
Borland"
.TUrbo Assembler"

lor-OSI2®

User's Guide

Borland®
Turbo Assembler®
for OS/2®
Version 4.1

Borland may have patents andbr pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these patents.

COPYRIGHT © 1987, 1994 by Borland International. All rights reserved. All Borland product
names are trademarks or registered trademarks of Borland International, Inc. Other brand
and product names are trademarks or registered trademarks of their respective holders.

Borland International, Inc.
100 Borland Way, Scotts Valley, CA 95066-3249

PRINTED IN THE UNITED STATES OF AMERICA

1 EOR0294
9495969798-987654321
H1

Contents

Introduction 1 lu .. 27
Hardware and software requirements 2 Iv .. 27
About the manuals 2 Iw 27
Notational conventions 4 Ix .. 28
Contacting Borland 4 Iz .. 29

Borland Assist plans 4 Izd 29

Chapter 1 Getting started with Turbo Assembler 7
Installing Turbo Assembler 7

Izi 29
Izn 30
Indirect command files 30

Utility and example programs 8
Online help 8
Writing your first Turbo Assembler program 8

The configuration file 31

Chapter 3 General programming concepts 33
Assembling your first program 9 Turbo Assembler Ideal mode 33
Linking your first program 11 Why use Ideal mode? 34

Recommended reading 11 Entering and leaving Ideal mode 34

Chapter 2 Using directives and switches 13
Starting Turbo Assembler 13
Command-line options 16
la .. 16
Ib .. 17
Ic .. 17
Id .. 17
Ie .. 18
Ih or I? 18
Ii 19

MASM and Ideal mode differences 35
Expressions and operands 36
Operators 36
Suppressed fixups 36
Operand for BOUND instruction 37
Segments and groups 37
Accessing data in a segment belonging to a
group 37

Commenting the program 40
Comments at the end of the line 40
The COMMENT directive 40

Ij ... 19
Ikh 20
11 · 20
Ila " 21
1m 21

Extending the line 40
Using INCLUDE files 41
Predefined symbols 42
Assigning values to symbols 43
General module structure 44

Iml 21 The VERSION directive 44
Imu 22
Imv# 22
Imx 23
In .. 23
10 ... 24
loi " 24

The NAME directive 45
The END directive 45

Displaying a message during assembly 46
Displaying warning messages 46
Multiple error-message reporting 47

lop 24 Chapter 4 Creating object-oriented programs 49
los . .. 24 Terminology 49
Ip .. 25 Why use objects in Turbo Assembler? 50
Iq .. 25 What is an object? 50
Ir .. 25 A sample object 51
Is .. 26 Declaring objects 51
It ... 26 Declaring a base object 52

Declaring a derived object 54
Declaring a method procedure 55
The virtual method table 56

Initializing the virtual method table 56
Calling an object method 57

Calling a static method 57
Calling a virtual method 58
Calling ancestor virtual methods 60
More on calling methods 61

Creating an instance of an object 62
Programming form for objects 62

Chapter 5 Using expressions and symbol values 65
Constants 65

Numeric constants 65
Changing the default radix 66

String constants 66
Symbols 67

Symbol names 67
Symbol types 67
Simple address subtypes 68
Describing a complex address subtype 68

Expressions 69
Expression precision 70
Constants in expressions 70
Symbols in expressions 70

Registers 70
Standard symbol values 71
Simple symbol values 71
The LENGTH unary operator 72
The SIZE unary operator 72
The WIDTH unary operator 73
The MASK unary operator 73

General arithmetic operators 74
Simple arithmetic operators 74
Logical arithmetic operators 74
Bit shift operators 75
Comparison operators 75
Setting the address subtype of an
expression 75
Obtaining the type of an expression 76
Overriding the segment part of an address
expression 77
Obtaining the segment and offset of an
address expression 77
Creating an address expression using the
location counter 78
Determining the characteristics of an
expression 79

Referencing structure, union, and table
member offsets 79
Describing the contents of an address 80
Implied addition 80
Obtaining the high or low byte values of an
expression ". . . . 80
Specifying a 16- or 32-bit expression 81

Chapter 6 Choosing processor directives and
symbols 83

iAPx86 processor directives 83
Predefined symbols 85
@Cpu 85
@WordSize 86
8087 coprocessor directives ., 86
Coprocessor emulation directives 87

Chapter 7 Using program models and
segmentation 89

The MODEL directive 90
Symbols created by the MODEL directive ... 93

The @Model symbol 93
The @32Bit symbol 93
The @CodeSize symbol 93
The @DataSize symbol 93
The @Interface symbol 93

Simplified segment directives 94
Symbols created by the simplified segment
directives 95

The STARTUPCODE directive 95
The @Startup symbol ; .. 96
The EXITCODE directive 96

Defining generic segments and groups 96
The SEGMENT directive 96

Segment combination attribute 97
Segment class attribute 98
Segment alignment attribute 98
Segment size attribute 98
Segment access attribute 99

The ENDS directive 99
The GROUP directive 99

The ASSUME directive 100
Segmentordering 101

Changing a module's segment ordering .. 101
DOS ordering of segments: the DOSSEG
directive 102

Changing the size of the stack 103

Chapter 8 Defining data types 105
Defining enumerated data types 105

Defining bit-field records 106
Defining structures and unions 108

Opening a structure or union definition 108
Specifying structure and union members ... 108

Defining structure member labels with
LABEL 109
Aligning structure members 109

Closing a structure or union definition 109
Nesting structures and unions 110
Including one named structure within
another 111
Using structure names in expressions 113

Defining tables 113
Overriding table members 115

Defining a named type 115
Defining a procedure type 115
Defining an object 116

The TBLPTR directive 118
Symbols defined by the extended STRUC
directive 118

Chapter 9 Setting and using the location
counter 119

The $ location counter symbol 119
Location counter directives 120

The ORG directive 120
The EVEN and EVENDATA directives 122
The ALIGN directive 122

Defining labels 123
The : operator 123
The LABEL directive 124
The :: directive 124

Chapter 10 Declaring procedures 125
Procedure definition syntax 125

Declaring NEAR or FAR procedures 126
Declaring a procedure language 128
Specifying a language modifier 129

Defining arguments and local variables 131
ARG and LOCAL syntax 131
The scope of ARG and LOCAL variable
names 133
Preserving registers 134

Defining procedures using procedure
types 134

Nested procedures and scope rules 135
Declaring method procedures for objects 136
Using procedure prototypes 137

iii

Chapter 11 Controlling the scope of symbols 141
Redefinable symbols 141
Block scoping 142

The LOCALS and NOLOCALS directives .. 142
MASM block scoping '. 143

MASM-style locallabels 143

Chapter 12 Allocating data 145
Simple data directives 146
Creating an instance of a structure or union ... 149

Initializing union or structure instances 150
Creating an instance of a record 153

Initializing record instances 153
Creating an instance of an enumerated data
type 154

Initializing enumerated data type
instances 155

Creating an instance of a table 155
Initializing table instances 155

Creating and initializing a named-type
instance . 156
Creating an instance of an object 157
Creating an instance of an object's virtual method
table 157

Chapter 13 Advanced coding instructions 159
Intelligent code generation: SMART and
NOSMART 159
Extended jumps 160
Additional 80386 LOOP instructions 161
Additional 80386 ENTER and LEAVE
instructions 161
Additional return instructions 161
Additional IRET instructions 162
Extended PUSH and POP instructions 162

Multiple PUSH and POPs 162
Pointer PUSH and POPs 163
PUSHing constants on the 8086 processor .. 163

Additional PUSHA, POP A, PUSHF and POPF
instructions 163
The PUSHSTATE and POPSTATE
instructions 164
Extended shifts 165
Forced segment overrides: SEGxx instructions. 166
Additional smart flag instructions 166
Additional field value manipulation
instructions 167

The SETFIELD instruction 167
The GETFIELD instruction 168

Additional fast immediate multiply
instruction 169
Extensions to necessary instructions for the 80386
processor 169
Calling procedures with stack frames 170

Calling procedures that contain RETURNS .172
Calling procedures that have been
prototyped 172
Calling method procedures for objects:
CALL..METHOD 172
Tail recursion for object methods:
IMP .. METHOD 173

Additional instruction for object-oriented
programming 174

Chapter 14 Using macros 175
Text macros 175

Defining text macros with the EQU
directive 175
String macro manipulation directives 176

The CATSTR directive 176
The SUBSTR directive 176
The INSTR directive 177
The SIZESTR directive 177
Text macro manipulation examples 177

Multiline macros 177
The multiline macro body 178

Using & in macros 178
Including comments in macro bodies 179
Local dummy arguments 180
The EXITM directive 180
Tags and the GOTO directive 180

General multiline macros 181
Invoking a general multiline macro 182
Redefining a general multiline macro 184
Deleting a general multiline macro: The
PURGE directive 184
Defining nested and recursive macros 185

The count repeat macro 186
The WHILE directive 187
String repeat macros 187
The % immediate macro directive 188
Including multiline macro expansions in the list
file 189

Saving the current operating state 189

Chapter 15 Using conditional directives 193
General conditional directives syntax 193

IFxxx conditional assembly directives 193

ELSEIFxxx conditional assembly directives. 195
ERRxxx error-generation directives 195

Specific directive descriptions 196
Unconditional error-generation directives .. 196
Expression-conditional directives 196
Symbol-definition conditional directives ... 197
Text-string conditional directives 198
Assembler-pass conditionals 200

Including conditionals in the list file 201

Chapter 16 Interfacing with the linker 203
Publishing symbols externally 203

Conventions for a particular language 203
Declaring public symbols 204
Declaring library symbols 204
Defining external symbols 205
Defining global symbols 205
Publishing a procedure prototype 205
Defining communal variables 206

Including a library 207
The ALIAS directive 208

Chapter 17 Generating a listing 209
Listing format 209
General list directives 210
Include file list directives 211
Conditional list directives 212
Macro list directives 213
Cross-reference list directives 213
Changing list format parameters 215

Chapter 18 Interfacing Turbo Assembler with
Borland C++ 219

Calling Turbo Assembler functions from Borland
C++ 219

The framework 221
Linking assembly language modules with
C++ 221
Memory models and segments 223
Publics and externals 229
Linker command line 233

Parameter passing 233
Preserving registers 240
Returning values 241

Calling an assembler function from C++ ... 242
Writing C++ member functions in assembly
language 245
Pascal calling conventions 248

Calling Borland C++ from Turbo Assembler .. 249
Link in the C++ startup code 249

iv

The segment setup 250
Performing the call 250
Calling a Borland C++ function from Turbo
Assembler 251

Appendix A Program blueprints 255
Simplified segmentation segment description . 255
OS/2 programs 256

OS/2 flat-model program blueprint 256

Appendix B Turbo Assembler syntax summary 259
Lexical grammar 259
MASM mode expression grammar 261
Ideal mode expression grammar 263
Keyword precedence 266

v

Ideal mode precedence 266
MASM mode precedence 266

Keywords and predefined symbols 267
Directive keywords 267

Appendix C Compatibility issues 273
One-pass versus two-pass assembly 273
Environment variables 274
Microsoft binary floating-point format 274

Appendix D Error messages 275
Information messages 275
Warning and error messages ; 276

Index 299

Tables

4.1 Object-oriented programming terminology . 49
4.2 Symbols defined for objects 50
5.1 Radixes 65
5.2 Characters determining radixes 66
5.3 Numeric constants 66
5.4 Symbol types 67
5.5 Address subtypes 68
5.6 Complex address subtypes 69
5.7 Distance syntax 69
5.8 Simple expressions 70
5.9 Standard symbols 71
5.10 Values of symbols used by themselves 71
5.11 LENGTH operator return values 72
5.12 SIZE values 73
5.13 WIDTH values 73
5.14 MASK return values 74
5.15 Simple arithmetic operators 74
5.16 Logical arithmetic operators 74
5.17 Bit shift operators 75
5.18 Comparison operators 75
5.19 Type override operators 75
5.20 TYPE values 76
5.21 Bit fields from SYMTYPE and .TYPE 79
6.1 Processor directives 83
6.2 8087 coprocessor directives 86
7.1 Standard memory models 91
7.2 Model modifiers 92
7.3 Model modifiers 94
7.4 Simplified segment directives 94
7.5 Symbols from simplified segment

directives 95
7.6 Segment combination attribute 97
7.7 Segment alignment attribute 98
7.8 Segment size attribute values 98
7.9 Segment access attribute 99
7.10 Stack size modification directives 103
8.1 STRUC, UNION, and ENDS directives 110
8.2 Block members 111
8.3 Available modifiers 117
8.4 Symbols used or defined by STRUC 118
12.1 Data size directives 146
13.1 Intelligent code generation directives 159
13.2 Return instructions 162
13.3 Segment override instructions .' 166

vi

13.4 Smart flag instructions 167
13.5 Instructions for setting and retrieving

values , 167
13.6 Instructions affected by SMALL and

LARGE 170
14.1 Dummy argument types 182
14.2 Uses for the! character 184
15.1 Conditional assembly directives using

expressions . 197
15.2 Error-generation directives using

expressions 197
15.3 Evaluation of defined and undefined

symbol 197
15.4 Symbol-expression directives using

symbol_expr 198
15.5 Error-generation directives 198
15.6 Conditional assembly directives using

text_strings 199
15.7 Error-generation directives using

text_strings 199
18.1 Register settings when Borland C++ enters

assembler 227
A.1 Default segments and types for TINY memory

model 255
A.2 Default segments and types for SMALL

memory model 255
A.3 Default segments and types for MEDIUM

memory model 255
A.4 Default segments and types for COMPACT

memory model 256
A.5 Default segments and types for LARGE or

HUGE memory model 256
A.6 Default segments and types for Borland C++

HUGE (TCHUGE) memory model 256
B.1 Turbo Assember Vl.O (VERSION T100)

keywords 267
B.2 Turbo Assembler V2.0 (VERSION T200) new

keywords 270
B.3 Turbo Assembler V2.5 (VERSION T250) new

keywords 270
B.4 Turbo Assembler V3.0 (VERSION T300) new

keywords 271
B.5 Turbo Assembler V3.1 (VERSION T310) new

keywords 271

8.6 Turbo Assembler V3.2 (VERSION T320) new B.7 Turbo Assembler V4.0 (VERSION T400) new
keywords 271 keywords 271

vii

Figures

1.1 The edit, assemble, link, and run cycle 10
2.1 Turbo Assembler command line 13
10.1 How language affects procedures :.129
18.1 Compile, assemble, and link with Borland

C++, Turbo Assembler, and TLINK 220
18.2 State of the stack just before executing Test's

first instruction 235

viii

18.3 State of the stack after PUSH and MaV .. 236
18.4 State of the stack after PUSH, MaV, and

SUB 237
18.5 State of the stack immediately after MaV

BP, SP 249

Introduction

I ntrod uction

Welcome to Borland's Turbo Assembler, a multi-pass assembler with
forward-reference resolution, assembly speeds of up to 48,000 lines per
minute (on an IBM PS/2 model 60), Microsoft Macro Assembler (MASM)
compatibility, and an optional Ideal mode extended syntax. Whether you're
a novice or an experienced programmer, you'll appreciate these features
and others we've provided to make programming in assembly language
easier. Here are the highlights-we'll describe them in detail later:

• Object-oriented programming capabilities

• 32-bit model and stack frame support

• Full 386, i486, and Pentium support

• Simplified segmentation directives

m Table support

11'1 Enumerations

• Smart flag instructions

• Fast immediate multiply operation

II Multiline definition support

• VERSION specification directive

• Nested directives

• Quirks mode to emulate MASM

• Full source debugging output

• Cross-reference utility (TCREF)

• Configuration and command files

• File converter utility (converts C .h files to TASM .ash files)

• Procedure prototyping and argument checking capabilities

• Alias support

Turbo Assembler is a powerful command-line assembler that takes your
source (.ASM) files and produces object (.OBJ) modules. You then use
TLINK.EXE, Borland's high-speed linker program, to link your object
modules and create executable (.EXE) files.

Hardware and software requirements

.. Turbo Assembler runs on the IBM PC family of computers, including the
XT, AT, and PS/2, along with all true compatibles.

Turbo Assembler generates instructions for the 8086,80186,80286,386,
i486, and Pentium processors. It also generates floating-point instructions
for the 8087, 80287, and 387 numeric coprocessors. (For more information
about the instruction sets of the 80x86/80x87 families, consult the Intel data
books.)

About the manuals

2

Turbo Assembler comes with the Turbo Assembler User's Guide (this book)
and the Turbo Assembler Quick Reference Guide. The User's Guide provides
basic instructions for using Turbo Assembler, explores how to interface
Turbo Assembler with other languages, and describes in detail the
operators, predefined symbols, and directives Turbo Assembler uses. The
Quick Reference Guide is a handy guide to directives and processor and
coprocessor instructions.

Here's a more detailed look at what the User's Guide contains.

Chapter 1 : Getting started with Turbo Assembler tells you how to install
Turbo Assembler on your system

Chapter 2: Using directives and switches describes how you can control
the way the assembler runs when you use directives and switches.

Chapter 3: General programming concepts discusses the differences
between Ideal and MASM modes, how to use predefined symbols, using
comment characters, and so forth.

Chapter 4: Creating object-oriented programs describes how you can use
object-oriented programming techniques in assembly language.

Chapter 5: Using expressions and symbol values talks about evaluating
and defining expressions and operators.

Chapter 6: Choosing processor directives and symbols tells you how to
generate code for particular processors.

Chapter 7: Using program models and segmentation talks about program
models, creating symbols, simplified segments, and ordering of segments.

Chapter 8: Defining data types explains how to define structures, unions,
tables, bit-field records, and objects.

Turbo Assembler Users Guide

Introduction

Chapter 9: Setting and using the location counter describes how and why
you'd want to use the location counter, as well as how to define labels.

Chapter 10: Declaring procedures examines how to use various types of
procedures, and how to define and use arguments and local variables.

Chapter 11: Controlling the scope of symbols discusses how you can limit
or expand the area in which a symbol has a particular value.

Chapter 12: Allocating data describes simple data directives, and how to
create instances of structures, unions, records, enumerated data types,
tables, and objects.

Chapter 13: Advanced coding instructions covers Turbo Assembler's
extended instructions, including prototyping and calling language
procedures.

Chapter 14: Using macros tells you how to use macros in your code.

Chapter 15: Using conditional directives talks about the directives that let
you execute your code conditionally.

Chapter 16: Interfacing with the linker describes how you can include
libraries and publish symbols as you link your code.

Chapter 17: Generating a listing talks about Turbo Assembler listing files
and how to use them.

Chapter 18: Interfacing Turbo Assembler with Borland C++ explains how
to use Borland's line of c++ compilers with assembly language.

Appendix A: Program blueprints contains examples of different types of
program structures.

Appendix B: Turbo Assembler syntax summary illustrates Turbo
Assembler expressions (both MASM and Ideal modes) in modified Backus
Naur form (BNF).

Appendix C: Compatibility issues covers the differences between MASM
and Turbo Assembler MASM mode.

Appendix D: Error messages describes all the error messages that can be
generated when using Turbo Assembler: information messages, fatal error
messages, warning messages, and error messages.

3

Notational conventions

When we talk about IBM PCs or compatibles, we're referring to any
computer that uses the 8088, 8086, 80186, 80286, 386, and i486 chips (all of
these chips are commonly referred to as 80x86).

All typefaces were produced by Borland's Sprint: The Professional Word
Processor, output on a PostScript printer. The different typefaces displayed
are used for the following purposes:

Italics In text, italics represent labels, placeholders, variables, and
arrays. In syntax expressions, placeholders are set in italics
to indicate they are user-defined.

Boldface Boldface is used in text for directives, instructions, symbols,
and operators, as well as for command-line options.

CAPITALS In text, capital letters are used to represent instructions,
directives, registers, and operators.

Monospace Monospace type is used to display any sample code or text
that appears on your screen, and any text that you must
actually type to assemble, link, and run a program.

Keycaps In text, keycaps indicate a key on your keyboard. It is often
used when describing a key you must press to perform a
particular function; for example, "Press Enter after typing
your program name at the prompt."

Contacting Borland

Borland Assist
plans

4

The Borland Assist program offers a range of services to fit the different
needs of individuals, consultants, large corporations, and developers. To
receive help with your questions about our products, send in the
registration card. North American customers can register by phone 24
hours a day by calling 1-800-845-0147.

Borland Assist is made up of three levels of support:

• Standard Assist gives all registered users assistance with installation and
configuration, and offers automated and online services to answer other
product questions (see the following table) .

• Enhanced Assist plans are designed for individuals who need unlimited
support on a toll-free number or priority hotline access.

Turbo Assembler Users Guide

Service

Installation
hotline

Automated
support

TechFax

Online services

Borland
Download BBS

CompuServe

BIX

GEnie

Introduction

• Premium Assist plans are designed to support large corporations and
software developers.

Available at no charge, Standard Assist offers all registered users the
following services:

How to contact Cost Available Description

408-461-9133 The cost of 6:00am - 5:00pm PST Provides assistance on product
the phone call Monday - Friday installation and configuration.

Voice: Free 24 hours daily Provides answers to common questions.
1-800-524-8420 Requires a Touch-Tone phone or modem.
Modem: The cost of
408-431-5250 the phone call

1-800-822-4269 Free 24 hours daily Sends technical information to your fax
(voice) machine (up to 3 documents per call).

Requires a Touch-Tone phone. Document
#1 is the catalog of available catalogs.

408-431-5096 The cost of 24 hours daily Sends sample files, applications, and
the phone call technical information via your modem.

Requires a modem (up to 9600 baud).

Type GO BORLAND. Your online 24 hours daily; Sends answers to technical questions via
Address messages to charges 1-working-day your modem. Messages are public.
Sysop or All. response time

Type JOIN BORLAND. Your online 24 hours daily; Sends answers to technical questions via
Address messages to charges 1-working-day your modem. Messages are public.
Sysop or All. response time

Type BORLAND. Your online 24 hours daily; Sends answers to technical questions via
Address messages to charges 1-working-day your modem. Messages are public.
All. response time

For additional details on these and other Borland services, see the Borland
Assist Support and Services Guide included with your product.

5

6 Turbo Assembler Users Guide

c H A p T E R 1

Getting started with Turbo
Assembler

You might have heard that programming in assembly language is a black
art suited only to hackers and wizards. However, assembly language is
nothing more than the human form of the language of the computer. And,
as you'd expect, the computer's language is highly logical. As you might
also expect, assembly language is very powerful-in fact, assembly
language is the only way to tap the full power of the Intel 80x86 family, the
processors at the heart of the IBM PC family and compatibles.

You can write whole programs using nothing but assembly language or
you can mix assembly language with programs written in high-level
languages such as Borland C++ and Borland Pascal. Either way, assembly
language lets you write small and blindingly fast programs. In addition to
the advantage of speed, assembly language gives you the ability to control
every aspect of your computer's operation, all the way down to the last tick
of the computer's system clock.

Installing Turbo Assembler

The Turbo Assembler package consists of a set of executable programs,
utilities, and example programs. In addition, the package includes a Quick
Reference Guide and this User's Guide.

For instructions on installing Turbo Assembler, refer to the INSTALL. TXT file
on your installation disk:

1. Insert the TASM Install disk in drive A of your computer.

2. User your text editor to open INST ALL. TXT, or issue the following
command at the command line:

TYPE A:INSTALL.TXT I MORE

Chapter 1, Getting started with Turbo Assembler 7

Utility and
example
programs

Online help

The Turbo Assembler package includes ~everal utility programs to help
you build assembly programs. For a complete list of the utilities included
with Turbo Assembler, refer to the online text file INST ALL.TXT. For
instructions on using the utilities, refer to the text file UTILS.TSM.

To get you started writing assembler programs, the Turbo Assembler
package includes various example programs that demonstrate different
assembler programming techniques. For a complete listing of the example
programs, refer to the online text file INSTALL.TXT.

You can get online help for Turbo Assembler using the OS/2 help facility.
During the Turbo Assembler installation, the installation program creates a
folder for the Turbo Assembler help file. You can access this folder from
any of three locations:

• If you're in an OS/2 window, open the folder. Click the icon labeled
"TASM Reference" to access the Turbo Assembler help file.

a If you're running OS/2 in full-screen mode, press ALT+ESC. The Turbo
Assembler folder appears. Open the folder, and click the T ASM
Reference icon .

• If you're in the Borland C++ IDE, open the Turbo Assembler folder, and
click the T ASM Reference icon.

Writing your firs.t Turbo Assembler program

8

If you have not yet written an assembly program, the following "Greetings,
World!" program is a good place to start. To begin writing this program,
open your favorite program editor and enter the following lines of code to
create the HELLO.ASM program:

ideal
p3B6

model flat

codeseg
extrn DOSEXIT:near,DOSWRITE:near

stack BOOh

dataseg

Turbo Assembler Users Guide

i Handle for printing to the console
HANDLE_CON = 1

i The message to print, and its length
message db 13,10, 'Greetings, World!' ,12,10
messagelength = $-message-1

i Storage for number of characters written
written dd 0

codeseg
start:

To do output, use the file handle to the console,
and send the output there.

Note that for OS/2 flat model, you don't need to
do anything with segment registers. Just push
the offset of the items.

The OS/2 system calls are C-style, so the caller
must clean up the stack after the call.

DOSWRITE (FileHandle, pBufferArea, ulBufferlength,
pBytesWritten)

call DOSWRITE C,
HANDLE_CON,
offset message,
messagelength,
offset written

Exit the program now

call DOSEXIT C,O,l

Handle is a doubleword
Location of message to print
Doubleword length of message
Storage for # chars written.

end start

After you've entered the preceding program, save it to disk as
HELLO.ASM.

If you're familiar with high-level languages (such as C, C++, or Pascal), you
might think that HELLO.ASM is a bit long for a "Greetings, World!"
program. Indeed, assembler programs tend to be much longer than high
level language programs because each high-level language statement
actually breaks down to form many assembler instructions. However,
assembly language gives you complete freedom over the actual instructions
that are given to the computer's CPU. With assembly language, you can
write programs that tell the computer to do anything that it's capable of
doing.

Chapter 1, Getting started with Turbo Assembler 9

Assembling your
first program

Figure 1.1
The edit, assemble,

link, and run cycle

10

Now that you've saved HELLO.ASM, you'll want to run it. However,
before you can run it, you'll have to assemble it into an .OBJ file, and then
link the file to form an executable program. This program development
cycle is shown in Figure 1.1.

Create a New Program

Assembler Source File
HELLO.ASM

Assemble

Object File
HELLO.OBJ

Link

Executable File
HELLO.EXE

Run

I
(If changes are needed)~

The assembly step turns your source code into an intermediate form called
an object module, and the linking step combines one or more object modules
into an executable program. You can do your assembling and linking from
the command line.

To assemble HELLO.ASM, type the following line at the DOS command
line:

TASM hello

Turbo Assembler Users Guide

Linking your first
program

Unless you specify another file name, HELLO.ASM will be assembled to
form the object file HELLO.OBJ. (Note that you don't need to type in the
file extension name; Turbo Assembler assumes all source files end with
.ASM.) If you entered the HELLO.ASM program correctly, you'll see a
listing similar to the following one displayed onscreen:

Turbo Assembler Version 4.1 Copyright (c) 1992 by Borland International, Inc.

Assembling file: HELLO.ASM
Error messages: None
Warning messages: None
Passes: 1
Remaining memory: 266K

If you get warnings or errors, they are displayed with the program line
numbers to indicate where they occurred. If you do get errors, edit
HELLO.ASM make sure it's precisely the same as the program shown
above. After editing the program, reassemble it with the TASM hello
command.

After you've successfully assembled HELLO.ASM, you'll need to link the
program using TLINK. At the command line, type:

TLINK hello",OS2.LIBi

If no errors or warnings are reported, an executable file is created, named
HELLO.EXE. To run this program, enter the command HELLO from the DOS
command line.

Errors can occur during the linking process, although it's unlikely with this
example program. If you do receive linker errors, modify your code to
exactly match the code shown here, then assemble and link again.

Recommended reading

Although HELLO.ASM is a good program for testing T ASM.EXE and
TLINK.EXE, the example is of little use if you're trying to learn assembly
language. However, many books are available that teach both the
fundamentals and the advanced features of assembly language. To help
you get started with assembly language, refer to one or more of the
following book titles:

• Duntemann, Jeff. Assembly Language from Square One: For the PC AT and
Compatibles. Glenview, IL: Scott, Foresman and Company, 1990

• Hummel, Robert L. Programmers Technical Reference: Processor and
coprocessor. Emeryville, CA: Ziff Davis press, 1992

Chapter 1, Getting started with Turbo Assembler 11

12

• Mischel, Jim. Macro Magic with Turbo Assembler. New York, NY: John
Wiley & Sons, 1993

• Swan, Tom. Mastering Turbo Assembler. Carmel, IN: Howard W. Sams and
Co., 1989.

• Syck, Gary. The Waite Group's Turbo Assembler Bible. Carmel, IN: Howard
W. Sams and Co., 1990.

In addition to these books, Intel Corporation offers fact sheets and reference
manuals on the workings of their processor products. For more
information, contact Intel at the following address:

Intel Literature Sales
P.O. Box 7641
Mount Prospect, IL 60056-7641

Turbo Assembler Users Guide

c H A p T E R 2

Using directives and switches

This chapter is dedicated to familiarizing you with Turbo Assembler's
command-line options. We'll describe each of the command-line options
you can use to alter the assembler's behavior, and then show how and when
to use command files. We'll also describe the configuration file, and how
you can control the display of warning and error messages.

Starting Turbo Assembler

Figure 2.1
Turbo Assembler

command line

If you start Turbo Assembler from your operating system command line
without giving it any arguments, like this,

TASM

you'll get a screenful of help describing many of the command-line options,
and the syntax for specifying the files you want to assemble. Figure 2.1
shows you how this looks.

Turbo Assembler Version 4.1 Copyright (c) 1988, 1993 Borland International
Syntax: . TASM [options] source [, object] [,listing] [,xref]
la,/s Alphabetic or Source-code segment ordering
Ic Generate cross-reference in listing
IdSYM[=VAL] Define symbol SYM = 0, or = value VAL
le,/r Emulated or Real floating-point instructions
Ih,l? Display this help screen
lipATH Search PATH for include files
IjCMD Jam in an assembler directive CMD (e.g. IjIDEAL)
Ikh# Hash table capacity # symbols
Il,/la Generate listing: l=normal listing, la=expanded listing
Iml, Irnx, Imu
Imv#
Im#
In

Case sensitivity on symbols: ml=all, rnx=globals, mu=none
Set maximum valid length for symbols
Allow # multiple passes to resolve forward references
Suppress symbol tables in listing

los,lo,lop,loi Object code: standard, standard w/overlays, Phar Lap, or IBM
Ip Check for code segment overrides in protected mode
Iq Suppress OBJ records not needed for linking
It Suppress messages if successful assembly
luxxxx Set version emulation, version xxxx

Chapter 2, Using directives and switches 13

14

/wD, /wl, /w2
/w-xxx,/WtXXX
/x

Set warning level: wD=none, wl=w2=warnings on
Disable (-) or enable (t) warning xxx
Include false conditionals in listing

/z Display source line with error message
/z1, /zd, /zn Debug info: zi=full, zd=line numbers only, zn=none

With the command-line options, you can specify the name of one or more
files that you want to assemble, as well as any options that control how the
files get assembled.

The general form of the command line looks like this:

TASM fileset [; fileset] ...

The semicolon (;) after the left bracket ([) lets you assemble multiple groups
of files on one command line by separating the file groups. If you prefer,
you can set different options for each set of files; for example,

TASM Ie FILE1; la FILE2

assembles FILEl.ASM with the fe command-line option and assembles file
FILE2.ASM with the fa command-line option.

In the general form of the command line, fileset can be

[option] ... sourcefile [[+] sourcefile] ...
[, [objfile] [, [listfile] [, [xreffile]]]]

This syntax shows that a group of files can start off with any options you
want to apply to those files, followed by the files you want to assemble. A
file name can be a single file name, or it can use the normal wildcard
characters * and? to specify multiple files to assemble. If your file name
does not have an extension, Turbo Assembler adds the .ASM extension. For
example, to assemble all the .ASM files in the current directory, you would
type

TASM *

If you want to assemble multiple files, you can separate their names with
the plus sign (+):

TASM MYFILEl + MYFILE2

You can follow the file name you want to assemble by an optional object
file name, listing file name, and a cross-reference file name. If you do not
specify an object file or listing file, Turbo Assembler creates an object file
with the same name as the source file and an extension of .OBJ.

A listing file is not generated unless you explicitly request one. To request
one, place a comma after the object file name, followed by a listing file
name. If you don't explicitly provide a listing file name, Turbo Assembler

Turbo Assembler Users Guide

creates a listing file with the same name as the source file and the extension
.LST. If you supply a listing file name without an extension, .LST is
appended to it.

A cross-reference file is not generated unless you explicitly request one. To
request one, place a comma after the listing file name, followed by a cross
reference file name. If you don't explicitly provide a cross-reference file
name, Turbo Assembler creates a cross-reference file with the same name as
the source file and the extension .XRF. If you supply a cross-reference file
name without an extension, .XRF is appended to it. (TCREF, a cross
reference utility, is described on disk.)

If you want to accept the default object file name and also request a listing
file, you must supply the comma that separates the object file name from
the listing file name:

TASM FILE1"TEST

This assembles FILEl.ASM to FILEl.OBJ and creates a listing file named
TEST.LST.

If you want to accept the default object and listing file names and also
request a cross-reference file, you must supply the commas that separate
the file names:

TASM MYFILE",MYXREF

This assembles file MYFILE.ASM to MYFILE.OBJ, with a listing in file
MYFILE.LST and a cross-reference in MYXREF.XRF.

If you use wildcards to specify the source files to assemble, you can also use
wildcards to indicate the object and listing file names. For example, if your
current directory contains XXl.ASM and XX2.ASM, the command line

TASM XX*,YY*

assembles all the files that start with XX, generates object files that start
with YY, and derives the remainder of the name from the source file name.
The resulting object files are therefore called YYl.OBJ and YY2.0BJ.

If you don't want an object file but you do want a listing file, or if you want
a cross-reference file but don't want a listing file or object file, you can
specify the null device (NUL) as the file name. For example,

TASM FILE1"NUL,

assembles file FILEl.ASM to object file FILEl.OBJ, doesn't produce a listing
file, and creates a cross-reference file FILEl.XRF.

Chapter 2, Using directives and switches 15

Command-line options

fa

Function

Syntax

Remarks

Example

16

The command-line options let you control the behavior of the assembler,
and how it outputs information to the screen, listing, and object file. Turbo
Assembler provides you with some options that produce no action, but are
accepted for compatibility with the current and previous versions of
MASM:

Ib Sets buffer size
Iv Displays extra statistics

You can enter options using any combination of uppercase and lowercase
letters. You can also enter your options in any order except where you have
multiple Ii or Ij options; these are processed in sequence. When using the Id
option, you must also be careful to define symbols before using them in
subsequent Id options.

_ You can override command-line options by using conflicting directives in
your source code.

Figure 2.1 on page 13 summarizes the Turbo Assembler command-line
options; here's a detailed description of each option.

Specifies alphabetical segment-ordering

/a

The la option tells Turbo Assembler to place segments in the object file in
alphabetical order. This is the same as using the .ALPHA directive in your
source file.

You usually only have to use this option if you want to assemble a source
file that was written for very early versions of the IBM or Microsoft
assemblers.

The Is option reverses the effect of this option by returning to the default
sequential segment-ordering.

If you specify sequential segment-ordering with the .SEQ directive in your
source file, it will override any la you provide on the command line.

TASM fa TESTl

This command line creates an object file, TESTl.OBJ, that has its segments
in alphabetical order.

Turbo Assembler Users Guide

Ib

Syntax

Remarks

Ie

Function

Syntax

Remarks

Example

Id

Function

Syntax

Remarks

Example

Ib

The Ib option is included for compatibility. It performs no action and has
no effect on the assembly.

Enables cross-reference in listing file

Ie

The Ie option enables cross-reference information in the listing file. Turbo
Assembler adds the cross-reference information to the symbol table at the
end of the listing file. This means that, in order to see the cross-reference
information, you must either explicitly specify a listing file on the
command line or use the II option to enable the listing file.

For each symbol, the cross-reference shows the line on which it is defined
and all lines that refer to it.

TASM II Ie TESTl

This code creates a listing file that also has cross-reference information in
the symbol table.

Defines a symbol

Idsymbol[=value or expression]

The Id option defines a symbol for your source file, exactly as if it were
defined on the first line of your file with the = directive. You can use this
option as many times as you want on the command line.

You can only define a symbol as being equal to another symbol or a con
stant value. You can't use an expression with operators to the right of the
equal sign (=). For example, IdX=9 and IdX=Y are allowed, but IdX=Y-4 is
not.

TASM IdMAX=lO IdMIN=2 TESTl

This command line defines two symbols, MAX and MIN, that other
statements in the source file TESTl.ASM can refer to.

Chapter 2, Using directives and switches

/b

17

/e

Ie

Function

Syntax

Remarks

Example

Ih or I?

Function

Syntax

Remarks

Example

18

Generates floating-point emulator instructions

Ie

The Ie option tells Turbo Assembler to generate floating-point instructions
that will be executed by a software floating-point emulator. Use this option
if your program contains a floating-point emulation library that mimics the
functions of the 80x87 numeric coprocessor.

Normally, you would only use this option if your assembler module is part
of a program written in a high-level language that uses a floating-point
emulation library. (Borland's line of C++ compilers, Borland Pascal, Turbo
Basic, and Turbo Prolog all support floating-point emulation.) You can't
just link an assembler program with the emulation library, since the library
expects to have been initialized by the compiler's startup code.

The Ir option reverses the effect of this option by enabling the assembly of
real floating-point instructions that can only be executed by a numeric
coprocessor.

If you use the NOEMUL directive in your source file, it will override the Ie
option on the command line.

The Ie command-line option has the same effect as using the EMUL
directive at the start of your source file, and is also the same as using the
IjEMUL command-line option.

TASM Ie SECANT
TCC -f TRIG.C SECANT.OBJ

The first command line assembles a module with emulated floating-point
instructions. The second command line compiles a C source module with
floating-point emulation and then links it with the object file from the
assembler.

Displays a help screen

Ih or /?

The Ih option tells Turbo Assembler to display a help screen that describes
the command-line syntax. This includes a list of the options, as well as the
various file names you can supply. The I? option does the same thing.

TASM Ih

Turbo Assembler Users Guide

Ii

Function

Syntax

Remarks

Example

Ij

Function

Syntax

Sets an include file path

/iPATH

Ii

The Ii option lets you tell Turbo Assembler where to look for files that are
included in your source file by using the INCLUDE directive. You can place
more than one Ii option on the command line (the number is only limited
byRAM).

When Turbo Assembler encounters an INCLUDE directive, the location
where it searches for the include file is determined by whether the file
name in the INCLUDE directive has a directory path or is just a simple file
name.

If you supply a directory path as part of the file name, that path is tried
first, then Turbo Assembler searches the directories specified by Ii
command-line options in the order they appear on the command line. It
then looks in any directories specified by Ii options in a configuration file.

If you don't supply a directory path as part of the file name, Turbo
Assembler searches first in the directories specified by Ii command-line
options, then it looks in any directories specified by Ii options in a
configuration file, and finally it looks in the current directory.

TASM /i\INCLUDE /iD:\INCLUDE TESTl

If the source file contains the statement

INCLUDE MYMACS.INC

Turbo Assembler will first look for \ INCLUDE \ MYMACS.INC, then it will
look for D:\INCLUDE\MYMACS.INC. If it still hasn't found the file, it will
look for MYMACS.INC in the current directory. If the statement in your
source file had been

INCLUDE INCS\MYMACS.INC

Turbo Assembler would first look for INCS\MYMACS.INC and then it
would look for \INCLUDE\MYMACS.INC, and finally for D: \ INCLUDE \
MYMACS.INC.

Defines an assembler startup directive

/jdirective

Chapter 2, Using directives and switches 19

Ij

Remarks

Example

Ikh

Function

Syntax

Remarks

Example

II

Function

Syntax

Remarks

Example

20

The Ij option lets you specify a directive that will be assembled before the
first line of the source file. directive can be any Turbo Assembler directive
that does not take any arguments, such as .286, IDEAL, %MACS, NOJUMPS,
and so on.

You can put more than one Ij option on the command line; they are
processed from left to right across the command line.

TASM Ij.286 IjIDEAL TESTl

This code assembles the file TESTl.ASM with 80286 instructions enabled
and Ideal mode expression-parsing enabled.

Sets the maximum number of symbols allowed

/khnsymbols

The Ikh option sets the maximum number of symbols that your program
can contain. If you don't use this option, your program can only have a
maximum of 8,192 symbols; using this option increases the number of
symbols to nsymbols, up to a maximum of 32,768.

Use this option if you get the Out of hash space message when assembling
your program.

You can also use this option to reduce the total number of symbols below
the default 8,192. This releases some memory that can be used when you
are trying to assemble a program but don't have enough available memory.

TASM IkhlOOOO BIGFILE

This command tells Turbo Assembler to reserve space for 10,000 symbols
when assembling the file BIGFILE.

Generates a listing file

/l

The II option indicates that you want a listing file, even if you did not
explicitly specify it on the command line. The listing file will have the same
name as the source file, with an extension of .LST.

TASM II TESTl

Turbo Assembler Users Guide

Iia

Function

Syntax

Remarks

Example

1m

Function

Syntax

Remarks

Example

Iml

Function

This command line requests a listing file that will be named TESTl.LST.

Shows high-level interface code in listing file

Ila

The Iia option tells Turbo Assembler to show all generated code in the
listing file, including the code that gets generated as a result of the high
level language interface .MODEL directive.

TASM Ila FILEl

Sets the maximum number of assembly passes

Irn[npasses]

Normally, Turbo Assembler functions as a single-pass assembler. The 1m
option lets you specify the maximum number of passes the assembler
should make during the assembly process. TASM automatically decides
whether it can perform less than the number of passes specified. If you
select the 1m option, but don't specify npasses, a default of five is used.

Iia

You might want to specify multiple passes either if you want Turbo
Assembler to remove Nap instructions added because of forward
references or if you are assembling a module containing instructions that
require two passes. If multiple passes are not enabled, such a module will
produce at least one "Pass-dependent construction encountered" warning.
If the 1m option is enabled, Turbo Assembler assembles this module
correctly but will not optimize the code by removing Naps, no matter how
many passes are allowed. The warning "Module is pass dependent
compatibility pass was done" is displayed if this occurs.

TASM 1M2 TESTl

This tells Turbo Assembler to use up to two passes when assembling
TESTI.

Treats symbols as case-sensitive

Chapter 2, Using directives and switches 21

Iml

Syntax

Remarks

Example

Imu

Function

Syntax

Remarks

Example

Imv#

Function

Syntax

22

Iml

The Iml option tells Turbo Assembler to treat all symbol names as case
sensitive. Normally, uppercase and lowercase letters are considered equiva
lent so that the names ABCxyz, abcxyz, and ABCXYZ would all refer to the
same symbol. If you specify the Iml option, these three symbols will be
treated as distinct. Even when you specify Iml, you can still enter any
assembler keyword in uppercase or lowercase. Keywords are the symbols
built into the assembler that have special meanings, such as instruction
mnemonics, directives, and operators.

TASM /rnl TESTl

where TESTl.ASM contains the following statements:

abc DW 0
ABC DW 1

Mov Ax, [Bp]
inot a duplicate symbol
irnixed case OK in keywords

The Iml switch used together with Imx has a special meaning for Pascal
symbols. See the Imx section for further details.

Converts symbols to uppercase

Imu

The Imu option tells Turbo Assembler to ignore the case of all symbols. By
default, Turbo Assembler specifies that any lowercase letters in symbols
will be converted to uppercase unless you change it by using the Iml
directive.

TASM /rnu TESTl

makes sure that all symbols are converted to uppercase (which is the
default):

EXTRN rnyfunc:NEAR
call rnyfunc idon't know if declared as

i MYFUNC, Myfunc, ...

Sets the maximum length of symbols.

Imv#

Turbo Assembler Users Guide

Remarks

Imx

Function

Syntax

Remarks

Example

In

Function

Syntax

Remarks

Imv#

The Imv# option sets the maximum length of symbols that T ASM will
distinguish between. For example, if you set Imv12, TASM will see
ABCDEFGHI]KLM and ABCDEFGHI]IKLL as the same symbol, but not
ABCDEFGHIJKL. Note that the minimum number you can have here is 12.

Makes public and external symbols case-sensitive

Irw..

The Imx option tells Turbo Assembler to treat only external and public
symbols as case-sensitive. All other symbols used (within the source file)
are treated as uppercase.

You should use this directive when you call routines in other modules that
were compiled or assembled so that case-sensitivity is preserved; for
example, modules compiled by one of Borland's line of c++ compilers.

TASM /rnx TEST1;

where TESTl.ASM contains the following source lines:

EXTRN Cfunc:NEAR
myproc PROC NEAR
call Cfunc

Note: using the Imx and Iml options together has a special meaning for
symbols declared as Pascal; if you use these symbols together, the symbols
will be published as all uppercase to the linker.

Suppresses symbol table in listing file

In

The In option indicates that you don't want the usual symbol table at the
end of the listing file. Normally, a complete symbol table listing appears at
the end of the file, showing all symbols, their types, and their values.

You must specify a listing file, either explicitly on the command line or by
using the II option; otherwise, In has no effect.

Chapter 2, Using directives and switches 23

In

Example

b

Function

Syntax

Remarks

bi

Function

Syntax

Remarks

bp

Function

Syntax

Remarks

bs

Function

Syntax

24

TASM II In TESTl

This code generates a listing file showing the generated code only, and not
the value of your symbols.

Generates overlay code for TLINK

10

Specifying the 10 switch on the command line causes overlay-compatible
fixups to be generated. When this switch is used, 386 references to USE32
segments should not be made since they won't link properly.

Generates overlay code for the IBM linker

loi

Specifying the Ioi switch on the command will generate overlay-compatible
fixups for the IBM linker. The resulting object file will not be compatible
with TLINK, Borland's linker.

Generates overlay code for the Phar Lap linker

lop

Specifying the lop switch on the command will generate overlay-compatible
fixups for the Phar Lap linker. The resulting object file will not be
compatible with TLINK, Borland's linker.

Outputs TLINK-compatible objects without overlay support. This is the
default selection.

los

Turbo Assembler Users Guide

Remarks

/p

Function

Syntax

Remarks

Example

/q

Function

Syntax

Remarks

/r

Function

Syntax

Remarks

Specifying the.os switch on the command will generate objects without
overlay support for use with TLINK.

Checks for impure code in protected mode

/p

.os

The /p option specifies that you want to be warned about any instructions
that generate "impure" code in protected mode. Instructions that move
data into memory by using a CS: override in protected mode are con
sidered impure because they might not work correctly unless you take
special measures.

You only need to use this option if you are writing a program that runs in
protected mode on the 80286, 386, or i486.

TASM /p TESTl

where TEST1.ASM contains the following statements:

.286P
CODE SEGMENT
temp DW ?

mov CS:temp,O ;impure in protected mode

Suppresses .OBJ records not needed for linking

/q

The /q option removes the copyright and file dependency records from the
resulting .OBJ files, making it smaller. Don't use this option if you are using
MAKE or a similar program that relies on the dependency records.

Generates real floating-point instructions

/r

The /r option tells Turbo Assembler to generate real floating-point
instructions (instead of generating emulated floating-point instructions).

Chapter 2, Using directives and switches 25

Ir

Example

Is

Function

Syntax

Remarks

Example

It

Function

Syntax

Remarks

26

Use this option if your program is going to run on machines equipped with
an 80x87 numeric coprocessor.

The Ie option reverses the effect of this option in generating emulated
floating-point instructions.

If you use the EMUL directive in your source file, it will override the Ir
option on the command line.

The Ir command-line option has the same effect as using the NOEMUL
directive at the start of your source file, and is also the same as using the
IjNOEMUL command-line option.

TASM Ir SECANT
TPC I$N+ I$E- TRIG. PAS

The first command line assembles a module with real floating-point
instructions. The second compiles a Pascal source module with real
floating-point instructions that links in the object file from the assembler.

Specifies sequential segment-ordering

Is

The Is option tells Turbo Assembler to place segments in the object file in
the order in which they were encountered in the source file. By default,
Turbo Assembler uses segment-ordering, unless you change it by placing
an la option in the configuration file.

If you specify alphabetical segment-ordering in your source file with the
.ALPHA directive, it will override Is on the command line.

TASM Is TESTl

This code creates an object file (TESTl.OBJ) that has its segments ordered
exactly as they were specified in the source file.

Suppresses messages on successful assembly

It

The It option stops any display by Turbo Assembler unless warning or
error messages result from the assembly.

Turbo Assembler Users Guide

Example

lu

Function

Syntax

Remarks

Iv

Syntax

Remarks

Iw

Function

Syntax

Remarks

You can use this option when you are assembling many modules, and you
only want warning or error messages to be displayed onscreen.

TASM It TESTl

Sets version ID in command line

lu version

It

The lu option lets you specify which version of Turbo Assembler or MASM
you want to use to run your modules. This is the command-line version of
the VERSION directive.

Iv

The Iv option is included for compatibility. It performs no action and has no
effect on the assembly.

Controls the generation of warning messages

Iw
w- [warnclassJ
Wt [warnclassJ

The Iw option controls which warning messages are emitted by Turbo
Assembler.

If you specify Iw by itself, "mild" warnings are enabled. Mild warnings
merely indicate that you can improve some aspect of your code's efficiency.

If you specify Iw- without warnclass, all warnings are disabled. If you follow
Iw- with warnclass, only that warning is disabled. Each warning message
has a three-letter identifier:

ALN
ASS
BRK
GTP
ICG

Segment alignment
Assuming segment is 16-bit
Brackets needed
Global type doesn't match symbol type
Inefficient code generation

Chapter 2, Using directives and switches 27

/w

Example

/x

Function

Syntax

28

INT INT 3 generation
LCO Location counter overflow
MCP MASM compatibility pass
OPI Open IF conditional
OPP Open procedure
OPS Open segment
OVF Arithmetic overflow
POC Pass-dependent construction
PQK Assuming constant for [const] warning
PRO Write-to memory in protected mode needs CS override
RES Reserved word warning
TPI Borland Pascal illegal warning
UNI For turning off uninitialized segment warning

If you specify /w+ without warnclass, all warnings are enabled. If you
specify /w+ with warnclass from the preceding list, only that warning will be
enabled.

By default, Turbo Assembler first starts assembling your file with all
warnings enabled except the inefficient code-generation (lCG) and the
write-to-memory in protected mode (PRO) warnings.

You can use the WARN and NOWARN directives within your source file to
control whether a particular warning is allowed for a certain range of
source lines. These directives are described later in this chapter.

TASM /w TESTl

The following statement in TESTl.ASM issues a warning message that
would not have appeared without the /w option:

mov bx,ABC
ABC = 1

iinefficient code generation warning

With the command line

TASM /w-OVF TEST2

no warnings are generated if TEST2.ASM contains

dw lOOOh * 20h

Includes false conditionals in listing

Ix

Turbo Assembler Users Guide

Remarks

Example

Iz

Function

Syntax

Remarks

Example

Izd

Function

Syntax

Remarks

Example

Izi

Function

Ix

If a conditional IF, IFNDEF, IFDEF, and so forth evaluates to False, the Ix
option causes the statements inside the conditional block to appear in the
listing file. This option also causes the conditional directives themselves to
be listed; normally they are not.

You must specify a listing file on the command line or use the II option,
otherwise Ix has no effect.

You can use the .LFCOND, .SFCOND, and .TFCOND directives to override
the effects of the Ix option.

TASM Ix TESTl

Displays source lines along with error messages

Iz

The Iz option tells Turbo Assembler to display the corresponding line from
the source file when an error message is generated. The line that caused the
error is displayed before the error message. With this option disabled,
Turbo Assembler just displays a message that describes the error.

TASM Iz TESTl

Enables line-number information in object files

Izd

The Izd option causes Turbo Assembler to place line-number information in
the object file. This lets the debugger display the current location in your
source code, but does not put the information in the object file that would
allow the debugger to access your data items.

If you run out of memory when trying to debug your program, you can use
Izd for some modules and Izi for others.

TASM Izd TESTl

Enables debug information in object file

Chapter 2, Using directives and switches 29

/zi

Syntax

Remarks

Example

Izn

Function

Syntax

Remarks

/zi

The /zi option tells Turbo Assembler to output complete debugging
information to the object file. This includes line-number records to
synchronize source code display and data type information to let you
examine and modify your program's data.

The /zi option lets you use all the features of the debugger to step through
your program and examine or change your data items. You can use /zi on
all your program's modules, or just on those you're interested in
debugging. Since the /zi switch adds information to the object and exe
cutable programs, you might not want to use it on all your modules if you
run out of memory when running a program under the debugger.

TASM /zi TESTl

Disables debug information in object file

/zn

The /zn option tells Turbo Assembler to disable the output of debugging
information to the object file. It's useful for overriding any prevailing /zi
switch in a configuration file.

Indirect command files

30

At any point when entering a command line, Turbo Assembler lets you
specify an indirect command file by preceding its name with an "at" sign
(@). For example,

TASM /dTESTMODE @MYPROJ.TA

causes the contents of the file MYPROJ.TA to become part of the command
line, exactly as if you had typed in its contents directly.

This useful feature lets you put your most frequently used command lines
and file lists in a separate file. And you don't have to place your entire
command line in one indirect file, since you can use more than one indirect
file on the command line and can also mix indirect command files with
normal arguments. For example,

TASM @MYFILES @IOLIBS /dBUF=1024

Turbo Assembler Users Guide

This way you can keep long lists of standard files and options in files, so
that you can quickly and easily alter the behavior of an individual assembly
run.

You can either put all your file names and options on a single line in the
command file, or you can split them across as many lines as you want.

The configuration file

Turbo Assembler also lets you put your most frequently used options into a
configuration file in the current directory. This way, when you run Turbo
Assembler, it looks for a file called TASM.CFG in your current directory. If
Turbo Assembler finds the file, it treats it as an indirect file and processes it
before anything else on the command line.

This is helpful when you have all the source files for a project in a single
directory, and you know that, for example, you always want to assemble
with emulated floating-point instructions (the Ie option). You can place that
option in the TASM.CFG file, so you don't have to specify that option each
time you start Turbo Assembler.

The contents of the configuration file have exactly the same format as an
indirect file. The file can contain any valid command-line options, on as
many lines as you want. The options are treated as if they all appeared on
one line.

The contents of the configuration file are processed before any arguments
on the command line. This lets you override any options set in the
configuration file by simply placing an option with the opposite effect on
the command line. For example, if your configuration file contains

la Ie

and you invoke Turbo Assembler with

TASM Is Ir MYFILE

MYFILE is your program file, and your file will be assembled with
sequential segment-ordering (Is) and real floating-point instructions (lr),
even though the configuration file contained the la and Ie options that
specified alphabetical segment-ordering and emulated floating-point
instructions.

Chapter 2, Using directives and switches 31

32 Turbo Assembler Users Guide

c H A p T E R 3

General programming concepts

This chapter introduces you to the basic concepts of Turbo Assembler. We'll
look at Ideal mode versus MASM mode, commenting your programs and
extending lines of code, including files, using predefined symbols, and
using several important directives that produce module information.
Although this is a lot of ground to cover, it will give you a good idea of
what assembly language is all about.

Turbo Assembler Ideal mode

For those of you struggling to make MASM do your bidding, this may be
the most important chapter in the manual. In addition to near-perfect
compatibility with MASM syntax, Turbo Assembler smooths the rough
areas of assembly language programming with a MASM derivative we call
Ideal mode.

Among other things, Ideal mode lets you know solely by looking at the
source text exactly how an expression or instruction operand will behave.
There's no need to memorize all of MASM's many quirks and tricks.
Instead, with Ideal mode, you write clear, concise expressions that do
exactly what you want.

Ideal mode uses nearly all MASM's same keywords, operators, and
statement constructions. This means you can explore Ideal mode's features
one at a time without having to learn a large number of new rules or
keywords.

Ideal mode adds strict type checking to expressions. Strict type checking
helps reduce errors caused by assigning values of wrong types to registers
and variables, and by using constructions that appear correct in the source
text, but are assembled differently than you expect. Instead of playing
guessing games with values and expressions, you can use Ideal mode to
write code that makes logical and aesthetic sense.

With strict type checking, Ideal mode expressions are both easier to
understand and less prone to producing unexpected results. And, as a

Chapter 3, General programming concepts 33

Why use Ideal
mode?

Entering and
leaving Ideal
mode

34

result, many of the MASM idiosyncrasies we warn you about in other
chapters disappear.

Ideal mode also has a number of features that make programming easier
for novices and experts alike. These features include the following:

• duplicate member names among multiple structures
• complex HIGH and LOW expressions
• predictable EaU processing
• correct handling of grouped data segments
• improved consistency among directives
• sensible bracketed expressions

There are many good reasons why you should use Turbo Assembler's Ideal
mode. If you are just learning assembly language, you can easily construct
Ideal mode expressions and statements that have the effects you desire.
You don't have to experiment trying different things until you get an in
struction that does what you want. If you are an experienced assembly
language programmer, you can use Ideal mode features to write complex
programs using language extensions such as nestable structures and
unions.

As a direct benefit of cleaner syntax, Ideal mode assembles files 30% faster
than MASM mode. The larger your projects and files, the more savings in
assembly time you'll gain by switching to Ideal mode.

Strong type-checking rules, enforced by Ideal mode, let Turbo Assembler
catch errors that you would otherwise have to find at run time or by
debugging your code. This is similar to the way high-level language
compilers point out questionable constructions and mismatched data sizes.

Although Ideal mode uses a different syntax for some expressions, you can
still write programs that assemble equally well in both MASM and Ideal
modes. You can also switch between MASM and Ideal modes as often as
necessary within the same source file. This is especially helpful when
you're experimenting with Ideal mode features, or when you're converting
existing programs written in the MASM syntax. You can switch to Ideal
mode for new code that you add to your source files and maintain full
MASM compatibility for other portions of your program.

Use the IDEAL and MASM directives to switch between Ideal and MASM
modes. Turbo Assembler always starts assembling a source file in MASM
mode. To switch to Ideal mode, include the IDEAL directive in your source
file before using any Ideal mode capabilities. From then on, or until the
next MASM directive, all statements behave as described in this chapter.

Turbo Assembler Users Guide

MASM and Ideal
mode differences

You can switch back and forth between MASM and Ideal modes in a source
file as many times as you wish and at any place. Here's a sample:

DATA SEGMENT
abc LABEL BYTE
xyz DW 0
DATA ENDS

IDEAL

SEGMENT CODE
PROC MyProc

ENDP MyProc
ENDS

MASM

CODE SEGMENT
Func2 PROC

IDEAL

MASM

Func2 ENDP
CODE ENDS

istart in MASM mode
iabc addresses xyz as a byte
idefine a word at label xyz
iend of data segment

,iswitch to Ideal mode

isegment keyword now comes first
iproc keyword comes first, too

iIdeal mode programming goes here
irepeating MyProc label is optional
irepeating segment name not required

iswitch back to MASM mode

iname now required before segment keyword
iname now comes before proc keyword, too

iMASM-mode programming goes here
iswitch to Ideal mode again!

ido some programming in Ideal mode
iback to MASM mode. Getting dizzy?

iname again required before keyword
iname again required here

In Ideal mode, directive keywords such as PROe and SEGMENT appear
before the identifying symbol names, which is the reverse of MASM's order.
You also have the option of repeating a segment or procedure name after
the ENDP and ENDS directives. Adding the name can help clarify the
program by identifying the segment or procedure that is ending. This is a
good idea, especially in programs that nest multiple segments and proce
dures. You don't have to include the symbol name after ENDP and ENDS,
however.

This section describes the main differences between Ideal and MASM
modes. If you know MASM, you might want to experiment with individual
features by converting small sections of your existing programs to Ideal
mode. Further details of these differences are in Chapter 5, "Using
expressions and symbol values."

Chapter 3, General programming concepts 35

Expressions and
operands

Operators

Suppressed fixups

36

The biggest difference between Ideal and MASM mode expressions is the
way square brackets function. In Ideal mode, square brackets always refer
to the contents of the enclosed quantity. Brackets never cause implied
additions to occur. Many standard MASM constructions, therefore, are not
permitted by Ideal mode.

In Ideal mode, square brackets must be used in order to get the contents of
an item. For example,

mav ax,wardptr

displays a warning message. You're trying to load a pointer (wordptr) into a
register (AX). The correct form is

mav ax, [wardptrl

Using Ideal mode, it's clear you are loading the contents of the location
addressed by wordptr (in the current data segment at DS) into AX.

If you wish to refer to the offset of a symbol within a segment, you must
explicitly use the OFFSET operator, as in this example:

mav ax, OFFSET wardptr

The changes made to the expression operators in Ideal mode increase the
power and flexibility of some operators while leaving unchanged the
overall behavior of expressions. The precedence levels of some operators
have been changed to facilitate common operator combinations.

The period (.) structure member operator is far more strict in Ideal mode
when accurately specifying the structure members you're referring to. The
expression to the left of a period must be a structure pointer. The expression
to the right must be a member name in that structure. Here's an example of
loading registers with the values of specific structure members:

;Declare variables using the structure types
S_Stuff SameStuff <>
O_Stuff OtherStuff <>
mav ax, [S_Stuff.Arnauntl
mav bl, [O_Stuff.Arnauntl

;laad word value
;laad byte value

Turbo Assembler in Ideal mode does not generate segment-relative fixups
for private segments that are page- or paragraph-aligned. Because the
linker does not require such fixups, assembling programs in Ideal mode
can result in smaller object files that also link more quickly than object files

Turbo Assembler Users Guide

This difference has
no effect on code that

you write. The
documentation here

is simply for your
information.

Operand for BOUND
instruction

Segments and
groups

Accessing data in a
segment belonging
to a group

generated by MASM mode. The following demonstrates how superfluous
fixups occur in MASM but not in Ideal mode:

SEGMENT DATA PRIVATE PARA
VAR1 DB 0
VAR2 DW 0
ENDS
SEGMENT CODE

ENDS

ASSUME dS:DATA
mov ax,VAR2 ina fixup needed

The BOUND instruction expects a WORD operand, not a DWORD. This lets
you define the lower and upper bounds as two constant words, eliminating
the need to convert the operand to a DWORD with an explicit DWORD PTR.
In MASM mode, you must write

BOUNDS DW 1,4 ilower and upper bounds
BOUND AX, DWORD PTR BOUNDS irequired for MASM mode

but in Ideal mode, you need only write

BOUNDS OW
BOUND AX,

1,4
[BOUNDS]

ilower and upper bounds
ilegal in Ideal mode

The way Turbo Assembler handles segments and groups in Ideal mode can
make a difference in getting a program up and running. If you're like most
people, you probably shudder at the thought of dealing with a bug that has
anything to do with the interaction of segments and groups.

Much of the difficulty in this process stems from the arbitrary way that
MASM and, therefore, Turbo Assembler's MASM mode, makes
assumptions about references to data or code within a group. Fortunately,
Ideal mode alleviates some of the more nagging problems caused by
MASM segment and group directives, as you'll see in the information that
follows.

In Ideal mode, any data item in a segment that is part of a group is
considered to be principally a member of the group, not of the segment. An
explicit segment override must be used for Turbo Assembler to recognize
the data item as a member of the segment.

MASM mode handles this differently; sometimes a symbol is considered to
be part of the segment instead of the group. In particular, MASM mode
treats a symbol as part of a segment when the symbol is used with the
OFFSET operator, but as part of a group when the symbol is used as a

Chapter 3, General programming concepts 37

38

pointer in a data allocation. This can be confusing because when you
directly access the data without OFFSET, MASM incorrectly generates the
reference relative to the segment instead of the group.

Here's an example of how easily you can get into trouble with MASM's
addressing quirks. Consider the following incomplete MASM program,
which declares three data segments:

dsegl SEGMENT PARA PUBLIC 'data'
vl DB 0
dsegl ENDS

dseg2 SEGMENT PARA PUBLIC 'data'
v2 DB 0
dseg2 ENDS

dseg3 SEGMENT PARA PUBLIC 'data'
v3 DB 0
dseg3 ENDS

DGROUP GROUP dsegl,dseg2,dseg3
eseg SEGMENT PARA PUBLIC 'code'

ASSUME es:eseg,ds:DGROUP

start:
mov aX,OFFSET vl
mov bX,OFFSET v2
mov eX,OFFSET v3

eseg ENDS
END start

The three segments, dsegl, dseg2, and dseg3, are grouped under one name,
DGROUP. As a result, all the variables in the individual segments are
stored together in memory. In the program source text, each of the
individual segments declares a BYTE variable, labeled vl, v2, and v3.

In the code portion of this MASM program, the offset addresses of the three
variables are loaded into registers AX, BX, and CX. Because of the earlier
ASSUME directive and because the data segments were grouped together,
you might think that MASM would calculate the offsets to the variables
relative to the entire group in which the variables are eventually stored in
memory.

But this is not what happens. Despite your intentions, MASM calculates the
offsets of the variables relative to the individual segments, dsegl, dseg2, and
dseg3. It does this even though the three segments are combined into one
data segment in memory, addressed here by register DS. It makes no sense
to take the offsets of variables relative to individual segments in the
program text when those segments are combined into a single segment in

Turbo Assembler Users Guide

memory. The only way to address such variables is to refer to their offsets
relative to the entire group.

To fix the problem in MASM, you must specify the group name along with
the OFFSET keyword:

rnov aX,OFFSET DGROUP:vl
rnov bX,OFFSET DGROUP:v2
rnov eX,OFFSET DGROUP:v3

Although this now assembles correctly and loads the offsets of vl, v2, and
v3 relative to DGROUP (which collects the individual segments), you might
easily forget to specify the DGROUP qualifier. If you make this mistake, the
offset values will not correctly locate the variables in memory and you'll
receive no indication from MASM that anything is amiss. In Ideal mode,
there's no need to go to all this trouble:

IDEAL
SEGMENT dsegl PARA PUBLIC 'data'
vl DB 0
ENDS

SEGMENT dseg2 PARA PUBLIC 'data'
v2 DB 0
ENDS

SEGMENT dseg3 PARA PUBLIC 'data'
v3 DB 0
ENDS

GROUP DGROUP dsegl,dseg2,dseg3
SEGMENT eseg PARA PUBLIC 'code'

ASSUME es:eseg, ds:DGROUP

start:
rnov aX,OFFSET vl
rnov aX,OFFSET v2
rnov aX,OFFSET v3

ENDS
END start

The offsets to vl, v2, and v3 are correctly calculated relative to the group
that collects the individual segments to which the variables belong. Ideal
mode does not require the DGROUP qualifier to refer to variables in
grouped segments. MASM mode does require the qualifier and, even
worse, gives no warning of a serious problem should you forget to specify
the group name in every single reference.

Chapter 3, General programming concepts 39

Commenting the program

Comments at the
end of the line

The COMMENT
directive

COMMENT only
works in MASM

mode.

Commenting your code is a great way to help you (or anyone who has to
maintain your code in the future) quickly understand how it functions.
Using comments is good programming practice in any language. They can
describe the semantic as opposed to syntactic function of your code. We
recommend that you use comments liberally in your Turbo Assembler
code, and this section describes how you can do so.

There are several ways to comment assembler code. One approach is to add
a comment at the end of a line using the semicolon (;), such as

mov [bxj,al ;store the modified character

Another way to comment assembler code is to use the line continuation
character (\) as a comment character. See the section called "Extending the
line" for an example of how this is done.

The COMMENT directive lets you comment blocks of code. COMMENT
ignores all text from the first delimiter character and the line containing the
next occurrence of the delimiter. The following example uses * as a
delimiter character:

COMMENT *
stuff here

Extending the line

40

For lines of code that are longer than 80 characters, Turbo Assembler·
provides the \ line continuation character. Use this character at the end of
your line, because Turbo Assembler ignores any characters that follow it on
the same line.

The maximum line length is 1024 when you use \; however, tables, records,
and enums might have definitions that are longer than 1024 characters. An
alternative that does not have the 1024 character limitation is the multiline
definition syntax. Here's an example of the syntax (for an enum definition):

faa enum { ;Multiline version
f1
f2
f3
f4
fS

Turbo Assembler Users Guide

f6
f7
f8
}

A more compact version of the same definition:

foo enum fl,f2,{ i Compact multiline version
f3, f4
f5,f6
f7, f8}

When using multiline definitions, remember these rules:

• The left brace that starts the definition must be the last token on the
starting line. It does not, however, have to precede the first element in the
list.

a You cannot include any directives such as IF or INCLUDE inside the
multiline definition.

MASM-mode line continuation is available if you select VERSION M510,
M520. Strings and other tokens can be extended across multiple lines if the
1/\1/ character is the last character on the line. For example,

VERSION M510
DB 'Hello out there
you guys'

You can place standard Turbo Assembler mode line continuation anywhere
in a line, and it is always available. It functions as a comment as well. For
example,

ARG al:word,
a2:word,
a3:word

\first argument
\second argument
ifinal argument

Using INCLUDE files

You can nest
INCLUDE directives

as deep as you want.

Include files let you use the same block of code in several places in your
program, insert the block in several source modules, or reduce the size of
your source program without having to create several linkable modules.
Using the INCLUDE directive tells Turbo Assembler to find the specified
files on disk and assemble them as if they were a part of the source
program.

The Ideal mode syntax:

INCLUDE "filename"

Chapter 3, General programming concepts 41

The MASM mode syntax:

INCLUDE filename

filename can specify any drive, directory, or extension. If filename does not
include a directory or drive name, Turbo Assembler first searches for the
file in any directories you specify with the II command-line option, and
then in the current directory.

Predefined symbols

42

Turbo Assembler provides a number of predefined symbols that you can
use in your programs. These symbols can have different values at different
places in your source file, and are similar to equated symbols you define
using the EQU directive. When Turbo Assembler encounters one of these
symbols in your source file, it replaces it with the current value of that
predefined symbol.

Some of these symbols are text (string) equates, some are numeric equates,
and others are aliases. The string values can be used anywhere that you
would use a character string, for example, to initialize a series of data bytes
using the DB directive:

NOW DB ??tirne

Numeric predefined values can be used anywhere that you would use a
number:

IF ??version GT lOOh

Alias values make the predefined symbol into a synonym for the value it
represents, allowing you to use the predefined symbol name anywhere you
would use an ordinary symbol name:

ASSUME cs:@code

All the predefined symbols can be used in both MASM and Ideal mode.

If you use the Iml command-line option when assembling, you must use the
predefined symbol names exactly as they are described on the following
pages.

The following rule applies to predefined symbols starting with an at-sign
(@): The first letter of each word that makes up part of the symbol name is an
uppercase letter (except for segment names); the rest of the word is lowercase. As
an example,

@FileNarne

Turbo Assembler Users Guide

Notice that @FileName performs an alias equate for the current assembly
line.

The exception is redefined symbols, which refer to segments. Segment
names begin with an at-sign (@) and are all lowercase. For example,

@curseg
@fardata

For symbols that start with two question marks (??), the letters are all
lowercase. For example,

??date
??version

Note that the ??date symbol defines a text equate that represents today's
date. The exact format of the date string is determined by the country code.
The ??version symbol lets you write source files that can take advantage of
features in particular versions of Turbo Assembler. This equate also lets
your source files know whether they are being assembled by MASM or
Turbo Assembler, since ??version is not defined by MASM. Similarly,
??filename defines an eight-character string that represents the file name
being assembled. The file name is padded with spaces if it it contains fewer
than eight characters. The ??time symbol defines a text equate that
represents the current time. The exact format of the time string is
determined by the country code.

Assigning values to symbols

Turbo Assembler provides two directives that let you assign values to
symbols: EQU and =. The EQU directive defines a string, alias, or numeric
equate. To use it, specify the following syntax,

name EQU expression

where name is assigned the result of evaluating expression. name must be a
new symbol name that you haven't previously defined in a different
manner. In MASM mode, you can only redefine a symbol that you defined
using the EQU directive if you first define it as a string equate. In MASM
mode, EQU can generate anyone of three kinds of equates: alias,
expression, or string.

The = directive defines only a numeric equate. To use it, specify

name = expression

Chapter 3, General programming concepts 43

where name is assigned the result of evaluating expression, which must
evaluate to either a constant or an address within a segment. name can
either be a new symbol name, or a symbol that you previously defined with
=. Since the = directive has far more predictable behavior than the EQU
directive in MASM mode, use = instead of EQU wherever you can.

General module structure,

. The VERSION
directive

44

Turbo Assembler provides several directives to help you work with
modules of code. The remainder of this chapter describes these directives.

Using the VERSION directive lets you specify which version of Turbo
Assembler or MASM you've written particular modules for. This is helpful
for upward and downward compatibility of various versions of T ASM and
MASM. The VERSION directive also puts you into the operating mode for
the specified version.

You can specify the VERSION directive as either a command-line switch or
within program source code. .

Within code, the syntax is

VERSION <versiOTI_ID>

You can specify the following legal version IDs:

M400
M500
M510
M520
T100
T101
T200
T250
T300
T310
T320
T400
T410

MASM4.0
MASM5.0
MASM5.1
MASM 5.2 (Quick ASM)
Turbo Assembler 1.0
Turbo Assembler 1.01
Turbo Assembler 2.0
Turbo Assembler 2.5
Turbo Assembler 3.0
Turbo Assembler 3.1
Turbo Assembler 3.2
Turbo Assembler 4.0
Turbo Assembler 4.1

The command-line syntax is:

/U<version_ID>

Turbo Assembler Users Guide

The NAME directive

This directive only
works in Ideal mode.

The END directive

As an example, if you wanted to assemble a program written for MASM
5.0, you could leave the source for the program intact and use the switch
luM510.

Here are the general rules:

1. The VERSION directive always selects MASM mode by default, because
that is the starting mode of operation for both MASM and Turbo
Assembler.

2. The VERSION directive limits the high-priority keywords available to,
those in the specified compiler and version. As a result, some features
that were added to later versions are unavailable to you.

3. From Ideal mode, the VERSION directive is unavailable if you select a
version prior to T300. To use the VERSION directive in this case, you
must switch to MASM mode first.

4. No attempt is made to limit access to low priority keywords, since these
will not affect compatibility.

Previous versions of Turbo Assembler controlled MASM compatibility
with directives such as MASM51, NOMASM51, QUIRKS, SMART, and
NOSMART. The VERSION directive supersedes these older directives. See
Appendix B for a complete list of keywords available with each prior
version of Turbo Assembler.

Use the NAME directive to set the object file's module name. Here is the
syntax for it:

NAME modulename

Turbo Assembler usually uses the source file name with any drive,
directory, or extension as the module name. Use NAME if you wish to
change this default name; modulename will be the new name of the module.
For example,

NAME loader

Use the END directive to mark the end of your source file. The syntax looks
like this:

END [startaddress 1

startaddress is an optional symbol or expression that specifies the address in
your program where you want execution to begin. If your program is
linked from multiple source files, only one file can specify a startaddress.

Chapter 3, General programming concepts 45

startaddress can be an address within the module; it can also be an external
symbol defined in another module, declared with the EXTRN directive.

Turbo Assembler ignores any text after the END directive in the source file.

Example .MODEL small
.CODE
START:
iBody of program goes here
END START iprogram entry point is "START"
THIS LINE IS IGNORED
SO IS THIS ONE

Displaying a message during assembly

Turbo Assembler provides two directives that let you display a string on
the console during assembly: DISPLAY and %OUT. You can use these
directives to report on the progress of an assembly, either to let you know
how far the assembly has progressed, or to let you know that a certain part
of the code has been reached.

The two directives are essentially the same except that DISPLAY displays a
quoted string onscreen, and %OUT displays a nonquoted string onscreen.

In both Ideal and MASM modes, the syntax for DISPLAY is

DISPLAY "text"

where text is any message you want to display.

The syntax for %OUT in both Ideal and MASM modes is

%OUT text

where, again, text is the message that you want displayed.

Displaying warning messages

WARN without
warnclass enables all
warnings. WARN with

an identifier only
enables that warning.

46

Turbo Assembler lets you choose what (if any) warning messages you'll
receive for certain parts of your code. Each warning message contains a
three-letter identifier, which you can specify ahead of time to let the
assembler know whether or not you want to see warnings of that kind. You
can use the WARN directive to enable warning messages, and the NOWARN
directive to disable them.

The syntax of the WARN directive is

Turbo Assembler Users Guide

NOWARN without
warnclass disables all
warnings. NOWARN

with an identifier
disables only that

warning.

WARN [warnc1assl

where warnclass is the three-letter identifier that represents a particular type
of warning message. The available warnclasses are:

ALN Segment alignment
BRK Brackets needed
GTP Global type doesn't match symbol type
lCG Inefficient code generation
lNT INT 3 generation
LCO Location counter overflow
MCP MASM compatibility pass
OPI Open IF conditional
OPP Open procedure
OPS Open segment
OVF Arithmetic overflow
PDC Pass-dependent construction
PRO Write-to-memory in protected mode using CS
PQK Assuming constant for [const] warning
RES Reserved word warning
TPI Borland Pascal illegal warning

Note that these are the same identifiers used by the /W command-line
option.

Here's an example using WARN:

WARN OVF
DW 1000h * 1234h

ienables arithmetic overflow warning
ioverflow warning will occur

Use the NOWARN directive to disable specific (or all) warning messages.
NOWARN uses the same identifiers described earlier under WARN. Here's
an example that uses NOWARN:

NOWARN OVF
DW 1000h * 1234h

idisable arithmetic overflow warnings
idoesn't warn now

Multiple error-message reporting

By default, Turbo Assembler only allows one error message to be reported
for each line of source code. If a source line contains multiple errors, Turbo
Assembler reports the most-significant error first. You can control the
number of error messages you get for each source line by using the
MUL TERRS and NOMUL TERRS directives.

The MULTERRS directive allows the assembler to report more than one
error message for each source line. This is sometimes helpful in locating the

Chapter 3, General programming concepts 47

48

cause of a subtle error or when the source line contains more than one
error.

Note that sometimes additional error messages can be a "chain reaction"
caused by the first error condition; these "chain" error messages may
disappear once you correct the first error.

Here's an example of the MUL TERRS directive:

MULTERRS
mov ax, [bp+abc iproduces two errors:

i1) Undefined symbol: abc
i2) Need right square bracket

_ The NOMUL TERRS directive only lets one error or warning message (the
most significant message) appear for each source line. When you correct
this error, the other error messages may disappear as well. To avoid this
problem, use the MUL TERRS directive to see all of the error messages.

Here is an example of using the NOMUL TERRS directive:

NOMULTERRS
mov ax, [bp+abc ione error:

i1) Undefined symbol: abc

Turbo Assembler Users Guide

Terminology

These terms are
described in detail

later in this chapter.

Table 4.1
Object -orien!ed

programming
terminology

c H A p T E R 4

Creating object-oriented programs

Object-oriented programming is an approach to software design that is
based on objects rather than procedures. This approach maximizes
modularity and information hiding. The underlying premise behind
object-oriented programming is the binding or encapsulation of a data
structure with procedures for manipulating the data in the structure into a
unit.

Object-oriented design provides many advantages. For example, every
object encapsulates its data structure with the procedures used to
manipulate instances of the data structure. This removes interdependencies
in code that can quickly make maintenance difficult. Objects can also
inherit a data structure and other characteristics from a parent object, which
saves work and lets you transparently use a single chunk of code for many
purposes.

If you're not an experienced Turbo Assembler user, you might want to skim
through this chapter now, but corne back to it later after reading the other
chapters of this manual. We've put it here to make you aware of these
features, but object-oriented programming in Turbo Assembler is really an
advanced topic. It will make more sense after going through the rest of the
manual.

c++ and Pascal use different terms for various entities in object-oriented
programming. Turbo Assembler more closely resembles
Pascal in this way, although not all terms are the same. The following table
outlines these differences among these languages.

Turbo Assembler Borland C++ Borland Pascal

method member function method
method procedure
object class object
base object base class base object

Chapter 4, Creating object-oriented programs 49

Table 4.1: Object-oriented programming terminology (continued)

parent object parent class
derived object derived class
field data member

parent object
derived object
field

Why use objects in Turbo Assembler?

Most people think of assembly language as a low-level language. Turbo
Assembler, however, provides many of the features of a high-level
language (such as abstract data types, and easy interfacing to other
languages). The addition of object-oriented data structures gives Turbo
Assembler the power to create object-oriented programs as easily as high
level languages while retaining the speed and flexibility of assembly
language.

What is an object?

We strongly
recommend that you

use Ideal mode for
object-oriented

programming in
Turbo Assembler,

since symbol scoping
is global in MASM,

and you can't
distinguish different
positions of shown

methods.

Table 4.2
Symbols defined for

objects

50

An object consists of a data structure and associated procedures (called
methods) that manage data stored in instances of the data structure.

An object can inherit characteristics from a parent object. This means that
the new object's data structure includes the parent object's data structure, as
well as any new data. Also, the new object can call all the method
procedures of the parent object, as well as any new method procedures it
declares.

An object having no inheritance is called a base object; an object that inherits
another is a derived object.

Turbo Assembler defines several symbols you can use when declaring
objects. The following table lists these symbols.

Symbol

@Object

<objectname>

@Table_<objectname>

@TableAddr_<objectname>

Meaning

A text macro containing the name of the current object (the
object last declared).

A STRUC data type that describes the object's data structure.

A TABLE data type containing the objects method table,
which is not the same as an instance of the virtual method
table.

A label describing the address of the instance of the objects
virtual method table, if there is one.

Turbo Assembler Users Guide

A sample object

Declaring objects

As an example of where you can use objects, consider any program that
uses linked lists. Think of a linked list as an object consisting of the linked
list data and the operations (methods) that you can perform on it.

The linked list data consists of pointers to the head and tail of the linked list
(this example contains a doubly linked list because of its flexibility). Each
element of the linked list is a separate object instance.

The following operations provide the power needed to use a linked list:

• Creating the linked list (allocating memory for it).

• Destroying the linked list (deallocating memory for it).

II Initializing the linked list.

• Deinitializing the linked list.

• Inserting an item into the middle of the linked list before an existing
item.

EI Appending an item to the end of the linked list.

11 Deleting an item from the linked list.

II Returning ~he first item in the linked list.

11 Returning the last item in the linked list.

Keep in mind that create and initialize, as well as destroy and deinitialize
methods are not synonymous. create and destroy methods allocate and
deallocate memory for the linked list object, while the initialize and
deinitialize methods only initialize and deinitialize previously allocated
instances of the object. If you don't combine initialization with creation, it's
possible to statically allocate linked list objects.

You can see how the linked list object can be inherited by a queue or stack
object, since a queue or a stack can be implemented as a linked list with
limited operations. For example, you can implement a queue as a linked list
where items can be added to the start and taken off the end. If you
implement a queue in this way, you must disable the inherited linked list
methods that are illegal on a queue (such as inserting into the middle of the
list).

Declaring an object consists of declaring the data structure for the object,
and declaring the method procedures that you can call for the object.
Declaring an object does not involve creating an instance of the object.
You'll learn how to do this later.

Chapter 4, Creating object-oriented programs 51

Declaring a base
object

For more on STRUC
as it applies to

declaring objects, see
Chapter 8.

The METHOD
keyword shows that

you're using an
extended form of
STRUC, and are

defining an object
called list.

Each entry consists
of a method name, a
colon, and the size of

a pointer to the
method procedure

(WORD for near
procedures, DWORD

for far procedures).
This is followed by an

equal sign, and the
name of the

procedure to call for
that method.

52

When you declare an object, Turbo Assembler creates a STRUC that
declares the data for the object, and a TABLE that declares the methods for
the object. The object's data declaration is a structure with the same name as
the object. The object's method declarations are stored in a TABLE data
type, named @Table_<objectname>.

For example, for the list object, two data types are declared:

list A STRUC declaring the following members:

list_head dword pointer to head of list
list_tail dword pointer to tail of list

@Table_list A TABLE declaring the following methods:

construct dword pointer to the procedure list_construct
destroy dword pointer to the procedure list_destroy
and so on ...

STRUC declares the data for the object that is created whenever you create
an instance of the object. TABLE declares the table of default method
procedures for the declaration. Turbo Assembler maintains this data type;
it does not create an instance of the table anywhere in your program
memory. However, you'll see later that you must include an instance of the
table for any object that uses virtual methods. Here's an example of an
object declaration for a linked list:

list STRUC GLOBAL METHOD {
construct:dword = list_construct
destroy:dword = list_destroy
init:dword = list_init
deinit:dword = list_deinit
virtual insert:word = list_insert
virtual append:word = list_append
virtual remove:word = list_delete
virtual first:word = list_first
virtual last:word = list_last

list_head dd?
list_tail dd?

ENDS

jlist constructor procedure
;list destructor procedure
;list initializer procedure
;list deinitializer procedure
jlist node insert procedure
;list node append procedure
jlist node remove procedure

;list first node procedure
;list last node procedure

jlist head pointer
;list tail pointer

Let's look at this example to see what's happening.

METHOD indicates an object method call and is followed by a list of the
method procedure declarations for the object. These declarations are

Turbo Assembler Users Guide

enclosed in braces ({ }) because the list of methods requires more than one
line.

Each method declaration tells Turbo Assembler which procedure it should
use to manipulate the object when invoking that method name. For
example, the first method procedure declaration

construct:dword = list_construct

declares a method named construct that is a far procedure (because a
DWORD stores the pointer to it). The actual procedure name of the method
is list_construct, which should be defined elsewhere in the source code.

Turbo Assembler considers a method to be virtual if it's preceded by the
keyword VIRTUAL. When you call such a method, Turbo Assembler will
locate the method's procedure address by looking it up from a table present
in memory at run time. Otherwise, the method is a static method, meaning
that Turbo Assembler can determine its address at compile time. For
example, the method construct is a static method, while the method insert is
declared as a virtual method. Later in this chapter, we'll explain why you
might want to choose virtual or static methods.

The data structure for the method immediately follows the method
procedure declaration section. This definition uses the syntax for the
standard STRUC directive. This example contains declarations for the
linked list's head and tail pointers.

The method declaration portion of the object declaration doesn't place any
data in the object's data structure unless you've used virtual methods.
Instead, these declarations cause Turbo Assembler to build a separate table
data structure that contains the specified method procedure addresses as
default values. You should have an instance of this table for every object,
and you must explicitly place the table. We'll explain how to do this later in
this chapter.

Since the object declaration must exist in the module containing the method
procedures for the object (as well as included in any source code that uses
the object), you should declare the object itself in a separate file that can be
INCLUDEd into the source code. We recommend using a file name in the
form objectname.ASO (ASsembly Object). This file should consist of only the
object declaration. The object methods should be in another source file so
that you can include the object declaration wherever you need it. For
example, the linked list object declaration in the previous example would
be placed in the file LIST.ASO. The file LIST.ASM could be used to define
the object's method procedures. Any program making use of the objects
would include LIST.ASO, but not LIST.ASM.

Chapter 4, Creating object-oriented programs 53

Dec/aring a derived
object

54

The keyword GLOBAL in the object declaration causes Turbo Assembler to
publish information that lets you use the object in a module other than the
one it's defined in. The object declaration must also be included in all
modules that use the object.

An object that inherits another object's methods and data is called a derived
object. You can't override the members of the parent data structure, but
you can override the individual methods by respecifying them in the new
object method list.

An object can inherit any other single object, whether that other object is a
base or derived object itself. The inherited object is called the parent object.
The derived object inherits the data and methods of the parent object, so
you should only use inheritance when these methods and data are useful to
the new object.

For example, you can define a queue object that inherits the linked list
object because you can implement a queue as a linked list. Here's an
example of such a derived object:

queue STRUC GLOBAL list METHOD {
init:DWORD=queue_init
virtual insert:word = queue_insert

virtual remove:word = queue_delete

virtual first:word = queue_first
virtual last:word = queue_last
virtual enqueue:word = list_append
virtual dequeue:word = queue_dequeue
}

ENDS

; (queue node insert
; procedure)
; (queue node delete
; procedure)
; (queue first node procedure)
; (queue end node procedure)
;queue enqueue procedure
;queue dequeue procedure

Placing the object name list before the METHOD keywords tells Turbo
Assembler that the new object queue inherits the methods and data of the
object, list. Any object name placed in this location will be inherited by the
object being declared. You can use only one name (only single inheritance
is supported).

The new queue object inherits all the data and methods from the list object,
unless you override it. Note that queue needs its own init to install the
pointer to the virtual method table for queues.

The inherited insert, remove, first, and last method declarations for the queue
are respecified in the declaration, so these methods are replaced with the
indicated procedures.

Turbo Assembler Users Guide

Two new methods have been declared for the queue: enqueue and dequeue.
Notice that the method procedure for enqueue is the same as for appending
to a linked list. However, we need a new procedure to dequeue from the
queue, and this we call queue_dequeue.

The queue object has no additional data declared other than what it inherits
from list. It inherits the linked list's head and tail pointers, which are still
needed for the queue because of the linked list methods used to manage the
queue.

Declaring a method procedure

Method procedures manipulate instances of the object. They are much like
library routines in that they should have a well-defined call and a return
value interface, but knowledge of how the method procedures work
internally is not necessary.

The method procedures for an object should provide comprehensive
management of the objects; that is, they should be the only procedures
allowed direct access to the objects. Furthermore, you should use the
concepts of data abstraction when you design the methods: You should be
able to call the method procedures without having any knowledge of the
inner workings of the method procedures.

In all other respects, you can write method procedures for any language or
interface you want, although usually C++ or Pascal calling conventions are
used. Any arguments to the procedures are up to you as well. One
argument that is usually required is a pointer to an object instance. Some
method procedures might require additional parameters. For example, the
initialization method for the list object requires just the pointer to the list
object, while the list insert method requires a pointer to the list, a pointer to
the new node to insert, and a pointer to the node it's inserted after.

.. There are advantages and disadvantages to using both static and virtual
methods. Static methods are resolved at compile time, and result in direct
calls to the method procedure. This makes the call faster, and does not
require you to use intermediate registers (as in virtual method calls).
However, since these calls are resolved at compile time, static method calls
don't have the flexibility of virtual method calls.

Virtual method calls are made indirectly through an instance of the virtual
method table for the object. The fact that the call is indirect gives virtual
methods the disadvantage of requiring you to use intermediate registers
when you make the call (which could complicate your code). A big
advantage, however, is that virtual method calls are resolved at run time.

Chapter 4, Creating object-oriented programs 55

Thus, you can make virtual method calls for a derived object by calling a
common ancestor object's method without having to know exactly what
sort of descendant object you're dealing with.

.. Declare static and virtual method procedures exactly the same way as any
other procedure, with the following exception: if you omit the procedure
name for virtual methods, you'll cause an empty uninitialized location in
the virtual method table and Turbo Assembler won't warn you if you do
this. Omitting the procedure name is an error if the method is not virtual,
since virtual methods don't go into the table.

Here's an example of a method procedure:

iConstruct a Linked-List object.
iThis is the method "construct".
iThis must be a static method.
iReturns DX:AX pointing to linked-list object, null if none.
iObject is allocated but not yet initialized.
list_construct PROC PASCAL FAR
USES ds

ENDP

i-- Allocate the Linked-List object -
ii«do the allocation here»
ret

The virtual method table

Initializing the
virtual method
table

56

The virtual method table (VMT) is a table of addresses of the procedures
that perform virtual methods. Usually this table is placed in the program's
data segment. Any object having virtual methods requires an instance of
the VMT somewhere in the program.

Use the TBLINST directive to create the instance of the VMT for an object.
Since this directive creates a table for the most recently declared object, you
should place this directive immediately after the object declaration, as in
the following:

INCLUDE list.aso
DATASEG
TBLINST

Simply creating the instance of the VMT is not enough to let you make calls
to virtual methods. Every object with virtual methods includes a pointer to
the VMT in its data structure. You must initialize this pointer whenever
you create an instance of an object, and can use TBLINIT to do so.

Initialize the VMT pointer in the init method for the object as follows:

Turbo Assembler Users Guide

Notice that the init
method must be

static because you
can't call a virtual

method for an object
instance until after

you initialize the
virtual table pointer.

;Initialize a Linked List object.
;This is the method "init".
;This must be a static method!
list_init PROC PASCAL FAR
ARG @@list:dword
USES ds,bx

ENDP

Ids bX,@@list
;-- Initialize any virtual method table for the object at ds:bx
TBLINIT ds:bx
;-- Initialize the object's data -
;;«initialize any data for the object here ... »
ret

Calling an object method

The CALL syntax is
similar for calling

static or virtual
methods.

Calling a static
method

Use the CALL instruction to invoke object methods.Turbo Assembler
provides an extension to the standard CALL instruction, CALL..METHOD,
for calling method procedures.

When making a call to a method procedure, you should write the
CALL..METHOD instruction as if you were making a call to a virtual
method, even if you know that you're calling a static method. Doing so will
have no ill effects on static method calls, and gives you the flexibility of
changing methods from static to virtual or back again without having to
change all the calls to the method. For the same reasons, you should specify
a reasonable selection for the intermediate calling registers, even if you
know that the method you're calling is static.

Calls to static methods are resolved at compile time to direct calls to the
desired method procedure for the object. However, when making the call,
you should not make a direct call to the method procedure; instead, use the
extended CALL..METHOD instruction.

The following example shows a sample call to the static init method for the
linked list object.

CALL foolist METHOD list:init pascal,ds offset foolist
CALL es:di METHOD llst:init pascal,es di

The call address itself is the address of an instance of the object. This
address is used for syntactic reasons only; the actual call generated is a
direct call to the method procedure.

In this example, the first call is to the init method for the object list. Since
this is a static method, you make a direct call to the method procedure

Chapter 4, Creating object-oriented programs 57

Calling a virtual
method

58

list_init. Turbo Assembler ignores the object instance,foo1ist (except that it's
passed as an argument to the method procedure).

The method name is followed by the usual extended call language and
parameter list. The language and parameters depend on the method you're
calling, and one of the parameters is generally a pointer to the instance of
the object. In this example, the method accepts a single parameter, which is
a pointer to the instance of the object.

Any call to a virtual method requires an indirect call to the method
procedure. You can use the extended CALL..METHOD instruction to let this
happen. Turbo Assembler generates the following instructions to perform
the call:

1. Load intermediate registers from the object instance with a pointer to
theVMT.

2. Make an indirect call to the appropriate table member.

Therefore, when you specify

CALL <instance> METHOD <object>:<method> USES <seg>:<reg> <calling_stuff>

the generated instructions are as follows:

MOV <reg>, [<instance>. <virtual_method_table-pointer>]
CALL [«seg>:<reg» . <method>] <calling_stuff>

The first instruction loads the selected register <reg> with the address of the
table from the VMT pointer field of the object structure. The second
instruction makes an indirect call to the appropriate method in the table.

For example, a call of the form

CALL es:di method list:insert uses ds:bx pascal,es di,es dx,es cx

generates a sequence like

mov bx, [es:di.@Mptr_list]
CALL [ds:bx.insert] pascal,\

es di,es dx,es cx

Note that for objects declared with NEAR tables, only the offset register
will be loaded by the CALL..METHOD instruction. The segment register
should already contain the correct value. The following example shows
how to make sure that the segment register is properly set up.

iAppend a node at the end of a Linked-List object.
iThis is the virtual method "listlappend".
list_append PROC PASCAL NEAR

Turbo Assembler Users Guide

ARG @@list:dword, \
@@new:dword

USES ds,bx,es,di
movax,@Data
mov ds,ax

ENDP

les di,@@list
sub ax,ax
CALL es:di method list:insert uses ds:bx pascal, \

es di,@@new,ax ax
ret

Note You can't call any virtual methods until after you initialize the VMT pointer
in the object's data. This is because the pointer loads the address of the
VMT (from which the address of the desired virtual method procedure is
retrieved). Thus, if you haven't initialized the pointer to the VMT, any
virtual method call will result in a call to some random address.

As another example, consider the base object node, which you can include
in any object placed in a linked list or a queue.

node STRUC GLOBAL METHOD {
construct:dword = node_construct
destroy:dword = node_destroy
init:dword = node_init
deinit:dword = node_deinit

virtual next:word = node_adv
virtual prev:word = node_back
virtual print:word = node-print
}

node_next
node-prev

ends

dd ?
dd ?

inode constructor routine
inode destructor routine
inode initialization routine
inode deinitialization
routine

inext node routine
iprevious node routine
iprint contents of node

inext node pointer
iprev node pointer

You can define any number of other objects inheriting the node object, to let
it use a linked list or queue. Here are two examples:

mlabel STRUC GLOBAL node METHOD {
virtual print:word = label-print
}

labeLname
label_addr
label_city
label_state
label_zip

ENDS

Chapter 4, Creating object-oriented programs

db 80 dup (?)

db 80*2 dup (?)
db 80 dup (?)

db 2 dup (?)

db 10 dup (?)

59

Calling ancestor
virtual methods

60

book STRUC GLOBAL node METHOD {
virtual print:word = book-print
}

book_title db 80 dup (?)
book_author db 80 dup (?)

ENDS

In the next example, we're making .calls to methods by calling printit for
both label and book objects. It doesn't matter what object gets passed to
printit, as long as node is an ancestor. Because the print method is a virtual
method, the call is made indirectly through the VMT for the object. For the
first call to printit, the method procedure ZabeI...print is called, because we're
passing an instance of a label object. For the second call to printit, the
method procedure book-print is called, because we're passing an instance of
a book object. Note that if the method print were static, then the call in
printit would always call the node-print procedure (which is not desirable).

call printit pascal,«instance address of label object»
call printit pascal,«instance address of book object»

printit proc pascal near
arg @@obj:dword
uses ds,si,es,bx

mov ax,@data
mov es,ax
lds si,@@obj
call ds:si method node:print uses es:bx pascal,ds si
ret

endp

Using ancestor virtual methods can help you write methods for derived
classes since you can reuse some of the code. For example, queues can use
the same listing method as a list, as long as you specify whether the item is
a queue or a list. Within the list class, you can have

virtual show:word = list_show

and within the queue class,

virtual show:word = queue_show

The list_show routine might print LIST SHOW:, followed by a listing of the
individual items in the list. However, if the derived class queue_show uses
the listing routine, it should print its own title, QUEUE SHOW: and use
list_show only for the mechanics of sequentially going through the list and
printing individual elements. list_show can determine the kind of structure
passed to it, and whether it should print the list title. If the routine for
list_show looks at the pointer to the virtual method table (VMT) of the

Turbo Assembler Users Guide

Virtual routines are
usually called through

an indirect lookup to
a VMT.

structure passed to it, it can determine whether the pointer matches the one
installed for lists in the list_init routine (or if it differs). If the VMT pointer
in the structure does not point to the VMT for lists, the structure is
probably a derived type. list_show can do this checking with the following
statements:

cmp [([es:di)) .@mptr_Iist),offset @TableAddr_LIST
jne @@not_a_list; Skip over printing the list title

If we corne here, it is a list, and the list title
should be printed.

@@not_a_list:
; Now show the individual list elements.

So how do we call the list class show method from within a queue_show
routine? If you were to directly call list_show, you could have a problem if
the name of the routine used for the show method of the list class ever
changes. (You might not remember to change what queue_show calls.) If
you put the following statement in queue_show,

call (es:di) method list:show

you'd have an infinite loop because even though list is specified as the class
for which show should be called, the VMT will be used because show is a
virtual method. Since the VMT for the structure would have been pointing
to queue_show, you'd end up back in the same routine.

The best way to call the list class show method would be

call +@table_list I show

Turbo Assembler automatically translates this statement to a direct call to
list_show, since list_show was specified as the value for the show element
of the @table_listwhen the list class was declared. Note that even though
list declares show to be virtual, specifying the call causes Turbo Assembler
to make a direct call without the VMT lookup.

In the event that you need to use the VMT for the list class (for example,
some initialization routine might change the show element of the table to
point to different routines depending on what output device to use for the
show command of all list class elements), the following statements use the
list class VMT:

mov bX,offset @TABLEADDR_LIST
call [(@table_list ptr es:bx) . SHOW)

This is very similar to the sequence of instructions that Turbo Assembler
uses to make the indirect call using the VMT.

Chapter 4, Creating object-oriented programs 61

More on calling
methods

Often, you might find it necessary to call a parent object's method from
inside a derived method procedure. You can also use the CALL..METHOD
statement to do this.

You can use the JMP instruction with the METHOD extension in the same
way you use the CALL..METHOD instruction. This instruction provides
optimal tail recursion. See Chapter 12 for more information about the
CALL..METHOD and JMP .. METHOD instructions.

Creating an instance of an object

To create an instance of an object, you can call an object's constructor
method (which allocates memory for an object instance) or allocate an
instance of the object in a predefined (static) data segment.

You can create an instance of the object exactly the same way you create an
instance of a structure. For example, examine the following instances of
objects:

foolist list {} ;instance of a list
fooqueue label queue

queue {} ; instance of a queue
queue {list_head=mynode,list_tail=mynode}

;instance of a queue

When you create an instance of an object, you can override any of the
object's default data values as defined in the object declaration by
specifying the overriding values inside the braces. You can't, however,
override the methods for an object when you create an instance of an object.

Programming form for objects

62

It's a good idea to keep method procedures iri a separate file from the
method declaration, and from the code that uses the object. We recommend
placing method procedures in a file with the name of the object and an
extension of .ASM. For example, the method procedures for the linked-list
object would go into the file LIST.ASM. The method procedure file must
INCLUDE the method declaration from the .ASO file.

An example of the method procedures for the list object is described at the
end of this chapter. This excerpt from the LIST.ASM file (on the example
disks) shows the general structure of this file.

Turbo Assembler Users Guide

e _______________________________ _ ,
;-- Define Linked-List objects --
e _______________________________ _ ,

MODEL SMALL
LOCALS

;** Define Linked-List object **

INCLUDE node.aso

;** Create instance of Linked-List virtual method table **

DATASEG

TBLINST

;** Linked-List methods **

CODESEG

;;«include all method procedures here»

In general, you should use the following form for object-oriented
programming in Turbo Assembler:

File

<objecf>.ASO

<objecf>.ASM .

Contents

INCLUDEs <parenLobjecf>.ASO, if any; contains GLOBAL object
declaration and a GLOBAL directive for each method procedure.

INCLUDEs <objecf>.ASO; contains TBLINST directive and method
procedure declarations; has an init method with a TBLINIT somewhere
inside.

Note that you can use the TBLINST and TBLINIT directives even when there
are currently no virtual methods in the object; in that case, no action is
taken.

We therefore recommend using the TBLINST and TBLINIT directives
regardless of whether virtual methods are currently present in an object:
Place the TBLINST directive in an appropriate data segment and the
TBLINIT directive in the object's initialization method (which must be a
static method). You must call this method before using any other methods
for the object.

Chapter 4, Creating object-oriented programs 63

64 Turbo Assembler Users Guide

Constants

Numeric
constants

Table 5.1
Radixes

c H A p T E R

Using expressions and symbol
values

Expressions and symbols are fundamental components of an assembly
language program. Use expressions to calculate values and memory
addresses. Symbols represent different kinds of values. This chapter
describes the different types of these language components, and how you
can use them.

5

Constants are numbers or strings that Turbo Assembler interprets as a fixed
numeric value. You can use a variety of different numeric formats,
including decimal, hexadecimal, binary, and octal.

A numeric constant in Turbo Assembler always starts with a digit (0-9), and
consists of an arbitrary number of alphanumeric characters. The actual
value of the constant depends on the radix you select to interpret it.
Radixes available in Turbo Assembler are binary, octal, decimal, and
hexadecimal, as shown in Table 5.1:

Radix

Binary
Octal
Decimal
Hexadecimal

Legal digits

01
01234567
0123456789
0123456789ABCDEF

Note that for hexadecimal constants, you can use both upper- and
lowercase letters.

Turbo Assembler determines the radix of a numeric constant by first
checking the LAST character of the constant. The characters in the
following table determine the radix used to interpret the numeric constant.

Chapter 5, Using expressions and symbol values 65

Table 5.2
Characters

determining radixes

Table 5.3
Numeric constants

Changing the
default radix

String constants

66

Character

B
a
Q
D
H

Radix

Binary
Octal
Octal
Decimal
Hexadecimal

You can use both uppercase and lowercase characters to specify the radix of
a number. If the last character of the numeric constant is not one of these
values, Turbo Assembler will use the current default radix to interpret the
constant. The following table lists the available numeric constants and their
values.

Numeric constant Value

77 decimal
77 hexadecimal
Illegal; doesn't start with a digit
FFFF hexadecimal

77d
77h
ffffh
Offffh
88 Interpretation depends on current default radix

You can use the RADIX or .RADIX directives to change the current default
radix. Use the following syntax for Ideal mode:

RADIX expression

Here's the MASM mode syntax:

.RADIX expression

expression must have a value of either 2 (binary), 8 (octal), 10 (decimal), or
16 (hexadecimal). Turbo Assembler assumes that the current default radix
is decimal while it processes the RADIX directive.

String constants always begin with a single or double quote, and end with a
matching single or double quote. Turbo Assembler converts the characters
between the quotes to ASCII values.

Sometimes, you might want to include a quote within a string constant. To
do this, use a pair of matching quotes as a single matching quote character
within the string. For example,

I It I I S I represents It I S

Turbo Assembler Users Guide

Symbols

Symbol names

See Chapter 2 for
information about

using these
command-line

switches.

Symbol types

Table 5.4
Symbol types

A symbol represents a value, which can be a variable, address label, or an
operand to an assembly instruction and directive.

Symbol names are combinations of letters (both uppercase and lowercase),
digits, and special characters. Symbol names can't start with a digit. Turbo
Assembler treats symbols as either case sensitive or case insensitive. The
command line switches IML, IMU, and IMX control the case sensitivity of
symbols.

Symbols names can be up to 255 characters in length. By default, symbol
names are significant up to 32 characters. You can use the IMV command
line switch to change the number of characters of significance in symbols.

The underscore L), question mark (?), dollar sign ($), and at-sign (@) can all
be used as part of a symbol name. In MASM mode only, you can use a dot
(.) as the first character of a symbol name. However, since it's easy to
confuse a dot at the start of a symbol with the dot operator (which
performs a structure member operation), it's better not to use it in symbol
names.

Each symbol has a type that describes the characteristics and information
associated with it. The way you define a symbol determines its type. For
example, you can declare a symbol to represent a numeric expression, a text
string, a procedure name, or a data variable. Table 5.4 lists the types of
symbols that Turbo Assembler supports.

Symbol type

address

texlmacro
alias
numericaL expr
multiline_macro
struc/union
table
strucltable _ member
record
record_field
enum

Description

An address. Data subtypes are UNKNOWN,BYTE,WORD,DWORD,
PWORD or FWORD, aWORD, TBYTE, and an address of a named
structure or table. Code subtypes are SHORT, NEAR, and FAR
A text string
An equivalent symbol
The value of a numerical expression
Multiple text lines with dummy arguments
A structure or union data type
A table data type
A structure or table member
A record data type
A record field
An enumerated data type

Chapter 5, Using expressions and symbol values 67

Simple address
subtypes

Table 5.4: Symbol types (continued)

segment A segment
group A group
type A named type
proctype A procedure description type

Symbols subtypes describe whether the symbol represents the address of a
byte, a word, and so forth. Table 5.5 shows the simple address subtypes
that Turbo Assembler provides.

Table 5.5: Address subtypes

Type expression

UNKNOWN
BYTE
WORD
DWORD
PWORD or FWORD
aWORD
TBYTE
SHORT
NEAR
FAR
PRoe

DATAPTR

eODEPTR

struc/union_name
table_name
record_name
enum_name

type_name
TYPE expression

proctype _name

Describing a
complex address
subtype

68

Meaning

Unknown or undetermined address sUbtype.
Address describes a byte.
Address describes a word.
Address describes a 4-byte quantity.
Address describes a 6-byte quantity.
Address describes an a-byte quantity.
Address describes a 10-byte quantity.
Address describes a short label/procedure address.
Address describes a near label/procedure address.
Address describes a far label/procedure address.
Address describes either a near or far label/procedure address, depending on the currently
selected programming model.
Address describes either a word, dword, or pword quantity, depending on the currently selected
programming model.
Address describes either a word, dword, or pword quantity, depending on the currently selected
programming model.
Address describes an instance of the named structure or union.
Address describes an instance of the named table.
Address describes an instance of the named record; either a byte, word, or dword quantity.
Address describes an instance of the named enumerated data type; either a byte, word, or dword
quantity.
Address describes an instance of the named type.
Address describes an item whose subtype is the address subtype of the expression; Ideal mode
only.
Address describes procedure of proctype.

Several directives let you declare and use complex address subtypes. These
type expressions are similar to C in that they can represent multiple levels
of pointer indirection, for example, the complex type expression

PTR WORD

represents a pointer to a word. (The size of the pointer depends on the
segmentation model you selected with MODEL.)

Turbo Assembler Users Guide

Table 5.6
Complex address

subtypes

Table 5.7
Distance syntax

Expressions

Table 5.6 shows a syntax summary of complex address subtypes:

Syntax Meaning

simple_address _subtype the'specified address subtype
[djs~PTR[complex_address _subtype] a pointer to the specified complex address

subtype, the size of which is determined by the
current MODEL or by the specified distance, if
present

You can describe the optional distance parameter in the following ways:

Syntax

NEAR

FAR

SMALL NEAR
LARGE NEAR
SMALL FAR
LARGE FAR

Meaning

use a near pointer; can be either 16 or 32 bits, depending on the
current model
use a far pointer; can be either 32 or 48 bits, depending on current
model
use a 16-bit pointer; 80386 and 80486 only
use a 32-bit near pointer; 80386 and 80486 only
use a 32-bit far pointer; 80386 and 80486 only
use a 48-bit far pointer; 80386 and 80486 only

The type of the object being pointed to is not strictly required in complex
pointer types; Turbo Assembler only needs to know the size of the type.
Therefore, forward references are permitted in complex pointer types (but
not in simple types).

Using expressions lets you produce modular code, because you can
represent program values symbolically. Turbo Assembler performs any
recalculations required because of changes (rather than requiring you to do
them).

Turbo Assembler uses standard infix notation for equations. Expressions
can contain operands and unary or binary operators. Unary operators are
placed before a single operand; binary operators are placed between two
operands. Table 5.8 shows examples of simple expressions.

Chapter 5, Using expressions and symbol values 69

Table 5.8
Simple expressions

Expression
precision

Constants in
expressions

Symbols in
expressions

Registers

70

Expression

5
-5
4+3
4*3
4*3+2*1
4*(3+2)*1

Evaluates to

constant 5
constant-5
constant 7
constant 12
constant 14
constant 21

Appendix B contains the full Backus-Naur form (BNF) grammar that Turbo
Assembler uses for expression parsing in both MASM and Ideal modes.
This grammar inherently describes the valid syntax of Turbo Assembler
expressions, as well as operator precedence.

Turbo Assembler always uses 32-bit arithmetic in Ideal mode. In MASM
mode, Turbo Assembler uses either 16- or 32-bit arithmetic, depending on
whether you select the 80386 processor. Therefore, some expressions might
produce different results depending on which processor you've selected.
For example,

(1000h * 1000h) / 1000h

evaluates to 1000h if you select the 80386 processor, or to 0 if you select the
8086,80186, or 80286 processors.

You can use constants as operands in any expression. For example,

movax,5 ;"5" is a constant operand

When you use a symbol in an expression, the returned value depends on
the type of symbol. You can use a symbol by itself or in conjunction with
certain unary operators that are designed to extract other information from
the entity represented by the symbol.

Register names represent 8086-family processor registers, and are set aside
as part of the expression value. For example,

5+ax+7

This expression has a final value ofax+ 12, because AX is a register symbol
that Turbo Assembler sets aside. The following list contains register
symbols:

Turbo Assembler Users Guide

Standard symbol
values

Table 5.9
Standard symbols

Simple symbol
values

8086
80186,80286
80386

80486

AX,BX,CX,DX,S1,D1,BP,CS,DS,ES,SS
Same as 8086
8086 registers, plus EAX, EBX, ECX, EDX, ES1, ED1, EBP,
FS, GS, CRO, CR2, CR3, DRO, DR1, DR2, DR3, DR6, DR7
80386 registers, plus: TR3, TR4, TR5

Some symbols always represent specific values and don't have to be
defined for you to use them. The following table lists these symbols and
their values.

Symbol

$
NOTHING
?
UNKNOWN
BYTE
WORD
DWORD
PWORD
FWORD
QWORD
TBYTE

NEAR
FAR
PROC
CODEPTR
DATAPTR

Value

Current program counter
o
o
o
1
2
4
6
6
8

10

Offffh
Offfeh
Either Offffh or Offfeh, depending on current model
Either 2 or 4, depending on current model
Either 2 or 4, depending on current model

Turbo Assembler returns the following values for symbols used by
themselves:

Table 5.10: Values of symbols used by themselves

Expression

address_name
numericaLexpr_ name
table_name I table_member_name

strucltable _ member_ name

record_name < ... >

record_name { ... }

Value

Returns the address.
Returns the value of the numerical expression.
Returns the default value for the table member specified in the definition of the
table.
Returns the offset of the member within the table or structure (MASM mode
only).
Returns a mask where the bits reserved to represent bit fields in the record
definition are 1, the rest are O.
Returns the initial value a record instance would have if it were declared with the
same text enclosed in angle brackets (see Chapter 12 for details).
Similar to record_name < ... >.

Chapter 5, Using expressions and symbol values 71

Table 5.10: Values of symbols used by themselves (continued)

enum_name

segmenLname
group_name
struc/union _name

The LENGTH unary
operator

Returns the number of bits the field is displaced from the low order bit of the
record (also known as the shift value).
Returns a mask where the bits required to represent the maximum value present
in the enum definition are 1 , the rest are O.
Returns the segment value.
Returns the group value.
Returns the size in bytes of the structure or union, but only if it is 1, 2, or 4; all
other sizes return a value of O.
If the type is defined as a synonym for a structure or union, the value returned is
the same as for a structure or union. Otherwise, the size of the type is returned
(with Offffh for short and near labels, and Offfeh for far labels).
Returns OFFFFh if the proctype describes a near procedure, or OFFFEh for a far
procedure.

All other symbol types return the value O.

Note that when you use a text macro name in an expression, Turbo
Assembler substitutes the string value of the text macro for the text macro
symbol. Similarly, when you use an alias name, Turbo Assembler
substitutes the symbol value that the alias represents for the alias symbol.

The LENGTH operator returns information about the count or number of
entities represented by a symbol. The actual value returned depends on the
type of the symbol, as shown in the following table.

Table 5.11: LENGTH operator return values

Expression Value

LENGTH address_name
LENGTH strucltable_member_name

Returns the count of items allocated when the address name was defined.
Returns the count of items allocated when the member was defined (MASM
mode only)

72

The length operator (when applied to all other symbol types) returns the
value 1. Here are some examples using the LENGTH operator:

MSG DB "Hello"
array DW 10 DUP (4 DUP (1) ,0)
numbrs DD 1,2,3,4
lmsg = LENGTH msg
larray = LENGTH array
lnumbrs = LENGTH numbrs

;=1, no DUP
;=10, DUP repeat count
;=1, no DUP

Turbo Assembler Users Guide

The SIZE unary
operator

Table 5.12: SIZE values

. Expression

SIZE address_name

SIZE struc/union_name
SIZE table_name

The SIZE operator returns size information about the allocated data item.
The value returned depends on the type of the symbol you've specified.
The following table lists the available values for SIZE.

Value

In Ideal mode, returns the actual number of bytes allocated to the data variable. In
MASM mode, returns the size of the subtype of address_name (UNKNOWN=O,
BYTE= 1, WORD=2, DWORD=4, PWORD=FWORD=6, QWORD=8, TBYTE= 10,
SHORT =NEAR=Offffh, FAR=Offfeh, structure address=size of structure) multiplied by
the value of LENGTH address_name.
Returns the number of bytes required to represent the structure or union.
Returns the number of bytes required to represent the table.

SIZE strucltable_member_name Returns the quantity TYPE strucltable_membe~name * LENGTH
strucltable_member_name (MASM mode only).

SIZE record_name

SIZE enum_name

SIZE segmenlname
SIZE type_name

The WIDTH unary
operator

Table 5.13
WIDTH values

The MASK unary
operator

Returns the number of bytes required to represent the total number of bits reserved
in the record definition; either 1, 2, or 4.
Returns the number of bytes required to represent the maximum value present in the
enum definition; either 1, 2, or 4
Returns the size of the segment in bytes.
Returns the number of bytes required to represent the named type, with short and
near labels returning Offffh, and far labels returning Offfeh.

The SIZE operator returns the value 0 when used on all other symbol types.

The WIDTH operator returns the width in bits of a field in a record. The
value depends on the type of symbol. The following table shows these
types of symbols. You can't use WIDTH for any other symbol types.

Expression

WIDTH record_name

WIDTH enum_name

Value

Returns the total number of bits reserved in the record
definition.
Returns the number of bits reserved for the field in the record
definition.
Returns the number of bits required to represent the
maximum value in the enum definition.

The MASK operator creates a mask from a bit field, where bits are set to 1
in the returned value and correspond to bits in a field that a symbol
represents. The value returned depends on the type of symbol, as shown in
the following table. Note that you can't use MASK on any other symbols.

Chapter 5, Using expressions and symbol values 73

Table 5.14
MASK return values

General arithmetic
operators

Simple arithmetic
operators

Table 5.15
Simple arithmetic

operators

Logical arithmetic
operators

74

Table 5.16
Logical arithmetic

operators

Expression

MASK record_name

MASK enum_name

Value

Returns a mask where the bits reserved to represent bit fields in
the record definition are 1, the rest O.
Returns a mask where the bits reserved for the field in the
record definition are 1 , the rest O.
Returns a mask where the bits required to represent up to the
maximum value present in the enum definition are 1, the rest O.

General arithmetic operators manipulate constants, symbol values, and the
values of other general arithmetic operations. Common operators are
addition, subtraction, multiplication, and division. Others operators are
more specifically tailored for assembly language programming. We'll
discuss a little about all of these in the next few sections.

Turbo Assembler supports the simple arithmetic operators shown in the
following table.

Expression

+ expression
- expression
expr1 + expr2
expr1- expr2
expr1 * expr2
expr1 / expr2

expr1 MOD expr2

Value

Expression.
Negative of expression.
expr1 plus expr2.
expr1 minus expr2.
expr1 multiplied by expr2.
expr1 divided by expr2 using signed integer division; note that expr2
cannot be 0 or greater than 16 bits in extent.
Remainder of expr1 divided by expr2; same rules apply as for
division.

Logical operators let you perform Boolean algebra. Each of these operators
performs in a bitwise manner; that is, the logical operation is performed
one bit at a time. The following table shows the logical operators.

Expression

NOT expression
exprl AND expr2
exprl OR expr2
expr1 XOR expr2

Value

expression bitwise complemented
exprl bitwise ANDed with expr2
exprl bitwise ORed with expr2
expr1 bitwise XORed with expr2

Turbo Assembler Users Guide

Bit shift operators

Table 5.17
Bit shift operators

Comparison
operators

Table 5.18
Comparison

operators

Setting the address
subtype of an
expression

Shift operators move values left or right by a fixed number of bits. You can
use them to do quick multiplication or division, or to access the value of a
bitfield within a value. The following table lists the bit shift operators.

Expression

expr1 SHL expr2
expr1 SHR expr2

Value

expr1 shifted left by expr2 bits (shifted right if expr2 is negative).
expr1 shifted right by expr2 bits (shifted left if expr2 is negative).

Note that the SHL and SHR operators shift in Os from the right or left to fill
the vacated bits.

Comparison operators compare two expressions to see if they're equal or
unequal, or if one is greater than or less than the other. The operators return
a value of -1 if the condition is true, or a value of 0 if the condition is not
true. The following table shows how you can use these operators.

Expression

expr1 EO expr2
expr1 NE expr2
expr1 GT expr2
expr1 GE expr2
expr1 L T expr2
expr1 LE expr2

Value

-1 if expr1 is equal to expr2; otherwise, O.
-1 if expr1 is not equal to expr2; otherwise, O.
-1 if expr1 is greater than expr2; otherwise, O.
-1 if expr1 is greater than or equal expr2; otherwise, O.
-1 if expr1 is less than expr2; otherwise, O.
-1 if expr1 is less than or equal expr2; otherwise, O.

EQ and NE treat expressions as unsigned numbers. For example, -1 EQ
Offffh has a value of -1 (unless you've selected the 80386 processor or used
Ideal mode; then,-1 EQ Offffffffh has a value of -1).

GT, GE, LT, and LE treat expressions as signed numbers. For example, 1 GE
-1 has a value of -I, but 1 GE Offffh has a value of O.

Turbo Assembler provides operators that let you override or change the
type of an expression. The following table lists these operators.

Table 5.19: Type override operators

Expression

expr1 PTR expr2

Value

Converts expr2to the type determined by expr1, where O=UNKNOWN, 1=BYTE, 2=WORD,
4=DWORD, 6=PWORD, 8=OWORD, 10= TBYTE, Offffh=NEAR, Offfeh=FAR, all
others=UNKNOWN; MASM mode only.

Chapter 5, Using expressions and symbol values 75

Table 5.19: Type override operators (continued)

type PTR expression Converts expression to the specified address sUbtype; Ideal mode only.
or type expression

type LOW expression Converts expression to the specified address subtype. Type described must be smaller in size
than the type of the expression; Ideal mode only.

type HIGH expression

Obtaining the type
of an expression

Table 5.20
TYPE values

76

Converts expression to the specified address subtype. Type described must be smaller in size
than the type of the expression; the resulting address is adjusted to point to the high part of the
object described by the address expression; Ideal mode only.

Here are some examples:

IDEAL
big DD 12345678h
MOV ax, [WORD big]
MOV aI, [BYTE PTR big]
MOV ax, [WORD HIGH big]
MOV ax, [WORD LOW big]
MOV aI, [BYTE LOW WORD HIGH big]
MASM
MOV ax,2 PTR big
MOV ax, WORD PTR big

iax=5678h
ial=78h
iax=1234h
iax=5678h
ial = 3rd byte of big = 34h

; ax=5678h
iax=5678h (WORD has value 2)

In MASM mode, you can obtain the numeric value of the type of an
expression by using the TYPE operator. (You can't do this in Ideal mode,
because types can never be described numerically). The syntax of the TYPE
operator is

TYPE expression

The TYPE operator returns the size of the object described by the address
expression, as follows:

Type Description

byte 1
word 2
dword 4
pword 6
qword 8
tbyte 10
short Offffh
near Offffh
far Offfeh

Turbo Assembler Users Guide

Overriding the
segment part of an
address expression

Obtaining the
segment and offset
of an address
expression

Table 5.20: TYPE values (continued)

structlunion
table
proctype

Here's an example:

avar = 5
bvar db 1
darray dd 10 dup (1)

x strue
dw ?
dt ?
ends

fp label far
tavar = TYPE avar
tbvar = TYPE bvar
tdarray = TYPE darray
tx = TYPE x
tfp = TYPE fp

Size of a structure or union instance
Size of a table instance
Returns OFFFFh if the proctype describes a near procedure, or
OFFFEh for a far procedure

j=O
j= 1
j= 4
j= 12
j= OFFFEh

Address expressions have values consisting of a segment and an offset. You
can specify the segment explicitly as a segment register, or as a segment or
group value. (If you specify it as a group value, Turbo Assembler
determines which segment register to use based on the values that the
segment registers are ASSUMEd to be.) Use the following syntax to change
the segment part of an address expression:

exprl : expr2

This operation returns an address expression using the offset of expr2, and
exprl as a segment or group value. For example,

Varptr dd dgroup:memvar
mov cl,es: [si+4]

jdgroup is a group
jsegment override ES

You can use the S~G and OFFSET operators to get the segment and offset
of an expression. The SEG operator returns the segment value of the
address expression. Here's its syntax:

SEG expression

Here is a code example:

DATASEG
temp DW 0
CODESEG

Chapter 5, Using expressions and symbol values 77

Creating an address
expression using
the location counter

78

mov aX,SEG temp
mov ds,ax
ASSUME ds:SEG temp

The OFFSET operator returns the offset of the address expression. Its
syntax follows:

OFFSET expression

Note that when you use the offset operator, be sure that the expression
refers to the correct segment. For example, if you' are using MASM mode
and not using the simplified segmentation directives, the expression

OFFSET BUFFER ibuffer is a memory address

is not the same as

OFFSET DGROUP:BUFFER iDgroup is the group containing the segment that contains
BUFFER

unless the segment that contains BUFFER happens to the first segment in
DGROUP.

In Ideal mode, addresses are automatically calculated relative to any group
that a segment belongs to unless you override them with the : operator. In
MASM mode, the same is true if you use the simplified segment directives.
Otherwise, addresses are calculated relative to the segment an object is in,
rather than any group.

You can use the THIS operator to create an address expression that points
to the current segment and location counter, and has a specific address
subtype. You can use the following syntax in Ideal mode:

THIS type

The Ideal mode syntax lets you build an address expression from the
current segment and location counter of the specified type.

You can use the next syntax in MASM mode:

THIS expression

The MASM mode syntax functions like the syntax in Ideal mode, but uses
the numerical value of the expression to determine the type. These values
are: O=UNKNOWN, l=BYTE, 2=WORD, 4=DWORD, 6=PWORD,
8=QWORD, lO=TBYTE, Offffh=NEAR, Offfeh=FAR. For example,

ptrl LABEL WORD
ptr2 EQU THIS WORD isimilar to ptrl

Turbo Assembler Users Guide

Determining the
characteristics of an
expression

The SYMTYPE and
.TYPE operators are

exactly equivalent;
however, .TYPE is

available only in
MASM mode, and

you can use
SYMTYPE only in

Ideal mode.

Table 5.21
Bit fields from

SYMTYPE and
.TYPE

Referencing
structure, union,
and table member
offsets

Sometimes, it's useful to determine (within a macro) whether an expression
has specific characteristics. The SYMTYPE and .TYPE operators let this
happen.

The Ideal mode syntax:

SYMTYPE expression

The MASM mode syntax:

.TYPE expression

SYMTYPE and .TYPE both return a constant value that describes the
expression. This value is broken down into the bit fields shown in the
following table.

Bit Meaning

o
1
2
3
4
5
7

Expression is a program relative memory pointer.
Expression is a data relative memory pointer.
Expression is a constant value.
Expression uses direct addressing mode.
Expression contains a register.
Symbol is defined.
Expression contains an externally defined symbol.

The expression uses register indirection ([BX]) if bits 2 and 3 are both zero.

If Turbo Assembler can't evaluate the expression, SYMTYPE returns
appropriate errors .. TYPE, however, will return a value in these situations
(usually 0).

Structure, union, and table members are global variables whose values are
the offset of the member within the structure, union, or table in MASM
mode. In Ideal mode, however, members of these data types are considered
local to the data type. The dot (.) operator lets you obtain the offsets of
members. Here's the Ideal mode syntax:

expression . symbol

expression must represent an address of a structure, union, or table instance.
symbol must be a member of the structure, union, or table. The dot operator
returns the offset of the member within the structure.

MASM mode also contains a version of the dot operator. However, its
function is similar to the + operator, and has the following syntax:

Chapter 5, Using expressions and symbol values 79

Describing the
contents of an
address

Implied addition

Obtaining the high
or low byte values
of an expression

80

exprl . expr2

Many instructions require you to distinguish between an address and the
contents of an address. You can do this by using square brackets ([]). For
example,

MOV AX,BX
MOV AX, [BX]

iffiove BX into AX.
iffiove contents of address BX into AX

Here's the general syntax for using square brackets:

[expression J

In MASM mode, the brackets are optional for expressions that are
addresses. Complete addresses can't be used as an operand for any 80x86
instruction; rather, only the segment (obtained with the SEG operator) or
the offset (obtained with the OFFSET operator) is used.

In Ideal mode, a warning is given when an expression is clearly an address,
but no brackets are present. You can disable this warning (see Chapter 12
for further information). However, it's good programming practice to
include these brackets.

In MASM mode, you can add expressions in several ways: using the
addition operator (+), using the dot operator (.), or by implied addition
(when expressions are separated by brackets or parentheses). For example,

MOV AX,5[BX]
MOV AX,S (XYZ)

icontents of address BX+5
icontents of address XYZ+5

Here's the general syntax for implicit addition:

exprl [expr2 J

or

exprl (expr2)

You can use the HIGH and LOW operators on an expression to return its
high and low byte values. This information can be useful in circumstances
where, for example, only the high 8 bits of an address offset is required.

Here's the syntax of the HIGH and LOW operators:

HIGH expression
LOW expression

For example,

Turbo Assembler Users Guide

Specifying a 16· or
32·bit expression

magic equ 1234h
mav cl,HIGH magic
mav cl,LOW magic

icl=12h
icl=34h

When the currently selected processor is the 80386 or higher, Turbo
Assembler provides two operators that let you control whether an
expression is interpreted as a 16-bit value or as a 32-bit value: the SMALL
and LARGE operators. Here are their syntaxes:

SMALL expression
LARGE expression

The SMALL operator flags the expression as representing a 16-bit value.
LARGE flags it as representing a 32-bit value. These operators are
particularly important when you program for an environment in which
some segments are 32-bit and others are 16-bit. For example, the instruction

JMP [DWORD PTR ABC]

represents an indirect jump to the contents of the memory variable ABC. If
you have enabled the 80386 processor, this instruction could be interpreted
as either a far jump with a segment and 16-bit offset, or a near jump to a
32-bit offset. You can use SMALL or LARGE to remove the ambiguity, as
follows:

JMP SMALL [DWORD PTR ABC]

This instruction causes Turbo Assembler to assemble the jump instruction
so that the value read from ABC is interpreted as a 16-bit segment and 16-
bit offset. Turbo Assembler then performs an indirect FAR jump.

When you use SMALL or LARGE within the address portion of an
expression, the operators indicate that the address is a 32-bit address. For
example,

JMP SMALL [LARGE DWORD PTR ABC]

indicates that a large 32-bit address describes the memory variable ABC,
but its contents are interpreted as a 16-bit segment and 16-bit offset.

Chapter 5, Using expressions and symbol values 81

82 Turbo Assembler Users Guide

c H A p T E R 6

Choosing processor directives and
symbols

The 8086 processor is actually only one of a family of processors known as
the iAPx86 family. Members of this family include

• The 8088 (which contains an 8-bit data bus), the 8086 (containing a 16-bit
data bus)

• The 80186 and 80188 (like the 8086 and 8088 but contain additional
instructions and run faster than their predecessors)

• The 80286 (which contains instructions for protected mode)

iii The 80386 (which can process 16- and 32-bit data)

• The 80486 (an enhanced version of 80386 that runs even faster).

• The Pentium (an even faster version of the 80486).

Math coprocessors such as the 8087, 80287, and 80387 work with the iAPx86
family so that you can perform floating-point operations.

Turbo Assembler provides directives and predefined symbols that let you
use the instructions included for particular processors. This chapter
describes these directives and symbols.

iAPx86 processor directives

To find out which
instructions go with
certain processors,

refer to the books
listed in Chapter 1.

Table 6.1
Processor directives

The iAPx86 family provides a variety of directives for you to use. In the
following directives, note that those beginning with. are only available in
MASMmode.

Directive

P8086
.8086

P186

Meaning

Enables assembly of 8086 instructions only.
Enables assembly of the 8086 instructions and disables all instructions available
only on the 80186, 80286, and 386 processors. It also enables the 8087
coprocessor instructions exactly as if the .8087 or 8087 had been issued.
Enables assembly of 80186 instructions.

Chapter 6, Choosing processor directives and symbols 83

84

Table 6.1: Processor directives (continued)

. 186
P286
P286N
P286P
.286

. 286C

.286P

P386
P386N
P386P
.386

. 386C

.386P

P486
P486N
.486

. 486C

.486P

.487

P487

P586
P586N
.586

. 586C

.586P

Enables assembly of 80186 instructions .
Enables assembly of all 80286 instructions.
Enables assembly of nonprivileged 80286 instructions.
Enables assembly of privileged 80286 instructions.
Enables assembly of nonprivileged 80286 instructions. It also enables the 80287
numeric processor instructions exactly as if the .286 or P287 directive had been
issued.
Enables assembly of nonprivileged 80286 instructions .
Enables assembly of all the additional instructions supported by the 80286
processor, including the privileged mode instructions. It also enables the 80287
numeric processor instructions exactly as if the .287 or P287 directive had been
issued.
Enables assembly of all 386 instructions.
Enables assembly of all nonprivileged 386 instructions.
Enables assembly of privileged 386 instructions.
Enables assembly of the additional instructions supported by the 386 processor
in nonprivileged mode. It also enables the 80387 numeric processor instructions
exactly as if the .387 or P387 directive had been issued.
Enables assembly of 386 instructions .
Enables assembly of all the additional instructions supported by the 386
processor, including the privileged mode instructions. It also enables the 80387
numeric processor instructions exactly as if the .387 or P387 directive had been
issued.
Enables assembly of all i486 instructions.
Enables assembly of nonprivileged i486 instructions.
Enables assembly of the additional instructions supported by the i486 processor
in nonprivileged mode. It also enables the 387 numeric processor instructions
exactly as if the .387 or P387 directive had been issued .
Enables assembly of all i486 instructions.
Enables assembly of all the additional instructions supported by the i486
processor, including the privileged mode instructions. It also enables the 80387
numeric processor instructions exactly as if the .387 or P387 directive had been
issued.
Enables assembly of 487 numeric processor instructions. This instruction works
only in MASM mode.
Enables assembly of 487 numeric processor instructions. This instruction works
in both MASM and Ideal modes.
Enables assembly of all Pentium instructions.
Enables assembly of nonprivileged Pentium instructions.
Enables assembly of the additional instructions supported by the Pentium
processor in nonprivileged mode .
Enables assembly of all Pentium instructions.
Enables assembly of all the additional instructions supported by the Pentium
processor, including the privileged mode instructions.

Turbo Assembler Users Guide

Table 6.1: Processor directives (continued)

.587 Enables assembly of Pentium numeric processor instructions. This instruction
works only in MASM mode.

P587 Enables assembly of Pentium numeric processor instructions. This instruction
works in both MASM and Ideal modes.

P~edefined symbols

@Cpu

Function

Remarks

Two predefined symbols, @Cpu and @WordSize, can give you information
about the type of processor you're using, or the size of the current segment.
Here are descriptions of these symbols:

Numeric equate that returns information about current processor

The value returned by @Cpu encodes the processor type in a number of
single-bit fields:

Bit Description

o 8086 instructions enabled
1 80186 instructions enabled
2 80286 instructions enabled
3 386 instructions enabled
4 486 instructions enabled
5 586 instructions enabled
7 Privileged instructions enabled

(80286, 386, 486)
. 8 8087 numeric processor instructions
10 80287 numeric processor instructions
11 387 numeric processor instructions

The bits not defined here are reserved for future use. Mask them off when
using @Cpu so that your programs will remain compatible with future
versions of Turbo Assembler.

Since the 8086 processor family is upward compatible, when you enable a
processor type with a directive like .286, the lower processor types (8086,
80186) are automatically enabled as well.

This equate only provides information about the processor you've selected
at assembly time using the .286 and related directives. The processor type
and the CPU your program is executing on at run time are not indicated.

Chapter 6, Choosing processor directives and symbols 85

@Cpu

Example

@WordSize

Function

Remarks

Example

IPUSH = @Cpu AND 2 ;allow immediate push on 186 and above
IF IPUSH
PUSH 1234
ELSE

rnov ax,1234
push ax

ENDIF

Numeric equate that indicates 16- or 32-bit segments

@WordSize returns 2 if the current segment is a 16-bit segment, or 4 if the
segment is a 32-bit segment.

IF @WordSize EQ 4
rnovesp,0100h

ELSE
rnov sp,OlOOh

ENDIF

8087 coprocessor directives

86

Table 6.2
8087 coprocessor

directives

The following table contains the available math coprocessor directives.
Again, directives beginning with a dot (.) work only in MASM mode.

Directive

.287

.387

. 487

. 587

.8087

P287
P387

Meaning

Enables assembly of all the 80287 numeric coprocessor instructions. Use this
directive if you know you'll never run programs using an 8087 coprocessor. This
directive causes floating-point instructions to be optimized in a manner
incompatible with the 8087, so don't use it if you want your programs to run
using an 8087.
Enables assembly of all the 80387 numeric coprocessor instructions. Use this
directive if you know you'll never run programs using an 8087 coprocessor. This
directive causes floating-point instructions to be optimized in a manner
incompatible with the 8087, so don't use it if you want your programs to run
using an 8087.
Enables assembly of all 80486 numeric instructions .
Enables assembly of all Pentium numeric instructions .
Enables all the 8087 coprocessor instructions, and disables all those
coprocessor instructions available only on the 80287 and 80387. (The default.)
Enables assembly of 80287 coprocessor instructions.
Enables assembly of 80387 coprocessor instructions.

Turbo Assembler Users Guide

@WordSize

Table 6.2: 8087 coprocessor directives (continued)

P487 Enables assembly of all 80486 numeric instructions.
P587 Enables assembly of all Pentium numeric instructions.
P8087 Enables assembly of 8087 coprocessor instructions.

Coprocessor emulation directives

Both EMUL and
,NOEMUL work in
MASM and Ideal

modes.

If you need to use real floating-point instructions, you must use an 80x87
coprocessor. If your program has installed a software floating-point
emulation package, you can use the EMUL directive to use it. (EMUL
functions like Ie.)

For example,
Finit ireal 80x87 coprocessor instruction
EMUL
Fsave BUF iemulated instruction]

If you're using an 80x87 coprocessor, you can either emulate floating-point
instructions using EMUL, or force the generation of real floating-point
instructions with the NOEMUL directive. Note that you can use EMUL and
NOEMUL when you want to generate real floating-point instructions in one
portion of a file, and emulated instructions in another.

Here's an example using NOEMUL:

NOEMUL
finit
EMUL

iassemble real FP instructions

iback to emulation

Chapter 6, Choosing processor directives and symbols 87

88 Turbo Assembler Users Guide

c H A p T E

Using program models and
segmentation

R 7

Each processor in the 80x86 family has at least four segment registers: CS,
DS, ES, and SS. These registers contain a segment value that describes a
physical block of memory up to 64K in length (or up to 4 gigabytes on the
80386 and above). All addresses are calculated using one of these segment
registers as a base value.

The meaning of the value stored in a segment register differs depending on
whether the processor is using real mode (the ONLY mode available for the
8086 and 80186), where the segment value is actually a paragraph number,
or protected mode, where a segment register contains a selector (which has no
numerical significance).

The operating system or platform for a program determines whether the
program operates in real mode or protected mode. If you use protected
mode on the 80386 or 80486, the operating systenl also determines whether
large (4 gigabyte) segments are permitted. Turbo Assembler supports all of
these environments equally well.

In the general 80x86 model, programs are composed of one or more
segments, where each segment is a physically distinct piece of code or data
(or both) designed to be accessed by using a segment register. From this
general scheme, many arbitrary organizations are possible. To apply some
order to the chaos, some standard memory models have been devised.
Since many high-level languages adhere to these conventions, your
assembly language programs should also.

One obvious way to break up a program is to separate the program
instructions from program data. You can classify each piece of program
data as initialized (containing an initial value, such as text messages), or
uninitialized (having no starting value). Turbo Assembler usually assigns
uninitialized data to a separate segment so that it can be placed at the end
of the program, reducing the size of the executable program file.

The stack is usually a fairly large portion of the uninitialized data. It's also
special because the SS and SP registers are usually initialized automatically

Chapter 7, Using program models and segmentation 89

to the stack area when you execute a program. Thus, the standard memory
models treat the stack as a separate segment.

You can also combine segments into groups. The advantage of using
groups is that you can use the same segment value for all the segments in
the group. For example, initialized data, uninitialized data, and stack
segments are often combined into a group so that the same segment value
can be used for all of the program data.

This chapter describes how to use models and segments in your code and
the directives that make this possible.

The MODEL directive

90

The MODEL directive lets you specify one of several standard segmentation
models for your program. You can also use it to specify a language for the
procedures in your program.

Here's the syntax for the MODEL directive:

MODEL [model_modifier) memory_model [code_segment_name)
[, [language_modifier) language)
[, model_modifier)

In MASM mode, you can use the same syntax, but with the .MODEL
directive.

memory_model and modeCmodifier specify the segmentation memory model
to use for the program.

The standard memory models available in Turbo Assembler have specific
segments available for:

• code

• initialized data

• uninitialized data

• far initialized data

• far uninitialized data

• constants

• stack

The code segment usually contains a module's code (but it can also contain
data if necessary). Initialized data and constants are treated separately for
compatibility with some high level languages. They contain data such as
messages where the initial value is important. Uninitialized data and stack

Turbo Assembler Users Guide

contain data whose initial value is unimportant. Far initialized data is
initialized data that is not part of the standard data segment, and can be
reached only by changing the value of a segment register. A module can
have more than one far initialized data segment. Far uninitialized data is
similar, except that it contains uninitialized data instead of initialized data.

The specific memory model determines how these segments are referenced
with segment registers, and how they are combined into groups (if at all).
When writing a program, you should keep these segments separate,
regardless of the program's size. Then, you can select the proper model to
group the segments together. If you keep these segments separate and your
program grows, you can choose a larger model.

The memory model is the only required parameter of the MODEL directive.
Table 7.1 describes each of the standard memory models.

The modeCmodifier field lets you change certain aspects of the model. You
can specify more than one model modifier, if you wish. Table 7.2 shows the
available model modifiers.

Note that you can specify the model modifier in two places, for
compatibility with MASM 5.2. If you don't use a model specifier, Turbo
Assembler assumes the NEARST ACK modifier, and USE32 (if the 80386 or
80486 processor is selected). Unless otherwise specified, DOS is the
platform.

Use the optional code_segment_name field in the large code models to
override the default name of the code segment. Normally, this is the
module name with _TEXT appended to it.

Table 7.1: Standard memory models

Model Code

TINY near

SMALL near

MEDIUM far

COMPACT near

Data

near

near

near

far

Register assumptions

cs=dgroup
ds=ss=dgroup

cs=Jext
ds=ss=dgroup

cs=<module> Jext
ds=ss=dgroup
cs=_text
ds=ss=dgroup

Chapter 7, Using program models and segmentation

Description

All code and data combined into a
single group called DGROUP. This model is used
for .COM assembly programs. Some languages
don't support this model.
Code is in a single segment. All data is
combined into a group called DGROUP. This is the
most common model for stand-alone assembly
programs.
Code uses multiple segments, one per
module. Data is in a group called DGROUP.
Code is in a single segment. All near
data is in a group called DGROUP. Far pointers are
used to reference data.

91

Table 7.1: Standard memory models (continued)

LARGE far far cs=<module> Jext
ds=ss=dgroup

Code uses multiple segments, one per
module. All near data is in a group called
DGROUP. Far pointers are used to reference data.
Same as LARGE model, as far as Turbo
Assembler is concerned.

HUGE far

TCHUGE far

TPASCAL near

FLAT near

Table 7.2
Model modifiers

92

far cs=<module> Jext
ds=ss=dgroup

far cs=<module> Jext
ds=nothing
ss=nothing

far cs=code
ds=data
ss=nothing

near cs=Jext
ds=ss=flat

This is the same as the LARGE model,
but with different segment
register assumptions.
This is a model to support early
versions of Borland Pascal. Its not
required for later versions.
This is the same as the SMALL model,
but tailored for use under OS/2.

Model modifier Function

NEARSTACK

FARSTACK

USE16

USE32

DOS, OS_DOS
NT, OS_NT
OS2,OS_OS2

Indicates that the stack segment should be included in DGROUP (if
DGROUP is present), and SS should point to DGROUP.
Specifies that the stack segment should never be included in DGROUP,
and SS should point to nothing.
Specifies (when the 80386 or 80486 processor is selected) that 16-bit
segments should be used for all segments in the selected model.
Indicates (when the 80386 or 80486 processor is selected) that 32-bit
segments should be used for all segments in the selected model.
Specifies that DOS is the platform for the application.
Specifies that Windows NT is the platform for the application.
Specifies that OS2 is the platform for the application.

language and language_modifier together specify the default procedure
calling conventions, and the default style of the prolog and epilog code
present in each procedure. They also control how to publish symbols
externally for the linker to use. Turbo Assembler will automatically
generate the procedure entry and exit code that is proper for procedures
using any of the following interfacing conventions: PASCAL, C, CPP (C++),
SYSCALL, STDCALL, BASIC, FORTRAN, PROLOG, and NOLANGUAGE.
If you don't specify a language, Turbo Assembler assumes the default
language to be NO LANGUAGE.

Use language_modifier to specify additional prolog and epilog code when
you write procedures for Windows, or for the Borland Overlay loader.
These options are: NORMAL, WINDOWS, ODDNEAR and ODDFAR. If
you don't specify an option, Turbo Assembler assumes the default to be
NORMAL.

Also note that you can override the default language and language
modifier when you define a procedure. See Chapter 10 for further details.

Turbo Assembler Users Guide

Symbols created
by the MODEL
directive

The @Model symbol

The @32Bit symbol

The @CodeSize
symbol

The @DataSize
symbol

The @Interface
symbol

You can additionally override the default language when you publish a
symbol.

When you use the MODEL directive, Turbo Assembler creates and
initializes certain variables to reflect the details of the selected model. These
variables can help you write code that's model independent, through the
use of conditional assembly statements. See Chapter 15 for information
about how you can use variables to alter the assembly process.

The @Model symbol contains a representation of the model currently in
effect. It is defined as a text macro with any of the following values:

1 = tiny model is in effect
2 = small or flat
3 = compact
4 = medium
5 = large
6 = huge
7 = tchuge
o = tpascal

The @32Bit symbol contains an indication of whether segments in the
currently specified model are declared as 16 bit or 32 bit. The symbol has a
value of 0 if you specified 16-bit segments in the MODEL directive, or 1 if
you indicated 32-bit segments.

The @CodeSize text macro symbol indicates the default size of a code
pointer in the current memory model. It's set to 0 for the memory models
that use NEAR code pointers (TINY, SMALL, FLAT, COMPACT, TPASCAL),
and 1 for memory models that use FAR code pointers (all others).

The @DataSize text macro symbol indicates the default size of a data
pointer in the current memory model. It's set to 0 for the memory models
using NEAR data pointers (TINY, SMALL, FLAT, MEDIUM), 1 for memory
models that use FAR data pointers (COMPACT, LARGE, TPASCAL), and 2
for models using huge data pointers (HUGE and TCHUGE).

The @Interface symbol provides information about the language and
operating system selected by the MODEL statement. This text macro
contains a number whose bits represent the following values:

Chapter 7, Using program models and segmentation 93

Table 7.3
Model modifiers

Simplified
segment
directives

94

Table 7.4
Simplified segment

directives

Value in bits 0-6

o
1
2
3
4
5
6
7
8

Meaning

NOLANGUAGE
C
SYSCALL
STDCALL
PASCAL
FORTRAN
BASIC
PROLOG
CPP

Bit 7 can have a value of a for DOS/Windows, or 1 for OS/2.

For example, the value 81h for @Interface shows that you selected the
OS/2 operating system and the C language.

Once you select a memory model, you can use simplified segment
directives to begin the individual segments. You can only use these
segmentation directives after a MODEL directive specifies the memory
model for the module. Place as many segmentation directives as you want
in a module; Turbo Assembler combines all the pieces with the same name
to produce one segment (exactly as if you had entered all the pieces at once
after a single segmentation directive). Table 7.4 contains a list of these
directives.

Directive

CODESEG [name]

. CODE [name]
DATASEG

. DATA
CONST

. CONST
UDATASEG

. DATA?

Description

Begins or continues the modules code segment. For models whose code
is FAR, you can specify a name that is the actual name of the segment.
Note that you can generate more than one code segment per module in
this way.
Same as CODESEG. MASM mode only .
Begins or continues the module's NEAR or default initialized data
segment.
Same as DATASEG. MASM mode only .
Begins or continues a module's constant data segment. Constant data is
always NEAR and is equivalent to initialized data.
Same as CONST. MASM mode only .
Begins or continues a module's NEAR or default uninitialized data
segment. Be careful to include only uninitialized data in this segment or
the resulting executable program will be larger than necessary. See
Chapter 12 for a description of how to allocate uninitialized data.
Same as UDATASEG. MASM mode only .

Turbo Assembler Users Guide

See Appendix A if
you need to know the

actual names, class
names, and

alignments of the
segments created
with the simplified

segment directives.

Symbols created by
the simplified
segment directives

Table 7.5
Symbols from

simplified segment
directives

The
STARTUPCODE
directive

Table 7.4: Simplified segment directives (continued)

STACK [size] Begins or continues a module's stack segment. The optional size
parameter specifies the amount of stack to reserve, in words. If you don't
specify a size, Turbo Assembler assumes 200h words (1 Kbytes)

. STACK [size]
FARDATA [name]

. FARDATA [name]
UFARDATA [name]

. FARDATA? [name]

In MASM mode, any labels, code, or data following the STACK
statement will not be considered part of the stack segment. Ideal mode,
however, reserves the specified space, and leaves the stack segment
open so that you can add labels or other uninitialized data.
You usually only need to use the stack directive if you are writing a
stand-alone assembly language program; most high-level languages will
create a stack for you .
Same as STACK. MASM mode only.
Begins or continues a FAR initialized data segment of the specified
name. If you don't specify a name, Turbo Assembler uses the segment
name FAR_DATA. You can have more than one FAR initialized data
segment per module.
Same as FARDATA. MASM mode only .
Begins or continues a FAR uninitialized data segment of the specified
name. If you don't specify a name, Turbo Assembler uses segment name
FAR_BSS. You can have more than one FAR uninitialized data segment
per module.
Same as UFARDATA. MASM mode only .

When you use the simplified segment directives, they create variables that
reflect the details of the selected segment, just as the MODEL directive does.
See Chapter 15 for further information. The following table lists these
symbols.

Symbol name

@code
@data
@fardata
@fardata?
@curseg
@stack

Meaning

the segment or group that CS is assumed to be
the segment or group that OS is assumed to be
the current FARDATA segment name
the current UFARDATA segment name
the current segment name
the segment or group that SS is assumed to be

The STARTUPCODE directive provides initialization code appropriate for
the current model and operating system. It also marks the beginning of the
program. Here's its syntax:

STARTUPCODE

or

. STARTUP ; (MASM mode only)

Chapter 7, Using program models and segmentation 95

The @Startup
symbol

The EXITCODE
directive

STARTUPCODE initializes the DS, SS, and SP registers. For the SMALL,
MEDIUM, COMPACT, LARGE, HUGE, and TPASCAL models, Turbo
A~sembler sets DS and SS to @data, and SP to the end of the stack. For
TINY and TCHUGE models, the STARTUPCODE directive doesn't change
the segment registers.

The @Startup symbol is placed at the beginning of the startup code that the
STARTUPCODE directive generates. It is a near label marking the start of
the program.

You can use the EXITCODE directive to produce termination code
appropriate for the current operating system. You can use it more than
once in a module, for each desired exit point. Here's its syntax:

EXITCODE [return_value_expr]

You can use the following syntax only in MASM mode:

The optional return_value_expr describes the number to be returned to the
operating system. If you don't specify a return value, Turbo Assembler
assumes the value in the AX register.

Defining generic segments and groups

The SEGMENT
directive

96

Most applications can use segments created using the standard models.
These standard models, however, are limited in their flexibility. Some
applications require full control over all aspects of segment generation;
generic segment directives provide this flexibility.

The SEGMENT directive opens a segment. All code or data following it will
be included in the segment, until a corresponding ENDS directive closes the
segment.

The Ideal mode syntax for the SEGMENT directive is:

SEGMENT name [attributes]

You can use the following syntax for MASM mode:

name SEGMENT [attributes]

name is the name of the segment. You should name segments according to
their usages. See Appendix A for examples of segment names.

Turbo Assembler Users Guide

Note that Turbo
Assembler processes
attribute values from

left to right.

Segment
combination
attribute

Table 7.6
Segment combination

attribute

You can open and close a segment of the same name many times in a single
module. In this case, Turbo Assembler concatenates together the sections of
the segment in the order it finds them. You only need to specify the
attributes for the segment the first time you open the segment.

attributes includes any and all desired segment attribute values, for each of
the following:

• segment combination attribute

.. segment class attribute

.. segment alignment attribute

II segment size attribute

1'1 segment access attribute

The segment combination attribute tells the linker how to combine
segments from different modules that have the same name. The following
table lists the legal values of the segment combination attribute. Note that if
you don't specify the combine type, Turbo Assembler assumes PRIVATE.

Attribute value

PRIVATE

PUBLIC

MEMORY

COMMON

VIRTUAL

AT xxx

Meaning

Segment will not be combined with any other segments of the same name
outside of this module.
Segment will be concatenated with other segments of the same name
outside of this module to form a single contiguous segment.
Same as PUBLIC. Segment will be concatenated with other segments of
the same name outside this module to form a single contiguous segment,
used as the default stack. The linker initializes values for the initial SS and
SP registers so that they point to the end of these segments.
Locates this segment and all other segments with the same name at the
same address. All segments of this name overlap shared memory. The
length of the resulting common segment is the length of the longest
segment from a single module.
Defines a special kind of segment that must be declared inside an
enclosing segment. The linker treats it as a common area and attaches it to
the enclosing segment. The virtual segment inherits its attributes from the
enclosing segment. The assume directive considers a virtual segment to
be a part of its parent segment; in all other ways, a virtual segment is a
common area that is combined across modules. This permits the sharing
of static data that comes into many modules from included files.
Locates the segment at the absolute paragraph address that the
expression xxx specifies. The linker doesn't emit any data or code for AT
segments. Use AT to allow symbolic access to fixed memory locations,
such as the display screen or ROM areas.

Chapter 7, Using program models and segmentation 97

Table 7.6: Segment combination attribute (continued)

UNINIT Produces a warning message to let you know that you have inadvertently
written initialized data to uninitialized data segments. For example, you can
specify the following to produce a warning message: BSS SEGMENT
PUBLIC WORD UNINIT I BSS I. To disable this warning message, use
the NOWARN UNI directive. You can reenable the message by using the
WARN UNI directive.

Segment class The segment class attribute is a quoted string that helps the linker
attribute determine the proper ordering of segments when it puts together a

program from modules. The linker groups together all segments with the
same class name in memory. A typical use of the class name is to group all
the code segments of a program together (usually the class CODE is used
for this). Data and uninitialized data are also grouped using the class
mechanism.

Segment alignment The segment alignment attribute tells the linker to ensure that a segment
attribute begins on a specified boundary. This is important because data can be

loaded faster on the 80x86 processors if it's properly aligned. The following
table lists legal values for this attribute.

Table 7.7
Segment alignment

attribute

Segment size
attribute

98

Table 7.8
Segment size

attribute values

Attribute value

BYTE
WORD
DWORD
PARA
PAGE
MEMPAGE

Meaning

No special alignment; start segment on the next available byte.
Start segment on the next word-aligned address.
Start segment on the next doubleword-aligned address.
Start segment on the next paragraph (16-byte aligned) address.
Start segment on the next page (2S6-byte aligned) address.
Start segment on the next memory page (4Kb aligned) address.

Turbo Assembler assumes the PARA alignment if you don't specify the
alignment type.

If the currently selected processor is the 80386, segments can be either 16 bit
or 32 bit. The segment size attribute tells the linker which of these you want
for a specific segment. The following table contains the legal attribute
values.

Attribute value

USE16

USE32

Meaning

Segment is 16 bit. A 16-bit segment can contain up to 64K of code
andbr data.
Segment is 32 bit. A 32-bit segment can contain up to 4 gigabytes of
code andbr data.

Turbo Assembler Users Guide

Segment access
attribute

Table 7.9
Segment access

attribute

The ENDS
directive

The GROUP
directive

Turbo Assembler assumes the USE32 value if you selected the 80386
processor in MASM mode. In Ideal mode, Turbo Assembler assumes
USE16 by default.

For any segment in protected mode, you can control access so that certain
kinds of memory operations are not permitted. (Note that this feature is
currently supported only by the Phar Lap linker. You must generate object
code compatible with it using the lop switch if you want to be able to use
the segment access attribute.) The segment access attribute tells the linker
to apply specific access restrictions to a segment.

The following table lists the legal values for this attribute.

Attribute value

EXECONLY
EXECREAD
READONLY
READWRITE

Meaning

the segment is executable only
the segment is readable and executable
the segment is readable only
the segment is readable and writable

The Phar Lap linker assumes that the segment is meant to run in protected
mode if you select any of these attributes, or if you select the USE32
attribute. Turbo Assembler assumes the READONL Y attribute if you
selected the USE32 attribute but did not specify any of these four attributes.

You can use the ENDS directive to close a segment so that no further data is
emitted into it. You should use the ENDS directive to close any segments
opened with the SEGMENT directive. Segments opened using the
simplified segment directives don't require the ENDS directive.

Here's the syntax of the ENDS directive:

ENDS [name]

For MASM mode only, you can use the following syntax:

name ENDS

name specifies the name of the segment to be closed. Turbo Assembler will
report an error message if name doesn't agree with the segment currently
open. If you don't specify a name, Turbo Assembler assumes the currently
open segment.

You can use the GROUP directive to assign segments to groups. A group
lets you specify a single segment value to access data in all segments in the
group.

Chapter 7, Using program models and segmentation 99

Here's the Ideal mode syntax for the GROUP directive:

GROUP name segment_name [, segment_name ...]

You can use the following syntax for MASM mode:

name GROUP segment_name [, segment_name ...]

name is the name of the group. segment_name is the name
of a segment yo~ want to assign to that group.

The ASSUME directive

100

A segment register must be loaded with the correct segment value for you
to access data in a segment. Often, you must do this yourself. For example,
you could use the following code to load the address of the current far data
segment into DS:

MOV A:i.,@fardata
MOV D8,AX

When a program loads a segment value into a segment register, you use
that segment register to access data in the segment. It rapidly becomes
tiring (and is also poor programming practice) to specify a specific segment
register every time you process data in memory.

-.. Use the ASSUME directive to tell Turbo Assembler to associate a segment
register with a segment or group name. This allows Turbo Assembler to be
"smart enough" to use the correct segment registers when data is accessed.

In fact, Turbo Assembler uses the information about the association
between the segment registers and group or segment names for another
purpose as well: in MASM mode, the value that the CS register is
ASSUMEd to be is used to determine the segment or group a label belongs
to. Thus, the CS register must be correctly specified in an ASSUME
directive, or Turbo Assembler will report errors every time you define a
label or procedure.

Here's the syntax of the ASSUME directive:

ASSUME segreg : expression [,segreg : expression]

Turbo Assembler Users Guide

Segment ordering

or

ASSUME NOTHING

segreg is one of CS, DS, ES or SS registers. If you specify the 80386 or 80486
processor, you can also use the FS and GS segment registers. expression can
be any expression that evaluates to a group or segment name.
Alternatively, it can be the keyword NOTHING. The NOTHING keyword
cancels the association between the designated segment register and any
segment or group name.

ASSUME NOTHING removes associations between all segment registers and
segment or group names.

You can use the ASSUME directive whenever you modify a segment
register, or at the start of a procedure to specify the assumptions at that
point. In practice, ASSUMEs are usually used at the beginning of a module
and occasionally within it. If you use the MODEL statement, Turbo
Assembler automatically sets up the initial ASSUMEs for you.

If you don't specify a segment in an ASSUME directive, its ASSUMEd value
is not changed.

For example, the following code shows how you can load the current
initialized far data segment into the DS register, access memory in that
segment, and restore the DS register to the data segment value.

MOV lJ...,@fardata
MOV DS,lJ...
ASSUME DS:@fardata
MOV BX,<far_data_variable>
MOV lJ...,@data
MOV DS,lJ...
ASSUME DS:@data

The linker arranges and locates all segments defined in a program's
modules. Generally, the linker starts with the order in which it encounters
the segments in a program's modules. You can alter this order using
mechanisms such as segment combination and segment classing.

There are other ways to affect the way the linker arranges segments in the
final program. For example, the order in which segments appear in a
module's source can be changed. There are also directives that affect
segment ordering. Descriptions of these follow.

Chapter 7, Using program models and segmentation 101

Changing a
modules segment
ordering

DOS ordering of
segments: the
DOSSEG directive -

102

The order of segments in each module determines the starting point for the
linker's location of segments in the program. In MASM 1.0, 2.0, and 3.0,
segments were passed to the linker in alphabetical order. Turbo Assembler
provides directives (in MASM mode only) that let you reproduce this
behavior.

Note that these directives have the same function as the IA and IS
command line switches. See Chapter 2 for further details.

The .ALPHA directive
The .ALPHA directive specifies alphabetic segment ordering. This directive
tells Turbo Assembler to place segments in the object file in alphabetical
order (according to the segment name). Its syntax is

. ALPHA

The .SEQ directive
The .SEQ directive specifies sequential segment ordering, and tells Turbo
Assembler to place segments in the object file in the order in which they
were encountered in the source file. Since this is the default behavior of the
assembler, you should usually use the .SEQ directive only to override a
previous .ALPHA or a command line switch. Here's the syntax of .SEQ:

.SEQ

Normally, the linker arranges segments in the sequential order it
encounters them during the generation of the program. When you include
a DOSSEG directive in any module in a program, it instructs the linker to
use standard DOS segment ordering instead. The linker defines this
convention to mean the following arrangement of segments in the final
program:

• segments having the class name CODE (typically code segments)

• segments that do not have class name CODE and are not part of
DGROUP

• segments that are part of DGROUP in the following order:

1. segments not of class BSS or STACK (typically initialized data)

2. segments of class BSS (typically uninitialized data)

3. segments of class STACK (stack space)

Turbo Assembler Users Guide

Changing the size
of the stack

Table 7.10
Stack size

modification
directives

The segments within DGROUP are located in the orderin which they were
defined in the source modules.

DOSSEG is included in TASM for backward compatibility only. It is
recommended that you do not use the DOSSEG directive in new assembly
programs. In addition, do not use the DOSSEG directive if you're
interfacing assembly programs with C programs.

A procedure's prolog and epilog code manipulates registers that point into
the stack. On the 80386 or 80486 processor, the stack segment can be either
16 bits or 32 bits. Turbo Assembler therefore must know the correct size of
the stack before it can generate correct prolog and epilog code for a
procedure.

The stack size is automatically selected if you selected a standard model
using the MODEL statement.

Turbo Assembler provides directives that can set or override the default
stack size for procedure prolog and epilog generation. The following table
lists these directives.

Directive

SMALLSTACK
LARGESTACK

Meaning

Indicates that the stack is 16 bit
Indicates that the stack is 32 bit

Chapter 7, Using program models and segmentation 103

104 Turbo Assembler Users Guide

c H A p T E R

Defining data types

Defining data types symbolically helps you write modular code. You can
easily change or extend data structures without having to rewrite code by
separating the definition of a data type from the code that uses it, and
allowing symbolic access to the data type and its components.

8

Turbo Assembler supports as many or" more symbolic data types than most
high-level languages. This chapter describes how to define various kinds of
data types.

Defining enumerated data types

Beware: If you use
the same variable

name in two
enumerated data

types, the first value
of the variable will be
lost, and errors could

result.

An enumerated data type represents a collection of values that can be
stored in a certain number of bits. The maximum value stored determines
the actual number of bits required.

Here is the Ideal mode syntax for declaring an enumerated data type:
ENUM name [enum_var [,enum_var . .. JJ

You can use the following syntax in MASM mode:

name ENUM [enum_var [,enum_var .. . JJ

The syntax of each enum_var is:

Turbo Assembler will assign a value equal to that of the last variable in the
list plus one if value isn't present when you assign the specified value to the
variable var _name. Values can't be relative or forward referenced. Variables
that ENUM created are redefinable numeric variables of global scope.

name is the name of the ENUM data type. You can use it later in the module
to obtain a variety of information about the values assigned to the variables
detailed. See Chapter 5 for information about using enumeration data type
names in Turbo Assembler expressions.

You can also use enumerated data type names to create variables and
allocate memory. See Chapter 12 for details.

Chapter 8, Defining data types 105

Turbo Assembler
doesn't recognize any
pseudo ops inside the
multiline enumerated

data type definition.

Enumerated data types are redefinable. You can define the same name as
an enumerated data type more than once in a module.

Turbo Assembler provides a multiline syntax for enumerated data type
definitions requiring a large number of variables. The symbol { starts the
multiline definition, and the symbol} stops it.

The Ideal mode syntax follows:

ENUM name [enum_var [,enum_var ...]]
[enum_ var [, enum_ var] ...]

[enum_ var [, enum_ var] ...]

You can use the following syntax in MASM mode:

name ENUM [enum_var [,enum_var . ..]]
[enum_ var [, enum_ var] ...]

[enum_ var [, enum_ var] ...]

For example, all of the following enumerated data type definitions are
equivalent:

faa ENUM fl,f2,f3,f4

faa ENUM {
fl
f2
f3
f4
}

faa ENUM fl, f2, {
f3, f4}

iOriginal version

iMultiline version

iMore compact multiline version

Defining bit-field records

106

A record data type represents a collection of bit fields. Each bit field has a
specific width (in bits) and an initial value. The record data type width is
the sum of the widths of all the fields.

You can use record data types to compress data into a form that's as
compact as possible. For example, you can represent a group of 16 flags
(which can be either ON or OFF) as 16 individual bytes, 16 individual
words, or as a record containing 161-bit fields (the efficient method).

Here's the Ideal mode syntax for declaring a record data type:

Turbo Assembler Users Guide

RECORD name [rec_field [,rec_field . ..]]

The MASM mode syntax is:

name RECORD [rec_field [,rec_field ...]]

Each recJield has the following syntax:

field_name : width_expression [=value]

field_name is the name of a record field. Turbo Assembler will allocate a bit
field of the width width_expression for it. value describes the initial value of
the field (the default value used when an instance of the record is created).
Values and width expressions can't be relative or forward referenced.
Record field names are global in scope and can't be redefined.

name is the name of the record data type. You can use it later in the module
to obtain a variety of information about the record data type. You can also
use the names of individual record fields to obtain information. See
Chapter 5 for details about how to obtain information from record data
type names and record field names using Turbo Assembler expressions.

You can redefine record data types, and define the same name as a record
data type more than once in a module.

.. You can also use record data type names to create variables and allocate
memory. See Chapter 12 for details.

Turbo Assembler
does not recognize

any pseudo ops
inside the multiline

record data type
definition.

Turbo Assembler provides special support for record fields that represent
flags and enumerated data types. Additional and extended instructions
provide efficient access to record fields. Chapter 13 describes this concept
further.

For record data type definitions requiring a large number of fields, Turbo
Assembler provides a multiline syntax similar to that for enumerated data
types.

For example, all of the following record data type definitions are
equivalent:

faa RECORD fl:l,f2:2,f3:3,f4:4 ;Original version

faa RECORD
f1: 1
f2:2
f3: 3
f4:4
}

faa RECORD fl:l,f2:2, {
f3:3,f4:4}

;Multiline version

;More compact multiline version

Chapter 8, Defining data types 107

Defining structures and unions

Opening a
structure or union
definition

Specifying
structure and
union members

108

Structures and unions let you mix and match various types. A structure in
Turbo Assembler is a data type that contains one or more data elements
called members. Structures differ from records because structure members
are always an integral number of bytes, while records describe the
breakdown of bit fields within bytes. The size of a structure is the combined
size of all data elements within it.

Unions are similar to structures, except that all of the members in a union
occupy the same memory. The size of a union is the size of its largest
member. Unions are useful when a block of memory must represent one of
several distinct possibilities, each with different data storage requirements.

Turbo Assembler lets you fully nest structures and unions within one
another, but this can become complicated. For example, you could have a
structure member that is really a union. A union could also have a full
structure as each member.

Use the following Ideal mode syntaxes to open a structure or union data
type definition:

STRUC name or UNION name

You can use the following MASM mode syntaxes to do the same thing:

name STRUC or name UNION

name is the name of the structure or union data type.

Turbo Assembler considers all data or code emitted between the time a
structure or union data type definition is opened and the time a
corresponding ENDS directive is encountered to be part of that structure or
union data type.

Turbo Assembler treats structure and union data type names as global but
redefinable. You can define the same name as a structure or union data
type more than once in a module.

Turbo Assembler includes data one line at a time in structures or unions.
To allocate data and create members in a structure or union definition, use
the same directives as those for allocating data and creating labels in an
open segment. For example,

memberl DW 1

is equally valid in a segment or in a structure definition. In a segment, this
statement means "reserve a word of value I, whose name is memberl." In a

Turbo Assembler Users Guide

Defining structure
member labels with
LABEL

Aligning structure
members

Closing a
structure or union
definition

structure or union definition, this statement means "reserve a word of
initial value 1, whose member name is memberl."

You can use the initial value for a structure member if an instance of the
structure or union is allocated in a segment or a structure. If you don't
intend to allocate structure instances this way, the initial value of the
structure member is not important. You can use the data value? (the
uninitialized data symbol) to indicate this.

Turbo Assembler allows all methods of allocating data with a structure
definition, including instances of other structures, unions, records,
enumerated data types, tables, and objects. For more information on how to
allocate data, see Chapter 12.

MASM and Ideal modes treat structure member names differently. In
MASM mode, structure member names are global and can't be redefined.
In Ideal mode, structure member names are considered local to a structure
or union data type.

The LABEL directive lets you create structure members without allocating
data. Normally, the LABEL directive establishes a named label or marker at
the point it's encountered in a segment. LABEL directives found inside
structure definitions define members of the structure. Here's the syntax of
the LABEL directive:

LABEL name complex_type

In MASM mode only, you can use the following syntax:

name LABEL complex_type

name is the name of the structure member. type is the desired type for the
structure member. It can be any legal type name. See Chapter 5 for a
description of the available type specifiers.

You can use the ALIGN directive within structure definitions to align
structures members on appropriate boundaries. For example,

ALIGN 4
member dd?

;DWORD alignment
;member will be DWORD aligned

You must close the structure or union definition after you define all
structure or union members. Use the ENDS directive to do this.

ENDS has the following syntax in Ideal mode:

ENDS [name]

Chapter 8, Defining data types 109

Nesting
structures and
unions

Table 8.1
STRUC, UNION, and

ENDS directives

110

In MASM mode, you can use the following syntax:

name ENDS

name, if present, is the name of the currently open structure or union data
type definition. If name is not present, the currently open structure or union
will be closed.

You can also use the ENDS directive to close segments. This is not a
conflict, because you can't open a segment inside a structure or union
definition.

Turbo Assembler lets you nest the STRUC, UNION, and ENDS directives
inside open structure and union data type definitions to control the offsets
assigned to structure members.

In a structure, each data element begins where the previous one ended. In a
union, each data element begins at the same offset as the previous data
element. Allowing a single data element to consist of an entire union or
structure provides enormous flexibility and power. The following table
contains descriptions of STRUC, UNION, and ENDS.

Directive

STRUC

UNION

ENDS

Meaning

Used inside an open structure or union, this directive begins a block of elements
that the enclosing structure or union considers a single member. The members in
the block are assigned offsets in ascending order. The size of the block is the sum of
the sizes of all of the members in it.
Used inside an open structure or union, this begins a block of members that the
enclosing structure or union considers a single unit. The members in the block are
all assigned the same offset. The size of the block is the size of the largest member
in it.
Terminates a block of members started with a previous STRUC or UNION directive.

For example, the composite has five members in the following
structure/union data definition:

CUNION STRUC
CTYPE DB ?

UNION iStart of union

i If CTYPE=O, use this ...
STRUC

CTOPARl DW 1
CTOPAR2 DB 2

ENDS

i If CTYPE=l, use this ...
STRUC

Turbo Assembler Users Guide

Table 8.2
Block members

Including one
named structure
within another

CT1PARl
CT1PAR2

ENDS

DB 3
DD 4

ENDS jEnd of union
ENDS jEnd of structure data type

The following table lists these members.

Member Type Offset Default value

CTYPE Byte 0 ? (uninitialized)
CTOPAR1 VVord 1 1
CTOPAR2 Byte 3 2
CT1PAR1 Byte 1 3
CT1PAR2 Dword 2 4

The length of this structure / union is 6 bytes.

Turbo Assembler provides a way of incorporating an entire existing
structure or union data type, including member names, into an open
structure definition to assist in the inheritance of objects. It treats the
incorporated structure or union as if it were nested inside the open
structure or union definition at that point. In this way, incorporating a
structure or union into another is intrinsically different from including an
instance of a structure or union in another; an instance includes only
initialized or uninitialized data, while incorporation includes data, structure,
and member names.

Here's the Ideal mode syntax:

STRUC struc_name fill-parameters

You can use the following syntax in MASM mode:

struc_name STRUC fill-parameters

Use a statement of this form only inside a structure or union definition.
struc_name is the name of the previously defined structure or union that is
to be included. jiltparameters represents the changes you want to make to
the initial (default) values of the included structure's members. A ?
keyword indicates that all of the incorporated structure's members should
be considered uninitialized. Otherwise, the syntax for the ft1tparameters
field is:

{ [member_name [=expression] [,member_name [=expression] ...]] }

member _name is the name of any member of the included structure whose
initial value should be changed when it's included. expression is the value
you want to change it to. If you have expression, then the initial value for

Chapter 8, Defining data types 111

112

that member of the structure will be unchanged when it is included. If you
specify a ? keyword for the expression field, that member's initial value will
be recorded as uninitialized when it's included.

Since structure member names are global in MASM mode, they are not
redefined when you copy a structure. Thus, including a structure within
another is most useful in MASM mode when you do it at the beginning of
the structure or union you're defining.

Usually, when you create an instance of a union, you would have to make
sure that only one of the union's members contains initialized data. (See
Chapter 12 for details.) Since incorporating a structure in another does not
involve creating an instance, this restriction does not apply. More than one
member of an included union can contain initialized data. For example,

FOO STRUC
ABC DW 1
DEF DW 2

UNION
A1 DB '123'
A2 DW ?

ENDS
ENDS

F002 STRUC
FOO STRUC {A1=2} ;Incorporates struc FOO into struc F002, with ;override

;Note that both A1 and A2 are initialized by

GHI DB 3
ENDS

;default in F002!

The definition of structure F002 in the previous example is equivalent to
the following nested structure/union:

F002 STRUC
STRUC ;Beginning of nested structure ...

ABC DW 1
DEF DW 2

UNION ;Beginning of doubly nested union ...
A1
A2

GHI

DB '123'
DW 2

ENDS iEnd of doubly nested union ...
ENDS
DB 3

ENDS

;End of nested structure ...

Note that when an instance of the structure F002 is made, be sure that
only one value in the union is initialized.

Turbo Assembler Users Guide

Using structure
names in
expressions

Defining tables

Once you define a structure or union, information about the structure or
union is available in many ways. You can use both the structure or union
data type name and a structure member name to obtain information using
Turbo Assembler expressions. See Chapter 5 for further information.

A table data type represents a collection of table members. Each member
has a specific size (in bytes) and an initial value. A table member can be
either virtual or static. A virtual member of a table is assigned an offset
within the table data type; space is reserved for it in any instance of the
table. A static member does not have an offset; space isn't reserved for it in
an instance of the table.

The size of the table data type as a whole is the sum of the sizes of all of the
virtual members.

Table data types represent method tables, used in object-oriented
programming. An object usually has a number of methods associated with
it, which are pointers to procedures that manipulate instances of the object.
Method procedures can either be called directly (static methods) or
indirectly, using a table of method procedure pointers (virtual methods).

You can use the following Ideal mode syntax for declaring a table data
type:

TABLE name [table_member [,table_member .. .]]

The following syntax works only in MASM mode:

name TABLE [table_member [,table_member .. .]]

Here's the syntax of each table_member field:

or

[VIRTUAL] member_name [[countl_expression]]
[: complex_type [:count2_expression]] [= expression]

table_name is the name of an existing table data type whose members are
incorporated entirely in the table you define. Use this syntax wherever you
want inheritance to occur.

Chapter 8, Defining data types 113

114

member _name is the name of the table member. The optional VIRTUAL
keyword indicates that the member is virtual and should be assigned to a
table offset.

complex_type can be any legal complex type expression. See Chapter 5 for a
detailed description of the valid type expressions.

If you don't specify a complex_type field, Turbo Assembler assumes it to be
WORD (DWORD is assumed if the currently selected model is a 32-bit
model).

count2_expression specifies how many items of this type the table member
defines. A table member definition of

faa TABLE VIRTUAL trnp:DWORD:4

defines a table member called tmp, consisting of four doublewords.

The default value for count2_expression is 1 if you don't specify it.
countl_expression is an array element size multiplier. The total space
reserved for the member is count2_expression times the length specified by
the memtype field, times countl_expression. The default value for
countl_expression is also 1 if you don't specify one. countl_expression
multiplied by count2_expression specifies the total count of the table
member.

.. Table member names are local to a table in Ideal mode, but are global in
scope in MASM mode.

name is the name of the table data type. You can use it later in the module
to get a variety of information about the table data type. You can also use
the names of individual table members to obtain information. See Chapter
5 for further information.

Table data types are redefinable. You can define the same name as a table
data type more than once in a module.

You can also use table data type names to create variables and allocate
memory. See Chapter 12 for details.

Alternatively, Turbo Assembler provides a multiline syntax for table data
type definitions requiring a large number of members. This syntax is
similar to that of enumerated data type definitions. Here's an example:

faa TABLE tl:WORD,t2:WORD,t3:WORD,t4:WORD ;Original version

faa TABLE {
t1 : WORD
t2:WORD

;Multiline version

Turbo Assembler Users Guide

Overriding table
members

t3 : WORD
t4:WORD
}

foo TABLE tl:WORD,t2:WORD,{
t3 :WORD, t4 :WORD}

;More compact multiline version

If you declare two or more members of the same name as part of the same
table data type, Turbo Assembler will check to be sure that their types and
sizes agree. If they don't, it will generate an error. Turbo Assembler will use
the last initial value occurring in the table definition for the member. In this
way, you can override the initial value of a table after it is incorporated into
another. For example,

FOO TABLE VIRTUAL MEM1:WORD=MEM1PROC, VIRTUAL MEM2:WORD=MEM2PROC
F002 TABLE FOO, VIRTUAL MEM1:WORD=MEM3PROC ;Overrides inherited ;MEMl

Defining a named type

Named types represent simple or complex types. You can use the TYPEDEF
directive to define named types. Here's the Ideal mode syntax:

TYPEDEF type_name complex_type

The MASM mode syntax is:

type_name TYPEDEF complex_type

complex_type describes any type or multiple levels of pointer indirection.
See Chapter 5 for further information about complex types. type_name is the
name of the specified type.

When you use a named type in an expression, it functions as if it were a
simple type of the appropriate size. For example,

MOV ax, word ptr [bx]
faa TYPEDEF near ptr byte

MOV ax,foo ptr [bx]

Defining a procedure type

;Simple statement;
;FOO is basically a word

;so this works too

For Turbo Assembler version 3.2 or higher, you can use a user-defined data
type (called a procedure type) to describe the arguments and calling
conventions of a procedure. Turbo Assembler treats procedure types like
any other types; you can use it wherever types are allowed. Note that since

Chapter 8, Defining data types 115

See Chapter 10 for
further information

about the PROe
directive.

See Chapter 5 for a
discussion of the

syntax of complex
types.

procedure types don't allocate data, you can't create an instance of a
procedure type.

Use the PROCTYPE directive to create a procedure type. Here is the Ideal
mode syntax:

PROCTYPE name [procedure_description]

The MASM mode syntax is:

name PROCTYPE [procedure_description]

procedure_description is similar to the language and argument specification
for the PROC directive. Its syntax is:

[[language_modifier] language] [distance] [argument_list]

specify language_modifier, language, and distance exactly the same way you
would for the corresponding fields in the PROC directive.

Use the following form for argument_list:

argument [,argument] ...

An individual argument has the following syntax:

[argname] [[countl_expressionl] : complex_type [:count2_expression]

complex_type is the data type of the argument. It can be either a simple type
or a pointer expression.

count2_expression specifies how many items of this type the argument
defines. Its default value is 1, except for BYTE arguments. Those arguments
have a default count of 2, since you can't PUSH a byte value onto the 80x86
stack.

In procedure types whose calling convention permits variable-length
arguments (like C), count2_expression (for the last argument) can be the
special keyword ?, which indicates that the procedure caller will determine
the size of the array. The type UNKNOWN also indicates a variable-length
parameter.

The name of each argument is optional, but complex_type is required
because procedure types are used mainly for type checking purposes. The
names of the arguments don't have to agree, but the types must.

Defining an object

116

An object consists of both a data structure and a list of methods that
correspond to the object. Turbo Assembler uses a structure data type to

Turbo Assembler Users Guide

Table 8.3
Available modifiers

represent the data structure associated with an object, and a table data type
to represent the list of methods associated with an object.

An extension to the STRUC directive lets you define objects. The Ideal
mode syntax follows:

STRUC name [modifiers] [parent_name] [METHOD
[table_member [,table_member . ..]]]

structure_members
ENDS [name]

You can use the following syntax in MASM mode:

name STRUC [modifiers] [parent_name] [METHOD
[table_member 1 [,table_member ...]]]

structure_members
[name] ENDS

name is the name of the object. parent_name is the optional name of the
parent object. (Turbo Assembler explicitly supports only single
inheritance.) The parent object's structure data will automatically be
included in the new object's structure data, and the parent object's table of
methods will be included in the new object's table of methods as well.

Each table_member field describes a method name and method procedure
associated with the object. The syntax of a table_member field is exactly the
same as in a table definition.

structure_members describe any additional structure members you want
within the object's data structure. These are formatted exactly the same as
in an open structure definition.

The optional modifiers field can be one or more of the following keywords:

Keyword

GLOBAL

NEAR

FAR

Meaning

Causes the address of the virtual method table (if
any) to be published globally.
Forces the virtual table pointer (if any) to be an
offset quantity, either 16 or 32 bits,. depending on
whether the current model is USE16 or USE32.
Forces the virtual table pointer (if any) to be a
segment and offset quantity, either 32 or 48 bits,
depending on whether the current model is USE16 or
USE32.

The size of the virtual table pointer (if any) depends on whether data in the
current model is addressed as NEAR or FAR if you don't specify a
modifier.

Chapter 8, Defining data types 117

The TBLPTR
directive

Symbols defined
by the extended
STRUC directive

Table 8.4
Symbols used or

defined by STRUC

118

Inherent in the idea of objects is the concept of the virtual method table. An
instance of this table exists once for any object having virtual methods. The
data structure for any object having virtual methods also must contain a
pointer to the virtual method table for that object. Turbo Assembler
automatically provides a virtual method table pointer in an object's data
structure (if required) and if you don't specify it explicitly using the
TBLPTR directive.

You should use the TBLPTR directive within an object data structure
definition. TBLPTR lets you explicitly locate the virtual table pointer
wherever you want. Here's its syntax:

TBLPTR

The size of the pointer that TBLPTR reserves is determined by whether the
current model is USE16 or USE32, and what modifiers you used in the
object definition.

The extended STRUC directive defines or uses several symbols, which
reflect the object being defined. The following table shows these symbols.

Symbol

@Object
@Table_<objecLname>
@Tableaddr_<objecLname>

Meaning

A text macro containing the name of the current object
A table data type containing the objects method table
A label describing the address of the objects virtual
method table

Turbo Assembler Users Guide

c H A p T E

Setting and using the location
counter

R 9·

The location counter keeps track of the current address as your source files
assemble. This lets you know where you are at any time during assembly of
your program. Turbo Assembler supplies directives that let you manipulate
the location counter to move it to a desired address.

Labels are the names used for referring to addresses within a program.
Labels are assigned the value of the location counter at the time they are
defined. Labels let you give names to memory variables and the locations
of particular instructions.

This chapter discusses the available directives for manipulating the location
counter, and declaring labels at the current location counter.

The $ location counter symbol

The predefined symbol $ represents the current location counter. The
location counter consists of two parts: a segment, and an offset. The
location counter is the current offset within the current segment during
assembly.

The location counter is an address that is incremented to reflect the current
address as each statement in the source file is assembled. As an example,

helpMessage
helpLength

DB 'This is help for the program. '
= $ - helpMessage

Once these two lines are assembled, the symbol helpLength will equal the
length of the help message.

Chapter 9, Setting and using the location counter 119

Location counter directives

The ORG directive

120

Turbo Assembler provides several directives for setting the location
counter. The next few sections describe these directives. Note that all of
these directives work in both MASM and Ideal modes.

You can use the ORG directive to set the location counter in the current
segment. ORG has the following syntax:

ORG expression

expression can't contain any forward-referenced symbol names. It can either
be a constant or an offset from a symbol in the current segment or from the
current location counter.

You can back up the location counter before data or code that has already
been emitted into a segment. You can use this to go back and fill in table
entries whose values weren't known at the time the table was defined. Be
careful when using this technique; you might accidentally overwrite
something you didn't intend to.

You can use the ORG directive to connect a label with a specific absolute
address. The ORG directive can also set the starting location for .COM files.
Here's an example of how to use ORG:

This program shows how to create a structure and macro for
declaring instances of the structure, that allows additional
elements to be added to the linked list without regard to
other structures already declared in the list. If the macro
is invoked in a section of code that is between two other
instances of the structure, the new structure will automatically
be inserted in the linked list at that point without your
needing to know the names of the previous or next
structure variables. Similarly, using the macro
at the end of the program easily adds new structures to the
linked list without regard for the name of the previous
element.
The macro also maintains variables that point to the first
and last elements of the linked list.

ideal
p386

model OS_NT flat

codeseg

struc a
prev dd 0

Turbo Assembler Users Guide

next dd 0
info db 100 dup (0)

ends a

i Maintain the offsets of the head and tail of the list.
__ list_a_head dd 0
__ list_a_tail dd 0

macro makea name: req, args
ifidni __ last_a_name,<>

i There is no previous item of this type.
name a <O,O,args>

Setup the head and tail pointers
org __ I ist_a_head
dd name
org __ list_a_tail
dd name

i Return to the offset after the structure element
org nametsize a

__ last_a_name equ name

else

name

i Declare it, with previous pointing to previous
item of structure a.

a

i Make the next pointer of the previous structure
i point to this structure.
org __ last_a_name.next
dd name

i Setup the tail pointer for the new member
org __ list_a_tail
dd name

i Go back to location after the current structure
org nametsize a

i Set up an equate to remember the name of the
i structure just declared

__ last_a_name
endif

equ name

endm

makea first

i Miscellaneous other data
db 5 dup (0)

make a second

Chapte,9, Setting and using the location counter 121

The EVEN and
EVENDATA
directives

Note: In code
segments, NOPs are

emitted. In data
segments, zeros are

emitted.

The ALIGN
directive

122

i More miscellaneous data
db 56 dup (0)

Give a string to put in the info element of this structure
makea third,<'Hello'>

end

You can use the EVEN directive to round up the location counter to the next
even address. EVEN lets you align code for efficient access by processors
that use a 16-bit data bus. It does not improve performance for processors
that have an 8-bit data bus.

EVENDATA aligns evenly by advancing the location counter without
emitting data, which is useful for uninitialized segments. Both EVEN and
EVENDATA will cause Turbo Assembler to generate a warning message if
the current segment's alignment isn't strict enough.

If the location counter is odd when an EVEN directive appears, Turbo
Assembler places a single byte of a NOP instruction in the segment to make
the location counter even. By padding with a NOP, EVEN can be used in
code segments without causing erroneous instructions to be executed at

. run time. This directive has no effect if the location is already even.

Similarly, if the location counter is odd when an EVENDATA directive
appears, Turbo Assembler emits an uninitialized byte.

An example of using the EVEN directive follows:

EVEN
@@A: lodsb

xor bl,al ialign for efficient access
loop @@A

Here's an example of using the EVENDATA directive:

EVENDATA
VARl DW ialign for efficient 8086 access

You'll use the ALIGN directive to round up the location counter to a
power-of-two address. ALIGN has the following syntax:

ALIGN boundary

boundary must be a power of two.

Turbo Assembler inserts NOP instructions into the segment to bring the
location counter up to the desired address if the location counter is not
already at an offset that is a multiple of boundary. This directive has no
effect if the location counter is already at a multiple of boundary.

Turbo Assembler Users Guide

Defining labels

The : operator

You can't reliably align to a boundary that's more strict than the segment
alignment in which ALIGN appears. The segment's alignment is specified
when the segment is first started with the SEGMENT directive.

For example, if you've defined a segment with

CODE SEGMENT PARA PUBLIC

you can then say ALIGN 16 (same as PARA) but not ALIGN 32, since that's
more strict than the alignment that PARA indicated in the SEGMENT
directive. ALIGN generates a warning if the segment alignment isn't strict
enough.

The following example shows how you can use the ALIGN directive:

ALIGN 4 ialign to DWORD boundary for 386
BigNum DD 12345678

Labels let you assign values to symbols. There are three ways of defining
labels:

1£1 using the: operator

II using the LABEL directive

II using the :: operator (from MASM 5.1)

The: operator defines a near code label, and has the syntax

name:

where name is a symbol that you haven't previously defined in the source
file. You can place a near code label on a line by itself or at the start of a line
before an instruction. You usually would use a near code label as the
destination of a JMP or CALL instruction from within the same segment.

The code label will only be accessible from within the current source file
unless you use the PUBLIC directive to make it accessible from other source
files.

This directive functions the same as using the LABEL directive to define a
NEAR label; for example, A: is the same as A LABEL NEAR. For example,

A:
is the same as

A LABEL NEAR

Chapter 9, Setting and using the location counter 123

The LABEL
directive

The :: directive

The :: directive only
works when you're

using MASM51.

124

Here's an example of using the : operator.

jne A ;skip following function
inc si
A: ; jne goes here

You'll use the LABEL directive to define a symbol with a specified type.
Note that the syntax is different for Ideal and MASM modes. In Ideal mode,
specify

LABEL name complex_type

In MASM mode, use the following:

name LABEL complex_type

name is a symbol that you haven't previously defined in the source file.
complex_type describes the size of the symbol and whether it refers to code
or data. See Chapter 5 for further information about complex types.

The label is only accessible from within the current source file, unless you
use PUBLIC to make it accessible from'other source files.

You can use LABEL to access different-sized items than those in the data
structure; the following example illustrates this concept.

WORDS LABEL WORD ;access "BYTES" as WORDS
BYTES DB 64 DUP (0)

mov WORDS [2] ,1 ;write WORD of 1

The :: directive lets you define labels with a scope beyond the procedure
you're in. This differs from the: directive in that labels defined with: have
a scope of only within the current procedure. Note that :: is different from:
only when you specify a language in the .MODEL statement.

Turbo Assembler Users Guide

c H A p T E R 10

Declaring procedures

Turbo Assembler lets you declare procedures in many ways. This chapter
discusses NEAR and FAR procedures, declaring procedure languages
using arguments and variables in procedures, preserving registers, nesting
procedures, declaring method procedures for objects, and declaring
procedure prototype~. You can find more information about how to call
language procedures in Chapter 13.

Procedure definition syntax

Unless you specify
version T31 0 or
earlier, the Ideal

mode syntax is no
longer allowed in

MASM mode.

You can use the PROC directive to declare procedures. Here's its Ideal
mode syntax:

PROC name [[language modifier] language] [distance]
[ARG argument_list] [RETURNS item_list]
[LOCAL argument_list]
[USES item_list]

ENDP [name]

Use the following syntax in MASM mode:

name PROC [[language modifier] language] [distance]
[ARG argument_listl [RETURNS item_listl
[LOCAL argument_list]
[USES item_listl

[namel ENDP

Turbo Assembler also accepts MASM syntax for defining procedures. For
more information on MASM syntax, see Chapter 3.

If you're using Turbo Assembler version T310 or earlier, use the following
Ideal mode syntax:

Chapter 10, Declaring procedures 125

Declaring NEAR
or FAR
procedures

You can specify this
as an argument to the

MODEL statement.

126

See Chapter 7 for
more information.

PROC [[language modifier] language] name [distance]
[ARG argument_list] [RETURNS item_list]
[LOCAL argument_list]
[USES item_list]

ENDP

Note that the only difference between the older versions of Turbo
Assembler and the later versions is that language and language_modifier have
been moved to follow the procedure name to facilitate consistent function
prototyping.

NEAR procedures are called with a near call, and contain a near return; you
must call them only from within the same segment in which they're
defined. A near call pushes the return address onto the stack, and sets the
instruction pointer (IP) to the offset of the procedure. Since the code
segment (CS) is not changed, the procedure must be in the same segment as
the caller. When the processor encounters a near return, it pops the return
address from the stack and sets IP to it; again, the code segment is not
changed.

FAR procedures are called with a far call and contain far returns. You can
call FAR procedures from outside the segment in which they're defined. A
far call pushes the return address onto the stack as a segment and offset,
and then sets CS:IP to the address of the procedure. When the processor
encounters a far return, it pops the segment and offset of the return address
from the stack and sets CS:IP to it.

The currently selected model determines the default distance of a
procedure. For tiny, small, and compact models, the default procedure
distance is NEAR. For all other models, FAR is the default. If you don't use
the simplified segmentation directives, the default procedure distance is
always NEAR.

You can override the default distance of a procedure by specifying the
desired distance in the procedure definition. To do this, use the NEAR or
FAR keywords. These keywords override the default procedure distance,
but only for the current procedure. For example,

MODEL TINY ;default distance near

;testl is a far procedure
testl PROC FAR

;body of procedure
RET ;this will be a far return

ENDP

Turbo Assembler Users Guide

;test2 is by default a near procedure
test2 PROC

;body of procedure
RET ;this will be a near return

ENDP

The same REt mnemonic is used in both NEAR and FAR procedures; Turbo
Assembler uses the distance of the procedure to determine whether a near
or far return is required. Similarly, Turbo Assembler uses the procedure
distance to determine whether a near or far call is required to reference the
procedure:

CALL testl ;this is a far call
CALL test2 ;this is a near call

When you make a call to a forward referenced procedure, Turbo Assembler
might have to make multiple passes to determine the distance of the
procedure. For example,

testl PROC NEAR
MOVax,lO
CALL test2
RET

testl ENDP
test2 PROC FAR

ADD ax,ax
RET

test2 ENDP

When Turbo Assembler reaches the "call test2" instruction during the first
pass, it has not yet encountered test2, and therefore doesn't know the
distance. It assumes a distance of NEAR, and presumes it can use a near
call.

When it discovers that test2 is in fact a FAR procedure, Turbo Assembler
determines that it needs a second pass to correctly generate the call. If you
enable multiple passes (with the 1m command-line switch), a second pass
will be made. If you don't enable multiple passes, Turbo Assembler will
report a "forward reference needs override" error.

You can specify the distance of forward referenced procedures as NEAR
PTR or FAR PTR in the call to avoid this situation (and to reduce the
number of passes).

Chapter 10, Declaring procedures 127

Declaring a
procedure
language

128

testl PROC NEAR
MOVax,lO
CALL FAR PTR test2
RET

testl ENDP

The previous example tells Turbo Assembler to use a far call, so that
multiple assembler passes aren't necessary.

You can easily define procedures that use high-level language interfacing
conventions in Turbo Assembler. Interfacing conventions are supported for
the NOLANGUAGE (Assembler), BASIC, FORTRAN, PROLOG, C, CPP
(C++), SYSCALL, STDCALL, and PASCAL languages.

Turbo Assembler does all the work of generating the correct prolog
(procedure entry) and epilog (procedure exit) code necessary to adhere to
the specified language convention.

You can specify a default language as a parameter of the MODEL directive.
See Chapter 7 for further details. If a default language is present, all
procedures that don't otherwise specify a language use the conventions of
the default language.

To override the default language for an individual procedure, include the
language name in the procedure definition. You can specify a procedure
language by including a language identifier keyword in its declaration. For
example, a definition in MASM mode for a PASCAL procedure would be

pascalproc PROC PASCAL FAR
iprocedure body

pascalproc ENDP

Turbo Assembler uses the language of the procedure to determine what
prolog and epilog code is automatically included in the procedure's body.
The prolog code sets up the stack frame for passed arguments and local
variables in the procedure; the epilog code restores the stack frame before
returning from the procedure.

Turbo Assembler automatically inserts prolog code into the procedure
before the first instruction of the procedure, or before the first "label:" tag.

Prolog code does the following:

• Saves the current BP on the stack.

Turbo Assembler Users Guide

II Sets BP to the current stack pointer.

II Adjusts the stack pointer to allocate local variables.

II Saves the registers specified by USES on the stack.

Turbo Assembler automatically inserts epilog code into the procedure at
each RET instruction in the procedure (if there are multiple RETs, the
epilog code will be inserted multiple times). Turbo Assembler also inserts
epilog code before any object-oriented method jump (see Chapter 4).

Epilog code reverses the effects of prolog code in the following ways:

EI Pops the registers specified by USES off the stack.

IS Adjusts the stack pointer to discard local arguments.

13 Pops the stored BP off the stack.

CI Adjusts the stack to discard passed arguments (if the language requires
it) and returns.

The last part of the epilog code, discarding passed arguments, is performed
only for those languages requiring the procedure to discard arguments (for
example, BASIC, FORTRAN, PASCAL). The convention for other
languages (C, C++, PROLOG) is to leave the arguments on the stack and let
the caller discard them. SYSCALL behaves like C++. For the STDCALL
language specification, C++ calling conventions are used if the procedure
has variable arguments. Otherwise, PASCAL calling conventions are used.

.. Turbo Assembler always implements the prolog and epilog code using the
most efficient instructions for the language and the current processor
selected.

Figure 10.1
How language affects

procedures

See Chapter 13 for
further information.

Turbo Assembler doesn't generate prolog or epilog code for
NOLANGUAGE procedures. If such procedures expect arguments on the
stack, you must specifically include the prolog and epilog code yourself.

In general, the language of a procedure affects the procedure in the manner
shown in the following figure.

Language: None Basic Fortran Pascal C CPP Prolog

Argument L-R L-R L-R L-R R-L R-L R-L
ordering
(Ieft-to-right,
right-to-Ieft)

Who cleans PROC PROC PROC PROC CALLER CALLER CALLER
up stack
(caller,
procedure)

You can use the Iia command-line switch to include procedure prolog and
epilog code in your listing file. This lets you see the differences between the
languages.

Chapter 10, Declaring procedures 129

Specifying a
language modifier

See Chapter 7 for
more information.

Language modifiers tell Turbo Assembler to include special prolog and
epilog code in procedures that interface with Windows or the VROOM
overlay manager. To use them, specify one before the procedure language
in the model directive, or in the procedure header. Valid modifiers are
NORMAL, WINDOWS, ODDNEAR, and ODDFAR.

Additionally, you can specify a default language modifier as a parameter of
the MODEL directive. If a default language modifier exists, all procedures
that don't otherwise specify a language modifier will use the conventions
of the default.

Include the modifier in the procedure definition to specify the language
modifier for an individual procedure. For example,

sample PROC WINDOWS PASCAL FAR
iprocedure body

ENDP

-. If you don't specify a language modifier, Turbo Assembler uses the
language modifier specified in the MODEL statement. Turbo Assembler will
generate the standard prolog or epilog code for the procedure if there isn't
a MODEL statement, or if NORMAL is specified.

. Refer to your
Windows

documentation for
more information on

Windows procedures.

130

If you've selected the WINDOWS language modifier, Turbo Assembler
generates prolog and epilog code that lets you call the procedure from
Windows. Turbo Assembler generates special prolog and epilog code only
for FAR Windows procedures. You can't call NEAR procedures from
Windows, so they don't need special prolog or epilog code. Procedures
called by Windows typically use PASCAL calling conventions. For
example,

winproc PROC WINDOWS PASCAL FAR
ARG @@hwnd:WORD,@@mess:WORD,@@wparam:WORD,@@lparam:DWORD

ibody of procedure
ENDP

The ODDNEAR and ODDFAR language modifiers are used in connection
with the VROOM overlay manager. VROOM has two modes of operation:
oddnear and oddfar. You can use the /la switch option on the Turbo
Assembler command line to see the prolog and epilog code that these
language modifiers produce.

Turbo Assembler Users Guide

Defining arguments and local variables

ARG and LOCAL
syntax

Turbo Assembler passes arguments to higher-level language procedures in
stack frames by pushing the arguments onto the stack before the procedure
is called. A language procedure reads the arguments off the stack when it
needs them. When the procedure returns, it either removes the arguments
from the stack at that point (the Pascal calling convention), or relies on the
caller to remove the arguments (the C calling convention).

The ARG directive specifies, in the procedure declaration, the stack frame
arguments passed to procedures. Arguments are defined internally as
positive offsets from the BP or EBP registers.

The procedure's language convention determines whether or not the
arguments will be assigned in reverse order on the stack. You should
always list arguments in the ARG statement in the same order they would
appear in a high-level declaration of the procedure.

The LOCAL directive specifies, in the procedure declaration, the stack
frame variables local to procedures. Arguments are defined internally as
negative offsets from the BP or EBP register.

Allocate space for local stack frame variables on the stack frame by
including procedure prolog code, which adjusts the stack pointer
downward by the amount of space required. The procedure's epilog code
must discard this extra space by restoring the stack pointer. (Turbo
Assembler automatically generates this prolog code when the procedure
obeys any language convention other than NOLANGUAGE.)

Remember that Turbo Assembler assumes that any procedure using stack
frame arguments will include proper prolog code in it to set up the BP or
EBP register. (Turbo Assembler automatically generates prolog code when
the procedure obeys any language convention other than
NOLANGUAGE). Define arguments and local variables with the ARG and
LOCAL directives even if the language interfacing convention for the
procedure is NOLANGUAGE. No prolog or epilog code will automatically
be generated, however, in this case.

Here's the syntax for defining the arguments passed to the procedure:

ARG argument [,argument] '" [=symbol]
[RETURNS argument [,argument]]

To define the local variables for the procedure, use the following:

LOCAL argument [,argument] ... [=symbol]

Chapter 10, Declaring procedures 131

132

An individual argument has the following syntax:

argname [[countl_expressionll [: complex_type [:count2_expressionll

complex_type is the data type of the argument. It can be either a simple type,
or a complex pointer expression. See Chapter 5 for more information about
the syntax of complex types.

If you don't specify a complex_type field, Turbo Assembler assumes
WORD. It assumes DWORD if the selected model is a 32-bit model.

count2_expression specifies how many items of this type the argument
defines. An argument definition of

ARG tmp:DWORD:4

defines an argument called tmp, consisting of 4 double words.

The default value for count2_expression is 1, except for arguments of type
BYTE. Since you can't push a byte value, BYTE arguments have a default
count of 2 to make them word-sized on the stack. This corresponds with the
way high-level languages treat character variables passed as parameters. If
you really want to specify an argument as a single byte on the stack, you
must explicitly supply a count2_expression field of 1, such as

ARG realbyte:BYTE:l

countl_expression is an array element size multiplier. The total space
reserved for the argument on the stack is count2_expression times the length
specified by the argtype field, times countl_expression. The default value for
countl_expression is 1 if it is not specified. countl_expression times
count2_expression specifies the total count of the argument.

For Turbo Assembler versions 3.2 or later, you can specify count2_expression
using the? keyword to indicate that a variable number of arguments are
passed to the procedure. For example, an argument definition of

ARG tmp:WORD:?

defines an argument called tmp, consisting of a variable number of words.

? must be used as the last item in the argument list. Also, you can use?
only in procedures that support variable-length arguments (such as
procedures that use the C calling conventions).

If you end the argument list with an equal sign (=) and a symbol, Turbo
Assembler will equate that symbol to the total size of the argument block in
bytes. If you are not using Turbo Assembler's automatic handling of high
level language interfacing conventions, you can use this value at the end of
the procedure as an argument to the RET instruction. Notice that this

Turbo Assembler Users Guide

The scope of ARG
and LOCAL
variable names

See Chapter 11 for
more information

about controlling the
scope of symbols.

causes a stack cleanup of any pushed arguments before returning (this is
the Pascal calling convention).

The arguments and variables are defined within the procedure as BP
relative memory operands. Passed arguments defined with ARG are
positive offset from BP; local variables defined with LOCAL are negative
offset from BP. For example,

funcl PROC NEAR
ARG a:WORD,b:DWORD:4,c:BYTE=d
LOCAL x:DWORD,y:WORD:2=z

defines a as [bp+41, b as [bp+61, c as [bp+141, and d as 20;
x is [bp-21, y is [bp-61, and z is 8.

All argument names specified in the procedure header, whether ARGs
(passed arguments), RETURNs (return arguments), or LOCALs (local
variables), are global in scope unless you give them names prep ended with
the local symbol prefix.

The LOCALS directive enables locally scoped symbols. For example,

LOCALS
testl PROC PASCAL FAR
ARG @@a:WORD,@@b:DWORD,@@c:BYTE
LOCAL @@x:WORD,@@y:DWORD

MOV aX,@@a
MOV @@x,ax
LES di,@@b
MOV WORD ptr @@y,di
MOV WORD ptr @@y+2,es
MOV @@c,'a'
RET

ENDP

test2 PROC PASCAL FAR
ARG @@a:DWORD,@@b:BYTE
LOCAL @@x:WORD

LES di,@@a
MOV ax,es: [diJ
MOV @@x,ax
CMP al,@@b
jz @@dn
MOV @@x,O

@@dn: MOV ax,@@x
RET

Chapter 10, Declaring procedures 133

Preserving
registers

Defining procedures
using procedure
types

134

ENDP

Since this example uses locally scoped variables, the names exist only
within the body of the procedure. Thus, test2 can reuse the argument
names @@a, @@b, and @@x.

Most higher-level languages require that called procedures preserve certain
registers. You can do this by pushing them at the start of the procedure,
and popping them again at the end of it.

Turbo Assembler can automatically generate code to save and restore these
registers as part of a procedure's prolog and epilog code. You can specify
these registers with the USES statement. Here's its syntax:

USES item [,item] ...

item can be any register or single-token data item that can legally be pushed
or popped. There is a limit of eight items per procedure. For example,

myproc PROC PASCAL NEAR
ARG @@source:DWORD,@@dest:DWORD,@@count:WORD
USES cx,si,di,foo

MOV cX,@@count
MOV foo,@@count
LES di,@@dest
LDS si,@@source
REP MOVSB
RE

ENDP

See Chapter 18 for information about what registers are normally
preserved.

USES is only available when used with procedures that have a language
interfacing convention other than NOLANGUAGE.

You can use a procedure type (defined with PROCTYPE) as a template for
the procedure declaration itself. For example,

footype PROCTYPE pascal near :word, :dword, :word

foo PROC footype
arg al:word,a2:dword,a3:word

;pascal near procedure
;an error would occur if
;arguments did not match
;those of footype

Turbo Assembler Users Guide

When you declare a procedure using a named procedure description, the
number and types of the arguments declared for PROC are checked against
those declared by PROCTYPE. The procedure description supplies the
language and distance of the procedure declaration.

Nested procedures and scope rules

The LOCALS
directive enables

locally scoped
symbols. See

Chapter 11 for further
information.

All procedures have global scope, even if you nest them within another
procedure. For example,

testl PROC FAR
isome code here
CALL test2
isome more code here
RET

test2 PROC NEAR
isome code here
RET inear return

test2 ENDP
testl ENDP

In this example, it's legal to call testl or test2 from outside the outer
procedure.

If you want to have localized subprocedures, use a locally scoped name.
For example,

LOCALS
testl PROC FAR

RET
@@test2 PROC NEAR

RET
@@test2 ENDP
testl ENDP

isome code here

isome code here

In this case, you can only access the procedure @@test2 from within the
procedure testl. In fact, there can be multiple procedures named @@test2 as
long as no two are within the same procedure. For example, the following
is legal:

Chapter 10, Declaring procedures 135

LOCALS
test! PROC FAR

MOV si,OFFSET Buffer
CALL @@test2
RET

@@test2 PROC NEAR
RET

@@test2 ENDP
test! ENDP

test2 PROC FAR

isome code here

MOV si,OFFSET Buffer2
CALL @@test2
RET

@@test2 PROC NEAR
RET

@@test2 ENDP
test2 ENDP

isome code here

The following code is not legal:

LOCALS
test! PROC FAR

MOV si,OFFSET Buffer
CALL @@test2
RET

test! ENDP

@@test2 PROC NEAR
isome code here
RET

@@test2 ENDP

since the CALL to @@test2 specifies a symbol local to the procedure testl,
and no such symbol exists.

Declaring method procedures for objects

136

Some special considerations apply when you create method procedures for
objects. Object method procedures must be able to access the object that
they are operating on, and thus require a pointer to that object as a
parameter to the procedure.

Turbo Assembler Users Guide

You can find
information about the
calling conventions of

Borland C++ in
Chapter 18.

Turbo Assembler's treatment of objects is flexible enough to allow a wide
range of conventions for passing arguments to method procedures. The
conventions are constrained only by the need to interface with objects
created by a high-level language.

If you are writing a native assembly-language object method procedure,
you might want to use register argument passing conventions. In this case,
you should write a method procedure to expect a pointer to the object in a
register or register pair (such as ES:DI).

If you are writing a method procedure that uses high-level language
interfacing conventions, your procedure should expect the object pointer to
be one of the arguments passed to the procedure. The object pointer passed
from high-level OOP languages like C++ is an implicit argument usually
placed at the start of the list of arguments. A method procedure written in
assembly language must include the object pointer explicitly in its list of
arguments, or unexpected results will occur. Remember that the object
pointer can be either a WORD or DWORD quantity, depending on whether
the object is NEAR or FAR.

Other complexities arise when you write constructor or destructor
procedures in assembly language. C++ uses other implicit arguments
(under some circumstances) to indicate to the constructor or destructor that
certain actions must be taken.

Constructors written for an application using native assembly language do
not necessarily need a pointer to the object passed to them. If an object is
never statically allocated, the object's constructor will always allocate the
object from the heap.

Using procedure prototypes

See the beginning of
this chapter for

further information
about PROC.

For versions 3.2 and later, Turbo Assembler lets you declare procedure
prototypes much like procedure prototypes in C. To do so, use the
PROCDESC directive.

The Ideal mode syntax of PROCDESC is:

PROCDESC name [procedure_description]

Use the following syntax in MASM mode:

name PROCDESC [procedure_description]

procedure_description is similar to the language and argument specification
used in the PROC directive. Its syntax is:

Chapter 10, Dec/aring procedures 137

See Chapter 5 for
further information

about the syntax of
complex types.

138

[[language_modifier] language] [distance] [argument_list]

language_modifier, language, and distance have the same syntax as in the
PROC directive. argument_list has the form:

argument [,argument] ...

An iridividual argument has the following syntax:

[argname] [[countl_expression]] : complex_type [:count2_expression]

complex_type is the data type of the argument, and can be either a simple
type or a pointer expression. count2_expression specifies how many items of
this type the argument defines. The default value of count2_expression is I,
except for arguments of BYTE, which have a default count of 2 (since you
can't PUSH a byte value onto the 80x86 stack).

For the last argument, in procedure types whose calling convention allows
variable-length arguments (like C), count2_expression can be ?, to indicate
that the procedure caller will determine the size of the array.

Note that the name of each argument (argname) is optional, but complex_type
is required for each argument because procedure types are used mainly for
type checking purposes. The names of the arguments do not have to agree,
but the types must.

Here's an example:

test PROCDESC pascal near a:word,b:dword,c:word

This example defines a prototype for the procedure test as a PASCAL
procedure taking three arguments (WORD, DWORD, WORD). Argument
names are ignored, and you can omit them in the PROCDESC directive, as
follows:

test PROCDESC pascal near :word, :dword, :word

The procedure prototype is used to check calls to the procedure, and to
check the PROC declaration against the language, number of arguments,
and argument types in the prototype. For example,

test PROC pascal near
ARG al:word,a2:dword,a3:word jmatches PROCDESC for test

PROCDESC also globally publishes the name of the procedure. Procedures
that are not defined in a module are published as externals, while
procedures that are defined are published as public. Be sure that
PROCDESC precedes the PROC declaration, and any use of the procedure
name.

Turbo Assembler Users Guide

Procedure prototypes can also use procedure types (defined with
PROCTYPE). For example,

footype PROCTYPE pascal near :word, :dword, :word
foo PROCDESC footype

Chapter 10, Dec/aring procedures 139

140 Turbo Assembler Users Guide

c H A p T E R 1 1

Controlling the scope of symbols

In Turbo Assembler and most other programming languages, a symbol can
have more than one meaning depending on where it's located in a module.
For example, some symbols have the same meaning across a whole
module, while others are defined only within a specific procedure.

Symbol scope refers to the range of lines over which a symbol has a specific
meaning. Proper scoping of symbols is very important for modular
program development. By controlling the scope of a symbol, you can
control its use. Also, properly selecting the scope of a symbol can eliminate
problems that occur when you try to define more than one symbol of the
same name.

Redefinable symbols

Some symbol types that Turbo Assembler supports are considered
redefinable. This means that you can redefine a symbol of this type to be
another symbol of the same type at any point in the module. For example,
numeric symbols have this property:

foo = 1
movax/foo iMoves 1 into AX.

foo = 2
movax/foo ;Moves 2 into AX.

Generally, the scope of a given redefinable symbol starts at the point of its
definition, and proceeds to the point where it's redefined. The scope of the
last definition of the symbol is extended to include the beginning of the
module up through the first definition of the symbol. For example,

movax/foo iMoves 2 into AX!
foo = 1

movax/foo iMoves 1 into AX.
foo = 2 iThis definition is carried around to the start

;of the module ...
movax/foo iMoves 2 into AX.

Chapter 11, Controlling the scope of symbols 141

The following list contains the redefinable symbol types.

See Chapter 5 for _ text_macro
further information

about these. - numerical_expr

Block seoping

By default, block
scoped symbols are

disabled in Turbo
Assembler.

The LOCALS and
NOLOCALS
directives

142

_ multiline_macro

_ struc/union
_ table

_ record

_enum

Block scoping makes a symbol have a scope that corresponds to a
procedure in a module. Turbo Assembler supports two varieties of block
scoping: MASM-style, and native Turbo Assembler style.

Turbo Assembler uses a two-character code prep ended to symbols, which
determines whether a symbol in a procedure has block scope. This local
symbol prefix is denoted with "@@." You can use the LOCALS directive to
both enable block-scoped symbols, and to set the local symbol prefix. Its
syntax looks like this:

LOCALS [prefix_symbol]

The optional prefix_symbol field contains the symbol (of two character
length) that Turbo Assembler will use as the local-symbol p~efix. For
example,

LOCALS ;@@ is assumed to be the prefix by default.

foo proc
@@a: jmp @@a ;This @@a symbol belongs to procedure Faa.
foo endp

bar proc
@@a: jmp @@a ;This @@a symbol belongs to procedure BAR.
bar endp

If you want to disable block-scoped symbols, you can use the NOLOCALS
directive. Its syntax follows:

NOLOCALS

Note that you can also use block-scoped symbols outside procedures. In
this case, the scope of a symbol is determined by the labels defined with the
colon directive (:), which are not block-scoped symbols. For example,

Turbo Assembler Users Guide

MASM block
seoping

foo:
@@a:
@@b = 1
bar:
@@a = 2

iStart of scope.
iBelongs to scope starting at FOO:
iBelongs to scope starting at FOO:
iStart of scope.
iBelongs to scope starting at BAR:

In MASM versions 5.1 and 5.2, NEAR labels defined with the colon
directive (:) are considered block-scoped if they are located inside a
procedure, and you've selected a language interfacing convention with the
MODEL statement. However, these symbols are not truly block-scoped;
they can't be defined as anything other than a near label elsewhere in the
program. For example,

version m510
model small, c

codeseg

foo proc
a: jmp a iBelongs to procedure Faa
foo endp

bar proc
a: jmp a iBelongs to procedure BAR
bar endp

a = 1 iIllegal!

MASM-style local labels

MASM 5.1 and 5.2 provide special symbols that you can use to control the
scope of near labels within a small range of lines. These symbols are: @@,
@F,and@8.

When you declare @@ as a NEAR label using the colon (:) directive, you're
defining a unique symbol of the form @@xxxx (where xxxx is a
hexadecimal number). @8 refers to the last symbol defined in this way. @F
refers to the next symbol with this kind of definition. For example,

version m510
@@:

jmp @B
jmp @F

@@:
jmp @B
jmp @F

iGoes to the previous @@.
iGoes to the next @@.

iGoes to the previous @@.
iError: no next @@.

Chapter 11, Controlling the scope of symbols 143

144 Turbo Assembler Users Guide

c H A p T E R 12

Allocating data

Data allocation directives are used for allocating bytes in a segment. You
can also use them for filling those bytes with initial data, and for defining
data variables.

All data allocation directives have some features in common. First, they can
generate initialized data and set aside room for uninitialized data.
Initialized data is defined with some initial value; uninitialized data is
defined without specifying an initial value (its initial value is said to be
indeterminate). Data allocation directives indicate an uninitialized data
value with a ? Anything else should represent an initialized data value.
Chapter 7 explains why you should distinguish between initialized and
uninitialized data.

Another feature common to all data allocation directives is the use of the
CUP keyword to indicate a repeated block of data. Here's the general syntax
of all data allocation directives:

[name] directive dup_expr [,dup_expr ...]

Turbo Assembler initializes name to point to the space that the directive
reserves. The variable will have a type depending 9n the actual directive
used.

The syntax of each dup _expr can be one of the following:

.?

II value

• count_expression DUP (dup_expr [, dup_expr ... 1)

count_expression represents the number of times the data block will be
repeated. count_expression cannot be relative or forward referenced.

Use the? symbol if you want uninitialized data. The amount of space
reserved for the uninitialized data depends on the actual directive used.

value stands for the particular description of an individual data element
that is appropriate for each directive. For some directives, the value field

Chapter 12, Allocating data 145

can be very complex and contain many components; others may only
require a simple expression.

The following example uses the DW directive, which allocates WORDS:

DW 2 DUP (3 DUP (1, 3) , 5) ; Same as DW 1, 3 , 1, 3 , 1, 3, 5, 1, 3 , 1, 3, 1, 3, 5

Simple data directives

Table 12.1
Data size directives

146

You can define data with the OB, OW, 00, oa, OF, OP, or OT directives.
These directives define different sizes of simple data, as shown in the
following table.

Directive

DB
DW
DD
DQ
DF
DP
DT

Meaning

Define byte-size data.
Define ward-size data.
Define daubleward-size data.
Define quadward-size data.
Define 48-bit 80386 far-painter-size (6 byte) data.
Define 48-bit 80386 far-painter-size (6 byte) data.
Define tenbyte (10-byte) size data.

The syntax of the value field for each of these directives differs, based on the
capability of each data size to represent certain quantities. (For example, it's
never appropriate to interpret byte data as a floating-point number.)

DB (byte) values can be

• A constant expression that has a value between -128 and 255 (signed
bytes range from -128 to +127; unsigned byte values are from 0 to 255).

• An 8-bit relative expression using the HIGH or LOW operators.

• A character string of one or more characters, using standard quoted
string format. In this case, multiple bytes are defined, one for each
character in the string.

DW (word) values can be

• A constant expression that has a value between -32,768 and 65,535
(signed words range from -32,768 to 32,767; unsigned word values are
from 0 to 65,535).

• A relative expression that requires 16 bits or fewer, (including an offset in
a 16-bit segment, or a segment or group value).

• A one or two-byte string in standard quoted string format.

00 (doubleword) values can be

Turbo Assembler Users Guide

• A constant expression that has a value between -2,147,483,648 and
4,294,967,295 (when the 80386 is selected), or -32,768 and 65,535
otherwise.

• A relative expression or address that requires 32 bits or fewer (when the
80386 is selected), 16 bits or fewer for any other processor.

II A relative address expression consisting of a 16-bit segment and a'16-bit
offset.

• A string of up to four bytes in length, using standard quoted string
format.

a A short (32-bit) floating-point number.

OQ (quadword) values can be

.. A constant expression that has a value between -2,147,483,648 and
4,294,967,295 (when the 80386 is selected), or -32,768 and 65,535
otherwise .

.. A relative expression or address that requires 32 bits or fewer (when the
80386 is selected), or 16 bits or fewer for any other processor .

.. A positive or negative constant that has a value between _263 and 264-1
(signed quadwords range in value from _263 to 263-1; unsigned
quadwords have values from 0 to 264-1).

II A string of up to 8 bytes in length, using standard quoted string format.

• A long (64-bit) floating-point number.

OF, OP (80386 48-bit far pointer) values can be

.. A constant expression that has a value between -2,147,483,648 and
4,294,967,295 (when the 80386 is selected), or -32,768 and 65,535
otherwise.

II A relative expression or address that requires 32 bits or fewer (when the
80386 is selected), or 16 bits or fewer for any other processor .

.. A relative address expression consisting of a 16-bit segment and a 32-bit
offset.

II A positive or negative constant that has a value between _247 and 248-1
(signed 6-byte values range in value from _247 to 247-1; unsigned 6-byte
values have values from 0 to 248-1).

• A string of up to 6 bytes in length, in standard quoted string format.

OT values can be

II A constant expression that has a value between -2,147,483,648 and
4,294,967,295 (when the 80386 is selected), or -32,768 and 65,535
otherwise.

Chapter 12, Allocating data 147

Data is always stored
in memory low value

before high value.

We recommend
always using the form

with the leading digit
and the decimal
point, for clarity.

148

• A relative expression or address that requires 32 bits or fewer (when the
80386 is selected), or 16 bits or fewer for any other processor.

• A positive or negative constant that has a value between _2 79 and 28°-1
(signed tenbytes range in value from _279 to 279-1; unsigned tenbytes
have values from 0 to 28°-1).

• A 10-byte temporary real formatted floating-point number.

• A string of up to 10 bytes in length, in standard quoted string format.

• A packed decimal constant that has a value between 0 and
99,999,999,999,999,999,999.

Numerical and string constants for the simple data allocation directives
differ in some cases from those found in standard Turbo Assembler
expressions. For example, the DB, DP, DQ, and DT directives accept quoted
strings that are longer than those accepted within an expression.

Quoted strings are delimited either by single quotes(') or double quotes (").
Inside of a string, two delimiters together indicate that the delimiter
character should be part of the string. For example,

'what"s up doc?'

represents the following characters:

what's up doc?

You can have floating-point numbers as the value field for the DD, DQ, and
DT directives. Here are some examples of floating-point numbers:

1. OE3 0 i Stands for 1. 0 x 1030

2.56E-21 iStands for 2.56 x 10-21

1.28E+5 iStands for i.28 x 105

0.025 iStands for .025

Turbo Assembler recognizes these floating-point numbers because they
contain a '.' after a leading digit. These rules are relaxed somewhat in
MASM mode. For example,

DD 1E30
DD .123

iLegal MASM mode floating point value!
iLegal in MASM mode only.

Turbo Assembler also allows encoded real numbers for the DO, DQ, and DT
directives. An encoded real number is a hexadecimal number of exactly a
certain length. A suffix of R indicates that the number will be interpreted as
an encoded real number. The length of the number must fill the required
field (plus one digit if the leading digit is a zero); for example,

DD 12345678r
DD 012345678r
DD 1234567r

iLegal number
iLegal number
iIllegal number (too short)

Turbo Assembler Users Guide

Chapter 5 details
numerical constants

and the RADIX
directive.

The other suffix values (D, H, 0, Q, and B) function similarly to those found
on numbers in normal expressions.

Some of the simple data allocation directives treat other numerical constant
values specially. For example, if you don't specify radix for a value in the
DT directive, Turbo Assembler uses binary coded decimal (BCD) encoding.
The other directives assume a decimal value, as follows:

DD 1234
DT 1234

iDecimal
iBCD

The default radix (that the RADIX directive specifies) is not applied for the
DO, Da, and DT directives if a value is a simple positive or negative
constant. For example,

RADIX 16
DW 1234
DD 1234

i1234 hexidecimal
i1234 decimal

Creating an instance of a structure or union

To create an instance of a structure or a union data type, use the structure
or union name as a data allocation directive. For example, assume you've
defined the following:

ASTRUC STRUC
B DB IxyZ"
C DW 1
D DD 2
ASTRUC ENDS

BUNION UNION
X DW?
Y DD?
Z DB?
BUNION ends

Then the statements

ATEST
BTEST

ASTRUC
BUNION

would create instances of the structure astruc (defining the variable atest)
and the union bunion (defining the variable btest). Since the example
contained the? uninitialized data value, no initial data will be emitted to
the current segment.

Chapter 12, Allocating data 149

Initializing union
or structure
instances

150

Initialized structure instances are more complex than uninitialized
instances. When you define a structure, you have to specify an initial
default value for each of the structure members. (You can use the?
keyword as the initial value, which indicates that no specific initial value
should be saved.) When you create an instance of the structure, you can
create it using the default values or overriding values. The simplest
initialized instance of a structure contains just the initial data specified in
the definition. For example,

ASTRUC {}

is equivalent to

DB IxyZ"

DW 1
DD 2

The braces ({ }) represent a null initializer value for the structure. The
initializer value determines what members (if any) have initial values that
should be overridden, and by what new values, as you allocate data for the
structure instance. The syntax of the brace initializer follows:

{ [member_name = value [,member_name = value ... ll }

member _name is the name of a member of the structure or union. value is the
value that you want the member to have in this instance. Specify a null
value to tell Turbo Assembler to use the initial value of the member from
the structure or union definition. A ? value indicates that the member
should be uninitialized. Turbo Assembler sets any member that doesn't
appear in the initializer to the initial value of the member from the
structure or union definition. For example,

ASTRUC {C=2,D=?}

is equivalent to

DB IxyZ"

DW 2
DD ?

You can use the brace initializer to specify the value of any structure or
union member, even in a nested structure or union.

Unions differ from structures because elements in a union overlap one
another. Be careful when you initialize a union instance since if several
union members overlap, Turbo Assembler only lets one of those members
have an initialized value in an instance. For example,

Turbo Assembler Users Guide

BUNION {}

is valid because all three members of the union are uninitialized in the
union definition. This statement is equivalent to

DB 4 DUP (?)

In this example, four bytes are reserved because the size of the union is the
size of its largest member (in this case a DWORD). If the initialized member
of the union is not the largest member of the union, Turbo Assembler
makes up the difference by reserving space but not emitting data. For
example,

BUNION {Z=l}

is equivalent to

DB 1
DB 3 DUP (?)

Finally, multiple initialized members in a union produce an error. For
example, this is illegal:

BUNION {X=l,Z=2}

Note that if two or more fields of the union have initial values in the union
definition, then using the simple brace initializer ({ }) will also produce an
error. The initializer must set all but one value to ? for a legal instance to be
generated.

An alternative method of initializing structure and union instances is to use
the bracket « » initializer. The values in the initializer are unnamed but
are laid out in the same order as the corresponding members in the
structure or union definition. Use this syntax for the bracket initializer:

< [value [,value ... JJ >

value represents the desired value of the corresponding member in the
structure or union definition. A blank value indicates that you'll use the
initial value of the member from the structure or union definition. A ?
keyword indicates that the member should be uninitialized. For example,

ASTRUC <"abc", ,?>

is equivalent to

Chapter 12, Allocating data

DB "abc"
DW 1
DD ?

151

152

If you specify fewer values than there are members, Turbo Assembler
finishes the instance by using the initial values from the structure or union
definition for the remaining members.

ASTRUC <"abc"> iSarne as ASTRUC <"abc",,>

When you use the bracket initializer, give special consideration to nested
structures and unions. The bracket initializer expects an additional
matching pair of angle brackets for every level of nesting, so that Turbo
Assembler will treat the nested structure or union initializer as a single
entity (to match the value in the instance). Alternatively, you can skip an
entire level of nesting by leaving the corresponding entry blank (for the
default value of the nested structure or union), or by specifying the?
keyword (for an uninitialized nested structure or union). For example,
examine the following nested structure and union:

CUNION STRUC
CTYPE DB?
UNION iStart of union

ilf CTYPE=O, use this ...
STRUC

ENDS

CTOPARl DW 1
CTOPAR2 DB 2

ilf CTYPE=l, use this ...
STRUC

ENDS

ENDS
ENDS

CTIPARl DB 3
CTIPAR2 DD 4

iEnd of union
iEnd of structure data type

The bracket initializer for this complex structure/union has two levels of
nesting. This nesting must appear as matched angle brackets within the
initializer, like

CUNION <O,«2,>,?»

This directive is equivalent to

DB 0
DW 2
DB 2
DB 2 DUP (?)

Turbo Assembler Users Guide

Creating an instance of a record

Initializing record
instances

To create an instance of a record data type, use the name of the record data
type as a data allocation directive. For example, assume you've defined the
following:

MYREC RECORD VAL:3=4,MODE:2,SZE:4=15

Then, the statement

MTEST MYREC ?

would create an instance of the record myrec (defining the variable mtest).
No initial data is emitted to the current segment in this example because
the? uninitialized data value was specified.

Record instances are always either a byte, a word, or a doubleword,
depending on the number of bits allocated in the record definition.

You must specify an initial value for some or all of the record fields when
you define a record. (Turbo Assembler assumes that any unspecified initial
values are 0.) The simplest initialized instance of a record contains just the
initial field data specified in the definition. For example,

MYREC {}

is equivalent to

ow (4 SHL 6) + (0 SHL 4) + (15 SHL 0)
jSHL is the shift left operator for expressions

The braces ({ }) represent a null initializer value for the record. The
initializer value determines what initial values should be overridden, and
by what new values (as you allocate data for the record instance).

Use this syntax of the brace initializer for records:

{ [field_name = expression [,field_name = expression ... JJ

field_name is the name of a field in the record. expression is the value that
you want the field to have in this instance. A blank value indicates that
you'll use the initial value of the field from the record definition. A ? value
is equivalent to zero. Turbo Assembler sets any field that doesn't appear in
the initializer to the initial value of the field from the record definition. For
example,

MYREC {VAL=2,SZE=?}

is equivalent to

Chapter 12, Allocating data 153

DW (2 SHL 6) + (0 SHL 4) + (0 SHL 0)

An alternative method of initializing record instances is to use the bracket
« >) initializer. In this case, brackets delineate the initializer. The values in
the initializer are unnamed but are laid out in the same order as the
corresponding fields in the record definition. The syntax of the bracket
initializer follows:

< [expression [,expression ... JJ >

expression represents the desired value of the corresponding field in the
record definition. A blank value indicates that you'll use the initial value of
the field from the record definition. A ? keyword indicates that the field
should be zero. For example,

MYREC <,2,?>

is equivalent to

DW (4 SHL 6) + (2 SHL 4) + (0 SHL 0)

If you specify fewer values than there are fields, Turbo Assembler finishes
the instance by using the initial values from the record definition for the
remaining fields.

MYREC <1> isarne as MYREC <1,,>

Creating an instance of an enumerated data type

154

You can create an instance of an enumerated data type by using the name
of the enumerated data type as a data allocation directive. For example,
assume you have defined the following:

ETYPE ENUM FEE, FIE, Faa, FUM

Then the statement

ETEST ETYPE ?

would create an instance of the enumerated data type etype (defining the
variable etest). In this example, no initial data is emitted to the current
segment because the? uninitialized data value is specified.

Enumerated data type instances are always either a byte, a word, or a
doubleword, depending on the maximum value present in the enumerated
data type definition.

Turbo Assembler Users Guide

Initializing
enumerated data
type instances

You can use any expression that evaluates to a number that will fit within
the enumerated data type instance; for example,

ETYPE ?
ETYPE FOO
ETYPE 255

;uninitialized instance
;initialized instance, value FOO
;a number outside the ENUM that also fits

Creating an instance of a table

Initializing table
instances

To create an instance of a table data type, use the table name as a data
allocation directive. For example, assume you have defined the following
table:

TTYPE TABLE VIRTUAL MoveProc:WORD=MoveRtn,
VIRTUAL MsgProc:DWORD=MsgRtn,
VIRTUAL DoneProc:WORD=DoneRtn

Then, the statement

TTEST TTYPE ?

would create an instance of the table ttype (defining the variable ttest). No
initial data will be emitted to the current segment in this example because
the? uninitialized data value was specified.

When you define a table, you must specify an initial value for all table
members. The simplest initialized instance of a table contains just the initial
data specified in the definition. For example,

TTYPE {}

is equivalent to

DW MoveRtn
DD MsgRtn
DW DoneRtn

The braces ({ }) represent a null initializer value for the structure. The
initializer value determines what members (if any) have initial values that
should be overridden, and by what new values, as you allocate data for the
table instance.

Here's the syntax of the brace initializer:

{ [member_name = value [,member_name = value ...]]

Chapter 12, Allocating data 155

member _name is the name of a member of the table. value is the value that
you want the member to have in this instance. A blank value indicates that
you'll use the initial value of the member from the table definition. A ?
value indicates that the member should be uninitialized. Turbo Assembler
sets any member that doesn't appear in the initializer to the initial value of
the member from the table definition. For example,

TTYPE {MoveProc=MoveRtn2,DoneProc=?}

is equivalent to

OW MoveRtn2
DO MsgRtn
OW ?

Creating and initializing a named-type instance

156

You can create an instance of a named type by using the type name as a
data allocation directive. For example, if you define the following type:

NTTYPE TYPEDEF PTR BYTE

the statement

NTTEST NTTYPE ?

creates an instance of the named type nttype (defining the variable nttest).
No initial data is emitted to the current segment in this example because
you specified the? uninitialized data value.

The way that you initialize a named-type instance depends on the type that
the named type represents. For example, NTTYPE in the previous example
is a word, so it will be initialized as if you had used the OW directive, as
follows:

NTTYPE 1,2,3
OW 1,2,3

iRepresents pointer values 1,2,3.
iSarne as NTTYPE 1,2,3.

Howe;"er, if the named type represents a structure or table, it must be
initialized the same way as structures and tables are. For example,

faa STRUC
f1 DB?
ENDS
bar TYPEDEF faa

bar {f1=1} iMust use structure initializer.

Turbo Assembler Users Guide

Creating an instance of an object

Creating an instance of an object in an initialized or uninitialized data
segment is exactly the same as creating an instance of a structure. In fact,
objects in Turbo Assembler are structures, with some extensions. One of
these extensions is the @Mptr_<object_name> structure member.

An object data type with virtual methods is a structure having one member
that points to a table of virtual method pointers. The name of this member
is @Mptr_<object_name>. Usually, you would initialize an instance of an object
using a constructor method. However, you could have objects designed to
be static and have no constructor, but are instead initialized with an
initializer in a data segment.

If you use the @Mptr_<object_name> member's default value, Turbo
Assembler will correctly initialize the object instance.

Another difference between structures and objects is that objects can inherit
members from previous object definitions. When this inheritance occurs,
Turbo Assembler handles it as a nested structure. Because of this, we do
not recommend using bracket
« » initializers for object data.

Creating an instance of an objects virtual method table

Every object that has virtual methods requires an instance of a table of
virtual methods to be available somewhere. A number of factors determine
the proper placement of this table, including what program model you're
using, whether you want near or far tables, and so forth. Turbo Assembler
requires you to place this table. You can create an instance for the most
recently defined object by using the TBLINST pseudo-op, with this syntax:

TBLINST

TBLINST defines @TableAddr_<object_name> as the address of the virtual table .
for the object. It is equivalent to

Chapter 12, Allocating data 157

158 Turbo Assembler Users Guide

c H A p T E R 13

Advanced coding instructions

Turbo Assembler recognizes all standard Intel instruction mnemonics
applicable to the currently selected processor(s). You can find a detailed
summary of these instructions in the quick reference guide. This chapter
describes Turbo Assembler's extensions to the instruction set, such as the
extended CALL instruction for calling language procedures.

Intelligent code generation: SMART and NOSMART

Table 13.1
Intelligent code

generation directives

See Chapter 3 for
details on VERSION.

Intelligent code generation means that Turbo Assembler can determine
when you could have used different instructions more efficiently than
those you supplied. For example, there are times when you could have
replaced an LEA instruction by a shorter and faster MOV instruction, as
follows:

LEA AX,lval

can be replaced with

MOV AX,OFFSET lval

Turbo Assembler supplies directives that let you use intelligent code
generation. The following table lists these directives.

Directive

SMART
NOS MART

Meaning

Enables smart code generation.
Disables smart code generation.

By default, smart code generation is enabled. However, smart code
generation is affected not only by the SMART and NOSMART directives,
but also by the VERSION directive.

Smart code generation affects the following code generation situations:

.. Replacement of LEA instructions with MOV instructions if the operand of
the LEA instruction is a simple address.

Chapter 13, Advanced coding instructions 159

• Generation of signed Boolean instructions, where possible. For example,
AND AX,+02 vs. AND AX,0002.

• Replacement of CALL FAR xxxx with a combination of PUSH CS, CALL
NEAR xxxx, when the target xxxx shares the same CS register.

Using smart instructions make it easier to write efficient code. Some
standard Intel instructions have also been extended to increase their power
and ease of use. These are discussed in the next few sections.

Extended jumps

160

Conditional jumps such as JC or JE on the 8086, 80186, and 80286
processors are only allowed to be near (within a single segment) and have a
maximum extent of -128 bytes to 127 bytes, relative to the current location
counter. The same is true of the loop conditional instructions such as JCXZ
or LOOP on all the Intel processors.

Turbo Assembler can generate complementary jump sequences where
necessary and remove this restriction. For example, Turbo Assembler might
convert

to

JC xxx

JNC ternptag
JMP xxx

... You can enable this complementary jump sequences with the JUMPS
directive, and disable it with the NOJUMPS directive. By default, Turbo
Assembler doesn't generate this feature.

When you enable JUMPS, Turbo Assembler reserves enough space for all
forward-referenced conditional jumps for a complementary jump sequence.
When the actual distance of the forward jump is determined, you might not
need a complementary sequence. When this happens, Turbo Assembler
generates Nap instructions to fill the extra space ..

To avoid generating extra Naps, you can

• You can use an override for conditional jumps that you know are in
range; for example,

JC SHORT abc
ADD ax,ax

abc:

Turbo Assembler Users Guide

• Specify the 1m command-line switch. See Chapter 2 for more about this
switch.

Additional 80386 LOOP instructions

The loop instructions for the 80386 processor can either use CX or ECX as
the counting register. The standard LOOP, LOOPE, LOOPZ, LOOPNE, and
LOOPNZ mnemonics from Intel select the counting register based on
whether the current code segment is a 32-bit segment (when using ECX) or
a 16-bit segment (when using CX).

Turbo Assembler has special instructions that increase the flexibility of the
LOOP feature. The LOOPW, LOOPWE, LOOPWZ, LOOPWNE, and
LOOPWNZ instructions use CX as the counting register, regardless of the
size of the current segment. Similarly, the LOOPD, LOOPDE, LOOPDZ,
LOOPDNE, and LOOPDNZ instructions use ECX as the counting register.

Additional 80386 ENTER and LEAVE instructions

Use the ENTER and LEAVE instructions for setting up and removing a
procedure's frame on the stack. Depending on whether the current code
segment is a 32-bit segment or a 16-bit segment, the standard ENTER and
LEAVE instructions will modify either the EBP and ESP 32-bit registers, or
the BP and SP 16-bit registers. These instructions might be inappropriate if
the stack segment is a 32-bit segment and the code segment is a 16-bit
segment, or the reverse.

Turbo Assembler provides four additional instructions that always select a
particular stack frame size regardless of the code segment size. The
ENTERW and LEAVEW instructions always use BP and SP as the stack
frame registers, while the ENTERD and the LEAVED instructions always
use EBP and ESP.

Additional return instructions

The standard RET instruction generates code that terminates the current
procedure appropriately. This includes generating epilog code for a
procedure that uses a high-level language interfacing convention. Even for
a procedure with NOLANGUAGE as its calling convention, the RET
instruction will generate different code if you declare the procedure NEAR
or FAR. For a NEAR procedure, Turbo Assembler generates a near return

Chapter 13, Advanced coding instructions 161

Table 13.2
Return instructions

instruction. For a FAR procedure, Turbo Assembler generates a far return
instruction. (Outside of a procedure, a near return is always generated.)

Turbo Assembler contains additional instructions to allow specific return
instructions to be generated (without epilog sequences). The following
table lists them.

Instruction

RETN
RETF
RETCODE

Function

Always generates a near return.
Always generates a far return.
Generates a return appropriate for the currently selected model. Generates a
near return for models TINY, SMALL, COMPACT, and TPASCAL. Generates a
far return for models MEDIUM, LARGE, HUGE, and TCHUGE.

AdditionallRET instructions

For Turbo Assembler version 3.2 or later, you can use an expanded form of
the IRET instruction. IRET will pop flags from the stack DWORD-style if the
current code segment is 32-bit. Otherwise, a WORD-style POP is used. The
IRETW instruction always pops WORD-style. Note that you can use these
enhancements only if you select version T320. Otherwise, IRETwill pop

, flags WORD-style, and IRETW is unavailable.

Extended PUSH and POP instructions

Multiple PUSH
and POPs

162

Turbo Assembler supports several extensions to the PUSH and POP
instructions. These extensions greatly reduce the quantity of typing
required to specify an extensive series of PUSH or POPs.

You can specify more than one basic PUSH or POP instruction per line. For
example,

PUSH ax
PUSH bx
PUSH ex
POP ex
POP bx
POP ax

can be written as

PUSH ax bx ex
POP ex bx ax

Turbo Assembler Users Guide

Pointer PUSH and
POPs

PUSHing
constants on the
8086 processor

Note: you can only do
this if youve turned

smart code
generation on.

For Turbo Assembler to recognize there are multiple operands present,
make sure that any operand cannot conceivably be considered part of an
adjacent operand. For example,

PUSH foo [bx]

might produce unintended results because foo / [bx], and foo [bx] are all
legal expressions. You can use brackets or parentheses to clarify the
instruction, as follows:

PUSH [fool [bx]

The standard PUSH and POP instructions can't push far pointers, which
require 4 bytes on the 8086, 80186, and 80286 processors, and up to 6 bytes
on the 80386 processor.

Turbo Assembler permits PUSH and POP instructions to accept DWORD
sized pointer operands for the 8086, 80186, and 80286 processors, and
PWORD and QWORD-sized pointer operands for the 80386 processor.
When such a PUSH or POP is encountered, Turbo Assembler will generate
code to PUSH or POP the operand into two pieces.

While the 80186, 80286, and 80386 processors have basic instructions
available for directly PUSHing a constant value, the 8086 does not.

Turbo Assembler permits constants to be PUSHed on the 8086, and
generates a sequence of instructions that has the exact same result as the
PUSH of a constant on the 80186 and higher processors.

The sequence of instructions Turbo Assembler uses to perform the PUSH of
a constant is about ten bytes long. There are shorter and
faster ways of performing the same function, but they all involve the
destruction of the contents of a register; for example,

MOV ax/constant
PUSH ax

This sequence is only four bytes long, but the contents of the AX register is
destroyed in the process.

Additional PUSHA, POPA, PUSHF and POPF instructions

For Turbo Assembler versions 3.2 or later, you can use an expanded form of
the PUSHA, POPA, PUSHF and POPF instructions. If the current code
segment is 32-bit, the PUSHA instruction will push registers in DWORD
style, and POP A will pop registers in DWORD-style. Otherwise, Turbo

Chapter 13, Advanced coding instructions 163

Assembler uses WORD-style PUSH and POP. Similarly, PUSHF and POPF
will push and pop flags DWORD-style for a 32-bit code segment, or
WORD-style otherwise.

The PUSHAW, POPAW, PUSHFW, and POPFW instructions always push
and pop WORD-style. Remember that you can use these enhancements
only if you're using version T320 or later; otherwise, the pushes and pops
will be done WORD-style.

The PUSHSTATE and POPSTATE instructions

164

The PUSHSTATE directive saves the current operating state on an internal
stack that is 16 levels deep. PUSHSTATE is particularly useful if you have
code inside a macro that functions independently of the current operating
state, but does not affect the current operating mode.

The state information that Turbo Assembler saves consists of:

• Current emulation version (for example T310)
• Mode selection (for example IDEAL, MASM, QUIRKS, MASM51)
• EMUL or NOEMUL switches
• Current processor or coprocessor selection
• MUL TERRS or NOMULTERRS switches
• SMART or NOSMART switches
• The current radix
• JUMPS or NOJUMPS switches
• LOCALS or NO LOCALS switches
• The current local symbol prefix

. Use the POPSTATE directive to return to the last saved state from the stack.

i PUSHSTATE and POPSTATE example

.386
ideal
model small
dataseg

pass_string db 'passed' ,13,10,36
fail_string db 'failed' ,13,10,36

codeseg

Turbo Assembler Users Guide

Extended shifts

jumps

nextl:

passl:

fini:

end

; Show changing processor selection, number radix, and JUMPS mode

xor eax,eax Zero out eax. Can use EAX in 386 mode
Preserve state of processor, radix and JUMPS pushstate

nojumps
radix 2 Set to binary radix
p286

mov
cmp
jne

mov

popstate

cmp
je
mov
jmp

mov

mov
mov
mov
int

mov
int

ax,l
ax,l
next1

ax, 100

Only AX available now. EAX would give errors.

No extra NOPS after this
Assemble with /la and check in .lst file.
Now 100 means binary 100 or 4 decimal.

Restores JUMPS and 386 mode and default radix.

eax,4 EAX available again. Back in decimal mode.
pass1 Extra NOPS to handle JUMPS. Check in .lst file
dx,OFFSET fail_string Load the fail string
fini

dx,OFFSET pass_string ; Load the pass string.

ax,@data ; Print the string out
ds,ax
ah,9h
21h

ah, 4ch
21h

Return to DOS

On the 8086 processor, the shift instructions RCL, RCR, ROL, ROR, SHL,
SHR, SAL, and SAR cannot accept a constant rotation count other than 1.
The 80186, 80286, and 80386 processors accept constant rotation counts up
to 255.

When Turbo Assembler encounters a shift instruction with a constant
rotation count greater than 1 (with the 8086 processor selected), it generates
an appropriate number of shift instructions with a rotation count of 1. For
example,

.8086
SHL ax,4

Chapter 13, Advanced coding instructions 165

generates

SHL ax,l
SHL ax,l
SHL ax,l
SHL ax,l

Forced segment overrides: SEGxx instructions

Table 13.3
Segment override

instructions

Turbo Assembler provides six instructions that cause the generation of
segment overrides. The following table lists these instructions.

Instruction

SEGCS
SEGSS
SEGDS
SEGES
SEGFS
SEGGS

Meaning

Generates a CS override prefix byte.
Generates an SS override prefix byte.
Generates a OS override prefix byte.
Generates an ES override prefix byte.
Generates an FS override prefix byte.
Generates a GS override prefix byte.

You can use these instructions in conjunction with instructions such as
XLATB, which do not require arguments, but can use a segment override.
For example,

SEGCS XLATB

Note that most such instructions have an alternative form, where you can
provide a dummy argument to indicate that an override is required. For
example,

XLAT BYTE PTR cs: [bxl

These two examples generate exactly the same code.

Additional smart flag instructions

166

Often, you can simplify an instruction that manipulates bits in a flag to
improve both code size and efficiency. For example,

OR aX,lOOOh

might be simplified to

OR ah,lOh

Turbo Assembler Users Guide

Table 13.4
Smart flag

instructions

if the only result desired was to set a specific bit in AX, and the processor
flags that the instruction affects are unimportant. Turbo Assembler
provides four additional instructions that have this functionality, as shown
in the following table:

Instruction Function Corresponds to

SETFLAG Set flag bit(s) OR
MASKFLAG Mask off flag bit(s) AND
TESTFLAG Test flag bit(s) TEST
FLiPFLAG Complement flag bit(s) XOR

Use these instructions to enhance the modularity of records; for example,

Faa RECORD RO:l,Rl:4,R2:3,R3:1

TESTFLAG AX,RO

In this example, TESTFLAG will generate the most efficient instruction
regardless of where RO exists in the record.

Additional field value manipulation instructions

Table 13.5
Instructions for

setting and retrieving
values

The SETFIELD
instruction

Turbo Assembler can generate specific code sequences for setting and
retrieving values from bit fields specified with the RECORD statement. This
lets you write code that is independent of the actual location of a field
within a record. Used in conjunction with the ENUM statement, records can
thus achieve an unprecedented level of modularity in assembly language.
The following table lists these instructions:

Instruction

SETFIELD
GETFIELD

Function

Sets a value in a record field.
Retrieves a value from a record field.

SETFIELD generates code that sets a value in a record field. Its syntax
follows:

SETFIELD field_name destination_rim, source_reg

field_name is the name of a record member field. destination_rim for
SETFIELD is a register or memory address of type BYTE or WORD (or
DWORD for the 80386). source_reg must be a register of the same size or
smaller. If the source is smaller than the destination, the source register
must be the least significant part of another register that is the same size as

Chapter 13, Advanced coding instructions 167

The entire contents of
the operating register
are destroyed by the

SETFIELD operation.

The GETFIELD
instruction

the destination. This full-size register is called the operating register. Use this
register to shift the value in the source register so that it's aligned with the
destination. For example,

Faa RECORD RO:l,Rl:4,R2:3,R3:1

SETFIELD Rl AX,BL
SETFIELD Rl AX,BH

ioperating register is BX
iillegalt

SETFIELD shifts the source register efficiently to align it with the field in
the destination, and ORs the result into the destination register. Otherwise,
SETFIELD modifies only the operating register and the processor flags.

To perform its function, SETFIELD generates an efficient but extended
series of the following instructions: XOR, XCHG, ROL, ROR, OR, and
MOVZX.

If you're using SETFIELD when your source and target registers are the
same, the instruction does not OR the source value to itself. Instead,
SETFIELD ensures that the fields of the target register not being set will be
zero.

SETFIELD does not attempt to clear the target field before ORing the new
value. If this is necessary, you must explicitly clear the field using the
MASKFLAG instruction.

GETFIELD retrieves data from a record field. It functions as the logical
reverse of the SETFIELD instruction. Its syntax follows:

GETFIELD field_name destination_reg , source_rim

field_name and destination_reg function as they do for SETFIELD. You can
use source_rim as you would for source_reg (for SETFIELD). For example,

Faa RECORD RO:l,Rl:4,R2:3,R3:1

GETFIELD Rl BL,AX
GETFIELD Rl BH,AX

ioperatingregister is BX
iillegalt

.. Note that GETFIELD destroys the entire contents of the operating register.

168

GETFIELD retrieves the value of a field found in the source register or
memory address, and sets the pertinent portion of the destination register
to that value. This instruction affects no other registers than the operating
register and the processor flags.

To accomplish its function, GETFIELD generates an efficient but extended
series of the following instructions: MOV, XCHG, ROL, and ROA.

Turbo Assembler Users Guide

If you're using the GETFIELD instruction when your source and target
registers are the same, the instruction will not generate the nonfunctional
MOV target, source instruction.

Additional fast immediate multiply instruction

Turbo Assembler provides a special immediate multiply operation for
efficient array indexing. FASTIMUL addresses a typical problem that occurs
when you create an array of structures. There is no immediate multiply
operation available for the 8086 processor. Even for the more advanced
processors, multiplication using shifts and adds is significantly faster in
some circumstances than using the standard immediate IMUL instruction.
Based on the currently specified processor, Turbo Assembler's FASTIMUL
instruction chooses between the most efficient sequence of shifts and adds
available, and the current processor's immediate IMUL operation (if any).
FASTIMUL has the following syntax:

This instruction is much like the trinary IMUL operation available on the
80186,80286, and 80386 processors. The dest_reg destination register is a
WORD register (or it can be DWORD on the 80386). source_rim is a register
or memory address that must match the size of the destination. value is a
fixed, signed constant multiplicand.

FASTIMUL uses a combination of IMUL, MOV, NEG, SHL, ADD, and SUB
instructions to perform its function. This function destroys the source
register or memory address, and leaves the processor flags in an
indeterminate state.

Extensions to necessary instructions for the 80386 processor

See Chapter 5 for
further information

about overriding
address sizes with

the SMALL and
LARGE operators.

The 80386 processor has the ability to operate in both 16-bit and 32-bit
mode. Many of the standard instructions have different meanings in these
two modes. In Turbo Assembler, you can control the operating size of the
instruction using the SMALL and LARGE overrides in expressions.

In general, when you use SMALL or LARGE as part of an address
expression, the operator controls the generation of the address portion of
the instruction, determining whether it should be 16- or 32-bit.

Chapter 13, Advanced coding instructions 169

Note: Turbo
Assembler selects

the size of the
instruction using

SMALL and LARGE
only when no other

information is
available.

When SMALL or LARGE appears outside of the address portion of an
expression, it can control whether a 16-bit instruction or a 32-bit instruction
is performed. In cases where you can determine the size of the instruction
from the type of the operand, Turbo Assembler selects the size of the
instruction. The following table shows the instructions that SMALL and
LARGE affect.

Table 13.6: Instructions affected by SMALL and LARGE

Instruction Effect

PUSH [SMALL/LARGE] segreg
POP [SMALL/LARGE] segreg
FSAVE [SMALL/LARGE] memptr
FRSTOR [SMALL/LARGE] memptr
FSTENV [SMALL/LARGE] memptr
FLOENV [SMALL/LARGE] memptr
LGOT [SMALL/LARGE] memptr
SGOT [SMALL/LARGE] memptr
LlOT [SMALL/LARGE] memptr
SlOT [SMALL/LARGE] memptr
JMP [SMALL/LARGE] memptr

Selects whether 16-bit or 32-bit form of segment register is PUSHed.
Selects whether 16-bit or 32-bit form of segment register is POPped.
Selects whether small or large version of floating-point state is saved.
Selects whether small or large version of floating-point state is restored.
Selects whether small or large version of floating-point state is stored.
Selects whether small or large version of floating-point state is loaded.
Selects whether small or large version of global descriptor table is loaded.
Selects whether small or large version of global descriptor table is saved.
Selects whether small or large version of interrupt descriptor table is loaded.
Selects whether small or large version of interrupt descriptor table is saved.
For DWORD-sized memory addresses, selects between FAR 16-bit JMP and
NEAR 32-bit JMP.

CALL [SMALL/LARGE] memptr For DWORD-sized memory addresses, selects between FAR 16-bit CALL and
NEAR 32-bit CALL.

Calling procedures with stack frames

170

Turbo Assembler supports an extended form of the CALL instruction that
lets you directly call procedures that use high-level language interfacing
conventions.

Arguments to procedures that use high-level language interfacing
conventions are passed on the stack in a stack frame. The caller must push
these arguments onto the stack before calling the procedure.

The interfacing convention of the procedure determines the order
arguments should be pushed into the stack frame. For BASIC, FORTRAN,
and PASCAL procedures, arguments are pushed onto the stack in the order
they are encountered; for C and CPP (C++), the arguments are pushed in
the reverse order.

The interfacing convention of a procedure also determines whether the
procedure or the caller of the procedure must remove the arguments from
the stack once the procedure is called. C and C++ require the caller to clean

Turbo Assembler Users Guide

See Chapter 7 for
further information

about using MODEL.

up the stack. In all other languages, the procedure itself must remove the
arguments from the stack before returning.

Turbo Assembler handles both the proper argument ordering and stack
cleanup for you with the extended CALL instruction. The syntax for calling
a procedure with parameters follows;

CALL expression [language] [,argument_list]

expression is the target of the CALL instruction. language specifies the
interfacing convention to use for the call. If you don't specify a language,
Turbo Assembler uses the default language set by MODEL.

Arguments, if any, follow the language identifier. The syntax of each
argument in the argument list is the same as for the extended PUSH and
POP instructions. You can separate these arguments with commas; for
example,

CALL test PASCAL,ax,es OFFSET buffer,blen

PASCAL, the language in the example, causes Turbo Assembler to push the
arguments in the same order that it encounters them. This example call is
equivalent to

PUSH ax
PUSH es OFFSET buffer
PUSH word PTR blen
CALL test

A call to a C procedure requires that the arguments be pushed onto the
stack in the reverse order. Turbo Assembler automatically does this so that
a call of the form

CALL test C,ax,es OFFSET buffer, word PTR blen

results in the following code:

PUSH word PTR blen
PUSH es OFFSET buffer
PUSH ax
CALL test
SUB sp,8

When calling a procedure with arguments, you should always list the
arguments in the same order they were listed in the procedure header.
Turbo Assembler reverses them if necessary.

.. Remember to separate arguments with commas and components of
arguments with spaces. Turbo Assembler, depending on the interfacing
convention, can push arguments in reverse order on the stack, but it won't
alter the ordering of argument components.

Chapter 13, Advanced coding instructions 171

Calling
procedures that
contain RETURNS

Calling
procedures that
have been
prototyped

Calling method
procedures for
objects:
CALL..METHOD

172

If the interfacing convention for the call is NOLANGUAGE, Turbo
Assembler reports an error if any arguments are present. Although you can
define arguments to a NOLANGUAGE procedure with the ARG directive,
you must explicitly push the arguments when you make a call to a
NOLANGUAGE procedure.

Procedures that define some of their arguments with the RETURNS
keyword must be considered specially. These arguments are used to return
values to the caller; therefore, the caller always pops them. There is no
special extension to the CALL instruction in Turbo Assembler to help pass
those arguments specified in a procedure declaration after the RETURNS
directive. You must explicitly PUSH these arguments before the CALL, and
POP them afterward.

If you've defined the procedure prior to the call or used PROCDESC to
prototype the procedure (see Chapter 10), Turbo Assembler will type check
any language and arguments specified in the call and generate a warning if
the language, number of parameters, or types of parameters don't match.

For example,

test PROCDESC pascal far :word, :dword, :word

call test pascal ax,ds bx,cx
call test c, ax,dx, bx,cx
call test pascal, eax, ebx, ecx
call test pascal, ax,ds bx

iworks fine
iwrong language!
iwrong parameter types!
itoo few parameters!

Since the language of the procedure has been specified, you don't have to
include it in the call. If you omit it, however, make sure to include the
comma that would normally follow it:

call test,ax,ds bx,cx iworks fine

You can also use procedure types (declared with PROCTYPE) to supply a
distance and language, and force type-checking to occur. For example,

footype proctype pascal near :word, :dw~rd, :word

call footype ptr[bxl,ax,ds bx,cs ino error!

The CALL instruction is extended to support the calling of object methods.
A call to an object method can generate either a direct call (for static
methods) or an indirect call (for virtual methods).

Turbo Assembler Users Guide

Because you can use an indirect call, the instructions that perform the call
can destroy the contents of some registers. Therefore, Turbo Assembler lets
you select the proper registers if you're using a virtual method call.

~ Here's the syntax of the CALL..METHOD extension:

See Chapter 8 for
further information

about how to specify
a method as virtual or

static.

Note: Its good
programming practice

to specify an
appropriate selection

for indirect calling
registers, even if you

know that the method
you're calling is static.

As objects are
modified, methods

can change from
being static to virtual.

Tail recursion for
object methods:
JMP .. METHOD

CALL instance-ptr METHOD [object_name:]method_name [USES [segreg:]offsreg]
[language_and_args]

instance-ptr must describe an instance of an object. In MASM mode, it's
often impossible to determine the name of the object associated with an
instance. Therefore, Turbo Assembler allows the object_name field, so that
you can specify the instance's object name.

method_name contains the name of the method to be called for the specified
object instance.

If the method is virtual and an indirect call is required, the CALL..METHOD
instruction normally calls indirectly through ES:BX (or ES:EBX for USE32
models on the 80386 processor). If you want to use other registers, you can
override them with the USES clause. segreg is the optional segment register
to use, and offsreg is the offset register to use for the call.

For objects declared with near tables, CALL..METHOD only loads the offset
register. Turbo Assembler assumes that the segment register is already set
up to the correct value.

The language_and_args field of the CALL..METHOD instruction contains the
optional language and argument specifications, which are identical in form
to that listed previously under "Calling procedures with stack frames."

Calling method procedures for C++ or Pascal usually requires that the
instance of the object be passed as an argument on the stack. See Chapter 18
for further information.

Turbo Assembler provides a JMP .. METHOD instruction that corresponds to
the CALL..METHOD instruction. Here's its syntax:

JMP instance-ptr METHOD [object_name:]method_name [USES [segreg:]offsreg]

JMP .. METHOD functions exactly like CALL..METHOD except that

• It generates a JMP instead of a CALL instruction .

• It generates procedure epilog code to clean up the stack before the JMP
instruction is genera ted.

The JMP .. METHOD instruction makes it possible to write efficient tail
recursion code. It's intended to replace the common situation where a

Chapter 13, Advanced coding instructions 173

CALL..METHOD instruction is issued to the current method, followed by a
RET instruction.

Additional instruction for object-oriented programming

174

When an object instance is constructed, you must initialize the instance's
virtual table pointer (if any) to point to the correct virtual method table. The
TBLINIT instruction lets you do this automatically. The syntax of the
TBLINIT instruction is

TBLINIT object_instance-pointer

The object_instance....Jlointer field is the address of the object whose virtual
table pointer is to be initialized. The TBLINIT instruction assumes that the
object instance should be of the current object type (in other words, the
immediately preceding object definition determines the object type that
TBLINIT initializes). For example,

TBLINIT DS:SI

would initialize the virtual table pointer of the object at DS:SI, if it has one.

Turbo Assembler Users Guide

Text macros

Defining text
macros with the
EaU directive

c H A p T E R 14

Using macros

Macros let you give a symbolic name to a text string or a block of code that
will be used frequently throughout your program. Macros go beyond this
simple substitution, however. Turbo Assembler has macro operators that
provide great flexibility in designing macros. Combined with the ability to
use multiline macros with arguments, this makes Turbo Assembler's macro
facility a very powerful tool. This chapter discusses how to use text and
multiline macros in your program.

A text macro is a symbol that represents a string of text characters. When
Turbo Assembler encounters the symbol in expressions (and other
situations), it substitutes the text characters for the symbol. For example, if
DoneMsg is a text macro whose value is "Returning to the OS", the
following statement

GoodBye DB DoneMsg

results in

GoodBye DB 'Returning to the OS'

You can use the EQU directive to define simple text macros. Here's the
syntax for defining a text macro:

name EQU text_string

text_string associates with the text macro name name. You should enclose
text_string in brackets « » to delineate the text; for example,

DoneMsg EQU <'Returning to the 08'>

Note If you omit the brackets in MASM mode, Turbo Assembler will try to
evaluate text_string to an expression, and an error may result. Only if it
can't evaluate text_string will Turbo Assembler treat it as a text macro (to
remain compatible with MASM).

Chapter 14, Using macros 175

String macro
manipulation
directives

TheCATSTR
directive

TheSUBSTR
directive

176

In Ideal mode, EQU always defines a text macro. If you don't enclose
text_string in brackets and it's the name of another text macro, Turbo
Assembler will use that macro's contents. Otherwise, the macro will be
defined to the text.

You should always enclose text macro strings in angle brackets to make
sure they're properly defined. Consider the following mistake that can
occur when you don't:

IDEAL
Earth EQU dirt
Planet EQU Earth
Planet EQU <Earth>

iEarth = "dirt"
iPlanet = "dirt" (wrong!)
iPlanet = "Earth" (correct!)

In Ideal mode, the EQU statement always defines a text macro.

Text macros are redefinable; you can redefine a text macro name in the
same module to another text string.

Turbo Assembler provides directives that can manipulate string macros.
These directives are available in Ideal mode, and for versions M510, M520,
and T300 or later (as specified by the VERSION directive).

A string argument for any of these directives can be any of the following:

• a text string enclosed in brackets; for instance, <abc>

• the name of a previously defined text macro

• an expression preceded by a % character, whose value is converted to the
equivalent numerical string representation appropriate for the current
radix

The CATSTR directive defines a new text macro by concatenating strings
together. CATSTR has the following syntax:

name CATSTR string[,string] ...

CATSTR concatenates from left to right. Turbo Assembler creates a new
text macro of the name name.

The SUBSTR directive defines a new text macro to be a substring of a
string. Here's its syntax:

name SUBSTR string,position_expression[,size_expression]

The new text macro, name consists of the portion of string that starts at the
position_expression character, and is size_expression characters in length. If
you don't supply size_expression, the new text macro consists of the rest of

Turbo Assembler Users Guide

The INSTR directive

TheSIZESTR
directive

Text macro
manipulation
examples

string from the character at position_expression. Turbo Assembler considers
the first character of string to be at position 1.

The INSTR directive returns the position of one string inside another string.
INSTR has the following syntax:

name INSTR [start_expression,]string1,string2

Turbo Assembler assigns name a numeric value that is the position of the
first instance of string2 in stringl. The first character in stringl has a position
of 1. If string2 does not appear anywhere within stringl, Turbo Assembler
returns a value of o. If you include start_expression, the search begins at the
start_expression character. The first character of a string is 1.

The SIZESTR directive returns the length of a text macro (the number of
characters in the string). Here's its syntax:

name SIZESTR string

name is set to the numeric value of the length of the string. A null string < >
has a length of zero.

The following examples show how these operators work:

VERSION T300
IDEAL
ABC EQU
ABC2 EQU
ABC EQU
ABC3 CATSTR

<abc>
ABC
<deb
ABC2,<,>,ABC,<,>,ABC2

ABCLEN SIZESTR ABC
ABC3LEN SIZESTR ABC3
COMMA1 INSTR ABC3,<,>
COMMA2 INSTR
ABC4 SUBSTR
ABC5 SUBSTR
ABC6 EQU
ABC7 EQU
ABC8 EQU

COMMA1+1,ABC3,<,>
ABC3,5
ABC3,5,3
3+2+1
%3+2+1
%COMMA1

iABC = "abc"
iABC2 = "abc"
iABC = "def" (redefined)
iABC3 = "abc,deLabc"
iABCLEN = 3
iABC3LEN = 11
iCOMMA1 = 4
iCOMMA2 = 8
iABC4 = "def,abc"
iABC5 = "def"
iABC6 = 6 (numeric equate)
iABC7 = "6" (text macro)
iABC8 = "4"

Multiline macros

The multiline macro facility lets you define a body of instructions,
directives, or other macros that you'll include in your source code
whenever the macro is invoked. You can supply arguments to the macro

Chapter 14, Using macros 177

The multiline
macro body

Using & in macros

178

that Turbo Assembler will substitute into the macro body when you
include the macro in the module.

There are several types of multiline macros. One version substitutes each
element of a string, one after the other, as an argument to the macro.
Another version repeats the macro body a certain number of times. Finally,
you can define still another version in one place, and invoke it many times.
All versions have the definition of a macro body in common.

Regardless of its actual content, Turbo Assembler's macro processing
facility treats a multiline macro body as merely a number of lines of text.
Turbo Assembler lets you replace symbols within the macro body with text
specified at the time a macro is invoked. This feature is called argument
substitution. The symbols in the macro body that will be replaced are called
dummy arguments. For example, suppose the symbolfoo is a dummy
argument in the following macro body:

PUSH foo
MOV foo,l

If you assign faa with the text string AX when you invoke this macro, the
actual text included in the module will be

PUSH AX
MOV AX,l

The rules Turbo Assembler uses for recognizing a dummy argument are
fairly complex. Examine the following macro body lines where the dummy
argument faa would not be recognized:

symfoo:
DB 'It is foo time'

In general, Turbo Assembler will not recognize a dummy argument
without special help in the following situations:

• when it is part of another symbol

• when it is inside of quotation marks (' or ")

• in Ideal mode, when it appears after a semicolon not inside of quotes

The & character has a special meaning when used with the macro
parameters. In general, & separates a dummy argument name from
surrounding text, so Turbo Assembler can recognize it for substitution. For
example, given the following Ideal mode macro:

Turbo Assembler Users Guide

macro mac1 foo
sym&foo:

DB 'It is &foo time'
endm

if you assign faa the text string party when this macro is invoked, the actual
text included in the module will be

symparty:
DB 'It is party time'

Another example might be

foo&sym:
DB 'We are in O&foo&o'

If you assign faa the text string hi when this macro is invoked, the text
included in the module will be

hisym:
DB 'We are in Ohio'

_ Here are the rules for the & character:

Including comments
in macro bodies

Note: comments
preceded by single

semicolons are
always included in a

macro expansion.

III Outside quoted strings, the & serves only as a general separator.

EI Inside quoted strings and after a semicolon that's not in a quoted string in
Ideal mode, & must precede a dummy argument for it to be recognized.

II Turbo Assembler removes one & from any group of &s during a macro
expansion.

The last point makes it possible to place macro definitions requiring &
characters inside other macro definitions. Turbo Assembler will remove
only one & from any group.

For particularly complicated macros, you might want to include (in the
macro body text) comments that won't be included when the macro is
invoked. This also reduces the memory required for Turbo Assembler to
process macros. To do this, use the double semicolon comment at the
beginning of a line. For example, the following macro body

;;WOW, this is a nasty macro!
DB 'Nasty macro'

will only include the following text when it is invoked:

DB 'Nasty macro'

Chapter 14, Using macros 179

Local dummy
arguments

See Chapter 11 for
details on how to

enable local symbols
and set the local

symbol prefix.

The LOCAL
directives must come

before any other
statements in a

macro body.

The EXITM directive

Tags and the GOTO
directive

180

At the beginning of any macro body, you can include one or more LOCAL
directives. LOCAL declares special dummy arguments that, each time the
macro expands, will be assigned a unique symbol name.

The syntax for the LOCAL directive in macro bodies looks like this:

LOCAL dummy_argumentl [,dummy_argument2j .. ,

If the dummy_argument name used in the LOCAL directive does not have a
local symbol prefix the unique symbol name assigned to it will be in the
form ??xxxx, where xxxx represents a hexadecimal number. Otherwise, the
unique symbol name will be <local prefix>xxxx.

You can use LOCAL dummy arguments to define labels within the macro
body. For example,

LOCAL @@agn,@@zero
XOR dx,dx
MOV cx,exp
MOV ax,l
JCXZ @@zero
MOV bx,factor

@@agn: MUL bx
LOOP @@agn

@@zero:

Note: In macros, you don't have to use @@ since local labels in macros are
turned into consecutive numbers, like ??OOOL Their names are not easily
accessible outside macros.

You can use the EXITM directive within a macro body to prematurely
terminate the assembly of an included macro body. Its syntax follows:

EXITM

When Turbo Assembler encounters EXITM in a macro body that has been
included in the module source code, assembly of the expanded macro body
stops immediately. Instead, Turbo Assembler will continue assembling the
module at the end of the macro.

You can use the EXITM statement with a conditional assembly directive to
terminate a macro expansion when certain conditions are met.

Using macro tags and the GOTO directive lets you control the sequence in
which lines within the macro body expand. You can place a macro tag at
any place within the macro body. The tag occupies an entire line in the
macro, with the following syntax:

Turbo Assembler Users Guide

Be careful not to
create infinite macro
loops when you use
the GOTO directive.

Infinite loops can
cause Turbo

Assembler to run out
of memory, or even

appear to stop
functioning.

General multiline
macros

You can invoke a
macro before you

define it only when
you use the 1m

command-line switch;
see Chapter 2 for

details. However, this
is poor programming

practice.

When the macro expands, all macro tags are discarded.

The GOTO directive tells the assembler to go to a specified point in your
code, namely the tag_symbol. GOTO has the following syntax:

GOTO tag_symbol

GOTO also terminates any conditional block that contains another GOTO.
This lets you place GOTO inside conditional assembly blocks. For example,

IF foo
GOTO tagl

ENDIF
DISPLAY "foo was false!"

:tagl
iresume macro here ...
iworks the same whether foo was false or true

See Chapter 15 for further information about conditional assembly
directives.

Turbo Assembler associates a general multiline macro's body of directives,
instructions, and other macros with a symbolic macro name. Turbo
Assembler inserts the body of statements into your program wherever you
use the macro name as a directive. In this way, you can use a general
multiline macro more than once.

Here's the Ideal mode syntax for defining a general multiline macro:

MACRO name parameter_list
macro_body
ENDM

Here's the MASM mode syntax for defining a general multiline macro:

name MACRO parameter_list
macro_body
ENDM

name is the name of the multiline macro you're defining. macro_body
contains the statements that make up the body of the macro expansion. You
can place any valid (and any number of) Turbo Assembler statements
within a macro. The ENDM keyword terminates the macro body.

This example defines a macro named PUSHALL that, when invoked,
includes the macro body consisting of three PUSH instructions into your
program.

Chapter 14, Using macros 181

Table 14.1
Dummy argument

types

Invoking a general
multiline macro

182

PUSHALL MACRO
PUSH AX EX CX DX
PUSH DS SI
PUSH ES DI

ENDM

parameter _list is a list of dummy argument symbols for the macro. Here's its
syntax:

[dummy_argument [,dummy_argument ... JJ

You can use any number of dummy arguments with a macro, as long as
they fit on one line, or you use the line continuation character (\) to
continue them to the next line. For example,

ADDUP MACRO dest,\
s1,s2

;dest is 1st dummy argument
;s1,s2 are 2nd and 3rd dummy arguments

MOV dest,s1
ADD dest,s2

ENDM

Each dummy argument has the following syntax:

dummy_name[:dummy_typeJ

dummy_name is a symbolic name used as a place holder for the actual
argument passed to the macro when it's invoked. The optional dummy_type
specifies something about the form the actual argument must take when
you invoke the macro. The following types are supported:

Type

REO
=<texlstring>

VARARG

REST

Meaning

Argument cannot be null or spaces.
Bracketed text string is the default value for the dummy argument when the
actual argument is null or contains spaces.
Actual argument consists of the rest of the macro invocation, interpreted as a
list of arguments. Commas and angle brackets are added to ensure this
interpretation.
Actual argument consists of the rest of the macro invocation, interpreted as
raw text.

To invoke a general multiline macro, use the name of the macro as a
directive in your program. Turbo Assembler inserts the macro body (after
all the dummy arguments are substituted) at that point in the module. The
syntax for invoking a general multiline macro is as follows:

macro_name [argument [[,JargumentJ ... J

macro_name is the symbolic name of a macro. If you invoke a macro with
arguments, the arguments are listed following the macro name. You can

Turbo Assembler Users Guide

specify any number of arguments, but they must all fit on one line. Separate
multiple arguments with commas or spaces. When the macro expands,
Turbo Assembler replaces the first dummy argument in the macro
definition with the first argument passed, the second dummy argument
with the second argument, and so forth.

Each argument represents a text string. You can specify this text string in the
following ways:

• as a contiguous group of characters, not containing any whitespace,
commas, or semicolons

• as a group of characters delineated by angle brackets « », which can
contain spaces, commas, and semicolons

• as a single character preceded by a! character, which is equivalent to
enclosing the character in angle brackets

• as an expression preceded by a % character, which represents the text
value of the expression appropriate for the currently selected radix

The < > literal string brackets
Use angle brackets to delineate a literal string that contains the characters
between them. You should use them like this:

<text>

text is treated as a single string parameter, even it if contains commas,
spaces, or tabs that usually separate each parameter. Use this operator
when you want to pass an argument that contains any of these separator
characters.

You can also use this operator to force Turbo Assembler to treat a character
literally, without giving it any special meaning. For example, if you want to
pass a semicolon (;) as a parameter to a macro invocation, you have to
enclose it in angle brackets «;» to prevent it from being treated as the
beginning of a comment. Turbo Assembler removes only one level of angle
brackets when it converts a bracketed string to a text argument. This makes
it possible to invoke a macro requiring angle brackets from inside another
macro body.

The ! character
The ! character lets you invoke macros with arguments that contain special
characters. Using this character prior to another is similar to enclosing the
second character in angle brackets. For example, !; functions the same as
<;>. Some common uses are shown in the following table.

Chapter 14, Using macros 183

Table 14.2
Uses for the !

character

See Chapter 5 for
more information

about Turbo
Assembler

expressions.

Redefining a
general multiline
macro

Deleting a general
multiline macro:
The PURGE
directive

184

String

!>
k
!!

Resulting character

>
<
!

The % expression evaluation character
The % character causes Turbo Assembler to evaluate an expression. The
assembler converts the result of the expression to an ASCII number in the
current radix, which is the text that the % character produces. Use this
character when you want to pass the string representing a calculated result,
rather than the expression itself, as a macro argument. The syntax follows:

%expr

expr can be either an expression (using any legal operands and operators),
or it can be the name of a text macro. If it is an expression, the text that is
produced is the result of the expression, represented as a numerical string
in the current radix. If expr is a text macro name, the text that's produced is
the string that the text macro represents.

For example, this code

DEFSYM MACRO NOM
TMP_&NUM:
ENDM

TNAME EQU <JUNK>
DEFSYM %5+4
DEFSYM %TNAME

;defining a text macro

results in the following code macro expansions:

TMP_9:
TMP_JUNK:

You can redefine general multiline macros. The new definition
automatically replaces the old definition. All preceding places where the
macro had already been invoked will not change. All invocations of the
macro following the redefinition use the new definition.

You can use the PURGE directive to delete a macro. PURGE has the
following syntax:

PURGE macroname [,macroname] ...

Turbo Assembler Users Guide

Defining nested and
recursive macros

PURGE deletes the general multiline macro definition associated with
macroname. After you PURGE a macro, Turbo Assembler no longer treats
the symbol macro name as if it were a macro; for example,

ADD MACRO al,a2
SUB al,a2

ENDM
ADD ax,bx

PURGE ADD
iThis invocation will produce SUB ax,bx

ADD ax,bx iThis is no longer a macro, so ADD ax,bx is produced

You can purge several macros at a time by separating their names with
commas. Note, however, that you can't redefine a purged macro symbol as
anything other than another macro.

The statements in a macro body can include statements that invoke or
define other macros. If you take this example,

MCREATE MACRO opname,opl,op2,op~,op4,op5,op6,op7
IFNB opname

DO&opname MACRO op,count
IF count LE 4

REPT count
opname op,l

ENDM
ELSE

MOV CL,count
opname op,CL

ENDIF
ENDM

MCREATE opl,op2,op3,op4,op5,op6,op7
ENDIF
ENDM

and invoke it with

iend of DOopname macro
irecurse!
iend of if
iend of MCREATE macro

MCREATE ror,rol,rcl,rcr,shl,shr,sal,sar

it will create the additional macros DOror, DOrol, and so forth, which you
can then use like this:

DOshr
DOrcr

ax,5
bx,3

You can call recursive macros with a list of parameters, and set them up so
that the macro will work with anywhere from zero to a maximum number
of parameters. To do this, have the macro body use the first parameter to
do its expansion, then call itself with the remaining parameters. Every time

Chapter 14, Using macros 185

See Chapter 15 for
more information

about the IFNB
directive.

The count repeat
macro

186

it recurses, there will be one fewer parameter. Eventually, it will recurse
with no parameters.

When you call the macro recursively, it always needs some way to test for
the end of the recursion. Usually, an IFNB conditional statement will do this
for only the macro body if the passed parameter is present. Here is a
simpler example of a recursive macro:

PUSHM MACRO r1,r2,r3,r4,r5,r6,r7,r8
IFNB rl

push r1
PUSHM r2,r3,r4,r5,r6,r7,r8

ENDIF
ENDM

You can use the REPTrepeating macro directive to repeat a macro body a
specific number of times, using this syntax:

REPT expression
macro_body
ENDM

expression tells Turbo Assembler how many times to repeat the macro body
specified between the REPT and END directives. expression must evaluate to
a constant and can't contain any forward-referenced symbol names. Use
EN OM to mark the end of the repeat block. For example, this code

REPT 4
SHL ax,l

ENDM

produces the following:

SHL ax,l
SHL ax,l
SHL ax,l
SHL ax,l

Another example shows how to use REPT in a macro to generate numbers
that are the various powers of two:

count = 0

defname macro num
Bit&nurn dd (1 SHL (&nurn))

endrn

Turbo Assembler Users Guide

The WHILE
directive

String repeat
macros

rept 32
defname %count
count = count + 1

endm

You can use the WHILE macro directive to repeat a macro body until a
certain expression evaluates to a (false). WHILE has the following syntax:

WHILE while_expression
macro_body
ENDM

Turbo Assembler evaluates while_expression before each iteration of the
macro body. Be careful to avoid infinite loops, which can cause Turbo
Assembler to run out of memory or appear to stop functioning. Here's an
example using WHILE:

WHILE 1
;; Do nothing

ENDM
; We never make it this far

You can use the IRP and IRPe string repeat macro directives to repeat a
macro body once for each element in a list or each character in a string.
Each of these directives requires you to specify a single dummy argument.
Here's the IRP syntax:

IRP dummy_argument, argument_list
macro_body
ENDM

IRPe has the following syntax:

IRPC dummy_argument, string
macro_body
ENDM

In both cases, dummy_argument is the dummy argument used in the macro
body. EN OM marks the end of the macro body.

For IRP, argument_list consists of a list of arguments separated by commas.
The arguments can be any text, such as symbols, strings, numbers, and so
on. The form of each argument in the list is similar to that described for
general multiline macro invocations, described earlier in this chapter. You
must always surround the argument list with angle brackets « ».

For IRPe, the argument consists of a single string. The string can contain as
many characters as you want.

Chapter 14, Using macros 187

For each argument or character in a string, Turbo Assembler will include
the macro body in the module, substituting the argument or character for
the dummy argument wherever it finds it. For example,

IRP reg,<ax,bx,cx,dx>
PUSH reg

ENDM

produces the following:

PUSH ax
PUSH bx
PUSH cx
PUSH dx

and the directive IRPC

IRPC LUCKY, 13 7 9
DB LUCKY

ENDM

produces this:

DB 1
DB 3
DB 7
DB 9

-. Be careful when using IRPC because Turbo Assembler places each character
in the string "as is" in the expanded macro, so that a string repeat macro
such as

IRPC CHAR, HELLO
DB CHAR

ENDM

might not produce DB 'H', 'E', 'L', 'L', '0', but instead would produce DB
H, E, L, L, 0 (where each letter is treated as a symbol name).

The % immediate
macro directive

The % immediate macro directive treats a line of text as if it's a macro body.
The dummy ~rgument names used for the macro body include all of the
text macros defined at that time. Here's its syntax:

188

macro_body_line represents the macro body to use for the immediate macro
expansion; for example:

Turbo Assembler Users Guide

Including
multiline macro
expansions in the
list file
Chapter 17 has more

details.

SEGSIZE EQU <TINY>
LANGUAGE EQU <WINDOWS PASCAL>

% MODEL SEGSIZE,LANGUAGE iProduces MODEL TINY, WINDOWS PASCAL

Multiline macro expansions are not normally included in the listing file.
However, Turbo Assembler provides the following directives that let you
list macro expansions:

•. LALL
•. SALL
..XALL
.%MACS
.%NOMACS

Saving the current operating state

The PUSHSTATE directive saves the current operating state on an internal
stack that is 16 levels deep. PUSHSTATE is particularly useful if you have
code inside a macro that functions independently of the current operating
state, but does not affect the current operating mode.

Note that you can use PUSHSTATE outside of macros. This can be useful
for include files.

The state information that Turbo Assembler saves consists of:

• current emulation version (for example, T310)

• mode selection (for example, IDEAL, MASM, QUIRKS, MASM51)

• EMUL or NOEMUL switches

• current processor or coprocessor selection

• MULTERRS or NOMULTERRS switches

• SMART or NOSMART switches

• the current radix

• JUMPS or NOJUMPS switches

• LOCALS or NOLOCALS switches

• the current local symbol prefix

Use the POPSTATE directive to return to the last saved state from the stack.

Chapter 14, Using macros 189

(

190

Here's an example of how to use PUSHSTATE and POPSTATE.

i PUSHSTATE and POPSTATE examples

ideal
model small
codeseg

jumps
locals @@

Show changing processor selection, number radix, and JUMPS mode
pushstate

nextl :

next2:

nojumps
radix 2
p386
j 1 nextl
mov eax,100

popstate

Set to binary radix

No extra NOPS after this
Now 100 means binary 100 or 4 decimal.

Restores JUMPS and non 386 mode.

Back to jumps directive, no 386, and decimal radix
jl next2 Three extra NOPS to handle JUMPS
xor eax,eax

mov ex, 100

pushstate
MULTERRS
mov ax, [bp+abc
popstate

mov ax, [bp+abc

Not in 386 mode anymore!

Now 100 means decimal 100

i Show disabling local scoping of symbols
locals

@@a: loop @@a
next3 :
@@a: loop @@a

next4:

pushstate
nolocals

@@b: loop @@b
next5:
@@b: loop @@b

popstate

Allowed because of scoping of NEXT2: and
i NEXT3:

This will conflict because of nolocals

i Show changing local symbol prefix and MASM/IDEAL mode
pushstate
masm
locals @$

Turbo Assembler Users Guide

Chapter 14, Using macros

testproc proc
jmp

@$end: nop
@@end: ret
testproc endp

testproc2 proc
jmp

@$end: nop

@@end: ret
testproc2 endp

@$end

@$end

pops tate

MASM mode for procedure declaration

i This doesn't conflict with label in
i TESTPROC
This label does conflict

i Now back to @@ as a local label prefix, and IDEAL mode
testproc2b proc

ret
testproc2b endp

proc testproc3
jmp @$end2

@$end2: nop
@@end2: ret
endp testproc3

proc testproc4
jmp @$end2

@$end2: nop
@@end2: ret

endp testproc4

end

This won't work since we are back in
IDEAL mode!

And this will give an error also.

i This label does conflict
This label doesn't conflict with

label in TESTPROC3

191

192 Turbo Assembler Users Guide

c H A p T E R 15

Using conditional directives

There are two classes of conditional directives: conditional assembly
directives and conditional error-generation directives. With conditional
assembly directives, you can control which code gets assembled in your
program under certain conditions.

Conditional error-generation directives let you generate an assembly-time
error message if certain conditions occur. Turbo Assembler displays the
error message on the screen and in the listing file, and it acts like any other
error message in that it prevents the emission of an object file. This chapter
describes how you can use the available conditional directives.

General conditional directives syntax

IFxxx conditional
assembly
directives

The three types of conditional assembly directives are I Fxxx directives,
ELSEIFxxxdirectives, andERRxxxdirectives. Use these directives as you
would conditional statements in high-level languages.

You can use IF xxx conditional assembly directives to define blocks of code
that are included in the object file if certain conditions are met (such as
whether a symbol is defined or set to a particular value). Here's the syntax
of a conditional assembly statement:

or

IFxxx
true_conditional_body
ENDIF

IFxxx
true_conditional_body
ELSE
false_conditional_body
ENDIF

Chapter 15, Using conditional directives 193

194

Here, I Fxxx represents any of the following conditional assembly directives:

IF IFNB

IF1 IFIDN

IF2

IFDEF

IFNDEF

IFB

IFIDNI

IFDIF

IFDIFI

Each I Fxxx conditional assembly directive specifies a specific condition that
evaluates to either true or false. If the condition is true, the block of
assembly code in true_conditionaCbody is assembled into the output object
file. If the condition evaluates to false, Turbo Assembler skips over
true_conditionaCbody and does not include it in the object file. If there is an
ELSE directive, the false_conditionaCbody is assembled into the object file if
the condition is false; it's ignored if the condition is true. All conditionals
are terminated with an ENDIF directive.

Note: Except for the special cases of IF1 and IF2 (which are discussed later),
the two bodies of code are mutually exclusive: Either true_conditionaCbody
will be included in the object file or false_conditionaCbody, but never both.
Also, if you use the IFxxx ... ELSE ... ENDIF form, one of the two bodies will
be included in the generated object file. If only the IFxxx ... ENDIF form is
used, true_conditionaCbody mayor may not be included, depending on the
condition.

When you nest IFs and ELSEs, ELSE always pairs with the nearest
preceding IF directive.

In this example, test is a symbol that flags the inclusion of test code (if the
symbol is defined, then test code is generated). color is a symbol set to
nonzero if the display is color, or 0 for a monochrome display.

The actual code generated depends on these values:

IFDEF test
itest code 1

IF color
icolor code

ELSE
iffiono code

ENDIF
itest code 2

iT if test defined
i if test defined
iT if color <> 0

if color <> 0

if color = 0

if test defined

Turbo Assembler Users Guide

ELSEIFxxx
conditional
assembly
directives

ELSE
inon-test code

ENDIF

Test: Defined
Color: 0

code: test code 1
mono code
test code 2

if test not defined

Defined Undefined Undefined
Nonzero 0 Nonzero

test code 1 non-test code non-test code
color code
test code 2

Note: If test is undefined, neither the color nor monochrome debug code
based on the value of color is assembled, as this lies entirely within the
conditional assembly for a defined test.

You can use the ELSEIFxxx as a shortcut where multiplelFs are required.
ELSEIFxxxis equivalent to anELSE followed by a nested I Fxxx, but
provides more compact code. For example,

IF mode EQ 0
imode 0 code

ELSEIF mode LT 5
imode 1-4 code

ELSE
imode 5+ code

ENDIF

compares to

IF mode EQ 0
imode 0 code

ELSE
IF mode LT 5

imode 1-4 code
ELSE

imode 5+ code
ENDIF

ENDIF

You can't use the ELSEIFxxxdirectives outside of an I Fxxx statement.

Chapter 15, Using conditional directives 195

ERRxxx error
generation
directives

ERRxxxdirectives generate user errors when certain conditions are met.
These conditions are the same as for the I Fxxx conditional assembly
directives. Here's the general syntax:

ERRxxx [arguments] [message]

In this case, ERRxxx represents any of the conditional error-generating
directives (such as ERRIFB, .ERRB, and so on).

arguments represents arguments that the directive might require to evaluate
its condition. Some directives require an expression, some require a symbol
expression, and some require one or two text expressions. Other directives
require no arguments at all.

If message is included, it represents an optional message that's displayed
along with the error. The message must be enclosed in single (') or double
(") quotation marks.

The error-generating directives generate a user error that is displayed
onscreen and included in the listing file (if there is one) at the location of
the directive in your code. If the directive specifies a message, it displays on
the same line immediately following the error. For example, the directive

ERRIFNDEF faa "faa not defined!"

generates the error

User error: "faa not defined!"

if the symbolfoo is not defined when the directive is encountered. No error
would be generated in this case if faa were already defined.

Specific directive descriptions

Unconditional
error-generation
directives

Expression
conditional
directives

196

The unconditional error-generation directives are ERR and .ERR. These
directives always generate an error and require no arguments, although
they can have an optional message. You can only use .ERR in MASM
mode.

These directives provide conditional assembly or error generation based on
the results of evaluating a Turbo Assembler expression. For all of these
directives, the expression must evaluate to a constant and can't contain any

Turbo Assembler Users Guide

Table 15.1
Conditional assembly

directives using
expressions

Table 15.2
Error-generation
directives using

expressions

Symbol-definition
conditional
directives

Table 15.3
Evaluation of defined

and undefined
symbol

forward references. If it evaluates to 0, Turbo Assembler considers the
expression to be false; otherwise, it considers the expression to be true.

The following table shows conditional assembly directives that use
expressions.

I Fxxx directive

IF expression
IFE expression
ELSEIF expression
ELSEIFE expression

Assembles true_conditionaLbody if

Expression evaluates to true.
Expression evaluates to false.
Expression evaluates to true.
Expression evaluates to false.

The following table shows the error-generation directives that use
expressions.

ERRxxx directive

ERRIF expression
. ERRNZ expression
ERRIFE expression
. ERRE expression

Generates user error if

Expression evaluates to true.
Expression evaluates to true (MASM mode only) .
Expression evaluates to false.
Expression evaluates to false (MASM mode only) .

These directives provide conditional assembly or error generation based on
whether one or more symbols are defined. These symbols are organized
into a symboCexpression.

A symboCexpression is an expression made up of symbol names, the Boolean
operators AND, OR, and NOT, and parentheses. In a symboCexpression, each
symbol name is treated as a Boolean value that evaluates to true if the
symbol currently exists, or false if the symbol does not exist (even if it's
defined later in the module). Turbo Assembler combines these values using
the Boolean operators to produce a final true or false result. In its simplest
form, a symbol expression consists of a single symbol name and evaluates
to true if the symbol is defined. The parsing and syntax rules for
symboCexpression are similar to those for other Turbo Assembler
expressions.

For example, if the symbol faa is defined but the symbol bar is not, the
following symbol-expression evaluations are returned:

Symbol expression

foo
bar
not foo
not bar

Result

True
False
False
True

Chapter 15, Using conditional directives 197

Table 15.4
Symbol-expression

directives using
symboLexpr

Table 15.5
Error-generation

directives

Text-string
conditional
directives

See Chapter 14 for
information about
how to define and

manipulate text
macros.

198

Table 15.3: Evaluation of defined and undefined symbol (continued)

foo OR bar True
foo AND bar False
NOT (foo AND bar) True
NOT foo OR NOT bar True (same as "(NOT foo) OR (NOT bar}")

The directives that control assembly and use symboCexpressions are shown
in the following table.

I Fxxx directive

IFDEF symboLexpr
IFNDEF symboLexpr
ELSEIFDEF symboLexpr
ELSEIFNDEF symboLexpr

Assembles true_conditional_body

symboLexprevaluates to true.
symboLexprevaluates to false.
symboLexprevaluates to true.
symboLexprevaluates to false.

The error-generation directives that use symbol_expressions are shown in
the following table.

ERRxxx directive

ERRIFDEF symboLexpr
. ERRDEF symboLexpr
ERRIFNDEF symboLexpr
. ERRNDEF symboLexpr

Generates user error if

symboLexprevaluates to true.
symboLexprevaluates to true (MASM mode only) .
symboL expr evaluates to false.
symboLexprevaluates to false (MASM mode only) .

For example, the following error-generating conditionals are equivalent,
and would generate an error only if both faa and bar are currently defined:

ERRIFDEF faa AND bar
ERRIFNDEF NOT (faa AND bar)
ERRIFNDEF NOT faa OR NOT bar

These directives provide conditional assembly or error generation based on
the contents of text_string. A text_string can be either a string constant
delineated by brackets « » or a text macro name preceded by a percent
sign (%). For example,

<ABC>
%foo

i text string ABC
i the contents of text macro foo

The conditional assembly directives that use text_string are shown in the
following table:

Turbo Assembler Users Guide

Table 15.6: Conditional assembly directives using textstrings

I Fxxx directive

IFNB txlstr
IFB txlstr
IFIDN txlstr1, txlstr2
IFIDNI txlstr1, txlstr2
IFDIF txlstr1, txlstr2
IFDIFI txlstr1, txlstr2
ELSEIFNB txlstr
ELSEIFB txlstr
ELSEIFIDN txlstr1, txlstr2
ELSEIFIDNI txlstr1, txlstr2
ELSEIFDlF txlstr1, txlstr2
ELSEIFDIFI txlstr1, txlstr2

Assembles true_conditional_body if

txlstr is not blank.
txlstris blank (empty).
txlstr1 and txlstr2 are identical text strings.
txlstr1 and txlstr2 are identical text strings, ignoring case distinctions.
txlstr1 and txlstr2 are different text strings.
txlstr1 and txlstr2 are different text strings, ignoring case distinctions.
txlstr is not blank.
txlstris blank (empty).
txlstr1 and txlstr2 are identical text strings.
txlstr1 and txlstr2 are identical text strings, ignoring case distinctions.
txlstr1 and txlstr2 are different text strings.
txlstr1 and tXlstr2 are different text strings, ignoring case distinctions.

The error-generation directives that use text_string are shown in Table 15.7:

Table 15.7: Error-generation directives using textstrings

ERRxxx directive

ERRIFNB txlstr
. ERRNB txlstr
ERRIFB txlstr
. ERRB txlstr
ERRIFIDN txlstr1, txlstr2
. ERRIDN txlstr1, txlstr2
ERRIFIDNI txlstr1, txlstr2
. ERRIDNI txlstr1, txlstr2

ERRIFDIF txlstr1, txlstr2
. ERRDIF txlstr1, txlstr2
ERRIFDlFI txlstr1, txlstr2
.ERRDlFI txlstr1, txlstr2

Generates user error if

txlstr is not blank.
txlstris not blank (MASM mode only) .
txlstr is blank (null).
txlstr is blank (MASM mode only) .
txlstr1 and txlstr2 are identical text strings .
txlstr1 and txlstr2 are identical text strings (MASM mode only).
txlstr1 and txlstr2 are identical text strings, ignoring case distinctions .
txlstr1 and txlstr2 are identical text strings, ignoring case distinctions (MASM mode
only).
txlstr1 and txlstr2 are different text strings .
txlstr1 and txlstr2 are different text strings (MASM mode only).
txlstr1 and txlstr2 are different text strings, ignoring case distinctions.
txlstr1 and txlstr2 are different text strings, ignoring case distinctions (MASM mode
only).

Use these directives to check the arguments passed to macros. (Note that
they are not restricted to use within macros.)

When used within a macro definition, IFB and IFNB can determine whether
you've supplied the proper number of arguments to the macro. When
invoking a macro, Turbo Assembler does not generate an error message if
you've supplied too few arguments; instead, the unspecified arguments are
blank. In this way, you can define a macro that may take arguments. For
example,

Chapter 15, Using conditional directives 199

Assembler-pass
conditionals

200

load MACRO addr,reg
IFNB <reg>

MOV reg,addr
ELSE

MOV ax,addr
ENDIF

ENDM

You could invoke this example with load test,cx, which would generate a
mov cx, test instruction (or invoke simply load test, which will generate a
mov ax, test instruction because the second parameter is blank). Alternately,
you could use ERRIFB to generate an error for a macro invocation with a
missing critical argument. Thus,

load MACRO addr
ERRIFB <addr>
MOV ax,addr

ENDM

generates an error when invoked with load, but would not when invoked
with load test.

These directives provide conditional assembly or error generation based on
the current assembly pass:

I Fxxx directive

IF1
IF2

ERRxxx directive

ERRIF1
.ERR1
ERRIF2
.ERR2

Assembles true_conditional_body if

Assembler pass 1
Assembler pass 2

Generates user error if

Assembling pass 1
Assembling pass 1 (MASM mode only)
Assembling pass 2
Assembling pass 2 (MASM mode only)

Normally, Turbo Assembler acts as a single-pass assembler. If you use
Turbo Assembler's multi-pass capability (invoked with the 1m command
line switch), multiple passes are used if necessary.

Since there is always at least one pass through the assembler, the IF1
conditional assembly directive will always assemble the code in its

Turbo Assembler Users Guide

conditional block, and the .ERR1 and ERRIF1 directives will always
generate an error (but only during the first assembly pass).

If you use any of these directives and have not enabled multiple passes,
Turbo Assembler will generate Pass dependent construction warnings for all
of these directives to alert you to a potentially hazardous code omission. If
you enable multiple passes, Turbo Assembler will perform exactly two
passes, and will generate the warning Maximum compatibility pass was done.

Including conditionals in the list file

See Chapters 2 and
17 for further
information.

Normally, false conditional assembly code is not included in a listing file.
You can override this through the use of assembler directives and
command-line switches.

Chapter 15, Using conditional directives 201

202 Turbo Assembler Users Guide

c H A p T E R 16

Interfacing with the linker

Modular programs are typically constructed from several independent
sections of code, called modules. The compiler processes each of these
modules independently, and the linker (TLINK) puts the resulting pieces
together to create an executable file. The README file explains where you
can find information about how to use TLINK, but it's also important to
know how to define and include all the files and libraries you might want
prior to linking. This chapter describes how to do these things.

Publishing symbols externally

Conventionsfora
particular
language

You may find that you'll need to use some variables and procedures in all
of your program modules. Turbo Assembler provides several directives
that let you define symbols and libraries so that you can use them globally,
as well as use communal variables (which the linker allocates space for).
You'll also have to be careful about how, you name your symbols, since
different languages have particular requirements. The next few sections
discuss these directives and naming requirements.

When you name symbOls that you plan to use externally, remember to use
the language specifier for your particular language. These requirements for
variable names are:

• Pascal uppercase characters

II C/C++ name must start with_. Rest of name should be in lowercase
characters Lname).

When you specify a language in the MODEL directive or in the PROC
declaration, or declare the language in a symbol's PUBLIC declaration,
Turbo Assembler will automatically use the proper naming conventions for
that language, as follows:

II C, CPP, and PROLOG use the C/C+~ naming conventions .

• BASIC, PASCAL, FORTRAN, and NOLANGUAGE languages use the
Pascal naming conventions.

Chapter 16, InterfaCing with the linker 203

Declaring public
symbols

Note that to use
public symbols

outside the module
where they're

defined, you need to
use the EXTRN

directive.

Declaring library
symbols

204

• SYSCALL specifies C calling conventions, but without prep ending
underscores to symbol names (like Pascal naming conventions).

• STDCALL uses C calling conventions for procedures with variable
arguments, and Pascal calling conventions for procedures with fixed
arguments. It always uses the C naming convention.

The Iml switch (described in Chapter 2) tells Turbo Assembler to treat all
symbol names as case sensitive. The Imx switch (also described in Chapter
2) tells the assembler to treat only external and public symbols as case
sensitive, and that all other symbols within the source file are uppercase.
When you use these two switches together, they have a special meaning for
symbols declared as Pascal: these switches cause the symbols in question to
be published as all uppercase to the linker.

When you declare a public symbol, you intend it to be accessible from other
modules. The following types of symbols can be public:

• data variable names

• program labels

• numeric constants defined with EQU

You can use the PUBLIC directive to define public symbols. Its syntax
follows:

PUBLIC [language] symbol [, [language] symbol] .,.

language is either C, CPP, PASCAL, BASIC, FORTRAN, PROLOG, or
NOLANGUAGE, and defines any language-specific conventions to be
applied to the symbol name. Using a language in the PUBLIC directive
temporarily overrides the current language setting (the default,
NOLANGUAGE, or one that you've established with .MODEL).

Turbo Assembler publishes symbol in the object file so that other modules
can access it. If you don't make a symbol public, you can access it only from
the current source file; for example:

PUBLIC XYPROC
XYPROC PROC NEAR

;make procedure public

You can also use symbols as dynamic link entry points for a dynamic link
library. Use the PUBLlCDLL directive to declare symbols to be accessible
this way. Here's its syntax:

PUBLICDLL [language] symbol [, [language] symbol] ...

Turbo Assembler publishes symbol in the object file as a dynamic link entry
point (using EXPDEF and IMPDEF records) so that it can be accessed by

Turbo Assembler Users Guide

Defining external
symbols

Defining global
symbols

Publishing a
procedure
prototype

other programs. language causes any language-specific conventions to be
applied to the symbol name. Valid language specifiers are C, PASCAL,
BASIC, FORTRAN, PROLOG, and NOLANGUAGE.

Here's an example of code using PUBLlCDLL:

PUBLICOLL XYPROC
XYPROC PROC NEAR

imake procedure XYPROC
iaccessible as dynamic link entry point

External symbols are symbols that are defined outside a module, that you
can use within the module. These symbols must have been declared using
the PUBLIC directive. EXTRN has the following syntax:

EXTRN definition [,definition] ...

definition describes a symbol and has the following format:

[language] name [[countll] :complex_type [:count2]

Global symbols function like public symbols, without your having to
specify a PUBLIC or an EXTRN. If the variable is defined in the module, it
functions like PUBLIC. If not, it functions like EXTRN. You can use the
GLOBAL directive to define global symbols. GLOBAL has the same syntax
as PUBLIC and EXTRN (see the previous few sections for syntax
descriptions.)

GLOBAL lets you have an INCLUDE file included by all source files; the
INCLUDE file contains all shared data defined as global symbols. When you
reference these data items in each module, the GLOBAL definition acts as
an EXTRN directive, describing how the data is defined in another module.

You must define a symbol as GLOBAL before you first use it elsewhere in
your source file. Also note that each argument of GLOBAL accepts the same
syntax as an argument of EXTRN.

Here's an example:

GLOBAL X:WORO, Y:BYTE
X OW 0
mov aI, Y

imade public for other module
iY is defined as external

If you're using version T320 or later and you use PROCDESC to describe a
procedure prototype, Turbo Assembler treats the procedure name as if it
were a GLOBAL symbol. If you've defined the procedure within the
module, it is treated as PUBLIC. Otherwise, Turbo Assembler assumes it to
be EXTRN.

Chapter 16, Interfacing with the linker 205

Defining
communal
variables

A drawback to using
communal variables

is that the res no
guarantee that they'll

appear in consecutive
memory locations. If

this is an issue for
you, use global

variables instead.

206

You can place PROCDESC directives in an include file. When you reference
the procedure name in the module, PROCDESC acts as an EXTRN directive,
describing how the procedure is defined in another module. If the
procedure is defined in the module, PROCDESC acts as a PUBLIC directive
to publish the procedure.

Communal variables function like external variables, with a major
difference: communal variables are allocated by the linker. Communal
variables are actually like global variables, but you can't assign them initial
values. These uninitialized variables can be referenced from multiple
modules.

You can use the COMM directive to define a communal variable. Here's its
syntax:

COMM definition [,definition] ...

Each definition describes a symbol and has the following format:

[distance] [language] symbolname[[countll] : complex_type [:count2]

distance is optional and can be either NEAR or FAR. If you don't specify a
distance, it will default to the size of the default data memory model. If
you're not using the simplified segmentation directives, the default size is
NEAR. With the tiny, small, and medium models, the default size is also
NEAR; all other models are FAR.

language is either C, PASCAL, BASIC, FORTRAN, PROLOG, or
NOLANGUAGE. Using a language in the COMM directive temporarily
overrides the current language setting (default or one established with
.MODEL). Note that you don't need to have a .MODEL directive in effect to
use this feature.

symbolname is the symbol that is to be communal and have storage allocated
at link time. symbolname can also specify an array element size multiplier
countl to be included in the total space computation. If distance is NEAR, the
linker uses countl to calculate the total size of the array. If distance is FAR,
the linker uses count2 to indicate how many elements there are of size
countl times the basic element size (determined by type). countl defaults to
a value of l.

complex_type is the data type of the argument. It can be either a simple type,
or a complex pointer expression. See Chapter 5 for more information about
the syntax of complex types.

The optional count2 specifies how many items this communal symbol
defines. If you do not specify a count2, a value of 1 is assumed. The total

Turbo Assembler Users Guide

space allocated for the communal variable is count2 times the length
specified by the type field times countl.

In MASM mode, communal symbols declared outside of any segment are
presumed to be reachable using the DS register, which may not always be a
valid assumption. Make sure that you either place the correct segment
value in DS or use an explicit segment override when referring to these
variables. In Ideal mode, Turbo Assembler correctly checks for whether the
communal variable is addressable, using any of the current segment
registers as described with the ASSUME directive.

Here's an example using the COMM directive.

COMM buffer:BYTE:512
COMM abc[41J :WORD:10

COMM FAR abc[41J :WORD:10

;512 bytes allocated at link time
;820 bytes (10 items of 41 words
;each) allocated at link time
;10 elements of 82 bytes (2 bytes
;times 41 elements) allocated at
; link time .

Including a library

Using INCLUDELIB
prevents you from

having to remember
to specify the library

name in the linker
commands.

For the times when you know that your source file will always need to use
routines in a specified library, you can use the INCLUDELIB directive.
INCLUDELIB tells the linker to include a particular library. The appropriate
syntaxes for this directive are:

Ideal mode:
INCLUDELIB "filename" ;note the quotes!

MASMmode:
INCLUDELIB filename

filename is the name of the library you want the linker to include at link
time. If you don't supply an extension with filename, the linker assumes
. LIB.

Here's an example:

INCLUDELIB "diskio" ;includes DISKIO.LIB

Chapter 16, Interfacing with the linker 207

The ALIAS directive

208

Turbo Assembler supports ALIAS to allow the association of an alias name
with a substitute name. When the linker encounters an alias name, it
resolves the alias by referring to the substitute name.

Turbo Assembler Users Guide

See the II and Iia
switches in
Chapter 2.

See the Ie
command-line option

in Chapter 2.

Listing format

c H A p T E R 17

Generating a listing

A listing file is useful if you want to see exactly what Turbo Assembler
generates when each instruction or directive is assembled. The file is
basically the source file annotated with a variety of information about the
results of the assembly. Turbo Assembler lists the actual machine code for
each instruction, along with the offset in the current segment of the
machine code for each line. What's more, Turbo Assembler provides tables
of information about the labels and segments used in the program,
including the value and type of each label, and the attributes of each
segment.

Turbo Assembler can also, on demand, generate a cross-reference table for
all labels used in a source file, showing you where each label was defined
and where it was referenced.

The top of each page of the listing file displays a header consisting of the
version of Turbo Assembler that assembled the file, the date and time of
assembly, and the page number within the listing.

There are two parts to the listing file: the annotated source code listing and
the symbol tables. The original assembly code is displayed first, with a
header containing the name of the file where the source code resides. The
assembler source code is annotated with information about the machine
code Turbo Assembler assembled from it. Any errors or warnings encoun
tered during assembly are inserted immediately following the line they
occurred on.

The code lines in the listing file follow this format:

<depth> <line number> <offset> <machine code> <source>

<depth> indicates the level of nesting of Include files and macros within
your listing file.

Chapter 17, Generating a listing 209

<line number> is the number of the line in the listing file (not including
header and title lines). Line numbers are particularly useful when the
cross-reference feature of Turbo Assembler, which refers to lines by line
number, is used. Be aware that the line numbers in dine number> are not
the source module line numbers. For example, if a macro is expanded or a
file is included, the line-number field will continue to advance, even
though the current line in the source module stays the same. To translate a
line number (for example, one that the cross-referencer produced) back to
the source file, you must look up the line number in the listing file, and
then find that same line (by eye, not by number) in the source file.

<offset> is the offset in the current segment of the start of the machine code
generated by the associated assembler source line.

<machine code> is the actual sequence of hexadecimal byte and word values
that is assembled from the associated assembler source line.

<source> is simply the original assembler line, comments and all. Some
assembler lines, such as those that contain only comments, don't generate
any machine code; these lines have no <offset> or <machine code> fields, but
do have a line number.

General list directives

210

There are a variety of list directives that let you control what you want in
your listing file. The general list directives follow:

•. LlST ;MASM mode only

•. XLlST

.%LlST

.%NOLIST

.%CTLS

.%NOCTLS

.%SYMS

.%NOSYMS

;MASM mode only

The %LlST directive shows all of the source lines in y<5ur listing. This is the
default condition when you create a listing file. To turn off the display of all
the source lines, use the %NOLIST directive. Here's an example:

%NOLIST
INCLUDE MORE .INC
%LIST

iturn off listing

i turn on listing

Turbo Assembler Users Guide

The .LlST and .XLlST directives function the same way as %LlST and
%NOLIST. Here's an example:

.LIST
jrnp ~z
.XLIST
add dX,ByteVar

;this line always listed

;not in listing

You can use the %CTLS and %NOCTLS directives to control the listing
directives. %CTLS causes listing control directives (such as %LlST, %INCL,
and so on) to be placed in the listing file; normally, they are not listed. It
takes effect on all subsequent lines, so the %CTLS directive itself will not
appear in the listing file. %NOCTLS reverses the effect of a previous %CTLS
directive. After issuing %NOCTLS, all subsequent listing-control directives
will not appear in the listing file. (%NOCTLS is the default listing-control
mode that Turbo Assembler uses when it starts assembling a source file.);
for example,

%CTLS
%NOLIST
%NOCTLS
%LIST

;this will be in listing file

;this will not appear in listing

You can use the %SYMS and %NOSYMS directives to cause the symbol
table to either appear or not to appear in your listing file (the default is for
it to appear). The symbol table will appear at the end of the listing file.

Here's the syntax for %SYMS:

%SYMS

Here's the syntax for %NOSYMS:

%NOSYMS

Include file list directives

In the event that you might want to list the include files in your listing file,
you can turn this capability on and off using the %INCL and %NOINCL
directives. By default, INCLUDE files are normally contained in the listing
file. %NOINCL stops all subsequent INCLUDE files source lines from
appearing in the listing until a %INCL is enabled. This is useful if you have
a large INCLUDE file that contains things such as a lot of EQU definitions
that never change.

Chapter 17, Generating a listing 211

Here's an example:

%INCL
INCLUDE DEFS.INC
%NOINCL
INCLUDE DEF1.INC

icontents appear in listing

icontents don't appear

Conditional list directives

212

When you have conditional blocks of code in your source files, you might
not want all of that information to appear in the listing file. Showing
conditional blocks can be very helpful in some instances when you want to
see exactly how your code is behaving. Turbo Assembler provides the
following conditional list directives:

•. LFCOND

•. SFCOND

•. TFCOND

.%CONDS

.%NOCONDS

;MASM mode only

;MASM mode only

;MASM mode only

Turbo Assembler does not usually list conditional blocks.

The %CONDS directive displays all statements in conditional blocks in the
listing file. This includes the listing of false conditional blocks in assembly
listings. The .LFCOND directive functions the same as %COND.
%NOCONDS prevents statements in false conditional blocks from
appearing in the listing file. The .SFCONDS directive functions exactly the
same as %NOCOND. If you want to toggle conditional block-listing mode,
use the .TFCOND directive.

The first .TFCOND that Turbo Assembler encounters enables a listing of
conditional blocks. If you use the IX command-line option, conditional
blocks start off being listed, and the first .TFCOND encountered disables
listing them. Each time .TFCOND appears in the source file, the state of false
conditional listings is reversed.

To invoke any of these directives, place it by itself on a line in your code.
They will affect the conditional blocks that immediately follow them.

Turbo Assembler Users Guide

Macro list directives

Macro expansions are not normally included in listing files. Having this
information in listing files can be very helpful when you want to see what
your code is doing. Turbo Assembler provides several directives that let
turn this feature on and off. They are:

•. LALL ;MASM mode only

•. SALL ;MASM mode only

II.XALL

.%MACS

.%NOMACS

;MASM mode only

The %MACS directive enables the listing of macro expansions. The .LALL
directive does the same thing, but only works in MASM mode. You can use
these macros to toggle macro expansion in listings on.

%MACS has the following syntax:

%MACS

You can specify .LALL as follows:

.LALL

If you want to suppress the listing of all statements in macro expansions,
use either the %NOMACS or .SALL directives. Note that you can use these
directives to toggle macro expansion in listings off.

%NOMACS has the following syntax:

%NOMACS

You can specify .SALL as follows:

.SALL

The .XALL directive, which is only available in MASM mode, lets you list
only the macro expansions that generate code or data .. XALL has the
following syntax:

.XALL

Cross-reference list directives

The symbol table portion of the listing file normally tells you a great deal
about labels, groups, and segments, but there are two things it doesn't tell

Chapter 17, Generating a listing 213

Turbo Assembler
includes cross

referencing
information in the

listing file. You can
specify a .XRF in

your Turbo
Assembler command

to get a separate
.XRF file as well.

214

you: where labels, groups, and segments are defined, and where they're
used. Cross-referenced symbol information makes it easier to find labels
and follow program execution when debugging a program.

There are several ways of enabling cross-referencing information in your
listing file. You can use Ie to produce cross-referencing information for an
entire file (see Chapter 2 for details), or you can include directives in your
code that let you enable and disable cross-referencing in selected portions
of your listings.These directives are:

•. CREF

•. XCREF

.%CREF

.%NOCREF

.%CREFALL

.%CREFREF

.%CREFUREF

;MASM mode only

;MASM mode only

The O/oCREF and .CREF directives let you accumulate cross-reference
information for all symbols encountered from that point forward in the
source file. %CREF and .CREF reverse the effects of any %NOCREF or
.XCREF directives, which inhibit the collection of cross-reference
informa tion.

%CREF and .CREF have the following syntaxes:

%CREF

or
.CREF

%NOCREF and .XCREF have the following syntaxes:

%NOCREF [symbol, ... J

or
.XCREF [symbol, ... J

If you use %NOCREF or .XCREF alone without specifying any symbols,
cross-referencing is disabled completely. If you supply one or more symbol
names, cross-referencing is disabled only for those symbols.

The %CREFALL directive lists all symbols in the cross reference.
%CREFALL reverses the effect of any previous %CREFREF (which disables
listing of unreferenced symbols in the cross reference), or %CREFUREF
(which lists only the unreferenced symbols in the cross reference). After
issuing %CREFALL, all subsequent symbols in the source file will appear in

Turbo Assembler Users Guide

the cross-reference listing. This is the default mode that Turbo Assembler
uses when assembling your source file.

The syntax for %CREFALL, %CREFREF, and %CREFUREF follows:

%CREFALL

%CREFREF

%CREFUREF

Changing list format parameters

The listing format control directives alter the format of the listing file. You
can use these directives to tailor the appearance of the listing file to your
tastes and needs.

The PAGE directive sets the listing page height and width, and starts new
pages; PAGE only works in MASM mode. PAGE has the following syntax:

PAGE [rows] [tcols]
PAGE +

rows specifies the number of lines that will appear on each listing page. The
minimum is 10 and the maximum is 255. eo Is specifies the number of
columns wide the page will be. The minimum width is 59; the maximum is
255. If you omit either rows or eoIs, the current setting for that parameter
will remain unchanged. To change only the number of columns, precede
the column width with a comma; otherwise, you'll end up changing the
number of rows instead.

If you follow the PAGE directive with a plus sign (+), a new page starts, the
section number is incremented, and the page number restarts at 1. If you
use PAGE with no arguments, the listing resumes on a new page, with no
change in section number.

The %PAGESIZE directive functions exactly like the PAGE directive, except
that it doesn't start a new page and that it works in both MASM and Ideal
modes. %PAGESIZE has the following syntax:

%PAGESIZE [rows] [tcols]

%NEWPAGE functions like PAGE, with no arguments. Source lines
appearing after %NEWPAGE will begin at the start of a new page in the
listing file. %NEWPAGE has the following syntax:

%NEWPAGE

Chapter 17, Generating a listing 215

216

The %BIN directive sets the width of the object code field in the listing file.
%BIN has the following syntax:

%BIN size

size is a constant. If you don't use this directive, the instruction opcode field
takes up 20 columns in the listing file. For example,

%BIN 12 iset listing width to 12 columns

%DEPTH sets the size of the depth field in the listing file. %DEPTH has the
following syntax:

%DEPTH width

width specifies how many columns to reserve for the nesting depth field in
the listing file. The depth field indicates the nesting level for INCLUDE files
and macro expansions. If you specify a width of 0, this field does not
appear in the listing file. Usually, you won't need to specify a width of
more than 2, since that would display a depth of up to 99 without
truncation. The default width for this field is 1 column.

%LlNUM sets the width of the line-number field in the listing file. %LlNUM
has the following syntax:

%LINUM size

%LlNUM lets you set how many columns the line numbers take up in the
listing file. size must be a constant. If you want to make your listing as
narrow as possible, you can reduce the width of this field. Also, if your
source file contains more than 9,999 lines, you can increase the width of this
field so that the line numbers are not truncated. The default width for this
field is 4 columns.

% TRUNC truncates listing fields that are too long. % TRUNC has the
following syntax:

%TRUNC

The object code field of the listing file has enough room to show the code
emitted for most instructions and data allocations. You can adjust the width
of this field with %BIN. If a single source line emits more code than can be
displayed on a single line, the rest is normally truncated and therefore not
visible. When you want to see all the code generated, use %NOTRUNC
(which wordwraps too-long fields in the listing file). Otherwise, use
% TRUNC. You can use these directives to toggle truncation on and off.

%NOTRUNC has the following syntax:

% NOTRUNC

Turbo Assembler Users Guide

%PCNT sets the segment:offset field width in the listing file. %PCNT has the
following syntax:

%PCNT width

where width is the number of columns you want to reserve for the offset
within the current segment being assembled. Turbo Assembler sets the
width to 4 for ordinary 16-bit segments and sets it to 8 for 32-bit segments
used by the 386 processor. %PCNT overrides these defaults.

The TITLE directive, which you can use only in MASM mode, sets the title
in the listing file. TITLE has the following syntax:

TITLE text

The title text appears at the top of each page, after the name of the source
file and before any subtitle set with the SUBTTL directive. You can use
TITLE as many times as you want.

%TITLE functions like TITLE, but you can use it for either MASM or Ideal
mode. % TITLE has the following syntax:

%TITLE "text"

SUBTTL, which only works in MASM mode, sets the subtitle in the listing
file. SUBTTL has the following syntax:

SUBTTL text

The subtitle appears at the top of each page, after the name of the source
file, and after any title set with TITLE.

You can place as many SUBTTL directives in your program as you wish.
Each directive changes the subtitle that will appear at the top of the next
listing page. I

%SUBTTL functions like SUBTTL, but it works in both MASM and Ideal
modes. %SUBTTL has the following syntax:

%SUBTTL "text"

% TABSIZE sets the tab column width in the listing file. % T ABSIZE has the
following syntax:

%TABSIZE width

width is the number of columns between tabs in the listing file. The default
tab column width is 8 columns.

You can use the %TEXT directive to set the width of the source field in the
listing file. It has the following syntax:

Chapter 17, Generating a listing 217

218

%TEXT width

width is the number of columns to use for source lines in the listing file. If
the source line is longer than this field, it will either be truncated or
wrapped to the following line, depending on whether you've used
% TRUNC or %NOTRUNC.

You can use the %PUSHLCTL directive to save the listing controls on a 16-
level stack. It only saves the listing controls that can be enabled or disabled
(%INCL, %NOINCL, and so on). The listing field widths are not saved. This
directive is particularly useful in macros, where you can invoke special
listing modes that disappear once the macro expansion terminates.

%PUSHLCTL has the following syntax:

%PUSHLCTL

Conversely, the %POPLCTL directive recalls listing controls from the stack.
Here's its syntax:

%POPLCTL

%POPLCTL resets the listing controls to the way they were when the last
%PUSHLCTL directive was issued. None of the listing controls that set field
width are restored (such as %DEPTH, %PCNT).

Turbo Assembler Users Guide

c H A p T E R

Interfacing Turbo Assembler with
Borland C++

18

While many programmers can-and do-develop entire programs in
assembly language, many others prefer to do the bulk of their program
ming in a high-level language, dipping into assembly language only when
low-level control or very high-performance code is required. Still others
prefer to program primarily in assembler, taking occasional advantage of
high-level language libraries and constructs.

Borland C++ lends itself particularly well to supporting mixed C++ and
assembler code on an as-needed basis, providing not one but three
mechanisms for integrating assembler and C++ code. The inline assembly
feature of Borland C++ provides a quick and simple way to put assembler
code directly into a C++ function. You can assemble the inline code with
Turbo Assembler or use Borland C++'s built-in assembler. For further
information about using in-line assembly in Borland C++ or the built-in
assembler, see the Borland C++ Programmer's Guide. For those who prefer to
do their assembler programming in separate modules written entirely in
assembly language, Turbo Assembler modules can be assembled separately
and linked to Borland C++ code.

First, we'll discuss the details of linking separately assembled Turbo
Assembler modules to Borland C++, and explore the process of calling
Turbo Assembler functions from Borland C++ code. Then, we'll cover
calling Borland C++ functions from Turbo Assembler code.

Calling Turbo Assembler functions from Borland C++

C++ and assembler have traditionally been mixed by writing separate
modules entirely in C++ or assembler, compiling the C++ modules and
assembling the assembler modules, and then linking the separately
compiled modules together. Borland C++ modules can readily be linked
with Turbo Assembler modules in this fashion. Figure 1B.1 shows how to
do this.

Chapter 18, Interfacing Turbo Assembler with Borland C++ 219

Figure 18.1
Compile, assemble,

and link with Borland
C++, Turbo

Assembler, and
TLiNK

220

Assembler Source File:
FILENAME.ASM

The executable file is produced from mixed C++ and assembler source files.
You start this cycle with

bee filenaml.epp filenam2.asm

This instructs Borland C++ to first compile FILENAMl.CPP to
FILENAM1.0BJ, then invoke Turbo Assembler to assemble
FILENAM2.ASM to FILENAM2.0BJ, and finally invoke TLINK to link
FILENAM1.OBJ and FILENAM2.0BJ into FILENAMl.EXE.

Separate compilation is very useful for programs that have sizable amounts
of assembler code, since it makes the full power of Turbo Assembler
available and allows you to do your assembly language programming in a
pure assembler environment, without the asm keywords, extra compilation
time, and C++-related overhead of inline assembly.

There is a price to be paid for separate compilation: The assembler
programmer must attend to all the details of interfacing C++ and assembler
code. Where Borland C++ handles segment specification, parameter
passing, reference to C++ variables, register variable preservation, and the
like for inline assembly, separately compiled assembler functions must
explicitly do all that and more.

There are two major aspects to interfacing Borland C++-and Turbo
Assembler. First, the various parts of the C++ and assembler code must be

Turbo Assembler Users Guide

The framework

Linking assembly
language modules
with C++

linked together properly, and functions and variables in each part of the
code must be made available to the rest of the code as needed. Second, the
assembler code must properly handle C-style function calls. This includes
accessing passed parameters, returning values, and following the register
preservation rules required of c++ functions.

Let's start by examining the rules for linking together Borland C++ and
Turbo Assembler code.

In order to link Borland C++ and Turbo Assembler modules together, three
things must happen:

• The Turbo Assembler modules must use a Borland C++-compatible
segment-naming scheme.

• The Borland C++ and Turbo Assembler modules must share appropriate
function and variable names in a form acceptable to Borland C++.

• TLINK must be used to combine the modules into an executable
program.

This says nothing about what the Turbo Assembler modules actually do; at
this point, we're only concerned with creating a framework within which
C++-compatible Turbo Assembler functions can be written. '

Type-safe linkage is an important concept in C++. The compiler and linker
must work together to ensure function calls between modules use the '
correct argument types. A process called name-mangling provides the
necessary argument type information. Name-mangling modifies the name
of the function to indicate what arguments the function takes.

When you build a program entirely in C++, name-mangling occurs
automatically and transparently. However, when you write a module in
assembly language to be linked into a C++ program, you must be sure the
assembler module contains mangled names. You can do this easily by
writing a dummy function in C++ and compiling it to assembler. The .ASM
file that Borland C++ generates will have the proper mangled names. You
use these names when you write the real assembler module.

For example, the following code fragment defines four different versions of
the function named test:

void test ()
{

}

Chapter 18, Interfacing Turbo Assembler with Borland C++ 221

222

void test(int)
{

}

void test(int, int)
{

}

void test(float, double)
{

}

If the code is compiled using the -5 option, the compiler produces an
assembly language output file (.ASM). This is how the output looks (edited
to remove extraneous details):

void test ()
@test$qv proc near

push bp
mov bp,sp
pop bp
ret

@test$qv endp

void test(int
@test$qi proc near

push bp
mov bp, sp
pop bp
ret

@test$qi endp

void test(int, int)
@test$qii proc near

push bp
mov bp,sp
pop bp
ret

@test$qii endp

void test(float, double
@test$qfd proc near

push bp
mov bp, sp
pop bp
ret

@test$qfd endp

Using Extern "e" to simplify linkage
If you prefer, you can use unmangled names for your assembler functions,
instead of trying to figure out what the mangled names would be. Using

Turbo Assembler User's Guide

Memory models and
segments

unmangled names will protect your assembler functions from possible
future changes in the name-mangling algorithm. Borland C++ allows you
to define standard C function names in your C++ programs.

Look at this example:

extern "e" {
int add(int *a,int b)i

Any functions declared within the braces will be given C style names. Here
is the matching assembler procedure definition.

public _add
3dd proc

Declaring an assembler function with an extern "C" block can save you the
trouble of determining what the mangled names will be. Your code will be
more readable, also.

For a given assembler function to be callable from C++, that function must
use the same memory model as the C++ program and must use a C++
compatible code segment. Likewise, in order for data defined in an
assembler module to be accessed by C++ code (or for C++ data to be
accessed by assembler code), the assembler code must follow C++ data
segment-naming conventions.

Memory models and segment handling can be quite complex to implement
in assembler. Fortunately, Turbo Assembler does virtually all the work of
implementing Borland C++-compatible memory models and segments for
you in the form of the simplified segment directives.

Simplified segment directives and Borland C++
The .MODEL directive tells Turbo Assembler that segments created with the
simplified segment directives should be compatible with the selected
memory model (tiny, small, compact, medium, large, huge, or tchuge), and
controls the default type (near or far) of procedures created with the PROe
directive. Memory models defined with the .MODEL directive are compat
ible with the equivalently named Borland C++ models except that you
should use Turbo Assembler's tchuge memory model when you want to
support Borland C++'s huge memory model. (The huge memory model is
more appropriate for compatibility with other C compilers.) You should
use the FARSTACK modifier with the .MODEL directive for large model, so
the stack does not become a part of DGROUP.

Chapter 18, Interfacing Turbo Assembler with Borland C++ 223

224

Finally, the,.CODE, .DATA, .DATA?, .FARDATA, and .FARDATA? simplified
segment directives generate Borland C++-compatible segments. (Don't use
.DATA? or FARDATA? in huge model as they do not exist in Borland C++.)

For example, consider the following Turbo Assembler module, named
DOTOTAL.ASM:

select Intel-convention segment ordering
. MODEL small iselect small model (near code and data)
. DATA iTC-compatible initialized data segment
EXTRN _Repetitions:WORD iexternally defined
PUBLIC _StartingValue iavailable to other modules

_StartingValue DW 0
. DATA? iTC-compatible uninitialized data segment

RunningTotal
.CODE

DW

PUBLIC _DoTotal
iTC-compatible code segment

_DoTotal PROC ifunction (near-callable in small model)
mov cx, [_Repetitions] ;# of counts to do
mov ax, [_StartingValue]
mov [RunningTotal],ax iset initial value

TotalLoop:
inc
loop
mov
ret

_DoTotal
END

[RunningTotal]
TotalLoop
ax, [RunningTotal]

ENDP

iRunningTotal++

ireturn final total

The assembler procedure _DoTotal is readily callable from a small-model
Borland C++ program with the statement

DoTotal() i

Note that _DoTotal expects some other part of the program to define the
external variable Repetitions. Similarly, the variable Starting Value is made
public, so other portions of the 'program can access it. The following
Borland C++ module, SHOWTOT.CPP, accesses public data in
DOTOTAL.ASM and provides external data to DOTOT AL.ASM:

#include <stdio.h>

extern "C" int DoTotal(void)i
extern int StartingValuei

int Repetitionsi

Turbo Assembler Users Guide

int main ()
{

Repetitions = 10i
StartingValue = 2i
printf("%d\n", DoTotal()) i

return Oi

StartingValue doesn't have to go in the Extern "C" block because
variable names are not mangled.

To create the executable program SHOWTOT.EXE from SHOWTOT.CPP
and DOTOTAL.ASM, enter the command line

bcc showtot.cpp dototal.asm

If you wanted to link _DoTotal to a compact-model C++ program, you
would simply change the .MODEL directive to .MODEL COMPACT. If you
wanted to use a far segment in DOTOTAL.ASM, you could use the .FAR
DATA directive.

In short, generating the correct segment ordering, memory model, and
segment names for linking with Borland C++ is easy with the simplified
segment directives.

Old-style segment directives and Borland C++
Simply put, it's a nuisance interfacing Turbo Assembler code to C++ code
using the old-style segment directives. For example, if you replace the
simplified segment directives in DOTOTAL.ASM with old-style segment
directives, you get

DGROUP GROUP _DATA,_BSS
_DATA SEGMENT WORD PUBLIC 'DATA'

EXTRN _Repetitions:WORD iexternally defined
PUBLIC _StartingValue iavailable to other modules

_StartingValue DW 0
_DATA ENDS
_BSS SEGMENT WORD PUBLIC 'BSS'

DW ? RunningTotal
_BSS ENDS
_TEXT SEGMENT

ASSUME
BYTE PUBLIC 'CODE'
cs:_TEXT,ds:DGROUP,ss:DGROUP

PUBLIC _DoTotal
_DoTotal PROC ifunction (near-callable

i in small model)
mov cx, [_Repetitions] i# of counts to do
mov ax, [_StartingValue]
mov [RunningTotal],ax iset initial value

Chapter 18, Interfacing Turbo Assembler with Borland C++ 225

226

[RunningTotal] iRunningTotal++
TotalLoop

TotalLoop:
inc
loop
mov
ret

ax, [RunningTotal] ireturn final total

_DoTotal ENDP
_TEXT ENDS

END

The version with old-style segment directives is not only longer, but also
much harder to read and harder to change to match a different C++
memory model. When you're interfacing to Borland C++, there's generally
no advantage to using the old-style segment directives. If you still want to
use the old-style segment directives when interfacing to Borland C++,
you'll have to identify the correct segments for the memory model your
C++ code uses.

.. The easy way to determine the appropriate old-style segment directives for
linking with a given Borland C++ program is to compile the main module
of the Borland C++ program in the desired memory model with the -S
option. This causes Borland C++ to generate an assembler version of the
C++ code. In that C++ code, you'll find all the old-style segment directives
used by Borland C++; just copy them into your assembler code.

You can also find out what the appropriate old-style directives are by
compiling as you normally would (without the -S option) and then using
TDUMP, a utility that comes with Turbo Assembler, to display all the
segment definition records. Use this command line:

tdump -OIsegdef module.obj

Segment defaults: When is it necessary to load segments?
Under some circumstances, your C++-callable assembler functions might
have to load DS and/or ES in order to access data. It's also useful to know
the relationships between the settings of the segment registers on a call
from Borland C++, since sometimes assembler code can take advantage of
the equivalence of two segment registers. Let's take a moment to examine
the settings of the segment registers when an assembler function is called
from Borland C++, the relationships between the segment registers, and the
cases in which an assembler function might need to load one or more
segment registers.

On entry to an assembler function from Borland C++, the C5 and D5
registers have the following settings, depending on the memory model in
use (55 is always used for the stack segment, and ES is always used as a
scratch segment register):

Turbo Assembler Users Guide

Table 18.1
Register settings

when Borland C++
enters assembler

Model CS OS

Tiny _TEXT DGROUP
Small _TEXT DGROUP
Compact _TEXT DGROUP
Medium filename_TEXT DGROUP
Large filename_TEXT DGROUP
Huge filename_TEXT callingjilename_DATA

filename is the name of the assembler module, and callingJilename is the
name of the module calling the assembler module.

In the tiny model,_TEXT and DGROUP are the same, so CS equals DS on
entry to functions. Also in the tiny, small, and medium models, SS equals
DS on entry to functions.

So, when is it necessary to load a segment register in a C++-callable
assembler function? First, you should never have to (or want to) directly
load the CS or SS registers. CS is automatically set as needed on far calls,
jumps, and returns, and can't be tampered with otherwise. SS always
points to the stack segment, which should never change during the course
of a program (unless you're writing code that switches stacks, in which case
you had best know exactly what you're doing).

ES is always available for you to use as you wish. You can use ES to point
at far data, or you can load ES with the destination segment for a string
instruction.

That leaves the DS register; in all Borland C++ models other than the huge
model, DS points to the static data segment (DGROUP) on entry to
functions, and that's generally where you'll want to leave it. You can
always use ES to access far data, although you may find it desirable to
instead temporarily point DS to far data that you're going to access
intensively, thereby saving many segment override instructions in your
code. For example, you could access a far segment in either of the following
ways:

.FARDATA
Counter DW 0

. CODE
PUBLIC _AsmFunction

Chapter 18, Interfacing Turbo Assembler with Borland C++ 227

228

_AsmFunction PROC

mov aX,@fardata
mov es,ax
inc es: [Counter]

_AsmFunction ENDP

or

.FARDATA
Counter DW 0

. CODE
PUBLIC _AsmFunction

_AsmFunction PROC

ASSUME ds:@fardata
mov aX,@fardata
mov ds,ax
inc [Counter]
ASSUME ds:@data
mov ax,@data
mov ds,ax

_AsmFunction ENDP

ipoint ES to far data segment
iincrement counter variable

ipoint DS to far data segment
iincrement counter variable

ipoint DS back to DGROUP

The second version has the advantage of not requiring an ES: override on
each memory access to the far data segment. If you do load DS to point to a
far segment, be sure to restore it like in the preceding example before
attempting to access any variables in DGROUP. Even if you don't access
DGROUP in a given assembler function, be sure to restore DS before exiting
since Borland C++ assumes that functions leave DS unchanged.

Handling DS in C++-callable huge model functions is a bit different. In the
huge model, Borland C++ doesn't use DGROUP at all. Instead, each module
has its own data segment, which is a far segment relative to all the other
modules in the program; there is no commonly shared near data segment.
On entry to a function in the huge model, DS should be set to point to that
module's far segment and left there for the remainder of the function, as
follows:

Turbo Assembler Users Guide

Publics and
externals

.FARDATA

. CODE
PUBLIC _AsmFunction

_AsmFunction PROC
push ds
mov aX,@fardata
mov ds,ax

pop ds
ret

_AsmFunction ENDP

Note that the original state of DS is preserved with a PUSH on entry to
AsmFunction and restored with a POP before exiting; even in the huge
model, Borland C++ requires all functions to preserve DS.

Turbo Assembler code can call C++ functions and reference external C++
variables. Borland C++ code can likewise call public Turbo Assembler
functions and reference public Turbo Assembler variables. Once Borland
C++-compatible segments are set up in Turbo Assembler, as described in
the preceding sections, only the following few simple rules are necessary to
share functions and variables between Borland C++ and Turbo Assembler.

Underscores and the C language
If you are programming in C or C++, all external labels should start with an
underscore character C). The C and C++ compilers automatically prefix an
underscore to all function and external variable names when they're used
in C/C++ code, so you only need to attend to underscores in your
assembler code. You must be sure that all assembler references to C and
C++ functions and variables begin with underscores, and you must begin
all assembler functions and variables that are made public and referenced
by C/C++ code with underscores.

For example, the following C code (link2asm.cpp),

int ToggleFlag();
int Flag;
main()
{

ToggleFlag () ;

links properly with the following assembler program (CASMLINK.ASM):

Chapter 18, Interfacing Turbo Assembler with Borland C++ 229

Labels not referenced
by C code, such as

SetTheFlag, don't
need leading
underscores.

230

. MODEL small

. DATA
EXTRN _Flag: vlORD

. CODE
PUBLIC _ToggleFlag

_ToggleFlag PROC
cmp [_Flag],O iis the flag reset?
jz SetTheFlag iyes, set it
mov [_Flag],O ino, reset it
jmp short EndToggleFlag idone

SetTheFlag:
mov [_Flag],l i set flag

EndToggleFlag:
ret

_ToggleFlag ENDP
END

When you use the C language specifier in your EXTRN and PUBLIC
directives, as in the following program (CSPEC.ASM),

. MODEL small

. DATA
EXTRN C Flag:word
.CODE
PUBLIC C ToggleFlag

ToggleFlag PROC
cmp [Flag], 0
jz SetTheFlag
mov [Flag],O
jmp short EndToggleFlag

SetTheFlag:
mov [Flag], 1

EndToggleFlag:
ret

ToggleFlag ENDP
END

Turbo Assembler causes the underscores to be prefixed automatically when
Flag and ToggleFlag are published in the object module.

The significance of uppercase and lowercase
Turbo Assembler is normally insensitive to case when handling symbolic
names, making no distinction between uppercase and lowercase letters.
Since C++ is case-sensitive, it's desirable to have Turbo Assembler be case
sensitive, at least for those symbols that are shared between assembler and
C++. Iml and Imx make this possible.

Turbo Assembler Users Guide

The Iml command-line switch causes Turbo Assembler to become case
sensitive for all symbols. The Imx command-line switch causes Turbo
Assembler to become case-sensitive for public (PUBLIC), external (EXTRN),
global (GLOBAL), and communal (COMM) symbols only. When Borland
C++ calls Turbo Assembler, it uses the Iml switch. Most of the time you
should use Iml also.

Label types
While assembler programs are free to access any variable as data of any
size (8 bit, 16 bit, 32 bit, and so on), it is generally a good idea to access
variables in their native size. For instance, it usually causes problems if you
write a word to a byte variable:

SrnallCount DB 0

rnov WORD PTR [SrnallCountl,Offffh

Consequently, it's important that your assembler EXTRN statements that
declare external C++ variables specify the right size for those variables,
since Turbo Assembler has only your declaration to go by when deciding
what size access to generate to a C++ variable. Given the statement

char c

in a C++ program, the assembler code

EXTRN c:WORD

inc [cl

could lead to problems, since every 256th time the assembler code
incremented c, c would tum over. And, since c is erroneously declared as a
word variable, the byte at OFFSET c + 1 is incorrectly incremented, and
with unpredictable results.

Correspondence between C++ and assembler data types is as follows:

c++ data type

unsigned char
char
enum
unsigned short
short

Chapter 18, Interfacing Turbo Assembler with Borland C++

Assembler data type

byte
byte
word
word
word

231

232

c++ data type

unsigned int
int
unsigned long
long
float
double
long double
near *
far *

Far externals

Assembler data type

word
word
dword
dword
dword
qword
tbyte
word
dword

If you're using the simplified segment directives, EXTRN declarations of
symbols in far segments must not be placed within any segment, since
Turbo Assembler considers symbols declared within a given segment to be
associated with that segment. This has its drawbacks: Turbo Assembler
cannot check the addressability of symbols declared EXTRN outside any
segment, and so can neither generate segment overrides as needed nor
inform you when you attempt to access that variable when the correct
segment is not loaded. Turbo Assembler still assembles the correct code for
references to such external symbols, but can no longer provide the normal
degree of segment addressability checking.

You can use the old-style segment directives to explicitly declare the
segment each external symbol is in, and then place the EXTRN directive for
that symbol inside the segment declaration. This is a lot of work, however;
if you make sure that the correct segment is loaded when you access far
data, it's easiest to just put EXTRN declarations of far symbols outside all
segments. For example, suppose that FILEl.ASM contains

.FARDATA
FilelVariable DB

Then if FILEl.ASM is linked to FILE2.ASM, which contains

. DATA
EXTRN FilelVariable:BYTE
.CODE

Start PROC
rnov aX,SEG FilelVariable
rnov ds,ax

Turbo Assembler Users Guide

Linker command
line

Parameter
passing

SEG Filel Variable will not return the correct segment. The EXTRN directive
is placed within the scope of the DATA directive of FILE2.ASM, so Turbo
Assembler considers Filel Variable to be in the near DATA segment of
FILE2.ASM rather than in the FARDATA segment.

The following code for FILE2.ASM allows SEG FilelVariable to return the
correct segment:

. DATA
@eurseg ENDS

EXTRN FilelVariable:BYTE
.CODE

Start PROC
mov aX,SEG FilelVariable
mov ds,ax

Here, the @curseg ENDS directive ends the .DATA segment, so no segment
directive is in effect when Filel Variable is declared external.

The simplest way to link Borland C++ modules with Turbo Assembler
modules is to enter a single Borland C++ command line and let Borland
C++ do all the work. Given the proper command line, Borland C++ will
compile the c++ code, invoke Turbo Assembler to do the assembling, and
invoke TLINK to link the object files into an executable file. Suppose, for
example, that you have a program consisting of the C++ files MAIN.CPP
and STAT.CPP and the assembler files SUMM.ASM and DISPLAY.ASM.
The command line

bee main.epp stat.epp summ.asm display.asm

compiles MAIN.CPP and STAT.CPP, assembles SUMM.ASM and
DISPLAY.ASM, and links all four object files, along with the C++ start-up
code and any required library functions, into MAIN.EXE. You only need re
member the .ASM extensions when typing your assembler file names.

If you use TLINK in stand-alone mode, the object files generated by Turbo
Assembler are standard object modules and are treated just like C++ object
modules. See Appendix C for more information about using TLINK in
stand-alone mode.

Borland C++ passes parameters to functions on the stack. Before calling a
function, Borland C++ first pushes the parameters to that function onto the
stack, starting with the rightmost parameter and ending with the leftmost
parameter. The C++ function call

Chapter 18, Interfacing Turbo Assembler with Borland C++ 233

234

Test(i, j, l)i

compiles to

mov ax,l
push ax
push WORD PTR DGROUP:_j
push WORD PTR DGROUP:_i
call NEAR PTR _Test
add sp,6

in which you can clearly see the rlghtmost parameter, 1, being pushed first,
then j, and finally i.

Upon return from a function, the parameters that were pushed on the stack
are still there, but are no longer useful. Consequently, immediately
following each function call, Borland C++ adjusts the stack pointer back to
the value it contained before the parameters were pushed, thereby
discarding the parameters. In the previous example, the three parameters
of 2 bytes each take up 6 bytes of stack space altogether, so Borland C++
adds 6 to the stack pointer to discard the parameters after the call to Test.
The important point here is that under the default C/C++ calling conven
tions, the calling code is responsible for discarding the parameters from the
stack.

Assembler functions can access parameters'passed on the stack relative to
the BP register. For example, suppose the function Test in the previous
example is the following assembler function, called PRMST ACK.ASM:

. MODEL small

.CODE
PUBLIC _Test

_Test PROC
push bp
mov bp,sp
mov ax, [bp+4] iget parameter 1
add ax, [bp+6] iadd parameter 2 to parameter 1
sub ax, [bp+8] isubtract parameter 3 from sum
pop bp
ret

Test ENDP -
END

Turbo Assembler Users Guide

Figure 18.2
State of the stack just

before executing
Tests first instruction

You can see that Test is getting the parameters passed by the C++ code
from the stack, relative to BP. (Remember that BP addresses the stack
segment.) But just how are you to know where to find the parameters
relative to BP?

Figure 18.2 shows what the stack looks like just before the first instruction
in Test is executed.

i = 25;
j = 4;
Test(i, j, 1) ;

SP • Return Address

SP+ 2 25 (i)

SP+ 4 4 (j)

SP+ 6 1

The parameters to Test are at fixed locations relative to SP, starting at the
stack location 2 bytes higher than the location of the return address that
was pushed by the call. After loading BP with SP, you can access the
parameters relative to BP. However, you must first preserve BP, since the
calling C++ code expects you to return with BP unchanged. Pushing BP
changes all the offsets on the stack. Figure 18.3 shows the stack after these
lines of code are executed:

push bp
mav bp, sp

Chapter 18, Interfacing Turbo Assembler with Borland C++ 235

Figure 18.3
State of the stack

after PUSH and MOV

236

SP Caller's BP BP

SP + 2 Return Address BP+ 2

SP+ 4 25 (i) BP+ 4

SP+ 6 4 (j) BP+ 6

SP+ 8 1 BP+ 8

This is the standard C++ stack frame, the organization of a function's
parameters and automatic variables on the stack. As you can see, no matter
how many parameters a C++ program might have, the leftmost parameter
is always stored at the stack address immediately above the pushed return
address, the next parameter to the right is stored just above the leftmost
parameter, and so on. As long as you know the order and type of the
passed parameters, you always know where to find them on the stack.

Space for automatic variables can be reserved by subtracting the required
number of bytes from SP. For example, room for a 100-byte automatic array
could be reserved by starting Test with

push bp
mav bp,sp
sub sp,lOO

as shown in Figure 18.4.

Turbo Assembler Users Guide

Figure 18.4
State of the stack

after PUSH, MOV,
and SUB

SP •

SP + 100 ---

SP + 102

SP + 104

SP + 106

SP + 108

Caller's BP

Return Address

25 (i)

4 (j)

1

- .. t__-- BP - 100

---BP

BP+ 2

BP+ 4

BP + 6

BP+ 8

Since the portion of the stack holding automatic variables is at a lower
address than BP, negative offsets from BP are used to address automatic
variables. For example,

mov BYTE PTR [bp-100],O

would set the first byte of the IOO-byte array you reserved earlier to zero.
Passed parameters, on the other hand, are always addressed at positive
offsets from BP.

While you can, if you wish, allocate space for automatic variables as shown
previously, Turbo Assembler provides a special version of the LOCAL
directive that makes allocation and naming of automatic variables a snap.
When LOCAL is encountered within a procedure, it is assumed to define
automatic variables for that procedure. For example,

LOCAL LocalArray:BYTE:100,LocalCount:WORD = AUTO_SIZE

defines the automatic variables LocalArray and LocalCount. LocalArray is
actually a label equated to [BP-100], and LocalCount is actually a label
equated to [BP-102], but you can use them as variable names without ever
needing to know their values. AUTO _SIZE is the total number of bytes of
automatic storage required; you must subtract this value from SP in order
to allocate space for the automatic variables.

Chapter 18, Interfacing Turbo Assembler with Borland C++ 237

238

Here's how you might use LOCAL:

_TestSub PROC
LOCAL LocalArray:BYTE:100,LocalCount:WORD=AUTO_SIZE
push bp
mov bp, sp
sub sp,AUTO_SIZE
mov [LocalCount],10

mov CX, [LocalCount]
mov al,' A'
lea bx, [LocalArray]

FillLoop:
mov [bx],al
inc bx
loop FillLoop
mov sp,bp

pop bp
ret

_TestSub ENDP

ipreserve caller's stack frame pointer
iset up our own stack frame pointer
iallocate room for automatic variables
iset local count variable to 10
i (LocalCount is actually [BP-102])

iget count from local variable
iwe'll fill with character "A"
ipoint to local array
i (LocalArray is actually [BP-100])

i fill next byte
ipoint to following byte
ido next byte, if any
ideallocate storage for automatic
i variables (add sp,AUTO_SIZE would
i also have worked)
irestore caller's stack frame pointer

In this example, note that the first field after the definition of a given
automatic variable is the data type of the variable: BYTE, WORD, DWORD,
NEAR, and so on. The second field after the definition of a given automatic
variable is the number of elements of that variable's type to reserve for that
variable. This field is optional and defines an automatic array if used; if it is
omitted, one element of the specified type is reserved. Consequently,
LocalArray consists of 100 byte-sized elements, while LocalCount consists of
1 word-sized element.

Also note that the LOCAL line in the preceding example ends with
=AUTO_SIZE. This field, beginning with an equal sign, is optional; if
present, it sets the label following the equal sign to the number of bytes of
automatic storage required. You must then use that label to allocate and
deallocate storage for automatic variables, since the LOCAL directive only
generates labels, and doesn't actually generate any code or data storage. To
put this another way: LOCAL doesn't allocate automatic variables, but
simply generates labels that you can readily use to both allocate storage for
and access automatic variables.

Turbo Assembler Users Guide

As you can see, LOCAL makes it much easier to define and use automatic
variables. Note that the LOCAL directive has a completely different
meaning when used in macros.

By the way, Borland C++ handles stack frames in just the way we've
described here. You might find it instructive to compile a few Borland C++
modules with the -5 option, and then look at the assembler code Borland
C++ generates to see how Borland C++ creates and uses stack frames.

This looks good so far, but there are further complications. First of all, this
business of accessing parameters at constant offsets from BP is a nuisance;
not only is it easy to make mistakes, but if you add another parameter, all
the other stack frame offsets in the function must be changed. For example,
suppose you change Test to accept four parameters:

Test(Flag, i, j, 1);

Suddenly i is at offset 6, not offset 4, j is at offset 8, not offset 6, and so on.
You can use equates for the parameter offsets:

Flag EQU 4
AddParml EQU 6
AddParm2 EQU
SubParml EQU 10

mav ax, [bp+AddParml]
add ax, [bp+AddParm2]
sub ax, [bp+SubParml]

but it's still a nuisance to calculate the offsets and maintain them. There's a
more serious problem, too: The size of the pushed return address grows by
2 bytes in far code models, as do the sizes of passed code pointers and data
pointer in far code and far data models, respectively. Writing a function
that can be easily assembled to access the stack frame properly in any
memory model would thus seem to be a difficult task.

Turbo Assembler, however, provides you with the ARG directive, which
makes it easy to handle passed parameters in your assembler routines.

The ARG directive automatically generates the correct stack offsets for the
variables you specify. For example,

arg FillArray:WORD,Caunt:WORD,FillValue:BYTE

specifies three parameters: FillArray, a word-sized parameter; Count, a
word-sized parameter, and FillValue, a byte-sized parameter. ARG actually
sets the label FillArray to [BP+4] (assuming the example code resides in a
near procedure), the label Count to [BP+6], and the label FillValue to [BP+8].

Chapter 18, Interfacing Turbo Assembler with Borland C++ 239

Preserving registers

240

However,ARG is valuable precisely because you can use ARG-defined
labels without ever knowing the values they're set to.

For example, suppose you've got a function FillSub, called from C++ as
follows:

extern "C" {
void FillSub(

char *FillArray,
int Count,
char FillValue) i

main ()
{

const int ARRAY_LENGTH=100i
char TestArray[ARRAY_LENGTH] i

FillSub(TestArray,ARRAY_LENGTH, '*') i

You could use ARG in FillSub to handle the parameters as follows:

_FillSub PROC NEAR
ARG FillArray:WORD,Count:WORD,FillValue:BYTE
push bp ipreserve caller's stack frame
mov bp,sp iset our own stack frame
mov bx, [FillArray] iget pointer to array to fill
mov cx, [Count] iget length to fill
mov al, [Fill Value] iget value to fill with

FillLoop:
mov [bx] , al
inc bx

ifill a character
ipoint to next character
ido next character loop FillLoop

pop bp irestore caller's stack frame
ret

_FillSub ENDP

That's really all it takes to handle passed parameters with ARG. Better yet,
ARG automatically accounts for the different sizes of near and far returns.

As far as Borland C++ is concerned, C++-callable assembler functions can
do anything as long as they preserve the following registers: BP, SP, CS,
DS, and SS. While these registers can be altered during the course of an
assembler function, when the calling code is returned, they must be exactly
as they were when the assembler function was called. AX, BX, CX, DX, ES,
and the flags can be changed in any way.

SI and D1 are special cases, since they're used by Borland C++ as register
variables. If register variables are enabled in the C++ module calling your

Turbo Assembler Users Guide

Returning values

assembler function, you must preserve SI and D1; but if register variables
are not enabled, SI and D1 need not be preserved.

It's good practice to always preserve SI and D1 in your C++-callable
assembler functions, regardless of whether register variables are enabled.
You never know when you might link a given assembler module to a
different C++ module, or recompile your C++ code with register variables
enabled, without remembering that your assembler code needs to be
changed as well.

A C++-callable assembler function can return a value, just like a C++
function. Function values are returned as follows:

Return value type

unsigned char
char
enum
unsigned short
short
unsigned int
int
unsigned long
long
float
double
long double
near *
far *

Return value location

AX
AX
AX
AX
AX
AX
AX
DX:AX
DX:AX
8087 top-of-stack (T08) register (8T(0))
8087 top-of-stack (T08) register (8T(0))
8087 top-of-stack (T08) register (8T(0))
AX
DX:AX

In general, 8- and 16-bit values are returned in AX, and 32-bit values are
returned in DX:AX, with the high 16 bits of the value in DX. Floating-point
values are returned in ST(O), which is the 8087's top-of-stack (TOS) register,
or in the 8087 emulator's TOS register if the floating-point emulator is being
used.

Structures are a bit more complex. Structures that are 1 or 2 bytes in length
are returned in AX, and structures that are 4 bytes in length are returned in
DX:AX. When a function that returns a three-byte structure or a structure
larger than 4 bytes is called, the caller must allocate space for the return
value (usually on the stack), and pass the address of this space to the
function as an additional"hidden" parameter. The function assigns the
return value through this pointer argument, and returns that pointer as its
result. As with all pointers, near pointers to structures are returned in AX,
and far pointers to structures are returned in DX:AX.

Chapter 18, Interfacing Turbo Assembler with Borland C++ 241

Calling an
assembler
function from C++

242

Let's look at a small model C++-callable assembler function, FindLastChar,
that returns a near pointer to the last character of a passed string. The C++
prototype for this function. would be

extern char * FindLastChar(char * StringToScan)i

where StringToScan is the nonempty string for which a pointer to the last
character is to be returned.

Here's FindLastChar, from FINDCHAR.ASM:

. MODEL small
, .CODE

PUBLIC _FindLastChar
_FindLastChar PROC

ARG StringToScan:WORD
push bp
mov bp, sp
cld iwe need string instructions to count up
mov ax,ds
mov es,ax iset ES to point to the near data segment
mov di, [StringToScan] ipoint ES:DI to start of

ipassed string
mov al,O isearch for the null that ends the string
mov cx,Offffh isearch up to 64K-l bytes
repnz scasb ilook for the null
dec di ipoint back to the null
dec di ipoint back to the last character
mov
pop

ax,di
bp

ret
_FindLastChar ENDP

END

ireturn the near pointer in AX

The final result, the near pointer to the last character in the passed string, is
returned in AX.

Now look at an example of Borland C++ code calling a Turbo Assembler
function. The following Turbo Assembler module, COUNT.ASM, contains
the function LineCount, which returns counts of the number of lines and
characters in a passed string:

Small model C++-callable assembler function to count the number
of lines and characters in a zero-terminated string.

Function prototype:
extern unsigned int LineCount(char * near StringToCount,

unsigned int near * CharacterCountPtr) i

Turbo Assembler Users Guide

Input:
char near * 8tringToCount: pointer to the string on which
a line count is to be performed

unsigned int near * CharacterCountPtr: pointer to. the
int variable in which the character count is
to be stored

NEWLINE EQU Oah ithe line feed character is C's
i newline character

. MODEL small

.CODE
PUBLIC

_LineCount
push
mov
push

mov
sub
mov

LineCountLoop:
lodsb
and
jz
inc
cmp
jnz
inc
jmp

EndLineCount:
inc

mov

mov
mov
pop

_LineCount
PROC
bp
bp,sp
si

si, [bp+4]
cx,cx
dx,cx

al,al

ipreserve calling program's
i register variable, if any
ipoint 81 to the string
iset character count to
iset line count to 0

iget the next character
iis it null, to end the string?

EndLineCount iyes, we're done
cx ino, count another character
aI, NEWLINE iis it a newline?
LineCountLoop ino, check the next character
dx iyes, count another line
LineCountLoop

dx

bx, [bp+6]

[bx],cx
ax,dx
si

icount the line that ends with the
i null character
ipoint to the location at which to
i return the character count
iset the character count variable

ireturn line count as function value
irestore calling program's register
i variable, if any

pop bp
ret

_LineCount ENDP
END

Chapter 18, Interfacing Turbo Assembler with Borland C++ 243

244

The following C++ module, CALLCT.CPP, is a sample invocation of the
LineCount function:

#include <stdio.h>

char * TestString="Line l\nline 2\nline 3";
extern "CO unsigned int LineCount(char * StringToCount,

int main ()
{

unsigned int LCount;
unsigned int CCount;

unsigned int * CharacterCountPtr);

LCount = LineCount(TestString, &CCount);
printf("Lines: %d\nCharacters: %d\n", LCount, CCount);
return 0;

The two modules are compiled and linked together with the command line

bcc -ms callct.cpp count.asm

As shown here, LineCount will work only when linked to small-model C++
programs since pointer sizes and locations on the stack frame change in
other models. Here's a version of LineCount, COUNTLG.ASM, that will
work with large-model C++ programs (but not small-model ones, unless
far pointers are passed, and LineCount is declared far):

Large model C++-callable assembler function to count the number
of lines and characters in a zero-terminated string.

Function prototype:
extern unsigned int LineCount(char * far StringToCount,

unsigned int * far CharacterCountPtr) ;
char far * StringToCount: pointer to the string on which

a line count is to be performed

unsigned int far * CharacterCountPtr: pointer to the
int variable in which the character count
is to be stored

NEWLINE EQU Oah

. MODEL large

.CODE
PUBLIC _LineCount

;the linefeed character is C's newline
; character

Turbo Assembler Users Guide

Writing C++
member functions
in assembly
language

_LineCount
push
mov
push

push
Ids
sub
mov

LineCountLoop:
lodsb
and
jz
inc
cmp
jnz
inc
jmp

EndLineCount:
inc

les

mov
mov

pop
pop

PROC
bp
bp,sp
si

ds
s1, [bp+6]
cX,cx
dx,cx

al,al
EndLineCount
cx
al,NEWLINE
LineCountLoop
dx
LineCountLoop

dx

bx, [bp+l0]

es: [bx] ,cx
aX,dx

ds
si

pop bp
ret

_LineCount ENDP
END

;preserve calling program's
; register variable, if any
;preserve C's standard data seg
;point DS:SI to the string
;set character count to 0
;set line count to 0

;get the next character
;is it null, to end the string?
;yes, we're done
;no, count another character
;is it a newline?
;no, check the next character
;yes, count another line

;count line ending with null
; character
;point ES:BX to the location at
; which to return char count
;set the char count variable
;return the line count as
; the function value
;restore C's standard data seg
;restore calling program's
; register variable, if any

COUNTLG.ASM can be linked to CALLCT.CPP with the following
command line:

bec -ml callct.cpp countlg.asm

While you can write a member function of a c++ class completely in
assembly language, it is not easy. For example, all member functions of
C++ classes are name-mangled to provide the type-safe linkage that makes
things like overridden functions available, and your assembler function
would have to know exactly what name C++ would be expecting for the
member function. To access the member variables you must prepare a
STRUC definition in your assembler code that defines all the member
variables with exactly the same sizes and locations. If your class is a
derived class, there may be other member variables derived from a base

Chapter 18, Interfacing Turbo Assembler with Borland C++ 245

For an example of
how to write

assembly functions
using mangled
names, see the

example on page
222.

246

class. Even if your class is not a descendant of another class, the location of
member variables in memory changes if the class includes any virtual
functions.

If you write your function using inline assembler, Borland C++ can take
care of these issues for you. But if you must write your function in
assembly language, (perhaps because you are reusing some existing
assembler code), there are some special techniques you can use to make
things easier.

Create a dummy stub c++ function definition for the assembler function.
This stub will satisfy the linker because it will have a properly mangled
name for the member function. The dummy stub then calls your assembler
function and passes to it the member variables and other parameters. Since
your assetnbler code has all the parameters it needs passed as arguments,
you don't have to worry about changes in the class definition. Your
assembler function can be declared in the C++ code as an extern "C"
function, just as we have shown you in other examples.

Here's an example, called COUNTER.CPP:

#include <stdio.h>

class counter {

};

II Private member variables:
int count; II The ongoing count

pUblic:
counter (void) { count=O; }
int get_count (void) {return count;}

II Two functions that will actually be written
II in assembler:
void increment (void) ;
void add(int what_to_add=-l) ;
II Note that the default value only
II affects calls to add, it does not
II affect the code for add.

extern "e" {
II To create some unique, meaningful names for the
II assembler routines, prepend the name of the class
II to the assembler routine. Unlike some assemblers,
II Turbo Assembler has no problem with long names.
void counter_increment (int *count); II We will pass a

II pointer to the
II count variable.
1/ Assembler will
// do the incrementing.

Turbo Assembler Users Guide

void counter_add(int *count,int what_to_add);

void counter::increment(void)
counter_increment(&count);

void counter: :add(int what_to_add)
counter_add (&count, what_to_add);

int main() {
counter Counter;

printf("Before count: %d\n", Counter.get_count());
Counter.increment();
Counter. add (5);
printf("After count: %d\n", Counter.get_count());
return 0;

Your assembler module that defines the count_add_increment and
count_add_add routines could look like this example, called
COUNTADD.ASM:

.MODEL small ; Select small model (near code and data)

. CODE
PUBLIC _counter_increment

_counter_increment PROC
ARG count_offset:word
push bp
mov bp, sp
mov bx, [count_offsetl
inc word ptr [bxl
pop bp
ret

counter_increment ENDP

PUBLIC _counter_~dd
_counter_add PROC

Address of the member variable
Preserve caller's stack frame
Set our own stack frame
Load pointer
Increment member variable
Restore callers stack frame

ARG count_offset:word,what_to_add:word
push bp
mov bp, sp
mov bx, [count_offsetl
mov ax, [what_to_addl
add [bxl, ax
pop bp
ret

_counter_add ENDP

end

Chapter 18, Interfacing Turbo Assembler with Borland C++

Load pointer

247

Pascal calling
conventions

248

Using this method, you don't have to worry about changes in your class
definition. Even if you add or delete member variables, make this class a
derived class, or add virtual functions, you won't have to change your
assembler module. You need to reassemble your module only if you
change the structure of the count member variable, or if you make a large
model version of this class. You need to reassemble because you have to
deal with a segment and an offset when referring to the count member
variable.

So far, you've seen how C++ normally passes parameters to functions by
having the calling code push parameters right to left, call the function, and
discard the parameters from the stack after the call. Borland C++ is also
capable of following the conventions used by Pascal programs in which
parameters are passed from left to right, and the called function discards the
parameters from the stack. In Borland C++, Pascal conventions are enabled
with the -p command-line option or the pascal keyword.

The following example, ASMPSCL.ASM, shows an assembler function that·
uses Pascal conventions:

j Called as: TEST_PROC(i, j, k) j

i equ jleftmost parameter
j equ
k equ 4 jrightmost parameter

. MODEL small

.CODE
PUBLIC TEST_PROC

TEST_PROC PROC
push bp
mov bp, sp
mov ax, [bp+i] jget i
add ax, [bp+j] jadd j to i
sub ax, [bp+k] jsubtract k from the sum
pop bp
ret 6 jreturn, discarding 6 parameter bytes

TEST_PROC ENDP
END

Note that RET 6 is used by the called function to clear the passed
parameters from the stack.

Figure 18.5 shows the stack frame after MOV BP,SP has been executed.

Turbo Assembler Users Guide

Figure 18.5
State of the stack
immediately after

MOV BP, SP
SP Caller's BP BP

SP+ 2 Return Address BP+ 2

SP+ 4 k BP+ 4

SP+ 6 BP+ 6

SP+ 8 BP+ 8

Pascal calling conventions also require all external and public symbols to be
in uppercase, with no leading underscores. Why would you want to use
Pascal calling conventions in a C++ program? Code that uses Pascal
conventions tends to be somewhat smaller and faster than normal C++
code since there's no need to execute an ADD SP n instruction to discard the
parameters after each call.

Calling Borland C++ from Turbo Assembler

Link in the C++
startup code

Although it's most common to call assembler functions from C++ to
perform specialized tasks, you might occaSionally want to call C++
functions from assembler. As it turns out, it's actually easier to call a
Borland C++ function from a Turbo Assembler function than the reverse
since no stack-frame handling on the part of the assembler code is required.
Let's take a quick look at the requirements for calling Borland C++
functions from assembler.

As a general rule, you should only call Borland C++ library functions from
assembler code in programs that link in the C++ startup module as the first
module linked.

Generally, you should not call Borland C++ library functions from
programs that don't link in the C++ startup module since some Borland
C++ library functions will not operate properly if the startup code is not
linked in. If you really want to call Borland C++ library functions from such
programs, we suggest you look at the startup source code (the file CO.ASM
on the Borland C++ distribution disks) and purchase the C++ library source

Chapter 18, Interfacing Turbo Assembler with Borland C++ 249

The segment
setup

Performing the
call

250

code from Borland. This way, you can be sure to provide the proper initial
ization for the library functions you need.

Calling user-defined C++ functions that in turn call C++ library functions
falls into the same category as calling library functions directly; lack of the
C++ startup can potentially cause problems for any assembler program that
calls C++ library functions, directly or indirectly.

As we learned earlier, you must make sure that Borland C++ and Turbo
Assembler are using the same memory model and that the segments you
use in Turbo Assembler match those used by Borland C++. Turbo
Assembler has a tchuge memory model that supports Borland C++'s huge
memory model. Refer to the previous section if you need a refresher on
matching memory models and segments. Also, remember to put EXTRN
directives for far symbols either outside all segments or inside the correct
segment.

All you need to do when passing parameters to a Borland C++ function is
push the rightmost parameter first, then the next rightmost parameter, and
so on, until the leftmost parameter has been pushed. Then just call the
function. For example, when programming in Borland C++, to call the
Borland C++ library function strcpy to copy SourceString to DestString, you
would type

strcpy(DestString, SourceString) i

To perform the same call in assembler, you would use

lea ax,SourceString
lea bx,DestString
push ax
push bx
call _strcpy
add sp,4

irightmost parameter
ileftmost parameter
iPush rightmost first
iPush leftmost next
iCOPY the string
idiscard the parameters

Don't forget to discard the parameters by adjusting SP after the call.

You can simplify your code and make it language independent at the same
time by taking advantage of Turbo Assembler's CALL instruction extension:

call destination [language [,arglJ ... J

where language is C, CPP, PASCAL, BASIC, FORTRAN, PROLOG or
NOLANGUAGE, and arg is any valid argument to the routine that can be
directly pushed onto the processor stack.

Using this feature, the preceding code can be reduced to

Turbo Assembler Users Guide

Calling a Borland
C++ function from
Turbo Assembler

lea ax,SourceString
lea bx,DestString
call strcpy c,bx,ax

Turbo Assembler automatically inserts instructions to push the arguments
in the correct order for C++ (AX first, then BX), performs the call to _strcpy
(Turbo Assembler automatically inserts an underscore in front of the name
for C++), and cleans up the stack after the call.

If you're calling a C++ function that uses Pascal calling conventions, you
have to push the parameters left to right and not adjust SP afterward:

lea bx,DestString
lea ax,SourceString
push bx
push ax
call STRCPY

ileftmost parameter
irightmost parameter
iPush leftmost first
iPush rightmost next
iCOPY the string
ileave the stack alone

Again, you can use Turbo Assembler's CALL instruction extension to
simplify your code:

lea
lea
call

bx,DestString
ax,SourceString
strcpy pascal,bx,ax

ileftmost parameter
irightmost parameter

Turbo Assembler automatically inserts instructions to push the arguments
in the correct order for Pascal (BX first, then AX) and performs the call to
STRCPY (converting the name to all uppercase, as is the Pascal
convention).

The last example assumes that you've recompiled strcpy with the -p
switch, since the standard library version of strcpy uses C++ rather than
Pascal calling conventions. '

Rely on C++ functions to preserve the following registers and only the
following registers: SI, DI, BP, DS, SS, SP, and CS. Registers AX, BX, CX,
DX, ES, and the flags may be changed arbitrarily.

One case in which you may wish to call a Borland C++ function from Turbo
Assembler is when you need to perform complex calculations. This is
especially true when mixed integer and floating-point calculations are
involved; while it's certainly possible to perform such operations in
assembler, it's simpler to let C++ handle the details of type conversion and
floating-point arithmetic.

Let's look at an example of assembler code that calls a Borland C++
function in order to get a floating-point calculation performed. In fact, let's
look at an example in which a Borland C++ function passes a series of

Chapter 18, Interfacing Turbo Assembler with Borland C++ 251

252

integer numbers to a Turbo Assembler function, which sums the numbers
and in tum calls another Borland C++ function to perform the floating
point calculation of the average value of the series.

The C++ portion of the program in CALCA VG.CPP is

#include <stdio.h>

extern "C" float Average(int far * Valueptr, int NumberOfValues) i

#define NUMBER_OF_TEST_VALUES 10
int TestValues[NUMBER_OF_TEST_VALUESj = {

1, 2, 3, 4, 5, 6, 7, 8, 9, 10
}i

int main ()
{

printf("The average value is: %f\n",
Average (TestValues, NUMBER_OF_TEST_VALUES))i

return Oi

extern "C"
float IntDivide(int Dividend, int Divisor)
{

return ((float) Dividend / (float) Divisor)i

and the assembler portion of the program in A VERAGE.ASM is

Borland C++-callable small-model function that returns the average
of a set of integer values. Calls the Borland C++ function
IntDivide() to perform the final division.

Function prototype:
extern float Average(int far * ValuePtr, int NumberOfValues)i

Input:
int far * ValuePtr:
int NumberOfValues:

. MODEL small
EXTRN _IntDivide:PROC
. CODE
PUBLIC

_Average
push
mov
les
mov
mov

_Average
PROC
bp
bp, sp
bx, [bp+4]
cx, [bp+8]
ax,O

ithe array of values to average
ithe number of values to average

ipoint ES:BX to array of values
i# of values to average
iclear the running total

Turbo Assembler Users Guide

AverageLoop:
add
add
loop
push

_Average

push
call
add
pop
ret

END

ax,es: [bx]
bx,2
AverageLoop
WORD PTR [bp+8]

iadd the current value
ipoint to the next value

iget back the number of values
i passed to IntDivide as the
i rightmost parameter

ax ipass the total as the leftmost parameter
_IntDivide icalculate the floating-point average
sp,4 idiscard the parameters
bp

iaverage is in 8087's TOS register
ENDP

The C++ main function passes a pointer to the array of integers TestValues
and the length of the array to the assembler function Average. Average sums
the integers, then passes the sum and the number of values to the C++
function IntDivide. IntDivide casts the sum and number of values to
floating-point numbers and calculates the average value, doing in a single
line of C++ code what would have taken several assembler lines. IntDivide
returns the average to Average in the 8087 TOS register, and Average just
leaves the average in the TOS register and returns to main.

CALCA VG.CPP and A VERAGE.ASM could be compiled and linked into
the executable program CALC A VG.EXE with the command

bcc calcavg.cpp average.asm

Note that Average will handle both small and large data models without the
need for any code change since a far pointer is passed in all models. All that
would be needed to support large code models (huge, large, and medium)
would be use of the appropriate .MODEL directive.

Taking full advantage of Turbo Assembler's language-independent
extensions, the assembly code in the previous example could be written
more concisely as shown here in CONCISE.ASM:

. MODEL small,C
EXTRN C IntDivide:PROC
. CODE
PUBLIC C Average

Average PROC C ValuePtr:DWORD,NumberOfValues:WORD
les bx,Valueptr
mov cx,NumberOfValues
mov ax,O

Chapter 18, Interfacing Turbo Assembler with Borland C++ 253

254

AverageLoop:
add
add
loop
call
ret

Average
END

ax,es: [bxl
bx,2 ipoint to the next value
AverageLoop
IntDivide C,ax,NumberOfValues

ENDP

Turbo Assembler Users Guide

A p p E N D x

Program blueprints

This appendix describes basic program construction information
depending on specific memory models and executable object formats.

Simplified segmentation segment description

A

The following tables show the default segment attributes for each memory
model.

Table A.1 Directive Name Align Combine Class Group Default segments and
types for TINY .CODE _TEXT WORD PUBLIC 'CODE' DGROUP
memory model .FARDATA FAR_DATA PARA private 'FAR_DATA'

.FARDATA? FAR_BSS PARA private 'FAR_BSS'

. DATA DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

.DATA? BSS WORD PUBLIC 'BSS' DGROUP

.STACK- STACK PARA STACK 'STACK' DGROUP

• STACK not assumed to be in DGROUP if FARSTACK specified in the MODEL directive.

Table A.2
Default segments and Directive Name Align Combine Class Group

types for SMALL .CODE _TEXT WORD PUBLIC 'CODE'
memory model .FARDATA FAR_DATA PARA private 'FAR_DATA'

.FARDATA? FAR_BSS PARA private 'FAR_BSS'

. DATA DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

. DATA? BSS WORD PUBLIC 'BSS' DGROUP

.STACK- STACK PARA STACK 'STACK' DGROUP

• STACK not assumed to be in DGROUP if FARSTACK specified in the MODEL directive.

Table A.3
Default segments and Directive Name Align Combine Class Group

types for MEDIUM .CODE name_TEXT WORD PUBLIC 'CODE'
memory model .FARDATA FAR_DATA PARA private 'FAR_DATA'

.FARDATA? FAR_BSS PARA private 'FAR_BSS'

. DATA DATA WORD PUBLIC 'DATA' DGROUP

.CONST CONST WORD PUBLIC 'CONST' DGROUP

. DATA? BSS WORD PUBLIC 'BSS' DGROUP

. STACK· STACK PARA STACK 'STACK' DGROUP

• STACK not assumed to be in DGROUP if FARSTACK specified in the MODEL directive.

Appendix A, Program blueprints 255

Table A.4
Default segments and
types for COMPACT

memory model

Table A.5
Default segments and

types for LARGE or
HUGE memory

model

Table A.6
Default segments and
types for Borland C++

HUGE (TCHUGE)
memory model

OS/2 programs

OS/2 flat-model
program blueprint

256

Directive Name Align Combine Class

.CODE _TEXT WORD PUBLIC 'CODE'

.FARDATA FAR_DATA PARA private 'FAR_DATA'

.FARDATA? FAR_BSS PARA private 'FAR_BSS'

. DATA DATA WORD PUBLIC 'DATA'

.CONST CaNST WORD PUBLIC 'CaNST'

. DATA? BSS WORD PUBLIC 'BSS'

.STACK- STACK PARA STACK 'STACK'

, STACK not assumed to be in DGROUP if FARSTACK specified in the MODEL directive.

Directive Name Align Combine Class

.CODE name_TEXT WORD PUBLIC 'CODE'

.FARDATA FAR_DATA PARA private 'FAR_DATA'

.FARDATA? FAR_BSS PARA private 'FAR_BSS'

. DATA DATA WORD PUBLIC 'DATA'

.CONST CaNST WORD PUBLIC 'CaNST'

. DATA? BSS WORD PUBLIC 'BSS'

.STACK' STACK PARA STACK 'STACK'

'STACK not assumed to be in DGROUP if FARSTACK specified in the MODEL directive.

Directive Name Align Combine Class

.CODE name3EXT WORD PUBLIC 'CODE'

.FARDATA FAR_DATA PARA private 'FAR_DATA'

.FARDATA? FAR_BSS PARA private 'FAR_BSS'

. DATA name_DATA PARA private 'DATA'

.STACK' STACK PARA STACK 'STACK'

, STACK is automatically FAR

Group

DGROUP
DGROUP
DGROUP
DGROUP

Group

DGROUP
DGROUP
DGROUP
DGROUP

Group

Programs designed to be executed under the OS/2 operating system can
use one of several formats, depending on the capabilities you want. OS/2
can execute programs designed for DOS program formats, as well as
programs and DLLs written for Windows. However, the most powerful
format available under OS/2 is the linear executable format, in which a
program no longer has to manipulate segment registers, and 512 megabytes
of virtual memory is available. This format is also known as flat model.

Turbo Assembler assumes that all 32-bit segments in a flat-model program
belong to a supergroup called FLAT, and share the same segment selector.
(Segments that are 16-bit are allowed, but are of little use.)

When you execute a flat-model program, Turbo Assembler initializes the
registers as follows:

Turbo Assembler Users Guide

Register Value

CS,DS,ES,SS

CS:EIP
SS:ESP

Contains the segment selector of the 32-bit linear address for the program.
These registers should never have to be changed.

FS,GS

Contains the address of the STARTUPCODE directive.
Contains the address of the last word of the stack segment, which the
STACK directive specifies.
Contain special values that the application should not modify.

You must define linear-executable programs with the FLAT model. This
instructs Turbo Assembler to consider all 32-bit segments and groups to be
a member of the FLAT supergroup. You can also optionally specify the
OS/2 operating system, which allows the STARTUPCODE and EXITCODE
directives to function correctly (for example, MODEL 082 FLAT).

The STARTUPCODE directive produces instructions that automatically
initialize all necessary registers to conform to FLAT model. Similarly, the
EXITCODE directive produces instructions that automatically return control
to the operating system, while letting you specify an optional return value.

EXE2PROG.ASM on your example Turbo Assembler disks illustrates these
topics.

You can use the MAKE utility to build a linear executable file. MAKEFILE
should include all modules to link together to form the program, as
follows:

EXE2PROG. EXE: EXE2PROG.ASM
TLINK EXE2PROG""EXE2PROGi

EXE2PROG.OBJ:EXE2PROG.ASM
TASM EXE2PROG

You'll also need a file called EXE2PROG.DEF, containing the following:

NAME EXE2PROG WINDOWCOMPAT
PROTMODE
CODE PRELOAD
DATA PRELOAD

Appendix A, Program blueprints 257

258 Turbo Assembler Users Guide

A p p E N o x B

Turbo Assembler syntax summary

This appendix describes the syntax of Turbo Assembler expressions in a
modified Backus-Naur form (BNF). The symbol ::= describes a syntactical
production. Ellipses (...) indicate that an element is repeated as many times
as it is found. This appendix also discusses keywords and their
precedences.

Lexical grammar

valid_line ::=

white_space valid_line
punctuation valid_line
number _string valid_line
id_string valid_line
null

white_space ::=

space_char white_space
space_char

space_char ::=

All control characters, character> 128, ' ,

id_string ::=

id_char id_strng2

id_strng2 ::=

id_chr2 id_strng2
null

id_char ::=

Any of $, %, -' ?, or any alphabetic characters

Appendix B, Turbo Assembler syntax summary 259

260

id_chr2 ::=

id_chars plus numerics

number_string ::=

num_string
str _string

num_string ::=

digits alphanums
digits '.' digits exp
digits exp

digits ::=

digit digits
digit

digit ::=

a through 9

alphanums ::=

digit alphanum
alpha alphanum
null

alpha ::=

alphabetic characters

exp ::=

E + digits
E - digits
E digits
null

str_string ::=

;Only MASM mode DD, Da, or DT

Quoted string, quote enterable by two quotes in a row

punctuation ::=

Everything that is not a space_char, id_char, ' " " " , ", or digits

The period (.) character is handled differently in MASM mode and Ideal
mode. This character is not required in floating-point numbers in
MASM mode and also can't be part of a symbol name in Ideal mode. In
MASM mode, it is sometimes the start of a symbol name and sometimes a
punctuation character used as the structure member selector.

Turbo Assembler Users Guide

Here are the rules for the period (.) character:

1. In Ideal mode, it's always treated as punctuation.

2. In MASM mode, it's treated as the first character of an ID in the
following cases:

a. When it is the first character on the line, or in other special cases like
EXTRN and PUBLIC symbols, it gets attached to the following
symbol if the character that follows it is an id_chr2, as defined in the
previous rules.

b. If it appears other than as the first character on the line, or if the
resulting symbol would make a defined symbol, the period gets
appended to the start of the symbol following it.

MASM mode expression grammar

Expression parsing starts at MASM_expr.

MASM_expr ::=

mexprl

mexpr1 ::=
SHORT mexprl
.TYPE mexprl
SMALL mexprl
LARGE mexprl
expr2

expr2 ::=

expr3 OR expr3 .. .
expr3 XOR expr3 .. .
expr3

expr3 ::=

expr4 AND expr4 ...
expr4

expr4 ::=

NOTexpr4
exprS

Appendix B, Turbo Assembler syntax summary

;If 386
;If 386

261

262

expr5 ::=

expr6 EQ expr6 .. .
expr6 NE expr6 .. .
expr6 LT expr6 .. .
expr6 LE expr6 .. .
expr6 GT expr6 .. .
expr6 G E expr6 .. .
expr6

expr6 ::=

expr7 + expr7 .. .
expr7 - expr7 .. .
expr7

expr7 ::=

mexprlO * mexprlO .. .
mexprlO / mexprlO .. .
mexprlO MOD mexprlO .. .
mexprlO SHR mexprlO .. .
mexprlO SHL mexprlO .. .
mexprlO

expr8 ::=

+ exprB
- exprB
expr12

expr10 ::=

OFFSET pointer
SEG pointer
SIZE symbol
LENGTH symbol
WIDTH symbol
MASK symbol
THIS itype
symbol
(pointer)
[pointer]

Turbo Assembler Users Guide

mexpr10 ::=

mexprll PTR mexprlO
mexprll
TYPE mexprlO

HIGH mexprlO
LOWmexprlO
OFFSET mexprlO
SEG mexprlO
THIS mexprlO

mexpr11 ::=

exprB : exprB '"

mexpr12 ::=

mexpr13 [mexpr13 '"
mexpr13 (mexpr13 '"
mexpr13 ',' mexprlO

mexpr13 ::=
LENGTH symbol
SIZE symbol
WIDTH symbol
MASK symbol
(mexprl)
[mexprl]
exprlO

Ideal mode expression grammar

;Implied addition if bracket
;Implied addition if parenthesis

Expression parsing starts at ideaCexpr,

ideal_expr ::=

pointer

itype ::=

UNKNOWN
BYTE
WORD
DWORD
PWORD
FWORD
QWORD

Appendix 8, Turbo Assembler syntax summary 263

264

TBYTE
SHORT
NEAR
FAR
PROC
DATAPTR
CODEPTR
structure_name
table_name
enum_name
record_name
TYPE pointer

pointer ::=

SMALL pointer
LARGE pointer
itype PTR pointer
itype LOW pointer
itype HIGH pointer
itype pointer
pointer2

pointer2 ::=

pointer3 . symbol ...
pointer3

pOinter3 ::=

expr : pointer3
expr

expr ::=

SYMTYPE expr
expr2

expr2 ::=

expr3 OR expr3 .. .
expr3 XOR expr3 .. .
expr3 .

expr3 ::=

expr4 AND expr4 ...
expr4

;If 386
;If 386

Turbo Assembler Users Guide

expr4 ::=

NOTexpr4
expr5

expr5 ::=

expr6 EQ expr6 .. .
expr6 NE expr6 .. .
expr6 LTexpr6 .. .
expr6 LE expr6 .. .
expr6 GT expr6 .. .
expr6 G E expr6 .. .
expr6

expr6 ::=

expr7 + expr7 '"
expr7 - expr7 ...
expr7

expr7 ::=

exprB * exprB .. .
exprB / exprB .. .
exprB MOD exprB .. .
exprB SHR exprB .. .
exprB SHL exprB .. .
exprB

expr8 ::=

+ exprB
- exprB
expr9

expr9 ::=

HIGH expr9
LOWexpr9
exprlO

expr10 ::=

OFFSET pointer
SEG pointer
SIZE symbol
LENGTH symbol
WIDTH symbol
MASK symbol

Appendix B, Turbo Assembler syntax summary 265

THIS itype
symbol
(pointer)
[pointer]

Keyword precedence

It's important to understand how Turbo Assembler parses source lines so
that you can avoid writing code that produces unexpected results. For
example, examine the following program fragment:

NAME SEGMENT

If you had written this line hoping to open a segment called NAME, you
would be disappointed. Turbo Assembler recognizes the NAME directive
before the SEGMENT directive, thus naming your code SEGMENT.

In general, Turbo Assembler determines the meaning of a line based on the
first two symbols on the line. The leftmost symbol is in the first position,
while the symbol to its right is in the second position.

Ideal mode precedence

MASM mode
precedence

Note: Turbo
Assembler treats

priority 1 keywords
like priority 3

keywords inside
structure definitions.

In this case, priority 2
keywords have the

highest priority.

266

The following precedence rules for parsing lines apply to Ideal mode:

1. All keywords in the first position of the line have the highest priority
(priority 1) and are checked first.

2. The keywords in the second position have priority 2 and are checked
second.

The precedence rules for parsing lines in MASM mode are much more
complicated than in Ideal mode. There are three levels of priority instead of
two, as follows:

1. The highest priority (priority 1) is assigned to certain keywords found
in the first position, such as NAME or %OUT.

2. The next highest priority (priority 2) belongs to all symbols found in the
second position.

3. All other keywords found in first position have the lowest priority
(priority 3).

Turbo Assembler Users Guide

For example, in the code fragment

NAME SEGMENT

NAME is a priority 1 keyword, while SEGMENT is a priority 2 keyword.
Therefore, Turbo Assembler will interpret this line as a NAME directive
rather than a SEGMENT directive. In another example,

MOV INSTR,l

MOV is a priority 3 keyword, while INSTR is a priority 2 keyword. Thus,
Turbo Assembler interprets this line as an INSTR directive, not a MOV
instruction (which you might have wanted).

Keywords and predefined symbols

This section contains a complete listing of all Turbo Assembler keywords.

The values in parentheses next to keywords indicate the priority of the
keyword (lor 2) in MASM mode. Keywords are labeled with a priority
only if they have priority 1 or 2. All others are assumed to be priority 3.
Turbo Assembler recognizes the keyword only if it finds them. In MASM
mode, priority 1 or 3 keywords always are located in the first position,
while priority 2 keywords occur in the second position.

An M next to a keyword indicates that you can use a keyword only in
MASM mode, and an I indicates a keyword that is available only in Ideal
mode. If there is no letter, the keyword works in either mode. A number
next to the keyword indicates its priority.

Directive
keywords

The following list contains all Turbo Assembler directive keywords. The
keywords are grouped by the version of Turbo Assembler in which they
were introduced.

These keywords were introduced in Turbo Assembler 1.0.

Table B.1: Turbo Assember V1.0 (VERSION T1 00) keywords

% (1) .8087 (M)
.186 (M) : (2)
.286 (M) = (2)
.286c (M) AAA
.286p (M) AAD
.386 (M) AAM
.386c (M) AAS
.386p (M) ADC
.387 (M) ADD
.8086 (M) ALIGN

Appendix B, Turbo Assembler syntax summary

.ALPHA (M)
AND
ARG
ARPL
ASSUME
%BIN
BOUND
BSF
BSR
BT

BTC
BTR
BTS
CALL
CATSTR (2)
CBW
CDa
CLC
CLD
CLI

267

Table B.1: Turbo Assember V1.0 (VERSION T100) keywords (continued)

CLTS ELSEIFDIF (1) EXTRN (1) FLDZ
CMC ELSEIFDIFI (1) F2XM1 FMUL
CMP ELSEIFE (1) FABS FMULP
CMPBW ELSEIFIDN (1) FADD FNCLEX
CMPS ELSEIFIDNI (1) FADDP FNDISI
CMPSB ELSEIFNB (1) FAR DATA FNENI
CMPSD ELSEIFNDEF (1) .FARDATA (M) FNINIT
.CODE(M) EMUL .FARDATA? (M) FNOP
CODESEG END FBLD FNSAVE
COMM(1) ENDIF (1) FBSTP FNSTCW
COMMENT (1) ENDM FCHS FNSTENV
%CONDS ENDP (2) FCLEX FNSTSW
CONST ENDS (2) FCOM FPATAN
.CONST (M) ENTER FCOMP FPREM
%CREF EOU (2) FCOMPP FPTAN
.CREF (M) .ERR (1)(M) FDECSTP FRNDINT
%CREFALL ERR FDISI FRSTOR
%CREFREF .ERR1 (1)(M) FDIV FSAVE
%CREFUREF .ERR2 {1)(M) FDIVP FSCALE
%CTLS .ERRB (1)(M) FDIVR FSORT
CWD .ERRDEF (1)(M) FDIVRP FST
CWDE .ERRDIF (1)(M) FENI FSTCW
DAA .ERRDIFI (1)(M) FFREE FSTENV
DAS .ERRE {1)(M) FIADD FSTP
.DATA (M) .ERRlDN (1)(M) FICOM FSTSW
.DATA? (M) .ERRIDNI (1)(M) FICOMP FSUB
DATASEG ERRIF FIDIV FSUBP
DB (2) ERRIF1 FIDIVR FSUBR
DD (2) ERRIF2 FILD FSUBRP
DEC ERRIFB FIMUL FTST
%DEPTH ERRIFDEF FINCSTP FWAIT
DF (2) ERRIFDIF FINIT FXAM
DISPLAY ERRIFDIFI FIST FXCH
DIV ERRIFE FISTP FXTRACT
DOSSEG ERRIFIDN FISUB FYL2X
DP (2) ERRIFIDNI FISBR FYL2xP1
DO (2) ERRIFNB FLD FSETPM
DT(2) ERRIFNDEF FLD! FPCOS
DW(2) .ERRNB (1)(M) FLDCW FPREM1
ELSE (1) .ERRNDEF {1)(M) FLDENV FPSIN
ELSEIF (1) .ERRNZ (1)(M) FLDL2E FPSINCOS
ELSEIF1 (1) ESC FLDL2T FUCOM
ELSEIF2 (1) EVEN . FLDLG2 FUCOMP
ELSEIFB (1) EVENDATA FLDLN2 FUCOMPP
ELSEIFDEF (1) EXITM FLDPI GLOBAL (1)

268 Turbo Assembler Users Guide

Table B.1: Turbo Assember V1.0 (VERSION T100) keywords (continued)

GROUP (2) JNA LODSD NOMASM51
HLT JNAE LODSW %NOMACS
IDEAL JNB LOOP NOMULTERRS
IDIV JNBE LOOPD NOP
IF (1) JNC LOOPDE NOSMART
IF1 (1) JNE LOOPDNE %NOSYMS
IF2 (1) JNG LOOPDNZ NOT
IFb (1) JNGE LOOPDZ %NOTRUNC
IFDEF (1) JNL LOOPE NOWARN
IFDIF (1) JNLE LOOPNE OR
IFDIFI (1) JNO LOOPNZ ORG
IFE (1) JNP LOOPW OUT
IFIDN (1) JNS LOOPWE %OUT (1)
IFIDNI (1) JNZ LOOPWNE OUTS
IFNB (1) JO LOOPWNZ OUTSB
IFNDEF (1) JP LOOPWZ OUTSD
IJECXZ JPE LOOPZ OUTSW
IMUL JPO LSL P186
IN JS LSS P286
INC JUMP LTR P286N
%INCL JUMPS %MACS P287
INCLUDE (1) JZ MACRO (2) P386
INCLUDELIB (1) LABEL (2) MASM P386N
INS LAHF MODEL P387
INSB .LALL (M) .MODEL (M) P8086
INSD LAR MOV P8087
INSTR (2) LOS MOVMOVS PAGE
INSW LEA MOVSB %PAGESIZE
INT LEAVE MOVSD %PCNT
INTO LES MOVSW PN087
IRET .LFCOND (M) MOVSX POP
IRETD LFS MOVZX POPA
IRP (1) LGDT MUL POPAD
IRPC (1) LGS MULTERRS POPFD
JA LlDT NAME (1) %POPLCTL
JAE %LlNUM NEG PPF
JB %LlST %NEWPAGE PROC (2)
'JBE .LlST (M) %NOCONDS PUSH
JC LLDT %NOCREF PUSHA
JCXZ LMSW %NOCTLS PUSHAD
JE LOCAL NOEMUL PUSHF
JG LOCALS %NOINCL PUSHFD
JGE LOCK NOJUMPS %PUSHLCTL
JL LODS %NOLIST PUBLIC (1)
JLE LODSB NOLOCALS PURGE

Appendix 8, Turbo Assembler syntax summary 269

Table 8,1: Turbo Assember V1 ,0 (VERSION T1 00) keywords (continued)

%PAGESIZE
%PCNT
PN087
%POPLCTL
PROC(2)
%PUSHLCTL
PUBLIC (1)
PURGE
QUIRKS
RADIX
.RADIX(M)
RCL
RCR
RECORD (2)
REPT (1)
REP
REPE
REPNE
REPNZ
REPZ
RET
RETF
RETN
ROL
ROR
SAHF
SAL
.SALL (M)
SAR
SBB
SCAS

Table B.2
Turbo Assembler
V2.0 (VERSION

T200) new keywords

Table B.3
Turbo Assembler
V2.5 (VERSION

T250) new keywords

270

SCASB
SCASD
SCASW
SEGMENT (2)
.SEQ(M)
SETA
SETAE
SETB
SETBE
SETC
SETE
SETG
SETGE
SETL
SETLE
SETNA
SETNAE
SETNB
SETNBE
SETNC
SETNE
SETNG
SETNGE
SETNL
SETNLE
SETNO
SETNP
SETNS
SETNZ
SETa
SETP

SETPE
SETPO
SETS
SETZ
.SFCOND (M)
SGDT
SHL
SHLD
SHR
SHRD
SlOT
SIZESTR (2)
SLOT
SMART
SMSW
SOR
STACK
.STACK(M)
.STARTUP (M)
STC
STD
STI
STOS
STOSB
STOSD
STOSW
STR
STRUC (2)
SUB
SUBSTR (2)
SUBTTL (1)

%SUBTTL
%SYMS
%TABSIZE
TEST
%TEXT
.TFCOND (M)
TITLE (1)
%TITLE
%TRUNC
UDATASEG
UFARDATA
UNION (2)
USES
VERR
VERW
WAIT
WARN
.XALL (M)
XCHG
;XCREF (M)
XLAT
XLATB
.XLlST (M)
USECS
USEDS
USEES
USEFS
USEGS
USESS

Turbo Assembler version 2.0 supports all version 1.0 keywords, with the
following additions:

BSWAP
CMPXCHG
INVD
XADD

P486
P486N
P487
INVLPG

STARTUPCODE
WBINVD
PUBLlCDLL (I)
RETCODE

Turbo Assembler version 2.5 supports all version 2.0 keywords, plus the
following keyword additions:

ENTERD
ENTERW

LEAVED
LEAVEW

Turbo Assembler Users Guide

Table BA
Turbo Assembler
V3.0 (VERSION

T300) new keywords

Table B.5
Turbo Assembler

V3.1 (VERSION
T310) new keywords

Table B.6
Turbo Assembler
V3.2 (VERSION

T320) new keywords

Table B.7
Turbo Assembler
V4.0 (VERSION

T 400) new keywords

Turbo Assembler version 3.0 supports keywords from all previous
versions, with the following additions:

CLRFLAG
ENUM (2)
EXITCODE
FASTIMUL
FLiPFLAG
GETFIELD

GOTO (1)
LARGESTACK
SETFIELD
SETFLAG
SMALLSTACK
TABLE (2)
WHILE (1)

TBLINIT
TBLINST
TBLPTR
TESTFLAG
TVPEDEF
VERSION

Turbo Assembler version 3.1 supports keywords from all previous versions,
with the following additions:

PUSHSTATE POPSTATE

Turbo Assembler version 3.2 supports keywords from all previous
versions, with the following additions:

IRETW
POPAW
PUSHFW

POPFW
PROCDESC(2)

PROCTVPE(2)
PUSHAW

Turbo Assembler version 4.0 supports keywords from all previous
versions, with the following additions:

ALIAS
CMPXCHG8B
CPUID
P586

P586N
P587
RDMSR
RDTSC

RSM
WRMSR

Appendix B, Turbo Assembler syntax summary 271

272 Turbo Assembler Users Guide

A p p E N D x c

Compatibility issues

Turbo Assembler in MASM mode is very compatible with MASM version
5.2. However, 100% compatibility is an ideal that can only be approached,
since there is no formal specification for the language and different versions
of MASM are not even compatible with each other.

For most programs, you will have no problem using Turbo Assembler as a
direct replacement for MASM. Occasionally, Turbo Assembler will issue
warnings or errors where MASM would not, which usually means that
MASM has not detected an erroneous statement. For example, MASM
accepts

abc EQU [BP+2]
PUBLIC abc

and generates a nonsense object file. Turbo Assembler correctly detects this
and many other questionable constructs.

If you are having trouble assembling a program with Turbo Assembler, you
might try using the QUIRKS directive (which enables potentially
troublesome features of MASM). For example,

TASM /JQUIRKS MYFILE

might make your program assemble properly. If it does, add QUIRKS to the
top of your source file. Even better, review Chapter 3 and determine which
statement in your source file needs the QUIRKS directive. Then you can
rewrite the line(s) of code so that you don't even have to use QUIRKS.

For maximum compatibility with MASM, you should use the NOSMART
directive along with QUIRKS mode.

One-pass versus two-pass assembly

Normally, Turbo Assembler performs only one pass when assembling code,
while MASM performs two. This feature gives Turbo Assembler a speed
advantage, but can introduce minor incompatibilities when forward
references and pass-dependent constructions are involved. The command-

Appendix C, Compatibility issues 273

line option 1m specifies the number of passes desired. For maximum
compatibility with MASM, two passes (1m2) should be used. (See Chapter 2
for a complete discussion of this option.) The 1m2 command-line switch will
generate a MASM-style compatibility when the following constructs are
present:

• IF1 and IF2 directives

• ERR1 and ERR2 directives

• ESLEIF1 and ELSEIF2 directives

• Forward references with IFDEF or IFNDEF

• Forward references with the .TYPE operator

• Recursively defined numbers, such as NMBR=NMBR+l

• Forward-referenced or recursively defined text macros, such as

LNAME CATSTR LNAME,<l>

• Forward-referenced macros

Environment variables

Turbo Assembler doesn't use environment variables to control default
options. However, you can place default options in a configuration file and
then set up different configuration files for different projects.

If you use INCLUDE or MASM environment variables to configure MASM,
you'll have to make a configuration file for Turbo Assembler. Any options
that you have specified using the MASM variable can simply be placed in
the configuration file. Any directories that you have specified using the
INCLUDE variable should be placed in the configuration file using the II
command-line option.

Microsoft binary floating-point format

274

By default, older versions of MASM generated floating-point numbers in a
format incompatible with the IEEE standard floating-point format. MASM
version 5.1 generates IEEE floating-point data by default and has the
.MSFLOAT directive to specify that the older format be used.

Turbo Assembler does not support the old floating-point format, and
therefore does not let you use .MSFLOAT.

Turbo Assembler Users Guide

A p p E N o x D

Error messages

This chapter describes all the messages that Turbo Assembler generates.
Messages usually appear on the screen, but you can redirect them to a file
or printer using the standard OS/2 redirection mechanism of putting the
device or file name on the command line, preceded by the greater than (»
symbol. For example,

TASM MYFILE >ERRORS

Turbo Assembler generates several types of messages:

• Information messages
• Warning messages
• Error messages
• Fatal error messages

Information messages

Turbo Assembler displays two information messages: one when it starts
assembling your source file(s) and another when it has finished assembling
each file. Here's a sample startup display:

Turbo Assembler Version 4.0 Copyright (C) 1988, 1994 Borland International
Assembling file: TEST.ASM

When Turbo Assembler finishes assembling your source file, it displays a
message that summarizes the assembly process; the message looks like this:

Error messages: None
Warning messages: None
Passes: 1
Remaining memory: 279k

You can suppress all information messages by using the IT command-line
option. This only suppresses the information messages if no errors occur
during assembly. If there are any errors, the IT option has no effect and the
normal startup and ending messages appear.

Appendix 0, Error messages 275

Warning and error messages

Warning messages let you know that something undesirable may have
happened while assembling a source statement. This might be something
such as the Turbo Assembler making an assumption that is usually valid,
but might not always be correct. You should always examine the cause of
warning messages to see if the generated code is what you wanted.
Warning messages won't stop Turbo Assembler from generating an object
file. These messages are displayed using the following format:

Warning filename (line) message

If the warning occurs while expanding a macro or repeat block, the
warning message contains additional information, naming the macro and
the line within it where the warning occurred:

Warning filename(line) macroname(macroline) message

Error messages, on the other hand, will prohibit Turbo Assembler from
generating an object file, but assembly will continue to the end of the file.
Here's a typical error message format:

Error filename (line) message

If the error occurs while expanding a macro or repeat block, the error
message contains additional information, naming the macro and the line
within it where the error occurred:

Error filename (line) macroname(macroline) message

Fatal error messages cause Turbo Assembler to immediately stop
assembling your file. Whatever caused the error prohibited the assembler
from being able to continue.

The following list arranges Turbo Assembler's messages alphabetical order:

32·bit segments not allowed without .386
Has been extended to work with the new ability to specify USE32 in the .MODEL statement and the LARGEST ACK
command. Formerly was "USE32 not allowed without .386."

Argument mismatch

276

Argument sizes did not agree. For example,

foo proctype pascal :word, :dword
fooproc proc foo al:word, a2:dword

endp

call fooproc,ax,bx iArgument mismatch.

Turbo Assembler Users Guide

Argument needs type override
The expression needs to have a specific size or type supplied, since its size can't be determined from the context. For
example,

mov [bx],l

You can usually correct this error by using the PTR operator to set the size of the operand:

mov WORD PTR[bx] ,I

Argument to operation or instruction has illegal size
An operation was attempted on something that could not support the required operation. For example,

Q LABEL QWORD
QNOT =- not Q ican't negate a qword

Arithmetic overflow
A loss of arithmetic precision occurred somewhere in the expression; For example,

x = 20000h * 20000h ioverflows 32 bits

All calculations are performed using 32-bit arithmetic.

ASSUME must be segment register
You have used something other than a segment register in an ASSUME statement. For example,

ASSUME ax:CODE

You can only use segment registers with the ASSUME directive.

Bad keyword in SEGMENT statement
One of the align/combine/use arguments to the SEGMENT directive is invalid. For example,

DATA SEGMENT PAFA PUBLIC iPAFA should be PARA

Bad switch
You have used an invalid command-line option. See Chapter 2 for a description of the command-line options.

Can't add relative quantities
You have specified an expression that attempts to add together two addresses, which is a meaningless operation. For
example,

ABC DB ?
DEF = ABC + ABC ierror, can't add two relatives

You can subtract two relative addresses, or you can add a constant to a relative address, as in:

XYZ DB 5 DUP (0)
XYZEND EQU $
XYZLEN = SYZEND - XYZ iperfectly legal
XYZ2 = XYZ + 2 ilegal also

Can't address with currently ASSUMEd segment registers
An expression contains a reference to a variable for which you have not specified the segment register needed to reach it.
For example,

Appendix 0, Error messages 277

DSEG SEGMENT
ASSUME ds:DSEG
mov si,MPTR

DSEG ENDS
XSEG SEGMENT
MPTR DW ?
XSEG ENDS

Can't convert to pointer

ina segment register to reach XSEG

Part of the expression could not be converted to a memory pointer, for example, by using the PTR operator,

mov cl, [BYTE PTR all ican't make AL into pointer

Can't emulate 8087 instruction
The Turbo Assembler is set to generate emulated floating-point instructions, either via the IE command-line option or by
using the EMUL directive, but the current instruction can't be emulated. For example,

EMUL
FNSAVE [WPTRl ican't emulate this

The following instructions are not supported by floating-point emulators: FNsAVE, FNsTCW, FNsTENV, and FNsTsW.

Can't find @file_
You have specified an indirect command file name that does not exist. Make sure that you supply the complete file name.
Turbo Assembler does not presume any default extension for the file name. You've probably run out of space on the disk
where you asked the cross-reference file to be written.

Can't generate instance of type
You attempted to generate an instance of a named type that does not have an instance. For example,

faa typedef near
faa ? iNEARs have no instance.

Can't locate file
You have specified a file name with the INCLUDE directive that can't be found.

An INCLUDE file could not be located. Make sure that the name contains any necessary disk letter or directory path.

Can't make variable public
The variable is already declared in such a way that it can't be made public. For example,

EXTRN ABC:NEAR
PUBLIC ABC ierror, already EXTRN

Can't override Es segment
The current statement specifies an override that can't be used with that instruction. For example,

stos DS:BYTE PTR[dil

Here, the sTOs instruction can only use the Es register to access the destination address.

Can't subtract dissimilar relative quantities
An expression subtracts two addresses that can't be subtracted from each other, such as when they are each in a different
segment:

278 Turbo Assembler Users Guide

SEGl SEGMENT
A:
SEGl ENDS
SEG2 SEGMENT
B:

mov aX,B-A
SEG2 ENDS

iillegal, A and B in different segments

Can't use macro name in expression
A macro name was encountered as part of an expression. For example,

MyMac MACRO
ENDM

iwrong!

Can't use this outside macro
You have used a directive outside a macro definition that can only be used inside a macro definition. This includes directives
like EN OM and EXITM. For example,

DATA SEGMENT
ENDM ierror, not inside macro

Code or data emission to undeclared segment
A statement that generated code or data is outside of any segment declared with the SEGMENT directive. For example,

iFirst line of file
inc bx
END

ierror, no segment

You can only emit code or data from within a segment.

Constant assumed to mean immediate constant
This warning appears if you use an expression such as [OJ, which under MASM is interpreted as simply O. For example,

mov ax, [0] imeans mov ax,O NOT mov aX,DS: [0]

Constant too large
You have entered a constant value that is properly formatted, but is too large. For example, you can only use numbers larger
than Offffh when you have enabled 386 or i486 instructions with the .386/.386P or .486/.486P directives.

CS not correctly assumed
A near CALL or JMP instruction can't have as its target an address in a different segment. For example,

SEGl SEGMENT
LABl LABEL NEAR
SEGl ENDS
SEG2 SEGMENT

jmp LABl ierror, wrong segment
SEG2 ENDS

This error only occurs in MASM mode. Ideal mode correctly handles this situation.

Appendix D, Error messages 279

CS override in protected mode
The current instruction requires a CS override, and you are assembling instructions for the 80286, 386, or i486 in protected
mode (P286P, P386P, or P486 directives). For example,

P286P
.CODE

CVAL DW
mov CVAL,l ;generates CS override

The /P €ommand-line option enables this warning. When running in protected mode, instructions with CS overrides won't
work without you taking special measures.

CS unreachable from current segment
When defining a code label using colon (:), LABEL or PROC, the CS register is not assumed to either the current code
segment or to a group that contains the current code segment. For example,

PROGl SEGMENT
ASSUME cs:PROG2

START: ;error, bad CS assume

This error only occurs in MASM mode. Ideal mode correctly handles this situation.

Data or code written to uninitialized segment
You have inadvertently written initialized code or data to an uninitialized segment. For example,

.data?
msg db 'Hello', 0 ; error, uninitialized segment

Declaration needs name
You have used a directive that needs a symbol name, but none has been supplied. For example,

PROC ;error, PROC needs a name
ret

ENDP

You must always supply a name as part of a SEGMENT, PROC, or STRUC declaration. In MASM mode, the name precedes
the directive; in Ideal mode, the name comes after the directive.

Directive not allowed inside structure definition
You have used a directive inside a STRUC definition block that can't be used there. For example,

x STRUC
MEMl DB ?

ORG $+4
MEM2 DW ?
ENDS

;error, can't use ORG inside STRUC

Also, when declaring nested structures, you cannot give a name to any that are nested. For example,

FOO STRUC

ENDS

280

F002 STRUC
ENDS

;can't name inside

Turbo Assembler Users Guide

If you want to use a named structure inside another structure, you must first define the structure and then use that structure
name inside the second structure.

Duplicate dummy argument: _
A macro defined with the MACRO directive has more than one dummy parameter with the same name. For example,

XYZ MACRO A,A
DB A
ENDM

ierror, duplicate dummy name

Each dummy parameter in a macro definition must have a different name.

ELSE or ENDIF without IF
An ELSE or ENDIF directive has no matching IF directive to start a conditional assembly block. For example,

BUF DB 10 DUP (?)
ENDIF ierror, no matching IFxxx

Error writing to listing file
Youve probably run out of space on the disk where you asked the listing file to be written.

Error writing to object file
Youve probably run out of space on the disk where you asked the object file to be written.

Expecting METHOD keyword
The extended structure statement for defining objects expects the keyword METHOD after the parent object.

Expecting offset quantity
An expression expected an operand that referred to an offset within a segment, but did not encounter the right sort of
operand. For example,

CODE SEGMENT
mov ax, LOW CODE

CODE ENDS

Expecting offset or pointer quantity
An expression expected an operand that referred to an offset within a specific segment, but did not encounter the right sort of
operand. For example,

CODE SEGMENT

CODE ENDS

Expecting pointer type

ierror, code is a segment not
i a location within a segment

The current instruction expected an operand that referenced memory. For example,

les di, 4 ino good, 4 is a constant

Expecting record field name
You used a SETFIELD or GETFIELD instruction without a field name following it.

Expecting register ID
The USES part of the CALL..METHOD expects register name(s).

Appendix 0, Error messages 281

Expecting scalar type
An instruction operand or operator expects a constant value. For example,

BB DB 4
rol ax,BB iROL needs constant

Expecting segment or group quantity
A statement required a segment or group name, but did not find one. For example,

DATA SEGMENT
ASSUME ds:FOO ierror, FOO is not group or segment

iname
FOO DW 0
DATA ENDS

Extra characters on line
A valid expression was encountered, but there are still characters left on the line. For example,

ABC = 4 shl 3 3 imissing operator between 3 and 3

This error often happens in conjunction with another error that caused the expression parser to lose track of what you
intended to do.

File not found
The source file name you specified on the command line does not exist. Make sure you typed the name correctly, and that
you included any necessary drive or path information if the file is not in the current directory.

File was changed or deleted while assembly in progress
Another program, such as a pop-up utility, has changed or deleted the file after Turbo Assembler opened it. Turbo Assembler
can't reopen a file that was previously opened successfully.

Forward reference needs override
An expression containing a forward-referenced variable resulted in more code being required than Turbo Assembler
anticipated. This can happen either when the variable is unexpectedly a far address for a JMP or CALL or when the variable
requires a segment override in order to access it. For example,

ASSUME cs:DATA
call A

A PROC FAR
mov ax,MEMVAR

DATA SEGMENT
MEMVAR DW ?

ipresume near call
iOOpS, it's far
idoesn't know it needs override

iOOpS, needs override

Correct this by explicitly supplying the segment override or FAR override.

Global type doesn't match symbol type
This warning is given when a symbol is declared using the GLOBAL statement and is also defined in the same module, but
the type specified in the GLOBAL and the actual type of the symbol don't agree.

10 not member of structure
In Ideal mode, you have specified a symbol that is not a structure member name after the period (.) structure member
operator. For example,

282 Turbo Assembler Users Guide

IDEAL
STRUC DEMO

DB ?
ENDS
COUNT DW 0

mov ax, [(DEMO bx) .COUNT] ;COUNT not part of structure

You must follow the period with the name of a member that belongs to the structure name that precedes the period.

This error often happens in conjunction with another error that caused the expression parser to lose track of what you
intended to do.

Illegal forward reference
A symbol has been referred to that has not yet been defined, and a directive or operator requires that its argument not be
forward-referenced. For example,

IF MYSYM

ENDIF
MYSYM EQU 1

;error, MYSYM not defined yet

Forward references may not be used in the argument to any of the IFxxx directives, nor as the count in a CUP expression.

Illegal immediate
An instruction has an immediate (constant) operand where one is not allowed. For example,

mov 4,al

Illegal indexing mode
An instruction has an operand that specifies an illegal combination of registers. For example,

mov al, [si+ax]

On all processors except the 386, the only valid combinations of index registers are: BX, BP, SI, 01, BX+SI, BX+OI, BP+SI,
BP+OI.

Illegal instruction
A source line starts with a symbol that is neither one of the known directives nor a valid instruction mnemonic.

move ax,4 ;should be "MOV"

Illegal instruction for currently selected processor(s)
A source line specifies an instruction that can't be assembled for the current processor. For example,

.8086
push 1234h ;no immediate push on 8086

When Turbo Assembler first starts assembling a source file, it generates instructions for the 8086 processor, unless told to do
otherwise.

If you wish to use the extended instruction mnemonics available on the 186/286/386 processors, you must use one of the
directives that enables those instructions (P186, P286, P386).

Illegal local argument
The LOCAL directive inside a macro definition has an argument that is not a valid symbol name. For example,

Appendix D, Error messages 283

X MACRO
LOCAL 123
ENDM

Illegal local symbol prefix

;not a symbol

The argument to the LOCALS directive specifies an invalid start for local symbols. For example,

LOCALS XYZ ;error, not 2 characters

The local symbol prefix must be exactly two characters that themselves are a valid symbol name, such as __ , @@, and so
on (the default is @@).

Illegal macro argument
A macro defined with the MACRO directive has a dummy argument that is not a valid symbol name. For example,

x MACRO 123
ENDM

Illegal memory reference

;invalid dummy argument

An instruction has an operand that refers to a memory location, but a memory location is not allowed for that operand. For
example,

mov [bxl ,BYTE PTR A ;error, can't move from MEM to MEM

Here, both operands refer to a memory location, which is not a legal form of the MOV instruction. On the 80x86 family of
processors, only one of the operands to an instruction can refer to a memory location.

Illegal number
A number contains one or more characters that are not valid for that type of number. For example,

Z = OABCGh

Here, G is not a valid letter in a hexadecimal number.

Illegal origin address
You have entered an invalid address to set the current segment location ($). You can enter either a constant or an
expression using the location counter ($), or a symbol in the current segment.

Illegal override in structure
You have attempted to initialize a structure member that was defined using the DUP operator. You can only initialize structure
members that were declared without DUP.

Illegal override register
A register other than a segment register (CS, DS, ES, SS, and on the 386, FS and GS) was used as a segment override,
preceding the colon (:) operator. For example,

mov dx:XYZ,l ;DX not a segment register

Illegal radix
The number supplied to the .RADIX directive that sets the default number radix is invalid. For example,

.RADIX 7 ;no good

The radix can only be set to one of 2, 8, 10, or 16. The number is interpreted as decimal no matter what the current default
radix is.

284 Turbo Assembler Users Guide

Illegal register for instruction
An illegal register was used as the source of a SETFIELO instruction or the destination of a GETFIELD instruction.

Illegal register multiplier
You have attempted to multiply a register by a value, which is not a legal operation; for example,

movax*3,l

The only context where you can multiply a register by a constant expression is when specifying a scaled index operand on
the 386 processor.

Illegal segment address
This error appears if an address greater than 65,535 is specified as a constant segment address; for example,

Faa SEGMENT AT 12345h

Illegal use of constant
A constant appears as part of an expression where constants can't be used. For example,

mov bx+4,5

Illegal use of register
A register name appeared in an expression where it can't be used. For example,

x = 4 shl ax ican't use register with SHL operator

Illegal use of segment register
A segment register name appears as part of an instruction or expression where segment registers cannot be used. For
example,

add SS,4 iADD can't use segment regs

Illegal USES register
You have entered an invalid register to push and pop as part of entering and leaving a procedure. The valid registers follow:

AX CX OS ES
BX 01 DX SI

If you have enabled the 386 processor with the .386 or .386P directive, you can use the 32-bit equivalents for these registers.

Illegal version 10
Occurs when an illegal version 10 was selected in the VERSION statement or /U switch.

Illegal warning 10
You have entered an invalid three-character warning identifier. See the options discussed in Chapter 2 for a complete list of
the allowed warning identifiers.

Instruction can be compacted with override
The code generated contains NOP padding, due to some forward-referenced symbol. You can either remove the forward
reference or explicitly provide the type information as part of the expression. For example,

jmp X iwarning here
jmp SHORT X ino warning

X:

Appendix 0, Error messages 285

Insufficient memory to process command line
You have specified a command line that is either longer than 64K or can't be expanded in the available memory. Either
simplify the command line or run Turbo Assembler with more memory free.

Internal error
This message should never happen during normal operation of Turbo Assembler. Save the file(s) that caused the error and
report it to Borlands Technical Support department.

Invalid command line
The command line that you used to start Turbo Assembler is badly formed. For example,

TASM ,MYFILE

does not specify a source file to assemble. See Chapter 2 for a complete description of the Turbo Assembler command line.

Invalid model type
The model directive has an invalid memory model keyword. For example,

.MODEL GIGANTIC

Valid memory models are tiny, small, compact, medium, large, and huge.

Invalid number after
You have specified a valid command-line switch (option), but have not supplied a valid numeric argument following the
switch. See Chapter 2 for a discussion of the command-line options.

Invalid operand(s) to instruction
The instruction has a combination of operands that are not permitted. For example,

fadd ST(2),ST(3)

Here, FADD can only refer to one stack register by name; the other must be the stack top.

Labels can't start with numeric characters
You have entered a symbol that is neither a valid number nor a valid symbol name, such as 123XYl.

Language differs from procedure type
You attempted to use a different language than what was contained in the procedure type declaration. For example,

faa proctype windows pascal :word
fooproc proc faa al:word

endp

call fooproc c,ax iLanguage doesn't match.

Language doesn't support variable-length arguments
You specified a variable-length stack frame with a language that doesn't support it. For example,

faa proctype pascal :word, :unknown ;Pascal can't have
;variable arguments.

Line too long-truncating
The current line in the source file is longer than 255 characters. The excess characters will be ignored.

286 Turbo Assembler Users Guide

Location counter overflow
The current segment has filled up, and subsequent code or data will overwrite the beginning of the segment. For example,

ORG OFFFOh
ARRAY DW 20 DUP (0) ; overflow

Method CALL requires object name
The CALL..METHOO statement cannot obtain the object type from this instance pointer. You must specify the object name.

Missing argument list
An IRP or IRPC repeat block directive does not have an argument to substitute for the dummy parameter. For example,

IRP X ;no argument list
DB X

ENDM

IRP and IRPC must always have both a dummy parameter and an argument list.

Missing argument or <
You forgot the angle brackets or the entire expression in an expression that requires them. For example,

ifb ;needs an argument in <>s

Missing argument size variable
An ARG or LOCAL directive does not have a symbol name following the optional = at the end of the statement. For example,

ARG A:WORD/B:DWORD=
LOCAL X:TBYTE=

;error , no name after =
;same error here

ARG and LOCAL must always have a symbol name if you have used the optional equal sign (=) to indicate that you want to
define a size variable.

Missing COMM 10
A COMM directive does not have a symbol name before the type specifier. For example,

COMM NEAR ;error , no symbol name before "NEAR"

COMM must always have a symbol name before the type specifier, followed by a colon (:) and then the type specifier.

Missing dummy argument
An IRP or IRPC repeat block directive does not have a dummy parameter. For example,

RP ;no dummy parameter
DB X

ENDM

IRP and IRPC must always have both a dummy parameter and an argument list.

Missing end quote
A string or character constant did not end with a quote character. For example,

DB "abc
mov al, IX

;missing " at end of ABC
;missing I after X

You should always end a character or string constant with a quote character matching the one that started it.

Appendix D, Error messages 287

Missing macro 10
A macro defined with the MACRO directive has not been given a name. For example,

MACRO
DB A
ENDM

ierror, no name

Macros must always be given a name when they are defined.

Missing module name
You have used the NAME directive but you haven't supplied a module name after the directive. Remember that the NAME
directive only has an effect in Ideal mode.

Missing or illegal language 10
You have entered something other than one of the allowed language identifiers after the .MODEL directive. See Chapter 7
for a complete description of the .MODEL directive.

Missing or illegal type specifier
A statement that needed a type specifier (like BYTE, WORD, and so on) did not find one where expected. For example,

RED LABEL XXX ;error, "XXX" is not a type specifier

Missing table member 10
A CALL..METHOD statement was missing the method name after the METHOD keyword.

Missing term in list
In Ideal mode, a directive that can accept multiple arguments (EXTRN, PUBLIC, and so on) separated by commas does not
have an argument after one of the commas in the list. For example,

EXTRN XXX:BYTE"YYY:WORD

In Ideal mode, all argument lists must have their elements separated by precisely one comma, with no comma at the end of
the list.

Missing text macro
You have not supplied a text macro argument to a directive that requires one. For example,

NEWSTR SUBSTR ;ERROR - SUBSTR NEEDS ARGUMENTS

Model must be specified first
You used one of the simplified segmentation directives without first specifying a memory model. For example,

. CODE ;error, no .MODEL first

You must always specify a memory model using the .MODEL directive before using any of the other simplified segmentation
directives.

Module is pass·dependent-compatibility pass was done
This warning occurs if a pass-dependent construction was encountered and the 1m command-line switch was specified. A
MASM-compatible pass was done.

You put a symbol name after a directive, and the symbol name should come first. For example,

STRUC ABC ;error, ABC must come before STRUC

Since Ideal mode expects the name to come after the directive, you will encounter this error if you try to assemble Ideal mode
programs in MASM mode.

288 Turbo Assembler Users Guide

Near jump or call to different CS
This error occurs if the user attempts to perform a NEAR CALL or JMP to a symbol that's defined in an area where CS is
assumed to a different segment.

Need address or register
An instruction does not have a second operand supplied, even though there is a comma present to separate two operands;
for example,

mov ax, ina second operand

Need angle brackets for structure fill
A statement that allocates storage for a structure does not specify an initializer list. For example,

STRl STRUC
Ml DW ?
M2 DD ?

ENDS
STRl ina initializer list

Need colon
An EXTRN, GLOBAL, ARG, or LOCAL statement is missing the colon after the type specifier (BYTE, WORD, and so on).
For example,

EXTRN X BYTE,Y:WORD iX has no colon

Need expression
An expression has an operator that is missing an operand. For example,

X = 4 + * 6

Need file name after INCLUDE
An INCLUDE directive did not have a file name after it. For example,

INCLUDE iinclude what?

In Ideal mode, the file name must be enclosed in quotes.

Need left parenthesis
A left parenthesis was omitted that is required in the expression syntax. For example,

DB 4 DUP 7

You must always enclose the expression after the DUP operator in parentheses.

Need method name
The CALL..METHOD statement requires a method name after the METHOD keyword.

Need pointer expression
This error only occurs in Ideal mode and indicates that the expression between brackets ([]) does not evaluate to a memory
pointer. For example,

mav ax, [WORD PTR]

In Ideal mode, you must always supply a memory-referencing expression between the brackets.

Appendix D, Error messages 289

Need quoted string
You have entered something other than a string of characters between quotes where it is required. In Ideal mode, several
directives require their argument to be a quoted string. For example,

IDEAL
DISPLAY "ALL DONE"

Need register in expression
You have entered an expression that does not contain a register name where one is required.

Need right angle bracket
An expression that initializes a structure, union, or record does not end with a> to match the < that started the initializer list.
For example,

MYSTRUC STRUCNAME <1,2,3

Need right curly bracket
Occurs during a named structure, table, or record fill when a '}' is expected but not found.

Need right parenthesis
An expression contains a left parenthesis, but no matching right parenthesis. For example,

X = 5 * (4 + 3

You must always use left and right parentheses in matching pairs.

Need right square bracket
An expression that references a memory location does not end with a 1 to match the [that started the expression. For
example,

mov ax, lsi ierror, no closing J after SI

You must always use square brackets in matching pairs.

Need stack argument
A floating-point instruction does not have a second operand supplied, even though there is a comma present to separate two
operands. For example,

fadd ST,

Need structure member name
In Ideal mode, the period (.) structure member operator was followed by something that was not a structure member name.
For example,

IDEAL
STRUC DEMO

DB ?
ENDS
COUNT DW 0

mov ax, [(DEMO bx) . J

You must always follow the period operator with the name of a member in the structure to its left.

290 Turbo Assembler Users Guide

Not expecting group or segment quantity
You have used a group or segment name where it can't be used. For example,

CODE SEGMENT
rol ax, CODE ierror, can't use segment name here

One non-null field allowed per union expansion
When initializing a union defined with the UNION directive, more than one value was supplied. For example,

U UNION

ENDS

DW ?
DD ?

UINST U <1,2> ierror, should be <?,2> or <1,?>

A union can only be initialized to one value.

Only one startup sequence allowed
This error appears if you have more than one ,STARTUP or STARTUPCODE statement in a module.

Open conditional
The end of the source file has been reached as defined with the END directive, but a conditional assembly block started with
one of the IFxxx directives has not been ended with the ENDIF directive. For example,

IF BIGBUF
END ino ENDIF before END

This usually happens when you type END instead of ENDIF to end a conditional block.

Open procedure
The end of the source file has been reached as defined with the END directive, but a procedure block started with the PROC
directive has not been ended with the ENDP directive. For example,

MYFUNC PROC
END ino ENDIF before ENDP

This usually happens when you type END instead of ENDP to end a procedure block.

Open segment
The end of the source file has been reached as defined with the END directive, but a segment started with the SEGMENT
directive has not been ended with the ENDS directive. For example,

DATA SEGMENT
END ino ENDS before END

This usually happens when you type END instead of ENDS to end a segment.

Open structure definition
The end of the source file has been reached as defined with the END directive, but a structure started with the STRUC
directive has not been ended with the ENDS directive. For example,

Appendix D, Error messages 291

X STRUC

VALl DW
END ;no ENDS before it

This usually happens when you type END instead of ENDS to end a structure definition.

Operand types do not match
The size of an instruction operand does not match either the other operand or one valid for the instruction; for example,

ABC DB 5

mov ax, ABC

Operation illegal with procedure type
You used the structure member operator on an expression whose type is a procedure. For example,

faa proctype pascal :word

mov ax, [faa ptr [bx]) .member

Operation illegal with static table member

;Things of type Faa
;have no members

A '.' operator was used to obtain the address of a static table member. This is illegal.

Out of hash space
The hash space has one entry for each symbol you define in your program. It starts out allowing 16,384 symbols to be
defined, as long as Turbo Assembler is running with enough free memory. If your program has more than this many symbols,
use the IKH command-line option to set the number of symbol entries you need in the hash table.

Out of memory
You don't have enough free memory for Turbo Assembler to assemble your file.

If you have any TSR (RAM-resident) programs installed, you can try removing them from memory and try assembling your
file again. You may have to reboot your system in order for memory to be properly freed.

Another solution is to split the source file into two or more source files, or rewrite portions of it so that it requires less memory
to assemble. You can also use shorter symbol names, reduce the number of comments in macros, and reduce the number of
forward references in your program.

Out of string space
You don't have enough free memory for symbol names, file names, forward-reference tracking information, and macro text. A
maximum of 512K is allowed, and your module has exceeded this maximum.

Pass-dependent construction encountered
The statement may not behave as you expect, due to the one-pass nature of Turbo Assembler. For example,

IFl

ENDIF
IF2

ENDIF

;Happens on assembly pass

;Happens on listing pass

Most constructs that generate this error can be re-coded to avoid it, often by removing forward references.

292 Turbo Assembler Users Guide

Pointer expression needs brackets
In Ideal mode, the operand contained a memory-referencing symbol that was not surrounded by brackets to indicate that it
references a memory location. For example,

B DB 0
mov al,B ;warning, Ideal mode needs [B]

Since MASM mode does not require the brackets, this is only a warning.

Positive count expected
A DUP expression has a repeat count less than zero. For example,

BUF -1 DUP (?) ;error, count < 0

The count preceding a DUP must always be 1 or greater.

Procedure has too many arguments
A procedure was declared with too many arguments. For example,

footype PROCTYPE pascal :word, :dword

foo proc footype
arg al:word,a2:dword,a3:word

nop

endp

Procedure needs more arguments

;too many arguments were declared for
;for this proc

A procedure was declared with too few arguments. For example,

footype PROCTYPE pascal :word , :dword

foo proc footype
arg al:word

nop
ret

endp

Record field too large

;Needs a DWORD argument somewhere too.

When you defined a record, the sum total of all the field widths exceeded 32 bits. For example,

AREC RECORD RANGE:12,TOP:12,BOTTOM:12

Record member not found
A record member was specified in a named record fill that was not part of the specified record.

Recursive definition not allowed for EQU
An EQU definition contained the same name that you are defining within the definition itself. For example,

ABC EQU TWOTIMES ABC

Register must be AL or AX
An instruction which requires one operand to be the AL or AX register has been given an invalid operand. For example,

IN CL,dx ;error, "IN" must be to AL or AX

Appendix D, Error messages 293

Register must be OX
An instruction which requires one operand to be the DX register has been given an invalid operand. For example,

IN AL,cx ierror, must be DX register instead of CX

Relative jump out of range by _ bytes
A conditional jump tried to reference an address that was greater than 128 bytes before or 127 bytes after the current
location. If this is in a USE32 segment, the conditional jump can reference between 32,768 bytes before and 32,767 bytes
after the current location.

Relative quantity illegal
An instruction or directive has an operand that refers to a memory address in a way that can't be known at assembly time,
and this is not allowed. For example,

DATA SEGMENT PUBLIC
X DB 0

IF OFFSET X GT 127 inot known at assemble time

Reserved word used as symbol
You have created a symbol name in your program that Turbo Assembler reserves for its own use. Your program will
assemble properly, but it is good practice not to use reserved words for your own symbol names.

Rotate count must be constant or CL
A shift or rotate instruction has been given an operand that is neither a constant nor the CL register. For example,

rol ax,DL jerror, can't use DL as count

You can only use a constant value or the CL register as the second operand to a rotate or shift instruction.

Rotate count out of range
A shift or rotate instruction has been given a second operand that is too large. For example,

.8086
shl DL,3
.286
ror ax,40

jerror, 8086 can only shift by 1

jerror, max shift is 31

The 8086 processor only allows a shift count of 1, but the other processors allow a shift count up to 31.

Segment alignment not strict enough
The align boundary value supplied is invalid. Either it is not a power of 2, or it specifies an alignment stricter than that of the
align type in the SEGMENT directive. For example,

DATA SEGMENT PARA
ALIGN 32
ALIGN 3

jerror, PARA is only 16
jerror, not power of 2

Segment attributes illegally redefined
A SEGMENT directive reopen a segment that has been previously defined, and tries to give it different attributes. For
example,

294

DATA SEGMENT BYTE PUBLIC
DATA ENDS

Turbo Assembler Users Guide

DATA SEGMENT PARA ;error, previously had byte alignment
DATA ENDS

If you reopen a segment, the attributes you supply must either match exactly or be omitted entirely. If you don't supply any
attributes when reopening a segment, the old attributes will be used.

Segment name is superfluous
This warning appears with a .CODE xxx statement, where the model specified doesn't allow more than code segment.

String too long
You have built a quoted string that is longer than the maximum allowed length of 255.

Style differs from procedure type
You attempted to use a different language style than the declaration of the procedure type contained. For example,

foo proctype windows pascal :word
fooproc proc foo a1:word

endp

call fooproc normal pascal,ax ;Style doesn't match.

Symbol already defined: _
The indicated symbol has previously been declared with the same type. For example,

BB DB 1,2,3
BB DB ? ;error, BB already defined

Symbol already different kind
The indicated symbol has already been declared before with a different type. For example,

BB DB 1,2,3
BB DW ? ;error, BB already a byte

Symbol has no width or mask
The operand of a WIDTH or MASK operator is not the name of a record or record field. For example,

B DB 0
mov aX,MASK B ;B is not a record field

Symbol is not a segment or already part of a group
The symbol has either already been placed in a group or it is not a segment name. For example,

DATA
DATA
DGROUP

SEGMENT
ENDS

GROUP DATA
DGROUP2 GROUP DATA ;error, DATA already belongs to

;DGROUP

Text macro expansion exceeds maximum line length
This error occurs when expansion of a text macro causes the maximum allowable line length to be exceeded.

Appendix 0, Error messages 295

Too few arguments to procedure
You called a procedure using too few arguments. For example,

foo proctype pascal :word, :dword
fooproc proc foo a1:word, a2:dword

endp

call fooproc,ax iToo few arguments.

Too few operands to instruction
The instruction statement requires more operands than were supplied. For example,

add ax ;missing second arg

Too many arguments to procedure
You called a procedure using too many arguments. For example,

foo proctype pascal :word, :dword
fooproc proc foo a1:word, a2:dword

endp

call fooproc,ax,bx cx,dx iToo many arguments.

Too many errors found
Turbo Assembler has stopped assembling your file because it contained so many errors. You may have made a few errors
that have snowballed. For example, failing to define a symbol that you use on many lines is really a single error (failing to
define the symbol), but you will get an error message for each line that referred to the symbol.

Turbo Assembler will stop assembling your file if it encounters a total of 100 errors or warnings.

Too many errors or warnings
No more error messages will be displayed. The maximum number of errors that will be displayed is 100; this number has
been exceeded. Turbo Assembler continues to assemble and prints warnings rather than error messages.

Too many initial values
You have supplied too many values in a structure or union initialization. For example,

XYZ STRUC
A1 DB ?
A2 DD ?
XYZ ENDS
ANXYZ XYZ <1,2,3> ierror, only 2 members in XYZ

You can supply fewer initializers than there are members in a structure or union, but never more.

Too many register multipliers in expression
An 386 scaled index operand had a scale factor on more than one register. For example,

mov EAX, [2*EBX+4*EDX] ;too many scales

Too many registers in expression
The expression has more than one index and one base register. For example,

296 Turbo Assembler Users Guide

mov ax, [BP+S1+D1] ;can't have S1 and D1

Too many USES registers
You specified more than 8 USES registers for the current procedure.

Trailing null value assumed
A data statement like DB, OW, and so on, ends with a comma. TASM treats this as a null value. For example,

db 'hello' ,13,10, ;same as ... ,13,10,?

Undefined symbol
The statement contains a symbol that wasn't defined anywhere in the source file.

Unexpected end of file (no END directive)
The source file does not have an END directive as its last statement. All source files must have an END statement.

Unknown character
The current source line contains a character that is not part of the set of characters that make up Turbo Assembler symbol
names or expressions. For example,

add ax,! 1 ;error, exclamation is illegal character

Unmatched ENDP:
The ENDP directive has a name that does not match the PROC directive that opened the procedure block. For example,

ABC PROC
XYZ ENDP ;error, XYZ should be ABC

Unmatched ENDS:
The ENDS directive has a name that does not match either the SEGMENT directive that opened a segment or the STRUC or
UNION directive that started a structure or union definition. For example,

ABC STRUC
XYZ ENDS
DATA SEGMENT
CODE ENDS

User-generated error

;error, XYZ should be ABC

;error, code should be DATA

An error has been forced by one of the directives, which then forces an error. For example,

.ERR ;shouldn't get here

USES has no effect without language
This warning appears if you specify a USES statement when no language is in effect.

Value out of range
The constant is a valid number, but it is too large to be used where it appears. For example,

DB 400

Variable length parameter must be last parameter
If a variable-length parameter is present, it must be the last parameter. For example,

foe proctype pascal :word, : unknown, :word ;Not allowed.

Appendix 0, Error messages 297

298 Turbo Assembler Users Guide

Index

80287 coprocessor
.287 directive 86
P287 directive 86

80387 coprocessor
.387 directive 86
P387 directive 86

.8086 directive 83

.8087 directive 86
80186 processor

.186 directive 83
P186 directive 83

80286 processor
.286 directive 83
.286C directive 83
.286P directive 83
protected mode 25

80386 processor See also 386 processor
.386 directive 83
.386C directive 83
.386P directive 83
loop instructions for 161
P386 directive 83
P386N directive 83
P386P directive 83
protected mode 25

80486 processor
.486 directive 83
.486C directive 83
.486P directive 83
P486 directive 83
P486N directive 83
protected mode 25

80487 processor
.487 directive 83
P487 directive 83

{ } (brace) initializer 150, 155
records and 153

< > (bracket) initializer 151
nested structures/ unions and 152, 157
records and 154

< > (brackets)
literal string 183
macros and 175

Index

8087 coprocessor 18,87
.8087 directive 86
Borland C++ and 241
P8087 directive 86

.186 directive 83

.286 directive 83

.287 directive 86

.386 directive 83

.387 directive 86

.486 directive 83

.487 directive 83
8086 processor

.8086 directive 83
P8086 directive 83
PUSHing constants 163
segments and 89

.286C directive 83

.386C directive 83

.486C directive 83

.286P directive 83

.386P directive 83

.486P directive 83
386 processor

protected mode 25
[] (square brackets)

describing address contents 80
Ideal mode 36
MASMmode36

;; comment character 179
:: directive 124
= (equals) directive 43
. (period) character

Ideal mode 36
@@ symbol 143
+ addition operator 80
@32Bit symbol 93
! character 183
& character, in macros 178
= directive 17
% expression evaluation character 184
% immediate macro directive 188
? keyword 111, 132

as initial value 150

299

\ line continuation character 182
@-sign 30
= sign, argument lists and 132
$ symbol 119
? symbol 145

A
/ a option 16, 26
address expressions See expressions
address subtypes

complex 68
setting 75

address subtypes of symbols
distance parameter and 69

addresses, calculating 78
ALIAS 208
alias values 42
ALIGN directive 109, 122
.ALPHA directive 102
ALPHA directive 16, 26
ancestor virtual methods 60
ARC directive 131

Borland C++ and 239
arguments

BYTE 132
names (scope of) 133
substitution (defined) 178

arithmetic operators 74,80
.ASM files 1, 14
assembling

first program 10
multiple passes 127
number of passes 21

ASSUME directive 100
at-sign 30
attribute values of segments 97
attributes

segment
access 99
alignment 98
class 98
combination 97
size 98

values of segments 97

300

B
@B symbol 143
/b option 16
\ comment character 40
Backus-Naur form (BNF) grammar 70
%BIN directive 215, 216
binary coded decimal (BCD) encoding

DT directive and 149
bit-field records, defining 106
bit shift operators 75
BIX, JOIN BORLAND 5
block scoping of symbols, defined 142
books

assembly language 11
Boolean algebra and operators 74

symbol expressions and 197
Borland

contacting 4
Borland, contacting 4-5
Borland C++

ARC directive and 239
assembler modules in 18
case sensitivity 23,230
code segment 223
data types 231
external symbols 232
floating-point emulation 18
linking to 249
LOCAL directive and 237
memory models 223
parameter passing 233
Pascal calling conventions 248
public functions and 229
register preservation 240
returning. values 241
segment directives and 223
structures 241

BOUND instruction
Ideal mode 37

buffers, size of 16
bulletin board, Borland 5
BYTE arguments 132
byte values 146

c
C++ See Borland C++

Turbo Assembler Users Guide

Ic option 17,214
calculating addresses 78
CALL..METHOD instruction 57, 58, 61

near tables and 173
CALL instruction 170, See also CALL..METHOD

extended 170
case sensitivity

assembler routines and 23
Borland C++ 230

CATSTR directive 176
code-checking 25
.CODE directive 94
@code symbol 95
code generation, intelligent (directives for) 159
code segments 90

Borland C++ 223
CODESEG directive 94
@CodeSize symbol 93
: (colon) operator 78
: operator 123
COMM directive 206
command files, indirect 30
command-line options 13
command-line syntax 14

help screen 18
COMMENT directive 40
comments

;; comment character 179
; (semicolon) comment character 40
\ comment character 40
COMMENT directive 40
end of line 40
including in macros 179

communal variables 206
MASM mode and 207

comparison operators 75
compatibility, MASM vs. Ideal mode 273
compiler options See individual listings
complementary jumps 160
complex types 114, 115
compressing data, record data types and 106
CompuServe, GO BORLAND 5
conditional blocks (terminating) See GOTO

directive
conditional directives

assembly pass 200
defining blocks of code 193

Index

expression 196
nesting 194
symbol-definition 197
text string 198
when to use 193

conditional jumps See jumps, conditional
conditional list directives 212
%CONDS directive 212
configuration files 31
.CONST directive 94
CONST directive 94
constants

defined 65
in expressions 70
numeric 65
rotation counts and shift instructions 165
string 66

constructor and destructor procedures
writing 137

coprocessor directives 86
@Cpu symbol 85
%CREF directive 214
.CREF directive 214
%CREFALL directive 214
%CREFREF directive 214
%CREFUREF directive 214
cross-reference

generating 15
in listing files 17
symbol information 213

cross-reference utility See TCREF utility
CS override 25
%CTLS directive 211
@curseg symbol 95
customer assistance 4-5

D
Id option 17
data

allocating 145
constants and 148
WORDS 146

defining 146
initialized (defined) 145
repeated blocks 145
storage in memory 148

301

structures See structures
unini tialized

defined 145
specifying 145

.DATA? directive 94

.DATA directive 94
@data symbol 95
data structures See structures
data types

Borland C++ 231
creating named 156
creating record 153
declaring record 106
enumerated 105

creating instances of 154
initializing instances of 155
multiline syntax 106
pseudo ops and 106

objects and 52
record, multiline syntax for 107
table 113

multiline syntax 114
with virtual methods 157

DATASEG directive 94
@DataSize symbol 93
??date symbol 43
DB directive 146
DD directive 146, 148
debugging information 29, 30
%DEPTH directive 216
derived objects 54
development cycle, program 10
DF directive 146
directives See also individual listings

conditional 193
assembly pass 200
symbol-definition 197

conditional expression 196
coprocessor 86
displaying assembly messages 46
error-generation 195

using symbol expressions 198
include files 41
module names 45
processor 83
program termination 45
startup 19

302

symbols 20
DISPLAY directive 46
distance parameter

complex subtypes and 69
DOSSEG directive 102
:: directive 124
doubleword values 146
DP directive 146
DQ directive 146, 148
DT directive 146, 148
dummy arguments

defined 178
in macros 182
local 180
recognizing 178
types of 182

DUP keyword 145
DW directive 146

E
Ie option 18,87
ELSE IF directive 197
ELSEIFB directive 199
ELSEIFDEF directive 198
ELSEIFDIF directive 199
ELSEIFDIFI directive 199
ELSEIFE directive 197
ELSEIFIDN directive 199
ELSEIFIDNI directive 199
ELSEIFNB directive 199
ELSEIFNDEF directive 198
ELSEIFxxx directives 195
EMUL directive 18,87
encoded real numbers 148
END directive 45
ENDM keyword 181
ENDS directive 99, 109, 110
ENTER instruction 161
ENTERD instruction 161
ENTERW instruction 161
ENUM directive 105
enumerated data types

creating instances of 154
defined 105
initializing instances of 155
multiline syntax for 106
pseudo ops and 106

Turbo Assembler Users Guide

environment variables, MASM mode 274
epilog code

defined 128
how it works 129
languages and 128
NOLANGUAGE procedures and 129
register preservation and 134
specifying default style 92

EQU directive 42, 43, 175
Ideal vs. MASM mode 34

equal (=) directive 17
equate substitutions 42
.ERRI directive 200
.ERR2 directive 200
ERR directive 196
.ERR directive 196
.ERRB directive 199
.ERRDEF directive 198
.ERRDIFI directive 199
.ERRE directive 197
.ERRIDN directive 199
.ERRIDNI directive 199
ERRIFI directive 200
ERRIF2 directive 200
ERRIF directive 197
ERRIFB directive 199
ERRIFDEF directive 198
ERRIFDIF directive 199
ERRIFDIFI directive 199
ERRIFE directive 197
ERRIFIDN directive 199
ERRIFIDNI directive 199
ERRIFNB directive 199
ERRIFNDEF directive 198
.ERRNB directive 199
.ERRNDEF directive 198
.ERRNZ directive 197
error-generation directives 195
error messages 275-297

fatal 276
reporting 47
source file line display 29
warning 276

ERRxxx directives 195
EVEN directive 122
EVENDATA directive 122
.EXE files 1

Index

.EXIT directive 96
EXITCODE directive 96
EXITM directive 180
expressions

l6-bit vs. 32-bit 81
BNF grammar and 70
byte values 80
constants in 70
contents of 69
determining characteristics 79
evaluation character 184
Ideal mode 36
obtaining type of 76
precision of 70
register names and 70
segment overrides of 77
setting address subtypes 75
structure names in 113
symbols in 70
syntax of 259
text macro names and 72
why to use 65

extended CALL instruction See CALL..METHOD
instruction

extern "C" 222
external symbols See symbols, external
EXTRN directive 205

Borland C++ and 232

F
@F symbol 143
far data

initialized 90
uninitialized 90

far pointer values 147
FAR procedures 126
far returns, instructions for 162
.FARDATA? directive 95
@fardata? symbol 95
FARDATA directive 95
.FARDATA directive 95
@fardata symbol 95
fast immediate multiply instruction See

F ASTIMUL instruction
F ASTIMUL instruction 169
fatal error messages 276
field value manipulation instructions 167

303

file names 44
object-oriented programming format 63

??filename symbol 44
@FileName symbol 44
files

.ASM 14
assembly 44
configuration 31
indirect 30
listing See listing files

flag instructions, smart 167
FLDENV instruction 170
FLIPFLAG instruction 167
floating-point

emulation 18
Ideal vs. MASM mode 274
instructions 2

floating-point instructions See coprocessor
emulation directives

floating-point numbers 148
FRSTOR instruction 170
FSA VE instruction 170
FSTENV instruction 170

G
GEnie, BORLAND 5
GETFIELD instruction 168
GLOBAL directive 205

in .ASO files 63
objects and 53

global symbols, include files and 205
GOTO directive 180
GREP utility See the README file
GROUP directive 99

Ideal vs. MASM mode 37
groups

H

assigning segments to 99
segment registers and 100
segments in Ideal mode 37

H2ASH utility See the README file
Ih option 18
hardware and software requirements 2
HELLO.ASM 10

304

help
displaying screen 18
online 8

HIGH operator 80

i486 processor
protected mode 25

Ii option 19
IDEAL directive 34
Ideal mode 1

BOUND instruction 37
expressions 36
features 34
include files 42
operands 36
operators 36
predefined symbols 42
segment fixups 36
segment groups 37
speed 34
why to use 33, 34

IFl directive 194, 200
IF2 directive i 94, 200
IF directive 194, 197
IFB directive 194, 199
IFDEF directive 194, 198
IFDIF directive 194, 199
IFDIFI directive 194, 199
IFE directive 197
IFIDN directive 194, 199
IFIDNI directive 194, 199
IFNB directive 186, 194, 199
IFNDEF directive 194, 198
IFxxx directives 193
immediate macro directive (%) 188
implied addition 80
IMUL instruction See F ASTIMUL instruction
%INCL directive 211
INCLUDE directive 19,41
include files

Ideal mode 42
setting path 19

INCLUDELIB directive 207
indirect command files 30
information

technical support 4

Turbo Assembler Users Guide

inheri tance
defined 54
example of 60
objects and 117
previous object definitions 157
structure definitions and 111

initialization code 95
installation instructions 7
instances

creating object 62
creating structure or union 149
creating table 155
initializing instances 150
initializing table 155
initializing union or structure 150
named-type, creating 156
of objects 157
of records 153
virtual method table 60, 157
virtual method table (VMT) 56

INSTR directive 177
instruction set See individual listings
instruction size See size of instructions
intelligent code generation

directives for 159
@Interface symbol

MODEL directive and 93
IRET instruction

expanded 162
IRETW instruction 162
IRP directive 187
IRPC directive 187

J
Ij option 19
jEMUL option 18
JMP .. METHOD instruction 62, 173
JMP instruction 170
jumps

complementary 160
conditional 160

JUMPS directive 160

K
keyword precedence 266

Ideal mode 266

Index

MASM mode 266
keywords 22, See also individual listings

list of available 267
Ikh option 20

L
II o"ption 17, 20, 23
Ila option 21, 129

language modifiers and 130
LABEL directive 109, 124
labels .

defining 123
extema1229
local in MASM 143

.LALL directive 189,213
language modifiers

WINDOWS procedures and 130
languages

MODEL and 128
modifiers and Windows procedures 129
overriding default for procedures 128
preserving registers and 134
procedures and arguments 131
setting in CALL statement 250

LARGE operator 81, 169
instructions it affects 170

LARGE STACK directive 103
LEAVE instruction 161
LEAVED instruction 161
LEA YEW instruction 161
length of symbols 22
LENGTH unary operator 72
LFCOND directive 29
.LFCOND directive 212
LGDT instruction 170
libraries (including) See TLINK
LIDT instruction 170
line continuation character (\) 182
line number information 29
linker See also TLINK utility

Borland C++ 233, 249
PharLap 99
segment ordering and 101

%LINUM directive 216
%LIST directive 210
.LIST directive 210
listing files 14

305

IX command-line option and 212
conditional listing directives 212
cross-reference information 17
cross-reference table and 209
directives for 210
false conditionals in 28
format of 209
format parameters 215
generating 20
high-level code in 21
including files in 211
including multiline macros 189
macro expansions in 213
symbol table and 211
symbol table in 213
symbol tables

suppressing 23
why to use 209

literal string brackets 183
LOCAL directive 131

Borland C++ and 237
in macros 180

local labels
inMASM 143

LOCALS directive 135, 142
location counter

creating address expressions 78
defined 119
directives for 120

location counter symbol 119
LOOP instruction 161
loop instructions for 80386 processor 161
LOOPD instruction 161
LOOPDE instruction 161
LOOPDNE instruction 161
LOOPDNZ instruction 161
LOOPDZ instruction 161
LOOPE instruction 161
LOOPNE instruction 161
LOOPWE instruction 161
LOOPWNE instruction 161
LOOPWNZ instruction 161
LOOPWZ instruction 161 .
LOOPZ instruction 161
LOW operator 80
.LST files 15

306

M
@Mptrmember 157
1m option 21, 127, 273
macros

& character in 178
body of 178
controlling expansion 180
defining new text 176
defining substring 176
deleting multiline 184
dummy arguments within 182
expansions in listing files 213
including comments in 179
invoking arguments with special characters 183
invoking general multiline 182
length of text 177
manipulating string 176
multiline 177

defining general 181
multiline expansions in listing file 189
names in expressions 72
nested and recursive 185
redefining general multiline 184
repeating 186, 187
returning positions of strings 177
string repeat 187
terminating assembly of 180
terminating body of 181
text

defined 175
examples of manipulation 177
how to define 175

why to use 175
%MACS directive 189, 213
MAKE utility See also the README file
MASK unary operator 73
MASKFLAG instruction 167
MASM compatibility 273

environment variables 274
expressions 36
floating-point format 274
NOSMART directive 273
predefined symbols 42
Quirks mode 273
segment groups 37
two-pass asssembly 273

MASM directive 34

Turbo Assembler Users Guide

MASM mode See MASM compatibility
math coprocessor See numeric coprocessor
member functions 246
memory models

available segments 90
Borland C++ 223
FAR code pointers 93
modifiers of 92
NEAR code pointers 93
segment attributes for 255
specifying values 93
standard 91

messages
reporting error 47
suppressing 26
warning 46

METHOD keyword 52, 54
method procedures

creating 136
defined 55
example of 56
structure of 62

methods
calling ancestor virtual 61
calling static 57
calling virtual 58, 59
defined 50
static versus virtual

advantages of 55
tables and 113
virtual 173

Microsoft Assembler See MASM compatibility
IML command-line switch 67
I ml option 21, 42, 204
MODEL directive 90, 93

language modifiers and 130
.MODEL directive 90
@Model symbol 93
models, determining procedure distance 126
modifiers, language 129
modular programming, module names 45
modules, defined 203
IMU command-line switch 67
I mu option 22
MULTERRS directive 47
multiline definition syntax 40
multiline macros 177

Index

defining general 181
deleting general 184
including in listing file 189
invoking general 182
redefining general 184

multiline syntax
enumerated data types and 106
record data types and 107
table data type definitions and 114

multiple assembly passes 21, 127
IMV command-line switch 67
I mv# option 22
IMX command-line switch 67
I mx option 23, 204

N
In option 23
NAME directive 45
name-mangling 221
named structures, including 111
naming conventions of symbols 203
NEAR procedures 126
near returns, instructions for 162
near tables, objects and 58
NEARSTACK modifier 91
nested macros See macros
nested procedures 135
%NEWPAGE directive 215
%NOCONDS directive 212
%NOCREF directive 214
%NOCTLS directive 211
NOEMUL directive 18, 87
%NOINCL directive 211
NOJUMPS directive 160
NOLANGUAGE interfacing convention 171
NOLANGUAGE procedures

prolog and epilog code and 129
%NOLIST directive 210
NOLOCALS directive 142
%NOMACS directive 189,213
NOMULTERRS directive 47
NOPs, avoiding generation of 160
NOSMART directive 159

MASM compatibility 273
%NOSYMS directive 211
NOTHING keyword 101
%NOTRUNC directive 216

307

NOWARN directive 46
NUL device 15
null string, length of 177
numbers

encoded real 148
floating-point 148

numeric constants 65
numeric coprocessor 18

o
/0 option 24
.OBJ files 1

suppressing 25
object files

debugging information in 29,30
line number information in 29
module name 45
segment ordering 16, 26

object methods
calling 172
tail recursion for 173

object modules, defined 10
@Object symbol 118
object-oriented programming

advantages of using 49, 50
defined 49
filename format 63
table data types and 113

objects See also methods
creating instances of 62, 157
data types and 52
declaring 51, 53
defined 50
defining symbols 118
derived 54
differences between structures and 157
GLOBAL directive and 53
how to define 117
initializing instance's VMT pointer 174
linked list example 51
method procedures and 117, 136
near tables and 58
structures and 117
TLINK compatable without overlay code 24
virtual method table instances 157
what they consist of 116

OBJXREF utility See the README file

308

OFFSET operator 36, 77
MASM vs. Ideal mode 37

offsets, getting segments and 77
/oi option 24
online help 8
lop option 24, 99
operands, Ideal mode 36
operators See also individual listings

bit shift 75
Boolean algebra and 74
comments 40
comparison 75
general arithmetic 74
Ideal vs. MASM mode 36

options, command line See command-line options
ORG directive 120
OS/2 programs

flat model format and 256
los option 24
%OUT directive 46
overlay code

p

generating 24
IBM linker 24
Phar Lap linker 24

P8086 directive 83
P8087 directive 86
P186 directive 83
P287 directive 86
P386 directive 83
P387 directive 86
P486 directive 83
P487 directive 83
P386N directive 83
P486N directive 83
P386P directive 83
/p option 25
PAGE directive 215
%P AGE SIZE directive 215
parameter passing

Borland C++ 233
%PCNT directive 216
. (period) character

MASM vs. Ideal mode 260
. (period) operator 79
period, Ideal mode structures 36

Turbo Assembler Users Guide

Phar Lap linker 99
plus sign 14
pointers

virtual method table 56, 58, 59, 60
POP instruction 170

multiple 162
pointers and 163

POP A instruction
expanded 163

paPAW instruction 164
POPFW instruction 164
%POPLCTL directive 218
POPSTATE instruction 164
precedence

keyword 266
Ideal mode 266
MASM mode 266

predefined symbols See symbols
PROC directive 125
PROC keyword, Ideal mode 35
PROCDESC directive 137, 172
procedure prototypes 137
procedure types, defining 134
procedures

calling and having RETURNS 172
calling with arguments 171
declaring 125
defining types 115
determining distance of 127
FAR 126
interfacing conventions of 170
languages for

arguments and 131
MODEL and 128
overriding default 128

method 62
creating 136

models and distance of 126
NEAR 126
nesting and scope rules 135
NOLANGUAGE 129
proto typing 172
publishing prototypes 205
specifying languages for 128
stack frames and 131, 161, 170
writing constructor and destructor 137

processor directives 83

Index

processor type, determining 85
PROCTYPE directive 115, 134
program development cycle 10
program termination, END directive and 45
prolog code

defined 128
languages and 128
NOLANGUAGE procedures and 129
register preservation and 134
specifying default style 92
what it does 128

protected mode 25
segment registers and 89

prototypes
procedure 137
procedure types and 138
publishing procedure 205

prototyping procedures 172
PUBLIC directive 204
public functions, Borland C++ and 229
PUBLICDLL directive 204
PURGE directive 184
PUSH instruction 170

multiple 162
pointers and 163

PUSHA instruction
expanded 163

PUSHA W instruction 164
PUSHF instruction

expanded 163
PUSHFW instruction 164
PUSHing constants 163
%PUSHLCTL directive 218
PUSHSTATE instruction 164

Q
/q option 25
quadword values 147
question mark

symbols using 43
QUIRKS directive 273

R
/ r option 18, 25
RADIX directive 66, 149
.RADIX directive 66

309

radixes
available 65
changing default 66
characters determining 65
default 149

real mode, segment registers and 89
record data types, multiline syntax for 107
RECORD directive 106
records

< > and 154
{} and 153
creating instances of 153
defining 153
initializing instances 153
retrieving data from 168
setting values in 167

recursive macros See macros
reference books 11
registers See also individual listings

names of and expressions 70
preserving 134
preserving (Borland C++) 240
segment 89

registration (product)
by phone 4

REPT directive 186
RET instruction, NEAR or FAR and 161
RETCODE instruction 162
RETF instruction 162
RETN instruction 162
return instructions 161
RETURNS directive 172

S
/s option 16, 17,26
.SALL directive 189,213
scope of symbols, defined 141
scope rules for nested procedures 135
SEG operator 77
SEGCS instruction 166
SEGDS instruction 166
SEGES instruction 166
SEGFS instruction 166
SEGGS instruction 166
SEGMENT directive 96
SEGMENT keyword, Ideal mode 35

310

segments
8086 processor and 89
assigning to groups 99
attributes

access 99
alignment 98
class 98
combination 97
size 98

Borland C++ and 223
closing 99, 110
code 90
default attributes 255
directives (Borland C++ and) 223
fixups (Ideal vs. MASM mode) 36
forced overrides 166
generic 96
getting offsets and 77
groups

Ideal mode and 34, 37
MASMmode 37

groups and 90
how the stack is treated 89
memory models and 91
opening 96
ordering 16, 101

alphabetic 102
changing 101
DOS 102
sequential 102

overrides of expressions 77
registers 89, See also individual listings
registers and 100
sequential order 16, 26
simplified directives 94
size 86
symbols and 95
writing to uninitialized 97

SEGSS instruction 166
semicolon 14

within macros 40
SEQ directive 16
.SEQ directive 102
SETFIELD instruction 167
SETFLAG instruction 167
SFCOND directive 29
.SFCONDS directive 212

Turbo Assembler Users Guide

SCDT instruction 170
shift instructions, rotation counts and 165
SHL operator 75
SHR operator 75
SIDT instruction 170
simplified segment directives See also individual

listings
I

symbols and 95
size of data See data
size of instructions, controlling 169
SIZE unary operator 72
SIZESTR directive 177
SMALL operator 81, 169

instructions it affects 170
SMALLSTACK directive 103
SMART directive 159

MASM compatibility 273
smart flag instructions, why they're useful 166
software and hardware requirements 2
source files

include files 19
symbols 17

square brackets
Ideal mode 36
MASMmode 36

stack
changing size of 103
MODEL directive and 103
segments and 89

STACK directive 94
stack frame

defined 170
specifying arguments 131

.sTACK directive 95
@stack symbol 95
.sTARTUP directive 95
@Startup symbol 96
STARTUPCODE directive 95
static methods

calling 57
versus virtual (advantages of) 55

statistics, displaying 16
string constants 66
strings, quoted 148
STRUC directive 52, 108, 110, 117, 118
structures

aligning members 109

Index

Borland C++ 241
bracket initializer and nested 152
closing 109
creating instances of 149
creating members 109
defined 108
differences between objects and 157
including named 111
initializing instances 150
member names and 109, 112
members and 108
names in expressions 113
nested 112
nesting 110
objects and 117
opening a definition 108

SUBSTR directive 176
SUBTTL directive 217
%SUBTTL directive 217
support, technical 4-5
symbol tables

listing files and cross-referencing 17
suppressing 23

symbols
address subtypes

complex 68
simple 68

aliases 42
block-scoped 142
block-scoped (disabling) 142
case sensitivity of 21,23,67
@Cpu85
??date 43
defined 67
defining 17
dynamic link entry points 204
enabling locally scoped 135
external 23, 205

Borland C++ and 232
??filename 44
@FileName 44
global 205
in expressions 70
length of 22
location counter 119
MASM block scoping 143
names of 67

311

naming conventions for languages 203
overriding language setting 204
public 23, 204
publishing external 204
redefinable 141, 142
restrictions 1 7
scope of (defined) 141
standard values 71
??time 44
types of 67
uppercase 22
values used by themselves 71
why to use 65
@WordSize 86

%SYMS directive 211
SYMTYPE operator 79
syntax, command-line See command-line syntax

T
It option 26
TABLE directive 52
@Table symbol 118
@TableAddr member 157
@Tableaddr symbol 118
tables

creating instances of 155
data types 113
initializing instances of 155
overriding members 115
static members 113
virtual members 113

%TABSIZE directive 217
tags, macro 180
tail recursion code, instruction for 173
TASM.CFG 31
TBLINIT directive 56

in .ASM files 63
TBLINIT instruction 174
TBLINST directive 56

in .ASM files 63
TBLINST pseudo-op 157
TBLPTR directive 118
TCREF utility 15, See also the README file
Technical Support

contacting 4
technical support 4-5
termination, END directive and 45

312

termination code 96
TESTFLAG instruction 167
text macro names, in expressions 72
text strings See strings
%TEXT directive 217
TFCOND directive 29
.TFCOND directive 212
THELP utility See the README file
THIS operator 78
time 44
??time symbol 44
TITLE directive 217
% TITLE directive 217
TLIB utility See the README file
TLINK utility 233, 249, See also the README file

example of 11
%TRUNC directive 216
Turbo Librarian See the README file
Turbo Link See TLINK utility
two-pass assembly

MASM compatibility 273
type checking, Ideal mode 33
TYPE operator 76
type override operators 75
type-safe linkage 221
.TYPE operator 79
TYPEDEF directive 115
typefaces in this manual 4
types See also data types

U

complex 114, 115
defining named 115
defining procedure 115
of expressions 76
procedure 134
symbol 67

lu option 27
lu command-line switch 44
UDATASEG directive 94
UFARDATA directive 95
underscore, and the C language 229
UNINIT 98
UNION directive 108, 110
unions

bracket initializer and nested 152
closing 109

Turbo Assembler Users Guide

creating instances of 149
defined 108
initialized data 112
initializing instances 150
members and 108
multiple initialized members 151
nested 112
nesting 110
opening a definition 108

uppercase, converting symbols to 22
USE32 modifier 91
USES directive 134
utilities See individual listings
UTILS.TSM 8

V
Iv option 16,27
variables, communal 206
VERSION directive 44, 45

line continuation and 41
MASM compatability and 45

VIRTUAL keyword 53, 113
virtual method table

initializing 56
initializing pointer to 174
instances of 56, 60, 157
modifiers and 117
objects and 118
pointers 59
pointers to 56, 58, 60, 118

virtual methods
ancestor 60

Index

calling 58, 59
object data types and 157
versus static (advantages of) 55

virtual table pointers
determining size of 118
modifiers and 117

W
Iw option 27
WARN directive 46
warning messages 46, 276

"mild" 27
generating 27

WHILE directive 187
WIDTH unary operator 73
word values 146
@WordSize symbol 86

x
Ix option 28
.XRF files 15
.XALL directive 189, 213
.xCREF directive 214
.XLIST directive 210

z
Iz option 29
I zd option 29
I zi option 29
I zn option 30

313

Borland
Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431-1000. Offices in: Australia, Belgium, Canada,
Chile, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America, Malaysia, Netherlands, New Zealand, Singapore,
Spain, Sweden, Taiwan, and United Kingdom • Part # LSMI441WW21771 • BOR 7028

