (char s[], int letter, int count, int maxchar)

{

int i;

if (count+l > maxchar) /* +1 reserves space for null */
return (1); /* insufficient memory */

for (i = 0; 1 < count; ++i) /* £fill the string */
s[i] = letter;

s[i] = ’\0’;

return (0);
}

White Space

Programmers who use C often define white space as either the
blank character (ASCII 32) or the tab character (ASCII 9). Just as
your programs require you to place blank characters at the start of
character strings, they periodically require that you remove them.
The following routines allow you to locate the first and last
nonwhite-space character in a string. The first function, called
first_nonwhite, returns the location of the first character in the
string that is not a white-space character, or the value —1 if the
string contains solely white space.

char *F"AAA"——Wst_nonwhite l

0 First character is nonwhite space
—1 If string contains only white space

/* first_nonwhite (s)
*

* Return the index of the first character that is not white

42 TURBO C PROGRAMMER'S LIBRARY

space (a blank or a tab).

s (in): string to examine for nonwhite space.

*

*

*

*

* result = first nonwhite (name);

*

* If the string contains all white space, -1 is returned.
*
*

/

int first_nonwhite (char s[])

int i, location = -1;
for (i = 0; s[i] && (location == =-1); ++i)
if ((s[i] !'= " 7)) && (s[i] != ’\t’))
location = i;

return (location); /* -1 if all white space */
}

Similarly, the routine last_nonwhite returns the location of the last
nonwhite-space character in the string, or the value —1 if the string
contains only white space.

char *s="AAA"—->-| last _nonwhite I

I—> 0 Last character is nonwhite space
—1 If string contains only white space

/: last_nonwhite (s)

* Return the index of the last character that is not white
: space (a blank or a tab).

: s (in): string to examine for nonwhite space.

: result = last_nonwhite (name);

: If the string contains all white space, -1 is returned.
*

/

int last_nonwhite (char s[])
int i, location = -1;

for (i = 0; s[i]; ++1i)

if ((s[i) !'= "' ') && (s[i] != ’\t’))
location = i;

STRING MANIPULATION 43

return (location); /* -1 if all white space */
}

String Comparison

Most applications that perform string manipulation eventually must
perform string comparisons. Many existing routines will help you
determine whether two strings are equal. For example, consider this
loop, which compares two strings:

for (i = 0; sl[i s2[1i]; ++1)
== !

if (s1(i)
{
printf ("Equal strings\n");
break;

}

The routine begins with the first letter in each string and compares
them. As long as the letters are equal, the routine compares succeed-
ing characters. This process continues until either two characters
are not equal, or the ends of both strings are found.

Consider these examples:

C > c Equal strings
\0 - \0
s s2

A > a

B

c c Not equal
\0 \0

s1 s2

44 TURBO C PROGRAMMER’S LIBRARY

Although this routine works, often the program would like the
strings to be considered equal, regardless of the case of the letters.
Here, the routine should show the strings "Turbo C” and "TURBO
C” as equivalent. In order to support the capability to perform case-
sensitive comparisons, you must add a third parameter, as shown
here:

equal_strings (sl, s2, ignore_case);
Thus, one routine serves both possible requirements of the user.

The following routine returns the value 1 if the two strings are
equal, and 0 otherwise. It supports case-sensitive processing.

char *s1="AAA" —=
char *s2="aaa"” —»| equal —strings

int ignore__case=1—]
L1 Equal strings

0 Not equal strings

equal_strings (sl, €2, ignore_case)

Return 1 if the strings sl and s2 are equal, otherwise return
0. Support case sensitive processing.

sl (in): string to compare.

s2 (in): string to compare.

ignore case (in): if not 0, case of letters is ignored.
if (equal_strings ("THIS", "this", 1))

equal_strings returns 1 if the strings are equal, 0
otherwise.

/

OOk Ok % O Ok % % F % Ok % ¥ X X F

int equal_strings (char sl[], char s2[], int ignore_case)
{
int i;
char a, b;

for (i = 0; sl[i] && s2[i]; i++)
if (sl[i] != s2[i])
{

if (ignore_case)

a = (sl[i] >= "a’ && sl[i] <= 'z’)
b = (s2[i] >= 'a’' && s2[i] <= 'z’)
if (a != b)

break;
}
else
break;
}
if (s1[i] || s2[i])
return (0);

else
return (1);
}

STRING MANIPULATION 45

? s1[i] & ~32:
? s2[i] & ~32:

sl[i]);
s2[i];

Similarly, the following routine returns the location of the first
character that differs between two strings, or —1 if no difference
occurs. This routine supports case-sensitive processing.

char *s1="TEST"
char «s2="TEST"
ing ignore _ case—O——J

——.
—first _difference

—1

L Index to first different character

If strings are equal

~

H O O X Ok O X O H X X X X

first_difference (sl, s2, ignore_ case)

or the value -1 if the strings are equal.
sl (in): string to compare.
s2 (in): string to compare.
ignore case (in): if 1, case is ignored.
location =

/

first_difference ("This",

Return the location of the first difference between two strings

"THIS®, 1);

int first_difference (char sl[], char s2[], int ignore_case)

{

int 1i;

char a, b;

for (1 = 0; s1[i] && s2[i]; i++)
if (s1[i] != s2[i])

{

46 TURBO C PROGRAMMER'S LIBRARY

if (ignore_case)
{

a = (sl[i] >= 'a’ && sl[i] <= ’z’) ? s1[i] & ~32: sl[i];
b = (s2[i] >= 'a’ && s2[i] <= 'z') ? s2[i] & ~32: s2[i];
if (a != Db)

break;
else
break;
}
if (sl[i] || s2[i])
return (i);

else
return (-1);
}

The routine string_comp examines two character strings and
returns one of the following values:

Strings are equal
First string is greater
Second string is greater

N = O

char *s1="AAA" —_—
char *s2="AA" string_compare
int ignore__case=1; —m

l—» 0 If strings are equal
1 If s1>s2
2 If s2>s1

string_comp (sl, s2, ignore_case)

Compare the strings specified. Return 1 if sl > s2, 2 if
s2 > sl and 0 if the strings are equal. Support case sensitive
processing.

sl (in): string to compare.
s2 (in): string to compare.
ignore_case (in): if not 0, case of letters is ignored.

if (string_comp ("THIS", "this", 1) == 1)

¥ % R % % F % X % Ok X X F N

STRING MANIPULATION 47

int string comp (char sl[], char s2[], int ignore_case)

int i;
char a, b;

int result = 0; /* 0 equal,

for (1 = 0; sl([i] && s2([1i]; i++)

if (s1[i] != s2[i])
{

if (ignore_case)

{

b (s2[1i] >= ’'a’' && s2[i] <=
if (a != b)
{
if (a > b)
result = 1;
else
result = 2;
break;
}
}
else

if (sl[i] > s2[i])
result = 1;
else
result = 2;

break;
}
}
if (result == 0)
{
if (s1l[i]) == s2[i))

result = 0;

else if (sl(i])
result = 1;
else
result = 2;

return (result);

Substring Manipulation

a = (sl[i] >= 'a’ && sl[i] <=

greater, 2 s2 greater */

fz') ? sl[i] & ~32: sl[i];
rz') 2 s2[i] & ~32: s2[i];

Just as a character string is a sequence of characters, a substring is
a series of characters within a string. For example, given the string
"Turbo C Programmer’s Library”, "Turbo” is a five-character sub-

string that begins at offset 0.

The following routines enable you to locate, replace, and count
the number of occurrences of a substring within a string. The first

48 TURBO C PROGRAMMER'S LIBRARY

routine, str_index, returns the starting offset of a substring within
a string, or the value —1 if the substring is not found.

Given the string "McGraw-Hill” and the substring “Hill”, the
routine processes as follows:

1. Increment the index until string{index ==substring{0], or the
end of the string is found (see Figure 2-5).

2. Increment the index of the string and substring as long as
the corresponding letters are equal, or until the end of either
string is found (see Figure 2-6).

3. If the substring is found, return the index within the string
that corresponds to the start of the substring. Otherwise,
resume Step 1.

M Substring[0] H
(o} |
G |
r |
a \0
w
string[7] H
I
I
|
\0

Figure 2-5. Incrementing the index

STRING MANIPULATION 49

M substring[0] H
c substring[1] i
G substring[2] I
r substring[3] |
a substring[4] \0
w
string[7] H
string[8] i
string[9] |
string[10] |
string[11] \0

Figure 2-6. Incrementing the index until length of string and
substring are equal, or until end of string

This code implements str—index:

char *str="THIS" —»
char *sub="1S" —=

str__index

L 2
—1

Index at which substring begins
If substring is not found

50 TURBO C PROGRAMMER'S LIBRARY

index (substring, string)

Return the starting index of the substring within a string
or the value -1 if the substring is not found.

substring (in): substring to search for.
string (in): string to examine.

if (index ("PATH=", *ENV[1]) != -1)
/

H Ok R % % Ok % % X O X F

int index (char substr[], char str[])
{

int i, 3, ks

for (1 = 0; str[il; i++)
for (j = i, k = 0; str[j] == substr(k]; j++, k++)
if (! substr[k+1]) /* end of substring */
return (i);

return (-1); /* substring not found */

}

Similarly, the following routine returns a count of the number of
times that a substring appears in a string:

char str="THIS IS"—=

char *sub="18" —»| Str—count

I—»Q IS appears twice

0 If substring not found

/*

* str count (substring, string)

*

* Return the number of occurrences of the substring within
* the string specified.

*

* substring (in): substring to search for.

* string (in): string to examine.

*

* count = str count ("is", "This is a test");
*

*

STRING MANIPULATION 51

int str_count (char substr(], char str[])
{
int i, j, k, count = 0;

for (i = 0; str(i]; i++)

for (j = i, k = 0; str(j] == substr(k]; j++, k++)
if (! substr(k+1]) /* end of substring */
count++;
return (count); /* 0 if string not found */

}

The routine remove_substring deletes each occurrence of a
substring from a string:

char *str="AABBCC" —

remove _substrin " "
char *sub="BB" —] g —=="AACC

|—-> 0 Successful

—1 Substring not found

/*

* remove_substring (substring, string)

*

* Removes the first occurrence of a substring from within a string.
*

* substring (in): substring to remove.

* string (in/out): string to remove the substring from.

*

* status = remove_substring ("is", strvar);

*

* If successful, remove_substring returns the value 0. If the

* substring is not found, remove_ substring returns the value -1.
*

E 3

/

int remove_substring (char substr({], char str[])

{

int i, j, k, location = -1;
for (i = 0; str[i] && (location == =1); i++)
for (j = i, k = 0; str[j] == substr[k]; j++, k++)
if (! substr(k+1l]) /* end of substring */

location = i;

if (location != -1)

‘52 TURBO C PROGRAMMER'S LIBRARY

for (k = 0; substrik]; k++)

’

for (j = location, i = location + k; str[il; j++, i++)
str[j] = str[i];

str(j] = '\0’;

return (0);
}
else

return (-1); /* substring not found */
}

The routine next_—str_occurrence returns the next occurrence
of a substring within a string that follows the index given. If the
substring is not found, the routine returns the value —1.

char *str="THIS |S"—a
char *sub="1S" —» next_str__occurrence

int index=4 —
|—> 5 Starting index of next

occurrence of the substring
—1 If not found

/%

* next_str_occurrence (substring, string, start_index)

*

* Return the index of the next occurrence of the substring
* within the string starting at the index specified.

*

* substring (in): substring to search for.

* string (in): string to examine.

* index (in): starting index of the search.

*

* location = next_str_occurrence ("is", "this is a test", 4);
*

* If the substring is not found, -1 is returned.

*

*/

int next_str_occurrence (char substr(], char str(], int index)
{
int i, 3, k:

for (i = index; str([i]; i++)
for (j = i, k = 0; str[j] == substr(k]; j++, k++)
if (! substr(k+1l]) /* end of substring */
return (i);

STRING MANIPULATION 53

return (-1); /* substring not found */

}

Pattern Matching

The last obstacle facing the completion of your library of string-
manipulation routines is the matching of wildcard characters. For
example, assume that you are concerned with only the first and last
three letters of a file named ABC??FGH. Since you do not care about
the middle two characters, they are replaced with question marks.
With the routines just shown, you can modify the search loops, as
shown here:

charsstr="THIS"—=

charssub="77|g"—=- Pattern—index

—— Index where substring starts
—1 If substring is not found

pattern_index (substring, string)

Return the starting index of the substring within the string.
Allow the user to place the ? wildcard character within the
substring for "don’t care" letters.

pattern_index ("this 222", "this bbb a test");

If the substring is not found, pattern_index returns -1.

/

* R F R A O % F X F *

int pattern index (substr, str)
char substr([], str[];
{
int i, 3, ks

54 TURBO C PROGRAMMER'S LIBRARY

for (i = 0; str[i]; i++)

for (j = i, k = 0; (str[j] == substr(k])
Il (substr[k] == ’27); 3++, kt++)
if (! substr(k+l]) /* end of substring */

return (i);

return (-1); /* substring not found */

This simple addition adds considerable flexibility to your routines.

Pointer
Manipulation

Chapter 2 created a valuable library of string-manipulation rou-
tines. To do so, each string was treated as an array of characters, as
shown here:

char s[100];

Although each of the character array routines is fully functional,
you can in many cases reduce to an even greater extent the amount
of code required to implement each routine by using pointers. Many
C programs make extensive use of pointers, so you must understand
them.

By the end of this chapter, you should feel comfortable with the
use and manipulation of pointers. In fact, you will be developing
pointer-manipulation routines that possess tremendous capabilities.

55

56 TURBO C PROGRAMMER’S LIBRARY

Getting Started

All of the variables that you use in your programs are stored in
memory. In order to be able to access each specific variable, C must
have a means of differentiating variables (see Figure 3-1). C does
this by assigning each variable a unique memory address, as shown
in Figure 3-2.

The C ampersand operator (&) returns a variable’s address.
Note that the following program does not display the value each vari-
able contains, but rather the location of each variable in memory:
main ()

{int a=5, b =10;

printf ("Address of a %u -- Address of b %u\n",
&a, &b);

By adding a simple modification to the program, you can dis-
play the address and value of each variable, as shown here:

main ()
{
int a =5, b = 10;

printf ("Address of a %u Value %d\n", &a, a);
printf ("Address of b %u Value %d\n", &b, b);
}

A pointer is a variable that contains a memory address. To
declare a pointer variable, use the following format:

variable_type *variable_name;

For example, to declare a pointer to a value of type int, use the
following:

int *int_pointer;

The asterisk tells C that the variable is a pointer to a memory
location that contains a value of type int. To assign an address to the

POINTER MANIPULATION 57

pointer, use the ampersand operator, as shown here:

int_pointer = &integer_variable;

Notice the absence of the asterisk (*). When a program refer-
ences a pointer without an asterisk, it is referring to a memory
address. For example, in the previous assignment you were assign-
ing the address of the variable integer__variable to the pointer
mt_pointer, so no asterisk was used. When an asterisk is used with
a pointer, the value contained at the memory location referenced by
the pointer is manipulated (as opposed to the address).

Consider the following example:

main ()
{
int i, *int_pointer;

int_pointer = &i;

*int_pointer = 5;
}

This program begins by assigning the address of ¢ to the pointer
wmt_pointer. Following this assignment, int_—pointer contains the
memory address of <.

Address

1024 5 i 1024 int_pointer

*int_pointer=5;

Memory

58 TURBO C PROGRAMMER'S LIBRARY

main() a
{ l——— b
[-————

int a,b,c;

Memory

Figure 3-1. Differentiating among variables

Address
1000 l-——— 2
{ 1004 ft————— C
int a,b,c;
}
Memory

Figure 3-2. Assigning variables unique memory addresses

POINTER MANIPULATION 59

You can verify this by adding the following line of code:

printf ("Address of i %u Value of int_pointer\n",
&i, int_pointer);

Next, the program assigns the value 5 to the memory location
referenced by nt__pointer.

Address

1024 5 et 1024 int_pointer

*int_ppinter=5;

Memory

In so doing, the variable 7 (which also refers to the same memory
location) is assigned the value 5.

Pownters and Functions

Chapter 2 examined several functions that returned a status value
indicating the success of their processing. In cases such as this
where the function needs to return only one value, you have no addi-
tional processing concerns. For example, the following function
returns the sum of two integer values:

sum (int a, int b)

{
return (a + b);

60 TURBO C PROGRAMMER'S LIBRARY

In this case, the function returns one value and cannot modify the
contents of its parameters.

C passes parameters to functions by using a technique known as
call by value. Each time a parameter is passed to a function, C
assigns a copy of the value in the parameter to the function parame-
ters (formal parameters). Consider the following program, which
passes two integer variables to a function. The function first dis-
plays the original values and then modifies each of the parameter
values. However, when the program control returns to main, the
original variable values remain unchanged because the function
modified copies of the values contained in the variables (as opposed
to the variables themselves).

main ()
int a = 5, b = 10;
some_function (a, b);

printf ("In main a = %d b = %d\n", a , b);

some_function (int a, int b)

printf ("In some_function a = %d b = %d\n", a, b);

a
b

9;
11;

printf ("In some_function a = %d b = %d\n", a, b);
}

On invocation, this program displays the following:

10
11

In some_function a
In some_function a
In main a = 5b =1

/]

ol
oo
oo

If you want to modify the actual parameters within a function,
you must use pointers. For example, assume that you have two vari-
ables (a and b) that you want to initialize by using a function. To do

POINTER MANIPULATION 61

so, you must pass the addresses of each variable to the function by
using the ampersand operator, as shown here:

main ()
int a, b;
initialize (&a, &b);

printf ("a = %d b = %d\n", a, b);
}

Within the function, you must specify to C that you are using point-
ers, as shown here:

initialize (int *a, int *b)
{
*a
*b
}

1;
2;

On invocation, this program displays the following:

(o)

This is because the function variables referenced the same memory
locations as the actual parameters (see Figure 3-3).

In a similar manner, the following function increments all three
of its parameters:

increment (int *a, int *b, int *c¢)
(*a+) +;
(*b) ++;
(*c) ++;

}

Once again, invoke the function as follows:

increment (&valuel, &value2, &value3);

62 TURBO C PROGRAMMER'S LIBRARY

main()

{
int a,b;
initialize(&a,&b); a

'

}

-initialize(a,b) - . Memory
int xa,xb;

{
*a=1,;
*b=2;

Figure 3-3. Variables referencing same memory locations
as parameters

Pointers and Strings

Probably the greatest use of pointers in C is for string manipulation.
Each time C passes an array to a function, it passes the address of
the first element in the array. Remember, strings in C are treated as
arrays.

Since you are dealing with memory addresses, this provides an
ideal application for pointers. Consider the following function, which
displays the first character in the array of characters that it
receives:

show_first (char *s)

{

printf ("%c\n", *s);
}

POINTER MANIPULATION 63

Address
1000
1001
1002
1003
1004
1005
1006 C

1007 \0

c |+

-

o

Figure 3-4. References of s in "Turbo C” string

On invocation, s points to the first letter in the string. Assuming that
the string is "Turbo C”, s references as shown in Figure 3-4. If you
simply add 1 to the memory address, you can point to the second
letter in the string, as shown here:

show_second (char *s)

s++; /* point to second character */
printf ("%c\n", *s);
}

The following routine displays the contents of the string it
receives:

show_string (char *s)

while (*s != ’\0’)
{
printf ("%c", *s);
s++;
}
}

64 TURBO C PROGRAMMER’S LIBRARY

With each iteration, you simply add 1 to the pointer (called tncre-
menting the address).

Next, you can reduce the code to an even greater extent by using
the following expression:

*s++

In this case, C will first use the value contained in the memory
address referenced by s and then increment it. As such, the code
fragments

a = *s++;

and

a = *s;
S++;

perform identical functions. With this concept in mind, you can
modify the code as shown here:

show_string (char *s)

{
while (*s != ’\0’)
printf ("%c", *s++);
}

The following routines make extensive use of pointers. Many of
these routines perform functions that are similar to the functions of
routines presented in Chapter 2. You must understand the process-
ing involved in the routines that follow.

String-Manipulation Routines

The first function, string_length, returns the number of characters
in a string:

POINTER MANIPULATION 65

char *s1="Test" -—-—-{ string—lengthJ

4 Number of characters in the string

string_length (s)

Return the number of characters in the string.
s (in): string to count the characters in.
length = string length ("This is a test");
/

* % % F ¥ K % X * %

string_length (char *s)
{ .
int len = 0;

while (*s++)
len++;

return (len);

In a similar manner, the routine char_index returns the first
occurrence of the letter specified within the string. If the letter is
not found, char__index returns the value —1.

char *s="This is" —»~{

char—index
char letter="i —

L 2 index of the letter i in the string
—1 If the letter is not found

66 - TURBO C PROGRAMMER'S LIBRARY

char_index (s, letter)

Return the index of the first occurrence of letter in
the character string specified.

s (in): string to search for the letter.
letter (in): character to search for.

index_value = char_index ("This is a test", ’i’);

/

LR R R 2R R N N S

char_index (char *s, char letter)
{ ;

int count, location = -1;
for (count = 0; *s && (location == -1); count++)
if (*s++ == letter)

location = count;

return. (location);

}

The routine char__count returns the number of occurrences of
the letter specified within the string. If the letter is not found,
char__count returns the value 0.

char »s="This is"—
) char_count
char letter "ji" —w=
L 2 Number of times i appears in the string
0 If letter not found

/*

* char_count (s, letter)

*

* Return the number of occurrences of a letter in the
* character string specified.

*

* s (in): string to search for the letter.

* letter (in): character to search for.

*

* count = char_count ("This is a test", ’i’);

*

*

POINTER MANIPULATION 67

char_count (char *s, char letter)
int count = 0;
while (*s)
if (*s++ == letter)

count++;

return (count);

}

The function replace_character replaces each occurrence of the
first letter specified in the first string with the letter contained in
the second string.

char *s="aaaBBB" —= "AAABBB"
char old="a" —{ replace_character
char new="A" —]

/*

* void replace_character (s, oldletter, newletter)
*

* Replace each occurrence of oldletter in a string with
* the character contained in newletter.

*

* s (in/out): string to replace the letters in.

* oldletter (in): letter to replace.

* newletter (in): replacement letter.

*

* replace_character (some string, 'A’, ’a’);

*

x/

void replace_character (char *s, char oldletter, char newletter)
{

while (*s)

if (*s == oldletter)
*s++ = newletter;
else
S++;

In a manner similar to the routines in Chapter 2, the following
routines use bit manipulation to convert a string to uppercase or
lowercase letters:

68 TURBO C PROGRAMMER'S LIBRARY

char *s="aaabbb"—-—r str—_to_—uppercase]——"AAABBB"

void str_to_uppercase (s)

Convert a string to UPPERCASE characters.

s (in/out): string to convert to UPPERCASE.
str_to_uppercase (filename);

str_to_uppercase uses bit manipulation to convert characters
to uppercase.

/

* % % % X % Ok F % X H N ¥

void str_to_uppercase (char *s)
{

while (*s)
if (*s >= 'a’ && *s <= 'z2')
*s++ &= ~32;
else
sS++;

char *s=”AAABBB”——[str_to__lowercase]——— "aaabbb"”

void str_to_lowercase (s)

Convert a string to lowercase characters.

s (in/out): string to convert to lowercase.
str_to_lowercase (filename);

str_to_lowercase uses bit manipulation to convert characters
to lowercase.

/

H % X E X X ¥ % X ¥ X O F

void str_to_lowercase (s)
char *s;

while (*s)
if (*s >= 'A’ && *s <= '32')
*s++ |= 32;
else
S++;

POINTER MANIPULATION 69

This routine copies the contents of the first string specified to
the second string. This routine does not perform bounds checking.

char *s1="AAAA" —» . .
char *s2 fast_copy | "AAAA

Warning: fast_copy does not perform bounds checking.

void fast_copy (source, target)
Copy the contents of the source string to the target.

sl (in): source string containing characters to copy.
s2 (out): string receiving characters copied.

fast_copy ("This is a test", stringvar);
fast_copy does not perform bounds checking.

/

Ok F Ok %k %k X X X F X X *

void fast_copy (sl, s2)
char *sl, *s2;
{
while (*s2++ = *sl++)

}

You can implement bounds checking simply by adding the maxchar
qualifier (as shown in Chapter 2):

char *s1="AAAA" —
char *s2 —== copy—string |[—= "AAAA"
int maxchar=sizeof(s2)

L 0 Successful

1 Bounds error

/*
* int string copy (source, target, array_bound)
*

70 TURBO C PROGRAMMER’S LIBRARY

Copy the source string to the target string variable.
sl (in): contains the characters to be copied.
s2 (out): receives the characters copied.
maxchar (in): specifies the maximum number of characters
that s2 can store.
status = string copy ("This is", stringvar, sizeof (stringvar));

If the array bounds are exceeded, string copy returns the value
1; otherwise it returns the value 0.

/

* Ok Ok X F X X % Ok Ok X X X

int string copy (char *sl, char *s2, int maxchar)
{
int i;

maxchar--; /* leave space for null */

for (i = 0; (*s2++ = *sl++) *&& (i < maxchar); i++) . .

;
if ((i == maxchar) && *sl) /* see if characters remain in sl */

*s2 = '\0’;
return (1);
}
else
return (0);

The routine fast_append appends the contents of the first spec-
ified string to the second string. No bounds checking is performed.

char *31:"CCC" — " "
char *s2="AAABBB" —s| [aSt—append |—= "AAABBBCCC

Warning: fast_append does not perform bounds checking.

void fast_append (source, target)
Append the contents of the source string to the target.

sl (in): source string containing characters to append.
s2 (out): string receiving characters copied.

fast_append ("This is a test", stringvar);

fast_append does not perform bounds checking.

%Ok Ok O R Ok Ok Ok O Ok % % X

POINTER MANIPULATION 71

void fast_append (char *sl, char *s2)
{
while (*s2) /* find the end of s2 */
S2++;

while (*s2++ = *sl++) /* append sl */
) ¥
The following routines perform case-sensitive string compari-
sons.
The first routine, equal_strings, returns the value 1 if two
strings are identical. Otherwise, it returns 0.

v . . .

char *s1="This" —=
char *s2="THIS" —= equal_strings

int ignore__case=1—»
L 1 Strings are equal

0 Strings differ

/%
* equal_strings (sl, s2, ignore_case)

*

* Return 1 if the strings sl and s2 are equal, otherwise return
* 0. Support case sensitive processing.

*

* sl (in): string to compare.

* s2 (in): string to compare.

* ignore_case (in): if not 0, case of letters is ignored.

*

* if (equal_strings ("THIS", "this", 1))

*

* equal_strings returns 1 if the strings are equal, 0

* otherwise.

*

*x/

int equal_strings (char *sl, char *s2, int ignore_case)
{

char a, b;

for (; *sl && *s2 ; sl++, s2++)
if (*sl != *s2)

if (ignore_case)

a (*sl >= ’a’ && *sl <= 'z’) ? *sl & ~32: *sl;
b (*s2 >= 'a’ && *s2 <= 'z') ? *s2 & ~32: *s2;
if (a != b)

break;

wn

72 TURBO C PROGRAMMER’S LIBRARY

}
else
break;
}

if (*sl || *s2)
return (0);
else
return (1);

The routine string_compare returns one of the following
values:

0 Strings are equal
1 String 1 > String2
2 String 1 < String2

char *s1="THAT" —=
char *s2="THIS" —={string_compare

int ignore_case=1 —=
L s2>s1

2
0 s1=s2
1 s1>s2
/ *
* string comp (sl, s2, ignore_case)
*
* Compare the strings specified. Return 1 if sl > s2, 2 if
* s2 > sl and 0 if the strings are equal. Support case sensitive
* processing.
*
* s1 (in): string to compare.
* s2 (in): string to compare.
* ignore_case (in): if not 0, case of letters is ignored.
*
* if (string_comp ("THIS", "this", 1) == 1)
*
*x/

int string comp (char *sl, char *s2, int ignore_case)
{
char a, b;
int result = 0; /* 0 equal, 1 sl greater, 2 s2 greater */

for (; *sl && *s2; sl++, s2++)
if (*sl != *s2)

POINTER MANIPULATION 73

if (ignore_case)

a (*sl >= 'a’ && *sl <= ’z2') ? *sl & ~32: *sl;

b (*s2 >= 'a' && *s2 <= 'z') ? *s2 & ~32: *s2;
if (a != b)
{
if (a > b)
result = 1;
else
result = 2;
break;
}
}
else

if (*sl > *s2)
result = 1;
else
result = 2;

break;
}
}

if (result == 0)

{
if (*sl == *s2)
result = 0;
else if (*sl)
result = 1;
else
result
}

return (result);

}

2;

The routine first__difference returns the index of the first char-
acter that differs between two strings. If the strings are equal, the
routine returns the value —1.

char *s1="This" —=f
char *s2="THIS"” —=i first_difference

int ignore_case=1
L -1 Strings are equal

Index of first character that differs

74 TURBO C PROGRAMMER’S LIBRARY

/*

* first_difference (sl, s2, ignore_case)

*

* Return the index location of the first character that differs
* between sl and s2. If the strings are equal, return the value -1.
*

* g1 (in): string to compare.

* s2 (in): string to compare.

* ignore_case (in): If 1, ignore case of letters.

*

* location = first difference ("TURBO C", "turbo c", 1);

%

*

/

int first_difference (char *sl, char *s2, int ignore_case)
{
int i;
char a, b;
for (i = 0; *sl && *s2; sl++, s2++, i++)
if (*sl != *s2)

{
if (ignore_case)

= (*sl >= ’a’ && *sl <= '2z') ? *sl & ~32: *sl;
b = (*s2 >= 'a' && *s2 <= 'z') ? *s2 & ~32: *s2;

break;
}

if (*sl || *s2)
return (i);
else
return (-1);
}

The routine index returns the starting index of a substring
within a string. If the substring is not found, the routine returns the
value —1.

char *str="This is" —

char *substring="is" —m= index

l—» 2 Starting index of is
-1 If substring not found

POINTER MANIPULATION

index (substring, string)

Return the starting index of the substring within a string
or the value -1 if the substring is not found.

substring (in): substring to search for.
string (in): string to examine.

if (index ("PATH=", *ENV([1]) != -1)
/

* O R O R X X Ok H X X

int index (char *substr, char *str)
{

char *substring, *string, *start = str;

while (*str)
for (string = str++, substring = substr;
*string == *substring; string++, substring++)
if (! *(substring+l)) /* end of substring */
return (str - start - 1);

return (-1); /* substring not found */

75

The function str__count returns a count of the number of occur-
rences of a substring within a string. If the substring does not occur

in the string, the value 0 is returned.

char *str="this is" |

char *substring="is" —_yu] str—count

l—» 2 Number of occurrences
of is in the string
0 If substring is not found

str_count (substring, string)

Return the number of occurrences of the substring in the string
or the value 0 if the substring is not found.

substring (in): substring to search for.
string (in): string to examine.

* O Ok % R H X % ¥

76 TURBO C PROGRAMMER’S LIBRARY

* count = str_count ("is", "This is a test");
“
int str_count (char *substr, char *str)

char *substring, *string;

int count = 0;

while (*str)
for (string = str++, substring = substr;

*string == *substring; string++, substring++)
if (! *(substring+l)) /* end of substring */
++count;
return (count); /* substring not found */

Conversion Routines

Periodically a program must convert a string representation of a
value to its numeric format. Consider the following program:

main ()

char agestr[5];
int age;

printf ("Enter your age\n");

gets (agestr);

if (ascii_to_int (agestr, &age) != -1)
printf ("%d\n", age);

else
printf ("Invalid age entered\n");

The program invokes the function ascii__to—int, which converts a
string representation of an integer value to an actual value of type
int. If the string contains ”1233”, the routine returns the integer
value 1233. However, if the string contains an invalid character
(such as "123d3"), the routine returns an error status value.

POINTER MANIPULATION 77

char *ascii="123" —= .. .
int wvalue ascii—to—.int 123

l—-» 0 Successful

-1 Invalid character found

/*

* ascii_to_int (str, value)

*

* Convert a string representation of a numeric value to the
* actual integer value.

*

* str (in): string containing numeric representation.

* value (out): actual integer value.

*

* if (ascii_to_int ("1112", &value) != -1)

*

* If the character contains invalid characters, the value -1 is
* returned.

*

*/

ascii_to_int (char *str, int *value)
int sign = 1; /* -1 if negative value */
*value = 0;

while (*str == '’ ') /* skip leading blanks */

str++;
if (*str == '=' || *str == '+')
sign = (*str++ == ’-') ? -1: 1;

while (*str)
if ((*str >= ’0’) && (*str <= ’97))
*value = (*value * 10) + (*str++ - 48);
else
return (-1); /* invalid character */

*value *= sign;

return (0);

In just the opposite manner, the routine int__to_—ascii converts
an integer value to its string representation.

——————

78 TURBO C PROGRAMMER'S LIBRARY

har *ascii ~ —s . O R
icnt val3e=555 —a] 'Mt—to_ascil 555

*

/: int_to_ascii (value, str)

: Convert an integer value to its character string representation.
* str (out): string to contain the numeric representation.

: value (in): integer value to convert.

* int_to_ascii (str, 22);

“

int_to_ascii (int value, char *str)
{
int sign = value;

char temp, *savestr = str;

if (value < 0)
value *= -1;

do
{
*str++ = (value % 10) + 48;
value = value / 10;
}
while (value > 0);

if (sign < 0)
*str+d = -1

*str-- = '\0’;

while (savestr < str)
{
temp = *str;
*str-- = *savestr;
*savestr++ = temp;

Admittedly, this has been a fast trip through pointer-manipulation
routines. If you do not yet feel comfortable with the concept of a
pointer, experiment with the previous routines before proceeding.

POINTER MANIPULATION 79

Arrays of Pointers

Just as C allows you to have an array of characters, it also allows you
to create an array of pointers. For example, consider the following
definition:

char *summer [3];

C will create an array indexed from 0 to 2 that contains three point-
ers to character strings. You can assign values to each string ele-
ment and then display them, as shown here:

main ()
{
char *summer([3];

int 1i;

summer [0] = "June";
summer [1] = "July";
summer [2] = "August";

for (i = 0; i < 3; i++)
printf ("$s\n", summer [i]);
}

Using this concept, you can define many useful arrays of point-
ers to character strings, as shown here:

char *DAYS([7] = {"Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday",
"Saturday" };

This program uses an array of pointers to display an ASCII,
decimal, octal, and hexadecimal chart.

char *ascii[] = ("NUL", "SOH", "STX", "EXT", "EOT",
WENQ", "ACK", "BEL", "BS ". WHT ",
WLF ", YT . “EF ", WCR ", WSO ",
IISI ll, "DLEII, "DCl", lch2ll, IIDC3I|’
WDCA™, "NAK", "SYN", "ETB", "CAN",
WEM ", "SUB", "ESC", "FS ", "GS ",
IIRS " , IIUS " , " SPACEII) ,.

80 TURBO C PROGRAMMER’S LIBRARY

main ()
int 1i;

for (i = 0; i < 33; i+4) '
printf ("%03d %030 %03x %s\n", i, i, i, ascii[il);

for (; i < 128; i++)
printf ("%$03d %030 %03x %3c\n", i, i, i, 1i);

In order to fully exploit the capabilities found in C, you must be
able to understand and utilize arrays of pointers to character
strings.

Command-Line Processing

Each time you enter a command from the DOS prompt, the
sequence of characters you enter constitutes a command line, as
shown here:

EA> COPY SOURCE TARGET j

One of the most powerful capabilities of C is that it allows easy
access to the command line used to invoke the program. In order to
exploit this access, you must define main within your program, as
shown here:

main (int argc, char *argv([])

{
}

These two parameters provide your access to the command line. The
first, arge, contains the number of command-line arguments. The
second, argv, is an array of pointers to character strings that contain
the actual arguments.

POINTER MANIPULATION 81

Before your C program executes, built-in header code (which
assigns the number of command-line arguments to argc and the
actual arguments to the elements of the array argv) executes. Once
this processing is complete, this code invokes main. In the following
command line,

A> COPY SOURCE TARGET

the variable arge will contain the value 3 and the elements of argv
will point to the following:

argv[0] points to COPY
argv[l] points to SOURCE
argv(2] points to TARGET

You can verify this simply by executing the following program,
which displays each of its command-line parameters:

main (int argc, char *argv([])
int 1i;
for (i = 0; i < argc; i++)

printf ("$s\n", argv[il);
}

The true power of command-line processing is shown when you
examine the file-manipulation programs later in this text. For now,
here is a program that displays the contents of the file specified by a
command-line argument:

l A> SHOW FILENAME.EXT)

#include <stdio.h>

main (int argc, char *argv([])
{

82 TURBO C PROGRAMMER’'S LIBRARY

FILE *fopen (), *fp;
char str([255];

if (argc > 1)
if (! (fp = fopen (argv([l], "r")))
printf ("Invalid file %s\n", argv[l]);
else
{
while (fgets (str, 255, fp))
printf ("%s", str);

fclose (fp);

Accessing Environment Entries

You may be familiar with the DOS environment, which is a region
~ of memory that DOS sets aside to store information.
For example, issue the DOS set command as follows:

(o)

DOS will display the contents of its environment entries:

COMSPEC=C: \COMMAND . COM
PATH=C:\DOS; C:\TURBOC

To place a value in the environment, simply use the SET command
as shown here:

(ﬁA> SET FILENAME=TEST j

To verify that the entry was successful, again issue the SET
command:

POINTER MANIPULATION 83

A> SET

COMSPEC=C: \COMMAND . COM
PATH=C:\DOS; C:\TURBOC
FILENAME=TEST

Many programs often require access to the environment entries.
As such, Turbo C allows you to access the environment in a manner
similar to the command line. Once again, you must modify your
definition of main:

main (int argc, char *argv([], char :env[])
{

}

Just as argv is an array of pointers to the command line, env is
an array of pointers to the environment entries. This program uses
env to display the current environment.

main (int argc, char *argv([], char *env[])
{
while (*env)
printf ("%$s\n", *env++);
}

The following program combines command-line manipulation
with environment processing to display the value of a specific envir-
onment entry.

[A) SHOWENV PATH= J

In this case, the program displays the value associated with the
PATH entry (if it is found):

main (int argc, char *argv[], char *env[])
{
void str_to_uppercase();

if (argc > 1)
{

84 TURBO C PROGRAMMER'S LIBRARY

str_to_uppercase (argv[l]);

while (*env)
if (index (argv[l], *env) == 0)
printf ("$s\n", *env++);
else
env++;

Some programmers have difficulty opening files that do not
reside in a fixed directory or the current directory. The DOS envir-
onment may provide a solution. Assume that the file you need to
open is called DATA.DAT. This file can reside in any DOS subdirec-
tory. As such, you can simply place an entry in the environment that
tells you where the file resides:

[A> SET DATAFILE=C:\SOMEDIR\DATA.DAT]

The program then uses this information to locate the file in order to
successfully open the file. The program simply searches each envi-
ronment entry as shown in the previous program.

Far Pointers

Each of the pointers used thus far was a 16-bit address. Such point-
ers are termed near pointers because they can only be used to access
memory locations within the 64KB data segment. Most C programs
never have access to memory regions beyond this.

However, an advanced program periodically has a requirement
to access memory outside of this region. In such cases, the program
must use far pointers, which contain 32-bit addresses. Unlike near
pointers (which can only offset into the current 64KB data segment),
a far pointer allows you to define a 16-bit segment along with a 16-
bit offset address (see Figure 3-5).

POINTER MANIPULATION 85

31 16 15 0

Segment Offset

f————— 32-bit address ———

Figure 3-5. Offset address of far pointer

Examine the DOS memory map shown in Figure 3-6. Note that
the computer uses the memory region B800:0000 to address the color
video display memory. Knowing this, you can use a far pointer to
reference this memory region. In so doing, you can perform
memory-mapped output.

The computer displays characters by placing the ASCII code for
the character into one of these memory locations, followed imme-
diately by the character’s display attribute value (color, boldface,
and so on), as shown in Figure 3-7. As such, you can place the letter
"A" in the upper left corner of the screen, as shown here:

main ()
{
char far *letter = 0xB8000000;
char far *attr = 0xB8000001;

*letter = 65;
*attr = 7;
}

DOS Power User’s Guide (Kris Jamsa, Osborne/McGraw-Hill,
1988) provides several example routines that use far pointers. In
fact, that book contains a chapter dedicated to memory mapping. in
most cases, you will use near pointers for your manipulation. How-

86 TURBO C PROGRAMMER’S LIBRARY

OH Interrupt vectors

BIOS data area

DOS

Application
Space

Transient
COMMAND.COM

Reserved for
future video

AO00H

B0O0OH
Monochrome

video

B80OH
CGA video

Figure 3-6. Color video display memory address

ever, you should understand the functional capabilities of far
pointers.

POINTER MANIPULATION 87

o A
S y &

char| attr | char | attr | « « « « ¢« o | char | attr 80 x 2 (char, attr)

@ @ ° ¢ o o o o o o @

char| attr [e o o« ¢ o o ¢ ¢« s o ¢ o o | char| attr

25 rowS ——8@8@ ——

Figure 3-7. Displaying a character on screen using ASCII codes and
display attributes

Recursion

Earlier chapters presented several programs and functions that
perform their processing by invoking other functions. With Turbo C,
a function (and even a program) can invoke itself to perform a spe-
cific task. This is known as recursion. Many advanced programmers
use recursion to greatly reduce the amount of code in their
programs.

In later chapters, you will examine the manipulation of dynamic
variables to perform specific tasks. Many of the algorithms for those
programs will be recursive. As you examine the routines in this
chapter, you will find that many of them have been previously
implemented nonrecursively. In most cases you can implement a
function more efficiently without recursion than with it. (The rea-
sons for this are presented later in this chapter.) However, because
many Turbo C programmers make extensive use of recursion in

89

90 TURBO C PROGRAMMER’S LIBRARY

their programs, you should understand the general flow of control
for recursive functions.

Take the time to experiment with the routines presented in this
chapter, and you will find recursion to be a straightforward, power-
ful, and even enjoyable feature of Turbo C programming.

Getting Started with Recursion

The following program invokes the routine show_digit with the
value 5. The function show__digit in turn uses printf to display the
value it receives. The routine then invokes itself with the value —1
(in this case, 4). This process repeats until the value received is equal
to 0. When invoked, the program displays the following:

A> SHOWDGT

PNWs O

The following code implements show__digit:

int_digit=3 —={ show_digit |—=

e
CX)

RECURSION 91

void show digit (digit)

Recursively display the numbers from digit to zero.
digit (in): starting number of the digits to display.
show_digit (7);

/

¥ % % % X % E X X ¥

void show digit (int digit)
{

if (digit != 0)
{
printf ("%d\n", digit);
show_digit (--digit);
}
}

On the first invocation of show__digit, the parameter digit con-
tains the value 5. The function then displays that value and invokes
itself with the value 4:

show_digit (5)
if (digit '=0)
{
printf ("%d \n", 5);
show_digit (5—1);
}

show_digit (4)

The second invocation of the function displays the value 4 and then
invokes itself with the value 3:

92 TURBO C PROGRAMMER'S LIBRARY

show__digit (4)
if (digit '=0)
{

printf (“%d\n", 4);
show__digit (4—1); \
}

show_digit (3)

This process repeats until the value of digit is 0, as shown in Figure
4-1.

Once digit is 0, show__digit no longer invokes itself recursively.
The last invocation of the function terminates and returns control to
the previous invocation.

show_digit (0)
show_digit (1)
if (digit 1=0)

{
printf ("%d\n", 1);

show_digit (1—1);
}

RECURSION 93

show__digit (3)

if (digit =0)

]

1
printf ("%d \n",.3);
show__digit (3—1);

=

show__digit
if (digit 1=0)
{

}

printf ("%d \n", 2);
show__digit (2—1);

(2)

I_'

{

}

show__digit (1)
if (digit !=0)

printf ("%d \n", 1);
show__digit (1—1);

l_‘

show__digit (0)

Figure 4-1. Processing involved in show_digit program (until the
value of digit is 0)

94 TURBO C PROGRAMMER’S LIBRARY

show_digit (1)

/

{

printf ("%d\n",2);
show_digit (2—1);
}

show_digit (2)
if (digit '=0)

This process repeats until no invocation of show__digit is active, as
shown in Figure 4-2. A recursive function, then, is one that calls
itself until an ending condition is met.

Chapter 2 discussed how Turbo C terminates strings with the
null character. With this concept in mind, you can write a recursive
function that determines the number of characters in a string by
searching for the null character. Given the string "ABC”, the func-
tion examines the first character. If the current character in the
string is not the null character, the routine simply adds the value of
1 to the value returned by the next invocation of the routine string__
length. Thus, by using "ABC”, the processing becomes that shown in
Figure 4-3.

RECURSION 95

show__digit (2)
if (digit !=0)
{
printf("%d \n", 2);
show__digit (2—1);
}

r_l

show__digit (3)
if (digit 1=0)
{
printf ("%d\n", 3);
show.__digit (3—1);
}

r__l

show__digit (4)
if (digit '=0)
{
printf ("%d\n", 4);
show__digit (4—1);
}

{__l

show__digit (5)
if (digit 1=0)
{
printf ("%d\n", 5);
show__digit (5—1);
}

Figure 4-2. Processing involved in show__digit program (until
program s no longer active)

96 TURBO C PROGRAMMER’S LIBRARY

string__length ("ABC")
if (+s)
return (1+string__length (++s));

—

string__length ("BC")
if (+s)
return (1+string__length (++s));

—

string_length (“C")
©if (+s)
return (1+string__length (++s));

string__length (" *)
if (xs)
return (1+string_length (++s));
else
return (0);

return (1+1);

Figure 4-3. Processing involved in string_length program

RECURSION 97

Once it locates the null character, the routine simply works its
way back through the series of recursive invocations. The following
routine implements string__length:

char«s="Turbo C"——' string—length J

L 7 Number of characters in the string

string length (s)

Return the number of characters in the string.
s (in): string to return the length of.

count = string length (string);

/

LR R N 2 B

int string_length (s)
char *s;
{
return ((*s) ? 1 + string_length (++s): 0);
}

Similarly, the routine display _string displays the contents of a
character string by using recursion. The routine begins by examin-
ing the current character. If that character is not null, the routine
displays the character and then invokes itself with the next charac-
ter. This process repeats until the null character is found. Given the
string "ABC”, the processing becomes that shown in Figure 4-4.

98 TURBO C PROGRAMMER’S LIBRARY

display__string ("ABC")
if (+s)

{

printf ("%c", ‘A’);
display__string (++s);
}

l_*

display__string ("BC")
if (+s)

printf ("%c",'B');
display__string (++s);
}

l_i

display__string (“C")

if (*s)
{
printf (“%c”, 'C');
display__string (++s);
} .

f_’

display__string (”)

Figure 4-4. Processing tnvolved in display__string program

In the following case, once the routine locates the null character,
no further processing is required. The function simply returns con-
trol to the previous invocation.

RECURSION 99

char *s="Turbo C”——{ display_string }—— Turbo C

Xe)

display_string (string)

Display the contents of a character string on the screen display.
string (in): character string to display.

display string ("This is a test");

/

LR S R

display_string (char *s)
{

if (*s) /* do characters remain? */
{
printf ("%c", *s); /* output current character */
display_string (++s); /* recursively display other characters */

}
}

By changing the following lines of code,

printf ("%c", *s);
display string (++s);

to

display string (s+1);
printf ("%c", *s++);

100 TURBO C PROGRAMMER’S LIBRARY

the routine displays the string in reverse order. This is because the
function first examines the current character in the string. If the
character is not the null character, the routine invokes itself recur-
sively with the next character. This process repeats until the routine
locates the null character. Once the null character is found, the rou-
tines begin working their way back through the series of invocations
to display the characters in reverse order, as shown in Figure 4-5.
The following code implements show _reverse:

char *s="Turbo C” -——-Iishow_reverseJ——' C obruT

00

~

H Ok X X X X X X X ¥ H

show_reverse (string)

Display the contents of a character string on the screen display
in reverse order.

string (in): character string to display.
show_reverse ("This is a test");
/

show_reverse (char *s)

{

if (*s) /* do characters remain? */
{
show_reverse (s+l); /* recursively show other characters */
printf ("%c", *s); /* output current character */

}
}

Probably the most popular use of recursion is for determining the
factorial of a value. Table 4-1 illustrates how to calculate the facto-
rials for the values 1 through 5. The factorial of 5 is

5 * factorial (4)

Figure 4-5.

show__reverse ("ABC”)

if (+s)
{

RECURSION 101

}

show__reverse (s+1);
printf ("%c", 'A’);

—

}

show__reverse ("BC")
if (+s)
{

show__reverse (s+1);
printf ("%c", 'B’);

—

if (*s)
{

printf ("%c", 'C");
}

show__reverse (“C"”)

show__reverse (s+1);

show__reverse (")

r_J

6——‘

Processing involved in show__reverse program

102 TURBO C PROGRAMMER’S LIBRARY

Table 4-1. Factorials of Values 1 Through 5

Value Definition
1 1
2 1+2
3 1%2+3
4 1%2%3%4
5 1#2#3+4%5

Result
1
2
6
24
120

The factorial of 4 is

4 * factorial (3)

This process continues until the factorial of 1 (which, by definition,
is 1) is reached. For example, to determine the factorial of the value

3, the processing shown in Figure 4-6 is performed.
The following routine implements factorial:

int a=3 —-—{ factorial I

‘—= 6 Result of 3*2*1

factorial (value)

Return the factorial of the value specified.
value (in): value to return the factorial of.
fact = factorial (5);

/

L R N A A

factorial (int value)
{
return ((value <= 1) ? 1: value * factorial (value-1));
}

RECURSION 103

factorial (3)

if (value > 1))
return (3 » factorial (3—1));

L

)

factorial (2)

if (value > 1)
return (2 « factorial (2—1));

factorial (1)

if (value > 1)

return (value ~ factorial (value—1));
else

return (1);

Y

return (2);

[

return (6);

|

6 Result

Figure 4-6. Determining the factorial of the value 3

104

TURBO C PROGRAMMER’S LIBRARY

Similarly, recursion can be used to compute a Fibonacci number.
Table 4-2 shows you how to calculate the Fibonacci numbers from 1
to 5. The following code implements Fibonacci:

int value=10;—= Fibonacci

L55 Value of the tenth Fibonacci number

fibonacci (value)

Return the Fibonacci number for the value specified.

value (in): value to return the Fibonacci number of.

fibon = fibonacci (10);

A Fibonacci number is the sum of the previous two Fibonacci numbers.

/

% R Ok R % Ok O Ok Ok ¥ %

fibonacci (int value)

return ((value == 1 || value == 2) ? 1:
fibonacci (value - 1) + fibonacci (value - 2));
}

C is a portable programming language, which means that the code
that you write on one type of computer in C will likely recompile and
run on a different type of computer (with little or no modification).
Portability is one of C’s most important characteristics. However,
exceptions to the rule always exist. Depending on your target com-
puter, the number of bits that C uses to represent value of type int
may differ from 16 to 32 bits. Thus, the range of values that each
can store may also differ (see Table 4-3).

In either case, C always uses the most significant (leftmost) bit of
an integer value as the sign bit, as shown in Figure 4-7. When this
bit is set (1), the value contained in the lower order bits is considered
a negative value. When this bit is clear (0), the value is positive. You

RECURSION 105

Table 4-2. Calculation of Fibonacci Numbers 1 Through 5

Value Definition Fibonacci Number
1 1 1
2 1 1 |
3 1+1 2 |
4 2+1 3 |
5 3+2 5 |

Table 4-3. Number of Bits Versus Minimum and Maximum Values

Number of Bits Minimum Value Maximum Value

16 —32768 32767
32 —2147483648 2147483647

s s

o 9

; Data bits ; Data bits

" ¢

15 14 131 30 0

Figure 4-7. Example of Turbo C using most significant bit of
an integer value

106

TURBO C PROGRAMMER'’S LIBRARY

can use this bit to determine the number of bits Turbo C is using to

store values of type int.

If you begin by assigning a value of type int the value 1, you can
repeatedly shift the value to the left one location until the sign bit
becomes set. When this occurs, you know the size of the variable (see

Figure 4-8).

0 | 000 0000 0000 0001

0 | 000 0000 0000 0010

0- | 000 0000 0000 0100

0 | 010 0000 0000 0000

0 | 100 0000 0000 0000

1 | 000 0000 0000 0000

Count = 1
Count = 2
Count = 3
Count = 14
Count = 15
Count = 16

Figure 4-8. Shifting a value left one location until sign bit is set

The following code implements word_size:

RECURSION

107

inti=1—={ word_size

I—-— 16 or 32 (depending on your compiler)

word_count (value)

num_bits = word count (1);

/

* % O % % X Ok X X %

word_count (int a)

{
}

return ((a > 0) ? 1 + word count (a << 1): 1);

Return the number of bits in a value of type int.

value (in): value to shift left until negative.

The following routine invokes a recursive implementation of the
routine fast__copy. Given the string "ABC”, the processing is that

shown in Figure 4-9.

The following code implements fast__copy. Note that this routine
does not perform bounds checking.

char *s1 = "AAA" ;—m
char *s2;—»=

fast_copy

nAAAn
uAAAn

Warning: fast_copy does not perform bounds checking.

108 TURBO C PROGRAMMER’S LIBRARY

fast__copy ("ABC”, s2)
if (s2 = 'A")
fast__copy ("BC", s2);

—

fast_copy ("BC”, s2)

if (s2 = 'B)
fast__copy ("C", s2);

—

if (s2="C')

fast_copy (“C”, s2)

fast_copy (" “, s2)

—

fast__copy (" ",s2)

i (s2= " ") .
fast__copy ("BC", s2);"

else

return;

return;
return;

return;

Figure 4-9. Processing involved in fast__copy program

RECURSION 109

void fast_copy (source, target)
Copy the contents of the source string to the target.

sl (in): source string containing characters to copy.
s2 (out): string receiving characters copied.

fast_copy ("This is a test", stringvar);
fast_copy does not perform bounds checking.

/

PR T R N T

void fast_copy (sl, s2)
char *sl, *s2;

{
if (*s2 = *sl)

fast _copy (++sl, ++s2);
}

The following program uses recursion to display the contents of a
small text file in reverse order. Just as the string-manipulation rou-
tines presented in Chapter 2 searched a character string one letter
at a time until the null character was found, the file__reverse rou-
tine searches for the end of a file. Given the following file,

AAAA
BBBB
CCccC

the processing becomes that shown in Figure 4-10.
The following program uses file__reverse to display the contents
of a file specified by argv[1] in reverse order.

#include <stdio.h>
main (int argc, char *argv(])
¢

1
FILE *fp, *fopen();

110 TURBO C PROGRAMMER'S LIBRARY

if{fgets (s, 132, fp))

file__reverse (fp);
gfputs ("AAAA" stdout);

—

if (fgets (s, 132, fp))

file__reverse (fp);
!fputs ("BBBB", stdout);

—

if (fgets (s, 132,fp))

file__reverse (fp);
fputs ("CCCC", stdout);
}

—

if (fgets (s, 132, fp))

file__reverse (fp);
fputs ("AAAA", stdout),

}
else

return;
"ccee”
"BBBB"

"AAAA"

Figure 4-10. Processing involved in file__reverse program

void file_reverse (FILE *fp);

if (argc < 2)
printf ("Invalid usage: FILEREV FILENAME.EXT\n");
else if (! (fp = fopen (argv(l], "r")))
printf ("Could not open %s\n", argv(l]);
else
{
file reverse (fp);
fclose (fp):;
}

*
/: void file_reverse (file_pointer)
: Display the contents of the file specified last line to
: file pointer (in): pointer to the desired file.
: file_reverse (fp);
: file reverse only works for small files.
*

/

void file reverse (FILE *fp)
{

char string([132];

if (fgets (string, 132, f£fp))
{
file_reverse (fp);
fputs (string, stdout);
}
}

RECURSION

first line.

111

Similarly, the program file__pointer uses recursion to display the

last ten lines of a file. For example, the command

A> LAST FILENAME.EXT

displays the last ten lines of the file FILENAME.EXT, as shown

here:

#include <stdio.h>

main (int argc, char *argv([])
(FILE *fp, *fopen();
char *lines([10], *malloc();

int index;

112 TURBO C PROGRAMMER’S LIBRARY

int last (FILE *, char *[], int);

if (argc < 2)
printf ("Invalid usage: LAST FILENAME.EXT\n");
else if (! (fp = fopen (argv[l], "r"™)))
printf ("Could not open %s\n", argv([l]);
else
{
/* allocate space for a circular buffer */
for (index = 0; index < 10; index++)
if (! (lines [index] = malloc (132)))
{
printf ("Unable to allocate necessary memory\n");
exit (1);
}

last (fp, lines, 0);
fclose (fp);
}

—~

/*

* last (file pointer, lines, index)

*

* Display the last 10 lines of the file specified.
*

* file pointer (in): pointer to the desired file.
* lines (in/out): buffer that 10 lines are stored in.
* index (in): index to the current line.

*

* last (fp, lines, 0);

*

*/

last (FILE *fp, char *lines[], int index)
{

if (fgets (lines[index], 132, fp))
last (fp, lines, (index + 1) % 10);

else
{
int i;
i = (index + 1) % 10;
while (i != index)

fputs (lines[i], stdout);
i=(i+1) % 10;
}

}

In Turbo C, even the main program is considered to be a func-
tion. You can invoke main in a recursive manner, as shown here:

RECURSION 113

main (int argc, char *argv[])
{
if (*++argv)

printf ("%$s\n", *argv);
main (argc, argv);
}

}

In this case, if the program has the following command-line
parameters,

A> RECMAIN A B C

the program displays the first command-line parameter and then
invokes itself to recursively display the second. This process con-
tinues until no parameters remain on the command line. '

By simply changing the code to the following,

main (int argc, char *argvl[])

if (*++argv)

{
main (argc, argv);
printf ("$s\n", *argv);
} .
}

the program now displays the command-line arguments in reverse
order.

114 TURBO C PROGRAMMER'S LIBRARY

Considerations for Recursive
Functions

In many cases, you can reduce the amount of code required to per-
form a specific task by using recursive functions.

Essentially, every routine presented thus far could be imple-
mented recursively. The reasons why you do not do just that are
speed and space.

Each time you invoke a Turbo C function, the program must
place the return address and function parameters into an area of
memory called the stack, which in turn produces overhead. In most
cases, the overhead associated with functions is an acceptable trade-
off in order to achieve increased readability and modularity of code.
This is not always the case with recursion, however. A recursive
function may require many invocations in order to perform a spe-
cific task. With each invocation comes the overhead of placing the
return address and variables onto the stack. This overhead can
make recursive functions quite slow.

The second concern with recursion is stack space. With each
invocation of a function, Turbo C places data onto the stack. In most
cases, the stack can only store 64K of data. Thus, if you have a recur-
sive function that requires many or large local variables, you can
quickly use up your allotted stack space.

During the discussion of dynamic variables in later chapters, you
will find recursion to be a powerful tool. For now, just concentrate
on the flow of control for your recursive routines.

Pipe and 1I/0
Redarection

By default, each time that you issue a DOS command, the operating
system obtains its input from the keyboard and displays its output to
the screen. Thus, the keyboard and screen make up the DOS default
standard input source and standard output destination (see Figure
5-1). DOS defines the standard input source as stdin and standard
output destination as stdout.

Issue the following command:

115

116 TURBO C PROGRAMMER'S LIBRARY

(O ===
- — i L2 >] g
Keyboard DOS
(stdin) Command stdout

Figure 5-1. Standard input source and standard output destination

DOS displays the results of the command to the screen (stdout), as
shown in Figure 5-2.

DOS also provides several I/O redirection operators that allow
you to redefine stdin and stdout for a program. For example, issue
the following command:

[A> DIR > DIR.LST]

, f B
.[Ll \\ “nummum E'E, 3
Keyboard DIR
(stdin) Command stdout

Figure 5-2. Displaying the results of a command to stdout

PIPE AND I/0 REDIRECTION 117

In this case, rather than displaying the output of the DIR command
to the screen, DOS has redirected stdout to point to the file DIR.LST,
as shown in Figure 5-3.

Turn on your system printer and issue the following command:

[A> DIR > PRN: J

This time DOS redirects the output of the DIR command from the
screen to the printer, as shown in Figure 5-4.

/

[0C \—

Keyboard
(stdin) DOS Monitor

(X

— O
0
Write to DIR.LST

Figure 5-3. Output of DIR to DIR.LST

118 TURBO C PROGRAMMER’S LIBRARY

j

(o<}

/
[UL w\- I = = D
Keyboard -

(stdin) DOS

Monitor
DIR

[—————

Printer
(stdout)

Figure 5-4. I/O redirection from screen to printer

Use an existing text file on your disk and issue the following
command:

(A> MORE < FILENAME.EXT j

In this case, DOS leaves stdout unchanged and displays the output of
the command on the screen. DOS now modifies stdin for the MORE
command and redirects stdin from the keyboard to the file, as
shown in Figure 5-5.

The DOS pipe operator allows you to direct the output of one
command to become the input of a second command, as shown here:

PIPE AND I/O REDIRECTION 119

ED DIR | SORT J

In this case, DOS redirects stdout for the DIR command and stdin
for the SORT command, as shown in Figure 5-6.

You should note that you can use many of these operators on one
command line, as shown here:

[A) SORT < FILENAME.EXT | MORE J

Programs that support the DOS input/output (I/0) redirection opera-
tors are easy to implement with Turbo C.

/ _
(01 N\ e —||

L — [T

00

MORE Command

0

FILENAME.EXT

Figure 5-5. Redirection of stdin for MORE command

120 TURBO C PROGRAMMER'S LIBRARY

/T \

[—\ E— —>—

[—y N g
K?:t%?:)rd DOS DIR

Monitor

— e ===

Keyboard DOS SORT

=0

00

Monitor
(stdout)

Figure 5-6. Redirection of stdout for DIR command to stdin for
SORT command

Getting Started with 1/0
Redirection

The first Turbo C program example supports I/O redirection. This
example program counts the number of lines of redirected input and
displays the final count following the last line read. For example, if
your disk contains the following files,

g)
Volume in drive A is TURBO_C
Directory of A:\
TEST c 155 2-05-88 10:46a
MAIN (o4 1050 6-03-87 1:00a
SHOW C 351 1-26-88 12:19a
TEE o 498 2-06-88 6:01p
FACT ¢ 402 2-05-88 5:27p
LAST c 1241 2-05-88 6:59p
TAB ¢ 543 2-06-88 1:44p
F2 ¢ 927 . 2-06-88 5:20p
MORE C 362 2-06-88 5:56p
9 File(s) 351232 bytes free

PIPE AND I/O0 REDIRECTION 121

the command

[A> DIR | COUNT J

will display

[Line count = 14 j

You can also use COUNT to display the number of lines in a file, as
shown here:

[A> COUNT < FILENAME.EXT j

The following program implements COUNT:

#include <stdio.h>
main ()
(int count = 0;
char line[132];

while (fgets (line, 132, stdin))
count++;

printf ("Line count = %d\n", count);

The processing required for COUNT is straightforward. The pro-
gram simply reads data from stdin until the end of the file is found.

122 TURBO C PROGRAMMER’S LIBRARY

Next, COUNT displays the count of the number of lines read.
Similarly, the program LINENUM places a line number before
each of the lines it reads from stdin. The command

[A> DIR | LINENUM]

results in
.)
1
2 Volume in drive A is TURBO_C
3 Directory of A:\
4
5 TEST C 155 2-05-88 10:46a
6 MAIN C 1050 6-03-87 1:00a
7 SHOW C 351 1-26-88 12:19a
8 TEE C 498 2-06-88 6:01p
9 FACT C 402 2-05-88 5:27p
10 LAST C 1241 2-05-88 6:59p
11 TAB ¢ 543 2-06-88 1:44p
12 F2 C 927 2-06-88 5:20p
13 MORE C 362 2-06-88 5:56p
14 9 File(s) 351232 bytes free
N J

This following code implements LINENUM:

#include <stdio.h>
main ()
int line number = 0;
char line[132];

while (fgets (line, 132, stdin))
printf ("%d %s", ++line_number, line);
}

Note that printf writes all of the data to stdout. Thus, you can
redirect output from LINENUM, as shown here:

PIPE AND I/O REDIRECTION 123

[A> DIR | LINENUM | MORE j

The program STATS combines features from the previous pro-
grams to display the number of lines, pages, words, and characters
contained in a file (or redirected input). For example, given the fol-
lowing file,

This is a test file.

Don’t forget about the
carriage return and line
feed at the end of each
line.

the command

(;A> STATS < FILENAME.EXT AJ

displays

Pages 0
Lines 5
Words 20

Characters = 100

124 TURBO C PROGRAMMER'S LIBRARY

The following program complements STAT.C:

#include <stdio.h>
#define lines_per page 23
main ()
{int lines = 0, words = 0, characters = 0;
int in blanks, i;
char str[132];
wh%le (fgets (str, 132, stdin))

i=0; /* index into string */
in blanks = 1; /* assume line starts with blanks */

while (str[i])
{
characters++; /* another character */
if (str[i] == " "7)

if (! in_blanks)
{

words++; /* blank separates words */
in blanks = 1; /* two blanks in a row is not a word
}
else if (str[i] != ’\n’)
in blanks = 0;
else if (! in_blanks) /* word ended at end of line */
words++;
i++;
}
lines++; /* get the next line */

}

printf ("Pages = %d\nLines = %d\nWords = %d\nCharacters = %d\n",
lines / lines_per_page, lines, words, characters);
}

The program FIRST displays the first » lines of the redirected
input, as shown here:

(:A> FIRST 15< FILENAME.EXT :

PIPE AND /0 REDIRECTION 125

In this case, FIRST displays the first 15 lines. If you omit the
desired number of lines, FIRST displays 10 by default.

[A> DIR | FIRST j

The following code implements FIRST:

#include <stdio.h>

mgin (int argc, char *argv([])

{int stop_line = 10; /* number of lines to display */

int count = 0; /* current line number */

char line(132];

int ascii_to_int (char *, int *);

if (argc > 1) /* see if user specified a valid number */
if (ascii_to_int (argv([l], &stop_line) == -1)

stop_line = 10;

while (fgets (line, 132, stdin) && (++count <= stop_line))
fputs (line, stdout);
}

The next program uses the routine LAST (presented in Chapter
4) to display the last ten lines of redirected input, as shown here:

[A> DIR | LAST]

The following code implements LAST:

#include <stdio.h>

main ()
char *lines(10], *malloc();
int index;

/* allocate space for a circular buffer */

126 TURBO C PROGRAMMER'S LIBRARY

for (index = 0; index < 10; index++)
if (! (lines [index] = malloc (132)))
{

printf ("Unable to allocate necessary memory\n");
exit (1);
}

last (stdin, lines, 0);
}

Once you develop a library of powerful routines, your program
development becomes much more direct.

In a manner similar to FIRST, the program TAB combines
command-line processing with I/O redirection. In this case, you
specify the number of spaces the output is to be shifted to the right,
as shown here:

[A) DIR | TAB 5 J

If you omit the desired number of spaces,

[A> TAB < FILENAME.EXT l

TAB will use the value 7 by default. Once again, the program is
built by using routines presented earlier in the book.

#include <stdio.h>

main (int argc, char *argv([])

(int spaces = 7; /* number of spaces to insert */
char 1line{132];

int ascii_to_int (char *, int *);
int pad_string (char *, int, int);

if (argc > 1) /* see if user specified a valid number */
{

PIPE AND I/O REDIRECTION 127

if (ascii_to_int (argv[l], &spaces) == -1)
} spaces = 7;
while (fgets (line, 132, stdin))
{
if (pad_string (line, spaces, sizeof (line)) == 1)
{
printf ("%$c Line exceeds %d characters\n", 7, sizeof (line));
break ;
}

fputs (line, stdout);

The program FINDWORD displays each line of the redirected
input that contains the word specified by the user:

A> TYPE STATES.LST | FINDWORD ARIZONA :

In this case, the processing again becomes straightforward.

#include <stdio.h>

main (int argc, char *argv(])
{
char line[132];

int index (char *, char *);

if (argc < 2)
printf ("invalid usage: FINDWORD WORD\n");
else

{
while (fgets (line, sizeof(line), stdin))
if (index (argv([l], line) != -1)
fputs (line, stdout);

To increase the program’s capabilities, you can support the /C
and /V qualifiers as follows:

/C Display a count of the number of occur-
rences of the specified word

/V Display lines that do not contain the speci-
fied word

128 TURBO C PROGRAMMER’S LIBRARY

The final program becomes as follows:

#include <stdio.h>

main (int argc, char *argv(])
{
char 1line[132];
int count_only = 0, contain_word = 1, i, count = 0;

int index (char *, char *);

if (argc < 2)
printf ("invalid usage: FINDWORD WORD [/C] [/V]\n");
else
{
for (1 = 1; i < argc; i++)
if (index ("/C", argv[i]) != -1)
{
count _only = 1;
break;
}

for (i = 1; 1 < argc; i++)
if (index ("/V", argv[il]) != -1)
{

contain_word = 0;
break;
}

while (fgets (line, 132, stdin))
if (index (argv([1l], line) != -1)

if (count_only)
count++;

else if (contain_word)
fputs (line, stdout);

else if (! contain_word)
fputs (line, stdout);
}
if (count_only)
printf ("%s occurs %d times\n", argv([l], count);

Just as the program FINDWORD displayed each occurrence of a
word in redirected input, the program REPLACE replaces each
occurrence of a word with the second word specified.

[A> REPLACE begin BEGIN TEST.PAS NEW.PAS j

PIPE AND I/0 REDIRECTION 129

The following program implements REPLACE:

#include <stdio.h>
main (int argc, char *argv([])
(char line(132]);
int location, len;
FILE *fopen (), *infile, *outfile;
int remove_substring (char *, char *);
int insert string (char *, char *, int, int);

int next_sfr_occurrence (char *, char *, int);

if (argc < 3)
printf ("invalid usage: REPLACE TARGET NEW_WORD OLDFILE NEWFILE\n");

else if (argc == 3)
infile = stdin;
outfile = stdout;
}

else if (argc == 4)

if (! (infile = fopen (argv([3], "r")))

printf ("REPLACE error opening %s\n", argv([3]);
exit (1);

outfile = stdout;

else if (argc == 5)

if (! (infile = fopen (argv[3], "r")))
{
printf ("REPLACE error opening %s\n", argv[3]);
exit (1);
}

if (! (outfile = fopen (argv([4], "w")))
{

printf ("REPLACE error opening %$s\n", argv([4]);
exit (1);
}

}
len = string length (argv(2]);

while (fgets (line, 132, infile))
{

if ((location = index (argv[1l], line)) != -1)
do
{

130 TURBO C PROGRAMMER’S LIBRARY

remove_substring (argv([l], &line[location]);
insert_string (argv(2], line, location, sizeof(line));
}
while ((location = next_str occurrence (argv([l], line, locatio

fputs (line, outfile);

The program MORE.C i‘mplements the DOS MORE command.
Each time MORE displays a screenful of information, it pauses and
waits for you to press the ENTER key to continue.

(M
Volume in drive A is TURBO_C
Directory of C:\TURBOC

<DIR> 11-28-87 8:05p
.. <DIR> 11-28-87 8:05p
ALLOC H 896 6-03-87 1:00a
ASSERT H 275 6-03-87 1:00a
BIOS H 527 6-03-87 1:00a
CONIO H 517 6-03-87 1:00a
CTYPE H 1345 6-03-87 1:00a
DIR H 1222 6-03-87 1:00a
DOS H 7316 6-03-87 1:00a
ERRNO H 2648 6-03-87 1:00a
FCNTL H 991 6-03-87 1:00a
FLOAT H 2094 6-03-87 1:00a
I0 H 2407 6-03-87 1:00a
LIMITS H 757 6-03-87 1:00a
MATH H 2984 6-03-87 1:00a
MEM H 906 6-03-87 1:00a
PROCESS H 1782 6-03-87 1:00a
SETJMP H 542 6-03-87 1:00a
SHARE H 434 6-03-87 1:00a
--MORE--

- J

This code implements MORE:

#include <stdio.h>
#define lines_per page 24
main ()

{
int line_number = 0;

PIPE AND IO REDIRECTION 131

char line[132];

while (fgets(line, 132, stdin))
if (++line number % lines_per_page)
fputs (line, stdout);
else
{
fflush (stdout);
fputs ("--MORE--\n", stdout);
fflush (stdout);
bioskey (0);
}

The program TEE allows you to file intermediate results while
you continue I/O redirection, as shown here:

[A> TYPE FILENAME.EXT | SORT | TEE SORTFILE.EXT | MORE]

This command is illustrated in Figure 5-7.

TYPE FILENAME ——-’(D —— SORT -———»‘)———-» MORE

SORTFILE.EXT

Figure 5-7. Processing involved with program TEE

132 TURBO C PROGRAMMER’S LIBRARY

By using TEE, you can write results to a file and also to stdout,
as shown here:

#include <stdio.h>

main (int argc, char *argv[])
FILE *fopen(), *fp;
char line[132];

if (argc < 2)
fputs ("invalid usage: TEE FILENAME\n", stdout);

else
{
if (! (fp = fopen(argv[1l], "w")))
fputs ("TEE: unable to open output file\n", stdout);
else

{
while (fgets (line, 132, stdin))
{

fputs (line, stdout);
fputs (line, fp);

}
fclose (fp);
}

Using Standard Error (stderr)

Periodically your programs will experience an error that results in
an error message. If you write the following error message to stdout,

printf ("invalid usage: TEE FILENAME");

the error message will also be redirected. For this reason, you may
never see the error message. To make sure you see your messages,
DOS defines an output source called stderr that is guaranteed to
display error messages to the screen, regardless of redirection. Your
programs should write all error messages to stderr, as shown here:

fputs ("invalid usage: TEE FILENAME", stderr);

PIPE AND I/O REDIRECTION

The following program modifies TEE.C to do just that:

#include <stdio.h>

main (int argc, char *argvl[])
(FILE *fopen(), *fp;
char line[132];

if (argc < 2)
fputs ("invalid usage: TEE FILENAME\n", stderr);

else
{
if (! (fp = fopen(argv([l], "w")))
fputs ("TEE: unable to open output file\n", stderr);
else

{
while (fgets (line, 132, stdin))
{
fputs (line, stdout);
fputs (line, fp);

}
fclose (fp):
}

133

1/0 redirection is a powerful tool. Later chapters discuss how to
modify many of the programs presented in this chapter so that they
support I/O redirection and command-line processing. For now,
experiment with the programs presented in this chapter to increase

your understanding of 1/0 redirection.

DOS Interface

You are probably familiar with DOS, the operating system for the
IBM PC and PC compatibles. What you may not know is that a sig-
nificant portion of DOS is written in C. As is the case with all oper-
ating systems, the DOS developers were faced with a monumental
programming task when they wrote DOS. To simplify their task, the
developers broke it into many small, manageable functions. These
functions are responsible for operating system tasks such as the
following:

« File manipulation (open, read, write, close operations)

135

136 TURBO C PROGRAMMER’S LIBRARY

« Keyboard input

e Program startup and termination

« File-creation, file-deletion, and rename operations
« Memory management (allocate, free, modify)

¢ Disk-drive manipulation

 Directory manipulation

Because DOS must use these services on a continual basis in
order to operate, each function must remain immediately available
for use. Thus, you can make use of these services from within your
programs. DOS uses the 8088 registers as its interface to the DOS
system services.

Many of these routines appear in the Turbo C run-time library.
Their names and parameters may differ from the routines pre-
sented here though the functionality is the same. Use whichever
implementation best suits your needs, but still study these routines;
they can teach you a great deal about DOS.

8088 Registers

The IBM PC and PC compatibles are based on a processor chip
called the 8088. Within this chip is a set of storage locations known
as registers. Since registers are contained within the control process-
ing unit (CPU) itself, the 8088 can manipulate the values contained
in the registers quite rapidly. The 8088 has 14 registers, each capa-
ble of storing 16 bits of data, as the following shows:

DOS INTERFACE

137

AX

BX

SP

BP

(O

DS

General-Purpose Registers

AH AL

BH BL

Base and Index Registers

Stack pointer

Base pointer

Special-Purpose Registers

Flags register

CX

DX

SI

DI

IP

Segment Registers

Code segment

Data segment

SS

ES

CH CL

DH DL

Source index

Destination index

Instruction pointer

Stack segment

Extended segment

138 TURBO C PROGRAMMER’S LIBRARY

Your programs communicate to the DOS system services through
these registers. For example, assume that you want to determine the
DOS version number that you are using. Place the following value
into AH register and invoke the DOS interrupt (INT 21H):

AH 30H (Get DOS version number)

On completion, this service places the major and minor versions of
the operating system into register AX, as shown here:

AH Contains the minor version number
AL Contains the major version number

The following language code fragment invokes the DOS Get Ver-
sion Number system service:

MOV AH, 30H
INT 21H

INT 21H serves as your means of executing a DOS system service.

INT 21H

An wnterrupt is a signal to the CPU from a program or hardware
device instructing the CPU to suspend temporarily the function that
it is performing and instead execute a different task. For example,
each time you simultaneously press the SHIFT and PRINT SCREEN
keys, DOS temporarily suspends what it is doing in order to print
the current screen contents. DOS uses INT 21H as its interface to
the DOS system services. Each time DOS encounters an INT 21H, it
examines the contents of each of the 8088 registers to determine the
specific DOS service to perform, along with the required parame-
ters for the service. In most cases, DOS obtains the service number
from register AH.

DOS INTERFACE 139

In the previous example, DOS found the value 30H in AH, which
directed it to perform the Get DOS Version service. In this case, the
DOS service 02H directs DOS to display the character contained in
register DL. To invoke this routine, place the corresponding values
into the 8088 registers and invoke INT 21H, as shown here:

MOV AH, 2 ; display character service
MOV DL, 65 ; character to display
INT 21H ; invoke DOS service

A goal in developing applications is to write as much of the code
as possible in a high-level language such as C (as opposed to assem-
bly language). You must have a means of executing DOS system ser-
vices from such languages. In the case of Turbo C, a routine called
intdos provides your interface. To use this routine, you must include
the file dos.h, as shown here:

#include <dos.h>

Remember, the DOS system services use the 8088 registers as
their interface. The file dos.h contains a structure definition that
allows your program to emulate the 8088 registers, as shown here:

struct WORDREGS
{

unsigned int ax, bx, cx, dx, si, di, cflag, flags;

};
struct BYTEREGS
{

unsigned char al, ah, bl, bh, cl, ch, dl, dh;
}i

union REGS {
struct WORDREGS x;
struct BYTEREGS h;
}i

struct SREGS {
unsigned int es;
unsigned int cs;
unsigned int ss;

140 TURBO C PROGRAMMER'S LIBRARY

unsigned int ds;

}i
struct REGPACK
{

unsigned r_ax, r_bx, r_cx, r_dx;
unsigned r bp, r_si, r_di, r ds, r_es, r_flags;
b:

Within your C program you simply assign appropriate values to
each register (member of the structure). When you later invoke
intdos, that routine maps the values contained in your structure into
the appropriate registers, as shown in Figure 6-1.

When the DOS system service completes, intdos again maps the
register values back to your structure, as shown in Figure 6-2. The
following C program displays the current DOS version:

#include <dos.h>
main ()
union REGS inregs, outregs;

inregs.h.ah = 0x30;
intdos (&inregs, &outregs);

printf ("DOS Version %d.%d\n", outregs.h.al, outregs.h.ah);
}

DOS System Services

The DOS system services are quite powerful. In fact, these services
make up the toolkit that the DOS developers used to build DOS. By
using these routines in your programs, you can quickly develop rou-
tines of professional quality. This section discusses the commonly
used DOS system services and shows their Turbo C implementa-
tions. Most of the services are quite straightforward to use and
many will greatly increase the capabilities of your application.
Note that many of these routines assume you are using the small
memory model of the Turbo C compiler. These routines do not pass
segment addresses of strings to the intdos routine; instead, they
simply use the value of the current data segment. Since the small
memory model is assumed, the routines are successful. If you are

DOS INTERFACE 141

regs.ax \

regs.bx AX 1[BX |

|

regs.cx l CX]I ij
|
I

regs.dx

regs.si >—» intdos - DI |[Sl I
regs.di ES]l DS]
regs.ds

m— \
regs.flags)

C Structure

Figure 6-1. Mapping of structure values by intdos

using a different memory model, refer to the Osborne/McGraw-Hill
text DOS Power User’s Guide, by Kris Jamsa (Berkeley, 1988), for
specifics on each system service.

Many of the routines presented in this section are also available
as run-time library routines under Turbo C. However, because of the
importance of the DOS system services (along with the tremendous
capabilities that these services provide), the routines are presented
for your examination. Experiment with the DOS system services
and you should find them to be extremely useful.

142

TURBO C PROGRAMMER'S LIBRARY

regs.ax

regs.bx \

regs.cx

regs.dx

regs.cflag >
-

regs.si

intdos -

regs.di

regs.ds

regs.es)

regs.flags

C Structure

[~]
[cx || pox |
¢ |ctlag | [st |
[oi || ps |

[Es]| flags |

Figure 6-2. Mapping of register values by indtdos

stdin_char

! [J[__Keyboard 3\‘

I—" ASCII character

or keyboard scan code

DOS INTERFACE

#include <dos.h>

/*

* stdin_char ()

*

* Get a character from the standard input device.

*

* character = stdin_char ();

*

* If the uses presses a special function key, stdin_char

* returns the null value on the first invocation. You must
* again invoke stdin_char to determine the scan code of the
* special key pressed. This routine echos the character entered
* by the user to the screen.

*

*

/

int stdin_char ()
{
union REGS inregs, outregs;

inregs.h.ah = 0x01;
intdos (&inregs, &outregs);
return (outregs.h.al);

143

char letter="a"; stdout__output —

X¢)

#include <dos.h>

/*
void stdout_output (character)

Write the character specified to the standard output device.

*
*
*
*
* character (in): character to be written.
*
* stdout_output (65);

*

*

/

144 TURBO C PROGRAMMER’S LIBRARY

void stdout_output (char character)
union REGS inregs, outregs;

inregs.h.ah
inregs.h.dl

0x02;
character;

o

intdos (&inregs, &outregs);

aux__char

L» ASCII character

#include <dos.h>

/*

* aux_char ()

*

* Get a character from the standard auxiliary device.
*

* character = aux_char ();

*

* If a character is not present, aux_char waits until one
* becomes available.

*

*/

int aux_char ()

union REGS inregs, outregs;

inregs.h.ah = 0x03;
intdos (&inregs, &outregs);
return (outregs.h.al);

DOS INTERFACE

145

char letter="a"; ——-—'|7 aux_output l—-—

#include <dos.h>

/* void aux_output (character);
*

Write a character to the standard auxiliary device.

character (in): character to be written.

By default, DOS uses 2400 baud, no parity,

*

*

*

*

* aux_output (65);
*

*

* 8 data bits.

*

*

/

void aux_output (char character)
{

1 stop bit, and

146 TURBO C PROGRAMMER'S LIBRARY

union REGS inregs, outregs;

inregs.h.ah
inregs.h.dl

0x04;
character;

intdos (&inregs, &outregs);

char letter="a"; ~m= stdprn_output |

#include <dos.h>

: void stdprn_output (character);
: Write a character to the standard printer device.
: character (in): character to be printed.
* stdprn_output (65);
y
void stdprn_output (char character)
union REGS inregs, outregs;

iniegs.h.ah
inregs.h.dl

0x05;
character;

won

intdos (&inregs, &outregs);
}

DOS INTERFACE

147

char byte=0xFF;——um- direct__10 ~— / U[keyboard

ASCII character or
keyboard scan code

char byte=65——»={ direct__10 E——

X)

If byte equals 255 (OxFF), input is performed,;
otherwise, byte is written to the screen

#i

~
*

* % Ok E X R O X F X O %

in

nclude <dos.h>

direct_IO (byte)

Read a character from stdin or write a character to stdout
depending upon the value in the variable byte.

byte (in): if OxFF, read a character from stdin. If byte"
contains any other value, write it to stdout.

direct_IO (65);
character = direct_IO (OxFF);

/

t direct_IO (char byte)
union REGS inregs, outregs;
inregs.h.ah = 0x06;
inregs.h.dl = byte;

intdos (&inregs, &outregs);
return (outregs.h.al);

148 TURBO C PROGRAMMER’S LIBRARY

/ U[Keyboard AX—-—- no_echo_read
d

ASCII character or
keyboard scan code

#include <dos.h>

/*

* no_echo_read ()

*

* Read a character from stdin without echoing the character
* back to the screen display.

*

* character = no_echo_read ();

*

* If a character is not present in the keyboard buffer, this
* routine waits for one to become available.

*

* If the user presses a special function key, stdin_char

* returns the null value on the first invocation. You must
* again invoke stdin char to determine the scan code of the
* special key pressed.

*

*

/

int no_echo_read ()

union REGS inregs, outregs;
inregs.h.ah = 0x07;

intdos (&inregs, &outregs);
return (outregs.h.al);

DOS INTERFACE 149

char»string="TEST"” —»~ string__display ——— TEST
o

#include <dos.h>
/‘k

: void string_display (string)

* Display the character string specified to the standard

: output device.

: string (out): character string to be displayed.

* string_display ("Turbo C Programmer’s Library");

“
void string display (char string[])

(union REGS inregs, outregs;

int i;

for (i = 0; string([i]; i++)

string[i] = '$’; /* $ indicates last character to display */

inregs.h.ah = 9;
inregs.x.dx = string;

intdos (&inregs, &outregs);

string([i] = ’\0’;
}

150 TURBO C PROGRAMMER’S LIBRARY

char buffer [255]; ——
int size=sizeof(buffer)——s

buffered__input

__.LUL Keyboard :\A‘

#include <dos.h>

Read characters from the standard 1nput device into a user

size (in): maximum number of characters that the buffer can store.

the maximum size of the buffer
the number of characters read
the first character read

/*

* void buffered input (buffer, size)

*

*

* defined buffer.

*

* buffer (in/out): buffer to store characters input.
*

*

* buffered input (array, sizeof(array));
*

* The buffer must be defined as follows:
*

* buffer[0] contains

* buffer (1] contains

* buffer[2] contains

*

*

/

void buffered input (char
{

buffer([], int size)

union REGS inregs, outregs;

buffer (0] = size;
inregs.h.ah = 0xA;
inregs.x.dx = buffer;

/* maximum buffer size */

/* offset of buffer */

intdos (&inregs, &outregs);

DOS INTERFACE 151

/ Ul Keyboard \\—- check__character__available

— 255 if character available

0 if no character

#include <dos.h>

check_character_available ()

*

*

* Return the value 255 if a character is currently available in
* the standard input device, otherwise return the value 0.
*
*
*
*

status = check_character_available ();
/

int check_character_available ()
union REGS inregs, outregs;
inregs.h.ah = 0x0B;
intdos (&inregs, &outregs);

return (outregs.h.al);

}

152 TURBO C PROGRAMMER’S LIBRARY

int service; —m~ keyboard_service = |-e—s / D[Keyboard \\

— ASCI| character or
keyboard scan code

#include <dos.h>

/*
* keyboard service (service)

*

* Clear the keyboard buffer and perform the keyboard service

* specified.

*

* service (in): DOS keyboard service to perform.

*

* character = keyboard_service (7);

*

* By invoking keyboard services in this fashion, you can insure

* that the type ahead buffer is empty prior to your read operations.
*

*

/

int keyboard service (int service)

{
union REGS inregs, outregs;

inregs.h.ah = 0x0C;
inregs.h.al = service;
intdos (&inregs, &outregs);
return (outregs.h.al);

}

DOS INTERFACE 153

int drive=2; —= set__drive

#include <dos.h>

~
*

void set_drive (drive)

Set the disk drive to the drive number specified.
drive (in): Disk drive desired.

set_drive (2);

Drive numbers are defined as:
A=0,B=1, C=2

* % % O % O F X F O X F

/

void set_drive (int drive)
{
union REGS inregs, outregs;

inregs.h.ah = 0x0E;
inregs.h.dl = drive;
intdos (&inregs, &outregs);

154 TURBO C PROGRAMMER’S LIBRARY

char buffer [128]; —s set__disk__transfer__address

#include <dos.h>

void set_disk_transfer address (buffer)
Define a new buffer for the DOS disk transfer area.

buffer (in): buffer to be used as the DTA.

By default, the DTA points to offset 80H of the PSP. In
later chapters we will use this region to perform command
line operations. By modifying the DTA we can prevent DOS
from overwriting the command line.

*
*
*
*
*
*
* set_disk_transfer_ address (char_array);
*
*
*
*
*
*
*/
void set_disk transfer_address (char buffer(])

{

union REGS inregs, outregs;

inregs.h.ah 0x1A;

inregs.x.dx = buffer; /* minimum 128 bytes */
intdos (&inregs, &outregs);

DOS INTERFACE 155

int *spc; i o 4 sectors per cluster
int »sector__size; —{ disk__information [~ 512 bytes per sector
int *num__clusters; —smi —= 1048 clusters per disk

#include <dos.h>

/ *
* void disk_information (spc, sector_ size, num clusters)
*
* Return the number of sectors per cluster, the sector size,
* and the number of clusters for the current disk drive.
* .
* spc (out): sectors per cluster.
* sector_size (out): bytes per sector.
* num_cluster (out): clusters per disk.
*
* disk_information (&spc, §or_size, &num clusters);
*
*

/

void disk_information (int *spc, int *sector_ size, int *num_clusters)
{
union REGS inregs, outregs;

inregs.h.ah = 0x1B;

intdos (&inregs, &outregs);

spc = outregs.h.al; / sectors per cluster */
*sector size = outregs.x.cx;

*num_clusters = outregs.x.dx;

156 TURBO C PROGRAMMER'S LIBRARY

int interrupt_number; —am]
int segment_address; —a{ set_interrupt__vector
int offset__address; ™

#include <dos.h>

* void set_interrupt_vector (interrupt_number, segment, offset)
*

* Specify a new interrupt handler routine for a specific interrupt.
*

* interrupt*pumber (in) : Interrupt number to modify.

* segment (in): Segment address of new routine.

* offset (in): Offset address of new routine.

*

* set_interrupt_vector (5, segment_address, offset_address);

*

*/

void set_interrupt_vector (int interrupt number,
int segment, Int offset)
{

union REGS inregs, outregs;

struct SREGS segregs;

inregs.h.ah = 0x25;

inregs.h.al = interrupt number;
inregs.x.ds = segment;
inregs.x.dx = offset;

intdosx (&inregs, &outregs, &segregs);

DOS INTERFACE 157

int ~day; — 25

i * . i o

!nt month; get__date 12
int +year, — —>— 1988
int ~day__of_week; ——a —= 6

#include <dos.h>

/*
void get_date (day, month, year, day_of_week)

Return the current system date.

*

*

*

*

* day (out): day of of the month (1-31)

* month (out): month of the year (1-12)

* year (out): current year (19xx)

* day_of_ week (out): current day of the week (0=Sunday, 6=Saturday)
*
*
*
*

get_date (&day, &month, &year, &day of week);
/

void get_date (int *day, int *month, int *year,
int *day_of_week)
{

union REGS inregs, outregs;

inregs.h.ah = 0x2A;
intdos (&inregs, &outregs);

*day = outregs.h.dl;
*day_of week = outregs.h.al;
*month = outregs.h.dh;

*year = outregs.x.Cx;

158 TURBO C PROGRAMMER’S LIBRARY

int day=25; —_—
int month=12; —= set__date
int year=1988; —®=

L 255 if date is invalid; 0 otherwise

#include <dos.h>

/*
set_date (day, month, year)

*

*

* Set the current system date.

*

* day (in): day of of the month (1-31)

* month (in): month of the year (1-12)

* year (in): current year (19xx)

*

* status = set_date (&day, &month, é&year);
*

* If the date specified is invalid, set_date returns the value 255.
*

*x/

int set_date (int day, int month, int year)

{
union REGS inregs, outregs;

inregs.h.ah = 0x2B;
inregs.h.dh = month;
inregs.h.dl = day;

inregs.x.cx = year;

intdos (&inregs, &outregs);

return (outregs.h.al);

DOS INTERFACE

159

int ~hour; —]

int *minute; —— .

. get__time

int *second; =

int ~hundredths; —m ——

12
20
29
73

#include <dos.h>

~
*

void get_time (hours, minutes, seconds, hundredths)
Get the current system time.

hours (out): current hour of the day.

minutes (out): current minute of the day.

seconds (out): current second of the day.
hundredths (out): current hundredths of seconds.

get_time (&hours, &minutes, &seconds, &hundredths);

/

L O N R R

void get time (int *hours, int *minutes, int *seconds,
int *hundredths)
{

union REGS inregs, outregs;
inregs.h.ah = 0x2C;

intdos (&inregs, &outregs);
*hours = outregs.h.ch;
*minutes = outregs.h.cl;

*hundredths = outregs.h.dl;
*seconds = outregs.h.dh;

160

TURBO C PROGRAMMER’S LIBRARY

int hours=12; —]
int minutes=30; —
int seconds=29; —_
int hundredths=75; —i

set_time

L 255 if time is invalid; 0 otherwise

#include <dos.h>

~
*

¥ Ok % Ok X Ok % F H Ok X X F

in

{

set_time (hours, minutes, seconds, hundredths)
Set the current system time.

hours (out): current hour of the day.

minutes (out): current minute of the day.
seconds (out): current second of the day.
hundredths (out): current hundredths of seconds.

status = set_time (10, 30, 0, 0);

If the time specified is invalid, set_time returns the value 255.

/

t set_time (int hours, int minutes, int seconds,
int hundredths)

union REGS inregs, outregs;

inregs.h.ah = 0x2D;
inregs.h.ch = hours;
inregs.h.cl = minutes;
inregs.h.dl = hundredths;
inregs.h.dh = seconds;

intdos (&inregs, &outregs);

return (outregs.h.al);

DOS INTERFACE

161

int *major;
int *minor; ——=

DOS__version

[3
il |

#i
/i

*
*
*
*
*
*

nclude <dos.h>

void DOS_version (major, minor)

Return the current DOS version number.

major (out): major version number (DOS 3.1 major is 3)
minor (out): minor version number (DOS 3.1 minor is 1)

162 TURBO C PROGRAMMER'S LIBRARY

*

* DOS_version (&major, &minor);
*

*/

int DOS_version (int *major, int *minor)
{
union REGS inregs, outregs;

inregs.h.ah = 0x30;

intdos (&inregs, &outregs);
*major = outregs.h.al;
*minor = outregs.h.ah;

int exit_status =1;

terminate__resident
int paragraphs=1000; —

#include <dos.h>

~
*

void terminate_resident (status, paragraphs)

Terminate the current program resident in memory.

status (in): exit status value for the program.

paragraphs (in): number of 16 byte paragraphs regions of memory
required for termination.

terminate_resident (1, 500);

/

¥ % % X ¥ O F ¥ ¥ N X

DOS INTERFACE 163

terminate_resident (int status, int paragraphs)

union REGS inregs, outregs;

inregs.h.ah = 0x31;
inregs.h.al = status;
inregs.x.dx = paragraphs;

intdos (&inregs, &outregs);

int function=0; = = 0
int +state: »| Ctrl_break__status

—= (0 CTRL-BREAK checking disabled
1 CTRL-BREAK checking enabled

If the value of function is 0, the routine returns current
state. If function is 1, the routine sets the current state.

#include <dos.h>

/*
ctrl_break_status (function, state);

*
*
* Get or set the control break status.

*

* function (in): if function is 0, return the current Ctrl-Break state
* if function is 1, set the current Ctrl-Break state

* state (in): if state is 0, disable Ctrl-Break checking

* if state is 1, enable Ctrl-Break checking

*

* status = ctrl_break_status (0, 0);

*

*/

int ctrl_break_status (int function, int state)
{

164 TURBO C PROGRAMMER'S LIBRARY

union REGS inregs, outregs;

inregs.h.ah = 0x33;
inregs.h.al = function;
inregs.h.dl = state;

intdos (&inregs, &outregs);

return (outregs.h.dl);

int * . — 16-bit segment address
int -segment; get__disk__transfer__address . 9
int ~offset; — 16-bit offset address

#include <dos.h>

/*
* void get_disk_transfer_address (segment, offset)

Return the segment and offset for the DOS disk transfer area.

segment (out): segment address of the DTA.
offset (out): offset address of the DTA.

get_disk_transfer_address (&segment, &offset);

By default, the DTA points to offset 80H of the PSP.

LA I N 2

~

DOS INTERFACE 165

void get_disk_transfer_address (segment, offset)
int *segment, *offset;
{
union REGS inregs, outregs;
struct SREGS segregs;

inregs.h.ah = 0x2F;
intdosx (&inregs, &outregs, &segregs);

*segment = segregs.es;
*offset = outregs.x.bx;
}

int interrupt_number=5; —»
int segment__address; —=={ get__interrupt_vector [—s~ OXOOFE
int ~offset__address; — | OXFFFF

#include <dos.h>

~
*

void get_interrupt_vector (interrupt_number, segment, offset)

Return the address of the interrupt handler routine for a
specific interrupt.

interrupt_number (in): Interrupt number desired.
segment (out): Segment address of the routine.
offset (in): Offset address of the routine.

¥ OO % F F R Ok X X *

get_interrupt_vector (5, &segment_address, &offset_address);

166 TURBO C PROGRAMMER'S LIBRARY

*

*/

void get_interrupt_vector (int interrupt number,
int *segment, int *offset)
{

union REGS inregs, outregs;
struct SREGS segregs;
inregs.h.ah 0x35;

inregs.h.al interrupt_number;
intdosx (&inregs, &outregs, &segregs);

*segment = segregs.es;
*offset = outregs.x.bx;

int drive=0; —»= get__free__disk_space

L> long int containing

free space in bytes

#include <dos.h>

~
*

long get_free_disk space (drive)

Return the number of available bytes for the disk drive specified.
drive (in): disk drive id desired.

disk_drive = get_free disk_space (0);

Disk drives are specified as:
0 = Current, 1 =A, 2 =B, 3 =2°C

LR R I B R

lo
{

DOS INTERFACE

ng get_free_ disk_space (int drive)
union REGS inregs, outregs;
inregs.h.ah = 0x36;

inregs.h.dl = drive;

intdos (&inregs, &outregs);

return ((long) outregs.x.ax * (long) outregs.x.bx
* (long) outregs.x.cx);

167

char *dir="\\TURBO C"; ~—»= make__directory

I—» DOS error status or

0 if successful

#i
/

*
*
*
*
*
*
*
*
*
*
*
*
*

ma

nclude <dos.h>

make_directory (directory)

Create a DOS subdirectory with the name specified.
directory (in): name of the subdirectory to create.
status = make_directory ("\\TURBOC");

If make_directory cannot create the directory specified, it will
return a DOS error status. Otherwise, make_directory returns 0.

/
ke_directory (char directoryl[])
union REGS inregs, outregs;

inregs.h.ah = 0x39;

168 TURBO C PROGRAMMER’S LIBRARY

inregs.x.dx = directory;
intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? outregs.x.ax: 0);

char *dir="\\TCOLD"; —= remove__directory

|—> DOS error status or

0 if successful

#include <dos.h>

/*
remove_directory (directory)

Remove the DOS subdirectory with the name specified.

directory (in): name of the subdirectory to remove.

If remove directory cannot remove the directory specified, it will

*

*

*

*

*

*

* status = remove directory ("\\TCOLD");

*

*

* return a DOS error status. Otherwise, remove_directory returns 0.
*
*

/
remove_directory (char directory(])
{

union REGS inregs, outregs;

inregs.h.ah
inregs.x.dx

0x3A;
directory;

DOS INTERFACE

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? outregs.x.ax: 0);

169

char *dir="TURBO C"; —»= change__directory

L> DOS error status

0 if successful

#include <dos.h>

change_directory (directory)

Set the default DOS subdirectory to the directory specified.
directory (in): name of the subdirectory to select.

status = change_directory ("\\TURBOC");

If change_directory cannot select the directory specified, it will
return a DOS error status. Otherwise, change_directory returns 0.

/

*
*
*
*
*
*
*
*
*
*
*
*

change_directory (char directoryl(])
{
union REGS inregs, outregs;

inregs.h.ah = 0x3B;
inregs.x.dx = directory;

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? outregs.x.ax: 0);

170 TURBO C PROGRAMMER’S LIBRARY

char *filename="CHudson"; —»

int +status; —]

int attribute=0; — create__file

— 0 If successful

L

1 If error

DOS file handle if status equals 0;
otherwise, DOS error status

#include <dos.h>

~
*

create_file (filename, attribute, status)
associated with the new file.
attribute (in): desired file attribute.

filehandle = create_file ("CHudson"), 0,
If create_file cannot create the file as
the error status value. If the creation
returns a file handle to the file.

/

¥ Ok Ok % OF R Ok 2k O Ok Ok ¥ % % ¥ %

create_file (char *filename, int attribute,
{

union REGS inregs, outregs;

inregs.h.ah = 0x3C;
inregs.x.cx = attribute;
inregs.x.dx = filename;

intdos (&inregs, &outregs);
*status = (outregs.x.cflag) ? -1: 0;

return (outregs.x.ax);

Create a DOS file with the name specified. Return a file handle

filename (in): name of the file to create.

status (out): -1 if an error occurred, otherwise 0.

&status) ;

specified, it returns
is successful, create file

int *status)

DOS INTERFACE 171

char +*filename="CHudson"; —»={
int mode=0; —] open_file
int status; —]

—= 0 If successful

| 1 If error
DOS file handle if status equals 0;
otherwise, DOS error status

#include <dos.h>

open_file (filename, mode, status)

Open the DOS file with the name specified in the mode given.
Return a file handle associated with the new file.

*
*
*
*
*
* filename (in): name of the file to open.

* mode (in): specifies how the file is to be opened:

* 0 is readonly, 1 is write only, 2 is read/write
* status (out): -1 if an error occurred, otherwise 0.
*
*
*
*
*
*
*
*

filehandle = open_file ("CHudson", 0, &status);

If open_file cannot create the file as specified, it returns

the DOS error status value. If the open is successful, open_file
returns a file handle to the file.

/

open_file (char *filename, int mode, int *status)
{

union REGS inregs, outregs;

inregs.h.ah = 0x3D;
inregs.h.al = mode;
inregs.x.dx = filename;

intdos (&inregs, &outregs);
*status = (outregs.x.cflag) ? -1: 0;

return (outregs.x.ax);

}

172 TURBO C PROGRAMMER'S LIBRARY

int file handle; ——am{ close_file

[.—b DOS error status or

0 if successful

#include <dos.h>
/*
* close_file (filehandle)

Close the DOS file associated with the file handle specified.
filehandle (in): file handle assoicated with the file to close.
If close_file cannot close the file specified, it returns

the DOS error status value. If the close is successful,
close_file returns the value 0.

* % %k % Ok X X X

*

*/
close_file (int filehandle)
{

union REGS inregs, outregs;

inregs.h.ah
inregs.x.bx

= 0x3E;
= filehandle;

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? outregs.x.ax: 0);

DOS INTERFACE 173

int file handle; -

char buffer{255] — . — Data

int size=sizeof(buffer); —amd read—file

int +status; — [— 0 If successful

I 1 If error
DOS error status if status equals 1;
otherwise, the number of bytes read

#include <dos.h>

/*
read_file (filehandle, buffer, numbytes, status)

Read the number of bytes specfied from a given file into the
buffer provided.

filehandle (in): filehandle of the desired file.
buffer (out): buffer to contain the bytes read.

*
*
*
*
*
*
*
* numbytes (in): number of bytes to read from the file.

* status (out): error status 1 if error, 0 if successful.
*

*

*

*

*

*

*

*

bytes = read file (filehandle, buffer, 255, &status);
If an error occurs during the read operation, read file
returns an error status value. Otherwise, read_file
returns the number of bytes read.

/

read_file (int filehandle, char *buffer,
int numbytes, int *status)
{

union REGS inregs, outregs;

174 TURBO C PROGRAMMER’S LIBRARY

inregs.h.ah = 0x3F;
inregs.x.bx = filehandle;
inregs.x.cx = numbytes;
inregs.x.dx = buffer;

intdos (&inregs, &outregs);

*status = (outregs.x.cflag) ? 1: 0;

return (outregs.x.ax);

int file handle; —
char buffer[255]; —— . .

int numbytes=sizeof(buffer); == write_file

int xstatus; — — 0 If successful

‘ -1 |f error
DOS error status

if the value of status is 1;
otherwise, the number of
bytes written

#include <dos.h>

write file (filehandle, buffer, numbytes, status)

Write the number of bytes specfied to a given file from the
buffer provided.

filehandle (in): filehandle of the desired file.
buffer (in): buffer containing the bytes to write.
numbytes (in): number of bytes to write to the file.
status (out): error status 1 if error, 0 if successful.

bytes = write file (filehandle, buffer, 255, &status);
If an error occurs during the write operation, write_file

returns an error status value. Otherwise, write file
returns the number of bytes written.

DOS INTERFACE 175

write_file (int filehandle, char *buffer, int numbytes)
{
union REGS inregs, outregs;

inregs.h.ah = 0x40;
inregs.x.bx = filehandle;
inregs.x.cx = numbytes;
inregs.x.dx = buffer;

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? outregs.x.ax: 0);

char +filename="POCKET.OLD"; delete__file

l—> DOS error status or 0 if successful

#include <dos.h>

/*

* delete_file (filename);

*

* Delete the file with the name specified.

*

* filename (in): name of the file to delete.

*

* delete_file ("POCKET.OLD");

*

* If an error occurs during the delete operation, delete file
* returns an error status value. Otherwise, delete file
* returns 0.

*

*

/

delete_file (char *filename)

176 TURBO C PROGRAMMER’S LIBRARY

union REGS inregs, outregs;

inregs.h.ah = 0x41;
inregs.x.dx = filename;

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? outregs.x.ax: 0);

int file handle;
int directive=0; —3
int highoffset=0;
int lowoffset=255; —~

Iseek

L DOS error status or 0 if successful

#i

~
*

F OOk % % % % % Ok R % F ¥ % Ok % * %

1s

nclude <dos.h>

lseek (filehandle, directive, hioffset, looffset)

Move the file pointer in the file associated with a file
handle as specified.

filehandle (in): file handle of desired file.

directive (in): Specifies how to move the file pointer:

0 beginning of file, 1 current location, 3 end of file
hioffset: high order 16 bits of the offset to branch to.
looffset: low order 16 bits of the offset to branch to.
lseek (filehandle, 0, 0, 512);

Offsets are treated as a 32 bit value. As such, we specify
a high and low 16 bit combination.

/

eek (int filehandle, int directive,

int hioffset, int looffset)

union REGS inregs, outregs;

DOS INTERFACE 177

inregs.h.ah = 0x42;
inregs.h.al = directive;
inregs.x.bx = filehandle;
inregs.x.cx = hioffset;
inregs.x.dx = looffset;

intdos (&inregs, &outregs):;

return ((outregs.x.cflag) ? outregs.x.ax: 0);

char *filename="TURBO"; —a=i

get__file_attributes

L= —1 if error; otherwise, the file’s
attributes

#include <dos.h>

*

/: get_file_attributes (filename)

: Return the file attributes for the file specified.

: filename (in): file to return the file attributes of.

: attributes = get_file attributes ("Turbo");

* File attributes include:

* 1 readonly 2 hidden 4 system

: 8 volume 16 subdirectory 32 archive

* If an error occurs, get_file attributes returns the value -1.
“

get_file_attributes (char *filename)
union REGS inregs, outregs;

inregs.x.ax
inregs.x.dx

0x4300;
filename;

178 TURBO C PROGRAMMER’S LIBRARY

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? -1: outregs.x.ax);

char *filename ="TURBQO"; ——=!

int attribute=1 . set__file__attributes

L -1 |If error

0 If successful

#include <dos.h>

/*
* set_file attributes (filename, attribute)

If an error occurs, set_file attributes returns the value -1.

*

* Set the file attributes for a file as specified.
*

* filename (in): file to set the file attributes of.
* attribute (in): desired file attributes.

*

* status = set_file attributes ("Turbo", 32);

*

* File attributes include:

* 1 readonly 2 hidden 4 system
* 8 volume 16 subdirectory 32 archive
*

*

*

*

~

DOS INTERFACE

set_file attributes (char *filename, int attribute)

{

union REGS inregs, outregs;

inregs.x.ax = 0x4301;
inregs.x.cx = attribute;
inregs.x.dx = filename;

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? -1: 0);

179

char dir[64]; —= get__directory = "TURBO"

L DOS error statwus or
0 if successful

#include <dos.h>

~
*

* O O % F X *

get_directory (directory, drive);
Return the current directory for the disk drive specified.

directory (out): current directory name.
drive (in): disk drive number of the drive of interest.

status = get_directory (directory, 0);

180 TURBO C PROGRAMMER’S LIBRARY

Disk drive numbers are specified as:
0 = Current, 1 =4, 2 =B, 3=2°¢C

* F * *

/
get_directory (char *directory, int drive)

union REGS inregs, outregs;

inregs.h.ah = 0x47;
inregs.h.dl = drive;
inregs.x.si = directory;

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? outregs.x.ax: 0);

char search spec =" +";

char filename[13]; — . "ALLOC.H"

int attribute=0; —

int +hour; — L 12

int *minute; — i] [e 30
find—first

int *second,; — - 0

int =day; — | o5

int *month; —— | - 12

int +year; — |~ 1088

long *size —_ | o 589

- DOS error status or
0 If successful

#i

~
*

¥ % % X % R % OF O R X X O O O X % N ¥ H O ¥ H F

fi

DOS INTERFACE

nclude <dos.h>

find first (searchspec, filename, attribute, hour, minute,
second, day, month, year, size)

Return information on the first file matching the search
specification given.

searchspec (in): File name or DOS wildcard characters of the
file(s) to match ("A", "TEST.C", "*.,*"),

filename (out): Name of the first matching file.

attribute (in): Attributes of the files we are searching for.

hour (out): Hour time stamp.

minute (out): Minute time stamp.

second (out): Second time stamp.

day (out): Day time stamp.

month (out): Month time stamp.

year (out): Year time stamp.

size (out): File size in bytes.

status = find first ("*.c", filename, 0, &hour, &minute,
&second, &day, &month, &year, &size);

If an error occurs, find first returns the error status value.
Otherwise, find first returns the value 0.

/

nd_first (char *searchspec, char *filename, int attribute,
int *hour, int *minute, int *second,
int *day, int *month, int *year, long int *size)

union REGS inregs, outregs;

int segment, offset, 1i;
unsigned int time, date;

void get_disk_transfer_ address (int *, int *);

inregs.h.ah = 0x4E;
inregs.x.dx = searchspec;
inregs.x.cx = attribute;

intdos (&inregs, &outregs);

if (outregs.x.cflag)
return (outregs.x.ax);

get_disk_transfer_ address (&segment, &offset);

time = peek (segment, offset+22);
date = peek(segment, offset+24);

181

182 TURBO C PROGRAMMER’S LIBRARY

*year = (date >> 9) + 1980;
*month = (date & 0x1EQ0) >> 5;
*day = date & Ox1F;

*hour = time >> 11;

*minute = (time & 0x7E0) >> 5;
*second (time & Ox1F) * 2;

o

*gize = peek(segment, offset+28);
*size = *size << 16;
*size += (unsigned) peek (segment, offset+26);

for (i = 0; i < 13; i++)
*filename++ = peekb(segment, offset+30+i);

*filename = ’\0’;

return (0);

char filename[13], ——

int attribute=0; —= —= "ADDC"
int *hour; —— = 12

int *minute; — = 30

int *second; —»—1 find_next L ¢

int +day; —] — 25

int *month; — = 12

int ~year; — — 1988
long *size; — — 590

L DOS error status or
0 If successful

#i

~
*

¥ X % % % R O % % % Ok Ok R % Ok Ok X ¥ % F % F F

fi

DOS INTERFACE

nclude <dos.h>

find_next (filename, attribute, hour, minute,
second, day, month, year, size)

Return information on the next file matching the search
specification given on a call to find first.

filename (out): Name of the first matching file.

attribute (in): Attributes of the files we are searching for.
hour (out): Hour time stamp.

minute (out): Minute time stamp.

second (out): Second time stamp.

day (out): Day time stamp.

month (out): Month time stamp.

year (out): Year time stamp.

size (out): File size in bytes.

status = find next (filename, 0, &hour, &minute,
&second, &day, &month, &year, &size);

If an error occurs, find next returns the error status value.
Otherwise, find next returns the value 0.

/

nd_next (char *filename, int attribute, int *hour,
int *minute, int *second, int *day, int *month,
int *year, long int *size)

union REGS inregs, outregs;

int segment, offset, i;
unsigned int time, date;

void get_disk transfer_ address (int *, int *);
inregs.h.ah 0x4F;

inregs.x.cx attribute;
intdos (&inregs, &outregs);

if (outregs.x.cflag)
return (outregs.x.ax);

get_disk_transfer_ address (&segment, &offset);

time = peek (segment, offset+22);
date = peek (segment, offset+24);

*year = (date >> 9) + 1980;
*month = (date & O0x1E0) >> 5;
*day = date & Ox1F;

183

184 TURBO C PROGRAMMER'S LIBRARY

*hour = time >> 11;

*minute = (time & O0x7EQ) >> 5;
*second = (time & O0x1F) * 2;
*size peek (segment, offset+28);

*size = *size << 16;
*size += (unsigned) peek (segment, offset+26);

for (i = 0; 1 < 13; i++)
*filename++ = peekb (segment, offset+30+1i);

*filename = '\0’;

return (0);

get__disk__verification

L 0 Verify is off

1 Verify is on

#include <dos.h>

/*
get_disk verification ()

Return the current state of disk verification on (1) or off (0).
state = get_disk_verification ();

/

*
*
*
*
*
*
*

DOS INTERFACE

int get_disk_verification ()

}

union REGS inregs, outregs;

inregs.h.ah = 0x54;
intdos (&inregs, &outregs);
return (outregs.h.al);

185

char *source="CONFIG.OLD"; =™

char *target="CONFIG.SAV"; rename_file

|—> DOS error status or 0

if successful

#include <dos.h>

~
*

H X % R F X X % X F F X F

rename_file (source, target)
Rename the file specified by source to the name given by target.

source (in): old file name.
target (in): desired file name.

rename_file ("CONFIG.OLD", "CONFIG.SAV");

If an error occurs, rename_file returns the DOS error status code.
Otherwise, rename_ file returns the value 0.

186 TURBO C PROGRAMMER’S LIBRARY

rename_file (char *source, char *target)

union REGS inregs, outregs;

inregs.h.ah = 0x56;
inregs.x.dx = source;
inregs.x.di = target;

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? outregs.x.ax: 0);

int file handle; __.|

—_— 25
int ~day; — |— 12
int *month; = 1988
. . —
int «year; get__file__datetime
int *hour; - 2
int *minute; — 30
int *second; = —= 0

I_> DOS error status or

0 if successful

#include <dos.h>

~
*

get_file datetime (filehandle, day, month, year,
hour, minute, second);

Return the date and time stamp for the file associated with
the file handle given.

filehandle (in): file handle of the desired file.
day (out): day of month .the file was created or modified (1-31).
month (out): month of year the file was created or modified (1-12).

* Ok ¥ % X ¥ ¥ X F

LR 2

/

DOS INTERFACE

year (out): year file was created or modified (1980-2099).

hour (out): hour of day file was created or modified (0-23).
minute (out): minute of day file was created or modified (0-59).
second (out): second of day file was created or modified (0-59).

get_file datetime (filehandle, &day, &month, &year,
&hour, &minute, &second)

get_file datetime (int filehandle, int *day, int *month,
int *year, int *hour, int *minute, int *second)

{
union REGS inregs, outregs;

inregs.x.ax = 0x5700;
inregs.x.bx = filehandle;

intdos (&inregs, &outregs);

*year = (outregs.x.dx >> 9) + 1980;
*month = (outregs.x.dx & 0x1EQ0) >> 5;
*day = outregs.x.dx & Ox1F;

*hour = outregs.x.cx >> 11;

*minute = (outregs.x.cx & 0x7EQ) >> 5;
*second = (outregs.x.dx & 0x1F) * 2;

return ((outregs.x.cflag) ? outregs.x.ax:

0);

187

int filehandle; —
int day=25; -

int month=12;, —i

int year=1988; —~ <ot file_datetime

int hour=10; —]

int minute=15; —|

int second=30; —»|

L DOS error status or 0
if successful

188 TURBO C PROGRAMMER’S LIBRARY

#i
/*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

se

{

nclude <dos.h>

set_file datetime (filehandle, day, month, year,
hour, minute, second);

Set the date and time stamp for the file associated with
the file handle given.

filehandle (in): file handle of the desired file.

day (out): day of month the file was created or modified (1-31).
month (out): month of year the file was created or modified (1-12).
year (out): year file was created or modified (1980-2099).

hour (out): hour of day file was created or modified (0-23).
minute (out): minute of day file was created or modified (0-59).
second (out): second of day file was created or modified (0-59).

set_file datetime (filehandle, 25, 12, 1988, 10, 30, 0);
/

t_file datetime (int filehandle, int day, int month,
int year, int hour, int minute, int second)

union REGS inregs, outregs;

inregs.x.ax = 0x5701;
inregs.x.bx = filehandle;
inregs.x.dx = (year - 1980) << 9;

inregs.x.dx += month << 5;
inregs.x.dx += day;
inregs.x.cx = hour << 11;
inregs.x.cx += minute << 5;
inregs.x.cx += second / 2;

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? outregs.x.ax: 0);

char path="\\TURBOC\ \"; —=-]
int attribute=0; — 12345678"

create__unique_file "\\TURBOC\\

—» DOS error status
or 0 if successful

DOS INTERFACE 189

#include <dos.h>

~
*

create_unique file (pathname, attribute)
Create a file with a unique name in the directory specified.

pathname (in): directory path to place the file in.
attribute (in): desired attribute for the file.

status = create_unique_file (path, attribute);
Path names may be defined as:

char path [255]
char path [255]

"\\TURBOC\\OLDFILES\\";
"\\vl;

X ook R % F Ok % R % % % X * Ok N

/

create_unique_file (char *pathname, int attribute)
{
union REGS inregs, outregs;

inregs.h.ah = 0x5A;
inregs.x.cx = attribute;
inregs.x.dx = pathname;

intdos (&inregs, &outregs);

return ((outregs.x.cflag) ? outregs.x.ax: 0);

get__program__segment__prefix

l-» Segment address of PSP

#include <dos.h>

/*
* get_program segment_prefix ()
*

190 TURBO C PROGRAMMER’S LIBRARY

* Return the segment address of the program segment prefix for
* the current program.
*

*/

get_program segment_prefix ()
(union REGS inregs, outregs;
inregs.h.ah = 0x62;
intdos (&inregs, &outregs);

return (outregs.x.bx);

}

Using the Programs

Admittedly, this chapter has presented you with a large collection of
routines. Although many of these routines appeared to perform
basic functions, they become quite powerful when you use them in
larger programs. Many of the programs in later chapters make
extensive use of these routines.

Turbo C BIOS
Interface

Chapter 6 discussed how to use the DOS system services to add
many powerful routines to your library of Turbo C functions. Just as
DOS provides a series of routines that your Turbo C programs can
access, so do the IBM PC and PC compatibles. This collection of
routines resides in the PC’s read-only memory (ROM) and is com-
monly called the ROM BIOS. This is because the routines perform
the Basic Input Output Services (BIOS).

As was the case in Chapter 6, this chapter does not attempt to
implement all of the BIOS services; instead, it examines a select

191

192 TURBO C PROGRAMMER'S LIBRARY

group of services that are useful in many Turbo C applications. Most
of the routines in this chapter deal specifically with video control.

As with the DOS system services, you must again use the 8088
registers as your interface to the BIOS services. Thus, you must
include the file dos.h at the beginning of your programs, as shown
here:

#include <dos.h>

Unlike the DOS services (which used the routines intdos and
intdosx), the BIOS services use int86. The calling sequence for int86
is as follows:

int86 (interrupt number, &inregs, &outregs);

DOS services use INT 21H, as discussed in Chapter 6. The BIOS
services, however, use the following interrupts:

Print screen INT 05H
Video services INT 10H
Equipment service INT 11H
Memory size INT 12H
Disk services INT 13H
Port services INT 14H
AT extended services INT 15H
Keyboard services INT 16H
Printer services INT 17H
ROM BASIC INT 18H
Reboot service INT 19H
Time services INT 1AH

In addition to the input and output register structures, you must
specify ‘an interrupt number, as shown here:

int86 (0x10, &intregs, &outregs);

As before, many of these routines exist in the Turbo C run-time
library. To help you better understand how to control your PC, how-

TURBO C BIOS INTERFACE 193

ever, the following routines implement a library of ROM BIOS
routines:

A>DIR —=4 print__screen

X+

#include <dos.h>

/
void print_screen ()

Print the contents of the current screen display.
print_screen ();

/

* X X X F X A X

void print_screen ()
{
union REGS inregs, outregs;

int86 (5, &inregs, &outregs);

int mode=3; —» set__video_mode —

00

194 TURBO C PROGRAMMER’S LIBRARY

#include <dos.h>

/*

* void set_video_mode (mode)

*

* Set the current video display mode.

*

* mode (in): Video mode desired. Common modes include:
* 0 40 x 25 grey 1 40 x 25 color 2 80 x 25 grey
* 3 80 x 25 color 4 320 x 200 color

* 5 320 x 200 grey 6 640 x 400 graphics

* 7 85 x 25 text

*

* set_video_mode (4);

*

*

/

void set_video_mode (int mode)
{
union REGS inregs, outregs;

inregs.h.ah = 0;
inregs.h.al = mode;

int86 (0x10, &inregs, &outregs);
}

int top=6; _.|

i —
int bottom=7; set__cursor__size

X

#include <stdio.h>
#include <dos.h>

/*

void set_cursor_size (start, stop)
Set the current cursor size.

*
*
*
*
* start (in): top scan line.

* stop (in): bottom scan line.
*

*

*

*

*

set_cursor_size (8, 7);

For CGA scan lines range from 0 to 7. For monochrome scan
lines range from 0 to 13. If you make the top scan line larger

TURBO C BIOS INTERFACE

* than the bottom scan line, the cursor disappears.
*

*/

void set_cursor_size (int start, int stop)
{
union REGS inregs, outregs;

inregs.h.ah = 1;
inregs.h.ch = start;
inregs.h.cl = stop;

int86 (0x10, &inregs, &outregs);

195

int page__number=0;—
int row=10; —={ set_cursor__position
int column=15; —

Y

00

#include <dos.h>

/*
void set_cursor position (page number, row, column)

*
*
* Place the cursor at the row and column given for the video
* display page specified.

*

* page_number (in): Video page number.

* row (in): Desired row number.

* column (in): Desired column number.

*

* set_cursor_position (0, 10, 15);

*

*/

void set_cursor position (int page number, int row, int column)

{
union REGS inregs, outregs;

inregs.h.ah = 2;
inregs.h.bh = page_ number;
inregs.h.dh = row;
inregs.h.dl = column;

int86 (0x10, &inregs, &outregs);

196 TURBO C PROGRAMMER'S LIBRARY

00

i () =

int page__number=0; ‘ 10
i . ——)

int row; - - 5
int column; —»={ get__cursor_position

int top; —

e

int bottom; —

#include <dos.h>

/* .
void get_cursor_position (page number, row, column, start, stop)

Get cursor information for the video page specified.

*
*
*
*
* page_number (in): Page number to return cursor information for.
* row (out): Current cursor row number.

* column (out): Current cursor column number.

* start (out): Top cursor scan line.

* stop (out): Bottom cursor scan line.

*

*

*

*

get_cursor_position (0, &row, &column, &start, &stop);
/

void get_cursor position (int page number, int *row,
int *column, int *start, int *stop)
{

union REGS inregs, outregs;

inregs.h.ah 3;

inregs.h.bh page_number;

int86 (0x10, &inregs, &outregs);
*row = outregs.h.dh;

*column = outregs.h.dl;

*start = outregs.h.ch;

*stop = outregs.h.cl;

TURBO C BIOS INTERFACE 197

int page=0; ——{ set__active__display__page j—m—

o
o
#include <dos.h>
/*
: set_active_display page (page)
: Select the video display page that is visible on the screen.
: page (in): Desired video display page.
: set_active_display_page (3);
* By writing to a nonactive video display and then selecting
* the page as active, the video output appears instantaneous.
Wy
void set_active_display page (int page)
(union REGS inregs, outregs;
inregs.h.ah = 5;
inregs.h.al = page;
)int86 (0x10, &inregs, &outregs);
int numlines=1; ——
int attribute=0; —
int top__row=10; e
int bottom_row=20; —m scroll—up - 2
int left_column=10;
int right_column=70; —smi

198 TURBO C PROGRAMMER’S LIBRARY

#include <dos.h>

~
*

scroll up (numlines, attribute, top_row, bottom_ row,
left _column, right_column)

Scroll the text on a region of the screen up as specified.

numlines (in): Number of lines to scroll up.

attribute (in): Attribute of line(s) left blank by the scroll.
top_row (in): Upper row of the region to scroll.

bottom_row (in): Lower row of the region to scroll.
left_column (in): Left column of the region to scroll.
right_column (in): Right column of the region to scroll.

scroll up (1, 0, 10, 20, 10, 50);
/

* Ok OF X O R X X Ok H X % F

void scroll _up (int numlines, int attribute, int top_row,
int bottom_row, int left column, int right_column)
{

union REGS inregs, outregs;

inregs.h.ah 6;
inregs.h.al numlines;
inregs.h.bh attribute;
inregs.h.ch top row;

inregs.h.dh = bottom row;
inregs.h.cl left_column;
inregs.h.dl right column;

int86 (0x10, &inregs, &outregs);

int numlines=1;

int attribute=0;

int top_row=10;
p scroll_down i

int bottom__row=20;

X

RERR

int left_column=10;

int right_column=70; —w=

TURBO C BIOS INTERFACE

#include <dos.h>

/*

* scroll_down (numlines, attribute, top_row, bottom row,

scrol

/

¥ % % Ok F % Ok F Ok F % X ¥ H

left_column, right_column)

numlines (in): Number of lines to scroll down.

attribute (in): Attribute of line(s) left blank by the scroll.
top_row (in): Upper row of the region to scroll.

bottom_row (in): Lower row of the region to scroll.
left_column (in): Left column of the region to scroll.
right_column (in): Right column of the region to scroll.

1 _down (1, 0, 10, 20, 10, 50);

Scroll the text on a region of the screen down as specified.

void scroll_down (int numlines, int attribute, int top_row,

{

union

inregs
inregs
inregs
inregs
inregs
inregs
inregs
int86

int bottom_row, int left_ column,

REGS inregs, outregs;

.h.ah = 7;

.h.al = numlines;

.h.bh = attribute;

.h.ch = top_row;

.h.dh = bottom row;

.h.cl = left_column;

.h.dl = right_column;
(0x10, &inregs, &outregs);

int right_column)

199

int page=0;
int character=65; —»
int attribute=14; —»
int count=1;

write__char_and__attr

X

200 TURBO C PROGRAMMER’S LIBRARY

#include <dos.h>

/*

* void write_char_and attr (page, character, attribute, count)
*

* Write the number of occurrences specified of a given

* character (and attribute) on the display page provided.
*

* page (in): Video display page to write character to.

* character (in): ASCII character to display.

* attribute (in): Video display attribute of character.

* count (in): Number of times to display character.

*

* write_char and attr (0, 65, 14, 10);

*

*

/

void write char_and_attr (int page, int character,
int attribute, int count)
{

union REGS inregs, outregs;

inregs.h.ah 9;

inregs.h.al = character;
inregs.h.bh = page;
inregs.h.bl = attribute;
inregs.x.cx = count;

int86 (0x10, &inregs, &outregs);.

int palette=0; —»=

. L r_palette = p—=
int color=1; ——pmd set_color—p

X

#include <dos.h>

~
*

void set_color_ palette (palette, color)
Set the color palette and select a color for graphics display.

palette (in): Desired color palette.
color (in): Desired color from the palette selected.

set_color_palette (0, 1);
/

* O % F X R X X X X

TURBO C BIOS INTERFACE 201

void set_color_palette (int palette, int color)
{
union REGS inregs, outregs;

inregs.h.ah = 0x0B;
inregs.h.bh = palette;
inregs.h.bl = color;

int86 (0x10, &inregs, &outregs);

int row=10;
int column=10; — write__pixel -
int color=1; =i

X

#include <dos.h>

~
*

void write pixel (row, column, color)

Write a graphics pixel of the color given at the row and column
location specified.

row (in): Pixel row position.
column (in): Pixel column position.
color (in): Pixel color.

write pixel (10, 10, 1);

/

LN R I AR R

void write_pixel (int row, int column, int color)

union REGS inregs, outregs;

inregs.h.ah = 0x0C;
inregs.h.al = color;
inregs.x.cx = column;
inregs.h.dl = row;

int86 (0x10, &inregs, &outregs);

202 TURBO C PROGRAMMER'S LIBRARY

int row=10; —

__pixel ——
int column=10; read_pixe

L Pixel color

X)

#include <dos.h>

~
*

read_pixel (row, column)
Return the color of the pixel at the row and column specified.

row (in): Pixel row position.
column (in): Pixel column position.

color = read pixel (10, 10);

/

* Ok R Ok X % X % X H

read_pixel (int row, int column)
union REGS inregs, outregs;

inregs.h.ah
inregs.x.cx column;
inregs.h.dl row;

int86 (0x10, &inregs, &outregs);

0x0D;

return (outregs.h.al);

TURBO C BIOS INTERFACE

203

(]

(]
int width; —= 80
int mode; —s get__video_mode 3
int page; —= — 0

#1i

~
*

ERE N A T R

vo

{

nclude <dos.h>

void get_video_mode (width, mode, page)

Return the current video display status.

width (out): Number of characters per line (40 or 80).
mode (out): Current video mode. (See set_video_mode)
page (out): Current video display page.
get_video_mode (&width, &mode, &page);

/

id get_video_mode (int *width, int *mode, int *page)

union REGS inregs, outregs;

inregs.h.ah = 0x0F;
int86 (0x10, &inregs, &outregs);

*width = outregs.h.ah;
*mode = outregs.h.al;
*page = outregs.h.bh;

204 TURBO C PROGRAMMER'S LIBRARY

s

=F==| | —= memory_size
s

3

= Kilobytes of memory

#include <dos.h>

/*

* memory_size ()

*

* Return the number of kilobytes of memory in the system.
*

* num_bytes = memory_size ();

*

*

/

memory_size ()

union REGS inregs, outregs;
int86 (0x12, &inregs, &outregs);

return (outregs.x.ax);

LU[Keyboard ﬂ——b get__shift__state

L' Keyboard status

#include <dos.h>

*
*
*
*
*
*
*
*
*
*
*
*
*

get_shift_state ()

Return the current keyboard state.

state = get_shift_state ();

TURBO C BIOS INTERFACE

get_shift_ state returns a byte whose bits define:
bit 0 Right shift depressed bit 1
bit 2 Ctrl depressed bit 3
bit 4 scroll lock on bit 5
bit 6 caps lock on bit 7

/

get_shift_ state ()
{

union REGS inregs, outregs;

inregs.h.ah = 2;

int86 (0x16,

&inregs, &outregs);

return (outregs.h.al);

Left shift depressed
Alt depressed

num lock on

ins on

205

int color=1; ——= set__border__color

Xe)

#include <dos.h>

/*

*
*
*
*
*
*

void set_border_ color (color)

Set the current border color for CGA monitors in text mode.

color (in):

Desired color (0 - 15).

206 TURBO C PROGRAMMER’S LIBRARY

* set_border_color (1);
*
*/
void set_border color (int color)
{

union REGS inregs, outregs;

inregs.h.ah = 0x0B;
inregs.h.bh = 0;
inregs.h.bl = color;

int86 (0x10, &inregs, &outregs);

By using the routines provided in this chapter, you can quickly
produce routines of professional quality. Experiment with these
functions, and your programs should gain tremendous flexibility.

Turbo C ANSI
Support

Chapters 6 and 7 included several routines that provided video and
I/O support from DOS and the ROM BIOS services. In addition to
these routines, the Turbo C run-time library provides many useful
1/0 functions. This chapter, which completes your library of screen-
manipulation routines, examines the ANSI driver provided with
both MS-DOS and PC DOS.

The ANSI driver software intercepts data that is sent from the
keyboard and data that is sent to the video display in search of
ANSI commands (see Figure 8-1).

207

208 TURBO C PROGRAMMER’S LIBRARY

ANSI DOS ANSI

K
eyboard Driver Driver

00

Figure 8-1. Operation of the ANSI driver

An ANSI command is a series of characters that begin with an
ASCII 27 (commonly known as an escape character). For example,
the following ANSI command clears the screen display and places
the cursor in the upper-left (home) position on the screen:

ESC[2J

The following program uses this escape sequence and printf to clear
the contents of the screen display (similar to the DOS CLS
command):

main ()

{
printf ("\033([2J");
}

All of the ANSI commands are this easy to use.

Before you can use the ANSI driver, you must be sure that the
ANSI driver software is installed on your system. To do so, be sure
that the file ANSI.SYS is on your boot disk by issuing the following
command:

TURBO C ANSI SUPPORT 209

C> DIR ANSI.SYS

Volume in drive C is S
Directory of C:\

ANSI SYS 1651 8-01-87 12:00a
1 File(s) 1093632 bytes free

Next, place the following entry in the CONFIG.SYS file and reboot:

DEVICE=ANSI.SYS

Once the system restarts, DOS will have loaded the ANSI driver
support.

Table 8-1 summarizes the ANSI commands discussed in this
chapter.

Table 8-1. Summary of ANSI Commands

Funection ANSI Command
Set Cursor ESC[#;#H
Cursor Up ESC[#A
Cursor Down ESC[#B
Cursor Forward ESC[#C
Cursor Back ESC[#D
Save Cursor ESC[s
Restore Cursor ESC[u
Clear Screen ESC[2J
Clear EOL ESC[K
Set Graphic ESC[#;. . .;#m
Set Mode ESC[=#h
Key Change ESC[#;#p

Key Define ESC[#;#;“text”;13p

210 TURBO C PROGRAMMER’S LIBRARY

Cursor-Manipulation Routines

The following routines use the ANSI services to perform cursor
manipulation.

int row=10; — -
set__cursor
int column=10 —»

X<

void set_cursor (row, column)

Use the ANSI driver to set the cursor to the row and
column position specified.

row (in): Desired row number.
column (in): Desired column number.

set_cursor (10, 10);

/

* Ok O Ok R Ok b X X X F %

void set_cursor (int row, int column)
{
printf ("\033[%d;%dH", row, column);
}

int numrows:10;——{ cursor_up]——

X

TURBO C ANSI SUPPORT 211

cursor_up (numrows)

Use the ANSI driver to move the cursor up the number
of row specified.

numrows (in): Number of rows to move the cursor.
cursor_up (10);

If the cursor reaches the top of the screen, the routine
completes.

P R

/
void cursor_up (int numrows)

printf (;\033[%dA“, numrows) ;
}

int NUMrOwWs=10; ———u cursor_down P

Xe)

/*

* cursor_down (numrows)

*

* Use the ANSI driver to move the cursor down the number
* of row specified.

*

* numrows (in): Number of rows to move the cursor.

*

* cursor_down (5);

*

* If the cursor reaches the bottom of the screen, the routine
* completes.

*

*

/
void cursor_down (int numrows)

printf ("\033[%dB", numrows);
}

212 TURBO C PROGRAMMER'S LIBRARY

+ int numcolumns=25; ———pe cursor_—forward b
o
o

/%

* void cursor_forward (numcolumns)

*

* Use the ANSI driver to move the cursor forward the number

* of columns specified.

*

* numcolumns (in): Number of columns to move cursor forward.

*

* cursor_forward (10);

*

* If the cursor reaches the right side of the screen, the

* routine completes.

*

*/

void cursor_ forward (int numcolumns)

{
printf ("\033{%dC", numcolumns);

int NUMCOIUMNS=25; el cursor__back —

00

TURBO C ANSI SUPPORT

/*

* void cursor back (numcolumns)

*

* Use the ANSI driver to move the cursor backward the number
* of columns specified.

*

* numcolumns (in) : Number of columns to move cursor backward.
*

* cursor_backward (10);

*

* If the cursor reaches the left side of the screen, the

* routine completes.

*

*

/

void cursor_back (int numcolumns)

printf ("\033[%dD", numcolumns) ;

213

[cursor—_home J-—’

X)

LR R R

void cursor_home ()
Use the ANSI driver to place the cursor in the home position.

cursor_home ();

/

void cursor_home ()

}

printf ("\033[H");

214 TURBO C PROGRAMMER’S LIBRARY

save__cursor J——

o0

*
/* void save_cursor ()
*
* Use the ANSI driver to save the current cursor position for
* later restoration by restore_cursor.
*
* save_cursor ();
.

/

void save_cursor ()

{

printf ("\033[s\n");
}

restore__cursor .

oo

TURBO C ANSI SUPPORT 215

*

/: void restore_cursor ()

* Use the ANSI driver to restore the cursor position that
: was saved by a previous call to save_cursor.

* restore cursor ();

y

void restore_cursor ()
{
printf ("\033[u\n";;
}

Erasing

The following set of routines uses the ANSI commands to erase the
entire screen display, and to erase the screen display from the cur-
rent cursor position to the end of the line:

clear_screen ——

oo

/*
* void clear_screen ()
*

* Use the ANSI driver to clear the current screen contents
* placing .the cursor in the home position.

216 TURBO C PROGRAMMER’S LIBRARY

*
* clear_screen ();
*
*/
void clear_screen ()

{
printf ("\033[2J");
}

r clear—col }_...

void clear_eol ()

Use the ANSI driver to clear the current line from the
current cursor position.

clear_eol ();

/

* Ok Ok kX Ok X X F

void clear_eol ()

printf ("\033[K");
}

Screen Attributes

The following routines use the ANSI services to modify the video
display and the output attributes of data on the screen:

TURBO C ANSI SUPPORT 217

I set__bold }-——

void set_bold (command)
Use the ANSI driver to enable or disable bold text display.

command (in): If command is 1, bolding is enabled, otherwise
bolding is disabled.

set_bold (1); printf ("BOLD TEXT");
set_bold (0); printf ("NORMAL TEXT");

/

OOk Ok % R E % % X % O %

void set_bold (int command)
{

printf ("\033[%dm", (command) ? 1: 0);
}

[set_blink |-

X3

218 TURBO C PROGRAMMER’S LIBRARY

void set_blink (command)
Use the ANSI driver to enable or disable blinking text display.

command (in): If command is 1, blinking is enabled, otherwise
blinking is disabled.

set_blink (1); printf ("BLINKING TEXT");
set_blink (0); printf ("NORMAL TEXT");

/

R N R

void set_blink (int command)

printf ("\033[%dm", (command) ? 5: 0);

[set__reverse]—"

X

/%

* void set_reverse (command)

*

* Use the ANSI driver to enable or disable reverse video text display.
*

* command (in): If command is 1, reverse video is enabled, otherwise
* reverse video is disabled.

*

* set_reverse (1); printf ("REVERSED TEXT");

* set_reverse (0); printf ("NORMAL TEXT");

*

*/

void set_reverse (int command)
{
printf ("\033[%dm", (command) ? 7: 0);
}

TURBO C ANSI SUPPORT 219

int foreground=34; —{

set__colors -
int background=47; —=

Xe)

/*

* void set_colors (foreground, background)

*

* Use the ANSI driver to set the foreground and background
* colors for text display.

*

* foreground (in): Desired foreground color:

* 30 black 31 red 32 green 33 yellow
* 34 blue 35 magenta 36 cyan 37 white
* background (in): Desired background color:

* 40 black 41 red 42 green 43 yellow
* 44 blue 45 magenta 46 cyan 47 white
*

* set_colors (31, 47);

*

*

/

void set_colors (int foreground, int background)
{
if ((foreground >= 30) && (foreground <= 37))
if ((background >= 40) && (background >= 47))
printf ("\033[%d;%dm", foreground, background) ;

char *str="TEST"”;, ——={ print__reverse__video

220 TURBO C PROGRAMMER’S LIBRARY

void print_reverse video (string)

Use the ANSI driver to print the string specified in reverse
video.

string (in): Character string to display.
print_reverse_video ("TEST STRING");

/

L B B A IR 2 2 A

void print_reverse_video (char *string)

printf ("\033([7m%s\033[0m", string);
}

vty os,

char .strz"TEs'r";——f print_blinking J—-— 2 TFﬁT\:
‘¢ \

void print_blinking (string)

Use the ANSI driver to print the string specified blinking.
string (in): Character string to display.

print_blinking ("TEST STRING");

/

¥ Ok R % X R Ok X % *

void print_blinking (char *string)

printf ("\033[5m%s\033[0m", string);
}

TURBO C ANSI SUPPORT 221

char +str="BOLD"; —-—-{‘print_bold 1—-— BOLD

o
o

/*

* void print_bold (string)

*

* Use the ANSI driver to print the string specified bold.

*

* string (in): Character string to display.

*

* print_bold ("TEST STRING");

*

*/
void print_bold (char *string)

{

printf ("\033[1m%s\033([0m", string);

}

80x25

int mode=3;——= ansi__set__mode e color

X<)

222 TURBO C PROGRAMMER'S LIBRARY

/*

* void ansi_set_mode (mode)

*

* Use the ANSI driver to select the mode specified.
*

* mode (in): Desired video mode:

* 0 40 x 25 bw 1 40 x 25 color

* 2 80 x 25 bw 3 80 x 25 color

* 4 320 x 200 color 5 320 x 200 bw

* 6 640 x 200 bw 7 wrap at end of line
*

* ansi_set_mode (3);

*

*/

void ansi_set_mode (int mode)
{
if ((mode >= 0) && (mode <= 7))
printf ("\033[=%dh", mode);

Keyboard Reassignment

The routines presented in this section enable you to trap data from
data with either a different key-
stroke or a series of keystrokes. This means that the ANSI driver
enables you to redefine a DOS function key (such as F10) with a DOS
command (such as DIR). Once defined, each time you press the F10
will respond with the DIR com-

the keyboard and to replace that

key from the DOS prompt, DOS
mand, as shown here:

(,
C> DIR
Volume in drive C is S
Directory of C:\TURBOC
<DIR> 11-28-87 8:05p
.. <DIR> 11-28-87 8:05p
ALLOC H 896 6-03-87 1:00a
ASSERT H 275 6-03-87 1:00a
BIOS H 527 6-03-87 1:00a
CONIO H 517 6-03-87 1:00a
CTYPE H 1345 6-03-87 1:00a
DIR H 1222 6-03-87 1:00a
DOS H 7316 6-03-87 1:00a
ERRNO H 2648 6-03-87 1:00a
FCNTL H 991 6-03-87 1:00a
9 File(s) 1058816 bytes free

TURBO C ANSI SUPPORT 223

int old="A""; —s= change__key —/ ﬂ[

int old="a"; ~—»

A\

- |

Keyboard

O % X % % X X X % X %

void change_key (old, new)

Use the ANSI driver to redefine the ASCII code associated
with the key specified.

old (in): ASCII code of key to redefine.
new (in): ASCII code of new key.

change_key (‘A’, ’a');

/

void change key (int old, int new)

{
}

printf ("\033[%d;%dp", old, new);

int scancode=68; —=
char *str="DIR"; —®

define_function_key ﬁ,LI[

\\

[-

-

Keyboard

X % k% %k %

void define_function key (scancode, string)

Use the ANSI driver to associate a character string with

a DOS function key.

224 TURBO C PROGRAMMER’S LIBRARY

scancode (in): Scan code of the key to reassign.
string (in): String to associate with the key.

*
*
*
* define_ function_key (68, "DIR"); (68 is F10)
*
*/

void define function key (int scancode, char *string)

printf ("\033[0;%d;\"%$s\";13p", scancode, string);
}

The ANSI functions are indeed quite powerful and quite conve-
nient. However, to avoid problems, be sure that the user has installed
the ANSI driver. If your program uses the ANSI escape sequences
to perform I/O operations and the ANSI driver is not installed, the
screen will contain a strange combination of characters. If this
occurs, be sure the user installs the ANSI driver as previously
explained.

Since Turbo C provides several powerful routines for controlling
your output (see Appendix B), you may choose to use the run-time
library routines in place of the ANSI routines. In either case, if you
program under DOS, it is important that you understand that the
ANSI driver capabilities exist.

CcC H A P T E R

File Manipulation

Chapter 5 examined many programs that use the DOS pipe and 1/0
redirection operators to perform file and stream manipulation. This
chapter builds on those programs to enable support for DOS
command-line processing and I/O redirection, as shown here:

A> DIR | FIRST
A> FIRST FILENAME.TXT

225

226. TURBO C PROGRAMMER’S LIBRARY

In the latter case, many of the programs presented in this chapter
will also support DOS wildcard characters by using the routines
find__first and find__next, which were presented in Chapter 6.

[A> FIRST *.*]

By supporting both command-line arguments and DOS I/0 redi-
rection, the programs presented in this chapter will provide you
with maximum flexibility.

Understanding find—first
and find—next

Before examining the text file-manipulation routines presented
later in this chapter, you should first understand how wildcard pro-
cessing is performed. The following program, LS.C, performs a
DOS directory command. You can invoke the program as follows:

A> LS (List all files by default)
A> LS FILENAME.EXT (List all C files)
A> LS *.C

FILE MANIPULATION 227

The program will display all of the information normally dis-
played by the DOS DIR command. For example, if your directory

contains the following,

Volume in drive A is C_FILES

Directory of A:\

APPENDIX C 2688 11-04-87 11:55a

ALPHA C 320 2-15-88 6:58p

ASCIIINT C 562 2-15-88 6:58p

AUXCHAR C 446 2-15-88 6:58p

AUXWRITE C 596 2-15-88 6:58p

ANSITEST C 50 2-15-88 6:58p

ASETCUR C 431 2-15-88 6:58p
L 7 File(s) 353280 bytes free

the command

(A> LS

will display the following:

APPENDIX.C
ALPHA.C
ASCIIINT.C
AUXCHAR.C
AUXWRITE.C
ANSITEST.C
ASETCUR.C

11/04/1987
02/15/1988
02/15/1988
02/15/1988
02/15/1988
02/15/1988
02/15/1988

2688
320
562
446
596

431

bytes
bytes
bytes
bytes
bytes
bytes
bytes

The program begins by passing either the contents of argv[1] or
the character string ** to the routine find__first. If find_first

228 TURBO C PROGRAMMER'S LIBRARY

locates a matching file, the program displays the related data. Oth-
erwise, the program terminates.

If find__first successfully locates a file, the program invokes the
routine find_next to locate the next file matching the original
search specification. If a new file is found, the program displays the
file information, and this process repeats. Otherwise, the program
terminates. The following code implements LS:

main (argc, argv)
int argc;
char *argv([];
{
int day, month, year, hour, minute, second, status;
long size;
char filename([13];

int find first (char *, char *, int, int *, int *, int *
int *, int *, int *, long int *);

int find next (char *, int, int *, int *, int %,
int *, int *, int *, long int ¥*);

if (argc < 2)
status = find first ("*.*", filename, 0, &hour, &minute,
&second, &day, &month, &year, &size);
else
status = find first (argv([l], filename, 0, &hour, &minute,
&second, &day, &month, &year, &size);

while (status == 0)

printf ("%-15s %02d/%02d/%d\t%02d:%02d:%02d %91d bytes\n",
filename, month, day, year, hour, minute, second, size);
status = find next (filename, 0, &hour, &minute, &second,
&day, &month, &year, &size);
}
}

The program ATTR.C enhances the DOS ATTRIB command,
which sets or displays a file’s attributes. This program supports the
attributes shown in Table 9-1.

FILE MANIPULATION 229

Table 9-1. Attributes Supported by ATTR.C Program

Attribute Meaning

Normal
Read-only
Hidden
System
Volume label
Subdirectory
Archive

NSO N-~O

O =

Inveke the ATTR.C program as follows:

A> ATTR *.* (Display file attributes)
A> ATTR 1 *.C (Set C files to read-only)
A> ATTR 0 *.* (Set files to normal attributes)

If you use ATTR to set a file to read-only and later try to delete or
modify the file, DOS will display the following:

230 TURBO C PROGRAMMER’S LIBRARY

[Access Denied j

The following code implements ATTR.C:

main (argc, argv)
int argc;
char *argv([];
{
int status, attributes, day, month, year, hour, minute, second;
long size;
char filename[13];

if (argc == 1)
{

printf ("ATTR invalid usage: ATTR [attribuie] FILESPEC\n");
exit (1);

else if (argc == 2)
status = find_first (argv(l], filename, 0, &hour, &minute, &second,
&day, &month, &year, &size);
else
{
if (ascii_to_int (argv[1l], &attributes) == -1)
{
printf ("ATTR invalid attribute %s\n", argv([l]);
exit (1);

status = find first (argv[2], filename, 0, &hour, &minute, &second,
&day, &month, &year, &size);
}

while (status == 0)
{
if (argc ==