
~ Tutorial
CD

i :;·
1::1.

~

Tutorial

Borland®
ObjectWindows®
Borland International, Inc., 100 Borland Way
P.O. Box 660001, Scotts Valley, CA 95067-0001

Borland may have patents and/or pending.patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these. patents.

COPYRIGHT© 1994 Borland International. All rights reserved. All Borland products are trademarks or registered
trademarks of Borland International, Inc. Other brand and product names are trademarks or registered trademarks of
their respective holders.
Printed in the U.S.A.

1EOR1094
9495969798-:9 8 7 6 5 4 3 2
Hl

Contents
Introduction 1
Getting started. 1

Tutorial application1
Tutorial steps .2
Files in the tutorial 3

Typefaces and icons used in this book 3

Chapter 1
Creating a basic application 5
Where to find more information 6

Chapter 2
Handling events 7
Adding a window class 7
Adding a response table 8
Event-handling functions 9
Encapsulated API calls 10
Overriding the CanClose function. 10
Using TDrawWindow as the main window .. 10
Where to find more information 11

Chapter3
Writing in the window 13
Constructing a device context. 13
Printing in the device context 14
Clearing the window. 14
Where to find more information 15

Chapter4
Drawing in the window 17
Adding new events 17
Adding a TClientDC pointer 18
Initializing DragDC. 19
Cleaning up after DragDC 19
Where to find more information 20

Chapters
Changing line thickness 21
Adding a pen . 21

Initializing the pen 21
Selecting the pen into DragDC 22

Changing the pen size 22
Constructing an input dialog box 22
Executing an input dialog box 23

Calling SetPenSize 24

Cleaning up after Pen 24
Where to find more information 25

Chapter 6
Painting the window and adding
am~u V

Repainting the window 27
Storing the drawing 27
TPoints 28
TPointslterator 29
Using the array classes 30
Paint function 31

Menu commands 32
Adding event identifiers 33
Adding menu resources 33
Adding response table entries 34
Adding event handlers 34
Implementing the event handlers 34

Where to find more information 35

Chapter 7
Using common dialog boxes 37
Changes to TDrawWindow. 37

FileData . 37
IsDirty 38
IsNewFile 38

Improving CanClose 38
CmFileSave function 39
CmFileOpen function 40
CmFileSaveAs function 40
Opening and saving drawings 41

OpenFile function 41
SaveFile function 42

CmAbout function 43
Where to find more information 43

Chapter8
Adding multiple lines 45
TLine class . 45
TLines array . 46
Insertion and extraction of TLine objects 46

Insertion operator<< 47
Extraction operator>> 47

Extending TDrawWindow 48
Paint function. 48

Where to find more information 49

Chapter9
Changing pens 51
Changes to the TLine class 51

Pen access functions 52
Draw function 53
Insertion and extraction operators 54

Changes to the TDrawWindow class 54
CmPenColor function 54

Where to find more information . . . : 56

Chapter 10
Adding decorations 57
Changing the main window 57
Creating the status bar 58
Creating the control bar 58

Constructing TControlBar. . . . • 59
Building button gadgets. 59
Separator gadgets 60
Inserting gadgets into the control bar 60

Inserting objects into a decorated,frame 61
Where to find more information . ; 62

Chapter 11
Moving to MDI 63
Understanding the MDI model. 64
Adding the MDI header files 64

Changing the resource script file . . . ' 64
Replacing the frame window header file 65
Adding the MDI client and child header

files 65
Changing the frame window 66
Creating the MDI window classes . . . : 67

Creating the MDI child window class. 68
Declaring the TDrawMDIChild class 68
Creating the TDrawMDIChild functions. . . 69
Creating the TDrawMDIChild

constructor 70
Initializing data members. 70
Initializing file information data

members 71
Creating the MDI client window class 72

TMDIClient functionality. 72
Data members in TDrawMDIClient. . . , . . 73
Adding response functions 73

CmFileNew 74
CmFileOpen 74

GetFileData . 75
Overriding InitChild. 75

Where to find more information 76

ii

Chapter 12
Using the DocMew programming
model 77

Organizing the application source • . . 77
Doc/View model 78
TDrawDocument class 78

Creating and destroying TDrawDocument . . 79
Storing line data 79
Implementing TDocument virtual

£Unctions. 79'
Opening and closing a drawing. 79
Saving and discarding changes 81

. Accessing the document's data 83
TDrawView class 84

TDrawView data members. 84
Creating the TDrawView class 85
Namingtheclass 86
Protected functions 87
Event handling in TDrawView 87

Defining document templates. 88
Supporting Doc/View in the application 90

InitMainWindow function 90
lnitlnstance function. 90
Adding functions to TDraw App 91
CmAbout function. 92
EvDropFiles function 92
EvNewView function 93
EvCloseView function 94

Where to find more information . . . , 94

Chapter 13
Moving the DocMew application
~M~ ~

Supporting MDI in the application. 95
Changing to a decorated MDI frame 95
Changmg the hint mode 96
Setting the main window's menu 96
Setting the document manager 97
Initlnstance function. 97
Opening a new view 97
Moclliying drag and drop 97
Closing a view 98

Changes to TDrawDocument and
TDrawView 98

Defining new events. 99
Changes to TDrawDocument100
Property functions.100
New functions in TDrawDocument ·103
Changes to TDrawView 106
New functions in TDrawView 106

TDrawListView. 108
Creating the TDrawListView class 108
Namillg the class 109
Overriding TView and TWindow virtual

functions . 109
Loading and formatting data 110
Event handling in TDrawListView 110

Where to find more information 114

Constructing and destroying
TDrawView 132

Modifying the Paintfunction.132
Selecting OLE objects 133

Modifying EvLButtonDown.133
Modifying EvMouseMove.134
Modifying EvLButtonUp134

Where to find more information 135

Chapter 15 Chapter 14
Making an OLE container 115 Making an OLE server 137
How OLE works 115

What is a container? 115
Implementing OLE in ObjectWindows:

ObjectComponents 116
Adding OLE class header files 117

Registering the application for OLE 118
Creating the registration table 118
Creating a class factory 119
Creating a registrar object 119

Creating an application dictionary. 121
Changes to TDraw App 121

Changing the class declaration 121
Changing the class functionality 122

Creating an OLE MDI frame 122
Setting the OLE MDI frame's application

connector . 123
Adding a tool bar identifier 123

Changes to the Doc/View classes 124
Changing document registration. 124
Changing TDrawDocument to handle

embedded OLE objects 126
Changing TDrawDocument's base class to

TOleDocument. 126
Constructing and destroying

TDrawDocument. 127
Removing the IsOpen function 127
Reading and writing embedded OLE

objects . 128
Changing TDrawView to handle embedded

OLE objects 130
Modifying the TDrawView declaration ... 130
Changing TDrawView's base class to

TOleView 132
Removing DragDC 132

iii

Converting your application object 138
Changing the header files.138
Changing the application's registration

table 138
Changing the application constructor138
Hiding a server's main window.139
Identifying the module140
Creating new views141
Ch~nging the About dialog box's parent

wmdow 142
Modifying OwlMain143

Changes to your Doc/View classes 144
Changing header files144
Changing the document registration table. . .144

Program identifier and description 145
Making the application insertable 145
Setting the server's menu items 145
Specifying Clipboard formats146

Changing the view notification functions . . .147
Adding new members to TDrawView148

Adding a control bar.148
Cutting and copying data 148

Cutting 148
Copying. 149

Handling ObjectComponents events 149
Reporting server view size.149
Setting up the view's tool bar 150

Removing calls from the Paint and mouse
action functions.152

Chapter 16
For further study

Index

155

157

iv

Introduction

The ObjectWindows 2.5 tutorial teaches the fundamentals of programming for
Windows using the ObjectWindows application framework. The tutorial is comprised
of an application that is developed in twelve progressively more complicated steps.
Each step up in the application represents a step up in the tutorial's lessons. After
completing the tutorial, you'll have a full-featured Windows application, with items like
menus, dialog boxes, graphical control bar, status bar, MDI windows, and more.

This tutorial assumes that you're familiar with C++ and have some prior Windows
programming experience. Before beginning, it might be helpful to read Chapter 1 of the
Object Windows Programmer's Guide, which presents a brief, nontechnical overview of the
ObjectWindows 2.5 class hierarchy. This should help you become familiar with the
principles behind the structure of the ObjectWindows class library.

For more detailed technical information on any subject discussed in this book, refer to
the Object Windows Programmer's Guide and the Object Windows Reference Guide.

Getting started
Before you begin the tutorial, you should make a copy of the ObjectWindows tutorial
files separate from the files in your compiler installation. Use the copied files when
working on the tutorial steps. While working on the tutorial, you should try to make the
changes in each step on your own. You can then compare the changes you make to the
tutorial program.

Tutorial application
The tutorial application that you'll build when following the steps in this book is a line
drawing application called Drawing Pad. While this application isn't very fancy, it does
demonstrate many important ObjectWindows programming techniques that you'll use
all the time in the course of your ObjectWindows development. Each step introduces a
small increment in the application's features. You start with the most basic
ObjectWindows application and, by the time you're finished with the last step, you'll
have created a full-featured Windows application with a tool bar with bitmapped
buttons on it, multiple document support, a status bar that displays menu and button
hints, and even full OLE 2.0 server support.

Introduction 1

Tutorial steps
Here's a summary of each step in the tutorial:

• In Step 1, you'll learn how to create the basic ObjectWindows application. This
application has no real function except to show that an application is running.

• In Step 2, you'll learn how to use the ObjectWindows event-handling mechanism
called response tables.

• In Step 3, you'll learn how to write text into a window by creating a device context
object in the window and calling some of the device context object's member
functions.

• In Step 4, you'll learn how to draw a line in a window using more functions of the
device context object.

• In Step 5, you'll learn how change the size of the pen that you use to draw lines in the
window. You'll also learn how to use a dialog box to get simple string input from the
user.

• In Step 6, you'll learn how to take over the window's paint function, along with
adding a menu to the window.

• In Step 7, you'll learn how to use some of the Windows common dialog boxes,
specifically the File Open dialog box and File Save dialog box. You'll also learn how
to check whether your application is ready to close when requested to do so by the
user or the system, giving the application a chance to save files or clean up.

• In Step 8, you'll learn how to display and paint more than one line in the window
using an array container to hold the information about all the lines in the drawing.

• In Step 9, you'll learn how to change the pen in the device context to let the user
change the line color.

• In Step 10, you'll learn how to add decorations to the application, including a tool bar
with bitmapped buttons on it and a status bar that displays hint text for menu items
and tool bar buttons.

• In Step 11, you'll learn how to create a Multiple Document Interface (MDI)
application, which lets the user of the application have a number of drawings open at
once.

• In Step 12, you'll create a Doc/View application. Doc/View provides a programming
model that lets you separate the object that actually contains your data (the
document) from the object or objects that display your data on-screen (the views).
This application is actually a Single Document Interface (SDI) application like Step 10.

• In Step 13, you'll combine the lessons of Step 11 and Step 12 to create an MDI Doc/
View application.

• In Step 14, you'll learn to create an OLE 2.0 container from an MDI Doc/View
application.

• In Step 15, you'll learn to create an OLE 2.0 server.

2 ObjectWindows Tutorial

Files in the tutorial
The tutorial is composed of a number of different source files:

• Each step of the tutorial is contained in a file named STEPXX.CPP.

• Later steps in the application use multiple C++ source files. The other files are named
STEPXXDV.CPP.

• A number of steps have a header file containing class definitions and the like. These
header files are named STEPXXDV.H.

• A number of steps also have a corresponding resource script file named STEPXX.RC.

In each case, XX is a number from 01 to 15, indicating which step of the tutorial is in the
source file.

Typefaces and icons used in this book
The following table shows the special typographic conventions used in this book.

Boldface

Italics

Monospace

Menu I Command

Boldface type indicates language keywords (such as char, switch, and begin) and
command-fine options (such as -m).

Italic type indicates program variables and constants that appear in text. This
typeface is also used to emphasize certain words, such as new terms.

Monospace type represents text as it appears on-screen or in a program. It is also
used for anything you must type literally (such as TD32 to start up the 32-bit Turbo
Debugger).

This command sequence represents a choice from the menu bar followed by a menu
choice. For example, the command "File I Open'' represents the Open command on
the File menu.

Note This icon indicates material you should take special notice of.

Introduction 3

4 ObjectWindows Tutorial

Creating a basic application
To begm the tutorial, open the file STEPOl.CPP, which shows an example of the most
basic useful ObjectWindows application. Because of its brevity, the entire file is shown
here: You can find the source for Step 1 in the file STEPOl.CPP in the directory
EXAMPLES\OWL \TUTORIAL.

11---
11 ObjectWindows - (C) Copyright 1991, 1994 by Borland International
II Tutorial application -- stepOl.cpp
11---
#include <owllapplicat.h>
#include <owllframewin.h>

class TDrawApp : public TApplication
{

public:
TDrawApp() : TApplication() {}

void InitMainWindow()
{

SetMainWindow(new TFrameWindow(O, "Sample ObjectWindows Program"));

};

int
OwlMain(int I* argc *I, char* I* argv *I [])
{

return TDrawApp() .Run();

This simple application includes a number of important features:

• This source file includes two header files, owl\applicat.h and owl\framewin.h.
These files are included because the application uses the T Application and

Chapter 1, Creating a basic application 5

TFrameWindow ObjectWindows classes. Whenever you use an ObjectWindows class
you must include the proper header files so your code compiles properly.

• The class TDrawApp is derived from the Object Windows T Application class. Every
ObjectWindows application has a TApplication object-or more usually, a
TApplication-derived object-generically known as the application object. If you try to
use a TApplication object directly, you'll find that it's difficult to direct the program
flow. Overriding TApplication gives you access to the workings of the application
object and lets you override the necessary functions to make the application work the
way you want.

• In addition to an application object, every ObjectWindows application has an
OwlMain function. The application object is actually created in the OwlMain function
with a simple declaration. OwlMain is the ObjectWindows equivalent of the WinMain
function in a regular Windows application. You can use OwlMain to check
command-line arguments, set up global data, and anything else you want taken care
of before the application begins execution.

• To start execution of the application, call the application object's Run function. The
Run function first calls the InitApplication function, but only if this instance of the
application is the first instance (the default T Application::InitApplication function does
nothing). After the InitApplication function returns, Run calls the Initlnstance function,
which initializes each instance of an application. The default T Application::Initlnstance
calls the function InitMainWindow, which initializes the application's main window,
then creates and displays the main window.

• TDrawApp overrides the InitMain Window function. You can use this function to
design the main window however you want it. The SetMain Window function sets the
application's main window to a TFrameWindow or TFrameWindow-derived object
passed to the function. In this case, simply create a new TFrameWindow with no
parent (the first parameter of the TFrameWindow is a pointer to the window's parent)
and the title "Sample ObjectWindows Program."

This basic application introduces two of the most important concepts in ObjectWindows
programming. As simple as it seems, deriving a class from T Application and overriding
the InitMain Window function gives you quite a bit of control over application execution.
As you'll see in later steps, you can easily craft a large and complex application from this
simple beginning.

Where to find more information
Here's a guide to where you can find more information on the topics introduced in this
step:

• Application objects, along with their Init* member functions, are discussed in
Chapter 2 of the Object Windows Programmer's Guide.

• OwlMain is discussed in Chapter 2 of the Object Windows Programmer's Guide.

• TFrameWindow is discussed in Chapter 7 of the Object Windows Programmer's Guide.

6 · Objec!Windows Tutorial

Handling events
You can find the source for Step 2 in the file STEP02.CPP in the directory EXAMPLES\
OWL\ TUTORIAL. Step 2 introduces response tables, another very important
ObjectWindows feature. Response tables control event and message processing in
ObjectWindows applications, dispatching events on to the proper event-handling
functions. Step 2 also adds these functions.

Adding a window class
Add the response table to the application using a window class called TDrawWindow.
TDrawWindow is derived from TWindow, and looks like this:

class TDrawWindow : public TWindow

};

public:
TDrawWindow(TWindow* parent = 0);

protected:
II override member function of TWindow
bool CanClose();

II message response functions
void EvLButtonDown(uint, TPoint&);
void EvRButtonDown(uint, TPoint&);

DECLARE_RESPONSE_TABLE(TDrawWindow);

The constructor for this class is fairly simple. It takes a single parameter, a TWindow *
that indicates the parent window of the object. The constructor definition looks like this:

TDrawWindow::TDrawWindow(TWindow *parent)
{

Chapter 2, Handling events 7

Init(parent, 0, 0);

The Init function lets you initialize TDrawWindow's base class. In this case, the call isn't
very complicated. The only thing that might be required for your purposes is the
window's parent, and, as you'll see, even that's taken care of for you.

Adding a response table
The only public member of the TDrawWindow class is its constructor. But if the other
members are protected, how can you access them? The answer lies in the response table
definition. Notice the last line of the TDrawWindow class definition. This declares the
response table; that is, it informs your class that it has a response table, much like a
function declaration informs the class that the function exists, but doesn't define the
function's activity.

The response table definition sets up your class to handle Windows events and to pass
each event on to the proper event-handling function. As a general rule, event-handling
functions should be protected; this prevents classes and functions outside your own
class from calling them. Here is the response table definition for TDraw Window:

DEFINE_RESPONSE_TABLEl(TDrawWindow, TWindow)
EV_WM_LBUTTONDOWN,
EV_WM_RBUTTONDOWN,

END_RESPONSE_TABLE;

You can put the response table anywhere in your source file.

For now, you can keep the response table fairly simple. Here's a description of each part
of the table. A response table has four important parts:

• The response table declaration in the class declaration.

• The first line of a response table definition is always the
DEFINE_RESPONSE_TABLEX macro. The value of X depends on your class'
inheritance, and is based on the number of immediate base classes your class has. In
this case, TDrawWindow has only one immediate base class, TWindow.

• The last line of a response table definition is always the END_RESPONSE_TABLE
macro, which ends the event response table definition.

• Between the DEFINE_RESPONSE_TABLEX macro and the
END _RESPONSE_TABLE macro are other macros that associate particular events
with their handling functions.

The two macros in the middle of the response table, EV_ WM_LBUTTONDOWN and
EV_ WM_RBUTTONDOWN, are response table macros for the standard Windows
messages WM_LBUTTONDOWN and WM_RBUTTONDOWN. All standard
Windows messages have ObjectWindows-defined response table macros. To find the
name of a particular message's macro, preface the message name with EV_. For
example, the macro that handles the WM_PAINT message is EV_ WM_PAINT, and the
macro that handles the WM_LBUTTONDOWN message is
EV_ WM_LBUTTONDOWN.

8 ObjectWindows Tutorial

These predefined macros pass the message on to functions with predefined names. To
determine the function name, substitute Ev for WM_, and convert the name to
lowercase with capital letters at word boundaries. For example, the WM_P AINT
message is passed to a function called EvPaint, and the WM_LBUTTONDOWN
message is passed to a function called EvLButtonDown.

Event-handling functions
As you can see, two of the protected functions in TDrawWindow are EvLButtonDown and
EvRButtonDown. Because of the macros in the response table, when TDrawWindow
receives a WM_LBUTTONDOWN or WM_RBUTTONDOWN event, it passes it on to
the appropriate function.

The functions that handle the WM_LBUTTONDOWN or WM_RBUTTONDOWN
events are very simple. Each function pops up a message box telling you which button
you've pressed. The code for these functions should look something like this:

void TDrawWindow::EvLButtonDown(uint, TPoint&)
(

MessageBox I "You have pressed the left mouse button",
"Message Dispatched", MB_OK);

void TDrawWindow::EvRButtonDown(uint, TPoint&)
(

MessageBox("You have pressed the right mouse button",
"Message Dispatched", MB_OK);

This illustrates one of the best features of how ObjectWindows handles standard
Windows events. The function that handles each event receives what might seem to be
fairly arbitrary parameter types (all the macros and their corresponding functions are
presented in Chapter 5 in the Object Windows Reference Guide). Actually, these parameter
types correspond to the information encoded in the WP ARAM and LP ARAM variables
normally passed along with an event. The event information is automatically "cracked"
for you.

The advantages of this approach are two-fold:

• You no longer have to manually extract information from the WP ARAM and
LPARAM values.

• The predefined functions allow for compile-time type checking, and prevent hard-to­
track errors that can be caused by confusing the values encoded in the WP ARAM
and LPARAM values.

For example, both WM_LBUTTONDOWN and WM_RBUTTONDOWN contain the
same type of information in their WP ARAM and LP ARAM variables:

• WP ARAM contains key flags, which specify whether the user has pressed one of a
number of virtual keys.

• The low-order word of the LPARAM specifies the cursor's x-coordinate.

Chapter 2, Handling events 9

• The high-order word of LPARAM specifies the cursor's y-coordinate.

EvLButtonDown and EvRButtonDown also have similar signatures. The uint parameter
of each function corresponds to the key flags parameter. The values that are normally
encoded in the LP ARAM are instead stored in a TPoint object.

Encapsulated API calls
You might notice that the calls to the MessageBox function look a little odd. The
Windows API function MessageBox takes an HWND for its first parameter. But the
MessageBox function called here is actually a member function of the TWindow class.
There are a large number of functions like this: they have the same name as the
Windows API function, but their signature is different. The most common differences
are the elimination of handle parameters such as HWND and HINSTANCE,
replacement of Windows data types with ObjectWindows data types, and so on. In this
case, the window class supplies the HWND parameter for you.

Overriding the CanClose function
Another feature of the TDrawWindow class is the CanClose function. Before an
application attempts to shut down a window, it calls the window's CanClose function.
The window can then abort the shutdown by returning false, or let the shutdown
proceed by returning true.

From the point of view of the application, this ensures that you don't shut down a
window that is currently being used or that contains unstored data. From the window's
point of view, this warns you when the application tries to shut down and provides you
with an opportunity to make sure that everything has been cleaned up before closing.

Here is the CanClose function from the TDrawWindow class:

bool TDrawWindow::CanClose()
(

return MessageBox("Do you want to save?", "Drawing has changed",
MB_YESNO I MB_ICONQUESTION) == IDNO;

For now, this function merely pops up a message box stating that the drawing has
changed and asking if the user wants to save the drawing. Because there's no drawing
to save, this message is fairly useless right now. But it'll become useful in Step 7, when
you add the ability to save data to a file.

Using TDrawWindow as the main window
The last thing to do is to actually create an instance of this new TDraw Window class. You
might think you can do this by simply substituting TDrawWindow for TFrameWindow in
the SetMain Window call in the InitMain Window function:

10 ObjectWindows Tutorial

void InitMainWindow()
{

SetMainWindow(new TDrawWindow);

This won't work, for a number of reasons, but primarily because TDraw Window isn't
based on TFrameWindow. For this code to compile correctly, you'd have to change
TDrawWindow so that it's based on TFrameWindow instead of TWindow. Although this is
fairly easy to do, it introduces functionality into the TDrawWindow class that isn't
necessary. As you'll see in later steps, TDrawWindow has a unique purpose. Adding
frame capability to TDrawWindow would reduce its flexibility.

The second approach is to use a TDrawWindow object as a client in a TFrameWindow.
This is fairly easy to do: the third parameter of the TFrameWindow constructor that
you're already using lets you specify a TWindow or TWindow-derived object as a client to
the frame. The code would look something like this:

SetMainWindow(new TFrameWindow(O, "Sample ObjectWindows Program", new TDrawWindow));

With this approach, TFrameWindow administers the frame window, leaving
TDrawWindow free to take care of its tasks. This makes for more discreet and modular
object design. It also lets you easily change the type of frame window you use, as you'll
see in Step 10.

Notice that the new TDrawWindow construction in the TFrameWindow constructor
doesn't specify a parent for the TDrawWindow object. That's because there isn't yet
anything to be a parent. The TFrameWindow object that will be the parent hasn't been
constructed yet. TFrameWindow automatically sets the client window's parent to be the
TFrameWindow once it has been constructed.

Where to find more information
Here's a guide to where you can find more information on the topics introduced in this
step:

• Main windows are discussed in Chapter 2 of the Object Windows Programmer's Guide.

• Interface objects in general, such as windows, dialogs, controls, and so on, are
discussed in Chapter 3 of the Object Windows Programmer's Guide.

• Response tables are discussed in Chapter 4 of the Object Windows Programmer's Guide.

• Window classes are discussed in Chapter 7 of the ObjectWindows Programmer's Guide.

• Predefined response table macros and their corresponding event-handling functions
are listed in Chapter 3 of the Object Windows Reference Guide.

Chapter 2, Handling events 11

12 0 b j e ct W i n d o w s T u to r i a I

Writing in the window
In Step 3, you'll begin working with the new window that was added to the application
in Step 2. Instead of popping up a message box when the mouse buttons are pressed, the
event-handling functions will get some real functionality-pressing the left mouse
button will cause the coordinates of the point at which the button was clicked to be
printed in the window, and pressing the right mouse button will cause the window to
be cleared. You can find the source for Step 3 in the file STEP03.CPP in the directory
EXAMPLES\ OWL\ TUTORIAL.

The code for this new functionality is in the EvLButtonDown function. The TPoint
parameter that's passed to the EvLButtonDown contains the coordinates at which the
mouse button was clicked. You'll need to add a char string to the function to hold the
text representation of the point. You can then use the wsprintf function to format the
string. Now you have to set up the window to print the string.

Constructing a device context
To perform any sort of graphical operation in Windows, you must have a device context
for the window or area you want to work with. The same holds true in ObjectWindows.
ObjectWindows provides a number of classes that make it easy to set up, use, and
dispose of a device context. Because TDrawWindow works as a client in a frame window,
you'll use the TClientDC class. TClientDC is a device context class that provides access to
the client area owned by a window. Like all ObjectWindows device context classes,
TClientDC is based on the TDC class, and is defined in the owl\dc.h header file.

TClientDC has a single constructor that takes an HWND as its only parameter. Because
you want a device context for your TDrawWindow object, you need the handle for that
window. As it happens, the TWindow base class provides an HWND conversion
operator. This operator is called implicitly whenever you use the window object in
places that require an HWND. So the constructor for your TClientDC object looks
something like this:

TClientDC dc(*this);

Chapter 3, Writing in the window 13

Notice that the this pointer is dereferenced. The HWND conversion operator doesn't
work with pointers to window objects.

Printing in the device context
Once the device context is set up, you have to actually print the string. The TDC class
provides several versions of the TextOut function. Just like the MessageBox function in
Step 2, the TextOut functions contained in the device context classes looks similar to the
Windows API function TextOut. The first version of TextOut looks exactly the same as
the Windows API version, except that the first HOC parameter is omitted:

virtual bool TextOut(int x, int y, const char far* str, int count=-1);

The HOC parameter is filled by the TDC object. The second version of TextOut omits the
HOC parameter and combines the x- and y-coordinates into a single TPoint structure:

bool TextOut(const TPoint& p, const char far* str, int count=-1);

Because the coordinates are passed into the EvLButtonDown function in a TPoint object,
you can use the second version of TextOut to print the coordinates in the window. Your
completed EvLButtonDown function should look something like this:

void TDrawWindow::EvLButtonDown(uint, TPoint& point)
{

char s [16];
TClientDC dc(*this);

wsprintf (s, "(%d, %d) ", point .x, point.y);
dc.TextOut(point, s, strlen(s));

You need to include the string.h header file to use the strlen function.

Clearing the window
TDrawWindow's base class, TWindow, provides three different invalidation functions.
Two of these, InvalidateRect and InvalidateRgn, look and function much like their
Windows API versions, but omitting the HWND parameters. The third function,
Invalidate, invalidates the entire client area of the window. Invalidate takes a single
parameter, a bool indicating whether the invalid area should be erased when it's
updated. By default, this parameter is true.

Therefore, to erase the entire client area ofTDrawWindow, you need only call Invalidate,
either specifying true or nothing at all for its parameter. To clear the screen when the
user presses the right mouse button, you must make this call in the EvRButtonDown
function. The function would look something like this:

void TDrawWindow::EvRButtonDown(uint, TPoint&)
(

Invalidate I);

14 ObjectWindows Tutorial

Where to find more information
Here's a guide to where you can find more information on the topics introduced in this
step:

• Window classes are discussed in Chapter 7 of the Object Windows Programmer's Guide.

• Device contexts and the TDC classes are discussed in Chapter 14 of the
ObjectWindows Programmer's Guide.

Chapter 3, Writing in the window 15

16 ObjectWindows Tutorial

Drawing in the window
You can find the source for Step 4 in the file STEP04.CPP in the directory EXAMPLES\
OWL\ TUTORIAL. In this step, you'll add the ability to draw a line in the window by
pressing the left mouse button and dragging. To do this, you'll add a two new events,
WM_MOUSEMOVE and WM_LBUTTONUP, to the TDrawWindow response table,
along with functions to handle those events. You'll also add a TClientDC * to the class.

Adding new events
To let the user draw on the window, the application must handle a number of events:

• To start drawing the line, you have to look for the user to press the left mouse button.
This is already taken care ofby handling the WM_LBUTTONDOWN event.

• Once the user has pressed the left button down, you have to look for them to move
the mouse. At this point, you're drawing the line. To know when the user is moving
the mouse, catch the WM_MOUSEMOVE event.

• You then need to know when the user is finished drawing the line. The user is
finished when the left mouse button is released. You can monitor for this by catching
the WM_LBUTTONUP event.

You need to add two macros to the window class' response table,
EV_ WM_MOUSEMOVE and EV_ WM_LBUTTONUP. The new response table should
look something like this:

DEFINE_RESPONSE_TABLEl(TDrawWindow, TWindow)
EV_WM_LBUTTONDOWN,
EV_WM_RBUTTONDOWN,
EV_WM_MOUSEMOVE,
EV_WM_LBUTTONUP,

END_RESPONSE_TABLE;

You also need to add the EvLButtonUp and EvMouseMove functions to the
TDrawWindow class.

Chapter 4, Drawing in the window 17

Adding a TClientDC pointer
The scheme used in Step 3 to draw a line isn't very robust:

• In Step 3, you created a TClientDC object in the EvLButtonDown function that was
automatically destroyed when the function returned. But now you need a valid
device context across three different functions, EvLButtonDown, EvMouseMove, and
EvLButtonUp.

• You can catch the WM_MOUSEMOVE event and draw from the current point to the
point passed into the EvMouseMove handling function. But WM_MOUSEMOVE
events are sent out whenever the mouse is moved. You only want to draw a line
when the mouse is moved with the left button pressed down.

You can take care of both of these problems rather easily by adding a new protected
data member to TDrawWindow. This data member is a TDC* called DragDC. It works
this way:

• When the left mouse button is pressed, the EvLButtonDown function is called. This
function creates a new TClientDC and assigns it to DragDC. It then sets the current
point inDragDC to the point at which the mouse was clicked. The code for this
function should look something like this:

void
TDrawWindow::EvLButtonDown(uint, TPoint& point)
{

Invalidate();
if (!DragDC) {

SetCapture();

}
}

DragDC =new TClientDC(*this);
DragDC->MoveTo(point);

• When the left mouse button is released, the EvLButtonUp function is called. If Drag DC
is valid (that is, if it represents a valid device context), EvLButtonUp deletes it, setting
it to 0. The code for this function should look something like this:

void
TDrawWindow::EvLButtonUp(uint, TPoint&)
{

if (DragDC) {
ReleaseCapture();
delete DragDC;
DragDC = O;

·• When the mouse is moved, the EvMouseMove function is called. This function checks
whether the left mouse button is pressed by checking DragDC. If DragDC is 0, either
the mouse button has not been pressed at all or it has been pressed and released.
Either way, the user is not drawing, and the function returns. If DragDC is valid,
meaning that the left mouse button is currently pressed down, the function draws a
line from the current point to the new point using the TWindow::LineTo function.

18 ObjectWindciws Tutorial

void
TDrawWindow:: EvMouseMove (uint, TPoint& point)
(

if (DragDC)
DragDC->LineTo(point);

Initializing DragDC
You must make sure that DragDC is set to 0 when you construct the TDrawWindow
object:

TDrawWindow: :TDrawWindow(TWindow *parent)
(

Init(parent, 0, 0);
DragDC = 0;

Cleaning up after DragDC
Because Drag DC is a pointer to a TClientDC object, and not an actual TClientDC object, it
isn't automatically destroyed when the TDrawWindow object is destroyed. You need to
add a destructor to TDrawWindow to properly clean up. The only thing required is to call
delete on DragDC. TDrawWindow should now look something like this:

class TDrawWindow : public TWindow

public:
TDrawWindow(TWindow *parent= 0);

-TDrawWindow() (delete DragDC;}

};

protected:
TDC *DragDC;

II Override member function of TWindow
bool CanClose();

II Message response functions
void EvLButtonDown(uint, TPoint&);
void EvRButtonDown(uint, TPoint&);
void EvMouseMove(uint, TPoint&);
void EvLButtonUp(uint, TPoint&);

DECLARE_RESPONSE_TABLE(TDrawWindow);

Note that, because the tutorial application has now become somewhat useful, the name
of the main window has been changed from "Sample ObjectWindows Program" to
"Drawing Pad":

SetMainWindow(new TFrameWindow(O, "Drawing Pad", new TDrawWindow));

Chapter 4, Drawing in the window 19

Where to find more information
Here's a guide to where you can find more information on the topics introduced in this
step:

• Event handling is discussed in Chapter 4 in the Object Windows Programmer's Guide.

• Device contexts and the TDC classes are discussed in Chapter 14 in the
ObjectWindows Programmer's Guide.

• Predefined response table macros and their corresponding event-handling functions
are listed in Chapter 3 in the ObjectWindows Reference Guide.

20 ObjectWindows Tutorial

Changing line thickness
You can find the source for Step 5 in the files STEPOS.CPP and STEPOS.RC in the
directory EXAMPLES\OWL \TUTORIAL. In this step, you'll make the drawing
capability in the application a little more robust. This step adds the ability to change the
thickness of the line. To support this, you can add to the TDrawWindow class a TPen *
drawing object and an int to hold the pen width.

Adding a pen
Add the pen to the window class by adding two protected members, Pen (a TPen *)and
PenSize (an int). The most important changes that result from adding a pen to the
window class are implemented' in the EvLButtonDown and EvRButtonDown functions.

Initializing the pen
The Pen object and PenSize must be created and initialized before the user has an
opportunity to draw with the pen. The best place to do this is in the constructor:

TDrawWindow::TDrawWindow(TWindow *parent)
{

Init(parent, 0, 0);
DragDC = 0;

PenSize = 1;
Pen= new TPen(TColor::Black, PenSize);

The TColor::Black object in the TPen constructor is an enum defined in the owl\color.h
header file. This makes the pen black. You'll learn more about this parameter of the TPen
constructor later on in Step 9.

Ch a p I er 5 , Ch an gin g Ii n e I hick n es s 21

Selecting the pen into DragDC
To use the new pen object to draw a line, the pen has to be selected into the device
context. The device-context classes have a function called SelectObject. This function is
similar to the API function SelectObject, except that the ObjectWindows version doesn't
require a handle to the device context.

You can use SelectObject to select a variety of objects into a device context, including
brushes, fonts, palettes, and pens. You need to call SelectObject before you begin to draw.
Add the call in the EvLButtonDown function immediately after you create the device
context: ·

void
TDrawWindow::EvLButtonDown(uint, TPoint& point)
{

Invalidate () ;

if (!DragDC) {
Set Capture () ;
DragDC =new TClientDC(*this);
DragDC->SelectObject(*Pen);
DragDC->MoveTo(point);

Notice that Pen is dereferenced in the SelectObject call. This is because the SelectObject
function takes a TPen & for its parameter, and Pen is a TPen *. Dereferencing the pointer
makes Pen comply with SelectObject's type requirements.

Changing the pen size
Having the ability to change the pen size in the application is of little use unless the user
has access to that ability. To provide that access, you can change the meaning of
pressing the right mouse button. Instead of clearing the screen, it now indicates that the
user wants to change the width of the drawing pen. Therefore the process of changing
the pen size goes into the EvRButtonDoiVn function.

Once the user has indicated that he or she wants to change the pen width by pressing
the right mouse button, you need to find some way to let the user enter the new pen
width. For this, you can pop up a TinputDialog, in which the user can input the pen size.

Constructing an input dialog box
The TinputDialog constructor looks like this:

TinputDialog(TWindow* parent,
const char far* title,
const char far* prompt,
char far* buffer,
int bufferSize,
TModule* ~odule = 0);

22 ObjectWindows Tutorial

where:

• parent is a pointer to the parent window of the dialog box. In this case, the parent is
the TDrawWindow window. You can simply pass it in using the this pointer.

• title and prompt are the messages displayed to the user when the dialog box is
opened. In this case, title (which is placed in the title bar of the dialog box) is "Line
Thickness," and prompt (which is placed right above the input box) is "Input a new
thickness:".

• buffer is a string. This string can be initialized before using the TinputDialog. If buffer
contains a valid string, it is displayed in the TinputDialog as the default response. In
this case, initialize buffer using the current pen size contained in PenSize.

• bufferSize is the size of buffer in bytes. The easiest way to do this is to use either a
#define that is used to allocate storage for buffer or to use sizeof(buffer).

• module isn't used in this example.

To use TinputDialog, you must make sure its resources and resource identifiers are
included in your source files and resource script files. These are contained in the file
INCLUDE\OWL \INPUTDIA.RC. You should include INPUTDIA.RC in your resource
script files and your C ++ source files.

Executing an input dialog box
Once you've constructed a TinputDialog object, you can either call the TDialog::Execute
function to execute the dialog box modally or the TDialog::Create function to execute the
dialog box modelessly. Because there's no need to execute the dialog box modelessly,
you can use the Execute function.

The Execute function for TinputDialog can return two important values, IDOK and
IDCANCEL. The value that is returned depends on which button the user presses. If the
user presses the OK button, Execute returns IDOK. If the user presses the Cancel button,
Execute returns IDCANCEL. So when you execute the input dialog box, you need to
make sure that the return value is IDOK before changing the pen size. If it's not, then
leave the pen size the same as it is.

If the call to Execute does return IDOK, the new value for PenSize is in the string passed
in for the dialog's buffer. Before this can be used as a pen size, it must be converted to an
int. Then you should make sure that the value you get from the buffer is a valid pen
width. Finally, once you're sure that the input from the user is acceptable, you can
change the pen size. TDrawWindow now has a function called SetPenSize that you can
use to change the pen size. The reason for doing it this way, instead of directly
modifying the pen, is explained in the next section.

The EvRButtonDown function should now look something like this:

void
TDrawWindow: :EvRButtonDown(uint, TPoint&)
{

char inputText[6];

wsprintf (input Text, "%d", PenSize);

Chapter 5, Changing line thickness 23

if ((TinputDialog(this, "Line Thickness",
"Input a new thickness:",
inputText,
sizeof(inputText))) .Execute() == IDOK) {

int newPenSize = atoi(inputText);

if (newPenSize < 0)
newPenSize = l;

SetPenSize(newPenSize);

Calling SetPenSize
To change the pen size, use the SetPenSize function. Although the EvRButtonDown
function is a member of TDrawWindow, and as such has full access to the protected data
members Pen and PenSize, it is better to establish a public access function to make the
actual changes to the data. This becomes more important later, when the pen is
modified more often.

For TDrawWindow, you have the public SetPenSize function. The SetPenSize function
takes one parameter, an int that contains the new width for the pen. After opening the
input dialog box, processing the input, and checking the validity of the result, all you
need to do is call SetPenSize.

SetPenSize is a fairly simple function. To resize the pen, you must first delete the existing
pen object. Then set PenSize to the new size. Finally construct a new pen object with the
new pen size. The function should look something like this:

void
TDrawWindow: :SetPenSize(int newSize)
{

delete Pen;
PenSize = newSize;
Pen= new TPen(TColor(0,0,0), PenSize);

Cleaning up after Pen
Because Pen is a pointer to a TPen object, and not an actual TPen object, it isn't
automatically destroyed when the TDrawWindow object is destroyed. You need to
explicitly destroy Pen in the TDrawWindow destructor to properly clean up. The only
thing required is to call delete on Pen. TDrawWindow should now look something like
this:

class TDrawWindow : public TWindow

public:
TDrawWindow(TWindow *parent= 0);

24 ObjectWindows Tutorial

};

-TDrawWindow() (delete DragDC; delete Pen;}

void SetPenSize(int newSize);

protected:
TDC *DragDC;
int PenSize;
TPen *Pen;

II Override member function of TWindow
bool CanClose();

II Message response functions
void EvLButtonDown(uint, TPoint&);
void EvRButtonDown(uint, TPoint&);
void EvMouseMove(uint, TPoint&);
void EvLButtonUp(uint, TPoint&);

DECLARE_RESPONSE_TABLE(TDrawWindow);

Where to find more information
Here's a guide to where you can find more information on the topics introduced in this
step:

• The TinputDialog class and dialogs in general are discussed in Chapter 9 in the
ObjectWindows Programmer's Guide.

• Device contexts and the TDC classes are discussed in Chapter 14 in the
ObjectWindows Programmer's Guide.

• The TPen class is also discussed in Chapter 14 in the Object Windows Programmer's
Guide.

Chapter 5, Changing line thickness 25

26 ObjectWindows Tutorial

Painting the window and adding a
menu

There are a few flaws with the application from Step 5. The biggest problem is that the
drawing window doesn't know how to paint itself. To see this for yourself, try drawing
a line in the window, minimizing the application, then restoring it. The line you drew is
gone.You can find the source for Step 6 in the files STEP06.CPP and STEP06.RC in the
directory EXAMPLES\ OWL\ TUTORIAL.

Another problem is that the only way the user can access the application is with the
mouse. The user can either press the left button to draw a line or the right button to
change the pen size.

In Step 6, you'll make it possible for the application to remember the contexts of the
window and redraw it. You'll also add some menus to increase the number of ways the
user can access the application.

Repainting the window
There are two problems that must be dealt with when you're trying to paint the
window:

• There must be a way to remember what was displayed in the window.
• There must be a way to redraw the window.

Storing the drawing
In the earlier steps of the tutorial application, the line in the window was drawn as the
user moved the mouse while holding the left mouse button. This approach is fine for
drawing the line, but doesn't store the points in the line for later use.

C h a pt e r 6 , P a i n t i n g t h e w i n d o w a n d a d d i n g a m e n u 27

Because the line is composed of a number of points in the window, you can store each
point in the ObjectWindows TPoint class. And because each line is composed of
multiple points, you need an array of TPoint objects to store a line. Instead of attempting
to allocate, manage, and update an.array of TPoint objects from scratch, the tutorial
application uses the Borland container class T Array to define a data type called TPoints.
It also uses the Borland container class T Array Iterator to define an iterator called
TPointslterator. The definitions of these two types look like this:

typedef TArray<TPoint> TPoints;
typedef TArrayiterator<TPoint> TPointsiterator;

The TDraw Window class adds a TPoints object in which it can store the points in the line.
It actually uses a TPoints *,a protected member called Line, which is set to point to a
TPoints array created in the constructor. The constructor now looks something like this:

TDrawWindow: :TDrawWindow(TWindow *parent)
(

Init(parent, 0, 0);
DragDC = O;
PenSize = l;
Pen= new TPen(TColor::Black, PenSize);
Line= new TPoints(lO, 0, 10);

TPoints
The Borland C ++ container class library and the T Array and T Array Iterator classes are
explained in detail in Chapter 1 of the Class Libraries Guide. For now, here's a simple
explanation of how the TPoints and TPointslterator container classes are used in the
tutorial application. To use the TArray and TArraylterator classes, you must include the
header file classlib \arrays.h.

The T Array constructor takes three parameters, all ints:

• The first parameter represents the upper boundary of the array; that is, how high the
array count can go.

• The second parameter represents the lower boundary of the array; that is, the number
at which the array count begins. This parameter defaults to 0, matching the C and
C++ convention of starting arrays at member 0.

• The third parameter represents the array delta. The array delta is the number of
members that are added when the array grows too large to contain all the members
of the array.

Here's the statement that allocates the initial array of points in the TDrawWindow
constructor:

Line = new TPoints(lO, 0, 10);

The array of points is created with room for ten members, beginning at 0. Once ten
objects are stored in the array, attempting to add another object adds room for ten new
members to the array. This lets you start with a small conservative array size, but also

28 ObjectWindows Tutorial

alleviates one of the main problems normally associated with static arrays, which is
running out of room and having to reallocate and expand the array.

Once you've created an array, you need to be able to manipulate it. The T Array class
(and, by extension, the TPoints class) provides a number of functions to add members,
delete members, clear the array, and the like. The tutorial application uses only a small
number of the functions provided. Here's a short description of each function:

• The Add function adds a member to the array. It takes a single parameter, a reference
to an object of the array type. For example, adding a TPoint object to a TPoints array
would look something like this:

II Construct a TPoints array (an array of TPoint objects)
TPoints Points(lO, 0, 10);

II Construct a TPoint object
TPoint p(3,4);

II Add the TPoint object p to the array
Points. Add (p I ;

• The Flush function clears all the members of an array and resets the number of array
members back to the initial array size. It takes no parameters. To clear the array in the
previous sample code, the function call would look something like this:

II Clear all members in the Points array
Points. Flush (I;

• The GetltemsinContainer function returns the total number of items in the container.
Note that this number indicates the number of actual objects added to the container,
not the space available. For example, even though the container may have enough
room for 30 objects, it might only contain 23 objects. In this case, GetitemsinContainer
would return 23.

TPointslterator
Iterators-in this case the TPointsiterator type-let you move through the array,
accessing a single member of the array at a time. An iterator constructor takes a single
parameter, a reference to a T Array of objects (the type of objects in the array is set up by
the definition of the iterator). Here's what an iterator looks like when it's set up using
the Line member of the TDrawWindow class:

TPointsiterator i(*Line);

Note that Line is dereferenced because the iterator constructor takes a TPoints & for its
parameter, and Line is a TPoints *.Dereferencing the pointer makes Line comply with the
iterator constructor type requirements.

Once you've created an iterator, you can use it to access each object in the array, one at a
time, starting with the first member. In the tutorial application, the iterator isn't used
very much and you won't learn much about the possibilities of an iterator from it. But
the tutorial does use two properties of iterators that require a note of explanation:

Chapter 6, Painting the window and adding a menu 29

• You can move through the objects in the array using the++ operator on the iterator.
This returns a reference to the current object and increments the iterator to the next
object in the array. The order in which it performs these two actions depends on
whether you use the ++ operator as a prefix or postfix operator. Using it as a prefix
operator (for example, ++i) increments the iterator to the next object, then returns a
reference to that object. Using it as a postfix operator (for example, i++) returns a
reference to the current object, then increments the iterator to the next object.

When you attempt to increment the iterator past the last member of the array, the
iterator is set to 0. You can use this as a test in any Boolean conditional. For example:

TPointsiterator i(*Line);
while(i)

itt;

• You can also access the current object with the Current function. Calling the current
function returns a reference to the current object. You can then perform operations on
the object as if it were a regular instance of the object. For example, you can test a
point accessed by an iterator against the value of another point:

TPointsiterator i(*Line);
TPoint tmp(S, 6);
if Ii.Current() == tmp)

return true;
else

return false;

Using the array classes
Once the Line array is created in the TDrawWindow constructor, it is accessed in four
main places:

• The EvLButtonDown function. The array is flushed at the beginning of the function
before the screen is invalidated. The beginning point of the line is then inserted
towards the end of the function. The EvLButtonDown function should look something
like this:

void
TDrawWindow::EvLButtonDown(uint, TPoint& point)
{

Line-> Flush I) ;
Invalidate();
if I! DragDC) {

SetCapture();
DragDC =new TClientDC(*this);
DragDC->SelectObject(*Pen);
DragDC->MoveTo(point);
Line->Add(point);

• The EvMouseMove function. Each point in the line is added to the array as the user
draws in the window. The EvMouseMove function should look something like this:

30 ObjectWindows Tutorial

void
TDrawWindow::EvMouseMove(uint, TPoint& point)
{

if (DragDC) {
DragDC->LineTo(point);
Line->Add(point);

• The Paint function. This function is described in the next section.

• The CmFileNew function. This function is described on page 34.

Paint function
In standard C Windows programs, if you need to repaint a window manually, you
catch the WM_P AINT messages and do whatever you need to do to repain~ the screen.
This might lead you to think that the proper way to repaint the window in the
TDrawWindow class is to add the EV_ WM_PAINT macro to the class' response table and
set up a function called EvPaint.

You can do this if you want. However, a better way is to override the TWindow function
Paint. TDrawWindow's base class TWindow actually does quite a bit of work in its Ev Paint
function. It sets up the BeginPaint and EndPaint calls, creates a device context for the
window, and so on.

Paint is a virtual member of the TWindow class. TWindow's EvPaint calls it in the middle
of its processing. The default Paint function doesn't do anything. You can use it to
provide the special processing required to draw a line from a TPoints array.

Here is the signature of the Paint function. This is added to the TDrawWindow class:

void Paint(TDC&, bool, TRect&);

where:

• The first parameter is the device context set up by the calling function. This is the
device context you should use when working.

• If the second parameter is true, you are supposed to clear the device context before
painting the window. If it's false, you are supposed to paint over what is already
contained in the window.

• The third parameter indicates the invalid area of the device context that needs to be
repainted.

In the current case, you always want to clear the window. You can also assume that the
entire area of the drawing needs to be repainted. The Paint function implements this
basic algorithm:

• Create an iterator to go through the points in the line.

• Select the pen into the device context passed into the Paint function.

• If this is the first point in the array, set the current point to the coordinates contained
in the current array member.

Ch apter 6, Painting the window and adding a menu 31

• While there are still points left in the array, draw lines from the current point to the
point contained in the current array member.

The TDrawWindow::Paint function now looks something like this:

void
TDrawWindow: :Paint(TDC& de, bool, TRect&)
{

bool first = true;
TPointsiterator i(*Line);

dc.SelectObject(*Pen);

while (i) {
TPoint p = itt;

if (!first)
dc.LineTo(p);

else {
dc.MoveTo(p);
first = false;

Menu commands
There are a number of steps you need to perform to add a menu choice and its
corresponding event handler to your application:

• Define the event identifier for the menu choice. By convention, this identifier is all
capital letters, and begins with CM_. For example, the identifier for the File Open
menu choice is CM_FILEOPEN.

• Add the appropriate menu resource to your resource file.

• Add an event-handling function for the menu choice to your class. The
ObjectWindows 2.5 convention is to name this function the same name as the event
identifier, except omitting the underscore and using initial capital letters and
lowercase letters for the rest. For example, the function that handles the
CM_FILEOPEN event is named CmFileOpen.

• Add an EV _COMMAND macro to your class' response table, associating the event
identifier with the event-handling function. This macro takes two parameters; the
first is the event identifier and the second is the name of the event-handling function.
For example, the response table entry for the File Open menu choice looks like this:

EV_COMMAND(CM_FILEOPEN, CmFileOpen),

• The EV _COMMAND macro requires the signature of the event-handling function to
take no parameters and return void. So the signature of the event-handling function
for the File Open menu choice looks like this:

32 0 b j e c I W i n d ow s T u I o r i a I

void CmFileOpen();

Adding event identifiers
You need to add identifiers for each of these menu choices. Here's the definition of the
event identifiers:

#define CM_FILENEW 201
#define CM_FILEOPEN 202
#define CM_FILESAVE 203
#define CM_FILESAVEAS 204
#define CM_ABOUT 205

These identifiers are contained in the file STEP06.RC. The ObjectWindows style places
the definitions of identifiers in the resource script file, instead of a header file. This cuts
down on the number of source files required for a project, and also makes it easier to
maintain the consistency of identifier values between the resources and the application
source code.

The actual resource definitions in the resource file are contained in a block contained in
an #ifndef/ #endif block, like so:

#ifdef RC_INVOKED
II Resource definitions here.

#endif

RC_INVOKED is defined by all resource compilers, but not by C++ compilers. The
resource information is never seen during C++ compilation. Identifier definitions
should be placed outside this #ifndef/#endif block, usually at the beginning of the file.

Adding menu resources
For now, you want to add five menu choices to the application:

• FileNew
• FileOpen
• File Save
• File Save As
• HelpAbout

Each of these menu choices needs to associated with the correct event identifier; that is,
the File Open menu choice should send the CM_FILEOPEN event.

The menu resource is attached to the application in the InitMain Window function. You
need to call the main window's AssignMenu function. To get the main window, you can
call the GetMain Window function. The InitMain Window function should look like this:

void InitMainWindow()
{

SetMainWindow(new TFrameWindow(O, "Drawing Pad", new TDrawWindow));
GetMainWindow() ->AssignMenu ("COMMANDS") ;

Chapter 6, Painting the window and adding a menu 33

Adding response table entries
Each event identifier needs to be associated with its corresponding handler. To do t}tls,
add the following lines to the response table:

EV_COMMAND(CM_FILENEW, CmFileNew),
EV_COMMAND(CM_FILEOPEN, CmFileOpen),
EV_COMMAND(CM_FILESAVE, CmFileSave),
EV_COMMAND(CM_FILESAVEAS, CmFileSaveAs),
EV_CQMMAND(CM_ABOUT, CmAbout),

Adding event handlers
Now you need to add a function to handle each of the events you've just added to the
response table. Because these functions will eventually grow rather large, you should
declare them in the class declaration and define them outside the class declaration.

The declarations of these function should look something like this:

void CmFileNew();
void CmFileOpen();
void CmFileSave();
void CmFileSaveAs();
void CmAbout();

Implementing the event handlers
The last step in implementing the event handlers is defining the functions. For now,
leave the implementation of these functioli.s to a bare minimum. Most of them can just
pop up a message box saying that the function has not yet been implemented. The
functions that are set up this way are CmFileOpen, CmFileSave, CmFileSaveAs, and
CmAbout. Here's how these functions look:

void
TDrawWindow: : CmF i 1 eOpen ()
{

MessageBox("Feature not implemented", "File Open", MB_OK);

The only function that's implemented in this step is the CmFileNew function. That's
becau.se it's very easy to set up. All that needs to be done is to clear the array of points
and erase the window. The CmFileNew function looks like this:

void
TDra'wWindow: :CmFileNew()
{

Line->Flush();
Invalidate();

34 ObjectWindows Tutorial

Where to find more information
Here's a guide to where you can find more information on the topics introduced in this
step:

• Event handling is discussed in Chapter 4 of the Object Windows Programmer's Guide.

• Window classes are discussed in Chapter 7 of the Object Windows Programmer's Guide.

• Menus and menu objects are explained in Chapter 8 of the Object Windows
Programmer's Guide.

• The Borland C++ container class library and the TArray and TArraylterator classes are
explained in Chapter 1 of the Class Libraries Guide.

Chapter 6, Painting the window and adding a menu 35

36 ObjectWindows Tutorial

Using common dialog boxes
In this step, you'll implement the event-handling functions you added in Step 6. The
CmFileOpen function, the CmFileSave function, and the CmFileSaveAs function use the
ObjectWindows classes TFileOpenDialog and TFileSaveDialog. These classes encapsulate
the Windows Open and Save common dialog boxes to prompt the user for file names.
You can find the source for Step 7 in the files STEP07.CPP and STEP07.RC in the
directory EXAMPLES\ OWL\ TUTORIAL.

You'll make the CanClose function check whether the drawing in the window has
changed before the drawing is discarded. If the drawing has changed, the user is given a
chance to either save the file, continue without saving the file, or abort the close
operation entirely.

Also, to implement the CmFileOpen function, the CmFileSave function, and the
CmFileSaveAs function, you need to add two more protected functions, OpenFile and
SaveFile, to the window class. These functions are discussed a little later in this step.

Changes to TDrawWindow
To implement the menu commands, add some new data members to the TDrawWindow
class: FileData, IsDirty, and IsNewFile.

File Data
The FileData member is a pointer to a TOpenSaveDialog::TData object. The
TOpenSaveDialog class is the direct base class of both the TFileOpenDialog class and the
TFileSaveDialog class. Both of these classes use the TOpenSaveDialog::TData class to
contain information about the current file or file operation, such as the file name, the
initial directory to search, file name filters, and so on.

FileData is initialized in the TDrawWindow constructor to a newed
TOpenSaveDialog::TData object. Because FileData is a pointer to an object, a delete

C h a p I e r 7 , U s i n g c o m m o n d i a I o g b ox e s 37

statement must be added to the TDrawWindow destructor to ensure that the object is
removed from memory when the application terminates.

ls Dirty
The Is Dirty flag indicates whether the current drawing is "dirty," that is, whether the
drawing has been saved since it was last modified by the user. If the drawing hasn't
been modified, or if the user hasn't drawn anything on an empty window, IsDirty is set
to false. Otherwise, it is set to true. IsDirty is set to false in the TDrawWindow constructor
because the drawing hasn't been modified yet.

Outside of the constructor, the IsDirty flag is set in a number of functions:

• In the EvLButtonDown function, IsDirty is set to true to reflect the change made to the
drawing.

• In the CmFileNew function, IsDirty is set to false when the window is cleared.

• In the OpenFile and SaveFile functions, IsDirty is set to false to reflect that the drawing
hasn't been modified since last saved or loaded.

lsNewFile
The IsNewFile flag indicates whether the file has a name. A file has a name if it was
loaded from an existing file or has been saved to disk to some file name. If the file has a
name (that is, if it's been saved previously or was loaded from an existing file), the
IsNewFile flag is set to false. IsNewFile is set to true in the TDrawWindow constructor
because the drawing hasn't yet been saved with a name.

Outside the constructor, the IsNewFile flag is set in a number of functions:

• In the CmFileNew function, IsNewFile is set to true when the window is cleared.

• In the OpenFile and SaveFile functions, IsNewFile is set to false to reflect that the
drawing has been saved to disk.

Improving CanClose
The CanClose function that you've been using since Step 2 of this tutorial has a couple of
flaws. First, whenever it's called, it prompts the user to save the drawing. This isn't
necessary if the drawing hasn't been changed since it was loaded, saved, or the window
was cleared. Second, a simple yes or no answer to this question isn't sufficient. For
example, if the user didn't intend to dose the window, the desired response is to cancel
the whole operation.

Checking the IsDirty flag tells the CanClose function whether it's even necessary to
prompt the user for approval of the closing operation. If the drawing isn't dirty, there's
no need to ask whether it's OK to close. The user can simply reload the file.

38 ObjectWindows Tutorial

If the file is dirty, then the CanClose function pops up a message box. Using the
MB_YESNOCANCEL flag in the message box call gives the user three possible choices
instead of two:

• Choosing Cancel means the user wants to abort the entire close operation. In this
case, when MessageBox returns IDCANCEL, the CanClose function returns false,
signaling to the calling function that it's not all right to proceed.

• Choosing Yes means that the user wants to save the file before proceeding. When
MessageBox returns IDYES, the CanClose function calls the CmFileSave function
(CmFileSave is explained later in this section). After calling CmFileSave, CanClose
returns true, signaling to the calling function that it's all right to proceed.

• Choosing No means that the user doesn't want to save the file before proceeding. In
this case, CanClose takes no further action and returns true.

The code for the new CanClose function looks something like this:

bool
TDrawWindow: :CanClose()
{

if (IsDirty)
switch(MessageBox("Do you want to save?", "Drawing has changed",

MB_YESNOCANCEL I MB_ICONQUESTION) I {
case IDCANCEL:

II Choosing Cancel means to abort the close
return false;

case IDYES:
II Choosing Yes means to save the drawing.
CmFileSave ();

return true;

return false.

Note that the CmFileNew function is modified in this step to take advantage of the new
CanClose function.

CmFileSave function
The CmFileSave function is relatively simple. It checks whether the drawing is new by
testing IsNewFile. If IsNewFile is true, CmFileSave calls CmFileSaveAs, which prompts the
user for a file in which to save the drawing. Otherwise, it calls SaveFile, which does the
actual work of saving the drawing.

The CmFileSave function should look something like this:

void
TDrawWindow::CmFileSave()
{

if (IsNewFile)
CrnFileSaveAs();

C h a pt e r 7 , U s i n g c o m m o n d i a I o g b o x e s 39

else
SaveFile();

CmfileOpen function
The CmFileOpen function is also fairly simple. It first checks CanClose to make sure it's
OK to close the current drawing and open a new file. If the CanClose function returns
false, CmFileOpen aborts.

After ensuring that it's OK to proceed, CmFileOpen creates a TFileOpenDialog object. The
TFileOpenDialog constructor can take up to five parameters, but for this application you
need to use only two. The last three parameters all have default values. The two
parameters you need to provide are a pointer to the parent window and a reference to a
TOpenSaveDialog::TData object. In this case, the pointer to the parent window is the this
pointer. The TOpenSaveDialog::TData object is provided by FileData.

Once the dialog box object is constructed, it is executed by calling the
TFileOpenDialog::Execute function. There are only two possible return values for the
TFileOpenDialog, IDOK and IDCANCEL. The value that is returned depends on
whether the user presses the OK or Cancel button in the File Open dialog box.

If the return value is IDOK, CmFileOpen then calls the OpenFile function, which does the
actual work of opening the file. The Execute function also stores the name of the file the
user selected into the FileName member of FileData. If the return value is not IDOK (that
is, if the return value is IDCANCEL), no further action is taken and the function returns.

The CmFileOpen function should look something like this:

void
TDrawWindow::CmFileOpen()
{

if (CanClose ())
if (TFileOpenDialog(this, *FileData) .Execute() == IDOK)

OpenFile();

CmfileSaveAs function
The CmFileSaveAs function can be used in two ways: to save a new drawing under a
new name and to save an existing drawing under a name different from its present
name.

To determine which of these the user is doing, CmFileSaveAs first checks the IsNewFile
flag. If the file is new, CmFileSaveAs copies a null string into the FileName member of
FileData. If the file is not new, FileName is left as it is.

The distinction between these two is quite important. If FileName contains a null string,
the default name in the File Name box of the File Open dialog box is set to the name
filter found in the FileData object, in this case, *.pts. But if FileName already contains a
name, that name plus its directory path is inserted in the File Name box.

40 Objec!Windows Tutorial

Once this has been done, TFileSaveDialog is created and executed. This works exactly the
same as TFileOpenDialog does in the CmFileOpen function. If the Execute function returns
IDOK, CmFileSaveAs then calls the SaveFile function.

The CmFileSaveAs function should look something like this:

void
TDrawWindow::CmFileSaveAs()
{

if (IsNewFile)
strcpy (FileData->FileName, ""I;

if ((new TFileSaveDialog(this, *FileData))->Execute() == IDOK)
SaveFile();

Opening and saving drawings
The CmFileOpen, CmFileSave, and CmFileSaveAs functions only provide the interface to
let the user open and save drawings. The actual work of opening and saving files is
done by the OpenFile and SaveFile functions. This section describes how these functions
perform these actions, but it doesn't provide technical explanations of the entire
functions.

OpenFile function
The OpenFile function opens the file named in the FileName member of the FileData
object as an ifstream, one of the standard C++ iostreams. If the file can't be opened for
some reason, OpenFile pops up a message box informing the user that it couldn't open
the file and then returns.

Once the file is successfully opened, the Line array is flushed. OpenFile then reads in the
number of points saved in the file, which is the first data item stored in the file. It then
sets up a for loop that reads each point into a temporary TPoint object. That object is then
added to the Line array.

Once all the points have been read in, OpenFile calls Invalidate. This invalidates the
window region, causing a WM_P AINT message to be sent and the new drawing to be
painted in the window.

Lastly, OpenFile sets IsDirty and IsNewFile both to false. The OpenFile function should
look something like this:

void
TDrawWindow::OpenFile()
{

ifstream is(FileData->FileName);

if I! isl
MessageBox("Unable to open file", "File Error", MB_OK I MB_ICONEXCLAMATION);

else {

Ch apter 7, Using common di a Io g boxes 41

Line->Flush();
unsigned numPoints;
is >> numPoints;
while (numPoints--)

TPoint point;
is » point;
Line->Add(point);

IsNewFile = IsDirty = false;
Invalidate () ;

Savefile function
The SaveFile function opens the file named in the FileName member of FileData as an
ofstream, one of the standard C++ iostreams. If the file can't be opened for some reason,
SaveFile pops up a message box informing the user that it couldn't open the file and then
returns.

Once the file has been opened, the function Line->GetitemslnContainer is called. The
result is inserted into the file. This number is read in by the OpenFile function to
determine how many points are stored in the file.

After that, SaveFile sets up an iterator called i from Line. This iterator goes through all the
points contained in the Line array. Each point is then inserted into the stream until there
are no points left.

Lastly, IsNewFile and IsDirty are set to false. Here is how the SaveFile function should
look:

void
TDrawWindow::SaveFile()
(

ofstream os(FileData->FileName);

if I !os)
MessageBox("Unable to open file", "File Error",

MB_OK I MB_ICONEXCLAMATION) ;
else {

os << Line->GetitemsinContainer();
TPointsiterator i(*Line);
while (i)

OS « itt;

IsNewFile = IsDirty = false;

42 ObjectWindows Tutorial

CmAbout function
The CmAbout function demonstrates how easy it is to use custom dialog boxes in
ObjectWindows. This function contains only one line of code. It uses the TDialog class
and the !DD _ABOUT dialog box resource to pop up an information dialog box.

TDialog can take up to three parameters:

• The first parameter is a pointer to the dialog box's parent window. Just as with the
TFileOpenDialog and TFileSaveDialog constructors, you can use the this pointer,
setting the parent window to the TDrawWindow object.

• The second parameter is a reference to a TResid object. This should be the resource
identifier of the dialog box resource.

Note Usually you don't actually pass in a TResid reference. Instead you pass a resource
identifier number or string, just as you would for a dialog box created using regular
Windows API calls. Conversion operators in the TResid class resolve the parameter
into the proper type.

• The third parameter, a TModule *,usually uses its default value.

Once the dialog box object is constructed, all that needs to be done is to call the Execute
function. Once the user closes the dialog box and execution is complete, CmAbout
returns. The temporary TDialog object goes out of scope and disappears.

The code for CmAbout should look like this:

void
TDrawWindow::CrnAbout()
{

TDialog(this, IDD_ABOUT) .Execute();

Where to find more information
Here's a guide to where you can find more information on the topics introduced in this
step:

• The CanClose function is discussed in Chapter 2 in the Object Windows Programmer's
Guide.

• Dialog boxes, including the TFileOpenDialog and the TFileOpenDialog classes, are
discussed in Chapter 9 in the Object Windows Programmer's Guide.

Chapter 7, Using common dialog boxes 43

44 ObjectWindows Tutorial

Adding multiple lines
You can find the source for Step 8 in the files STEP08.CPP and STEP08.RC in the
directory EXAMPLES\OWL \TUTORIAL. Step 8 makes a great leap in terms of
usefulness. In this step, you'll add a new class, TLine, that is derived from the TPoints
array you've been using to contain the points in a line. You'll then define another array
class, TLines, that contains an array of TLine objects, enabling us to have multiple lines in
the window. You'll add streaming operators to make it a little easier to save drawings.
Lastly, you'll develop the Paint function further to handle drawings with multiple lines.

Tline class
The TLine class is derived from the public base class TPoints. This gives TLine all the
functionality that you've been using with the Line member of the TDrawWindow class.
This includes the Add, Flush, and GetltemsinContainer functions that you've been using.
In addition, you can continue to use TPointsiterator with the TLine class in the same way
you used it with TPoints.

But because you're creating your own class now, you can also add any additional
functionality you need. For example, you should add a data member to contain the size
of the pen for each line. Then, to hide the data, add accessor functions to manipulate the
data.

In TLine, the pen size is contained in a protected int called PenSize. PenSize is accessed by
one of two functions, both called QueryPen. Both versions of QueryPen return an int,
which contains the value of PenSize. Here's the difference between the two functions:

• The first QueryPen function takes no parameters. This function returns the pen size.

• The second QueryPen function takes a single parameter, an int. This function sets
PenSize to the value passed in, then returns the new value of PenSize. You can use the
return value to check whether QueryPen actually set the pen to the value you passed
to it. This version of Query Pen checks the value of the parameter to make sure that it's
a legal value for the pen size.

Chapter 8, Adding multiple lines 45

TLine also contains a definition for the== operator. This operator checks to see if the two
objects are actually the same object. If so, the operator returns true. Defining an array
using the TArray class (which you'll do later when defining TLines) requires that the
object used in T Array have the == operator defined.

Lastly you should declare two operators,<< and>>, to be friends of the TLine class.
When these operators are implemented later in this section, they'll provide easy access
to stream operations for the SaveFile and OpenFile functions.

Here is the declaration of the TLine class:

class TLine : public TPoints

};

public:
TLine(int penSize = 1) : TPoints(lO, 0, 10) { PenSize = penSize; }

int QueryPen() const { return PenSize;
int QueryPen(int penSize);

II The== operator must be defined for the container class,
II even if unused
bool operator ==(cqnst TLine& other) const

{ return &other == this; }
friend ostream& operator «(ostream& os, const TLine& line);
friend istream& operator >>(istream& is, TLine& line);

protected:
int PenSize;

Tlines array
Once you've defined the TLine class, you can define the TLines array and the
TLinesiterator array. These containers work the same way as the TPoints and
TPointsiterator container classes that you defined earlier. The only difference is that,
instead of containing an array of TPoint objects like TPoints, TLines contains an array of
TLine objects.

Here are the definitions of TLines and TLinesiterator:

typedef TArray<TLine> TLines;
typedef TArrayiterator<TLine> TLinesiterator;

Insertion and extraction of Tline objects
Most objects that need to be saved to and retrieved from files on a regular basis are set
up to use the insertion and extraction operators <<and>>. By declaring these operators
as friends of TLine, you need to define the operators to handle the particular type of data
encapsulated in TLine.

46 ObjectWindows Tutorial

Having these operators defined gives you the ability to place an entire TLine object into a
file with a single line of code. You'll see how this is used when you make the changes to
the OpenFile and SaveFile functions.

Insertion operator<<
In essence, the insertion operator takes on the functionality of the SaveFile function used
in Step 7. It doesn't have to open a file (that's handled by whatever function uses the
operator) and it has an extra piece of data to insert (PenSize). Other than that, it's not
much different. Compare the definition of this function with the SaveFile function from
Step 7. Notice the use of TPointslterator with the TLine object:

ostream& operator <<(ostream& os, const TLine& line)
{

II Write the number of points in the line
os « line.GetitemsinContainer() « '

II Write the pen size
os << ' ' << line.PenSize;

II Get an iterator for the array of points
TPointsiterator j(line);

II While the iterator is valid (i.e. it hasn't run out of points)
while (j)

II Write the point from the iterator and increment the array.
OS « jtt;

OS << '

II return the stream object
return os;

Extraction operator>>
Much like the insertion operator, the extraction operator takes on the functionality of the
OpenFile function in Step 7. It doesn't have to open a file itself and it has an extra piece of
data to extract. Other than that, it's implemented similarly to the OpenFile function:

istream& operator >>(istream& is, TLine& line)
{

unsigned numPoints;

is >> numPoints;

is >> line.PenSize;

while (numPoints--)
TPoint point;
is » point;

Chapter 8, Adding multiple lines 47

line.Add(point);

II return the stream object
return is;

Extending TDrawWindow
There are a number of changes required in TDrawWindow to accommodate the new
TLine class. First there are a number of changes in data members:

• PenSize is removed. Each individual line now contains its pen size.

• The Line data member is changed from a TPoints *to a TLine *.The Line object holds
the points in the line currently being drawn.

• The Lines data member, a TLines *,is added. The Lines object contains all the TLine
objects.

There are also a number of functions that are modified or added:

• The SetPenSize function is made protected because changes to the pen size should be
made to the TLine class. SetPenSize should now be used only by the TDrawWindow
class internally. SetPenSize also sets the pen size for the current line by calling that
line's Query Pen function.

• The GetPenSize function is added. This function implements the TinputDialog that
was handled in EvRButtonDown. This is because two functions now use this same
dialog box, EvRButtonDown and CmPenSize.

• The EvRButtonDown function now calls GetPenSize to open the input dialog box.

• The CmPenSize function handles the CM_PENSIZE event. This event comes from a
new menu choice, Pen Size, on a new menu, Tools. This function is added to give the
user another way to change the pen size.

• The OpenFile and SaveFile functions are modified to store an array of TLine objects
instead of an array of TPoint objects. By using the insertion and extraction operators,
these functions change very little from their prior forms.

In addition, the Paint function is changed quite a bit, as described in the following
section.

Paint function
The Paint function must now perform two iterations instead one. Instead of iterating
through a single array of points, Paint must now iterate through an array of lines. For
each line, it must set the pen width and then iterate through the points that compose the
line.

Paint does this by first creating an iterator from Lines. This iterator goes through the
array of lines. For each line, Paint queries the pen size of the current line. It sets the

48 ObjectWindows Tutorial

window's Pen to this size and selects this pen into the device context. It then creates an
iterator for the current line and increments the line array iterator.

The next part of Paint looks like the Paint function from Step 7. That's because it does
basically the same thing as that function-it takes the array of points and draws the line
in the window.

Here is the code for the new Paint function:

void
TDrawWindow::Paint(TDC& de, bool, TRect&)
{

II Iterates through the array of line objects.
TLinesiterator i(*Lines);

while (i) {
II Set pen for the de to current line's pen.
TPen pen(TColor: :Black, i.Current() .QueryPen());
de.SelectObjeet(pen);

II Iterates through the points in the line i.
TPointsiterator j(i++);
bool first = true;

while (j) {
TPo int p = j ++;

if (!first)
de. LineTo (p) ;

else {
de. MoveTo (p) ;
first = false;

Where to find more information
Here's a guide to where you can find more information on the topics introduced in this
step:

• Window classes are discussed in Chapter 7 of the Object Windows Programmer's Guide.

• The Borland C ++ container class library and the T Array and T Array Iterator classes are
explained in Chapter 1 of the Class Libraries Guide.

Chapter 8, Adding multiple lines 49

50 ObjectWindows Tutorial

Changing pens
You can find the source for Step 9 in the files STEP09.CPP and STEP09.RC in the
directory EXAMPLES\OWL \TUTORIAL. In Step 9, you'll add a TColor member to the
TLine class, letting the user draw with lines of different widths and different colors. To
change the color of the line, you'll add the CmPenColor function. This function handles
the CM_PENCOLOR menu command. CmPenColor uses the TChooseColorDialog class to
let the user change colors. It also adds some helper functions to deal with changes to the
width and color and give external classes access to information about the line.

Along with adding color to the pen, Step 9 adds functionality to the streaming operators
to deal with the new attributes of the TLine class. It also adds a Draw function to the
TLine class to make the class more self-sufficient and to make the Paint function simpler.

Changes to the Tline class
A number of changes to the TLine class declaration are required to accommodate the
new functionality:

• There is a new protected data member, Color (a TColor object). Color and PenSize make
up the attributes necessary to construct a TPen object.

• The constructor signature has changed from

TLine(int penSize = 1);

to

TLine(const TColor &color= (TColor) 0, int penSize = 1);

The constructor itself changes to set PenSize to the constructor's second parameter
and to create a new TPen object and assign it to Pen. If no parameters are specified
and the first parameter takes on its default value, TColor::Black is used as the pen
color.

C h a pt e r 9 , C h an g i n g p e n s 51

• The two QueryPen, functions are abandoned in favor of three new functions:
QueryPenSize, .which returns the pen size as an int, QueryColor, which returns the pen
color as a TColor, and Query Pen, which returns the pen as a TPen.

• Instead of using the query functions to set the pen attributes, there are two new
functions called SetPen. One takes a single int parameter and the other takes a TColor
& and two ints. The pen query and set functions are discussed in the next section.

• A Draw function is added so that the TLine class dictates how it is drawn. This
function is virtual so that it can be easily overridden in a derived class.

Here's how the new TLine class declaration should look:

class TLine : public TPoints {

};

public: ·
II Constructor to allow construction from a color and a pen size.
II Also serves as default constructor.
TLine(const TColor &color= TColor(O), int penSize = 1)

: TPoints(lO, 0, 10), PenSize(penSize), Color(color) {}

II Functions to modify and query pen attributes.
int QueryPenSize() { return PenSize; }
TColor& QueryColor() { return Color; }
void SetPen(TColor &newColor, int penSize = 0);
void SetPen(int penSize);

II TLine draws itself. Returns true if everything went OK.
virtual bool Draw(TDC &) const;

II The'== operator must be defined for the container class,
II even if unused
bool operator ==(const TLine& other) const

{ return &other == this; }
friend ostream& operator <<(ostream& os, const TLine& line);
friend istream& operator >>(istream& is, TLine& line);

protected:
int PenSize;
TColor Color;

Pen access functions
In Step 8, the QueryPen function could be used both to access the current size of the pen
and fo set the size of the pen. The new TLine query functions-QueryPenSize and
QueryColor-can't be used to modify the pen attributes. These functions only return pen
attributes.

To set pen attributes, there are two new functions called SetPen. The first SetPen sets just
the pen size. The other SetPen can be used to set the color, size, and style of the pen. But
by letting the second and third parameters take on their default values, you can use the
second constructor to set just the color. Here's the code for these functions:

52 0 b j e ctWi n d ows Tutorial

void
TLine::SetPen(int penSize)
(

if (penSize < 1)
PenSize = l;

else
PenSize = penSize;

void
TLine: :SetPen(TColor &newColor, int penSize)
(

II If penSize isn't the default (0), set PenSize to the new size.
if (penSize)

PenSize = penSize;

Color = newColor;

Draw function
The Draw function draws the line in the window, taking that functionality from the
window's Paint function. This functionality is moved because the TLine object can now
dictate how it gets painted onscreen. Take a look at the code for the Draw function below
and compare this to the Paint function from Step 8. From a certain point, the two bits of
code are nearly identical:

bool
TLine::Draw(TDC &de) const
(

II Set pen for the de to the values for this line
TPen pen(Color, PenSize);
dc.SeleetObject(pen);

II Iterates through the points in the line i.
TPointsiterator j (*this);
bool first = true;

while (j) (
TPoint p = j++;

if (!first)
de. LineTo (p I ;

else (
de.MoveTo(p);
first = false;

de.RestorePen();
return true;

Chapter 9, Changing pens 53

After putting all this code into the TLine class, the TDrawWindow::Paint function is
greatly simplified:

void
TDrawWindow::Paint(TDC& de, bool, TRect&)
(

II Iterates through the array of line objects.
TLinesiterator i(*Lines);

while (i)
itt.Draw(dc);

Insertion and extraction operators
There also some changes to the insertion and extraction operators that are necessary to
handle the revised TLine class.

• The insertion operator is modified to write out the PenSize and Color member. It then
writes out the points just as it did before.

• The extraction operator reads in the data and uses the PenSize and Color data in the
SetPen function. Each point is read in from the file and added to the object.

Changes to the TDrawWindow class
There are a few fairly minor changes to the TDrawWindow class to accommodate the
revised TLine class:

• The Pen data member is constructed from the size and color of the current line.

• The SetPenSize function is removed. The function GetPenSize opens a TinputDialog for
the user to enter a new pen size in. GetPenSize then calls the function Line->SetPen to
actually set the pen size.

• The CmPenColor function is added to handle the CM_PENCOLOR event. This event
is sent from the new Tools menu choice Pen Color.

--CmPenColor function
The CmPenColor function opens a TChooseColorDialog for the user to select a color from.
Like TFileOpenDialog and TFileSaveDialog, TChooseColorDialog is an encapsulation of one
of the Windows common dialog boxes.

Also like TFileOpenDialog and TFileSaveDialog, the TChooseColorDialog constructor can
take up to five parameters, but in this case you need only two. The last three all have
default values. The two parameters you need to provide are a pointer to the parent
window and a reference to a TChooseColorDialog::TData object. In this case, the pointer to
the parent window is simply the this pointer. The TChooseColorDialog::TData object is
provided by colors.

54 ObjectWindows Tutorial

Setting the Color member of colors to a particular color makes that color (or its closest
equivalent displayed in the dialog box) the default color in the dialog box. By setting
Color to the color of the current pen, you ensure that the Color dialog box reflects the
current state of the application.

Setting the CustColors member of the colors object to some array of TColor objects sets
those colors in the Custom Colors section of the Color dialog box. You can use whatever
colors you want for the CustColors array. The values that are used in the tutorial produce
a range of monochrome colors that goes from black to white.

Creating and executing a TChooseColorDialog works exactly the same as for a
TFileOpenDialog or TFileSaveDialog. Although the Color dialog box has an extra button
(the Define Custom Colors button), that button is handled by the Windows part of the
common dialog box. Therefore there are only two possible results for the Execute
function, IDOK and IDCANCEL. If the user selects Cancel, you ignore any changes
from the dialog box.

On the other hand, if the user selects OK, you need to change the pen color to the new
color chosen by the user. The TChooseColorDialog places the color chosen by the user into
the Color member of the colors object. Color is a TColor, which fits nicely into the SetPen
function of a TLine object.

Here's the code for the CmPenColor function:

void
TDrawWindow::CmPenColor()
{

TChooseColorDialog::TData colors;
static TColor custColors[16] =
{

Ox010101L, Ox101010L, Ox202020L,
Ox404040L, Ox505050L, Ox606060L,
Ox808080L, Ox909090L, OxAOAOAOL,
OxCOCOCOL, OxDODODOL, OxEOEOEOL,

};

colors.Flags = CC_RGBINIT;

Ox303030L,
Ox707070L,
OxBOBOBOL,
OxFOFOFOL

colors.Color= TColor(Line->QueryColor());
colors.CustColors = custColors;
if (TChooseColorDialog(this, colors) .Execute() == IDOK)

Line->SetPen(colors.Color);

Chapter 9, Changing pens 55

Where to find more information
Here's a guide to where you can find more information on the topics introduced in this.
step:

• The TPen and TColor classes are discussed in Chapter 14 in the ObjectWindows
Programmer's Guide.

• Dialog boxes, including the TChooseColorDialog class, are discuss~d in Chapter 9 in
the ObjectWindows Programmer's Guide.

56 ObjectWindows Tutorial

Adding decorations
The only changes in Step 10 are in the InitMain Window function. But these changes let
you make your application more attractive and easier and more intuitive to use. In this
step, you'll add a control bar with bitmap button gadgets and a status bar that displays
the current menu choice. You can find the source for Step 10 in the files STEPlO.CPP and
STEPlO.RC in the directory EXAMPLES\ OWL\ TUTORIAL.

There are four main changes in this step:

• Changing the main window from a TFrameWindow to a TDecoratedFrame.

• Creating a status bar and inserting it into the decorated frame window.

• Creating a control bar, along with its button gadgets, and inserting it into the
decorated frame.

• Adding resources, such as a string table (which provides descriptions of each of the
available menu choices) and bitmaps for the button gadgets.

Changing the main window
Changing from a TFrameWindow to a TDecoratedFrame is quite easy. Because
TDecoratedFrame is based on TFrameWindow, a decorated frame can be used just about
anywhere that a regular frame window is used. In this case, just create a
TDecoratedFrame and pass it as the parameter to the SetMain Window function.

Even the constructors of the TFrameWindow and TDecoratedFrame are alike. The only
difference is the fourth parameter, which wasn't being used anyway. The fourth
parameter for TFrameWindow is a bool that tells the frame window whether it should
shrink to the size of its client window.

The fourth parameter for TDecoratedFrame is also a bool. This parameter indicates
whether the decorated frame should track menu selections. Menu tracking displays a
text description of the currently selected menu choice or button in a message bar or
status bar. If you specify true for this parameter, you must supply a message or status

Chapter 10, Adding decorations 57

bar for the window. If you don't, your application will crash the first time it tries to send
. _,g· message to the message or status bar.
··,-~ .

1£ you're using a status bar, you must inclq.de the resources for it in your resource file.
These resources are contained in the file STATUSBA.RC in the INCLUDE\ OWL
directory.

The only other difference is that the decorated frame requires some preparation, such as
adding decorations like the control bar and status bar, before it can become the main
window. So instead of constructing and setting the window in one step, you must
construct the window, prepare it, then set it as the main window.

Creating the status bar
Status bars are created using the TStatusBar class. TStatusBar is based on the
TMessageBar class, which is itself based on TGadgetWindow. Both message bars and
status bars display text messages. But status bars have more options than message bars.
For example, you can have multiple text gadgets, styled borders, and mode indicators
(such as Insert or Overwrite mode) in a status bar.

The TStatusBar constructor takes five parameters, although you only use the first two.
The rest of the parameters take on their default values:

• The first parameter is a pointer to the status bar's parent window. In this case, use
frame, which is the pointer to the decorated frame window constructed earlier.

• The second parameter is a TGadget::TBorderstyle enum. It can be one of None, Plain,
&lised, Recessed, or Embossed. This parameter determines the style of the status bar.
This parameter defaults to Recessed.

• The third parameter is a TModelndicator enum. It determines the keyboard modes
that the status bar should show. These indicators can be one or more of
ExtendSelection, CapsLock, NumLock, ScrollLock, Overtype, and RecordingMacro. This
parameter defaults to 0, meaning to indicate no keyboard modes.

• The fourth parameter is a TFont *. This contains the font that should be used in the
status bar. This defaults to TGadgetWindowFont.

• The fifth parameter is a TModule *.It defaults to 0.

Here is the status bar constructor:

TStatusBar* sb = new TStatusBar(frarne, TGadget: :Recessed);

Once the status bar is created, it is ready to be inserted into the decorated frame. This is
described on page 61.

Creating the control bar
Creating the control bar is more involved than creating the status bar. You first construct
the actual TControlBar object. Then you create the gadgets that make up the controls on
the bar and insert them into the control bar.

58 ObjectWindows Tutorial

Constructing TControlBar
The TControlBar constructor takes four parameters, although you need to use only the
first parameter here. The rest of the parameters take on their default values:

• The first parameter is a pointer to the parent window. As with the status bar, use
frame here to make the decorated frame the control bar's parent.

• The second parameter is a TTileDirection enum. A TTileDirection enum can have two
values, Horizontal and Vertical. This tells the control bar which way to tile its controls.
This parameter defaults to Horizontal.

• The third parameter is a TFont *.This contains the font that should be used in the
status bar. This defaults to TGadgetWindowFont.

• The fourth parameter is a TModule *. It defaults to 0.

Here is the control bar constructor:

TControlBar *cb =new TControlBar(frame);

Building button gadgets
Button gadgets are used as control bar buttons. They associate a bitmap button with an
event identifier. When the user presses a button gadget, it sends that event identifier.
You can set this up so that pressing a button on the control is just like making a choice
from a menu. In this section, you'll see how to set up buttons to replicate each of your
current menu choices.

Button gadgets are created using the TButtonGadget class. The TButtonGadget
constructor takes six parameters, of which you need to use only the first three:

• The first parameter is a reference to a TResld object (see the note on page 43 regarding
the TResld class). This should be the resource identifier of the bitmap you want on the
button. There are no real restrictions on the size of the bitmap you can use in a button
gadget. There are, however, practical considerations: the control bar height is based
on the size of the objects contained in the control bar. If your bitmap is excessively
large, the control bar will be also.

• The second parameter is the gadget identifier for this button gadget. Usually the
gadget identifier, event identifier, and bitmap resource identifier are the same. For
example, the button gadget for the File New command uses a bitmap resource called
CM_FILEOPEN, has the gadget identifier CM_FILEOPEN, and posts the event
CM_FILEOPEN.

The bitmap is given the same identifier in the resource file as the event identifier. This
makes it a little easier on you when working with the code. This is not a rule,
however, and you can name the bitmap and event identifier whatever you like. The
only stipulation is that the event identifier must be defined and have some sort of
processing enabled and the resource identifier must be valid.

You should also notice that there are a number of entries in the application's string
resource table that have the same IDs as the gadgets and events. When a string exists

Chapter 10, Adding decorations 59

with the same identifier as a button gadget, that string is displayed in the status bar
when the gadget is pressed.

• The third parameter is a TType en um. This indicates what type of button this is. There
are three possible button types, Command, Exclusive, and NonExclusive. In this
application, all the buttons are command buttons. This parameter defaults to
Command.

• The fourth parameter is a bool indicating whether the button is enabled. By default
this parameter is false.

• The fifth parameter is a TState enum. This parameter indicates the initial state of the
button, and can be Up, Down, or Indeterminate. This parameter defaults to Up.

• The sixth parameter is a bool that indicates the repeat state of the button. If the repeat
state is true, the button repeats when it is pressed and held. By default, this parameter
is false.

Separator gadgets
There is another type of gadget commonly used when constructing control bars, called a
separator gadget. Normally gadgets in a control bar are right next to each other. A
separator gadget provides a little bit of space between two gadgets. This lets you
separate gadgets into groups, place them in predetermined spots on the control bar, and
soon.

Separator gadgets are contained in the TSeparatorGadget class. This is a simple class that
takes a single int parameter. By default the value of this parameter is 6. This parameter
indicates the number of pixels of space the separator gadget should take up.

Inserting gadgets into the control bar
Once your gadgets are constructed, you need to insert them into the control bar. The ·
control bar can take gadgets because it is derived from the class TGadgetWindow.
TGadgetWindow provides the basic functionality that lets you use gadgets in a window.
TControlBar refines that functionality, producing a control bar.

You can insert gadgets into the control bar using the Insert function. This version of the
Insert function is inherited by TControlBar from TGadgetWindow (later you'll use another
version of this function contained in TDecoratedFrame). This function takes three
parameters, although you need to use only the first parameter in the tutorial application:

• The first parameter is a reference to a TGadget or TGadget-derived object.

• The second parameter is a TPlacement en um, which can have a value of Before or After.
This parameter indicates whether the gadget should be placed before or after the
gadget's sibling. The default value is After. This parameter has no effect if there is no
sibling specified.

• The gadget's sibling is specified by the third parameter, which is a TGadget *.The
sibling should have already been inserted into the control bar. This parameter
defaults to 0.

60 ObjectWindows Tutorial

In the tutorial application, constructing the gadgets and inserting them into the control
bar is accomplished in a single step. Here is the code where the gadgets are inserted into
the control bar:

cb->Insert(*new TButtonGadget(CM_FILENEW, CM_FILENEW,
TButtonGadget::Command));

cb->Insert(*new TButtonGadget(CM_FILEOPEN, CM_FILEOPEN,
TButtonGadget::Command));

cb->Insert(*new TButtonGadget(CM_FILESAVE, CM_FILESAVE,
TButtonGadget::Command));

cb->Insert(*new TButtonGadget(CM_FILESAVEAS, CM_FILESAVEAS,
TBuLlunGcHlgeL: :Cornmand));

cb->Insert(*new TSeparatorGadget);
cb->Insert(*new TButtonGadget(CM_PENSIZE, CM_PENSIZE,

TButtonGadget: :Command));
cb->Insert(*new TSeparatorGadget);
cb->Insert(*new TButtonGadget(CM_ABOUT, CM_ABOUT,

TButtonGadget: :Command));

Notice that the button gadgets replicate the menu commands you already have. This
provides an easy way for the user to access frequently used menu commands. Of
course, you aren't restricted to using gadgets in a control bar as substitutes or shortcuts
for menu commands. Using the TType parameter, you can set up gadgets on a control
bar to work like radio buttons (by using Exclusive with a group of gadgets), check boxes
(using NonExclusive), and so on.

Inserting objects into a decorated frame
Now that you've constructed the decorations for your TDecoratedFrame window, all you
need to do is insert the decorations into the window and make the window the main
window.

Inserting decorations into a decorated frame is similar to inserting gadgets into a control
bar. The TDecoratedFrame::Insert function takes two parameters:

• The first is a reference to a TWindow or TWindow-derived object. This TWindow object
is the decoration. In this case, the TWindow-derived objects are the TStatusBar object
and the TControlBar object.

• The second parameter is a TLocation enum. This parameter can have one of four
values, Top, Bottom, Left, or Right. This indicates where in the decorated frame the
gadget is to be placed.

Here is the code for inserting the decorations into the decorated frame:

II Insert the status bar and control bar into the frame
frame->Insert(*sb, TDecoratedFrame::Bottom);
frame->Insert(*cb, TDecoratedFrame::Top);

Ch apter 1 O, Adding decorations 61

Once you've inserted the decorations into the frame, the last thing you have to do is set
the main window to frame and set up the menu:

II Set the main window its menu
SetMainWindow(frame);
GetMainWindow I)->AssignMenu I "COMMANDS");

Where to find more information
Here's a guide to where you can find more information on the topics introduced in this
step:

• Decorated frame windows are discussed in Chapter 7 in the ObjectWindows
Programmer's Guide.

• Gadgets are discussed in Chapter 12 in the Object Windows Programmer's Guide.

• Status bars and control bars are discussed in both Chapter 7 and Chapter 12 in the
ObjectWindows Programmer's Guide.

62 0 bj ectW ind ows Tu tori al

Moving to MDI
This chapter describes how to convert the application created in Step 10 to use the
Multiple Document Interface, or MDI for short. The application in Step 10 is what is
known as a Single Document Interface, or SDI, application. That means the application
can support and display only a single document at a time.

In the sense that it's used here, document doesn't have the same meaning you might be
used to. Instead of a paper document or a word-processing document, a document
refers to any set of data that your application displays and manipulates. In the case of
the tutorial application, documents are the drawing files that the application creates.
Converting the application to use MDI adds the ability to support multiple drawings
open at the same time in multiple child windows. Figure 11.1 shows the difference
between the SDI version of the Drawing Pad application and the MDI version that
you'll produce in this step.

Figure 11.1 SDI versus MDI Drawing Pad application

SDI version MDI version

Eile

Chapter 11, Moving to MDI 63

Understanding the MDI model
An MDI application functions a little differently from an SDI application. In Step 10, the
Drawing Pad application displayed a single drawing in a window. The window that
actually displayed the drawing was a client of the frame window. The frame window
managed general application tasks, such as menu handling, resizing, painting menus
and control bars, and so on. The client window managed tasks specific to the
application, such as handling mouse movements and button clicks in the client area,
painting the lines in the drawing, responding to application-specific events, and so on.

In comparison, MDI applications divide tasks up three ways instead of two:

• The frame window functions much as it does in the SDI application, handling basic
application functionality.

• The client window handles tasks related to creating, managing, and closing MDI
child windows, along with any related functions. For example, the client window
might manage the File I Open command since, in order to open an MDI child
window, you usually need something to display in it.

• MDI child windows display the data in an MDI application and give the user the
ability to manipulate and control the data. These windows handle application­
specific tasks, much like the client window did Step 10.

In this step, you'll take the example from Step 10 and restructure it to support MDI
functionality. It's not as complicated as it may seem; most of the new classes you'll
construct can be taken straight from the existing TDrawWindow class!

Adding the MDI header files
There are a number of new header files you need to include to add MDI capability to
your application. This section describes the header files that need to be changed or
added. It also describes the classes that are defined in each header file. '

Changing the resource script file
You need to change the include statement for the STEPlO.RC resource script file to
include the STEPll.RC resource script file. There are only two changes you need to
make to STEPl l.RC:

• Include the resource header file owl\mdi.rh.

• Add a pop-up menu called Window between the Tools menu and the Help menu.
This menu should have four items, described in Table 11.1.

Table 11.1 MDI Window menu items and identifiers

Cascade CM_CASCADECHILDREN

Tile CM_TILECHILDREN

64 ObjectWindows Tutorial

Table 11.1 MDI Window menu items and identifiers (continued)

Arrange Icons

Close All

CM_ARRANGEICONS

CM_CLOSECHILDREN

The functions that handle these events are described later on page 72.

Replacing the frame window header file
In the place of owl \decframe.h, you need to include owl \decmdifr.h. This header file
contains the definition of the TDecoratedMDIFrame class, which is derived from
TMDIFrame and TDecoratedFrame. TMDIFrame, defined in the owl\mdi.h header file,
adds the support for containing an MDI client window to the support already provided
by TFrameWindow for command processing and keyboard navigation. MDI client
windows are discussed on page 65. As shown in the previous step of the tutorial,
TDecoratedFrame provides the ability to support decorations such as control bars and
status bars. Since the tutorial application already supports decorations from the
previous step, you can use the decorated version of the MDI frame window to keep this
functionality.

Adding the MDI client and child header files
You need to add the owl \mdi.h and owl \mdichild.h header files. owl \mdi.h contains
the definition of the TMDIFrame and TMDIClient classes. TMDIClient provides the
functionality necessary for managing MDI child windows. MDI child windows are the
windows that the user of your application actually works with and that display the data
contained in each document. TMDIClient provides the ability to

• Close all of the open MDI child windows

• Find the active MDI child window

• Initialize a new MDI child object

• Create a new MDI child window

• Arrange and manage MDI child windows, including arranging icons for minimized
child windows and cascading or tiling open child windows

owl\mdichild.h contains the definition of the TMDIChild class, which is derived from
TWindow. TMDIChild overrides a number of TWindow's function to provide the ability
to function as an MDI child.

You usually derive new classes from both TMDIClient and TMDIChild to provide the
specific functionality required by your application. Creating new classes from
TMDIClient and TMDIChild to support the Drawing Pad application is discussed later in
this step.

Chapter 11, Moving to MDI 65

Changing the frame window
The first step in moving the drawing application to MDI is to change the frame window.
MDI applications use specialized MDI frame windows. As discussed earlier,
ObjectWindows provides two MDI frame window classes, TMDIFrame and
TDecoratedMDIFrame. Because we're using the TDecoratedMDIFrame class for the frame
window, discussion of the TMDIFrame class is left for Chapter 7 of the Object Windows
Programmer's Guide.

Here's the constructor for TDecoratedMDIFrame:

TDecoratedMDIFrame(const char far* title,
TResid menuResid,

where:

TMDIClient& clientWnd = *new TMDIClient,
bool trackMenuSelection = false,
TModule* module= 0);

• title is the caption for the frame window.

• menuResid is the resource identifier for the frame window's main menu.

• clientWnd is the MDI client window for the frame window.

• trackMenuSelection indicates whether this frame should track menu selections. This is
the same thing as menu tracking for the TDecoratedFrame you constructed in the last
step.

• module is a pointer to an program module. module is used to initialize the TWindow
base object.

Besides adding the owl\decmdifr.h header file, two other changes are required to use a
TDecoratedMDIFrame in the tutorial application. The first is changing the line in the
TDrawApp::InitMainWindow function where the frame window is created:

TDecoratedMDIFrame *frame = new TDecoratedMDIFrame ("Drawing Pad",
TResid ("COMMANDS") '
*new TDrawMDIClient,
true);

As before, the frame window caption is Drawing Pad. The frame window is initialized
with the COMMANDS menu resource. The client window is a new TDrawMDIClient,
which is a TMDIClient-derived class that you'll define a little bit later in this step. The
final parameter indicates that menu tracking should be on for this window. The module
parameter is left to its default value of 0.

The second change is removing the AssignMenu call at the end of the InitMain Window
function of Step 10. This call is no longer necessary because the menu resource is set up
by the second parameter of the TDecoratedMDIFrame constructor.

Your InitMain Window function should now look something like this:

void
TDrawApp: :InitMainWindow()
{

66 ObjectWindows Tutorial

II Create a decorated MDI frame
TDecoratedMDIFrame *frame = new TDecoratedMDIFrame ("Drawing Pad" ,

TResid ("COMMANDS")'
*new TDrawMDIClient,
true);

II Construct a status bar
TStatusBar* sb =new TStatusBar(frame, TGadget::Recessed);

II Construct a control bar
TControlBar *cb =new TControlBar(frame);
cb->IllserL(*uew TBuLLuuGctdyeL(CM_FILENEW, CM_FILENEW, TButtunGadgeL::Command));
cb->Insert(*new TButtonGadget(CM_FILEOPEN, CM_FILEOPEN, TButtonGadget::Command));
cb->Insert(*new TButtonGadget(CM_FILESAVE, CM_FILESAVE, TButtonGadget::Command));
cb->Insert(*new TButtonGadget(CM_FILESAVEAS, CM_FILESAVEAS, TButtonGadget::Command));
cb->Insert(*new TSeparatorGadget);
cb->Insert(*new TButtonGadget(CM_PENSIZE, CM_PENSIZE, TButtonGadget::Command));
cb->Insert(*new TButtonGadget(CM_PENCOLOR, CM_PENCOLOR, TButtonGadget::Command));
cb->Insert(*new TSeparatorGadget);
cb->Insert(*new TButtonGadget(CM_ABOUT, CM_ABOUT, TButtonGadget::Command));

II Insert the status bar and control bar into the frame
frame-> Insert (*sb, TDecoratedFrame: :Bottom);
frame->Insert(*cb, TDecoratedFrame::Top);

II Set the main window and its menu
SetMainWindow(frame);

These are the only changes necessary to the TDrawApp class to support MDI
functionality.

Creating the MDI window classes
The functionality contained in the TDraw Window class in the previous step needs to be
divided up into two classes in the MDI model. The reason for this is that there are two
windows that handle messages and user input:

• MDI client window are created during the construction of the MDI frame class. This
window is open as long as the frame window is still open (in this case, for the life of
the application). This window handles the CM_FILEOPEN, CM_FILENEW, and
CM_ABOUT commands.

When the application is first started up, or when there are no drawings open, the only
commands that make sense are opening drawing files, creating new drawings, and
opening the About... dialog box. Other commands available in the tutorial
application, such as saving drawings, changing the pen size or color, and so on, apply
to a particular drawing, which must already be open and displayed in a child
window.

• MDI child windows are created by the MDI client window in response to
CM_FILENEW or CM_FILEOPEN commands handled by the client window. In the

C h apt e r 1 1 , M o v i n g to M D I 67

tutorial application, MDI child windows haridle the events handled by
TDrawWindow in Step 10 that aren't handled by TDrawMDIClient:

• WM_LBUI'TONDOWN
• WM_RBUTTONDOWN
• WM_MOUSEMOVE
• WM_LBUTIONUP
• CM_FILESA VE
• CM_FILESA YEAS
• CM_PENSIZE
• CM_PENCOLOR

Note that each of these commands pertains to a specific drawing or window; that is,
each event only makes sense in the context of an open drawing contained in a child
window. For example, .in order for the user of the application to save a drawing, there
must already be a drawing open. Contrast this to the events handled by the MDI
client window, which either open a new child window containing a new or existing
drawing or are independent of a drawing altogether.

The next sections discuss how to create the MDI client and child window classes for the
tutorial application.

Creating the MDI child window class
You need to create a class declaration for the TDrawMDIChild class, along with defining
the functions for the class. You can reuse most of the class declaration for TDraw Window
from Step 10, along with most of the functions with only a few changes.

Declaring the TDrawMDl.Child class
The class declaration for TDrawMDIChild is very similar to the declaration of the
TDrawWindow class from SteplO. Here are the changes you need to make:

• Change all occurrences of TDrawWindow to TDrawMDIChild. This includes the name
of the destructor, which otherwise doesn't change.

• Remove the CmfileNew, CmFileOpen, and CmAbout functions from the class
declaration.

• The constructor for TMDIChild requires a TMDIClient reference in place of
TDrawWindow's TWindow *.This parameter indicates the parent of the MDI child,
window. In this case, you want to add a TDrawMDIClient reference to the constructor
and pass this to the TMDIChild constructor. In addition, you should add a const char*
for the MDI child window's caption.

• In the response table, remove the entries for handling the CM_FILENEW,
CM_FILEOPEN, and CM_ABOUT events.

Your class declaration should look something like this:

class TDrawMDIChild : public TMDIChild {
public:

TDrawMDIChild(TDrawMDIClient& parent, const char* title= 0);

68 ObjectWindows Tutorial

-TDrawMDIChild() { delete DragDC; delete Line; delete Lines; delete FileData; J

protected:
TDC *DragDC;
TPen *Pen;
TLines *Lines;
TLine *Line; II To hold a single line at a time that later gets

II stuck in Lines
TOpenSaveDialog::TData

*FileData;
bool IsDirty, IsNewFile;

void GetPenSize(); II GetPenSize always calls Line->SetPen().

};

II Override member function of TWindow
bool CanClose();

II Message response functions
void EvLButtonDown(uint, TPoint&);
void EvRButtonDown(uint, TPoint&);
void EvMouseMove(uint, TPoint&);
void EvLButtonUp(uint, TPoint&);
void Paint(TDC&, bool, TRect&);
void CmFileSave();
void CmFileSaveAs();
void CmPenSize();
void CmPenColor();
void SaveFile();
void OpenFile();

DECLARE_RESPONSE_TABLE(TDrawMDIChild);

DEFINE_RESPONSE_TABLEl(TDrawMDIChild, TWindow)
EV_WM_LBUTTONDOWN,
EV_WM_RBUTTONDOWN,
EV_WM_MOUSEMOVE,
EV_WM_LBUTTONUP,
EV_COMMAND(CM_FILESAVE, CmFileSave),
EV_COMMAND(CM_FILESAVEAS, CmFileSaveAs),
EV_COMMAND(CM_PENSIZE, CmPenSize)'
EV_COMMAND(CM_PENCOLOR, CmPenColor),

END_RESPONSE_TABLE;

Creating the TDrawMDIChild functions
Just about all of the functions in TDrawMDIChild can be carried over from the
TDrawWindow class. The only thing you need to do is change the class identifier in the
function declarations from TDrawWindow to TDrawMDIChild. For example, the
declaration for the EvLButtonDown function changes from this:

void
TDrawWindow::EvLButtonDown(uint, TPoint& point)

Chapter 11, Moving to MDI 69

to this:

void
TDrawMDIChild::EvLButtonDown(uint, TPoint& point)
{

Change the class identifiers for the followillg functions:

GetPenSize
EvLButtonDawn
EvMouseMove
Paint
CmFileSaveAs
CmPenColor
Open File

Can Close
EvRButtonDown
EvLButtonUp
CmFileSave
CmPenSize
Savefile

There is one minor change you need to make to the CmFileSaveAs function. Because the
name of the drawillg usually changes when the user calls the File I Save As command,
you need to set the caption of the window to the file name. To do this, use the SetCaption
function. This function takes a char*, which-in this case should be the FileName member
of the FileData object. The CmFileSa,veAs function should now look like this:

void
· TDrawMDIChild: :CmFileSaveAs ()

{

if (IsNewFile)
strcpy (FileData->FileName, "") ;

if ((TFileSaveDialog(this, *FileData)) .Execute() == IDOK)
SaveFile();

SetCaption(FileData->FileName);

Creating the TDrawMDIChild constructor
The main difference between TDrawMDIChild and the TDrawWindow class, other than
the fact that TDrawMDIChild has three fewer functions than TDrawWindow, is in the
constructor.

Initializing data members
Like TDrawWindow, TDrawMDIChild contains the device context object that displays the
drawillg and manages the arrays that contain the line drawing information. It also
contains the IsDirty flag, setting it to false when the drawing is first created or opened
and setting it to true when the drawing is modified. So the variables that contain the
data for these functions-DragDC, Line, Lines, and IsDirty-need to be initialized in the
TDrawMDIChild constructor. This looks just the same as their initialization in the
TDrawWindow class.

70 ObjectWindows Tutorial

DragDC = 0;
Lines= new TLines(S, 0, 5);
Line = new TLine(TColor: :Black, 11;
IsDirty = false;

There are some notable changes from TDrawWindow's constructor here, however. First,
the Init function is no longer called. TMDIChild does not provide an Init function.
Instead, you should just call the base class constructor in the TDrawMDIChild
initialization list, like so:

TDrawMDIChild::TDrawMDIChild(TDrawMDIClient& parent, const char* title)
TMDIChild(parent, title)

Initializing file information data members
You can no longer simply initialize the IsNewFile variable to true, assuming that you are
creating a new drawing whenever you create a window. In earlier steps this was a valid
assumption: when the window was created, it hadn't opened a file yet, but was
available to be drawn in. The IsNewFile flag was only set to false once a drawing had
either been saved to a file or an existing drawing had been opened from a file into a
window that had already been created.

In this case, the MDI client parent window will handle the file creation and opening
operations. It then creates a child window to contain the new or existing drawing. The
child window has to find out from the parent whether this is a new drawing or an
existing drawing opened from a file.

For the same reason, the MDI child window does not necessarily create the
TOpenSaveDialog::TData referenced by the FileData member. The TDrawMDIClient class
has a function (or will have, when you get around to creating it) called GetFileData. This
function takes no parameters and returns a pointer to a TOpenSaveDialog::TData object.
If the MDI client window is creating the child window in response to a CM_FILEOPEN
event, it creates a new TOpenSaveDialog::TData object containing the information about
the file to be opened. GetFileData returns a pointer to that object. But if the client window
is creating the child window in response to a CM_FILENEW event, TDrawMDIClient
doesn't create a TOpenSaveDialog::TData object and GetFileData returns 0.

So the MDI child can find out whether this is a new drawing or not by testing the return
value of GetFileData. If GetFileData returns a valid object, then it should assign the
pointer to this object to its FileData member and set IsNewFile to false. It can then call the
OpenFile function to load the drawing just as it did before. If GetFileData doesn't return a
valid object (that is, it returns 0), the MDI child should set IsNewFile to true and create a
new TOpenSaveDialog::TData object. The file name in the new object is set in the
CmFileSaveAs function, just as it was in previous steps.

The constructor for TDrawMDIChild should look something like this:

TDrawMDIChild: :TDrawMDIChild(TDrawMDIClient& parent, const char* title)
: TMDIChild(parent, title)

DragDC = O;

Chapter 11, Moving to MDI 71

Lines= new TLines(S, 0, 5);
Line= new TLine(TColor: :Black, 1);
IsDirty = false;

II If the parent returns a valid FileData member, this is an open operation
I I Copy the parent's FileData member, .since that' 11 go away
if(FileData = parent.GetFileData()) {

II Not a new file
IsNewFile = false;
OpenFile () ;

II But if the parent returns 0, this is a new operation
else {

II This is a new file
IsNewFile = true;
II Create a new FileData member
FileData =new TOpenSaveDialog::TData(OFN_HIDEREADONLYIOFN_FILEMUSTEXIST,

'Point Files (*.PTS) l*.ptsl', 0, ••,
"PTS");

Note that, in the case of an open operation, the child assigns the pointer returned by
GetFileData to its FileData member. Once this is done, the child takes over responsibility
for the TOpenSaveDialog::TData object, including responsibility for cleaning it up. Since
this is already done in the destructor, you don't have to do anything else.

Creating the MDI client window class
The TDrawMDIClient class manages the multiple child windows open on its client area
and all the attendant functionality, such as creating new children, closing windows
either singly or all at one time, tiling or cascading the windows, and arranging the icons
of minimized children. TDrawMDIClient inherits a great deal of this functionality from
the TMDIClient class.

· TMDIClient functionality
It is important to understand the TMDIClient class, for the main reason that it is going to
do a lot of work for you. TMDIClient is virtually derived from the TWindow class.
TMDIClient overrides two of TWindow's virtual functions, PreProcessMsg and Create, to
provide specific keyboard and menu handling functionality required by the client ,
window. TMDIClient also handles a number of events, which are described in Table
11.2. '

Table 11.2 Events handled by TMDIClient

CM_CREATECHILD

CM_TILECHILDREN

CmCreateChild

CmTileChildren

CM_TILECHILDRENHORIZ CmTileChildrenHoriz

72 ,Objec!Wi nd ows Tu to rial

Creates a new MDI child window

Tiles all non-minimized MDI child windows
vertically

Tiles all non-minimized MDI child windows
horizontally

Table 11.2 Events handled by TMDIClient (continued)

CM_CASCADECHILDREN CmCascadeChildren

CM_ARRANGEICONS CmArrangelcons

CM_CLOSECHILDREN CmOoseChildren

Cascades all non-minimized MDI child
windows

Arranges the icons of all minimized MDI child
windows

Closes all open MDI child windows

The Drawing Pad application actually only provides menu items for four of these­
CM_TILECHILDREN, CM_CASCADECHILDREN, CM_ARRANGEICONS, and
CM_CLOSECHILDREN.

These response functions are simply wrappers for other TMDIClient functions that
actually perform the work necessary. Each response function calls a function with the
same name without the Cm prefix, so that CmCreateChild calls the CreateChild function.
The only exception is CmTileChildrenHoriz, which calls the TileChildren function with the
MDITILE_HORIZONTAL parameter.

Another function provided by TMDIClient is the GetActiveMDIChild function, which
returns a pointer to the active MDI child window. Note that there can only be one active
MDI child window at any time, but there is always one active MDI child window, even
if all the MDI child windows are minimized.

There is one other function to discuss, InitChild. This is the only function in TMDIClient
that you need to override in TDrawMDIClient. InitChild and overriding it to work with
TDrawMDIClient are discussed on page 75.

Data members in TDrawMDIClient
TDrawMDIClient requires a couple of new data members. These should both be
declared private.

The first is NewChildNum. The only function of this variable is to keep track of the
number of new drawing created by the CmFileNew function. This number is used for the
window caption of all new drawings. It is initialized to 0 in the TDrawMDIClient
constructor.

The second is FileData, a pointer to a TOpenSaveDialog::TData object, just like the FileData
member of TDrawMDIChild. FileData is used to hold the file information when a user
opens an existing file. It is set to 0 in the constructor. FileData is also set to 0 once the MDI
child window has been opened. As shown on page 71, the object returned by
GetFileData is assigned to the FileData member of TDrawMDIChild. The object returned
by GetfileData is actually the object (or lack thereof in the case of a new file) pointed to
by TDrawMDIClient's FileData member.

Adding response functions
In addition to the events handled by TMDIClient, TDrawMDIClient also handles the
events formerly handled by TDrawWindow and not handled by TDrawMDIChild­
CM_FILENEW, CM_FltEOPEN, and CM_ABOUT. The CmAbout response function is
mostly unchanged from the TDrawWindow version, other than changing the class

Chapter 11, Moving to MDI 73

specifier. On the other hand, the CmFileNew and CmFileOpen functions must be
substantially changed. ·

CmFileNew
The CmFileNew function is actually simplified from its TDrawWindow version. It no
longer has to deal with flushing the line arrays, invalidating the window, and setting
flags. Instead it sets FileData to 0 so that the MDI child object can tell that it is displaying
a new drawing, increments NewChildNum, then calls CreateChild. CreateChild is the
function that actually creates and displays the new MDI child window. It is discussed in
more detail in the discussiqn of the InitChild function on page 75.

The CmFileNew function should now look something m<e this:

void
TDrawMDIClient::CmFileNew()
{

FileData = O;
NewChildNum++;
CreateChild () ;

CmFileOpen
There are a number of differences between the TDraw Window version of CmFileOpen
and the TDrawMDIClient version.

• The TDrawMDIClient version no longer needs to call the CanClose function, because
no windows need to be closed to open a new window.

• The TDrawMDIClient needs to create a new TOpenSaveDialog::TData object to use with
the TFileOpenDialog object.

• If the call to TFileOpenDialog.Execute returns ID~OK, the TDrawMDIClient version
calls CreateChild instead of OpenFile.

• Once the CreateChild call returns, you need to set FileData to 0. Although it may seem
like you should delete the FileData object before discarding the pointer to it, the object
is actually taken over by the MDI child object, which deletes the object when the MDI
child is destroyed.

Your CmFileOpen function should look something like this:

void
TDrawMDIClient::CmFileOpen()
{

II Create FileData.
FileData =new TOpenSaveDialog::TData(OFN_HIDEREADONLYIOFN_FILEMUSTEXIST,

"Point Files (*. PTS) I *. pts I " , 0, "",
"PTS");

I I As long as the file open operation goes OK ...
if ((TFileOpenDialog(this, *FileData)) .Execute() == IDOK)

II Create the child window.
CreateChild () ;

II FileData is no longer needed.

74 ObjectWindows Tutorial

FileData = O;

Get File Data
The only new function required for TDrawMDIClient is GetFileData. This function is
called by TDrawMDIChild in its constructor. This function should take no parameters
and return a pointer to a TOpenSaveDialog::TData object. Its function is to return a
pointer to the object pointed to by TDrawMDIClient's FileData member. If FileData
references a valid object (that is, during a file open operation), GetFileData should return
FileData. If FileData doesn't reference a valid object (that is, during a file new operation),
GetFileData should return 0.

The actual function definition is very simple and can be inlined by defining the function
inside the class declaration. Your GetFileData function should look something like this:

TOpenSaveDialog:: TData *GetFileData () (return FileData ? FileData : 0; }

Overriding lnitChild
The only TMDIClient function that TDrawMDIChild overrides is the InitChild function.
InitChild takes no parameters and returns a pointer to a TMDIChild object. The
CreateChild function calls InitChild before creating a new MDI child window. It is in
InitChild that you create the TMDIChild or TMDIChild-derived object for the MDI child
window. This is the only function of TMDIClient that you'll override when you create
the TDrawMDIClient class.

The InitChild function for TDrawMDIClient is fairly straightforward. If FileData is 0, you
should create a character array to contain a default window title. This can be initialized
using the value of NewChildNum so that each new drawing has a different title.

Then you should create a TMDIChild* and create a new TDrawMDIChild object. The
constructor for TDrawMDIChild takes two parameters, a reference to a TDrawMDIClient
object for its parent window and a const char* containing the MDI child window's
caption. In this case, the first parameter should be the dereferenced this pointer. The
second parameter should be either the FileName member of the FileData object if FileData
references a valid object or the character array you created earlier if not.

Once the MDI child object has been created, you need to call the Setlcon function for the
object. Setlcon associates an icon resource with the function's object. This icon is
displayed in the client area when the child window is minimized. You can set the icon to
the icon provided for the tutorial application called IDI_TUTORIAL.

The last step of the function is to return the TMDIChild pointer. Your InitChild function
should look something like this:

TMDIChild*
TDrawMDIClient::InitChild()
(

char title[lSJ;
if (! FileData)

wsprintf (title, "New drawing %d", NewChildNum);
TMDIChild* child= new TDrawMDIChild(*this, FileData? FileData->FileName title);
child->Seticon(GetApplication(), TResid("IDI_TUTORIAL"));

Chapter 11, Moving to MDI 75

return child;

Where to find more information
MDI frame, client, and child windows are described in Chapter 7 in the Object Windows
Programmer's Guide.

76 0 bj ectWin d ows Tu tori al

Using the DocMew programming
model

Step 12 introduces the Doc/View model of programming, which is based on the
principle of separating data from the interface for that data. Essentially, the data is
encapsulated in a document object, which is derived from the TDocument class, and
displayed on the screen and manipulated by the user through a view object, which is
derived from the TView class.

The Doc/View model permits a greater degree of flexibility in how you present data
than does a model that links data encapsulation and user interface into a single class.
Using the Doc/View model, you can define a document class to contain any type of
data, such as a simple text file, a database file, or in this tutorial, a line drawing. You can
then create a number of different view classes, each one of which displays the same data
in a different manner or lets the user interact with that data in a different way.

For Step 12, however, you'll simply convert the application from its current model to the
Doc/View model. Step 12 uses the SDI model so that you can more easily see the
changes necessary for converting to Doc/View without being distracted by the extra
code added in Step 11 to support MDI functionality. (You'll create an MDI Doc/View
application in Step 13.) But even though the code for Step 12 will look very different
from the code from Step 10, the running application for Step 12 will look nearly identical
to that of Step 10. You can find the source for Step 12 in the files STEP12.CPP,
STEP12.RC, STEP12DV.CPP, and STEP12DV.RC in the directory EXAMPLES\ OWL\
TUTORIAL.

Organizing the application source
The source for Step 12 is divided into four source files:

• STEP12.CPP contains the application object and its member definitions. It also
contains the OwlMain function.

Chapter 12, Using the Doc/View programming model 77

• STEP12.RC contains identifiers for events controlled by the application object, the
resources for the frame window and its decorations, theAbout dialog box, and the
application menu.

• STEP12DV.CPP contains the TLine class, the document class TDrawDocument, the
view class TDrawView, and the associated member function definitions for each of
these classes.

• STEP12DV.RC contains identifiers for events controlled by the view object and the
resources for the view.

You should divide your Doc/View code this way to distinguish the document and its
supporting view from the application code. The application code provides the support
framework for the document and view classes, but doesn't contribute directly to the
functionality of the Doc/View model. This also demonstrates good design practice for
code reusability.

DocNiew model
The Doc/View model is based on three ObjectWindows classes:

• The TDocument class encapsulates and controls access to a set of data. A document
object handles user access to that data through input from associated view objects. A
document object can be associated with numerous views at the same time (for the
sake of simplicity in this example, the document object is associated with only a
single view object).

• The TView class provides an interface between a document object and the user
interface. A view object controls how data from document object is displayed on the
screen. A view object can be associated with only a single document object at any one
time.

• The TDocManager class coordinates the associations between a document object and
its view objects. The document manager provides a default File menu and default
handling for each of the choices on the File menu. It also maintains a list of document
templates, each of which specifies a relationship between a document class and a
view class.

The TDocument and TView classes provide the abstract functionality for document and
view objects. You must provide the specific functionality for your own document and
view classes. You must also explicitly create the document manager and attach it to the
application object. You must also provide the document templates for the document
manager. These steps are described in the following sections.

TDrawDocument class
The TDrawDocument class.is derived from the ObjectWindows class TFileDocument,
which is in turn derived from the TDocument class. TDocument provides a number of
input and output functions. These virtual functions return dummy values and have no

78 ObjectWindows Tutorial

real functionality. TFileDocument provides the basic functionality required to access a
data file in the form of a stream.

TDrawDocument uses the functionality contained in TFileDocument to access line data
stored in a file. It uses a TLines array to contain the lines, the same as in earlier steps. The
array is referenced through a pointer called Lines.

Creating and destroying TDrawDocument
TDrawDocument's constructor takes a single parameter, a TDocument *,that is a pointer
to the parent document. A document can be a parent of a number of other documents,
treating the data contained in those documents as if it were part of the parent. The
constructor passes the parent pointer on to TFileDocument. The constructor also
initializes the Lines data member to 0.

The destructor for TDrawDocument deletes the TLines object pointed to by Lines.

Storing line data
The document class you're going to create controls access to the data contained in a
drawing. But you still need some way to store the data. You've already created the TLine
class and the TLines array in previous steps. Luckily, this code can be recycled. The line
data for each document is stored in a TLines array, and accessed by the document
through a protected TLines * data member called Lines.

The TPoints and TLines arrays, their iterators, and the TLine class are now defined in the
STEP12DV.CPP file. In the Doc/View model, these classes are an integral part of the
document class you're about to build. The code for these classes doesn't change at all
from Step 10.

Implementing TDocument virtual functions
TDrawDocument needs to implement a few of the virtual functions inherited from
TDocument. These functions provide streaming and the ability to commit changes to the
document or to discard all changes made to the document since the last save.

Opening and closing a drawing
Although TFileDocument provides the basic functionality required for stream input and
output, it doesn't know how to read the data for a line. To provide this ability, you need
to override the Open and Close functions.

Here's the signature of the Open function:

bool Open(int mode, canst char far* path=O);

where:

• mode is the file open mode. In this case, you can ignore the mode parameter; the file is
opened the same way each time, with the ofRead flag.

Chapter 12, Using the Doc/View programming model 79

• path contains the document path. If a path is specified, the document's current path is
changed to that path. If no path is specified (that is, path takes its default value), the
path is left as it is. The path is used by the document when creating the document's
streams.

The Open function is similar to the OpenFile function used in earlier steps in the tutorial.
There are differences, though:

• The Open function creates the TLines array for the document object. In earlier steps,
this was done in the TDrawWindow constructor, because TDrawWindow was
responsible for containing all the TLine objects. Now the document is responsible for
containing all the TLine objects, so it needs to create storage space for the data before
it reads it in.

• If path is passed in, Open sets the document path to path with the SetDocPath function.

• Open checks whether the document has a path. If the document doesn't have a path,
it is a new document, in which case there's no need to read in data from a file. If the
document has a path, Open calls the InStream function. This function is defined in
TFileDocument and returns a TinStream *.

TinStream is the standard input stream class used by Doc/View classes. TinStream is
derived from TStream and istream. TStream is an abstract base class that lets
documents access standard streams. TinStream is essentially a standard istream
adapted for use with the Doc/View model. There's also a corresponding TOutStream
class, derived from TStream and ostream. You'll use TOutStream when you create the
Commit function.

• After the input stream has been created, the data is read in and placed in the TLines
array pointed to by Lines. When all the data is read in, the input stream is deleted.

• Open then calls the SetDirty function, passing false as the function parameter. The
SetDirty function, and its equivalent access function isDirty, are the equivalent of the
IsDirty flag in earlier steps of the tutorial. A document is considered to be dirty if it
contains any changes to its data that have not been saved or committed.

• The last thing the Open function needs to do is return. If the document was
successfully opened, Open returns true.

Here's how the code for your Open function might look:

bool
TDrawDocument::Open(int /*mode*/, const char far* path)
{

Lines =new TLines(S, 0, 5);
if (path)

SetDocPath (path);
if (GetDocPath()) {

TinStream* is= InStream(ofRead);
if (!is)

return false;

unsigned numLines;
char fileinfo[lOOJ;
*is >> numLines;

80 ObjectWindows Tutorial

is->getline(fileinfo, sizeof(fileinfo));
while (numLines-) {

TLine line;
*is » line;
Lines->Add(line);

delete is;

SetDirty(false);
NotifyViews(vnRevert, false);
return true;

Closing the drawing is less complicated. The Close function discards the document's
data and cleans up. In this case, it deletes the TLines array referenced by the Lines data
member and returns true. Here's how the code for your Close function should look:

bool TDrawDocument: :Close()
{

delete Lines;
Lines = O;
return true;

Lines is set to 0, both in the constructor and after closing the document, so that you can
easily tell whether the document is open. If the document is open, Lines points to a
TLines array, and is therefore not 0. But setting Lines to 0 makes it easy to check whether
the document is open. The IsOpen function lets you check this from outside the
document object:

bool IsOpen() { return Lines != O; }

Saving and discarding changes
TDocument provides two functions for saving and discarding changes to a document:

• The Commit function commits changes made in the document's associated views by
incorporating the changes into the document, then saving the data to persistent
storage. Commit takes a single parameter, a bool. If this parameter is false, Commit
saves the data only if the document is dirty. If the parameter is true, Commit does a
complete write of the data. The default for this parameter is false.

• The Revert function discards any changes in the document's views, then forces the
views to load the data contained in the document and display it. Revert takes a single
parameter, a bool. If this parameter is true, the view clears its window and does not
reload the data from the document. The default for this parameter is false.

For TDrawDocument, the document is updated as each line is drawn in the view
window. The only function of Commit for the TDrawDocument class is to save the data to
a file. ·

Commit checks to see if the document is dirty. If not, and if the force parameter is false,
Commit returns true, indicating that the operation was successful.

Chapter 12, Using the Doc/View programming model 81

If the document is dirty, or if the force parameter is true, Commit saves the data. The
procedure to save the data is similar to the SaveFile function in previous steps, but, as
with the Open function, there are a few differences.

Commit calls the OutStream function to open an output stream. This function is defined
in TFileDocument and returns a TOutStream *.Commit then writes the data to the output
stream. The procedure for this is almost exactly identical to that used in the old SaveFile
function.

After writing the data to the output stream, Commit turns the Is Dirty flag off by calling
SetDirty with a false parameter. It then returns true, indicating that the operation was
successful.

Here's how the code for your Commit function might look:

bool
TDrawDocument: :Commit(bool force)
{

if (!IsDirty() && !force)
return true;

TOutStream* os = OutStream(ofWrite);
if (!os)

return false;

II Write the number of lines in the figure
*os << Lines->GetitemsinContainer();

II Append a description using a resource string
*os << ' ' << string(*GetDocManager() .GetApplication() ,IDS_FILEINFO) << '

II Get an iterator for the array of lines
TLinesiterator i(*Lines);

II While the iterator is valid (i.e. you haven't run out of lines)
while (i) {

II Copy the current line from the iterator and increment the array.
*os « itt;

delete os;

SetDirty(false);
return true;

There's only one thing in the Commit function that you haven't seen before:

II Append a description using a resource string
*os << ' ' << string(*GetDocManager() .GetApplication(), IDS_FILEINFO) << '

This uses a special constructor for the ANSI string class:

string(HINSTANCE instance, uint id, int len = 255);

82 0 b'j e ct W i n d ow s T u to r i a I

This constructor lets you get a string resource from any Windows application. You
specify the application by passing an HINST ANCE as the first parameter of the string
constructor. In this case, you can get the current application's instance through the
document manager. The GetDocManager function returns a pointer to the document's
document manager. In tum, the GetApplication function returns a pointer to the
application that contains the document manager. This is converted implicitly into an
HINSTANCE by a conversion operator in the TModule class. The second parameter of
the string constructor is the resource identifier of a string defined in STEP12DV.RC. This
string contains version information that can be used to identify the application that
created the document.

The Revert function takes a single parameter, a bool indicating whether the document's
views need to refresh their display from the document's data. Revert calls the
TFileDocument version of the Revert function, which in tum calls the TDocument version
of Revert. The base class function calls the Notify Views function with the vnRevert event.
The second parameter of the Notify Views function is set to the parameter passed to the
TDrawDocument::Revert function. TFileDocument::Revert sets IsDirty to false and returns.
If TFileDocument::Revert returns false, the TDrawDocument should also return false.

If TFileDocument::Revert returns true, the TDrawDocument function should check the
parameter passed to Revert. If it is false (that is, H the view needs to be refreshed), Revert
calls the Open function to open the document file, reload the data, and display it.

Here's how the code for your Revert function might look:

bool
TDrawDocument::Revert(bool clear)
{

if (!TFileDocument::Revert(clear))
return false;

if (!clear)
Open(O);

return true;

Accessing the document•s data
There are two main ways to access data in TDrawDocument: adding a line (such as a new
line when the user draws in a view) and getting a reference to a line in the document
(such as getting a reference to each line when repainting the window). You can add two
functions, AddLine and GetLine, to take care of each of these actions.

The AddLine function adds a new line to the document's TLines array. The line is passed
to the AddLines function as a TLine &. After adding the line to the array, AddLine sets the
IsDirty flag to true by calling SetDirty. It then returns the index number of the line it just
added. Here's how the code for your AddLines function might look:

int
TDrawDocument::AddLine(TLine& line)
{

int index = Lines->GetitemsinContainer();
Lines->Add(line);

Chapter 12, Using the Doc/View programming model 83

SetDirty (true);
return index;

The GetLine function takes an int parameter. This int is the index of the desired line.
GetLine should first check to see if the document is open. If not, it can try to open the
document. If the document isn't open and GetLine can't open it, it returns 0, meaning
that it couldn't find a valid document from which to get the line.

Once you know the document is valid, you should also check to make sure that the
index isn't too high. Compare the index to the return value from the GetitemslnContainer
function. As long as the index is less, you can return a pointer to the TLine object. Here's
how the code for your GetLine function might look:

TLine*
TDrawDocument::GetLine(int index)
{

if (!IsOpen() && !Open(ofRead I ofWrite))
return O;

return index < Lines->GetitemsinContainer() ? &(*Lines) [index] O;

TDrawView class
The TDrawView class is derived from the ObjectWindows TWindowView class, which is
in turn derived from the TView and TWindow classes. TView doesn't have any inherent
windowing capabilities; a TView-derived class gets these capabilities by either adding a
window member or pointer or by mixing in a window class with a view class.

TWindowView takes the latter approach, mixing TWindow and TView to provide a single
class with both basic windowing and viewing capabilities, By deriving from this
general-purpose class, TDrawView needs to add only the functionality required to work
with the TDrawDocument class.

The TDrawView iS similar to the TDrawWindow class used in previous steps. In fact,
you'll see that a lot .of the functions from TDrawWindow are brought directly to
TDrawView with little or no modifications.

TDrawView data members
The TDrawView class has a number of protected data members.

TDC *DragDC;
TPeh *Pen;
TLine *Line;
TDragDocument *DrawDoc;

Three of these should look familiar to you. DragDC, Pen, and Line perform the same
function in TDrawView as they did in TDrawWindow.

Although a document can exist with no associated views, the opposite isn't true. A view
must be associated with an existing document. TDrawView is attached to its document

84 ObjectWindows Tutorial

1_;

when it is constructed. It keeps track of its document through a TDrawDocument * called
DrawDoc. The base class TView has a TDocument * member called Doc that serves the
same basic purpose. In fact, during base class construction, Doc is set to point at the
TDrawDocument object passed to the TDraw View constructor. Draw Doc is added to force
proper type compliance when the document pointer is accessed.

Creating the TDrawView class
The TDrawView constructor takes two parameters, a TDrawDocument & (a reference to
the view's associated document) and a TWindow *(a pointer to the parent window). The
parent window defaults to 0 if no value is supplied. The constructor passes its two
parameters to the TWindowView constructor, and initializes the DrawDoc member to
point at the document passed as the first parameter.

The constructor also sets DragDC to 0 and initializes Line with a new TLine object.

The last thing the constructor does is set up the view's menu. You can use the
TMenuDescr class to set up a menu descriptor from a menu resource. Here's the
TMenuDescr constructor:

TMenuDescr(TResid id);

where id is the resource identifier of the menu resource.

The TMenuDescr constructor takes the menu resource and divides it up into six groups.
It determines which group a particular menu in the resource goes into by the presence
of separators in the menu resource. The only separators that actually divide the resource
into groups are at the pop-up level; that is, the separators aren't contained in a menu,
but they're at the level of menu items that appear on the menu bar. For example, the
following code shows a small snippet of a menu resource:

COMMANDS MENU
{

II Always starts with the File group
POPUP "&File"

MENUITEM "&Open", CM_FILEOPEN
MENUITEM "&Save", CM_FILESAVE

MENUITEM SEPARATOR
II Edit group

MENUITEM SEPARATOR
II Container group

MENUITEM SEPARATOR
II This one is in the Object group
POPUP "&Objects"
{

MENUITEM "&Copy object", CM_OBJECTCOPY
MENUITEM "Cu&t object", CM_OBJECTCUT

II No more items, meaning the Window group and Help group are also empty

Chapter 12, Using the Doc/View programming model 85

A menu descriptor would separate this reso.urce into groups like this: the File menu
would be placed in the first group, called the File group. The second group (Edit group)
and the third group (Container group) are empty, because there's no pop-up menus
between the separators that delimit those groups. The Tools menu is in the Object
group. Because there are no menu resources after the Tools menu, the last two groups,
the Object group and Help group, are also empty.

Although the groups have particular names, these names just represent a common
name for the menu group. The menu represented by each group does not necessarily
have that name. The document manager provides a default File menu, but the other
menu names can be set in the menu resource.

In this case, the view supplies a menu resource called IDM_DRA WVIEW, which is·
contained in the file STEP12DV.RC. This menu is called Tools, which has the same
choices on it as the Tools menu in earlier steps: Pen Size and Pen Color. To insert the
Tools menu as the second menu on the menu bar when the view is created or activated,
the menu resource is set up to place the Tools menu in the second group, the Edit group,
so that the menu resource looks something like this:

IDM_DRAWVIEW MENU
{

II Edit Group
MENUITEM SEPARATOR
POPUP "&Tools"

MENUITEM "Pen &Size", CM_PENSIZE
MENUITEM "Pen &Color", CM_PENCOLOR

You can install the menu descriptor as the view menu using the TView function
SetViewMenu function, which takes a single parameter, a TMenuDescr *. SetViewMenu
sets the menu descriptor as the view's menu. When the view is created, this menu is
merged with the application menu.

Here's how the call to set up the view menu should look:

SetViewMenu(new TMenuDescr(IDM_DRAWVIEW));

The destructor for the view deletes the device context referenced by DragDC and the
TLine object referenced by Line.

Naming the class
Every view class should define the function StaticName, which takes no parameters and
returns a static const char far *. This function should return the name of the view class.
Here's how the StaticName function might look:

static const char far* StaticName () {return "Draw View";}

- 86 ObjectWindows Tutorial

Protected functions
TDrawView has a couple of protected access functions to provide functionality for the
class.

The GetPenSize function is identical to the TDrawWindow function GetPenSize. This
function opens a TinputDialog, gets a new pen size from the user, and changes the pen
size for the window and calls the SetPen function of the current line.

The Paint function is a little different from the Paint function in the TDrawWindow class,
but it does basically the same thing. Instead of using an iterator to go through the lines
in an array, TDrawView::Paint calls the GetLine function of the view's associated
document. The return from GetLine is assigned to a const TLine *called line. If line is not
0 (that is, if GetLine returned a valid line), Paint then calls the line's Draw function.
Remember that the TLine class is unchanged from Step 10. The line draws itself in the
window.

Here's how the code for the Paint function might look:

void
TDrawView::Paint(TDC& de, bool, TRect&)
{

II Iterates through the array of line objects.
int i = O;
const TLine* line;
while ((line= DrawDoc->GetLine(i++)) != 0)

line->Draw(dc);

Event handling in TDrawView
The TDraw View class handles many of the events that were previously handled by the
TDrawWindow class. Most of the other events that TDrawWindow handled that aren't
handled by TDraw View are handled by the application object and the document
manager; this is discussed later in Step 12.

In addition, TDrawView handles two new messages: VN_COMMIT and VN_REVERT.
These view notification messages are sent by the view's document when the document's
Commit and Revert functions are called.

Here's the response table definition for TDrawView:

DEFINE_RESPONSE_TABLEl(TDrawView, TWindowView)
EV_WM_LBUTTONDOWN,
EV_WM_RBUTTONDOWN,
EV_WM_MOUSEMOVE,
EV_WM_LBUTTONUP,
EV_COMMAND(CM_PENSIZE, CmPenSize),
EV_COMMAND(CM_PENCOLOR, CmPenColor),
EV_VN_COMMIT,
EV_VN_REVERT,

END_RESPONSE_TABLE;

Ch a p I er 1 2, Using I he Doc IV i e w program ming mode I 87

The following functions are nearly the same in TDrawView as the corresponding
functions in TDrawWindow. Any modifications to the functions are noted in the right
column of the table:

EvRButtonDown
EvMouseMfJVe

. EvLButtonUp

CmPenSize

CmPenColor

No change.

No change.

Checks to see if the mouse was moved after the left button press. If so, calls the
document's AddLine function to add the point.

No change.

No change.

·The VnCommit function always returns true. In a more complex application, this
function would add any cached data to the document, but in this application, the data is
added to the document as each line is drawn.

The VnRevert function invalidates the display area, clearing it and repainting the
drawing in the window. It then returns true.

Defining document templates
Once you've created a document class and an accompanying view class, you have to
associate them so they can function together. An association between a document class
and a view class is known as a document template class. The document template class is
used by the document manager to determine what view class should be opened to
display a document. ·

You can create a document template class using the macro
DEFINE_OOC_TEMPLATE_CLASS,which takes three parameters. The first parameter
is the name of the document class, the second is the name of the view class, and the third
is the name of.the document template class. The macro to create a template class for the
TDrawDocument and TDraw View classes would look like this:

DEFINE_DOC_TEMPLATE_CLASS(TDrawDocwnent, TDrawView, DrawTemplate);

Once you've created a document template class, you need to create a document
regiStration table. Document registration tables contain information about a particular
Doc/View template class instance, such as what the template class does, the default file
extension, and so on. A document registration table is actually an object of type
TRegList, although you don't have to worry about what the object actually looks; you'll
very rarely need to directly access a document registration table object.

Start creating a document registration table by declaring the BEGIN_REGISTRATibN
macro. This macro takes a single parameter, the name of the document registration
class, which is used as the nam.e of the TRegList object.

The next lines in your document registration table create entries in.the document
registration table. For a Doc/View template, you need to enter four items into this table:

• A description of the Doc/View template

88 ObjectWindows Tutorial

• The default file extension when saving a file
• A filter string that is used to filter file names in the current directory
• Document creation flags

For the first three of these, you specify them using the REGDATA macro:

REGDATA(key, value)

key indicates what the value string pertains to. There are three different keys you need
for creating a document registration table:

• description indicates value is the template description

• extension indicates value is the default file extension

• docfilter indicates value is the file-name filter

• The other macro you need to use to create a document registration table is the
REGDOCFLAGS macro. This macro takes a single parameter, one or more document
creation flags; if you specify more than one, the flags should be ORed together. For
now, you can get by using two flags, dtAutoDelete and dtHidden. These flags are
described in the Object Windows Reference Guide and Chapter 10 of the ObjectWindows
Programmer's Guide.

A typical document registration table looks something like this:

BEGIN_REGISTRATION(DrawReg)
REGDATA(description, "Point Files (*.PTS)")
REGDATA(extension, ".PTS")
REGDATA(docfilter, "*.pts")
REGDOCFLAGS(dtAutoDelete I dtHidden)

END_REGISTRATION

Once you've created a document registration table, all you need to do is create an
instance of the class. The class type is the name of the document template class. You also
should give the instance a meaningful name. The constructor for any document
template class looks like this:

TplName name(TRegList& reglist);

where:

• TplName is the class name you specified when defining the template class.

• name is whatever name you want to give this instance.

• reglist is the name of the registration table you created; it's the same name you passed
as the parameter to the BEGIN_REGISTRATION macro.

Here's how the template instance for TDrawDocument and TDrawView classes might
look:

DrawTemplate drawTpl(DrawReg);

Chapter 12, Using the Doc/View programming model 89

Supporting DocMew in the application
STEP12.CPP contaills the code for the application object and the definition of the main
window. The application object provides a framework for the Doc/View classes defined
in STEP12DV.CPP. This section discusses the changes to the TDrawApp class that are
required to support the new Doc/View classes. The OwlMain function remains
unchanged. ·

lnitMainWindow function
The InitMain Window function requires some minor changes to support the Doc/View
model:

• The TDecoratedFrame constructor takes a 0 in place of the TDrawWindow constructor
for the frame's client window. The client window is set in the EvNewView function.

• The As$ignMenu call is changed to a SetMenuDescr call. The SetMenuDescr function,
which is inherited from TFrameWindow, takes a TMenuDescr as its only parameter.
The TMenuDescr object should be built using the COMMANDS menu resource. This
call looks something like this:

GetMainWindow()->SetMenuDescr(TMenuDescr("COMMANDS"));

• A cail to SetDocMandger is added. This function sets the DocManager member of the
T Application class. It takes a single parameter, a TDocManager *.

• The TDocManager constructor takes a single parameter, which consists of one or more
flags ORed together. The only flag that is required is either dmSDior dmMDI. These
flags set the document manager to supervise a single-document interface (dmSDI) or
a multiple-document interface (dmMDI) application.

In this case, you're creating an SDI application, so you should specify the dmSDI flag.
In addition, you should specify the dmMenu flag, which instructs the document
manager to provide its default menu.

The call to the SetDocManager function should look like this:

SetDocManager(new TDocManager(dmSDI I dmMenu));

lnitlnstance function
The Initlnstance function is overridden because there are a couple of function calls that
need to be made after the main window has been created. Initlnstance should first call the
T Application version of Initlnstance. That function calls the InitMain Window function,
which constructs the main window object, then creates the main window.

After the base class Initlnstance function has been called, you need to call the main
window's DragAcceptFiles function, specifying the true parameter. This enables the main
window to accept files that are dropped in the window. Drag and drop functionality is
handled through the application's response table, as discussed in the next section.

90 ObjectWindows Tutorial

To enable the user to begin drawing in the window as soon as the application starts up,
you also need to call the CmFileNew function of the document manager. This creates a
new untitled document and view in the main window.

The Initlnstance function should look something like this:

void
TDrawApp: :Initinstance()
{

TApplication: :Initinstance();
GetMainWindow()->DragAcceptFiles(true);
GetDocManager()->CmFileNew();

Adding functions to TDrawApp
The TDrawApp class adds a number of new functions. It overrides the T Application
version of Initlnstance. It adds a response table and takes the CmAbout function from the
TDrawWindow class. It adds drag and drop capability by adding the
EV_ WM_DROPFILES macro to the response table and adding the EvDropFiles function
to handle the event. It also handles a new event, WM_ OWL VIEW, that indicates a view
request message. Two functions handle this message. EvNewView handles a
WM_ OWL VIEW message with the dnCreate parameter. EvCloseView handles a
WM_ OWL VIEW message with the dnClose parameter.

Here's the new declaration of the TDrawApp class, along with its response table
definition:

class TDrawApp : public TApplication
{

public:
TDrawApp() TApplication() {}

protected:
II Override methods of TApplication
void Initinstance();
void InitMainWindow();

II Event handlers
void EvNewView (TView& view) ;
void EvCloseView(TView& view);
void EvDropFiles(TDropinfo dropinfo);
void CmAbout();

DECLARE_RESPONSE_TABLE(TDrawApp);
};

DEFINE_RESPONSE_TABLEl(TDrawApp, TApplication)
EV_OWLVIEW(dnCreate, EvNewView),
EV_OWLVIEW(dnClose, EvCloseview),
EV_WM_DROPFILES,
EV_COMMAND(CM_ABOUT, CmAbout),

END_RESPONSE_TABLE;

Ch apter 1 2, Using the Doc IV i e w program mi n g mode I 91

CmAbout function
The CmAbout function is nearly identical to the TDrawWindow version. The only
difference is that the CmAbout function is no longer contained in its parent window
class. Instead of using the this pointer as its parent, it substitutes a call to
GetMain Window function. The function should now look like this:

void
TDrawApp: : CmAbout ()
{

TDialog(GetMainWindow(), IDD_ABOUT) .Execute();

EvDropFiles function
The EvDropFiles function handles the WM_DROPFILES event. This function gets one
parameter, a TDropinfo object. The TDropinfo object contains functions to find the
number of files dropped, the names of the files, where the files were dropped, and so on.

Because this is a SDI application, if the number of files is greater than one, you need to
warn the user that only one file can be dropped into the application at a time .. To find the
number of files dropped in, you can call the TDropinfo function DragQueryFileCount,
which takes no parameters and returns the number of files dropped. If the file count is
greater than one, pop up a message box to warn the user.

Now you need to get the name of the file dropped in. You can find the length of the file
path string using the TDropinfo function DragQueryFileNameLen, which takes a single
parameter, the index of the file about which you're inquiring. Because you know there's
only one file, this parameter should be a 0. This function returns the length of the file
path.

Allocate a string of the necessary length, then call the TDropinfo function DragQueryFile.
This function takes three parameters. The first is the index of the file. Again, this
parameter should be a 0. The second parameter is a char*, the file path. The third
parameter is the length of the file path. This function fills in the file path in the char array
from the second parameter.

Once you've got the file name, you need to get the proper template for the file type. To
do this, call the document manager's MatchTemplate function. This function searches the
document manager's list of document templates and returns a pointer to the first
document template with a pattern that matches the dropped file. This pointer is a
TDocTemplate *.If the document manager can't find a matching template, it returns 0.

Once you've located a template, you can call the template's CreateDoc function with the
file path as the parameter to the functiol].. This creates a new document and its
corresponding view, and opens the file into the document.

Once the file has been opened, you must make sure to call the DragFinish function. This
function releases the memory that Windows allocates during drag and drop operations.

Here's how the EvDropFiles function should look:

92 ObjectWindows Tutorial

void
TDrawApp::EvDropFiles(TDropinfo dropinfo)
{

if (dropinfo.DragQueryFileCount() != 1)
::MessageBox(O,"Can only drop 1 file in SDI mode","Drag/Drop Error",MB_OK);

else {
int fileLength = dropinfo.DragQueryFileNameLen(O)+l;
char* filePath = new char [fileLength];
dropinfo.DragQueryFile(O, filePath, fileLength);
TDocTemplate* tpl = GetDocManager()->MatchTemplate(filePath);
if (tpl)

tpl->CreateDoc(filePath);
delete f ilePath;

dropinfo.DragFinish();

EvNewView function
The WM_ OWL VIEW event informs the application when a view-related event has
happened. All functions that handle WM_ OWL VIEW events return void and take a
single parameter, a TView &. When the event's parameter is dnCreate, this indicates that
a new view object has been created and requires the application to set up the view's
window.

In this case, you need to set the view's window as the client of the main window. There
are two functions you need to call to do this: Get Window and SetClientWindow.

The Get Window function is member of the view class. It takes no parameters and returns
a TWindow *.This points to the view's window.

Once you have a pointer to the view's window, you can set that window as the client
window with the main window's SetClientWindow function, which takes a single
parameter, a TWindow *,and sets that window object as the client window. This
function returns a TWindow *. This return value is a pointer to the old client window, if
there was one.

Before continuing, you should check that the new client window was successfully
created. TView provides the IsOK function, which returns false if the window wasn't
created successfully. If IsOK returns false, you should call SetClientWindow again,
passing a 0 as the window pointer, and return from the function.

If the window was created successfully, you need to check the view's menu with the
GetViewMenu function. If the view has a menu, use the MergeMenu function of the main
window to merge the view's menu with the window's menu.

The code for EvNewView should look like this:

void
TDrawApp: :EvNewView(TView& view)
{

GetMainWindow()->SetClientWindow(view.GetWindow());
if (!view.IsOK())

Chapter 12, Using the Doc/View programming model 93

GetMainWindow()->SetClientWindow(O);
else if (view.GetViewMenu())

GetMainWindow()->MergeMenu(*view.GetViewMenu());

EvCloseView function
If the parameter for the WM_ OWL VIEW event is dnClose, this indicates that a view has
been closed. This is handled by the EvCloseView parameter. Like the EvNewView
function, the EvCloseView function returns void and takes a TView & parameter.

To close a view, you need to remove the view's window as the client of the main
window. To do this, call the main window's SetClientWindow function, passing a 0 as the
window pointer. You can then restore the menu of the framewindow to its former state
using the RestoreMenu function of the main window.

When the EvNewView function creates a new view, the caption of the frame window is
set to the file path of the document. You need to reset the main window's caption using
the SetCaption function.

Here's the code for the EvCloseView function:

void
TDrawApp::EvCloseView(TView& /*view*/)
{

GetMainWindow()>SetClientWindow(O);
GetMainWindow()->RestoreMenu();
GetMainWindow I) ->SetCaption ("Drawing Pad") ;

Where to find more information
Here's a guide to where you can find more information on the topics introduced in this
step:

• The InitMain Window and Initinstance functions are discussed in Chapter 2 in the
ObjectWindows Programmer's Guide.

• Menu and menu descriptor objects are described in Chapter 8 in the Object Windows
Programmer's Guide.

• The Doc/View classes are discussed in Chapter 10 in the Object Windows Programmer's
Guide.

• The drag and drop functions are discussed in the Object Windows Reference Guide.

94 ObjectWindows Tutorial

Moving the DocMew application to
MDI

The Doc/View model is much more useful when it is used in a multiple-document
interface (MDI) application. The ability to have multiple child windows in a frame lets
you open more than one view for a document. You can find the source for Step 13 in the
files STEP13.CPP, STEP13.RC, STEP13DV.CPP, and STEP13DV.RC in the directory
EXAMPLES\OWL \TUTORIAL.

In Step 13, you'll add MDI capability to the application. This requires new functionality
in the TDrawDocument and TDrawView classes. In addition, you'll add new features
such as the ability to delete or modify an existing line and the ability to undo changes.
You'll also create a new view class called TDrawListView to take advantage of the ability
to display multiple views. TDrawListView shows an alternate view of the drawing
stored in TDrawDocument, displaying it as a list of line information.

Supporting MDI in the application
STEP13.CPP contains the code for the application object and the definition of the main
window. The application object provides a framework for the Doc/View classes defined
in STEP13DV.CPP. This section discusses the changes to the TDrawApp class that are
required to provide MDI support for your Doc/View application. The OwlMain
function remains unchanged.

Changing to a decorated MDI frame
To support an MDI application, you need to change the TDecoratedFrame you've been
using to a TDecoratedMDIFrame. Then, inside the decorated MDI frame, you need to
create an MDI client window with the class TMDIClient. To easily locate the client
window later, add a TMDIClient *to your TDrawApp class. Call the pointer Client. This
client window contains the MDI child windows that display the various views.

C h a p I e r 1 3 , M o v i n g I h e D o c IV i e w a p p I i c a I i o n Io M D I 95

The constructor for TDecoratedMDIFrame is described on page 66. The parameters for
the constructor in this case are different from the parameters used in creating the
decorated MDI frame used in Step 11.

• There's no menu resource for this window. Instead, you'll construct a TMenuDescr,
just as you did for Step 12.

• You need to create the client window explicitly so that you can assign it to the Client
data member. Unlike Step 11, where you used a custom client window class derived
from TMDIClient, in this step you can use a TMDIClient object directly. The
functionality that was added to the TDrawMDIClient class, such as opening files,
creating new drawings, and so on, is now handled by the document manager. Thus,
TMDIClient is sufficient to handle the chore of managing the MDI child windows.

• Lastly, you should turn menu tracking on.

The window constructor should look like this:

TDecoratedMDIFrame* frame= new TDecoratedMDIFrame("Drawing Pad", 0,
*(Client = new TMDIClient), true);

Changing the hint mode
You might have noticed in Step 12 that the hint text for control bar buttons didn't appear
until you actually press the button. You can change the hint mode so that the text shows
up when you just run the mouse over the top of the button.

To make this happen, call the control bar's SetHintMode function with the
TGadgetWindow::EnterHints parameter:

cb->SetHintMode(TGadgetWindow: :EnterHints);

This causes hints to be displayed when the cursor is over a button, even if the button
isn't pressed. You can reset the hint mode by calling SetHintMode with the
TGadgetWindow::PressHints parameter. You can also tum off menu tracking altogether
by calling SetHintMode with the TGadgetWindow::NoHints parameter.

Setting the main window's menu
You need to change the SetMenuDescr call a little. The COMMANDS menu resource has
been expanded to provide placeholder menus for the document manager's and views'
menu descriptors. Also, the decorated MDI frame provides window management
functions, such as cascading or tiling child windows, arranging the icons of minimized
child windows, and so on.

The call to the SetMenuDescr function should now look like this:

GetMainWindow()->SetMenuDescr(TMenuDescr("COMMANDS"));

96 Objec!Windows Tutorial

Setting the document manager
You also need to change how you create the document manager in an MDI application.
The only change you need to make in this case is to change the dmSDI flag to dmMDI.
You need to keep the dmMenu flag:

SetDocManager(new TDocManager(dmMDI I dmMenu));

lnitlnstance function
You need to make one change to the Initlnstance function: remove the call to CmFileNew.
This makes the frame open with no untitled documents. In the SDI application, opening
the frame with an untitled document was OK. If the user opened a file, the untitled
document was replaced by the new document. But in an MDI application, if the user
opens an existing document, the untitled document remains open, requiring the user to
close it before it'll go away.

Opening a new view
When you open a new view, you must provide a window for the view. In Step 12,
EvNewView used the same client window again and again for every document and
view. In an MDI application, you can open numerous windows in the EvNewView
function. Each window you open inside the client area should be a TMDIChild. You can
place your view inside the TMDIChild object by calling the view's Get Window function
for the child's client window.

Once you've created the TMDIChild object, you need to set its menu descriptor, but only
if the view has a menu descriptor itself. After setting the menu descriptor, call the MDI
child's Create function.

The EvNewView function should now look something like this:

void
TDrawApp: :EvNewView(TView& view)
{

TMDIChild* child= new TMDIChild(*Client, 0, view.GetWindow());
if (view.GetViewMenu())

child->SetMenuDescr(*view.GetViewMenu() I;
child->Create();

Modifying drag and drop
In the SDI version of the tutorial application, you had to check to make sure the user
didn't drop more than one file into the application area. But in MDI, if the user drops in
more than one file, you can open them all, with each document in a separate window.
Here's how to implement the ability to open multiple files dropped into your
application:

• Find the number of files dropped into the application. Use the DragQueryFileCount
function. Use a for loop to iterate through the files.

C h a pt e r 1 3 , M o v i n g t h e D o c IV i e w a p p I i c at i o n t o M D I 97

• For each file, get the length of its path and allocate a char array with enough room.
Call the DragQueryFile function with the file's index (which you can track using the
loop counter), the char array, and the length of the path.

• Once you've got the file name, you can call the document manager's MatchTemplate
function to get the proper template for the file type. This is done the same way as in
Step 12; see page 92.

• Once you've located a template, call the template's CreateDoc function with the file
path as the parameter to the function. This creates a new document and its
corresponding view, and opens the file into the document.

• Once all the files have been opened, call the DragFinish function. This function
releases the memory that Windows allocates during drag and drop operations.

Here's how the new EvDropFiles function should look:

void
TDrawApp::EvDropFiles(TDropinfo dropinfo)
{

int fileCount = dropinfo.DragQueryFileCount();
for (int index= O; index< fileCount; index++)

int fileLength = dropinfo.DragQueryFileNameLen(index)+l;
char* filePath =new char [fileLength];
dropinfo.DragQueryFile(index, filePath, fileLength);
TDocTemplate* tpl = GetDocManager()->MatchTemplate(filePath);
if (tpl)

tpl->CreateDoc(filePath);
delete f ilePath;

dropinfo.DragFinish();

Closing a view
In Step 12, when you wanted to close a view, you had to remove the view as a client
window, restore the main window's menu, and reset the main window's caption. You
no longer need to do any of this, because these tasks are handled by the MDI window
classes. Here's how your EvCloseView function should look:

void
TDrawApp::EvCloseView(TView& /*view*/)
{ II nothing needs to be done here for MDI
}

Changes to TDrawDocument and TDrawView
You need to make the following changes in the TDrawDocument and TDraw View classes.
These changes include defining new events, adding new event-handling functions,
adding document property functions, and more.

98 0 b j e c I W i n d ow s T u I o r i a I

Defining new events
First you need to define three new events to support the new features in the
TDrawDocument and TDrawView classes. These view notification events are
vnDrawAppend, vnDrawDelete, and vnDrawModify. These events should be canst ints,
and defined as offsets from the predefined value vnCustomBase. Using vnCustomBase
ensures that your new events don't overlap any ObjectWindows events.

Next, use the NOTIFY_SIG macro to specify the signature of the event-handling
function. The NOTIFY _SIG macro takes two parameters, the event name (such as
vnDrawAppend or vnDrawDelete) and the parameter type to be passed to the event­
handling function. The size of the parameter type can be no larger than a long; if the
object being passed is larger than a long, you must pass it by pointer. In this case, the
parameter is just an unsigned int to pass the index of the affected line to the event­
handling function. The return value of the event-handling function is always void.

Lastly, you need to define the response table macro for each of these events. By
convention, the macro name uses the event name, in all uppercase letters, preceded by
EV_ VN_. Use the #define macro to define the macro name. To define the macro itself,
use the VN_DEFINE macro. Here's the syntax for the VN_DEFINE macro:

VN_DEFINE(eventName, functionName, paramSize)

where:

• eventName is the event name.

• functionName is the name of the event-handling function.

• paramSize is the size of the parameter passed to the event-handling function; this can
have four different values: ·

• void
• int (size of an int parameter depends on the platform)
• long (32-bit integer or far pointer)
• pointer (size of a pointer parameter depends on the mempry model)

You should specify the value that most closely corresponds to the event-handling
function's parameter type.

The full definition of the new events should look something like this:

const int vnDrawAppend = vnCustomBase+O;
const int vnDrawDelete = vnCustomBase+l;
const int vnDrawModify = vnCustomBase+2;

NOTIFY_SIG(vnDrawAppend, unsigned int)
NOTIFY_SIG(vnDrawDelete, unsigned int)
NOTIFY_SIG(vnDrawModify, unsigned int)

#define EV_VN_DRAWAPPEND VN_DEFINE(vnDrawAppend, VnAppend, int)
#define EV_VN_DRAWDELETE VN_DEFINE(vnDrawDelete, VnDelete, int)
#define EV_VN_DRAWMODIFY VN_DEFINE(vnDrawModify, VnModify, int)

Chapter 13, Moving the Doc/View application to MDI 99

Changes to TDrawDocument
TDrawDocument adds some new protected data members:

• UndoLine is a TLine *.It is used to store a line after the original in the Lines array is
modified or delete&

• UndoState is an int. It indicates the nature of the last user operation, so that an undo
can be performed by reversing the operation. It can have one of four values:

• UndoNone indicates that no operations have been performed to undo.
• UndoDelete indicates that a line was deleted from the document.
• UndoAppend indicates that a new line was added to the document.
• UndoModify indicates that a line in the document was modified.

• Undolndex is an int. It contains the index of the last modified line, so that the
modification can be undone.

• Filelnfo is a string. It contains information about the file. This string is equivalent to
the file information stored in the TDrawDocument::Commit function of Step 12.

The TDrawDocument constructor should be modified to initialize UndoLine to 0 and
UndoState to UndoNone. The TDrawDocument destructor is modified to delete UndoLine.

You need to modify the Open function slightly to read the file information string from
the document file and use it to initialize the Filelnfo member. If the document doesn't
have a valid document path, initialize Filelnfo using the string resource IDS_FILEINFO.

Modify the AddLine function to notify any other views when a line has been added to
the drawing. You can use the Notify Views function with the vnDrawAppend event. The
second parameter to the NotifyViews call should be the new line's array index. You also
need to set UndoState to UndoAppend. The AddLine function should now look like this:

int
TDrawDocument::AddLine(TLine& line)
{

int index= Lines->GetitemsinContainer();
Lines->Add(line);
SetDirty (true);
NotifyViews(vnDrawAppend, index);
UndoState = UndoAppend;
return index;

Property functions
Every document has a list of properties. Each property has an associated value, defined
as an en um, by which it is identified. The list of enums for a derived document object
should always end with the value NextProperty. The list of enums for a derived
document object should always start with the value PrevProperty, which should be set to
the NextProperty member of the base class, minus 1.

Each property also has a text string describing the property contained in an array called
PropNames and an int containing implementation-defined flags in an array called

100 QbjectWindows Tutorial

PropFlags. The property's enum value can be used in an array index to locate the
property string or flag for a particular property.

TDrawDocument adds two new properties to its document properties list: LineCount and
Description. The enum definition should look like this:

enum (

l;

PrevProperty = TFileDocument::NextProperty-1,
LineCount,
Description,
NextProperty,

By redefining PrevProperty and NextProperty, any class that's derived from your
document class can create new properties without overwriting the properties you've
defined.

TDrawDocument also adds an array of static char strings. This array contains two strings,
each containing a text description of one of the new properties. The array definition
should look like this:

static char* PropNames[] = {
"Line Count",
"Description",

};

Lastly, TDrawDocument adds an array of ints called PropFlags, which contains the same
number of array elements as PropNames. Each array element contains one or more
document property flags ORed together, and corresponds to the property in PropNames
with the same array index. The PropFlags array definition should look like this:

static int PropFlags[] = {
pfGetBinarylpfGetText, // LineCount
pfGetText, //Description

};

TDrawDocument overrides a number of the TDocument property functions to provide
access to the new properties. You can find the total number of properties for the
TDrawDocument class by calling the PropertyCount function. PropertyCount returns the
value of the property enum NextProperty, minus 1.

You can find the text name of any document property using the Property Name function.
Property Name returns a char*, a string containing the property name. It takes a single int
parameter, which indicates the index of the parameter for which you want the name. If
the index is less than or equal to the enum PrevProperty, you can call the TFileDocument
function PropertyName. This returns the name of a property defined in TFileDocument or
its base class TDocument. If the index is greater than or equal to NextProperty, you should
return O; NextProperty marks the last property in the document class. If the index has the
same or greater value than NextProperty, the index is too high to be valid. As long as the
index is greater than PrevProperty but less than NextProperty, you should return the
string from the PropNames array corresponding to the index. The code for this function
should look like this:

const char*
TDrawDocument: :PropertyName(int index)

C h a pt e r 1 3 , M o v i n g t h e D o c /V i e w a p p I i c a I i o n t o M D I 101

if (index <= PrevProperty)
return TFileDocument::PropertyName(index);

else if (index < NextProperty)
return PropNames[index-PrevProperty-1];

else
return O;

The FindProperty function is essentially the opposite of the PropertyName function.
FindProperty takes a single parameter, a const char*. It tries to match the string passed in
with the name of each document property. Hit successfully matches the string with a
property name, it returns an int containing the index of the property. The code for this
function should look like this:

int
TDrawDocument::FindProperty(const char far* name)
{

for (int i=O; i < NextProperty-PrevProperty-1; i++)
if (strcmp(PropNames[i], name) == 0)

return i+PrevProperty+l;
return O;

The Propertyflags function takes a single int parameter, which indicates the index of the
parameter for which you want the property flags. These flags are returned as an int. H
the index is less than or equal to the enum PrevProperty, you can call the TFileDocument
function PropertyName. This returns the name of a property defined in TFileDocument or
its base class TDocument. If the index is greater than or equal to NextProperty, you should
return O; NextProperty marks the last property in the document class. If the index has the
same or greater value than NextProperty, the index is too high to be valid. As long as the
index is greater than PrevProperty but less than NextProperty, you should return the
member of the Propflags array corresponding to the index. The code for this function
should look like this:

int
TDrawDocurnent::PropertyFlags(int index)
{

if (index <= PrevProperty)
return TFileDocument::PropertyFlags(index);

else if (index < NextProperty)
return PropFlags[index-PrevProperty-1];

else
return O;

The last property function is the GetProperty function, which takes three parameters. The
first parameter is an int, the index of the property you want. The second parameter is a
void*. This should be a block of memory that is used to hold the property information.
The third parameter is an int and indicates the size in bytes of the block of memory.

There are three possibilities the GetProperty function should handle:

102 ObjectWindows Tutorial

• The LineCount property can be requested in two forms, text or binary. To get the
LineCount property in binary form, call the GetProperty function with the third
parameter set to 0. If you do this, the second parameter should point to a data object
of the proper type to contain the property data. To get the LineCount property as text,
call the GetProperty function with the second parameter pointing to a valid block of
memory and the third parameter set to the size of that block.

• The Description property can be requested in text form only. Just copy the Filelnfo
string into the destination array passed in as the second parameter.

• If the property requested is neither LineCount nor Description, call the TFileDocument
version of GetProperty.

The code for the GetProperty function should look like this:

int
TDrawDocument: :GetProperty(int prop, void far* dest, int textlen)
{

switch(prop)
{

case LineCount:

int count = Lines->GetitemsinContainer();
if (! textlen) {

(int far)dest =count;
return sizeof(int);

return wsprintf((char far*)dest, "%d", count);

case Description:
char* temp= new char[textlen]; II need local copy for medium model
int len = Fileinfo.copy(temp, textlen);
strcpy I (char far*) de st, temp) ;
return len;

return TFileDocument::GetProperty(prop, dest, textlen);

New functions in TDrawDocument
Step 13 adds a number of new functions to TDrawDocument. These functions let you
modify the document object by deleting lines, modifying lines, clearing the document,
and undoing changes.

The first new function is DeleteLine. As its name implies, the purpose of this function is
to delete a line from the document. DeleteLine takes a single int parameter, which gives
the array index of the line to be deleted.

• Delete should check that the index passed in to it is valid. You can check this by
calling the GetLine function and passing the index to GetLine. If the index is valid,
GetLine returns a pointer to a line object. Otherwise, it returns 0.

Chapter 13, Moving the Doc/View application to MDI 103

• Once you have determined the index is valid, you should set UndoLine to the line to
be deleted and set UndoState to UndoDelete. This saves .the old.line in case the user
requests an undo of the deletion.

• You should then detach the line from the document using the container class Detach
function. This function takes a single int parameter, the array index of the line to be
deleted.

• Turn the IsDirty flag on by calling the SetDirty function.

• Lastly, notify the views that the document has changed by calling the Notify Views
function. Pass the vnDrawDelete event as the first parameter of theNotifyViews call
and the array index of the line as the second parameter ..

The code for the DeleteLine function should look like this:

void
TDrawDocument::DeleteLine(unsigned int index)
{

const TLine* oldLine = GetLine(index);
if (!oldLine)

return;
delete UndoLine;
UndoLine =new TLine(*oldLine);
Lines->Detach(index);
SetDirty (true);
NotifyViews(vnDrawDelete, index);
.undoState = UndoDelete;

The Modify Line function takes two parameters, a TLine & and an int. The int is the array
index of the line to be modified. The affected line is replaced by the TLine &.

• As with the DeleteLine function, you need to set up the undo data members before
replacing the line. Copy the line to be replaced to UndoLine and set UndoState to
UndoModify. You also need to set Undolndex to the index of the affected line.

• Set the line to the TLine object passed into the function.

• Turn the IsDirty flag on by calling the SetDirty function.

• Lastly, notify the views that the document has changed by calling the Notify Views
function. Pass the vnDrawModify event as the first parcµneter of the Notify Views call
and the array index of the line as the second parameter.

The code for this function should look like this:

void
TDrawDocument::ModifyLine(TLine& line, unsigned int index)
{

delete UndoLine;
UndoLine =new TLine((*Lines) [index]);
SetDirty (true);
(*Lines) [index] = line;
NotifyViews(vnDrawModify, index);
Undostate = UndoModify;

104 ObjectWindows Tutorial

Undoindex = index;

The Clear function is fairly straightforward. It flushes the TLines array referenced by
Lines, then forces the views to update by calling Notify Views with the vnRevert
parameter. When the views are updated, there's no data in the document, causing the
views to clear their windows. The function should look something like this:

void
TDrawDocument::Clear()
{

Lines->Flush();
NotifyViews(vnRevert, true);

The Undo function has three different types of operations to undo: append, delete, and
modify. It determines which type of operation it needs to undo by the value of the
UndoState variable:

• If UndoState is UndoAppend, Undo needs to delete the last line in the array.

• If UndoState is UndoDelete, Undo needs to add the line referenced by UndoLine to the
array.

• If UndoState is UndoModify, Undo needs to restore the line referenced by UndoLine to
the array to the position in the array indicated by Undolndex.

Here's how the code for the Undo function should look:

void
TDrawDocument::Undo()
{

switch (UndoState) {
case UndoAppend:

DeleteLine(Lines->GetitemsinContainer()-1);
return;

case UndoDelete:
AddLine(*UndoLine);
delete UndoLine;
UndoLine = O;
return;

case UndoModify:
TLine* temp = UndoLine;
UndoLine = O;
ModifyLine(*temp, Undoindex);
delete temp;

Each operation uses one of these new modification functions. That way, each undo
operation can itself be undone.

Chapter 13, Moving the Doc/View application to MDI 105

Changes to TDrawView
TDraw View modifies a number of its functions, including deleting the GetPenSize
function. This function should be moved to the TLine class, so that the pen size is set in
the line itself. You can call the TLine::GetPenSize function from the CmPenSize function.
The same thing should be done with the CmPenColor function; move the functionality of
this function to the TLine::GetPenColor function. You can call the TLine::GetPenColor
function from the CmPenColor function.

To accommodate the new editing functionality in the TDrawDocument and TDrawView
classes, you need to add menu choices for Undo and Clear. These choices should post
the events CM_ CLEAR and CM_ UNDO. The menu requires a change in the menu
r~source to group the menus properly. The call should look like j:his:

SetViewMenu(new TMenuDescr(IDM_DRAWVIEW));

You can redefine the right button behavior by changing the EvRButtonDown function
(there are now two other ways to change the pen size, the Tools I Pen Size menu
command and the Pen Size control bar button). You can use the right mouse button as a
shortcut for an undo operation. The EvRButtonDown function should look like this:

void
TDrawView::EvRButtonDown(uint, TPoint&)
{

CmUndo();

New functions in TDrawView
Step 13 adds a number of new functions to TDrawDocument. These functions implement
an interface to access the new functionality in TDrawDocument.

You need to override the TView virtual function GetViewName. The document manager
calls this function to determine th~ type of view. This function should return a const
char * referencing a string containing the view name. This function should look like this:

const char far* GetViewName() { return StaticName(); }

After adding the new menu iterµs Clear a,nd Undo to the Edit menu, you need to handle
the events CM_ CLEAR and CM_ UNDO. Add the following lines to your response
table:

EV_COMMAND(CM_CLEAR, CmClear),
EV_COMMAND(CM_UNDO, CmUndo),

You also need functions to handle the CM_ CLEAR and CM_ UNDO events. If the view
receives a CM_ CLEAR message, all it needs to do is to call the document's Clear
function:

void
TDrawView::CmClear()
{

DrawDoc->Clear();

106 ObjectWindows Tutorial

If the view receives a CM_ UNDO message, all it needs to do is to call the document's
Undo function:

void
TDrawView: :CmUndo()
{

DrawDoc->Undo();

The other new events the view has to handle are the view notification events,
vnDrawAppend, vnDrawDelete, and vnDrawModify. You should add the response table
macros for these events to the view's response table:

DEFINE_RESPONSE_TABLEl(TDrawView, TWindowView)
EV_VN_DRAWAPPEND,
EV_VN_DRAWDELETE,
EV_VN_DRAWMODIFY,

END_RESPONSE_TABLE;

The event-handling functions for these macros are VnAppend, VnDelete, and VnModify.
All three of these functions return a bool and take a single parameter, an int indicating
which line in the document is affected by the event.

The VnAppend function gets notification that a line was appended to the document. It
then draws the new line in the view's window. It should create a device context, get the
line from the document, call the line's Draw function with the device context object as
the parameter, then return true. The code for this function looks like this:

bool
TDrawView: :VnAppend(unsigned int index)
{

TClientDC dc(*this);
const TLine* line = DrawDoc->GetLine(index);
line->Draw(dc);
return true;

The VnModify function forces a repaint of the entire window. It might seem more
efficient to just redraw the affected line, but you would need to paint over the old line,
repaint the new line, and restore any lines that might have crossed or overlapped the
affected line. It is actually more efficient to invalidate and repaint the entire window. So
the code for the V nModify function should look like this:

bool
TDrawView::VnModify(unsigned int /*index*/)
{

Invalidate(); //force full repaint
return true;

The VnDelete function also forces a repaint of the entire window. This function faces the
same problem as VnModify; simply erasing the line will probably affect other lines. The
code for the VnDelete function should look like this:

Chapter 13, Moving the Doc/View application to MDI 107

bool
TDrawView: :VnDelete(unsigned int /*index*/)
{

Invalidate(); //force full repaint
return true;

TDrawlistView
The purpose of the TDrawListView class is to display the data contained in a
TDrawDocument object as a list of lines. Each line will display the color values for the
line, the pen size for the line, and the number of points that make up the line.
TDrawListView will let the user modify a line by changing the pen size or color. The user
can also delete a line.

TDrawListView is derived from TView and TListBox. TView gives TDrawListView the
standard view capabilities. TListBox provides the ability to display the information in
the document object in a list.

Creating the TDrawlistView class
The TDrawListView constructor takes two parameters, a TDrawDocument & (a reference
to the view's associated document) and a TWindow *(a pointer to the parent window).
The parent window defaults to 0 if no value is supplied. The constructor passes the first
parameter to the TView constructor and initializes the DrawDoc member to point at the
document passed as the first parameter.

TDrawListView has two data members, one protected TDrawDocument *called DrawDoc
and one public int called Cur Index. Draw Doc serves the same purpose in TDrawList View
as it did in TDrawView, namely to reference the view's associated document object.
Curlndex contains the array index of the currently selected line in the list box.

The TDrawList View constructor also calls the TListBox constructor. The first parameter of
the TListBox constructor is passed the parent window parameter of the TDrawListView
constructor. The second parameter of the TListBox constructor is a call to the TView
function GetNextViewid. This function returns a static unsigned that is used as the list
box identifier. The view identifier is set in the TView constructor. The coordinates and
dimensions of the list box are all set to O; the dimensions are filled in when the
TDrawListView is set as a client in an MDI child window.

The constructor also sets some window attributes, including the Attr.Style attribute,
which has the WS_BORDER and LBS_SORT attributes turned off, and the
Attr.AccelTable attribute, which is set to the IDA_DRA WLISTVIEW accelerator resource
defined in STEP13DV.RC.

The constructor also sets up the menu descriptor for TDrawListView. Because
TDrawListView has a different function from TDrawView, it requires a different menu.
Compare the menu resource for TDrawView and the menu resource for TDrawListView.

Here's the code for the TDrawListView constructor:

108 ObjectWindows Tutorial

TDrawListView: :TDrawListView(TDrawDacument& dac,TWindaw *parent)
: TView(dac), TListBax(parent, GetNextViewid(), 0,0,0,0), DrawDac(&dac)

Attr.Style &= -(WS_BORDER I LBS_SORT);
Attr.AccelTable = IDA_DRAWLISTVIEW;
SetViewMenu(new TMenuDescr(IDM_DRAWLISTVIEW));

TDrawListView has no dynamically allocated data members. The destructor therefore
does nothing.

Naming the class
Like the TDraw View class, TDrawListView should define the function StaticName to
return the name of the view class. Here's how the StaticName function might look:

static canst char far* StaticName () {return "DrawList View";}

Overriding TView and TWindow virtual functions
The document manager calls the view function GetViewName to determine the type of
view. You need to override this function, which is declared virtual function in TView.
This function should return a const char * referencing a string containing the view
name. This function should look like this:

canst char far* GetViewName() {return StaticName(); }

The document manager calls the view function Get Window to get the window associated
with a view. You need to override this function also, which is declared virtual function
in TView. It should return a TWindow *referencing the view's window. This function
should look like this:

TWindaw* GetWindaw() { return (TWindaw*) this; }

You also need to supply a version of the CanClose function. This function should call the
TListBox version of Can Close and also call the document's Can Close function. This
function should look like this:

baal CanClase() {return TListBax::CanClase() && Dac->CanClase() ;}

You also need to provide a version of the Create function. You can call the TListBox
version of Create to actually create the window. But you also need to load the data from
the document into the TDrawListView object. To do this, call the LoadData function.
You'll define the LoadData function in the next section of this step. The Create function
should look something like this:

baal
TDrawListView: :Create()
{

TListBax::Create();
LaadData () ;
return true;

Chapter 13, Moving the Doc/View application to MDI 109

Loading and formatting data
You need to provide functions to load data from the document object to the view
document and to format the data for display in the list box. These functions should be
protected so that only the view can call them.

The first function is LoadData. To load data into the list box, you need to first clear the list
of any items that might already be in it. For this, you can call the ClearList function,
which is from the TListBox base class. After that, get lines from the document and format
each line until the document runs out of lines. You can tell when there are no more lines
in the document; the GetLine function returns 0. Lastly, set the current selection index to
0 using the SetSelindex function. This causes the first line in the list box to be selected.
The code for the LoadData function looks something like this:

void
TDrawListView: :LoadData I I
{

ClearList();
int i = O;
const TLine* line;
while ((line= DrawDoc->GetLine(i)) != 0)

FormatData(line, i++);
SetSelindex I 0 I ;

The FormatData function takes two parameters. The first parameter is a const TLine *
that references the line to modified or added to the list box. The second parameter
contains the index of the line to modified.

The code for FormatData should look something like this:

void
TDrawListView: :FormatData(const TLine* line, int unsigned index)
{

char buf[SO];
TColor color(line->QueryColor());
wsprintf (buf, "Color = R%d G%d B%d, Size = %d, Points = %d",

color.Red(), color.Green(), color.Blue(),
line->QueryPenSize(), line->GetitemsinContainer());

DeleteString(index);
InsertString(buf, index);
SetSelindex(index);

Event handling in TDrawlistView
Here's the response table for TDrawListView:

DEFINE_RESPONSE_TABLEl(TDrawListView, TListBox)
EV_COMMAND(CM_PENSIZE, CmPenSize),
EV_COMMAND(CM_PENCOLOR, CmPenColor),
EV_COMMAND(CM_CLEAR, CmClear),

110 0 bj e ctW in dows T uto rial

EV_COMMAND(CM_UNDO, CmUndo),
EV_COMMAND(CM_DELETE, CmDelete),
EV_VN_ISWINDOW,
EV_VN_COMMIT,
EV_VN_REVERT,
EV_VN_DRAWAPPEND,
EV_VN_DRAWDELETE,
EV_VN_DRAWMODIFY,

END_RESPONSE_TABLE;

This response table is similar to TDraw View's response table in some ways. The two
views share some events, such as the CM_PENSIZE and CM_PENCOLOR events and
the vnDrawAppend and vnDrawModify view notification events.

But each view also handles events that the other view doesn't. This is because each view
has different capabilities. For example, the TDraw View class handles a number of mouse
events, whereas TDrawListView handles none. That's because it makes no sense in the
context of a list box to handle the mouse events; those events are used when drawing a
line in the TDraw View window.

TDrawListView handles the CM_DELETE event, whereas TDrawView doesn't. This is
because, in the TDraw View window, there's no way for the user to indicate which line
should be deleted. But in the list box, it's easy: just delete the line that's currently
selected in the list box.

TDrawListView also handles the vnlsWindow event. The vnlsWindow message is a
predefined ObjectWindows event, which asks the view if its window is the same as the
window passed with the event.

The CmPenSize function is more complicated in the TDrawListView class than in the
TDrawView class. This is because the TDrawListView class doesn't maintain a pointer to
the current line the way TDraw View does. Instead, you have to get the index of the line
that's currently selected in the list box and get that line from the document. Then,
because the GetLine function returns a pointer to a const object, you have to make a copy
of the line, modify the copy, then call the document's ModifyLine function. Here's how
the code for this function should look:

void
TDrawListView: :CmPenSize()
{

int index= GetSelindex();
const TLine* line = DrawDoc->GetLine(index);
if (line) {

TLine* newline= new TLine(*line);
if (newline->GetPenSize() I

DrawDoc->ModifyLine(*newline, index);
delete newline;

The interesting aspect of this function comes in the ModifyLine call. When the user
changes the pen size using this function, the pen size in the view isn't changed at this
time. But when the document changes the line in the ModifyLine call, it posts a
vnDrawModify event to all of its views:

Chapter 13, Moving the Doc/View application to MDI 111

NotifyViews(vnDrawModify, index);

This notifies all the views associated with the document that a line has changed. All
views then call their VnModify function and update their displays Hom the document.
This way, any change made in one view is automatically reflected in other open views.
The same holds true for any other functions that modify the document's data, such as
CmPenColor, CmDelete, CmUndo, and so on.

The CmPenColor function looks nearly same as the CmPenSize function, except that,
instead of calling the line's GetPenSize function, it calls GetPenColor:

void
TDrawListView: :CmPenColor()
{

index= GetSelindex();
const TLine* line = DrawDoc->GetLine(index);
if (line) {

TLine* newline =new TLine(*line);
if (newline->GetPenColor())

DrawDoc->ModifyLine(*newline, index);
delete newline;

The CM_DELETE event indicates that the user wants to delete the line that is currently
selected in the list box. The view needs to call the document's DeleteLine function,
passing it the index of the currently selected line. This function should look like this:

void
TDrawListView::CmDelete()
{

DrawDoc->DeleteLine(GetSelindex());

You also need functions to handle the CM_ CLEAR and CM_ UNDO events for
TDrawListView. If the user chooses the Clear menu command, the view receives a
CM_ CLEAR message. All it needs to do is call the document's Clear function:

void
TDrawListView: : CmClear I)

DrawDoc->Clear();

If the user chooses the Clear menu command, the view receives a CM_ UNDO message.
All it needs to do is call the document's Undo function:

void
TDrawListView: :CmUndo()
{

DrawDoc->Undo();

These functions are identical to the TDraw View versions of the same functions. That's
because these operation rely on TDrawDocument to actually make the changes to the
data.

112 0 b j e ct W i n d o w s T u t o r i a I

Like the TDrawView class, TDrawListView's VnCommit function always returns true. In a
more complex application, this function would add any cached data to the document,
but in this application, the data is added to the document as each line is drawn.

The VnRevert function calls the LoadData function to revert the list box display to the
data contained in the document:

bool
TDrawListView::VnRevert(bool /*clear*/)
(

LoadData (I ;
return true;

The VnAppend function gets a single unsigned int parameter, which gives the index
number of the appended line. You need to get the new line from the document by
calling the document's GetLine function. Call the FormatData function with the line and
the line index passed into the function. After formatting the line, set the selection index
to the new line and return. The function should look like this:

bool
TDrawListView::VnAppend(unsigned int index)
(

const TLine* line= DrawDoc->GetLine(index);
FormatData(line, index);
SetSelindex(index);
return true;

The VnDelete function takes a single int parameter, the index of the line to be deleted. To
remove the line from the list box, call the TListBox function DeleteString:

bool
TDrawListView: :VnDelete(unsigned int index)
(

DeleteString(index);
HandleMessage(WM_KEYDOWN,VK_DOWN); II force selection
return true;

The call to HandleMessage ensures that there is an active selection in the list box after the
currently selected string is deleted.

The VnModify function takes a single int parameter, the index of the line to be modified.
You need to get the line from the document using the Get Line function. Call FormatData
with the line and its index:

bool
TDrawListView::VnModify(unsigned int index)
(

const TLine* line= DrawDoc->GetLine(index);
FormatData(line, index);
return true;

Ch a p I er 1 3 , Moving I h e Doc IV i e w a pp Ii ca Ii o n Io M D I 113

Where to find more information
Here's a guide to where you can find more information on the topics introduced in this
step:

• The MDI window classes are discussed in Chapter 7 in the Object Windows
Programmer's Guide.

• Menu descriptors are discussed in Chapter 8 in the Object Windows Programmer's
Guide.

• The Doc/View model and classes are discussed in Chapter 10 in the Object Windows
Programmer's Guide.

• TListBox is discussed in Chapter 11 in the Object Windows Programmer's Guide.

114 ObjectWindows Tutorial

Making an OLE container
The next step in the ObjectWindows tutorial shows you how to make an OLE 2
container from the Drawing Pad application. Object Linking and Embedding (OLE) is
an extension to Windows that lets the user seamlessly combine several applications into
a single workspace. An OLE container application can host server objects, providing
additional workspace where the user of your application can expand your application
with the capabilities provided by OLE-server-enabled application.

The code for the example used in this chapter is contained in the files STEP14.CPP,
STEPl 4DV.CPP, STEP14.RC, and STEP14DV.RC in the EXAMPLES/OWL/TUTORIAL
directory where your compiler is installed.

How OLE works
Two different types of application are necessary for basic OLE operations:

• A container can have other applications or objects embedded within it, presenting the
data from the embedded object as part of the container's own data set.

• A server can be embedded within a container application and can be used to
manipulate the data that the server displays in the container's work space.

What is a container?
In this step of the tutorial, you'll make your Doc/View Drawing Pad application into an
OLE container. Making Drawing Pad into an OLE container has some important
ramifications: the application is no longer limited to displaying a set of lines, but can
also display any kind of data that can be presented by any server users embed within
their drawings. Although line drawing capability is still in the application and
producing line drawings is still the main function of the application, users can now spice
up their drawings with bitmaps, spreadsheet charts, even sound files.

C h a pt e r 1 4 , M a k i n g a n 0 L E c o n ta i n e r 115

. Although you can do many of the same tasks by using the Clipboard to transfer data,
it's easier to use OLE. Using the Clipboard, your application has to be able to accept the
type of data stored there. This means if you 'Yant to accept bitmaps in the Drawing Pad
application, you have to build the functionality required to accept and display bitmaps.
This in no way prepares the application to accept spreadsheet charts, database tables, or
or data in other graphic formats. To include another type of data requires implementing
more functionality to interpret and display that data.

Using OLE, your application can display any type of data that is supported by an
available OLE server. As far as your application is concerned, a bitmap looks exactly like
a spreadsheet chart, a database table, or any other kind of object; that is, they all look like
OLE server objects.

Also, using the Clipboard, you can build the ability to display a bitmap into your
application. But modifying the bitmap after it's been pasted in requires more
functionality to be built into your application.

Using OLE, the embedded server handles its embedded data whenever the user wants
to modify or change it. The type of data used in the server is of no consequence to the
container.

Implementing OLE in ObjectWindows: ObjectComp·onents
There is a price to pay for the advantages OLE provides for your application:
programming an OLE implementation has historically been very messy and time
consuming. You needed to modify your code to conform to OLE specifications. Even
more than this, OLE doesn't follow the event-based paradigm that Windows

· applications were previoiusly based on. Instead it implements a new interface-based
paradigm, requiring an understanding of standard OLE interfaces, reference counting,
and other OLE specifications.

ObjectWindows implements OLE through the ObjectComponents Framework. You can
use ObjectComponents to make your application an OLE container or server with only
minor modifications to your code. You can use ObjectComponents with the following
application types:

• Doc/View ObjectWindows applications
• Non-Doc/View ObjectWindows applications
• Non-ObjectWindows C++ applications

The fewest modifications are required for Doc/View ObjectWindows applications,
which is shown in this chapter. Implementing OLE with ObjectComponents in non­
Doc/View ObjectWindows applications and non-ObjectWindows C++ applications is
described in Chapter 18 through Chapter 22 of the ObjectWindows Programmer's Guide.

The following steps are required to convert your Doc/View ObjectWindows application
to an OLE container application:

• Include the proper header files.
• Register your application and Doc/View objects in the system registration database.
• Create a TOcApp object and associating it with your application object.
• Change your frame window class to an OLE-aware frame window class.

116 ObjectWindows Tutorial

• Change your document and view classes's base class to OLE-enabled classes.

The ObjectComponents objects used in this chapter are explained as you add them to
the Drawing Pad application. The ObjectComponents Framework is described in detail
in Chapter 18 through Chapter 22 in the Object Windows Programmer's Guide and the
ObjectWindows Reference Guide.

Adding OLE class header files
You need to add new headers to your files to use the ObjectComponents classes.
ObjectComponents adds OLE capabilities by adding deriving new OLE-enabled classes
from existing classes.

To add new headers to your files so you can use ObjectComponents classes:

1 In STEP14.CPP, instead of using TDecoratedMDIFrame, you'll use TOleMDIFrame,
which is an OLE-enabled decorated MDI frame. All OLE frame windows, whether
they're MDI or SDI, must be able to handle decorations, since many embedded OLE
servers provide their own tool bars. The TOleMDIFrame class is declared in the owl/
olemdifr.h header file.

Your list of include statements in STEPl 4.CPP should now look something like this:

#include <owl/applicat.h>
#include <owl/dialog.h>
#include <owl/controlb.h>
#include <owl/buttonga.h>
#include <owl/statusba.h>
#include <owl/docmanag.h>
#include <owl/olemdifr.h>
#include <stdlib.h>
#include <string.h>
#include "step14.rc"

2 In STEP14DV.CPP, you need to include OLE-enabled document and view classes.
These classes, TOleDocument and TOle View, provide standard Doc/View
functionality along with the ability to support OLE. They're declared in the header
files owl/ oledoc.h and owl/ oleview.h. Your list of include statements in
STEP14DV.CPP should now look something like this:

#include <owl/chooseco.h>
#include <owl/dc.h>
#include <owl/docmanag.h>
#include <owl/gdiobjec.h>
#include <owl/inputdia.h>
#include <owl/listbox.h>
#include <owl/oledoc.h>
#include <owl/oleview.h>
#include <classlib/arrays.h>
#include "stepl4dv.rc"

Ch apter 14, Making an 0 LE contain er 117

Registering the application for OLE
For OLE to keep track of the applications runnmg on a particular system, any
application that wants to use OLE must register in the system-wide OLE registration
database. You need to provide a unique identifier number and a description of the
application. You also need to create objects that let your application communicate with
OLE.

ObjectComponents simplifies the process of registering your application through a set
of registration macros. These macros create an object of type TRegList, known as a
registration table, which contains the information required by the OLE registration
database. The macros are the same ones you use when creating a Doc/View template,
but you use more of the capabilities available in the TRegList class. You can review how
to create a table using these macros by seeing page 88.

Once you've created a registration table, you need to pass it to a connector object. A
connector object provides the channel through which a Doc/View application
communicates with ObjectComponents and, by extension, with OLE. The registration
table is passed to an object of type TOcApp (ObjectComponents connector objects all
begin with TOc).

Later, you'll modify the declaration of your TDrawApp class to be derived from both
T Application and TOcModule. Your application object initilizes the TOcApp connector
object during the application object's construction. The connector object is then accessed
through a pointer contained in the TOcModule class.

Creating the registration table
You use the REGDATA macro to create a container application's registration table. This
is the same macro you used earlier to register your default document extension and file
name filter. For your purposes now, you need the following key values:

Table 14.1 Key values and meanings

clsid String representation of a 16-byte number called a globally unique ID or GUID.
This number must be unique to the application. It is used to distinguish your
application from every other application on the system. This value is for internal
system use only.

description Application description for the system user to see. This string appears in the OLE
registration list.

Your registration table should look something like this:

REGISTRATION_FORMAT_BUFFER(lOO)

BEGIN_REGISTRATION(AppReg)
REGDATA (els id, " (3 83 882Al -8ABC-101B-A23B-CE4E85D07ED2}")
REGDATA(description,"OWL Drawing Pad 2.0")

END_REGISTRATION

Note You must select a unique GUID for your application. There are a number of ways to get
a unique identifier for your application. Generating a GUID and describing your

118 0 bjectWi n d ows Tu tori al

application is presented in detail in Chapter 20 of the Object Windows Programmer's Guide.
For this tutorial, you can use the GUIDs provided in the tutorial examples. Do not use
these same numbers when you create other applications.

Other macros can go into your registration table. Those for creating App Reg are the bare
minimum for a container application object. You'll get to see a more complicated table
when you create the registration table for your document class.

Also, because App Reg is created in the global name space of your application, it's safer
and more informative to refer to it inside your classes and functions using the global
scoping qualifier. So instead of:

void
MyClass: : My Fune I I
(

OtherFunc(AppReg);

you would write:

void
MyClass: : My Fune I I
(

OtherFunc(: :AppReg);

Creating a class factory
A class factory is pretty much what it sounds like-it's an object that can make more
objects. It is used in OLE to provide objects for linking and embedding. When an
application wants to embed your application's objects in itself, it's the class factory that
actually produces the embedded object.

ObjectWindows makes it easy to create a class factory with the TOleDocViewFactory
template. All you need to do is create an instance of the template with the application
class you want to produce as the template type. In this case, you want to produce
instances of TDrawApp with your factory. Creating the template would look like this:

TOleDocViewFactory<TDrawApp>();

You need to pass an instance of this template as the second parameter of the
TOcRegistrar constructor. You can see how this looks in the sample OwlMain below. The
objects themselves are created in the factory using the same Doc/View templates used
by your application when it's run as a stand-alone application.

TOleDocViewFactory is the class factory template for Doc/View ObjectWindows
applications. There are other class factory templates for different types of applications.
These are discussed in Chapter 19 of the Object Windows Programmer's Guide and in the
Object Windows Reference Guide.

Creating a registrar object
The registration table contains information about your application object for the system.
The registrar object, which is of type TOcRegistrar, takes the registration table and

Ch apter 1 4, Making an 0 LE container 119

registers the application with the OLE registration database. It also parses the
application command line looking for OLE-related options.

To create a registrar object:

1 Create a global static pointer to a TOcRegistrar object. You can do this using the
TPointer template, defined in the osl\geometry.h header file (this file is already
included by a number of the ObjectWindows header files, so you don't need to
include it again). This should look something like this:

static TPointer<TOcRegistrar> Registrar;

Using TPointer instead ofa simple pointer, such a8 TOcRegistrar* Registrar, provides
automatic deletion when the object referred to is destroyed or goes out of scope. The
full range of operations available with regular pointers is available in TPointer, while
some of the traditional dangers of using pointers are eliminated.

2 Create the actual registrar object. The TOcRegistrar constructor takes four parameters:

• A reference to a registration table object

• A pointer to a callback function of type TComponentCreate

• A string containing the application's command line

• An instance handle indicating the application instance the registrar is for; this
parameter defaults to _hlnstance, the current application instance

For these parameters, you can pass the following arguments when constructing the
registrar object.

• For the first parameter, pass your registration table object.

• For the second parameter, pass in your class factory.

• For the third parameter, pass the application's command line. You can get the
command line by calling TApplication's GetCmdLine function.

• You don't need to specify the fourth parameter, an instance handle; just let that
parameter take its default value.

For example,

::Registrar= new TOcRegistrar(AppReg, TOleDocViewFactory<TDrawApp>(),
TApplication::GetCmdLine());

3 Call the Run function. However, instead of calling the application object's Run
function (which you couldri't do at this point if you wanted to, since you haven't
created an application object), call the registrar object's Run function. TOcRegistrar
provides a Run function that is called just like T Application's Run function. However,
any ObjectWindows OLE application should call the registrar object's Run function.
This function performs some checks and actions required for your OLE application.

Your' OwlMain function should now look something like this:

int
OwlMain(int /*argc*/, char* /*argv*/ [])
{

::Registrar= new TOcRegistrar(AppReg, TOleDocViewFactory<TDrawApp>(),
TApplication::GetCmdLine());

120 ObjectWindows Tutorial

return : :Registrar->Run();

Creating an application dictionary
The application dictionary is an object that helps coordinate associations between
processes or tasks and TApplication pointers. Before diving into OLE, this was relatively
simple: a T Application object was pretty much synonymous with a process. With OLE,
the environment becomes confused: there can be multiple tasks and processes in a
single application, with a container application, a number of embedded servers,
possibly more servers embedded within those servers-the neighborhood's gotten a
little more crowded.

To deal with this, ObjectWindows provides application dictionaries with the
T App Dictionary class. The best thing about T App Dictionary is that, in order to use it for
our purposes here, you don't have to know a whole lot about it. ObjectWindows also
provides a macro, DEFINE_APP _DICTIONARY, that creates and initializes an
application dictionary object for you.

DEFINE_APP _DICTIONARY takes a single parameter, the name of the object you want
to create. You should place this near the beginning of your source file in the global name
space. You must at least place it before TDrawApp's constructor, since that's where
you'll use it.

Your application dictionary definition should look something like this:

DEFINE_APP_DICTIONARY(AppDictionary);

Changes to TDrawApp
You need change the TDrawApp class to support ObjectComponents. These changes are
fairly standard when you're creating a Doc/View application in an OLE container.

• Changing the class declaration

• Changing the class functionality, including

"' Creating an OLE MDI frame
" Setting the OLE MDI frame's application connector
" Adding a tool bar identifier

Changing the class declaration
You need to make the following changes to the declaration of the TDrawApp class:

1 Derive TDrawApp from both T Application and the TOcModule class. TOcModule
provides the interface your application object uses to communicate with OLE
through the ObjectComponents Framework. Both T Application and TOcModule
should be public bases.

2 Change the constructor so that you pass the T Application constructor a single
parameter. You should initialize the name of the application object with the value of

C h a pt e r 1 4 , M a k i n g a n 0 L E c o n ta i n e r 121

description from App Reg. To make this easier, the TRegList class overloads the square
bracket operators ([J) to return the string associated with the key value passed
between the brackets. So to get the string associated with the description key, call
AppReg["description"].

Your TDrawApp declaration should now resemble the following code:

class TDrawApp : public TApplication, public TOcModule
(

public:
TDrawApp (I TApplication (: :AppReg ["description"] I (}

protected:
TMDIClient* Client;

II Override methods of TApplication
void Initinstance();
void InitMainWindow();

II Event handlers
void EvNewView(TView& view);
void EvCloseView(TView& view);
void EvDropFiles(TDropinfo dropinfo);
void CmAbout();

DECLARE_RESPONSE_TABLE(TDrawApp);
};

Changing the class functionality
You need to change the main window to a TOleMDIFrame object and properly initialize
it as follows:

• Creating an OLE MDI frame
• Setting the OLE MDI frame's application connector
• Adding a tool bar identifier

Creating an OLE MDI frame
Next, you need to change your InitMain Window function by changing your frame
window object from a decorated MDI frame to an OLE-aware decorated MDI frame
(note that all OLE-aware ObjectWindows frame window classes are decorated). The
window class to use for this is TOleMDIFrame. TOleMDIFrame is based on TMDIFrame,
which provides MDI support, and TOleFrame, which provides the ability to work with
ObjectComponents. Here's the constructor for TOleMDIFrame:

TOleMDIFrame(const char far* title,
TResid menuResid,
TMDIClient& clientWnd = *new TMDIClient,
bool trackMenuSelection = false,
TModule* module = 0);

122 0 b j e c I W i n d o w s T u t o r i a I

The parameters to the TOleMDIFrame constructor are the same as those for
TDecoratedMDIFrame. This makes the conversion simple: all you need to do is change
the name of the class when you create the frame window object.

Setting the OLE MDI frame's application connector
In order for the OLE MDI frame to be able to handle embedded OLE objects, it needs to
know how to communicate with the ObjectComponents mechanism. This is accessed
through the TOcApp object associated with the application object. The frame window
must be explicitly associated with this object.

To do this, TOleMDIFrame provides a function (inherited from TOleFrame) called
SetOcApp. SetOcApp returns void and takes a pointer to a TOcApp object. For the
parameter to SetOcApp, you can just pass OcApp.

Adding a tool bar identifier
OLE servers often provide their own tool bar to replace yours while the server is
functioning. The mechanics of this are handled by ObjectComponents. But in order to
put the server's tool bar in place of yours, ObjectWindows must be able to find your tool
bar.

ObjectWindows tries to locate your tool bar by searching through the list of child
windows owned by the OLE MDI frame window and checking each window's
identifier. Up until now, your tool bar hasn't actually had an identifier, which would
cause ObjectWindows to not find the tool bar. In order for ObjectWindows to identify
the container's tool bar, the container must use the IDW _TOOLBAR as its window ID
(the Id member of the tool bar's Attr member object).

Your InitMain Window function should now look something like this:

void
TDrawApp::InitMainWindow()
{

I I Construct OLE-enabled MDI frame
TOleMDIFrame* frame;
frame= new TOleMDIFrame(GetName(), 0, *(Client= new TMDIClient), true);

II Set the frame's OcApp to OcApp
frame->SetOcApp(OcApp);

II Construct a status bar
TStatusBar* sb =new TStatusBar(frame, TGadget::Recessed);

II Construct a control bar
TControlBar* cb = new TControlBar(frame);
cb->Insert(*new TButtonGadget(CM_FILENEW, CM_FILENEW, TButtonGadget::Command));
cb->Insert(*new TButtonGadget(CM_FILEOPEN, CM_FILEOPEN, TButtonGadget::Command));
cb->Insert(*new TButtonGadget(CM_FILESAVE, CM_FILESAVE, TButtonGadget::Command));
cb->Insert(*new TButtonGadget(CM_FILESAVEAS, CM_FILESAVEAS, TButtonGadget::Command));
cb->Insert(*new TSeparatorGadget);
cb->Insert(*new TButtonGadget(CM_PENSIZE, CM_PENSIZE, TButtonGadget::Command));
cb->Insert(*new TButtonGadget(CM_PENCOLOR, CM_PENCOLOR, TButtonGadget::Command));

Ch a p I er 1 4, Making an 0 LE container 123

cb->Insert(*new TSeparatorGadget);
cb->Insert(*new TButtonGadget(CM_ABOUT, CM_ABOUT, TButtonGadget: :Command));
cb->SetHintMode(TGadgetWindow::EnterHints);

II Set the control bar's id. Required for OLE tool bar merging
cb->Attr.Id = IDW_TOOLBAR;

II Insert the status bar and control bar into the frame
frame->Insert(*sb, TDecoratedFrame::Bottom);
frame->Insert(*cb, TDecoratedFrame::Top);

II Set the main window and its menu
SetMainWindow(frame);
GetMainWindow()->SetMenuDescr(TMenuDescr("MDI_COMMANDS",1,1,0,0,1,l));

II Install the document manager
SetDocManager(new TDocManager(dmMDI I dmMenu));

Changes to the DocNiew classes
There are a number of changes you need to make to your TDrawDocument and
TDraw View classes to support OLE containers. For your document class, you need to

• Add more information to the registration table for creating TDrawDocument
document templates

• Change the base class to TOleDocument

• Modify the constructor

• Add two new functions, GetLine and IsOpen

• Modify the file access functions to store and load OLE objects

For your view class, you need to

• Change the base class to TOleView

• Remove the DragDC member

• Modify the constructor and destructor to remove statements with DragDC

• Modify the Paint function to call the base class Paint function

• Modify the mouse action commands to check when the user selects an embedded
OLE object

These changes are described in the following sections.

Changing document registration
The registration table you created on page 88 contains information necessary for the
creation of a basic document template. This functions fine when the only thing using the

124 ObjectWindows Tutorial

document template is the document manager. But the way that ObjectComponents uses
the Doc/View classes requires some more information:

• An identifier string. For this identifier, you want to use the REGDATA macro with
the progid key value. This is a three part identifier. Each part of the identifier should
be a text description, with each part separated by a period. There should be no
whitespace or non-alphabetic character in this string other than the period delimiters.

• The first part of the identifier should be descriptive of the overall application. For
example, in the sample code, the first part of the identifier is Draw Pad.

• The second part should describe the part of the application contained in the
module associated with the registration table. For the application registration table
in the sample code, this part of the identifier is Application. For the document
registration table, it's Document.

• The third part should be a number. In the sample code, this number is 1. If your
application supports multiple document types, use a different number for each
document type.

Note that this isn't meant for the users of your application to see. It's entered in the
system's OLE registration database and should be unique for every application.

• A description of the document class. For this, you want to use the REGDATA macro
with the description key value. This value is intended for the users of your application
to see; this is the string that appears in the OLE registration database when someone
is inserting an object into their container.

• A list of the types of data the container application can pass on to the Clipboard. To
register Clipboard formats, use the REGFORMAT macro. This macro takes five
parameters:

• Format priority. The lower the value, the higher the priority. 0 indicates that the
format is the highest priority format. When the user tries to paste data into your
application, the Clipboard tries to paste it in as the highest priority format that is
consistent with the format of the data in the Clipboard.

• Data format.

• Presentation aspect used to display data (for example, a bitmap could be
displayed as a bitmap, as formatted information about the bitmap such as its
dimensions and number of colors, as a hex dump, and so on) or an object might be
presented in iconic form.

• How the data is transferred when not otherwise specified (for example, when data
is transferred by a drag-and-drop transaction, the server might prefer to pass the
data to the container by means of a temporary file).

• Whether the document can provide as well as receive this type of data.

Every OLE application must specify that it can handle the ocrEmbedSource and
ocrMetafilePict formats. By default, ObjectComponents always registers
ocrLinkSource. You'll usually want to register ocrLinkSource yourself, though, so that
you can set its priority lower. In addition, you can register ocrBitmap and ocrDIB.
Note these formats indicate the type of data your application can pass to the
Clipboard, not the type of data your application can accept. Pasting this data to the

C h a p I e r 1 4 , M a k i n g a n 0 L E c o n I a i n e r 125

Clipboard is handled by ObjectComponents. The exact meaning of each of these
values is described in the Object Windows Reference Guide.

The following registration table shows how your registration table should look. The
values for the REGFORMAT macro are described in the Object Windows Reference Guide.

BEGIN_REGISTRATION(DocReg)
REGDATA(progid, "DrawContainer")
REGDATA(description,"OWL Drawing Pad 2.0 Document")
REGDATA(extension, "PTS")
REG DATA (docfil ter, "*. pts")
REGDOCFLAGS(dtAutoOpen I dtAutoDelete I dtUpdateDir I dtCreatePrompt I dtRegisterExt)
REGFORMAT(O, ocrEmbedSource, ocrContent, ocrIStorage, ocrGet)
REGFORMAT(l, ocrMetafilePict, ocrContent, ocrMfPict, ocrGet)
REGFORMAT(2, ocrBitmap, ocrContent, ocrGDilocrStaticMed, ocrGet)
REGFORMAT(3, ocrDib, ocrContent, ocrHGloballocrStaticMed, ocrGet)
REGFORMAT(4, ocrLinkSource, ocrContent, ocrIStream, ocrGet)

END_REGISTRATION

Changing TDrawDocument to handle embedded OLE objects
You need to make a few changes to TDrawDocument to support embedded OLE objects.
These changes mainly affect reading and writing documents that contain OLE objects.
The changes are fairly simple; most of the capabilities required to handle embedded
OLE objects are handled in the new base class TOleDocument. Here's a summary of the
changes required.

• Change TDrawDocument'.s base class to TOleDocument.

• Modify TDrawDocument's constructor to improve performance.

• Remove the IsOpen function.

• Add some function calls to the Commit and Open functions; these function calls read
and write OLE objects embedded in the document.

Changing TDrawDocument's base class to TOleDocument
To get your document class ready to work in an ObjectComponents environment, you
need to change the base class from TFileDocument to TOleDocument. TOleDocument is
based on the TStorageDocument class, which is in tum based on TDocument.
TStorageDocument provides the ability to manage and store compound documents.
Compound documents provide a way to combine multiple objects into a single disk file,
without having to worry about where each of the individual objects are stored or how
they written out or read in. On top of TStorageDocument's capabilities, TOleDocument
adds the ability to interface with an OLE object, control and display the OLE object, and
read and write the object to and from storage.

To change your base class from TFileDocument to TOleDocument, you first need to
change all references from TFileDocument to TOleDocument. This is fairly simple, since
all that needs to change is the actual name; all the function signatures, including the base
class constructor's, are the same.

126 ObjectWindows Tutorial

Constructing and destroying TDrawDocument
The only change you need to make to the constructor for TDrawDocument (other than
changing the base class to TOleDocument) basically serves to enhance the performance of
the Drawing Pad application, and is not connected to its OLE functionality.

1 Remove the Lines member from the constructor's initialization list.

2 Initialize Lines in the constructor body, with an initial size of 100, lower boundary of
0, and a delta of 5.

Your constructor should now look something like this:

TDrawDocument(TDocument* parent) : TOleDocument(parent), UndoLine(O), UndoState(UndoNone)
(

Lines = new TLines(lOO, 0, 5);

You don't need to make any changes to the destructor.

Removing the lsOpen function
You need to remove the IsOpen function from the TDrawDocument class. This function is
made obsolete by the change you made to the constructor, since the function tests the
validity of the Lines member, and Lines now always points to a valid object.

TStorageDocument provides an IsOpen function that tests whether the document object
has a valid !Storage member. !Storage is an OLE 2 construct that manages compound file
storage and retrieval. A compound file is a basically a file that contains references to
objects in a number of other locations. To the user, the compound file appears to be a
single document. In reality, the different elements of the file are stored in various areas
determined by the system and managed through the !Storage object. By constructing an
OLE container, you're venturing into supporting compound documents in your
application. However, since the support is provided through the OLE-enabled
ObjectComponents classes, you don't need to worry about managing the compound
documents yourself.

Along with removing the IsOpen function declaration and definition from
TDrawDocument, you need to eliminate any references to the IsOpen function. This
function is called only once, in the GetLine function. In this case, you can simply remove
the entire statement that contains the call to IsOpen. This statement checks the validity of
the document's TLine object referenced by the Lines data member, but the change you
made to the constructor, which ensures that each document object is always associated
with a valid TLine object, makes the check unnecessary. Your GetLine function should
now look something like this:

TLine*
TDrawDocument: :GetJ,ine (uint index)
(

return index < Lines->GetitemsinContainer I I ? & (*Lines) I index] : 0;

The TDrawDocument class declaration should now look something like this:

class _DOCVIEWCLASS TDrawDocument : public TOleDocument
(

C h a pt e r 1 4 , M a k i n g a n 0 L E c o n t a i n e r 127

};

public:
enum {

. };

PrevProperty = TFileDocument::NextProperty-1,
LineCount,
Description,
NextProperty,

enum {
UndoNone,
UndoDelete,
UndoAppend,
UndoModify

};

TDrawDocument(TDocument* parent= 0);
-TDrawDocument() { delete Lines; delete UndoLine;

II implement virtual methods of TDocument
bool Open(int mode, canst char far* path=O);
bool Close();
bool Commit(bool force= false);
bool Revert(bool clear= false);

int FindProperty(const char far* name); II return index
int PropertyFlags(int index);
canst char far* PropertyName(int index);
int PropertyCount() {return NextProperty - l;}
int GetProperty(int index, void far* dest, int textlen=O);

II data access functions
TLine* GetLine(uint index);
int AddLine(TLine& line);
void DeleteLine (uint index) ;
void ModifyLine(TLine& line, uint index);
v.oid Clear () ;
void Undo();

protected:
TLines* Lines;
TLine* UndoLine;
int UndoState;
int Undoindex;
string Fileinfo;

Reading and writing embedded OLE objects
The last change you need to make to your document class provides the ability to save
and load OLE objects embedded in a document. This is contained in two functions
provided by TOleDocument. The functions are named Open and Commit. As you can
probably guess, Open reads in the OLE objects contained in the document and Commit
writes them out, that is, it commits the changes to qisk.

To add these changes to your document class:

128 ObjectWindows Tutorial

1 Add the call to TOleDocument::Commit in the Commit function right before you create
the TOutStream object by calling the OutStream function.

2 Add the call to the TOleDocument::Open function in TDrawDocument's Open function
right before you create the TinStream object by calling the InStream function.

3 At the end of the procedure, call TOleDocument::CommitTransactedStorage to make
your changes permanent. By default, TOleDocument uses the transacted mode
(ofTransacted) to buffer changes in temporary storages until they are committed
permanently.

That's all you need to do read and store OLE objects in your document! Your Commit
function should now look something like this:

bool TDrawDocument::Corrunit(bool force)
{

TOleDocument::Corrunit(force);

TOutStream* os = OutStream(ofWrite);

if (!OS I
return false;

II Write the number of lines in the figure
*os << Lines->GetitemsinContainer();

II Append a description using a resource string
*os « ' ' « Fileinfo « '\n';

II Get an iterator for the array of lines
TLinesiterator i(*Lines);

II While the iterator is valid (i.e. we haven't run out of lines)
while (i)

II Copy the current line from the iterator and increment the array.
*os « itt;

delete os;

II Corrunit the storage if it was opened in transacted mode
TOleDocument::CorrunitTransactedStorage();
SetDirty(false);
return true;

Your Read function should look something like this:

bool TDrawDocument::Open(int mode, const char far* path)
{

char fileinfo[lOOJ;

TOleDocument::Open(mode, path);
if (GetDocPath()) {

TinStream* is = (TinStream*)InStream(ofRead);

C h a p I e r 1 4 , M a k i n g a n 0 L E c o n I a i n e r 129

if I! isl
return false;

unsigned numLines;
*is >> numLines;
is->getline(fileinfo, sizeof(fileinfo));

while (numLines--)
TLine line;
*is » line;
Lines->Add(line);

delete is;

Fileinfo = fileinfo;
} else {

Fileinfo = string(*::Module,IDS_FILEINFO);

SetDirty(false);
UndoState = UndoNone;
return true;

Changing TDrawView to handle embedded OLE objects
You need to make a few changes to TDraw View to support embedded OLE objects.
These changes mainly affect handling OLE objects through the mouse, including
dragging the objects and activating the object's server. The changes are fairly simple;
most of the capabilities required to handle embedded OLE objects are handled in the
new base class TOleView. Here's a summary of the changes required.

• Change the base class of TDrawView to TOleView.

• Remove the DragDC member; TOleView supplies a TDC pointer called DragDC.

• Modify the constructor and destructor to remove initialization and deletion of
Drag DC.

• Remove the EvRButtonDown function.

• Modify the Paint function to call TOleView::Paint to force embedded objects to paint
themselves.

• Modify the mouse action functions to deal with user interaction with embedded OLE
objects.

• Modify the class declaration to reflect changes in the view class.

Modifying the TDrawView declaration
Here's the class declaration for TDrawView. The modifications to it will be explained in
the following sections.

130 0 bj e ctWi n d ows Tu tori a I

class DOCVIEWCLASS TDrawView public TOleView
{

};

public:
TDrawView(TDrawDocument& doc, TWindow* parent = 0);

-TDrawView() {delete Line;}
static const char far* StaticName I I (return "Draw View";}
const char far* GetViewName() {return StaticName() ;}

protected:
TDrawDocument* DrawDoc; II same as Doc member, but cast to derived class
TPen* Pen;
TLine* Line; II To hold a single line sent or received from document

I I Message response functions
void EvLButtonDown(uint, TPoint&);
void EvMouseMove(uint, TPoint&);
void EvLButtonUp(uint, TPoint&);
void Paint(TDC&, bool, TRect&);
void CmPenSize();
void CmPenColor();
void CmClear();
void CmUndo();

II Document notifications
bool VnCorrunit(bool force);
bool VnRevert(bool clear);
bool VnAppend(uint index);
bool VnDelete(uint index);
bool VnModify(uint index);

DECLARE_RESPONSE_TABLE(TDrawView);

Here's the response table for TDrawView.

DEFINE_RESPONSE_TABLEl(TDrawView, TOleView)
EV_WM_LBUTTONDOWN,
EV_WM_MOUSEMOVE,
EV_WM_LBUTTONUP,
EV_COMMAND(CM_PENSIZE, CmPenSize),
EV_COMMAND(CM_PENCOLOR, CmPenColor),
EV_COMMAND(CM_EDITCLEAR, CmClear),
EV_COMMAND(CM_EDITUNDO, CmUndo),
EV __ VN_COMMIT,
EV_VN_REVERT,
EV_VN_DRAWAPPEND,
EV_VN_DRAWDELETE,
EV_VN_DRAWMODIFY,

END_RESPONSE_TABLE;

Chapter 14, Making an OLE container 131

Changing TDrawView's base class to TOleView
To get your view class ready to work in an ObjectComponents environment, you need
to change the base class from TWindowView to TOleView. TOleView is itself based on the
TWindowView class. TOleView provides the ability required to manipulate and move
OLE objects and activate an object's server.

To change your base class from TWindowView to TOleView, you first need to change all
references from TWindowView to TOleView. This is fairly simple, since all that needs to
change is the actual name; all the function signatures, including the base class
constructor's, are the same.

Removing DragDC
This change is relatively straightforward. TOleView provides a pointer to a TDC called
Drag DC, obviating the need for this member in the TDraw View class. You'll also need to
remove a lot of the actions you previously took with DragDC. Many of these, such as
creating a device context object when the left mouse button is clicked, is taken care by
TOleView. These changes are discussed in the next section where they come up.

Constructing and destroying TDrawView
The only change you need to make to the TDraw View constructor is to remove the
initialization of the DragDC member. Although DragDC was removed from the
TDrawView class declaration, it is still a class member; it is provided by TOleView. But
TOleView also handles initializing DragDC, since TOleView needs to check for OLE
actions that the user might have taken.

Note that the TOleView constructor signature is the same as that of TWindowView,
meaning all you have to do is change the name and nothing else. Here's how your
TDrawView constructor should look.

TDrawView::TDrawView(TDrawDocument& doc, TWindow* parent) :
TOleView(doc, parent), DrawDoc(&doc)

Line =new TLine(TColor: :Black, 1);
SetViewMenu(new TMenuDescr(IDM_DRAWVIEW));

By the same token, the only modification needed to the destructor for TDraw View is to
remove the statement deleting DragDC.

-TDrawView ()
{

delete Line;

Modifying the Paint function
You need to modify the Paint function to call TOleView::Paint. TOleView::Paint finds each
linked or embedded object in the document (if there are any) and instructs each one to
paint itself. Once this has been done, you can go on and paint the screen just as you did
in Step 13. Your new Paint function should look something like this:

132 0 b j e c I W i n d ow s T u I o r i a I

void
TDrawView: :Paint(TDC& de, bool erase, TRect&rect)
{

TOleView: :Paint(dc, erase, rect);

II Iterates through the array of line objects.
int j = 0;
TLine* line;
while ((line= const_cast<TLine *>(DrawDoc->GetLine(j++) II != 0)

line->Draw(dc);

Selecting OLE objects
The next changes you need to make involve the functions dealing with mouse actions,
namely EvLButtonDown, EvMouseMove, and EvLButtonUp. The changes you need to
make in these functions involve checking whether the user's mouse actions involve an
OLE object and what drawing mode is set. This is mostly handled by TOleView; for the
most part, all you have to do is call the base class versions of the functions. The changes
for each function are discussed in the following sections.

Modifying EvLButtonDown
You don't need to change the basic workings of the EvLButtonDown function as it exists
in Step 13. What you do need to do is add a couple of extra steps to take into account
OLE objects that might be in the view.

1 The first thing you need to do is let the TOleView base class determine whether the
user selected an OLE object. Do this by calling TOleView::EvLButtonDown. This
function deactivates any currently selected OLE object, creates a new TOleDC object
(TOleDC is derived from the TClientDC class you used in previous steps, adding the
ability to handle embedded OLE objects), and checks to see if another OLE object was
selected.

2 To check whether the user wants to and is able to draw in the view, you need to
check two things: whether a valid device context was created in the call to
TOleView::EvLButtonDown and whether an OLE object was selected. You can check
the validity of the device context simply by testing DragDC. You can find out
whether an OLE object was selected by calling the SelectEmbedded function.
SelectEmbedded returns true if an object was selected and false otherwise. If both these
conditions weren't met, EvLButtonDown can just return.

3 Assuming there is a valid device context and no OLE object was selected, you can go
ahead and begin the drawing operation the same as you did in Step 13. The only
change you need to make is removing the initialization of DragDC, since it's already
set to a valid device context object.

Your EvLButtonDown function should look something like this:

void TDrawView::EvLButtonDown(uint modKeys, TPoint& point)
{

TOleView::EvLButtonDown(modKeys, point);

if (DragDC && !SelectEmbedded())

C h a pt e r 1 4 , M a k i n g a n 0 L E c o n t a i n e r 133

SetCapture();
Pen= new TPen(Line->QueryColor(), Line->QueryPenSize());
DragDC->SelectObject(*Pen);
DragDC->MoveTo(point);
Line->Add(point);

Modifying EvMouseMove
The changes needed to EvMouseMove are similar to those required by EvLButtonDown.

Call the base class version of EvMouseMove.

2 Check whether the device context is valid and whether an OLE object was selected.

3 Continue the drawing operation the same way you did in Step 13.

Your EvMouseMove function should look something like this:

void TDrawView::EvMouseMove(uint modKeys, TPoint& point)
{

TOleView::EvMouseMove(modKeys, point);

if (DragDC && !SelectEmbedded())
DragDC->LineTo(point);
Line->Add(point);

Modifying EvLButtonUp
With EvLButtonUp, you need to do the same things as you did in EvLButtonDown and I
EvMouseMove, but with a bit of a twist. In this case, call the base class version of the
function last instead of first. TOleView::EvLButtonUp performs a number of cleanup
operations, including deleting the device context object pointed to by Drag DC.

Check whether the device context is valid and whether an OLE object was selected.

2 Perform the same operations as EvLButtonUp in Step 13, except for deleting and
zeroing out DragDC.

3 Call TOleView::EvLButtonUp.

Your EvLButtonUp function should look something like this:

void TDrawView::EvLButtonUp(uint modKeys, TPoint& point)
{

if (DragDC && !SelectEmbedded()) {
ReleaseCapture();
if (Line->GetitemsinContainer() > 1)

DrawDoc->AddLine(*Line);

Line->Flush();
delete Pen;

134 ObjectWindows Tutorial

TOleView::EvLButtonUp(modKeys, point);

Where to find more information
Here's a guide to where you can find more information on the topics introduced in this
step:

• OLE and ObjectComponents containers are discussed in Chapter 19 in the
ObjectWindows Programmer's Guide.

• The ObjectComponents classes in general are discussed in more detail in Chapters 18
through 22 in the Object Windows Programmer's Guide.

Ch apter 1 4, Making an 0 LE container 135

136 ObjectWindows Tutorial

Making an OLE server
Supporting OLE servers by being a OLE container is a big step ahead in flexibility for
your applications. It expands the functionality of your application into just about any
area you can think of. But one thing is missing: if you can make your application an OLE
server, your application can be used to extend the functionality of other applications.

For example, suppose you're developing database forms and you want to add some of
your line drawings to make the database forms more attractive. Without OLE, including
line drawings in the database form is rather cumbersome, requiring you somehow to
capture the drawing and paste it into the form. Then, once it's in the form, you have no
way to modify it besides going back to Drawing Pad, editing it, then pasting it back into
the form.

If the database is an OLE container, and you've made Drawing Pad an OLE server, you
can easily drop line drawings into your database forms. The embedded OLE server lets
you modify the line drawing without having to leave your database application.

This chapter describes how to take your Doc/View Drawing Pad application from Step
14 and make it an OLE server. The code for this example can be found in the files
STEP15.CPP, STEP15DV.CPP, STEP15.H, STEP15DV.H, STEP15.RC, and
STEP15DV.RC in the EXAMPLES/OWL/TUTORIAL directory of your compiler
installation.

Note After making the changes in this step, the Drawing Pad application will be a server-only
application; that is, it will no longer support containing embedded OLE objects. This is
to demonstrate the unique server functionality added to the application. Changes that
remove the container support will be noted. If you want to combine container and
server support in a single application, you need only to skip those steps that remove
container support.

Ch apter 1 5, Making an 0 LE server 137

Converting your application object
There are a few changes you need to make in your application object to become an OLE
server.

• Change the header files.

• Change the application's registration table.

• Change the base class constructor to register some more information, including the
application dictionary.

• Hide the window if the application was invoked as a server.

• Add module identifier parameters to a number of object constructors.

• Change how you create new views.

• Change how you find the About dialog box's parent window.

• Change the OwlMain function to check for action options.

Changing the header files
You only need to make two changes to the list of header files in STEP15.CPP.

• Add the owl\oleview.h header file; the TOleView class needs to be used when you
create new views

• Change from including STEP14.RC to STEP15.RC

Changing the application's registration table
You basically need to change your entire application registration table from Step 14.
However, only one of these changes is directly related to making the application an OLE
server. You need to change the values associated with the clsid and description keys.
Because the end result is an application that is different from Step 14, all of these values
should change.

Your new registration table should look something like this:

BEGIN_REGISTRATION(AppReg)
REGDATA (els id, " { 5E4BD320-8ABC-101B-A23B-CE4E85D07ED2}")
REGDATA(description,"OWL Drawing Pad Server")

END_REGISTRATION

Note Remember, don't try to duplicate the GUID or program identifier in your other
applications! Preventing such duplication is why these values were changed from Step
14 to Step 15!

Changing the application constructor
For OLE servers, you need to change TDrawApp's base class constructor to take the
application dictionary object as a parameter. For a container application, you didn't

138 ObjectWindows Tutorial

need to do this. The reason is that a container is always be created as an executable
application as opposed to a DLL. When you don't specify an application dictionary in
TApplication's constructor, it uses the global application dictionary ::OwlAppDictionary.
This works fine for an executable: since it has its own instance, it's entered in the global
application dictionary. But DLLs don't have their own instance.

T Application provides a couple more parameters to its constructor than you've been
using. The first is the name of the application, which you used in the last step to set the
application name.

The second is a pointer to a reference to a TModule object (that is, TModule*&).
TApplication's constructor sets this pointer to point at the new application object. In this
case, you want to pass in the global module object ::Module. ::Module is used by
ObjectWindows and ObjectComponents to identify the current module. Note that
::Module is the default value for this parameter.

The last parameter is a pointer to a T App Dictionary object. Use a pointer to the
TAppDictionary object you created using the DEFINE_APP _DICTIONARY macro for
this parameter.

Now your constructor should look something like this:

TDrawApp I I : TApplication(: :AppReg ["description"], : :Module, & : :AppDictionary) {}

Hiding a server's main window
'

Under regular circumstances, when your application is started up, it does some setup
and initialization, then creates a main window for the user to work in. That's fine when
someone is using your application as their primary workplace. But when your
application is being used as an OLE server, it's not the primary workplace; the main
window has already been created by another application. In this case, you need to set
your main window to be hidden.

The best place to do this is in InitMain Window, before your window object has been
created. To find out whether the application is an embedded server and to hide the main
window if so:

1 Call the IsOptionSet function of the TOcRegistrar object, passing
TOcCmdLine::Embedding as the function's argument. You can get a reference to the
application's registrar object by calling the GetRegistrar function. IsOptionSet checks hJ
see if the application's command line contained the option passed to it as a
parameter. When an application is created as an embedded server, the -Embedding
option is specified on the command line. Therefore, if the application was c·eated as
an embedded server, IsOptionSet returns true when passed TOcCmLine::Embedding.
You'll see more of these options later.

2 If IsOptionSet returns true, the application is being invoked as an embedded server,
so set nCmdShow to SW _HIDE. This causes the main window to be hidden when it's
created and activation to be passed to the window from which the server was
invoked.

Ch apter 1 5, Making an 0 LE server 139

Identifying the module
When you constructed the T Application base class, you had to add in a couple of new
parameters to make sure the objett could find itself in complicated OLE environment.
You need to do the same basic thing for a number of other objects in your application. In
the case of these objects, though, you just need to direct them to the application object,
which then handles all the transactions between your application and whatever's
outside of the application.

• The MDI client window takes a single parameter, a module pointer.

• · The OLE MDI frame takes a TModule pointer as a parameter after its menu-tracking
parameter (which is the last parameteryou used in Step 14).

• The doc,ument manager takes a T Application pointer after its flags parameter.

Use TDrawApp's this pointer for each of these parameters.

Your InitMain Window function should look something like this:

void
TDrawApp::InitMainWindow()
{

if (GetRegistrar() .IsOptionSet(TOcCmdLine::Embedding))
nCmdShow = SW_HIDE;

TOleMDIFrame* frame;
frame= new TOleMDIFrame(GetName(), 0, *(Client= new TMDIClient(this)), true, this);
ftame->SetOcApp(OcApp);

II Construct a status bar
TStatusBar* sb = new TStatusBar (frame, TGadget: : Recessed) ;

II Construct a control bar
TControlBar* cb =new TControlBar(frame);
cb->Insert(*new TButtonGadget(CM_FILENEW, CM_FILENEW, TButtonGadget::Cornrnand));
cb->Insert(*new TButtonGadget(CM_FILEOPEN, CM_FILEOPEN, TButtonGadget::Cornrnand));
cb->Insert(*new TButtonGadget(CM_FILESAVE, CM_FILESAVE, TButtonGadget::Cornrnand));
cb->Insert(*new TButtonGadget(CM_FILESAVEAS, CM_FILESAVEAS, TButtonGadget::Cornrnand));
cb->Insert (*new TSeparatorGadget);
cb->Insert(*new TButtonGadget(CM_PENSIZE, CM_PENSIZE, TButtonGadget::Cornrnand));
cb->Insert(*new TButtonGadget(CM_PENCOLOR, CM_PENCOLOR, TButtonGadget: :Command));
cb->Insert(*new TSeparatorGadget);
cb->Insert(*new TButtonGadget(CM_ABOUT, CM_ABOUT, TButtonGadget::Cornrnand));
cb->SetHintMode(TGadgetWindow::EnterHints);
cb->Attr.Id = IDW_TOOLBAR;

II Insert the status bar and control bar into the frame
frame->Insert(*sb, TDecoratedFrame::Bottom);
frame-> Insert (*cb, TDecoratedFrame: :Top);

II Set the main window and its menu
SetMainWindow(frame);
GetMainWindow()->SetMenuDescr(TMenuDescr(IDM_MDICMNDS));

140 ObjectWindows Tutorial

II Install the document manager
SetDocManager(new TDocManager(dmMDI I dmMenu, this));

Creating new views
When creating a new view window in an OLE server application, you need to be careful
about setting the view's parent. In the case where your application is being run as a
stand-alone program, you don't have to change anything. The code in EvNewView that
you used in the last few steps is just fine.

Things become complicated when the server is embedded in a container application.
You need to determine one basic thing: is your view using space inside one of the
container's windows? You can determine this by answering two questions:

• Is the application being used as an embedded server? If the answer to this question is
no (that is, your application is being run on its own), then you can skip the next
question: you know your application isn't occupying space in the container's
window, because there is no container.

• Has the application been opened for editing? The user can access your embedded
server in one of two ways: either in-place editing, where your server's workspace sits
inside the workspace of the container, or open editing, where your server opens up
for editing, looking pretty much the same as it does when opened on its own. If the
user has opened your server for editing then the server is not sharing space in the
container's window. Only if the user is using your server for in-place editing do you
have to worry about sharing space with the container.

The reason you need to determine this has to do with setting the parent window of the
view. When the server is being used as an in-place server, you must set the parent
window of the view properly. ObjectComponents provides an object known as a view
bucket to make this easier. Once you've set your view's parent to the view bucket,
ObjectComponents takes care of setting the view's parent when the view is activated,
deactivated, moved around, and so on. To set the view's parent, follow this procedure:

Downcast the TView parameter of the EvNewView function to a TOleView. Take the
address of the object by prefixing it with an ampersand(&) and assign it to a
TOleView pointer using the TYPESAFE_DOWNCAST macro.

2 Check whether the view is an embedded server by calling the view's associated
document's IsEmbedded function. The view itself doesn't know if it's embedded. You
can find the view's associated document by calling the view's GetDocument function.
If the document's not embedded, you can stop checking here and just go to the code
you used in the last few steps.

3 Check whether the view is activated for open editing. You can check this by calling
the IsOpenEditing function of the view's remote view. You can get a pointer to the
remote view by calling GetOcRem View. If IsOpenEditing returns true, you can stop
checking here and go to the code you used in the last few steps.

4 Once you've determined that the application is being used as a server for in-place
editing, you can work on setting up the view's parent. Follow this procedure:

Chapter 15, Making an OLE server 141

Find the window associated with the view. You can get a TWindow pointer to this
window using the view's GetWindow function.

You need to find the remote view bucket associated with the server. To do this, call
the GetMain Window function and downcast the return value to a TOleFrame
pointer. TOleFrame provides a function called GetRem View Bucket. This function
returns a TWindow pointer that references the remote view bucket.

Once you've found the remote view bucket, call the view's SetParent function with
the bucket's TWindow pointer as the parameter.

4 Call the view's Create function.

Note that you haven't really set the view's parent as you normally think of it. But the
remote view bucket lets you set this once and then lets ObjectComponents take care of
the work of keeping track of the active parent window.

The code for this function should look something like this:

void
TDrawApp::EvNewView(TView& view)
{

TOleView* ov = TYPESAFE_DOWNCAST(&view, TOleView);
if (view.GetDocument() .IsEmbedded() && !ov->GetOcRemView()->IsOpenEditing())

TWindow* vw view.GetWindow();
vw->SetParent(TYPESAFE_DOWNCAST(GetMainWindow(), TOleFrame)->GetRemViewBucket());
vw->Create();

l else {
TMDIChild* child = new TMDIChild(*Client, 0);
if (view.GetViewMenu())

child->SetMenuDescr{*view.GetViewMenu());
child->Create{);
child->SetClientWindow(view.GetWindow());

Changing the About dialog box's parent window
In previous versions of the tutorial application, when you created the About dialog box,
you simply called the GetMainWindow function to find the dialog box's parent window.
This is no longer adequate, however, since you don't know if your main window is
actually the main window that the application user sees. If your application is
embedded in another application, you've already determined in the TDrawApp
constructor that you're not displaying your main window.

To find the window with focus or other appropriate view window on the desktop
(which functions as the dialog's parent), you can call the GetCommandTarget function.
This function is provided by TFrameWindow and returns a handle to the current active
window. Note that calling this function works whether or not the application is running
as an embedded server or as a stand-alone application, since it returns the command
focus window. When the tutorial application is an embedded server, it returns a handle
to the focus window of the client application. When the tutorial application is running
on its own, it returns a handle to itself.

142 ObjectWindows Tutorial

Note that you still need to call GetMainWindow to get a pointer to the tutorial
application's main window. You then call the GetCommandTarget function of that
window object. You also need to create a temporary TWindow to pass
GetCommandTarget's return value to the TDialog constructor. Your modified CmAbout
function should look something like this:

void
TDrawApp::CmAbout()
{

TDialog(&TWindow(GetMainWindow()->GetCommandTarget()), IDD_ABOUT) .Execute();

Modifying OwlMain
There's only one new thing you need to take care of before running an OLE server
application. You need to check the command line to see if one of the standard action
options was specified.

There are a couple of standard ObjectComponents command-line options that may be
specified for your server application. The presence of one of these "action" options
signals that, instead of executing normally, your application should perform a particular
action, then exit. For an OLE server application, the action options you need to check for
are:

• The -RegServer option tells your application to completely register itself in the OLE
registration database.

• The -UnregServer option tells your application to "unregister" itself, that is, remove
its entry in the OLE registration database.

The good thing about these options is that ObjectComponents automatically performs
these actions for you when you create the registrar object. The only thing you need to do
is check in the OwlMain function whether one of these options was set. If so, you can
return immediately. If none of the action options was specified, you can go on to the
next step.

You can check for these options using the IsOptionSet function that you used in the
InitMain Window function to check for the -Embedding flag. For these options, you should
check for the TOcCmdLine::AnyRegOptions flag. This flag checks to see if any of the
options relevant to your application was set. IsOptionSet returns true if any of the
options was set.

If one of the flags was set, you can return 0 from OwlMain. When one of these action
options is set, ObjectComponents performs some registration task Once that task is
done, the application is complete. Your application never performs a registration task
then executes as normal.

Your OwlMain function should look something like this:

int
OwlMain(int /*argc*/, char* /*argv*/ [])
{

Registrar= new TOcRegistrar(AppReg, TOleFactory<TDrawApp>(),

Chapter 15, Making an OLE server 143

TApplication::GetCmdLine());

if (Registrar->IsOptionSet(TOcCmdLine: :RegServer I TOcCmdLine::UnregServer))
return 0;

return Registrar->Run();

Changes to your DocMew classes
There are a number of changes you need to make to your Doc/View classes to support
OLE server fun,ctionality:

• Change your header files

• Modify the document registration table to provide extra information needed by an
OLE server

• Make some changes to the view notification functions VnRevert, VnAppend,
VnModify, and VnDelete functions

• Add some new members to TDraw View, including a TControlBar pointer and some
new functions

• Remove calls from the mouse action functions and the Paint function

Changing header files
You need to change your list of header files to include a few new header files, along with
changing to including the resource script file for Step 15. The new files you need to
include are owl/controlb.h and owl/buttonga.h. Your include statements should look
something like this:

#include <owl/dc.h>
#include <owl/inputdia.h>
#include <owl/chooseco.h>
#include <owl/gdiobjec.h>
#include <owl/docmanag.h>
#include <owl/listbox.h>
#include <owl/controlb.h>
#include <owl/buttonga.h>
#include <owl/olemdifr.h>
#include <owl/oledoc.h>
#include <owl/oleview.h>
#include <classlib/arrays.h>
#include "step15dv.rc"

Changing the document registration table
You need to make some fairly extensive changes to your document registration table to
support being an OLE server. The parts that don't change are discussed in this section.

144 Objec!Windows Tutorial

Defining the registration table isn't different from before. This basically involves using
the BEGIN_REGISTRA TION and END _REGISTRATION macros. As before, your table
begins with the BEGIN_REGISTRATION macro, which takes the name of the
registration as its only parameter. The END _REGISTRATION macro closes out the table
definition.

The two REGDATA macros that set the extension and docfilter table entries remain the
same. The REGDOCFLAGS macro also doesn't change.

The parts of the registration table that you need to change are discussed in the next
sections.

Program identifier and description
Step 14's program identifier (the value associated with the progid key) and its
description (the value associated with the description key) described the application as a
"Draw Container" and "OWL Drawing Pad Container" respectively. These values need
to be changed to reflect the application being a server.

Making the application insertable
ObjectComponents provides a special key value called insertable. You can register
insertable using the REGDATA macro. The value associated with the insertable key is
irrelevant; it's never used, so usually you'll just want to set an empty string for the
value.

The presence of the insertable key indicates to ObjectComponents that the application is
insertable, that is, the application can be embedded into other applications. All
ObjectComponents servers must specify the insertable key in their registration table!

Setting the server's menu items
When the user activates a server embedded in a container by clicking on the server's
view, the container sets a menu item (usually on its Edit menu) that the user can use to
access the server. This menu goes to a pop-up menu that provides a number of
"verbs" -menu choices that let the user work with the server application and
manipulate the data in it.

So there are two things you need to set up for this:

• You need to set up the menu name that the container uses to represent your
application on the container's Edit menu. You can do this with the REGDATA macro,
using the menuname key and the text you want to appear on the menu as the key's
value. You want to be considerate of the container application when choosing this
name. Use a name that you would normally use in a menu; that is, it should be
descriptive of your application but not so long that it forces the menu to be quite
large to accommodate the string. In this case, you could use the application name
"Drawing Pad."

• You can specify up to twenty verbs for your server application. Specify the verbs for
your server application using the REGDATA macro. The key values you use to set up
verbs follow the format verbn, where n is a number from 0 to 19. The value you
associate with each verb is the text that appears on the pop-up menu. Note that you
can specify a keyboard shortcut for each verb by preceding the shortcut letter with an

Chapter 15, Making an OLE server 145

ampersand(&). For example, if you specify Edit as a verb, and you want the user to
be able to press E to activate that, you specify the string "&Edit" for the value.

Note that the first verb in the verb list, that is, the value associated with the verbO key
is the default verb for your server. Thus if the user double-clicks on your embedded
server, the server acts just the same as if the user had selected the verbO value from the
server's menu.

ObjectComponents servers are set up to automatically handle two verbs.

• The Edit verb indicates that the user wants to manipulate the data handled by the
server in place in the container. That means that the user works with the data right in
the remote view area in the container's window.

• The Open verb indicates that the user wants to open the server application to
manipulate the data. In this case, the application opens up as if the user had run the
application by itself. The main difference between using the server this way and
running the server as a stand-alone application is that the server writes to a
document file provided by the container; the container's compound document
storage handles the details of saving the data to disk

Specifying Clipboard formats
For the server application, you can trim down the number of Clipboard formats
available. You really only need to provide two formats.

• ocrEmbedSource indicates that the server can be copied to the Clipboard as an
embeddable source. If someone tries to paste an embeddable source from the
Clipboard, they get a copy of the embedded server object in their application.

• ocrMetafilePict indicates that the server can be copied to the Clipboard as a metafile
representation.

As before, the actual copying operation is handled by ObjectComponents. Note that
these are the only formats necessary to support an ObjectComponents server; the other
formats provided by the container application are removed. To support dual container/
server functionality, you should leave these formats in.

Your finished document registration table should look something like this:

BEGIN_REGISTRATION(DocReg)
REGDATA(progid, "DrawServer")
REGDATA(menuname, "Drawing Pad")
REGDATA(description, "OWL Drawing Pad Server")
REGDATA (extension, "PTS")
REGDATA(docfilter, "*.pts")
REGDOCFLAGS(dtAutoOpen I dtAutoDelete I dtUpdateDir I dtCreatePrompt I dtRegisterExt
REGDATA (insertable, "")
REGDATA (verbO, "&Edit")
REGDATA (verbl, "&Open")
REGFORMAT(O, ocrEmbedSource, ocrContent, ocrIStorage, ocrGet)
REGFORMAT(l, ocrMetafilePict, ocrContent, ocrMfPict, ocrGet)

END_REGISTRATION

146 ObjectWindows Tutorial

Changing the view notification functions
You need to make a change to a number of the view notification functions to support
proper painting of the server's remote view. The functions you need to change are
VnRevert, VnAppend, VnModify, and VnDelete. Each of these view notifications indicates
that the drawing has been modified in some way and the display needs to be updated.

To force the container to update the view and reflect the changes in the view's
appearance, you need to call the InvalidatePart function. This function is provided by
TDrawView's base class TOleView. This function tells the container window that the area
inside the embedded server's remote view is invalid and needs repainting. InvalidatcPart
takes a single parameter, a TOclnvalidate enum. A TOcValidate can be one of two values.

• invData indicates the data in an embedded object has changed and should be
updated in the container.

• inv View indicates the appearance of an object has changed and should be updated in
the container.

In this case, each of these view notification events indicates that the appearance of the
drawing has changed, whether it was by discarding changes, appending a new line,
modifying one of the current lines, or deleting a line. So when you do call the
InvalidatePart function, you should call it with the invView argument. The invData
argument is used when the container has a link to data in the server, but the container
actually takes care of displaying the data.

You should first call the Invalidate function of the view when applicable (each of these
functions already calls Invalidate, except for VnAppend, which doesn't need to), then call
the InvalidatePart function. Here's how your modified view notification functions
should look:

bool
TDrawView: :VnRevert(bool /*clear*/)
{

Invalidate(); //force full repaint
InvalidatePart(invView);
return true;

bool
TDrawView::VnAppend(uint)
{

InvalidatePart(invView);
return true;

bool
TDrawView: :VnModify(uint /*index*/)
{

Invalidate(); II force full repaint
InvalidatePart(invView);
return true;

Ch apter 1 5 , Maki n g an 0 LE s e r v er 147

bool
TDrawView::VnDelete(uint /*index*/)
{

Invalidate(); //force full repaint
InvalidatePart(invView);
return true;

Adding new members to TDrawView
You need to add some new members to your TDraw View class. These members are

• A TControlBar pointer
• Two new event handlers for cutting and copying
• Two new event handlers for ObjectComponents events

Adding a control bar
When your application is activated as an embedded server, the container often lets the
application provide a tool bar to access its functionality. This tool bar should be different
from the regular application tool bar and provides button gadgets only to access the
unique functions of your application and not those things handled by containers, that is,
the object's editing and viewing commands. For example, opening a file is handled by
any adequate container application, so it's not a unique ability of the Drawing Pad
application. On the other hand, no container knows how to change Drawing Pad's pen
color.

Since the commands supported by this tool bar are a subset of the commands supported
by the application's tool bar, you can't simply use that tool bar. Instead you need to
provide one for each embedded server view. To support this, just add a TControlBar
pointer as a protected data member. You should initialize this member to 0 in
TDrawView's constructor. The tool bar itself is constructed in one of the new
ObjectComponents event handlers. You can see this on page 150.

Cutting and copying data
Your server will often receive requests to cut or copy data to the Clipboard. You need to
provide functions to handle these requests.

Cutting
Cutting data is copying information from the drawing, placing that information in the
Clipboard, then removing the information from the drawing. This is a fairly common
way to exchange data. However, in the context of the Drawing Pad application, this
behavior is undefined: what does it mean to cut lines from a window?

But since this is a very common (almost mandatory) function in an OLE server, you
should provide at least a place holder for it. You can declare and define a function called
CmEditCut to do this. This function is called when TDrawView receives the
CM_EDITCUT event, which you also need to add (it's in the STEP15DV.RC file in the
sample code). So follow this procedure:

148 ObjectWindows Tutorial

Add the CM_EDITCUT macro to your application.

2 Add the CmEditCut function to the TDrawView class declaration.

3 Add an EV_ COMMAND macro to the response table to call CmEditCut when the
CM_EDITCUT event is received.

4 Define CmEditCut to have no functionality.

Copying
To copy, you can call a member function of one of the classes provided by
ObjectComponents. This class is called TOcRem View and provides a remote view object
for a server document. A remote view handles the view of your server application from
the container application. TOcRem View provides a function called Copy, which copies
the document's data to the Clipboard. You get the TOcRem View object to work with by
calling the GetOcRem View function, which is provided by TO le View.

1 Add the CM_EDITCOPY macro to your application.

2 Add the CmEditCopy function to the TDraw View class declaration.

3 Add an EV _COMMAND macro to the response table to call CmEditCopy when the
CM_EDITCOPY event is received.

4 Define CmEditCopy to call GetOcRem View and call the Copy function of the
TOcRem View object.

Handling ObjectComponents events
There are a couple of ObjectComponents events that you need to handle.

• OC_ VIEWPARTSIZE indicates a request from the container to find out the size of
your object's view, that is, the size of the "window" within the container's window in
which the user sees your embedded application.

• OC_ VIEWSHOWTOOLS indicates a request from the container for a tool bar from
the server application.

Reporting server view size
For formatting reasons, a container often needs to find out the size of an embedded
server's view. The container signals that it needs this information by sending an
ObjectComponents message to the view. The view then needs to calculate the size of the
server view and get that information back to the container.

To add this functionality, follow these steps:

1 · The container lets the server know that it needs the size of the view by sending the
OC_ VIEWPARTSIZE, a standard ObjectComponents event. ObjectWindows
provides a response table macro for this and other standard ObjectComponents
event. The ObjectComponents event macros are defined in the header file owl/
ocfevent.h, which is automatically included. These macros add EV_ to the beginning
of the ObjectComponents event name, so that in this case the macro would be
EV _OC_ VIEWPARTSIZE. Add this macro to your view's response table. Like other

Chapter 15, Making an OLE server 149

standard message macros, it has no parameters and calls a predefined function name
when the event is received.

2 Add a function to your TDrawView class declaration to handle this event. The
function called through the predefined response table macro is EvOcViewPartSize.
This function returns bool and takes a pointer to a TRect.

3 Define the EvOcViewPartSize function. To do this, create a device context object (in
the sample code here, we've used a TClientDC). You should place the size of the view
in the TRect object passed into EvOc ViewPartSize by pointer. In the Drawing Pad
application, the size of the view is limited to 2 inches on the screen. This is an
arbitrary measurement; you can also calculate the area necessary to display the
information in the document and pass that back. For simplicity, though, it's easiest to
pass back an absolute measurement. In this case, set the top and left members of the
TRect to 0. You can then get the number of pixels in the size of the view by calling the
GetDeviceCaps function of the device context object with the LOGPIXELSX parameter
to get the width and the LOGPIXELSY parameter to get the height. This actually
returns the number of pixels in an inch on the screen. Multiply this result by two in
each case and assign the width to the right member of the TRect object and the height
to the bottom member.

The completed function should look something like this:

bool
TDrawView: :EvOcViewPartSize(TRect far* size)
(

TClientDC dc(*this);

II a 2" x 2" extent for server
size->top = size->left = O;
size->right = dc.GetDeviceCaps(LOGPIXELSX) * 2;
size->bottom = dc.GetDeviceCaps(LOGPIXELSY) * 2;
return true;

Setting up the view's tool bar
The OC_ VIEWSHOWTOOLS event indicates that the container in which your server is
embedded wants to either show or hide your server's tool bar.

Add the OC_ VIEWSHOWTOOLS macro to your view's response table.

2 Add a function to your TDraw View class declaration to handle this event. The
function called through the predefined response table macro is EvOcViewShowTools.
This function returns bool and takes reference to a TOcToolBarinfo object.
TOcToolBarinfo is a simple structure; it only has a couple of members that we're
concerned with here.

• The first is the Show member, a bool. If Show is true, the container wants to display
your tool bar. If Show is false, the container wants to hide your tool bar.

• The second is HTopTB, an HWND. You pass back the tool bar to the container
through this member.

150 ObjectWindows Tutorial

3 If the container wants to hide the tool bar (that is, Show is false), you need to destroy
the tool bar window, delete the tool bar object, and set your TControlBar pointer to 0.
Before doing this, though, you should check to make sure that the TControlBar
pointer references a valid object!

4 If the container wants to show the tool bar, you should first check to see that the
TControlBar pointer doesn't already point to a valid object. If so, you can skip the next
step and go on to step 6.

5 The most complicated thing about constructing a tool bar in these circumstances is
finding the parent window. This takes a few steps, since you need to find your main
window, and then, through the main window, which is an OLE frame window, you
need to find the remote view bucket the application is using in the container's
window.

The first step is to find the application object. This is the easiest way to find the
main window, since the application object provides a function to get a pointer to
the main window. To find the application object, call the GetApplication function.
This returns a T Application pointer to the application object.

2 Once you've found the application object, you can get a TFrameWindow pointer to
the main window by calling the GetMain Window function of the application object.

3 Now that you've found the main window, you need to cast it to a TOleFrame
window to be able to find the remote view bucket window. Although the main
window is already a TOleFrame object, GetMain Window returns it as a
TFrameWindow. Since you are downcasting (that is, casting from a base object to a
class derived from that base), you need to be careful. It is quite possible to try to
cast an object of one type to an object of another type. If both of these types are
derived from the same base class, this can cause serious trouble.

For example, suppose you have a function that takes a TWindow pointer as its only
parameter. When the function is called, you assume that the TWindow value you
received in the function actually referenced a TControl object (since TControl is
derived from TWindow, you can safely pass a TControl object as a TWindow object).
But TControl and TFrameWindow are both derived from TWindow. What if the
object passed in was actually a TFrameWindow object? Serious havoc could ensue.

ObjectWindows provides a macro called TYPESAFE_DOWNCAST that
downcasts objects that are typed as a base class to objects of a derived type. If the
downcast isn't typesafe (that is, the object isn't what you're actually trying to
downcast to, such as trying to cast a TFrameWindow to a TControl), the macro
returns 0. Otherwise the macro makes the cast for you and returns the appropriate
value.

TYPESAFE_DOWNCAST takes two parameters. The first is the object you want to
cast and the second is the type you want to cast the object to.

4 Once you've found the application's main window and cast it appropriately, you
need to call the GetRem View Bucket function. This function returns a TWindow
pointer that references the remote view bucket window. This is quite important:
with the tool bar parented properly, it's easy for the container to switch tool bars
automatically among any of the servers that might be embedded in the container.

Ch apter 1 5, Making an 0 LE server 151

5 Once you've got a pointer to the remote view bucket window, construct a
TControlBar object like normal, passing the view pointer as the parent. When the
tool bar object is constructed, you can insert button gadgets to control the
application. For now, it's sufficient to just add the CM_pENSIZE and
CM_PENCOLOR buttons.

6 Once you have a valid tool bar object, create the tool bar itself by calling the object's
Create function.

7 Once the tool bar is created, cast it to an HWND and assign it to the TOcToolBarlnfo's
HTopTB member. You could instead assign it to one of TOcToolBarlnfo's other
members to place it somewhere besides the top of the container's window.

8 Assuming everything went alright during this process, return true. This lets the
container know that everything went alright and it can display the tool bar.

Here's how your EvOcViewShowTools function should look:

bool
TDrawView: :EvOcViewShowTools(TOcToolBarinfo far& tbi)
(

II Construct & create a control bar for show, destroy our bar for hide
if (tbi.Show) (

if (!ToolBar) (
TOleFrame* frame= TYPESAFE_DOWNCAST(GetApplication()->GetMainWindow(), TOleFrame);
ToolBar =new TControlBar(frame->GetRemViewBucket());
ToolBar->Insert(*new TButtonGadget(CM_PENSIZE, CM_PENSIZE, TButtonGadget::Command));
ToolBar->Insert(*new TButtonGadget(CM_PENCOLOR, CM_PENCOLOR,

TButtonGadget: :Command));

ToolBar->Create();
tbi.HTopTB = (HWND)*ToolBar;
else (
if (ToolBar)

ToolBar->Destroy();
delete ToolBar;
ToolBar = O;

return true;

Removing calls from the Paint and mouse action functions
TDrawView's Paint function and its mouse action functions EvLButtonDown,
EvLButtonUp, and EvMouseMove all make calls that are necessary to support container
functionality. You should remove these calls for your application to function as a server­
only application.

• The Paint function calls TOleView::Paint so that any embedded objects are called and
told to paint themselves. Since a server-only application has no embedded objects,
this call is no longer necessary.

152 ObjectWindows Tutorial

• EvLButtonDown, EvLButtonUp, and EvMouseMove call the SelectEmbedded function to
determine whether the user clicked on-and thereby selected-an embedded object.
As with Paint, since there are no embedded objects in a server-only application, this
call is no longer necessary.

Ch apter 1 5, Making an 0 LE server 153

154 ObjectWindows Tutorial

For further study
As you can see, ObjectWindows 2.5 packs a lot of functionality into its classes. With this
tutorial, you've really only begun to scratch the surface of the things you can do with
ObjectWindows. Here are a number of suggestions for things you can do to expand the
tutorial application even more:

• You can add other Doc/View classes to the application. To do this, compile the
document class, its view classes, and a list of document templates into an object file.
Then add that object file to the application when you link it. Then, when you open a
new document, you'll see the new document types appear in the File Open dialog
box. Note that this works even though the application knows nothing about the Doc/
View classes you added.

• A good source for Doc/View classes is the DOCVlEWX application in the
EXAMPLES\OWL \OWLAPl\DOCVIEW directory. You can also try writing your
own document and view classes.

• Try adding new GDI objects to the application. For example, you might try adding
the ability to import bitmaps with the TBitmap class. Or add textured brushes with
the TBrush class.

• Add different drawing operations, such as lines, boxes, circles, and so on. You can
add menu choices for each of these operations. You can also set up exclusive state
button gadgets on the control bar to let the user change the current operation just by
pressing a button gadget.

• Try converting the control bar into a floating tool box by changing the TControlBar
into a TToolBox in a TFloatingFrame. You can see an example of how this is done in the
PAINT example in the EXAMPLES\OWL \OWLAPPS\PAINT directory.

• Try adding the ability to perform multiple undo operations. You can use container
classes to hold all the lines that have been changed.

· There are some additional steps in the EXAMPLES\OWL \TUTORIAL directory that
are not discussed in this manual. These steps combine functionality from earlier steps
into much more complex applications. They also extend the OLE ability of the

Ch apter 1 6, For further study 155

applications into OLE automated applications and automated controllers. Look through
this code and see what you can learn from it.

You can also go through the examples in the other ObjectWindows example directories.
Many of these have features in them you may want to try to add to the Drawing Pad
application.

156 0 b j e ct W i n d o w s Tu t o r i a I

Symbols
++ operator 30
<<operator 46, 47, 54
== operator 46
>>operator 46, 47, 54

A
accelerator tables 108
accessing document and view

properties 100
accessing data 83-84

in views 110
Add member function

TArray 29
adding·

See also constructing; creating
events 17, 34
gadgets to control bars 59, 60,

61
identifiers to events 32, 33, 34
menu commands 33, 37
menus 32

to views 85-86, 93
objects to decorated frame

windows 61
pens to window classes 21-22
response tables 8
tool bars 123, 148, 150
windows to MDI

applications 66, 68, 72
AddLine member function

TLine 100
allocation, arrays 28
ANSI string classes 82
applicat.h 5
application dictionaries See

dictionaries
application objects 6

converting to MDI 95
converting to OLE

servers 138, 139
Doc/View models and 90
instance, getting 83, 97

applications
MDI See MDI applications
OLE See OLE applications

array classes 30
arrays 29, 70

creating 28
defining 46
iterators 29-30, 48

Index
objects, incrementing 30
referencing and

dereferencing 30
resetting 29

arrays.h 28
AssignMenu member function

TDecoratedFrame 62
TFrameWindow 33

associating
application objects and

processes 121
identifiers with event­

handling functions 32
resources with objects 75
views with documents 84

Attr.AccelTable 108
Attr.Style 108

B
base classes, initializing 8
BEGIN_REGISTRATION

macro 88, 118, 145
bitmaps, gadgets 59
Black data member

TColor 21
Boolean conditions, testing 30
borders 58
Borderstyle enum 58
brushes 22
button gadgets 59
buttons 60

mouse See mouse buttons

c
CanClose member function

TDocument 109
TListBox 109
TWindow 10, 38

captions
window 70, 75
window, resetting 94

cascading child windows 96
changing

data in views 100, 104, 112
document registration 124
documents 81, 83
file names 70
frame windows 66
identifiers 69, 70
line thickness 21
main windows 57

mouse button events 22
pens 22-24, 51

child windows 64, 65
captions 70
creating 67, 68, 71
initializing 75
managing 96
minimizing 75
returning active 73

class factories 119
classes

array 30
document 77, 79

associating views with 84
committing changes 81
input streams 80
OLE applications 127
retrieving resources 83

document template 88-89, 98
matching templates 92

instantiation 10
string 82
view 77

handling events 87-88
naming 86

window 67-76
adding pens 21-22
creating 7

clearingwindows 14, 31
ClearList member function

TListBox 110
client windows 64, 65

captions 75
creating 67, 95
frame windows and 93, 94

clients, windows as 11
Clipboard

OLE applications 125, 146,
148

Close member function
TFileDocument 81

closing
views 94, 98
windows 10, 38

CM_ABOUT constant 67
CM_ARRANGEICONS

constant 65, 73
CM_CASCADECHILDREN

constant 64, 73
CM_CLEARmessage 106, 112
CM_CLOSECHILDREN

constant 65, 73
CM_DELETE message 112

Index 157

CM_FILENEW constant 67, 71
CM_FILEOPEN constant 67, 71
CM_TILECHILDREN

constant 64, 72
CM_TILECHILDRENHORIZ

constant 72
CM_ UNDO message 107, 112
CmFileNew member function

TDocManager 91
Color common dialog box 54
Color data member

TChooseColorDialog::TData
55

color.h 21
colors

default 55
pens 21,52

command-line options
OLE applications 143

Commit member function
TDocument 81, 82

CommitTransactedStorage
member function

TOleDocument 129
common dialog boxes 37

opening files 40, 71
saving files 40
setting colors 54

connector objects 118
constants

MDI command IDs 64, 72
mouse button events 23

constructing
See also creating
common dialog boxes 40
decorated frame

windows 57, 90
device contexts 13, 18
document manager 90, 97
iterators 29
menu descriptors 85, 86, 90,

96
OLE objects 132
string classes 82

constructors
TArray 28
TButtonGadget 59
TChooseColorDialog 54
TClientDC 13
TControlBar 59
TDecoratedFrame 57
TDecoratedMDIFrame 66
TFileOpenDialog 40
TFrameWindow 11, 57
TlnputDialog 22

158 0 b j e ct W i n d ow s T u t o r i a I

TMenuDescr 85
TPen 21, 51
TStatusBar 58

container classes 28, 46
deriving from 45

containers 115
control bars 57, 58-61

adding gadgets 59, 60, 61
hint mode, changing 96
messages 96
separating gadgets 60

controls, tiling 59
conversion operators 13
conversions

applications to OLE
servers 138, 139

Doc/View models to MDI 95
ObjectWindows applications

toOLE 116
SDI applications to Doc/

View 77
SDI applications to MDI

applications 64-76
coordinates (screen) 14
copying data 148
Create member function

TDialog 23
TListBox 109
TWindow 72, 97

CreateDoc member function
TDocTemplate 92, 98

creating
See also adding; constructing
arrays 28
child windows 67, 68, 71
client windows 67, 93, 95
control bars 58
document classes 79
document objects 92
OLE MDI frame

windows 122
registrar objects 119, 120
registration tables 118

OLE applications 118
status bars 58
template class instances 89
views 93, 141
window classes 7, 67-76

Current member function
TArraylterator 30

CustColors data member
TChooseColorDialog::TData

55
custom dialog boxes 43

D
data 65, 70, 77

accessing 83-84
in views 110

changing 100, 104, 112
copying 148
deleting 148
formatting 110
unstored 10

data members, initializing 70-72
dc.h 13
declarations

event-handling functions 34
response tables 8

decmdifr.h 65
decorated frame windows

adding menu descriptors 90
adding objects 61
as main window 58, 61
constructing 57, 90

decorated MDI frame
windows 96

client windows 95
constructing 96
opening 97

decorations 57,61
MDI applications 65

default colors, setting 55
DEFINE_APP _DICTIONARY

macro 121
DEFINE_OOC_TEMPLATE

_CLASS macro 88
DEFINE_RESPONSE_TABLE

macro 8
defining

arrays 46
event-handling functions 34
response tables 8
view notification events 99

delete operator 19, 24
DeleteString member function

TListBox 113
deleting data 148
derived classes 45

MDI applications 65
deriving from

TApplication 6
TListBox 108
TView 84, 108
TWindow 84

designing document template
classes 88-89

destroying
device contexts 19
pens 24

destructors
TPen 24

Detach member function
TArray 104

device contexts 70
constructing 13, 18
destroying 19
graphics objects 22
printing in 14

dialog boxes
See also common dialog boxes
constructing 22-23
customizing 43
executing 23, 40

dictionaries 121
directories 37
dirty documents 80
disabling menu tracking 96
displaying messages 58
Doc/View model 77

application objects and 90
converting to MDI 95
OLE applications 117
overview 78
properties 100, 101
template class instances 88

document classes 77
adding resources 85
associating views with 84
committing changes 81
creating 79
input streams 80
OLE applications 127
retrieving resources 83

document manager
constructing 90, 97
finding application

instance 83, 97
getting view name 106, 109
matching document

templates 92
document objects

accessing data 83-84
accessing streams 79, 80, 82
creating 92
dirty 80
discarding changes 81, 83
Doc/View property

attributes 100, 101
in OLE applications 117
notifying views 83
notifying views of

changes 100, 104,112
opening 80
pointers 79
retrieving information 81
saving 79,81-83

document registration
OLE 124

document registration table
objects 88

document template classes 88-89
creating documents 92, 98
flags 89
instances, creating 89
matching templates 92

documentation, printing
conventions 3

documents 63
untitled 97

drag and drop 91, 92
getting dropped files 97
releasing memory 92, 98

DragAcceptFiles member
function, TWindow 90

DragFinish member function
TDropinfo 92, 98

DragQueryFile member function
, TDropinfo 92, 98

DragQueryFileCount member
function, TDropinfo 92, 97

DragQueryFileNameLen
member function

TDropinfo 92
Draw member function

TLine 107
drawing in windows 17, 21, 71,

87
changing pens 22-24, 51
closing drawings 81
multiple drawings 63
opening drawings 79-81
returning information on 39
saving drawings 38, 39
storing drawings 27-28

Drawing Pad application 1, 63
dropping files 92, 97

E
embedded OLE objects 126, 130
enabling buttons 60
encapsulated API calls 10
END_RESPONSE_TABLE

macro 8
enumerations

border style 58
buttons

initial state 60
types 60

controls, tiling 59
gadgets, placing 60, 61
mode indicators 58

EV _COMMAND macro 32, 34,
106

EV_ VN_DRAWAPPEND
macro 107

EV_ VN_DRA WDELETE
macro 107

EV_ VN_DRA WMODIFY
macro 107

EV WM DROPFILES macro 91
EV=WM=LBUTTONDOWN

macro 8
EV_WM_LBUTTONUP

macro 17
EV _WM_MOUSEMOVE

macro 17
EV _WM_RBUTTONDOWN

macro 8
event handlers 34
event-handling functions 8, 9

menus 32, 34
message cracking 9

events 34
adding new 17
MDI applications 68, 72, 73
mouse See mouse events
OLE applications 134
processing 7
views 87-88

EvPaint member function
TWindow 31

Execute member function
TChooseColorDialog 55
TDialog 23, 43
TFileOpenDialog 40
TFileSaveDialog 41

executing dialog boxes 23, 40

F
file filters 37
file names 37, 38, 40

changing 70
file pointers 75
files 37

dropping 92, 97
opening 40,41, 71,73
saving 40,42
tutorial 3

copying 1
filters 37
FindProperty member function

TDocument 102
flags

document properties 101
setting 38
template classes 89

Ind ex 159

Flush member function
TArray 29, 135

fonts 22
status bars 58

formatting data 110
frame windows 11, 57, 64, 65

See also decorated frame
windows

changing 66
hiding server windows 139
initializing 66
merging client menus 93
OLE applications 117, 122,

123
removing client windows 94
resetting caption 94
restoring menus 94
setting client windows 93
tool bars 123

framewin.h 5
functions

G

event-handling 8, 9
menus 32,34
message cracking 9

input 78
invalidation 14
output 78
response 73

gadgets 57, 59, 60
adding bitmaps 59
control bars and 59, 60, 61
placing 60, 61

GetActiveMDIChild member
function

TMDIClient 73
GetApplication member function

TApplication 83
GetDocManager member

function
TApplication 83

GetitemslnContainer member
function

TArray 29, 42, 84
GetMain Window member

function
TApplication 33, 62, 90, 92

GetProperty member function
TDocument 102

GetViewMenu member function
TView 93

GetViewName member function
TView 106, 109

GetWindow member function
TView 93, 97, 109

160 0 bjectWi n d ows Tu tori a I

graphics 13
device contexts and 22, 70

H
HandleMessage member

function
TWindow 113

handles, window 13
handling embedded OLE

objects 126, 130
header files

identifiers and 33
MDI applications 64--65
OLE applications 117, 138

hiding OLE server windows 139
hint mode, changing 96
HWND operator 13, 14

icons 75
arranging window 96

IDCANCEL constant 23
identifiers

bitmaps 59
button gadgets 59
changing 69, 70
menu commands 32, 33, 34
OLE applications 118
resources 59
tool bars 123

IDOK constant 23
IDW _TOOLBAR identifier 123
ifstream class 41
implementing virtual

functions 79
indicators, mode 58
Initmemberfunction

TWindow 8
InitApplication member function

TApplication 6
InitChild member function

TMDIClient 75
initialization

base classes 8
child windows 75
data members 70-72
frame windows 66
main windows 6
pens 21

Initlnstance member function
TApplication 6, 90, 97

InitMain Window member
function

TApplication 6, 33, 57, 90
inline functions 75

input 67
input dialog boxes 22-24
input functions 78
input streams, documents 79, 80
INPUTDIA.RC 23
Insert member function

TControlBar 60
TDecoratedFrame 61

inserting See adding
instances

application 83, 97
document templates 88, 89

instantiation, classes 10
Invalidate member function

TWindow 14,41, 107, 135
InvalidateRect member function

TWindow 14
InvalidateRgn member function

TWindow 14
invalidating windows 14
invalidation functions 14
iostreams 41, 42
IsDirty flag 38
IsNewFile flag 38, 40, 71
IsOK member function

TView 93
iteration, arrays 29-30, 48

L
lines, drawing 17, 18, 21, 27, 53
LineTo member function

TWindow 18
list boxes, messages 112
LPARAMvariable 9, 10

M
macros

document templates 88
drag and drop 91
event handling 32, 34, 99

menus 106
mouse events 17

names, returning 8
registration tables 88, 89
resources 33
response tables 8, 99, 107

main windows 10-11
changing 57
decorated frame windows

as 58, 61
initializing 6

Match Template member
function

TDocManager 92, 98

MB_YESNOCANCEL
macros 39

MDI applications 63, 64
adding windows 66, 68, 72
child windows 97
command processing 65, 72
converting from Doc/View

models 95
document manager 97
event handling 68, 72, 73
frame windows 96
header files 64-65
resources 64, 75
untitled documents 97

MDI command identifiers 64, 72
MDI window classes 67-76
mdi.h 65
mdi.rh 64
mdichild.h 65
member functions

See also specific member
function

inline 75
memory, drag and drop

functions 92, 98
menu commands 32, 61, 67, 108

adding 33, 37
event identifiers 32, 33, 34
processing in MDI

applications 65,72
menu descriptors

adding to views 97, 106, 108
constructing 85, 86, 90, 96,

108
menu resources 108
menu tracking 57, 66, 96

disabling 96
menus 96

adding 32
to views 85-86, 93

MDI frames 66
restoring 94

MergeMenu member function
TFrameWindow 93

message bars 57, 58
message cracking 9
MessageBox member function

TWindow 10, 39
messages 67

control bars 96
displaying 58
list boxes 112
painting windows 31
processing 7

minimizing windows 75
modal dialog boxes 23
mode indicators 58

modeless dialog boxes 23
modes, file 129
mouse button events 17

changing 22
constants 23

mouse buttons, pressing 23
mouse events 17, 134

See also mouse button events
Multiple Document Interface See

MDI

N
names

view classes 86
Windows functions,

returning 9
nonmodal dialog boxes See

modeless dialog boxes
notification messages

views 87, 91, 92, 93, 94
NOTIFY_SIG macro 99
NotifyViews member function

TDocument 83, 100, 104, 112

0
ObjectComponents Framework

See OLE
objects 46

OLE See OLE objects
resources and 75
retrieving 46
saving 46

ofstream class 42
ofTransacted flag 129
OLE applications 115

adding tool bars 123, 148, 150
associating objects and

processes 121
building 116, 139
changing document

registration 124
Clipboard formats 125, 146,

148
command-line options 143
connector objects 118
containers 115
converting ObjectWindows

applications 116
copying data 148
creating new views 141
currentmodule 140
cutting data 148
dictionaries 121
event handling 134
frame windows 117, 122

header files 117, 138
identifiers 118
invalidating remote

views 147
notifying views 147
registering 118, 120
registrar objects 119
registration tables 118, 138
remote view bucket 142
setting application

connectors 123
OLE class factories 119
OLE classes 117, 127

deriving 121, 126, 132
OLE objects

constructing 132
handling embedded 126, 130
opening 129
painting 132
reading 128
saving 129
selecting 133
storing 129
writing 128

OLE servers 115, 137
hiding windows 139
making insertable 145
parent windows 142
registration tables 145
reporting view size 149
setting verbs 145

Open common dialog box 37,
40, 71

Open member function
TFileDocument 79-81

opening
decorated MDI frame

windows 97
documents 80
files 40, 41, 71, 73
views 97

operators
conversion 13
extraction 46,47,54
insertion 46, 47, 54
postfix 30
prefix 30

outputfunctions 78
output streams

documents 79,82
OwlMain function 6

p
Paint member function

TWindow 31,48,54,87
painting OLE objects 132

Index 161

painting windows 27-32, 41
palettes 22
parent documents 79
parent windows

OLE applications 142
pens

changing 22-24,51
colors, setting 21, 52
constructing 21
destroying 24
size 45, 48, 87

pointers
active windows 73
documents 79
file 75

postfix operators 30
predefined macros

names,returning 8
prefix operators 30
PreProcessMsg member function

TWindow 72
pressing mouse buttons 23
printing, device contexts and 14
printing conventions

(documentation) 3
properties

Doc/View attributes 100, 101
PropertyFlags member function

TDocument 102
PropertyName member function

TDocument 101

R
RC_INVOKED macro 33
referencing and dereferencing

array objects 30
REGDATAmacro 89, 118
REGDOCFLAGS macro 89
REGFORMAT macro 126
registering OLE

applications 118, 120
changing document

registration 124
registrar objects

creating 119, 120
running 120

registration tables 88
OLE applications 118, 138
OLE servers 145

REGISTRATION_FORMAT_BU
FFER macro 118

remote view buckets 142
remote views 147
repainting windows 27, 31

162 ObjectWindows Tutorial

resource script files 33
resources 23,58

associating with objects 75
documents 83, 85
MDI applications 64, 75
naming 33, 59

response functions 73
response tables 7, 87, 91

adding 8
declaring 8
macros 8

RestoreMenu member function
TFrameWindow 94

restoring menus 94
retrieving objects 46
Revert member function

TDocument 81, 83
Run member function

TApplication 6

s
Save common dialog box 37, 40
saving

documents 79, 81-83
drawings 38, 39
files 40, 42
objects 46

screens
clearing 14
coordinates 14

SDI applications 63
constructing document

manager 90
converting to Doc/View 77
converting to MDI

applications 64-76
dropping files 92

selecting OLE objects 133
SelectObject member function

TDC 22
separator gadgets 60
SetCaption member function

TFrameWindow 94
SetClientWindow member

function
TFrameWindow 93, 94

SetDirty member function
TDocument 104

SetDocManager member
function

TApplication 90
SetDocPath member function

TDocument 80
SetHintMode member function

TGadgetWindow 96

SetMain Window member
function

TApplication 6, 11, 19, 57, 62
SetMenuDescr member function

TFrameWindow 9Q, 96
SetSellndex member function

TListBox 110
SetViewMenu member function

TView 86, 106, 108
Single Document Interface See

SDI
source files

adding response tables 8
static arrays 29
StaticName member function

TView 86, 109
status bars 57

creating 58
STA TUSBA.RC 58
STEPOl.CPP 5
STEP02.CPP 7
STEP03.CPP 13
STEP04.CPP 17
STEP05.CPP 21
STEP05.RC 21
STEP06.CPP 27
STEP06.RC 27, 33
STEP07.CPP 37
STEP07.RC 37
STEP08.CPP 45
STEP08.RC 45
STEP09.CPP 51
STEP09.RC 51
STEPlO.CPP 57
STEPlO.RC 57
STEPll.RC 64
STEP12.CPP 77
STEP12.RC 78
STEP12DV.CPP 78
STEP12DV.RC 78
STEP13.CPP 95
STEP13.RC 95
STEP13DV.CPP 95
STEP13DV.RC 95
STEP14.CPP 115
STEP14.RC 115
STEP14DV.CPP 115
STEP14DV.RC 115
STEP15.CPP 137
STEP15.H 137
STEP15.RC 137
STEP15DV.CPP 137
STEP15DV.H 137
STEP15DV.RC 137
streams, documents and 79, 80,

82

string classes, constructing 82
string tables 59
styles, status bars 58

T
TAppDictionary class 121
TApplication class 6

constructing OLE servers 139
deriving from 6
getting application

instances 83
members

GetApplication 83
GetCmdLine 120
GetDocManager 83
GetMainWindow 33, 62,

90,92
InitApplication 6
Initlnstance 6, 90, 97
InitMainWindow 6, 33,

57,90
Run 6
SetDocManager 90
SetMainWindow 6, 11,

19, 57, 62
OLE applications 121
overriding 6
supporting Doc/View 90

TArray class 28
constructor 28
members

Add 29
Detach 104
Flush 29, 135
GetitemsinContainer 29,

42,84
TArrayiterator class 28

members
Current 30

TButtonGadget class 59
constructors 59

TChooseColorDialog class 54, 55
constructor 54
members

Execute 55
TChooseColorDialog::TData

class
members

Color 55
CustColors 55

TClientDC class 13
constructor 13

TClientDC pointer 18
TColor class 52

members
Black 21

TControlBar class 58
constructors 59
members

Insert 60
TDC class

members
SelectObject 22
TextOut 14

TDecoratedFrame class 57, 90
constructors 57
members

AssignMenu 62
Insert 61

TDecoratedMDIFrame class 65,
95

constructors 66
TDialog class 43

members
Create 23
Execute 23, 43

TDocManager class 78, 90
members

CmFileNew 91
MatchTemplate 92, 98

TDocTemplate class
members

CreateDoc 92, 98
TDocument class 77, 78

implementing virtual
functions 79

members
CanClose 109
Commit 81, 82
FindProperty 102
GetProperty 102
NotifyViews 83, 100, 104,

112
PropertyFlags 102
PropertyName 101
Revert 81, 83
SetDirty 104
SetDocPath 80

opening documents 80
TDropinfo class 92

members
DragFinish 92, 98
DragQueryFile 92, 98
DragQueryFileCount 92,

97
DragQueryFileNameLen

92
template classes

documents 88-89,92,98
text, displaying as message 58
TextOut member function

TDC 14

TFileDocument class
members

Close 81
Open 79-81

TFileOpenDialog class
constructor 40
members

Execute 40
TFileSaveDialog class 37, 41

members
Execute 41

TFrameWindow class
constructor 11, 57
members

AssignMenu 33
GetCommandTarget 142
MergeMenu 93
RestoreMenu 94
SetCaption 94
SetClientWindow 93, 94
SetMenuDescr 90, 96

TGadget class
members

Borderstyle 58
TGadgetWindow class 60

members
SetHintMode 96

TGadgetWindowFont class 58
this pointer 54
tiling child windows 96
tiling controls 59
TinputDialog class 23

constructor 22
TinStream class 80
TLine class

members
AddLine 100
Draw 107

TListBox class
deriving from 108
members

CanClose 109
ClearList 110
Create 109
DeleteString 113
SetSelindex 110

TLocation enum 61
TMDIChild class 65, 71
TMDIClient class 65, 72, 95

members
GetActiveMDIChild 73
InitChild 75

TMDIFrame class 65
TMenuDescr class 85, 90

constructing 97, 106, 108
constructors 85

Index 163

TModelndicator enum 58
TOcApp class 118

OLE frame windows and 123
TOcModule class 118, 121
TOcRegistrar class 119

constructing 119
members

IsOptionSet 143
Run 120

TOcToolBarlnfo class
members

HTopTB 152
TOleDocument class 117, 126

members
Commit 129
CommitTransactedStorage

129
Open 129

TOleDocViewFactory
template 119

TOleFrame class
members

GetRemViewBucket 142
TOleMDIFrame class 122

members
SetOcApp 123

setting connector objects 123
TOleView class 117, 132

constructing 132
members

Create 142
EvLButtonDown 133
EvLButtonUp 134
EvMouseMove 134
EvNewView 141
GetDocument 141
GetOcRemView 141
GetWindow 142
InvalidatePart 147
IsEmbedded 141
IsOpenEditing 141
Paint 132
SelectEmbedded 133
SetParent 142

tool bars 123, 148, 150
TOpenSaveDialog class 37

TData object 37
TOpenSaveDialog::TData

class 71
TOutStream class 82
TPen class 21

constructor 21, 51
destructor 24
modifying 22

TPlacement enum 60
TPoint class 28

deriving from 45
transacted file mode 129

164 0 bj ec!Wi nd ows Tutorial

TRegistrar class
members

GetRegistrar 139
IsOptionSet 139

TRegList class 88, 118
TResld class 43, 59
TSeparatorGadget class 60
TState enum 60
TStatusBar class 58

constructors 58
TTileDirection enum 59
TType enum 60
turning off menu tracking 96
tutorial 2

adding decorations 57
adding menus 32
adding multiple lines 45
changing line thickness 21
changing pens 51
common dialog boxes 37
creating applications 5
drawing in windows 17
files 3

copying 1
handling events 7
moving to Doc/View 77
moving to MDI 95
painting windows 27
writing in windows 13

TView class 77, 78, 84
deriving from 84, 108
event handling 87-88
members

GetViewMenu 93
GetViewName 106, 109
GetWindow 93, 97, 109
IsOK 93
SetViewMenu 86, 106, 108
StaticName 86, 109

TWindow class
deriving from 84
members

CanClose 10, 38
Create 72, 97
DragAcceptFiles 90
EvPaint 31
HandleMessage 113
Init 8
Invalidate 14, 41, 107, 135
InvalidateRect 14
InvalidateRgn 14
LineTo 18
MessageBox 10,39
Paint 31, 48, 54, 87
PreProcessMsg 72

TWindowView class 84
type checking 9

TYPESAFE_DOWNCAST
macro 141

typographic conventions 3

u
unstored data 10
untitled documents 97

v
variables 70
verbs,setting 145
view buckets (remote

applications) 142
view classes 77

deriving for OLE 132
handling events 87-88
naming 86

view objects
adding tool bars 148
creating new OLE views 141
notifying OLE views 147
OLE applications 117

views 83, 84, 147
adding menu descriptors 97,

106, 108
adding menus 85-86, 93
attaching to documents 84
changing data 100, 104, 112
closing 94, 98
creating 93, 141
finding associated

windows 93, 109
formatting data 110
getting name 106, 109
loading data 110
notification events,

defining 99
notification messages 87, 91,

92, 93, 94
opening 97

virtual functions 78
implementing 79

VN_COMMIT message 87
VN_DEFINE macro 99
VN_REVERT message 87
vnCustomBase constant 99

w
window classes 67-76

adding pens 21-22
creating 7

window handles 13
window objects,

clearing 14, 31

closing 10, 38
drawing in 17, 21, 71

changing pens 22-24, 51
multiple drawings 63
saving drawings 38, 39

graphical operations 13
naming 19
painting 27-32, 41
writing to 13

windows
adding to MDI

applications 66,68,72
arranging icons 96
as clients 11
captions, resetting 94
child 64,65,67,68

captions 70
creating 71
initializing 75
managing 96
minimizing 75
returning active 73

client 64, 65, 67, 93, 95
captions 75
removing 94

decorated frame
adding menu

descriptors 90
adding objects 61
as main window 58, 61
constructing 57, 90

decorated MDI frame 96
constructing 96
opening 97

drawing in 87
closing drawings 81
opening drawings 79-81

frame 11,57,64,65
changing 66
hiding server

windows 139
initializing 66
OLE applications 117, 122,

123
main 10-11,58,61

f!~at~g5~
parent, OLE applications 142
returning for views 93

Windows API calls 10
Windows applications

graphical operations 13
main window 10-11, 58, 61

f!:t!:~
running 6

Windows functions 10
names, returning 9

Windows messages 8
WinMain function

OwlMain function vs. 6

WM_DROPFILES message 92
WM_LBUTTONDOWN

message 8, 9, 17
WM_LBUTTONUP message 17
WM_MOUSEMOVE

message 17
WM_OWLVIEWmessage 91,

93,94
WM_P AINI message 31, 41
WM_RBUTTONDOWN

message 8, 9
WPARAM variable 9
wrappers 73
writing in windows 13

Index 165

166 0 bj ectW ind ows Tutorial

Borland
Corporate Headquarters: 100 Borland Way, Scotts Valley, CA 95066-3249, (408) 431-1000. Offices in: Australia, Belgium, Brazil,
Canada, Chile, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Latin America, Malaysia, Netherlands, Singapore, Spain,
Sweden, Taiwan, and United Kingdom • Part# BCP I 245WW2 I 777 • BOR 7775

